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Background: Alcoholic Hepatitis (AH) is the most severe form of Alcoholic Liver Disease 

(ALD) and current therapies are not fully effective. Targeted therapies are urgently needed. 

AKR1B10 was recently shown to be overexpressed in patients with AH. 

Objectives: To analyze the expression of AKR1B10, an aldose reductase, through a translational 

approach in order to better understand the potential for aldose reductase as a novel target of 

therapy in AH. 

Methods: RNA was extracted from human tissue samples from patients with various liver 

diseases, animal models of fibrosis and alcoholic liver disease, and cultured Hepatic Stellate Cell 

(HSC) lines stimulated with proinflammatory, profibrogenic, and AKR1B10 treatments, and the 

samples were quantified using qPCR analysis. 

Results: Human samples showed nearly a 100-fold increase of AKR1B10 expression in patients 

with AH. An animal model of liver fibrosis showed a small increase in Akr1b8 (AKR1B10 mouse 

analogue) expression. HSCs did not show any noticeable increase in expression of AKR1B10 

regardless of treatment, and did not show any noticeable increase in expression of 

proinflammatory or profibrogenic genes when treated with AKR1B10. 



Conclusion: The increased expression of AKR1B10 and its mouse analogue, while present in 

patients with AH and fibrotic mice, respectively, may not be mediated by HSCs. Further studies 

are needed to better understand location and nature of overexpression. 



INTRODUCTION 

Alcoholic Liver Disease (ALD) is a major etiology of end-stage liver disease, accounting for 

40% of mortality from cirrhosis
1
 and a higher annual mortality than for hepatitis C virus (HCV)

2
. 

The natural history of ALD includes the development of steatosis in 80-90% of heavy drinkers, 

followed by development of more severe and symptomatic forms of ALD in 20-40% of patients 

with steatosis
3
. Alcoholic Hepatitis (AH) is a severe acute-on-chronic disease that is 

characterized by an inflammation of the liver that results in liver injury, and severe cases have a 

mortality rate of approximately 30-50%
4
. Unfortunately, the pathogenesis of this disease is not 

well characterized. The most effective therapy for patients with AH is corticosteroid therapy, 

which was initially developed over 40 years ago
3-6

, and while it has shown to be effective in 

increasing the survival of some patients with AH, not all patients respond well and the mortality 

rate remains high
4,7

. The development of new therapeutic strategies has been made difficult due 

to poor knowledge of involved mechanisms and lack of appropriate animal models
8
. It is thus 

important to look for new targets of therapy. 

Several promising new targets have been identified, including pro-inflammatory 

cytokines, chemokines and their receptors, anti-inflammatory molecules
8,9

, and tumor necrosis 

factors
10

. Interestingly, a transcriptome analysis of patients with AH, previously performed in 

our group, yielded a 432-fold overexpression of aldo-keto Reductase Family 1, member B10 

(AKR1B10)
10

, known as aldose reductase, which does not have any known role in AH. 

AKR1B10 is related to the aldose reductase AKR1B1, which reduces glucose to sorbitol as part 

of the Polyol pathway and is expressed ubiquitously in human tissues
11

. The Polyol pathway is 

involved in secondary diabetic complications such as retinopathy
12

, neuropathy
13

, and 

nephropathy
14

. AKR1B10 has a similar function, but is primarily expressed in the small intestine 



and colon with little expression in the liver under normal conditions and metabolizes retinals, 

carbonyls, and several lipid substrates, which may play a crucial role in promoting 

carcinogenesis
11,15

. Additionally, aldose reductase has been shown to be highly expressed in 

liver
16

, colon
17

, and prostate cancer
18

, among others
19

. Consequently, the overexpression of 

AKR1B10 in AH patients may play an important role in ALD disease progression and the 

mortality and morbidity associated with AH. It is unknown through which hepatic cell the 

AKR1B10 may be playing a role in AH and the nature of the pathway of expression in patients 

with AH.  

