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ABSTRACT
TAMARA MITTMAN: Assessing the Impact of the Urban Tree Canopy tre&@nflow
Response: An Extension of Physically Based Hydrologic Modeling touberBan
Landscape
(Under the direction of Lawrence E. Band)

This work examines the impact of land cover composition and pattern on
catchment hydrologic response in an ungauged suburban catchment in Baltimore, MD
Field data collected by the Baltimore Ecosystem Study (BES) agratee with the
Regional Hydro-Ecologic Simulation System (RHESSys) to develop modtis sfudy
catchment and a nearby reference catchment. A proxy-catchment calilbnathod is
applied to calibrate model parameters, and the Generalized Likelihood ltgerta
Estimation (GLUE) method is applied to assess model uncertainty. To examine t
impact of urban tree canopy on catchment hydrologic response, four vegetation
management scenarios are simulated. Results suggest that paramégerfitoams
forested reference catchment to an ungauged suburban catchment is viagptelyor li
urbanized catchments, and indicate that the extent of the urban tree canopy is a ke

determinant of streamflow response. Results also demonstrate the impoftanc

preserving upland as well as riparian forest in maintaining ecosysteion.
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1. Introduction

This thesis examines the impact of land cover composition and pattern on urban
hydrologic response. Though planning practice assumes a relationship betveaen ur
pattern and aquatic ecosystem function, scientific knowledge of this relapiosshi
limited (Alberti, 2005). Extensive research has documented the impacts of land cove
composition on hydrologic response and examined the mechanisms through which these
Impacts are generated, but the interaction of these mechanisms with lanpatterer
remains poorly understood. To advance our understanding of hydrologic processes and
pathways in the urban environment, this study explores the hydrologic response of a
suburban catchment in Baltimore, Maryland to different patterns of vegetation. We
integrate field data collected by the Baltimore Ecosystem Studyofoidue Long Term
Ecological Research (LTER) network established by the National Sdtenicelation,
with a distributed ecohydrologic simulation system to develop models of the study

catchment and a nearby reference catchment.

This research consists of two components. The first involves the calibration and
validation of the Regional Hydro-Ecologic Simulation System (RHES Syt
ungauged suburban catchment in Baltimore, Maryland. We apply a proxy-catchment
method to calibrate the model, calibrating model parameters for a nesebtetb

reference catchment and transferring the calibrated parameters tiodheatchment.



The second component involves the application of RHESSys to a set of vegetation
management scenarios. The impact of vegetation management on aggregated and
distributed hydrologic response is discussed. For the aggregated response,dhefimpa
land cover manipulation is compared to the uncertainty associated with parameter

estimation. Finally, the implications for watershed planning are discussed.



2. Background

a. Significance

Research has demonstrated that urban development dramatically attensecdt
hydrologic response. Urban development alters the hydrologic cycle byiragrtie
landscape with pavement and rooftops and altering soils and vegetation (Walsh 2005a,
Walsh 2005b, Endreny 2005, Riley 1998). These changes reduce infiltration and
evapotranspiration and increase runoff volumes. Urban drainage systems drapéfy t
changes by conveying all runoff to the nearest water body, producing flaghsefimes

with high peak flows.

Changes in catchment hydrologic response have generated a host of unanticipated
consequences. Among the consequences that most directly affect humangasednc
flooding, stream channel erosion, and damage to infrastructure along streams. Other
consequences include reduced groundwater recharge, increased transptutawitpol
(including sediment, nutrients, pathogens and heavy metals), and degradationaof ripari
and aquatic habitat. In the early 1970s, detention and retention basins were introduced
into the urban drainage system in an attempt to minimize damage caused by peak flows
(Endreny 2005). Studies suggest, however, that 1) basin designs often fail to provide the
intended control of peak flow, 2) even when basins mitigate peak flows at theatte sc

they may fail to mitigate them at the regional scale, and 3) becauss bhddress only



the runoff rate and not the runoff volume, they cannot prevent stream channel erosion and
the associated economic and ecological impacts (Booth and Jackson 1997, Emerson

2005, Endreny 2005, Walsh 2005b).

As the urbanization of the American landscape continues, damage to aquatic
ecosystems will likely follow. According to the USDA'’s Natural Resouneentory, the
area of developed land in the United States (defined as “large urban and builts,ip area
small built-up areas, and rural transportation land”) increased by ~48% betweemd982 a
2003 — an area approximately equal to that of the state of New York. Most of this
development occurred on land that was previously forested or farmed, and much of it
created new suburbs (Alig 2004, Brown 2005, Theobald 2005). The pace at which we
are transforming the landscape exceeds the rate of population growth. Whe@ast
of urban, suburban, or exurban land uses increased by an average of 1.6% per year
between 1980 and 2000, the population increased by an average of only 1.18% per year

(Theobald 2005).

To minimize the hydrologic and ecological impacts of urbanization, federal and
state governments have adopted new stormwater legislation, while plannengiaeers
have developed new approaches to stormwater management. At the federal level, the
1987 amendments to the Clean Water Act expanded the National Pollutant Discharge
Elimination System (NPDES) program to include discharges from municipal\stater
systems. At the state level, states from coast to coast have adoptetidegisbulating

the quantity and quality of urban stormwater. The Maryland Stormwater Act of 2007, f



instance, states as its goals the reduction of local flooding, the reductioeaof st
channel erosion, the maintenance of predevelopment hydrology (including groundwate
recharge and baseflows), the reduction of pollution, and the reduction of siltation and
sedimentation. To achieve stormwater management goals, stateit@gigtaterally
includes an associated set of standards informed by science. Becaash tese
suggested that a large proportion of stream channel erosion occurs at arvéeffect
discharge” approximately equal to the bankfull flow, most state legislegapnres the
control of runoffrates to maintain the frequency of a design flow (Doyle et al. 2002).
Because more recent research has suggested that frequent, smaller evbetsnma
important causes of channel incision than infrequent, larger events, recdatitayis
often requires the control of runofblumes as well as rates (Walsh 2005b). Other
stormwater standards vary significantly from state to state, but ofterlécbnstraints

on pollutant loads and annual recharge volumes.

A gradual transition in the principles and practice of stormwater managbasent
accompanied the changes in state and federal standards. Whereas stormwater
management was once the domain of engineers who developed centralized, “end-of-the-
pipe” facilities to control property damage from large infrequent storms, @mtrgears
the objectives of stormwater management have evolved to address a more divdrse se
impacts across a broader range of spatial and temporal scalesh(Batumbia Ministry
of Water, Land, and Air Protection, 2002). In the United States, many planning
professionals refer to this comprehensive approach as Low Impact Devetqhtig.

LID seeks to minimize the hydrologic and ecological impacts of urban deveidgm



addressing impacts at the regional and catchment scales as well as dhalsitand by
addressing flow regimes as well as peak flows. To address impacts et

scales, LID identifies and preserves sensitive areas, confiningzalbgenent to a
“development envelop” (Prince George’s County, 2000). Sensitive areas includeevariabl
source areas, riparian areas, wetlands, areas with steep slopes, anmitlaregh

permeability soils. To mimic predevelopment hydrology across a range qdifatsan

events and soil moisture conditions, LID applies distributed as well as cadral

practices that increase infiltration and evapotranspiration as well agetofhese

practices include the minimization of impervious cover, the management of urban
vegetation, and the installation of “soft-engineering” facilities sudhiaggardens,

grassed swales, and green roofs.

Though science and policy have converged on the objective of mitigating the
hydrologic impact of urban development, scientific knowledge at the scalesuoidtion
demanded by urban planning remains poorly developed. Planners operate across large
scales, developing plans for entire towns, cities and counties. While muaichdsea
examined the impacts of development at the catchment scale, research on the
effectiveness of LID techniques is largely confined to the site scad¢z(Bind Clausen,
2008). Within the boundaries of the town, city, or county, planners are expected to
develop spatially explicit plans. In contrast, scientific researcimiexag the impacts of
conventional development and the effectiveness of LID in mitigating thgseishas
generally neglected the role of spatial position and urban pattern. We seledtame ur

development intensity (suburban development) and one suggested management technique



(vegetation management) to begin to provide insight into the mechanisms through which

urban pattern affects catchment hydrologic response.

b. Review of empirical studies of urbanization impact®©n hydrology

An extensive review of the literature indicated that empirical studies oh{hect
of land cover change on urban hydrologic response generally examine land cover
composition, rather than land cover pattern, and the significance of impervious cover,
rather than the significance of vegetation type. Decades of empirieatchhave
documented relationships between the extent of impervious cover within catchneents a
various measures of stream health. Studies have noted dramatic changesegifteav
(Konrad 2001, Burns 2005, Chang 2007, Changnon 1996, Dow 2007, Jennings 2002,
Rose 2001), channel geomorphology (Hammer 1972, Doll et al 2002), pollutant loading
and timing (Griffin 1980, Shields 2006, 2008), habitat quality (Cianfrani 2006), and
biological assemblages (Klein 1979, Moore and Palmer 2005, Morley 2002, Strayer
2003, Snyder 2003) as impervious cover within catchments increases. Though earlier
research noted a minimum threshold below which ecosystem degradation wgibleegli
(Booth and Jackson 1997, Arnold and Gibbons 1996, Klein 1979), more recent research
attributes this threshold to measurement imprecision and demonstrates a continuous
decline in measures of biological integrity as % imperviousness exceed¥\&@dsh et al
2005a, Booth et al. 2004, Booth et al 2002, Moore and Palmer 2005, Karr and Chu 2000,

May and Horner 2000, Booth et,&001).



While several empirical studies have documented improvements in stream health
as percent forest cover within urbanized catchments increases, we found reo studie
examining the impact of vegetation type on catchment hydrologic respenies. classic
analysis of the relationships between stream channel enlargement and land cove
urbanized watersheds, Hammer found land in forest to have a negative relationship to
channel enlargement (1972). Research relating forest and impervious covastwese
of stream biotic integrity has consistently demonstrated that both land coxers a
important predictors of stream health, observing measures of biotic integntréase
with forest cover and decrease with impervious cover (Goetz and Fiske 2008e Carlis
and Meador 2007, Strayer 2003, Steedman 1988). In his study of 10 catchments in
southern Ontario, Steedman not only found basin Index of Biotic Integrity (I&i¢sto
be directly related to forest cover and inversely related to urban land cover, but noted a
greater impact on biotic integrity per increment change in forest coverhdpex that
the present study will elaborate upon this research to provide insight into the rddarof ur

grasses as well as trees in shaping catchment hydrologic response.

Previous research indicates that the mechanisms through which changes in la
cover degrade stream health are largely driven by changes in catt¢tytienibgy.
Removal of upland and riparian vegetation and addition of impervious cover and
drainage systems transform land-water linkages, reducing interception,
evapotranspiration, infiltration, and groundwater recharge, and increasing volumes and
rates of surface flow. These shifts lead to less stable flow regimeslasaced delivery

of pollutants; simplification of stream channels and reduction in water queaidy;



ultimately, reduced biologic integrity (Moore Palmer 2005, Allan 2004, Snyder.2003)
Again while several empirical studies have addressed the impact of urbas éores
catchment hydrologic processes, none have explicitly addressed the ietgiact of

different types of vegetation.

In recent years, interest has increased in the impact of land coven padterell
as extent, on hydrologic and ecosystem response (Alberti 2005, King 2005). Recent
research into the effects of urbanization on aquatic ecosystem function haseskami
several components of landscape pattern, including: 1) the connectivity of impervious
cover to stream channels, 2) the composition of land cover within the riparian corridor,
3) the distance of land covers from the stream channel, and 4) the size of land cover
patches. The most extensively studied components to date are the connectivity of
impervious cover and the composition of riparian land cover. Empirical studies of the
relationships between catchment physical characteristics and variosisreseaf
ecosystem function have consistently found that ecosystem function is bettereprby
the extent of connected impervious cover than by the extent of all impervious cover
(Newall and Walsh 2005, Taylor et al 2004, Hatt et al 2004, Hammer 1972). Laboratory
simulations of rainfall on various arrangements of pervious and impervious suntaee
also shown impervious connectivity to have a significant impact on runoff volume
(Pappas 2008, Shuster 2008). In the experiments of Pappas and Shuster (2008), upslope
impervious cover initially produced less runoff than downslope impervious cover, but
this difference was observed to narrow or even reverse with continued rairdafpitedd

these and other recent advances, however, scientific understanding of the mexhanism



through which spatial arrangement shapes the impact of land cover changeremai

limited.

