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ABSTRACT 

 

BRIAN STUCKY: Item Response Theory for Weighted Summed Scores 

(Under the direction of David Thissen) 

 

Tests composed of multiple sections are routinely weighted by section.  Methods for 

weighting have existed perhaps as long as there have been tests; however, computing and 

evaluating the quality of weights has not evolved with recent advances in test theory (Item 

Response Theory (IRT)).  While IRT may be used to compute accurate estimates of ability 

based on a variety of information (e.g., pattern responses or summed scores), there has been 

little research on the computation of scale score estimates for tests with arbitrary item or test 

section weights.  The present work provides an extension to a recursive algorithm for the 

computation of IRT-scale scores from weighted summed scores. 
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CHAPTER 1 

 

A HISTORY OF ITEM WEIGHTING 

 Item weighting has historically received much attention.  In tests constructed and 

evaluated using classical test theory (CTT), items have been given differential weights, 

allowing them to contribute more or less to a composite measure.  Methods for selecting 

these weights have varied considerably; early methods attempted to account for items with 

differing length, difficulty, or assumed validity, etc., while more modern conventions select 

weights based on the statistical properties of the items.  

 Item weighting has rarely been considered in an item response theory (IRT) framework 

(see Sykes & Hou, 2003 for an exception).  For IRT scale scores, the item parameter 

estimates serve as implicit weights, where guessing, item difficulty, and item discrimination 

parameters are used to provide the best estimates of the ability of individuals taking a test.  

Recent test theory research has focused on IRT models, with implicit item weighting; the 

literature on explicit weighting has become an historical aside, in which references to item 

weighting are made within the CTT domain.   

 The present paper seeks to understand how IRT ability estimation might be conducted for 

tests with a priori item weights.  This would be implemented in situations where a testing 

program has explicitly chosen weights that are applied prior to IRT analysis.  The methods 

contained in this paper would allow weighted summed scores to have corresponding IRT 

scale scores.  Consequences of this procedure will be discussed in relation to how item 
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weights affect the resulting estimates of individuals’ ability and the corresponding levels of 

error (or uncertainty) across the ability continuum.  To better relate item weighting with IRT, 

a brief review of traditional weighting techniques is provided as a precursor to the methods 

for combining the two domains (weighting and IRT).   

Weighting in Classical Test Theory 

 Item weighting has a long history in CTT.  Broadly speaking, in situations in which items 

have obviously heterogeneous characteristics, test administrators have routinely accounted 

for these differences through item weighting.  Weights have often been applied with respect 

to item difficulty, length, number of possible responses, etc.  As will be demonstrated later, 

weights can also be applied to entire test sections.  Large scale tests composed of multiple 

test sections are common (e.g., the Advanced Placement (AP) exams and the General 

Education Development (GED) tests). For tests with multiple sections, administrators 

commonly incorporate weights to account for, or to correct for, perceived inequalities 

between test sections. Many have noted, for example, that constructed response (CR) 

questions are costly in many ways: (1) they are time consuming, (2) they can be affected by 

abilities other than the intended dimension, and (3) they offer poor reliability as compared to 

multiple choice (MC) items (Wainer & Thissen, 1993; Lukhele, Thissen, & Thissen, 1994; 

Thissen, Wainer, & Wang, 1994).  

 The choice to weight one item or section more than another usually results from a belief 

that the item or section with the larger weight is “better,” or best reflects the underlying latent 

trait, and thus should contribute more to a test taker’s final score.  Typically, however, 

weights are chosen for surface-level characteristics (e.g., item length, difficulty, and assumed 

validity), though test analysts may prefer to weight based on the psychometric properties of 
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the items or test sections.  In these cases, weighting based on the test’s section and composite 

reliability and validity is preferred.  Deciding how much weight an item or section receives 

can be determined using either “arbitrary” or “statistical” strategies, or both. 

 There are many arbitrary methods of item weighting.  Researchers have weighted based 

on item length, the time allowed to complete items, and a “proportional method” based on 

restricting a test’s separate sections to contribute equally to the composite score.  As will be 

clarified, all of these techniques are derivatives of a single general principle.  Regarding 

weighting by length, a commonly seen example is for tests with mixed item types to weight 

essay questions more heavily than other non-essay questions.  This is done not only because 

essays are implicitly considered by some to contain more valid information about the test 

taker, but also because a single essay takes far longer to answer than does a multiple choice 

question.  Another approach to weighting tests with different item types is to weight in order 

to achieve equal contributions to the score for each of several test sections.  For example, a 

10 item multiple choice test section scored correct/incorrect (10 points possible), is coupled 

with a single essay question (5 points maximum).  To achieve equality a weight of 2 is 

attached to the essay question (MCmax/CRmax).  The commonality between weighting by 

length, time allowed, or equality of points is that tests with essay sections are often scored 

using fewer points than are ultimately allocated after weighting.  This convention is practical 

given that essays are typically judged by multiple raters who must achieve a level of 

agreement, which is more reasonable to maintain with reduced scoring ranges.  Thus, it is 

often necessary to weight CR items in order to ensure that they contribute adequately to a 

test. 



 

4 

 

 While arbitrary weighting methods are still popular, other statistical methods may 

provide more useful weights for test sections and items.  One such method is weighting based 

on a multiple correlation approach; this approach has been among the most widely used 

methods.  The limiting factor of this technique is the existence of a criterion variable (x0) that 

is predicted from the other items in the test.  If such a criterion variable exists, the βi-weights 

form the best possible linear combination of items (x1, x2 . . . xn) for predicting 0x̂  = β01.23…n x1 

+ β02.13…n x2 + β03.12…n x3.  The weights, βn’s, are largest for items that are strongly associated 

with the criterion item and also for items that are independent from other items (Wilks, 

1938).  As a measure of effect size, R
2
 is the maximized quantity of multiple regression 

weights (McDonald, 1968).  However, problems with generalizing multiple correlation 

models with many parameters and small sample sizes are relevant in this context (Cohen, 

Cohen, West, & Aiken, 2002).  “Shrinkage” is also particularly relevant in these situations 

because R
2
 can be over-estimated by capitalizing on the properties of the sample (Cohen, 

Cohen, West, & Aiken, 2002). 

 A different approach to weighting, “reliability weighting,” has also been considered.  It is 

clear that for tests composed of more than two sections there can be marked differences in 

the reliabilities of the separate sections.  “Reliability weighting” is concerned with finding 

the optimal weights that are associated with a composite score’s maximum reliability, and 

involve increasing the contribution (weight) of the section with the highest reliability.  The 

procedures for finding the maximum reliability involve matrix manipulations of the test 

sections’ reliabilities and the intercorrelation between the sections (see Peel, 1948 for the 

matrix derivations and Wainer & Thissen, 2001, chap. 2 for a practical application). 
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Weighting in Item Response Theory 

Arbitrary weighting methods clearly affect the reliability of measures from a CTT 

perspective.  Of present interest is how arbitrarily weighting items and test sections might 

affect a test with IRT analysis.  Lukhele and Sireci (1995) discussed this problem in the 

context of the conversion of the writing skills section of the GED test from CTT analysis to 

an IRT analysis.  Traditionally, the test had weights of .64 and .36 for the MC and CR 

sections, respectively, which were arbitrarily chosen to allow the essay section to adequately 

contribute without overly reducing the composite reliability (like most tests, we can assume 

the reliability of the CR section to be substantially less than that of the MC section).  Lukhele 

and Sireci obtained the “unweighted” IRT marginal reliabilities (Green, Bock, Humphreys, 

Linn, & Reckase, 1984; Thissen & Orlando, 2001, p. 119) for each section, followed by a 

“maximum” reliability, in the IRT sense of the word, for the composite as computed by a 

simultaneous IRT analysis of all items.  From these IRT marginal reliabilities, the traditional 

.64/.36 weights were applied to the trait estimates to compute a “weighted” composite 

reliability, which was nearly 6 percent less than the unweighted IRT “maximum” reliability.  

This loss in reliability can be in part attributed to weighting the test section marginal 

reliabilities by .64/.36, when “optimal” IRT weights suggest a split of .86/.14, indicating that 

the MC section should be worth more than 6 times as much as the CR section. 

