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ABSTRACT 
 

Lee W. Boushell, DMD: Distribution of Matrixmetalloproteinase-2 in Human Coronal 
Dentin 

(Under the direction of Dr. Mitsuo Yamauchi) 
 

It has been reported that matrixmetalloproteinase-2 (MMP-2) is present in dentin, but its 

distribution and significance in human dentin are not well understood.  OBJECTIVE: To 

identify MMP-2 and determine its distribution in human coronal dentin. METHODS: 

Immunohistochemistry was used to investigate the distribution of MMP-2 in coronal dentin. 

Freshly extracted human premolars and 3rd molars (age range 12-30) were fixed with 

formaldehyde, demineralized with 10% EDTA (pH=7.4) and embedded in paraffin. Five µm

serial sections were made and subjected to analysis using a monoclonal anti-MMP-2 

antibody with an avidin-biotin-complex method. Immunoreactivity was visualized with 3,3’-

diaminobenzidine substrate and observed under light microscopy. ImageJ software was used 

to calculate the relative amount/distribution of MMP-2. Based on immunohistochemical 

results, crowns of freshly extracted human 3rd molars (age range 15-32) were sectioned, pulp 

and predentin tissue was removed, dentin matrix was extracted with EDTA and guanidine-

HCl, pH7.4, and subjected to Western blot analysis with monoclonal anti-MMP-2 antibody 

and zymography. RESULTS: Immunohistochemical analysis revealed immunoreactivity for 

MMP-2 throughout human coronal dentin. However, intense immunoreactivities were 

identified in a 90-200 µm zone adjacent to the pre-dentin as well as a 9-10 µm wide zone 

adjacent to the dentinoenamel junction (DEJ). Biochemical strategies detected MMP-2 as  
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~66  and  ~72 kDa  proteins  (mature and proform of MMP-2, respectively). Furthermore, 

gelatinolytic activity was detected in the extracts. CONCLUSION:  The results indicate that 

MMP-2 may be involved in extracellular matrix organization and dentin mineralization in 

predentin matrix.  In addition, its concentration in the zone immediately adjacent to the DEJ 

and the retained enzymatic activity after demineralization suggest that MMP-2 may play a 

role in the spread of early dentin caries along DEJ. Supported by NIH grants  DE10489, 

DE015876 and the UNC School of Dentistry. 
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INTRODUCTION 

 Dentin is essentially composed of two phases, mineral and type-I collagen matrix. The 

process of dentin caries may involve removal of mineral followed by digestion of the 

collagen matrix.1 Matrixmetalloproteinase-2 (MMP-2), an enzyme capable of digesting 

gelatin/collagen, has been identified in dentin and suggested to be involved in this process.2-4 

However, due mainly to the variation of origin and preparation of dentin among studies, the 

distribution, activity and biological function of MMP-2 in this tissue are still not well 

understood. In this study, to obtain an insight into the role of MMP-2 in human dentin 

biology, we investigated the relative distribution and activity of MMP-2 in human coronal 

dentin. 

 



BACKGROUND 

 Fibrillar type I collagen is the structural framework of dentin holding together the 

hydroxyapatite crystallites, which are located within and around the fibrils. The specific 

association and organization of these two phases are likely critical in maintaining the 

mechanical properties of this tissue. Mineral that is dissolved during acid attack may be 

replaced as long as the matrix remains intact and the matrix cannot be digested by enzymic 

action as long as it is protected by hydroxyapatite crystallites.5

A collagen molecule is composed of three polypeptide chains (alpha chains) each in a left-

handed polyproline helix wound together into a right-handed triple helical structure. This 

triple helical structure confers on the molecule its extraordinary degree of resistance to 

proteolytic enzymes. Collagen molecules contain two unique amino acids, i.e. 

hydroxyproline and hydroxylysine. These amino acids are formed intracellularly on nascent 

peptide chains before formation of the triple helix by the action of prolylhydroxylases and 

lysylhydroxylases on peptide bound proline and lysine residues, respectively. Some of the 

hydroxylysine residues are further modified by the attachment of mono- (-galactose) or 

disaccharides (-galactose-glucose). Those unique post-translational modifications are critical 

for the functions of collagen and the modified amino acids have been used as markers of 

collagen degradation.   

 Type I collagen is the most abundant type in vertebrates and the predominant matrix 

component in dentin. Upon completion of post-translational modifications described above,  

 



two pro alpha1 chains and one pro alpha2 chain are wound together to form a procollagen 

molecule in the cells. The procollagen molecules are then secreted outside the cells, both 

amino(N)- and carboxy (C)- propeptide extentions are removed and the mature collagen 

molecules are self-assembled and packed into fibrils. Then the molecules in the fibrils are 

stabilized by covalent intra/intermolecular cross-linking. Cross-linking is initiated by 

conversion of specific telopeptidyl lysyl/hydroxylysines to aldehyde by lysyl oxidase. The 

amount of collagen intra- and intermolecular cross-links changes through development, 

maturation and aging. Newly formed collagen fibrils contain primarily labile intermediate 

cross-links and more mature collagen fibrils have predominantly stable cross-links.  

 Collagen is degraded by endopeptidases from four major classes: 1) cysteine proteases, 2) 

aspartic proteases 3) serine proteases and 4) metalloproteases (MMPs). The cysteine 

proteases (cathepsins B, H, L & S) and aspartic proteases (cathepsin D) are optimally active 

at acid pH.  The serine proteases and MMPs are at their optimum functioning capacity at 

physiologic pH and it is assumed that collagen degradation occurs predominantly at 

physiologic pH. MMP expression is tightly controlled by growth factors and cytokines, 

which either induce or repress transcription of MMP genes. 

 MMPs can be divided into four groups based on homologous structural and substrate 

specificities: 1) membrane-type MMPs (MMPs 14, 15, 16 & 17), 2) stromelysins (MMPs 3 

& 10), 3) collagenases (MMPs 1, 8, 13, & 18) and gelatinases (MMPs 2 & 9). The MMPs are 

synthesized as pro-enzymes (zymogens) which are activated extracellularly by removal of 

the propeptide portion of the zymogen. MMPs are inhibited by Alpha 2-macroglobulin, a 

prominent and widespread inhibitor of all proteases, which is found in circulation as well as 

tissues.  Tissue inhibitors of matrixmetalloproteases (TIMPs) are more specific inhibitors of 

MMPs. TIMPs are produced locally in tissues and bind to the active enzyme but not the  
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zymogen. MMPs require zinc for catalytic function and calcium for structural stability and 

thus can also be inhibited by cation chelators such as EDTA. 

 Activated collagenase is able to degrade intact collagen by attaching to an individual triple 

helical collagen molecule and cleaving approximately 3/4 of the way from the amino-

terminal end of the molecule. The collagenase cleaves through all three polypeptide helical 

chains simultaneously. The cleaved collagen molecule has a markedly reduced denaturation 

temperature. As a result, the cleavage allows the collagen molecule triple helix to unwind 

(denature) at physiological temperature which gives access to the gelatinases. Denatured 

collagen is termed gelatin and is the primary substrate of the gelatinases. Gelatinase B 

(MMP-9) is associated with infiltrative cells and migratory cells implicated in inflammation. 

Gelatinase A (MMP-2) is produced by most cells and is involved in collagen remodeling and 

is able to completely digest the denatured collagen molecule into its component amino acids. 

Although MMP-2 is classified as a gelatinase, it is capable of digesting the intact collagen 

molecule as well, only at a much slower rate than collagenase. Activation of MMP-2 is 

unique in that it is pericellular which provides for focused activity.6,7 

Early research of dentinogenesis proposed that odontoblasts synthesize a type of 

collagenase and an inhibitor which binds to the collagen fibrils, forming a 

collagen/collagenase/inhibitor complex.8 The collagenase is latent in the mineralized dentin 

matrix, co-migrates with molecular weight markers at ~68 kDa, functions at neutral pH and 

is characterized as a matrix metalloproteinase.8,9 Once activated the collagenase works 

slowly which is typical of MMP-2.6,8,10 The collagenase isolated from human dentin is active. 

2,8 MMP-2 from human teeth degrades type-I collagen into characteristic TCA (3/4) and TCB 

(1/4) fragments.9 Acid activation followed by return to neutral pH enhances MMP activity.11 

MMPs 2, 3, 8, 9 & 20  are involved in dentin matrix formation.3,12 MMP-20 is also involved 
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in enamel formation.12 MMP-2 is the predominant MMP in mineralized dentin and may be 

associated with the collagen matrix but potentially not the hydroxyapatite.2 MMP-2 may be 

concentrated adjacent to the dentinoenamel junction (DEJ), in association with odontoblastic 

processes and odontoblast cell bodies.13 MMP-2 and MMP-20 may be inhibited in situ by 

tissue inhibitors of metalloproteinases such as TIMP-1.14 In contrast to MMP-2, TIMP-1 in 

dentin may be in low concentration adjacent to the DEJ and may be increased in 

concentration in the predentin.13 TIMP-1 concentration increases from the external root 

dentin towards the predentin area (towards the pulp).14 It has been reported that chlorhexidine 

can also inhibit MMP activity.15 

Dentin Caries Pathogenesis

It has been noted that there is loss of mineral in root dentin at pH 5.5 but no loss of surface 

integrity in the absence of collagenase ( from Clostridium histolyticum). However, there is a 

loss of both dentin mineral and matrix in the presence of the collagenase at pH 5.5 resulting 

in a caries type lesion.16 Removal of mineral, the first step in dentin caries, can begin at pH = 

6.7.5 Dentin matrix degradation by proteases is necessary for dentin caries to progress to 

physical cavity formation at the root level (At the cementoenamel junction (CEJ) and further 

down the root).1 Initial degradation of the collagen matrix begins to occur at around pH = 6.0 

(depending on temperature).1 Collagenase activity can occur at a range of pHs from 7.0 to 

5.5, but not as low as pH = 4.3.5 Although collagen denaturation and breakdown can begin as 

soon as the mineral is removed, continued collagen breakdown will occur even upon return 

to neutral pH when the mineral is no longer present.5 Morphological studies of dentin reveal 

an apparently slow degradation of collagen fibrils after they have been exposed by conditions 

that cause demineralization.15,17 This is in support of the potential combined effect of lower 

pH to remove mineral and then the presence of a collagenase to cause breakdown of the  
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matrix for cavitation to actually occur. Many have questioned whether the acid-producing 

 microbial flora, present in carious lesions, are responsible for the dentin collagen matrix 

degradation.  