Extensive scientific research has also accumulated on the impact ofrriparia
forests on ecosystem function. In constructing empirical models of shieim
integrity, many researchers have examined the relative predictive poeschiment-
wide versus riparian land covers. Their conclusions are inconsistent. Severa author
have found that riparian land cover is a significant predictor of in-stream Haltitabt
fish biological assemblages, suggesting that alterations in flow regime antiaeslirc
water quality overwhelm the capacity of riparian vegetation to maintain bealogi
integrity (Snyder 2003, Strayer 2003). In contrast, other authors have found that riparia
forests protect invertebrate diversity even in catchments with substabialization

(Carlisle and Meador 2007, Moore and Palmer 2005, Steedman 1988).

Research has only recently become available on the impact of landscape position
and land cover aggregation on aquatic ecosystem function. Perhaps the earliest study t
assess the impact of landscape position was Hammer's classic aobtyssnel
enlargement (1972). Based on his analysis of 72 small catchments near PhilaBélphia
Hammer found significant interactions between the impact of impervious development
channel size, topographic characteristics of the catchment, and the location gfaoger
development within the catchment. Hammer observed the distance of impervious cover
from the stream channel to have a significant influence on channel enlargemdent, a

found this influence to be highly dependent on slope. Subsequent studies based on

10



empirical models have stated their conclusions in less certain terms. Bgt(2RD5)

and Goetz and Fiske (2008) included distance-weighted variables in their asgesgme
land cover variables as predictors of stream biotic integrity. Kingfetiatl that

weighting of developed land by distance from the sampling station provided better
predictions of biotic integrity than land cover percentages alone. Goetz &addtiad

that weighting of land covers by distance from the stream increased peofigmance,

but noted that the distance weighting scheme that was most effective eddgeatcover
density and distance from the stream. Alberti et al (2007) applied landscégyeco
metrics to examine the impact of land cover pattern on stream biotic integhigyr

research found that mean patch size of impervious areas and mean patch sezteaf for
areas explained much of the variability in stream biotic integrity, bug a@highly
correlated with the amount of impervious area that no conclusions could be drawn. Some
empirical studies have found that the explanatory power of land cover compaosition
variables declines in smaller catchments, suggesting that the spatigesment of land
covers becomes more important at smaller scales (King 2005, Strayer 2003). Whereas
significant research has examined the mechanisms through which the connettivity
impervious cover and the composition of riparian land cover impact stream heddth, litt
is known about the mechanisms through which landscape position of different land

covers impact stream health.

c. Review of modeling studies of urbanization impacten hydrology

Modeling studies of the impact of urbanization on catchment hydrologic

response extend knowledge acquired through empirical research by: 1)ipgetiet

11



impacts of future urban development on hydrologic response, and 2) providing insight
into the mechanisms through which development impacts hydrologic response. In the
first case, empirical research is difficult if not impossible becaussunements (either

of the pre-developed past or developed future) are often unavailable, while in the
second case empirical research is possible, but so many measurements would be
required to properly account for spatial and temporal heterogeneity in etchm
characteristics and climate variables that empirical researomiasqrohibitively

costly and complex (Cuo et al 2008).

The structure of the hydrologic models most commonly applied to the
simulation of urban catchments has confined most research to the analysis of/lamd ¢
composition (rather than pattern) and impervious land cover (rather than \egetati
Refsgaard (1996) identified three model structures commonly applied in hydrologic
simulation: 1) empirical black box, 2) lumped conceptual, and 3) distributed physically
based. The vast majority of the modeling systems applied to the simulation of la
cover change in urban catchments belongs to the second class. Lumped conceptual
models partition catchments into hydrologically similar areas and attemgypresent
hydrological processes by calculating fluxes of water and mass tocendifese areas.
Though the entire constellation of urban hydrologic models characterized by this
structure cannot possibly be examined here, two representative examples will be
discussed to illustrate the constraints associated with this structure. |igmsd
conceptual models applied to the prediction of development impacts on catchment

hydrology are based on the Soil Conservation Service (SCS) curve number method

12



(McColl 2007, Girling and Kellet 2002, Bhaduri 2000, Choi 2003, Miller 2002, Tang
2005, Wu 2007). These models generally partition a catchment into areas with simila
land covers, assign a set of soil moisture-dependent curve numbers to each land cover
and apply the SCS equation to each land cover to estimate overland flow at each time
step. Among the many shortcomings associated with this approach (see Garen and
Moore, 2005) is the difficulty of assigning any physical meaning to the emipjiric

derived “curve numbers” (Beven 1989). Because the curve number lacks physical
meaning, it is difficult to select a curve number that reflects patteras@fcover or

vegetation processes.

Another model commonly applied to the prediction of the hydrologic impacts of
urbanization is the federally-supported HSPF simulation system (Booth et al 2002,
Brun and Band 2000). Though HSPF is more process-based than curve number
models, its structure still cannot support analysis of the impact of land cateenpar
vegetation processes. In HSPF, segments (or sub-catchments) mayredassig
pervious and impervious percentages, but the model cannot account for the
arrangement of pervious and impervious areas within sub-catchments and their
interaction (such as the re-infiltration of run-off, for example). One dtady
attempted to analyze the impact of urban vegetation in HSPF, finding that the
conversion of forest to lawn was more significant than impervious cover in detggmini
peak discharge increases from exurban catchments (Booth et al 2002). Other

researchers, however, suggest that the representation of interception and

13



evapotranspiration processes in HSPF is too crude to support the analysis ofovegetat

effects (Wang et al 2008).

In recent years, researchers have begun to apply the third model structure
identified by Refsgaard — distributed physically based models — to theiaradlysban
hydrology to better characterize the variety and distribution of hydropwgaesses in
urban catchments (Easton 2007). Initial research indicates that distribusachfify
based models that include representations of impervious cover are able to reproduce
stream flow from partially urbanized catchments very well (Cuo 2008pE26107).
Research has also demonstrated the potential of distributed models of urbanized
catchments to examine the hydrologic impacts of land cover pattern and drainage
network configuration. Easton et al (2007) found that the pattern of impervious cover
in an urban catchment in upstate New York shaped the distribution of soil moisture and
runoff production. Tague and Pohl-Costello (2008) found that drainage network
configuration may interact with antecedent soil moisture condition in sénitdran
catchments to determine streamflow response to precipitation events. To dat&eon|
research effort has explicitly addressed the role of vegetation in d@tegrarban
hydrologic response. Wang et al (2008) have developed a semi-distributezhiysi
based model to examine the impact of urban trees on urban hydrologic response.
Preliminary research suggests that the model performs well, and the¢mi@n and

evapotranspiration play significant roles in the urban water balance.
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While empirical research on urbanized catchments suggests that both land cover
composition and land cover pattern are significant determinants of aquatisteaosy
function, it has not identified the mechanisms through which urban pattern shapes
urban hydrologic process. Lumped conceptual models of urban catchments have also
provided little insight into the role of urban pattern. Research suggests, however, that
distributed physically based models of urbanized catchments have great ptiential
advance our understanding of the effects of land cover pattern on hydrologic response.
The following sections discuss three obstacles that limit the use of hydrologic

simulation models to assess the impacts of land cover change in urban catchments.

d. Model calibration in ungauged catchments

Simulation models of urban catchments are often limited by lack of a continuous
streamflow record. In the absence of measured streamflow, poorly constraideld m
parameters cannot be calibrated to reproduce observed streamflow froodthe st
catchment. Several approaches have been suggested for estimating modskeparam
the absence of data. The first is the transfer of parameters from a satclament for
which data is available to the catchment of interest. As Tague and PohlC(2Q6B)
noted, this is the basis of empirical runoff-coefficient models such as the S@GS Cur
Number method. Researchers have cautioned, however, that storm runoff proagsses va
significantly from one catchment to another, particularly with changes inteliona
catchment physical characteristics (Pilgrim 1983). The similafistorm runoff
processes should therefore be ascertained before parameters anedchfisia one

catchment to another. A second approach is to simulate catchment responséecross t

15



range of plausible parameter values (Tague and Pohl-Costello, 2008). Model findings
can then be assessed in the context of the sensitivity of the results to modetgrarame
A third approach is to collect a limited number of streamflow measuremergboi@te

the catchment model. Studies conducted as part of the Prediction in Ungaugesd Basi
initiative (PUB) indicate that as few as 6 measurements can be\effactionstraining

prediction uncertainties (Seibert and Beven 2009).

e. Model validation for studies of land cover change

Even when streamflow records are available for urban catchments, simulation of
the effects of future change is limited by the problem of model validation g&tsand
Henriksen (2004) describe model calibration as the adjustment of parametetwalues
reproduce observations, and model validation as the demonstration that the calibrated
model performs welln a context consistent with its intended application. In recent
years, many hydrologists have discussed the importance of selectawivalitests that
demonstrate a model’s fitness for its intended purpose (Refsgaard 2004, Ewen 1996,
Klemes 1986). According to this view of model validation, when the intended
application of a model is the prediction of the effects of land cover change, model
validation must show that the model can accurately predict hydrologic response f
different land covers. Klemes (1986) proposed that the most appropriate test for this
model application is the differential split-sample test. Differengbi-sample tests
involve the calibration of a model for data collected before a catchment changedccur
adjustment of model parameters to reflect that change, and the validation of the model

based on data collected after the change occurred. Because measuaeensgitiom
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available before and after land cover change occurs, this test is oftenibigotmss
implement. Ewen et al (1996) suggested that another appropriate test for a model
intended to predict the effects of land cover change is the proxy-catchniemrmsy-
catchment tests involve calibration of a model for one catchment, adjustment of model
parameters to reflect a second catchment, and validation of the model for the second

catchment.

f. Model uncertainty

All model predictions are limited by uncertainty derived from many sources
including: model structural error, errors in model input data, errors in outpublearia
measurements, uncertainty in parameter values, and uncertainty in initidicmemdOne
technique for quantifying model predictive uncertainty frequently employed in
environmental simulation modeling is the generalized likelihood uncertaiityagisin
methodology (GLUE) developed by Beven and Binley (1992). In the GLUE
methodology, parameters sets are randomly sampled from a prior distribution of
parameter values (often a uniform distribution) and used to run the model. Model output
for each parameter set is assessed using a likelihood measure (somedtedes c
goodness-of-fit measure) that quantifies the correspondence between modébpeedi
and available observations. Parameter sets that result in likelihood meakwes be
certain threshold are designated “non-behavioral,” and the predictions of theingma
parameter sets are weighted according to the associated likelihood mé&sten.
(2001) has suggested that the GLUE technique addresses uncertainty derivex$tom

data and model errors as well as parameter uncertainty. Recenteyitictontrast, has

17



guestioned the ability of the GLUE methodology to address model uncertainty derived
from model errors, input-data errors, or output-variable measurement erroliagStet

al, 2008). Even this criticism, however, concedes that the GLUE methodology provides
insight into model sensitivity to parameter values. Though the GLUE methodslogy i
now widely recognized to be a subjective technique that generates qualitatistaintyce
bounds, it is also widely applied as a simple approach to uncertainty estimation in
nonlinear systems and is generally acknowledged to describe model sensitivity

parameter uncertainty.

18



3. Statement of Problem

Though much research has examined the impacts of urban and suburban
development on water resources, and though many planners and policy makers are eager
to mitigate these impacts, scientific knowledge that might advance polfactice is

lacking (Alberti et al 2007, Wolosoff and Endreny 2002).

One approach to mitigation that has attracted great interest is the managé
vegetation in urban and suburban areas to increase interception, evapotranspiration, and
infiltration. Though some research has addressed the impact of expanded trees canopie
on hydrologic response, none has addressed the impact of the spatial distribution of

vegetation.

Distributed, physically-based hydrologic models offer significant adwggst over
empirical and lumped-conceptual models in understanding the effects of land cover
change on catchment hydrologic response (Beven 2001). To date, however, few studies

have applied such models to urban catchments.

This thesis examines the use of an existing eco-hydrologic simulation raodel t

investigate the impact of land cover composition and pattern on urban hydrologic



response. This thesis focuses on the impact of vegetation patterns. The themes and

guestions addressed by this study are presented below:

Theme A: Application of a distributed, physically based model to an ungauged
urban catchment
e Question Al: Can calibrated soil and groundwater parameters from a
forested reference catchment be transferred to an ungauged suburban
catchment?
e Question A2: Can a distributed, physically based model accurately

reproduce streamflow from a suburban catchment?

