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ABSTRACT

Huiyin Ouyang: Prioritization in Service Systems with Nonlinear Delay Costs
(Under the direction of Nilay T. Argon and Serhan Ziya)

Prioritization is a common strategy in service systems to improve the overall system perfor-

mance. In this dissertation, our main objective is to study how priority should be assigned in

different systems when the cost of waiting is not linear as is typically assumed in the literature. We

study three problems motivated by prioritization decisions in service systems. In the first problem,

we consider a single server queueing system with two different types of customers. Each customer

incurs a cost depending on its type and waiting time in the queue, and the waiting cost functions

are assumed to be nonlinear in the waiting time. We identify the best static policy under different

conditions. In the second problem, we consider a stylized, discrete-time model for an Intensive Care

Unit (ICU) in which patients’ health conditions change over time according to a Markov chain. Our

objective is to allocate the ICU beds to minimize the long-run average mortality rate. In the third

problem, we consider a multi-server queueing system with impatient customers. Customers are

assumed to be in one of two different stages, which can change over time. A reward is obtained at

each service completion depending on the stage of the customer. Our objective is to maximize the

total discounted reward and the long-run average reward over infinite horizon.
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CHAPTER 1: INTRODUCTION

In many service systems customers are heterogeneous in that they have different service require-

ments and incur different costs. An interesting problem to the service provider is how to control

the service process by prioritizing service, and admitting or rejecting customers so that some per-

formance measure is optimized. For example, the director of an emergency department (ED) at a

hospital prioritizes the treatment of more severe patients to minimize the overall mortality rate. A

call center manager reserves several lines to serve more valued customers since these customers will

incur larger cost if they are unsatisfied. Hospital bed managers face the decision of how to allocate

beds when the demand exceeds their capacity, e.g., they either discharge an existing patient to

admit a new patient, or they reject the new patient. All these service systems provide services to

different types of customers, and their decisions are associated with prioritizing some customers

over others.

There is a vast literature that investigates models when the cost of holding customers in the

system are linear in their waiting time, and the optimal policies for these models are proved to be a

priority index rule. However, the costs in reality usually have more complicated structures that are

difficult to capture by a simple linear waiting cost approximation. For example, the health state of

ED patients does not in general deteriorate at a constant rate. On the other hand in certain cases,

it is even not appropriate to capture the cost structure as a function of waiting times. For example

in a hospital ward, the cost will depend on the medical outcome of the patients after his/her stay

in the ward, which may be indirectly related to waiting times. However, it is difficult to express

the cost as a direct function of waiting times in this case.

In this dissertation, we aim to explore the priority decisions in service systems with hetero-

geneous customers and nonlinear delay costs. In particular, we study three design and control

problems motivated by service and health care systems.

1



In the first part of this dissertation, we consider a single server queueing system with two

different types of customers. Each customer incurs a cost depending on its type and its waiting

time in the queue. The cost functions are assumed to be non-decreasing in the waiting time. Our

objective is to minimize the long-run average cost by controlling the order of service for customers

in the queue. The waiting costs for different types of patients are different, and also they are not

linear in the waiting time. In general, it is very difficult to keep track of the waiting times of all

customers in the system, or these kind of information may be very expensive or even impossible

to collect in practice. Hence, we are interested in finding “good” policies that do not need such

information under nonlinear costs.

The second part of this dissertation is motivated by the admission and discharge decisions given

in the intensive care units (ICUs) in hospitals. When a patient arrives to an ICU that is full, the

ICU director needs to decide either rejecting this new patient (by way of transfer to some other

ward or hospital) or discharging (transferring) an existing patient to make space for this one. In

an ICU setting, we are concerned about the dying probabilities of all patients, which can hardly

be approximated by a linear function.

In our model, the heterogeneity of ICU patients is in the sense of patients’ severity conditions,

and the severity conditions of patients could change during their stay in the hospital. We use

different stages to model the different health conditions of the patients, and we use a transition

matrix to represent the change of patient stages in the ICU. When patients are not in the ICU

either due to being early discharged or being rejected upon arrival, they will stay at some non-ICU

care place such as general wards, nursery rooms or even home, which we all refer as “the general

ward” throughout the dissertation. The stages of patients in such places will change according to

a similar pattern with different parameters from the transition matrix in ICU. The patients could

leave with an undesired outcome, e.g., death or readmission to ICU. Our objective is to minimize

the expected probability of such an undesired outcome by choosing which patients to keep in the

ICU.

Although our work is inspired by the ICU admission and discharge decisions, it can be also

extended to other systems. For example, consider a service system that can process jobs by two

different types of resources, one general resource with infinite capacity and one more efficient

resource with finite capacity. The state of jobs can be described by different stages, and they can
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become better or worse during the processing. The quality of completed jobs depends on which

stage they are finished with, and our objective is to maximize the total output quality by assigning

priorities, where jobs with lower priority will be processed by the general resource when the efficient

resources are all occupied.

Finally, in the third part of this dissertation we consider a multi-server queueing system with

impatient customers, where the customers may change status over time. In many service systems,

customers in the queue might leave without being served if their wait exceeds their tolerance, where

the tolerance is usually called the “lifetime” or the “patience” of the queueing customer. There is a

growing literature on optimal scheduling of impatient customers, most of which assumes customers

belong to independent classes. In this dissertation, we have a further assumption that customers

belong to different stages, and their stages could change over time either in service or queue. For

example, we reconsider the ICU admission and discharge problem. We assume that the patients in

the general ward could get readmitted to ICU when there is an available bed. Then, the ICU beds

can be considered as servers and the patients in the general ward can be considered as queueing

customers. Patients in ICU as well as those waiting for ICU beds in the general ward may leave

the system or may change their health stages. We assume that a positive reward is obtained at

each service completion, depending on the stage of the leaving customer, and we would like to

investigate how priority should be assigned to maximize the long-run average reward.
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CHAPTER 2: PRIORITY ASSIGNMENT IN AN M/G/1 QUEUE WITH
NONLINEAR WAITING COSTS

In this Chapter, we consider a single server queueing system with two different types of cus-

tomers. Each customer incurs a cost depending on its type and waiting time in the queue, which

is assumed to be non-decreasing and nonlinear. We would like to compare the performances of

several static policies.

2.1 Introduction

We consider a queueing system with two types of customers. For example, consider an emer-

gency room with patients who are more severely injured and those who only have small problems.

We assume that each customer incurs a waiting cost that depends on its type and the amount

of time it spends in the queue before its service starts. We also assume that the cost function is

increasing in time spent in the queue. The inter-arrival times and the service times depend on the

type as well. Our objective is to determine the best “static” policy that minimizes the long-run

average cost. By static policies, we mean policies that are independent of the state of the system,

such as priority policies that give priority to a certain type of customers or non-priority policies

like first-come-first-serve (FCFS) or last-come-first-serve (LCFS).

The study of priority queueing systems dates back to Cobham (1954), who considered a single

server queueing system with customers belonging to several priority classes and the service is non-

preemptive. In that work, the author formulated an M/M/1 queueing system with customers

belonging to multiple priority classes, and derived the long-run average waiting time in the queue

for each class of customer. In these priority queues, the position of a customer in a waiting line is

determined by its priority class rather than by its time of arrival in the line as in FCFS. We can

refer to Miller (1960) and Jaiswal (1968) for a review of such earlier work on priority queues.
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Then the problem that which type of customers should be prioritized was studied. For linear

cost functions when the cost is proportional to the delay, Cox and Smith (1961) first established

the optimality of the so called “cµ-rule” for M/G/1. According to the cµ-rule, customers with

larger ciµi index are assigned higher priority, where ci is the per unit time waiting cost and µi is

the service rate for type i customers, to minimize the long-run average waiting cost in the system.

Many other work has been done under the assumption of linear cost functions.

The consideration of nonlinear costs is necessary because approximating customers’ delay sensi-

tives with a linear function may not be reasonable in practice. For example, when perishable items

wait for service, or landing aircraft wait in the air for landing, etc., the cost of a unit delay cannot

be constant as delay increases, because in the former case, the items lose value, and in the latter

case, the aircraft may fail for lack of fuel. Dewan and Mendelson (1990) provided a more detailed

discussion about the delay cost structures. A number of papers have considered the generalized

cost functions in their queueing models. Aféche and Mendelson (2004) compared the revenue-

maximizing and socially optimal equilibria under uniform pricing, preemptive, and nonpreemptive

priority auctions with an admission price and a generalized delay cost structure. Hassin et al.

(2009) showed that relative priorities in an n-class queueing system can reduce customer waiting

costs in a single server Markovian model where the goal is to minimize a non-linear cost function

of class expected waiting times. Rothkopf and Smith (1984) conjectured that no static priority

policy would minimize the expected delay costs when delay cost functions are nonlinear. Haji and

Newell (1971) showed that when the cost functions are convex increasing functions, the optimal

strategy will always involve serving customers of the same type according to the FCFS discipline.

Van Mieghem (1995) proved that when waiting costs are convex in time, a generalized version of

the cµ-rule is asymptotically optimal under heavy traffic. Mandelbaum and Stolyar (2004) also

proved the heavy-traffic optimality of the generalized cµ-rule under more general settings.

The generalized cµ-rule is actually a dynamic policy that gives priority to the customer who

has the largest C ′i(t)µi value in the system at every service completion epoch, where Ci(t) is the

cost function of holding a type i customer in the queue for t units of time and C ′i(t) is its first-order

derivative. Hence, to implement the generalized cµ-rule, we need to keep track of the waiting times

of all customers in the system. In this article, we are interested in finding “good” policies that

do not need such information under nonlinear costs. More specifically, we consider static queueing

5



policies, such as the FCFS and LCFS policies and priority policies that give priority to customers

according to their types without considering their waiting times in the system.

The remainder of this article is organized as follows. We describe our model in Section 2.2, then

in Section 2.3 we provide analytical comparisons of the three commonly used static policies, namely

F , PF1 and PF2, where F denotes first-come-first-serve (FCFS) and PFi denotes the priority policy

that prioritizes type i customers and employs FCFS within each type for i = 1, 2. We apply our

results for polynomial cost functions in Section 2.4 and for exponential convex function in Section

2.5, then we give a theoretical result that shows when the cost functions are convex, we only need

to compare F , PF1 and PF2 in Section 2.6. We provide similar results when comparing policies L,

PL1 and PL2, where L denotes last-come-first-serve (LCFS), and PLi denotes the priority policy

that prioritizes type i customers and employs LCFS within each type for i = 1, 2, and proved that

it suffices to compare only L, PL1 and PL2 when the cost functions are concave. By means of

a numerical study, we compare the best static policy that we found in earlier sections with the

generalized cµ-rule in Section 2.8. Finally, Section 2.9 provides our conclusions.

2.2 Model description

Consider a single server queueing system with two types of customers. Customers arrive to the

system according to a Poisson process with rate λ > 0, and each arriving customer belongs to type

i ∈ {1, 2} with probability pi > 0, where p1 + p2 = 1, independent of the arrival process. Service

times for type i ∈ {1, 2} customers are independent and identically distributed (i.i.d.) with mean

τi > 0 and second moment ξi > 0. We define ρi ≡ piλτi and ρ ≡ ρ1 + ρ2, which we call the system

load, and we assume that ρ < 1 for stability. Each type i customer incurs a waiting cost Ci(t)

when its waiting time in the queue is t, for t ≥ 0 and i = 1, 2. We assume that Ci(t) is first-order

differentiable and non-decreasing in t for fixed i.

For such a queueing system, we consider non-idling and non-preemptive queueing policies that

require information only on the type and the order of arrival of all customers in the system. These

policies are non-idling and non-preemptive in the sense that the server does not idle as long as there

is a customer in the system and that service of a customer who has been taken into service has to
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be completed without any preemption before the server moves onto serving another customer. We

let Π denote the set of all such queueing policies.

For any policy π ∈ Π, define the long-run average cost as

Cπ ≡ lim
t→∞

∑2
i=1

∑ni(t)
k=1 Ci(V

π,x0
i,k )

t
, (2.1)

where ni(t) is the number of type i customers that has arrived to the system by time t and V π,x0
i,k

is the waiting time of the kth arriving type i customer under policy π and initial state x0. Our

objective is to identify policies that provide the smallest long-run average waiting cost Cπ in the

policy set Π for any given initial state x0. Let W π
i denote the steady-state waiting time of a type

i customer under policy π, then we will show in Appendix A that if E
[∣∣Ci(W π

i )
∣∣] exists for both

i ∈ {1, 2}, Cπ defined in (2.1) satisfies

Cπ = λp1E
[
C1(W π

1 )
]

+ λp2E
[
C2(W π

2 )
]
. (2.2)

2.3 Comparison of FCFS and fixed priority policies – general cost structures

In this section, we present the comparison of three commonly used policies within Π, namely F ,

PF1 and PF2. In order to compare CF , CPF1 and CPF2 , we need several definitions and lemmas.

Definition 2.1. (E.g., Shaked and Shanthikumar (2007)). Let X and Y be two random variables

with corresponding cumulative distribution functions FX(·) and FY (·). If FX(x) ≥ FY (x) for all

x ∈ (−∞,∞), then X is said to be smaller than Y in the usual stochastic ordering (denoted by

X ≤st Y ).

Definition 2.2. (Di Crescenzo (1999)). Let X and Y be two non-negative random variables with

X ≤st Y and E[X] < E[Y ] < ∞. Then, we write Z ≡ Ψ(X,Y ) to mean that Z is a random

variable with probability density function

fZ(x) =
FX(x)− FY (x)

E[Y ]− E[X]
, x ≥ 0, (2.3)
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where FX(·) and FY (·) are the cumulative distribution functions of X and Y , respectively.

Di Crescenzo (1999) shows that fZ(x) is a probability density function.

Lemma 2.1. (Theorem 4.1 of Di Crescenzo (1999)) Let X and Y be two non-negative random

variables satisfying X ≤st Y and E[X] < E[Y ] < ∞, and let Z = Ψ(X,Y ). Let also g be

a measurable and differentiable function such that E[g(X)] and E[g(Y )] are finite, and let its

derivative g′ be measurable and Riemann-integrable on the interval [x, y] for all 0 ≤ x ≤ y. Then,

E
[
g′(Z)

]
is finite and

E[g(Y )]− E[g(X)] = E[g′(Z)]
(
E[Y ]− E[X]

)
.

Lemma 2.1 presents a probabilistic analogue of the mean value theorem, where Z is a random

variable that can be considered as the “mean value” of X and Y . However, unlike for the (deter-

ministic) mean value theorem, Z does not change with the function g, and Z = Ψ(X,Y ) is not

necessarily ordered (in some stochastic sense) between X and Y . For example, when X and Y are

exponential random variables with distinct rates, Z =st X + Y (see Example 3.1 in Di Crescenzo

(1999)).

We will use Lemma 2.1 in several of our results including our main result that compares CF ,

CPF1 and CPF2 . Before we present this result, we need two more lemmas for the comparison of

WF
i , WPFi

i , WPFi
3−i for i = 1, 2.

Lemma 2.2. (E.g., Gross et al. (2008) and Miller (1960)) For an M/G/1 queueing sysem, the

expected steady-state waiting times under FCFS and PFi are given as follows:

E[WF ] =
λξ̄

2(1− ρ)
, E[WPFi

i ] =
λξ̄

2(1− ρi)
, E[WPFi

3−i ] =
λξ̄

2(1− ρi)(1− ρ)
,

where ξ̄ = p1ξ1 + p2ξ2, and we drop the subscript in WF
i since the distribution of WF does not

depend on i.

Lemma 2.3. For fixed i = 1, 2, we have WPFi
i ≤st WF ≤st WPFi

3−i .

The order of W
PFj
i and WF for i, j ∈ {1, 2}, given in Lemma 2.3 and proved in Appendix A,

makes intuitive sense. The steady-state waiting times under FCFS are stochastically less than those
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for the non-priority type under a priority policy and greater than those for the priority type. Lemma

2.3 specifies a type of stochastic ordering between these three steady-state random variables.

Based on Lemmas 2.2 and 2.3, for i ∈ {1, 2}, we define the following random variables,

UPFii ≡ Ψ(WPFi
i ,WF ) and UPFi3−i ≡ Ψ(WF ,WPFi

3−i ).

Note that UPFij is well defined for i, j ∈ {1, 2} because WPFi
i ≤st WF ≤st WPF3−i

i according to

Lemma 2.3, and when ρ < 1 and pi > 0, we have E
[
WPFi
i

]
< E

[
WF

]
< E

[
W

PF3−i
i

]
< ∞, for

i = 1, 2 by Lemma 2.2.

Our main results are all stated under the following assumption.

Assumption 2.1. For fixed i ∈ {1, 2}, E
[∣∣Ci(W π

i )
∣∣] exists for π ∈ {F, PF1, PF2}.

We are now ready to present our main result and an immediate corollary

Theorem 2.1. Under Assumption 2.1, we have,

(a) for i = 1, 2, CF ≤ CPFi if and only if ai ≤ bi, where

ai ≡
E
[
C ′i(U

PFi
i )

]
τi

, bi ≡
E
[
C ′3−i(U

PFi
3−i )

]
τ3−i

. (2.4)

(b) CPF1 ≤ CPF2 if and only if (1− ρ1)(a2 − b2) ≤ (1− ρ2)(a1 − b1).

Corollary 2.1.

(a) If a1 ≤ b1 and a2 ≤ b2, then CF ≤ CPF1 and CF ≤ CPF2.

(b) For fixed i ∈ {1, 2}, if ai ≥ bi and

ai − bi
1− ρi

≥ a3−i − b3−i
1− ρ3−i

,

then CPFi ≤ CF and CPFi ≤ CPF3−i.

Corollary 2.1 provides necessary and sufficient conditions for the optimality of F , PF1 and PF2

within the set of these three policies. These conditions require computation of ai and bi for i = 1, 2.

We demonstrate how these computations can be performed for polynomial functions in Section 2.4

and exponential cost functions in Section 2.5.
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In order to compute ai and bi in Theorem 2.1 and Corollary 2.1, we need to obtain E
[
C ′i(U

PFj
i )

]
for i, j ∈ {1, 2}. In some situations, the cost functions may be simple for one type and complicated

for the other type. For example, we may assume that the cost function for type 2 customers is

linear or quadratic, and the cost function for type 1 customers has a more complicated structure.

In this case, we can use the next two results to order CF , CPF1 and CPF2 without computing

E
[
C ′1(U

PFj
1 )

]
, but by computing E

[
C ′2(U

PFj
i )

]
for i, j ∈ {1, 2}.

Corollary 2.2.

(a) If C ′1(t) ≥ τ1 max{a2, b1} for all t ≥ 0, then CPF1 ≤ CF ≤ CPF2.

(b) If C ′1(t) ≤ τ1 min{a2, b1} for all t ≥ 0, then CPF2 ≤ CF ≤ CPF1.

(c) If τ1a2 ≤ C ′1(t) ≤ τ1b1 for all t ≥ 0, then CF ≤ CPF1 and CF ≤ CPF2.

Corollary 2.3. If E[C ′2(UPF2
1 )] 6= 0 and E[C ′2(UPF1

1 )] 6= 0, define

α ≡ τ1E[C ′2(UPF2
2 )]

τ2E[C ′2(UPF2
1 )]

and β ≡ τ1E[C ′2(UPF1
2 )]

τ2E[C ′2(UPF1
1 )]

.

(a) If C ′1(t) ≥ max{α, β}C ′2(t) for all t ≥ 0, then CPF1 ≤ CF ≤ CPF2.

(b) If C ′1(t) ≤ min{α, β}C ′2(t) for all t ≥ 0, then CPF2 ≤ CF ≤ CPF1.

(c) If αC ′2(t) ≤ C ′1(t) ≤ βC ′2(t) for all t ≥ 0, then CF ≤ CPF1 and CF ≤ CPF2.

Corollary 2.2 compares C ′1(t) with two fixed quantities, τ1a2 and τ1b1, for all t ≥ 0. Hence

C ′1(t) has to be bounded from either above or below to be able to apply this result as in the case of

a linear or logarithmic cost function for type 1 customers. On the other hand, in Corollary 2.3, we

compare C ′1(t) with two time-varying quantities, αC ′2(t) and βC ′2(t), and hence C ′1(t) does not need

to be bounded. However, in Corollary 3, we require that E
[
C ′2(UPFi1 )

]
for i = 1, 2 be non-zero,

which is satisfied when C2(·) is a strictly increasing function. When C ′2(t) is a constant, i.e., C2(t)

is linear, it can be shown that τ1a2 = τ1b1 = αC ′2(t) = βC ′2(t), and hence, these two corollaries

reduce to one another. We will demonstrate how these two corollaries can be applied in the case

of polynomial and exponential functions in Sections 2.4 and 2.5, respectively.
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2.4 Comparison of FCFS and fixed priority policies – polynomial cost functions

In this section, we focus on the case where the cost function for at least one type of customer

is polynomial. In particular, suppose that for some i = 1, 2,

Ci(t) =

j(i)∑
l=1

hl(i)t
l, (2.5)

where j(i) is the (finite) degree of the polynomial function Ci(t), and hl(i) are some real numbers

such that C ′i(t) ≥ 0 for all t ≥ 0. We first provide conditions under which Assumption 2.1 holds

the polynomial cost functions in Lemma 2.4 (the proof is provided in Appendix A).

Lemma 2.4. Assumption 2.1 is satisfied for Ci(t) that takes the form of (2.5) if ρ < 1, and the

first (j(i) + 1) moments of service times for both types are finite.

In order to apply Theorem 2.1 and Corollaries 2.1, 2.2 and 2.3, we need to compute

E
[
C ′i(U

PFm
k )

]
for some i, k,m ∈ {1, 2}, where

E
[
C ′i(U

PFm
k )

]
=

j(i)∑
l=1

lhl(i)E

[(
UPFmk

)l−1
]
. (2.6)

Here, E

[(
UPFmk

)l−1
]

for l = 1, . . . , j(i) can be computed as

E

[(
UPFmk

)l−1
]

=
E
[
(WF )l

]
− E

[
(WPFm

k )l
]

l
(
E[WF ]− E[WPFm

k ]
) , (2.7)

by letting g(x) = xl/l in Lemma 2.1. See Appendix A for the proof of (2.6).

To demonstrate and to gain insights, in the remainder of this section, we consider polynomial

cost functions with an order of at most two.
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2.4.1 Quadratic cost functions for both customer types

Suppose that Ci(t) = kit
2 +hit, where ki, hi ≥ 0 and i ∈ {1, 2}. Let ζi denote the third moment

of the service times for type i ∈ {1, 2} and ζ̄ ≡ p1ζ1 + p2ζ2. Then, we show in Appendix A that

ai =
ki
τi

[
2ζ̄

3ξ̄
+

λξ̄

1− ρ
+

λpiξi
1− ρi

+
ξ3−i
τ3−i

]
+
hi
τi
, (2.8)

bi =
k3−i
τ3−i

[
2ζ̄

3ξ̄

(
1 +

1

1− ρi

)
+

λξ̄

1− ρ

(
1 +

1

1− ρi

)
+

ξi
τi(1− ρi)2

]
+
h3−i
τ3−i

. (2.9)

When we compare ai’s and bi’s given above, we found that for i = 1, 2,

b3−i − ai =

(
ki
τi

)[
2ζ̄

3ξ̄(1− ρ3−i)
+
λξ̄ρ3−i
1− ρ

(
1

1− ρ3−i
+

1

1− ρi

)
+λp3−iξ3−i

(
1

(1− ρ3−i)2
+

1

1− ρi
+

1

1− ρ3−i

)]
≥ 0, (2.10)

because ρ, ρ1, ρ2 < 1 and all moments of service times are non-negative. Therefore, when both cost

functions are quadratic, if ai > bi for some i = 1, 2 (and thus a3−i ≤ bi < ai ≤ b3−i), then PFi is

the best among F , PF1 and PF2 according to Corollary 2.1(b); otherwise (a1 ≤ b1 and a2 ≤ b2), F

is the best among F , PF1 and PF2 by Corollary 2.1(a). By comparing ai and bi for fixed i ∈ {1, 2},

we find that ai ≥ bi (and thus PFi is the best), if and only if

ki
τi
≥

k3−i
τ3−i

[
2−ρi
1−ρi

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λpiξi

1−ρi

)
+ ξi

τi

]
+ h3−i

τ3−i
− hi

τi[
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λpiξi

1−ρi + ξ3−i
τ3−i

] . (2.11)

Hence, using Corollary 2.1 and Equations (2.8) and (2.9), we were able to obtain a complete order

of policies F , PF1 and PF2 when cost functions are quadratic. To gain further insights, we next

consider the case that h1/τ1 = h2/τ2, e.g., when Ci(t) = kit
2 for i = 1, 2, in the remainder of this

section.

Proposition 2.1. For quadratic cost functions, when h1/τ1 = h2/τ2, the best policy among PF1,

PF2 and F is characterized as follows: PF2 is the best if k1/k2 < Aτ1/τ2, PF1 is the best if
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k1/k2 > Bτ1/τ2, and F is the best if Aτ1/τ2 ≤ k1/k2 ≤ Bτ1/τ2, where

A ≡
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2 + ξ1
τ1

2−ρ2
1−ρ2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2

)
+ ξ2

τ2

<

2−ρ1
1−ρ1

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1

)
+ ξ1

τ1

2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1 + ξ2
τ2

≡ B.

Proposition 2.1 completely characterized the best policy among F , PF1 and PF2 for quadratic

cost functions with h1/τ1 = h2/τ2. In particular, it provides thresholds on k1/k2 such that PF1 is

the best if k1/k2 is large, PF2 is the best if k1/k2 is small and F is the best if k1/k2 is medium.

Proposition 2.1 also provides some useful insights. For example, when λ → 1/τ̄ , where τ̄ =

p1τ1 + p2τ2 is the mean service time, we find that A → 1−ρ2
2−ρ2 and B → 2−ρ1

1−ρ1 , then in heavy traffic

F is preferred when k1 and k2 are not significantly different.

Figure 2.1 provides plots of lnA and lnB with respect to λ, from which we can observe the

above insights. We assume that the service times are exponentially distributed, and τ1 = 1.

Figure 2.1: Plots of A and B with respect to λ for exponential service times

From Figure 2.1, we also notice that A and B change monotonically in λ, and our next result

shows that it is not necessary always the case.
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Proposition 2.2. A decreases in λ if and only if

ξ2

τ2
− (2− ρ2)ξ1

(1− ρ2)τ1
<

p2τ2
(1−ρ2)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2 + ξ1
τ1

)
ξ̄

(1−ρ)2
+ p2ξ2

(1−ρ2)2

, (2.12)

and B increases in λ if and only if

ξ1

τ1
− (2− ρ1)ξ2

(1− ρ1)τ2
<

p1τ1
(1−ρ1)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1 + ξ2
τ2

)
ξ̄

(1−ρ)2
+ p1ξ1

(1−ρ1)2

. (2.13)

Proposition 2.2 provides conditions under which the thresholds for the optimality of these

policies monotonically change with λ. Note that the right-hand side of (2.12) and (2.13) are both

nonnegative, which then give a sufficient condition, i.e., if ξ1
τ1
> ξ2(1−ρ2)

τ2(2−ρ2) , then A decreases in λ and

if ξ1
τ1
< (2−ρ1)ξ2

(1−ρ1)τ2
, then B increases in λ. If ξ1

τ1
< ξ2(1−ρ2)

τ2(2−ρ2) , the left-hand side of (2.12) is positive

and the right-hand converges to 0 as p2 → 0, thus (2.12) may not hold for very small p2 and A

increases in λ, which means PF2 is preferred for a larger range of values of k1/k2 as λ increases.

Similarly if ξ1
τ1
> (2−ρ1)ξ2

(1−ρ1)τ2
, we notice that B decreases in λ when p1 is sufficiently small, and thus

PF1 is preferred for a larger range of values of k1/k2 as λ increases. Thus, we conclude that if the

proportion of one type of customers is sufficiently small, and the ratio of ξi/τi for the same type is

sufficiently large, then prioritizing that type becomes more preferable as λ increases.

On the other hand, if the ratios ξ1/τ1 and ξ2/τ2 are similar, e.g., when service times are i.i.d.

for all customers, then the interval (A,B) enlarges as λ increases, which indicates that F is more

preferable as the system becomes busier. However, this result is only to compare F with the fixed

priority policies, under which prioritization is always given to one type of customers irrespective of

the waiting times of customers. Under such a static priority rule, as the arrival rate increases, the

non-priority customers will wait much longer, resulting in a significant increase in waiting costs as

the cost increases at a higher rate for longer waiting. If we consider dynamic prioritization that

takes into account the waiting times of customers, then F may not perform as well as a dynamic

priority rule as we illustrate later by a numerical study in Section 2.8.

Figure 2.2 provides plots of how A and B change with respect to p1. We assume that the

service times are exponentially distributed, and τ1 = 1.
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Figure 2.2: Plots of A and B with respect to p1 for exponential service times

We notice from Figure 2.2 that when the mean service times are different, A and B do not

always change monotonically in p1. It is difficult to provide an algebraical analysis of how A and

B change with respect to pi, given that ξ̄, ζ̄, ρ and ρi all change in pi. We can first look at the

heavy traffic setting, i.e., when λ→ 1/τ̄ . We have,

lim
p1→0
λ→1/τ2

A = 0, lim
p1→0
λ→1/τ2

B = 2, lim
p1→1
λ→1/τ1

A =
1

2
, lim

p1→1
λ→1/τ1

B =∞.

In words, we would not like to prioritize type i customers if the proportion of this type is close to

one under heavy traffic; on the other hand, if the proportion of type i customers is close to 0, we

would prioritize this type is preferred if ki/τi > 2k3−i/τ3−i, and otherwise choose F under heavy

traffic.

Furthermore, if we assume that the service times are i.i.d., then, ξ̄, ζ̄, and ρ no longer depend

on pi, and only ρi will change in pi. Our next result analyzes the monotonicity of A and B in pi

under such a setting.

Proposition 2.3. When the service times are i.i.d. for all customers, A and B both increase in

p1 (and hence decrease in p2).
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Proposition 2.3 indicates that as the proportion of one type increases, giving priority to that

type is preferred for a smaller range of k1/k2 values, while prioritizing the other type is preferred

for a wider range of k1/k2 values. Intuitively, we would not like to prioritize type i customers if

their total load on the system is too large under quadratic waiting cost, since by prioritizing such

a large group, type 3 − i customers will wait much longer, resulting in a significant increase in

waiting costs. This intuition only works when service times are identical for all customers, and we

have numerical examples in Section 2.8 show that A and B do not necessarily increase in p1 when

service times are different for the two types of customers.

When the service times are i.i.d., we have, A decreases in λ and increases in p1, and B increases

in both λ and p1 from Propositions 2.2 and 2.3. Hence, we could obtain the range of values of A

and B from their monotonicity. More specifically, we have

A > lim
p1→0
λ→1/τ

A = 0, and A < lim
p1→1
λ→0

A =

2ζ
3ξ + ξ

τ

4ζ
3ξ + ξ

τ

=
2τζ + 3ξ2

4τζ + 3ξ2
,

and

B > lim
p1→0
λ→0

B =
4τζ + 3ξ2

2τζ + 3ξ2
, and B < lim

p1→1
λ→1/τ

B =∞.

In the end of this section, we compare the values of A and B under two different service

time distributions. Let Aexp[Bexp] and Adet[Bdet] denote the values of A[B] under exponential and

deterministic service times, respectively.

Proposition 2.4.

(a) Aexp ≤ Adet if and only if τ2 ≤ τ1(2− ρ2)/(1− ρ2).

(b) Bexp ≥ Bdet if and only if τ2 ≥ τ1(1− ρ1)/(2− ρ1).

Proposition 2.4 implies that if τ1
τ2
∈
(

1−ρ2
2−ρ2 ,

2−ρ1
1−ρ1

)
, then Aexp ≤ Adet < Bdet ≤ Bexp, and hence,

when the expected service times are not significantly different for the two types of customers,

F is preferable for a wider range of values of k1/k2 under exponential service times than under

deterministic service times. In other words, when service time variability is high and the two types

are not too different in terms of mean service times, we are more likely to select F since any fixed

priority policy may increase the waiting times significantly in this case. On the other hand, if one
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type is sufficiently faster to serve in the mean sense, say, τ1/τ2 > (2−ρ1)/(1−ρ1), then Aexp ≤ Adet

and Bexp ≤ Bdet, which means that under exponential service times, PF2 (prioritizing the slower

type) is preferred for a smaller range of values of k1/k2, and PF1 (prioritizing the faster type) is

preferred for a wider range of values of k1/k2 than that under deterministic service times.

2.4.2 Quadratic cost for one type and general cost for the other type

Suppose one type of customers has a quadratic cost function (say, C2(t) = k2t
2 + h2t for

h2, k2 ≥ 0), and the other type has a general cost function. In this section, we will demonstrate

how Corollaries 2.2 and 2.3 can be applied in such a case.

We first focus on Corollary 2.2. When C2(t) is a quadratic function, a2 and b1 are given by

(2.8) and (2.9), respectively, and hence we have a2 ≤ b1 from (2.10). Therefore, in Corollary 2.2,

we can replace max{a2, b1} with b1 and min{a2, b1} with a2. Furthermore, since a2 ≤ b1, we know

that the interval (τ1a2, τ1b1) is not necessarily an empty set and hence part (c) of Corollary 2.2

could be applicable. Consequently, Corollary 2.2 implies that if the smallest marginal increase in

C1(t) is at least τ1b1, then type 1 customers should be prioritized; if the largest marginal increase

in C1(t) is at most τ1a2, then type 2 customers should be prioritized; and if the marginal increase

in C1(t) lies between τ1a2 and τ1b1 at all times, then FCFS should be employed. Furthermore, by

Equations (2.8), (2.9) and (2.10), we notice that ai, bi and the difference b3−i − ai all increase in λ

for i ∈ {1, 2} since ρi, ρ3−i, 1/(1 − ρ), 1/(1 − ρi) and 1/(1 − ρ3−i) all increase in λ. This implies

that the bounds τ1a2 and τ1b1, and the length of the interval (τ1a2, τ1b1) are all increasing as λ

becomes larger. Furthermore, both a2 and b1 go to infinity as λ approaches τ̄−1. Combining this

with Corollary 2.2 leads to an important conclusion: if the marginal increase in the cost function of

one type is bounded and the other type has a quadratic cost function, then it is better to prioritize

the type with quadratic cost under heavy traffic no matter what the service time and cost parameters

are. We illustrate these observations further in Example 2.1.

Example 2.1.

(i) When C1(t) = h1t for t ≥ 0, where h1 is positive, C ′1(t) = h1 is bounded. Then, PF1 is

preferred if h1 ≥ τ1b1, PF2 is preferred if h1 ≤ τ1a2, and F is preferred otherwise. Hence,

Corollary 2.2 leads to a complete characterization of the best policy among F , PF1 and PF2
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in this case. We notice that as λ increases, PF1 becomes less preferable, the range of h1

values for which F is preferred is shifting up and becoming wider, and PF2 is also preferred

for a wider range of h1 values. Furthermore, since a2 →∞ as λ→ 1/τ̄ , PF2 is preferred for

any finite h1. This means that when type 1 customers have linear and type 2 customers have

quadratic waiting costs, prioritizing type 2 customers will reduce the cost in heavy traffic no

matter what the cost and service time parameters are.

(ii) When C1(t) = h1(eα1t − 1) for t ≥ 0 and positive constants h1 and α1, we have C ′1(t) ≥ h1α1

for all t ≥ 0, and hence CPF1 is the smallest if h1α1 ≥ τ1b1.

(iii) When C1(t) = h1 ln(t+ 1) for t ≥ 0 and positive constant h1, we have C ′1(t) ≤ h1 for all t ≥ 0,

and hence CPF2 is the smallest if h1 ≤ τ1a2. As λ → 1/τ̄ , the bound τ1a2 goes to infinity,

which indicates that PF2 is the best for any h1 under heavy traffic.

♦

We next apply Corollary 2.3 to the case where the waiting cost for type 2 customers is a

quadratic function.

Proposition 2.5. When C2(t) is a quadratic function, α and β in Corollary 2.3 are given as

α =

(
τ1

τ2

) k2

[
2ζ̄
3ξ̄

+ λξ̄(2−ρ−ρ2)
(1−ρ)(1−ρ2) + λp1ξ1(1−ρ)

ρ1(1−ρ2)

]
+ h2

k2

[
2ζ̄(2−ρ2)

3ξ̄(1−ρ2)
+ λξ̄(2−ρ2)

(1−ρ)(1−ρ2) + λp2ξ2
ρ2(1−ρ2)2

]
+ h2

,

β =

(
τ1

τ2

) k2

[
2ζ̄(2−ρ1)

3ξ̄(1−ρ1)
+ λξ̄(2−ρ1)

(1−ρ)(1−ρ1) + λp1ξ1
ρ1(1−ρ1)2

]
+ h2

k2

[
2ζ̄
3ξ̄

+ λξ̄(2−ρ−ρ1)
(1−ρ)(1−ρ1) + λp2ξ2(1−ρ)

ρ2(1−ρ1)

]
+ h2

.

Furthermore, we have the following:

(a) α < β.

(b) If (2.12) holds, then α decreases in λ, and if (2.13) holds, then β increases in λ. (When

h2 = 0, (2.12) and (2.13) are also necessary for the respective results). Furthermore,

lim
λ→1/τ̄

α =
τ1

τ2
· 1− ρ2

2− ρ2
, lim
λ→1/τ̄

β =
τ1

τ2
· 2− ρ1

1− ρ1
.
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(c) When the service times are i.i.d. for all customers, α and β both increase in p1 (and hence

decrease in p2). Additionally, we have,

lim
λ→1/τ̄
p1→0

α = 0, lim
λ→1/τ̄
p1→1

α =
τ1

2τ2
, and lim

λ→1/τ̄
p1→0

β =
2τ1

τ2
, lim
λ→1/τ̄
p1→0

β =∞.

By Proposition 2.5(a), we can replace max{α, β} with β and min{α, β} with α in Corollary 2.3.

Besides, when the service times are i.i.d., as λ increases α decreases and β increases which implies

that when the system becomes more congested, the region where F is preferred becomes larger.

Note that the conditions given by Corollary 2.3 are sufficient but not necessary. For example, PF2

is the best among three if C ′1(t) ≤ αC ′2(t) for all t, while it does not mean that PF2 is not the best

if the condition does not hold. Hence, the fact that α increases in p1 only implies that Corollary

2.3 can provide a wider range of C ′1(t)/C ′2(t) under which PF2 is the best.

We demonstrate how Corollary 2.3 could be applied for functions given in Example 2.1, and to

discuss the difference of this result from Corollary 2.2. In particular, we show that both Corollaries

2.2 and 2.3 could be useful in different situations.

Example 2.2.

(i) Let C1(t) = h1t for t ≥ 0, where h1 is positive. We compare C ′1(t) = h1 with αC ′2(t) and

βC ′2(t) for all t, where C ′2(t) = 2k2t+ h2. Since C ′1(t) is fixed and C ′2(t) is increasing without

any bound, the only possible case is that C ′1(t) ≤ αC ′2(t) for all t, which is true if and only

if h1 ≤ αh2. Hence, by applying Corollary 2.3 we have PF2 is better than F and PF1 if

h1 ≤ αh2. Hence, Corollary 2.3 provides a partial comparison of the three policies. On

the other hand for this case, Example 2.1(i) showed that Corollary 2.2 lead to a complete

characterization. (Indeed, one can show that αh2 < τ1a2.) Hence, Corollary 2.2 is more useful

for this example.

(ii) When C1(t) = h1(eα1t−1) for t ≥ 0 and positive constants h1 and α1, then C ′1(t) = h1α1e
α1t.

Since C ′1(t) is exponential and C ′2(t) is linear, C ′1(t) will be greater than C ′2(t) for sufficiently

large t, and thus the only possible case from Corollary 2.3 is that C ′1(t) ≥ βC ′2(t) for all t ≥ 0,

which is true if and only if the following condition holds (the proof is provided in Appendix
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A):


h1 ≥ h2β

α1
, if h2 ≥ 2k2

α1
,

h1 ≥ 2k2β
α2
1
e

(
h2α1
2k2
−1

)
, otherwise.

(2.14)

In this example, both Corollaries 2.2 and 2.3 provide conditions under which PF1 is the best.

Whether Corollary 2.2 or 2.3 is better depends on the system parameters.

Given we can show that τ1b1 > h2β, which bound is better depends on the order of τ1b1
α1

and

2k2β
α2
1
e

(
h2α1
2k2
−1

)
. To be more specific, Corollary 2.2 is more useful if τ1b1α1 < 2k2βe

(
h2α1
2k2
−1

)
and h2 <

2k2
α1

, and Corollary 2.3 is more useful otherwise.

(iii) When C1(t) = h1 ln(t+ 1) for t ≥ 0 and positive constant h1, we have C ′1(t) = h1/(t+ 1). As

t → ∞, we have C ′1(t) → 0 and C ′2(t) → ∞. Hence, the only possible case from Corollary

2.3 is that C ′1(t) ≤ αC ′2(t) for all t ≥ 0, which is true if and only if h1 ≤ αh2. By applying

Corollary 2.3, we find that if h1 ≤ αh2, then CPF2 is the smallest. In this example, both

Corollaries 2.2 and 2.3 provide upper bounds on h1 when PF2 is the best, and since we can

show that τ1a2 > h2α, the bound from Corollary 2.2 is better than that from Corollary 2.3.

♦

2.4.3 Linear cost for one type and general cost for the other type

Suppose that one type of customers has a linear cost function (say, C2(t) = h2t for t ≥ 0 and

h2 > 0). Then a2 = b1 = h2/τ2 and α = β = τ1/τ2. Then, Corollaries 2.2 and 2.3 reduce to the

same result:

(a) If C ′1(t) ≥ h2τ1
τ2

for all t ≥ 0, then CPF1 ≤ CF ≤ CPF2 .

(b) If C ′1(t) ≤ h2τ1
τ2

for all t ≥ 0, then CPF2 ≤ CF ≤ CPF1 .

We next observe what this result implies for three forms of C1(t):

Example 2.3. (i) When C1(t) = h1t for t ≥ 0 and positive constant h1, PF1 is preferred if

h1/τ1 ≥ h2/τ2 and PF2 is preferred otherwise. This is consistent with the well-known cµ rule,

which indicates that under linear cost functions we should give priority to the type with the

larger cµ value, where hi is ci and τi = 1/µi in our case (Cox and Smith (1961)).
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(ii) When C1(t) = h1(eα1t− 1) for t ≥ 0 and positive constants h1 and α1, CPF1 is the smallest if

h1α1/τ1 ≥ h2/τ2.

(iii) When C1(t) = h1 ln(t+ 1) for t ≥ 0 and positive constant h1, CPF2 is the smallest if h1/τ1 ≤

h2/τ2.

♦

Based on Example 3, one may wonder if F could be the best policy if one of the cost function

is linear. Indeed, in Example 1(i), we showed that F could be better if one cost is linear and the

other is quadratic (since a2 is strictly less than b1 from (2.10)).

2.4.4 Discussions

We present some important insights we gained from Section 2.4 here.

We first show that the average waiting cost is bounded when the first n + 1 moments of the

service times exist and ρ < 1 for if Ci(·) has a polynomial form with n degree.