In chronic liver injury, Hepatic Stellate Cells (HSCs) differentiate from a fat-storing 

phenotype to a myofibroblast-like phenotype that secretes fibroblastic cell markers and 

extracellular matrix that is indicated in fibrosis and cirrhosis
20

. Patients with ALD generally have 

activated HSCs. Alcohol consumption enhances gut permeability, leading to a translocation of 

bacterial derived liposaccharide (LPS) which primarily stimulates Kupffer cells (and to a certain 

extent, HSCs) in the liver, causing inflammation and fibrogenesis
8,21

. Platelet-Derived Growth 

Factor (PDGF), produced by Kupffer cells and Biliary cells, is the main mitogen for activated 

HSCs, directly promoting fibrogenesis
22

. Stimulation of HSCs by the proinflammatory LPS and 

LPS-derived cytokines from Kupffer cells, and profibrogenic PDGF lead to differential gene 

expression in HSCs for various functions related to fibrosis. It is therefore feasible that an 

overexpression of AKR1B10 would be seen in HSCs, one of the primary damage response cells, 

and that AKR1B10 expression would be differentially mediated by LPS and PDGF. 

In the present study, we explored the potential role of AKR1B10 as a therapeutic target 

for patients with AH. We investigated the expression of AKR1B10 in human samples, an animal 



model, and cell culture of HSC cell lines, and we sought to better characterize the location and 

pathway of the overexpression of AKR1B10 in order to lead to novel therapies for AH. 

METHODS 

Patients with Alcoholic Hepatitis (AH) and selection of normal control livers. 

The data that was collected was derived from the following methods performed by the 

laboratory. Patients admitted to the Liver Unit, Hospital Clínic of Barcelona with clinical, 

analytical and histological features of AH from 2007 to 2010 were prospectively included in the 

study
7,23,24

. The inclusion criteria have been described in a similar study
10

. All patients had 

histological diagnosis of AH (n = 34). Patients with hepatocellular carcinoma or any other 

potential cause of liver disease were excluded from the study. Liver biopsy was obtained using a 

transjugular approach. As controls, fragments of normal liver tissue (n = 6) were obtained from 

optimal cadaveric liver donors (n = 3) or resection of liver metastases (n = 3) as described in 

detail in a similar study.
10

 All liver specimens were analyzed by an expert pathologist and a part 

of the biopsy was submerged into a RNA stabilization solution (RNAlater, Ambion, Austin, 

Texas, USA). The protocol was approved by the Ethics Committee of the Hospital Clinic and all 

patients gave informed consent.  

Mouse models 

The data that was collected was derived from the following methods performed by the 

laboratory. Hepatic fibrosis was induced in male C57BL/6J mice (Bar Harbor, ME, USA) 

following administration of carbon tetrachloride (CCl4) (Sigma-Aldrich, St Louis, MO, USA) 

injected intraperitoneally at a dose of 0.5 ml/kg, 12.5%  diluted in olive oil, twice a week for four 

weeks, CCl4 (Sigma-Aldrich). Control mice were given olive oil at the same dose. 



Alcoholic liver disease was induced in male male C57BL/6J mice by administering a high-fat 

liquid diet (HFD) containing ethanol. The dose of alcohol started at 5 g/kg/day and 

the concentration of alcohol gradually increased until the total dose of alcohol administered 

reached up to 20 g/kg/day. Control mice were given high-fat liquid diet without ethanol. 

Each group included at least 3 mice. Mice were housed in temperature and humidity-

controlled rooms and kept on a 12-hour light/dark cycle. Mice were sacrificed and collection of 

liver and blood samples was performed. All experimental procedures were reviewed and 

approved by The University of North Carolina at Chapel Hill Institutional Animal Care and Use 

Committee. 

Cell Cultures 

To study  AKR1B10 production and biological effects, LX-2 cells (from Scott L. Friedman, 

Mount Sinai Hospital, New York, NY, USA), a human HSC line
25

, were serum starved for 24 h 

and then incubated with LPS 1 µg/mL (Sigma-Aldrich), PDGF 20 ng/mL (Sigma-Aldrich), and 

recombinant AKR1B10 10 ng/mL, 100 ng/mL, and 1 µg/mL (Novus Biologicals, Littleton, CO, 

USA) for 20 h. Fetal Bovine Serum (FBS) 20%/mL (Sigma-Aldrich) was used as a control.  