 Streptococcus mutans, Streptococcus sobrinus and Actinomyces species, the primary 

bacteria implicated in dental caries, have no significant collagenase activity.1 However, some 

authors argue that S. mutans can bind to type-I collagen and that it does produce a protease 

capable of degrading a synthetic collagen-like peptide.18 It is interesting that the presence of 

sucrose down regulates the amount of “collagenolytic” activity of the bacteria.18 Bacterial 

acids may denature the collagen and make it more susceptible to bacterial proteases.19 Plaque  

taken from active coronal carious lesions in patients had no collagenolytic activity.11 Carious  

dentin has greater collagenase activity than non-carious demineralized dentin indicating that 

there were collagenase activators already present or that the inhibitor in the collagen-

collagenase-inhibitor complex was partially destroyed by action of enzymes from previously 

occurring cariogenic bacteria.8,16,20 Proteases from Porphyromas gingivalis and Treponema 

denticola (which are implicated in periodontal disease) can activate proMMP-1 and 

proMMP-8 in gingival tissue which will lead to collagen degradation in the gingival tissues.21 

These proteases have no effect on the ability of TIMP-1 to bind to a MMP and inhibit its 

activity.21 Some authors have proposed that proteolytic enzymes from bacteria associated 

with periodontal disease may be partly responsible for the degradation of collagen in root 

surfaces resulting in the development of root caries.19 Other sources of collagenase include 

the gingival crevicular fluid(GCF) and saliva.11,20,22 

Host derived collagenase found in GCF can degrade type-I collagen into TCA and TCB.20 

In healthy gingiva most of the collagenase is in latent form. In inflamed gingival tissue more 

than half is active collagenase.20 The more severely inflamed the gingiva, the more  
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collagenase activity was present.23 Bacterial plaque extract is able to increase collagenase 

activity in the GCF, or activate the latent collagenase. Once collagen has been initially 

cleaved, then bacterial proteases can further degrade the molecule.21 Whole saliva of dentate 

patients contains MMP-8, MMP-9 and occasionally MMP-2.24 Whole saliva of edentulous 

patients contains only MMP-8 and MMP-9.24 Active MMP-2, MMP-8 and MMP-9 can be 

found in carious lesions.11 The majority of the gelatinolytic activity of saliva comes from 

MMP-9.11,24 

Salivary cathepsins come from the gingival crevicular fluid, function under mildly acidic 

conditions (pH = 5.0 to 6.5) and are capable of degrading type-I collagen.6,22 Cathepsins, as  

well as gelatinases (MMP-2, MMP-9) are able to completely digest denatured collagen into 

its component amino acids.6 In one study, however, salivary MMP & cathepsin activity was 

found not to be a marker for bovine dentin collagen degradation.22 

Background Summary, Questions and Research Goals

The evidence in support of the theory that host derived proteinases, in the form of various 

types of MMPs, are involved in dentin caries pathogenesis is increasing.11,19 Dentin collagen 

is degraded by endogenous collagenase instead of by acid.19 Acid may release MMPs from 

dentin and odontoblasts may secrete MMP-2 as a result of the carious process.2,24 Acid 

activation followed by return to neutral pH enhances MMP activity.11 MMP-2 from human 

teeth degrades type I collagen into characteristic TCA (3/4) and TCB (1/4) fragments but can 

only do so slowly as compared with collagenase.6,9,10 Bacterial proteases can then act on 

these fragments reducing them to smaller peptides.21 It is also possible for MMP-2 to 

continue digestion of the collagen once the collagen loses its helical structure.6,10 MMP-2 in 

both latent and active forms in the guanidine-HCl soluble non-mineral bound fraction has 

been identified in human dentin from subjects at any age.2 MMP-2 was not detected in the  
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ethylenediaminetetraacetic acid (EDTA) soluble mineral bound fraction of human dentin in 

any subject.2 MMP-2 was detected in the guanidine-HCl soluble matrix bound protein 

fraction in dentin from subjects less than 20 years of age, was rarely detected in subjects 

between 21 & 40 and was never detected in subjects over 40.2

Despite the significant advancement made with regard to the potential relationship 

between host-derived MMPs and caries progression, a number of fundamental issues still 

remain unclear. For instance: 

1. Where is MMP-2 located in human coronal dentin, e.g. dentinal tubules, 

peritubular dentin or intertubular dentin, odontoblast processes, etc?  

2. Is MMP-2 associated with the collagen matrix? 

3. Is MMP-2 active in human coronal dentin and capable of digesting gelatin 

(denatured collagen)? 

4. Is MMP-2 isolated from human coronal dentin capable of digesting dentin type-I 

collagen? i.e. the physicochemical properties of dentin type-I collagen are markedly 

different from those of rat tail/skin collagen that have been widely used as a substrate 

for the degradation study.  

5. Is MMP-2 active in situ, or does it need to be exposed to acid to be activated?  

6. In situ, collagen fibrils are covered by a number of anionic molecules such as 

phosphoproteins and collagen-binding small leucine-rich proteoglcans.  Do these 

components need to be removed in order for MMP-2 to attack collagen?   

 In an attempt to address some of these questions, the spatial distribution of MMP2 within 

dentin, and its activity on gelatin were investigated. The results of this study may provide 

insights into development of more predictable anti-caries strategies and/or more predictable 

restorative procedures.   
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NULL HYPOTHESIS 

There is no difference (null) in the mean (parameter) level of maximum MMP-2 

immunoreactivity (outcome variable) of inner, middle and outer regions of coronal dentin 

(explanatory variables) isolated from extracted human premolars and 3rd molars (population 

of interest). 

TEST OF NULL HYPOTHESIS 

 To test this null hypothesis three specific aims will be pursued: 

1) To confirm the presence of MMP-2 in human coronal dentin, 

2) To define MMP-2 distribution in human coronal dentin via immunohistochemical and 

biochemical strategies, 

3) To verify if MMP-2 isolated from the dentin matrix can degrade gelatin. 

 



PILOT STUDIES 

 The monoclonal antibody probe selected for these studies was commercially obtained from 

Calbiochem®. The antibody was generated in mouse using, as an antigen, the synthetic 

peptide VTPRDKPMGPLLVATF. This peptide corresponds to the amino acids located in the 

hinge region of human MMP-2 (amino acids 468-483) which is likely to be exposed even if 

the MMP-2 is complexed with collagen. The resulting antibody for MMP-2 (α-MMP-2) 

(Calbiochem:IM33L:Anti-MMP-2 (Ab-3) Mouse mAb (42-5D11), EMD Biosciences, Inc, 

La Jolla, CA) recognizes MMP-2 in both its ~72kDa latent and ~66 kDa active forms. 

Studies revealed the presence of MMP-2 could best be visualized by using the primary α-

MMP-2 probe at a dilution of 1:25. Negative controls with non-immune serum at the same 

concentration revealed staining was not increased by non-specific protein binding that may 

result from high antibody concentration. 

 Preliminary studies revealed that a 1.5 millimeter (mm) thick section from the crown of a 

human tooth required 5 weeks continuous treatment with 32 milliliters (ml) 10% EDTA, pH 

= 7.4 for demineralization. The EDTA solution was changed each week day. It is well known 

that EDTA is capable of extracting soluble proteins and this raised concerns that extraction of 

MMP-2 in the sections may occur during demineralization. This concern was not supported 

as initial studies of staining of sections subjected to 4 & 5 weeks exposure to EDTA revealed 

increased staining at 5 weeks. (Table 1) Five weeks demineralization allows for more intense 

immunoreactivity, particularly inner & outer areas, but also showed more variability as 

compared with 4 weeks of demineralization. 

 Retention of demineralized tooth structure to glass slides remained a challenge through out  



this project. It was identified that the 5 micrometer (µm) sections were best retained when  

applied to ProbeOn glass slides (Fisher Scientic, Pittsburgh, PA.15219).  Superfrost/Plus

(Fisherbrand Superfrost/Plus MicroscopeSlides, Precleaned, Cat #12-550-15, Fisher 

Scientific, Pittsburgh, PA 15219) did not retain the demineralized sections well. Poly-l lysine 

and chrome alum treatment of the glass slides for increased section retention was not 

attempted.  Initial immunohistochemical studies revealed 3 or 4 weeks of demineralization is 

not enough to allow dentin to remain adherent to ProbeOn slides when sectioned either 5 or 

6 µm thick. Increasing to 6 µm thick sections resulted in decreased retention to the glass 

slides even when demineralized for 5 weeks. The best adherence of the demineralized dentin 

was at 5 weeks and 5 µm.   

 Initial immunohistochemical studies identified potential areas of MMP-2 concentration in 

dentin adjacent to the predentin and the DEJ. (Figures 1,2 and 3) Based on these 

observations, a strategy for isolating and analyzing dentin from 3 regions of coronal tooth 

structure was devised so that regional distribution of MMP-2 in dentin might be analyzed and 

compared using biochemical methods. (Figure 4) These regions were named inner (I), middle 

(M) and outer (O) dentin. The outer dentin also included the dentinoenamel junction (DEJ) 

and some enamel. Enamel (En) that did not contain coronal dentin was also collected. 

 Bovine dentin samples that were obtained by a serial 4M guanidine/ 0.5M EDTA/ 4M 

guanidine extraction technique (G1/E/G2) (Figure 5) indicated that proMMP-2 and MMP-2 

could be readily detected in all bovine extracts both by Western blotting with α-MMP-2 and 

by zymography.(Figure 6)  Initial biochemical studies that started with ~800 milligrams(mg) 

dry mineralized human coronal dentin indicated the concentration levels of MMP-2 were 

below detection by Western blotting when the coronal dentin from one individual subject 

was separated into inner (I), middle (M) and outer (O) regions. However, when four whole  
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3rd molars (including enamel, coronal/root dentin and pulp tissue) from one individual (WT) 

where pulverized (dry mineralized weight ~ 2000 mg) and extracted using guanidine-

HCl(G1), EDTA(E) and guanidine-HCl(G2), the presence of a protein in the guanidine 

extracts (G1 & G2), that migrates at molecular weight corresponding to MMP-2, was 

identified by Western Blot analysis and zymography. The α-MMP-2 also reacted with a 

~66kD protein band in the E fraction, however, this protein did not demonstrate gelatinolytic 

activity. This indicated that the MMP-2 was potentially present and active in the I, M, &/or O 

samples, but at a concentration below detection levels under the conditions used. Thus, to 

increase MMP-2 concentration to levels of detection the G1/E/G2 extracts from the I/M/O 

coronal dentin of two other subjects (6 molars), were combined (cHCD). A protein with 

gelatinolytic activity was identified between the 220 kD and 97 kD molecular weight 

markers. This was suggestive of MMP-2 comigration with dentin type I collagen 

(Alpha1 = ∼160kD, Alpha2 = ~150kD). There was no gelatinolytic activity in the ~66kD 

region for cHCD. This observation suggested potential MMP-2/collagen complex formation. 