When both cost functions are quadratic, we can completely characterize the best policy among

F , PF1 and PF2 in terms of the first three moments of the service times and the linear and

quadratic term coefficients of the two types. When the quadratic term coefficients are both zero,

i.e., both functions are linear, only the mean service times and the linear coefficients will affect the

characterization, and the best policy could always be in one of the two priority policies, i.e., F is

never the unique best policy. On the other hand, when the linear term coefficients are both zero,

the complete characterization compares k1/k2 with two threshold values, which are computed by

the first three moments of the service times. F is the unique best policy when k1/k2 lies between the

two threshold values. A priority policy is the best when the quadratic coefficients are significantly

different and the priority should be given to the type with larger quadratic coefficient. However,

this does not mean that F is the best when the difference between the quadratic coefficients are

insignificant. For example, if the quadratic coefficients are the same, then PFi is the best if

τ3−i >
τi(2−ρi)

1−ρi and ξ3−i > ξi, i.e., priority should be given to the type with sufficiently small mean

service times and smaller second moment of service times.

Service time distributions affect the selection of the best policy since the threshold values

depend on the first three moments of the service time distributions. If the mean service times are
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not significantly different, F is more preferable under exponential service distribution as opposed

to deterministic service distribution, since larger variability will increase the risk of prioritization.

However, if one type is sufficiently faster to serve than the other type, then with larger service

variability, prioritizing the faster type is more preferable, while prioritizing the slower type is less

preferable.

Assume service times are identical for all customers so that we can focus on how other system

parameters, such as the arrival rate and the proportion of each type, affect the best policy. We

find that as the system becomes more congested, both priority policies are preferred for a smaller

range of parameters while F becomes more preferable. As the proportion of one type of customers

increases, prioritizing this type becomes less preferable.

Corollaries 2.2 and 2.3 both provide sufficient conditions to select the best policy. When

applying these two results to the case when the cost function for one type of customers is quadratic,

the interval of parameters when F is the unique best policy always exists from both corollaries

when the quadratic coefficient is strictly positive, while when the quadratic term is zero, the two

corollaries reduce to one another, from which we could not obtain sufficient conditions under which

F is the unique best. When the service times are i.i.d. for all customers and as the system becomes

more congested, both corollaries provide a larger range of parameters for F to be preferred, while

the two priority policies are less preferred. As the proportion of one type of customers increases,

both corollaries provide a smaller range of parameters for which prioritizing that type of customer

are preferred. We compare the bounds provided by the two results and find that in some cases

Corollary 2.2 would provide a better bound, while there are also situations when the specific

parameters determines which one is better.

2.5 Comparison of FCFS and fixed priority policies – exponential convex cost functions

In this section, we focus on the case where the cost function for type i customers has the

following form:

Ci(t) = ki(e
hit − 1), for t ≥ 0 (2.15)
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where ki, hi ≥ 0 for some i ∈ {1, 2}. For Assumption 2.1 to hold for an exponential cost function

of the form 2.15, we need W̃ π
i (−hi) exists for π ∈ {PF1, PF2, F}, where W̃ π

i (s) denote the LST of

W π
i . In the remainder, we first assume that Assumption 2.1 holds for both types, and later in the

section we illustrate how to find the bound of hi in the example of i.i.d. exponential service times.

2.5.1 General service time distributions

For i = 1, 2, let S̃i(s) denote the LST of the service time distribution for type i customers, and

S̃(s) ≡ p1S̃1(s)+p2S̃2(s). We first compute E
[
C ′i(U

PFm
j )

]
for some i, j,m ∈ {1, 2} before applying

the results from Section 2.3. For i = 1, 2, we have,

E
[
C ′i(U

PFm
j )

]
= kihiŨ

PFm
j (−hi), (2.16)

where ŨPFmj denotes the LST of UPFmj for j,m ∈ {1, 2}, which can be computed by letting g(x) =

−e−sx/s in Lemma 2.1 as

ŨPFmj (s) = E
[
g′
(
UPFmj (s)

)]
=

W̃PFm
j (s)− W̃F (s)

s
(
E[WF ]− E[WPFm

j ]
) ,

under Assumption 2.1. Then, under Assumption 2.1, we have for i = 1, 2,

E
[
C ′i(U

PFj
j )

]
=

2ki(1− ρj)(1− ρ)
(

1− S̃3−j(−hi)
) [
ρhi + λ

(
1− S̃(−hi)

)]
λξ̄τ3−j

(
−hi − λ+ λS̃(−hi)

)(
−hi − λpj + λpjS̃j(−hi)

) , (2.17)

E
[
C ′i(U

PF3−j
j )

]
=

2ki(1− ρ3−j)(1− ρ)2
[
−hi

(
1− S̃ (f3−j(−hi))

)
− f3−j(−hi)

(
1− S̃(−hi)

)]
λξ̄p3−jτ3−j

[
−hi − λ+ λS̃(−hi)

] [
f3−j(−hi)− λ+ λS̃ (f3−j(−hi))

] , (2.18)

where f3−j(s) = λp3−j(1 − B3−j(s)) + s. (The derivation of Equations (2.17) and (2.18) are given in

Appendix.)

If the cost functions for both types are of the form 2.15 with parameters ki and hi for i = 1, 2, we

can apply Theorem 2.1 and Corollary 2.1 to characterize the best policy among PF1, PF2 and F . For

i = 1, 2, we can obtain ai and b3−i in Theorem 2.1 and Corollaries 2.1 and 2.2 by plugging E
[
C ′i(U

PFi
i )

]
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and E
[
C ′i(U

PF3−i
i )

]
from (2.17) and (2.18):

ai =
2ki(1− ρi)(1− ρ)

(
1− S̃3−i(−hi)

) [
ρhi + λ

(
1− S̃(−hi)

)]
λξ̄τ3−iτi

(
−hi − λ+ λS̃(−hi)

)(
−hi − λpi + λpiS̃i(−hi)

) ,

b3−i =
2ki(1− ρ3−i)(1− ρ)2

[
−hi

(
1− S̃ (f3−j(−hi))

)
− f3−j(−hi)

(
1− S̃(−hi)

)]
λξ̄p3−iτ3−iτi

[
−hi − λ+ λS̃(−hi)

] [
f3−j(−hi)− λ+ λS̃ (f3−j(−hi))

] .

If we assume only the cost function for type 2 customers has the convex exponential form, then we can

apply Corollary 2.3 and compute α and β as:

α =
p2

(
1− S̃1(−h2)

) [
ρh2 + λ

(
1− S̃(−h2)

)] [
f2(−h2)− λ+ λS̃ (f2(−h2))

]
(1− ρ)

(
−h2 − λp2 + λp2S̃2(−h2)

) [
−h2

(
1− S̃ (f2(−h2))

)
− f2(−h2)

(
1− S̃(−h2)

)] ,
β =

(1− ρ)
(
−h2 − λp1 + λp1S̃1(−h2)

) [
−h2

(
1− S̃ (f1(−h2))

)
− f1(−h2)

(
1− S̃(−h2)

)]
p1

(
1− S̃2(−h2)

) [
ρh1 + λ

(
1− S̃(−h2)

)] [
f1(−h2)− λ+ λS̃ (f1(−h2))

] .

To simplify these expressions and gain some insights, we next consider the case when the service times are

i.i.d. with exponential distribution with mean τ for all customers.

2.5.2 Exponential service times with identical rates for both types

Under the assumption that all service times are i.i.d. exponentially distributed with mean τ , we have

S̃i(s) = S̃(s) = µ/(µ+ s) for s > −µ and i = 1, 2, where µ = 1/τ , and ξ̄τ2 = 2/µ4. Then, from Lemma A.2

in Appendix A, we have

W̃PFi
i (s) =

1− ρ+ λp3−i
µ+s

1− λpi
µ+s

=
(1− ρ)(µ+ s) + λp3−i

µ+ s− λpi
, (2.19)

W̃F (s) =
1− ρ

1− λ
s

(
1− S̃(s)

) =
1− ρ

1− λ
µ+s

=
(1− ρ)(µ+ s)

µ+ s− λ
, (2.20)

W̃PFi
3−i (s) = W̃F

(
λpi(1−Bi(s)) + s

)
. (2.21)

where Bi(s) =
(
µ+ s+ λpi −

√
(µ+ s+ λpi)2 − 4λpiµ

)
/(2λpi). Note, although the LSTs W̃π

i in Lemma

A.2, and hence (2.19), (2.20) and (2.21) are given for s > 0, these expressions should also hold for certain

negative values of s. Next, we look at the upper bounds on hi > 0 that could ensure W̃π
i (−hi) exist.
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Proposition 2.6. When the service times are identical exponentially distributed, W̃π
i (−hi) exists (and hence

Assumption 2.1 holds for type i) if


hi ≤ µ(1−√ρ3−i)

2 if pi ≤ 1− ρ,

hi < µpi(1− ρ), otherwise.

(2.22)

As ρ increases, the upper bound decreases. When ρ → 1, the upper bound on hi goes to 0. Under heavy

traffic, the expected cost for type i customers would be finite only for very small values of hi when Ci(t) has

the form of (2.15).

When both cost functions are of the form (2.15), and W̃π
i exists for both i ∈ {1, 2}, we have,

ai =
2ki(1− ρi)(1− ρ)

(
−hi
µ−hi

) [
ρhi + −λhi

µ−hi

]
λξ̄τ3−iτi

(
−hi − −λhiµ−hi

)(
−hi − −λpihiµ−hi

) =
µ4ki(1− ρi)(1− ρ)

(
1

µ−hi

) [
− 1
µ + 1

µ−hi

]
(

1− λ
µ−hi

)(
1− λpi

µ−hi

)
=

µ3ki(1− ρi)(1− ρ)hi
(µ− hi − λ) (µ− hi − λpi)

,

and

b3−i =
2ki(1− ρ3−i)(1− ρ)2

[
−hi

(
f3−i(−hi)

µ+f3−i(−hi)

)
− f3−i(−hi)

(
−hi
µ−hi

)]
λξ̄p3−iτ3−iτi

[
f3−i(−hi)− λ

(
f3−i(−hi)

µ+f3−i(−hi)

)] [
−hi − λ

(
−hi
µ−hi

)]
=
µ4ki(1− ρ3−i)(1− ρ)2(−hi − f3−i(−hi))
λp3−i (µ+ f3−i(−hi)− λ) (µ− hi − λ)

=
µ4ki(1− ρ3−i)(1− ρ)2(B3−i(−hi)− 1)

(µ− λ− hi − λp3−i(B3−i(−hi)− 1)) (µ− hi − λ)
.

=
µ4ki(1− ρ3−i)(1− ρ)2(

µ−hi−λ
B3−i(−hi)−1 − λp3−i

)
(µ− hi − λ)

.

ai and b3−i are both positive when h2 satisfies Proposition 2.6. The complicated expression of B3−i(−hi)

makes it difficult to compare the values of ai and b3−i analytically. Then, we conduct a numerical comparison

of a2 and b1 where we set µ = 1, and we fixed the value of h2 to satisfy the conditions in Proposition 2.6

for all possible values of p2 and ρ (h2 = 0.0028). We plot the values of a2 and b1 with respect to ρ and p2,

respectively.
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Figure 2.3: Plots of a2 and b1 with respect to ρ and p2

Although we only provide plots of a2 and b1 above, the plots for a1 and b2 will be symmetric with respect

to p1 and ρ and h1. From the plots, we find that ai ≤ b3−i, and they both increases as ρ increases, and ai

increases and b3−i decreases as pi increases. The next plot shows how a2 and b1 changes in h2, where we

fixed p1 = p2 = 0.5.

Figure 2.4: Plots of a2 and b1 with respect to h2

With the facts that plots of a1 and b2 are symmetric with Figure 2.4, we find that as hi goes to the

upper bound given in Proposition 2.6, ai is finite and b3−i goes to infinity. Hence, if hi is close to the upper

bound, then a3−i ≤ b3−i, and hence PF3−i will be dominated by F from Theorem 2.1 (a). The intuition

behind this result is that if type i customers have an exponential cost function with parameters near the

upper bound, then prioritize type 3 − i will make type i customers wait longer and hence is worse than F .

If both h1 and h2 are close to their bounds, then F will be the best policy of the three from Theorem 2.1.
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From Corollary 2.2, when type 2 has the exponential convex form we can compute α and β as follows:

α =
p2

(
1− S̃1(−h2)

) [
ρh2 + λ

(
1− S̃(−h2)

)] [
f2(−h2)− λ+ λS̃ (f2(−h2))

]
(1− ρ)

(
−h2 − λp2 + λp2S̃2(−h2)

) [
−h2

(
1− S̃ (f2(−h2))

)
− f2(−h2)

(
1− S̃(−h2)

)]
=

p2
−h2

µ−h2

[
ρh2 + λ −h2

µ−h2

] [
f2(−h2)− λ f2(−h2)

µ+f2(−h2)

]
(1− ρ)

(
−h2 − λp2

−h2

µ−h2

) [
−h2

f2(−h2)
µ+f2(−h2) − f2(−h2) −h2

µ−h2

]
=

p2ρh2 [µ+ f2(−h2)− λ]

(1− ρ) (µ− h2 − λp2) (−h2 − f2(−h2))

=
p2ρh2 [µ− λ− h2 − λp2(B2(−h2)− 1)]

(1− ρ) (µ− h2 − λp2)λp2(B2(−h2)− 1)
=

h2

[
µ−λ−h2

B2(−h2)−1 − λp2

]
µ(1− ρ) (µ− h2 − λp2)

,

and similarly,

β =
µ(1− ρ) (µ− h2 − λp1)

h2

[
µ−λ−h2

B1(−h2)−1 − λp1

] .

When computing α and β, we assume h2 is such that W̃PF2
1 (−h2) and W̃PF1

2 (−h2) exist. Then, from

Proposition 2.6 we can obtain the bound on h2.

2.6 Convex cost functions

In this section, we focus on convex C1(·) and C2(·). (Throughout the paper, we use convexity/concavity

in the nonstrict sense.) We first state a result that shows it is sufficient to only compare F and PFi if Ci(·)

is a convex function for both i = 1, 2. Here, let L denotes last come first serve (LCFS) and PLi denotes the

priority policy that prioritizes type i customers and employs LCFS within each type for i = 1, 2.

Let ΠNP denote the set of non-idling and non-preemptive queueing policies that only depend on the order

of arrival of customers but not on their type, and let ΠPi denote the set of non-idling and non-preemptive

priority policies that prioritize type i customers for i = 1, 2. Note that Π = ΠNP ∪ΠP1 ∪ΠP2 .

Proposition 2.7. If C1(t) and C2(t) are both convex functions, then

(a) CF ≤ Cπ ≤ CL for any π ∈ ΠNP;

(b) CPFi ≤ Cπ ≤ CPLi for any π ∈ ΠPi and fixed i = 1, 2.

Proposition 2.7 imply that when the cost functions for both types are convex, it is sufficient to consider

Πcx, instead of Π. Part (a) of Proposition 2.7 follows directly from Theorem 2 in Vasicek (1977). The first

inequality in part (b) follows from Theorem 1 in Haji and Newell (1971). One can use the same argument

used in the proof of Theorem 1 in Haji and Newell (1971) to prove the second inequality in part (b) of

Proposition 2.7.
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In Corollary 2.3, we use “max{α, β}” and “min{α, β}” since we do not know their order under general

settings. However, when the service times are identical for both types of customers we have the following

result.

Proposition 2.8. Suppose the service times are i.i.d. for both types of customers and C2(·) is convex, then

α ≤ 1 ≤ β.

2.7 Concave cost functions

If C1(·) and C2(·) are both concave, then we can have the following result.

Corollary 2.4. If C1(t) and C2(t) are both concave functions, then the inequalities in Proposition 2.7 hold

in the opposite direction.

Corollary 2.4 follows from Proposition 2.7 using the fact that if Ci(t) is concave for i = 1, 2, then −Ci(t)

is convex.

2.7.1 Comparison of LCFS and fixed priority policies

The order of service within each type of customer will not affect the expected waiting time, and hence

we have E[WL] = E[WF ] and E[WPLi
j ] = E[WPFi

j ] for i, j ∈ {1, 2}, where the expectations have been given

in Lemma 2.2.

Lemma 2.5. For fixed i = 1, 2, WPLi
i ≤st WL ≤st WPLi

3−i .

Then, the following random variables are well-defined based on Lemma 2.5.

UPLii ≡ Ψ(WPLi
i ,WL), UPLi3−i ≡ Ψ(WL,WPLi

3−i ).

Then, we obtain similar results as Proposition 2.1 by comparing policies in Πcv = {L,PL1, PL2}.

Theorem 2.2.

(a) For i = 1, 2, CL ≤ CPLi if and only if aLi ≤ bLi where

aLi =
E
[
C ′i(U

PLi
i )

]
τi

, bLi =
E
[
C ′3−i(U

PLi
3−i )

]
τ3−i

. (2.23)

(b) CPL1 ≤ CPL2 if and only if (1− ρ1)(aL2 − bL2 ) ≤ (1− ρ2)(aL1 − bL1 ).

Corollary 2.5.
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(a) If C ′1(t) ≥ τ1 max{aL2 , bL1 } for all t ≥ 0, then CPL1
≤ CL ≤ CPL2

.

(b) If C ′1(t) ≤ τ1 min{aL2 , bL1 } for all t ≥ 0, then CPL2
≤ CL ≤ CPL1

.

(c) If τ1a
L
2 ≤ C ′1(t) ≤ τ1bL1 for all t ≥ 0, then CL ≤ CPL1 and CL ≤ CPL2

Corollary 2.6. If E[C ′2(UPL2
1 )] 6= 0 and E[C ′2(UPL1

1 )] 6= 0, define

αL ≡ τ1E[C ′2(UPL2
2 )]

τ2E[C ′2(UPL2
1 )]

and βL ≡ τ1E[C ′2(UPL1
2 )]

τ2E[C ′2(UPL1
1 )]

.

(a) If C ′1(t) ≥ max{αL, βL}C ′2(t) for all t ≥ 0, then CPL1
≤ CL ≤ CPL2

.

(b) If C ′1(t) ≤ min{αL, βL}C ′2(t) for all t ≥ 0, then CPL2
≤ CL ≤ CPL1

.

(c) If αLC ′2(t) ≤ C ′1(t) ≤ βLC ′2(t) for all t ≥ 0, then CL ≤ CPL1 and CL ≤ CPL2 .

Proposition 2.9. Suppose the service times are i.i.d. for both types of customers and C2(·) is concave, then

αL ≥ 1 ≥ βL.

The proofs of the above results are similar to Proposition 2.1 and Corollary 2.3, and hence are omitted.

2.7.2 Waiting time LSTs

Before we apply results from the previous section to compare CPL1
, CPL2

and CL, we first establish the

LST of the waiting times under policy L and PLi. As far as we know, the LST under PLi has not been

studied in literature.

We assume the LST of the service time distribution for type i customers is S̃i(s) for i = 1, 2, and let

S̃(s) = p1S̃1(s) + p2S̃2(s) be the LST of the general service time.

We define a “busy period” of the M/G/1 queue as the time until the server becomes idle for the first

time, starting when one customer enters an empty system. Then, according to Wishart (1960), when ρ < 1,

the LST of the busy period, denoted by B(s), is given by the unique solution to

B(s) = S̃
(
s+ λ− λB(s)

)
.

The LST of the steady-state waiting times in an M/G/1 queue under LCFS policy, denoted by W̃L(s), can

be obtained as follows.

Lemma 2.6. (E.g., Wishart (1960)) In an M/G/1 queueing sysem with LCFS queueing discipline, the LST

of steady-state waiting times is given by

W̃L(s) = 1− ρ+
λ− λB(s)

s+ λ− λB(s)
. (2.24)
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Let Bi(s) denote the busy period of the M/G/1 queue with only type i arrivals, which is given by the

unique solution to

Bi(s) = S̃i
(
s+ λpi − λpiBi(s)

)
.

Then, we will compute W̃PLi
i (s) and W̃PLi

3−i (s), which is the respective LST of WPLi
i (s) and WPLi

i (s), for

i ∈ {1, 2}.

Lemma 2.7. In an M/G/1 queue under queueing discipline PLi, the LST of the waiting time for type i

customers is given by

W̃PLi
i = 1− ρ+

λ
[
1− S̃(s+ λpi − λpiBi(s))

]
s+ λpi − λpiBi(s)

,

and the LST of the waiting time for type 3− i customers is given by

W̃PLi
3−i =

(1− ρ)(s+ λ− λB(s)) + λp3−i

[
1− S̃3−i(s+ λ− λB(s))

]
s+ λ− λB(s)− λpi

[
1− S̃i(s+ λ− λB(s))

] .

The proof of Lemma 2.7 is given in Appendix A.

Letting g(x) = −e−sx/s for some real s in Lemma 2.1 we have, the LST of U
PLj
i , denoted by Ũ

PLj
i can

be computed as

Ũ
PLj
i (s) = E

[
g′
(
U
PLj
i (s)

)]
=

W̃
PLj
i (s)− W̃L(s)

s
(
E [WL]− E

[
W

PLj
i

]) .
With the knowledge of Ũ

PLj
i (s), we can compute aLi and bLi under certain cost functions. We will

analyze a special form of function in Section 2.7.3.

2.7.3 Exponential cost function

We assume that C2(t) = α2(1− e−h2t) for α2 > 0 and h2 > 0, then C ′2(t) = α2h2e
−h2t. Then we apply

results from Section 2.7.1 to compare CPL1
, CPL2

and CL. First, we compute aL2 and bL1 as

aL2 =
1

τ2
E
[
C ′2

(
UPL2

2

)]
=
α2h2

τ2
ŨPL2

2 (h2), bL1 =
1

τ2
E
[
C ′2

(
UPL1

2

)]
=
α2h2

τ2
ŨPL1

2 (h2).

Applying Corollary 2.5, we can order CPL1
, CPL2

and CL by comparing C ′1(t) with a2 and b1. Next we

consider the special case when the service times for both types of customers are exponentially distributed with

mean τ , to obtain close-form expressions for a2 and b1. In this case, S̃1(s) = S̃2(s) = S̃(s) = τ−1/(τ−1 + s),
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and hence

Bi(s) =
τ−1

τ−1 + s+ λpi − λpiBi(s)
⇔ s+ λpi − λpiBi(s) =

τ−1

Bi(s)
− τ−1 =

1−Bi(s)
τBi(s)

.

Then,

W̃PLi
i = 1− ρ+

λ[1−Bi(s)]
[1−Bi(s)]/[τBi(s)]

= 1− ρ+ ρBi(s),

and similarly, s+ λ− λB(s) = [1−B(s)]/[τB(s)], and hence

W̃PLi
3−i =

(1− ρ)[1−B(s)]/[τB(s)] + λp3−i [1−B(s)]

[1−B(s)]/[τB(s)]− λpi [1−B(s)]
=

1− ρ+ ρ3−iB(s)

1− ρiB(s)

=
1− ρ+ ρB(s)− ρiB(s)

1− ρiB(s)
= 1− ρ

(
1−B(s)

1− ρiB(s)

)
,

and

W̃L(s) = 1− ρ+
λ[1−B(s)]

[1−B(s)]/[τB(s)]
= 1− ρ+ ρB(s).

where Bi(s) =
(

1 + τs+ ρi −
√

(1 + τs+ ρi)2 − 4ρi

)
/ (2ρi)

and B(s) =
(

1 + τs+ ρ−
√

(1 + τs+ ρ)2 − 4ρ
)
/(2ρ).

Then,

W̃PLi
i (s)− W̃L(s) = ρ[Bi(s)−B(s)],

W̃L(s)− W̃PLi
3−i (s) = ρ[1−B(s)]

[
1

1− ρiB(s)
− 1

]
=
ρiρB(s)[1−B(s)]

1− ρiB(s)

Then,

aL2 =

(
α2h2

τ

) W̃PL2
2 (h2)− W̃L(h2)

h2

(
E [WL]− E

[
WPL2

2

])
 =

(
α2(1− ρ2)(1− ρ)

p1λτ3

)
[B2(s)−B(s)],

bL1 =

(
α2h2

τ

) W̃L(h2)− W̃PL1
2 (h2)

h2

(
E
[
WPL1

2

]
− E [WL]

)
 =

(
α2(1− ρ1)(1− ρ)

p1λτ3

)(
ρ1B(s)[1−B(s)]

1− ρ1B(s)

)
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We can also apply Corollary 2.6 and compute αL and βL as:

αL =

(
p2

p1

)(
[B2(h2)−B(h2)] [1− ρ2B(h2)]

ρ2B(h2)[1−B(h2)]

)
=

[B2(h2)−B(h2)] [1− ρ2B(h2)]

ρ1B(h2)[1−B(h2)]
,

βL =

(
p2

p1

)(
ρ1B(h2)[1−B(h2)]

[B1(h2)−B(h2)] [1− ρ1B(h2)]

)
=

ρ2B(h2)[1−B(h2)]

[B1(h2)−B(h2)][1− ρ1B(h2)]
.

2.8 Simulation results

We conduct a simulation study to compare the performances of the optimal policies within Π with

the performance of applying the generalized cµ rule under different cost functions. We have the analytic

expressions in the previous sections for the long-run average cost of policies in Πcx and Πcv, and we use

simulation to obtain a 95% confidence interval on the long-run average cost of the generalized cµ rule.

We use Arena13 simulation software, in which we run 10 replications of each simulation with simulating

time 50000 minutes and truncated the first 5000 minutes based on a warm-up period analysis. We consider

the arrival process is a Poisson process with rate λ ∈ {0.3, 0.7, 0.9}, the proportion of type 1 patients

p1 ∈ {0.1, 0.5, 0.9}. We assume the service times are exponentially distributed, and we first consider the

scenarios that all customers have the same service rates, and then we consider the scenarios when service

rates are different for different types.

We consider two types of cost functions. First we consider convex cost functions in quadratic form,

where we assume that C1(t) = kt2 and C2(t) = t2 for different values of k, and then we consider concave cost

functions in exponential form, where we assume that C1(t) = h(1 − e−t) and C2(t) = 1 − e−t for different

values of h.

2.8.1 Same service rates

We consider an M/M/1 queue with the same mean service time τ = 1 for both types.

2.8.1.1 Quadratic cost functions

We consider 27 different scenarios generated by all combinations of λ ∈ {0.3, 0.7, 0.9}, p1 ∈ {0.1, 0.5, 0.9}

and k ∈ {0.1, 0.9, 5}. From Proposition 2.1, we can compute the values of A and B for each combination of

λ and p1 as follows.
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Table 2.1: The threshold values (A and B) to characterize the best policy among F, PF1 and PF2.

λ 0.3 0.7 0.9

p1 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

A 0.532 0.580 0.620 0.307 0.450 0.546 0.169 0.375 0.500

B 1.612 1.725 1.880 1.831 2.223 3.255 2.000 2.664 5.918

We choose the policy with the smallest cost among PF1, PF2 and FCFS, which can be achieved by

comparing the value of k with A and B. To be more specific, PF2 has the smallest cost if k < A; PF1 has

the smallest cost if k > B and F has the smallest cost if A < k < B. We find that for all combinations of λ

and p1, PF2 is the best policy when k = 0.1 and F is the best when k = 0.9. When k = 6, PF1 is the best

when λ takes values 0.3 and 0.7 and F is the best when λ = 0.9 (as we have illustrated in Section 2.4.1 that

F becomes more preferable as λ increases). Next, we compare the smallest cost from the three static policies

with the cost of the generalized cµ rule, which can be obtained from the simulation. In the comparison, if

the confidence intervals of the generalized cµ rule does not contain the value of the cost of the best static

policy, then we confirmed that there is a statistical difference between these two policies at a significance

level of 95% and the difference is in favor of the policy with the smaller performance.

Table 2.2: Compare the best static policy with G-cµ rule under quadratic cost

The generalized cµ rule is asymptotically optimal under heavy traffic. From Table 2.2, we find that the

differences between the best static policy we derived and the generalized cµ rule are statistically insignificant

in most scenarios. We noticed that when the traffic intensity is high, the proportion of the priority group is

large and the difference in costs between two types of customers are large, the generalized cµ rule performs
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significantly better than the best statical policy. We also observe that there is one scenario that the best

static policy performs significantly better than the generalized cµ rule when the traffic intensity is not high.

When p1 = 0.9 and k = 5, we find that the best static policy changes from PF1 to F as λ increases

from 0.7 to 0.9, which verifies the fact that we incline to employ F rather than a static priority policy under

heavy traffic. However, F is not performing as well as the dynamic priority policy in this scenario.

2.8.1.2 Exponential cost functions

We use the same model as the previous section with different cost functions. By computing the value of

parameters in Corollary 2.6, we find that when h = 5, PL1 is the best policy in Π, when h = 0.9, LCFS is

the best policy in Π and when h = 0.1, PL2 is the best policy in Π. We computed the cost for these three

static policies numerically, then compare the cost of the best static policy with the 95% confidence interval

of the cost of the generalized cµ rule conducted by simulation. As shown in Table 2.3, under most scenarios

the performance difference of the best static policy and the generalized cµ rule is insignificant at level 0.05.

There are four scenarios when there is a significant difference, which happens when systems have medium or

high traffic intensity and when the proportion of the priority group is medium or large. Even though there

is a significant difference in these scenarios, we can see that the difference is less than 3% for all scenarios.

Table 2.3: Compare the best static policy with G-cµ rule under exponential cost (10−2)
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2.8.2 Different service rates

In this section, we assume that the service times are exponentially distributed with different rates.

Assume the service rate for type 2 customers is 1, and for type 1 customers is τ . We consider the system

traffic ρ ∈ {0.3, 0.7, 0.9} and type 1 proportion p1 ∈ {0.1, 0.5, 0.9}, and then computed λ = ρ/(p1τ + 1− p1)

for each scenario. Note that for fixed p1 and τ , the change of ρ can only be resulted by changing λ.

2.8.2.1 Quadratic cost functions

We consider τ = 5 and τ = 0.2, and for each case we first compute the values of A and B from Proposition

2.1 to determine the smallest cost obtained from the three policies PF1, PF2 and F , then we compare the

smallest cost with the cost of the generalized cµ rule obtained from the simulation.

When τ = 5 and τ = 0.2, the values of A and B are computed and shown in Table 2.4.

Table 2.4: The threshold values (A and B) for different service rates.

τ = 5 τ = 0.2

ρ p1 A B A B

0.1 0.805 2.558 0.375 1.260

0.3 0.5 0.791 2.618 0.382 1.265

0.9 0.794 2.670 0.391 1.242

0.1 0.508 2.551 0.238 1.592

0.7 0.5 0.606 3.470 0.288 1.651

0.9 0.628 4.202 0.392 1.970

0.1 0.347 2.560 0.107 1.852

0.9 0.5 0.506 5.000 0.200 1.975

0.9 0.540 9.313 0.391 2.880

We find that when the service rates are different, A is not always decreasing in λ (see the case τ = 0.2

and p1 = 0.9) and B is not always increasing in λ (see the case τ = 5 and p1 = 0.1). Besides, A and B are

not necessarily increasing in p1 (e.g., when τ = 5, ρ = 0.3 or when τ = 0.2, ρ = 0.3). By the values of A and

B, we can identify the best static policy for each scenario. More specifically, we compare k with the values

of Aτ and Bτ , and PF2 is the best if k ≤ Aτ ; PF1 is the best if k ≥ Bτ and F is the best if Aτ ≤ k ≤ Bτ .

Next, we compare the performance of the best static policy with the generalized cµ rule.

When τ = 5, we find that PF2 is the best of PF1, PF2 and F for all scenarios when k = 0.1 and k = 0.9,

and F is the best for all scenarios when k = 5.
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Table 2.5: Compare the best static policy with G-cµ rule under quadratic costs with τ = 5

When τ = 0.2, we find that F is the best for all scenarios when k = 0.1 and PF1 is the best for all

scenarios when k = 0.9 and k = 5.

Table 2.6: Compare the best static policy with G-cµ rule under quadratic costs with τ = 0.2

2.9 Conclusions

When the waiting costs are nonlinear functions, the optimal queueing policy would involve dynamically

determining the priorities of customers in the system according to the customers’ types and their waiting

times in the queue. It would be very costly to keep track of the waiting times of all customers in the system

at any decision epochs, so our problem arises that whether we can find the best static queueing discipline

which either gives priority to a certain type of customers or using no-priority policy.

We first compare the cost under F , PF1 and PF2, and demonstrate the comparisons by examples of

polynomial and exponential functions. Our results in Section 2.6 shows that when the cost functions are
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convex, then it is suffice to compare only F , PF1 and PF2 to find the best policy within Π. Similarly we

present the comparisons of L, PL1 and PL2 and show in Corollary 2.4 that if the cost functions are concave,

then the best policy within Π should be one of L, PL1 and PL2.

We conduct simulation study to verify the results and to compare the performance of the best static

policy with the generalized cµ rule. The simulations show that the best static policy performs very well

under medium and light traffic, or when the proportion of the priority group is small. The generalized

cµ rule performs worse than our best optimal policy under light traffic or under concave cost functions.

Actually the worst performance of the generalized cµ rule happens under the heavy traffic with the concave

cost functions.
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CHAPTER 3: ALLOCATION OF INTENSIVE CARE UNIT BEDS DURING
PERIODS OF HIGH DEMANDS

In this chapter, we consider a stylized, discrete-time model for an ICU in which patients’ health conditions

change over time according to a Markov chain. Patients are assumed to be in one of the two health stages,

and we would like to make admission and discharge decisions s to minimize the mortality rate.

3.1 Introduction

Efficient management of ICU beds has long been a topic of interest in practice as well as academia.

Simply put, an ICU bed is a very expensive resource and the number of available ICU beds frequently falls

short of the existing demand in many hospitals. Therefore, it is important to make the best use of these beds

via intelligent admission and discharge decisions. There is wide agreement that during times of high demand,

beds should not be given to patients who have little to benefit from intensive care treatment. However, when

it comes to choosing among patients who can potentially benefit from such treatment, there do not appear

to be easy answers. Even if one can quantify the ICU benefit at the individual patient level and there is

agreement on some utilitarian objective such as maximizing the number of survivors, it is not difficult to see

that allocating beds to those with the highest potential to benefit is not necessarily the “right” thing to do.

For example, if this potential benefit can only be realized at the expense of a long length of stay, which is

likely to prevent the use of the bed for treating other patients, then it is difficult to weigh the “benefits” with

the “costs.” In short, making patient admission and discharge decisions for a particular patient, especially

when overall demand is high, is a complex task that requires careful consideration of not only the health

condition of that particular patient in isolation but a collective assessment of the health conditions and

operational requirements of all the patients in the ICU as well as the mix of patients the ICU expects to see

in the near future. The objective of this chapter is to provide insights into this complex decision problem

using mathematical modeling and analysis.

A key factor in deciding whether or not a patient should be admitted to the ICU is the chance of

survival for the patient or more generally how much benefit the patient would likely get from being treated

in the ICU as opposed to a non-ICU setting like a general ward at the hospital. Thus, quantification of

the expected benefits (e.g., change in probability of survival or readmission) given patient health conditions,
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comorbidities, and other patient characteristics such as age, gender, etc. is essential. Many studies have

contributed to that effort (see, e.g., Sinuff et al. (2004), Shmueli and Sprung (2005), Kim et al. (2014)) and

provided some understanding as to what kind of patients would benefit most from ICU treatment. With

more research in this area, we will likely have an increasingly more precise quantification of those benefits.

The natural question then is how exactly to use this information in making ICU admission and discharge

decisions. This chapter contributes to the relatively limited but recent literature that aims to provide an

answer to this question. It is important to note that our goal in this chapter is not to develop a highly

realistic model and propose a support tool that can be used readily to make decisions but rather to develop

a stylized formulation and analyze it with the goal of providing insight into this difficult question.

While our analysis provides insights into “optimal” ICU admission/discharge decisions in general, it is

particularly relevant to situations where the ICU experiences a severely-high-demand period that lasts for a

number of weeks if not longer. Such conditions would arise for instance in case of an influenza epidemic or

pandemic, which would require a significantly increased percentage of the local population to be admitted

to ICUs within a relatively short period of time. For example, using the models of the Centers for Disease

Control, Christian et al. (2006) estimated the potential impact of a pandemic on the Ontario population

and found that over a 6-week period, the demand for ICU beds for influenza patients alone, at its peak,

would reach 171% of the existing ICU bed capacity. With such heavy demand sustained over a long period

of time, the need to develop a framework for patient triage and prioritization, which aims to “do the greatest

good for the greatest number,” is clearer. To the best of our knowledge, there is not a formally adopted

triage protocol which is meant to be used in case of an influenza epidemic or pandemic except for a protocol

developed by Christian et al. (2006) in response to a request of the steering committee of the Ontario Health

Plan. According to this protocol, arriving patients are put in one of the four triage classes. Patients classified

as “red” are given a higher priority than patients classified as “yellow” while patients in the other two classes

are typically not accepted to the ICU. The protocol also recognizes the fact that patients’ health conditions

would change over time and thus it requires reclassification of each patient at the 48th and the 120th hours

after admission. The main tool used for classification is the SOFA (Sequential Organ-Failure Assessment)

score.

In parallel with the triage protocol proposed by Christian et al. (2006), we consider a discrete-time model

in which patients who use the ICU are in one of two health stages and each patient’s health condition changes

over time. Specifically, in our model there are two Markov chains with one representing the evolution of the

patients in the ICU and one representing the evolution of the patients in the general ward. Each Markov

chain has four states corresponding to death, highly critical, critical, and survival. Death and survival states

are absorbing states and can more broadly be interpreted as “bad” and “good” outcomes, respectively,
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depending on the objective. Consequently, we assume that the system incurs a unit cost every time a

patient, regardless of whether s/he is in the ICU or in the general ward, hits the death state. There is no

reward or cost associated with any one of the other states. As soon as a patient enters the death state or

the survival state, s/he leaves the system vacating the bed s/he has been occupying. In each time period,

a patient arrives with some probability and a decision needs to be made as to whether or not to admit

the patient and/or early discharge any of the highly critical or critical patients to the general ward. The

objective is to minimize the long-run average cost, or equivalently, the long-run average number of deaths.

We first consider an extreme setting, where the ICU has a single bed. The main goal in analyzing

this hypothetical setting is to take advantage of its relatively simple mathematical formulation and develop

insights into how bed allocation decisions should be made when ICU beds are limited; however, we also

use the results of this section later in the chapter to develop a heuristic bed allocation policy, which is a

simpler alternative to the optimal policy. Our analysis of the single-bed setting reveals that the decision of

which patient to admit to the ICU depends on how much benefit the patients are expected to get from ICU

treatment and how long they are expected to stay in the ICU, and furthermore, we find that which one of

these two factors is more dominant depends on the overall demand level on the ICU. We then consider the

general setting, where the ICU has some arbitrary but finite number of ICU beds. We formulate the decision

problem as a Markov decision process (MDP) where the system state is described by a vector providing the

number of patients (among those in the ICU together with the patient who has just arrived) in each health

stage. We prove that the optimal admission/early discharge policy depends on the mix of patients currently

present in the ICU, specifically how many patients there are in each health stage. In other words, whether we

want to keep Patient A or Patient B in the ICU is not just about Patient A and B but also about all the other

patients. Specifically, we prove that the optimal policy is of threshold-type: If the number of highly critical

patients is above a particular value then we early discharge one of the highly critical patients; otherwise we

early discharge one of the critical patients. Finally, we carry out a numerical study to investigate the benefits

that one would get by using the optimal policy as opposed to simpler, state-independent alternatives, and

we find that a policy we propose in particular performs quite well.

3.2 Literature review

In the medical literature, there has been a long line of research on quantifying the benefits of ICU

care and providing empirical and mathematical support for making more sound ICU admission/discharge

decisions. Most of this work has concentrated on predicting patient mortality in the ICU, estimating the

benefits of ICU care, and more generally developing patient severity scores. We do not attempt to provide a
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thorough review of this literature here as it is extensive and is not directly related to this chapter but only

highlight a few papers as examples.

Strand and Flaatten (2008) provides a review of some of the severity scoring systems that have been

proposed and used over the years. Among these scoring systems are APACHE (Acute Physiology and Chronic

Health Evaluation) I, II, III, and IV (Zimmerman et al. (2006)), SAPS (Simplified Acute Physiology Score)

I, II, and III (Moreno et al. (2005)), and SOFA (Vincent et al. (1996)). One of the objectives behind the

development of these scoring systems is to obtain a tool that can reliably predict patient mortality, which

has been the subject of many other articles that aimed to improve upon the predictive power of the proposed

scoring systems (see, e.g., Rocker et al. (2004), Gortzis et al. (2008), and Ghassemi et al. (2014)).

A number of papers studied the benefits of ICU care and the effects of rationing beds in times of limited

availability. Sinuff et al. (2004) reviewed past studies on bed rationing and found that admission to the

ICU is associated with lower mortality. Shmueli and Sprung (2005) studied the potential survival benefit

for patients of different types and severity (measured by APACHE II score) and more recently Kim et al.

(2014) quantified the cost of ICU admission denial on a number of patient outcomes including mortality,

readmission rate, and hospital length of stay using a large data set. Kim et al. (2014) also carried out a

simulation study to test various patient admission policies and found that a threshold type policy which

takes into account the patient severity and ICU occupancy level has the potential to significantly improve

overall performance.

Studies found that delayed admission to or early discharge from ICUs, which are both common, affect

patients outcomes. For example, Chalfin et al. (2007) and Cardoso et al. (2011) studied patients immediately

admitted to ICU and those who had delayed admissions (i.e., waited longer than 6 hours for admission) and

concluded that the patients in the latter group are associated with longer length of stay and higher ICU and

hospital mortality. Wagner et al. (2013) and Kc and Terwiesch (2012) found patients were discharged more

quickly when ICU occupancy was high, and such patients were associated with increased mortality rate and

readmission probability.

In addition to Kim et al. (2014), which we have already mentioned above, a number of papers from the

operations literature developed and analyzed models with the goal of generating insights into how patient

admission and discharge decisions should be made at ICUs. Modeling the ICU as an M/M/c/c queue,

Shmueli et al. (2003) compare three different patient admission policies and find that restricting admission

to those whose expected benefit is above a certain threshold (which may or may not depend on the number

of occupied beds in the ICU) brings sizeable improvements in the expected number of survivors. Dobson

et al. (2010), on the other hand, develop a model in which patients are bumped out of (early discharged

from) the ICU and show how this model can be used to predict performance measures like the probability of

41



being bumped for a randomly chosen patient. The model assumes that each patient’s length of stay can be

observed upon arrival and when a patient needs to be bumped because of lack of beds, the patient with the

shortest remaining length of stay is bumped out of the ICU. Chan et al. (2014) develop a fluid formulation

in which service rate can be increased (which can be seen as patient early discharge) at the expense of

increased probability of readmission. The authors identify scenarios under which taking such action is and

is not helpful.

To our knowledge, within the operations literature on ICUs, the paper that is closest to our work is Chan

et al. (2012). The authors consider a discrete-time MDP in which a decision needs to be made as to which

patient to early discharge (with a cost) every time a new patient arrives for admission to the ICU. They show

that the greedy policy, which discharges the class with the smallest discharge cost, is optimal when patient

types can be ordered so that the types with smaller discharge costs have shorter expected length of stay

and provide bounds on the performance of this policy for cases when such ordering is not possible. Despite

some similarities, our formulation and analysis have some important differences. We assume that patients

can be in one of two health stages, can transition from one stage to the other during their stay, and they

eventually either die or survive. On the other hand, Chan et al. (2012) allow for multiple types of patients

whose health status can also change over time but their model does not permit a patient to return to a

state s/he has already visited. The reason why these differences are mainly important is that the analysis

of the two models leads to two different sets of results which complement each other. In particular, our

formulation allows us to push the analytical results and optimal policy characterizations further and thereby

provide deeper insights into optimal ICU admission and discharge decisions. For example, we provide a

characterization of the optimal policy not only when patients with higher benefits from ICU have shorter

length of stay but also when higher benefits can only come at the expense of longer length of stay in the

ICU.