     While this procedure is an important early step in investigating weighting and IRT, 

Lukhele and Sireci’s method of combining IRT scores with weights ignores a central 

component in IRT.  Reliability is rarely used in the context of IRT because, unlike CTT, IRT 

allows for individual items to have varying implicit weights which change as a function of 

the item’s IRT parameters.  Lukhele and Sireci modified the differential weights of each item 
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when using the marginal reliabilities of the test sections to produce an “IRT weighted” 

composite reliability.  It should then come as no surprise that applying weights in an a 

posteriori fashion to the estimates of ability reduced overall reliability.   

 Sykes and Hou (2003) used a more direct approach to combine weighting with IRT.  

Sykes and Hou demonstrate that for tests composed of combined item types (CR and MC), 

weights may be applied prior to IRT estimation of scores.  This weighting was accomplished 

by increasing the portion of the test characteristic curve (TCC) that was contributed by CR 

items and then using the modified TCC to create a weighted-summed-score to IRT-score 

conversion table.  In the example considered by Sykes and Hou, all CR items were weighted 

by 2, with the MC items receiving unit weights.  

 Sykes and Hou considered the effectiveness of this strategy by comparing differential 

standard errors across the ability continuum.  In this case, when compared to the response 

pattern estimates, slight increases in standard errors were seen across average and upper 

levels of ability, with the exception occurring for lower scores, where weights reduced 

estimation error.  A potential explanation for the effect Sykes and Hou report is that the CR 

items, as compared to the MC items, happen to be somewhat easier and probably 

discriminated better among individuals at lower ability levels, though this must be 

speculation because item parameters are not reported.     

 In the example used by Sykes and Hou there is a clear intent to increase the contribution 

of CR items.  It is often argued that the perceived benefit of increased test composite validity 

for positively weighted CR sections overshadows the cost associated with a decrease in test 

reliability (Kane & Case, 2004; Rudner, 2001).  It is true that if such discrepancies in validity 

exist, then weighting based on validity would seem a reasonable approach (Lord & Novick, 
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1968).  However, little empirical evidence exists showing such a disparity, while 

overwhelming evidence supports clear differences in reliabilities for CR and MC test 

sections.  While weighting to satisfy either condition seems paradoxical, Wainer and Thissen 

(2001), demonstrate that in CTT, when considering the optimal reliability of test, for every 

situation of more than one test section, there is a range of potential weights that vary between 

those that produce the optimal reliability and those the produce a reliability no less than the 

most reliable test section.  Thus, even in situations where a CR test section has low reliability 

there is still a range of possible weights which provide (at least) as good reliability as if the 

section were removed.   

 Often with decisions regarding weights there are no clear answers.  It is not uncommon 

for weights to produce slight increases in performance of one aspect of a test at the expense 

of the performance of another area.  For example, the weights Sykes and Hou chose 

increased the contribution of the CR section by 16%, resulting in improved test information 

at the lower score ranges, but reduced the marginal reliability of the composite by 2%.  Many 

tests contain weighted CR sections, and given the small amount of literature on the subject 

(e.g., two known papers present IRT approaches) and the lack of clear guidelines for the 

choice of weights, the current investigation of how IRT ability estimation may be conducted 

directly from weighted summed scores seems timely. 
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Weighted Summed Scores for Mixed Item Types 

 To appropriately incorporate item weighting with IRT, new methods are needed.  

Specifically, while Lukhele and Sireci applied arbitrary weights directly to the expected a 

posteriori estimates of ability (EAPs), and Sykes and Hou weighted the observed item 

responses in the TCC, a true incorporation of item weights would allow for separate IRT 

ability estimation to occur for each weighted summed score.  This would permit weighted 

summed scores to have associated EAPs and corresponding standard deviations (SDs).  

While little is known about the relation of weighted summed scores with IRT ability 

estimation, one can begin by considering weighted summed scores as an extension of simple 

summed scores for tests with multiple item types.  For the case in which a test has only a 

single section, the number of maximum possible summed scores is: 

                                                                 *( 1) 1.i in c − +                                                          (1) 

Here n refers to the number of items i in a test section with c number of response options per 

item.  For example, a 4 item test composed of binary items has 5 possible summed scores, 

(0,…, 4).  For tests with s sub-sections, the maximum possible summed score is
1

( 1)
s

s sn c −∑ .  

Thus, if the 4-item binary test is combined with a CR section with 2 items worth 2 points 

each, the maximum possible summed score would be 8.  Often tables of summed scores are 

helpful.  Here, Table 1 illustrates that the total number of possible summed scores for this test 

is 9 (0, … , 8). 
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Table 1. Possible summed scores of a test composed of two CR items  

with three response categories and four MC items 

MC  

max. 

possible 

summed 

scores 

CR  max. possible summed scores 

Sum 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 5 

2 2 3 4 5 6 

3 3 4 5 6 7 

4 4 5 6 7 8 

 

For all scores other than the minimum (0) and the maximum (8), individuals can obtain a 

given summed score with more than one pattern of MC and CR summed scores.  For 

example to obtain a 1 a test taker must incorrectly answer all items except one binary item or 

receive a 1 on a CR item and 0’s elsewhere.  As seen in Table 1, for unit-weighted test 

sections there are at least two ways of obtaining a given summed score for all possible 

scoring responses other than the minimum and maximum summed scores.   

 However, for tests composed of multiple weighted sections, the maximum number of 

unique weighted summed scores is less clear.  The process for determining the number of 

summed scores can again be imagined from the standpoint of a similar table where item 

responses now have weights.  Given the same test example previously used, when weights of 

1.2 are chosen for the MC section the range of possible weighted summed scores are (0, 1.2, 

2.4, 3.6, 4.8); when weights of .8 are used for the CR section the possible weighted summed 

scores are (0, .8, 1.6, 2.4, 3.2).  Note that the number of summed scores for the individual 

sections is unchanged from the unit-weighted example.  However, as illustrated in Table 2, 

combining these weighted summed scores to obtain the total number of possible weighted 

summed scores for the test produces more unique summed scores than were previously 

possible. 
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Table 2. Possible weighted summed scores of a test composed of two CR items  

with three response categories and four MC items 

MC  

max. 

possible 

weighted 

summed 

scores 

CR max. possible weighted summed scores 

Sum 0 .8 1.6 2.4 3.2 

0 0 .8 1.6 2.4 3.2 

1.2 1.2 2.0 2.8 3.6 4.4 

2.4 2.4 3.2 4.0 4.8 5.6 

3.6 3.6 4.4 5.2 6.0 6.8 

4.8 4.8 5.6 6.4 7.2 8.0 

 

In this case there are 13 possible unique weighted summed scores.  This occurs because 6 

different weighted summed scores can be obtained from 2 separate combinations of CR and 

MC items (which are illustrated in grayscale ).  If, the weights chosen are “sufficiently 

unique” (i.e., numbers that avoid proportionality), then the possible weighted summed scores 

is the number of rows (the number weighted CR summed scores) multiplied by the number 

of columns (the number of weighted MC summed scores), or for s test sections: 

                                                         
1

( ( 1) 1)
s

s sn c − +∏                                                             (2) 

 

which in this case is (4*(2-1)+1)*(2*(3-1)+1) = 25.  Presenting weighted summed scores for 

tests with multiple weighted test sections takes the form of a cube for tests with 3 sections, or 

a hyper-cube for tests with more than 3 sections.     

 More generally, the problem of determining the number of unique weighted summed 

scores is actually a problem of determining how many integral multiples correspond between 

weighted test sections.  While computing the scores of the composite, any multiples of test 

section weights that may be derived from more than one combination of weights will result 

in a duplicate, or redundant weighted summed score.  The total number of weighted summed 

scores is then found by counting every weighted summed score once (i.e., counting each 

unique score only once).  It should be noted that in cases other than the simplest, the process 
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of determining the number of weighted summed scores is only reasonably done with a 

computer.  For example, a mixed item-type test with 98 weighted binary items and 4 

weighted CR items (11 scoring categories) produced 4059 weighted summed scores, which 

required nearly 6 minutes to compute on a 2.13 GHz Duo Core processor using the 

interpreted statistical language R. 