Theme B: Prediction of the impact of land cover composition and pattern on
catchment hydrologic response.

e Question B1: What is the impact of different extents of tree cover in a
suburban catchment on aggregate catchment response? Does this impact
exceed the uncertainty generated by parameter uncertainty?

e Question B2: What is the impact of different patterns of tree cover in a
suburban catchment on aggregate catchment response? Does this impact
exceed the uncertainty generated by parameter uncertainty?

e Question B3: What is the impact of different patterns of tree cover in a

suburban catchment on distributed catchment response?
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4. Study Area Description

a. Topography

Pond Branch (PB) and Baisman Run 3 (BR3) are sub-catchments of the
extensively studied Baisman Run catchment in the Piedmont region of Marylgace(F
4.1). Pond Branch is a 0.31 keatchment with elevations ranging from 190 m along the
northwestern crest to 130 m at the outlet to the south (Figure 4.2). Gentle upland slopes
and steep side slopes drain to a broad riparian area containing a perennial headwater
stream. The stream channel is relatively narrow, and is confined in placedrbgkoe
Baisman Run 3 is a 0.69 Kwatchment with elevations ranging from 200 m along the
southwestern crest to 130 m at the outlet to the northeast (Figure 4.2). Side slopes are
gentler than those in Pond Branch but also drain to a broad riparian area containing a
perennial headwater stream. Towards the outlet the stream channel becosedsaimdi

widened.

b. Soils

Both catchments are underlain by micaceous schist, with occasional bedrock
outcrops occurring along the stream channels and on steeper slopes (Cleaves 1970).
The NRCS SSURGO database assigns the soils in the Pond Branch and Baisman Run 3
catchments to 5 soil series: Baile silt loam, Codorus silt loam, Elioakasilit,IGlenelg

loam, and Manor loam. According to SSURGO soils are very deep and saturated



hydraulic conductivity is moderate to very high. Field surveys demonstrate, however
that the low resolution SSURGO data masks significant variability. Uplatsdase

deep and underlain by thick saprolite; midslope soils are extremely shalldw; a
bottomland soils are deep with a substantial organic layer (Tague and Band 2004,

Wolman 1987, Cleaves 1970).

c. Vegetation and Land Cover

Land cover in Pond Branch consists almost entirely of forest, except fors3oéicre
grasses along a gas pipeline. The forest is composed mostly of hardwoods inclyaing tuli
poplar Ciriodendron tulipifera), chestnut oakQuercus prinus), blackjack oakQuercus
marilandica), white oak Quercus alba), red oak Quercusrubra), pin oak Quercus
palustris), red mapleAcer rubrum), box elder, Acer negundo), American beechHagus
grandifolia), dogwood Cornusflorida), and others (personal communication, Oregon
Ridge State Park, Wolman 1987, Brush et al 1980). Land cover in Baisman Run 3 was
obtained from a 5 m land cover classification map generated by Zhou and Troy (2006).
Based on GIS analysis described further below, land cover was determined toafonsist
45 ha of forest in the eastern portion of the catchment (65.3% of the catchment area), 5
ha of impervious cover in the western portion of the catchment (7.3% of the catchment
area), and 19 ha of lawn distributed throughout the catchment ( 27.3% of the catchment

area)(Figure 4.3).

d. Climate and Precipitation
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Climate in the Baltimore region is characteristic of mid-latitude,igental
climates. Temperature varies markedly with the season, with a mearn @nmoerature
of 14°C. Precipitation is distributed uniformly throughout the year and averages 50 - 100
mm per month, except for a late spring and summer maximum of 100 — 140 mm. Mean
annual precipitation is ~1066 mm (data collected at Baltimore Washington trdgeaha
Airport (BWI) from 1971 — 2000) (Maryland State Climate Office). For wegdars
2000 through 2007, mean annual streamflow from PB and BR3 accounted for less than
40% of mean annual precipitation at BWI. Mean annual precipitation recorded at BWI
was 1104 mm, while the observed annual discharge was 417 mm from PB, and the

estimated annual discharge was 438 mm from BR3.
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5. The Regional Hydro-Ecological Simulation System

(RHESSYys)

The Regional Hydro-Ecological Simulation System (RHESSys) is a kpatia
distributed, GIS based model that represents both hydrologic and ecologic ggdoess
simulate the fluxes of water, carbon, and nutrients within a catchment (adletaile
description is provided by Tague and Band, 2004). According to data availability and
computing constraints, the model may be run on hourly to daily time steps. Model inputs
consist of climate time series characterizing the vertical fluxesatdnand energy, and
GIS layers characterizing the catchment physical charactetiséicdetermine catchment
processing of mass and energy, including topography, soils, vegetation, and impervious
cover. Because RHESSys simulates both hydrologic and vegetation procdsises
spatial context, it is well suited to the modeling of suburban catchments withad mi
natural and engineered drainage components. Below is a brief review of the model

processes relevant to land cover change in suburban catchments:

a. Interception
Canopy interception (CI) is calculated as a function of rainfall depth (RPp),
fraction (GF), plant area index (PAI), specific rain capacity,{p and current

interception storage) as follows:



Cl = max{0.0, min[(1 — GF)RT, PAlGg, - 9]} Q)

When precipitation occurs, interception by the vegetation canopy may be limited by
either the depth of precipitation ((1-GF)RT), or the remaining canopygstoapacity
(PAlcpain - 6)). Note that in modeling interception, RHESSys considers both the spatial
and temporal variability of gap fraction and canopy storage capacity. In the spat
domain, these parameters vary with plant assemblage across the catclimhent, the

temporal domain these parameters vary with the season.

b. Evapotranspiration

Evapotranspiration rates (ET) are computed using the standard PenmantMonteit
equation with a Jarvis-based model of canopy stomatal conductance (Jarvis 1976). The
Penman-Monteith method is a “big leaf” model that estimates evapotrammspliated
on the available energy, the vapor pressure deficit at some reference dnsigivto
conductance coefficients: the canopy conductance, and the boundary layer conductance.
The canopy conductance is the product of the leaf area and the stomatal coedubtanc
account for the environmental and physiological controls on conductance, Jarvis-type
models estimate stomatal conductance as the product of a theoretical maximum
conductance and a series of functions of environmental factors ranging froml@ — 1.
RHESSYys, the environmental factors included in the model of stomatal condwatance
light, atmospheric Cg) leaf area index, vapor pressure deficit, and leaf water potential
(which is itself a function of rooting zone percent saturation). The canopy conductance
term thus accounts for the dependence of actual ET on vegetation type, season, and soill

moisture conditions. Through this term, RHESSys can account for the spatial iariabil
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in ET as vegetation and soil moisture characteristics vary across thmeatand the

temporal variability in ET as environmental conditions vary across the seasons.

c. Vegetation Growth

RHESSys may be run in either a dynamic growth mode or a static mode. In the
dynamic growth mode, allocation of net photosynthesis among the various vegetation
components is explicitly simulated, and vegetation structure changesdeortoyyear in
response to the availability of carbon and nitrogen as well as environmentalarditi
In the static growth mode, in contrast, vegetation structure is prescribed bgdbkEm
and does not change from year to year. To describe the vegetation structure, tae mode
must define the maximum leaf area index (LAI) and rooting depth. In both “shaiilc”
“dynamic growth” mode RHESSys simulates the seasonal growth arsteane of
vegetation. Leaf on and leaf off are simulated according to the timing defined by th
modeler. Thus both growth modes can account for the temporal variability in vegetation
processes. Because the present research was more interested inollogibydpact of
vegetation than the associated biogeochemical fluxes of carbon and nutrients, we

implemented the static mode.

d. Infiltration

RHESSys considers the effect of antecedent soil moisture, rainfallitpemsl
impervious cover on rates of infiltration. Infiltration is computed using the widely
applied Philip equation. This equation determines infiltration as a function of kainfal

intensity, time to ponding, sorptivity, and saturated hydraulic conductivity atetimgy
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front. A key feature of RHESSys in the urban context is its ability to repirése
restriction of infiltration by impervious cover. Wherever impervious cover octhes

catchment surface is assigned a vertical hydraulic conductivity of zero.

e. Surface and subsurface flows

As discussed in Tague and Band (2004), two algorithms are provided for the
simulation of lateral fluxes of water: a TOPMODEL algorithm adapted BB@ven and
Kirkby (1979) and an explicit routing algorithm adapted from DHSVM (Wigmos#h et
1994). The TOPMODEL algorithm calculates a topographic index for each landscape
patch, and assumes that all patches with the same value of the topographichiagex be
in a hydrologically similar way. Based on this assumption, soil moisturécidatad for
each value of the topographic index, rather than each patch within the catchment, and the
results mapped onto the catchment. TOPMODEL assumptions also allow the icaiculat
of subsurface flows based on the average saturation deficit, and the calculatidacef sur

flows based on the extent of saturated source areas.

The explicit routing algorithm, in contrast, attempts to represent the ftbe/pé
water as well as the distribution of hydrologic response. Surface and subslafecare
calculated from each patch to all of its downslope neighbors. Subsurface flows are

calculated based on the local hydraulic gradient, hydraulic transmissindyflow width:

d(t)ab= Tr(t)a, tarBaman (2)

where q(t}) » is the saturated throughflow from patch a to patch b, Liétthe

transmissivity from patch a to patch b,figgis the local slope, and, pis the flow width
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between patches a and b. For non-road patches, surface flows follow the same patch
topology as subsurface flows, and are assumed to exit the catchment within @reggle
step unless re-infiltrated in a downslope patch. The routing of surface flowsdaoim
patches is intended to represent the presence of road drainage and storm draks.networ
If no storm sewer network is defined, surface flow from road patches is routed to the
nearest downslope stream patches as described above. In contrast, if a séorm sew
network is defined, surface flow from road patches is routed to the appropriate storm

sewer outlet.

In the urban context, the explicit routing algorithm offers several adyemta
over the TOPMODEL algorithm. First, soil moisture patterns reflect gtakition of
vegetation and evapotranspiration, as well as topographic position. Second, overland flow
may be re-infiltrated in downslope patches. And third, surface flowpathst téec
presence of road drainage and storm drain networks. This research therefore

implemented the explicit routing algorithm to compute lateral fluxes ofrwate

It should be noted that two algorithms are also provided for the representation of
soil hydraulic conductivity profiles: one in which soil depth is infinite and atdr
hydraulic conductivity declines exponentially with depth, and one in which soil depth is
finite and saturated hydraulic conductivity is constant with depth. Because fiel
measurements in the study catchments suggested constant saturateecchydraul
conductivity with depth, this research implemented the second representation of soil

structure (Tague personal communication).
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f. Deep groundwater flows

The most recent version of RHESSys also includes a simple representation of
deep groundwater flows. Inflows to the deep groundwater store are cal@dade
constant fraction of precipitation, while outflows from the deep groundwater séore a

calculated as a linear function of the volume of water stored.
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6. Datasets

Data required to conduct the catchment simulations included climate time serie
of minimum and maximum temperature and precipitation; GIS layers desgribi
catchment topography, land use, land cover, vegetation characteristics, impervious
surface, and soils; default files describing soil and vegetation propertikestraamflow
time series for calibration and validation. As stated in the introduction, much of ghe dat
for the present study was collected in the last decade as part of the Baloosystem
Study (BES) — one of twenty four Long Term Ecological Research (LPEdects

funded by the National Science Foundation (NSF).

a. Climate time series

Climate data were obtained from the National Climatic Data Center (N@BdC
the LTER Climate and Hydrology Database. Daily temperatures recatdgaltimore
Washington International airport (~35 km south of the study catchments) were obtained
from the NCDC, while daily precipitation depths recorded at McDonough School (~10
km south of the study catchments) were obtained from the LTER. Precipitation aepths
McDonough School were measured with a tipping bucket gauge, and were aveliable f
5/2000 to 12/2001 and from 1/2003 to the present. Though precipitation was available at
resolutions as fine as 15 min, data was aggregated to the daily scale fadaaishe

Although a tipping bucket gauge was installed nearer to the study catchmerggam O



Ridge State Park (within 1 km of Baisman Run), the gauge was infrequentlameaht

and data from the gauge was deemed unreliable during the time domain of the
simulations. It is expected that the distance between the McDonough gauge andythe stud
catchments may introduce some error into the model, particularly for summectazve

storms.

b. GIS datasets

GIS layers describing catchment physical characteristics waweddérom 2
datasets provided by the BES. Layers describing catchment topograghgtesiged
from a 1 m LIDAR dataset provided by the BES, while layers describingroatt land
use, land cover, and vegetation characteristics were derived from a 5 m land cover
classification map generated by Zhou and Troy (2006). Zhou and Troy conductde obje
oriented analysis of digital aerial imagery and LIDAR data to clasaify tover in the
study catchments into 4 distinct classes: building, pavement, fine texturedtioegatiad
coarse textured vegetation. The generation of RHESSys input maps from these GIS

layers is described further below.