Our analysis in this chapter can also be seen as a contribution to the classical queueing control literature

where arriving jobs are admitted or rejected according to some reward or cost criteria. More specifically,

because jobs in our model do not queue, it can be seen as a loss system (see, e.g., Örmeci et al. (2001),

Örmeci and Burnetas (2005), Ulukus et al. (2011) and references therein). Within this literature, Ulukus

et al. (2011) appears to be the closest to our work. This chapter considers a model in which the decision is

not only whether or not an arriving job should be admitted but also whether any of the jobs in service should

be terminated. This termination action can be seen as the early discharge action in our model. However,

despite this similarity, there are some important differences. First, Ulukus et al. (2011) consider a more

general form for the termination cost. However, they assume that there is no cost associated with rejecting

jobs. While this assumption would be reasonable in many service settings, that is mostly not true in our
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context since this would imply that it is better to never admit a patient than to admit and early discharge.

Second, Ulukus et al. (2011) do not allow the possibility of jobs changing types during service. There are

also important differences in the results. Just as we do in this chapter, Ulukus et al. (2011) also provide

conditions under which one of the two types should be preferred over the other at all times. However, our

formulation makes it possible for us to provide optimal policy characterizations at a more detailed level and

mathematically establish some of the numerical observations made by Ulukus et al. (2011) regarding the

threshold structure of the optimal policy.

3.3 Model Description

We consider an ICU with a capacity of b beds, where b is a finite positive integer. Patients arriving

to this system are assumed to have conditions that require treatment in an ICU. However, there is also

the option of admitting these patients to what we refer to as the general ward, where the patient may be

provided a different level of service. It is also possible that a patient who was previously admitted to the

ICU can be early discharged to the general ward in order to accommodate another patient. We assume that

the general ward has infinite bed capacity. It is important to note that we use the general ward to represent

any non-ICU care unit, which includes actual hospital wards, other hospital units, nursing homes, and any

other facility that can accommodate the patients but cannot provide an ICU-level service to the patients.

Arriving patients are assumed to be in one of two health stages with stage 1 representing a highly critical

condition and stage 2 representing a critical condition. We consider discrete time periods during which at

most one patient arrives. Let λi > 0 denote the probability that a stage i patient will arrive in each period

for i = 1, 2 and let λ̄ = 1− λ1 − λ2 denote the probability of no arrival, where we assume λ̄ is nonnegative.

During their stay, in the ICU or in the general ward, patients’ health conditions change according to a Markov

chain and they eventually either enter stage 0 or stage 3. Stage 0 represents an undesired outcome, which

might correspond to the death of the patient, or hospital readmission shortly after the patient’s discharge

(e.g., within thirty days). On the other hand, stage 3 represents an ideal outcome, such as the patient’s

survival or at least not being readmitted for a period of time long enough to count the patient’s treatment

as success. As soon as a patient hits either stage 0 or 3, the patient leaves the system vacating the bed s/he

has been occupying. We assume that the system incurs a unit cost every time a patient leaves in stage 0

while there is no cost or reward associated with other stages.

Patients currently in stage i ∈ {1, 2} can enter stage i+1 or i−1 in the next time period with probabilities

that depend on where they are being treated: ICU or general ward. A stage i patient in the ICU either

jumps to stage i + 1 with probability pi, jumps to stage i − 1 with probability qi, or stays in stage i with

probability ri = 1− pi− qi. The respective probabilities for the general ward are pGi , q
G
i and rGi . We assume
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that pi, qi, p
G
i , q

G
i are all strictly positive while ri and rGi are non-negative. The transition diagram of patient

evolution is shown in Figure 3.1.

Figure 3.1: Transition diagram of patient evolution in the ICU and general ward

In some respects, assuming that sick patients can only be in one of two health stages can be seen as

a significant simplification of reality. While it is true that it is difficult to capture the full spectrum of

patient diversity with a two-stage model, the assumption helps us capture the reality that patients’ health

conditions change over time at least in some stylized way without rendering the analysis impossibly difficult.

More importantly, the assumption can in fact be perfectly justified in some contexts because even in practice

such simplification is made to bring highly complex decision problems to a manageable level. When managing

patient demand under highly resource restrictive environments, particularly in case of epidemics and mass-

casualty events, practitioners typically choose to employ prioritization policies that keep the number of

triage classes at minimum in an effort to make the policies simpler and easier to implement. For example,

the ICU triage protocol developed by Christian et al. (2006), places patients in need of ICU treatment into

one of two priority classes based on the patients’ SOFA scores. The proposed protocol also calls for patient

reassessments recognizing the possibility that there could be changes in the patients’ health conditions.

At each time period, the decision maker needs to make the following decisions: (i) if there is an arrival,

whether the patient should be admitted to the ICU or the general ward, and (ii) which patients in the ICU

(if any) should be early discharged to the general ward regardless of whether there is a new arrival or not.

Note that if all b beds are occupied at the time a stage i patient arrives, admitting the patient will mean

early discharging at least one stage 3 − i patient to the general ward. To keep the presentation simple, we

will call both the decision of discharging an existing patient from the ICU to the general ward and admitting

a new arrival to the general ward discharge even though the latter action does not in fact correspond to a

discharge but direct admission to the general ward.

We formulate this problem as an MDP. We denote the system state by x = (x1, x2), where xi represents

the number of stage i patients. Note that any new arrival is included either in x1 or x2 since there is no need

to distinguish between new and existing patients. Since the ICU has a capacity of b and at most 1 patient
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arrives in each time period, the state space is:

S = {(x1, x2) : x1, x2 ≥ 0 and x1 + x2 ≤ b+ 1}.

The decision at each epoch can be described by action a = (a1, a2), where ai is the number of stage i

patients to be discharged. The action space is defined as A = {(a1, a2) : a1, a2 ≥ 0, and a1 + a2 ≤ b + 1}.

Then in any state (x1, x2) ∈ S, the feasible action set is

A(x1, x2) = {(a1, a2) : 0 ≤ ai ≤ xi, for i = 1, 2, and x1 + x2 − a1 − a2 ≤ b}.

Let φGi denote the probability that a patient who is discharged to the general ward in stage i will end

up in stage 0 for i = 1, 2. Then, φGi can be computed by solving the following equations

φG1 = qG1 + rG1 φ
G
1 + pG1 φ

G
2 , φ

G
2 = qG2 φ

G
1 + rG2 φ

G
2 .

Letting βGi = qGi /p
G
i for i = 1, 2, we can show that

φG1 =
βG1 + βG1 β

G
2

1 + βG1 + βG1 β
G
2

, φG2 =
βG1 β

G
2

1 + βG1 + βG1 β
G
2

. (3.1)

Similarly, for i = 1, 2, let φi denote the probability that a patient who is admitted to the ICU in stage i will

end up in stage 0 under the condition that the patient will never be early discharged to the general ward.

Then, φi can similarly be computed as

φ1 =
β1 + β1β2

1 + β1 + β1β2
, φ2 =

β1β2

1 + β1 + β1β2
. (3.2)

where βi = qi/pi for i = 1, 2.

Let c(x1, x2, a1, a2) denote the immediate expected cost of taking action (a1, a2) in state (x1, x2). The

expected cost for the patients who will occupy the ICU during the next period is equal to the expected

number of ICU patients who will transition to state 0 in the next time period, i.e., (x1−a1)q1. The expected

cost for the discharged stage i patients is aiφ
G
i since each discharged patient will end up in stage 0 with

probability φGi . Note that this second portion of the cost is the expected lump-sum cost of discharging stage

i patients, the expected cost that will eventually incur, not the immediate cost. However, for our analysis,

we can equivalently assume that this cost will incur immediately since we know that if the patient enters

state 0 eventually, this will happen within some finite time period with probability 1. The total immediate
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expected cost then can be written as

c(x1, x2, a1, a2) = a1φ
G
1 + a2φ

G
2 + q1(x1 − a1).

Let P(a1,a2)(x1, x2, y1, y2) denote the transition probability from state (x1, x2) to state (y1, y2) when ac-

tion (a1, a2) is chosen. Then, we have P(a1,a2)(x1, x2, y1, y2) = P (y1, y2|x1−a1, x2−a2), where P (y1, y2|x1, x2)

denotes the probability that given that there are x1 stage 1 patients and x2 stage 2 patients at a decision

epoch after that epoch’s action is taken, there will be y1 stage 1 patients and y2 stage 2 patients at the

beginning of the next decision epoch. Specifically,

P (y1, y2|x1, x2) = λ̄

x1∑
u=0

x1−u∑
d=0

P̄1{x1, u, d}P̄2{x2, x1 + x2 − d− y1 − y2, y1 − (x1 − u− d)}

+ λ1

x1∑
u=0

x1−u∑
d=0

P̄1{x1, u, d}P̄2{x2, x1 + x2 − d− (y1 − 1)− y2, (y1 − 1)− (x1 − u− d)}

+ λ2

x1∑
u=0

x1−u∑
d=0

P̄1{x1, u, d}P̄2{x2, x1 + x2 − d− y1 − (y2 − 1), y1 − (x1 − u− d)},

where P̄i{xi, u, d} is the probability that of the xi stage i patients, u of them will transition to stage i+ 1

and d of them will transition to stage i− 1, i.e.,

P̄i{xi, u, d} =


(
xi
u

)(
xi−u
d

)
pui q

d
i r
xi−u−d
i , for u, d ≥ 0 and u+ d ≤ xi

0, otherwise.

A policy π maps the state space S to the action space A. We use Π to denote the set of feasible

stationary discharge policies. Let Nπ(t) and NG
π (t) respectively denote the number of patients who enter

stage 0 by time t in the ICU and in the general ward. Then Jπ(x), the expected long-run average cost under

policy π given the initial state x, can be expressed as

Jπ(x) = lim
t→∞

1

t
E
[
Nπ(t) +NG

π (t)|x
]
.

Our objective is to obtain an optimal policy π∗ such that Jπ
∗
(x) ≤ Jπ(x) for any π ∈ Π and x ∈ S. Note

that this MDP is unichain with finite state and action spaces, hence the above limit exists and is independent

of the initial state x (see, e.g., Theorem 8.4.5 of Puterman (2005)). We also know that there exists a bounded
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function h(x1, x2) for (x1, x2) ∈ S and a constant g satisfying the optimality equation

h(x1, x2) + g = min
(a1,a2)∈A(x1,x2)

{
c(x1, x2, a1, a2) +

∑
(y1,y2)∈S

P(a1,a2)(x1, x2, y1, y2)h(y1, y2)
}
, (3.3)

and there exists an optimal stationary policy π∗ such that g = Jπ
∗
(x) and π∗ chooses an action that

maximizes the right-hand side of (3.3) for each (x1, x2) ∈ S.

3.4 Single-bed ICU

In this section, we consider the case where b = 1, i.e., there is a single ICU bed. The objective of this

analysis is to generate insights into situations where ICU capacity is severely limited. As we will later see in

Section 3.6, this analysis will also help us develop a simple heuristic method that can be used in the general

case, where b is any finite integer.

When b = 1, at any decision epoch there are at most two patients under consideration, the patient who

is currently occupying the bed (if there is one) and the patient who has just arrived for possible admission

(if there was an arrival). Restricting ourselves to non-idling policies, (i.e., the bed is never left empty

when there is demand), we investigate the question of which of the two patients to admit to the ICU. (An

implicit assumption here is that ICU is the preferred environment for the patients. This is a reasonable

assumption to make, but nevertheless in the next section, we identify conditions under which this is true

in our mathematical formulation.) Specifically, there are two stationary policies to compare, π̄1, the policy

that discharges the stage 1 patient and π̄2, the policy that discharges the stage 2 patient when the choice is

between a stage 1 and a stage 2 patient. Under any of the two policies, when there are two patients in the

same stage, the choice between the two is arbitrary. Let J π̄k for k ∈ {1, 2} denote the long-run average cost

under policy π̄k.

The following proposition provides a comparison of the performances of the two policies, which accounts

for both the incremental survival benefit and the required ICU length of stay (LOS) when making prioriti-

zation decisions. We first let Li denote the expected ICU LOS for a patient admitted to the ICU in stage

i and is never early discharged in either stage 1 or 2. Then, Li can be obtained by solving the equations

L1 = 1 + r1L1 + p1L2 and L2 = 1 + q2L1 + r2L2, which gives us

L1 =
p1 + p2 + q2

p1p2 + q1p2 + q1q2
, L2 =

p1 + q1 + q2

p1p2 + q1p2 + q1q2
. (3.4)

47



Proposition 3.1. If b = 1, i.e., there is a single ICU bed, and the ICU admission decision is between a

stage 1 and stage 2 patient, it is optimal to admit the stage 2 patient, i.e., J π̄1 ≤ J π̄2 , if and only if

λ
[
L2(φG1 − φ1)− L1(φG2 − φ2)

]
+ (1− λ)

[
(φG1 − φ1)− (φG2 − φ2)

]
≤ 0 (3.5)

where λ = λ1 + λ2.

While Proposition 3.1 provides a complete mathematical description of the regions under which the two

policies are optimal, it does not give a clear insight into why one would prefer one patient over the other.

The following corollary provides conditions that have clearer practical interpretations.

Corollary 3.1. Suppose that b = 1, i.e., there is a single ICU bed, and the ICU admission decision is

between a stage 1 and stage 2 patient. Also assume without loss of generality that φGi −φi ≥ φG3−i−φ3−i for

some fixed i ∈ {1, 2}. Then, we have

(a) if
φGi −φi
Li

≥ φG3−i−φ3−i
L3−i

, then it is optimal to admit the patient in stage i, i.e., J π̄i ≥ J π̄3−i ;

(b) if
φGi −φi
Li

<
φG3−i−φ3−i

L3−i
, then it is optimal to admit the patient in stage i, i.e., J π̄i ≥ J π̄3−i , if and only if

λ ≤
(φGi − φi)− (φG3−i − φ3−i)

(φGi − φi)− (φG3−i − φ3−i) +
[
Li(φG3−i − φ3−i)− L3−i(φGi − φi)

] . (3.6)

The difference φGi − φi can be seen as the benefit of staying in the ICU instead of the general ward for

a stage i patient. From system optimization point of view, we can call the patients with larger φGi − φi as

“high-value” patients. On the other hand, the ratio
φGi −φi
Li

can roughly be seen as the per unit time benefit

of keeping a patient who arrives in stage i in the ICU at all times and thus we can call the patients with the

larger
φGi −φi
Li

as “high-value-rate” patients. Then, according to Corollary 3.1 (a), if stage i patients are both

high-value and high-value-rate patients, they should be preferred over stage 3− i patients. As Corollary 3.1

(b) implies, in order for stage i patients to be preferable, it is not sufficient for them to be high-value. If they

are high-value patients but not high-value-rate, then they are preferable only if the arrival rate is sufficiently

small. This is because when the arrival rate is small, having a limited bed capacity is less of a concern and

thus in that case the value is the dominating factor. However, when the arrival rate is large, the lengths of

stay are important as they would be a key factor in the availability of the ICU beds for new patients. As a

result the rate with which the value incurs becomes the dominant factor.

These results point to the importance of taking into account the ICU load when making patient admis-

sion/early discharge decisions and prioritizing one patient over the other. In short, what may be the “right”

thing to do for one particular ICU may not be right for another. For ICUs with relatively ample capacity, it

might be best to focus on identifying patients who will benefit most from ICU care and admit them without

48



being overly concerned about how long they will stay. However, for highly loaded ICUs, the decision is more

complicated and the anticipated length of stay should be part of the decision. In the following section, we

investigate this question further by analyzing dynamic decisions in a model where the number of beds in the

ICU can take any finite value.

3.5 Analysis of the multi-bed ICU model

In this section, we analyze the general case where b, the number of beds in the ICU is any finite integer.

As in the previous section, our main objective is to minimize the long-run average cost. However, following

an approach that is often used in long-run average analysis, we first analyze the system under the objective of

minimizing expected total discounted cost and establish some analytical properties, which serve as a stepping

stone to our main results for the long-run average case.

3.5.1 Formulation of the discounted model

sec:multi model discounted

The system states, actions and the transition probability P(a1,a2)(x1, x2, y1, y2) are defined to be the same

as the long-run average formulation given in Section 3.3. Let cα(x1, x2, a1, a2) denote the immediate expected

cost of taking action (a1, a2) in state (x1, x2) with discount factor α ∈ (0, 1). The expected discounted cost

for the patients who remain in the ICU is α(x1 − a1)q1, where (x1 − a1)q1 is the expected number of ICU

patients who will transition to state 0 in the next time period and these patients will incur a unit cost when

they depart in stage 0 at the beginning of the next period. The expected cost for the discharged stage i

patients is aic
G
i , where cGi is the expected discounted cost of discharging a stage i patient for i = 1, 2. The

expression for cGi can be determined by solving the following equations:

cG1 = α(qG1 + rG1 c
G
1 + pG1 c

G
2 ), cG2 = α(qG2 c

G
1 + rG2 c

G
2 ),

which are obtained by first-step analysis. Solving the above equations, we find

cG1 =
αqG1 (1− αrG2 )

(1− αrG1 )(1− αrG2 )− α2pG1 q
G
2

, cG2 =
α2qG1 q

G
2

(1− αrG1 )(1− αrG2 )− α2pG1 q
G
2

. (3.7)

The total immediate expected cost then can be written as

cα(x1, x2, a1, a2) = a1c
G
1 + a2c

G
2 + αq1(x1 − a1).
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Let vπ,α(x) denote the expected total discounted cost under policy π given initial state x0, then,

vπ,α(x0) = E

[ ∞∑
n=0

cα(xn,an)αn|x0

]
,

where xn ∈ S, an ∈ A are bivariate vectors that denote the state and action at the nth decision epoch for

n = 0, 1, 2, . . .. The above quantity is well defined since S and A are finite and cα(x,a) is bounded for any

x ∈ S, a ∈ A.

Let vα(x1, x2) = minπ vπ,α(x1, x2) denote the minimum expected total discounted cost over infinite

horizon starting from state x0 = (x1, x2). We would like to find a policy π∗ that satisfies vπ∗,α(x1, x2) =

vα(x1, x2) for all (x1, x2) ∈ S.

From Theorem 6.2.5 in Puterman (2005), the optimal value function vα(x1, x2) satisfies the following

optimality equation:

vα(x1, x2) = min
(a1,a2)∈A(x1,x2)

{Vα(x1, x2, a1, a2)}, (3.8)

where Vα(x1, x2, a1, a2) is the total expected discounted cost if we take action (a1, a2) for one step and then

follow the optimal policy thereafter in state (x1, x2). Specifically,

Vα(x1, x2, a1, a2) = a1c
G
1 + a2c

G
2 + α [q1(x1 − a1) + Γvα(x1 − a1, x2 − a2)] ,

where Γ is an operator defined as follows:

Definition 3.1. For a function w(x1, x2) with x1, x2 ≥ 0 and x1 + x2 ≤ b

Γw(x1, x2) =

x1+x2+1∑
j1=0

x1+x2+1−j1∑
j2=0

P (j1, j2|x1, x2)w(j1, j2). (3.9)

3.5.2 Main results for the discounted model

For the infinite-horizon expected total α-discounted cost problem (3.8), we denote the set of optimal

actions in state (x1, x2) by A∗α(x1, x2), i.e.,

A∗α(x1, x2) =

{
(ā1, ā2) ∈ A(x1, x2) :

Vα(x1, x2, ā1, ā2) ≤ Vα(x1, x2, a1, a2) for all (a1, a2) ∈ A(x1, x2)

}
.

50



Since the state space and action space are finite and costs are bounded, A∗ is non-empty. In general, the set

A∗α(x1, x2) can have more than one element. However, for convenience, we adopt the following convention

for picking one action from the set and refer to it as the optimal action for state (x1, x2). Specifically, we

define the optimal action a∗α(x1, x2) = (a∗1α(x1, x2), a∗2α(x1, x2)), where

a∗1α(x1, x2) = min{ā1 : (ā1, ā2) ∈ A∗α(x1, x2)}

and

a∗2α(x1, x2) = min{ā2 : (a∗1α(x1, x2), ā2) ∈ A∗α(x1, x2)}.

Thus, if there are multiple actions for any given state, we choose the one that discharges as few stage 1

patients as possible; if there are multiple such actions then among those, we choose the one that discharges

as few stage 2 patients as possible.

3.5.2.1 Optimality of non-idling ICU beds.

The non-idling policies are defined as the policies that will always allocate an ICU bed to a new arriving

patient and never discharge an ICU patient to the general ward when there are ICU beds available. We first

identify conditions under which there exists an optimal policy, which is non-idling.

Proposition 3.2. There exists a non-idling optimal policy, i.e., there exists an optimal policy under which

it is never optimal to leave an ICU bed empty whenever there is a patient in need of treatment, if

α(q1 + r1c
G
1 + p1c

G
2 ) ≤ cG1 , α(q2c

G
1 + r2c

G
2 ) ≤ cG2 . (3.10)

The term α(q1 + r1c
G
1 + p1c

G
2 ) is the expected total discounted cost of discharging a stage 1 patient at

the next time period, and thus α(q1 + r1c
G
1 + p1c

G
2 ) ≤ cG1 means that the expected total discounted cost

of keeping a stage 1 patient for one more time period is smaller than discharging the patient right now.

Similarly, α(q2c
G
1 + r2c

G
2 ) ≤ cG2 means that the expected total discounted cost of keeping a stage 2 patient

for one more time period is smaller than discharging the patient right now.

From Proposition 3.2, we know that if (3.10) holds, there exists an optimal policy that is non-idling.

Thus, we can restrict ourselves to the set of policies that is non-idling under assumption (3.10). Then, the

optimality equations (3.8) can be reduced to

vα(x1, x2) = Tvα(x1, x2) for (x1, x2) ∈ S, (3.11)

where the optimality operator T is defined as follows:
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Definition 3.2. Let W denote the space of bounded functions on S. Then, for w ∈ W, we define the

operator T as

(i) for x1 + x2 ≤ b,

Tw(x1, x2) = α [q1x1 + Γw(x1, x2)] , (3.12)

(ii) for x1 = b+ 1, x2 = 0,

Tw(x1, x2) = cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2)] , (3.13)

(iii) for x1 = 0, x2 = b+ 1,

Tw(x1, x2) = cG2 + α [q1x1 + Γw(x1, x2 − 1)] , (3.14)

(iv) for x1 + x2 = b+ 1 and x1, x2 > 0,

Tw(x1, x2) = min
{
cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2)] ,

cG2 + α [q1x1 + Γw(x1, x2 − 1)]
}
. (3.15)

3.5.2.2 General structure of the optimal policy.

Since we restrict ourselves to the set of non-idling policies, which we know contains an optimal policy under

assumption (3.10), we only need to investigate the optimal actions for states (x1, x2) such that x1 +x2 = b+1

and x1, x2 > 0, i.e., when all ICU beds are currently occupied, a patient has just arrived, and there are

patients from both stages (including the patient who has just arrived). As we describe in the following

proposition, it turns out that the optimal decision has a threshold structure.

Proposition 3.3. Suppose that (3.10) holds. Then, there exists a threshold x∗α ∈ [1, b+ 1] such that for any

state (x1, x2) with x1, x2 > 0 and x1 + x2 = b+ 1, we have

a∗α(x1, x2) =


(1, 0) if x1 ≥ x∗α,

(0, 1) if x1 < x∗α.

Proposition 3.3 states that the decision of whether a stage 1 or stage 2 patient should be early discharged

may depend on how many stage 1 patients and how many stage 2 patients there are in the ICU or waiting
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for admission to the ICU. There exists a threshold x∗α, which depends on the discount factor, so that if the

number of stage 1 patients is below x∗α then the optimal action is to discharge a stage 2 patient; otherwise,

the optimal action is to discharge a stage 1 patient. We postpone further discussion on practical implications

of this result until Section 3.5.3, where we establish a version of this result under the long-run average cost

minimization criteria.

If the threshold x∗α = 1, the optimal decision is to discharge a stage 1 patient and if x∗α = b + 1, the

optimal decision is to discharge a stage 2 patient regardless of how many stage 1 and stage 2 patients there

are in the ICU. Thus, in some cases, where x∗α takes one of the two end values, the optimal policy is simpler

as one can designate one stage as having higher priority than the other regardless of system conditions. Such

a policy would be easier to implement in practice. In the following section, we identify some conditions under

which that would be the case.

3.5.2.3 Conditions for the optimality of a state independent policy.

We call a non-idling policy state-independent if the decision of whether a stage 1 patient or a stage 2 patient

is kept in the ICU whenever all beds are occupied does not depend on the composition of the patients, i.e.,

the number of patients in each stage. In this section, we identify conditions under which the optimal policy

has that simple structure.

Let ci denote the expected total discounted cost for a stage i patient if the patient is not discharged

when in state 1 or 2. Then, ci can be obtained as

c1 =
αq1(1− αr2)

(1− αr1)(1− αr2)− α2p1q2
, c2 =

α2q1q2

(1− αr1)(1− αr2)− α2p1q2
, (3.16)

using the same argument used to obtain cGi ’s in (3.7).

The difference cGi − ci can be seen as the reduction in cost due to ICU treatment for stage i patients.

Then, if stage i patients have smaller reduction in cost (compared with stage 3 − i patients), one might

conjecture that a greedy policy, which always chooses to discharge a stage i patient (as opposed to a stage

3− i patient) whenever there are more patients than beds, would be optimal. However, we have numerical

examples which show that this conjecture is not correct. We next identify conditions under which such a

policy is optimal.

Proposition 3.4. Suppose that (3.10) holds. Then, for any state (x1, x2) such that x1 > 0, x2 > 0, and

x1 + x2 = b+ 1,

(a) a∗α(x1, x2) = (1, 0) if

cG1 − c1 < cG2 − c2 and L1 ≥ L2, (3.17)
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(b) a∗α(x1, x2) = (0, 1) if

cG1 − c1 ≥ cG2 − c2 and L1 ≤ L2, (3.18)

where Li is given by (3.4) for i = 1, 2.

Proposition 3.4 states that the optimality of the greedy policy is guaranteed, i.e., the optimal decision is

to favor patients in the health stage that is associated with higher expected ICU benefit regardless of system

conditions, if the expected length of ICU stay for those patients is also smaller when compared with that of

patients in the other stage. In the next section, we establish a version of this result for the long-run average

cost minimization case and provide further discussion on its practical implications.

3.5.3 Long-run average cost criteria

In this section, we consider the long-run average cost optimization problem with optimality equations

given in (3.3). An optimal action in any particular state is the one that achieves the minimum in the

optimality equation. We denote the set of optimal actions in state (x1, x2) by A∗(x1, x2), i.e.,

A∗(x1, x2) =
{

(ā1, ā2) ∈ A(x1, x2) : c(x1, x2, ā1, ā2) +
∑

(y1,y2)∈S

P(ā1,ā2)(x1, x2, y1, y2)h(y1, y2) =

min
(a1,a2)∈A(x1,x2)

{
c(x1, x2, a1, a2) +

∑
(y1,y2)∈S

P(a1,a2)(x1, x2, y1, y2)h(y1, y2)
}}

.

In general, the set A∗α(x1, x2) can have more than one element. However, for convenience, as in the case

of the discounted cost model, we adopt the following convention for picking one action from the set and

refer to it as the optimal action for state (x1, x2). Specifically, we define the optimal action a∗(x1, x2) =

(a∗1(x1, x2), a∗2(x1, x2)) where

a∗1(x1, x2) = min{ā1 : (ā1, ā2) ∈ A∗(x1, x2)}

and

a∗2(x1, x2) = min{ā2 : (a∗1(x1, x2), ā2) ∈ A∗(x1, x2)}.

Thus, if there are multiple actions for any given state, we choose the one that discharges as few stage 1

patients as possible; if there are multiple such actions then among those, we choose the one that discharges

as few stage 2 patients as possible.

Theorems 3.1, 3.2, and 3.3 below respectively establish the long-run average versions of Propositions

3.2, 3.3, and 3.4. The proofs of these theorems utilize Theorem 6.4.2 of Sennott (1999), which essentially

state that under some conditions (which we show to be true for our problem), the difference hα(x1, x2) :=
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vα(x1, x2) − vα(0, 0) converges to h(x1, x2) as α approaches to 1. This limiting property makes it possible

for us to utilize the three propositions for the discounted cost case in the analysis of the long-run average

cost problem.

We start with conditions that ensure the existence of a non-idling optimal policy.

Theorem 3.1. Suppose that βi < βGi for i = 1, 2. Then, there exists a stationary average-cost optimal

policy, which is non-idling, i.e., a policy under which it is never optimal to leave an ICU bed empty whenever

there is a patient in need of treatment.

Comparing βi with βGi can be seen as one way of assessing the potential benefit of ICU over the general

ward for stage i patients. The condition βi < βGi for i = 1, 2 essentially means that the ratio of the probability

of a patient getting worse to the probability of a patient getting better over the next time step is smaller in

the ICU for all the patients. Theorem 3.1 states that this condition is sufficient to ensure the existence of

an optimal policy that admits patients of either stage to the ICU as long as there is an available bed. Note

that one can show that this condition is equivalent to (3.10), the non-idling condition for the discounted

infinite-horizon case when the discount factor α is set to 1.

Under the non-idling condition of Theorem 3.1, we can in fact prove the existence of an optimal policy,

which has some additional structural properties as described in the following two theorems.

Theorem 3.2. Suppose that βi < βGi for i = 1, 2. Then, there exists a threshold x∗ ∈ [1, b+ 1] such that for

any state (x1, x2) with x1, x2 > 0 and x1 + x2 = b+ 1, we have

a∗(x1, x2) =


(1, 0) if x1 ≥ x∗

(0, 1) if x1 < x∗.

According to Theorem 3.2, when the non-idling condition holds and when the system conditions are so

that one of the patients has to be admitted to the general ward because of a fully occupied ICU, whether or

not that patient should be a stage 1 or stage 2 patient depends on the health conditions of all the patients in

the ICU. Specifically, if the number of stage 1 (stage 2) patients in the ICU is above a particular threshold

value, then one of the stage 1 (stage 2) patients should be admitted to the general ward. In other words,

if there are sufficiently many stage 1 patients, the preference should be for a stage 2 patient; otherwise the

preference should be for a stage 1 patient.

It is important to note that while x∗ can take one of the boundary values of 1 or b + 1 (both of which

would imply that the policy is in fact not dependent on the composition of the patients) there are examples

that show that it can also take values in between. This means that there are indeed certain settings in which

the optimal policy is state-dependent. This might seem somewhat surprising at first because the implication
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is that if there are two specific patients, A and B, one of them being in stage 1 the other in stage 2, and

only one of them can be admitted to the ICU, whether we choose A or B depends on the health stages

of all the patients in the ICU, not just A and B. Given that this decision will not impact other patients’

survival chances and patient A’s and B’s survival chances do not depend on the other patients in the ICU,

why should our choice between A and B depend on the other patients?

To answer the question above, in light of our analysis of the single-bed case, consider the two important

factors that go into the decision of which patient to admit: expected net ICU benefit, which we would like

to be as high as possible and expected length of stay, which we would like to be as small as possible. The

expected length of stay is important because it directly affects the bed availability for the future patients.

In particular, it affects the probability that a bed will be available the next time there is a patient seeking

admission to the ICU. However, whether or not a bed will be available for the next patient (and patients

thereafter) depends on the length of stay for not just Patient A and Patient B but all the patients in the

ICU.

Now, consider two extreme cases, one in which patients other than A and B all have very short expected

lengths of stay and one in which they all have long expected lengths of stay. In the former case, there is

a good chance for a bed to be available soon even if we ignore A and B, and this, when choosing between

A and B, will make the expected lengths of stay for A and B far less important compared with the latter

case. Thus, in the former case, whoever has the larger expected benefit, will be (most likely) admitted to

the ICU. In the latter case, however, the decision is more complicated and in order to make a bed available

for the next patient with a higher probability, it might actually be preferable to admit the patient with the

smaller expected net benefit if that patient’s expected length of stay is shorter. In general, one can then see

that, as the composition of the patients in the ICU changes, future bed availability probability changes and

this in turn results in shifting preferences for the patient to be admitted. More specifically, as Theorem 3.2

implies, there is an ideal mix of patients (a certain number of stage 1 patients and a certain number of stage

2 patients), which hits the “right” balance between the expected benefit and the future bed availability, and

the optimal policy continuously strives to push the system to that level by employing a threshold-type policy.

Given the explanation above, it would be reasonable to expect that Patient A should always be preferred

over Patient B regardless of the patient composition in the ICU if the expected benefit for Patient A is larger

than that of Patient B and the expected length of stay for Patient A is smaller than that of Patient B. We

can indeed prove that is the case as we formally state in the following theorem.

Theorem 3.3. Suppose that βi < βGi for i = 1, 2, and for some fixed k ∈ {1, 2}

φGk − φk < φG3−k − φ3−k and Lk ≥ L3−k. (3.19)
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Then, for any state (x1, x2) such that x1 + x2 = b + 1, we have a∗(x1, x2) = (a∗1, a
∗
2) with a∗k = 1 and

a∗3−k = 0.

Theorem 3.3 states that if a particular health stage is associated with a lower expected ICU benefit and

longer expected length of ICU stay, then a patient from that health stage should be admitted to the general

ward when the demand for the ICU exceeds the ICU bed capacity. In this case, the optimal policy is simple

since one of the two stages can be designated as the higher priority stage regardless of the system state. The

result makes sense intuitively. If Patient A will benefit more from the ICU bed compared to Patient B and

Patient A will also vacate the bed more quickly for the use of the future patients, there is no reason why the

bed should be given to Patient B.

3.6 Numerical study

The objective of our numerical study is twofold: (i) to investigate how much additional benefit there is in

using a state-dependent admission/discharge policy as opposed to a simpler, state-independent alternative,

and (ii) to investigate how different state-independent policies, one of which we propose in this section,

compare with each other in regards to their performances.

To the best of our knowledge, there are no data which we can use to estimate the probabilities with

which patients’ health stages change over time. Clearly, even if one were to conduct a study to make such

estimation, it would have been quite challenging since that would have first required agreeing on definitions

for stage 1 and stage 2 patients. (Note that one possibility would be adopting the definitions of Christian

et al. (2006).) Given the lack of data, one option for our study was to generate different scenarios completely

randomly. However, that approach would have resulted in many scenarios that are unlikely to be reasonably

close to what happens in practice. Therefore, instead of generating scenarios completely randomly, we

generated them randomly while ensuring that the scenarios conform to what happens in practice based on

what we know from prior studies. More specifically, the scenarios are generated so that the ICU survival

probabilities and lengths of stay are in line with the numbers reported in the literature.

A number of articles in the literature provide estimates on ICU length of stay and survival probabilities.

One could potentially choose the estimates in any one of these articles to construct different scenarios.

However, in line with our focus on situations where the ICU experiences an extremely high demand over a

long period of time, we chose to use the estimates that are provided by Kumar et al. (2009), which are based

on data obtained in Canada during the 2009 H1N1 influenza outbreak. Kumar et al. (2009) found that the

average mortality rate in the ICU was approximately 17% and the average length of stay in the ICU was

12 days. (In our numerical study, we assumed that a single day is divided into four time periods and thus

the expected length of stay of 12 days corresponds to 48 time periods.) Therefore, we randomly generated
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scenarios so that the ICU death probability is θφ1 + (1− θ)φ2 = 0.17 and the expected ICU length of stay

(with no early discharge) is θL1 +(1−θ)L2 = 48, where θ is the probability that a random patient arrived to

the ICU is in stage 1, φ1 and φ2 are as defined in (3.2), and L1 and L2 are as defined in (3.4). To randomly

generate feasible scenarios that satisfy the above two equalities, we used the following procedure:

First, using Equations (3.2) and (3.4), we find that the transition probabilities need to satisfy

p1 =
1− φ1

(1− φ2)L1 − (1− φ1)L2
, q1 =

φ1 − φ2

(1− φ2)L1 − (1− φ1)L2
,

p2 =
φ1 − φ2

φ1L2 − φ2L1
, q2 =

φ2

φ1L2 − φ2L1
.

Using the fact that pi, qi > 0 and pi + qi ≤ 1 for i = 1, 2, one can show that the generated scenarios must

satisfy

1− φ1

1− φ2
≤ L1 − 1

L2
<
L1

L2
<

L1

L2 − 1
≤ φ1

φ2
. (3.20)

Now, to construct a single scenario, we first generated φ1 uniformly in (0.2, 0.5) and chose the fraction

φ1/φ2 uniformly in (1, 10). Then, using the equation θφ1 + (1− θ)φ2 = 0.17, we solved for θ, the proportion

of stage 1 patients. Since we know from (3.20) that L1/L2 must be between 1−φ1

1−φ2
and φ1

φ2
, we chose L1/L2

uniformly in ( 1−φ1

1−φ2
, φ1

φ2
). Then, using the equation θL1 + (1− θ)L2 = 48 and θ, whose value has already been

determined, we determined L1 and L2. We checked whether the generated scenario satisfy all the feasibility

conditions of (3.20). We discarded the scenario and restarted the random generation if the conditions did

not hold; otherwise, we kept the scenario and proceeded with populating the rest of the parameters. Kumar

et al. (2009) do not provide any estimates on what the survival probabilities for the ICU patients would

be if they would have been treated outside the ICU. In the absence of such estimates, recognizing that the

death probabilities outside the ICU would likely be higher than what they would be in the ICU and stage 1

patients would be more likely to die than stage 2 patients, we chose φG1 uniformly in the interval (φ1, 1) and

φG2 uniformly in the interval (φ2, φ
G
1 ). Using this procedure we generated 1000 different scenarios.

For every one of the 1000 scenarios constructed as above, we considered, twelve different set of conditions

regarding the number of beds in the ICU and ICU demand. This resulted in a total of 12000 scenarios tested.

For the size of the ICU, we considered three different cases. We assumed it to be small (b = 5), medium

(b = 10) or large (b = 20). We also set the arrival probability λ so that the system is busy at different levels.

Specifically, we let the ICU utilization ρ = λ(θL1 + (1− θ)L2)/b to be either 0.8, 1, 1.2, or 2.4. (Note that

once ρ is set, we can determine λ, λ1 = θλ, and λ2 = (1− θ)λ since θ, L1, L2, and b are already set for each

scenario.)
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Next, we propose a new state-independent policy as an alternative to the state-dependent optimal policy

and describe the other policies we tested in our numerical study.

3.6.1 A new policy and other benchmarks

A state-independent policy is one that always prioritizes one of the stages over the other regardless of the

system state. Such policies have clear practical advantages and thus can still be preferred in practice even

when they can in fact be potentially outperformed by state-dependent policies. Two immediate alternatives

for such policies is the policy that always chooses a stage 1 patient when there is one and the policy that

always chooses a stage 2 patient when there is one. Another obvious alternative is what we call the greedy

policy (GP), which always chooses the patient in the health stage that is associated with the higher expected

benefit independently of the system state. Specifically, if φG1 −φ1 ≥ φG2 −φ2, the greedy policy chooses stage

1 patients over stage 2 patients; otherwise, the greedy policy chooses stage 2 patients. In our numerical

study, we find that the greedy policy clearly outperforms both of the other two simple policies mentioned

above and thus we do not discuss those policies in the rest of the chapter.

The greedy policy intuitively makes sense as it always chooses to allocate the beds to the patients who

are likely to benefit more. However, it ignores the long-term effects of the decisions, more specifically, how

long the beds will need to be occupied in expectation in order for the benefits to be realized. In Section 3.4,

we provided a complete characterization of the optimal policy for a single-bed ICU. This characterization

provided us with necessary and sufficient conditions for the optimality of the greedy policy and more generally

a clear prescription for which stage patient to prefer at all times depending on various parameters including

the ICU benefit, lengths-of-stay, and system load or more specifically ICU demand under the restriction that

the ICU has a single bed. The main insight that came out of this analysis was the following: the greedy

policy is optimal if the patients with higher expected benefits have shorter expected length of stay; however,

if the patients with higher expected benefit have longer length of stay, which is likely to be the case in

practice, the greedy policy is optimal only if the ICU demand (arrival probability) is sufficiently low.

In the case of a multi-bed ICU, it may not be realistic to expect that the exact same conditions will

continue to have the exact same implications. It is however reasonable to expect that the factors like ICU

benefit, length of stay, and system load will continue to have similar effects on the optimal actions. Thus,

one can adapt Condition (3.6) of Corollary 3.1 to the multi-bed setting by simply rescaling the arrival

probability, which represents the ICU demand, on the left-hand side of the condition accordingly and use the

new condition to decide which one of the two stages to designate as high priority independently of the system

state. This is the idea behind the heuristic method we propose, which we name load-based state-independent

policy (LBSIP).
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Specifically, LBSIP works as follows: Suppose that stage i patients have higher expected ICU benefit

without loss of generality, i.e., φGi − φi ≥ φG3−i− φ3−i for fixed i ∈ {1, 2}. Then, if Li ≤ L3−i LBSIP chooses

stage i patients over stage (3 − i) patients. Otherwise (i.e., if Li ≥ L3−i), LBSIP chooses stage i patients

over stage (3− i) patients if and only if

λ

b
≤

(φGi − φi)− (φG3−i − φ3−i)

(φGi − φi)− (φG3−i − φ3−i) +
[
Li(φG3−i − φ3−i)− L3−i(φGi − φi)

] . (3.21)

It is important to note that if b = 1, LBSIP is the optimal policy since (3.21) reduces to (3.6). We also

know from Theorem 3.3 that LBSIP is optimal even when b > 1 if Li ≤ L3−i. We do not know, however,

how LBSIP performs when b > 1 and Li > L3−i, i.e., conditions that are more likely to be true in practice.

This is one of the questions we investigate in Section 3.6.2.

One potentially very useful property of Condition (3.21) (and consequently LBSIP) is that the condition

depends on the transition probabilities only through the expected net benefits and expected lengths of stay.

This means that in practice once there is an agreement on who is a stage 1 patient and who is a stage 2

patient, LBSIP only requires estimation of the expected net benefits and the expected lengths-of-stay for the

two stages (in addition to the patient arrival rate), and in particular not the transition probabilities, which

are much more difficult to estimate reliably. Furthermore, this conditional independence from transition

probabilities suggests that LBSIP can be applied even if the patient health conditions evolve differently from

what we assumed in this chapter. In other words, LBSIP provides a way out of the difficulty of identifying

the “correct” transition formulation in practice since it only makes use of the very basic estimates for the

patients.

3.6.2 Results of the numerical study

Let M∗ denote the mortality rate, i.e., long-run fraction of patients who die, under the optimal policy.

Also let MGP and MLBSIP denote the mortality rates under GP and LBSIP, respectively. These long-run

average mortality rates are obtained numerically by a value iteration algorithm. Table 3.1 below summarizes

the results of the numerical study. In the table, the first two columns indicate the number of beds b and the

system load ρ. As described above, for each fixed value of b and ρ, 1000 different scenarios were generated.

