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Abstract

WONYUL LEE: New Statistical Learning Methods for Multiple High
Dimensional Datasets

(Under the direction of Dr. Yufeng Liu)

In this dissertation, we design several statistical learning methods for analyzing mul-

tiple high-dimensional datasets. Our focus is on multiple response regression and inverse

covariance matrix estimation.

Multivariate regression is a common statistical tool for practical problems. Many multi-

variate regression techniques are designed for univariate response cases. For problems with

multiple response variables available, one common approach is to apply the univariate re-

sponse regression technique separately on each response variable. Although it is simple and

popular, the univariate response approach ignores the joint information among response

variables. We propose several methods for utilizing joint information among response vari-

ables in a penalized likelihood framework. The proposed methods provide sparse estimators

for the conditional inverse covariance matrix of response vector given explanatory variables

as well as sparse estimators of regression coefficient matrix.

Estimation of inverse covariance matrices is important in various areas of statistical

analysis. The task of estimating multiple inverse covariance matrices sharing some common

structure is considered. In this case, estimating each matrix separately can be suboptimal

as it ignores potential common structure. We propose a new approach to parameterize each

inverse covariance matrix as a sum of common and unique components and jointly estimate

multiple inverse covariance matrices in a constrained L1 minimization framework.

Theoretical properties of the new methods are explored. Simulated examples and ap-

plications to a glioblastoma multiforme cancer data demonstrate competitive performance

of the proposed methods.
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Chapter 1

Introduction

1.1 Some Background on Regression

Regression is one of the most fundamental tools in statistics. It helps to build a model to

characterize the relationship between predictors and response. A regression model can be

very useful for both prediction and interpretation. In this section, we briefly review some

regression techniques. In Section 1.1.1, we focus on univariate response regression and in

Section 1.1.2, we discuss multivariate response regression techniques. For the simplicity of

notations, we assume that all response variables are centered so that regression models do

not include intercept terms.

1.1.1 Univariate Response Regression

In the statistical learning literature, multivariate regression is a common and popular tech-

nique that builds a model to predict a response variable given a set of predictor variables.

In particular, we have a training sample {(xi, yi)}i=1,...,n, where xi ∈ Rp is a p-dimensional

vector of predictors and yi is a centered response variable, i.e., ∑n
i=1 yi = 0. The multivariate

regression model has the form

yi = β
Txi + ǫi for i = 1, ..., n, (1.1)

where β is a p-dimensional vector of regression coefficients and ǫi denotes the random error

term.

The ordinary least squares (OLS) method is one of the most common multivariate



regression techniques to estimate the regression coefficients. Even though it has been widely

used in the literature, it can have difficulty when the dimension of predictors p is large. In

particular, the problem of overfitting may arise and consequently decrease the prediction

accuracy. In addition to that, the resulting OLS model often keeps all variables in the

model. It can be undesirable when only a small subset of predictors truly influence the

response variable. Therefore, variable selection is an important issue in the multivariate

regression problem. Accurate variable selection can not only improve prediction accuracy,

but also provide better interpretability of the model.

Many variable selection techniques are available in the literature. Traditionally, the

approach of subset selection has been widely used to select important variables. In this

approach, we select the subset of predictors first and then fit the regression model on the

selected predictor set. There are many different subset selection techniques, for example,

forward stepwise selection, backward stepwise selection, and the combination of forward

and backward stepwise selection. Theses techniques are simple to implement. However,

they can be unstable because the procedure is not continuous [Breiman, 1996].

Recently, a large number of methods based on the regularization framework have been

proposed. Some well-known methods in this group include the least absolute shrinkage

and selection operator (LASSO) proposed by Tibshirani [1996], the nonnegative garrote

proposed by Breiman [1995], and the smoothly clipped absolute deviation (SCAD) proposed

by Fan and Li [2001]. In the regularization framework, the objective function for us to

optimize is in the form of loss+penalty. The loss term measures goodness of fit for our model

and the penalty term measures complexity of models which helps to control overfitting. In

particular, the optimization problem for the penalized least squares can be written as

min
β

n

∑
i=1
(yi −β

Txi)
2 + λp(β), (1.2)

where λ is a tuning parameter to balance the two terms. In practice, λ needs to be chosen

carefully. If we choose a sparse penalty term for p(β), as a consequence, the estimated

coefficients are shrunk toward 0 with some of them exactly being 0. Those predictors with

nonzero coefficients remain in the model. Thus, such sparse regularization techniques can

perform variable selection and model estimation simultaneously. For example, LASSO uses

2



the L1 norm of β, ∑p
j=1 ∣βj ∣, as p(β).

1.1.2 Multivariate Response Regression

In Section 1.1.1, the focus has been on multivariate regression model with one response

variable. However, in many applications, one may have multiple response variables with

the same set of predictor variables. In that case, multiple response regression is a useful

regression technique to tackle this problem. In particular, with an m-dimensional vector

of response variables, yi = (yi1, ..., yim), the multiple response regression model can be

formulated by generalizing (1.1) as follows,

yi =B
Txi + ǫi for i = 1, ..., n,

where B is a p ×m matrix of regression coefficients and an ǫi denotes an m-dimensional

error vector.

The standard approach to estimate the regression parameter matrix B is to regress

each response variable separately on the same set of predictor variables. All marginal

univariate regression procedures discussed in Section 1.1.1 can be applied to each response.

For example, one can apply the OLS method to each response separately by solving

min
βj

n

∑
i=1
(yij − βT

j xi)2, for j = 1, ...,m, (1.3)

where βj is the j-th column of B. By using simple linear algebra, it can be shown that the

optimization problem of (1.3) is equivalent to the following optimization problem

min
B

tr[(Y −XB)T (Y −XB)], (1.4)

where Y is the n ×m response matrix, X is the n × p predictor matrix. Even though it is

simple to implement, this separate approach may not be optimal since they do not utilize

the joint information among response variables.

To utilize the correlation information among response variables, Breiman and Friedman

[1997] proposed a method, called Curd and Whey (C&W ). The C&W method predicts the

multiple responses with an optimal linear combination of the OLS estimators. In particular,

3



the C&W procedure starts with fitting m separate ordinary least squares models. With the

resulting predictor ŷOLS available, the C&W method tries to find out another predictor

ỹ =WŷOLS with an optimal m ×m matrix W so that

E{(yj − (WŷOLS)j)}2 ≤ E{(yj − (ŷOLS)j)}2, j = 1, ...,m.

In other words, W reduces mean-squared prediction error for each response. They showed

that W can be obtained by canonical analysis. In particular, canonical analysis seeks pairs

of linear combination such that

(tk,vk) = argmax
t,v

Corr(tTy,vTx)
subject to Corr(tTy, tTl y) = 0,Corr(vTx,vT

l x) = 0, l = 1, ..., k − 1, (1.5)

where k = 1, ...,min(p,m) and Corr(a, b) is the correlation between a and b. Then W is

given by W = T−1DT, where T is the m×m matrix whose k-th row is tk andD is a diagonal

matrix. The i-th diagonal entry of D is di = ρ2i /[ρ2i + r(1 − ρ2i )], where ρi = Corr(tTi y,vT
i x)

and r = p/n. As diagonal elements in D are less than or equal to 1, the C&W method

achieves multivariate shrinkage after transforming ŷOSL. They showed that their method

can outperform separate univariate regression approaches when there are correlations among

the response variables.

Some other approaches to tackle multiple response regression problem have been pro-

posed in the regularization framework [Yuan et al., 2007; Turlach, Venables and Wright,

2005]. These approaches impose a constraint on the parameters to stabilize the estimators.

In particular, they solve the following optimization problem

min
B

tr[(Y −XB)T (Y −XB)] subject to: J(B) ≤ t,
where J(B) is a constraint function and t is a tuning parameter. Without any constraint,

the objective function is identical to (1.4) which is the objective function of separate OLS

approach. However, by imposing a constraint, we achieve shrinkage in the resulting esti-

mator. In particular, Yuan et al. [2007] proposed a method called factor estimation and

4



selection. To encourage sparsity among singular values of the regression parameter matrix,

they employed J(B) = ∑min(p,m)
i σi(B), where σi(B) is the ith singular value of B. As

a result, their method achieves dimension reduction in B. Turlach, Venables and Wright

[2005] proposed another constraint function, J(B) = ∑p
j=1max(∣βj1∣, ..., ∣βjm ∣). By imposing

the max-L1 penalty, they select a common subset of explanatory variables which can be

used as predictors for all response variables.

1.2 Background on Gaussian Graphical Model

Gaussian graphical models explore conditional dependence structure among variables under

the multivariate Gaussian distributional assumption. In particular, let x be a p-dimensional

vector following a multivariate normal distribution N(µ,Σ), where µ is an unknown p-

dimensional mean vector and Σ is a nonsingular covariance matrix. The conditional de-

pendence structure can be determined from the precision matrix Ω = Σ−1 = (ωij)1≤i,j≤p. In
particular, an off-diagonal element ωij in Ω is proportional to the conditional correlation

between variable i and j given the other variables. In other words, ωij is zero if and only

if variable i and j are conditionally independent given the other variables. Therefore, in

a Gaussian graphical model, one of the main interests is to identify zero entries in the

precision matrix. The nonzero entries in Ω correspond to conditionally correlated pairs of

variables given other variables.

For illustration, let x be a 5-dimensional vector following a multivariate normal distri-

bution N(0,Σ5) with

Ω5 =Σ−15 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 1 0 0

0 2 1 0 0

1 1 3 1 0

0 0 1 4 1

0 0 0 1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding undirected graph is depicted in Figure 1.1. Each variable in x represents

a node in the graph. If ωij is nonzero, then the nodes xi and xj are connected as they are

conditionally correlated. For example, there is an edge between x1 and x3 as ω13 is not

zero. On the other hand, x1 and x2 are not connected in the graph since ω12 is zero.

5



x1

x2

x3

x4

x5

Figure 1.1: The undirected graph of x = (x1, x2, x3, x4, x5).
A standard approach to perform model selection in Gaussian graphical models is the

backward stepwise selection method. The procedure starts with a fully connected graph.

In each step, deletion of the least significant edge is performed based on hypothesis testing

at some prespecified significance level α. The process continues until all remaining edges

are significant and cannot be deleted. Once the model selection procedure is finished, then

parameter estimation is performed based on the selected model. However, this procedure

does not take multiple comparisons into account [Edwards, 2000].

In recent years, various penalized maximum likelihood methods have been proposed for

the estimation of sparse Gaussian graphical models [Yuan and Lin, 2007; Banerjee, Ghaoui

and d’Aspremont, 2008; Friedman, Hastie and Tibshirani, 2008; Rothman et al., 2008; Lam

and Fan, 2009; Fan, Feng and Wu, 2009]. These approaches produce a sparse estimator of

the precision matrix by maximizing the penalized Gaussian likelihood with sparse penalties

such as the L1 penalty and the smoothly clipped absolute deviation penalty [Fan and Li,

2001]. In particular, we solve the following optimization problem

min
Ω

⎧⎪⎪⎨⎪⎪⎩− log det(Ω) + tr(ΩΣ̂) + λ∑
i≠j

p(ωij)⎫⎪⎪⎬⎪⎪⎭ , (1.6)

where Σ̂ is the sample covariance matrix of variables, λ is a tuning parameter, and∑i≠j p(ωij)
is a sparse penalty function. Note that the first two terms in (1.6), − log det(Ω) + tr(ΩΣ̂),
correspond to the negative log Gaussian likelihood up to a constant not depending on Ω.

By imposing a sparse penalty on the off-diagonal elements of the precision matrix, they

encourage sparsity among off-diagonal entries in the estimator of Ω.

Instead of using likelihood approaches, several techniques take advantage of the con-

nection between linear regression and the entries of the precision matrix [Meinshausen and
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Buhlmann, 2006; Peng et al., 2009; Yuan, 2010]. In particular, these approaches convert

the estimation problem of the precision matrix into relevant regression problems and solve

them with sparse regression techniques accordingly. One advantage of these approaches is

that they can handle a wide range of distributions including the Gaussian case.

1.3 New Contributions and Outline

As discussed in Sections 1.1 and 1.2, there are many existing papers in the literature focusing

on

(1) the case of multivariate regression problems with a single response variable;

(2) estimation of the inverse covariance matrix of a multivariate Gaussian data set with

the applications to the Gaussian graphical model.

In Chapters 2-3, our focus is to combine both goals through the setting of multiple response

multivariate regression. Our proposed methodology provides a good insight on the effect of

the joint estimation of regression parameters and the inverse of residue covariance matrix.

In Chapter 4, we focus on the joint estimation of multiple inverse covariance matrices.

• In Chapter 2, we propose three new methods to estimate the regression parameter

matrix and the conditional inverse covariance matrix in the penalized Gaussian max-

imum likelihood framework [Lee and Liu, 2012]. Our methods and the corresponding

theoretical developments show that compared to separate modeling, simultaneous

modeling of the multiple response variables can provide more accurate estimation of

both regression parameters and the inverse covariance matrix.