 To conduct IRT scoring, the likelihoods associated with these weighted summed scores 

require computation.  The challenge is that for tests with many items and weights, obtaining 

these likelihoods can be computationally difficult.  This paper presents a method for 

obtaining IRT scores from weighted summed scores and describes some properties of scoring 

tests with weights when using item response theory.



 

 

 

 

 

 

 

CHAPTER 2 

 

AN EXTENSION OF THE RECURSIVE ALGORITHM  

While IRT scale scores are most often associated with each pattern of item responses, and 

such scores are optimal if the model describes the data, in many contexts users of test results 

are more comfortable with scores that are based on sums or weighted sums of values 

associated with each response. It is well-known that IRT can be used to compute scale scores 

associated with each simple summed score (Thissen, Pommerich, Billeaud, and Williams, 

1995; Thissen & Orlando, 2001; Thissen, Nelson, Rosa, & McLeod, 2001); in the process, 

one can compute not only the scale score but also an estimate of its standard error, and the 

modeled proportion expected to obtain each summed score, which can be used to compute 

modeled percentiles and check the goodness of fit of the observed distribution of summed 

scores. These values are all computed using previously-estimated item parameters; the 

challenge in their computation is to compute the likelihood over θ for each summed score.  

An extension of the methods described in this chapter provides an algorithm to compute the 

IRT likelihood for weighted summed scores. 

Thissen, Pommerich, Billeaud, and Williams (1995) illustrate the steps needed to 

compute the likelihood of each summed score given θ.   The likelihood of any summed score 

x (the sum of item scores u = 0,…,Ui for all items i): 

                                                  
responsepatterns

(u | θ)

i

x

x u

L L
∋ =

=
∑
∑ .                                                         (3) 
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Considering only the items, the likelihood for every response pattern is                                                   

                                                               ( | ) ( )
iu

i

L u Tθ θ=∏                                                         (4) 

in which 
iuT (θ) represents the conditional probability of responding in category ui on item i.  

For the two-parameter logistic (2PL) model, T (ui = 1| θ), for a correct response, takes the 

form 

    
1

( 1| )
1 exp[ ( )]

i

i i

T u
a b

θ
θ

= =
+ − −

,                           (5) 

while an incorrect response has the probability: (0 | ) 1 (1| ), T Tθ θ= − or 0 1( ) 1 ( ) T Tθ θ= − in 

more compact notation. The probability of a correct response 1 to item i given the level of the 

latent variable, θ, is a function of the “discrimination” power of the item (ai) and the 

difficulty of the item (bi).   

 For items composed of m ordered response categories, Samejima’s (1969) graded 

response model (GRM) describes the probability of a responses in category k or higher, 

where k =0, 1, 2 …, m -1:    

                                          * 1
( | ) ,

1 exp[ ( )]i ik

T k
a b

θ
θ

=
+ − −

                                                  (6) 

noting that * *(0 | ) 1 and ( | ) 0.T T mθ θ= =  Here the probability of responding in category k is 

the difference between the probabilities of responding in k or higher and the higher response: 

* *( | ) ( | ) ( 1| ).i i iT k T k T kθ θ θ= − +  

 Combining equations 3 and 4 provides the likelihood for every summed score x: 

                                                         
response patterns

( ) ( )
i

i

x u

ix u

L Tθ θ
∋ =

=
∑
∑ ∏                                                  (7) 

Taking the product of the likelihood of score x and the population density φ(θ) provides the 

posterior distribution of score x, which has an associated probability computed by 
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response patterns

=

= (θ) (θ) (θ)
i

i

x u

ix u

P T dφ
∋ ∑
∑ ∏∫ .                                                (8) 

Finally, numerical integration using the posterior distribution and the probability of score x is 

used to compute the expected a posteriori (EAP), or the mean of the posterior distribution of 

each summed score, along with the standard deviation (SD) corresponding to each EAP. 

 Lord and Wingersky, 1984 described a recursive algorithm that can be used to compute 

the likelihood of summed scores given θ.  The recursive algorithm is easiest to describe with 

dichotomous items: the probability that an individual correctly answers a test with a single 

dichotomous item (u = 1) is T1 where the complement represents the probability of an 

incorrect answer (1 - T1), so that the summed score likelihood for this test, 1

xL , is 
1
( ).xT θ .  

When a second item is added to the test there are three possible scores (x = 0,…,2).  The 

likelihood of x = 0 is the product of the previous item complement with the current item 

complement, (1-T1)*(1-T2); the likelihood of x = 2 is T1T2, and finally, the likelihood of x = 1 

is T1(1-T2) + (1-T1)T2.  The likelihood of a summed score that is not 0 or 2 for this two item 

test is found by adding the product of the likelihood of the score for the preceding item (
*I

xL ) 

and responding incorrectly to the present item (
* 1

0
I

T
+

) to the product of the likelihood and of 

one less than the summed score (
*

1

I

xL − ) and responding correctly to the present item (
* 1

1
I

T
+

).   

 The recursion in this algorithm can be viewed as an updating process in which the 

likelihoods of all possible summed scores as a function of θ are reevaluated for every 

succeeding item.  Thissen et al. (1995) present this algorithm for any number of response 

categories, so that for all items (0… I*), the summed score is ix u=∑  and the likelihood of 
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summed score x is 
*

( ).I

xL θ  The recursive algorithm begins by setting the first item equal to 

zero (I* = 0).  For the first item the likelihoods associated with each score x is: 

                                                           

                                                                   
*

* ( ).
I

I

x xL T θ=                                                                (9) 

The likelihood for the next item, I*+ 1, is computed by: 

                                                    
* 1* 1

* 1 *( ) ( ),
II

I I

x u x uu
L L Tθ θ

++

+
+ =∑                                                (10) 

which is repeated until I* is I. 

IRT for Weighted Summed Scores 

 In order to incorporate weights into IRT score estimates, an extended version of this 

recursive algorithm may be used.  In the original recursive algorithm, at each successive 

iteration, the maximum possible summed score increases exactly one point for binary items, 

or one less than the number of categories for graded items.  However, if two test sections 

receive differing weights, the increases in summed scores may not be integers; the set of 

summed scores for these types of tests could have many values.  For unit-weighted tests there 

are many response patterns with the same summed scores but for tests with differential 

weights, far fewer response patterns may be associated with each weighted summed score, 

and the number of potential response patterns can be different for each summed score.  There 

are often many more possible weighted summed scores than there are unit-weighted summed 

scores, and the distances between the weighted summed scores are not uniform, as they are 

with summed scores.   

 The recursive algorithm to compute scale scores for weighted summed scores may be 

thought of as a two-stage process that is a re-expression of the original algorithm used for 

unit weighted summed scores.  In stage 1, as in equation 10, likelihoods are computed for 
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each weighted summed score which are the sum of the products for the trace lines of each 

pattern of scores that forms the weighted summed score.  In the general weighted case the 

patterns of scores are not collections of integers, but rather are “item scores” (which may be 

section weights).  When this stage is completed a test with separately weighted sections has 

likelihoods associated with each possible weighted summed score. In stage 2 the likelihoods 

are “collapsed,” or, summed together for each combination that has the same weighed 

summed score.  If a weighted summed score can only be computed by one combination of 

test section scores, then the likelihood for that combination of scores remains as it was. 

 Many factors affect the number of weighted summed scores, including the uniqueness of 

the weights and the number of weighted sections.  Often the number of weighted summed 

scores is very large.  Recall that a mixed item-type test with 98 weighted binary items and 4 

weighted CR items (11 scoring categories) produced 4059 weighted summed scores.  In these 

situations, where score reporting may be difficult, an additional procedure may be 

implemented to transform the weighted summed scores back into integer scores.  In this 

optional, third step, the likelihoods are further collapsed for weighted summed scores that 

round to a given integer, resulting in as many integer scores as there are unit-weighted 

summed scores if the weights are normalized to sum to the total unit-weighted summed 

score.      