RNA Isolation and PCR Analysis 

RNA was isolated from liver tissues, animal models, and cells using Trizol and the 

manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA). Two thousand nanograms of RNA 

were retrotranscribed using a high-capacity complementary DNA reverse-transcription kit 

(Applied Biosystems, Foster City, CA, USA) and complementary DNA (cDNA) were then 

amplified using Taqman Technology (Applied Biosystems) in a final PCR volume of 10 µL 

using a StepOnePlus
TM

 Real-Time PCR System (Applied Biosystems) and various Assay-on-

Demand probes and primers were used (Applied Biosystems).  For human and animal model 



samples, primer-probe pairs for AKR1B10 and AKR1B8 were utilized, respectively. For cell 

culture samples, primer-probe pairs for COL1A1, ICAM1, AKR1B10, TIMP1, IL6, CCL2, 

MMP2, ACTA2, and IL8 were used. However, only the primer-probe pairs for COL1A1, 

ICAM1, AKR1B10, and TIMP1 were analyzed due to sample integrity problems with other 

assessed target genes. Results were normalized to 18s rRNA expression (housekeeping gene). 

The gene expression values were calculated based on the ΔΔCt method and the results were 

expressed as 2
-ΔΔCt

 referred to as fold increase compared with the mean expression quantified on 

normal livers. 

Statistical Analysis 

Results of quantitative variables are expressed as mean plus standard error unless otherwise 

specified. The differences between groups were analyzed using non-parametric tests (Mann-

Whitney U test) for continuous variables. Statistical analysis was performed using SPSS version 

22 (SPSS Inc.,Chicago, IL, USA).  

   

 

 

 

 

 

 



RESULTS 

Patients with AH show increased AKR1B10 hepatic expression 

AKR1B10 was previously identified as the most upregulated hepatic gene in patients with AH
10

. 

To confirm this previous result, we analyzed previous laboratory data on hepatic AKR1B10 

expression in a cohort of patients with AH from a transjugular biopsy by real time qPCR 

analysis. The results confirmed marked upregulation of AKR1B10 in patients with AH compared 

with normal liver and other liver diseases with a 99-fold overexpression of AKR1B10 in patients 

with AH (Figure 1). 

 

Figure 1. AKR1B10 gene expression in  patients with various liver diseases. (*p<0.001 

compared to control and all other studied diseases.) 

AKR1B10 is overexpressed in fibrosis animal models 

There are no animal models that fully characterize the pathogenesis of AH in human patients
8
. 

However, we looked at previously derived laboratory data from CCl4-induced fibrotic liver 

injury in mice as well as an alcohol animal model. We investigated the known mouse analogue 

for AKR1B10, Akr1b8
26

. While the high fat diet plus alcohol administration animal model did not 

show a significant increase in Akr1b8 expression, the CCl4-induced fibrosis animal model 

0

20

40

60

80

100

120

140

Control HVC Cirrhosis NASH AH

A
K

R
1

B
1

0
 E

x
p

re
s

s
io

n
  

(F
o

ld
 i

n
c
re

a
s

e
) 

* 



showed a significant expression of Akr1b8 over the control (Figure 2). Because HSCs are the 

primary cells involved in fibrosis development
20

 and Akr1b8 is overexpressed in a fibrotic 

animal model, HSCs could be a likely cell source of hepatic AKR1B10 seen in the 

Transcriptome analysis. 

 

Figure 2. Akr1b8 expression in animal models of liver injury. (A) Hepatic Akr1b8 gene 

expression in mice treated with CCl4 (n=3). (*p<0.05 compared with olive oil control). (B) 

Hepatic Akr1b8 gene expression in HFD mice treated with alcohol (n=4). Abbreviation n.s. = not 

significant. 

Proinflammatory and profibrogenic effects on AKR1B10 expression in HSCs 

As expression of AKR1B10 in the liver was found to be significantly higher in AH patients, and 

as HSCs play a key role in the development of liver fibrosis in the during liver injury
8
, we next 

investigated the potential of HSCs to synthesize AKR1B10 and its biological effects on these 

cells. We used several mediators known to play a role in ALD and typically present in the AH 

microenvironment, and investigated whether they induced AKR1B10 expression in human HSC 

cell lines. However, incubation of HSCs (LX-2) with LPS and PDGF did not show a significant 

increase in AKR1B10 levels (Figure 2A). In addition, to investigate the biological effects of 
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AKR1B10 on HSCs, cells were incubated with recombinant AKR1B10, and this similarly did 

not induce the expression of proinflammatory or profibrogenic genes in HSC (Figure 2B).