• In Chapter 3, we consider the data coming from a mixture of several Gaussian dis-

tributions. In particular, we extend the methods proposed in Chapter 2 with the

hierarchical group penalty to address the mixture structure [Lee et al., 2012]. With

the proposed methods, multiple groups from different Gaussian distributions can be

modeled jointly. In these approaches, we allow the common structure across differ-

ent groups and at the same time can estimate unique structure to each group. We

establish some asymptotic properties of the methods. Both simulated examples and

7



an application to a glioblastoma cancer dataset are presented to demonstrate the

performance of our methods.

• In Chapter 4, we consider estimation of multiple inverse covariance matrices sharing

some common structure. To estimate potential common structure more efficiently, we

propose a new approach to parameterize each precision matrix as a sum of common

and unique components and estimate multiple precision matrices in a constrained

L1 minimization framework [Lee and Liu, 2013]. Some theoretical properties of the

method are derived in the high dimensional setting. Numerical examples are presented

as well to illustrate the advantage of our proposed method.

8



Chapter 2

Multiple Response Regression with Sparse

Inverse Covariance Estimation

2.1 Introduction

With multiple response variables available, the standard approach to model them is to

regress each response variable separately on the same set of explanatory variables. All

marginal univariate regression procedures discussed in Section 1.1.1 can be applied to each

response variable. However, this approach may not be optimal since they do not utilize the

information among response variables. As stated in Section 1.1.2, Breiman and Friedman

[1997] proposed the C&W method that uses the relationship among response variables

to improve predictive accuracy. They showed that their method can outperform separate

univariate regression approaches when there are correlations among the response variables.

However, their method did not address the topic of variable selection. Recently, Yuan

et al. [2007] proposed a method based on dimension reduction as stated in Section 1.1.2.

Their idea is to obtain dimension reduction by encouraging sparsity among singular values

of the parameter matrix. However, their approach focuses on dimension reduction rather

than variable selection. Thus, it does not give a subset of explanatory variables for each

response. Variable selection can be a very important issue when the number of explanatory

variables is large or when explanatory variables are highly correlated. To relate with variable

selection, Turlach, Venables and Wright [2005] proposed a penalized method using the

max-L1 penalty to select a common subset of explanatory variables for multiple response

regression. However, this assumption may be too strong when each response has different

sets of explanatory variables. A similar technique was proposed by Zhang et al. [2008] for



multicategory support vector machines.

In this chapter, we propose three approaches to tackle the multiple response regression

problem via utilizing the joint information among multiple response variables. To handle

the problem, we need to estimate two parameter matrices, the regression parameter matrix

B and the conditional inverse covariance matrix of response variable Ω =Σ−1. The first two

approaches are plug-in methods, i.e., plugging in an estimator of one parameter matrix to

solve the other one. The third approach tries to jointly estimate both parameter matrices.

In particular, for the first approach, we plug in a reasonable estimator of Ω to estimate the

regression parameter matrix B. For the second approach, we estimate Ω instead after plug-

ging in a good estimator of B. The last approach simultaneously estimates the regression

parameter matrix B, and the inverse covariance matrix Ω. These methods are penalized

log-likelihood approaches with the multivariate Gaussian assumption. The first proposed

method maximizes a sparse penalized log-likelihood using a previously estimated inverse

covariance matrix Ω̂. Similarly, the second proposed method maximizes a sparse penalized

log-likelihood using a previously estimated regression parameter matrix B̂. The last pro-

posed method simultaneously estimates regression parameters and the inverse covariance

matrix by maximizing a doubly penalized joint likelihood function. These methods involve

two penalty terms: the weighted L1 penalty on the inverse covariance matrix Ω and the

weighted L1 penalty on the regression parameter matrix B. Note that the joint approach

was also considered recently in Rothman, Levina and Zhu [2010] with unweighted L1 penalty

terms. Our framework allows flexible weights on the penalty terms and it is more general.

Besides the regression predictive accuracy, we also study the performance of the estimation

of Ω. Furthermore, we establish theoretical properties of all three methods. To handle the

computational difficulty of high dimensional problems, we also suggest some prescreening

procedure to eliminate noise variables before further estimation.

In the following sections, we describe the new proposed methods in more details with

theoretical justification and numerical examples. In Section 2.2, we introduce our proposed

methodology. Section 2.3 explores theoretical properties of our proposed methods. Section

2.4 develops coordinate descent computational algorithms to obtain solutions for proposed

methods. A prescreening step is suggested for the joint method to speed up the computation.

Simulated examples are presented in Section 2.5 to demonstrate performance of our methods
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and Section 2.6 provides a glioblastoma cancer data example. Section 2.7 provides some

discussions. The proofs of the theorems are provided in Section 2.8.

2.2 Methodology

Consider the regression problem of p covariates and m response variables. Suppose the

data contain n observations. Let yi = (yi1, ..., yim)T ; i = 1, ..., n, be m-dimensional responses

and Y = [y1, ...,yn]T be the n ×m response matrix. Let xi = (xi1, ..., xip)T ; i = 1, ..., n, be
p-dimensional predictors and X = [x1, ...,xn]T be the n × p design matrix. For simplicity

of the notation, let yk = (y1k, ..., ynk)T be the k-th response vector (k = 1, ...,m) and

xj = (x1j , ..., xnj)T be the j-th predictor (j = 1, ..., p). Consider the following model,

Y =XB + e, where e = [ǫ1, ..., ǫn]T ,
where B = {βjk} ; j = 1, ..., p, k = 1, ...,m, is an unknown p × m parameter matrix. The

errors ǫi = (ǫi1, ..., ǫim)T ; i = 1, ..., n, are i.i.d. m-dimensional random vectors following a

multivariate normal distribution N(0,Σ) with the nonsingular covariance matrix Σ.

Our goal is to estimate B so that we can use X to predict Y. A simple way to estimate

B is to build m single response models separately and the least squares solution is denoted

by B̂S = (XTX)−1XTY, provided that XTX is nonsingular. However, this approach ignores

information on Σ. When Σ is diagonal, this separate modeling approach can work well.

However, whenΣ is not diagonal, we sometimes have strong correlations among the response

variables. The separate modeling approach does not make use of the joint information

among the response variables. To produce a better estimator, we consider to incorporate

Σ in the estimation procedure of B. Denote Σ−1 by Ω. If we assume that Σ is known, the

log-likelihood for B conditional on X is

−
1

2
tr{(Y −XB)Ω(Y −XB)T } , (2.1)

up to a constant not depending on B. Interestingly, although the maximum likelihood func-

tion involves Σ, the corresponding maximum likelihood estimate turns out to be identical

to the least squares estimate using the separate maximum likelihood method. This implies

11



that the maximizer of (2.1) does not take any advantage from the known information on

Σ. However, when we impose penalties on the likelihood, the joint method can bring some

advantage in estimation. In this section, we propose to build multivariate regression models

through joint shrinkage. The goal is to utilize the joint information among the m response

variables to improve estimation and prediction. Since Σ is involved in the joint estimation

and it is often unknown, we consider three different approaches: two plug-in approaches

and the doubly penalized approach. The plug-in approach in Section 2.2.1 uses some es-

timator Ω̂ for Ω to plug in the penalized likelihood function and then estimate B jointly.

The plug-in approach in Section 2.2.2 estimates Ω after plugging in a reasonable estimator

of B. The doubly penalized approach in Section 2.2.3 estimates Ω and B simultaneously

via regularizing the estimation of both Ω and B.

For discussion, we first assume that Σ is known. To regress Y on X, we can model them

separately, such as applying the LASSO for m different responses. Alternatively, we can use

joint shrinkage estimation for the m response variables simultaneously. To demonstrate the

difference between separate shrinkage and joint shrinkage, we consider a simple toy example

for illustration. Suppose that m = 2, p = 1, and XTX = 1. Let B̂S = (β̂S
11, β̂

S
12) be the least

squares solution and assume that both β̂S
11 and β̂S

12 are positive and Σ =
⎛⎜⎜⎝

1 ρ

ρ 1

⎞⎟⎟⎠ . With

the penalty parameter λ, the separate LASSO solution is given by

β̂LASSO
1m = argmin

β1m

{(ym −Xβ1m)T (ym −Xβ1m) + λ∣β1m∣}
= [β̂S

1m −
λ

2
]+; m = 1,2, (2.2)

where [u]+ = u if u ≥ 0 and [u]+ = 0 if u < 0. In the joint shrinkage estimation, however, the

solution is given by

argmin
B

[tr{(Y −XB)Ω(Y −XB)T } + λ∣β11∣ + λ∣β12∣] . (2.3)

We can show that (2.3) is equivalent to

argmin
B

[(B − B̂S)Ω(B − B̂S)T + λ∣β11∣ + λ∣β12∣] (2.4)
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Figure 2.1: Contour plots for toy example to illustrate the change of shrinkage with ρ for
the joint method.

and the solution of (2.4) is given by

β̂1m = [β̂S
1m −

λ

2
(1 + ρ)]+; m = 1,2. (2.5)

Compared with the separate LASSO solution (2.2), the solution (2.5) obtains more

shrinkage if ρ is positive, while negative ρ results in less shrinkage. Figure 2.1 provides some

insight on the reason why the amount of shrinkage changes with ρ for the joint method.

Solid curves in Figure 2.1 are contour curves of (B − B̂S)Ω(B − B̂S)T as the quadratic

function of B and dashed lines correspond to the penalty function. When ρ is positive, the

quadratic function increases along the 45○ line to the horizontal axis slower than the case

when ρ is zero. Note that the solution of the joint method with ρ = 0 is identical to the

separate LASSO solution. Thus, the solution of (2.4) can be closer to the origin with more

shrinkage than the solution with ρ = 0. On the other hand, the quadratic function with

negative ρ increases faster along the 45○ line to the horizontal axis. Thus, the solution of

(2.4) tends to be closer to the least squares solution than the solution with ρ = 0. Therefore,

the joint method can help us to produce more accurate estimators via utilizing the joint

information through Ω.

We propose three approaches, including two plug-in methods and one joint method. In

Sections 2.2.1 and 2.2.2, we introduce two different plug-in penalized likelihood methods,

one is for multiple response regression and the other one is for inverse covariance estimation.

In the plug-in method for multiple response regression, we estimate Ω prior to the step of
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regression and then use the estimator of Ω to produce a better estimator of B. In the

plug-in method for inverse covariance estimation, we estimate B first and then estimate Ω

with the estimator B̂ available. In Section 2.2.3, we estimate B and Ω together via double

penalization. Section 2.2.4 provides some guidance on three proposed methods and model

selection.

2.2.1 Plug-in Joint Weighted LASSO Estimator

To ensure that estimation of B includes the information on Σ, we propose a joint penal-

ized likelihood method, namely the plug-in joint weighted LASSO (PWL) estimator. In

particular, the corresponding penalized likelihood function is as follows

tr {(Y −XB)Ω(Y −XB)T } + λ1∑
j,k

wjk ∣βjk∣ . (2.6)

Here λ1 is a tuning parameter and wjk ≥ 0; j = 1, ..., p, k = 1, ...,m, are prespecified weights

for the L1-penalty of βjk. If Ω is anm×m diagonal matrix with diagonal entries (σ2
1 , ..., σ

2
m),

then y1, ...,ym are mutually independent. In that case, the minimizer of (2.6) is equivalent

to the weighted LASSO solution obtained by applying the weighted LASSO separately to

each response vector yk with the penalty parameter λ1/σ2
k (k = 1, ...,m). However, if Ω is

not diagonal, the minimizer of (2.6) can be different from the separate penalized likelihood

method which handles each response vector yk separately. Our numerical examples indi-

cate that the joint method can be more accurate when the response variables are highly

correlated.

In practice, Ω is often not available. Thus, we need to estimate it. To estimate Ω, we

assume that zi = (yT
i ,x

T
i )T is an (m+p)-dimensional random vector following a multivariate

normal distribution N(µ,Σy,x), where Σy,x =
⎛⎜⎜⎝

Σy,y Σy,x

Σx,y Σx,x

⎞⎟⎟⎠. Because Σ is the covariance

matrix of yi conditioned on xi, it can be expressed byΣ = Σy,y−Σy,xΣ
−1
x,xΣx,y. Therefore, we

can estimate Σ by first estimating Σy,x. To estimate Σy,x, we adapt the Graphical LASSO

(GLASSO) method proposed by Friedman, Hastie and Tibshirani [2008]. The GLASSO

method considers the problem of estimating the inverse covariance matrix in the context

of sparse Gaussian graphical models [Meinshausen and Buhlmann, 2006]. This technique
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was also considered by Yuan and Lin [2007], Banerjee, Ghaoui and d’Aspremont [2008] and

Rothman et al. [2008].