c. Default files

RHESSys requires the modeler to provide a series of files defining theadhysic
characteristics associated with each land use type, land cover type,| ayjoesokor this
research, parameter values for these files were adapted from tiregdisary of default
files available through the RHESSys 5.8 online manual. Default files for urban and

undeveloped land uses and for impervious, grass, and deciduous forest land covers were
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applied without modification. Soil default files were adapted from the librizryoir

sandy loams and modified to reflect the variability in soil properties with tapbg

position. Based on field observations, catchment soils were classified inss8scla

riparian, midslope, and upland. Riparian soils were assigned a soil depth of 8 m, soill
porosity of 0.485, and pore size index of 0.589; midslope soils were assigned a soil depth
of 1 m, soil porosity of 0.485, and pore size index of 0.189; and upland soils were
assigned a soil depth of 15 m, soil porosity of 0.435, and pore size index of 0.204

following Law (2004).

d. Streamflow time series

Time series of mean daily discharge were obtained from the US Geological
Survey (USGS). Daily discharge from PB was obtained from USGS gauge number
01583570, located at the outlet of Pond Branch. Though no stream gauge was available
at the outlet of BR3, USGS gauge number 01583580 was available at the outlet of
Baisman Run. Because land cover in BR3 resembles land cover in Baisman Run more
closely than land cover in Pond Branch, daily discharge from BR3 was estimsgeld ba
on the USGS gauge located at the outlet of Baisman Run. Mean daily discharge from
both gauges was available from November 1999 to 2008. Estimates of discharge from
BR3 were based on synoptic samples of instantaneous volumetric dischargedcatlecte
the outlet of BR3. Figure 4.4 shows the location of the USGS stream gauges and

synoptic sample site.
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Daily discharge from BR3 was estimated based on the regression of synoptic
samples taken at the outlet against USGS data for BR. Twenty four synopilesaim
discharge from BR3 were collected between July 2001 — January 2003 and August 2006
— October 2007. Corresponding flows from BR were obtained from the USGS database,
and discharges from the two locations were plotted against one another (Figure 4.5).
Though the measurements at larger discharges suggest that the datastilgat b
characterized by a power function, the number of samples was considered inadequate t
determine the power function coefficients, and a linear relationship was assiumeszat.
regression was performed on the thirteen synoptic samples collected between @d2001 a
1/2003 measuring discharges of less than 5%8ay (or 0.80 mm/day). The slope of the
best fit line between volumetric discharge from BR3 and BR was 0.21, a figure quite
close to the ratio of catchment areas (0.18). It is therefore probablettmaites of
discharge from BR3 are more accurate for low and moderate flows thantdiaug,

and may underestimate high flows.

Hydrologic simulation models are often limited by the accuracy of dlaila
measurements of output variables. In the present study, two limitations ocuhacsc
of the streamflow time series should be noted. The first is the accuracy of the Pond
Branch gauge. Because of the tendency for low flows at Pond Branch to bypass the
(soil pipes are periodically excavated in the stream bank on one side, allowing%ofti
flows to circumvent the weir) and for very high flows to overtop or bypass the weir, the
Pond Branch gauge produces records of limited accuracy and is rated “fdie’ UpGS.

The second is the first order approximation of discharge from BR3. Because so fe
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measurements at high flows were available, the linear relationship abseiteev flows
was assumed to characterize high flows as well. Several synoptic satrgesewhat
higher flows, however, suggest that the relationship between discharge R®m@nd
discharge from BR might be better approximated by a power function. It isdeech
this severe limitation to the accuracy of our estimates of streamflowBR8that a
proxy-catchment approach is applied to calibrate the model for BR3. Though
measurements of very high flows from PB are also of limited accuracy rtnerethe
PB record is believed to be less than the error we would generate by apfiraxena

power function with a best-fit-line.
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7. Methods

a. Spatial Data Processing

Extensive processing was conducted to translate the GIS datasets described above
into the landscape and flowpath representations required by RHESSys. Spatial data
processing used 3 programs: the Terrain Analysis System (TAS), EEMbAr and the
RHESSys utility CREATE_FLOWPATHS. Prior to all processing desdrlimow, the
source datasets were resampled to 10 m resolution. This aggregation was required to
reduce the quantity of computational units to a number that would not exceed dedicated

computational resources.

I. Catchment Delineation

For both catchments, we first coarsened the 1 m LIDAR dataset described above
to a 10 m digital elevation model (DEM), then used TAS to derive the catchment
boundaries, stream channels, and hillslope boundaries. Though a detailed map of stream
channels was available from Baltimore County, we derived the channel netamorkhe
DEM for model consistency. Stream channels were derived using the Ot@allagd
Mark (1984) method, a global sequential algorithm which classifies cellsagvej to
the stream network if their specific contributing area exceeds a cénteghold and if
the stream segment of which they are a part exceeds a certain lerigthof Paesholds

were systematically tested to produce channel networks that most resdmltbdrinels



mapped by the county. The best approximations were derived with a specific

contributing area threshold of 45¢,rand a stream length threshold of 180 m. Figure 4.6
shows derived catchment boundaries and stream networks, along with the stream
channels mapped by the county. TAS was also used to derive hillslope boundaries based
on the DEM and derived channel networks. Delineation generated three hillslopes for

PB, and twenty hillslopes for BR3. Derived hillslope boundaries are shown in Figure 4.7.

ii. Catchment Topography and Soils

To generate a landscape representation for each catchment, RHESSgsl requir
maps of catchment slope, aspect, and wetness index, as well as elevation. Functions
provided by TAS were used to generate each of these layers from the 10 m DEM. As
noted in the descriptions of the study area and default files, soils in both catchments a
observed to vary significantly with topography. Because the soil coveragedgutdwi
SSURGO were of insufficiently fine resolution to represent the variationdfiroagnt
soils with topography, catchment topographic layers were processed to prodwgre a lay
describing the distribution of soil types. A simple conceptual model was condttocte
classify catchment soils into 3 classes: riparian, midslope, and upslope. rfRgualsa
were predicted to occur in areas of low slope within a small distance dfébhes
channel, while upland soils were predicted to occur in areas of low slope beyond a small
distance from the stream channel, and midslope soils were predicted to occotherall
areas. To translate this conceptual model into a representation of catchment soil
distributions, cells with slope less than 8% occurring within 20 m of the stream thanne

were classified as riparian, cells with slope less than 5% occurriogté@p m of the

36



stream channel were classified as upland, and all other cells weréedassimidslope
(Figure 4.8). Though approximate, the resulting classifications wereondagh

expert knowledge of the catchments.

li. Catchment Land Use and Land Cover Layers

Coverages of land use, land cover, and vegetation characteristics werd derive
from the 5 m land cover classification map provided by Zhou and Troy (2006). To
generate a coverage of land use, we reclassified building and pavemenhaandrbd
vegetation as undeveloped. Similarly, to generate a coverage of land cover we
reclassified building and pavement as impervious, fine textured vegetaticasasand
coarse textured vegetation as forest. Figure 4.3 shows the resulting raag obVer for
BR3. According to this map, land cover in BR3 consists of ~65.3% (or 45 ha) forest,
~7.3% (or 5 ha) impervious surface, and ~ 27.3% (or 18.7 ha) lawn.

To describe vegetation characteristics, RHESSys requires maps nfjroetith
and leaf area index (LAI). To generate a coverage of rooting depth, we ddsigideng
and pavement land covers a rooting depth of 0, fine-textured vegetation a rooting depth of
8 cm, and coarse-textured vegetation a rooting depth of 1 m. Because no field
measurements were available, we applied order of magnitude estinsddohaa review
of the literature. Studies report a mean rooting depth for temperate decidustsdbre
2.9 £ 0.2 m (Canadell et al.,1996), while turfgrass scientists report a typical rdefitig
for cool-season turfgrasses of 5 — 15 cm (Landschoot 2007, Lilly personal
communication). A sensitivity analysis (described further below) widisrpeed to

assess the sensitivity of model results to the rooting depth parametermefatga
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coverage of LAI, we initially assigned building and pavement a maximum LAI afié&, fi
textured vegetation a maximum LAl of 0.5, and coarse-textured vegetation mumaxi

LAl of 5. Field measurements of leaf litter in the BES permanent plots sadgesall-
sided LAI of 10, and therefore a one-sided LAl of 5. Again, because no field
measurements were available for grass LAI, we applied an order aftotigestimate
based on values published in the literature (Lazzaroto et al. 2009). Initial catibrati
results for PB and BR3 (described further below) suggested that LAkViaiuEB forest
canopy might be lower than those for BR3. These results corresponded with field
observations of the tree canopy in the 2 catchments. In Pond Branch, greatertdamage
the tree canopy was observed following Hurricane Isabel, and the overstoryhaong t
riparian corridor was observed to be poorly developed relative to the overstd®gin B
PB LAl values for coarse textured vegetation were therefore modified tordtidslope
and upland locations, and 2.5 for riparian locations. For urban catchments, RHESSys
also requires a coverage defining the extent of impervious surface. Tatgemer
coverage of impervious surface, we reclassified building and pavement as oupemd

all other land covers as pervious.

Ilv. Catchment Flowpaths

For simulations that use the explicit-routing algorithm to represent |&ietak
of water, RHESSys requires a flow table describing the topology of the flovometv
utility to produce flow tables with the appropriate format is provided on the RHESSys

website. We used this utility to generate the flow tables required by By4$ES
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b. Calibration and Validation

Calibration and validation of RHESSys to simulate land cover change in BR3 was
complicated by all three obstacles discussed in Sections 2d, 2e, and 2f. Fiesd, limi
streamflow data were available to calibrate the model. As discussed ditgove, t
availability of streamflow data for BR as well as a set of instantarstcesmflow
measurements for BR3 permitted the estimation of daily dischargeof@ BR3, but the
linear relationship developed was observed to perform poorly at higher flows. We
therefore applied the first approach to model calibration in the absence of datatgule
in Section 2d, and calibrated RHESSys for data from PB. The model was calibrated f
data from October 1, 2004 to September 30, 2005 and October 1, 2006 to September 30,
2007 (analysis of seasonal precipitation and discharge data suggested thaatoeci
data for water year 2006 was inaccurate). Five parameters weratealita parameter
describing the exponential decay of hydraulic conductivity with depth (m), tgpheul
for saturated hydraulic conductivity in the horizontal dimensiagdKa multiplier for
saturated hydraulic conductivity in the vertical directiog.{f), a parameter describing
the flux of water into the groundwater store (gwl), and a parameter desthibifigx of
water from the groundwater store to the stream (gw2). Feasible rangastHqagameter
were defined based on previous modeling experience, and parameter values wihin thes
ranges were randomly sampled to generate 4,000 parameter sets. Madelgeré
was quantified by calculating the Nash Sutcliffe efficiency for dischair¢jiee catchment
outlet (Nash and Sutcliffe 1970). Because the goals of stormwater managedress a
both peak flows and baseflows, we determined that it was important for the model to

accurately predict both peak flows and baseflows, and calculated two NasfieSutcli
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measures for each parameter set. We calculated the Nash Sutetifémeyfof Q to
measure the accuracy of peak flow predictions, and the Nash Sutclifferefficf
log(Q) to measure the accuracy of baseflow predictions. All parametdorsetsich the
Nash Sutcliffe efficiency of both Q and log(Q) were greater than 0.5designated

behavioral.

The second obstacle complicating model calibration and validation was the
absence of streamflow data collected across a change in land cover. ussetisabove,
model predictions may be regarded as reliable only when model validation has
demonstrated the model’s fitness for its intended application. For this reseadeh, m
validation must demonstrate the model’s ability to accurately predichdtoses for
different land covers. Though insufficient data was available for a diffaleplit-
sample test, sufficient data was available for a limited proxy-bastin A¢ low flows, the
linear regression of streamflow from BR3 against streamflow from BR wasvelse
produce accurate estimates of streamflow from BR3. Low flows froB\eé&te
therefore deemed sufficiently accurate for use in model validation. Calibrasedgtar
sets were transferred to BR3, and the model was run for October 1, 2004 to September
30, 2005 and October 1, 2006 to September 30, 2007. Because taking the log of Q
diminishes the weight of higher discharges and enhances the weight of lowerggischa
model performance was quantified by calculating the Nash Sutclifteeeify of log(Q).
All parameter sets for which the Nash Sutcliffe efficiency of log{@$ greater than 0.5

were designated behavioral. By calibrating model parameters wiimslogv from the
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forested Pond Branch catchment and validating model parametetswitbws from

the suburban Baisman Run 3 catchment, we achieved a limited proxy-basin test.