Therefore, bacterial collagenase (Clostridium histolyticum, Worthington Collagenase, 730 

Vassar Ave., Lakewood, NJ, 08701, 1,372units/mg CLSPA) was used to digest the collagen 

in cHCD. The collagenase exists in a tetramer(~105kD) and other forms. Digestion of the 

collagen (dcHCD) resulted in the appearance of a protein with gelatinolytic activity that was 

consistent with MMP-2(~66kD).(Figure 7) These initial studies suggested that the only way 

to obtain sufficient levels soluble MMP-2 that did not require a bacterial collagenase 

digestion would be to combine the teeth from several known patients.  Therefore, multiple 

crowns were sectioned and combined to provide an adequate amount of mineralized dentin 

tissue for protein extraction procedures. 
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MATERIALS AND METHODS 

Immunohistochemical Analysis of Human Coronal Dentin

The teeth to be used for immunohistochemical analysis (IHC) were placed in 10% 

formaldehyde immediately after extraction and fixed for 72 hours at 4ο Celcius (C). (Table 2) 

Freezing of teeth to be used for IHC was contraindicated as this caused total obliteration of 

the pulp tissue preventing visualization of the odontoblasts and odontoblastic processes. The 

teeth were sectioned using a Bueler Isomet (Bueler. Corp., Lake Bluff, IL) diamond 

impregnated slow speed saw (Isomet) @ 100rpm with ~2° water cooling.(Figure 8) The 1.5 

mm mesio-distal (M-D) or bucco-lingual (B-L) sections were demineralized with 32 ml of 

10% EDTA with constant rocking at ~25°C. The EDTA solution was changed each weekday. 

At 5 weeks the demineralized specimens were removed from the 10% EDTA, placed in 

phosphate buffered saline, pH 7.4, (PBS)(Appendix). A few demineralized sections were 

arbitrarily chosen and part of the outer dentin and DEJ was removed with a scalpel. All 

demineralized specimens were then submitted for parafinization and sectioning.  

 A microtome (Leica Jung RN 2045, calibration every 12 months) at the UNC Lineberger 

Comprehensive Cancer Center Histology Core Laboratory was used to obtain forty 5µm- 

sections from each specimen and 2 sections were applied per glass slide.  

 Five slides of each subject (10 sections) were deparafinized by placement in 2 changes of 

xylene for 2 minutes each, 100% ethanol (EtOH) for 2 minutes, 50%EtOH for 2 minutes, 

deionized water (dH2O) for 2 minutes, excess water was removed, samples were not 

desiccated. This was used to re-hydrate the sections.  

 



The sections were then treated with 60 microliters (µl) of  Proteinase K (20 micrograms 

(µg)/mlPBS)(Proteinase K, recombinant, PCR Grade, by Roche Applied Science,) for 20 

minutes, and then washed with dH2O for 1 minute. Proteinase-K was used to digest native 

proteins, modify proteins and glycoproteins on cell surfaces to facilitate more efficient 

primary probe penetration/recognition during hybridization. The sections were placed in a 

0.3%H2O2/EtOH solution for 30 minutes and washed in dH2O. The H2O2 quenches any 

endoperoxidase activity present in the tissue being examined.  

 One section on each slide was then reacted with 30µl of a 100 µg stock solution α-MMP-2 

diluted (1:25) in PBS, blocked with normal horse serum (1:66), which was mixed by vortex,  

for overnight at 4°C in a humidor. As a negative control, some sections did not receive the 

primary probe but was incubated with PBS with normal horse serum (1:66). Alternatively, 

some sections were probed with a polyclonal rabbit α-amelogenin (1:6000) and staining was 

completed with rabbit specific secondary biotin-conjugated antibody. The α-amelogenin was 

raised against recombinant pig amelogenin (rP172) in the laboratories of Dr. James Simmer 

at the University of Michigan. 

 After incubation the sections were washed 3 times for 5 minutes each with PBS. A 30 µl 

volume biotinylated horse anti-mouse IgG immunoglobulins (α-mouseIgG)/PBS solution 

(1:200) blocked with normal horse serum (1:66) was prepared and incubated with the 

sections in a humidor at ~25° C for 30 minutes. 

 After incubation with the biotinylated secondary antibody, the sections were washed 3 

times for 5min with PBS. Following the washes, 30µl of an avidin DH (1:100) and 

biotinylated horseradish peroxidase H (1:100) complex was placed over the sections and 

incubated for 30 minutes.  This was based on the principle that immunoglobulins and 

horseradish peroxidase enzymes can be biotinylated with several molecules of biotin. Avidin  
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has four biotin binding sites and can be used to crosslink the biotinylated horseradish 

perioxidase with the biotinylated immunoglobulins thereby creating an immunoglobulin/ 

avidin/biotin/horseradish peroxidase/complex. The reagents used were part of the 

Vectastain® ABC Kit (Vector Laboratories, Inc. Burlingame, CA). 

 After incubation with the avidin/biotin/horseradish peroxidase complex, the sections were 

washed 3 times for 5minutes with PBS.  Following the washes, 30 µl of a 3,3’-

diaminobenzidine (DAB) solution, (DAB Substrate Kit®, Vector Laboratories, Inc. 

Burlingame, CA) prepared according to manufacturers instructions, was added to each 

section and the development of a brown stain (immunoreaction) was observed under a 

microscope. The reaction was allowed to continue for 12 minutes and then stopped by 

immersion in dH2O. Stained sections to be analyzed for level of immunoreactivity were not 

counterstained. The sections were then dehydrated via 50% EtOH, 100% EtOH, Xylene 

washes, 5 minutes each, and then enclosed under a slide cover with DPX and dried.  

 Images were obtained with a Nikon Microphot FXA® microscope coupled with a 

QImaging® MP-3 digital camera and QCapture® Image Software. Images were processed 

and analyzed with ImageJ 1.36b software. (Wayne Rashband, National Institutes of Health, 

USA) RGB (24 bit) color (Red(8 bit), Green(8 bit), Blue(8 bit)) images of stained and control 

sections were converted to gray scale (8 bit) images (0-255, where 0 is black, 255 is white, 

and every point in between is a shade of gray). Background pixel levels were subtracted in 

order to correctly measure the pixel level of each image. The formula used to obtain a plot of 

values in the grayscale range of 0-255 was as follows: 

 (Image 1 – Image 2)K1 + K2 = Image 2*  
 Image 1 = image of section with or without α-MMP-2 
 Image 2 = background (image contributions from the light source, lens and camera) 
 K1 = 1

K2 = 128
Image 2* = corrected resulting image displayed on the grayscale between 0 and 255.  
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The formula made the assumption that any RGB value above 255 would be displayed as 

255 and any RGB below 0 would be displayed as 0. Therefore if the background and the 

image were exactly the same then the corrected resulting image would be displayed as a 

neutral gray (grayscale value = 128). The grayscale level of each pixel along a 1-pixel wide 

region spanning the pulp, predentin, dentin and DEJ was measured.(Figure 9) The levels 

were then utilized to develop an analysis plot for each section.(Figure 10) These values were 

used as a measure of the level of MMP-2 immunoreactivity. 

Statistics

The statistical method used to analyze grayscale pixel values from the inner (I), middle 

(M) and outer (O) dentin regions was a repeated measures one-way analysis of variance. This 

method assumed independence of observations at the 3 locations in dentin and used an 

aggregate grayscale value from 10 sections of each tooth (5 probed with α-MMP-2, 5 

control). The working correlation between regions of dentin was assumed to be minimal 

(0.1). Pilot studies of 3 teeth indicated that a sample size of 15 teeth would have a 90% 

power at the level of statistical significance of 0.05 to detect an effect size of 0.2963.     

Biochemical Analysis of Inner (I), Middle (M) and Outer (O) Regions 

of Human Coronal Dentin

Human third molars were obtained immediately after extraction and placed on dry ice until 

disinfection. (Table 3) The teeth were disinfected in a 1% Thymol solution for 5 days @ 4°C. 

All specimens were sectioned with the Isomet @ 100rpm with water/ice cooling in the 

following sequence: 1) The roots were removed. 2) The crown was then sectioned radially.  

3) Pulp tissue and predentin was removed from each section using a #12 scalpel blade.  

4) Each section was divided into I, M and O dentin. The O dentin remained attached to the 

enamel. Enamel (En) fragments were collected from the Isomet water bath, by  
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centrifugation, as enamel will not remain intact when separated from dentin.(Figure 4)        

 Immunohistochemical analyses revealed intense immunoreactivity of the MMP-2 in two 

areas, i.e. the inner 200 µm of the dentin (near predentin) and the outer ~10 µm (immediately 

adjacent to the DEJ). Sectioning was accomplished to allow for separation of these regions 

from the middle dentin region where the MMP-2 concentration appeared to be in lower 

concentration. The Isomet diamond impregnated saw blade is 0.3mm in thickness and 

removes a ~0.3-0.4 mm zone of dentin during sectioning. This allowed for regional 

separation between I, M and O dentin samples. Multiple crowns were sectioned and 

combined to provide an adequate amount of mineralized tissue for protein extraction 

procedures. 

 Coronal dentin (from each region of interest) from multiple teeth was pulverized for 5 

minutes in a freezer/mill (SPEX CertiPrep® 6759 Freezer/Mill, Metuchen, NJ, USA) at a 

frequency of 120 cycles per minute under liquid nitrogen. The dentin powder was washed 

with 10 ml of dH2O, frozen with dry ice and then lyophilized for 4 days (Freezone 18, 

LABCONCO Corporation,  Kansas City, MO, USA). The dry weights of the mineralized 

samples were as follows: I = 0.996 gm, M = 2.02 gm, OE = 16.07 gm, E = 2.23 gm. The 

lyophilized samples were then extracted 2 times for 48 hours each with 10 ml containing 0.33 

M EDTA and 2M Guanidine HCl (pH 7.4) for every gram of sample. All samples had 

constant stirring and were kept at 4°C during the extraction procedures. Upon first extraction 

completion the samples were centrifuged at 4500 rpm for 10 minutes, the supernatant was 

retained and the pellet was extracted for another 48 hrs. Upon completion of the second 

extraction the supernatents were combined and dialyzed against 5000 ml dH2O for 8 days 

using 6,000 – 8,000 molecular weight cut-off (MWCO) dialysis membrane tubing (Spectra-

Por, Spectrum Labs, Inc, CA). Upon dialysis completion the extracts were removed  
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from dialysis and centrifuged at 4500 rpm for 5 minutes to remove dH2O insoluble proteins. 