The GLASSO estimator, Σ̂−1y,x, is given as the minimizer of the following penalized

likelihood function

− log det(Σy,x
−1) + 1

n

n

∑
i=1
(zi − z̄)TΣy,x

−1(zi − z̄) + λ0 ∥Σy,x
−1∥ . (2.7)

Here z̄ is the sample mean, ∥Σy,x
−1∥ is the sum of the absolute values of the off-diagonal

elements of Σy,x
−1, and λ0 is a tuning parameter.

The PWL method is a two-step procedure. With the estimate Σ̂ available, the PWL

method solves the following problem

argmin
B

⎡⎢⎢⎢⎢⎣tr{(Y −XB)Ω̂(Y −XB)T} + λ1∑
j,k

wjk ∣βjk∣⎤⎥⎥⎥⎥⎦ , (2.8)

where Σ̂y,x =
⎛⎜⎜⎝

Σ̂y,y Σ̂y,x

Σ̂x,y Σ̂x,x

⎞⎟⎟⎠, Σ̂ = Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y and Ω̂ = Σ̂−1.

2.2.2 Plug-in Weighted Graphical LASSO Estimator

In Section 2.2.1, we propose a plug-in method, PWL, which estimates Ω first and then

estimates B given Ω̂. In this section, we propose another plug-in method to estimate

Ω. In particular, we first estimate B by using univariate regression techniques. With

the estimator B̂ available, we propose a penalized likelihood method, the plug-in weighted

graphical LASSO (PWGL) estimator, by solving

argmin
Ω

[−n log det(Ω) + tr{(Y −XB̂)Ω(Y −XB̂)T} + λ2∑
s≠t

vst∣ωst∣] , (2.9)

where Ω = {ωst}; s = 1, ...,m, t = 1, ...,m. Here λ2 is a tuning parameter and vst ≥ 0; s =

1, ...,m, t = 1, ...,m, are prespecified weights for the L1 penalty of ωst.

2.2.3 Doubly Penalized Maximum Likelihood Estimator

In Sections 2.2.1 and 2.2.2, we propose two plug-in methods. PWL estimates Ω first and

then estimates B given Ω̂ while PWGL estimates B first and then estimates Ω given B̂. In

15



this section, we propose to estimate (B,Ω) simultaneously. Since yi∣xi ∼N(BTxi,Σ), the
log-likelihood of (B,Ω) conditional on X is

n

2
log det(Ω) − 1

2
tr{(Y −XB)Ω(Y −XB)T } . (2.10)

It can be shown that the maximum likelihood estimator of B is also given by (XTX)−1XTY.

Interestingly, the resulting estimator of B is the same as the ordinary least square estimator,

which can be obtained without using the information on the relationship among the response

vectors y1, ...,ym. To incorporate the information among different response variables in

estimation of B, we propose a joint penalized method, the doubly penalized maximum

likelihood (DML) estimator, by solving

argmin
B,Ω

⎡⎢⎢⎢⎢⎣−n log det(Ω) + tr {(Y −XB)Ω(Y −XB)T } + λ1∑
j,k

wjk ∣βjk∣ + λ2∑
s≠t

vst ∣ωst∣⎤⎥⎥⎥⎥⎦ .
(2.11)

Note that the global minimizer of the objective function in (2.11) may not exist when

p ≥ n. This is because the first term in (2.11) can dominate the other terms if some diagonal

elements of tr{(Y −XB)T (Y −XB)} are zeros, which may occur when p ≥ n. This can

be shown by taking a diagonal matrix Ω and increasing the values of its diagonal elements

corresponding to the zero diagonal entries in tr {(Y −XB)T (Y −XB)}. As a result, the

numerical solution of Ω in (2.11) can have some large diagonal entries. In practice, the

solution of Ω with very large diagonal entries is not desirable as it implies the very small

residual variances of the corresponding response variables. We recommend to first use the

plug-in method in Section 2.2.1 or separate modeling methods to screen the variables and

reduce the dimensions. Then one can apply the joint method on the reduced set of variables.

As shown in our simulation examples, the joint method can often outperform the plug-in

methods when p is moderate compared to n.

2.2.4 Model Selection

Two plug-in methods take advantages over the joint method if one of B and Ω is of main

interest and the other is already well estimated. Another advantage of two plug-in methods
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is that they have less computational burden than the joint method. On the other hand,

the joint method do not require good estimate of B or Ω. Even though the joint method is

computationally more intensive, it often performs better than two plug-in methods in sense

that it optimizes the log-likelihood of (B,Ω) jointly.
The tuning parameters λ1 and λ2 in (2.8), (2.9) and (2.11) control the sparsity of the

resulting estimators of (B,Ω). They can be selected either using validation sets or through

K-fold cross-validation. The K-fold cross-validation method randomly splits the dataset

into K segments of equal sizes. For the k-th fold, we denote the estimated regression

parameter matrix and the estimated inverse covariance matrix using all data excluding

those in the k-th segment and the tuning parameters λ1 and λ2 by (B̂(−k)
λ1

, Ω̂
(−k)
λ2
). We also

denote the data in the k-th segment as (Y(k),X(k)). Specifically, for the PWL method, we

select the optimal tuning parameter λ̂1 which minimizes the prediction error as follows,

CV(λ1) = K

∑
k=1
∣∣Y(k) −X(k)B̂(−k)

λ1
∣∣2
F
, (2.12)

where ∣∣ ⋅ ∣∣2F is the Frobenius norm of a matrix. For the PWGL method, we select the optimal

tuning parameter λ̂2 which minimizes the predictive negative log-likelihood as follows,

CV(λ2) = K

∑
k=1
[−nk log det(Ω̂(−k)λ2

) + tr{(Y(k) −X(k)B̂)Ω̂(−k)
λ2
(Y(k) −X(k)B̂)T }] , (2.13)

where nk is the sample size of the k-th segment. For the DML method, we first select the

optimal λ̂1 by using (2.12) with a prespecified λ2 and select λ̂2 by using (2.13) with the

selected optimal λ̂1. It helps to avoid a two dimensional grid search of (λ1, λ2). We have

found in simulations that the selected optimal λ̂1s are almost identical for a wide range of

prespecified λ2.

In the use of validation sets, we split the dataset into two part, the training set and

the validation set. With a pair of (λ1, λ2), we first estimate (B,Ω) using the training set.

The prediction error and the predictive negative log-likelihood of the resulting estimator

are obtained using the validation set as (Y(k),X(k)) in (2.12) and (2.13). The validation

set is not used to construct the final estimator with the selected (λ̂1, λ̂2) while the K-fold

cross-validation uses all data for the final estimator with (λ̂1, λ̂2).
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2.3 Asymptotic Properties

To investigate a sparse regression technique, it is necessary to investigate its asymptotic

behaviors. Fan and Li [2001] pointed out that a good variable selection procedure should

have oracle properties. Asymptotically with probability tending to 1, a procedure with

oracle properties can identify the true underlying subset of predictor variables. The resulting

estimator of the procedure also asymptotically performs as well as if the true underlying

subset were known in advance. In this section, we study the asymptotic behavior of our

three proposed methods. In particular, we show that with a proper choice of (λ1, λ2), all
three methods enjoy the oracle properties.

For the asymptotic analysis, we use the set-up of Fan and Li [2001], Yuan and Lin

[2007] and Zou [2006]. The technical derivation uses the results in Knight and Fu [2000].

Let B∗ = (β∗jk); j = 1, ..., p, k = 1, ...,m, be the true regression parameter matrix and Ω∗ =

(ω∗st); s = 1, ...,m, t = 1, ...,m, be the true inverse covariance matrix. Let A = {(j, k) ∶ β∗jk ≠ 0}
and C = {(s, t) ∶ ω∗st ≠ 0}. Then we assume the following conditions for our theoretical results:

(A1) 1
n
XTX→ A where A is a positive definite matrix.

(A2) The cardinality of A, ∣A∣ = q1 > 0.
(A3) There exists β̃jk which is a

√
n-consistent estimator of β∗jk; j = 1, ..., p, k = 1, ...,m.

(A4) The cardinality of C, ∣C∣ = q2 > 0.
(A5) There exists ω̃st which is a

√
n-consistent estimator of ω∗st; s = 1, ...,m, t = 1, ...,m.

Note that conditions (A3) and (A5) are generally satisfied by maximum likelihood

estimators or L2 regularized maximum likelihood estimators with proper choices of penalty

parameters. For example, the least square estimator of B can be used as the β̃jks and

the inverse of residual sample covariance matrix can be used as ω̃sts. For the theoretical

analysis, we define wjk and vst as wjk = 1
∣β̃jk ∣γ ; j = 1, ..., p, k = 1, ...,m where γ > 0 and

vst = 1
∣ω̃st∣ ; s = 1, ...,m, t = 1, ...,m respectively.

In Sections 2.3.1 and 2.3.2, we show the plug-in estimators enjoy the oracle properties.

Section 2.3.3 develops the asymptotic theory that reveals the oracle properties of the DML

solution.
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2.3.1 Oracle properties of the PWL solution

In this section, we first show that with the known Ω∗, the minimizer of (2.6) is consistent in

variable selection and has the asymptotic normality. Then we show that with a consistent

estimator of Ω∗, the PWL estimator also enjoys the same properties.

Define the true regression parameter vector as β∗ = (β∗11, ..., β∗p1, ..., β∗1m , ..., β∗pm)T . Let

β̂1
(n)

be the estimator of β∗ obtained by minimizing (2.6) with the penalty parameter λ1,n.

Let β∗A be the q1-dimensional true parameter vector which consists of nonzero components

in β∗. Let β̂1
(n)
A be the corresponding estimators of β∗A. Let D = (Ω∗ ⊗A)A be the q × q

matrix obtained by removing the (j + (k−1)m)-th row and column of Ω∗⊗A for (j, k) ∉A.
Then the following lemma shows the oracle properties of the penalized likelihood estimator

β̂1
(n)

with the known Ω∗, as the minimizer of (2.6) defined previously.

lemma 1. (Oracle properties of the minimizer of (2.6), β̂1
(n)

, with the known Ω∗) Suppose

that λ1,nn
− 1

2 → 0 and λ1,nn
γ−1
2 →∞ as n →∞. Under the conditions (A1)-(A3), we have

the following results:

1. (Selection consistency) limnP (β̂1
(n)
jk = 0) = 1 if β∗jk = 0 ;

2. (Asymptotic normality)
√
n(β̂1

(n)
A −β∗A)→d N(0,D−1).

Lemma 1 tells us that the penalized maximum likelihood estimator with the known Ω∗

satisfies the oracle properties. Since Ω∗ is typically unknown in practice, one often uses

an estimator for Ω∗. With slight modification of Lemma 1, we can show that the PWL

solution also enjoys the oracle properties. Denote the PWL estimator of β∗ with the penalty

parameter λ1,n as β̂2
(n)

. Let β̂2
(n)
A be the corresponding estimator of β∗A.

Theorem 1. (Oracle properties of the PWL solution) In addition to the assumptions in

Lemma 1, suppose that Ω̂ is a consistent estimator of Ω∗. Under the conditions (A1)-(A3),

we have the following results:

1. (Selection consistency) limnP (β̂2
(n)
jk = 0) = 1 if β∗jk = 0 ;

2. (Asymptotic normality)
√
n(β̂2

(n)
A −β∗A)→d N(0,D−1).

Theorem 1 states that with a consistent estimator of Ω∗, variable selection in the PWL

is consistent and the resulting estimator still enjoys the asymptotic normality.
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2.3.2 Oracle properties of the PWGL solution

In this section, we show the oracle properties of the PWGL solution. To this end, we first

show the oracle properties of the solution of

argmin
Ω

⎡⎢⎢⎢⎢⎣−n log det(Ω) + tr {(Y −XB∗)Ω(Y −XB∗)T} + λ2∑
j≠k

vjk∣ωjk∣⎤⎥⎥⎥⎥⎦ , (2.14)

with the known B∗. Then we show that with a consistent estimator of B∗, the PWGL

estimator still enjoys the same properties.

Denote by Ω̂(1) the minimizer of (2.14) with the known B∗. Let Ω̂
(1)
0 be the matrix

obtained from Ω̂(1) by replacing ω̂
(1)
jk

with 0 if ω∗jk = 0. Then the following lemma shows

the oracle properties of Ω̂(1).

lemma 2. (Oracle properties of the minimizer of (2.14), Ω̂(1), with known B∗) Suppose

that λ2,nn
− 1

2 → 0 and λ2,n → ∞ as n → ∞. Under the conditions (A1), (A4) and (A5),

we have the following results:

1. (Selection consistency) limnP (ω̂(1)jk
= 0) = 1 if ω∗jk = 0 ;

2. (Asymptotic normality)
√
n(Ω̂(1)0 −Ω

∗)→d argminV (U),
where V (U) = tr(UΣUΣ) + tr(UW ) and W is an m ×m random symmetric matrix

such that vec(W ) ∼N(0,Λ) in which cov(wij ,wkl) = cov(ǫ1iǫ1j , ǫ1kǫ1l). The minimum

is taken over all symmetric matrices U satisfying ujk = 0 if ω∗jk = 0.