 As an example of these procedures, consider the test described previously: the first MC 

section includes 4 items with weights of 1.2, and the second CR section includes 2 items with 

three scoring categories and weights of .8.  The extended recursive algorithm is used to 

compute the likelihoods for all 25 possible combinations of item scores (i.e, 0, 0.8, 1.2, 1.6, 

2.0, ... ,8.0).  For the weighted summed scores 0.0 and 8.0 the EAPs are the same as would be 
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computed from the original algorithm, because the likelihoods are the products of the same 

trace lines (namely, all incorrect or all correct).  However, the extended recursive algorithm 

distinguishes between the weighted summed scores 0.8 and 1.2 (which are the same for unit-

weighted summed scores).  The likelihoods for score 0.8 are computed only from those 

patterns of scores in which all the MC items were incorrect and only the first scoring 

category is achieved for one CR item, and vice versa for the score 1.2.  Stage 2 of the 

algorithm considers the full list of weighted summed scores and combines the likelihoods for 

scores that are computed from more than one combination of item scores.  For example, a 

score of 2.4 may occur either by correctly answering two MC items, and scoring a zero 

elsewhere, or by receiving a score of 2.4 on the CR section, and scoring a zero elsewhere.   

An Example of Using IRT to Score Weighted Test Sections 

 Using the example above, weighted IRT scale scores were computed from four MC items 

and two CR items with three response categories per item.  Because scoring is conducted 

after parameter estimation, we suppose here that a 1PL model (a 2PL model with equal slope 

parameters) was fitted to the MC items and the GRM to the CR section (see Table 3 for the 

IRT parameters). 

Table 3.  IRT parameters for test sections  

with 1PL and GRM items 

Item a b1 b2 

MC1 2.5 -1.00  

MC2 2.5 -0.33  

MC3 2.5  0.33  

MC4 2.5  1.00  

CR1 1.5 -1.50 -0.75 

CR2 1.5  0.75  1.50 
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A priori weights of 1.2 were used for the MC section and 0.8 for the CR section.  Scoring 

was conducted using the original algorithm for unit-weighted summed scores and the 

extended recursive algorithm for weighted summed scores.  For both unit and arbitrary 

weights, Table 4 contains EAPs for each combination of item scores by test section. 

 

Table 4. Summed scores, weighted summed scores,  

and EAPs for all score combinations of 1PL and GRM items 

MC  

summed 

scores 

CR summed scores 

Sum 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 5 

2 2 3 4 5 6 

3 3 4 5 6 7 

4 4 5 6 7 8 

MC 

weighted 

summed 

scores 

 CR weighted summed scores 

Sum 0 0.8 1.6 2.4 3.2 

0.0 0.0 0.8 1.6 2.4 3.2 

1.2 1.2 2.0 2.8 3.6 4.4 

2.4 2.4 3.2 4.0 4.8 5.6 

3.6 3.6 4.4 5.2 6.0 6.8 

4.8 4.8 5.6 6.4 7.2 8.0 

  EAPs for MC and CR score combinations 

EAPs 

for MC and CR 

score 

combinations 

-1.62 -1.28 -1.06 -0.76 -0.68 

-0.90 -0.72 -0.49 -0.25 -0.16 

-0.35 -0.23  0.00  0.23  0.35 

 0.16  0.25  0.49  0.72  0.90 

 0.68  0.76  1.06  1.28  1.62 

 

Note: the top panel contains unit-weighted summed scores for MC and CR test sections, the 

middle panel contains the weighted summed scores for MC weights of 1.2 and CR weights of 

0.8, the bottom panel contains the EAPs for each MC and CR score combination regardless 

of item weight.  
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The EAPs in lower panel of Table 4 represent the likelihoods that form the basis of later 

score combinations.  For example, in the unit-weight case, the EAP for a summed score of 

1.0 is computed by combining the likelihoods for MC and CR scores [1,0] and [0,1] (Table 4, 

top panel).  However, in the weighted-summed score case, the EAPs for 0.8 and 1.2 remain 

separate scores (Table 4, middle panel).  Computing unit-weighted summed score EAPs 

involves combining the likelihoods associated with the top panel of Table 4 for all cases in 

which a given element forms a summed score x.  As the middle panel of Table 4 makes clear, 

depending on the weights, the weighted summed scores might involve unintuitive score 

combinations.  For instance, an EAP for the weighted summed score 3.6 would involve 

combining the likelihoods for item scores [3,0] and [1,3].  The effect of weighting on score 

estimation will be discussed in the following sections. 

 In the present example, the extended recursive algorithm was used to compute EAPs and 

SDs separately for both the unit and arbitrarily weighted cases (Figure 1).  
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Figure 1.  EAPs and SDs of IRT scale scores for unit and weighted summed scores 

Note: this figure contains the EAPs (top panel) and corresponding SDs (bottom panel) for 

unit-weighted summed scores, weighted summed scored, and integer scores. 
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The lower panel of Figure 1 indicates the EAPs for these weighted summed scores, as 

compared to unit-weighted summed scores, have less uncertainty for the majority of the 

range of scores.  Explanations for this will be proposed in later sections.  Also notable, from 

the top panel in Figure 1 is that while EAPs for both the unit and arbitrarily weighted 

summed score are closely related, the EAPs for the weighted summed scores are not 

monotonically increasing.  In other words, increases in weighted summed scores do not 

necessarily indicate increases in EAPs.   The EAP associated with a weighted summed score 

of 1.2 is greater than that for 1.6.  This reflects the relative importance of the MC items in 

determining levels of ability (see Thissen, Nelson, & Swygert, 2001, pp. 303 - 307 for a 

discussion of relative weights).  Finally, the upper panel of Figure 1 indicates that collapsing 

weighted summed scores into integer scores provides EAPs which are nearly identical to unit 

weighted summed scores.  However, with the exception of scores 0, 1, 7, and 8, which are 

produced from the same likelihoods for both integer and summed scores, the SDs of the 

EAPs are slightly higher for the integer scores. Referring back to Table 4, this may be 

because the integer scores are combinations of likelihoods which have similar means, but 

dissimilar distributions.



 

 

 

 

 

 

 

CHAPTER 3 

 

THE EFFECTS OF WEIGHTING ON SCORING TESTS 

 In many situations, test developers select weights prior to administering tests and 

reporting scores.  When the weights are known the procedures described in the previous 

chapter may be used to obtain EAPs and SDs for the weighted summed scores and integer 

scores.  However, an alternative use of the extended recursive algorithm is to compute EAPs 

and SDs for a variety of weight combinations, which may then be used to evaluate the 

efficacy of different weighting schemes.  To enable such comparisons the recursive 

algorithm was implemented in the statistical language R to iterate over a range of weights to 

compare the effects of a variety of hypothetical weight combinations on IRT scores and score 

distributions. 

 For tests with a large number of items, or when comparing many weight combinations, 

graphically evaluating the effects of weights on the EAPs and SDs can be tedious.  Thus, the 

average error variance across scores is computed to reflect the performance of a weighting 

scheme: 

                                                         2 2 .x xpσ σ=∑                                                               (11) 

The average error variance is the sum of the product of the score variance and the probability 

of a given score.  As an overall indicator of the quality of the weights, one minus the average 

variance is the marginal reliability (Green, Bock, Humphreys Linn, & Reckase, 1984) for 

standardized θ.  When the average variance is low, or when reliability is high, the weights 

combine likelihoods which result in scores with low error SDs and thus may be considered 
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better than other sets of weights which result in higher average error variances. When 

considering multiple weight combinations, the set of weights that produces maximally 

reliable scores are the “optimal” weights.   

The procedures for obtaining optimal weights were implemented for integer scores, 

because of limitations involved with comparing average error variances across weighted 

summed scores.  For weighting schemes that produce unique weighted summed scores (i.e., 

scores that do not collapse), the average error variances are the same for all such sets of 

weights.  This occurs because the likelihoods associated with each weighted summed score 

are unique for all weight combinations produced from unique weights.  However, for a range 

of unique weights, if integer scores are computed, then likelihoods collapse when the 

corresponding weighted summed scores round to the nearest integer, producing different 

marginal reliabilities for each weight combination.   