The third column provides the mean mortality rate, the 95% confidence interval (C.I.) half-length, and the

maximum value of the mortality rate out of the 1000 scenarios under the optimal policy. The fourth and

the fifth columns provide the mean (and the 95% C.I. half-length) and maximum increase in the mortality

rate under GP and LBSIP, respectively out of the 1000 scenarios. Finally, the last column provides the same

information for the comparison of GP and LBSIP with each other.
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Table 3.1: Performance comparison of the optimal policy, GP, and LBSIP. (All numbers are in percentages.
In the columns titled “Mean” the first number reported is the mean, the second number is the 95% C.I.
half-width.)

We can observe from Table 3.1 that the optimal policy performs better than both GP and LBSIP as it

should. We also found that in all the twelve different scenarios the policies are tested, the mean mortality

rate under the optimal policy is statistically smaller than the mean mortality rate under both GP and LBSIP.

A quick look at the numbers in the table might nevertheless suggest that the benefit that one would get from

using the optimal policy is somewhat small. However, while the numbers might be small, considering what

they represent, a small difference might have a highly tangible benefit in practice. For example, consider the

case where b = 10 and ρ = 1. The mean improvement that one would get by using the optimal policy as

opposed to GP is 0.48%. This would mean that on average the optimal policy would approximately save one

more patient out of every 208 patients in need of an ICU treatment. Furthermore, given that the maximum

improvement is 7.09%, the difference in the expected number of survivors out of 100 patients can be as large

as 7 patients.

When it comes to comparing the optimal policy and LBSIP, the policy we devised, the performance

difference is much less significant. The largest difference is observed when the ICU capacity is large (b = 20)

and the load is high (ρ = 2.4). In this case, the difference in the mortality rate is 0.10%, which corresponds to

about saving on average one more patient out of every 1000 patients. If we look at the maximum improvement

(4.09%), we see that out of every 100 patients, the optimal policy can potentially save almost four more

patients. Four out of 100 patients is a sizable difference but it is worth recalling that this is the maximum

improvement observed from the 1000 randomly chosen scenarios (i.e., transition probability values). As it is

61



also somewhat clear from the mean improvement, in very few scenarios, the improvement gets close to this

level.

One can argue that no matter how small the difference is one should always use the optimal policy. The

optimal policy always has the best performance after all, it can easily be determined, and is relatively simple

(even though not as simple as GP or LBSIP). Given all that, why should one bother with policies that we

know are suboptimal? The problem is that even though we can find the optimal policy for our mathematical

optimization problem we do not know how exactly this optimal policy would perform in practice. One

important challenge is posed by transition probabilities, which are needed in order to determine the optimal

policy.

Our model, particularly the part that captures the evolution of patient criticality, is largely a stylized

representation of what happens in practice. Even though in ICUs patient health conditions are frequently

assessed and these assessments are used to make accept/discharge decisions there is not a commonly ac-

cepted protocol for classifying patients. Thus one way of interpreting our model is by seeing it as a rough

conceptualization of what happens and how decisions are made in practice even if patients are not strictly

put into two levels in reality. Another interpretation would be based on the triage protocol proposed by

Christian et al. (2006) where there are two criticality levels and patients can transition from one level to the

other just like we assume in our model. Under this interpretation, the model can be seen as somewhat less

stylized since the patient criticality levels can actually be described precisely. With the first interpretation,

it is not clear what exactly transition probabilities correspond to in practice. With the second interpreta-

tion, the meaning of transition probabilities is clear but nevertheless their reliable estimation is very difficult

partially due to the coarseness of using only two levels to group patients. Therefore, it is highly doubtful

how much of, if any, the potential benefits that we attribute to the “optimal” policy in our numerical study

would actually be realized in practice. To be more precise, the benefits reported above would be realized

only under the assumption that model parameters including transition probabilities are correctly estimated,

which is not quite likely to happen in practice. Therefore, one might still prefer using a policy like LBSIP

or even GP, which are not only simpler and easier to implement but also easier to determine because they

only require estimation of the expected ICU benefit and length of stay, not the transition probabilities.

3.7 Conclusions

Many studies reported that the number of ICU beds in many parts of the US and the rest of the world

are in short supply to sufficiently meet the daily ICU demand. It is frequently the case that a patient who

is relatively in a less critical condition is discharged early to make room for another patient who is deemed

more critical. While this bed shortage problem arises even under daily operating conditions it is natural to
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expect the problem to get worse in case of an event like an influenza epidemic, which causes a significantly

increased number of patients in need of an ICU bed. It is thus highly important to investigate how ICU

capacity can be managed efficiently by allocating the available beds to the patients in a way the greatest

good is achieved for the greatest number of the patients. Our goal in this chapter has been to provide insights

into how such allocation decisions should be made.

What sets our work apart from prior work mainly is that in our model we allow the patients to move

from one health stage to another while they are in the ICU and allocation decisions are made based on the

patients’ updated health conditions. This formulation captures an important feature of the actual problem

at least in some stylized way and nicely fits with the triage protocol proposed by Christian et al. (2006).

But more importantly, the model allowed us to push the analytical results further than it was possible for

other models considered in prior work and in particular we were able to provide analytical results for the

case where patients who have higher expected ICU benefits also have longer expected length of stay.

Our analysis of the single-bed scenario led to interesting insights into how optimal decisions depend on

the patients’ expected ICU benefit, expected length of stay, and the patient load on the system. We found

that when patients who are expected to benefit more from ICU treatment also have longer expected length

of stay, those patients should get higher priority only if the overall patient demand is below a certain level.

This is because when beds are in high demand, prioritizing those patients (who are expected to occupy the

beds longer) would require turning too many patients away from the ICU that it becomes more preferable

to adopt a policy that has quicker bed turnaround times even though the expected net benefit is smaller for

every admitted patient.

More generally, when the ICU has finitely many beds, we found that the optimal policy aims for an ideal

mix in the ICU so as to hit the right balance between the overall expected net ICU benefit per patient and

length of stay. That is, in general, the optimal policy for prioritizing among patients depends on the mix of

customers in the ICU. Even though our formulation is stylized in nature, our finding that the optimal policy

in general depends on the system state suggests that there could be benefits to developing sophisticated

decision support tools that take into account patient characteristics and health conditions in the ICU. Thus,

our results provide some support for research that aims to contribute to the development of such tools.

However, this is also a highly challenging research avenue and one might wonder whether the potential

benefits of such tools, which might be observed in numerical studies, can actually be realized in practice.

This is because considering the variety of patients treated in the ICU, there could be significant obstacles

to classifying patients well enough for the potential benefits to be realized. The main goal of our numerical

study was to shed some light into this question by investigating whether the optimal policy brings significant

benefits at least in our stylized setup. Our study revealed that the improvement with the optimal policy
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may be statistically significant but somewhat small especially when its performance is compared with that

of the state-independent policy we propose in this chapter. Furthermore, as we discussed in Section 3.6.2,

it is easier to reliably estimate the parameters needed to implement our state-independent policy than the

parameters needed to compute the optimal policy. In short, based on our analysis, it is difficult to make

a strong case in support of state-dependent policies. Nevertheless, all this analysis is based on a single

mathematical formulation, and thus it is prudent not to overgeneralize. It is possible that capturing patient

health conditions at a level that is more detailed than considered in our model may lead to higher benefits

of using state-dependent optimal policies. This points to an important research avenue for the future.
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CHAPTER 4: PRIORITIZATION IN A MULTI-SERVER QUEUEING SYSTEM
WITH IMPATIENT CUSTOMERS

In this chapter, we consider a multi-server queueing system with impatient customers. Customers are

assumed to be in one of the two different stages, and their stages could change over time. A reward is earned

upon each service completion depending on the stage of the customer. Our objective is to maximize the

expected total discounted reward and the long-run average reward by prioritization.

4.1 Introduction

In many service systems, customers may become impatient after waiting for a long time and leave

without being served. For example, in a call center, customers who wait longer than their tolerance may

hang up before being answered. The same thing may also happen in health care systems, where patients

waiting for medical resources (operating rooms, intensive care units) may no longer need the resource after

a certain time. In the meanwhile, the customers in the system may be described in different status and their

status could change. In the call center example, customer may change from a patient mode to an agitated

one while waiting, and in the health care example, the health condition of the patients may become better

or more severe while receiving and waiting for the treatment.

There are mainly two types of objectives in optimal scheduling of impatient customers: either minimize

a cost related measures or maximize a certain reward. The models with the former objective, which we

refer to as cost models, commonly consider a holding cost per customer per time unit for queueing customers

and/or a penalty associated with each reneging customer, while the models with the later objective, which

we refer to as reward models, commonly consider a reward associated with each service completion. Although

there is no general proof of the equivalence of these two types of models, the optimality equations (after

formulating as an MDP) under these two objectives have similar structures and could be analyzed in a

similar way. One could refer to Down et al. (2011), who considered both cost and reward models, for the

similarity in optimality equations and proofs of results. In our model, we will consider a reward model that

customers who complete the service will gain a positive service reward upon departure, and the customers

who abandon the queue will leave with no reward.
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There is a growing literature on optimal scheduling in queueing systems with impatient customers, most

of which assumed the heterogeneity exists among independent classes of customer. To be more specific,

the customers are differentiated by different classes based on their service requirements, impatience, reward

and/or cost structures, etc. Once a customer is classified, s/he will always be of the same class in the

system. Accounting for the abandonment of the queueing customers increases the difficulty of analyzing

optimal policy. Most of the existing literature provide some partial characterization of the optimal policy and

propose heuristic and/or index-based priority policies, or analyzing the system under some heavy traffic/fluid

approximation. In our model, we will first formulate the system as an MDP, and then provide optimal

policies under certain conditions. Our results could reduced to many existing results in literature with

special parameter settings, and we will demonstrate the similarity and difference by considering three special

parameter settings. In the end, we propose several priority index policies based on our analytical results and

compare their performances via a numerical study.

4.2 Literature Review

There are two types of literature that are related to our work. The first type is optimal scheduling of

impatient customers. Argon et al. (2008) consider priority assignment in a clearing system with impatient

jobs, where the first work considers a single-server formulation with two different types of jobs and the

objective is to maximize the expected number of survivors. Jacobson et al. (2012) consider a more general

formulation with type dependent service rewards. Atar et al. (2010) consider a cost model of a single server

queue with abandonment under heavy traffic. They proposed a cµ/θ index policy, by which priority is

assigned to the class with highest value of ciµi/θi, where ci is the per unit waiting cost in queue, and µi

and θi are the service rates and abandonment rates for class i customers, respectively. They show that

such a policy is asymptotically optimal in the heavy traffic analysis. Down et al. (2011) study dynamic

control of an M/M/1 queue with impatient customers that belongs to two different classes. They formulate

two continuous time MDPs for each of the cost model and the reward model, and establish some sufficient

conditions under which a state-independent prioritization policy is optimal for each model. However, the

complete structure of the optimal policy is not discussed.

The second type of related work are models with customers who change status (denoted by either classes

or stages) in the system. For example, Down and Lewis (2010) consider a multi-server system where low-

priority customers will be upgraded to high-priority class if they have been in queue for some time. Cao and

Xie (2015) consider a single server queue with customers that could transfer from one class to the other with

a cost of transferring. He et al. (2012) study a priority queueing system with multiple classes of customers,
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where customers can upgrade from their current class to the next more important class after a so-called

upgrading time.

There is very limited literature combining both abandonment and customer status changing. Akan

et al. (2012) study liver allocation to patients that belong to multiple classes (i.e., health levels) and the

patients could switch between classes over time. They model the transplant waiting list as a multi-class fluid

model of overloaded queues and analyze the bi-criteria objective of minimizing number of patient deaths

and maximizing total quality-adjusted life years. Chapter 5.2 of Jacobson (2010) considers a single server

queue with impatient customers, where the jobs waiting in the queue will go over multiple stages sequentially

before abandonment, and provides a set of sufficient conditions under which it is optimal to prioritize jobs

at the last stage.

4.3 Model description and the MDP formulation

In this section, we first provide a mathematical description of the system, and then formulate it as an

MDP.

4.3.1 Model description

We consider a discrete-time setting, where there will be at most one customer arriving to the system

at each time period. We describe the status of customers by their stages, and they could be in one of the

two stages (labeled by stage 1 and stage 2). We next define the arrival process and the service and queueing

dynamics of the customers.

Arrival process: At the beginning of each time period, there will be a customer arrival to the system

in stage i, i ∈ {1, 2}, with nonnegative probability λi, and there will be no arrival with probability λ0 =

1−λ1−λ1. We assume 0 ≤ λi ≤ 1 for all i ∈ {0, 1, 2}. Note that this system will reduce to a clearing model

if λ0 = 1.

Service and queueing processes: We assume that customers in the system change their stages

according to a Markov chain, where they can leave the system, or stay at the same stage or change to the

other stage with certain probabilities. The transition probabilities depend on the stage of the customer as

well as whether s/he is in service or in queue. More specifically, for a stage i customer in service, s/he will

leave the system (due to service completion) with probability pi0, stay in stage i with probability pi,i and

transit into stage 3 − i with probability pi,3−i. For a stage i customer waiting in queue, they will change

stages similarly with parameters qij for i, j ∈ {1, 2} and abandon the queue with probability qi0. All these

transition probability parameters are assumed to be non-negative. The transitions of customers in service

and queue are shown in Figure 4.1.
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Figure 4.1: Customer Transition Diagrams

Furthermore, we need to make some assumptions so that the system is stable.

Assumption 4.1.

(i) p11 < 1, p22 < 1 and p10 + p20 > 0.

(ii) q11 < 1, q22 < 1 and q10 + q20 > 0.

The first part of Assumption 4.1 ensures the expected required length of service for any customer is

finite, and the second part ensures that the expected waiting tolerance for any customer is finite.

Service rewards: There is a positive reward Ri collected at each service completion, depending on the

stage the customer leaves the system in. Our objective is to maximize the expected total discounted reward

and the long-run average reward over infinite-horizon.

At the beginning of each time period, we first observe the arrival process: whether or not there would be

an arrival, and if yes, what stage the new arrival is in. Then, we can observe the current number of customers

in each stage in the system, and we decide whom to keep in service and whom to put in the queue among

all the customers in the system. At the end of this time period, all customers make transitions according to

the corresponding Markov chain (service or queue).

4.3.2 Formulation as an MDP

We next formulate this system as a discrete-time MDP. For notational convenience, we use bold symbols

to denote two-dimensional vectors in N2, where N denotes the set of natural numbers. For x ∈ N2, let xi

denote the ith component of the vector x for i = 1, 2. We also define a partial ordering of the vectors as

follows: for two vectors x,y ∈ N2, x is said to be smaller than y, denoted by x ≤ y, if x1 ≤ y1 and x2 ≤ y2.

Finally, we let e0 = (0, 0), e1 = (1, 0) and e2 = (0, 1).

System state: Let xt = (xt,1, xt,2) denote the system state at discrete time points t = 0, 1, 2, . . ., where

xt,i is the number of type i customers at time t for i ∈ {1, 2}, which includes all existing customers as well

as the new arrival if there is one. Here we do not differentiate a new arriving customer and the existing
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customers that belong to the same type due to the Markov property of customer transitions. The state space

is S = N2.

Actions: The decisions are made at the beginning of each time period immediately after the customer

arrival (if there is one), at which times we need to decide how to assign the servers to all presenting customers.

Let ai denote the number of servers we allocate to stage i customers, and a = (a1, a2) denote a possible

action if a ∈ A where

A = {a : a ∈ N2 and a1 + a2 ≤ b}.

For any state x, let A(x) denote the set of all feasible actions where A(x) = {a : a ∈ A and a ≤ x}. Let A′(x)

denote the set of all feasible non-idling actions, where A′(x) =
{
a : a ∈ A(x) and a1+a2 = min{x1+x2, b}

}
.

One step expected reward: When the process is in state x ∈ S and an action a ∈ A(x) is chosen,

there will be an expected immediate reward R(x,a) =
∑2
i=1 aiRipi0, which is bounded since ai, Ri are

nonnegative and bounded.

Transition probabilities: Let Pa(x,y) denote the probability that the process will transit to state

y ∈ S, starting from state x ∈ S given action a ∈ A(x). The transition probabilities can be computed by

conditioning on how each customer evolves. We can also compute these probabilities recursively as follows:

first we can obtain the transition probabilities in state x = e0 with the only feasible action a = e0:

Pe0(e0, e0) = λ0, Pe0(e0, e1) = λ1, Pe0(e0, e2) = λ2, and Pe0(e0,y) = 0 for y /∈ {e0, e1, e2}.

Then, for x ∈ S and x 6= e0, we have x ≥ ei for at least one i ∈ {1, 2}. Using the fact that all patients

evolve independently, Pa(x,y) satisfies the following properties for x ≥ ei and a ∈ A(x):

Pa(x,y) =
2∑
j=0

pijI{y≥ej}Pa−ei
(x− ei,y − ej), if a ≥ ei, (4.1)

Pa(x,y) =

2∑
j=0

qijI{y≥ej}Pa(x− ei,y − ej), if a ≤ x− ei. (4.2)

The intuition behind (4.1) is that, if in state x we take an action a that keeps at least one stage i customer in

service, and we pick any one such customer (referred to as customer A), and then we compute the transition

probability to state y by conditioning on how customer A evolves. The customer A jumps to stage j with

probability pij , and the probability that the system will transition to state y equals to the probability that

the remaining customers (we have x− ei remaining customers, among which we take action a− ei) transit

to state y − ej when y ≥ ej, which equals Pa−ei
(x− ei,y − ej). Similarly, if there is at least one type i
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customer in the queue when we take action a in state x, then we can obtain (4.2) by picking a stage i

customer in queue and conditioning on how this customer evolves.

We will only need the these properties (4.1) and (4.2) later in the proofs of our analytical results, and

we can obtain the values of the transition probabilities recursively with these two properties and the initial

transition probabilities at x = e0 in the numerical study.

Objectives: we consider two models with different optimality criteria, which we refer to as a dis-

counted model and an average model, respectively. For the discounted model, we maximize the expected

total discounted reward over an infinite-horizon, which can be expressed as

Vπ,α(x) = Eπ

[ ∞∑
t=0

R(xt,at)α
t
∣∣∣x0 = x

]
,

where α ∈ (0, 1) is the discount factor. Note Vπ,α(x) is well defined since R(x,a) is bounded and α < 1. Let

Vα(x) = max
π

Vπ,α(x),

where the maximum is attainable since the action space is finite and Vπ,α(x) is bounded. A policy π∗ is said

to be α-optimal if Vπ∗,α(x) = Vα(x) for all x ∈ S.

For the average model, we would like to maximize the long-run average reward, which can be expressed

as

gπ(x) = lim inf
T→∞

Eπ

[∑T
t=0R(xt,at)

∣∣∣x0 = x
]

T + 1
.

A policy π∗ is said to be average optimal if gπ∗(x) = maxπ gπ(x) for all x ∈ S.

The following two Lemmas will provide the optimality equations for these two models.

Lemma 4.1. (The optimality equation for the discounted model.)

(a) Vα(x) satisfies the following optimality equation:

Vα(x) = max
a∈A(x)

R(x,a) + α
∑
y∈S

Pa(x,y)Vα(y)

 , x ∈ S. (4.3)

(b) The stationary policy that selects any action maximizing the right-hand side of (4.3) in state x is α-

optimal.

Lemma 4.1 follows directly from Theorems 2.1 and 2.2 in Chapeter II of Ross (1983).

Lemma 4.2. (The optimality equation for the average model.)
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(a) There exists a bounded function h(x) and a constant g, where

h(x) = lim
α→1

[Vα(x)− Vα(x0)] and g = lim
α→1

(1− α)Vα(x0)

for some x0 ∈ S, which satisfy the following optimality equation:

g + h(x) = max
a∈A(x)

R(x,a) +
∑
y∈S

Pa(x,y)h(y)

 , x ∈ S. (4.4)

(b) There exists a stationary policy π∗ that is average optimal and gπ∗(x) = g for all x ∈ S, and π∗is any

policy that selects an action maximizing the right-hand side of (4.4) in state x.

Proof. For any policy π and any α < 1, Vπ,α(x) is bounded. Then, Vα(x) is bounded for any α by definition.

Thus, for some x0 ∈ S,

|Vα(x)− Vα(x0)| ≤ |Vα(x)|+ |Vα(x0)|

is bounded for all α and x. Then, part (a) follows from Theorem 2.2 in Chapter V of Ross (1983) and part

(b) follows from Theorem 2.1 of the same chapter.

Before proceeding further, it is convenient to define the first-order difference operator in the vector form

as follows:

Definition 4.1. For a real-valued function w(x) defined on S, the first-order difference operator Dj is

defined as

Djw(x) = w(x + ej)− w(x), for j = 1, 2.

4.4 Main results for the discounted model

In this section, we start with the analysis of the optimal control of the α-discounted model. For a

real-valued function w(x) defined on the state space S, define the mapping Ta as follows.

Taw(x) =


R(x,a) + α

∑
y∈S Pa(x,y)w(y), if a ∈ A(x),

−∞, otherwise.

(4.5)

Then, the optimality equation (4.3) can be rewritten as

Vα(x) = max
a∈A(x)

{
TaVα(x)

}
,
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and a∗ is an optimal action in state x if Ta∗Vα(x) ≥ TaVα(x) for all a.

We first propose a finite-horizon MDP model with the objective of maximizing the total expected

discounted reward over n time periods. Then, we prove some structural properties for the optimal value

function of the discounted model, Vα, by letting n go to infinity.

Let Vn(x) = maxa∈A(x)

{
TaVn−1(x)

}
for n ≥ 1, and V0(x) be a bounded nonnegative function. Then,

we have the following result which follows directly from Proposition 3.1 of Chapter II in Ross (1983).

Lemma 4.3. Vn(x)→ Vα(x) uniformly in x as n→∞.

As a result of Lemma 4.3, we can prove the structural properties of Vα(x) by induction on Vn(x), starting

from any bounded V0(x). For simplicity, we assume V0(x) = 0 for any x ∈ S from now on.

4.4.1 Conditions for optimality of non-idling policies

We start with an example that shows non-idling is not always optimal for this model. We state by the

following simple example.

Example 4.1. Suppose R1 < R2, p10 = p20, p12 = p21 = 0, q12 = 1 and q22 = 1. Then, for both discounted

and average models, it is optimal to keep the servers idle when there are only stage 1 customers waiting in

the queue. This is because customers leaving in stage 2 will obtain a larger reward with the same amount

of service time (since R2 > R1, p10 = p20). Hence, it is better to keep any stage 1 customers in the queue so

that they will become stage 2 after waiting in the queue for one time period.

On the other hand, it is trivial to show that it is suboptimal to idle servers when there are customers

in both stages with the assumption that the service rewards are positive. Intuitively, idling servers for all

customers will get zero reward, but serving at least one stage of them will get a positive reward.

Next, we consider a case where the number of servers large enough that all existing customers are served

simultaneously. This is the case for a clearing model when the remaining number of customers is less than

b, or the number of servers(b) is infinite for systems with positive arrival rates. Then, by considering each

single customer separately, there are three stationary policies depending on the stage this customer is in,

which are described below:

• policy π0: we keep serving each customer until the service is completed.

• policy πi for i ∈ {1, 2}: we keep each customer in the queue when s/he is in stage i, and start serving

when the customer becomes stage 3− i, and repeat until s/he leaves the system.

If policy π0 outperforms policy πi for both i ∈ {1, 2}, then non-idling is optimal when we have sufficiently

many servers. Let rπi = (rπi1 , r
πi
2 )′ denote the reward vector (a column vector), where rπik is the reward of
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serving a stage k customer under policy πi for i ∈ {0, 1, 2}. The next result compares the reward vectors

under each of the three policies.

Lemma 4.4. For i ∈ {1, 2} and j = 3− i, rπ0 ≥ rπi if and only if

pi0Ri

[
(1− αqii)(1− αpjj)− α2qijpji

]
≥ pj0Rj

[
αqij(1− αpii)− αpij(1− αqii)

]
. (4.6)

If we assume pj0Rj > 0, then (4.6) reduces to

pi0Ri
pj0Rj

≥ αqij(1− αpii)− αpij(1− αqii)
(1− αqii)(1− αpjj)− α2qijpji

.

Next, we consider the case when the resource is capacity-constrained, i.e., for a system where there are

some customers who need to wait in the queue due to insufficient number of servers.

For i = 1, 2, let R̄ = (R̄1, R̄2)′ be a column vector, where R̄i is the expected total reward we can

obtain from a complete and uninterrupted service of a customer who is admitted to service at stage i.

Then, by definition we have R̄ = rπ0 . We define column vector R̄Q =
(
R̄Q1 , R̄

Q
2

)
, where R̄Qi denotes the

expected reward obtained from keeping a stage i customer waiting for one unit of time in the queue and

then completing the service of this customer without interruption. Then, R̄Qi = α
∑2
j=1 qijR̄j for i = 1, 2,

or in matrix form, we have,

R̄Q = α

q11 q12

q21 q22

 rπ0 .

Assumption 4.2. R̄Q ≤ R̄.

Assumption 4.2 implies that the expected reward obtained by delaying the service for one time period

is no larger than that from an immediate service of customers in either stage, given that the service is

uninterrupted once started.

Assumption 4.3.

(i) Assume either one of the following cases hold for i = 1.

(a) pij ≥ qij for j = 1, 2.

(b) pij < qij for j = 1, 2.

(c) pi1 ≥ qi1, pi2 < qi2 and R̄i − R̄Qi ≥ α(pi1 − qi1)R̄1.

(d) pi1 < qi1, pi2 ≥ qi2 and R̄i − R̄Qi ≥ α(pi2 − qi2)R̄2.

(ii) Assume either one of the above four cases hold for i = 2.
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Proposition 4.1. If Assumptions 4.2 and 4.3 hold, then Ta+ei
Vα(x) ≥ TaVα(x) given a + ei ∈ A(x) for

both i ∈ {1, 2}, and it is suboptimal to idle any servers when there are customers waiting in the queue.

The conditions provided in Proposition 4.1 are sufficient but probably not necessary for idling to be

suboptimal. For example, if we consider the case with sufficiently many servers, then Lemma 4.4 provides

a necessary and sufficient condition under which non-idling is optimal. The following Lemma shows that

Assumption 4.2 is equivalent to the condition provided in Lemma 4.4.

Lemma 4.5. Assumption 4.2 is true if and only if (4.6) holds for both i ∈ {1, 2}.

Hence, Assumption 4.2 is a necessary and sufficient condition for rπ0 ≥ rπi for both i = 1, 2, which

indicates non-idling is optimal for the case with infinite many servers under Assumption 4.2. In the remainder

of this chapter, we assume that only non-idling policies are considered.

4.4.2 Optimality of State-independent priority policies

In practice, it is preferable to have policies that are relatively easy to use. One simple policy is to

always give priority to the same stage of customers no matter what the state is. In this section, we provide

conditions under which such a policy is optimal. It is trivial to show that if Ri > R3−i but the transition

probabilities for both types are the same, then it is optimal to prioritize stage i customers.

The next result provides some sufficient conditions under which prioritizing stage 1 customers is optimal,

which could be extended to the optimality of prioritizing stage 2 customers by symmetry.

Proposition 4.2. Suppose R1p10 ≥ R2p20. Then, Ta+e1Vα(x) ≥ Ta+e2Vα(x) given a + e1,a + e2 ∈ A(x),

i.e., it is better to prioritize stage 1 customers, if one of the following holds:

(i) p1jq2k − q1jp2k ≥ 0, and p1j − q1j + p10q2j − q10p2j ≥ 0 for all j, k ∈ {1, 2}.

(ii) p1j ≥ q1j and p2j ≤ q2j for both j ∈ {1, 2}.

Note that neither of the two sets of conditions in Proposition 4.2 implies the other, although both of

them imply p1jq2k − q1jp2k ≥ 0 and p1j − q1j + q2j − p2j ≥ 0 for all j, k ∈ {1, 2}. In addition, under either

of these two sets of conditions, we can see that

(
R̄1 − R̄G1

)
−
(
R̄2 − R̄G2

)
= p10R1 − p20R2 +

2∑
j=1

(p1j − q1j + q2j − p2j)R̄j ≥ 0.

That is, the expected reduced reward from one period of service delay for stage 1 customers is greater than

that for stage 2 customers, and hence from a myopic point of view, we would like to prioritize stage 1

customers.
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4.5 Main results for the average model

In this section, we extend the results from Section 4.4 by applying Lemma 4.2. We define an operator

Ha on a bivariate function w(x) as follows: for x ∈ S, Haw(x) = −∞ if a /∈ A(x) and

Haw(x) = R(x,a) +
∑
y∈S

Pa(x,y)w(y), if a ∈ A(x).

Then, from Lemma 4.2, the optimality equations can be rewritten as

g + h(x) = Hah(x), x ∈ S,

and a∗ is an optimal action in state x if and only if Ha∗h(x) = maxa∈AHah(x)

Proposition 4.3. If Assumptions 4.2 and 4.3 hold for α = 1, then, Ha+ei
h(x) ≥ Hah(x) given a + ei ∈

A(x) for both i ∈ {1, 2}, and it is suboptimal to idle any servers when there are customers waiting in the

queue.

Proposition 4.4. Suppose R1p10 ≥ R2p20. Then, Ha+e1h(x) > Ha+e2h(x) given a + e1,a + e2 ∈ A(x),

i.e., it is better to prioritize stage 1 customers, if one of the following conditions hold:

(i) p1jq2k − q1jp2k ≥ 0, and p1j − q1j + p10q2j − q10p2j ≥ 0 for all j, k ∈ {1, 2}.

(ii) p1j ≥ q1j and p2j ≤ q2j for both j ∈ {1, 2}.

4.6 Analysis of three special models

In this section, we will apply Propositions 4.1 to 4.4 to some special models and compare these results

with existing literature. All results in this section are valid for both discounted and average models.

4.6.1 Special model I: no queueing

We first consider the case that customers in queue abandon with probability one at the end of each time

period. Then, the model becomes a loss system, i.e., customers who are not admitted to service upon arrival

or early discharged during service will be lost forever. In other words, we have q10 = q20 = 1, and hence

qij = 0 for all i, j ∈ {1, 2}.

Corollary 4.1. Idling is suboptimal for Model I.

Corollary 4.1 follows from Propositions 4.1 and 4.3. We have R̄Qi =
∑2
j=1 qijR̄j = 0 for both i = 1, 2 for

all α, and hence Assumptions 4.2 holds. Besides, qij = 0 ≤ pij for all i, j ∈ {1, 2}, and hence Assumption

4.3 holds.
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Corollary 4.2. If R1p10 ≥ R2p20, p1j − p2j ≥ 0 for all j ∈ {1, 2}, then it is optimal to prioritize stage 1

customers.

Corollary 4.2 follows directly from part (i) of Propositions 4.2 and 4.4. The intuition behind Corollary

4.2 is that, if stage 1 customers have larger one-step reward in service, and the probability of this type

remaining in the service in either stage is greater than stage 2 patients, then we would like to prioritize stage

1 customers.

This model is similar to our previous model in Chapter 3, which also considered a multi-server loss

system with transitions between stages, with slightly different reward structure. In Chapter 3, we not only

provided sufficient conditions for non-idling and conditions for prioritization of one stage, but also proved the

threshold structure of the optimal policy. For Model I, we can also show that there exists a threshold-type

optimal policy.

Proposition 4.5. There exists a threshold x∗ ∈ [1, b+ 1] such that for any state x ≥ e1 + e2 and x1 +x2 =

b+ 1, it is optimal to prioritize stage 1 customers if and only if x1 ≤ x∗.

The proof is very similar to the proof of Proposition 3.3 in Chapter 3 since the structure of the optimality

equations are similar. One can easily adapt the proof structure of Proposition 3.3 to get a complete proof of

Proposition 4.5. Another model similar to Model I is presented in Ulukus et al. (2011), where the transitions

in between customer stages pi,3−i = 0 for i = 1, 2 while a termination cost is considered for existing customers

but not for new arrivals.

4.6.2 Special model II: no transitions between stages

In this section, we consider the special case when there are no transitions between stages in service and in

queue. In this model, for notational simplicity, we let µi and βi denote the probability of a stage i customer

leaving system while in service and in queue, respectively, and we assume 0 < µi < 1 and 0 < βi < 1 for

i = 1, 2. In other words, we have pi0 = µi, qi0 = βi, pii = 1 − µi, qii = 1 − βi and pi,3−i = qi,3−i = 0 for

i = 1, 2.

Corollary 4.3. Idling is suboptimal for Model II.

We verify that Assumptions 4.2 and 4.3 hold to apply Propositions 4.1 and 4.3. Assumption 4.2 holds

since
∑2
j=1 qijR̄j = qiiR̄i ≤ R̄i, and Assumption 4.3 holds since qi,3−i = pi,3−i = 0 for both i = 1, 2, and

then it must fall into either (a) or (b) depending on the relation pii and qii.

Corollary 4.4. If R1µ1 ≥ R2µ2, µ1 ≤ β1 and µ2 ≥ β2, then it is optimal to prioritize stage 1 customers.

76



This result follows directly from part (ii) of Propositions 4.2 and 4.4 by plugging the values of transition

probabilities for Model II. This result is consistent with Proposition 5.1.1 of Jacobson (2010), who considered

a continuous time single server system with Poisson arrivals of K classes of customers and i.i.d. exponentially

distributed service times and patience for customers of the same class. The author applied truncation on the

state space and used uniformization to prove the result. In our model, we extend their result to a multi-server

system, without truncating the state space.

The next result provides another set of sufficient conditions for service prioritization of stage 1 customers

for Model II when abandonment rates for all customers are smaller than their service rates.

Proposition 4.6. Assume µ2 ≥ µ1 ≥ β1 ≥ β2 and β1R1 ≥ (β1 + µ2 − µ1)R2. Then, for any x ∈ S

and a + e1,a + e2 ∈ A(x), Ta+e1Vα(x) ≥ Ta+e2Vα(x) and Ha+e1h(x) ≥ Ha+e2h(x), i.e., it is optimal to

prioritize type 1 customers.

Proposition 4.7. Assume µ1R1 ≥ µ2R2, β1

β2
≥ µ1

µ2
≥ 1 and 1 ≤ 1−β1

1−µ1
≤ 1−β2

1−µ2
. Then, for any x ∈ S

and a + e1,a + e2 ∈ A(x), Ta+e1Vα(x) ≥ Ta+e2Vα(x) and Ha+e1h(x) ≥ Ha+e2h(x), i.e., it is optimal to

prioritize type 1 customers.

When µ1 = µ2 = µ, the conditions in Propositions 4.6 and 4.7 both reduce to µ ≥ β1 ≥ β2 and R1 ≥ R2.

That is, when the service rates are the same and are greater than the abandonment rates, we prefer the

customers with larger reward and abandonment rate. These conditions are slightly different from Theorem

3.3 of Down et al. (2011) for their reward model, which considered a single server queueing system with

impatient customers that belong to two independent classes. However, an important difference between

their reward model and Model II is that they assume abandonment could also happen for customers in

service. To incorporate the difference, we redefine a model with abandonment in service as follows.

Model II(A): Assume type i customers in service will complete service with probability µ̃i with a service

reward R̃i. If the service for a type i customer is not completed at the end of that period, this customer

will abandon the system with probability βi without any reward. Type i customers waiting in the queue

abandon with probability βi.

For Model II(A), the probability that type i customers in service will leave is µ̃i + (1 − µ̃i)βi, either

due to service completion or abandonment. Then, we find that the MDP formulation of Model II(A) is the

same as that of Model II with parameters µi = µ̃i + (1 − µ̃i)βi and Ri = µ̃i
µi
R̃i. With this equivalence, the

following result follows directly from Propositions 4.6 and 4.7.

Corollary 4.5. For Model II(A), suppose β1 ≥ β2. Assume either of the following two statements is true:

(a) µ̃1 + β1(1− µ̃1) ≤ µ̃2 + β2(1− µ̃2) and β1µ̃1R̃1

µ̃1+(1−µ̃1)β1
≥ (β2+µ̃2(1−β2)−µ̃1(1−β1))µ̃2R̃2

µ̃2+(1−µ̃2)β2

(b) µ̃1 ≤ µ̃2, β1 ≥ β2, µ̃1R̃1 ≥ µ̃2R̃2 and µ̃1 + β1(1− µ̃1) ≥ µ̃2 + β2(1− µ̃2).
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Then, it is optimal to prioritize stage 1 customers.

When µ̃1 = µ̃2, the conditions in Corollary 4.5(b) reduce to β1 ≥ β2 and R̃1 ≥ R̃2, which are consistent

with Theorem 3.3 of Down et al. (2011). We extend their result to a multi-server system with different

service rates under the discrete time setting in Model II(A).

4.6.3 Special model III: Stage changes in one direction only while in queue

The third special model we considered is that customers do not change their stages in service, and they

could change from one stage to another while waiting in the queue. Suppose p12 = p21 = 0, q12 = β1, q11 =

1 − β1 and q22 = β2, q20 = 1 − β2. Stage 1 customers in queue will become stage 2, and stage 2 customers

will renege from queue.

Corollary 4.6. Idling is suboptimal if R̄1 ≥ R̄2.

The condition R̄1 ≥ R̄2 is equivalent to

(1− α)(R1µ1 −R2µ2) ≥ αµ1µ2(R2 −R1).

As α→ 1, the condition reduces to R2 ≤ R1, and when α is close to 0, the condition requires R1µ1 ≥ R2µ2.

In general, the condition requires the customers in queue will change to a worse stage. When the discount

factor is small, the stage with smaller one-step expected reward is considered as the worse stage, and when

the discount factor is large the stage with smaller reward is considered as the worse stage.

Corollary 4.7. If R1µ1 ≤ R2µ2, µ1 ≥ β1 and µ2 ≤ β2, then it is optimal to prioritize stage 2 customers.

Corollary 4.7 is consistent with Proposition 5.2.1 of Jacobson (2010), who considers a single server system

with K ≥ 2 stages. Our results can easily be extended to more than two stages, and we are considering a

system with multiple servers.

4.7 Numerical study

In this section, we explore the structure of the optimal policy by means of a numerical study, and

compare the performance of different index policies.

The MDP model has an infinite state space, and we will apply truncation on the state space in the

numerical study. We truncate the state space in the way that x1 + x2 ≤ B. The truncation error will be

ignored in our analysis. Note, the truncation error would be significant for a busy system, i.e., when arrival

rates are equal or larger than the service rate, and the reneging rate is very small. Hence, sin our analysis,

we will avoid such situations by considering parameters so that the system is not overcrowded.
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4.7.1 Switching curve

We start with b = 1 and B = 20 to look at the structures of the optimal policy. We consider the average

model and use relative value iteration to obtain the optimal policy for each scenario.

For the base scenario, we set parameters as following:

(i) The arrival rate λ = 0.15 and probability that a new arrival belongs to stage 1 is 0.5, hence, λ1 = λ2 =

0.075.

(ii) For stage i customers (i = 1, 2), the probability of service completion is µi, and the probability of

queue abandonment is βi. The patient evolution probabilities are obtained as follows: we let pi0 = µi

and qi0 = βi, and pii = 0.8(1− µi), pi,3−i = 0.2(1− µi) and qii = 0.8(1− βi), qi,3−i = 0.2(1− βi).

(iii) µ1 = 0.1, µ2 = 0.2 and β1 = 0.15, β2 = 0.05.

(iv) R1 = 18 and R2 = 10.

In this scenario, stage 1 customers have larger service reward, larger abandonment rate in the queue,

but smaller service rate, and we find that the optimal policy has a switching curve structure in Figure 4.2.

By increasing B to 30, we get the same optimal policy and same optimal long-run average reward, and hence

Figure 4.2: Optimal policy structure

we think it is alright to ignore the truncation error for this case.

Next we make changes to only one of the parameters of stage 1 customers (R1, µ1 or β1) and see how

the optimal policy changes.
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Figure 4.3: Changes of the switching curve in µ1, R1, and β1

In the end of this section, we consider the optimal decision for a multi-server system. Let b = 3 and

B = 30, we also increase the arrival rate by three times, i.e., λ = 0.45 in this scenario. All other parameters

are the same as the base scenario in the single server case.

Figure 4.4: Optimal policy structure for a three-server system

4.7.2 Compare the performance of some priority index policies

In this section, we propose some simple priority index policies and compare their performance in a

numerical study.

The most straightforward index policy would be the one prioritizes the stage with larger reward Ri

(which we refer as the reward policy (R)), or a policy that prioritizes the stage with larger one-step expected
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reward (which we refer as the one-step-reward policy (OSR)). Besides, we can also propose some index

policies with structure similar to cµ-rule (Cox and Smith (1961)), or cµ/θ-rule (Atar et al. (2010)). Let Li

denote the expected length of time required to serve a stage i customer. Then, the reward-rate policy (RR)

prioritizes the stage with larger Ri/Li, where Li could be obtained by solving the following equations:

Li = 1 +

2∑
j=1

pijLj , for i = 1, 2.

Matrix form: L = (1, 1)′ + pL→ (I − p)L = (1, 1′)→ L = (I − p)−1(1, 1)′.

Similarly, let LQi denote the expected length of time that a stage i customer would wait in the queue before

abandon, where LQi could be obtained by solving the following equations:

LQi = 1 +

2∑
j=1

qijL
Q
j , for i = 1, 2.

Then, we consider a priority index RiL
Q
i /Li that has a similar index structure as cµ/θ-rule proposed in

Atar et al. (2010), which we refer to as reward-rate over abandonment-rate policy (RR/AR). The cµ/θ-rule

is shown to be optimal in the overloaded system. However, intuitive speaking, we would like to prioritize

customers with higher abandonment rates when they have the same service rates and service rewards. Hence,

it makes more sense to consider a policy that prioritizes the type with larger Ri/(LiL
Q
i ), which we refer to

as reward-rate times abandonment-rate (RRAR).

At last, from the condition of non-idling and the sufficient conditions of service prioritization, we propose

a policy with index R̄i − R̄Gi (R̂i − R̂Gi in the average model), which we refer to as expected delayed reward

difference policy (EDRD). For this problem, possible index could be Ri, Ripi0 or Ripi0/qi0. These indexes

does not take into account the transitions between stages. Hence, we propose an index policy with priority

index R̄i − R̄Qi under Assumption 4.2, i.e., we prioritize the stage that have larger one-step incremental

survival probabilities.

To summarize, the policies and corresponding indices are shown in Table 4.1.

Table 4.1: Priority index policies and corresponding index

Policy Index Notation

Reward (R) Ri
One-step Reward (OSR) Ripi0
Reward rate (RR) Ri/Li
Reward rate over abandonment rate (RR/AR) RiL

Q
i /Li

Reward rate times abandonment rate (RRAR) Ri/LiL
Q
i

Expected delayed reward difference (EDRD) R̄i − R̄Qi
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4.7.2.1 Single scenario comparison

We compare the policies for the scenarios given in Section 4.7.1. We first consider the base scenario, where

we have the optimal reward g∗ = 1.3523, and the expected rewards for always prioritize stage 1 (policy P1)

and always prioritize stage 2 customers (policy P2) are g1 = 1.3523 and g2 = 1.2595. We notice that P1 is

better than P2, and performs nearly optimal.

Next, we compute the respective indices for each policy given in Table 4.1, and discuss which policies

performs better only for this scenario. We have

Table 4.2: Priority indices for the base scenario.