The supernatents were frozen by rotation in a bath of dry ice/methanol (MeOH) and 

lyophylized. The extraction pellets were placed at - 60° C and were not analyzed. The 

samples were weighed and then placed at -60° C until use. The weight of the extracted 

proteins was as follows: I = 59mg, M = 72mg, O = 643mg, En = 16mg. 

 A 1 or 2 mg amount of each extract was dissolved directly in tris-glycine SDS sample 

buffer (Appendix) for direct analysis using sodium dodecyl sulfate – polyacrylamide gel 

electrophoresis (SDS-PAGE). Alternatively, the same amount of sample was dissolved in 

lysis buffer for 18 hours at 4° C. This was centrifuged at 15,000 rpm for 30 minutes and the 

supernatants assayed for approximate soluble protein concentration using a protein assay kit 

(BioRad DC Protein Assay Kit, Bio-Rad Laboraories, Inc. Hercules, CA), a bovine serum 

albumin (BSA) protein concentration standard and read at 750nm. Further concentration of 

the soluble dentin matrix proteins was accomplished by dH2O dialysis of extraction 

supernatents using 10,000 MWCO dialysis cassettes (Slide-A-Lyzer, Pierce Biotechnology, 

Inc. Rockford, IL, USA) to remove lysis buffer salts. The protein concentration of the 

dialyzed samples were then measured, required amounts to be analyzed using SPS-PAGE 

were lyophilized and these were dissolved in 16µl of sample buffer and loaded directly to the 

gel for electrophoresis. 

Biochemical Analysis of Human Coronal Dentin

Human third molars (n = 28) were obtained immediately after extraction and placed on dry 

ice until disinfection. (Table 4) The teeth were disinfected in a 1% Thymol solution for 5 

days at 4° C. All specimens were sectioned with the Isomet at 100 rpm with water/ice 

cooling in the following sequence: 1) The roots were removed. 2) The crown was then 

sectioned in ½. 3) Pulp tissue and predentin was removed from each section using a #12  
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scalpel blade and 4R/4L scaler. 4) The enamel was sectioned off the dentin leaving the DEJ 

intact. All dentin specimens where stored at -67 to -80° C until use.  

 The combined dentin samples were pulverized for 5 minutes in a Spex freezer mill at a 

frequency of 120 cycles per minute under liquid nitrogen. The dentin powder was rinsed with 

10 mls of cold dH2O, frozen with dry ice and then lyophilized. Dry weight of the samples 

was 11.38 g.  

 A flow diagram of the dentin protein extraction procedures is shown in Figure 5. The 

lyophilized human coronal dentin (HCD) was then extracted with 23 ml of 4M guanidine 

HCl, 65 mM Tris-HCl (pH=7.4) for 48 hours at 4° C with constant stirring. The solution was 

centrifuged at 4500 RPM for 5 minutes. The resulting supernatant was placed in dialysis 

against 5000 ml dH2O using 6 – 8,000 kDa MWCO dialysis tubing. The pellet was 

resuspended in 23 ml 4M guanidine HCl, 65mM Tris-HCl (pH = 7.4) for a 2nd 48 hour 

guanidine extraction, centrifuged again and the supernatant was placed in dialysis with the 

first guanidine extract. This extract of soluble non-mineral bound proteins will be referred to 

as HCD G1 (G1) hereafter. 

 The remaining pellet was then suspended in 23 ml 0.5 M EDTA (pH  7.4) for 48 hours at 

4°C with constant agitation. The solution was centrifuged at 4500 RPM for 5 minutes. The 

resulting supernatant was placed in dialysis against 5000 ml dH2O using 6 – 8,000 kDa 

MWCO dialysis tubing. The pellet was re-suspended in 23 ml 0.5 M EDTA (pH 7.4) for 48 

hours at 4°C with constant agitation, was centrifuged again and the supernatant was 

combined with the first EDTA extract and dialyzed against dH2O. For complete removal of 

mineral the HCD was extracted with EDTA four times and the four extracts were combined. 

This extract of soluble mineral bound proteins will be referred to as HCD E (E) hereafter. 

 The dentin pellet (consisting predominantly of collagen matrix and matrix associated  
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proteins) was then extracted with 23 ml of 4M guanidine HCl, 65 mM Tris-HCl (pH 7.4) for 

48 hrs at 4°C with constant stirring. The solution was centrifuged at 4500 RPM for 5 

minutes. The resulting supernatant was placed in dialysis against 5000 ml dH2O using 6 – 

8,000 kDa MWCO dialysis membrane. The pellet was re-suspended in 23 ml 4M guanidine 

HCl, 65mM Tris-HCl (pH 7.4) for a 2nd 48 hr guanidine extraction, centrifuged again and 

the supernatant was placed in dialysis with the first guanidine extract. This extract of soluble 

matrix bound proteins will be referred to as HCD G2 (G2) hereafter. All extracts were 

dialyzed for 8 days with daily replacement of the dialysis dH2O. 

Upon dialysis completion the extracts were removed from dialysis, centrifuged @ 

4500 rpm for 5 minutes and the supernatents frozen and lyophilized. The extraction pellets 

were placed @ - 60°C and were not analyzed. These lyophylized samples were weighed and 

stored at -60°C until use. The weight of extracted protein was as follows: HCD G1 = 79mg, 

HCD E = 189mg, HCD G2 = 33mg. A 1 or 2 mg amount of each extract was dissolved 

directly in sample buffer for direct analysis using SDS-PAGE. Alternatively, the same 

amount of sample was dissolved in lysis buffer for 18 hours at 4°C. This was centrifuged at 

15,000 rpm for 30 minutes and the supernatants assayed for approximate soluble protein 

concentration using a protein assay kit (BioRad DC Protein Assay Kit, Bio-Rad Laboraories, 

Inc. Hercules, CA), as described above. Further concentration of the soluble dentin matrix 

proteins was accomplished by dH2O dialysis of extraction supernatants using 10,000 MWCO 

dialysis cassettes to remove lysis buffer salts. The protein concentration of the dialyzed 

samples were then measured, required amounts to be analyzed using SPS-PAGE were 

lyophilized and these were dissolved in16ul of sample buffer and loaded directly to the gel 

for electrophoresis. 
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SDS-PAGE of I/M/O/En and G1/E/G2 Dentin Extracts 

SDS-PAGE of extracted proteins was accomplished using the Invitrogen Minigel System 

(Invitrogen Novex Mini-cell XCell SureLock® Electrophoresis Cell, Invitrogen Corporation, 

Carlsbad, CA, USA). Samples to be analyzed were dissolved directly in SDS sample buffer 

with dithiothreitol (DTT). Appropriate volumes were loaded (total volume 16µl per lane) to 

achieve the µg amount of each sample desired. Molecular weight (MW) standards (High-

Range Rainbow Molecular weight Markers, 14,300-220,000, Amersham Biosciences Corp, 

Product Code RPN756, 800 Centennial Ave, PO BOX 1327 Piscataway, NJ, 08855) were 

included on each electrophoresis. Recombinant human MMP-2 (rhMMP-2)(MMP-2, Active, 

Human, Recombinant, Calbiochem®, EMD Biosciences, Inc., La Jolla, CA, USA) from 

Chinese hamster ovary cells (~70.2 kDa proMMP-2 and ~60.9 MMP-2 based on amino acid 

count calculations using BLAST, PSORT II, and N-glycosylation NetNGlyc 1.0 programs) 

was used as a positive control. The proteins were denatured by heating at 90-100 °C for 5 

min in a Pierce Reacti-Therm Heating Module before loading. Use of 10% Bis-Tris 

polyacrylamide gels allowed for appropriate separation of the proteins of interest. An 

Invitrogen NuPAGE® 10% Bis-Tris Gel (1.0mm X 12 well) was placed in the 

electrophoresis apparatus, insuring that the sealer strip had been removed from the 

prefabricated gel and that the exposed slot faces toward the outside. SDS-PAGE Running 

Buffer (400ml) was added to the apparatus (Invitrogen MOPS SDS-PAGE Running 

Buffer®). The running buffer was poured into the center and the apparatus was evaluated to 

insure no leakage of the buffer towards the outside reservoirs. The voltage and amperage 

controls of the energy source for the electrophoresis were adjusted to zero. The electrodes of 

the gel electrophoresis apparatus were connected and controls were adjusted to maximum 

amperage and 180-200V. 
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Western Blot analysis with α-MMP-2

Western Blotting was performed using a Millipore Immobilon-P Transfer membrane,  

(Pore size: 0.45µm, Millipore Corporation, Billerica, MA, USA).  Tris-Glycine transfer 

buffer (100ml Transfer Buffer(10X) was mixed with 200ml MeOH and 700ml dH2O) was 

poured into a transfer unit (Bio-Rad Mini Trans-Blot Cell, Bio-Rad Laboraories, Inc. 

Hercules, CA, USA). Gel blotting paper (Whatman® GB004, Whatman Inc., Florham Park, 

NJ, USA) that had been precut was allowed to soak in the buffer. The Invitrogen minigel 

plastic gel assembly was split apart exposing the SDS-polyacrylamide gel. The edges of the 

gel were trimmed, the transfer membrane, which was cut slightly larger than the gel, was 

placed in a small amount of MeOH then transferred to soak in the transfer buffer. The 

membrane was then transferred onto the gel and the top left corner marked for orientation. 

This was then covered with the filter paper and a transfer cassette sponge. This combination 

of sponge, filter paper, membrane, then gel was transferred onto the clear plastic side of the 

transfer cassette (to be faced toward the positive electrode with the membrane closest to the 

clear plastic side of the cassette). The gel was then covered with another sheet of filter paper, 

then sponge and the cassette was closed and oriented black to black, clear to red in the 

transfer unit. The transfer unit was then placed in a polystyrene (Styrofoam, Dow Chemical 

Company) cooler with ice. The proteins were transferred from the polyacrylamide gel to the 

nitocellulose membrane at full current and 30V overnight. The maximum safe transfer 

current was 90 mA. 