In Lemma 2, we show that the penalized maximum likelihood estimator with the known

B∗ satisfies the oracle properties. Since B∗ is typically unknown in practice, one often

applies an univariate regression technique to obtain an estimator for B∗. With slight modi-

fication of Lemma 2, we can show that the PWGL solution also enjoys the oracle properties.

Denote the PWGL estimator of Ω∗ with the penalty parameter λ2,n as Ω̂(2). Let Ω̂
(2)
0 be

the matrix obtained from Ω̂(2) by replacing ω̂
(2)
jk

with 0 if ω∗jk = 0. Then the following

theorem shows the oracle properties of the PWGL estimator.

Theorem 2. (Oracle properties of the PWGL solution) In addition to the assumptions in

Lemma 2, suppose that B̂ is a consistent estimator of B∗. Under the above conditions, we

have the following results:
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1. (Selection consistency) limnP (ω̂(2)jk
= 0) = 1 if ω∗jk = 0 ;

2. (Asymptotic normality)
√
n(Ω̂(2)0 −Ω

∗)→d argminV (U),
where V (U) = tr(UΣUΣ) + tr(UW ) and W is an m ×m random symmetric matrix

such that vec(W ) ∼N(0,Λ) in which cov(wij ,wkl) = cov(ǫ1iǫ1j , ǫ1kǫ1l). The minimum

is taken over all symmetric matrices U satisfying ujk = 0 if ω∗jk = 0.

Theorem 2 states that with a consistent estimator of B∗, the PWGL solution satisfies

the oracle properties.

2.3.3 Oracle properties of the DML solution

In Sections 2.3.1 and 2.3.2, we establish the oracle properties of plug-in estimators. In this

section, we explore oracle properties of the DML solution in which (B̂, Ω̂) are obtained

together. First, we show that with a proper choice of (λ1, λ2), there exists a
√
n-consistent

local minimizer of (2.11). Then we show that this local minimizer enjoys the oracle prop-

erties as a solution of the DML estimator.

The following lemma shows the existence of a local minimizer of (2.11) which is
√
n-

consistent.

lemma 3. Suppose that λ1,nn
− 1

2 → 0 and λ2,nn
− 1

2 → 0. Under the conditions (A1)-(A5),

there exists a local minimizer of (2.11) such that

∥(vec(B̂)T , vec(Ω̂)T )T − (vec(B∗)T , vec(Ω∗)T )T ∥ = Op(1/√n).
From Lemma 3, it is clear that there exists a

√
n-consistent doubly penalized max-

imum likelihood estimator. As the DML estimator of (B∗,Ω∗), denote by (B̂(n), Ω̂)
the
√
n-consistent local solution of (2.11) with the penalty parameter (λ1,n, λ2,n). Let

β̂(n) = vec(B̂(n)) and let β̂
(n)
A be the corresponding estimator of β∗A. Let Ω̂0 be the matrix

obtained from Ω̂ by replacing ω̂jk with 0 if ω∗jk = 0. We now show that with a proper choice

of (λ1, λ2), the DML estimator as this local minimizer enjoys the oracle properties in the

following theorem.

Theorem 3. (Oracle properties of the DML solution) Suppose that λ1,nn
− 1

2 → 0 and

λ1,nn
γ−1
2 → ∞. In addition to that, suppose that λ2,nn

− 1
2 → 0 and λ2,n → ∞. Under
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the conditions (A1)-(A5), we have the following results:

1. limnP (β̂(n)jk
= 0) = 1 if β∗jk = 0 ;

2.
√
n(β̂(n)A − β∗A)→d N(0,D−1) ;

3. limnP (ω̂jk = 0) = 1 if ω∗jk = 0 ;

4.
√
n(Ω̂0 −Ω∗)→d argminV (U),

where V (U) = tr(UΣUΣ)+tr(UW ) and W is a m×m random symmetric matrix such

that vec(W ) ∼ N(0,Λ) in which cov(wij ,wkl) = cov(ǫ1iǫ1j , ǫ1kǫ1l). The minimum is

taken over all symmetric matrices U satisfying ujk = 0 if ω∗jk = 0.

2.4 Computational Algorithm

In this section, we describe computational algorithms to solve problems (2.8), (2.9), and

(2.11). In particular, we apply the GLASSO algorithm for (2.9). To solve the problems (2.8)

and (2.11), we apply the coordinate-descent algorithm as described in Peng et al. [2009],

which can be viewed as a modification of the shooting algorithm [Fu, 1998]. The basic idea

of the coordinate-descent algorithm is to optimize each parameter at one time while holding

the other parameters fixed at the current solution. The corresponding optimization at each

step can be very simple to solve.

We now describe the coordinate-descent algorithm for the PWL method in details.

Denote Ω̂ by (ω̂ij)m×m. Then (2.8) is equivalent to minimizing

n

∑
i=1

m

∑
k,l=1

ω̂kl(yik − p

∑
j=1

βjkxij)(yil − p

∑
j=1

βjlxij) + λ1∑
j,k

wjk ∣βjk∣ . (2.15)

Consider (2.15) as a function of βjk with other coefficients fixed. Then the minimizer of

(2.15) is equivalent to

argmin
βjk

⎡⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1
⎛⎝ω̂kk(yik − ∑

j′≠j
βj′kxij′ − βjkxij)2

+2 ∑
k′≠k

ω̂kk′(yik′ −∑
j

βjk′xij)(yik − ∑
j′≠j

βj′kxij′ − βjkxij)⎞⎠
⎫⎪⎪⎬⎪⎪⎭ + λ1wjk ∣βjk∣⎤⎥⎥⎥⎥⎦ .
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This problem is essentially a one-dimensional LASSO optimization which has a closed form

solution. Therefore, the algorithm can be summarized as follows:

Algorithm 1: the Coordinate-Descent Algorithm for the PWL Method

Step 1 (Initial value). Set the separate LASSO solution β
(old)
jk

; j = 1, ..., p, k = 1, ...,m, as

the initial value for B.

Step 2 (Updating rule). For j = 1, ..., p and k = 1, ...,m,

β
(new)
qr = β(old)qr , if q ≠ j and r ≠ k,

β
(new)
jk

= sign
⎛⎝∑

m
l=1 ω̂lk(e(old)l

)Txj

ω̂kkxjTxj
+ β(old)

jk

⎞⎠⎛⎝
RRRRRRRRRRRR
∑m

l=1 ω̂lk(e(old)l
)Txj

ω̂kkxjTxj
+ β(old)

jk

RRRRRRRRRRRR −
λ1wjk

2ω̂kkxjTxj

⎞⎠
+
,

where e
(old)
l

= yl −Xβl(old) and βl(old) = (β(old)1l , ..., β
(old)
pl
).

Step 3 (Iteration). Repeat Step 2 until convergence. Our stopping rule is that the change

of the objective function in (2.8) is less than δ = 0.1.

To be computationally more efficient, we combine the above algorithm with the active

shooting algorithm proposed by Peng et al. [2009]. The basic idea of the active shooting

algorithm is to update the coefficients within the active set until convergence instead of

iterating all coefficients at each step. The active set is defined as the set of currently nonzero

coefficients and it is typically small. Once the coefficients in the active set converge, then

we continue to update other coefficients. This step can speed up the algorithm significantly

if the final solution is very sparse.

Next we describe the problem (2.9) in the GLASSO framework. Since (2.9) is equivalent

to minimizing

− log det(Ω) + tr{ 1
n
(Y −XB̂)T (Y −XB̂)Ω} + λ2

n
∑
j≠k

vjk∣ωjk∣, (2.16)

we can apply the GLASSO algorithm [Friedman, Hastie and Tibshirani, 2008] to solve (2.9)

by substituting the sample covariance matrix with 1
n
(Y −XB̂)T (Y −XB̂). Therefore, the

algorithm for (2.9) proceeds as follows:

Algorithm 2: the GLASSO Algorithm for the PWGL Method

Step 1 (Estimator of B) Set the separate LASSO solution as the estimator, B̂, of B.

Step 2 (Estimator of Ω) Given B̂, apply the GLASSO algorithm to solve (2.16).
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Next, we combine Algorithm 1 and the GLASSO algorithm to solve problem (2.11) for

the doubly penalized method DML in Section 2.2.3. The algorithm can be summarized as

follows:

Algorithm 3: the Coordinate-Descent Algorithm for the DML Method

Step 1 (Initial values of B and Ω). Set the separate LASSO solution β
(old)
jk

; j = 1, ..., p, k =

1, ...,m, as the initial value for B and the solution of (2.9), Ω(old), as the initial value of Ω.

Step 2 (B updating rule). For a given Ω(old), update B(old) →B(new) with

B(new) = argmin
B

⎡⎢⎢⎢⎢⎣tr{(Y −XB)Ω(old)(Y −XB)T } + λ1∑
j,k

wjk ∣βjk∣⎤⎥⎥⎥⎥⎦ .
This step can be solved using the Algorithm 1.

Step 3 (Ω updating rule). For a given B(new), update Ω(old) →Ω(new) by

Ω(new) = argmin
Ω

[tr{ 1
n
(Y −XB(new))T (Y −XB(new))Ω} − log det(Ω) + λ2

n
∑
s≠t

vst ∣ωst∣] .
This can be solved using the GLASSO algorithm.

Step 4 (Iteration). Repeat Steps 2 and 3 until convergence. Our stopping rule is that the

change of the objective function in (2.11) is less than δ = 0.1.

Based on our experiment, the coordinate-descent algorithm works very efficiently. Since

the DML method involves estimation of both B and Ω, the computation can be inten-

sive when the dimension is high. We consider a prescreening step to speed up the com-

putation. In particular, we adapt the group lasso method considered by Yuan and Lin

[2006] and Meier, van de Geer and Buhlmann [2008]. The basic idea of the group lasso

method is to employ group penalty in the regression problem so that model selection can be

achieved in terms of group selection. In our multiple response variable regression problem,

(βj1, ..., βjm); j = 1, ..., p, can be considered as p groups. Therefore, for the prescreening

step, the group lasso estimator, B̂group of B, is given as the minimizer of the following

penalized function

n

∑
i=1

m

∑
k=1
(yik − p

∑
j=1

βjkxij)2 + λ p

∑
j=1

√
β2
j1 + ... + β

2
jm,

where λ is a tuning parameter. We screen out a variable if the corresponding coefficients
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are estimated as zeros for all response variables. In other words, we remove the variable xj

from our model if β̂group
j1 = ... = β̂group

jm = 0. This prescreening step can not only improve the

prediction performance as shown in our examples, but also speed up the computation.

2.5 Simulated Examples

In this section, we compare our proposed methods with several existing methods. The first

existing method we compare is the curds and whey (CW) method proposed by Breiman

and Friedman [1997]. We use the CW with the generalized cross validation (CW-GCV)

when p < n and the CW with the ridge regression (CW-RR) when p ≥ n. The other two

methods are the separate ridge regression (RR) and the separate LASSO. In particular, we

apply the RR and the LASSO to each response variable separately. The LASSO solution is

constructed by the LARS algorithm proposed by Efron et al. [2004].

For comparison, consider three simulated examples with different Ω structures. In all

examples, yi is a 10-dimensional multivariate vector and the predictors xi (i = 1, ..., n) are
i.i.d. normal vectors from N(0, Ip). For each example, we simulate samples with size n

(n = 40,60,100,150, 200) and dimension p of predictors (p = 20,40). The true regression

coefficients for predictors are the following:

• For j = 13, ..., p, βj,k = 0 (k = 1, ..,10), which makes predictor xj random noise if j ≥ 13.

• For j = 1, ...,10, βj,j = 3, βj,j+1 = 4, βj,j+2 = 3, and otherwise βj,k = 0.5.

We consider the following three different Ω structures:

• Example 1: Banded inverse covariance matrix

ωi,i = i/5, ωi,i+1 = ωi+1,i = (i(i + 1)/100)1/2 (i = 1, ..,9), otherwise ωi,j = 0.

• Example 2: Sparse inverse covariance matrix

ωi,i = i/5, ωi,j = ((i × j)/100)1/2 (i ≠ j, max(i, j) ≤ 5), otherwise ωi,j = 0.

• Example 3: Non-sparse inverse covariance matrix

ωi,i = 1, ωi,j = 0.5 (i ≠ j).
For illustration, we show inverse covariance structures of these three examples in Figure

2.2. The structure of the inverse covariance in Example 1 is banded. Example 2 has a

nonzero block on the lower left corner and Example 3 has no zero entries in Ω.
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Figure 2.2: Inverse Covariance Structures for Examples 1-3. Example 1 has banded inverse
covariance structures. The off-diagonal elements in Example 2 are zeros except the lower
left block. All elements in Example 3 are non-zeros.