Even so, not all changes in weights necessarily produce unique reliabilities.  For 

relatively short tests, small changes in weights may not result in different combinations of 

likelihoods for the integer scores.  When more than one set of weights produce identical 

combinations of weighted summed scores that round to a given integer, the algorithm 

combines the same likelihoods for each weight combination and the average score variance 

remains unchanged. The degree to which the collapsed likelihoods are different across 

weights corresponds to the change in the average error variance of the scale scores across 

different weight combinations.  

To illustrate the process of selecting optimal weights for integer scores, some examples 

of iterating the extended recursive algorithm for a variety of IRT models are provided in the 

examples that follow. 
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Example 1 

 The first example of iterating the recursive algorithm over a range of weights uses a 1PL 

model for four MC items and the GRM for two CR items (with response categories 0, 1, and 

2) (see Table 5 for IRT parameters). 

Table 5.  Example 1: IRT parameters for test sections  

with 1PL and GRM items 

Item a b1 b2 

MC1 2.0 -0.50  

MC2 2.0 -0.25  

MC3 2.0  0.25  

MC4 2.0  0.50  

CR1 2.5 -0.75  0.00 

CR2 2.5  0.00  0.75 

 

To select the optimal set of weights, the recursive algorithm was iterated over 21 sets of weights 

beginning with weights 0.0 and 1.0 for the MC and CR sections, respectively, and increasing the 

weight of the MC section by 0.05 units until 1.0 was reached (i.e., [0.0, 1.0], [0.05, 0.95],…, 

[1.0, 0.0]).  In this manner, the effect of the weights may be compared at a variety of levels, 

initially considering only the CR items (MC weight of 0.0) and last considering only the MC 

items (CR weight of 0.0). 

 The average reliabilities obtained from these 21 sets of weights are shown in Figure 2.  

Interestingly, the reliabilities are approximately symmetric around the unit-weighted case.  For 

example, the reliability of including only the CR items (0.66) is nearly identical to the reliability 

of including only MC items (0.67).  There are three sets of weights that produce optimal 

reliability ([0.45, 0.55], [0.50, 0.50], and [0.55, 0.45] for the MC and CR sections, respectively).  

Figure 2 illustrates that there is a range of weights associated the optimal, or near-optimal, 

reliability for the 1PL and GRM test sections. 
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Figure 2. Example 1: Reliabilities for test sections with  

1PL and GRM items 

 

As a possible explanation for the symmetry in reliabilities, test information was 

considered for each section.  Test information reflects how precisely the items measure 

ability over θ.  Where information is high, or the standard errors low, the test produces more 

precise estimates of the examinee’s ability.  For the 2PL model, test information is 

                                                            2

1

( )[1 ( )]
n

i i ia T Tθ θ−∑ ,                                                       (12) 
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which is the sum of the item information over n items.  Item information is the product of the 

trace lines for a correct and incorrect response and the item’s squared slope.  The height of 

information is a function of the discrimination parameter while the location of information is 

determined by the threshold.  Notably, for 1PL and 2PL models, maximum information will 

always occur where bi = θ.  For binary logistic models, item information is unimodal.  For 

polytomous IRT models, information is a function of the spacing between thresholds, and 

when thresholds are spaced moderately far apart, there may be as many modes as there are 

thresholds. 

 Returning to Example 1, test information was plotted for both sections (Figure 3). 

 

        Figure 3.  Example 1: Test information for 1PL and GRM items 

 

The item parameters for Example 1 were chosen in such a way that the information functions 

for the 1PL and GRM sections were nearly identical.  The symmetry seen in Figure 2 is then 
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related to the relative equality in information.  Figure 3 provides initial evidence that the 

quality of the weights depends to some degree on the amount and location of test 

information. 

Example 2 

 For Example 2, the effect of disparate test section information was considered when both 

sections contain binary items fit with 2PL models.  The items in both sections have 

thresholds centered at θ = 0, but the discrimination parameters for Section 1 are one unit 

higher for each item (Table 6).  Because item information is largely affected by the 

discrimination parameter, one would expect better score precision when the section 

containing more information is more heavily weighted. 

Table 6.  Example 2: IRT parameters for two 2PL test sections 

Item a b 

Section 1   

MC1 1.75 -0.50 

MC2 2.00 -0.25 

MC3 2.25  0.25 

MC4 2.50  0.50 

Section 2   

MC1 0.75 -0.50 

MC2 1.00 -0.25 

MC3 1.25  0.25 

MC4 1.50  0.50 

 

The extended recursive algorithm was again iterated over 21 sets of weights and the 

resulting marginal reliabilities are graphically shown in Figure 4.  Unlike Example 1, Figure 

4 illustrates that optimal reliability occurs when Section 1 receives nearly twice as much 

weight as Section 2 (weights of 0.65 and 0.35, for Sections 1 and 2, respectively).  While the 

optimal reliability is 0.74, for a wide range of weights the reliability is greater than 0.70 
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(including weights from [0.4 and 0.6] to [0.9 and 0.1]).  For the majority of weights, the 

scores are more precise when Section 2 is more heavily weighted.  

 

         Figure 4.  Example 2: Reliabilities for two 2PL test sections 

 

Example 3 

 Example 3 considers the effects of weighting test sections comprising binary items fit 

with 2PL and 3PL models. The 3PL model (Birnbaum, 1968) may be considered an 

extension of the 2PL: 

                                          
(1 )

( 1| ) .
1 exp[ ( )]

i
i i

i i

g
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θ
−

= = +
+ − −

                                       (13) 
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The probability of a correct response 1 to item i given the level of the latent variable, θ, is a 

function of the discrimination power of the item (ai), the difficulty of the item (bi), and the 

degree of guessing (gi). The lower asymptote, gi, is the probability of correctly answering an 

item at an infinitely low level of ability.  There are differences in the meanings of the other 

parameters when gi > 0 that result from accounting for guessing in relating the underlying 

latent variable to the item responses.  For example, bi in the 2PL is the location on θ halfway 

between the probabilities of 0.0 and 1.0 for correct response; however, in the 3PL, bi marks 

the location on θ halfway between the probabilities of the lower asymptote, gi, and 1.0.  

Given these differences, after substituting equation 13 into equation 7, computing EAPs and 

SDs from weighted summed scores remains unchanged. 

 For Example 3, Section 1 contains 2PL items while Section 2 contains 3PL items where 

gi = .25.  Discrimination and threshold parameters are equal across test sections (see Table 7 

and graphically in Figure 5). 

Table 7. Example 3: IRT parameters for test sections with 3PL and 2PL items 

Item a b g 

Section 1    

MC1 1.75 -0.50  

MC2 2.00 -0.25  

MC3 2.25  0.25  

MC4 2.50  0.50  

Section 2    

MC1 1.75 -0.50 0.25 

MC2 2.00 -0.25 0.25 

MC3 2.25  0.25 0.25 

MC4 2.50  0.50 0.25 
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         Figure 5.  Example 3: Trace lines for 2PL and 3PL items 

 

The extended recursive algorithm was again iterated over 21 sets of weights and the 

resulting marginal reliabilities are graphically shown in Figure 6.  For these models the 

optimal reliability (0.74) occurs when Section 1 (2PL items) is weighted by 0.6 units and 

Section 2 (3PL items) by 0.4 units.  The 2PL section has an average reliability of 0.68, which 

is exceeded by all other weight combinations except those which weight the 3PL items three 

times (or more) greater than the 2PL items.  This disparity indicates that after controlling for 

differences discrimination and threshold parameters, reliability is improved when items that 

account for guessing receive less weight. 
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Figure 6.  Example 3: Reliabilities for test sections  

with 2PL and 3PL items 

  

This finding suggests that items fit with 2PL model have more information than when fit 

with 3PL model.  Item information for the 3PL is: 
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∑                                              (14) 

The additional term reduces the information by the square of the ratio of correctly responding 

to an item under the 2PL model ( *( )iT θ ) to that under the 3PL model ( ( )iT θ ) (Baker & Kim, 
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2004, chap. 3).  When gi > 0, the reduction in information may be thought of as “penalty” for 

correctly answering an item by guessing.  Birnbaum (1968, pp. 464) demonstrates that under 

the 3PL model the maximum amount of information will always occur to the right of bi on 

the ability scale.  Both of these concepts are displayed graphically in Figure 7 which 

illustrates both the decrease and shift in information for the 3PL items used in Example 3. 