 After 12-16 hours the protein transfer to the nitrocellulose membrane was stopped, the 

membrane was removed from the transfer cassette and placed in tris-buffered saline 

(TBS)(Appendix) with 5% non-fat dry milk (BIORAD Blotting Grade Blocker Non-Fat Dry 

Milk, Bio-Rad Laboraories, Inc. Hercules, CA, USA) for 24 hours at 4° C or 5 hours at room  
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temperature. This was to insure other reactive areas of the membrane were blocked and limit 

non-specific protein bind of the immunoglobulins to be used as probes.   

 The blocked membrane was washed 3 times with TBS and then probed overnight with 

10µg α-MMP-2 in TBS/2.5%BSA a hybridization bag at 4° C with constant rocking. Upon 

completion of the hybridization period, the membrane was washed for 30 minutes 3 times 

with TBS.  

 The membrane was then incubated with an alkaline phosphatase conjugated secondary 

antibody (Pierce ImmunoPure Antibody Goat α-Mouse IgG & IgM(H + L)-Alkaline 

Phosphatase Conjugate, Pierce Biotechnology, Inc., Rockford, IL, USA) diluted 1:20,000 in 

TBS/2.5% BSA  for 30 min in a hybridization bag at ~25-27 degrees C with constant 

rocking. Alternatively, confirmation of the presence of amelogenin was accomplished by 

probing the membrane with α-Amelogenin (1:2500) followed by the appropriate conjugated 

secondary antibody.  

 After incubation the membrane was washed with TBS-T (Appendix) 2 times for 30 

minutes, then TBS for a last rinse. The reactive proteins were then visualized using an 

alkaline phosphatase substrate (Bio-Rad AP Conjugate Substrate Kit, Bio-Rad Laboratories, 

Inc., Hercules, CA, USA) per manufacturers instructions for 2 – 5 hours. For maximum 

sensitivity the membrane was transferred to a freshly prepared development buffer and 

incubation tray and allowed to develop overnight.  The membrane was placed in dH20 for 24 

hours and then allowed to dry at ~25-27° C. 

 

Gelatin Zymography

Analysis of gelatinolytic activity in the dentin extracts was performed under non-

denaturing conditions using gelatin zymography. Appropriate amounts of samples were  
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added to sample buffer without DTT and the samples were not boiled. RhMMP-2(0.5 

nanogram(ng)) was used as a positive control. The total volume that was loaded to the Novex 

Zymogram Gel was 16µl per lane. The sealer strip of a 10% Gelatin Zymogram Gel 

(Invitrogen Corporation, Carlsbad, CA, USA) case was removed and the gel was placed in an 

Invitrogen X-cell Surelock® electrophoresis unit. Tris-glycine running buffer (400 ml) 

(Appendix) was added to the unit insuring the upper chamber was sealed properly.  The 

samples were loaded and electrophoresed at maximum current and 125Volts. The expected 

current was ~30-40 mA/gel, at initiation, with a gradual decline to ~8-12mA/gel at 

electrophoresis completion. The zymogram was removed from the unit and incubated with 

Novex Zymogram Renaturing Buffer® for 30 minutes at ~25-27°C with constant oscillation. 

This was followed by a 30 minute incubation, under the same conditions, with Novex 

Zymogram Developing Buffer® for equilibration of the gel. The zymogram was then placed 

in fresh developing buffer and incubated at 37°C for 48 hours with constant oscillation in a 

humid environment. Upon completion the zymogram was washed 3 times with dH2O for 5 

minutes each to remove buffer salts. The zymogram was then stained with SimplyBlue

SafeStain (Invitrogen Corporation, Carlsbad, CA, USA) for 1 hour. The zymogram was then 

washed with dH2O for 1 hour. Areas of gelatinolytic activity appear as clear bands in the blue 

Coomassie® G-250 stained gel. 
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RESULTS 

Immunohistochemical Analysis of Human Coronal Dentin

MMP-2 immunoreativity was identified in the pulp, predentin and dentin. In the pulp 

MMP-2 was associated with the odontoblasts and the extracellular matrix. MMP-2 in 

association with the odontoblastic processes was clearly seen in the predentin as well as in 

association with the newly formed, non-mineralized predentin matrix.(Figure 11) An oblique, 

non-counterstained section revealed immunoreactivity at the periphery of the odontoblast cell 

nuclei as well as in the area of the intracellular and extracellular matrices.(Figure12) MMP-2 

was present throughout the body of the odontoblasts in the predentin as well as in association 

with the non-mineralized predentin matrix.(Figure 11 and 12) In the dentin the MMP-2 was 

associated with the periphery of the odontoblastic processes and the mineralized 

matrix.(Figure 12)  The predentin measured 10-20 µm in width.(Figure 11) Immunoreactive 

areas in the mineralized dentin included the odontoblastic processes in the dentinal tubules as 

well as intertubular dentin.(Figure 11,12 and 13) Greater immunoreactivity was identified in 

the 100-200µm zone immediately adjacent to the predentin, as compared with middle dentin, 

and was associated with the odontoblastic processes. (Figure 13) Immunoreativity in middle 

dentin was associated with the dentin matrix but not the dentinal tubule lumens. (Figure 14) 

A 9-10µm zone immediately adjacent to the DEJ demonstrated greater immunoreactivity 

than middle or inner dentin and was associated with the dentin matrix. (Figures 2,3,15,16,17 

and 18) Intense immunoreactivity for MMP-2 was not identified with dentin immediately 

adjacent to the cementodentin junction (CDJ) (Figures 2, 3 and 18) Analyses of 15 teeth  

 



revealed a range of levels of staining, but consistently demonstrated the pattern of greater 

levels of immunoreactivity adjacent to the predentin and DEJ as compared with the middle 

dentin region.(Table 5)  

 Repeated measures analysis of variance was used to compare the mean maximum level of 

MMP-2 immunoreactivity of inner(29.0 pixels), middle(12.7 pixels) and outer(40.1 pixels) 

regions of dentin. A statistically significant difference among the mean values of the three 

regions was observed.(p<0.001) Rejection of the null hypothesis, that there was no difference 

in the mean maximum levels of MMP-2 immunoreactivity among the three regions, was 

indicated. Pairwise contrasts indicated that all three possible section pairs of MMP-2 

immunoreactivity were significantly different in maximum mean grayscale pixel values: 

outer vs inner, mean difference = 11.1 pixels; p=0.0011; inner vs middle, mean difference = 

16.3 pixels, p <0.0001; outer vs middle, mean difference =27.4 pixels, p<0.0001.(Table 6) 

 Comparison of the level of immunoreactivity with subject age, subject race, subject 

gender, tooth section orientation, tooth origin (maxilla or mandible), and tooth eruption 

status, revealed no detectable correlation. (Figure 19, Tables 7, 8, 9, 10, 11,12) 

 Sections probed with α-Amelogenin revealed immunoreactivity in the dentin region 

adjacent to the DEJ only.(Figure 16 and 17) This finding was supported by Western Blot 

analysis of I/M/O that revealed amelogenin (~26kDa) was only detected in the outer dentin. 

(Figure 20) Sections that had part of the outer dentin/DEJ removed revealed significantly less 

immunoreactivity for MMP-2 along the sectioned portion of the dentin as compared with the 

areas that were not modified.(Figures16 and 17) When the same sections were probed for 

amelogenin no staining was detected in the modified area of the section and thus 

immunoreactivity for amelogenin was limited to a ~10-20µm zone of the outer dentin 

immediately adjacent to the DEJ.(Figure 17 and 18) Immunoreactivity for amelogenin was 
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evident in the root dentin area just adjacent to where the DEJ stops but did not progress 

further into the root dentin that was visualized.(Figure18)     

Biochemical Analysis of I/M/O/En

Western blot analysis with α-MMP-2 revealed the presence of 3 distinct bands in the ~72 

to ~66 kDa range in the I and M fractions. One ~ 66 kDa protein was detected in the O  

fraction and no immunoreactive protein was detected in the En fraction.(Figure 21) The ~66 

kDa  and ~72 kDa proteins, in the different fractions, migrated at slightly different rates. The 

rhMMP-2 proform and active forms (~70.2 kDa proMMP-2 and ~60.9 kDa MMP-2, 

respectively) were clearly seen and a third variant between the two primary bands was also 

detected. It had been observed that α-MMP-2 used in these experiments will react 

nonspecifically with BSA(~66 kDa) in a range of concentrations.(Figure 22) The rhMMP-2 

preparation does not contain BSA. It was unclear whether the ~66 kDa protein in the E 

fraction was MMP-2 or serum albumin(SA).(Figure 22) When protein amounts of I, M, O 

and En loaded on the gel were normalized to the original dry weight of each region of the 

dentin the staining intensity was greatest in the M fraction, followed by I and then O.  

Soluble matrix protein from the O fraction required twice the normalized concentration for 

the staining intensity to approximate the staining levels of I and M. En was also loaded at 

twice the normalized weight. (Figure 21) There was never any MMP-2 immunoreactivity 

detected in the En fraction at any concentration tested.  

 The I/M/O/En zymogram revealed gelatinolytic in the ~66 kDa range for I and M. No 

gelatinolytic activity was detected in O or En. There was a relatively greater amount of 

gelatinolytic activity in the M fraction.(Figure 21)  

Biochemical Analysis of G1/E/G2

Western blot analysis with α-MMP-2 revealed the presence of a protein that migrated in the  
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~66 kDa region in G1, E and G2. The ~66kDa protein or proteins in the different fractions 

migrated at slightly different rates. Three distinct bands in the ~72 to ~66 kDa range were 

detected in the G2 fraction. The rhMMP-2 revealed a ~70kDa proform and ~61kDa active 

form. An intermediate band is present.(Figure 23) Loading equal protein amounts of G1, E

and G2 revealed relatively greater immunoreactivity in G1 than in G2. It was unclear whether 

the ~66 kDa protein in the E fraction was MMP-2 or SA. 

 The zymogram of G1, E and G2 revealed ~66 kDa gelatinolytic activity in the G1 and G2

fractions. There was relatively greater gelatinolytic activity in G2 than in G1. The E fraction 

did not demonstrate any gelatinolytic activity.(Figure 23) 
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DISCUSSION 

 The findings of this study are consistent with other studies that indicate that proMMP-2 

and active MMP-2 are present in dentin.2,3,4,9,11,13,22 IHC and biochemical analyses suggest 

region specific roles of MMP-2 in coronal dentin. 