For the tuning parameter selection, we generate a tuning set with the same size n of

the training set. There are two tuning parameters: λ1 is for B estimation and λ2 is for Ω

estimation. As the criterion of parameter selection for B estimation, we use the predictive

squared error (PSE)

PSE(Y, Ŷ) = tr{(Ŷ −Y)T (Ŷ −Y)}.
The PSE measures predictive accuracy with squared error. For the tuning parameter selec-

tion in Ω estimation, we use the entropy criterion (Ent)[Huang et al., 2006] as follows:

Ent(Ω, Ω̂) = tr(Ω−1Ω̂) − log(∣Ω−1Ω̂∣) −m.

The Ent measures the difference of two matrices. For the RR estimator and the LASSO

estimator, we apply the RR and the LASSO to each response vector yk (k = 1, ...,m)
separately and select the tuning parameter which minimizes PSE in the tuning set. As

mentioned in Section 2.4, the separate LASSO estimator is used as B̂ in our PWGL method.

For our PWGL estimator, the tuning parameter is selected by minimizing Ent in the tuning

set. For our PWL estimator, we first estimate Ω by using the GLASSO. The tuning

parameter of the GLASSO is selected by minimizing Ent in the tuning set. For the tuning

parameter in B estimation, λ1 is selected by minimizing PSE in the tuning set. Based on

our observation, a reasonable choice of λ2 is around [0.25, 1]. To avoid two-dimensional
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Figure 2.3: Averages of RMSE with p=20 for simulated Examples 1-3.
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Figure 2.4: Averages of RMSE with p=40 for simulated Examples 1-3.

grid search of our DML method, we first select λ1 which minimizes PSE in the tuning

set while we fix λ2 = 0.5. Then we select λ2 which minimizes Ent in the tuning set with

the selected λ1. In all examples, we use 1/√βRR
jk

as the weights wjk in our two proposed

methods, PWL and DML, where βRR
jk is the ridge regression estimator obtained by applying

the ridge regression to each response variable yk [Zou, 2006].

To compare prediction accuracy among methods, we report the standardized version of

root mean square error (RMSE)

[ 1

nm
tr{(Y −XB̂)Ω(Y −XB̂)T }]1/2 .

We also report ratio of correctly identified zero coefficients among true zero coefficients in

the B estimation step to compare the percentage of sparsity obtained. For the comparison

of the Ω estimation, we report the entropy, Ent(Ω, Ω̂).
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Table 2.1: Averages of RMSE and standard errors based on 100 replications (The numbers
in parentheses are standard errors).

n=40 n=60 n=100 n=150 n=200
Example 1
CW 1.43 (0.009) 1.24 (0.004) 1.13 (0.003) 1.08 (0.002) 1.06 (0.002)
RR 1.71 (0.023) 1.38 (0.010) 1.17 (0.005) 1.10 (0.003) 1.08 (0.002)
LASSO 1.72 (0.024) 1.45 (0.014) 1.21 (0.007) 1.13 (0.005) 1.10 (0.003)
PWL 1.70 (0.034) 1.28 (0.009) 1.13 (0.003) 1.08 (0.002) 1.06 (0.002)
DML 1.41 (0.020) 1.20 (0.006) 1.11 (0.003) 1.07 (0.002) 1.05 (0.002)
DMLw/prescreening 1.41 (0.021) 1.20 (0.006) 1.11 (0.003) 1.07 (0.002) 1.05 (0.002)
Oracle 1.00 (0.003) 1.00 (0.002) 1.00 (0.003) 1.00 (0.002) 1.00 (0.002)
Example 2
CW 1.46 (0.009) 1.26 (0.005) 1.13 (0.003) 1.08 (0.002) 1.06 (0.002)
RR 1.45 (0.010) 1.25 (0.004) 1.13 (0.004) 1.08 (0.002) 1.06 (0.002)
LASSO 1.44 (0.010) 1.25 (0.005) 1.13 (0.003) 1.09 (0.002) 1.06 (0.002)

p = 20 PWL 1.48 (0.016) 1.24 (0.005) 1.12 (0.003) 1.07 (0.002) 1.05 (0.002)
DML 1.40 (0.009) 1.22 (0.005) 1.11 (0.003) 1.07 (0.002) 1.05 (0.002)
DMLw/prescreening 1.40 (0.009) 1.22 (0.005) 1.11 (0.003) 1.07 (0.002) 1.05 (0.002)
Oracle 1.00 (0.003) 1.00 (0.002) 1.00 (0.003) 1.00 (0.002) 1.00 (0.002)
Example 3
CW 1.46 (0.009) 1.25 (0.005) 1.13 (0.003) 1.08 (0.002) 1.06 (0.002)
RR 1.56 (0.015) 1.30 (0.006) 1.15 (0.004) 1.09 (0.002) 1.07 (0.002)
LASSO 1.78 (0.022) 1.42 (0.009) 1.20 (0.005) 1.13 (0.003) 1.10 (0.003)
PWL 1.54 (0.020) 1.27 (0.006) 1.13 (0.004) 1.08 (0.003) 1.06 (0.002)
DML 1.51 (0.018) 1.21 (0.004) 1.11 (0.003) 1.06 (0.002) 1.05 (0.002)
DMLw/prescreening 1.49 (0.017) 1.21 (0.004) 1.11 (0.003) 1.06 (0.002) 1.05 (0.002)
Oracle 1.00 (0.003) 1.00 (0.002) 1.00 (0.003) 1.00 (0.002) 1.00 (0.002)
Example 1
CW 4.29 (0.059) 1.67 (0.011) 1.25 (0.004) 1.15 (0.003) 1.11 (0.002)
RR 3.64 (0.048) 2.14 (0.025) 1.45 (0.010) 1.23 (0.005) 1.15 (0.003)
LASSO 2.32 (0.035) 1.82 (0.022) 1.45 (0.011) 1.28 (0.007) 1.18 (0.004)
PWL 2.62 (0.045) 2.17 (0.019) 1.41 (0.011) 1.21 (0.004) 1.14 (0.003)
DML 2.29 (0.042) 1.42 (0.014) 1.17 (0.003) 1.10 (0.002) 1.07 (0.002)
DMLw/prescreening 1.93 (0.037) 1.32 (0.011) 1.14 (0.004) 1.09 (0.002) 1.07 (0.002)
Oracle 1.00 (0.003) 0.99 (0.002) 1.00 (0.002) 1.00 (0.002) 1.00 (0.001)
Example 2
CW 3.80 (0.069) 1.70 (0.011) 1.28 (0.004) 1.16 (0.003) 1.12 (0.002)
RR 3.24 (0.062) 1.74 (0.014) 1.31 (0.004) 1.17 (0.003) 1.12 (0.002)
LASSO 1.96 (0.032) 1.50 (0.013) 1.25 (0.005) 1.15 (0.003) 1.10 (0.002)

p = 40 PWL 2.03 (0.037) 1.51 (0.017) 1.21 (0.005) 1.12 (0.003) 1.08 (0.002)
DML 2.02 (0.034) 1.48 (0.011) 1.19 (0.003) 1.09 (0.002) 1.06 (0.002)
DMLEw/prescreening 1.71 (0.058) 1.43 (0.009) 1.17 (0.004) 1.09 (0.002) 1.06 (0.002)
Oracle 1.00 (0.004) 0.99 (0.003) 1.00 (0.002) 1.00 (0.002) 1.00 (0.001)
Example 3
CW 4.54 (0.091) 1.68 (0.011) 1.27 (0.004) 1.16 (0.003) 1.11 (0.002)
RR 3.94 (0.082) 1.98 (0.023) 1.36 (0.006) 1.19 (0.003) 1.13 (0.002)
LASSO 2.75 (0.050) 2.00 (0.027) 1.49 (0.009) 1.29 (0.006) 1.21 (0.004)
PWL 2.20 (0.054) 1.55 (0.017) 1.22 (0.005) 1.13 (0.003) 1.08 (0.002)
DML 2.62 (0.081) 1.55 (0.018) 1.28 (0.012) 1.08 (0.002) 1.06 (0.002)
DMLw/prescreening 1.97 (0.080) 1.47 (0.015) 1.27 (0.013) 1.08 (0.002) 1.06 (0.002)
Oracle 1.00 (0.003) 0.99 (0.003) 1.00 (0.002) 1.00 (0.002) 1.00 (0.001)
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Table 2.1 reports the RMSE results for different settings and Figures 2.3-2.4 summarize

the results. In terms of the RMSE criterion, our proposed method DML shows the best

results in all examples. As n increases, performance of all methods gets closer to oracle,

[ 1
nm

tr{(Y −XB)Ω(Y −XB)T }]1/2, which is the true underlying error. In Example 1 with

p = 20, our proposed method PWL shows better performance than RR or LASSO. Although

PWL is worse than CW when n < 100, it shows similar performance if n ≥ 100. As p

increases, PWL performs worse than LASSO when n is small. It indicates that GLASSO

estimation of inverse covariance matrix may not be good enough when the sample size is

very small. However, as n increase, it performs more competitively. Notice that DML

shows best performance even when p = 40 and n is small. In Example 2 when p = 20, all

methods give similar RMSEs. This is natural as the inverse covariance matrix in Example

2 is close to the diagonal matrix. Therefore, the separate approach and joint approach give

similar results. When p = 40 and n ≤ 60, RR and CW perform poorly although LASSO,

PWL, and DML show similar performance as in the case when p = 20. This is because RR

and CW estimators may not work well in ill-conditioned cases. In Example 3, the inverse

covariance matrix is not sparse. LASSO gives the worst RMSE while the other methods

show similar performance except the case when n = p. This implies that joint approaches

outperform separate approaches in this case. Overall, the proposed DML method works

the best in terms of the RMSE. The PWL method also works reasonably well in all cases,

although it is not as accurate as the DML estimator. With respect to the prescreening

step in the algorithm for the DML method, we can see that it even improves the prediction

performance when p = 40 and n is small.

Table 2.2 reports ratios of correctly identified zero coefficients and they are summarized

in Figures 2.5-2.6. When p = 20, Example 1 shows that DML outperforms LASSO and PWL

in terms of ratios of correctly identified zero coefficients. As n increases, performances of

three methods get closer. In Examples 2 and 3, DML and PWL identify zero coefficients

more accuately than LASSO. We also notice that the ratios of correctly identified zeros for

PWL and DML increase as n increases while the ratio for LASSO does not. The results

support the selection consistency we have proved in Section 2.3. When p = 40, Examples

2-3 also show the better performance of PWL. In Examples 2-3, we notice that the ratios

for DML tend to increase as n increases as we expected.
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Table 2.2: Averages of ratio of correctly identified zero coefficients and standard errors
based on 100 replications (The numbers in parentheses are standard errors).

n=40 n=60 n=100 n=150 n=200
Example 1
LASSO 0.45 (0.013) 0.39 (0.012) 0.30 (0.009) 0.27 (0.007) 0.27 (0.007)
PWL 0.39 (0.019) 0.25 (0.013) 0.19 (0.010) 0.22 (0.011) 0.22 (0.010)
DML 0.44 (0.013) 0.53 (0.010) 0.39 (0.014) 0.36 (0.016) 0.33 (0.014)
DMLw/prescreening 0.49 (0.016) 0.56 (0.011) 0.41 (0.015) 0.38 (0.017) 0.36 (0.016)
Oracle 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
Example 2
LASSO 0.32 (0.010) 0.29 (0.009) 0.26 (0.007) 0.25 (0.007) 0.27 (0.007)
PWL 0.61 (0.015) 0.57 (0.013) 0.59 (0.009) 0.65 (0.010) 0.69 (0.008)

p = 20 DML 0.40 (0.011) 0.45 (0.012) 0.46 (0.012) 0.48 (0.012) 0.53 (0.013)
DMLw/prescreening 0.41 (0.012) 0.46 (0.012) 0.47 (0.012) 0.49 (0.012) 0.53 (0.013)
Oracle 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
Example 3
LASSO 0.36 (0.010) 0.29 (0.008) 0.25 (0.007) 0.25 (0.006) 0.27 (0.006)
PWL 0.64 (0.014) 0.58 (0.012) 0.59 (0.010) 0.65 (0.008) 0.71 (0.011)
DML 0.42 (0.010) 0.44 (0.009) 0.46 (0.008) 0.52 (0.007) 0.59 (0.010)
DMLw/prescreening 0.43 (0.011) 0.44 (0.009) 0.46 (0.008) 0.53 (0.008) 0.59 (0.010)
Oracle 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
Example 1
LASSO 0.67 (0.007) 0.61 (0.009) 0.54 (0.010) 0.51 (0.008) 0.49 (0.008)
PWL 0.79 (0.006) 0.64 (0.006) 0.42 (0.010) 0.38 (0.007) 0.38 (0.007)
DML 0.49 (0.012) 0.53 (0.011) 0.52 (0.012) 0.56 (0.012) 0.55 (0.011)
DMLw/prescreening 0.72 (0.012) 0.64 (0.010) 0.66 (0.013) 0.68 (0.012) 0.62 (0.010)
Oracle 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
Example 2
LASSO 0.59 (0.007) 0.53 (0.008) 0.49 (0.008) 0.48 (0.006) 0.49 (0.008)
PWL 0.87 (0.006) 0.84 (0.006) 0.81 (0.005) 0.81 (0.006) 0.85 (0.004)

p = 40 DML 0.57 (0.009) 0.40 (0.006) 0.56 (0.012) 0.69 (0.004) 0.68 (0.003)
DMLw/prescreening 0.51 (0.019) 0.47 (0.010) 0.67 (0.011) 0.70 (0.006) 0.69 (0.005)
Oracle 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
Example 3
LASSO 0.62 (0.006) 0.55 (0.008) 0.49 (0.008) 0.47 (0.007) 0.48 (0.007)
PWL 0.87 (0.006) 0.83 (0.007) 0.78 (0.007) 0.85 (0.006) 0.82 (0.003)
DML 0.56 (0.013) 0.41 (0.008) 0.59 (0.013) 0.69 (0.007) 0.69 (0.003)
DMLw/prescreening 0.53 (0.022) 0.48 (0.012) 0.64 (0.011) 0.70 (0.006) 0.71 (0.005)
Oracle 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
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Figure 2.5: Averages of ratio of correctly identified zero coefficients with p=20.
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Figure 2.6: Averages of ratio of correctly identified zero coefficients with p=40.
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Figure 2.7: Averages of Entropy with p=20.