 

        Figure 7. Example 3: Test information for 2PL and 3PL items 

 

Example 4 

In the final example two 2PL sections are combined.  In Section 1 the thresholds are 

centered at θ = 0, and for Section 2 the thresholds are uniformly 2 standard deviations higher 

(see Table 8).  For both sections the discrimination parameters are equal, so that the models 

have equal total test information, but the maximum amount of information for Section 1 is 
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centered at approximately θ = 0 (not exactly θ = 0 because the discrimination parameters 

increase as the thresholds increase), and for Section 2 at approximately θ = 2 (see Figure 8).  

Table 8.  Example 4: IRT parameters for two 2PL test sections  

with different locations of information 

Item a b 

Section 1   

MC1 1.75 -0.50 

MC2 2.00 -0.25 

MC3 2.25  0.25 

MC4 2.50  0.50 

Section 2   

MC1 1.75  1.50 

MC2 2.00  1.75 

MC3 2.25  2.25 

MC4 2.50  2.50 

 

 

 

Figure 8. Example 4: Test information for two 2PL sections 
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Results for Example 4 indicate the location of test information affects the relation 

between weighting and marginal reliability.  As Figure 9 illustrates, the optimal weights 

occur when Sections 1 and 2 receive approximately equal weight (i.e., weights of [0.45 and 

0.55], [0.5 and 0.5], and [0.55 and 0.45]).  The degree to which Section 1 received more 

weight than Section 2 had little impact on the marginal reliability (equally weighted sections 

were .06 more reliable than the reliability of Section 1 alone).  When Section 2 received the 

majority of weight (i.e., 4 times the weight of Section 1) the reliability of the test is lower 

than the reliability of Section 1.  For the extreme case where Section 2 receives all the weight 

and Section 1 receives none, the reliability is substantially lower ( 0.35).ρ =  This is the result 

of administering 4 difficult items where the most probable summed score, 0 (79% of 

examinees), is located where there is little information, or large score variance, and as 

equation 11 indicates, this greatly increases the average error variance.  
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Figure 9.  Reliabilities for two 2PL test sections  

with different locations of information 
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An Empirical Example 

 As an illustration of weighting test sections, the generalized recursive algorithm was used 

to compute IRT scale scores from weighted summed scores for a large-scale achievement test 

comprised of 98 binary items and 4 polytomous response items with 11 response options (0 to 

10).  The 3PL model was fit to the binary items and the GRM to the graded response items (see 

Appendix I for item parameters and Figure 10 for an illustration of test information). The 

generalized recursive algorithm was iterated over a range of weights to illustrate the effects of a 

variety of weight combinations on marginal reliability. 

Unlike previous examples, where sections contained the same number of points, here the 

MC section is explicitly weighted by containing more points than the CR section (98 and 40 

points, respectively). It is useful in situations where there is a difference in the number of points 

for each test section to consider relative weights.  For this test, relative weights of 0.5 and 0.5 are 

equivalent to using unit-weights to score each section, and reflect the overall difference in points 

across sections.  If, for example, test officials require that the MC and CR sections be equally 

weighted, that is, that they generate the same maximum summed score, then relative weights of 

approximately 0.289 and 0.711 should be used.  On a unit-metric, these weights correspond to 

weighting the MC section by 0.41 units and the CR section by 1.0, this would yield 

approximately the same maximum summed scores for each section (40 points each).   
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Figure 10. Test information for 98 MC items and 4 CR items 

 

The generalized recursive algorithm was iterated 51 times in increments of 0.02 to compute 

the marginal reliability for a variety of potential relative weights (see Figure 11).  If the test is 

unit-weighted, that is, when the relative weights are 0.5:0.5, the marginal reliability is 0.9465.  

When the test is weighted such that each section contributes equally (relative weights of 

0.289:0.711), the marginal reliability is 0.9264.  When optimal weights are used (relative weights 

of 0.59:0.41), reliability improves slightly to 0.9483 (see Appendix II for example score 

reporting tables for the optimal weights).   
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Figure 11. Reliabilities for 51 separate weights for  

98 MC items and 4 CR items 

 

For this test there are many sets of weights that produce reliable scores. Using Wainer and 

Thissen’s (2001, chap. 2) concept of weighting to ensure that composite reliability is at least 

equal to the reliability of most reliable section, a range of relative weights between 1.00:0.00 and 

0.34:0.66, provide reliability equal to or greater than the MC section reliability of 0.9334.  

Within this range it appears to matter very little which weights are chosen. The optimal 

reliability is only 0.0131 greater than the MC section’s reliability, and only 0.0018 greater than 

the reliability of the unit-weighted composite.  
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There are also striking anomalies among the values of marginal reliability in Figure 11 when 

the weight for the 98-point MC section becomes very small, and that of the 40-point CR section 

becomes large. Under those circumstances, very small changes in the relative weight of the MC 

section induce much larger changes in the combinations of MC and CR likelihoods that yield 

scores that are near each integer (recall that weights affect such combinations, as was illustrated 

using Tables 1 and 2 in Chapter 1). The “smoothing” effect of collapsing the scores to integers 

that was described in Chapter 2 (p. 16), fails to some degree, because the underlying relation 

between the EAPs and the weighted summed scores (before collapsing to integers) becomes 

extremely non-monotonic. This represents more a numerological curiosity than a practical 

problem, because such extreme weights (the near-equivalent of not-administering a section of the 

test) would not be used in practice.



 

 

 

 

 

 

 

CHAPTER 4 

 

THE SELECTION OF OPTIMAL WEIGHTS 

 The previous section provided a method for comparing the effects of a variety of 

weighting schemes on marginal reliability.  The effectiveness of the weights, however, could not 

be known prior to iterating the generalized recursive algorithm.  Alternatively, rather than 

relying on comparisons of marginal reliabilities, it would be useful to provide an analytic method 

which computed optimal weights directly from the item parameters.  Such a method would select 

the optimal weights prior to using the generalized recursive algorithm to compute scale scores 

from weighted summed scores.  

Discimination Parameters as Weights 

 In IRT models, the item discrimination parameter estimates serves as an implicit weight 

(Birnbaum, 1968). Because of the association between discrimination parameters and reliability, 

it may be expected that an optimal set of weights would parallel the item discrimination 

parameters. 

 If optimal weights are best represented by differences in discrimination parameters 

between test sections, then for a test comprised of two sections, it might be expected that the 

ratio between weights for the sections would be related to the ratio between discrimination 

parameters.  To investigate the potential relationship between weights and discrimination 

parameters, the generalized recursive algorithm was used to compute optimal reliabilities for a 

test with two sections containing binary items fit with 1PL models.  The models had identically 

spaced threshold parameters, but the discrimination parameters for the first section were 1.5 
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times greater than for the second section (see Table 9). Because the ratio of the slopes (3.0 and 

2.0) corresponds to the ratio of 0.6 and 0.4, if discrimination parameters best reflect optimal 

weights, one would expect the best set of weights to be 0.6 and 0.4. 

Table 9. IRT parameters for two 1PL test sections  

with unequal discrimination parameters 

Item a b1 

Section A 

MC1 3.0 -0.50 

MC2 3.0 -0.25 

MC3 3.0  0.25 

MC4 3.0  0.50 

Section B 

MC1 2.0 -0.50 

MC2 2.0 -0.25 

MC3 2.0  0.25 

MC4 2.0  0.50 

 

After computing the marginal reliabilities across a range of weights using the generalized 

recursive algorithm, the optimal weights for this test were 0.6 and 0.4, which is in agreement 

with the difference in the magntidue of the slopes and supports the rationale of using differences 

in slopes to aid in selecting the best weights. 

 While the previous example suggests weighting test sections based on differences in the 

magnitude of discrimination parameters, the IRT models used in the example were identical 

(1PL and 1PL). To consider IRT model-specific effects, in the next example, four binary items 

were fit with a 1PL model and two polytomous response items (with response categories 0, 1, 2) 

were fit with a GRM (see Table 10).  Notably, the discrimination parameters for these models 

were identical, and the threshold parameters were selected to provide nearly equal locations of 

information for both models.  Given that 1PL and 2PL models are special cases of the GRM for 



 

42 

 

binary items (Thissen & Steinberg, 1986), and based on findings from the previous example, it 

might be expected that that the optimal weights for these models would be equal. 