R Rpi0 Ri/Li RiL
Q
i /Li Ri/(LiL

Q
i ) R̄i − R̄Qi

stage 1 18 1.8 2.4 22.1124 0.2605 2.4731

stage 2 10 2 1.6364 18.7538 0.1428 0.1788

All the policies in Table 4.1 choose the right static policy except for policy OSR, which uses Ripi0 as the

priority index. We repeat these computations for all other scenarios in Section 4.7 with changed parameters.

Table 4.3: Computations of the priority indices for several scenarios

4.7.2.2 Random comparisons

The single scenario we presented in the previous section may not tell the whole story. Next, we will compare

these policies with randomly generated parameters. We randomly generate 1000 sets of parameters, with

all probabilities µi and βi uniformly in (0.1, 0.5), pii ∼ (1 − µi)U(0.8, 1) and qii ∼ (1 − βi)U(0.8, 1). We

generate λ and theta uniformly in (0, 1) so that λ1 = θ]lambda and λ2 = λ(1− θ). We fix R1 = 10 and R2
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takes value in {10, 12, 14, 16, 18, 20} for each set of the parameters. We generated a total of 6000 scenarios,

and the following analysis will be conducted based on these 6000 scenarios.

We first look at how each static policy performs compared with the optimal policies. Let P1 denote the

static policy that always prioritize stage 1 customers, and P2 denote the policy that always prioritize stage

2 customers. Let g1 and g2 denote the respective long-run average reward for policy P1 and P2, and g∗

denote the long-run average reward under the optimal policy. We conduct 95% confidence intervals (C.I.)

of the relative differences (g∗ − g1)/g∗, (g∗ − g2)/g∗ and (g∗ −max(g1, g2))/g∗, and the results are shown in

Table 4.4 (all numbers are in percentage).

Table 4.4: Comparisons of the static policies and the optimal policy

(g∗ − g1)/g∗ (g∗ − g2)/g∗ (g∗ −max(g1, g2))/g∗

95% C.I. (6.6360, 7.2617) (7.1521, 7.7919) (0.0048, 0.0074)

Maximum 69.8460 72.1264 1.2222

We find that the best static policy performs nearly optimal. However, given the customers change

stages in both service and queue, it is difficult to analytically compute and compare the long-run average

rewards of P1 and P2. Hence, we focus on whether we could find some criteria that is easy to employ and

determine which static policy should be chosen. The priority index policies provides in Table 4.1 are some

of such criteria, and we next compare the performances of these policies. As before, we first provide the

95% C.I. of the relative differences in long-run average reward under proposed policy and the optimal policy,

the maximum of the relative difference, and we also compute the percentage of scenarios that the proposed

policy is consistent with the best static policy. More specifically, we conduct C.I.s and find maximum of the

quantity (g∗− gπ)/g∗ where gπ denote the long-run average reward for policy π. Let Nπ denote the number

of scenarios that policy π is consistent with the best static policy, and we compute N/6000 as the percentage

of scenarios that the proposed policy is consistent with the best static policy. The results are provided in

Table 4.5 (all numbers are in percentage).
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Table 4.5: Comparisons of the proposed index policies

Policy Index 95% C.I. of (g∗ − gπ)/g∗ Maximum of (g∗ − gπ)/g∗ Nπ/6000

R Ri (4.24, 4.73) 60.64 65.08

OSR Riµi (0.08, 0.10) 6.35 93.05

RR Ri/Li (0.21, 0.28) 28.05 90.98

RR/AR RiL
Q
i /Li (2.49, 2.83) 55.89 69.97

RRAR Ri/(LiL
Q
i ) (1.22, 1.46) 48.10 84.58

EDRD R̄i − R̄Qi (5.12, 5.69) 69.85 63.77

We found that in this study, the one-step-reward policy outperforms all the other index policies.

4.8 Conclusions

Customers are impatient and may change stages in many service systems. There are many parameters

that could affect the prioritization decisions, such as service rates and rewards, abandonment rates, transition

probabilities, etc. We aim to develop a model to see how the priority should be assigned under different

settings of these parameters, and propose some priority index policies based on our model analysis.

We first formulate the system an MDP model. We find that our formulation does not guarantee the

optimality of non-idling, which should be the case in reality for most service systems. We consider the case

when there are ample servers and we find the necessary and sufficient condition under which non-idling

should be optimal. Intuitive explanation for this condition is that delaying the service for one period of time

will reduce the expected discounted reward obtained for every customer. We next consider the general case

when server capacity is constrained. With an additional assumption on the transition probabilities (may

not be necessary), we are able to provide a sufficient condition under which non-idling is optimal. Next, we

compare the actions of serving a stage 1 customers versus the action of serving a stage 2 when a server is

available, and find that the action of service a stage 1 is always better than serving a stage 2 when a server is

available under certain conditions. Hence, these conditions are sufficient conditions under which it is optimal

to always prioritize stage 1 customers.

We consider several special settings of the general model. The first setting is to assume no queueing for

the system. Then, the model reduces to Model I that is very similar to the one in Chapter 3, with slightly

different reward structure. However, utilizing the similar structure of the optimality equations, we conclude

that the optimal policy for Model I is actually the same as the ICU model in Chapter 3. The second special

parameter setting considered in Model II is the case when there is no transition between stages. We obtain
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a sufficient condition under which always prioritizing one stage is optimal by applying our general model

results. We also extend the result by considering reneging also happens for customers in service in Model

II(A), and obtain a result that is consistent with that in Down et al. (2011), but our Model II(A) is more

general since we consider a multi-sever and non-identical service times. The third special parameter setting

study the model in Chapter 5.2 of Jacobson (2010), and provide a similar result for a multi-server system.

We propose several index policies from our model analysis, and conduct a numerical study to compare

the performances. In this study, we first find the switching curve structure of the optimal policy and observe

how the switching curve changes with respect to different parameters. We conduct 6000 random parameter

combinations and compare the performance of different index policies. We find that in our study, the priority

index policy that prioritizes the stage with largest one-step expected reward performs the best among all

index policies we proposed.
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CHAPTER 5: CONCLUSIONS

Prioritization has been widely applied in many service systems to improve the overall system per-

formances and to provide customized service to heterogeneous customers. In this dissertation, our main

objective is to study how priority should be assigned in different systems when the cost is not of a simple

linear form.

In Chapter 2, we compare several static policies in an M/G/1 queueing system with nonlinear waiting

cost functions. The results we obtained are very general and could provide useful insights for the case when

a simple policy is desired. Our first result provides a complete comparison ofF , PF1 and PF2 when the

exact cost function expressions for both types are known. Then, we provide sufficient conditions under

which FCFS performs better and conditions under which the fixed priority policy performs better. These

conditions could apply to the case when the cost function for one type is known and we have knowledge of

the changing rate of the other cost function. We next show that when the cost functions are both convex it

is sufficient to compare only F , PF1 and PF2. On the other hand, when the cost functions are both concave

it is sufficient to only compare L, PL1 and PL2, and we also present results on the comparisons of these

three policies. We find that the best static policy performs very well for most scenarios in our simulation

study compared with the Generalized-cµ rule.

In Chapter 3, we investigate the prioritization decisions in ICUs. We assume patients health stages

could change over time, and the priority decisions are made between different stages. Although we proved

the optimal policy depends on the mix of the patients in the ICU, our numerical study shows that the

difference between the best static policy and the optimal dynamic policy is very small. Hence, we propose

a policy that determines which of the two stages should be prioritized based on the system load. Our

proposed policy only needs information about the stage-dependent expected dying probabilities in ICU and

in the general ward, and the stage-dependent expected length-of-stay, which could be estimated from data

in practice, and hence is applicable.

In Chapter 4, we study the prioritization problem in a queueing system under the assumption that

customers are impatient and they could change their stages over time. We model this problem as an MDP,

and provide partial characterization of the optimal policy. We compare the performances of several index-

based priority policies via a numerical study.
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There are several possible extensions of the work on the models in Chapter 3 and 4. For example,

we assume all patients are evolving with respect to the same pattern in the current models, and then an

instant extension is to assume patients belong to different classes and each class associates with a transition

scheme. The prioritization decisions are made among patient classes and stages. For the model in Chapter

4, we have demonstrated how this model could be applied to analyze the ICU model with readmissions.

However, we did not differentiate between the readmitted patients and new arrivals, where many empirical

studies have shown that readmission is associated with a longer length of stay and higher mortality. Hence,

we could incorporate these differences in the future study. These models become very complicated and we

should focus on either finding an index based priority assignment policy that performs well or applying fluid

approximation to provide some insights.
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APPENDIX A: PROOFS OF RESULTS IN CHAPTER 2

In this Appendix, we provide proofs of results in Chapter 2.

A.1 Proof of Results in Section 2.2

Proof of equivalence of Equations (2.1) and (2.2): The long-run average cost defined by (2.1) can be

written as

Cπ =

2∑
i=1

lim
t→∞

(∑ni(t)
k=1 Ci(V

π,x0

i,k )

ni(t)

)(
ni(t)

t

)

=

2∑
i=1

lim
t→∞

∑ni(t)
k=1 Ci(V

π,x0

i,k )

ni(t)
lim
t→∞

ni(t)

t
=

2∑
i=1

λpi lim
n→∞

∑n
k=1 Ci(V

π,x0

i,k )

n
, (A.1)

which follows from the fact that {ni(t), t ≥ 0} is a Poisson process with rate λpi for i = 1, 2. In the following

we will prove that for i = 1, 2 when E
[∣∣Ci(Wπ

i )
∣∣] is finite,

lim
n→∞

∑n
k=1 Ci(V

π,x0

i,k )

n
= E [Ci(W

π
i )] , (A.2)

which shows that (A.1) (and hence (2.1)) is equivalent to (2.2).

In the remainder of this proof, we drop the superscripts π and x0 for notational convenience, and let Tik,

Sik and Dik be the arrival time, service time and departure time of the kth type i customer, respectively,

under policy π and initial state x0. Then, Vik = Dik −Tik −Sik is the queue-waiting time for this customer.

Note that {Vik, k = 1, 2, . . .} for each i = 1, 2 is a delayed regenerative process with nth regeneration

happening at Ni,n for n = 0, 1, 2, . . ., where Ni,0 = 1, and

Ni,n = min{k : k > Ni,n−1, Vik = 0}.

Note also that for each i = 1, 2, {Ci (Vik) , k = 1, 2, . . .} is a regenerative process with the same regen-

eration epoches as {Vik, k = 1, 2, . . .}. Then, by Theorem 13 of Chapter 2 and last paragraph of page

93 in (Wolff 1989), (A.2) holds if
∑Ni,1−1
k=1 |Ci(Vik)| < ∞ with probability one, E [Ni,2 −Ni,1] < ∞, and

E
[∑Ni,2−1

k=Ni,1
|Ci(Vik)|

]
<∞. We next complete the proof by showing that these three conditions hold.

When ρ < 1, the system is stable, i.e., it will return to the empty state within finite time with probability

one and also the expected time it takes to return to the empty state is finite (see, e.g., Theorem 7.11 in

(Kulkarni 2009)). This implies that Ni,1 < ∞ with probability one, Ni,2 −Ni,1 < ∞ with probability one,

Vi,k <∞ for any i and k with probability one and E [Ni,2 −Ni,1] <∞. At last, by Theorem B.5 (i) in (El-
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Taha and Stidham 1999), E
[∑Ni,2−1

k=Ni,1
|Ci(Vik)|

]
= E [|Ci(Wi)|]E [Ni,2 −Ni,1] is finite under the assumption

that E [|Ci(Wi)|] is finite.

A.2 Proof of results in Section 2.3

Proof of Lemma 2.3: We use sample path arguments to prove the stochastic inequalities. Let i be fixed

to be either 1 or 2. Here type i and 3 − i customers will be called priority and non-priority customers,

respectively.

We index the customers by their arrival order to the system, and let sj be the arriving time of customer

j. Then, for customers l and j, where j > l ≥ 1, we have sj > sl. Let tπj be the service starting time of

customer j under policy π, then tπj ≥ sj . Let also V πj denote the waiting time of customer j under policy π,

then V πj = tπj − sj for j = 1, 2, . . ..

Under FCFS, we have tF1 < tF2 < · · · with probability one. Let j be the index of the first non-priority

customer whose service starts when there are priority customers waiting, and k be the index of the first

priority customer in the queue when j starts service under FCFS. Then, the customers indexed from j to

k − 1 are all non-priority customers. Note that sj < · · · < sk−1 < sk < tFj < · · · < tFk−1 < tFk .

Consider a policy π that follows FCFS except that it serves customer k first, and then serves the

non-priority customers j, . . . , k − 1. For the kth customer, who is a priority customer, tπk = tFj < tFk and

V πk = tπk − sk < tFk − sk = V Fk . For l = j, . . . , k − 1, who are all non-priority customers, tπl > tFl and

V πl = tπl − sl > tFl − sl = V Fl . For any l /∈ {j, . . . , k}, we have V πl = V Fl .

If we keep changing the service order like this when there are non-priority customers starting service

while priority customers are waiting in the queue, then we will eventually reach policy PFi. This coupling

argument then will yield V PFii,n ≤st V Fi,n and V PFi3−i,n ≥st V F3−i,n for n ≥ 1. Since Wπ
i is the steady-state

waiting time for type i customers under policy π, then, as n → ∞, V πi,n
d→ Wπ

i and V π3−i,n
d→ Wπ

3−i, and

hence, according to Theorem 1.A.3(d) in (Shaked and Shanthikumar 2007), we have WPFi
i ≤st WF and

WPFi
3−i ≥st WF .

Proof of Theorem 2.1: We prove this result by comparing the costs directly.

(a) For i = 1, 2, Equation (2.2) yields CF ≤ CPFi if and only if

pi

(
E
[
Ci(W

F )
]
− E

[
Ci(W

PFi
i )

])
≤ p3−i

(
E
[
C3−i(W

PFi
3−i )

]
− E

[
C3−i(W

F )
])

⇔ piE
[
C ′i(U

PFi
i )

](
E[WF ]− E[WPFi

i ]
)
≤ p3−iE

[
C ′3−i(U

PFi
3−i )

](
E[WPFi

3−i ]− E[WF ]
)
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based on Lemma 2.1. Since

p3−i
(
E[WPFi

3−i ]− E[WF ]
)

pi
(
E[WF ]− E[WPFi

i ]
) =

p3−i

(
1

(1−ρ)(1−ρi) −
1

1−ρ

)
pi

(
1

1−ρ −
1

1−ρi

) =
p3−iρi
piρ3−i

=
τi
τ3−i

,

we have CF ≤ CPFi if and only if ai ≤ bi.

(b) Equation (2.2) yields CPF1 ≤ CPF2 if and only

p2

(
E
[
C2(WPF1

2 )
]
− E

[
C2(WPF2

2 )
])
≤ p1

(
E
[
C1(WPF2

1 )
]
− E

[
C1(WPF1

1 )
])
. (A.3)

We have,

p2

(
E
[
C2(WPF1

2 )
]
− E

[
C2(WPF2

2 )
])

=p2

(
E
[
C2(WPF1

2 )
]
− E

[
C2(WF )

]
+ E

[
C2(WF )

]
− E

[
C2(WPF2

2 )
])

=p2

((
E[WPF1

2 ]− E[WF ]
)
E
[
C ′2(UPF1

2 )
]

+
(
E[WF

2 ]− E[WPF2
2 ]

)
E
[
C ′2(UPF2

2 )
])

(A.4)

=p2

(
λρ1ξ̄

2(1− ρ1)(1− ρ)
E
[
C ′2(UPF1

2 )
]

+
λρ1ξ̄

2(1− ρ2)(1− ρ)
E
[
C ′2(UPF2

2 )
])

=
τ2p2λρ1ξ̄

2(1− ρ1)(1− ρ2)(1− ρ)

[
(1− ρ2)

E
[
C ′2(UPF1

2 )
]

τ2
+ (1− ρ1)

E
[
C ′2(UPF2

2 )
]

τ2

]
,

=
ρ1ρ2ξ̄

2(1− ρ1)(1− ρ2)(1− ρ)

[
(1− ρ2)b1 + (1− ρ1)a2

]
. (A.5)

Proof of Corollary 2.2: (a) If C ′1(t) ≥ τ1 max{a2, b1} for all t ≥ 0, then for any non-negative random

variable X, we have E [C ′1(X)] ≥ τ1 max{a2, b1} when the expectation exists. Hence,

a1 =
E
[
C ′1(UPF1

1 )
]

τ1
≥ τ1 max{a2, b1}

τ1
≥ b1,

which implies that CF ≥ CPF1
from Theorem 2.1(a). Similarly,

b2 =
E
[
C ′1(UPF2

1 )
]

τ1
≥ τ1 max{a2, b1}

τ1
≥ a2,

which implies that CF ≤ CPF2 from Theorem 2.1(a).
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(b) If C ′1(t) ≤ τ1 min{a2, b1} for all t ≥ 0, then we have E [C ′1(X)] ≤ τ1 min{a2, b1} for any non-negative

random variable X when the expectation exists. Then, a1 ≤ b1 and b2 ≤ a2, which implies that

CF ≤ CPF1 and CF ≥ CPF2 from Theorem 2.1(a).

(c) If τ1a2 ≤ C ′1(t) ≤ τ1b1 for all t ≥ 0, then we have τ1a2 ≤ E [C ′1(X)] ≤ τ1b1 for any non-negative random

variable X when the expectation exists. Then, ai ≤ bi for i = 1, 2, which implies that CF ≤ CPF1
and

CF ≤ CPF2 from Theorem 2.1(a).

Proof of Corollary 2.3: (a) Since C ′1(t) ≥ max{α, β}C ′2(t) for all t ≥ 0, then for any non-negative ran-

dom variable X, we have E[C ′1(X)] ≥ max{α, β}E[C ′2(X)] when the expectations exist. Consequently,

for X = UPF1
1 we have

E[C ′1(UPF1
1 )] ≥ βE[C ′2(UPF1

1 )] =

(
τ1
τ2

)
E[C ′2(UPF1

2 )]⇔ a1 ≥ b1,

and hence by Theorem 2.1(a), CPF1 ≤ CF . Similarly, for X = UPF2
1 we have

E[C ′1(UPF2
1 )] ≥ αE[C ′2(UPF2

1 )] =

(
τ1
τ2

)
E[C ′2(UPF2

2 )]⇔ b2 ≥ a2,

and hence by Theorem 2.1(a), CF ≤ CPF2
.

(b) Similar to part (a), since C ′1(t) ≤ min{α, β}C ′2(t) for all t ≥ 0, we have a1 ≤ b1 and b2 ≤ a2. Thus, by

Theorem 2.1(a), we have CPF2 ≤ CF ≤ CPF1 .

(c) Similar to part (a), since αC ′2(t) ≤ C ′1(t) ≤ βC ′2(t) for all t ≥ 0, we have a1 ≤ b1 and a2 ≤ b2, which

implies that CF ≤ CPF1
and CF ≤ CPF2

by Theorem 2.1(a).

A.3 Laplace-Stieltjies transforms (LSTs) of the busy period and waiting times under
FCFS and fixed priority policies

For i = 1, 2, let S̃i(s) denote the LST of the service time distribution for type i customers, and S̃(s) ≡

p1S̃1(s) + p2S̃2(s). We first cite the definition of a busy period from (Miller 1960) as following.

Definition A.1. ((Miller 1960)) The length of a busy period is the length of time between the arrival of an

item at the empty queue and the first subsequent moment at which the queue is again empty.

The LST of the busy period of a single-class queue was introduced in Theorem 6 of (Takács 1955), which

we also present in the next lemma.
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Lemma A.1. (Theorem 6 of (Takács 1955)) Let B(s) denote the LST of the busy period distribution

function, then B(s) is the uniquely defined analytic solution of the equation

B(s) = S̃
(
s+ λ(1−B(s))

)
,

where lims→∞B(s) = 0.

For a single-serve queue with two classes of customers, we define Bj(s) as a busy period with only class

j arrival. Then, we can adapt the result from Lemma A.1 that Bj(s) is the unique solution to Bj(s) =

S̃j
(
s+ λpj(1−Bj(s))

)
for Re{s} > 0 and lims→∞,s realBj(s) = 0.

We next obtain the following result from Equations (3.3), (3.8), (3.10), (4.1) and (4.2) of (Miller 1960).

Lemma A.2. Let W̃F and W̃
PFj
i denote the respective LST of WF and W

PFj
i for i, j ∈ {1, 2}. Then, for

fixed j ∈ {1, 2},

W̃
PFj
j (s) =

(1− ρ)s+ λp3−j [1− S̃3−j(s)]

s− λpj
(

1− S̃j(s)
) , W̃F (s) =

(1− ρ)s

s− λ
(

1− S̃(s)
) ,

and

W̃
PFj
3−j (s) = W̃F

(
λpj(1−Bj(s)) + s

)
=

1− ρ

1−
λ
(

1−S̃
(
λpj(1−Bj(s))+s

))
λpj(1−Bj(s))+s

.

A.4 Proof of results in Section 2.4

Proof of Lemma 2.4. Assumption 2.1 holds for Ci(t) in the form of (2.5) if and only if E
[(
WF

)l]
and

E

[(
WPFm
i

)l]
are finite for all m ∈ {1, 2} and l ≤ j(i).

In fact, with Lemma 2.3 and Theorem 1.A.3(a) of (Shaked and Shanthikumar 2007), we have, for any

finite l,

E

[(
WPFi
i

)l]
≤ E

[(
WF

)l] ≤ E [(WPF3−i
i

)l]
,

and thus we only need to prove that E

[(
W

PF3−i
i

)l]
exists. We have,

E

[(
W

PF3−i
i

)l]
=
dlW̃

PF3−i
i (s)

dsl

∣∣∣
s=0

,

and from Lemma A.2, we have,

W̃
PF3−i
i (s) = W̃F

(
λp3−i(1−B3−i(s)) + s

)
.
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Using the Faa di Bruno’s formula (see, e.g., Theorem 2 of (Roman 1980)), we have,
dlW̃

PF3−i
i (s)

dsl
|s=0 will be

finite if dnW̃F (s)
dsn |s=0 and dnB3−i(s)

dsn |s=0 are finite for all n ≤ l, which is true if the nth moment of WF and

the nth moment of the busy period are finite.

When ρ < 1, we can obtain the nth moments of WF from (Gross et al. 2008) (page 238) as

E
[
WF

]n
=

λ

1− ρ

n∑
j=1

E
[
WF

]n−j E [S]
j+1

j + 1
,

where E [S]
j+1

is (j+1)st moment of service times, and hence E
[
WF

]n
is finite if ρ < 1 and the first (n+1)

moments of service times for all customers are finite. Besides, from Theorem 1 of (Ghahramani and Wolff

1989), the nth moment of the busy period is finite if and only if the nth moment of the service times is finite.

Thus, E

[(
W

PF3−i
i

)l]
is finite if ρ < 1 and the first (l + 1) moments of service times are finite.

Proof of Equations (2.8) and (2.9): For some i, k,m ∈ {1, 2}, we have

E
[
C ′i(U

PFm
k )

]
= 2kiE

[
UPFmk

]
+ hi = ki

(
E
[
(WF )2

]
− E

[
(WPFm

k )2
]

E[WF ]− E[WPFm
k ]

)
+ hi,

from Equations (2.6) and (2.7). The expected waiting times have been given in Lemma 2.2, and the second

moments can be obtained from (Gross et al. 2008) and (Miller 1960):

E
[
(WF )2

]
=

λζ̄

3(1− ρ)
+

λ2ξ̄2

2(1− ρ)2
, E
[
(WPFk

k )2
]

=
λζ̄

3(1− ρk)
+

λ2pkξk ξ̄

2(1− ρk)2
,

and

E
[
(WPFk

3−k )2
]

=
λζ̄

3(1− ρk)2(1− ρ)
+

λ2ξ̄2

2(1− ρk)2(1− ρ)2
+

λ2pkξk ξ̄

2(1− ρk)3(1− ρ)
.

Then,

E[WF ]− E[WPFk
k ] =

λ2p3−kτ3−k ξ̄

2(1− ρk)(1− ρ)
, E[WPFk

3−k ]− E[WF ] =
λ2pkτk ξ̄

2(1− ρk)(1− ρ)
,
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and

E
[(
WF

)2]− E [(WPFk
k

)2
]

=
ρ3−kλζ̄

3(1− ρk)(1− ρ)
+

λ2ξ̄

2(1− ρk)(1− ρ)

[
(1− ρk)(p1ξ1 + p2ξ2)

1− ρ
− pkξk(1− ρ)

1− ρk

]
=

λ2p3−kτ3−k ζ̄

3(1− ρk)(1− ρ)
+

λ2p3−k ξ̄

2(1− ρk)(1− ρ)

[
pkξkλτ3−k(2− ρ− ρk)

(1− ρ)(1− ρk)
+
ξ3−k(1− ρk)

1− ρ

]
,

E

[(
WPFk

3−k

)2
]
− E

[(
WF

)2]
=

[
ζ̄

3
+

λξ̄2

2(1− ρ)

]
λρk(2− ρk)

(1− ρ)(1− ρk)2
+

λ2pkξk ξ̄

2(1− ρk)3(1− ρ)

=

[
2ζ̄(2− ρk)

3ξ̄(1− ρk)
+

λξ̄(2− ρk)

(1− ρ)(1− ρk)

]
λρk ξ̄

2(1− ρk)(1− ρ)
+

λρkξk ξ̄

2τk(1− ρk)3(1− ρ)
.

Hence,

E
[
C ′i(U

PFk
k )

]
= ki

[
2ζ̄

3ξ̄
+
pkξkλ(2− ρ− ρk)

(1− ρ)(1− ρk)
+
ξ3−k(1− ρk)

τ3−k(1− ρ)

]
+ hi

= ki

[
2ζ̄

3ξ̄
+ λpkξk

(
1

1− ρ
+

1

1− ρk

)
+ λp3−kξ3−k

(
1

1− ρ
+

1

ρ3−k

)]
+ hi

= ki

[
2ζ̄

3ξ̄
+

λξ̄

1− ρ
+
λpkξk
1− ρk

+
ξ3−k
τ3−k

]
+ hi, (A.6)

and

E
[
C ′i(U

PFk
3−k )

]
= ki

[
2ζ̄

3ξ̄

(
1 +

1

1− ρk

)
+

λξ̄

1− ρ

(
1 +

1

1− ρk

)
+

ξk
τk(1− ρk)2

]
+ hi. (A.7)

Proof of Proposition 2.1. The expressions for A and B and the characterization of the optimal policy

follow from (2.11). We next prove that A < B. Let Gi(λ) = 2ζ̄
3ξ̄

+ λξ̄
1−λτ̄ + λpiξi

1−λpiτi and Xi = 2ζ̄
3ξ̄

+ λξ̄
1−λτ̄ + ξi

τi

for i = 1, 2. Then, we have

A =
X1 + λp2ξ2

1−ρ2

X2 + G2(λ)+λp2ξ2
1−ρ2

, B =
X1 + G1(λ)+λp1ξ1

1−ρ1

X2 + λp1ξ1
1−ρ1

.

Note that for i = 1, 2,

Gi(λ) + λpiξi
1− ρi

>
Gi(λ)

1− ρi
>

λξ̄

(1− ρi)(1− ρ)
>
λp3−iξ3−i
1− ρ3−i

,
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where the last inequality follows from the fact that ξ̄ > p3−iξ3−i and (1 − ρi)(1 − ρ) < 1 − ρ < 1 − ρ3−i.

Hence, we have

A <
X1 + λp2ξ2

1−ρ2

X2 + λp1ξ1
1−ρ1

< B.

Proof of Proposition 2.2. From the expression of A, we have,

∂A

∂λ
=
G′2(λ)

(
2−ρ2
1−ρ2G2(λ) + ξ2

τ2

)
−
(
G2(λ) + ξ1

τ1

)(
p2τ2

(1−ρ2)2G2(λ) + 2−ρ2
1−ρ2G

′
2(λ)

)
(

2−ρ2
1−ρ2G2(λ) + ξ2

τ2

)2

=
G′2(λ)

(
ξ2
τ2
− (2−ρ2)ξ1

(1−ρ2)τ1

)
−
(
G2(λ) + ξ1

τ1

)
p2τ2

(1−ρ2)2G2(λ)(
2−ρ2
1−ρ2G2(λ) + ξ2

τ2

)2 < 0

if and only if

G′2(λ)

(
ξ2
τ2
− (2− ρ2)ξ1

(1− ρ2)τ1

)
−
(
G2(λ) +

ξ1
τ1

)
p2τ2

(1− ρ2)2
G2(λ) < 0. (A.8)

Note for i = 1, 2,

G′i(λ) =
ξ̄

(1− λτ̄)2
+

piξi
(1− λpiτi)2

> 0.

Then, (A.8) is equivalent to

ξ2
τ2
− (2− ρ2)ξ1

(1− ρ2)τ1
<

p2τ2
(1−ρ2)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2 + ξ1
τ1

)
ξ̄

(1−ρ)2 + p2ξ2
(1−ρ2)2

.

Similarly,

∂B

∂λ
=

(
p1τ1

(1−ρ1)2G1(λ) + 2−ρ1
1−ρ1G

′
1(λ)

)(
G1(λ) + ξ2

τ2

)
−G′1(λ)

(
2−ρ1
1−ρ1G1(λ) + ξ1

τ1

)
(
G1(λ) + ξ2

τ2

)2

=

p1τ1
(1−ρ1)2G1(λ)

(
G1(λ) + ξ2

τ2

)
+G′1(λ)

(
(2−ρ1)ξ2
(1−ρ1)τ2

− ξ1
τ1

)
(
G1(λ) + ξ2

τ2

)2 > 0

if and only if

ξ1
τ1
− (2− ρ1)ξ2

(1− ρ1)τ2
<

p1τ1
(1−ρ1)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1 + ξ2
τ2

)
ξ̄

(1−ρ)2 + p1ξ1
(1−ρ1)2

.
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Proof of Proposition 2.3. When service times are i.i.d., for notational convenience we drop the subscript

from all parameters related to the service time distribution, i.e., τi, ξi and ζi. Then,

A =

2ζ
3ξ + λξ

1−ρ + ξ
τ(1−ρ2)

2−ρ2
1−ρ2

(
2ζ
3ξ + λξ

1−ρ

)
+ ξ

τ(1−ρ2)2

, B =

2−ρ1
1−ρ1

(
2ζ
3ξ + λξ

1−ρ

)
+ ξ

τ(1−ρ1)2

2ζ
3ξ + λξ

1−ρ + ξ
τ(1−ρ1)

.

Let M ≡ 2ζ
3ξ + λξ

1−ρ , which is positive and not changing with respect to pi for i = 1, 2, then we have

∂A

∂p2
=

−τM2 − ρ2ξ
(1−ρ2)M

(1−ρ2)2

λ

[
2−ρ2
1−ρ2M + ξ

τ(1−ρ2)2

]2 < 0.

Similarly, computing the partial derivative of B with respect to p1, we have

∂B

∂p1
=

τM2 + ρ1ξ
(1−ρ1)M

(1−ρ1)2

λ

[
M + ξ

τ(1−ρ1)

]2 > 0.

Proof of Proposition 2.4. When service times are exponential, ζi = 6τ3
i and ξi = 2τ2

i for i = 1, 2, and

hence we have,

Aexp =

p1τ
3
1 +p2τ

3
2

p1τ2
1 +p2τ2

2
+

λ(p1τ2
1 +p2τ

2
2 )

1−ρ +
λp2τ

2
2

1−ρ2 + τ1

2−ρ2
1−ρ2

(
p1τ3

1 +p2τ3
2

p1τ2
1 +p2τ2

2
+

λ(p1τ2
1 +p2τ2

2 )
1−ρ +

λp2τ2
2

1−ρ2

)
+ τ2

,

Bexp =

2−ρ1
1−ρ1

(
p1τ

3
1 +p2τ

3
2

p1τ2
1 +p2τ2

2
+

λ(p1τ2
1 +p2τ

2
2 )

1−ρ +
λp1τ

2
1

1−ρ1

)
+ τ1

p1τ3
1 +p2τ3

2

p1τ2
1 +p2τ2

2
+

λ(p1τ2
1 +p2τ2

2 )
1−ρ +

λp1τ2
1

1−ρ1 + τ2

.

When service times are deterministic, ζi = τ3
i and ξi = τ2

i for i = 1, 2, and then we have

Adet =

2(p1τ3
1 +p2τ

3
2 )

3(p1τ2
1 +p2τ2

2 )
+

λ(p1τ2
1 +p2τ

2
2 )

1−ρ +
λp2τ

2
2

1−ρ2 + τ1

2−ρ2
1−ρ2

(
2(p1τ3

1 +p2τ3
2 )

3(p1τ2
1 +p2τ2

2 )
+

λ(p1τ2
1 +p2τ2

2 )
1−ρ +

λp2τ2
2

1−ρ2

)
+ τ2

,

Bdet =

2−ρ1
1−ρ1

(
2(p1τ3

1 +p2τ
3
2 )

3(p1τ2
1 +p2τ2

2 )
+

λ(p1τ2
1 +p2τ

2
2 )

1−ρ +
λp1τ

2
1

1−ρ1

)
+ τ1

2(p1τ3
1 +p2τ3

2 )
3(p1τ2

1 +p2τ2
2 )

+
λ(p1τ2

1 +p2τ2
2 )

1−ρ +
λp1τ2

1

1−ρ1 + τ2

.
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(a) For notational simplicity, for i = 1, 2, we let

M (i)
exp ≡

p1τ
3
1 + p2τ

3
2

p1τ2
1 + p2τ2

2

+
λ
(
p1τ

2
1 + p2τ

2
2

)
1− ρ

+
λpiτ

2
i

1− ρi
,

and

M
(i)
det ≡

2
(
p1τ

3
1 + p2τ

3
2

)
3 (p1τ2

1 + p2τ2
2 )

+
λ
(
p1τ

2
1 + p2τ

2
2

)
1− ρ

+
λpiτ

2
i

1− ρi
,

where M
(i)
exp > M

(i)
det. Taking the difference of Aexp and Adet, we have

Aexp −Adet =

(
τ2 −

(
2−ρ2
1−ρ2

)
τ1

)(
M

(2)
exp −M (2)

det

)
((

2−ρ2
1−ρ2

)
M

(2)
exp + τ2

)((
2−ρ2
1−ρ2

)
M

(2)
det + τ2

) .
Hence, Aexp ≤ Adet if and only if τ2 ≤ 2−ρ2

1−ρ2 τ1.

(b) Taking the difference of Bexp and Bdet, we have

Bexp −Bdet =

((
2−ρ1
1−ρ1

)
τ2 − τ1

)(
M

(1)
exp −M (1)

det

)
(
M

(1)
det + τ2

)(
M

(1)
exp + τ2

) .

Hence, Bexp ≥ Bdet if and only if τ1 ≤ 2−ρ1
1−ρ1 τ2.

Proof of Proposition 2.5. From Corollary 2.3 and Equations (A.6) and (A.7), α and β are computed as:

α =

(
τ1
τ2

) k2

[
2ζ̄
3ξ̄

+ λξ̄(2−ρ−ρ2)
(1−ρ)(1−ρ2) + λp1ξ1(1−ρ)

ρ1(1−ρ2)

]
+ h2

k2

[
2ζ̄(2−ρ2)

3ξ̄(1−ρ2)
+ λξ̄(2−ρ2)

(1−ρ)(1−ρ2) + λp2ξ2
ρ2(1−ρ2)2

]
+ h2

,

β =

(
τ1
τ2

) k2

[
2ζ̄(2−ρ1)

3ξ̄(1−ρ1)
+ λξ̄(2−ρ1)

(1−ρ)(1−ρ1) + λp1ξ1
ρ1(1−ρ1)2

]
+ h2

k2

[
2ζ̄
3ξ̄

+ λξ̄(2−ρ−ρ1)
(1−ρ)(1−ρ1) + λp2ξ2(1−ρ)

ρ2(1−ρ1)

]
+ h2

.

Let Ad[Bd] and An[Bn] denote the denominator and numerator of A[B], as given in Proposition 2.1,

respectively. Then,

α =

(
τ1
τ2

)(
k2An + h2

k2Ad + h2

)
, β =

(
τ1
τ2

)(
k2Bn + h2

k2Bd + h2

)
.

(a) We have A < B and hence AnBd −BnAd < 0. Besides,

Bd +An −Ad −Bn = −G1(λ)

1− ρ1
− G2(λ)

1− ρ2
< 0.
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Hence,

α− β =

(
τ1
τ2

)(
k2

2(AnBd −BnAd) + h2k2(Bd +An −Ad −Bn)

(k2Ad + h2)(k2Bd + h2)

)
< 0.

(b) From Proposition 2.1, if (2.12) holds, then

∂A

∂λ
=
A′nAd −A′dAn

A2
d

< 0,

where A′d and A′n denote the partial derivatives of Ad and An with respect to λ, respectively. Then,

A′nAd−A′dAn < 0. Besides, the difference Ad−An = G2(λ)
1−ρ2 + ξ2

τ2
− ξ1
τ1

increases in λ since G2(λ) increases

and 1− ρ2 decreases in λ (see the proof of Proposition 2.1). Then, A′d > A′n.

∂α

∂λ
=

(
k2τ1
τ2

)(
k2(A′nAd −A′dAn) + h2(A′n −A′d)

(k2Ad + h2)2

)
< 0.

Thus, α decreases as λ increases.

Similarly, if (2.13) holds, then B′nBd − B′dBn > 0 from Proposition 2.1, where B′d and B′n denote

the partial derivatives of Bd and Bn with respect to λ, respectively. Besides, the difference Bn − Bd =

G1(λ)
1−ρ1 + ξ1

τ1
− ξ2
τ2

increases in λ since G1(λ) increases and 1−ρ1 decreases in λ (see the proof of Proposition

2.1). Then, B′n > B′d.

∂β

∂λ
=

(
k2τ1
τ2

)(
k2(B′nBd −B′dBn) + h2(B′n −B′d)

(k2Bd + h2)2

)
> 0.

Thus, β increases as λ increases.

When h2 = 0, α = Aτ1/τ2 and β = Bτ1/τ2, and hence from Proposition 2.2, (2.12) and (2.13) become

necessary in this case.

As λ→ 1/τ̄ , then, ρ→ 1, and we have,

lim
λ→1/τ̄

α =
τ1
τ2
· 1− ρ2

2− ρ2
, lim
λ→1/τ̄

β =
τ1
τ2
· 2− ρ1

1− ρ1
.

(c) Let Ān[B̄n] and Ād[B̄d] denote the numerator and denominator of A[B], as given in the proof of Propo-

sition 2.3, then

α =
k2Ān + h2

k2Ād + h2
, β =

k2B̄n + h2

k2B̄d + h2
.

From Proposition 2.3, A and B both increase in p1, then Ā′nĀd − Ā′dĀn > 0 and B̄′nB̄d − B̄′dB̄n > 0,

where A′n, A
′
d, B

′
n, B

′
d denote the partial derivatives of each quantity with respect to p1.
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Besides, the difference Ād − Ān = 1
1−ρ2

(
2ζ
3ξ + λξ

1−ρ + λp2ξ
1−ρ2

)
increases in p2, and hence decreases in p1,

which implies that Ā′d < Ā′n. Then, we have

∂α

∂p1
=
k2

2(Ā′nĀd − Ā′dĀn) + k2h2(Ā′n − Ā′d)
(k2Ād + h2)2

> 0.

Similarly, the difference B̄n− B̄d = 1
1−ρ1

(
2ζ
3ξ + λξ

1−ρ + λp1ξ
1−ρ1

)
increases in p1, and hence B̄′n > B̄′d. Then,

we have ∂β
∂p1

> 0.

If λ→ 1/τ̄ and p1 → 0, then ρ, ρ2 → 1 and ρ1 → 0, and we have

lim
λ→1/τ̄
p1→0

α = 0, and lim
λ→1/τ̄
p1→0

β =
2τ1
τ2
.

If λ→ 1/τ̄ and p1 → 0, then ρ, ρ1 → 1 and ρ2 → 0, and we have

lim
λ→1/τ̄
p1→1

α =
τ1
2τ2

, and lim
λ→1/τ̄
p1→0

β =∞.

Proof of Example 2.2(ii). Let f(t) = C ′1(t) − βC ′2(t) = h1α1e
α1t − β(2k2t + h2) for t ≥ 0. We need to

find conditions so that f(t) ≥ 0 for all t ≥ 0. First we find that f(t) is convex in t for t ≥ 0 by second

derivative test, so there is a global minimum for t ≥ 0. We solve for f ′(t) = 0 and we have a stationary point

t∗ = 1
α1

ln
(

2βk2
h1α2

1

)
. We have the following two cases:

Case 1: If t∗ ≤ 0, i.e., h1 ≥ 2βk2
α2

1
, then the minimum happens at t = 0, and hence we need f(0) =

h1α1 − βh2 ≥ 0, which is equivalent to h1 ≥ h2β
α1

. Thus, in this case,

h1 ≥ max

{
h2β

α1
,

2k2β

α2
1

}
. (A.9)

Case 2: If t∗ > 0, i.e., h1 < 2βk2
α2

1
, the minimum happens at t∗ and hence we need f(t∗) = 2βk2

α1
−

2βk2
α1

ln
(

2βk2
h1α2

1

)
− βh2 ≥ 0, which is equivalent to

2βk2

α1

(
1− ln

(
2βk2

h1α2
1

))
≥ βh2 ⇔ 1− ln

(
2βk2

h1α2
1

)
≥ h2α1

2k2

⇔ ln

(
2βk2

h1α2
1

)
≤ 1− h2α1

2k2
⇔ 2βk2

h1α2
1

≤ e
(

1−h2α1
2k2

)
⇔ h1 ≥

2βk2

α2
1

e

(
1−h2α1

2k2

)
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Thus, in this case,

2k2β

α2
1

e

(
h2α1
2k2
−1
)
≤ h1 <

2k2β

α2
1

. (A.10)

Furthermore, we notice that if h2 ≥ 2k2
α1

, then (A.9) reduces to h1 ≥ h2β
α1

, and (A.10) could not hold since

the lower bound is larger than the upper bound; and if h2 ≥ 2k2
α1

, (A.9) and (A.10) together could reduce to

h1 ≥ 2k2β
α2

1
e

(
h2α1
2k2
−1
)
. Hence, f(t) ≥ 0 if (2.14) holds, which then implies PF1 is better than F and PF2 by

Corollary 2.3(a).