Figures 2.7-2.8 summarize the entropy results of two methods: PWGL and DML. In all

examples when p = 20, the DML estimator shows the best performance. When p = 40 and

n ≤ 60, PWGL outperforms DML. Since the DML method simultaneously estimates both

B and Ω, with a small n, the Ω estimation may not be as good. However, as n increases,

DML outperforms PWGL in all examples.

2.6 Application to a Glioblastoma Cancer Data

In this section, we apply our methodology to a glioblastoma multiforme (GBM) cancer

data set studied by the Cancer Genome Atlas (TCGA) Research Network [TCGA, 2008].

As pointed out by TCGA, GBM is the most common primary form of brain tumor in

adults. In our application, the data set contains 192 samples. Each sample has 11861 gene

expression values and 535 microRNA expression values. Detailed documentation of the data
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Figure 2.8: Averages of Entropy with p=40.

Table 2.3: Averages of PSE and the number of included genes based on 10 replications (The
numbers in parentheses are standard errors).

CW RR LASSO PWL DML
PSE 1.298 (0.038) 1.359 (0.045) 1.242 (0.035) 1.248 (0.032) 1.229 (0.032)
Number of included genes 500 (0.000) 500 (0.000) 158 (34.170) 17 (13.565) 78 (32.151)

can be found in Verhaak et al. [2010]. One of the main goals is to regress microRNAs on

gene expressions to see how gene expressions can predict microRNAs. The other goal is

to examine the underlying networks among microRNAs. We utilize the inverse covariance

structure of microRNAs conditioned on gene expressions. To simplify the analysis, we

perform prescreening to select a subset of genes. In particular, we use the median absolute

deviation (MAD) to sort them and choose the top 500 genes with large MADs. Similar

prescreening is also performed to choose top 20 microRNAs.

To examine performance of different methods, we divide this data set into training set,

tuning set, and test set with 64 samples. Using the test set, we compare the performance of

our methods with the other existing methods. The separate LASSO, the separate RR, and

the CW are considered as competitors. Comparison among methods is performed in the

two ways. First, we compare prediction accuracy by using PSE as the criterion. Second,

we examine the number of included genes in each model.

Table 2.3 shows PSE and the number of included genes in each model. In terms of PSE,

our method, DML, performs best even though the PSE difference between DML and the

separate LASSO is not statistically significant in view of the standard errors. The PWL

and the separate LASSO show similar performance while they outperform the separate RR
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and the CW. In terms of the number of included genes, note that PWL and DML construct

sparser models than the separate LASSO. One possible explanation of this is that there

may be some strong positive correlations among microRNAs. As we have discussed in the

toy example of Section 2.2, with strong positive correlations among response variables, joint

methods tend to obtain more shrinkage than the separate LASSO. To explore this further,

we examine correlations among the selected 20 microRNAs via scatter plots. Some strong

correlations among the microRNAs are detected in scatter plots while negative correlations

are not strong. Figure 2.9 shows some of the scatter plots. These scatter plots further

demonstrate the usefulness of joint modeling and why our proposed PWL and DML methods

obtain sparser models than the LASSO. Interestingly, with much fewer number of gene

expressions than the separate LASSO, PWL and DML perform competitively in terms of

prediction accuracy as shown in Table 2.3.

Figure 2.10 shows an estimated conditional inverse covariance structure of microRNAs

given genes. The estimated inverse covariance is obtained from the model using our proposed

DML method with one typical training set. On the left panel of Figure 2.10, two different

microRNAs in Figure 2.9 are connected if their corresponding elements in the estimated

inverse covariance is nonzero. We see that each pair of strongly correlated microRNAs in

Figure 2.9 are also connected in this conditional dependence structure given genes. This

may imply that the selected 500 genes have little effect on these microRNA correlations. As

a final remark, we want to point out that the joint method may have numerical difficulty in

very high dimensional problems as pointed out in Section 2.2.3. Prescreening can be very

useful in that case.

2.7 Discussion

In this chapter, we proposed three methods for utilizing joint information among response

variables in a penalized likelihood framework with weighted L1 regularization. The pro-

posed methods provide both sparse estimators for the regression parameter matrix and

the conditional inverse covariance matrix of response vector given explanatory variables.

Our theoretical investigation shows that our proposed estimators enjoys oracle properties.

Simulated examples and an application to the GBM cancer data set demonstrate that our
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Figure 2.9: Scatter plots of eight selected microRNAs.
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proposed methods perform competitively.

Our current study assumes Gaussian distribution of the response vector. One future

research direction is to extend the proposed method with other distribution assumptions.

Although we mainly focus on the weighted L1 penalty, our methods can be directly extended

for other penalty functions as well. It will be interesting to compare the performance of

various choices of penalty in this context.

2.8 Proofs

2.8.1 Proof of Lemma 1

Asymptotic normality

Let Ỹ = ((y1)T , ..., (ym)T )T be the nm-dimensional response vector and ǫ̃ be the corre-

sponding nm-dimensional error vector which consists of ǫik; i = 1, ..., n, k = 1, ...,m. Let

β̃ = (β11, ..., βp1, ..., β1m, ..., βpm)T be the pm-dimensional vector and X̃ = Im ⊗X. Then the

minimizer of (2.6) is equivalent to

argmin
β̃

⎡⎢⎢⎢⎢⎣(Ỹ − X̃β̃)T (Ω⊗ In)(Ỹ − X̃β̃) + λ1∑
j,k

wjk ∣βjk∣⎤⎥⎥⎥⎥⎦ .

Let β̃ = β∗ + u√
n
and

Vn(u) = (Ỹ − X̃(β∗ + u√
n
))T (Ω⊗ In)(Ỹ − X̃(β∗ + u√

n
)) + λ1,n∑

j,k

wjk∣β∗jk + ujk√
n
∣.

Let û(n) = argminu Vn(u) and then û(n) =√n(β̂1
(n)
−β∗). Note that û(n) = argminu Vn(u) =

argminu{Vn(u) − Vn(0)} and
Vn(u) − Vn(0) = 1

n
uT X̃T (Ω⊗ In)X̃u −

2√
n
ǫ̃T (Ω⊗ In)X̃u

+λ1,n∑
j,k

wjk(∣β∗jk + ujk√
n
∣ − ∣β∗jk∣). (2.17)

We know that 1
n
uT X̃T (Ω⊗ In)X̃u = uT (Ω⊗ 1

n
XTX)u → uT (Ω⊗A)u. For the second term

of the right hand side of (2.17), note that ǫ̃ ∼ N(0,Σ ⊗ In). Thus, 1√
n
ǫ̃T (Ω ⊗ In)X̃ →d Z

where Z ∼N(0,Ω⊗A) as 1
n
X̃T (Ω⊗ In)(Σ⊗ In)(Ω⊗ In)X̃ = 1

n
X̃T (Ω⊗ In)X̃ →Ω⊗A. Now
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we consider the last term of the right hand side of (2.17):

• If β∗jk = 0, then λ1,nwjk(∣β∗jk + ujk√
n
∣ − ∣β∗jk∣) = λ1,n√

n
wjk∣ujk∣ = λ1,nn

γ−1
2

∣ujk ∣
(√n∣β̃jk ∣)γ → ∞ as√

nβ̃jk = Op(1).
• if β∗jk ≠ 0, then λ1,nwjk(∣β∗jk + ujk√

n
∣ − ∣β∗jk∣) = λ1,n√

n
wjk

√
n(∣β∗jk + ujk√

n
∣ − ∣β∗jk∣). Note that

λ1,n√
n
→ 0, wjk →p

1
∣β∗

jk
∣γ and

√
n(∣β∗jk + ujk√

n
∣ − ∣β∗jk∣) → ujksign(β∗jk). By the Slutsky’s

theorem, λ1,nwjk(∣β∗jk + ujk√
n
∣ − ∣β∗jk∣)→p 0.

By combining above statements and using the Slutsky’s theorem again, we obtain the

following:

Vn(u) − Vn(0)→d V (u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uTADuA − 2uTAZA if ujk = 0 for all (j, k) ∉ A,
∞ if otherwise,

where uA consists of ujk for (j, k) ∈ A and ZA ∼N(0,D).
Let û = argminu V (u). Then we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ûA =D−1ZA,

ûjk = 0 ∀(j, k) ∉ A.
Note that Vn(u)−Vn(0) is convex and so argminu(Vn(u)−Vn(0)) →d argminu V (u). Since
ZA ∼ N(0,D), thus û

(n)
A →d N(0,D−1). Finally, we have that û

(n)
A =

√
n(β̂1

(n)
A − β∗A) →d

D−1ZA as n→∞.

Selection consistency

We need to show that ∀(j, k) ∉ A, P (β̂1
(n)
jk ≠ 0) → 0. For fixed (j, k) ∉ A, let (j, k) ∈ A1

n.

Then ∣β̂1
(n)
jk ∣ ≠ 0 and so we have that 2x̃T

jk(Ω ⊗ In)(Ỹ − X̃β̂1
(n)) = λ1,nwjksign(β̂1

(n)
jk ) by

the KKT conditions where x̃jk is (j + (k − 1))-th row of X̃. Therefore, P (β̂1
(n)
jk ≠ 0) ≤

P (2x̃T
jk(Ω⊗ In)(Ỹ − X̃β̂1

(n)) = λ1,nwjksign(β̂1
(n)
jk )). Note that

2x̃T
jk(Ω⊗ In)(Ỹ − X̃β̂1

(n))√
n

=
2x̃T

jk(Ω⊗ In)X̃√n(β∗ − β̂1
(n))

n
+
2x̃T

jk(Ω⊗ In)ǫ̃√
n

.

From the asymptotic normality part, we know that
2x̃T

jk
(Ω⊗In)X̃√n(β∗−β̂1

(n))
n

converges in

distribution to some normal random vector. We also have that
2x̃T

jk
(Ω⊗In)ǫ̃√

n
→d N(0, (Ω ⊗

A)jk,jk) where (Ω⊗A)jk,jk is the (j+(k−1))-th diagonal element ofΩ⊗A. As
λ1,nwjksign(β̂1

(n)

jk )√
n

=

λ1,nn
γ−1
2
sign(β̂1

(n)

jk )
(√n∣β̃jk ∣)γ → ±∞ with

√
nβ̃jk = Op(1), we have P (2x̃T

jk(Ω ⊗ In)(Ỹ − X̃β̂1
(n)) =
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λ1,nwjksign(β̂1
(n)
jk ))→ 0. Therefore, P (β̂1

(n)
jk ≠ 0)→ 0 as n→∞.

2.8.2 Proof of Theorem 1

The proof is similar to that of Lemma 1 except we replace Ω by Ω̂.

Asymptotic normality

Note that (2.8) is equivalent to

argmin
β̃

⎡⎢⎢⎢⎢⎣(Ỹ − X̃β̃)T (Ω̂⊗ In)(Ỹ − X̃β̃) + λ1∑
j,k

wjk ∣βjk∣⎤⎥⎥⎥⎥⎦ .

Let β̃ = β∗ + u√
n
and

V ∗n (u) = (Ỹ − X̃(β∗ + u√
n
))T (Ω̂⊗ In)(Ỹ − X̃(β∗ + u√

n
)) + λ1,n∑

j,k

wjk ∣β∗jk + ujk√
n
∣ .