Table 10. IRT parameters for test sections with  

1PL and GRM items with equal discrimination parameters 

Item a b1 b2 

MC1 2.0 -0.50  

MC2 2.0 -0.25  

MC3 2.0  0.25  

MC4 2.0  0.50  

CR1 2.0 -0.50  0.00 

CR2 2.0  0.00  0.50 

 

However, after iterating the extendend recursive algorithm, the optimal weights for this test are 

0.65 and 0.35, for the MC and CR sections, respectively. This indicates that the MC section 

should be weighted nearly twice as much as the CR section.  A potential explanation for this 

result is that, though item discrimination was equal for both sections, the amount of test 

information was greater for the 1PL items (see Figure 12). 
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Figure 12. Test information for 1PL and GRM items 

 

Figure 12 illustrates that while the discrimination parameters were equal for these items, test 

information was greater for the 1PL items, indicating that, in general, optimal weights are not a 

simple function of discrimination parameters. 

Weighting Based on Test Information 

 To understand the relationships among weights, test information and marginal reliability, 

selecting weighting schemes based on test information was investigated.  Findings from the 

previous example suggest that marginal reliability may improve when the weights reflect 

differences in test section information.  However, as an added complication, unlike CTT where 

Cronbach’s alpha assumes that all scores have the same standardard error, IRT scale scores vary 

in precision along θ, and thus no single statistic can exactly reflect the cumulative amount of 

information from a set of items.   
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To provide a summary estimate of the overall information for a set of items, average 

information, weighted by the populatoin distribution, was computed: 

                                                               ( ) ( ) ,iI I dθ φ θ θ≈∑                                                         15 

where average information ( I ) is approximately the integral of the product of test information 

and the population distribution, which is equivalent to multiplying test information by the normal 

distribution at each point on the θ, and taking the sum.  This procedure weights test sections with 

information located near the center of the distribution and penalizes sections where the 

information is located near the tails of the distribution.  After computing average information for 

each section, the weights for a test with two sections may be obtained using the following: 
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where WA and WB are weights that have been rescaled from the proportion of average 

information for Sections A and B.  Because the average information-based weights are on a 

metric which sums to 1.0, they are comparable to the values used to weight test sections.  If 

optimal weights can be computed based on the magnitude and location of information, then Eq. 

16 should provide a set of weights using average test information which are equal to the optimal 

weights determined by the extended recursive algorithm. 

 To consider the efficacy of using average information as a method to analytically obtain 

optimal weights, in the next example, two sections comprising eight binary items were fit with 

1PL models.  While the location of information was the same for each section, the 1PL items in 
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the first section generated more information than the 1PL items in the second section (see Table 

11 and graphically in Figure 13). 

Table 11. IRT parameters for two test sections with  

1 PL items with unequal test information 

Item a b1 

Section A  

MC1 3.0 -0.50 

MC2 3.0 -0.25 

MC3 3.0  0.25 

MC4 3.0  0.50 

Section B  

MC1 2.0 -0.50 

MC2 2.0 -0.25 

MC3 2.0  0.25 

MC4 2.0  0.50 

 

 

 

Figure 13. Two test information functions that are similar  

in location but dissimilar in magnitude. 
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The average information for the first and second 1PL sections was 3.899 and 2.313, 

respectively.  Using Eqs. 16, the average information for these sections suggests weights of 0.63 

and 0.37. After iterating the generalized recursive algorithm, the optimal weights, 0.60 and 0.40, 

closely reflect the weights obtained using average information. 

 Given the potential utility of average information in selecting optimal weights, next, 

rather than changing the magnitude of information, the location of information for the first set of 

items was shifted 2.5 standard deviations to the right for each 1PL item (see Table 12 and 

graphically in Figure 14).  While the magnitude of information is greater for the first section, the 

location of information for that set of items is higher on the θ scale. 

Table 12. IRT parameters for test sections with 1PL items  

with unequal test information and unequal location 

Item a b1 

Section A  

MC1 3.0 2.00 

MC2 3.0 2.25 

MC3 3.0  2.75 

MC4 3.0  3.00 

Section B  

MC1 2.0 -0.50 

MC2 2.0 -0.25 

MC3 2.0  0.25 

MC4 2.0  0.50 
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Figure 14. Two test information functions that are  

dissimilar in location and magnitude. 

 

For these sections, average information suggests weights of 0.18 and 0.82, for the first 

and second sections, respectively.  However, the generalized recursive algorithm indicates that 

optimal reliability occurs when the section weights are equal (or nearly so) (i.e., 0.45/0.55, 

0.50/0.50, and 0.55/0.45).  In a sense, the greater magnitude of information in the first section is 

counter-balanced by its offset location, resulting in optimal weights that are unit-weights. While 

average information accounts for a shift in the location of test precision, it seems that multiplying 

by the population distribution may over-penalize models for which the majority of information 

occurs away from the center of the distribution. 

 These examples suggest that reliability is improved when weights generally reflect item 

discrimination or test section information, however, it does not appear that either of these 
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methods accurately predict optimal weights in any simple way.  Specifically, selecting weights 

based on item discrimination appears to succeed when comparing IRT models for the same 

number of response categories, but fails when comparing tests comprised of mixed item types.  

Selecting weights based on average test information is useful when the information occurs near 

the center of the distribution, however, the computation of average information devalues sections 

where the information is located in either tail of the distribution.  It may be that these procedures 

are over simplifications of known complexities regarding IRT score combinations. 

The Relation between Section and IRT-Optimal Weights 

 Thus far we have only considered weights applied to all scores on each test section.  As 

an alternative to these methods, Thissen, Nelson, and Swygert (2001, chap. 8) provide a 

technique for computing approximations of scale scores for linear combinations of component 

scores.  The method uses a somewhat different type of weight to compute approximated scale 

scores.  After computing the EAPs for the sum scores in each component, the component EAPs 

are combined by weighting each component score by that particular score’s precision.  The 

weight used is the inverse of the variance associated with each scale score computed from 

summed score: 

                                                                21/ ( | )xw xσ θ=                                                              17 

 

The inverse of the score variance serves to weight each score combination.  The intended use of 

weights in this sense is only to provide a linear combination of scale scores from separate 

components which approximate the scale scores computed from patterns of summed scores.  

However, as a byproduct of this method, the weights provide additional information regarding 

the precision of component score combinations.  The ratio between the weights for each 

component score indicates, over a range of scores, where a particular component provides the 
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most precise score estimates. It is important to note that their weights vary across scores within 

sections. 

 Optimal weights, as previosly described in chapter 3, are simplifications and 

approximations to the IRT score-specific weights used in chapter 8 of Test Scoring.  Thissen et 

al. (2001, chap. 8) note that no single combination of weights (i.e., constant weights) will be best 

because score-specific weights may vary greatly across scores.  However, the set (or sets) of 

weights that produce optimal reliability are likely the best constant-weight approximations to the 

score-specific weights.  Score-specific weights provide information about the differences in 

score precision for each possible component score combination, while optimal weights provide a 

single summary value for all possible score combinations.  