 The results of IHC indicates that MMP-2 is concentrated in the predentin and the inner 

dentin area adjacent to the predentin, which is consistent with the hypothesis that MMP-2 is 

actively involved in the organization of pre-mineralized matrix formation as well as its 

subsequent mineralization.3,4,13 The increased level of inner dentin MMP-2 immunoreactivity 

observed by light microscopy is primarily due to the presence of MMP-2 in association with 

the odontoblastic processes. The level of immunoreactivty of MMP-2 in the middle dentin 

region, based on IHC, is generally lower than the inner dentin (adjacent to the predentin). 

MMP-2 immunoreactivity in the middle dentin region is primarily associated with the dentin 

matrix with minimal MMP-2 detection in the dentinal tubule lumens. The level of IHC 

immunoreactivity in the outer dentin is similar to that of the middle dentin with the exception 

of the dentin region immediately adjacent to the DEJ. IHC immunoreactivity at and just 

adjacent to the DEJ was more intense than inner or middle dentin and appears to be primarily 

associated with the dentin matrix. Lack of immunoreactivity in cementum and at the 

cementodentin junction suggests MMP-2 may be involved in establishment of the DEJ and 

initiation of dentin formation and is consistent with other studies of dentin matrix formation 

and mineralization.3,4,13 IHC using α-Amelogenin identified an area of amelogenin 

concentration at and adjacent to the DEJ. This is consistent with recent studies that localize  

 



amelogenin at the interface between the inner enamel epithelium and the mesenchymal cells 

of the dental papilla of the developing dentin matrix and in association with odontoblasts and 

odontoblastic processes.25 Reduced staining with α-MMP-2 along the edge of the sectioned 

demineralized dentin (where the DEJ has been removed) is in support of actual concentration 

of MMP-2 at the DEJ rather than artifactual “edge effect” staining. No staining with α-

Amelogenin along the edge of the sectioned demineralized dentin (where the DEJ has been 

removed) further support this notion. Further studies of the role of MMP-2 and amelogenin at 

the DEJ will need to be accomplished. 

 The number of subjects chosen for immunohistochemical analysis was based on a pilot 

study that evaluated the average maximum level of MMP-2 immunoreactivity in the inner, 

middle and outer regions of human coronal dentin. The population size is not great enough to 

allow statistical analysis of other potential relationships between variables. However, 

comparison of different variables with the level of MMP-2 immunoreactivity may provide 

guidance for future studies. Some studies indicate that the ability to detect MMP-2 in human 

teeth decreases with time.2 The inclusion criteria of this study were designed so as to not be 

negatively impacted by the potential reduction in MMP-2 detection. Within the limits of this 

study, there was no correlation between the level of IHC immunoreactivity and the age of the 

subjects (age range 12-30 years). Variation in staining of sections from individual teeth and 

the resulting large standard deviations from the mean may represent the technique sensitivity 

of the specimen preparation process. Further research is required for improvement of 

technique consistency. 

 ProMMP-2 and MMP-2 are present in the soluble dentin matrix fraction extracted from the 

inner coronal dentin and demonstrated gelatinolytic activity. These findings were consistent 

with studies that suggest MMP-2 may be involved with the organization of pre-mineralized  
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matrix formation as well as its subsequent mineralization.3,4,13 

The MMP-2 in the middle dentin region is more readily detected, both by Western Blot 

analysis and zymography, than in the inner dentin region. Studies which suggest that MMP-2 

may be complexed with collagen and an inhibitor, and the finding that TIMP-1 concentration 

increases as the pulp is approached may help explain the finding that MMP-2 gelatinolytic 

activity is greater in middle dentin than in inner dentin.8,13,14 The pro-MMP-2 and MMP-2 

detected by these biochemical means in the middle dentin region may be primarily associated 

with the collagen matrix and not concentrated in the tubule lumens as IHC indicated. The 

presence of proMMP-2 in this region may represent recent synthesis and is in support of 

theories that consider dentin to be a bioactive matrix and dentinal tubules to provide the 

conduit for communication between outer dentin and the pulp.26 

Biochemical analysis of outer dentin identified MMP-2 by Western Blot but did not detect 

any gelatinolytic activity. Detection of outer dentin MMP-2 by Western Blot, at a similar 

level to that of the inner and middle dentin fractions, required twice the normalized 

concentration. Western blot detection of an ~66kDa protein in the outer dentin region may be 

due to non-specific binding of α-MMP-2 with serum albumin. However, it appears that the 

protein detected in the outer dentin has a slightly higher molecular weight than serum 

albumin. Variations in gel electrophoresis migration rates of MMP-2 in the different extracts 

may represent post translational modifications, differences in MMP-2 concentration and or 

MMP-2/TIMP complex formation. All other findings in this study support the presence of 

MMP-2 throughout dentin and inactivity in the outer dentin may be a result of inhibition by 

proteins other than TIMP-1 or the mineralization process may structurally alter MMP-2. 

 The biochemically obtained soluble non-mineral bound protein fraction (G1) contains 

MMP-2 and demonstrates gelatinolytic activity. This finding is consistent with other studies  
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that suggest proMMP-2 and MMP-2 are present in these areas and are involved in dentin 

matrix metabolism.2 Proteins located inside the odontoblastic processes (proMMP-2), 

outside the processes (proMMP-2, MMP-2) and throughout the dentinal tubules are 

considered non-mineral bound proteins. 

 Biochemical extraction of soluble mineral bound proteins (E) reveals there is no 

gelatinolytic activity in association with the hydroxyapatite and this is in agreement with 

other studies.2 Western blot detection of an ~66kDa protein in the E fraction may be due to 

non-specific binding of α-MMP-2 with serum albumin. When G1/E/G2 fractions were 

combined (cHCD) and analyzed, gelatinolytic activity appeared in the region where collagen 

alpha1 and alpha2 migrate (between molecular weight markers for 220 kDa and 97 kDa). 

Digestion of the collagen by bacterial collagenase in cHCD resulted in the appearance of 

gelatinolytic activity in the ~66kDa region and the protein load required to detect the MMP-2 

was 6 times less. This suggests that the MMP-2 may have a high affinity for type-1 collagen 

in dentin and may also suggest that collagen/MMP-2 complex formation may inhibit MMP-2 

activity on gelatin.  In addition the EDTA extraction step of the G1/E/G2 series removed the 

inorganic phase and exposed the collagen matrix. This step in the procedures was repeated 

four times to remove the mineral and proteins located in the mineral phase. Even with this 

level of protein extraction, no gelatinolytic activity was detected in the E fraction which 

further supports the potential for a tight MMP-2/collagen complex formation. Western blot 

analysis of G2 revealed both proMMP-2 and MMP-2 which may indicate that even the 

zymogen has a high affinity for collagen. The G2 extraction of the remaining collagen matrix 

revealed the highest levels of MMP-2 by zymography which suggests that MMP-2 may tend 

to be complexed with collagen that is mineralized in dentin matrix. These findings are 

consistent with other studies that suggest MMP-2 exists predominantly in a complex with  
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collagen in mature dentin.8

Evidence in this and other studies that demonstrates MMP-2/collagen complex formation 

would suggest that the MMP-2 may be in very low concentration in the soluble matrix bound 

protein fraction (G2) and may be concentrated in the residue(dentin collagen matrix) which 

resulted from the G1/E/G2 series. Future studies are warranted to elucidate this possibility. 

 Studies using bovine dentin extracts revealed MMP-2 and gelatinolytic activity in 

relatively large amounts in G1, E and G2 fractions. The finding of active MMP-2 in the 

bovine E extract suggests a species difference between bovine and human dentin. Research 

done with bovine dentin should take this into account when utilizing findings for human 

application.  

 Very preliminary IHC anaylses have identified areas of MMP-2 concentration in dentin 

areas adjacent to early caries and Bis-GMA based composite restorations.(Figures 24 & 25) 

Dentin caries and dentin bonding procedures both begin with dentin demineralization and 

exposure of the collagen matrix. These findings agree with other studies that theorize a 

potential role of MMP-2 in dental caries and proteolytic loss of collagen fibers under the 

hybrid layer formed during dentin bonding procedures.27 Future studies will need to define if 

increased immunoreactivity in these areas represents increased MMP-2 activity and, if so, 

does MMP-2 actively degrade exposed collagen. 
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CONCLUSIONS 

 MMP-2 is present throughout human coronal dentin with concentrated areas adjacent to 

the predentin and DEJ. Gelatinolytic activity was identified in inner & middle dentin regions. 

MMP-2 (~72 kDa proform and ~66 kDa active form) may be associated with odontoblastic 

processes, the dentinal tubules, and the collagen matrix. Biochemical analysis of different 

regions of dentin reveal that the active MMP-2 is most readily detected in the middle dentin 

demonstrating regional differences. Concentration adjacent to the DEJ suggests a potential 

role in early dentin caries progression. Absence of gelatinolytic activity in the outer soluble 

matrix protein fraction may be a result of structural modification, inhibition by other proteins 

or MMP-2/collagen complex formation. Absence of MMP-2 activity in the DEJ region may 

be prerequisite to the establishment and maintenance of a stable interface between dentin and 

enamel. High gelatinolytic activity in the G2 fraction (mineral & collagen associated 

proteins) suggests that MMP-2 is in close association with mineralized collagen. MMP-2 is 

not detected in human enamel. Future studies must identify if MMP-2 isolated from human 

dentin is able to digest collagen isolated from the same dentin and what mechanisms are 

required for its activation. 

 



Table 1: 

Difference in maximum grayscale intensity between 5µm sections probed with  
α-MMP-2 and control at 4 weeks and 5 weeks 10% EDTA demineralization. 