A.5 Proof of results in Section 2.5

Derivation of Equations (2.17) and (2.18). From Theorem 2.1,

From Lemma A.2, we have for i = 1, 2,

W̃F (s)− W̃PFi
i (s) =

(1− ρ)s

s− λ+ λS̃(s)
−

(1− ρ)s+ λp3−i

(
1− S̃3−i(s)

)
s− λpi + λpiS̃i(s)

=
(1− ρ)sλp3−i

(
1− S̃3−i(s)

)
− λp3−i

(
1− S̃3−i(s)

)(
s− λ+ λS̃(s)

)
(
s− λ+ λS̃(s)

)(
s− λpi + λpiS̃i(s)

)
=
λp3−i

(
1− S̃3−i(s)

) [
(1− ρ)s−

(
s− λ+ λS̃(s)

)]
(
s− λ+ λS̃(s)

)(
s− λpi + λpiS̃i(s)

)
=
λp3−i

(
1− S̃3−i(s)

) [
−ρs+ λ

(
1− S̃(s)

)]
(
s− λ+ λS̃(s)

)(
s− λpi + λpiS̃i(s)

) ,

W̃
PF3−i
i (s)− W̃F (s) = W̃F

(
s′
)
− W̃F (s) =

1− ρ
1− λ−λS̃(s′)

s′

− 1− ρ
1− λ−λS̃(s)

s

=
(1− ρ)

(
λ−λS̃(s′)

s′ − λ−λS̃(s)
s

)
(

1− λ−λS̃(s′)
s′

)(
1− λ−λS̃(s)

s

) =
(1− ρ)λ

[
s
(

1− S̃(s′)
)
− s′

(
1− S̃(s)

)]
(
s′ − λ+ λS̃(s′)

)(
s− λ+ λS̃(s)

) ,
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where s′ = f3−j(s) = λp3−i(1−B3−i(s)) + s. Then,

ŨPFii (s) =
W̃PFi
i (s)− W̃F (s)

s
(
E [WF ]− E

[
WPFi
i

])
=

(
2(1− ρi)(1− ρ)

λ2ξ̄p3−iτ3−is

)−λp3−i

(
1− S̃3−i(s)

) [
−ρs+ λ

(
1− S̃(s)

)]
(
s− λ+ λS̃(s)

)(
s− λpi + λpiS̃i(s)

)


=−
2(1− ρi)(1− ρ)

(
1− S̃3−i(s)

) [
−ρs+ λ

(
1− S̃(s)

)]
λξ̄τ3−is

(
s− λ+ λS̃(s)

)(
s− λpi + λpiS̃i(s)

) ,

Ũ
PF3−i
i (s) =

W̃F (s)− W̃PF3−i
i (s)

s
(
E
[
W

PF3−i
i

]
− E [WF ]

)
=

(
2(1− ρ3−i)(1− ρ)

λ2ξ̄p3−iτ3−is

)− (1− ρ)λ
[
s
(

1− S̃(s′)
)
− s′

(
1− S̃(s)

)]
(
s′ − λ+ λS̃(s′)

)(
s− λ+ λS̃(s)

)


=−
2(1− ρ3−i)(1− ρ)2

[
s
(

1− S̃ (f3−j(s))
)
− f3−j(s)

(
1− S̃(s)

)]
λξ̄p3−iτ3−is

[
f3−j(s)− λ+ λS̃ (f3−j(s))

] [
s− λ+ λS̃(s)

] .

Plugging into (2.16), we have

E
[
C ′i(U

PFj
j )

]
=

2ki(1− ρj)(1− ρ)
(

1− S̃3−j(−hi)
) [
ρhi + λ

(
1− S̃(−hi)

)]
λξ̄τ3−j

(
−hi − λ+ λS̃(−hi)

)(
−hi − λpj + λpjS̃j(−hi)

) ,

E
[
C ′i(U

PF3−j
j )

]
=

2ki(1− ρ3−j)(1− ρ)2
[
−hi

(
1− S̃ (f3−j(−hi))

)
− f3−j(−hi)

(
1− S̃(−hi)

)]
λξ̄p3−jτ3−j

[
−hi − λ+ λS̃(−hi)

] [
f3−j(−hi)− λ+ λS̃ (f3−j(−hi))

] .

A.6 Proof of results in Section 2.6

Proof of Proposition 2.8: Let Wπ denote the steady-state waiting time under policy π ∈ {F, PF1, PF2}.

By conditioning on the customer type, we have

E [C2(Wπ)] = p1E [C2(Wπ
1 )] + p2E [C2(Wπ

2 )] . (A.11)

According to Theorem 2 in (Vasicek 1977), if C2(·) is convex,

E[C2(WF )] ≤ E[C2(WPFi)] for i = 1, 2. (A.12)
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From (A.11) and (A.12), we have,

piE
[
C2(WF )

]
+ p3−iE

[
C2(WF )

]
≤ piE

[
C2(WPFi

i )
]

+ p3−iE
[
C2(WPFi

3−i )
]

⇔
E
[
C2(WF )

]
− E

[
C2(WPFi

i )
]

p3−i
≤
E
[
C2(WPFi

3−i )
]
− E

[
C2(WF )

]
pi

for i = 1, 2

Since C2(·) is non-decreasing and WPFi
i ≤st WF ≤st WPFi

3−i from Lemma 2.3, we have

E
[
C2(WF )

]
− E

[
C2(WPFi

i )
]
≥ 0, E

[
C2(WPFi

3−i )
]
− E

[
C2(WF )

]
≥ 0, for i = 1, 2.

Then,

(
pi
p3−i

)E [C2(WF )
]
− E

[
C2(WPFi

i )
]

E
[
C2(WPFi

3−i )
]
− E [C2(WF )]

 ≤ 1 for i = 1, 2, (A.13)

Hence,

α =

(
τ1
τ2

)(
E[C ′2(UPF2

2 )]

E[C ′2(UPF2
1 )]

)
=

(
p2

p1

)(
E[C2(WF )]− E[C2(WPF2

2 )]

E[C2(WPF2
1 )]− E[C2(WF )]

)
≤ 1,

and

β =

(
τ1
τ2

)(
E[C ′2(UPF1

2 )]

E[C ′2(UPF1
1 )]

)
=

(
p2

p1

)(
E[C2(WPF1

2 )]− E[C2(WF )]

E[C2(WF )]− E[C2(WPF1
1 )]

)
≥ 1.

A.7 Proof of results in Section 2.7

Proof of Proposition 2.9: Let Wπ denote the steady-state waiting time under policy π ∈ {L,PL1, PL2}.

Then, (A.11) still holds for policy π ∈ {L,PL1, PL2}.

If C2(·) is concave, then −C2 is convex, then according to Theorem 2 in (Vasicek 1977), for i = 1, 2,

E[−C2(WL)] ≤ E[−C2(WPLi)]⇔ E[C2(WL)] ≥ E[C2(WPLi)] (A.14)
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Lrom (A.11) and (A.14), we have,

piE
[
C2(WL)

]
+ p3−iE

[
C2(WL)

]
≥ piE

[
C2(WPLi

i )
]

+ p3−iE
[
C2(WPLi

3−i )
]

⇔
E
[
C2(WL)

]
− E

[
C2(WPLi

i )
]

p3−i
≥
E
[
C2(WPLi

3−i )
]
− E

[
C2(WL)

]
pi

for i = 1, 2 (A.15)

Since C2(·) is non-decreasing and WPLi
i ≤st WL ≤st WPLi

3−i from Lemma 2.3, we have

E
[
C2(WL)

]
− E

[
C2(WPLi

i )
]
≥ 0, E

[
C2(WPLi

3−i )
]
− E

[
C2(WL)

]
≥ 0, for i = 1, 2.

Then,

(
pi
p3−i

)E [C2(WL)
]
− E

[
C2(WPLi

i )
]

E
[
C2(WPLi

3−i )
]
− E [C2(WL)]

 ≥ 1 for i = 1, 2,

Hence,

αL =

(
τ1
τ2

)(
E[C ′2(UPL2

2 )]

E[C ′2(UPL2
1 )]

)
=

(
p2

p1

)(
E[C2(WL)]− E[C2(WPL2

2 )]

E[C2(WPL2
1 )]− E[C2(WL)]

)
≥ 1,

and

βL =

(
τ1
τ2

)(
E[C ′2(UPL1

2 )]

E[C ′2(UPL1
1 )]

)
=

(
p2

p1

)(
E[C2(WPL1

2 )]− E[C2(WL)]

E[C2(WL)]− E[C2(WPL1
1 )]

)
≤ 1.

Proof of Lemma 2.7: We consider policy PLi for fixed i ∈ {1, 2}, under which we refer type i customers as

“priority customers” and type 3− i customers as “non-priority customers”. We first establish the expression

for W̃PLi
i .

The waiting time of a priority customer consists of two components, the remaining service time of the

current customer R, and time required to serve all subsequent priority arrivals which enters service before

the priority customer we considered.

Let FR denote the cdf of R, and R̃(s) denote the LST of FR, then((Wishart 1960)),

R̃(s) = 1− ρ+
λ

s

(
1− S̃(s)

)
.

Let NR denote the number of priority customers arriving during R(NR = O when R = O). Let

Tk, k = 1, . . . , NR denote the time until the number of priority customers in the queue decreased from k to
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k− 1, starting with a priority customer enters service. Then, Tk, k = 1, 2, . . . , NR are i.i.d., and T1 is defined

the same as the busy period of the M/G/1 queue with only type i arrivals, which has LST Bi(s).

We have WPLi
i = R+

∑NR
k=1 Tk, then,

W̃PLi
i =E

[
e−sR−

∑NR
k=1 sTk

]
=

∫ ∞
0

∞∑
n=0

E
[
e−sr−

∑n
k=1 sTk

∣∣∣NR = n,R = r
]
P
[
NR = n

∣∣R = r
]
dFR(t)

=

∫ ∞
0

∞∑
n=0

e−srBi(s)
ne−λpir

(λpir)
n

n!
dFR(t) =

∫ ∞
0

e−sr−λpir(1−Bi(s))dFR(t)

=E

[
e

(
−s−λpi(1−Bi(s))

)
R

]
= R̃

(
s+ λpi − λpiBi(s)

)
Plugging the expression of R̃, we have,

W̃PLi
i = 1− ρ+

λ
[
1− S̃(s+ λpi − λpiBi(s))

]
s+ λpi − λpiBi(s)

Next, we establish W̃PLi
3−i . The waiting time of a non-priority customer consists of two parts, denoted

by W ∗ and W ∗∗, where W ∗ is the time required to serve all priority customers already in the system at the

arrival of the non-priority item and W ∗∗ is the time required to serve all subsequent customers who arrive

after the non-priority customer but enters service before due to the queueing policy. The service order of

customers served in W ∗ and W ∗∗ will not affect the waiting time of the non-priority customer. We notice

that W ∗ = WPFi
i since both waiting times are the time required to serve all priority customers (with different

service order) in the system observed by a Poisson arrival. Then, the LST of W ∗ is given by((Miller 1960))

W̃ ∗ = W̃PFi
i =

(1− ρ) + λp3−i

[
1− S̃3−i(s)

]
s− λpi

[
1− S̃i(s)

] .

Let N denote the number of customers arrive during W ∗, and T ′k denote the time until the number of

customers decreased from k to k−1 for k = 1, . . . , N starting from a customer just entering the service. Then,

W ∗∗ =
∑N
k=1 T

′
k. By definition, we have T ′k, k = 1, . . . , N are independent and have the same distribution

as T ′1, which is the busy period of the M/G/1 queue with LST denoted by B(s).

Then,

E
[
e−sW

∗∗
∣∣∣W ∗ = w

]
=

∞∑
n=0

E
[
e−
∑n
k=1 sT

′
k

]
e−λw

(λw)n

n!

=

∞∑
n=0

[B(s)]
n
e−λw

(λw)n

n!
= e−λw(1−B(s)).
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Hence,

W̃PLi
3−i = E

[
e−s(W

∗+W∗∗)
]

=

∫ ∞
0

E
[
esW

∗
e−sW

∗∗
∣∣∣W ∗ = w

]
dFW∗(w)

=

∫ ∞
0

eswe−λw(1−B(s))dFW∗(w) =

∫ ∞
0

e−w[s+λ(1−B(s))]dFW∗(r) = W̃ ∗ (s+ λ− λB(s)) ,

where FW∗(·) is the cdf of W ∗. Plugging the expression of W̃ ∗, we have

W̃PLi
3−i =

(1− ρ)(s+ λ− λB(s)) + λp3−i

[
1− S̃3−i(s+ λ− λB(s))

]
s+ λ− λB(s)− λpi

[
1− S̃i(s+ λ− λB(s))

] .
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APPENDIX B: PROOFS OF RESULTS IN CHAPTER 3

B.1 Proofs of the Analytical Results in Section 3.4

B.1.1 Proof of Proposition 3.1

We first compute the cost functions under policy π̄1 and π̄2. When b = 1, the state space for the MDP

is S = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}.

Under both policy π̄1 and π̄2, we do not discharge the patient if there is only one patient who needs ICU

care, i.e., a(x1, x2) = (0, 0) for (x1, x2) ∈ {(0, 0), (0, 1), (1, 0)}. We discharge either one of the two patients

when there are two patients of the same stage, i.e., a(2, 0) = (1, 0) and a(0, 2) = (0, 1). The only difference

between these two policies is that in state (1, 1), we discharge a stage 1 patient under policy π̄1 and we

discharge a stage 2 patient under policy π̄2.

Under either π̄1 or π̄2, the process can be modeled as a DTMC. Let Xn be the system state at the end

of nth decision epoch. Xn takes values in SD = {0, 1, 2}, where state 0 means the ICU is empty and state

i ∈ {1, 2} means the ICU is occupied by a stage i patient.

Let P 1
ij denote the probability that the DTMC jumps from state i to j under policy π̄1 for i, j ∈ {0, 1, 2}.

Then,

P 1
00 = λ̄+ λ1q1 + λ2p2, P

1
01 = λ1r1 + λ2q2, P

1
02 = λ1p1 + λ2r2,

P 1
10 = (λ̄+ λ1)q1 + λ2p2, P

1
11 = (λ̄+ λ1)r1 + λ2q2, P

1
12 = (λ̄+ λ1)p1 + λ2r2,

P 1
20 = p2, P

1
21 = q2, P

1
22 = r2.

Let ui denote the long-run average probability that the DTMC is in state i for i = 0, 1, 2, then ui can

be obtained by solving the balance equations and normalization equation given by

(λ1(1− q1) + λ2(1− p2))u0 = ((λ̄+ λ1)q1 + λ2p2)u1 + p2u2,

(q2 + p2)u2 = (λ1p1 + λ2r2)u0 + ((λ̄+ λ1)p1 + λ2r2)u1,

u0 + u1 + u2 = 1.
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Solving above equations, we get:

u0 =
λ̄a+ λ1a+ λ2p2

Dπ̄1
,

u1 =
λ1(p2 + q2 − a) + λ2q2

Dπ̄1
,

u2 =
λ̄(λ1p1 + λ2(p1 + q1 − a)) + (λ1 + λ2)(λ1p1 + λ2r2)

Dπ̄1
.

where a = q1q2 + q1p2 + p1p2 and

Dπ̄1 = λ̄
[
aλ̄+ λ1(p1 + p2 + q2 + a) + λ2(p1 + q1 + p2 + q2)

]
+(λ1 + λ2)

[
λ1(p1 + p2 + q2) + λ2

]
.

Let mi denote the expected cost that incurs in state i for i = 0, 1, 2. Then,

m0 = λ1q1, m1 = λ̄q1 + λ1(q1 + φG1 ) + λ2φ
G
1 , m2 = λ1φ

G
1 + λ2φ

G
2 .

The long-run average cost under this policy is J π̄1 = u0m0 + u1m1 + u2m2. We can then show that

J π̄1Dπ̄1 = (λ̄a+ λ1a+ λ2p2)λ1q1 +
[
λ1(p2 + q2 − a) + λ2q2

][
λ̄q1 + λ1(q1 + φG1 ) + λ2φ

G
1

]
+
[
λ̄(λ1p1 + λ2(p1 + q1 − a)) + (λ1 + λ2)(λ1p1 + λ2r2)

][
λ1φ

G
1 + λ2φ

G
2

]
. (B.1)

Similarly, let P 2
ij denote the probability that the DTMC jumps from state i to j under policy π̄2 for

i, j ∈ {0, 1, 2}. Then,

P 2
00 = λ̄+ λ1q1 + λ2p2, P

2
01 = λ1r1 + λ2q2, P

2
02 = λ1p1 + λ2r2,

P 2
10 = q1, P

2
11 = r1, P

2
12 = p1,

P 2
20 = (λ̄+ λ2)p2 + λ1q1, P

2
21 = (λ̄+ λ2)q2 + λ1r1, P

2
22 = (λ̄+ λ2)r2 + λ1p1.

Let u′i denote the long-run average probability that the DTMC is in state i for i = 0, 1, 2, then u′i can

be obtained by solving the balance equations and normalize equation given by

(λ1(1− q1) + λ2(1− p2))u′0 = q1u
′
1 + ((λ̄+ λ2)p2 + λ1q1)u′2,

(q1 + p1)u′1 = (λ1r1 + λ2q2)u′0 + ((λ̄+ λ2)q2 + λ1r1)u′2,

u′0 + u′1 + u′2 = 1.
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Solving the above equations, we have

u′0 =
λ̄a+ λ1q1 + λ2a

Dπ̄2
,

u′1 =
λ̄(λ1(p2 + q2 − a) + λ2q2) + (λ1 + λ2)(λ1r1 + λ2q2)

Dπ̄2
,

u′2 =
λ1p1 + λ2(p1 + q1 − a)

Dπ̄2
.

where

Dπ̄2 = λ̄
[
aλ̄+ (p1 + q1 + p2 + q2)λ1 + (p1 + q1 + q2 + a)λ2

]
+(λ1 + λ2)

[
λ1 + (p1 + q1 + q2)λ2

]
.

Let m′i denote the expected cost that incurs in state i for i = 0, 1, 2. Then,

m′0 = λ1q1, m
′
1 = q1 + λ1φ

G
1 + λ2φ

G
2 , m

′
2 = λ1(q1 + φG2 ) + λ2φ

G
2 .

The long-run average cost under this policy is J π̄2 = u′0m
′
0 + u′1m

′
1 + u′2m

′
2. We can then show that

J π̄2Dπ̄2 = (λ̄a+ λ1q1 + λ2a)λ1q1 +
[
λ1p1 + λ2(p1 + q1 − a)

][
λ1(q1 + φG2 ) + λ2φ

G
2

]
+
[
λ̄(λ1(p2 + q2 − a) + λ2q2) + (λ1 + λ2)(λ1r1 + λ2q2)

][
q1 + λ1φ

G
1 + λ2φ

G
2

]
. (B.2)

Next, using (B.1) and (B.2).

Take the difference of J π̄1 and J π̄2 , after some algebra, we can show that

J π̄1 − J π̄2

=
M

Dπ̄1Dπ̄2(1 + βG1 + βG1 β
G
2 )

{
(1− λ)p1p2

[
λ
[
p1(βG1 − β1) + p2β

G
1 (β2 − βG2 )

]
+ (βG1 − β1) + β1β

G
1 (β2 − βG2 )

]}
=

Mp1p2β1β
G
1

Dπ̄1Dπ̄2(1 + βG1 + βG1 β
G
2 )

{
λ

[
βG1 − β1

p2β1βG1
+
β2 − βG2

q1
+ (1− λ)

[
βG1 − β1

β1βG1
+ (β2 − βG2 )

]]}
,

where λ = λ1 + λ2 and

M = λ2
1p1 + λ2

2q2 + λ̄λ1λ2(p1 + q1 + p2 + q2 − 2a) + λ1λ2(λ1 + λ2)(1− a).
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Since a = p1p2 + q1p2 + q1q2 = (p1 + q1)(p2 + q2)− p1q2 ≤ (p1 + q1)(p2 + q2), we have 1− a ≥ 0 and

p1 + q1 + p2 + q2 − 2a ≥ p1 + q1 + p2 + q2 − 2(p1 + q1)(p2 + q2)

= (p1 + q1)(1− p2 − q2) + (p2 + q2)(1− p1 − q1) ≥ 0,

and thus M ≥ 0. Then, we have J π̄1 − J π̄2 ≤ 0 if and only if

λ

[
βG1 − β1

p2β1βG1
− βG2 − β2

q1

]
+ (1− λ)

[
βG1 − β1

β1βG1
− (βG2 − β2)

]
≤ 0. (B.3)

Next, we find that

βG1 − β1

βG1 β1
− (βG2 − β2) =

(φG1 − φG2 )− (φ1 − φ2)

(φ1 − φ2)(φG1 − φG2 )

and

βG1 − β1

p2βG1 β1
− βG2 − β2

q1
=
L2(φG1 − φ1)− L1(φG2 − φ2)

(φ1 − φ2)(φG1 − φG2 )
,

since

βG1 − β1

βG1 β1
− (βG2 − β2) =

1

β1
− 1

βG1
− (βG2 − β2) =

(
1

β1
+ β2 + 1

)
−
(

1

βG1
+ βG2 + 1

)
=

1 + β1 + β1β2

β1
− 1 + βG1 + βG1 β

G
2

βG1
=

1

φ1 − φ2
− 1

φG1 − φG2
=

(φG1 − φG2 )− (φ1 − φ2)

(φ1 − φ2)(φG1 − φG2 )
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and

βG1 − β1

p2βG1 β1
− βG2 − β2

q1
=

1

q1p2

(
q1

β1
− q1

βG1
− p2(βG2 − β2)

)
=

1

q1p2

(
q1

β1
+ p2β2 −

q1

βG1
− p2β

G
2

)
=

1

q1p2

(
p1 + q2 −

q1

βG1
− p2β

G
2

)
=

1

q1p2

(
p1 + q2 −

q1 + p2β
G
1 β

G
2

βG1

)
=

1 + βG1 + βG1 β
G
2

q1p2βG1

(
(p1 + q2)βG1

1 + βG1 + βG1 β
G
2

− q1 + p2β
G
1 β

G
2

1 + βG1 + βG1 β
G
2

)
=

1

q1p2(φG1 − φG2 )

(
(p1 + q2)(φG1 − φG2 )− q1(1− φG1 )− p2φ

G
2

)
=

1

q1p2(φG1 − φG2 )

(
(p1 + q1 + q2)φG1 − (p1 + p2 + q2)φG2 − q1

)
=
p1p2 + q1p2 + q1q2

q1p2(φG1 − φG2 )

(
(p1 + q1 + q2)φG1
p1p2 + q1p2 + q1q2

− (p1 + p2 + q2)φG2
p1p2 + q1p2 + q1q2

− q1

p1p2 + q1p2 + q1q2

)
(
Since q1 = (p1 + q1 + q2)φ1 − (p1 + p2 + q2)φ2)

)
=

p1+q1+q2
p1p2+q1p2+q1q2

φG1 −
p1+p2+q2

p1p2+q1p2+q1q2
φG2 −

(p1+q1+q2)φ1−(p1+p2+q2)φ2

p1p2+q1p2+q1q2

(φ1 − φ2)(φG1 − φG2 )

=
L2φ

G
1 − L1φ

G
2 − L2φ1 + L1φ2

(φ1 − φ2)(φG1 − φG2 )

=
L2(φG1 − φ1)− L1(φG2 − φ2)

(φ1 − φ2)(φG1 − φG2 )
.

Then, since (φ1 − φ2)(φG1 − φG2 ) ≥ 0, (B.3) is equivalent to (3.5).

B.1.2 Proof of Corollary 3.1

From Proposition 3.1, we have

(a) If φG2 − φ2 ≥ φG1 − φ1 and
φG2 −φ2

L2
≥ φG1 −φ1

L1
, then (3.5) holds for any λ, and thus J π̄1 ≤ J π̄2 .

Similarly, if φG1 − φ1 ≥ φG2 − φ2 and
φG1 −φ1

L1
≥ φG2 −φ2

L2
, then (3.5) holds in the opposite direction for any

λ, and thus, J π̄2 ≤ J π̄1 .

(b) If φG1 − φ1 ≥ φG2 − φ2 and
φG1 −φ1

L1
≤ φG2 −φ2

L2
, then J π̄1 ≥ J π̄2 , i.e., (3.5) holds in the opposite direction if

λ <
(φG1 − φ1)− (φG2 − φ2)

(φG1 − φ1)− (φG2 − φ2) +
[
L1(φG2 − φ2)− L2(φG1 − φ1)

] .
Similarly, if φG2 − φ2 ≥ φG1 − φ1 and

φG2 −φ2

L2
≤ φG1 −φ1

L1
, then J π̄1 ≤ J π̄2 , i.e., (3.5) holds if and only if

λ ≤ (φG2 − φ2)− (φG1 − φ1)

(φG2 − φ2)− (φG1 − φ1) +
[
L2(φG1 − φ1)− L1(φG2 − φ2)

] .
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B.2 Proofs of the Results in Section 3.5

We first define the operators D1, D2, ∆, D11, D22, and D12. In the following, w : S → R is a function

from the state space S to the set of real numbers. For some of the results, w(·) is restricted to be defined

over a subset of the state space S.

Definition B.1. The first difference operators D1 and D2 are defined as

D1w(x1, x2) = w(x1 + 1, x2)− w(x1, x2), D2w(x1, x2) = w(x1, x2 + 1)− w(x1, x2),

for x1 + x2 ≤ b.

Definition B.2. The operator ∆ is defined as

∆w(x1, x2) = w(x1 + 1, x2)− w(x1, x2 + 1) = D1w(x1, x2)−D2w(x1, x2),

for x1 + x2 ≤ b.

Definition B.3. The second difference operators D11 = D1D1, D22 = D2D2 and D12 = D1D2 = D2D1 are

defined as

D11w(x1, x2) =D1w(x1 + 1, x2)−D1w(x1, x2) = w(x1 + 2, x2)− 2w(x1 + 1, x2) + w(x1, x2),

D22w(x1, x2) =D2w(x1, x2 + 1)−D2w(x1, x2) = w(x1, x2 + 2)− 2w(x1, x2 + 1) + w(x1, x2),

D12w(x1, x2) =D1w(x1, x2 + 1)−D1w(x1, x2) = D2w(x1 + 1, x2)−D2w(x1, x2)

=w(x1 + 1, x2 + 1)− w(x1, x2 + 1)− w(x1 + 1, x2) + w(x1, x2) for x1 + x2 ≤ b− 1.

B.2.1 Proof of Proposition 3.2

Lemma B.1. For x1 + x2 ≤ b, we have D1vα(x1, x2) ≤ cG1 , D2vα(x1, x2) ≤ cG2 .

Proof of Lemma B.1: Let vπα(x1, x2) denote the total expected discounted cost under policy π starting

from state (x1, x2). Define a policy π1, under which starting from state (x1 + 1, x2) we initially discharge

a stage 1 patient and use the action that is optimal for state (x1, x2), and then use the optimal policy

thereafter. Then,

vπ1
α (x1 + 1, x2) = cG1 + vα(x1, x2) ≥ vα(x1 + 1, x2)⇒ vα(x1 + 1, x2)− vα(x1, x2) ≤ cG1 .
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Similarly, define policy π2 as the policy under which starting from state (x1, x2 + 1) we initially discharge

a stage 2 patient and use the action that is optimal for state (x1, x2), and then use the optimal policy

thereafter. Then,

vπ2
α (x1, x2 + 1) = cG2 + vα(x1, x2) ≥ vα(x1, x2 + 1)⇒ vα(x1, x2 + 1)− vα(x1, x2) ≤ cG2 .

Lemma B.2. Suppose that (3.10) holds and for any w : S → R, we have (i) D1w(i, j) ≤ cG1 for i + j ≤ b,

and (ii) D2w(i, j) ≤ cG2 for i+ j ≤ b. Then, for x+ y ≤ b− 1, D1Γw(x, y) ≤ cG1
α − q1, and D2Γw(x, y) ≤ cG2

α .

Proof of Lemma B.2: Let x+ y ≤ b− 1. Thus, Γw(x+ 1, y) and Γw(x, y + 1) are well defined according

to Definition 3.1.

We first rewrite Γw(x+ 1, y) by conditioning on how x stage 1 jobs and y stage 2 jobs evolve. Patients

evolve independently, Therefore, if x stage 1 jobs and y stage 2 jobs evolve to i stage 1 patients and j stage

2 patients (which happens with probability P (i, j|x, y)), the extra stage 1 patient jumps to stage 0 with

probability q1, remains stage 1 with probability r1, and jumps to stage 2 with probability p1. Thus, we can

write

Γw(x+ 1, y) =

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y) [q1w(i, j) + r1w(i+ 1, j) + p1w(i, j + 1)].

Then,

D1Γw(x, y) = Γw(x+ 1, y)− Γw(x, y),

=

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y) [r1D1w(i, j) + p1D2w(i, j)]

≤ r1c
G
1 + p1c

G
2 ≤

cG1
α
− q1,

where again the first inequality follows from the lemma assumptions (i) and (ii), and the second inequality

follows from Condition (3.10), which is another lemma assumption.

Similarly, we can write Γw(x, y + 1)

Γw(x, y + 1) =

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y) [p2w(i, j) + q2w(i+ 1, j) + r2w(i, j + 1)],
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and then

D2Γw(x, y) = Γw(x, y + 1)− Γw(x, y),

=

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y) [q2D1w(i, j) + r2D2w(i, j)]

≤ q2c
G
1 + r2c

G
2 ≤

cG2
α
,

where the first inequality follows from the lemma assumptions (i) and (ii), and the second inequality follows

from Condition (3.10), which is another lemma assumption.

Proof of Proposition 3.2: From Lemmas B.1 and B.2, we have for any x+ y ≤ b− 1,

D1Γvα(x, y) ≤ cG1
α
− q1, (B.4)

D2Γvα(x, y) ≤ cG2
α
. (B.5)

Then, for any x1 ≥ a1 ≥ 1, x2 ≥ a2 ≥ 0 and x1 − (a1 − 1) + x2 − a2 ≤ b,

Vα(x1, x2, a1 − 1, a2)− Vα(x1, x2, a1, a2)

=− cG1 + α [q1 + Γvα(x1 − a1 + 1, x2)− Γvα(x1 − a1, x2 − a2)]

=α

[
−c

G
1

α
+ q1 +D1Γv(x1 − a1, x2 − a2)

]
≤ 0, (B.6)

where the inequality follows from (B.4). We can then conclude that Vα(x1, x2, a1−1, a2) ≤ Vα(x1, x2, a1, a2),

which implies that decreasing the number of stage 1 discharges does not increase the expected cost.

Similarly, for any x1 ≥ a1 ≥ 0, x2 ≥ a2 ≥ 1 and x1 − a1 + x2 − (a2 − 1) ≤ b,

Vα(x1, x2, a1, a2 − 1)− Vα(x1, x2, a1, a2)

=− cG2 + α [Γvα(x1 − a1, x2 − a2 + 1)− Γvα(x1 − a1, x2 − a2)]

=α

[
−c

G
2

α
+D2Γv(x1 − a1, x2 − a2)

]
≤ 0, (B.7)

where the inequality follows from (B.5). We can then conclude that Vα(x1, x2, a1, a2−1) ≤ Vα(x1, x2, a1, a2),

which implies that decreasing the number of stage 2 discharges does not increase the expected cost, either.

Then, the result follows.
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B.2.2 Proof of Proposition 3.3

Lemma B.3. If (3.10) holds, then ci ≤ cGi for i = 1, 2, where cGi is given in (3.7) and ci is given in (3.16).

Proof of Lemma B.3: Let fi(0) = cGi for i = 1, 2, and for n ≥ 0 we define

f1(n+ 1) = α(q1 + r1f1(n) + p1f2(n)), f2(n+ 1) = α(q2f1(n) + r2f2(n)). (B.8)

Next, by induction, we show that fi(n+1) ≤ fi(n) for all n ≥ 0: From (3.10) and (B.8), we have fi(1) ≤ fi(0).

Suppose fi(k + 1) ≤ fi(k) for i = 1, 2 and for some k ≥ 0, then,

f1(k + 2) = α(q1 + r1f1(k + 1) + p1f2(k + 1)) ≤ α(q1 + r1f1(k) + p1f2(k)) = f1(k + 1),

and

f2(k + 2) = α(q2f1(k + 1) + r2f2(k + 1)) ≤ α(q2f1(k) + r2f2(k)) = f2(k + 1).

Hence by induction we can conclude that fi(n+1) ≤ fi(n) for any n ≥ 0. Then, {fi(n), n ≥ 0} is a decreasing

sequence and fi(n) ≥ 0 is bounded below, so limn→∞ fi(n) exists. Let fi denote the limit for i = 1, 2.

Letting n→∞ in (B.8), we have

f1 = α(q1 + r1f1 + p1f2), f2 = α(q2f1 + r2f2).

Solving for fi, we find fi = ci. Since the sequence {fi(n), n ≥ 0} is decreasing, we have cGi = fi(0) ≥

limn→∞ fi(n) = fi = ci.

Definition B.4. Let Vb be a set of functions such that if w ∈ Vb, then

c1 ≤ D1w(i, j) ≤ cG1 , c2 ≤ D2w(i, j) ≤ cG2 for all i+ j ≤ b. (B.9)

Lemma B.4. If (3.10) holds and w ∈ Vb, then

(a) for x1 + x2 ≤ b− 1,

c1
α
− q1 ≤ D1Γw(x1, x2) ≤ cG1

α
− q1,

c2
α
≤ D2Γw(x1, x2) ≤ cG2

α
.

(b) Tw ∈ Vb.
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Proof of Lemma B.4: (a) If w ∈ Vb, then D1w(x1, x2) ≤ cG1 and D2w(x1, x2) ≤ cG2 for x1 + x2 ≤ b, and

from Lemma B.2, we have for x1 + x2 ≤ b− 1,

D1Γw(x1, x2) ≤ cG1
α
− q1, D2Γw(x1, x2) ≤ cG2

α
.

If w ∈ Vb, then for x1 + x2 ≤ b− 1,

D1Γw(x1, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2) [r1D1w(i, j) + p1D2w(i, j)]

≥ r1c1 + p1c2 =
c1
α
− q1,

D2Γw(x1, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2) [q2D1w(i, j) + r2D2w(i, j)]

≥ q2c1 + r2c2 =
c2
α
,

where the inequalities follow from the fact that i + j ≤ x1 + x2 + 1 ≤ b and then D1w(i, j) ≥ c1 and

D2w(i, j) ≥ c2 from w ∈ Vb. Thus, part (a) follows.

(b) We need to consider four different cases from Definition 3.2.

Case 1: If x1 + x2 ≤ b− 1, we have,

D1Tw(x1, x2) = α [q1 +D1Γw(x1, x2)] , D2Tw(x1, x2) = αD2Γw(x1, x2).

Then, part (a) implies that

c1 ≤ D1Tw(x1, x2) ≤ cG1 , c2 ≤ D2Tw(x1, x2) ≤ cG2 for x1 + x2 ≤ b. (B.10)

Case 2: If x1 + x2 = b and x1 > 0, x2 > 0, we have

D1Tw(x1, x2) = min
{
cG1 , c

G
2 + Tw(x1 + 1, x2 − 1)− Tw(x1, x2)

}
≤ cG1 .

Furthermore, since D1Tw(x1, x2 − 1) ≥ c1 and D2Tw(x1, x2 − 1) ≤ cG2 from (B.10),

cG2 + Tw(x1 + 1, x2 − 1)− Tw(x1, x2)

= cG2 +D1Tw(x1, x2 − 1)−D2Tw(x1, x2 − 1) ≥ c1,

and cG1 ≥ c1, then we can conclude that D1Tw(x1, x2) ≥ c1.
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Similarly,

D2Tw(x1, x2) = min
{
cG1 + Tw(x1 − 1, x2 + 1)− Tw(x1, x2), cG2

}
≤ cG2

Furthermore, since D1Tw(x1 − 1, x2) ≤ cG1 and D2Tw(x1 − 1, x2) ≥ c2 from (B.10),

cG1 + Tw(x1 − 1, x2 + 1)− Tw(x1, x2)

= cG1 −D1Tw(x1 − 1, x2) +D2Tw(x1 − 1, x2) ≥ c2,

and cG2 ≥ c2, we can conclude that D2Tw(x1, x2) ≥ c2.

Case 3: If x1 = b and x2 = 0, we have D2Tw(x1, x2) = cG2 , and thus, c2 ≤ D2Tw(x1, x2) ≤ cG2 .

D1Tw(x1, x2) has the same expression as in case 2, and hence c1 ≤ D1Tw(x1, x2) ≤ cG1 .

Case 4: If x1 = 0 and x2 = b, we have D1Tw(x1, x2) = cG1 , and hence c1 ≤ D1Tw(x1, x2) ≤ cG1 .

D2Tw(x1, x2) has the same expression as in case 2, and hence c2 ≤ D2Tw(x1, x2) ≤ cG2 .

The above four cases cover all the possibilities for x1 + x2 ≤ b. Hence, Tw ∈ Vb.

Definition B.5. Let V be the set of functions such that if w ∈ V, then, w ∈ Vb and w satisfies the following

three conditions:

Condition 1: D11w(x1, x2) ≥ 0, D22w(x1, x2) ≥ 0 and D12w(x1, x2) ≥ 0 for x1 + x2 ≤ b− 1,

Condition 2:

D11w(x1, x2)D22w(y1, y2) +D11w(y1, y2)D22w(x1, x2)− 2D12w(x1, x2)D12w(y1, y2) ≥ 0,

for x1 + x2 ≤ b− 1 and y1 + y2 ≤ b− 1,

Condition 3: D11w(x1, x2) +D22w(x1, x2)− 2D12w(x1, x2) ≥ 0 for x1 + x2 ≤ b− 1.

Lemma B.5. Suppose that (3.10) holds, and w ∈ V. Then,

(i) for x1 + x2 ≤ b− 2 and y1 + y2 ≤ b− 2,

D11Γw(x1, x2) ≥ 0, D22Γw(x1, x2) ≥ 0, and D12Γw(x1, x2) ≥ 0, (B.11)

D11Γw(x1, x2)D22Γw(y1, y2) +D11Γw(y1, y2)D22Γw(x1, x2)

− 2D12Γw(x1, x2)D12Γw(y1, y2) ≥ 0, (B.12)

D11Γw(x1, x2) +D22Γw(x1, x2)− 2D12Γw(x1, x2) ≥ 0. (B.13)

(ii) Tw ∈ V.
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Proof of Lemma B.5(i): Establishing (B.11), (B.12), (B.13).

Proof of (B.11):

Using the fact that patients’ health conditions change independently of each other, we have for x1 +x2 ≤

b− 2,

Γw(x1 + 2, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)
[
q2
1w(i, j) + 2q1r1w(i+ 1, j)

+2q1p1w(i, j + 1) + r2
1w(i+ 2, j) + 2r1p1w(i+ 1, j + 1) + p2

1w(i, j + 2)
]

Γw(x1 + 1, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2) [q1w(i, j) + r1w(i+ 1, j) + p1w(i, j + 1)]

Γw(x1, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)w(i, j).

Then, we have

D11Γw(x1, x2) = Γw(x1 + 2, x2)− 2Γw(x1 + 1, x2) + Γw(x1, x2)

=

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)g11(i, j),

where

g11(i, j) =
[
(r1 + p1)2w(i, j)− 2r1(r1 + p1)w(i+ 1, j)− 2p1(r1 + p1)w(i, j + 1)

+r2
1w(i+ 2, j) + 2r1p1w(i+ 1, j + 1) + p2

1w(i, j + 2)
]

= r2
1D11w(i, j) + 2p1r1D12w(i, j) + p2

1D22w(i, j).

Similarly, we have

D22Γw(x1, x2) = Γw(x1, x2 + 2)− 2Γw(x1, x2 + 1) + Γw(x1, x2)

=

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)g22(i, j)

D12Γw(x1, x2) = Γw(x1 + 1, x2 + 1)− Γw(x1 + 1, x2)− Γw(x1, x2 + 1) + Γw(x1, x2)

=

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)g12(i, j),
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where

g22(i, j) = q2
2D11w(i, j) + 2q2r2D12w(i, j) + r2

2D22w(i, j),

g12(i, j) = r1q2D11w(i, j) + (r1r2 + p1q2)D12w(i, j) + p1r2D22w(i, j).

Since D11w(i, j) ≥ 0, D12w(i, j) ≥ 0, D22w(i, j) ≥ 0 for i + j ≤ b − 1, we can conclude that g11(i, j) ≥

0, g22(i, j) ≥ 0, g12(i, j) ≥ 0 for all i, j such that i+ j ≤ x1 + x2 + 1 ≤ b− 1, and consequently,

D11Γw(x1, x2) ≥ 0, D22Γw(x1, x2) ≥ 0, D12Γw(x1, x2) ≥ 0.

Proof of (B.12):

Conditioning on the event that state (x1, x2) transitions to (i1, i2) and state (y1, y2) transitions to (j1, j2),

we can write, for x1 + x2 ≤ b− 2 and y1 + y2 ≤ b− 2,

D11Γw(x1, x2)D22Γw(y1, y2) +D11Γw(y1, y2)D22Γw(x1, x2)− 2D12Γw(x1, x2)D12Γw(y1, y2)

=

x1+x2+1∑
i1=0

x1+x2+1−i1∑
i2=0

y1+y2+1∑
j1=0

y1+y2+1−j1∑
j2=0

P (i1, i2|x1, x2)P (j1, j2|y1, y2)g(i1, i2, j1, j2),
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where

g(i1, i2, j1, j2) = g11(i1, i2)g22(j1, j2) + g11(j1, j2)g22(i1, i2)− 2g12(i1, i2)g12(j1, j2)

=
[
r2
1D11w(i1, i2) + 2p1r1D12w(i1, i2) + p2

1D22w(i1, i2)
]

×
[
q2
2D11w(j1, j2) + 2q2r2D12w(j1, j2) + r2

2D22w(j1, j2)
]

+
[
q2
2D11w(i1, i2) + 2q2r2D12w(i1, i2) + r2

2D22w(i1, i2)
]

×
[
r2
1D11w(j1, j2) + 2p1r1D12w(j1, j2) + p2

1D22w(j1, j2)
]

−2
[
r1q2D11w(i1, i2) + (r1r2 + p1q2)D12w(i1, i2) + p1r2D22w(i1, i2)

]
×
[
r1q2D11w(j1, j2) + (r1r2 + p1q2)D12w(j1, j2) + p1r2D22w(j1, j2)

]
=D11w(i1, i2)

{[
r2
1q

2
2D11w(j1, j2) + 2r2

1q2r2D12w(j1, j2) + r2
1r

2
2D22w(j1, j2)

]
+
[
q2
2r

2
1D11w(j1, j2) + 2q2

2r1p1D12w(j1, j2) + q2
2p

2
1D22w(j1, j2)

]
− [2r1q2r1q2D11w(j1, j2) + 2r1q2(r1r2 + p1q2)D12w(j1, j2) + 2r1q2p1r2D22w(j1, j2)]

}
+D22w(i1, i2)

{[
p2

1q
2
2D11w(j1, j2) + 2p2

1q2r2D12w(j1, j2) + p2
1r

2
2D22w(j1, j2)

]
+
[
r2
2r

2
1D11w(j1, j2) + 2r2

2r1p1D12w(j1, j2) + r2
2p

2
1D22w(j1, j2)

]
− [2p1r2r1q2D11w(j1, j2) + 2p1r2(r1r2 + p1q2)D12w(j1, j2) + 2p1r2p1r2D22w(j1, j2)]

}
+D12w(i1, i2)

{ [
2r1p1q

2
2D11w(j1, j2) + 4r1p1q2r2D12w(j1, j2) + 2r1p1r

2
2D22w(j1, j2)

]
+
[
2q2r2r

2
1D11w(j1, j2) + 4q2r2r1p1D12w(j1, j2) + 2q2r2p

2
1D22w(j1, j2)

]
−
[
2(r1r2 + p1q2)r1q2D11w(j1, j2) + 2(r1r2 + p1q2)2D12w(j1, j2)

+ 2(r1r2 + p1q2)p1r2D22w(j1, j2)
]}

=(r1r2 − p1q2)2
[
D11w(i1, i2)D22w(j1, j2) +D11w(j1, j2)D22w(i1, i2)

− 2D12w(i1, i2)D12w(j1, j2)
]
.