The third obstacle complicating model calibration and validation was the
uncertainty derived from model errors, input data errors, output variable errors, and
parameter uncertainty. This research uses the GLUE methodology to generate
uncertainty bounds for model predictions. As discussed above, the GLUE methodology
is a widely applied, though gualitative, technique for describing model sendibivity
parameter uncertainty. Beven (2001) notes that all subjective decisions made mgapplyi
the GLUE methodology should be made explicit so that the analysis can be discusse
disputed, or repeated with alternative assumptions. We therefore briefly teeiew
decisions made about the ranges for each parameter value, the sampling fetrsteg
parameter sets, and the likelihood measure developed to weight the modelgm®dicti
For this research, feasible parameter ranges were determined basedaurspredel
experience. The m parameter was allowed to range from 0.1 to 20, the lastral Ks
multiplier was allowed to range from 1 to 1000, the vertical Ksat multiplier @sel
to range from 1 to 100, the gwl parameter was allowed to range from 0.01 to 0.45, and
the gw2 parameter was allowed to range from 0.001 to 0.1. Prior distributions of all
parameter values were assumed to be uniform, and values were randomly sampled to
prepare 4,000 Monte Carlo simulations. The likelihood measures were computed based
on the Nash Sutcliffe efficiencies for streamflow from PB and BR3. Acacgitdi Beven,

“the choice of a likelihood measure should clearly be determined by the nature of the

prediction problem” (Beven 2001). Because this research is interested in peak flows and
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runoff volume, for Pond Branch the Nash Sutcliffe efficiencies of Q wereted|tar

inclusion in the likelihood measure. Because estimates of high flows from BfR3oiv
limited accuracy, for BR3 the NS efficiencies of log(Q) were saleicteinclusion in the
likelihood measure. Beven (2001) identifies summation and multiplication as apm@opriat
operations to combine likelihood measures. For this research, the likelihood nveasure
calculated as the product of NS(Q) for Pond Branch and NS(logQ) for BR3, nodnalize

so that the sum of all measures for all behavioral parameter sets was 1.

c. Simulation of Vegetation Management Practices

Three vegetation management practices were simulated in Baisman Run 3:
conversion of all lawn to forest, conversion of downslope lawn to forest, and conversion
of upslope lawn to forest. To generate the first scenario, all 18 @&Hdwan were
converted to forest. To generate the second and third scenarios, the lawn weasgghrtiti
into equal areas based on upslope contributing area. The value of the upslope
contributing area for each patch was obtained from the flowtable geneyetesl b
CREATE_FLOWPATHS utility. In the second scenario, 9.25 ha of lawn with upslope
contributing area greater than 626 was converted to forest. In the third scenario, 9.25
ha of lawn with upslope contributing area less than 6b@as converted to forest.

Figure 4.9 shows the lawn area converted to forest for each scenario. In this and
subsequent figures, FA denotes the conversion of all lawn to forest, FD denotes the
conversion of downslope lawn to forest, and FU denotes the conversion of upslope lawn

to forest. For each scenario the model was run with all behavioral parameter set
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To assess the impact of estimated rooting depth on model results, a limited
sensitivity analysis was performed. Grass rooting depth was defir3€dcas (rather
than 8 cm) and simulations were repeated with the parameter set assoitiated w

highest likelihood measure.
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8. Calibration and Validation Results

a. Calibration

As discussed above, model parameters were calibrated for Pond Branch by
comparing the simulated streamflows produced by randomly-generated {earsete to
the observed streamflow recorded at Pond Branch. Initial calibration ressiisiing a
forest LAI of 5.0 yielded no behavioral parameter sets (defined as havi@ N®r
both Q and log(Q)). Initial calibration achieved a maximum Nash Sutclféeeacy for
Q of 0.47, and a maximum Nash Sutcliffe efficiency for log(Q) of 0.53. The rdnge o
predicted streamflows for all parameter sets with NS efficisrei@.4 indicated that the
model consistently underpredicted streamflows (Figure 5.1). The consistent
underprediction of streamflow suggested an overprediction of ET and LAI. Forest LAI
values were therefore adjusted to 4.5 in upland areas and 2.5 in riparian areas, and the

calibration simulations were repeated.

The adjustment of Pond Branch LAI values significantly improved streamflow
predictions. Calibration results yielded 193 behavioral parameter sete(tafimaving
NS>0.5 for both Q and log(Q)). Calibration achieved a maximum Nash Sutcliffe
efficiency for Q of 0.56, and a maximum Nash Sutcliffe efficiency fo(Qgf 0.60.
Figures 5.4a, b, and ¢ compare the range of predicted streamflows to theabserve

streamflow. Though streamflows are still often underpredicted, model poeditiound



observations for a much greater proportion of the simulation period. Field measisreme

of LAI should be collected to better constrain model values.

b. Validation

Model validation transferred the parameter sets calibrated for Pond Boanch t
Baisman Run 3. For the performance criteria described above, model valideitieal
92 behavioral parameter sets. Interestingly, goodness of fit resultittation often
exceeded those for calibration (Figure 5.2). Validation achieved a maximum Nas
Sutcliffe efficiency for Q of 0.71, and a maximum Nash Sutcliffe efficidocyog(Q) of
0.68. Prior and posterior distributions of the parameters to which model performance was

most sensitive are shown in Figure 5.3.

Comparisons of the range of predicted discharges to the observed (for PB) and
estimated (for BR3) discharges are shown in Figures 5.4a, b, and ¢ and 5.5a, b, and c.
Though the observed/estimated discharge is not consistently bounded by the predicted
range for either PB or BR3, the model generally reproduces the trendshardeseery
well. The most significant deviation between the model predictions and the
observed/estimated discharges occurs in July and August of 2007, when the
observed/estimated discharge falls precipitously in both PB and BR3, and theepredict
discharge does not. This apparent error in model predictions may derive fiem eit
errors in the input data, or errors in the model structure. Because the Pondd@uageh
performs poorly at low flows and rating curves are known to be less accurate at low

flows, it may be that our observed/estimated values of streamflow arseives

45



underestimates of the actual values. Because July and August of 2007 were very dry
months, it may also be that the study streams experience transmissieniasdeesmely
dry conditions which the model algorithms cannot reproduce. Interestingly, the model
appears to perform better for the suburban validation catchment than for thedforest

calibration catchment.

Bias and mean absolute error (MAE) were calculated for the expected value of
daily discharge from PB and BR3 (obtained by taking the weighted average of sdnulat
discharge for each behavioral parameter set). While PB simulatedrdesexhibited a
downward bias of 0.2 mm/day (or ~14% of the mean daily discharge of 1.47 mm), BR3
simulated discharge exhibited an upward bias of 0.17 mm/day (or ~14% of the mean
daily discharge of 1.24 mm). Mean absolute errors were comparable for PB and BR3,

with a MAE of 0.32 for PB and 0.35 for BR3.

Figure 5.6 presents the difference between simulated expected discharge and
observed daily streamflow for each catchment. For both catchments, the model
underpredicts peak flows. The difference in the direction of model bias is observed to
derive from simulated baseflows. For PB, the model underpredicts baseflovesfarhil

BR3 the model overpredicts baseflows.

Five limitations that affected the calibration/validation process should be noted:

1) the limited accuracy of the PB stream gauge, 2) the lack of dischaageotathe

outlet of BR3, 3) the lack of measured LAI data for either catchment, and 4) the
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inaccurate precipitation data for WY 2006, which likely produced an upward bias in
simulated discharge during the first months of WY 2007, and 5) the distance of the

precipitation gauge from the study catchments.
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9. Vegetation Management Results

a. Impact of Vegetation Management on Streamflow Regien

Both runoff volumes and peak flows declined dramatically with the conversion of
some or all of the lawn area in BR3 to forest. Annual runoff volumes fell ~100 mm (or
20%) when all lawn was converted to forest and ~50 mm (or 11%) when half the lawn
area was converted to forest (Figure 5.7). To examine the impact of vegetation
management on peak flows, we estimated the 2, 5, and 10 year flows given the actual
land cover. We fitted a Log Pearson Type Il distribution to the annual peak flows for
water years 2000-2008. To estimate the flows that occur with recurrence stdr@al

5, and 10 years, we applied the following equation:
|Og(Q) :Y—i_ KO-IogQ’ (3)

where Q is the flow magnitude at the selected recurrence inteé¢vial the average of

the logarithms of the available peak flows, K is a frequency factor thatircadn of the
skewness coefficient and recurrence interval,@rsdthe standard deviation of the
logarithms of the available peak flows. The estimated flow magnitudesOvenem/day
for the 2 year flow, 13.4 mm/day for the 5 year flow, and 15.5 mm/day for the 10 year
flow. (Note that these values are expected to be of limited accuracy, giv&mthe

times series from which they were obtained, and were calculated only to provide
reference values for comparison with the management scenarios.) The number of

exceedances expected for each land cover scenario was determinedhiyng/éie



number of exceedances for each behavioral parameter set by the correspkeltogdi
measure. Exceedances of all examined flows fell most when all lawcowasrted to
forest, less when the downslope lawn area was converted to forest, and evenress whe

the upslope lawn area was converted to forest (Table 5.1).

Daily and seasonal analyses indicated a seasonal pattern in the change in
catchment hydrology associated with land cover change. Prediction bounds for daily
discharge for the actual and entirely forested scenarios are shown ia FiguwWhile
the predicted change in daily streamflow exceeds the uncertaintyadsdogith
parameter estimation for the months of June through March, negligible change is
observed in the months of April and May. Seasonal discharge and rainfall depths are
shown in Figure 5.9a. For all three reforestation scenarios, the predicted thange
seasonal discharge (as compared to the actual scenario) is greateslindbelihes
through the winter and spring, and increases again in the summer. As expected, the
runoff ratio follows an inverse pattern. The ratio of streamflow to precipitatioeases
in the winter and early spring, when vegetation is dormant, and decreases in the,summer
when vegetation is growing. Changes in seasonal discharge were comparedrialsea
patterns in thelistribution of precipitation as well as seasonal patterns in the amount of
precipitation. For each season, the range of daily precipitation depthswuasl dinto
fourteen 5 mm bins, and the number of events within each bin and cumulative depth of
events within each bin was calculated. Figure 5.9b shows the frequency of events of
different magnitude and the cumulative depth provided by events of different uakgnit

for each season. For all seasons, storms of 0 to 10 mm per day are most frequent, while
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storms of 10 - 65 mm per day account for most of the cumulative depth of precipitation.
Interestingly, the frequency of the largest storms (greater than 50 naay)eas

comparable for all seasons. Though precipitation in the Baltimore region raifyene
delivered by less intense frontal storms in the winter and more intense coastatms

in the summer, seasonal differences in storm intensity are not perceikiedlatly scale.
These patterns in seasonal streamflow, runoff ratio, and precipitation inti@agte t

evapotranspiration is a key mechanism shaping catchment hydrologic response.

Analysis of daily and annual streamflows also indicated that varying the
topographic position of re-forested areas produced a slight but unexpected change in
streamflow response. Note that annual discharge for the forested-downslopi® $sena
slightly greater than annual discharge for the forested-upslope scéfigtire 5.7).

Table 5.2 presents the change in annual discharge (from the actual scenant) per
change in catchment LAIL. The greatest reduction per unit change in LAl ivetser
the forested-upslope scenario. At the seasonal scale as well, discindingefdoested-
downslope scenario exceeds discharge for the forested-upslope scenario for 3 of 4
seasons (Figure 5.9). Figure 5.10 shows that the difference in catchment hydrologic
response for the forested-downslope and forested-upslope scenarios varissffowba
and peak flows and follows a seasonal pattern. While peak flows from the forested
upslope scenario generally exceed peak flows from the forested downslop@stemar
reverse is often observed for baseflows. Baseflows from the forested-dowsttopeo

generally exceed baseflows from the forested-upslope scenario durinty, twentar,
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and spring, while baseflows from the forested-upslope scenario are greatgrtderi

summer.

b. Sensitivity of Predicted Streamflow to Estimated Rot Depth

Limited analysis of the sensitivity of streamflow results to the dedmibf grass
rooting depth indicated that the above conclusions are robust across a range of rooting
depths. Figure 5.11 compares simulated monthly discharge for the entirelgdorest
scenario, the actual scenario with shallow grass roots (8 cm), and the amtaaicswith
deep grass roots (30 cm). For both deep and shallow grass root depths, monthly
discharge is predicted to be significantly lower for the entirely fedestenario than for
the actual scenario, with the difference greatest in the summer, fall, aied and least
in the spring. The sensitivity analysis also suggested that the unexpected depehdenc
streamflow response on the topographic position of catchment vegetation is robwsst acros
the range of rooting depths examined. Figure 5.12 shows the difference between monthly
discharge from the forested upslope scenario and monthly discharge from thezlforest
downslope scenario for both shallow and deep grass roots (compare to Figure 5.10). For
deep grass roots as well as shallow grass roots, streamflows fromet$tedaltownslope
scenario are greater in the fall and winter, while streamflows from tastéa upslope

scenario are greater in the summer.

c. Impact of Vegetation Management on Evapotranspiratn

Analyses of evapotranspiration for each of the four vegetation management

scenarios demonstrated that differences in ET account for much, but not all, of the
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differences in discharge. ET increases dramatically with the coowerssome or all

lawn area to forest. Annual ET for the 4 vegetation management scenariosnsrshow
Figure 5.13. Note that the change in annual ET when lawn is converted to forest exceeds
the change in annual discharge. ET increases by ~150 mm when all lawn area is
converted to forest, and by ~75 mm when half the lawn area is converted to forest. The
topographic position of re-forested areas does not appear to have a significahbimpa

annual ET.