Let û(n) = argminu V
∗
n (u) and then û(n) =√n(β̂2

(n)
− β∗). We can show that

V ∗n (u) − V ∗n (0) =Vn(u) − Vn(0) + 1

n
uT X̃T ((Ω̂ −Ω)⊗ In)X̃u

−
2√
n
ǫ̃T ((Ω̂ −Ω)⊗ In)X̃u,

where Vn(u) is defined in the proof of Lemma 1. As the Ω̂ is a consistent estimator of

Ω, 1
n
uT X̃T ((Ω̂ −Ω) ⊗ In)X̃u →p 0 and 2√

n
ǫ̃T ((Ω̂ −Ω) ⊗ In)X̃u →d 0. From the proof of

Lemma 1, we also know that Vn(u) − Vn(0) →d V (u). By combining the above statements

and using Slutsky’s theorem, we have that V ∗n (u) − V ∗n (0) →d V (u). By using the same

arguments in the proof of Lemma 1, finally we have that û
(n)
A =

√
n(β̂2

(n)
A −β∗A)→d D

−1ZA

as n→∞.

Selection consistency

Now it suffices to show that ∀(j, k) ∉ A, P (β̂2
(n)
jk ≠ 0) → 0 as n → ∞. For fixed (j, k) ∉

A, let (j, k) ∈ A2
n. Then ∣β̂2

(n)
jk ∣ ≠ 0 and so we have that 2x̃T

jk(Ω̂ ⊗ In)(Ỹ − X̃β̂2
(n)) =

λ1,nwjksign(β̂2
(n)
jk ) by the KKT conditions. Therefore, P (β̂2

(n)
jk ≠ 0) ≤ P (2x̃T

jk(Ω̂⊗ In)(Ỹ −
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X̃β̂2
(n)) = λ1,nwjksign(β̂2

(n)
jk )). Note that

2x̃T
jk(Ω̂⊗ In)(Ỹ − X̃β̂2

(n))√
n

=
2x̃T

jk(Ω̂⊗ In)X̃√n(β∗ − β̂2
(n))

n
+
2x̃T

jk(Ω̂⊗ In)ǫ̃√
n

.

From the asymptotic normality part and the fact that Ω̂ is consistent, we know that

2x̃T
jk
(Ω̂⊗In)X̃√n(β∗−β̂2

(n))
n

converges in distribution to some normal random vector. We also

have that
2x̃T

jk
(Ω̂⊗In)ǫ̃√

n
→d N(0, (Ω ⊗A)jk,jk). As

λ1,nwjksign(β̂2
(n)

jk )√
n

= λ1,nn
γ−1
2
sign(β̂2

(n)

jk )
(√n∣β̂jk ∣)γ →

±∞, we have P (2x̃T
jk(Ω̂⊗In)(Ỹ−X̃β̂2

(n)) = λ1,nwjksign(β̂2
(n)
jk )) → 0. Therefore, P (β̂2

(n)
jk ≠

0)→ 0 as n→∞.

2.8.3 Proof of Lemma 2

Let R = 1
n
(Y −XB∗)T (Y −XB∗). With given B∗, define Q(Ω) as

Q(Ω) = −n log det(Ω) + ntr(ΩR) + λ2,n∑
j≠k

vjk∣ωjk∣. (2.18)

Selection consistency

Using the definition of Q(Ω) in (2.18), define Vn(U) as
Vn(U) = Q(Ω∗ + U√

n
) −Q(Ω∗)

= −n log det((Ω∗ + U√
n
)Ω∗−1) + ntr(UR√

n
) + λ2,n∑

j≠k
vjk(∣ω∗jk + ujk√

n
∣ − ∣ω∗jk∣).

Using a similar argument as in the proof of Theorem 1 in Yuan and Lin (2007), it can be

shown that

Vn(U) = tr(UΣUΣ) + tr[U√n(R −Σ)] + λ2,n∑
j≠k

vjk(∣ω∗jk + ujk√
n
∣ − ∣ω∗jk∣) + o(1).
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Note that as vst = 1
∣ω̃st∣ , λ2,nn

− 1
2 → 0, and ω̃jk →p ω

∗
jk , we have

λ2,n∑
j≠k

vjk(∣ω∗jk + ujk√
n
∣ − ∣ω∗jk∣) = λ2,n ∑

ω∗
jk
=0
∣ujk∣√
n∣ω̃jk∣ +

λ2,n√
n
∑

ω∗
jk
≠0
( ∣ujk ∣∣ω̃jk∣sign(ω∗jk) + o(1))

= λ2,n ∑
ω∗
jk
=0
∣ujk∣√
n∣ω̃jk∣ + op(1).

On the other hand,
√
n(R −Σ) →d N(0,Λ) by the central limit theorem as R = 1

n ∑
n
i ǫiǫ

T
i .

Therefore, Vn(U) can be written as

Vn(U) = tr(UΣUΣ) + tr(UWn) + λ2,n ∑
ω∗
jk
=0
∣ujk∣√
n∣ω̃jk∣ + op(1),

where Wn →d N(0,Λ). Denote by Û the minimizer of Vn(U). Note that λ2,n → ∞ and√
n∣ω̃jk∣ = Op(1). Therefore, if ω∗jk = 0, P (ûjk = 0)→ 1 as n→∞. This completes the proof

of the variable selection consistency.

Asymptotic normality

Suppose U satisfies that ujk = 0 if ω∗jk = 0. Then, Vn(U) can be written as

Vn(U) = tr(UΣUΣ) + tr[U√n(R −Σ)] + op(1).
By using the Slutsky’s theorem, we have that

Vn(U) →d V (U) = tr(UΣUΣ) + tr(UW ) where vec(W ) ∼N(0,Λ).
Since Vn(U) and V (U) are both convex and V (U) has a unique minimum, argminVn(U)→d

argminV (U). From the fact that argminVn(U) = argminQ(Ω∗ + U√
n
) = √n(Ω̂1

0 − Ω∗),
argminVn(U) =√n(Ω̂1

0−Ω
∗)→d argminV (U). This completes the proof of the asymptotic

normality.
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2.8.4 Proof of Theorem 2

With a
√
n-consistent estimator B̂ of B, let R̂ = 1

n
(Y −XB̂)T (Y −XB̂). Define Q(Ω) as

Q(Ω) = −n log det(Ω) + ntr(ΩR̂) + λ2,n∑
j≠k

vjk∣ωjk∣. (2.19)

By using the above definition, define Vn(U) as
Vn(U) = Q(Ω∗ + U√

n
) −Q(Ω∗)

= −n log det((Ω∗ + U√
n
)Ω∗−1) + ntr(UR̂√

n
) + λ2,n∑

j≠k
vjk(∣ω∗jk + ujk√

n
∣ − ∣ω∗jk∣).

Note that

ntr(UR̂√
n
) = ntr(U(R̂ −R)√

n
) + ntr(UR√

n
).

Therefore, by the proof of Lemma 2 and the Slutsky’s theorem, it suffices to show that

ntr(U(R̂ −R)√
n

) = op(1). (2.20)

The left-hand side of (2.20) can be written as

ntr(U(R̂ −R)√
n

) = tr( U√
n
(Y −XB̂)T (Y −XB̂)) − tr( U√

n
(Y −XB)T (Y −XB))

= tr(U√n(B̂ −B)T XTX

n
(B̂ −B)) − 2tr(U (Y −XB)TX√

n
(B̂ −B)),

where we add and subtract XB in the first term. Since
√
n(B̂ −B) = Op(1), (Y−XB)TX√

n
=

Op(1), (B̂ −B) = op(1) and 1
n
XTX → A, (2.20) holds.

2.8.5 Proof of Lemma 3

Define Q(B,Ω) for the jointly penalized likelihood as

Q(B,Ω) = −n log det(Ω) + tr {Ω(Y −XB)T (Y −XB)} + λ1,n∑
j,k

wjk ∣βjk∣ + λ2,n∑
s≠t

vst ∣ωst∣ .
(2.21)
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To show the results, we use the similar idea of the proof of Theorem 1 in Fan and Li [2001].

It suffices to show that for any given δ > 0, there exists a large constant D such that

P{ sup
∣∣U ∣∣=D

Q(B∗ + U1√
n
,Ω∗ + U2√

n
) >Q(B∗,Ω∗)} ≥ 1 − δ, (2.22)

where U = (vec(U1)T ,vec(U2)T )T . Using the definition of Q(B,Ω) in (2.21), define Vn(U)
as

Vn(U) =Q(B∗ + U1√
n
,Ω∗ + U2√

n
) −Q(B∗,Ω∗).

Since ∣β∗jk + u1jk√
n
∣ − ∣β∗jk ∣ = ∣u1jk√

n
∣ for β∗jk = 0 and ∣ω∗st + u2st√

n
∣ − ∣ω∗st∣ = ∣u2st√

n
∣ for ω∗st = 0,

Vn(U) ≥ −n log det((Ω∗ + U2√
n
)Ω∗−1) + tr{(Ω∗ + U2√

n
)(Y −X(B∗ + U1√

n
))T (Y −X(B∗ + U1√

n
))}

− tr{Ω∗(Y −XB∗)T (Y −XB∗)} + λ1,n ∑
βkj≠0

wjk(∣β∗jk + u1jk√
n
∣ − ∣β∗jk ∣)

+ λ2,n ∑
ωst≠0

vst(∣ω∗st + u2st√
n
∣ − ∣ω∗st∣)

= −n log det((Ω∗ + U2√
n
)Ω∗−1) + tr{ U2√

n
(Y −XB∗)T (Y −XB∗)}

+ tr{(Ω∗ + U2√
n
)(XU1√

n
)T (XU1√

n
)} − 2tr{(Ω∗ + U2√

n
)(Y −XB∗)T (XU1√

n
)}

+ λ1,n ∑
βkj≠0

wjk(∣β∗jk + u1jk√
n
∣ − ∣β∗jk∣) + λ2,n ∑

ωst≠0
vst(∣ω∗st + u2st√

n
∣ − ∣ω∗st∣). (2.23)

For the first term and the second term on the right-hand side of (2.23), it has been shown

in Lemma 2 that

−n log det((Ω∗ + U2√
n
)Ω∗−1) + tr{ U2√

n
(Y −XB∗)T (Y −XB∗)} = tr(U2ΣU2Σ) + tr(U2Wn).

Let Ũ1 = vec(U1). For the third term on the right-hand side of (2.23), as 1
n
XTX→ A, note

that

tr{(Ω∗ + U2√
n
)(XU1√

n
)T (XU1√

n
)} = ŨT

1 {(Ω∗ + U2√
n
)⊗ (XTX

n
)}Ũ1 = ŨT

1 (Ω∗ ⊗A)Ũ1 + o(1).
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For the fourth term on the right-hand side of (2.23), we have

tr{(Ω∗ + U2√
n
)(Y −XB∗)T (XU1√

n
)} = ŨT

1 ( X̃√
n
)T {(Ω∗ + U2√

n
)⊗ In}ǫ̃.

Note that ( X̃√
n
)T {(Ω∗ + U2√

n
)⊗ In}ǫ̃ →d Z where Z has multivariate normal distribution of

dimension n ×m. By combining above statements, we have

Vn(U) ≥ tr(U2ΣU2Σ) + tr(U2Wn) + ŨT
1 (Ω∗ ⊗A)Ũ1 + Ũ

T
1 Zn + op(1)

+ λ1,n ∑
βkj≠0

wjk(∣β∗jk + u1jk√
n
∣ − ∣β∗jk ∣) + λ2,n ∑

ωst≠0
vst(∣ω∗st + u2st√

n
∣ − ∣ω∗st∣).

As λ1,nn
− 1

2 → 0 and λ2,nn
− 1

2 → 0, we have

λ1,n ∑
β∗
jk
≠0
wjk(∣β∗jk + u1jk√

n
∣ − ∣β∗jk ∣) = λ1,n√

n
∑

β∗
jk
≠0
( ∣u1jk ∣∣β̃jk ∣γ sign(β∗jk) + o(1)) = op(1),

λ2,n ∑
ωst≠0

vst(∣ω∗st + u2st√
n
∣ − ∣ω∗st∣) = λ2,n√

n
∑

ω∗st≠0
( ∣u2st∣∣ω̃st∣ sign(ω∗st) + o(1)) = op(1).

Therefore,

Vn(U) ≥ tr(U2ΣU2Σ) + tr(U2Wn) + ŨT
1 (Ω∗ ⊗A)Ũ1 + Ũ

T
1 Zn + op(1). (2.24)

By choosing a sufficiently large D, Vn(U) > 0 uniformly on {U ∶ ∣∣U ∣∣ = D} with the prob-

ability greater than 1 − δ as Ω∗ and A are positive-definite, Wn = Op(1), and Zn = Op(1).
Therefore, (2.22) holds. This completes the proof of this lemma.