Since D11w(i1, i2)D22w(j1, j2) +D11w(j1, j2)D22w(i1, i2)− 2D12w(i1, i2)D12w(j1, j2) ≥ 0 for any i1 + i2 ≤

b− 1 and j1 + j2 ≤ b− 1, we can conclude that g11(i1, i2, j1, j2) ≥ 0 and consequently,

D11Γw(x1, x2)D22Γw(y1, y2) +D11Γw(y1, y2)D22Γw(x1, x2)

− 2D12Γw(x1, x2)D12Γw(y1, y2) ≥ 0

Proof of (B.13):
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Conditioning on the event that state (x1, x2) transitions to (i1, i2), we can write, for x1 + x2 ≤ b− 2,

D11Γw(x1, x2) +D22Γw(x1, x2)− 2D12Γw(x1, x2)

=

x1+x2+1∑
i1=0

x1+x2+1−i1∑
i2=0

P (i1, i2|x1, x2)f(i1, i2),

where, for i1 + i2 ≤ x1 + x2 + 1 ≤ b− 1,

f(i1, i2) = g11(i1, i2) + g22(i1, i2)− 2g12(i1, i2)

= (r1 − q2)2D11w(i1, i2) + 2(r1 − q2)(p1 − r2)D12w(i1, i2) + (p1 − r2)2D22w(i1, i2).

Since Condition 2 holds for w, we have for i1 + i2 ≤ b− 1,

D11w(i1, i2)D22w(i1, i2) +D11w(i1, i2)D22w(i1, i2)− 2D12w(i1, i2)D12w(i1, i2) ≥ 0

⇒ D12w(i1, i2) ≤
√
D11w(i1, i2)D22w(i1, i2).

Then, if (r1 − q2)(p1 − r2) < 0, we have

f(i1, i2) ≥(r1 − q2)2D11w(i1, i2)

+ (p1 − r2)2D22w(i1, i2) + 2(r1 − q2)(p1 − r2)
√
D11w(i1, i2)D22w(i1, i2)

=
[
(r1 − q2)

√
D11w(i1, i2) + (p1 − r2)

√
D22w(i1, i2)

]2
≥ 0.

On the other hand, if (r1−q2)(p1−r2) ≥ 0, then since D11w(i1, i2), D22w(i1, i2), D12w(i1, i2) for i1+i2 ≤ b−1

are nonnegative (from Condition 1), we have

f(i1, i2) = (r1 − q2)2D11w(i1, i2) + 2(r1 − q2)(p1 − r2)D12w(i1, i2) + (p1 − r2)2D22w(i1, i2) ≥ 0.

Thus, f(i1, i2) ≥ 0 for all i1 + i2 ≤ b− 1, and we can conclude that

D11Γw(x1, x2) +D22Γw(x1, x2)− 2D12Γw(x1, x2) ≥ 0

Proof of Lemma B.5(ii):

We have already established in Lemma B.4 that Tw ∈ Vb, then, we only need to show that Conditions 1

to 3 given in Definition B.5 hold for Tw. We first establish the expressions for D11Tw(x1, x2), D12Tw(x1, x2),

and D22Tw(x1, x2) for the four different cases descried in Definition 3.2.
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Case 1: When x1 + x2 + 2 ≤ b, Tw(i, j) = α [q1i+ Γw(i, j)] for all (i, j) ∈ {(x1, x2), (x1 + 1, x2), (x1, x2 +

1), (x1 + 2, x2), (x1 + 1, x2 + 1), (x1, x2 + 2)}. Hence,

D11Tw(x1, x2) = Tw(x1 + 2, x2)− 2Tw(x1 + 1, x2) + Tw(x1, x2),

= α [Γw(x1 + 2, x2)− 2Γw(x1 + 1, x2) + Γw(x1, x2)] = αD11Γw(x1, x2).

Similarly, D22Tw(x1, x2) = αD22Γw(x1, x2) and D12Tw(x1, x2) = αD12Γw(x1, x2).

Case 2: For x1 + x2 = b − 1 and x1 > 0, x2 > 0, then Tw(i, j) = α [q1i+ Γw(i, j)] for all (i, j) ∈

{(x1, x2), (x1 + 1, x2), (x1, x2 + 1)}. Besides,

Tw(x1 + 2, x2) = min
{
cG1 + α [q1(x1 + 1) + Γw(x1 + 1, x2)] ,

cG2 + α [q1(x1 + 2) + Γw(x1 + 2, x2 − 1)]
}
,

Tw(x1 + 1, x2 + 1) = min
{
cG1 + α [q1x1 + Γw(x1, x2 + 1)] ,

cG2 + α [q1(x1 + 1) + Γw(x1 + 1, x2)]
}
,

Tw(x1, x2 + 2) = min
{
cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2 + 2)] ,

cG2 + α [q1x1 + Γw(x1, x2 + 1)]
}
.

Then we have,

D11Tw(x1, x2) = min
{
cG1 − α [q1 +D1Γw(x1, x2)] ,

cG2 − αD2Γw(x1, x2) + α [∆Γw(x1 + 1, x2 − 1)−∆Γw(x1, x2)]
}
,

D12Tw(x1, x2) = min
{
cG1 − α [q1 +D1Γw(x1, x2)] , cG2 − αD2Γw(x1, x2)

}
,

D22Tw(x1, x2) = min
{
cG1 − α [q1 +D1Γw(x1, x2)] + α [∆Γw(x1, x2)−∆Γw(x1 − 1, x2 + 1)] ,

cG2 − αD2Γw(x1, x2)
}
.

Case 3: For x1 = b − 1 and x2 = 0, the only difference from Case 2 is the expression for Tw(x1 + 2, x2).

Then, D12Tw(x1, x2) and D22Tw(x1, x2) are the same. From Definition 3.2, Tw(x1 +2, x2) = cG1 +α[q1(x1 +

1) + Γw(x1 + 1, x2)]. Then,

D11Tw(x1, x2) = cG1 − α [q1 +D1Γw(x1, x2)] .
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Case 4: For x1 = 0 and x2 = b − 1, the only difference from Case 2 is the expression for Tw(x1, x2 + 2).

Then, D11Tw(x1, x2) and D12Tw(x1, x2) are the same. From Definition 3.2, Tw(x1, x2 + 2) = cG2 +α[q1x1 +

Γw(x1, x2 + 1)]. Then,

D22Tw(x1, x2) = cG2 − αD2Γw(x1, x2).

Proof of Condition 1:

For x1 + x2 ≤ b− 2, D11Tw(x1, x2) ≥ 0, D22Tw(x1, x2) ≥ 0 and D12Tw(x1, x2) ≥ 0 from (B.11) as we

have established earlier in the proof of this lemma.

For x1 + x2 = b− 1 and w ∈ V, from Definition B.5 we have w ∈ Vb, and using Lemma B.4(a), we have

cG1 − α [q1 +D1Γw(x1, x2)] ≥ 0, cG2 − αD2Γw(x1, x2) ≥ 0.

Then, we can conclude D11Tw(x1, x2) ≥ 0 for Case 3, D22Tw(x1, x2) ≥ 0 for Case 4, and D12Tw(x1, x2) ≥ 0

for Cases 2, 3 and 4.

Furthermore, for any i+ j ≤ b− 2, we have

∆Γw(i+ 1, j)−∆Γw(i, j + 1)

= Γw(i+ 2, j)− Γw(i+ 1, j + 1)− Γw(i+ 1, j + 1) + Γw(i, j + 2)

= D11Γw(i, j) +D22Γw(i, j)− 2D12Γw(i, j) ≥ 0,

where the inequality follows from (B.13) as we have established earlier in the proof of this lemma.

It then follows that for x1 +x2 = b−1 and x1 > 0(Cases 2 and 3), ∆Γw(x1, x2)−∆Γw(x1−1, x2 +1) ≥ 0

and thus D22Tw(x1, x2) ≥ 0, and for x1 + x2 = b − 1 and x2 > 0 (Cases 2 and 4), ∆Γw(x1 + 1, x2 − 1) −

∆Γw(x1, x2) ≥ 0 and thus D11Tw(x1, x2) ≥ 0.

Hence, D11T (x1, x2) ≥ 0, D22T (x1, x2) ≥ 0, D12T (x1, x2) ≥ 0 for all four cases.

Proof of Condition 3: (We prove this condition first because it will be used in the proof of Condition 2). For

x1 + x2 ≤ b− 2,

D11Tw(x1, x2) +D22Tw(x1, x2)− 2D12Tw(x1, x2)

= α
[
D11Γw(x1, x2) +D22Γw(x1, x2)− 2D12Γw(x1, x2)

]
≥ 0,

where the inequality follows from (B.13) as we have established earlier in the proof of this lemma.
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For x1 + x2 = b − 1, ∆Γw(x1 + 1, x2 − 1) −∆Γw(x1, x2) ≥ 0 if x2 > 0 and ∆Γw(x1, x2) −∆Γw(x1 −

1, x2 + 1) ≥ 0 for x1 > 0 (as we have already established in the proof of Condition 1). From the expressions

of D11Tw(x1, x2), D22Tw(x1, x2) and D12Tw(x1, x2), we have

D11Tw(x1, x2) ≥ D12Tw(x1, x2), D22Tw(x1, x2) ≥ D12Tw(x1, x2),

Then for x1 + x2 = b− 1, D11Tw(x1, x2) +D22Tw(x1, x2)− 2D12Tw(x1, x2) ≥ 0.

Hence, Condition 3 holds for all x1 + x2 ≤ b− 1.

Proof of Condition 2:

If x1 + x2 ≤ b− 2 and y1 + y2 ≤ b− 2, then from Case 1,

D11Tw(x1, x2)D22Tw(y1, y2) +D11Tw(y1, y2)D22Tw(x1, x2)− 2D12Tw(x1, x2)D12Tw(y1, y2)

=α2
[
D11Γw(x1, x2)D22Γw(y1, y2) +D11Γw(y1, y2)D22Γw(x1, x2)− 2D12Γw(x1, x2)D12Γw(y1, y2)

]
≥0,

where the inequality follows from (B.12) as we have established earlier in the proof of this lemma.

If x1 + x2 = b− 1, then D11Tw(x1, x2) ≥ D12Tw(x1, x2) and D22Tw(x1, x2) ≥ D12Tw(x1, x2) from the

proof of Condition 3. Then for any y1 + y2 ≤ b− 1,

D11Tw(x1, x2)D22Tw(y1, y2) +D11Tw(y1, y2)D22Tw(x1, x2)− 2D12Tw(x1, x2)D12Tw(y1, y2)

≥D12Tw(x1, x2)D22Tw(y1, y2) +D11Tw(y1, y2)D12Tw(x1, x2)− 2D12Tw(x1, x2)D12Tw(y1, y2)

=D12Tw(x1, x2)
[
D22Tw(y1, y2) +D11Tw(y1, y2)− 2D12Tw(y1, y2)

]
≥ 0,

where the last inequality holds since we have proved that Tw(y1, y2) satisfies Condition 3 for all y1+y2 ≤ b−1.

If y1 + y2 = b− 1, then for any x1 + x2 ≤ b− 1 we can similarly show

D11Tw(x1, x2)D22Tw(y1, y2) +D11Tw(y1, y2)D22Tw(x1, x2)

− 2D12Tw(x1, x2)D12Tw(y1, y2) ≥ 0.

Hence, Condition 2 holds for all x1 + x2 ≤ b− 1 and y1 + y2 ≤ b− 1.

Thus, Tw ∈ V.

Lemma B.6. Suppose that (3.10) holds. Then,
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(a) the optimal value function vα ∈ V, and

(b) for x1 + x2 ≤ b− 1 and x1 > 0, ∆Γvα(x1, x2) ≥ ∆Γvα(x1 − 1, x2 + 1).

Proof of Lemma B.6: (a) The proof is based on Theorem 11.5 of (Porteus 2002), which requires the

existence of three conditions for the optimality of structured policies.

(i) Completeness.

Define the distance of two functions u, v in V by

ρ(u, v) := sup
s∈S
|u(s)− v(s)| for u, v ∈ V.

We need to show that (ρ,V) is complete (see, e.g., (Porteus 2002) for a definition). Specifically, we

need to show that for any Cauchy sequence {vn, n ≥ 0} in V, there must exist v ∈ V such that

limn→∞ ρ(vn, v) = 0.

First we show that any Cauchy sequence in V is convergent. Let V = R(b+2)×(b+2) be a b + 2 by b + 2

dimensional real vector space. Then, V ⊂ V , and hence for any Cauchy sequence {vn, n = 1, 2, . . .} in

V, is also a Cauchy sequence in V . It is known that V is complete, thus, {vn, n = 1, 2, . . .} has a limit

in V , i.e., there exists v ∈ V such that limn→∞ ρ(vn, v) = 0.

Next we show that the limit v ∈ V. Now, for any sequence of value functions {vn : vn ∈ V, n = 1, 2, . . .},

we know that

c1 ≤ D1vn(x1, x2) ≤ cG1 , c2 ≤ D2vn(x1, x2) ≤ cG2 for x1 + x2 ≤ b,

D11vn(x1, x2) ≥ 0, D22vn(x1, x2) ≥ 0, and D12vn(x1, x2) ≥ 0 for x1 + x2 ≤ b− 1,

D11vn(x1, x2)D22vn(y1, y2) +D11vn(y1, y2)D22vn(x1, x2)

− 2D12vn(x1, x2)D12vn(y1, y2) ≥ 0, for x1 + x2 ≤ b− 1 and y1 + y2 ≤ b− 1,

D11vn(x1, x2) +D22vn(x1, x2)− 2D12vn(x1, x2) ≥ 0 for x1 + x2 ≤ b− 1.

Suppose that v /∈ V. Then, it must be the case that at least one of the inequalities above, which define

the set V does not hold for sufficiently large n.This is a contradiction to the fact that vn ∈ V. Thus,

(ρ,V) is complete.

(ii) Attainment. For any w ∈ V, we must show that there exists a decision rule that can attain the

minimum. Define a decision rule δ, which in state (x1, x2) ∈ S, does not discharge any patient if

x1 + x2 ≤ b, discharges a stage 1 patient if x1 = b+ 1, x2 = 0, discharges a stage 2 patient at state x1 =
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0, x2 = b+ 1, and otherwise discharges a stage 1 patient if Γw(x1− 1, x2)−Γw(x1, x2− 1) ≤ cG1 −c
G
2

α − q1,

and discharges a stage 2 otherwise. Then, according to the optimality equations (3.11), δ is optimal.

(iii) Preservation. This follows immediately from Lemma B.5.

Then, from Theorem 11.5 of (Porteus 2002), we can conclude that the optimal value function vα ∈ V.

(b) It follows from Lemma B.5 (i) that Γvα(x1, x2) satisfies (B.13), i.e., for any i+ j ≤ b− 2,

D11Γvα(i, j) +D22Γvα(i, j)− 2D12Γvα(i, j) ≥ 0.

Then, for any x1 + x2 ≤ b− 1 and x1 > 0,

∆Γvα(x1, x2)−∆Γvα(x1 − 1, x2 + 1)

= Γvα(x1 + 1, x2)− Γvα(x1, x2 + 1)− Γvα(x1, x2 + 1) + Γvα(x1 − 1, x2 + 2)

= D11Γvα(x1 − 1, x2) +D22Γvα(x1 − 1, x2)− 2D12Γvα(x1 − 1, x2) ≥ 0,

Proof of Proposition 3.3: Define function δn(i) = ∆Γvα(i, n − i) for 1 ≤ i ≤ n ≤ b − 1. Then, from

Lemma B.6 (b), we have δn(i) ≥ δn(i− 1). Thus, for fixed n, δn(i) is non-decreasing in i for 1 ≤ i ≤ n.

From the optimality equations (3.11) and Definition 3.2, for x1 + x2 = b + 1 and x1 > 0, x2 > 0,

a∗(x1, x2) = (1, 0) if and only if

cG1 + α [q1(x1 − 1) + Γvα(x1 − 1, x2)] < cG2 + α [q1x1 + Γvα(x1, x2 − 1)] ,

which can equivalently be written as

δb−1(x1 − 1) >
cG1 − cG2

α
− q1. (B.14)

First, suppose that there exists x1 ∈ [1, b] such that δb−1(x1 − 1) >
cG1 −c

G
2

α − q1, and let

x∗α = min

{
x1 : 1 ≤ x1 ≤ b and δb−1(x1 − 1) >

cG1 − cG2
α

− q1

}
.

Then, since δn(i) is non-decreasing in i, we have δb−1(x1 − 1) >
cG1 −c

G
2

α − q1 for all x1 ∈ [x∗, b], and

δb−1(x1 − 1) ≤ cG1 −c
G
2

α − q1 for all x1 ∈ [1, x∗). Thus, we have a∗α(x1, x2) = (1, 0) for x1 + x2 = b + 1 and

x1 ≥ x∗, and a∗α(x1, x2) = (0, 1) for x1 + x2 = b+ 1 and x1 < x∗.
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Now suppose that δb−1(x1 − 1) <
cG1 −c

G
2

α − q1 for all x1 + x2 = b + 1 and x1 > 0, x2 > 0, then let

x∗α = b+ 1 and the result follows.

B.2.3 Proof of Proposition 3.4

Definition B.6. Define an operator F on w by

Fw(i, j) = (r1 − q2)D1w(i, j) + (p1 − r2)D2w(i, j).

Definition B.7. Let V1 be a set of functions such that if w ∈ V1, then w ∈ V and

Condition 4: ∆w(x1, x2) = w(x1 + 1, x2)− w(x1, x2 + 1) ≥ cG1 − cG2 , for x1 + x2 ≤ b,

Condition 5: Fw(x1, x2) >
cG1 − cG2

α
− q2, for x1 + x2 ≤ b.

Lemma B.7. If (3.10) and (3.17) hold, then for any function w ∈ V1,

(a) ∆Γw(x1, x2) >
cG1 −c

G
2

α − q1, for all x1 + x2 ≤ b− 1.

(b) Tw ∈ V1.

(c) vα ∈ V1.

Proof of Lemma B.7: From (3.4), we can show that (3.17) is equivalent to

c1 − c2 > cG1 − cG2 , q1 ≤ p2. (B.15)

(a) By conditioning on how x1 stage 1 patients and x2 stage 2 patients evolve, we have for x1 + x2 ≤ b− 1,

∆Γw(x1, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)Fw(i, j) >
cG1 − cG2

α
− q1,

where the inequality follows from Condition 5 for w ∈ V1 and i+ j ≤ x1 + x1 + 1 ≤ b.

(b) To show Tw ∈ V1, we need to show Conditions 4 and 5 hold for Tw since we have already shown Tw ∈ V

for w ∈ V.

We first establish the expression of ∆ [Tw(i, j)] for the four difference cases described in Definition 3.2.

Case 1: If x1 + x2 ≤ b− 1, we have,

∆ [Tw(i, j)] = α[q1 + ∆Γw(x1, x2)].
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Case 2: If x1 + x2 = b and x1 > 0, x2 > 0, then from part (a) we have

∆Γw(x1, x2 − 1) = Γw(x1 + 1, x2 − 1)− Γw(x1, x2) >
cG1 − cG2

α
− q1,

which is equivalent to

cG1 + α [q1x1 + Γw(x1, x2)] < cG2 + α [q1(x1 + 1) + Γw(x1 + 1, x2 − 1)] .

Then,

Tw(x1 + 1, x2) = min
{
cG1 + α [q1x1 + Γw(x1, x2)] ,

cG2 + α [q1(x1 + 1) + Γw(x1 + 1, x2 − 1)]
}

= cG1 + α [q1x1 + Γw(x1, x2)] = cG1 + Tw(x1, x2),

and thus D1 [Tw(x1, x2)] = Tw(x1 + 1, x2)− Tw(x1, x2) = cG1 .

Similarly, from part (a) we have

∆Γw(x1 − 1, x2) = Γw(x1, x2)− Γw(x1 − 1, x2 + 1) >
cG1 − cG2

α
− q1,

which is equivalent to

cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2 + 1)] < cG2 + α [q1x1 + Γw(x1, x2)] .

Then,

Tw(x1, x2 + 1) = min
{
cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2 + 1)] ,

cG2 + α [q1x1 + Γw(x1, x2)]
}

= cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2 + 1)]

= cG1 + Tw(x1 − 1, x2 + 1),

and thus D2 [Tw(x1, x2)] = Tw(x1, x2 + 1)− Tw(x1, x2) = cG1 −∆ [Tw(x1 − 1, x2)]. Hence,

∆ [Tw(x1, x2)] = D1 [Tw(x1, x2)]−D2 [Tw(x1, x2)] = ∆ [Tw(x1 − 1, x2)] . (B.16)
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Case 3: If x1 = b and x2 = 0, then Tw(x1, x2 + 1) and Tw(x1, x2) have the same expressions as in

Case 2 and thus D2 [Tw(x1, x2)] = cG1 −∆ [Tw(x1 − 1, x2)], and

Tw(x1 + 1, x2) = cG1 + α [q1x1 + Γw(x1, x2)] = cG1 −∆ [Tw(x1, x2)] ,

and thus D1 [Tw(x1, x2)] = cG1 . Then,

∆ [Tw(x1, x2)] = ∆ [Tw(x1 − 1, x2)] .

Case 4: If x1 = 0 and x2 = b, then Tw(x1 + 1, x2) and Tw(x1, x2) have the same expressions as in

Case 2 and thus D1 [Tw(x1, x2)] = cG1 , and

Tw(x1, x2 + 1) = cG2 + α [q1(x1 + 1) + Γw(x1, x2)] ,

and thus D2 [Tw(x1, x2)] = cG2 . Then,

∆ [Tw(x1, x2)] = cG1 − cG2 .

Proof of Condition 4:

Case 1: If x1 + x2 ≤ b− 1, we have ∆Tw(i, j) = α[q1 + ∆Γw(x1, x2)] > cG1 − cG2 , where the inequality

follows from part (a).

Case 2 and 3: If x1 + x2 = b and x1 > 0, we have,

∆ [Tw(x1, x2)] = ∆ [Tw(x1 − 1, x2)] > cG1 − cG2 ,

where the inequality follows from Case 1.

Case 4: If x1 = 0 and x2 = b, then ∆Tw(x1, x2) = cG1 − cG2 .

Thus, ∆Tw(x1, x2) ≥ cG1 − cG2 for all x1 + x2 ≤ b.

Proof of Condition 5:
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(i) If r1 ≥ q2, then for i+ j ≤ b,

F [Tw(i, j)] = (r1 − q2)D1[Tw(i, j)] + (p1 − r2)D2[Tw(i, j)]

= (r1 − q2)∆[Tw(i, j)] + (p2 − q1)D2[Tw(i, j)]

≥ (r1 − q2)(cG1 − cG2 ) + (p2 − q1)c2

= (cG1 − cG2 )− (p1 + q1 + q2)(cG1 − cG2 ) + (p2 − q1)c2

> (cG1 − cG2 )− (p1 + q1 + q2)(c1 − c2) + (p2 − q1)c2

= (cG1 − cG2 )− (c1 − c2) + (r1 − q2)c1 + (p1 − r2)c2

=
cG1 − cG2

α
+ (cG1 − cG2 )

[
1− 1

α

]
− (c1 − c2) +

c1 − c2
α

− q1

=
cG1 − cG2

α
− q1 +

[
1− 1

α

] [
(cG1 − cG2 )− (c1 − c2)

]
≥ cG1 − cG2

α
− q1,

where the first inequality follows from ∆Tw(i, j) ≥ cG1 − cG2 which we established earlier, and

D2Tw(i, j) ≥ c2 since Tw ∈ Vb, and the second inequality follows from (B.15). Hence, F [Tw(i, j)] >

cG1 −c
G
2

α − q1.

(ii) If r1 < q2, since q1 ≤ p2 from (B.17), we have p1 > r2 using the fact that p1+q1+r1 = p2+q2+r2 = 1.

Then, p1q2 > r1r2. Next we consider four different cases as before.

Case 1: If x1 + x2 ≤ b− 1,

F [Tw(x1, x2)] = (r1 − q2)D1Tw(x1, x2) + (p1 − r2)D2Tw(x1, x2)

=

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)H(i, j),

where

H(i, j) = (r1 − q2)α [q1 + r1D1w(i, j) + p1D2w(i, j)]

+ (p1 − r2)α [q2D1w(i, j) + r2D2w(i, j)] .
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We have,

H(i, j)

α
=(r1 − q2) [q1 + r1D1w(i, j) + p1D2w(i, j)]

+ (p1 − r2) [q2D1w(i, j) + r2D2w(i, j)]

=− q1(r2 + q2) + (r1 + r2) [q1 + (r1 − q2)D1w(i, j) + (p1 − r2)D2w(i, j)]

+ (p1q2 − r1r2) [D1w(i, j)−D2w(i, j)]

=− q1(r2 + q2) + (r1 + r2)[q1 + Fw(i, j)] + (p1q2 − r1r2)∆w(i, j)

≥− q1(r2 + q2) + (r1 + r2)

(
cG1 − cG2

α

)
+ (p1q2 − r1r2)(cG1 − cG2 ),

where the inequality follows from Conditions 4 and 5 for w ∈ V1. Then,

αH(i, j)−
[
cG1 − cG2 − αq1

]
≥ αq1

[
(1− α(r2 + q2)

]
+
[
α2(r1 + r2) + α2(p1q2 − r1r2)− 1

]
(cG1 − cG2 )

= αq1(1− αr2 − αq2)−
[
1− α(r1 + r2) + α2r1r2 − α2p1q2

]
(cG1 − cG2 )

= αq1(1− αr2 − αq2)−
[
(1− αr1)(1− αr2)− α2p1q2

]
(cG1 − cG2 )

=
[
(1− αr1)(1− αr2)− α2p1q2

] [ αq1(1− αr2 − αq2)

(1− αr1)(1− αr2)− α2p1q2
− (cG1 − cG2 )

]
=

[
(1− αr1)(1− αr2)− α2p1q2

] [
(c1 − c2)− (cG1 − cG2 )

]
> 0,

since (1−αr1)(1−αr2))−α2p1q2 = (1−α+αq1+αp1)(1−α+αp2+αq2)−α2p1q2 > 0 and c1−c2 > cG1 −cG2 .

Hence, H(i, j) >
cG1 −c

G
2

α − q1 and

F [Tw(x1, x2)] =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)H(i, j) >
cG1 − cG2

α
− q1.
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Cases 2 and 3: If x1 + x2 = b and x1 > 0, we have D1[Tw(x1, x2)] = cG1 and D2[Tw(x1, x2)] =

cG1 −∆[Tw(x1 − 1, x2)], and hence,

F [Tw(x1, x2)] = (r1 − q2)D1[Tw(x1, x2)] + (p1 − r2)D2[Tw(x1, x2)]

= (r1 − q2)cG1 + (p1 − r2)
[
cG1 −∆[Tw(x1 − 1, x2)]

]
= (p2 − q1)cG1 − (p1 − r2)∆[Tw(x1 − 1, x2)]

≥ (p2 − q1)D1[Tw(x1 − 1, x2)]− (p1 − r2)∆[Tw(x1 − 1, x2)]

= (r1 − q2)D1[Tw(x1 − 1, x2)] + (p1 − r2)D2[Tw(x1 − 1, x2)]

= F [Tw(x1 − 1, x2)] >
cG1 − cG2

α
− q1,

where the last inequality follows from Case 1.

Case 4: If x1 = 0 and x2 = b, we have D1[Tw(x1, x2)] = cG1 and D2[Tw(x1, x2)] = cG2 , and then,

F [Tw(x1, x2)] = (r1 − q2)D1Tw(x1, x2) + (p1 − r2)D2Tw(x1, x2)

= (r1 − q2)cG1 + (p1 − r2)cG2 = (r2 − p1)(cG1 − cG2 ) + (p2 − q1)cG1

≥ (r2 − p1)(c1 − c2) + (p2 − q1)c1 =
c1 − c2
α

− q1 >
cG1 − cG2

α
− q1,

where the first inequality follows from r2 − p1 < 0, c1 − c2 > cG1 − cG2 , p2 − q1 ≥ 0 and cG1 ≥ c1.

Thus, Conditions 4 and 5 hold for Tw, and hence Tw ∈ V1.

(c) From Theorem 11.5 of (Porteus 2002), we need to verify three conditions:

(i) Completeness. The proof is very similar to that of Lemma B.6 and thus is skipped.

(ii) Attainment. For any function w ∈ V1, we define a decision rule, which in state (x1, x2), discharges

no patient when x1 +x2 ≤ b, discharges a stage 2 patient when x1 = 0, x2 = b+ 1 and discharges a stage

1 patient when x1 + x2 = b+ 1 and x1 > 0. This rule attains the minimum of w = Tw from (B.15).

(iii) Preservation. This follows immediately from part (b).

Then, from Theorem 11.5 of (Porteus 2002), we can conclude that the optimal value function vα ∈ V1.

Definition B.8. Let V2 be a set of functions such that if w ∈ V2, then w ∈ V and

Condition 6: ∆w(x1, x2) = w(x1 + 1, x2)− w(x1, x2 + 1) ≤ cG1 − cG2 for x1 + x2 ≤ b,

Condition 7: Fw(x1, x2) ≤ cG1 − cG2
α

− q2 for x1 + x2 ≤ b.
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Lemma B.8. If (3.10) and (3.18) hold, then for any function w ∈ V2,

(a) ∆Γw(x1, x2) ≤ cG1 −c
G
2

α − q1, for all x1 + x2 ≤ b− 1.

(b) Tw ∈ V2.

(c) vα ∈ V2.

Proof of Lemma B.8: From (3.4), we can show that (3.18) is equivalent to

c1 − c2 ≤ cG1 − cG2 , q1 ≥ p2. (B.17)

(a) By conditioning on how x1 stage 1 patients and x2 stage 2 patients evolve, we have for x1 + x2 ≤ b− 1,

∆Γw(x1, x2) =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)Fw(i, j) ≤ cG1 − cG2
α

− q1,

where the inequality follows since we know that Condition 7 holds for w ∈ V2.

(b) To show Tw ∈ V2, it is sufficient to show Conditions 6 and 7 hold for Tw since we have already shown

Tw ∈ V for w ∈ V.

We first establish the expression of ∆ [Tw(x1, x2)] for the four different cases described in Definition 3.2.

Case 1: If x1 + x2 ≤ b− 1, we have, ∆Tw(i, j) = α[q1 + ∆Γw(x1, x2)].

Case 2: If x1 + x2 = b and x1 > 0, x2 > 0, then from part (a) we have

∆Γw(x1, x2 − 1) = Γw(x1 + 1, x2 − 1)− Γw(x1, x2) ≤ cG1 − cG2
α

− q1,

which is equivalent to

cG1 + α [q1x1 + Γw(x1, x2)] ≥ cG2 + α [q1(x1 + 1) + Γw(x1 + 1, x2 − 1)] .

Then,

Tw(x1 + 1, x2) = min
{
cG1 + α [q1x1 + Γw(x1, x2)] ,

cG2 + α [q1(x1 + 1) + Γw(x1 + 1, x2 − 1)]
}

= cG2 + α [q1(x1 + 1) + Γw(x1 + 1, x2 − 1)]

= cG2 + Tw(x1 + 1, x2 − 1),

and thus D1 [Tw(x1, x2)] = Tw(x1 + 1, x2)− Tw(x1, x2) = cG2 + ∆ [Tw(x1, x2 − 1)].
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Similarly,

Tw(x1, x2 + 1) = min
{
cG1 + α [q1(x1 − 1) + Γw(x1 − 1, x2 + 1)] ,

cG2 + α [q1x1 + Γw(x1, x2)]
}

= cG2 + α [q1x1 + Γw(x1, x2)] = cG2 + Tw(x1, x2),

and thus D2 [Tw(x1, x2)] = Tw(x1, x2 + 1)− Tw(x1, x2) = cG2 .

Hence, ∆Tw(x1, x2) = D1 [Tw(x1, x2)]−D2 [Tw(x1, x2)] = ∆Tw(x1, x2 − 1).

Case 3: If x1 = b and x2 = 0, then Tw(x1, x2 + 1) and Tw(x1, x2) have the same expressions as in

Case 2 and thus D2 [Tw(x1, x2)] = cG2 , and

Tw(x1 + 1, x2) = cG1 + α [q1x1 + Γw(x1, x2)] = cG1 + T (x1, x2),

and thus D1 [Tw(x1, x2)] = cG1 . Then, ∆Tw(x1, x2) = cG1 − cG2 .

Case 4: If x1 = 0 and x2 = b, then from Definition 3.2, Tw(x1 + 1, x2) and Tw(x1, x2) have the same

expressions as in Case 2 and thus D1 [Tw(x1, x2)] = cG2 + ∆ [Tw(x1, x2 − 1)] and

Tw(x1, x2 + 1) = cG2 + α [q1x1 + Γw(x1, x2)] = cG2 + Tw(x1, x2).

Then, D2 [Tw(x1, x2)] = cG2 . Hence, ∆Tw(x1, x2) = ∆ [Tw(x1, x2 − 1)] .

Proof of Condition 6:

We consider four different cases as before.

Case 1: If x1 + x2 ≤ b− 1, we have, ∆Tw(i, j) = α[q1 + ∆Γw(x1, x2)] ≤ cG1 − cG2 , where the inequality

follows from part (a).

Cases 2 and 4: If x1 + x2 = b and x2 > 0, then ∆Tw(x1, x2) = ∆ [Tw(x1, x2 − 1)] ≤ cG1 − cG2 , where

the inequality follows from Case 1.

Case 3: If x1 = b and x2 = 0, then ∆Tw(x1, x2) = cG1 − cG2 .

Thus, Condition 6 holds for Tw.

Proof of Condition 7:
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(i) If p1 ≤ r2,

F [Tw(i, j)] =(p2 − q1)D1[Tw(i, j)]− (p1 − r2)∆[Tw(i, j)]

≤(p2 − q1)c1 − (p1 − r2)(cG1 − cG2 )

=(cG1 − cG2 )− (p1 + p2 + q2)(cG1 − cG2 ) + (p2 − q1)c1

≤(cG1 − cG2 )− (p1 + p2 + q2)(c1 − c2) + (p2 − q1)c1

=(cG1 − cG2 )− (c1 − c2) + (p1 − r2)c2 + (r1 − q2)c1

=
cG1 − cG2

α
+ (cG1 − cG2 )

[
1− 1

α

]
− (c1 − c2) +

c1 − c2
α

− q1

=
cG1 − cG2

α
− q1 +

[
1− 1

α

] [
(cG1 − cG2 )− (c1 − c2)

]
≤c

G
1 − cG2
α

− q1,

where the first inequality follows from ∆Tw(x1, x2) ≤ cG1 − cG2 , (i.e., that Condition 6 holds for Tw, as

we established earlier), D1Tw(x1, x2) ≥ c1 since Tw ∈ Vb and p2 − q1 ≤ 0 from (B.17). The second

inequality follows from (cG1 − cG2 )− (c1 − c2) ≥ 0 and 1− 1
α < 0.

(ii) If p1 > r2 and since q1 ≥ p2 from (B.17), we have r1 < q2 using the fact that p1 + q1 + r1 =

p2 + q2 + r2 = 1. Then, p1q2 > r1r2.

Case 1: If x1 + x2 ≤ b− 1,

F [Tw(x1, x2)] = (r1 − q2)D1Tw(x1, x2) + (p1 − r2)D2Tw(x1, x2)

=

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)H(i, j),

where

H(i, j) = (r1 − q2)α [q1 + r1D1w(i, j) + p1D2w(i, j)]

+ (p1 − r2)α [q2D1w(i, j) + r2D2w(i, j)] .
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H(i, j)

α
=(r1 − q2) [q1 + r1D1w(i, j) + p1D2w(i, j)] + (p1 − r2) [q2D1w(i, j) + r2D2w(i, j)]

=− q1(r2 + q2) + (r1 + r2) [q1 + (r1 − q2)D1w(i, j) + (p1 − r2)D2w(i, j)]

+ (p1q2 − r1r2) [D1w(i, j)−D2w(i, j)]

=− q1(r2 + q2) + (r1 + r2)[q1 + Fw(i, j)] + (p1q2 − r1r2)∆w(i, j)

≤− q1(r2 + q2) + (r1 + r2)

(
cG1 − cG2

α

)
+ (p1q2 − r1r2)(cG1 − cG2 ),

where the inequality follows from the fact that Conditions 6 and 7 hold for w ∈ V2. Then,

αH(i, j)−
[
cG1 − cG2 − αq1

]
≤ αq1

[
(1− α(r2 + q2)

]
+
[
α(r1 + r2) + α2(p1q2 − r1r2)− 1

]
(cG1 − cG2 )

= αq1(1− αr2 − αq2)−
[
1− α(r1 + r2) + α2r1r2 − α2p1q2

]
(cG1 − cG2 )

= αq1(1− αr2 − αq2)−
[
(1− αr1)(1− αr2)− α2p1q2

]
(cG1 − cG2 )

=
[
(1− αr1)(1− αr2)− α2p1q2

] [ αq1(1− αr2 − αq2)

(1− αr1)(1− αr2)− α2p1q2
− (cG1 − cG2 )

]
=

[
(1− αr1)(1− αr2)− α2p1q2

] [
(c1 − c2)− (cG1 − cG2 )

]
≤ 0,

since (1−αr1)(1−αr2))−α2p1q2 = (1−α+αq1+αp1)(1−α+αp2+αq2)−α2p1q2 ≥ 0 and c1−c2 ≤ cG1 −cG2 .

Hence, H(i, j) ≤ cG1 −c
G
2

α − q1, and

F [Tw(x1, x2)] =

x1+x2+1∑
i=0

x1+x2+1−i∑
j=0

P (i, j|x1, x2)H(i, j) ≤ cG1 − cG2
α

− q1.

Cases 2 and 4: If x1 + x2 = b and x2 > 0, we have, D1[Tw(x1, x2)] = cG2 + ∆[Tw(x1, x2 − 1)] and

D2[Tw(x1, x2)] = cG2 , and hence,

F [Tw(x1, x2)] = (r1 − q2)D1[Tw(x1, x2)] + (p1 − r2)D2[Tw(x1, x2)]

= (r1 − q2)
[
cG2 + ∆[Tw(x1, x2 − 1)]

]
+ (p1 − r2)cG2

= (r1 − q2)∆[Tw(x1, x2 − 1)] + (p2 − q1)cG2

≤ (r1 − q2)∆[Tw(x1, x2 − 1)] + (p2 − q1)D2[Tw(x1, x2 − 1)]

= (r1 − q2)D1[Tw(x1, x2 − 1)] + (p1 − r2)D2[Tw(x1, x2 − 1)]

= F [Tw(x1, x2 − 1)] ≤ cG1 − cG2
α

− q1,

where the first inequality follows from D2[Tw(x1, x2 − 1)] ≤ cG2 since Tw ∈ Vb and q1 ≥ p2, and the

second inequality follows from Case 1.
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Case 3: If x1 = b and x2 = 0, we have D1[Tw(x1, x2)] = cG1 and D2[Tw(x1, x2)] = cG2 . Then,

F [Tw(x1, x2)] = (r1 − q2)D1Tw(x1, x2) + (p1 − r2)D2Tw(x1, x2)

= (r1 − q2)cG1 + (p1 − r2)cG2 = (r2 − p1)(cG1 − cG2 ) + (p2 − q1)cG1

≤ (r2 − p1)(c1 − c2) + (p2 − q1)c1 =
c1 − c2
α

− q1 ≤
cG1 − cG2

α
− q1,

where the first inequality follows from r2 − p1 < 0, cG1 − cG2 ≥ c1 − c2, p2 − q1 ≤ 0, and cG1 ≥ c1.

Thus, Conditions 6 and 7 hold for Tw, and hence Tw ∈ V2.

(c) From Theorem 11.5 of (Porteus 2002), we need to verify three conditions:

(i) Completeness. The proof is very similar to that of Lemma B.6 and thus is skipped.

(ii) Attainment. For any function w ∈ V2, we define a decision rule, which, in state (x1, x2), discharges

no patient if x1 + x2 ≤ b, discharges a stage 1 patient if x1 = b + 1, x2 = 0, and discharges a stage 2

patient if x1 + x2 = b+ 1 and x2 > 0. This rule attains the minimum in Tw from Definition 3.2.

(iii) Preservation. This follows immediately from part (b).

Then, from Theorem 11.5 of (Porteus 2002), we can conclude that the optimal value function vα ∈ V2.

Proof of Proposition 3.4: (a) Suppose that (3.10) and (3.17) hold, then from Lemma B.7(c), vα ∈ V1.

It then follows from Lemma B.7(a) that, for any x1 + x2 ≤ b− 1,

∆Γvα(x1, x2) >
cG1 − cG2

α
− q1.

Hence, for all x1+x2 = b+1 and x1 > 0, x2 > 0, we have δb−1(x1−1) = ∆Γvα(x1−1, b−x1) >
cG1 −c

G
2

α −q1,

and thus a∗α(x1, x2) = (1, 0) from (B.14).

(b) Suppose that (3.10) and (3.18) hold, then following Lemma B.8(c), the optimal value function vα ∈ V2

and then we have from Lemma B.8(a), for all x1 + x2 ≤ b− 1

∆Γvα(x1, x2) ≤ cG1 − cG2
α

− q1.

Hence, for all x1+x2 = b+1 and x1 > 0, x2 > 0, we have δb−1(x1−1) = ∆Γvα(x1−1, b−x1) ≤ cG1 −c
G
2

α −q1,

and thus a∗α(x1, x2) = (0, 1) from (B.14).

136



B.2.4 Proof of Theorem 3.1

Lemma B.9. If βi < βGi for both i = 1, 2, then there exists an α0 ∈ (0, 1) such that (3.10) holds for all

α ∈ [α0, 1].

Proof of Lemma B.9: Let f1(α) = α
[
q1+r1c

G
1 +p1c

G
2

]
−cG1 and f2(α) = α(q2c

G
1 +r2c

G
2 )−cG2 for α ∈ [0, 1],

where cG1 and cG2 as expressed in (3.7) are continuous in α. Then f1(α) and f2(α) are both continuous in α.

When α = 1, we have

cG1 =
qG1 (pG2 + qG2 )

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

, cG2 =
qG1 q

G
2

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

.

Then,

f1(1) = q1 + r1c
G
1 + p1c

G
2 − cG1 = q1(1− cG1 )− p1(cG1 − cG2 )

=
q1p

G
1 p

G
2

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

− p1q
G
1 p

G
2

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

=
p1p

G
1 p

G
2 (β1 − βG1 )

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

,

and

f2(1) = q2c
G
1 + r2c

G
2 − cG2 = q2(cG1 − cG2 )− p2c

G
2

=
q2q

G
1 p

G
2

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

− p2q
G
1 q

G
2

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

=
q2p

G
1 p

G
2

(
βG2 − β2

)
pG1 p

G
2 + qG1 p

G
2 + qG1 q

G
2

When α = 1, f1(α) and f2(α) are strictly negative since βi < βGi for i = 1, 2, and they are continuous

in α, then there must exist some α1 ∈ (0, 1) and α2 ∈ (0, 1), such that f1(α) ≤ 0 for all α ∈ [α1, 1] and

f2(α) ≤ 0 for all α ∈ [α2, 1]. Let α0 = max{α1, α2}. Then, if βi < βGi , (3.10) holds for all α ∈ [α0, 1].

Proof of Theorem 3.1: The MDP model we introduced in Section 3.3 has finite state space and every

stationary policy induces a unichain. Thus, we know from Proposition 6.4.1 of (Sennott 1999) that J(i) ≡ J

for i ∈ S.