As with streamflow, seasonal trends are apparent in the response of ET to the
various vegetation management scenarios. Differences in monthly ET among the 4
scenarios are greatest in the growing season and negligible in theamictizl,
suggesting that transpiration accounts for most of the difference in ET (Biddde
Comparison of changes in monthly evaporation to changes in monthly transpiration when
lawn area is converted to forest confirms the dominance of transpiration (Figure 5.15a
b). Note that while evaporation is enhanced throughout the year, transpiration is
enhanced only between the months of May and October. At the monthly scale as well,
topographic position of re-forested areas does not appear to have a signifpaoitom

ET.

Maps of annual ET were generated to show the spatial distribution of changes in
ET for the 3 re-forested scenarios (Figure 5.16). For each scenario the distrabut
increases in ET mirrors the distribution of the lawn area converted to forest. The

distribution of decreases in ET is also significant. By comparing Figure®HRi§ure
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4.8, it is observed that decreases in ET are greatest in the riparian areathalihe
extent of areas experiencing decreased ET is greater for the dedestaslope scenario

than for the forested-upslope scenario.

d. Impact of Vegetation Management on Soil Moisture

As expected, simulation results indicated that catchment-averageisatdedicit
Is significantly altered by vegetation management. Figure 5.17 shows dadgeaver
saturation deficit for the entirely forested and actual scenarios. Tieagecin saturation
deficit associated with re-forestation is more persistent in time tieaindrease in ET.
While ET from the entirely forested scenario exceeds ET from the actunakgcenly in
the spring and summer, saturation deficit for the forested scenario exagedtan
deficit for the actual scenario throughout the year. During the months in whitbr&
the forested scenario exceeds ET from the actual scenario, the differsataration
deficit between the two scenarios is observed to increase. Conversely, during the mont
in which ET from the forested scenario is equivalent to ET from the actual iscehar

difference in saturation deficit between the two scenarios is observed twedecli

Unexpected differences are also observed in the temporal patterns of soilenoistur
for the forested-downslope and forested-upslope scenarios. Figure 5.18 shows the
difference between forested-upslope and forested-downslope percenedadoeat
(middle pane), and forested-upslope and forested-downslope saturation defiaih (bott
pane). In the fall, winter, and spring the forested-upslope scenario hadex satatated

area than the forested-downslope scenario, while in the summer the forestge-upsl
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scenario often has a larger saturated area. In all 4 seasons the foresyse sqesiario

has a greater saturation deficit than the forested-downslope scenario, bfietbaah
declines throughout the fall, winter, and early spring, and rises in the late spting a
summer. The timing of these differences appears to correspond to the timing of the
differences in daily streamflow for the two scenarios (5.14 top pane). During thiesmont
in which the forested-upslope scenario produces less baseflow than the forested-
downslope scenario, the forested-upslope scenario also has a smaller satemated a
Conversely, during the months in which the forested-upslope scenario produces more
baseflow than the forested-downslope scenario, the forested-upslope sdendrasa
greater saturated area. A similar correspondence is observed for thenddgem daily
average saturation deficit. During the months in which the saturation deficit @fdhe t
scenarios is converging, the forested-upslope scenario produces less bsefltve
forested-downslope scenario. Conversely, during the months in which the saturation
deficit of the two scenarios is diverging, the forested-upslope scenario psodace

baseflow than the forested-downslope scenario.

Figures 5.19 and 5.20 present maps of saturation deficit for two dates on which
storms occurred: December 15, 2005 (when the catchment received ~45 mm of
precipitation) and July 8, 2005 (when the catchment received ~60 mm of precipitation).
In these figures ACT denotes actual land cover, FA denotes the conversiorodsltd
lawn, FD denotes the conversion of downslope forest to lawn, and FU denotes the
conversion of upslope forest to lawn. During the summer storm, the runoff gegeratin

areas (areas where the saturation deficit approaches zero)aesl limcdownslope
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positions where flowpaths converge. These source areas occupy a greateioproport
the catchment in the actual and forested upslope scenarios, and a signifroatidy s
proportion of the catchment in the entirely forested and forested downslope scenarios.
During the winter storm, in contrast, the runoff generating areas areddbeteghout

the catchment and occupy a smaller proportion of the catchment in the entiestedo

and forested upslope scenarios.
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10. Discussion

This section begins with a discussion of the results and their relevance todand us
planning in the context of the research questions, and concludes with a review of the

research limitations.

a. Research Questions

Question Al: Can calibrated soil and groundwater parameters from a forested reference

catchment be transferred to an ungauged suburban catchment?

Goodness-of-fit results for BR3 suggest that the transfer of parametara fro
forested to a lightly urbanized catchment is viable, though neglecting the depeiden
soil parameters on land cover may degrade model performance. While NaslfeSutclif
results suggest that the accuracy of model predictions for BR3 exceedsutapof
model predictions for PB, daily bias results indicate that the transfer ohsloil a
groundwater parameters from a forested to an urbanized catchment rodyaaterror
into the urban model. Potential sources of model bias include errors in the model
structure and errors in the model parameters. We note that much of the modealybias m
be explained by errors in the LAI, hydraulic conductivity, and groundwatesbypa
parameters. In Pond Branch, the overestimation of LAl would explain the

underprediction of streamflow, while in BR3 we predict that the overestimatiiie of



hydraulic conductivity and groundwater bypass parameters might expdain t
underprediciton of peak flows and overprediction of baseflows. Indeed, previous
research suggests that we likely overestimated the hydraulic conduatidity
groundwater bypass parameters in BR3 by assuming these parametersigpbadent

of land cover. Field studies of infiltration rates in urban areas have found that urban
soils are generally more compacted than undisturbed soils and tend to infiittateatv
lower rates (Gregory et al. 2006, Pitt et al. 2001, Hamilton and Waddington 1999). By
transferring soil and groundwater parameters from a forested to an urbancrederd
without modifying parameter values to reflect the change in land coveikeie |
overestimated the values of the hydraulic conductivity and groundwatersbypas
parameters. Though we cannot provide conclusive evidence that errors in these
parameters are the source of model bias in BR3, our preliminary assessnuaié snithat

this explanation is consistent with both field studies and model results.

Our research elaborates upon previous assessments of parameter transfer
techniques. Whereas previous studies have demonstrated the viability of parameter
transfer techniques among undeveloped catchments with similar climatic;apbiog
and land cover characteristics (Gan 2006, Wagener 2006, Van der Linden and Woo
2003), we demonstrate the viability of parameter transfer from an undevelagiet eat
to a suburban catchment. We note, however, that our result may not be robust for highly
urbanized catchments. BR3 is a lightly urbanized catchment with only 7.3% @fats ar
occupied by impervious cover and 27.3% occupied by lawn. Moreover, lawns in BR3 are

large and well-established, and support unusually high rates of infiltration (Lipscom
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personal communication). We therefore propose that the viability of parametértrans
from forested to urbanized catchments may be dependent on the extent of urbanization,
and recommend that this technique be examined further in more highly urbanized

catchments.

Question A2: Can a distributed, physically based model accurately reproduce streamflow

from a suburban catchment?

The goodness-of-fit results for BR3 suggest that distributed, physicallgt base
models are not only capable of reproducing streamflow from suburban catchments, but
may perform better in suburban catchments than in forested catchments.silis re
consistent with previous studies of the application of distributed, physically basklism
to urbanized catchments, which determined that model performance in urbanized
catchments compared favorably to model performance in undeveloped catchmatts (Im
al. 2009, Jia et al. 2001, Cuo et al. 2008, Easton et al. 2007). In the present study, we
suggest that the increase in model performance in BR3 relative to PB fesulthe
simplification of hydrologic processes in urbanized catchments. Whereasfaabs
flow processes are notoriously difficult to model, the representation of direct froroff
impervious areas is much more tractable. The greater prevalence of thgspnoce
urbanized catchments may explain the greater accuracy of our model predictihe

suburban study catchment.
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This result and our parameter transfer results above offer a promising approach t
the problem of predicting the impacts of land cover change in data-sparse urlsan area
While parameter transfer schemes among catchments with similacgdiglsaracteristics
can compensate for the lack of calibration data in urban areas, distributedalbhysic
based models can provide distributed predictions of the impacts of land cover change and
greater insights into the mechanisms producing those impacts. Furthechresteaild be

conducted to develop and demonstrate this promising methodology.

Question B1:What is the impact of different extents of tree cover in a suburban
catchment on aggregate catchment response? Does this impact exceed thatyncertai

generated by parameter uncertainty?

Our study supports previous findings that the extent of forest and lawn in
suburban catchments is a significant determinant of catchment hydra@sganse, with
increased tree canopy reducing peak and annual flows (Booth et al. 2002, Wang et
al.2008). Our study also expands upon the findings of the only previous study explicitly
designed to examine the impacts of urban vegetation on catchment hydrologiceespons
(Wang et al. 2008). Wang et al. (2008) examined the impact of changes in inbercepti
associated with changes in LAl on streamflow response. Their researchtatnd t
doubling the canopy LAI produced a significant increase in interception, but only a
modest decline in annual runoff (1.3%). Our research, in contrast, examineschefeffe
changes in forest extent on both interception and transpiration. We find that tréorspirat

Is the dominant process determining the impact of vegetation on catchment hydrologi
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response, and that modest increases in catchment LAI produce significaasdgane

annual runoff (~20% per unit change in catchment LAI). Moreover, by comparing the
changes in streamflow response to the prediction bounds of the behavioral paraseter se
we demonstrate that the change in streamflow response associated efidntdgktents

of vegetation cover exceeds the uncertainty associated with parametatiest

This result has significant implications for land use planning. We demonstrate
that expanding the urban tree canopy is an effective approach to reducing runoffsvolume
and peak flows from suburban catchments. Given the well established connection
between flow regimes and stream channel erosion, pollutant delivery, arat habit
degradation, we interpret this result to suggest that the expansion of the urbandpge ca
is an effective approach to mitigating the symptoms of urban stream syndrbme. T
interpretation agrees with the results of previous empirical studies deatmusthe
importance of tree cover as a predictor of stream biotic integrity (Harh8v2, Goetz
and Fiske 2008, Carlisle and Meador 2007, Strayer 2003, Steedman 1988).To attain water
guantity and quality goals, land use planners should preserve or plant as much tree cove

in urban areas as is consistent with other community goals.

Question B2:What is the impact of different patterns of tree cover in a suburban

catchment on aggregate catchment response? Does this impact exceed thatyncertai

generated by parameter uncertainty?
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Our analysis of the impact of the topographic position of tree cover on streamflow
response produced unexpected results with complex implications for land use planning.
Though the planning literature generally recommends the planting or presefati
riparian forests to minimize the ecological impacts of urbanization, we fbahdparian
forests may not provide greater mitigation of the hydrologic impacts of udiam than
upslope forests. At the annual scale, the conversion of upslope lawn to forest actually
reduced streamflow more than the conversion of downslope lawn to forest, while at the
seasonal scale the conversion of upslope lawn to forest produced greater reductions in
streamflow in 3 of 4 seasons. At the daily scale, however, the interpretation ofudts re
becomes more complex. Though the conversion of upslope lawn to forest produces
lower baseflows than the conversion of downslope lawn to forest, it consistently produces
higher peak flows. Because both the reduction of peak flows and the reduction of runoff
volumes are goals of stormwater management, this result requires afteaxeond
management goals. We propose that the management strategy most protective of
ecosystem function may depend on the relative sensitivity of channel morphology and
stream biota to erosive peak flows versus amplified baseflows, and the pollutsndfoa

each.