 
5µm Sections  4 Weeks   5 Weeks  

Inner Middle Outer Inner Middle Outer 
Sections 1 & 2 12.2 5.5 17.5 23.2 6.6 43.3 
Sections 3 & 4 14.8 5.8 29 11.9 5.3 20.5 
Sections 5 & 6 17.8 11.5 32.3 56.8 32.3 64 
Sections 7 & 8 14.1 11.5 23.3 21.5 7.9 60.3 
Sections 9 & 10 3.2 0 15.5 43.8 8.5 37 

Average Difference
(SD) 12.4(5.5) 6.9(4.8) 23.5(7.2) 31.4(18.3) 12.1(11.3) 45.0(17.8)

Table 2: 

Immunohistochemical analysis subject demographics (n = 15) 

Age Gender Race Tooth Type Eruption 
Status 

12-30 
years 

F(9) 
M(6) 

Indian(1) 
African American(5) 

White(9) 

Premolar(3) 
Max Molar(8) 
Mand Molar(4) 

Unerupted(9) 
Erupted(6) 

Max = Maxillary, Mand = Mandibular 

 

Table 3: 

Inner, middle and outer dentin biochemical analysis subject demographics (n = 28) 

Age Gender Race Tooth Type Eruption 
Status 

15-30 
years 

F(19) 
M(9) 

African American(14) 
White(14) 

Max Molar(14) 
Mand Molar(14) 

Unerupted(18) 
Erupted(10) 

Max = Maxillary, Mand = Mandibular 
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Table 4: 

G1/E/G2 biochemical analysis subject demographics (n = 16) 

Age Gender Race Tooth Type Eruption 
Status 

15-32 
years 

F(5) 
M(11) 

African American(2) 
White(14) 

Max Molar(6) 
Mand Molar(10) 

Unerupted(12) 
Erupted(4) 

Max = Maxillary, Mand = Mandibular 

 

Table 5: 

The difference between mean maximum grayscale values (pixels) of sections probed 
with α-MMP-2 and control sections in inner, middle and outer regions  

of human coronal dentin.  
 

Tooth ID
N = 15

Inner Dentin (SD) 
N = 5 measures/tooth 

Middle Dentin ( SD)  
N = 5 measures/tooth 

Outer Dentin (SD) 
N = 5 measures/tooth 

13 53.1 (30.2) 34.3 (19.6) 59.8 (31.7) 
27 34.2 (5.7) 7.9 (5.5) 22.1 (6.7)  
31 37.9 (10.2) 8.6 (1.3) 48.8 (10.9) 
38 9.5 (3.1) 2.8 (0.9) 23.3 (4.0) 
39 13.8 (5.5) 5.9 (2.8) 17.2 (4.0) 
42 11.5 (1.7) 4.9 (2.6) 55.1 (23) 
46 4.8 (2.5) 1.8 (1.3) 15.5 (9.4) 
49 17.4 (4.6) 6.4 (6.4) 32.1 (7.2) 
57 17.2 (4.2) 9.9 (4.7) 19.5 (9.4) 
60 57.2 (7.1) 37.9 (7.4) 60.3 (6.6) 
64 35.8 (3.4) 29.0 (2.4) 54.3 (6.9) 
69 31.3 (6.6) 14.1 (3.3) 50.4 (18.8) 
77 31.4 (18.3) 12.1 (11.3) 45 (17.8) 
80 44.7 (11.0) 7.0 (1.9) 46.3 (14.6) 
81 35.7 (13.5) 7.2 (1.9) 51.6 (13.6) 

Least 
Squares 
Means 

29.0 12.7 40.1 
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Table 6:  

Pairwise contrasts of inner, middle and outer dentin MMP-2 immunoreactivity 
indicating that all three possible section pairs were significantly  

different in mean maximum grayscale pixel value. 
Pairwise Analysis Pairwise Difference in Mean 

Maximum MMP-2 
Immunoreactivity (Pixels) 

P value 

Outer vs Inner 11.1 0.0011 
Inner vs Middle 16.3 <0.0001 
Outer vs Middle 27.4 <0.0001 

Table 7: 

The average maximum level of inner, middle and outer dentin MMP-2 
immunoreactivity (in pixels) as compared with increasing subject age (in years).  

 

Age 
(years)

Tooth 
ID 

Average Max Inner  
MMP-2 

Immunoreactivity(SD) 
(Pixels) 

Average Max Middle  
MMP-2 

Immunoreactivity(SD) 
(Pixels) 

Average Max Outer 
 MMP-2 

Immunoreactivity(SD)
(Pixels) 

12 42 11.5 (1.7) 4.9 (2.6) 55.1 (23) 
15 80 44.7 (11) 7 (1.9) 46.3 (14.6) 
15 81 35.7 (13.5) 7.2 (1.9) 51.6 (13.6) 
16 77 31.4 (18.3) 12.1 (11.3) 45.0 (17.8) 
17 49 17.4 (4.6) 6.4 (6.4) 32.1 (7.2) 
17 31 37.9 (10.2) 8.6 (1.3) 48.8 (10.9) 
18 57 17.2 (4.2) 9.9 (4.7) 19.5 (9.4) 
20 46 4.8 (2.5) 1.8 (1.3) 15.5 (9.4) 
20 39 13.8 (5.5) 5.9 (2.8) 17.2 (4) 
20 64 35.8 (3.4) 29.0 (2.4) 54.3 (6.9) 
24 27 34.2 (5.7) 7.9 (5.5) 22.1(6.7) 
24 60 57.2 (7.1) 37.9 (7.4) 60.3 (6.6) 
25 13 53.1 (30.2) 34.3 (19.6) 59.8 (31.7) 
28 38 9.5 (3.1) 2.8 (0.9) 23.3 (4) 
30 69 31.3 (6.6) 14.1 (3.3) 50.4 (18.8) 

ID = identification 
Max = maximum 
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Table 8: 

The average maximum level of inner, middle and outer dentin MMP-2 
immunoreactivity (in pixels) as compared with subject race.  

 

Subject Race 
Tooth 

ID 

Average 
Max Inner 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Middle 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Outer 

MMP-2 
Immunoreactivity

(pixels) 
African American 49 17.4 6.4 32.1 
African American 31 37.9 8.6 48.8 
African American 57 17.2 9.9 19.5 
African American 64 35.8 29.0 54.3 
African American 38 9.5 2.8 23.3 

Mean (SD)  23.6 (12.6) 11.4 (10.2) 35.6 (15.4) 

Caucasian 80 44.7 7 46.3 
Caucasian 81 35.7 7.2 51.6 
Caucasian 77 31.4 12.1 45.0 
Caucasian 46 4.8 1.8 15.5 
Caucasian 39 13.8 5.9 17.2 
Caucasian 27 34.2 7.9 22.1 
Caucasian 60 57.2 37.9 60.3 
Caucasian 69 31.3 14.1 50.4 
Mean (SD)  31.6 (16.4) 11.7 (11.2) 38.5 (17.5) 

Indian 13 53.1 34.3 59.8 
ID = identification 
Max = maximum 
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Table 9: 

The average maximum level of inner, middle and outer dentin MMP-2 
immunoreactivity (in pixels) as compared with subject gender.  

 

Gender 
Tooth 

ID 

Average 
Max Inner 
MMP-2 

Immunoreactivity 
(pixels) 

Average 
Max Middle 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Outer 

MMP-2 
Immunoreactivity 

(pixels) 
Female 27 34.2 7.9 22.1 
Female 38 9.5 2.8 23.3 
Female 39 13.8 5.9 17.2 
Female 42 11.5 4.9 55.1 
Female 46 4.8 1.8 15.5 
Female 49 17.4 6.4 32.1 
Female 60 57.2 37.9 60.3 
Female 64 35.8 29.0 54.3 
Female 77 31.4 12.1 45.0 

Mean (SD)  24.0 (16.9) 12.1 (12.7) 36.1 (17.7) 

Male 13 53.1 34.3 59.8 
Male 31 37.9 8.6 48.8 
Male 57 17.2 9.9 19.5 
Male 69 31.4 14.1 50.4 
Male 80 44.7 7 46.3 
Male 81 35.7 7.2 51.6 

Mean (SD)  36.7 (12.2) 13.5 (10.5) 46.0 (13.8) 
ID = identification 
Max = maximum 
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Table 10: 

The average maximum level of inner, middle and outer dentin MMP-2 
immunoreactivity (in pixels) as compared with tooth section orientation. 

 

Tooth Section 
Orientation 

Tooth 
ID 

Average 
Max Inner 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Middle 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Outer 

MMP-2 
Immunoreactivity 

(pixels) 
Bucco-Lingual 13 53.1 34.3 59.8 
Bucco-Lingual 27 34.2 7.9 22.1 
Bucco-Lingual 31 37.9 8.6 48.8 
Bucco-Lingual 38 9.5 2.8 23.3 
Bucco-Lingual 39 13.8 5.9 17.2 
Bucco-Lingual 49 17.4 6.4 32.1 

Mean (SD)  27.6 (15.4) 11.0 (11.6) 33.9 (16.9) 

Mesio-Distal 42 11.5 4.9 55.1 
Mesio-Distal 46 4.8 1.8 15.5 
Mesio-Distal 57 17.2 9.9 19.5 
Mesio-Distal 60 57.2 37.9 60.3 
Mesio-Distal 64 35.8 29.0 54.3 
Mesio-Distal 69 31.3 14.1 50.4 
Mesio-Distal 77 31.4 12.1 45.0 
Mesio-Distal 80 44.7 7 46.3 
Mesio-Distal 81 35.7 7.2 51.6 
Mean (SD)  30.0 (15.4) 13.8 (10.8) 44.2 (16.5) 

ID = identification 
Max = maximum 
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Table 11: 

The average maximum level of inner, middle and outer dentin MMP-2 
immunoreactivity (in pixels) as compared with tooth origin (maxilla or mandible). 

Tooth Origin 
Tooth 

ID 

Average 
Max Inner 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Middle 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Outer 

MMP-2 
Immunoreactivity

(pixels) 
Maxilla 27 34.2 7.9 22.1 
Maxilla 31 37.9 8.6 48.8 
Maxilla 39 13.8 5.9 17.2 
Maxilla 42 11.5 4.9 55.1 
Maxilla 46 4.8 1.8 15.5 
Maxilla 49 17.4 6.4 32.1 
Maxilla 57 17.2 9.9 19.5 
Maxilla 60 57.2 37.9 60.3 
Maxilla 64 35.8 29.0 54.3 
Maxilla 80 44.7 7.0 46.3 
Maxilla 81 35.7 7.2 51.6 

Mean (SD)  28.2 (16.2) 11.5 (11.2) 38.4 (17.3) 

Mandible 13 53.1 34.3 59.775 
Mandible 38 9.5 2.8 23.3 
Mandible 69 31.3 14.1 50.36 
Mandible 77 31.4 12.1 45.02 

Mean (SD)  31.4 (17.8) 15.8 (13.3) 44.61375 
ID = identification 
Max = maximum 
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Table 12: 

The average maximum level of inner, middle and outer dentin MMP-2 
immunoreactivity (in pixels) as compared with tooth eruption status. 