  

 

 
 

Figure 3. Expression of various genes in human HSC cell lines. (A) Expression of AKR1B10 in 

cultured cells treated with PDGF and LPS. (B) Expression of COL1A1 (profibrogenic), ICAM1 

(proinflammatory), and TIMP1 (profibrogenic) in cultured cells treated with various 

concentrations of recombinant AKR1B10. Abbreviation n.s. = not significant. 
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DISCUSSION 

AH is an acute-on-chronic liver disease that is responsible for much of the morbidity and 

mortality seen in patients with ALD, and is characterized by hepatic inflammation, fibrosis, and 

damage. It is therefore of great importance to identify the key pathways and molecules of the 

disease in order to produce novel and effective therapies. In the present study, we investigated 

the potential role of AKR1B10 as a target for therapies in patients with AH. We performed 

qPCR analyses of human liver biopsies of patients with various liver diseases and of animal 

models of fibrotic and alcohol-supplemented mice. Furthermore, we conducted and analyzed 

tissue culture experiments of HSC cell lines to understand the location and pathway of 

expression of AKR1B10. While the results of the human and animal model samples agreed with 

transcriptome analysis referenced above and suggested the implication of HSCs, the tissue 

culture experiments dismissed this hypothesis, and the mechanism of overexpression could not 

be determined.  

 The results suggest that overexpression of AKR1B10 in patients with AH may not be 

linked to HSCs directly and may be present in other cells of the liver.  While there was a 99-fold 

overexpression of AKR1B10 in patients with AH and the animal models suggested a fibrosis-

producing cell such as HSCs, an increased expression of AKR1B10 could not be reproduced in 

HSC cell lines.  

 There were several limitations to the present study. The major limitation to the animal 

studies is the lack of a proper animal model that can reproduce key pathophysiological features 

of AH
8
. We used data from a study in the laboratory regarding the use of the hepatotoxic CCl4 

which is known to adequately reproduce liver fibrosis and cirrhosis in mice
27

.While we observed  

a 1.5-fold increase in expression of Akr1b8 (p < 0.05) in this model, this result may not be fully 



indicative of the expression of AKR1B10 in AH patients, and the sample size (n = 3) was very 

small. Additionally, the study was limited to gene expression analysis and did not include protein 

analysis that could confirm the results of the qPCR gene expression analysis. While supernatant 

was collected from the cell culture studies, time and resource constraints prevented the analysis 

of the samples.  

 Future studies could examine other liver cells that may be the location of the 

overexpression of AKR1B10 in patients with AH. Potentially, AKR1B10 could be upregulated in 

hepatocytes instead of HSCs. Several pathways have been studied regarding the potential fibrosis 

resulting from improper hepatocyte functioning, such as the activation of HSCs by signals 

derived from hepatocyte apoptosis
28

. The HepG2 human hepatocellular carcinoma cell line could 

be employed to explore potential AKR1B10 overexpression in hepatocytes
29

. Additionally, Liver 

Progenitor Cells (LPCs) have been shown to correlate well with fibrotic liver damage and are 

strong prognostic markers for short-term mortality in patients with AH
30,31

. Future studies could 

assess potential AKR1B10 overexpression in LPCs and hepatocytes by using a similar approach 

as the present work. Finally, further work to assess sorbitol accumulation in human samples 

could help elucidate the molecular function of aldose reductase in the liver during AH 

pathogenesis.
32

 

 A better understanding of the role of various factors in the development and progression 

of AH is of the utmost importance in order to develop novel therapies. The overexpression of 

aldose reductase in patients with AH is poorly understood and could play an important role in the 

disease. Our present study confirms the overexpression of AKR1B10 in AH and suggests that it 

may be linked to cells other than HSCs. Future studies will be needed to explore the role of 

AKR1B10 in AH.  



CONCLUSION 

We confirmed AKR1B10 is overexpressed in patients with AH and observed an analogous 

overexpression in a fibrotic animal model but could not reproduce findings in HSCs. We suggest 

that the expression of the gene is not linked to HSCs and may be found in other cells such as 

Hepatocytes or LPCs.  
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