To place our results in the context of previous research on the impact of urban
pattern on stream structure and function, we present a table reviewing préwthes s
(Table 5.3). Our research differs from all reviewed studies in its methodojngyirg
a modeling approach rather than empirical analysis. Our research alsofdiffeall but

two of the reviewed studies in its analysis of deliberately designedreseniost of the
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research reviewed applied statistical regression techniques to anabtregaxiban

patterns over which the researchers had no control. Because we were able tolenfine t
expansion of the urban forest to upslope or downslope positions, we were able to examine
an aspect of land cover pattern previously unaddressed in urbanized catchments.
Previous studies have examined the impact of the landscape position of vegetation in
agricultural catchments (Crosbie et al. 2008, George et al.1999), but none have examined
this aspect of land cover patternurbanized catchments. Our results are consistent with

the finding of George et al. (2008) that (where salinity is not a constraintjetiee table
response to tree planting increases as trees are located further upslopeomfaend,
however, that further research be conducted to corroborate or dispute our tasuits.
research, the impact of different patterns of vegetation on aggregate hiwresmpnse

does not greatly exceed the uncertainty associated with parametettiestin©ur

findings should therefore be regarded as hypotheses to guide further resglaechhan

conclusive results.

Finally, we note that even if riparian forests did not provide greater ntiget
the hydrologic impacts of urbanization than upslope forests, riparian forestsavn to
provide many other important functions. Riparian forests reduce the deliveuyri@ints
to the stream, enhance instream habitat for aquatic species, provide shadréathe
and serve as habitat corridors for terrestrial species. In deciding upastthrition of
forest conservation areas, land use planners should consider the range of fuactexhs s

by riparian forests.

62



Question B3: What is the impact of different patterns of tree cover in a suburban

catchment on distributed catchment response?

Distributed model results allow us to visualize the patterns of catchment
hydrologic response and develop more detailed explanations of the mecki@oigsgh
which the topographic position of vegetation affects streamflow response. iglire
shows a flow chart illustrating our interpretation of distributed model resMitslel
results suggest that by reducing recharge to upslope areas during thegygeason, the
reforestation of upslope areas reduces the lateral subsidy to ripariaaneg the
following seasons. By the time summer arrives, however, the extent of catchme
saturation is similar in both the forested upslope and forested downslope scenarios, and
the lateral subsidy to riparian areas is approximately equivalent for bothiieseri2zy
the time summer arrives, the downslope transfer of soil moisture is alsmpestant in
determining streamflow response. Figures 5.19 and 5.20 may be interpreted as showing
the location of runoff generating areas within the catchment. In the falerwamtd
spring runoff generating areas are observed to be distributed throughaafictiraent,
while in the summer runoff generating areas are observed to be concentrgtadan
areas. Thus in the summer, when riparian processes are dominant in determining
streamflow response, the planting of forest in downslope positions produces stightly |

streamflow.

This research demonstrates the immense potential of distributed, phyisasaty

models in advancing both the understanding of hydrologic processes in urban areas and
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the development of land use policies protective of stream form and function. By
providing insights into distributed responses, distributed, physically based mibalgls a
us to develop hypotheses about the mechanisms through which urban pattern informs
streamflow response. These insights allow us to design land use policiesiihazeni

the impacts of urban development on stream ecosystems.

b. Model and methodology shortcomings

The following is a brief review of study features that may limit the aoyuand
application of our results. Model accuracy is limited by errors in the inpoatdidata as
well as errors in the streamflow data available for calibration. Modalacgis also
limited by uncertainty in model parameters. Some of this uncertaintyg desause
effective grid-scale parameters often cannot be estimated from @ a®iint variables.
Some of this uncertainty in model parameters also derives from lack of ntbdatae
For this research, for instance, model parameterizations could be signifiogmbved
if measurements of LAl and hydraulic conductivity were available. sMiegments of
LAl would allow us to better characterize the differences in LAl betviri2and BR3,
while measurements of hydraulic conductivity would allow us to better charactiee

difference in hydraulic conductivity between soils beneath forest and lawn.

Further limitations derive from our choice of model time step. Because we
represent all processes at a daily time step, our model cannot differbatiaéen long
low-intensity storms and short high-intensity events. In the summer, weherayore

overestimate infiltration.
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Finally, our results may be limited in their geographic application. Because
hydrologic processes depend on local climate, geologic formations, topagpagtierns,
and dominant forms of vegetation, the conclusions of this research may not apply to
catchments in very different regions. Also, because hydrologic processad degée
spatial scale of analysis, the conclusions of this research may be limitadhments of

comparable size.
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11. Conclusion

a. Implications for land use planning

Land use planning intended to maintain aquatic ecosystem function could be
much improved by the application of distributed, process-based models in place of
lumped conceptual models. Though data constraints complicate the calibration of
distributed, process-based models in urban areas, our results demonstrate tleéparam
transfer from forested reference catchments to lightly urbanized catthican produce
accurate models. The potential gains in hydrologic understanding appearaiot was
greater complexity of model calibration. With lumped conceptual models we ediotpr
little more than the effect of land cover extent on aggregate catchment eespéiis
distributed, process-based models, however, we can expand our understanding of the
hydrologic impact of land cover change to include both the impact patteen of land
cover change, and the impact ugldstributed hydrologic response. The spatia
distribution of runoff generation is important in predicting sediment production and
pollutant delivery as well as stream hydrographs (Dunne 1983). With distributed,
physically based models we can therefore anticipate the impact of urbdoptdeset on
water quality as well as quantity. Because of these features, distripbiesically based
models offer immense promise in assessing land use policies and guidingpiaet im

design.



The present study begins to generate results that may inform land uge Qalic
results suggest that, though riparian forests may provide greater mitigapeakoflows
than upslope forests, upslope forests may provide greater mitigation of runoff golume
This result raises questions about a common strategy in watershed planning. Many
municipalities require the preservation of riparian forests to maintainsteasyunction
(Chapel Hill, for instance, requires a riparian setback of 150 feet from all parenni
streams). Our research suggests, however, that if downstream watemiempas
sensitive to annual runoff volume as well as peak flows, the preservation of upslope
forests is also important in protecting ecosystem function. This result rensindat
different elements of the landscape serve different functions, and that we sacunet
ecosystem function by preserving only one element of the landscape. Land use
management should therefore be prepared to preserve different parts of thepandsca

depending on their particular function in their particular context.

b. Future research

To advance our understanding of the impact of urban pattern on catchment
hydrologic response, this research should be integrated with field studies. Dunne (1983)
recommends the joint development of field and modeling studies to define the kind and
rigor of field measurements and to increase efficiency in the use of &&ld d
Conversely, field data can corroborate or falsify model results and idermtdglm
conceptual errors. It was suggested above that the findings of this thesisgegse

impact of vegetation pattern on distributed hydrologic response should be regaaded as
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guide to further research, rather than conclusive results. Results froestrasch might
be used to guide a field sampling campaign to determine whether the impacts of
increased transpiration on soil moisture and the extent of variable sourcarargeteed

as significant as this research has suggested.

Further research should be conducted to extent this methodology to the prediction
of water quality as well as quantity, to the assessment of additional L¢bcess and to
the analysis of land cover change impacts in more highly urbanized catchments. As
stated above, the spatial heterogeneity of runoff generation is importantyot thrd
prediction of stream hydrographs, but in the prediction of runoff quality as well. ip ma
aguatic ecosystems, sediment and nutrient delivery is known to be an importantf cause o
ecosystem degradation. Distributed, physically based models that incluspatia
distribution of erodibility and nutrient loads would advance our understanding of the
impact of land cover pattern on these important water quality parameters. In the
background section, we introduced many approaches to low impact design. Thisresearc
demonstrated the application of a distributed, physically based model to assesseonly
of these practices. Further studies should address the hydrologic impattisrof
practices such as green roofs, rain gardens, and grassed swaley, tRisattsearch
applied a distributed, physically based model to a lightly urbanized catchmemtin w
man-made drainage infrastructure was not prevalent. The lack of a hydecemjporent
to model the movement of water through man-made conduits was therefore not a
significant limitation for this study. Future studies should address the amplich

distributed, physically based hydrologic models to more densely urbanized eatshm
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To accurately model the function of drainage infrastructure, future resdwmall s
address the integration of distributed, process-based hydrologic models withltéglioy

models generally applied to manmade flow networks in densely urbanized cattehme

Land cover change models that represent ecosystem and hydrologic progesses a
well as hydraulic processes and that predict distributed as well as aggesgainse
offer immense promise in developing scientific knowledge that can inform eallggic

sensitive land use policy and urban design.
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Appendix A: Tables

Simulated Exceedances, WY 2005 and 2007

Q Downslope Upslope
(mmiday) Actual Land | All Lawn to Lawn to Lawn to
y Cover Forest Forest Forest
©
2 2 9.0 1.23 0.85 0.94 1.00
v u
[a W —_
c 9
5 > 5 13.4 0.60 0.32 0.41 0.43
2
10 15.5 0.35 0.12 0.21 0.21

Table 5. 1: Comparison of expected exceedances bét2, 5, and 10 year peak flows for each of the
vegetation management scenarios. The log Pearsgmpe¢ Il technique was applied to estimate the
flows that occur with recurrence intervals of 2, 5and 10 years, and the number of simulated flows

that exceeded these peak flows was calculated faol scenario. Exceedances of all examined flows
fell most when all lawn was converted to forest, s when the downslope lawn area was converted to

forest, and even less when the upslope lawn area sweonverted to forest.
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All Lawn Downslope Upslope Lawn
to Forest Lawn to Forest to Forest
delta Q (mm/year) 1063 / -105.7 | -52.4 / -52 -54.3/-58.6
Min / Max
% Lawn Area Converted to 100% 5004 5004
Forest 0 0 0
delta LAI 1.23 0.61 0.61
delta Q/ delta LAl -86.4 / -86.0 | -85.9 / -85.3 | -89.1 / -96.1
Min / Max

Table 5. 2: Expected change in annual discharge penit change in catchment LAI for all vegetation
management scenarios. Interestingly, the greatestduction per unit change in LAl is observed in

the forested-upslope scenario.
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Table 5. 3: Previous studies of the impact of urbapattern on catchment hydrologic response.

1Y

Study Study Pattern Response Findings
Type Variables Variables
Assessed Assessed
Pappas et | Laboratory| Impervious | Runoff rate and | Downslope
al. 2008 simulation | area cumulative runoff | impervious cover
connectivity | for 96 min — initially produced
duration storm more runoff, but the|
difference between
impervious
treatments declined
as soil saturation
increased
Shuster et | Laboratory| Impervious | Runoff rate and | Downslope
al. 2008 simulation | area cumulative runoff | impervious cover
connectivity | for 5 year generally produced
recurrence more runoff than
interval storm upslope impervious
event cover for dry initial
conditions, but
often produced
more runoff for wet
initial conditions.
Newall Empirical | Impervious | Water quality and| Impervious area
and Walsh | analysis area diatom-based connection was the
2005 connectivity | indices strongest
explanatory
variable.
Taylor et | Empirical | Impervious | Benthic algal Impervious area
al. 2004 analysis area biomass connection was a
connectivity stronger
explanatory variable
than impervious
area extent.
Hatt et al. | Empirical | Impervious | Pollutant Several response
2004 analysis area concentrations variables were morg¢
connectivity | and loads strongly correlated
with impervious
area connection
than impervious
area extent.
Snyder et | Empirical | Riparian land Fish assemblage | Though indices of
al. 2003 analysis cover structure and fish assemblage

instream habitat

structure were more
strongly related to

catchment-wide
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land cover than
riparian land cover,
several measures 0
instream habitat
were more strongly
related to riparian
land cover.

Strayer et
al. 2003

Empirical
analysis

Riparian land
cover

Nitrate loads;
species richness
of fish, benthic
macroinvertebratg
s, and aquatic
plants

Though most
response variables
were not better
predicted by
riparian land cover
than by catchment-
wide land cover,
macroinvertebrate
species richness wa
more strongly
related to riparian
land cover.

1S

Carlisle
and
Meador
2007

Empirical
analysis

Riparian land
cover

Benthic
macroinvertebrateg
[

Degraded macro-
invertebrate
condition in urban
settings was
associated with
reduced riparian
forests.

Moore and
Palmer
2005

Empirical
analysis

Riparian land
cover

Macroinvertebrate
richness

Macroinvertebrate
biodiversity was
highly correlated
with the extent of
riparian forest.

Steedman
1988

Empirical
analysis

Riparian land
cover

Fish 1BI

Fish IBI was more
strongly correlated
with riparian forest
than with
catchment-wide
forest.