Eruption 
Status 

Tooth 
ID 

Average 
Max Inner 
MMP-2 

Immunoreactivity 
(pixels) 

Average 
Max Middle 

MMP-2 
Immunoreactivity 

(pixels) 

Average 
Max Outer 

MMP-2 
Immunoreactivity 

(pixels) 
Partial 13 53.1 34.3 59.8 

Erupted 38 9.5 2.8 23.3 
Erupted 42 11.5 4.9 55.1 
Erupted 69 31.3 14.1 50.4 
Erupted 80 44.7 7.0 46.3 
Erupted 81 35.7 7.2 51.6 

Mean (SD)  31.0 (17.6) 11.7 (11.7) 47.7 (12.8) 

Non-erupted 27 34.2 7.9 22.1 
Non-erupted 31 37.9 8.6 48.8 
Non-erupted 39 13.8 5.9 17.2 
Non-erupted 46 4.8 1.8 15.5 
Non-erupted 49 17.4 6.4 32.1 
Non-erupted 57 17.2 9.9 19.5 
Non-erupted 60 57.2 37.9 60.3 
Non-erupted 64 35.8 29.0 54.3 
Non-erupted 77 31.4 12.1 45.0 
Mean (SD)  27.7 (15.9) 13.3 (12.0) 35.0 (17.4) 

ID = identification 
Max = maximum 
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Figure 1: 
 

A 5µm section of a demineralized human 3rd molar crown probed 
with α-MMP-2 and counterstained with hematoxylin. 

Areas of greater immunoreactivity are adjacent to the predentin (Pr) and 
dentinoenamel junction (DEJ). MMP-2 is visualized as a brown stain. 
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Figure 2: 
 

Section of dentin probed with α-MMP-2 demonstrating areas of 
greater immunoreactivity adjacent to the predentin (Pr) and 

dentinoenamel junction (DEJ) and minimal immunoreactivity 
at the cementodentin junction (CDJ). MMP-2 is visualized as a brown stain. 
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Figure 3: 
 

Section of dentin probed with α-MMP-2 demonstrating areas of 
greater immunoreactivity adjacent dentinoenamel junction (DEJ)  

and the disappearance of immunoreactivity at the cementodentin junction (CDJ). 
MMP-2 is visualized as a brown stain. 
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Figure 4: 
 

Radial sectioning technique for dividing the tooth into inner (I),  
middle (M), outer (O) dentin and enamel (En). Arrows indicate flow 

of sectioning procedures. 
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Figure 5 
 

Flow chart demonstrating G1/E/G2 extraction steps 
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Figure 6 
 

Western Blot (A) of Bovine G1/E/G2 probed with α-MMP-2 and zymogram (B)  
demonstrating gelatinolytic activity in G1, E and G2. Gelatinolytic activity is present 

in E and G2 between 220 kDa and 97 kDa and at ~66 kDa. 
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Figure 7: 
 

10% Gelatin Zymogram showing gelatinolytic activity between 97 & 220kDa for 
combined G1, E &G2 extracts of human coronal dentin (cHCD). Digested cHCD 
(dcHCD) shows gelatinolytic activity ~66kDa. Bovine Dentin (B) G2 & WT G2
are positive controls. BG2 also shows gelatinolytic activity at ~72kDa which is  

the MMP-2 proform. C’ase = bacterial collagenase 
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Figure 8: 
 

Sectioning technique for obtaining a 1.5 mm mesio-distal (M,D) or bucco-lingual (B,L) 
section of coronal tooth structure. Parallel lines indicate approximate 

area of section. Arrows indicate flow of sectioning procedures. 

 

50 

B

D

M

M

LB

D

L



Figure 9: 
 

Example of RGB to grayscale image processing. The yellow line represents a  
one pixel wide region from pulp (P) to beyond the dentinoenamel junction (DEJ). 

The grayscale level (in pixels) at every pixel along this line was measured to develop  
an analysis plot of MMP-2 immunoreactivity.   

Sections were probed with α-MMP-2 (A) or Control (B)   No counterstain was used.
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Figure 10: 
 

Analysis plot of MMP-2 immunoreactivity, measured on a grayscale,  
of the predentin (Pr), inner (I), middle (M),and dentinoenamel junction (DEJ)  

regions of coronal tooth structure. An image of coronal dentin section probed with 
α-MMP-2 is included for reference. The yellow line indicates region of analysis. 
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Figure 11: 
 

Sections of human coronal tooth structure, which includes pulp (P), predentin (Pr) 
and inner (I)dentin, probed with α-MMP-2 (A) and negative control (B).  

 MMP-2 is visualized as a brown stain. Counterstain is hematoxylin. 
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Figure 12 
 

Oblique section through dentin, predentin & pulp probed with α-MMP-2.  
No counterstain was used. 
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Figure 13 

Section of human coronal tooth structure demonstrating transition of intense 
MMP-2 immunoreactivity in inner dentin to area of less MMP-2 immunoreactivity. 

MMP-2 associated with the odontoblastic processes appears to be the primary 
cause of intense MMP-2 immunoreactivity in inner dentin. P = Pulp. Pr = Predentin. 

Counterstain is hematoxylin. 
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Figure 14 
 

Area typical of MMP-2 immunoreactivity in middle dentin. 
MMP-2 is localized primarily with the dentin matrix and not the tubule lumens. 

Counterstain is hematoxylin. 
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Figure 15: 
 

Sections of human coronal tooth structure including a represenstive area 
typical of middle dentin and the DEJ region, probed with α-MMP-2 (A) and  
negative control (B). Intense MMP-2 immunoreactivity adjacent to the DEJ  

appears to be associated with the dentin matrix. Counterstain is hematoxylin. 
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Figure 16: 
 

Sections, with part of DEJ and outer dentin removed, 
probed with α-MMP-2 (A) and a-Amelogenin (B).  

Negative controls shown in inset.  No counterstain was used. 
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Figure 17: 
 

Images of area where outer dentin/DEJ was removed and where DEJ continues.  
Sections were probed with α-MMP-2 (A) and α-Amelogenin (B).    

No counterstain was used. 

Figure 18: 
 

Images of area where DEJ stops and cementum with gingival attachment begins. 
Sections were probed with α-MMP-2 (A) and α-Amelogenin (B). 

No counterstain was used. 

 

59 

20µm20µm

A B

Sectioned Area 
Sectioned Area DEJ DEJ 

20µm20µm

A

Gingival Tissue 

Coronal  
Dentin 

Coronal 
Dentin 

Gingival Tissue 
Root Dentin Root Dentin 

B



Figure 19: 
 

The average maximum Inner, Middle and Outer MMP-2 
 Immunoreactivity versus Age  
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Figure 20: 
 

Western Blot (A) of I/M/O probed with α-Amelogenin demonstrating  
immunoreactivity in ~26 kDa region in the O fraction. Additional 
immunoreactivity can be seen in the ~66kDa region in I, M and O.  

61 

220 kDa 

97 kDa 

66 kDa 

45 kDa 

30 kDa 

20.1 kDa 

14.3 kDa 

 Amelogenin   

I M O MW 

16
0µ

g
O

16
0µ

g
M

23
6µ

g
I



Figure 21: 
 

Western Blot (A) of I/M/O/En probed with α-MMP-2 and zymogram (B) 
demonstrating glatinolytic activity in I and M. Recombinant human MMP-2  

(rhMMP-2) is a positive control.  
Non-specific binding to ~66 kDa serum albumin (SA) is likely.   
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Figure 22: 
 

Western Blots of I/M/O, G1/E/G2 and BSA probed with α-MMP-2.  
Non-specific binding to ~66 kDa BSA is present in a range of concentrations. 

Control rhMMP-2 preparation does not contain BSA. 
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Figure 23: 
 

Western Blot (A) of G1/E/G2 probed with α-MMP-2 and zymogram (B) demonstrating  
gelatinolytic activity in G1 and G2.

Recombinant human MMP-2 (rhMMP-2) is a positive control. 
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Figure 24: 
 

A 1.5 mm section of a mineralized 3rd molar with a small area of occlusal pit caries (A) 
 was demineralized, sectioned and probed with α-MMP-2 (B). Increased 

immunoreactivity is evident in the region of dentin beneath the carious lesion.  
Increased MMP-2 immunoreactivity is associated with the dentinal tubule lumens. 
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Figure 25: 
 

A 5µm section of a demineralized 3rd molar, that had been restored with a  
composite restoration, probed with α-MMP-2. A hybrid layer remains attached to  

the dentin and demonstrates non-specific staining. A zone of increased MMP-2 
immunoreactivity is present in the region surrounding the restoration interface. 

Increased MMP-2 immunoreactivity is associated with the dentinal tubule lumens.  
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APPENDIX: 

Buffers: 

 Lysis Buffer- 
 150mM NaCl, 20mM Tris-HCl pH 7.5, 10mM EDTA, 1% Triton X-100, 1%     
 deoxycholate 
 

Phosphate Buffered Saline (PBS)- 
 10mM sodium phosphate, pH 7.5, 0.9% Saline 

 TBS stock solution (20X)- 
 400mM Tris HCl pH 7.5 + 2.74 M NaCl 
 

Tris-Glycine SDS Sample Buffer- 
 63mM Tris HCl, 10% glycerol, 2% SDS, 0.0025% Bromophenol Blue, pH 6.8 
 

MOPS SDS Running Buffer (20X), 500ml- 
 MOPS 104.6g (1.0M)3-(N-morpholino) propane sulfonic acid, Tris Base 60.6 (1.0M), 
 SDS 10.0g (69.3mM), EDTA 3.0g (20.5mM) 
 

Tris-Glycine Transfer Buffer- 
 12mM Tris Base, 96mM Glycine, pH 8.3 
 

Tris Buffered Saline- 
 50 mM Tris-HCl, pH 8.0, 150 mM NaCl 
 

Tris-Buffered Saline + Tween 20- 
 10 mM Tris-HCl, 0.15 M NaCl, 0.05% tween-20, pH 8.0) 
 
Extraction Solutions: 

 EDTA + Guanidine HCl- 
 0.33 M EDTA + 2M Guanidine HCl, adjusted to pH 7.4 with KOH 

 EDTA - 
 0.5 M solution of EDTA adjusted to pH 7.4 with KOH 

 Guanidine HCl- 
 4M guanidine HCl, 65 mM Tris-HCl, adjusted to pH 7.4 with NaOH  
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