Let hα(x1, x2) = vα(x1, x2) − vα(0, 0) for any (x1, x2) ∈ S. We have shown in Lemma B.4(c) that

Divα(x1, x2) ≤ cGi . Then,

hα(x1, x2) = vα(x1, x2)− vα(0, 0) =

x1−1∑
i=0

D1vα(i, 0) +

x2−1∑
j=0

D2vα(x1, j)

≤ x1c
G
1 + x2c

G
2 ≤ (b+ 1)(cG1 + cG2 ).
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It follows from Theorem 6.4.2 of (Sennott 1999) that

h(x1, x2) = lim
α→1−

hα(x1, x2) = lim
α→1−

[vα(x1, x2)− vα(0, 0)],

where h(·) is the bias function as defined in (3.3). Using (3.9), the average cost optimality equation (3.3)

can be rewritten as

h(x1, x2) + g = min
(a1,a2)∈A(x1,x2)

{
a1φ

G
1 + a2φ

G
2 + q1(x1 − a1) + Γh(x1 − a1, x2 − a2)

}
. (B.18)

For x+ y ≤ b,

Γh(x, y) =

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y) lim
α→1−

hα(i, j)

= lim
α→1−

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y)hα(i, j)


= lim

α→1−

x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y)vα(i, j)−
x+y+1∑
i=0

x+y+1−i∑
j=0

P (i, j|x, y)vα(0, 0)


= lim

α→1−

[
Γvα(x, y)− vα(0, 0)

]
.

Then, we have for x+ y ≤ b− 1,

D1Γh(x, y) = Γh(x+ 1, y)− Γh(x, y)

= lim
α→1−

[
Γvα(x+ 1, y)− vα(0, 0)

]
− lim
α→1−

[
Γvα(x, y)− vα(0, 0)

]
= lim
α→1−

[
Γvα(x+ 1, y)− Γvα(x, y)

]
= lim
α→1−

D1Γvα(x, y),

D2Γh(x, y) = Γh(x, y + 1)− Γh(x, y)

= lim
α→1−

[
Γvα(x, y + 1)− Γvα(x, y)

]
= lim
α→1−

D2Γvα(x, y),

If (3.10) holds, then from (B.4) and (B.5), for any x+ y ≤ b− 1,

D1Γvα(x, y) ≤ cG1
α
− q1, D2Γvα(x, y) ≤ cG2

α
.
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Then, since βi < βGi for both i = 1, 2, we know from Lemma B.9 that there exists α0 such that for

α ∈ [α0, 1], (3.10) holds and thus for such α we have,

D1Γh(x, y) = lim
α→1−

D1Γvα(x, y) ≤ lim
α→1−

cG1
α
− q1 = φG1 − q1, (B.19)

D2Γh(x, y) = lim
α→1−

D2Γvα(x, y) ≤ lim
α→1−

cG2
α

= φG2 . (B.20)

where the last equalities follow from (3.1), (3.7), and

lim
α→1−

cG1 = lim
α→1−

αqG1 (1− αrG2 )

(1− αrG1 )(1− αrG2 )− α2pG1 q
G
2

=
qG1 (pG2 + qG2 )

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

= φG1 ,

lim
α→1−

cG2 = lim
α→1−

α2qG1 q
G
2

(1− αrG1 )(1− αrG2 )− α2pG1 q
G
2

=
qG1 q

G
2

pG1 p
G
2 + qG1 p

G
2 + qG1 q

G
2

= φG2 .

If (a1, a2) and (a1 + 1, a2) are both feasible actions in state (x1, x2), then (B.19) implies that

(a1 + 1)φG1 + a2φ
G
2 + q1(x1 − a1 − 1) + Γh(x1 − a1 − 1, x2 − a2)

≥ a1φ
G
1 + a2φ

G
2 + q1(x1 − a1) + Γh(x1 − a1, x2 − a2),

which means the cost does not increase if we discharge a1 +1 type 1 patients as opposed to a1 type 1 patients.

Similarly, if (a1, a2) and (a1, a2 + 1) are both feasible actions in state (x1, x2), then (B.20) implies

a1φ
G
1 + (a2 + 1)φG2 + q1(x1 − a1) + Γh(x1 − a1, x2 − a2 − 1)

≥ a1φ
G
1 + a2φ

G
2 + q1(x1 − a1) + Γh(x1 − a1, x2 − a2),

which means that the cost does not increase if we discharge a2 + 1 type 2 patients as opposed to a2 type 2

patients.

Hence, the result follows.

B.2.5 Proof of Theorem 3.2

From Theorem 3.1, we know that there exists an optimal policy which is non-idling when βi < βGi . Thus,

we can restrict ourselves to the set of policies which are non-idling. Then, we can rewrite the optimality

equations (B.18) as
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(i) if x1 + x2 ≤ b− 1,

h(x1, x2) + g = q1x1 + Γh(x1, x2),

(ii) if x1 = b+ 1 and x2 = 0,

h(x1, x2) + g = φG1 + q1(x1 − 1) + Γh(x1 − 1, x2),

(iii) if x1 = 0 and x2 = b+ 1,

h(x1, x2) + g = φG2 + q1x1 + Γh(x1, x2 − 1),

(iv) if x1 + x2 = b+ 1 and x1 > 0, x2 > 0,

h(x1, x2) + g = min
{
φG1 + q1(x1 − 1) + Γh(x1 − 1, x2), φG2 + q1x1 + Γh(x1, x2 − 1)

}
.

Let δ̄n(x1) = ∆Γh(x1, n − x1) for 0 ≤ x1 ≤ n ≤ b − 1. Then, for state (x1, x2) where x1 + x2 = b + 1 and

x1 > 0, x2 > 0, we can conclude that a∗(x1, x2) = (1, 0) if and only if

δ̄b−1(x1 − 1) = ∆Γh(x1 − 1, x2 − 1) = Γh(x1, x2 − 1)− Γh(x1 − 1, x2) > φG1 − φG2 − q1. (B.21)

As in the proof of Theorem 3.1, using Theorem 6.4.2 of (Sennott 1999) we can write, for x, y ≥ 0, x+y ≤ b−1,

∆Γh(x, y) = Γh(x+ 1, y)− Γh(x, y + 1)

= lim
α→1−

[
Γvα(x+ 1, y)− Γvα(x, y + 1)

]
= lim
α→1−

∆Γvα(x, y),

Since βi < βGi for i = 1, 2, we know from Lemma (B.9) that there exists α0 < 1 such that (3.10) holds for

α ∈ [α0, 1]. As in the proof or Proposition 3.3, we can also conclude from Lemma B.6 that for x+ y ≤ b− 1

and x > 0, ∆Γvα(x, y) ≥ ∆Γvα(x− 1, y + 1) for α ∈ [α0, 1]. Then, it follows that for n = x+ y,

δ̄n(x) = ∆Γh(x, y) ≥ ∆Γh(x− 1, y + 1) = δ̄n(x− 1). (B.22)

Thus, for fixed n, δ̄n(x) is non-decreasing in x for 0 ≤ x ≤ n.
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First, suppose that there exists x1 ∈ [1, b] such that δ̄b−1(x1− 1) = ∆Γh(x1− 1, x2− 1) > φG1 −φG2 − q1,

and let

x∗ = min
{
x1 : 1 ≤ x1 ≤ b and δ̄b−1(x1 − 1) > φG1 − φG2 − q1

}
.

Then, from (B.22), we have δ̄b−1(x1−1) >
cG1 −c

G
2

α − q1 for all x1 ∈ [x∗, b], and δ̄b−1(x1−1) ≤ cG1 −c
G
2

α − q1

for all x1 ∈ [1, x∗).

Thus, from (B.21) we have a∗(x1, x2) = (1, 0) for x1 + x2 = b + 1 and x1 ≥ x∗, and a∗(x1, x2) = (0, 1)

for x1 + x2 = b+ 1 and x1 < x∗.

Now suppose that δ̄b−1(x1 − 1) = ∆Γh(x1 − 1, x2 − 1) < φG1 − φG2 − q1 for all x1 + x2 = b + 1 and

x1 > 0, x2 > 0, then let x∗ = b+ 1 and the result follows.

�

B.2.6 Proof of Theorem 3.3

For fixed k ∈ {1, 2} and α ∈ (0, 1), let

f̃k(α) =
(
cGk − ck

)
−
(
cG3−k − c3−k

)
.

From (3.7) and (3.16), cGk , ck, c
G
3−k and c3−k are all continuous functions of α, and when α = 1 by comparing

(3.7) and (3.16) with (3.1) and (3.2) we have,

cGk = φGk , ck = φk, c
G
3−k = φG3−k, c3−k = φG3−k.

Then, f̃k(α) is a continuous function of α ∈ [0, 1] and f̃k(1) =
(
φGk − φk

)
−
(
φG3−k − φ3−k

)
.

If φGk − φk < φG3−k − φ3−k, f̃k(1) is negative. Then, there must exist α′0 ∈ (0, 1) such that for any

α ∈ [α′0, 1], f̃k(α) is negative, which is equivalent to cGk − ck < cG3−k − c3−k for such α. Furthermore,

according to Lemma B.9, if βi < βGi for i = 1, 2, then there exists α0 ∈ (0, 1) such that (3.10) holds for all

α ∈ [α0, 1].

Let ᾱ = max{α0, α
′
0}. Then, if β1 < βG1 and β2 < βG2 , and (3.19) holds for k = 1, then (3.10) and

(3.17) hold for all α ∈ [ᾱ, 1]. Then, for all x1, x2 such that x1 > 0, x2 > 0 and x1 + x2 = b+ 1,

∆Γh(x1 − 1, x2 − 1) = lim
α→1−

∆Γvα(x1 − 1, x2 − 1) > lim
α→1−

cG1 − cG2
α

− q1 = φG1 − φG2 − q1,

where the inequality follows from ∆Γvα(x1 − 1, x2 − 1) >
cG1 −c

G
2

α , which has been established in the proof of

Proposition 3.4 (a). Hence, a∗(x1, x2) = (1, 0) according to (B.21) for all x1, x2 such that x1 > 0, x2 > 0

and x1 + x2 = b+ 1.
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Similarly if β1 < βG1 and β2 < βG2 , and (3.19) holds for k = 2, then (3.10) and (3.18) hold for all

α ∈ [ᾱ, 1]. Then, for all x1, x2 such that x1 > 0, x2 > 0 and x1 + x2 = b+ 1,

∆Γh(x1 − 1, x2 − 1) = lim
α→1−

∆Γvα(x1 − 1, x2 − 1) ≤ lim
α→1−

cG1 − cG2
α

− q1 = φG1 − φG2 − q1,

where the inequality follows from ∆Γvα(x1 − 1, x2 − 1) ≤ cG1 −c
G
2

α , which has been established in the proof of

Proposition 3.4 (b). Hence, a∗(x1, x2) = (0, 1) according to (B.21) for all x1, x2 such that x1 > 0, x2 > 0

and x1 + x2 = b+ 1.

�
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APPENDIX C: PROOFS OF RESULTS IN CHAPTER 4

C.1 Proof of results in Section 4.4

Proof of Lemma 4.4. Let Pπi =
[
pπij,k

]
2×2

, where pπij,k is the probability that this customer will transit

from stage j to stage k under policy πi. Then,

Pπ0 =

p11 p12

p21 p22

Pπ1 =

q11 q12

p21 p22

 and Pπ2 =

p11 p12

q21 q22

 .
Then, rπi can be obtained by solving the following linear equations, which come from the first step analysis:

rπi =

p10r1

p20r2

− pi0riei

+ αPπirπi ,

which gives us (I is a 2× 2 identity matrix)

rπi = (I − αPπi)−1

p10r1

p20r2

− pi0riei

 . (C.1)

We have,

I − αPπi =

Aπi Bπi

Cπi Dπi

⇒ (I − αPπi)−1
=

1

AπiDπi −BπiCπi

 Dπi −Bπi

−Cπi Aπi

 ,
where we have

Aπ0 = Aπ2 = 1− αp11, B
π0 = Bπ2 = −αp12, C

π0 = Cπ1 = −αp21, D
π0 = Dπ1 = 1− αp22,

and Aπ1 = 1 − αq11, B
π1 = −αq12, C

π2 = −αq21, D
π2 = 1 − αq22. For notation simplicity, we use

A, B, C, D to denote the respective quantities related to pij , and A′, B′, C ′ D′ to denote the respective

quantities related to qij . Then, we have
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rπ0 =
1

AD −BC

 D −B

−C A

p10R1

p20R2

 ,
rπ1 =

1

A′D −B′C

 D −B′

−C A′

 0

p20R2

 ,
rπ2 =

1

AD′ −BC ′

 D′ −B

−C ′ A

p10R1

0

 .
Take the difference of rπ0 and rπi for i ∈ {1, 2}, we have

rπ0 − rπ1 =
1

AD −BC

 D −B

−C A

p10R1

p20R2

− 1

A′D −B′C

 D −B′

−C A′

 0

p20R2

 ,
=

p10R1

AD −BC

 D

−C

+
p20R2(AB′ −A′B)

(AD −BC)(A′D −B′C)

 D

−C


=
p10R1(A′D −B′C) + p20R2(AB′ −A′B)

(AD −BC)(A′D −B′C)

 D

−C

 .
We have D = 1 − αp22 > 0, C = −αp21 ≤ 0 and AD − BC > 0, A′D − B′C > 0. Hence, rπ0 ≥ rπ1 if and

only if

p10R1(A′D −B′C) + p20R2(AB′ −A′B) ≥ 0. (C.2)

Plugging the expressions for A,B,C,D and A′, B′, C ′, D′, we get

p10R1((1− αq11)(1− αp22)α2q12p21) ≥ p20R2(αq12(1− αp11)− αp12(1− αq11)).
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Similarly, we compare rπ0 and rπ2 ,

rπ0 − rπ2 =
1

AD −BC

 D −B

−C A

p10R1

p20R2

− 1

AD′ −BC ′

 D′ −B

−C ′ A

p10R1

0


=

p20R2

AD −BC

−B
A

+
p10R1

(AD −BC)(AD′ −BC ′)

B(−DC ′ +D′C)

A(−CD′ + C ′D)


=
p10R1(C ′D − CD′) + p20R2(AD′ −BC ′)

(AD −BC)(AD′ −BC ′)

−B
A

 .
Then, we have rπ0 ≥ rπ2 if and only if

p10R1(C ′D − CD′) + p20R2(AD′ −BC ′) ≥ 0, (C.3)

which is equivalent to

p20R2((1− αq22)(1− αp11)− α2q21p12) ≥ p10R1(αq21(1− αp22)− αp21(1− αq22)).

Proof of Lemma 4.5. Taking the difference of R̄ and R̄Q, we have,

R̄− R̄Q =

1− αq11 −αq12

−αq21 1− αq22

 rπ0 =
1

AD −BC

A′ B′

C ′ D′

 D −B

−C A

p10R1

p20R2


=

1

AD −BC

p10R1(A′D −B′C) + p20R2(AB′ −A′B)

p10R1(C ′D − CD′) + p20R2(AD′ −BC ′)

 ,
where A,B,C,D and A′, B′, C ′, D′ are as defined in the proof of Lemma 4.4. Then, the result follows from

(C.2) and (C.3).

Lemma C.1. For i = 1, 2, DiVn(x) ≥ 0 for all n ≥ 0, and DiVα(x) ≥ 0.

Proof of Lemma C.1: We prove by induction. When n = 0, the inequality holds since DiV0(x) = 0 for

all x. Suppose for some n ≥ 0, the inequality holds, i.e., DiVn(x) ≥ 0 for both i = 1, 2.

Suppose a∗ is an optimal action at state x at time n+ 1, then

Vn+1(x) = Ta∗Vn(x) = R(x,a∗) + α
∑
y∈S

Pa∗(x,y)Vn(y).
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Note that A(x) ⊂ A(x + ei) for i = 1, 2. Then, a∗ ∈ A(x + ei). Hence, from (4.5) we have,

Vn+1(x + ei) ≥ Ta∗Vn(x + ei) = R(x + ei,a
∗) + α

∑
y∈S

Pa∗(x + ei,y)Vn(y).

Thus,

DiVn+1(x) ≥ R(x + ei,a
∗)−R(x,a∗) + α

∑
y∈S

Pa∗(x + ei,y)Vn(y)−
∑
y∈S

Pa∗(x,y)Vn(y)


By the definition of the transition probability, we have for any a ∈ A(x),

∑
y∈S

Pa(x + ei,y)Vn(y) =
∑
y∈S

Pa(x,y)

2∑
j=0

qijVn(y + ej).

The customer combination x + ei can be divided into two independent groups, one with combination x and

the other with only a stage i customer, and the action a is applied to the group with combination x. Then,

the above equation follows from the fact that the transitions of the two groups are independent of each other.

Besides, R(x + ei,a
∗)−R(x,a∗) = 0. Then,

DiVn+1(x) ≥ α

∑
y∈S

Pa(x,y)

2∑
j=0

qij (Vn(y + ej)− Vn(y))


= α

∑
y∈S

Pa(x,y)

2∑
j=1

qijDjVn(y)

 ≥ 0,

where the last inequality follows from the induction hypothesis.

From Lemma 4.3, we have Vα(x) = limn→∞ Vn(x), then

DiVα(x) = Vα(x + ei)− Vα(x) = lim
n→∞

[Vn(x + ei)− Vn(x)] = lim
n→∞

DiVn(x) ≥ 0.

Lemma C.2. For i = 1, 2, DiVn(x) ≤ R̄i for all n ≥ 0, and DiVα(x) ≤ R̄i.

Proof of Lemma C.2: We prove by induction. When n = 0, the inequality holds since DiV0(x) = 0 < R̄i

for all x. Suppose for some n ≥ 0, the inequality holds, i.e., DiVn(x) < R̄i for both i = 1, 2 and all x ∈ S.

Suppose a∗ = (a∗1, a
∗
2) is an optimal action at state x + ei at time n+ 1, then

Vn+1(x + ei) = Ta∗Vn(x + ei) = R(x + ei,a
∗) + α

∑
y∈S

Pa∗(x + ei,y)Vn(y).
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If a∗i ≥ 1, then a− ei ∈ A(x), and we have

Vn+1(x) ≥ Ta∗−ei
Vn(x) = R(x,a∗ − ei) + α

∑
y∈S

Pa∗−ei
(x,y)Vn(y).

Then,

DiVn+1(x) ≤ R(x + ei,a
∗)−R(x,a∗ − ei)

+ α

∑
y∈S

Pa∗(x + ei,y)Vn(y)−
∑
y∈S

Pa∗−ei
(x,y)Vn(y)


= pi0Ri + α

∑
y∈S

Pa∗−ei
(x,y)

2∑
j=1

pijDjVn(y)


< pi0Ri + α

∑
y∈S

Pa∗−ei
(x,y)

2∑
j=1

pijR̄j

 = R̄i.

If a∗i = 0, then a ∈ A(x), and Vn+1(x) ≥ Ta∗Vn(x). Then,

DiVn+1(x) ≤ Ta∗Vn(x + ei)− Ta∗Vn(x)

= α

∑
y∈S

Pa∗(x,y)

2∑
j=1

qijDjVn(y)

 < α

2∑
j=1

qijR̄j = R̄Qi ≤ R̄i,

where the first inequality follows from Vn+1(x) ≥ Ta∗Vn(x), the second from the induction hypothesis and

the last from Assumption 4.2. This finishes the induction proof.

From Lemma 4.3, we have Vα(x) = limn→∞ Vn(x), then

DiVα(x) = Vα(x + ei)− Vα(x) = lim
n→∞

[Vn(x + ei)− Vn(x)] = lim
n→∞

DiVn(x) < R̄i.

Proof of Proposition 4.1 . Suppose a + ei ∈ A(x), which indicates x ≥ ei and a ∈ A(x), then,

Ta+ei
Vα(x)− TaVα(x) = pi0Ri + α

∑
y∈S

Pa+ei
(x,y)Vα(y)−

∑
y∈S

Pa(x,y)Vα(y)


= pi0Ri + α

∑
y∈S

Pa(x− ei,y)

2∑
j=1

(pij − qij)DjVα(y). (C.4)
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(a) If pij ≥ qij for j = 1, 2, then

Ta+ei
Vα(x)− TaVα(x) ≥ pi0Ri > 0,

since DjVα(y) ≥ 0 from Lemma C.1.

(b) If pij < qij for j = 1, 2, then

Ta+ei
Vα(x)− TaVα(x) > pi0Ri + α

∑
y∈S

Pa(x− ei,y)

2∑
j=1

(pij − qij)R̄j = R̄i − R̄Qi ≥ 0,

which follows from Lemma C.1 and Assumption 4.2.

(c) If pi1 ≥ qi1, pi2 < qi2 and R̄i − R̄Qi ≥ α(pi1 − qi1)R̄1, then

Ta+ei
Vα(x)− TaVα(x) > pi0Ri + α(pi2 − qi2)R̄2 = R̄i − R̄Qi − α(pi1 − qi1)R̄1 ≥ 0.

(d) If pi1 < qi1, pi2 ≥ qi2 and R̄i − R̄Qi ≥ α(pi2 − qi2)R̄2, then

Ta+ei
Vα(x)− TaVα(x) > pi0Ri + α(pi1 − qi1)R̄1 = R̄i − R̄Qi − α(pi2 − qi2)R̄2 ≥ 0.

Hence, Ta+ei
Vα(x) > TaVα(x) if Assumption 4.3(i) holds for i ∈ {1, 2} and a + ei ∈ A(x), which means

serving one more stage i customer if available is always better. Hence, serving type i customers is better

than idling the servers.

Proof of Proposition 4.2: If a + e1 ∈ A(x) and a + e2 ∈ A(x), then x ≥ e1 + e2 and a ∈

A(x− e1 − e2). Since all customers are changing types independently, we have

Ta+e1Vα(x)− Ta+e2Vα(x)

= p10R1 − p20R2 + α
∑
y∈S

Pa(x− e1 − e2,y)

 2∑
j=0

2∑
k=0

(p1jq2k − q1jp2k)Vα(y + ej + ek)

 ,

Since p10R1 − p20R2 ≥ 0, it is sufficient to show that under these conditions, for any y ∈ S,

2∑
j=0

2∑
k=0

(p1jq2k − q1jp2k)Vα(y + ej + ek) ≥ 0.
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(i) Assume p1jq2k − q1jp2k ≥ 0, and p1j − q1j + p10q2j − q10p2j ≥ 0 for all j, k ∈ {1, 2}.

2∑
j=0

2∑
k=0

(p1jq2k − q1jp2k)Vα(y + ej + ek) =

2∑
j=1

2∑
k=1

(p1jq2k − q1jp2k)Vα(y + ej + ek)

+ (p10q20 − q10p20)Vα(y) +

2∑
j=1

(p1jq20 − q1jp20)Vα(y + ej)

+

2∑
k=1

(p10q2k − q10p2k)Vα(y + ek).

We have,

p10q20 − q10p20 = p10(1−
2∑
k=1

q2k)− q10(1−
2∑
k=1

p2k) = p10 − q10 −
2∑
k=1

(p10q2k − q10p2k)

=(1−
2∑
j=1

p1j)− (1−
2∑
j=1

q1j)−
2∑
k=1

(p10q2k − q10p2k)

=−
2∑
j=1

(p1j − q1j)−
2∑
k=1

(p10q2k − q10p2k),

and for j = 1, 2,

p1jq20 − q1jp20 = p1j(1−
2∑
k=1

q2k)− q1j(1−
2∑
k=1

p2k) = p1j − q1j −
2∑
k=1

(p1jq2k − q1jp2k).
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Then,

2∑
j=0

2∑
k=0

(p1jq2k − q1jp2k)Vα(y + ej + ek)

=

2∑
j=1

2∑
k=1

(p1jq2k − q1jp2k)Vα(y + ej + ek)

−

 2∑
j=1

(p1j − q1j) +

2∑
k=1

(p10q2k − q10p2k)

Vα(y)

+

2∑
j=1

[
(p1j − q1j)−

2∑
k=1

(p1jq2k − q1jp2k)

]
Vα(y + ej)

+

2∑
k=1

(p10q2k − q10p2k)Vα(y + ek)

=

2∑
j=1

2∑
k=1

(p1jq2k − q1jp2k)DkVα(y + ej)

+

2∑
j=1

(p1j − q1j)DjVα(y) +

2∑
k=1

(p10q2k − q10p2k)DkVα(y).

From the conditions in this part, and the fact that DjVα(y) ≥ 0 for j ∈ {1, 2} and y ∈ S, we have

Ta+e1Vα(x) ≥ Ta+e2Vα(x).
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(ii) Assume p1j ≥ q1j and p2j ≤ q2j for all j ∈ {1, 2}. Let p1j = q1j + aj and q2j = p2j + bj for j = 1, 2,

where aj , bj are non-negative. Then, q10 = p10 +
∑2
j=1 aj and p20 = q20 +

∑2
k=1 bk.

2∑
j=0

2∑
k=0

(p1jq2k − q1jp2k)Vα(y + ej + ek)

=

2∑
j=1

2∑
k=1

((aj + q1j)(p2k + bk)− q1jp2k)Vα(y + ej + ek) (C.5)

+

p10q20 − (

2∑
j=1

aj + p10)(

2∑
k=1

bk + q20)

Vα(y)

+

2∑
j=1

(
(aj + q1j)q20 − q1j(q20 +

2∑
k=1

bk)

)
Vα(y + ej) (C.6)

+

2∑
k=1

p10(bk + p2k)− (

2∑
j=1

aj + p10)p2k

Vα(y + ek)

=

2∑
j=1

2∑
k=1

(ajbk + ajp2k + bkq1j)Vα(y + ej + ek) (C.7)

−

 2∑
j=1

ajq20 +

2∑
k=1

bkp10 +

2∑
j=1

2∑
k=1

ajbk

Vα(y)

+

2∑
j=1

(
ajq20 −

2∑
k=1

bkq1j

)
Vα(y + ej) +

2∑
k=1

bkp10 −
2∑
j=1

ajp2k

Vα(y + ek)

=

2∑
j=1

2∑
k=1

[
ajbk (DjVα(y + ek) +DkVα(y)) + ajp2kDjVα(y + ek) + bkq1jDkVα(y + ej)

]

+

2∑
j=1

ajq20DjVα(y) +

2∑
k=1

bkp10DkVα(y) ≥ 0 (C.8)

since DjVα(x) ≥ 0 and DkVα(x) ≥ 0 for all x ∈ S and j, k ∈ {1, 2}.

Then, Ta+e1Vα(x) ≥ Ta+e2Vα(x).

Proof of results in Section 4.6

Before proving Propositions 4.6 and 4.7, we first show the following Lemma.

Lemma C.3. Assume µ1R1 ≥ µ2R2 and β1 ≥ β2 for Model II.

(i) If µ1 ≤ µ2, then for all x ∈ S,

D1Vα(x)−D2Vα(x) ≤ R̄1 − R̄2, and D1h(x)−D2h(x) ≤ R1 −R2.
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(ii) If µ1 ≥ µ2, then for all x ∈ S

D1Vα(x)−D2Vα(x) ≤ µ1R1 − µ2R2

1− α(1− µ1)
, and D1h(x)−D2h(x) ≤ µ1R1 − µ2R2

µ1
.

Proof of Lemma C.3(i). For Model II, we have

R̄i =
µiRi

1− α+ αµi
, and R̂i = lim

α→1
R̄i = Ri.

Since µ1R1 ≥ µ2R2 and µ1 ≤ µ2, and then R1 ≥ R2, and

R̄1 − R̄2 =
(1− α)(µ1R1 − µ2R2) + αµ1µ2(R1 −R2)

(1− α+ αµ1)(1− α+ αµ2)
≥ 0.

We establish Part (i) of Lemma C.3 by showing that D1Vn(x) − D2Vn(x) ≤ R̄1 − R̄2 for all n ≥ 0 where

Vn(x) are defined as in Lemma 4.3 with V0(x) = 0 for all x ∈ S.

For n = 0, we have D1V0(x) − D2V0(x) = 0 ≤ R̄1 − R̄2. Suppose D1Vn(x) − D2Vn(x) ≤ R̄1 − R̄2 for

some n ≥ 0. Then,

D1Vn+1(x)−D2Vn+1(x) = Vn+1(x + e1)− Vn+1(x + e2)

= max
a
{TaVn(x + e1)} −max

a
{TaVn(x + e2)}.

Suppose a∗ = (a∗1, a
∗
2) = arg maxa{TaVn(x + e1)} is an optimal action at state x + e1, i.e.,

maxa{TaVn+1(x + e1)} = Ta∗Vn(x + e1).

If a∗1 ≤ x1, then a∗ is a feasible action at state x + e2. Then, maxa{TaVn+1(x + e2)} ≥ Ta∗Vn(x + e2),

and hence,

D1Vn+1(x)−D2Vn+1(x) ≤ Ta∗Vn(x + e1)− Ta∗Vn(x + e2),

152



where

Ta∗Vn(x + e1)− Ta∗Vn(x + e2)

=α
∑
y∈S

Pa∗(x,y) [β1Vn(y) + (1− β1)Vn(y + e1)− β2Vn(y)− (1− β2)Vn(y + e2)]

=α
∑
y∈S

Pa∗(x,y) [(1− β1)D1Vn(y)− (1− β2)D2Vn(y)]

=α
∑
y∈S

Pa∗(x,y) [(1− β1)[D1Vn(y)−D2Vn(y)]− (β1 − β2)D2Vn(y)]

≤α(1− β1)[R̄1 − R̄2] ≤ R̄1 − R̄2,

where the first inequality follows from D1Vn(y)−D2Vn(y) ≤ R̄1 − R̄2, D2Vn(y) ≥ 0 and β2 ≤ β1 ≤ 1, and

the second inequality follows from 0 ≤ α, β1 ≤ 1.

If a∗1 = x1 + 1, then a∗ − e1 + e2 is a feasible action at state x + e2. We have

D1Vn+1(x)−D2Vn+1(x) ≤ Ta∗Vn(x + e1)− Ta∗−e1+e2Vn(x + e2),

where

Ta∗Vn(x + e1)− Ta∗−e1+e2Vn(x + e2) = µ1R1 − µ2R2

+ α
∑
y∈S

Pa∗−e1(x,y) [µ1Vn(y) + (1− µ1)Vn(y + e1)− µ2Vn(y)− (1− µ2)Vn(y + e2)]

=µ1R1 − µ2R2 + α
∑
y∈S

Pa∗−e1(x,y) [(1− µ1)D1Vn(y)− (1− µ2)D2Vn(y)] .

We have

(1− µ1)D1Vn(y)− (1− µ2)D2Vn(y) = (1− µ1)(D1Vn(y)−D2Vn(y)) + (µ2 − µ1)D2Vn(y)

≤ (1− µ1)(R̄1 − R̄2) + (µ2 − µ1)R̄2 = (1− µ1)R̄1 − (1− µ2)R̄2,

where the inequality follows from D1Vn(y)−D2Vn(y) ≤ R̄1 − R̄2, D2Vn(y) ≤ R̄2 and µ1 ≤ µ2 ≤ 1. Then,

Ta∗Vn(x + e1)− Ta∗−e1+e2Vn(x + e2)

≤ µ1R1 − µ2R2 + α
[
(1− µ1)R̄1 − (1− µ2)R̄2

]
= R̄1 − R̄2.

Hence, D1Vn+1(x)−D2Vn+1(x) ≤ R̄1 − R̄2 for all n ≥ 0.
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From Lemma 4.3, we have Vα(x) = limn→∞ Vn(x), and then,

D1Vα(x)−D2Vα(x) = Vα(x + e1)− Vα(x + e2)

= lim
n→∞

[Vn(x + e1)− Vn(x + e2)] = lim
n→∞

[D1Vn(x)−D2Vn(x)] ≤ R̄1 − R̄2.

From Lemma 4.2 we have h(x) = limα→1 Vα(x)− Vα(e0), and then,

D1h(x)−D2h(x) = h(x + e1)− h(x + e2) = lim
α→1

[Vα(x + e1)− Vα(x + e2)]

= lim
α→1

[D1Vα(x)−D2Vα(x)] ≤ lim
α→1

[
R̄1 − R̄2

]
= R1 −R2.

Proof of Lemma C.3(ii): Similar as Part (i), we first show by induction that for this case D1Vn(x) −

D2Vn(x) ≤ µ1R1−µ2R2

1−α(1−µ1) for all x ∈ S. For n = 0, we have D1V0(x) − D2V0(x) = 0 ≤ µ1R1−µ2R2

1−α(1−µ1) . Suppose

D1Vn(x)−D2Vn(x) ≤ µ1R1−µ2R2

1−α(1−µ1) for some n ≥ 0. Let a∗ = (a∗1, a
∗
2) = arg maxa{TaVn(x + e1)}. If a∗1 ≤ x1,

we have

D1Vn+1(x)−D2Vn+1(x) ≤Ta∗Vn(x + e1)− Ta∗Vn(x + e2),

=α
∑
y∈S

Pa∗(x,y) [(1− β1(D1Vn(y)−D2Vn(y))(β1 − β2)D2Vn(y)]

≤α(1− β1)

[
µ1R1 − µ2R2

1− α(1− µ1)

]
≤ µ1R1 − µ2R2

1− α(1− µ1)
,

where the inequality follows from D1Vn(y)−D2Vn(y) ≤ µ1R1−µ2R2

1−α(1−µ1) from induction hypothesis.

If a∗1 = x1 + 1, then

D1Vn+1(x)−D2Vn+1(x) ≤ Ta∗Vn(x + e1)− Ta∗−e1+e2Vn(x + e2),

= µ1R1 − µ2R2 + α
∑
y∈S

Pa∗−e1(x,y) [(1− µ1)D1Vn(y)− (1− µ2)D2Vn(y)] .

We have

(1− µ1)D1Vn(y)− (1− µ2)D2Vn(y)

= (1− µ1)(D1Vn(y)−D2Vn(y)) + (µ2 − µ1)D2Vn(y) ≤ (1− µ1)

[
µ1R1 − µ2R2

1− α(1− µ1)

]
,
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where the inequality follows from D1Vn(y)−D2Vn(y) ≤ µ1R1−µ2R2

1−α(1−µ1) from induction hypothesis, D2Vn(y) ≥ 0

from Lemma C.1, and µ2 ≤ µ1 ≤ 1. Then,

D1Vn+1(x)−D2Vn+1(x) ≤ µ1R1 − µ2R2 + α(1− µ1)

[
µ1R1 − µ2R2

1− α(1− µ1)

]
=
µ1R1 − µ2R2

1− α(1− µ1)
.

Hence, D1Vn(x)−D2Vn(x) ≤ µ1R1−µ2R2

1−α(1−µ1) for all n ≥ 0.

From Lemma 4.3, we have Vα(x) = limn→∞ Vn(x), and then,

D1Vα(x)−D2Vα(x) = lim
n→∞

[D1Vn(x)−D2Vn(x)] ≤ µ1R1 − µ2R2

1− α(1− µ1)
.

From Lemma 4.2 we have h(x) = limα→1 [Vα(x)− Vα(e0)], and then

D1h(x)−D2h(x) = lim
α→1

[D1Vα(x)−D2Vα(x)] ≤ lim
α→1

µ1R1 − µ2R2

1− α(1− µ1)
=
µ1R1 − µ2R2

µ1
.

Proof of Proposition 4.6. We assume µ2 ≥ µ1 ≥ β1 ≥ β2 and β1R1 ≥ (β1 + µ2 − µ1)R2. Then, µ1R1 −

µ2R2 = µ1(β1+µ2−µ1)
β1

−µ2R2 = µ1(β1+µ2−µ1)−µ2β1

β1
R2 = (µ1−β1)(µ2−µ1)

β1
R2 ≥ 0. From Lemma C.3(i), we have

D1Vα(y)−D2Vα(y) ≤ R̄1 − R̄2 and D1h(x)−D2h(x) ≤ R1 −R2.

If a + e1 ∈ A(x), a + e2 ∈ A(x), then, x ≥ e1 + e2 and a ∈ A(x− e1 − e2). Then,

Ta+e1Vα(x)− Ta+e2Vα(x) = µ1R1 − µ2R2 + α
∑
y∈S

Pa(x− e1 − e2,y)G(y),

where

G(y) = [(1− µ1)(1− β2)− (1− µ2)(1− β1)]Vα(y + e1 + e2)

+ [(1− µ1)β2 − (1− β1)µ2]Vα(y + e1)

+ [µ1(1− β2)− β1(1− µ2)]Vα(y + e2) + [µ1β2 − β1µ2]Vα(y)

= [(1− µ1)(1− β2)− (1− µ2)(1− β1)]D2Vα(y + e1)

+ (β1 − µ1) [D1Vα(y)−D2Vα(y)]

+ [β1µ2 − µ1β2]D2Vα(y) ≥ (β1 − µ1)(R̄1 − R̄2),
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since (1− µ1)(1− β2)− (1− µ2)(1− β1) ≥ 0, β1 − µ1 ≤ 0, β1µ2 − µ1β2 ≥ 0, D2Vα(y) ≥ 0 and D1Vα(y)−

D2Vα(y) ≤ R̄1 − R̄2. Hence,

Ta+e1Vα(x)− Ta+e2Vα(x) ≥ µ1R1 − µ2R2 + α(β1 − µ1)(R̄1 − R̄2)

=µ1R1 − µ2R2 + α(β1 − µ1)

[
(1− α)(µ1R1 − µ2R2) + αµ1µ2(R1 −R2)

(1− α+ αµ1)(1− α+ αµ2)

]

We write the above expression in the form of one fraction, where the denominator (1−α+αµ1)(1−α+αµ2)

is positive, and then we focus on the numerator, which equals to

[(1− α+ αµ1)(1− α+ αµ2) + α(β1 − µ1)(1− α)] (µ1R1 − µ2R2)

+ α2(β1 − µ1)µ1µ2(R1 −R2)

=
[
(1− α)2 + α2µ1µ2 + α(1− α)(µ2 + β1)

]
(µ1R1 − µ2R2)

+ α2(β1 − µ1)µ1µ2(R1 −R2)

=
[
(1− α)2 + α(1− α)(µ2 + β1)

]
(µ1R1 − µ2R2) + α2µ1µ2 [β1R1 − (β1 + µ2 − µ1)R2] ≥ 0.

Similarly, since D1h(y)−D2h(y) ≤ R1 −R2,

Ha+e1h(x)−Ha+e2h(x) =µ1R1 − µ2R2

+
∑
y∈S

Pa(x− e1 − e2,y)
{

(β1 − µ1) [D1h(y)−D2h(y)]

+ [(1− µ1)(1− β2)− (1− µ2)(1− β1)]D2h(y + e1)

+ [β1µ2 − µ1β2]D2h(y)
}

≥µ1R1 − µ2R2 + (β1 − µ1)(R1 −R2) ≥ 0.

Proof of Proposition 4.7. We assume µ1R1 ≥ µ2R2, β1

β2
≥ µ1

µ2
≥ 1 and 1 ≤ 1−β1

1−µ1
≤ 1−β2

1−µ2
. Then, from

Lemma C.3(ii), we have for all x ∈ S,

D1Vα(x)−D2Vα(x) ≤ µ1R1 − µ2R2

1− α(1− µ1)
, and D1h(x)−D2h(x) ≤ µ1R1 − µ2R2

µ1
.

Follow the same arguments in the proof of Proposition 4.6, we have for a + e1 ∈ A(x), a + e2 ∈ A(x),

Ta+e1Vα(x)− Ta+e2Vα(x) = µ1R1 − µ2R2 + α
∑
y∈S

Pa(x− e1 − e2,y)G(y),
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where

G(y) = [(1− µ1)(1− β2)− (1− µ2)(1− β1)]D2Vα(y + e1)

+ (β1 − µ1) [D1Vα(y)−D2Vα(y)] + [β1µ2 − µ1β2]D2Vα(y)

≥(β1 − µ1)

[
µ1R1 − µ2R2

1− α(1− µ1)

]
,

and hence,

Ta+e1Vα(x)− Ta+e2Vα(x) ≥ µ1R1 − µ2R2 + α(β1 − µ1)

[
µ1R1 − µ2R2

1− α(1− µ1)

]
=(µ1R1 − µ2R2)

[
1− α(1− µ1) + α(β1 − µ1)

1− α(1− µ1)

]
= (µ1R1 − µ2R2)

[
1− α(1− β1)

1− α(1− µ1)

]
≥ 0,

and

Ha+e1h(x)−Ha+e2h(x) ≥ µ1R1 − µ2R2 + (β1 − µ1)

[
µ1R1 − µ2R2

µ1

]
=
β1(µ1R1 − µ2R2)

µ1
≥ 0.

Proof of Corollary 4.5. Let µi = µ̃i + βi − µ̃iβi and Ri = µ̃i
µi
R̃i for i = 1, 2. Then, we have

µ1β2 − µ2β1 = µ̃1(1− β1)β2 − µ̃2(1− β2)β1 ≤ 0⇔ β1

β2
≥ µ1

µ2
,

(µ2 − β1)(1− β2) = µ̃2(1− β1)(1− β2) ≥ µ̃1(1− β1)(1− β2) = (µ1 − β2)(1− β1) ≥ 0,

µ1R1 − µ2R2 =µ̃1R̃1 − µ̃2R̃2

≥max

{
0, µ̃1(1− β1)

[
µ̃1R̃1

µ̃1 + (1− µ̃1)β1
− µ̃2R̃2

µ̃2 + (1− µ̃2)β2

]}

= max {0, (µ1 − β1) [R1 −R2]} .
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Örmeci, E.L., A. Burnetas, J. van der Wal. 2001. Admission policies for a two class loss system. Stochastic
Models 17(4) 513–540.

Porteus, E.L. 2002. Foundations of Stochastic Inventory Theory . Stanford University Press.

Puterman, M.L. 2005. Markov Decision Processes: Discrete Stochastic Dynamic Programming . John Wiley
& Sons.

Rocker, G., D. Cook, P. Sjokvist, B. Weaver, S. Finfer, E. McDonald, J. Marshall, A. Kirby, M. Levy,
P. Dodek, et al. 2004. Clinician predictions of intensive care unit mortality. Critical Care Medicine
32(5) 1149–1154.

Roman, Steven. 1980. The formula of Faa di Bruno. American Mathematical Monthly 805–809.

Ross, Sheldon M. 1983. Introduction to Stochastic Dynamic Programming . Academic press.

Rothkopf, M. H., S. A. Smith. 1984. There are no undiscovered priority index sequencing rules for minimizing
total delay costs. Operations Research 32(2) 451–456.

Sennott, L.I. 1999. Stochastic Dynamic Programming and the Control of Queueing Systems. John Wiley &
Sons.

Shaked, M., J.G. Shanthikumar. 2007. Stochastic Orders. Springer.

Shmueli, A., C.L. Sprung. 2005. Assessing the in-hospital survival benefits of intensive care. International
Journal of Technology Assessment in Health Care 21(01) 66–72.

160



Shmueli, A., C.L. Sprung, E.H. Kaplan. 2003. Optimizing admissions to an intensive care unit. Health Care
Management Science 6(3) 131–136.

Sinuff, T., K. Kahnamoui, D.J. Cook, J.M. Luce, M.M. Levy, et al. 2004. Rationing critical care beds: A
systematic review. Critical Care Medicine 32(7) 1588–1597.

Strand, K., H. Flaatten. 2008. Severity scoring in the ICU: a review. Acta Anaesthesiologica Scandinavica
52(4) 467–478.
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