Alberti et
al. 2007

Empirical
analysis

Land cover
aggregation

Benthic IBI

Benthic IBIl was
highly correlated
with mean patch
size of impervious
areas and mean
patch size of
forested areas, but
these variables wer
also correlated with
the extent of
impervious cover.

4]

Hammer
1972

Empirical
analysis

Land cover
position

Channel

enlargement

Channel

enlargement was
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highly correlated
with the distance of
impervious cover
from the stream
channel.

King et al.
2005

Empirical
analysis

Land cover
position

Nitrate nitrogen
and
macroinvertebrate
assemblages

Degraded macro-
invertebrate

condition was better

explained by
distance-weighted
developed land that
by catchment-wide
developed land.

Goetz and
Fiske 2005

Empirical
analysis

Land cover
position

Benthic IBI

Macro-invertebrate
condition was best
explained by the
distance weighting
scheme accounting
for the distance of
tree cover from the
stream channel.

Crosbie et
al. 2008

Empirical
analysis

Landscape
position of
vegetation

Vegetation water
use

Tree belts in
discharge zones
used significantly
more water than
tree belts in
recharge zones,

pasture in discharge

zones, and pasture
in recharge zones.

D

George et
al. 1999

Empirical
analysis

Landscape
position of
vegetation

Water table
response

In low salinity
recharge zones the
magnitude of the
water table respons
to tree

planting increases
as the trees are
located further
upslope.

D

Present
study

Distribute
d, process-
based
model

Landscape
position of
vegetation

Streamflow
response

Annual scale:
conversion of
upslope lawn to
forest produces
slightly lower
streamflow than
conversion of
downslope lawn to
forest.

Seasonal scale:

conversion of
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upslope lawn to
forest produces
significantly lower
streamflow in the
fall, winter, and
spring.

Daily scale:
conversion of
upslope lawn to
forest produces
lower baseflows in
the fall, winter, and
spring, and higher
peak flows in all
seasons.

75




Appendix B: Figures
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Figure 4. 1: Location of the study catchments withi Baltimore County, Maryland.
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Figure 4. 2: 10 m DEM of the study catchments.
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Figure 4. 3: 10 m land cover classification for BR3
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Figure 4. 4: Location of USGS stream gauges and syptic sample sites.
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Figure 4. 5: Comparison of the synoptic samples atreamflow collected at the outlet of BR3 to the
corresponding discharge recorded by the USGS gaugé the outlet of BR. Black squares represent
samples included in the linear regression and graggquares represent samples excluded from the
linear regression. While the relationship at lowefflows is well approximated by a linear function, tle
relationship at higher flows may be better charactézed by a power function.
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Figure 4. 6: Catchment boundaries and stream netwdrderived in the Terrain Analysis System
(TAS). Stream channels were derived using the O’Qlaghan and Mark (1984) method with a
specific contributing area threshold of 450 M and a stream length threshold of 180 m. The staen
channels derived in TAS (light blue) correspond ver closely to the stream channels mapped by

Baltimore County (dark blue).
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Figure 4. 7: Hillslope boundaries derived in .the €rrain Analysis System.
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Figure 4. 8: Estimated soil distribution in BR3.
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Figure 4. 9: Location of areas converted from lawrto forest for the entirely forested scenario (FA),
forested downslope scenario (FD), and forested upgle scenario (FU).

84



Pond Branch Model Performance for LAl of 5
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Figure 5. 1: Observed and predicted discharge frorPond Branch for the simulations in which LAl
was assigned a value of 5. The range of predictdacharges includes only the predictions of those
parameter sets yielding Nash Sutcliffe efficienciegreater than 0.4. The observed daily discharge is
shown in blue, the lower bound of the predicted d&i discharge in red, and the upper bound of the
predicted daily discharge in green. When LAl is adggned a value of 5, the model consistently
underpredicts daily discharge.
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Yalidation Results for Calibrated Parameter Sets
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Figure 5. 2: Nash Sutcliffe efficiencies of the pameter sets meeting the performance criteria for
Pond Branch. Behavioral parameter sets often predt streamflow more accurately for BR3 (circles)
than for PB (crosses).
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Prior and Posterior Distributions of Significant Parameters
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Figure 5. 3: Prior and posterior distributions of the soil and groundwater parameters most sensitive
to calibration. Prior and posterior distributions were generated with the GLUE methodology.
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Fond Branch Model Performance: Daily Scale
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Figure 5. 4a: Observed and predicted daily dischams from Pond Branch for the simulations in
which LAI was assigned a value of 4.5 in upland aes and 2.5 in riparian areas. The range of
predicted discharges includes only the predictionsf behavioral parameter sets. The observed daily
discharge is shown in blue, the lower bound of thgredicted daily discharge in red, and the upper
bound of the predicted daily discharge in green. Wign LAl is assigned values of 4.5 and 2.5, the
model predictions bound observations for a signifiant portion of the simulation period.
Transmission losses may account for the significamtverprediction of streamflow in July and August

of 2007.

88



FPond Branch Model Pedfarmance: Monthly Scale
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Figure 5.4b: Observed and predicted monthly dischages from Pond Branch for all behavioral
parameter sets. The observed monthly discharge shown in green and the simulated monthly
discharge is shown in blue, with the curve indicatig the expected values, and the bars indicating the
range of predicted values. Though the model tende underpredict monthly discharge, it reproduces
the trends in discharge quite well.
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Pond Branch Model Performance: Annual Scale
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Figure 5.4c: Observed and predicted annual dischaes from Pond Branch for all behavioral
parameter sets. The observed annual discharge is@vn in green and the simulated annual
discharge is shown in blue, with the bars indicatig the range of predicted values. The model tends
to underpredict annual discharge.
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BR3 Model Performance: Daily Scale
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Figure 5. 5a: Estimated and predicted daily dischages from Baisman Run 3 for all behavioral
parameter sets. The estimated daily discharge it@wn in blue, the lower bound of the predicted
daily discharge in red, and the upper bound of theredicted daily discharge in green Though the
model occasionally overpredicts discharge, it appesito perform better than the model of PB.
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BR3 Model Performance: Monthly Scale
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Figure 5.5b: Estimated and predicted monthly dischrges from Baisman Run 3 for all behavioral
parameter sets. The estimated monthly discharge &hown in green and the simulated monthly
discharge is shown in blue, with the curve indicatig the expected values, and the bars indicating the
range of predicted values. Though the model tende overpredict monthly discharge, it reproduces
the trends in discharge quite well.
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BR3 Model Performance: Annual Scale
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Figure 5.5c: Estimated and predicted annual disclhrges from Baisman Run 3 for all behavioral
parameter sets. The estimated annual dischargestown in green and the simulated annual
discharge is shown in blue, with the bars indicatig the range of predicted values. The model tends
to overpredict annual discharge.
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Daily Model Bias: Pond Branch
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Figure 5. 6: Difference between simulated expectetischarge and observed discharge for PB (above)
and BR3 (below). While peak flows are underpredict for both catchments, base flows are
underpredicted for PB and overpredicted for BR3.
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hManagement Impact on @ Annual Scale
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Figure 5. 7: Simulated range of annual runoff volmes for all vegetation management scenarios.
The circles show the expected value, and the barsav the range of predicted values for all
behavioral parameter sets. Annual streamflow dedties dramatically when half or all of the lawn
area is converted to forest. When all lawn is convied to forest, annual streamflow declines by
~20%.
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Management Impact on C: Daily Scale
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Figure 5. 8: Simulated range of daily discharge fothe actual (red) and entirely forested (green)
scenarios. For each scenario, the upper and lowbounds show the range of predicted discharges for
all behavioral parameter sets. While the differencén simulated streamflow exceeds the uncertainty
associated with parameter estimation in the summefall, and winter, the difference is negligible in
the spring.
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Management Impact on Q: Seasonal Scale
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Figure 5. 9a: Comparison of seasonal runoff depthsnd seasonal precipitation depths for all
vegetation management scenarios. For all three mfested scenarios, the predicted reduction in
seasonal discharge is greatest in the fall, decliséhrough the winter and spring, and increases agai
in the summer. Also, for all seasons the predictegduction in runoff is greatest for the entirely
forested scenario.
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Seasonal Distribution of Rainfall
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Figure 5.9b: Distribution of precipitation in each season. The stars show the frequency of events of
different magnitude, while the bars show the cumuléve depth provided by events of different
magnitude. No correspondence is observed betweeretheasonal distribution of precipitation (this
figure) and the seasonal reduction in discharge (Bure 5.9a).
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Management Impact on Q¢ Conversion of Upslope vs Downslope Lawn
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Figure 5. 10: This figure plot the difference in shulated daily discharge between the forested upslep
and forested downslope scenarios (top pane) and tbamulative difference in simulated discharge
(bottom pane). While baseflows from the forested denslope scenario are higher in the fall, winter,
and spring, baseflows from the forested upslope stario are higher in the summer. The cumulative
difference in streamflow increases through the fajlwinter, and spring, and decreases in the summer.
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Sensitivity of Management Impact to Grass Root Depth:
Comparison of Actual and Entirely Forested Scenarios
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Figure 5. 11: Comparison of simulated monthly didearge for the entirely forested scenario (blue),
the actual land use scenario with shallow grass re®(red), and the actual land use scenario with dee
grass roots (green). The impact of forest extewn streamflow response is robust across the rooting
depths examined.
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Sensitivity of Management Impact to Grass Root Depth:
Comparison of Forested Upslope and Forested Downslope Scenarios
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Figure 5. 12: This figure plots the difference irmonthly discharge between the forested upslope and
forested downslope scenarios for the simulation witshallow grass roots (light blue) and the
simulation with deep grass roots (dark blue). Thémpact of the topographic position of reforested
areas on streamflow response is also observed totmbdust across the rooting depths examined.
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Management Impact on ET:

Annual Scale
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Figure 5. 13: Simulated range of annual evapotransgation volumes for all vegetation management
scenarios. The circles show the expected valueadahe bars show the range of predicted values for
all behavioral parameter sets. Annual ET increasedramatically when half or all of the lawn area is
converted to forest. ET increases by ~150 mm whetl lawn area is converted to forest, and by ~75

mm when half the lawn area is converted to forestThe topographic position of re-forested areas
does not appear to have a significant impact on amal ET.
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htanagement Impact on ET. Monthly Scale
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Figure 5. 14: Simulated range of monthly ET for allvegetation management scenarios. For each
scenario, the upper and lower bounds show the rang# predicted discharges for all behavioral
parameter sets. Differences in monthly ET among #4 scenarios are greatest in the growing season
and negligible in the winter and fall.
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Management Impact on E: Monthly Scale
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Figure 5. 15: Expected change in monthly evaporatio(a) and transpiration (b) for the three
reforested scenarios. Transpiration is observed tbe the dominant mechanism determining the
impact of vegetation extent on catchment hydrologicesponse.
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Figure 5. 16: Estimated spatial distribution of theexpected change in annual ET for the three

reforested scenarios. For each scenario the didttution of increases in ET mirrors the distribution of
the lawn area converted to forest.
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Management Impact on Satuation Deficit: Daily Scale
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Figure 5. 17: Simulated range of daily saturation dficit for the actual and entirely forested scenaps.
For each scenario, the upper and lower bounds shotlie range of predicted discharges for all
behavioral parameter sets. Average saturation defit for the entirely forested scenario exceeds
average saturation deficit for the actual scenaridhroughout the year.
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Management Impact: Conversion of Upslope vs Downslope Lawn
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Figure 5. 18: This figure shows the impact of landover pattern on streamflow (top pane), percent
saturated area (middle pane), and catchment averagmaturation deficit (bottom pane). The middle
pane plots the difference in daily % saturated aredetween the forested upslope and forested
downslope scenarios, while the bottom pane plotseldifference in average saturation deficit between
the two scenarios. The impact of vegetation pattaron the extent of catchment saturation is seen to
be related to the impact of vegetation pattern onteeamflow response.
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Figure 5. 19: Estimated spatial distribution of satiration deficit for all vegetation management

scenarios following a precipitation event on July 82005. The catchment is drier for the entirely
forested and forested downslope scenarios and watfier the actual and forested upslope scenarios.

Differences in saturation extent are particularly evident within the red circled areas.
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Figure 5. 20: Estimated spatial distribution of satiration deficit for all vegetation management
scenarios following a precipitation event on Januar 15, 2005. During the dormant season, the
catchment is drier for the entirely forested and foested upslope scenarios and wetter for the actual
and forested downslope scenarios. Differences iataration extent are particularly evident within

the red circled areas.
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Figure 5. 21: Flow chart illustrating the mechanismthrough which the topographic position of
reforested areas is believed to affect streamflonesponse.
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