 What remains are two general approaches for weighting in IRT.  The procedures 

described here provide a technique for the analysis of a variety of test section weights from an 

IRT perspective, while Chapter 8 of Test Scoring descibes score-specific weights which are 

useful in understanding differences in the precision of combinations of scores across test 

sections. Both techniques should generally agree about how test sections should best be 

weighted, though the generality of the method introduced here allows for the computation of IRT 

scale scores for tests comprising multiple test sections with any set of user-defined weights. 
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Appendix I: 

Item parameters for 98 multiple choice items 

and 4 graded response items 

CR Item a b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

1 2.27 -1.87 -1.37 -0.90 -0.47 -0.04 0.36 0.76 1.17 1.64 2.28 

2 1.39 -3.78 -2.77 -1.96 -1.30 -0.64 0.15 0.87 1.61 2.57 3.75 

3 2.14 -1.63 -1.13 -0.75 -0.40 -0.03 0.32 0.63 1.01 1.42 1.92 

4 2.36 -0.89 -0.44 -0.09  0.21  0.51 0.82 1.16 1.58 1.97 2.45 

MC Item a b g         

1 1.14 -2.63 0.21         

2 0.62 -1.35 0.21         

3 1.44 -1.72 0.27         

4 1.41  -0.30 0.11         

5 1.18 -1.71 0.18         

6 0.79 -0.80 0.19         

7 0.65 -1.66 0.17         

8 1.42 -0.59 0.13         

9 0.80 -0.96 0.13         

10 1.02 -0.64 0.10         

11 0.62 0.37 0.28         

12 0.58 -0.55 0.12         

13 1.54 -0.58 0.19         

14 0.99 0.29 0.10         

15 2.10 -0.80 0.36         

16 1.99 -0.91 0.11         

17 1.27 -0.11 0.15         

18 1.16 -0.91 0.40         

19 0.34 -0.89 0.20         

20 1.87 -0.97 0.21         

21 1.07 -0.31 0.20         

22 0.93 -0.30 0.21         

23 1.43 0.20 0.17         

24 1.79 -0.08 0.31         

25 1.91 1.20 0.30         

26 0.97 1.25 0.17         

27 1.23 1.75 0.15         

28 1.81 0.57 0.18         

29 1.75 -0.24 0.16         

30 1.62 1.12 0.13         

31 1.24 -0.68 0.12         

32 1.37 0.23 0.19         

33 0.86 1.04 0.13         

(Continued)         
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MC Item a b g         

34 0.69 -1.34 0.17         

35 1.81 1.45 0.16         

36 1.72 1.54 0.22         

37 1.66 0.97 0.25         

38 1.05 0.04 0.13         

39 1.52 1.68 0.07         

40 1.03 1.40 0.15         

41 1.46 0.91 0.11         

42 0.85 0.11 0.13         

43 1.23 0.37 0.21         

44 1.33 1.20 0.06         

45 1.72 1.34 0.12         

46 1.62 1.35 0.11         

47 1.77 0.79 0.10         

48 0.95 0.70 0.12         

49 1.38 0.10 0.18         

50 1.35 0.13 0.13         

51 1.44 -1.28 0.16         

52 2.07 0.27 0.28         

53 1.16 0.37 0.22         

54 1.87 0.42 0.15         

55 1.54 0.18 0.16         

56 1.02 -1.78 0.17         

57 1.30 -1.24 0.16         

58 1.83 -1.37 0.14         

59 0.84 0.37 0.23         

60 1.45 -1.24 0.31         

61 1.40 -0.03 0.16         

62 1.03 -0.26 0.15         

63 1.23 0.89 0.26         

64 0.61 -2.97 0.14         

65 1.51 -0.35 0.18         

66 1.12 -0.29 0.22         

67 1.29 0.08 0.16         

68 1.52 -0.24 0.12         

69 2.31 0.34 0.18         

70 2.59 0.40 0.18         

71 2.02 1.58 0.32         

72 1.51 -1.72 0.15         

73 1.39 -1.69 0.16         

74 1.27 -1.04 0.16         

75 1.19 -1.17 0.16         

76 1.47 -0.85 0.19         

(Continued)         
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MC Item a b g         

77 1.39 -0.73 0.10         

78 1.42 -0.05 0.08         

79 1.13 -1.53 0.17         

80 1.13 -1.25 0.15         

81 1.72 -1.85 0.11         

82 0.93 -2.27 0.15         

83 0.65 0.42 0.15         

84 0.92 -1.30 0.16         

85 1.03 -1.50 0.12         

86 1.17 -1.17 0.20         

87 1.09 0.43 0.14         

88 0.95 -1.14 0.18         

89 0.40 -0.59 0.14         

90 1.59 -1.24 0.14         

91 1.40 1.33 0.39         

92 2.09 -1.35 0.19         

93 1.22 -0.63 0.18         

94 1.29 -1.50 0.11         

95 1.18 1.51 0.07         

96 1.74 0.76 0.21         

97 1.55 -0.92 0.10         

98 1.56 -1.00 0.11         
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Appendix II: 

IRT scale scores for integer scores computed from the optimal weights  

of 98 multiple choice items and 4 graded response items 

Integer 

Score EAP SD  

Integer 

Score EAP SD 

 Integer 

Score EAP SD 

0 -3.94 0.48  37 -1.84 0.31  74 -0.26 0.21 

1 -3.89 0.48  38 -1.77 0.30  75 -0.22 0.21 

2 -3.85 0.48  39 -1.72 0.29  76 -0.19 0.21 

3 -3.81 0.48  40 -1.67 0.29  77 -0.15 0.21 

4 -3.76 0.48  41 -1.62 0.28  78 -0.11 0.21 

5 -3.71 0.48  42 -1.56 0.28  79 -0.08 0.21 

6 -3.50 0.44  43 -1.52 0.27  80 -0.05 0.21 

7 -3.59 0.48  44 -1.48 0.27  81 -0.01 0.21 

8 -3.54 0.48  45 -1.42 0.26  82 0.03 0.21 

9 -3.56 0.49  46 -1.38 0.26  83 0.06 0.21 

10 -3.48 0.48  47 -1.33 0.26  84 0.10 0.21 

11 -3.42 0.48  48 -1.29 0.25  85 0.14 0.21 

12 -3.40 0.48  49 -1.24 0.25  86 0.18 0.21 

13 -3.33 0.48  50 -1.20 0.25  87 0.21 0.20 

14 -3.26 0.48  51 -1.16 0.24  88 0.25 0.20 

15 -3.20 0.47  52 -1.11 0.24  89 0.29 0.21 

16 -3.15 0.47  53 -1.07 0.24  90 0.32 0.20 

17 -3.00 0.43  54 -1.03 0.23  91 0.36 0.20 

18 -3.01 0.46  55 -0.99 0.23  92 0.40 0.21 

19 -2.96 0.45  56 -0.94 0.23  93 0.43 0.21 

20 -2.89 0.46  57 -0.91 0.23  94 0.47 0.20 

21 -2.83 0.44  58 -0.87 0.23  95 0.51 0.21 

22 -2.76 0.44  59 -0.83 0.23  96 0.55 0.21 

23 -2.70 0.43  60 -0.79 0.22  97 0.58 0.21 

24 -2.65 0.43  61 -0.75 0.22  98 0.63 0.21 

25 -2.57 0.41  62 -0.71 0.22  99 0.67 0.21 

26 -2.50 0.40  63 -0.67 0.22  100 0.70 0.21 

27 -2.45 0.40  64 -0.63 0.22  101 0.74 0.21 

28 -2.35 0.37  65 -0.60 0.22  102 0.79 0.21 

29 -2.31 0.38  66 -0.56 0.22  103 0.82 0.21 

30 -2.24 0.37  67 -0.52 0.21  104 0.86 0.21 

31 -2.17 0.36  68 -0.48 0.21  105 0.91 0.21 

32 -2.12 0.35  69 -0.45 0.21  106 0.95 0.21 

33 -2.06 0.34  70 -0.41 0.21  107 0.99 0.21 

34 -2.01 0.33  71 -0.37 0.21  108 1.04 0.21 

35 -1.93 0.32  72 -0.33 0.21  109 1.08 0.22 

36 -1.89 0.32  73 -0.30 0.21  110 1.12 0.22 

(Continued) 
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Integer 

Score EAP SD 

111 1.17 0.22 

112 1.22 0.22 

113 1.27 0.22 

114 1.31 0.22 

115 1.36 0.23 

116 1.41 0.23 

117 1.46 0.23 

118 1.51 0.23 

119 1.57 0.24 

120 1.62 0.24 

121 1.68 0.24 

122 1.75 0.25 

123 1.81 0.25 

124 1.87 0.25 

125 1.94 0.26 

126 2.01 0.27 

127 2.08 0.27 

128 2.17 0.28 

129 2.25 0.29 

130 2.35 0.30 

131 2.44 0.31 

132 2.54 0.32 

133 2.67 0.34 

134 2.78 0.36 

135 2.93 0.38 

136 3.10 0.41 

137 3.30 0.44 

138 3.51 0.47 
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