2.8.6 Proof of Theorem 3

As defined in Lemma 3, define Q(B,Ω) for the jointly penalized likelihood as

Q(B,Ω) = −n log det(Ω) + tr {Ω(Y −XB)T (Y −XB)} + λ1,n∑
j,k

wjk ∣βjk∣ + λ2,n∑
s≠t

vst ∣ωst∣ .

Note that (B̂(n), Ω̂) is a√n-consistent local minimizer ofQ(B,Ω). As B̂(n) = argminBQ(B, Ω̂)
and Ω̂ is

√
n-consistent, the oracle properties of B̂(n) hold by Theorem 1. Similarly, since

Ω̂ = argminΩQ(B̂(n),Ω) and B̂(n) is
√
n-consistent, the oracle properties of Ω̂ hold by
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Theorem 2. These complete the proof of this theorem.
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Chapter 3

Multiple Response Regression with

Mixture Gaussian Models

3.1 Introduction

In Chapter 2, we considered the multivariate response regression problem under the as-

sumption of multivariate Gaussian distribution. In particular, we assume that given the

covariates, the response vector follows an m-dimensional Gaussian distribution. In Section

2.2, we considered the three methods, PWL method, PWGL method, and DML method.

The methods in Chapter 2 can be very useful in dealing with high dimensional multi-

variate Gaussian data. However, in some applications, the assumption of a single Gaussian

distribution can be too strong. For example, in the GBM dataset considered in Section

2.6, Verhaak et al. [2010] showed that the GBM patients can be divided into four subtypes

based on their gene expressions and they call name as subtypes of Classical, Mesenchy-

mal, Neural, and Proneural. The gene expressions of patients within each subtype can be

very similar as shown in Figure 3.1. However, the gene expressions of patients in different

subtypes can be very different from each other. Therefore, the assumption of one multi-

variate Gaussian distribution for all patients may not be valid. For instance, Figure 3.2

shows the histogram and densities of gene expression levels of EGFR which is known to

be associated with the GBM cancer [Verhaak et al., 2010]. In Figure 3.2, we can see that

there are multiple modes in the distribution of all observations, which is not appropriate for

a single multivariate Gaussian distribution. On the other hand, within each subtype, the

corresponding distribution of the expression levels appears more reasonable for a normal
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Figure 3.1: Heatmaps of gene and microRNA expressions of GBM patients with four sub-
types.

distribution. The main reason for this phenomenon is that EGFR tends to be highly ex-

pressed in the classical subtype. In this chapter, we consider modeling the data arisen from

a mixture of several Gaussian distributions. Specifically, we model gene expression data of

the patients of a particular subtype by a multivariate Gaussian distribution, which can vary

from one subtype to another. Here we assume that the Gaussian mixture labels are given.

A naive approach to tackle this problem is to model each group separately. However, this

approach ignores the common structure that may exist across different groups. Therefore,

it might be more useful to model all groups jointly so that the common structure can be

estimated from the aggregated data.

In this chapter, parallel to the methods in Chapter 2, we propose three approaches

to model all groups jointly via penalizing parameter matrices together. The first two ap-

proaches are plug-in methods and the third one is to estimate all parameter matrices jointly.

In particular, for the first approach, we plug in a reasonable estimator of the inverse co-

variance matrices to estimate the regression parameter matrices. For the second approach,

we estimate the inverse covariance matrices instead after plugging in a good estimator of

the regression parameter matrices. The last approach simultaneously estimates the regres-

sion parameter matrices and the inverse covariance matrices. These methods are penalized

log-likelihood approaches with the multivariate mixture Gaussian assumption.
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Figure 3.2: Expression levels of the gene EGFR with four subtypes.

In the following sections, we describe the new proposed methods in more details with

theoretical justification. In Section 3.2, we introduce our proposed methodology. Section 3.3

explores theoretical properties of our proposed methods. Section 3.4 develops computational

algorithms to obtain solutions for proposed methods. Simulated examples are presented in

Section 3.5 to demonstrate performance of our methods and Section 3.6 provides analysis

of the glioblastoma cancer data. Section 3.7 provides some discussions. The proofs of the

theorems are provided in Section 3.8.

3.2 Methodology

Consider the dataset with G different groups. Suppose the g-th group contains ng obser-

vations of p covariates and m response variables. Let y(g)i = (y(g)i1 , ..., y
(g)

im)T ; i = 1, ..., ng ,

be m-dimensional responses and Y(g) = [y(g)1 , ...,y(g)ng
]T be the ng ×m response matrix in

the g-th group. Let x(g)i = (x(g)i1 , ..., x
(g)

ip )T ; i = 1, ..., ng , be p-dimensional predictors and

X(g) = [x(g)1 , ...,x(g)ng
]T be the ng × p design matrix in the g-th group. Consider the multiple

response linear regression model in the g-th group,

Y(g) =X(g)B(g) + e(g), with e(g) = [ǫ(g)1 , ..., ǫ(g)ng
]T ,
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where B(g) = {β(g)
jk
} ; j = 1, ..., p, k = 1, ...,m, is an unknown p ×m parameter matrix. The

errors ǫ
(g)

i = (ǫ(g)i1 , ..., ǫ
(g)

im)T ; i = 1, ..., ng , are i.i.d. m-dimensional random vectors following

a multivariate normal distribution N(0,Σ(g)) with the nonsingular covariance matrix Σ(g).

Let Ω(g) = (Σ(g))−1 = (ω(g)j,j′)m×m; j, j′ = 1, ...,m.

Our goal is to estimate {(B(g),Ω(g))} so that we can predict Y(g) and achieve graphical

interpretation among response variables, where {(B(g),Ω(g))} = {(B(g),Ω(g)), g = 1, ...,G}.
The most direct way to estimate {(B(g),Ω(g))} is to build G individual maximum likeli-

hood models. More specifically, the maximum likelihood estimator of {(B(g),Ω(g))} can be

obtained via maximizing the following conditional log-likelihoods on X(g),

ng

2
log det(Ω(g)) − 1

2
tr{(Y(g) −X(g)B(g))Ω(g)(Y(g) −X(g)B(g))T } , g = 1, ...,G, (3.1)

up to a constant not depending on (B(g),Ω(g)). As stated in Section 2.2, the resulting

estimator of B(g) is the ordinary least squares estimator and it does not make use of the

joint information among response variables. To incorporate the joint information among

response variables in estimation procedure, in Section 2.2.3, we proposed the DML method.

The estimator is given by solving

argmin
B(g),Ω(g)

⎧⎪⎪⎨⎪⎪⎩−l(B
(g),Ω(g)) + λ1∑

j,k

∣β(g)
jk
∣ + λ2∑

s≠t
∣ω(g)st ∣

⎫⎪⎪⎬⎪⎪⎭ . (3.2)

where l(B(g),Ω(g)) = ng log det(Ω(g))−tr{(Y(g) −X(g)B(g))Ω(g)(Y(g) −X(g)B(g))T } ;g = 1, ...,G.

By using L1 penalties, the joint information, Ω(g), has an effect on the estimation of B(g).

Motivated from the technique for a single linear model as in (3.2), we consider penal-

ization for (3.1) to improve estimation. In particular, estimation of {(B(g),Ω(g))} can be

improved if some common information across groups can be shared in the estimation pro-

cedure. Note that the optimization problem suggested in (3.2) can be solved individually

within each group. Therefore, it does not utilize the common information across groups.

However, since these groups may have shared information with similar structure, it can be

useful to consider the connection.

In this section, we propose methods that combine G individual models to improve pre-

diction and estimation. Our goal is to estimate {(B(g),Ω(g))} simultaneously to identify the
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common and unique structures across groups. Note that there are two parameter matrices

in each group, B(g) and Ω(g), involved in the estimation. It is also often that only one of

them is of main interest. Hence, parallel to the methods in Chapter 2, we consider three

different approaches, two plug-in methods and one joint method. In Sections 3.2.1 and

3.2.2, we introduce two different plug-in penalized likelihood methods, one is for multiple

response regression and the other one is for inverse covariance estimation. In the plug-in

method for multiple response regression, we estimate {Ω(g)} prior to the step of regression

and then make use of the estimator to produce a better estimator of {B(g)}. In the plug-in

method for inverse covariance estimation, we estimate {B(g)} first and then incorporate the

information to estimate {Ω(g)}. In Section 3.2.3, we estimate {(B(g),Ω(g))} together via

double penalization.

3.2.1 Plug-in Hierarchical LASSO estimator

Our goal in this section is to estimate the regression coefficients {B(g)}, while assuming the

inverse covariance estimates {Ω̂(g)} is available. Although B(g) can be different for different

g, we expect they share some common structure. In particular, for our cancer application

example, different groups correspond to patients with different subtypes of brain cancer.

Thus, patients from different groups are likely to have a lot of similarities although there

are important differences among various subtypes. This motivates us to perform joint

estimation of {B(g)} through shrinkage. It is desirable to identify the common and unique

structure on {B(g)} through the penalty.

Suppose we have the inverse covariance estimates, {Ω̂(g)}, available. Define βjk as

βjk = (β(1)jk
, ..., β

(G)
jk
)T . Regression parameters, (β(1)

jk
, ..., β

(G)
jk
), corresponding to the same

response variable and the same predictor variable are treated as a group. We consider a

new penalized likelihood method, namely the plug-in hierarchical LASSO (PHL) estimator,

to estimate {B(g)} by solving

argmin
(B(g))Gg=1

G

∑
g=1

tr {(Y(g) −X(g)B(g))Ω̂(g)(Y(g) −X(g)B(g))T} + λ1∑
j,k

p(βjk), (3.3)

where p(βjk) = ⎛⎝
G

∑
g=1
∣β(g)

jk
∣⎞⎠

1/2
.

Here λ1 is a tuning parameter. The penalty in (3.3) was proposed by Zhou and Zhu [2010],
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which they call the hierarchical group penalty. This penalty controls the sparsity of {B̂(g)}
hierarchically. As the first level of the hierarchical sparsity, the estimator of βjk tends

to shrink to a zero vector with the hierarchical penalty as a group if all coefficients in

the group are small in magnitude. For the second level of the hierarchical sparsity, if βjk

is estimated as a nonzero vector, within the group, some coefficients can be still shrunk

to zero according to their magnitude. Zhou and Zhu [2010] showed the penalty in (3.3)

encourages such a hierarchical sparsity. Intuitively, note that p(βjk) can be approximated

by ∑G
g=1 1

2(∑G
g=1 ∣β(g),∗jk

∣)1/2 ∣β(g)jk
∣ where β

(g),∗
jk

is close to the solution of (3.3). Therefore, all

coefficients in βjk have the same weight, 1

2(∑G
g=1 ∣β(g),∗jk

∣)1/2 , as a group while each coefficient

has different amount of penalty according to its magnitude. As a remark, we would like

to point out that p(βjk) for each group serves as a group penalty which encourages group

shrinkage. Similar idea was previously considered by Turlach, Venables and Wright [2005],

Yuan and Lin [2006], Zhang et al. [2008], and Zhao, Rocha and Yu [2009].

For the procedure in (3.3), we need to first estimate {Ω(g)}. To that end, we obtain

initial estimates of {B(g)} by applying univariate regression techniques within each group.

Let {B̂(g),0} be initial estimates. Define S(g) by

S(g) =
1

ng

(Y(g) −XB̂(g),0)(Y(g) −XB̂(g),0)T . (3.4)

Then {Ω̂(g)} can be obtained by solving

argmin
Ω(g)

⎧⎪⎪⎨⎪⎪⎩− log det(Ω
(g)) + tr(S(g)Ω(g)) + λ2∑

j≠k
vjk ∣ωjk∣⎫⎪⎪⎬⎪⎪⎭ , g = 1, ...,G. (3.5)

The resulting solution is a sparse estimator of Ω(g). This technique was discussed in Section

1.2.

3.2.2 Plug-in Hierarchical Graphical LASSO estimator

In Section 3.2.1, we considered a plug-in method, PHL, which estimates {Ω(g)} first and then

estimates {B(g)} given {Ω̂(g)}. In this section, we propose the plug-in method using {B̂(g)}
to estimate {Ω(g)}. In particular, we first estimate {B(g)} by using univariate regression

techniques and obtain {S(g)} defined in (3.4). With estimator {S(g)} available, we propose a
penalized likelihood method, the plug-in hierarchical graphical LASSO (PHGL) estimator,
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by solving

argmin
(Ω(g))G

g=1

G

∑
g=1
{−ng log det(Ω(g)) + ngtr(S(g)Ω(g))} + λ2∑

s≠t
⎛⎝

G

∑
g=1
∣ω(g)st ∣⎞⎠

1/2
, (3.6)

where λ2 is a tuning parameter S(g) = 1
ng
(Y(g) −XB̂(g))(Y(g) −XB̂(g))T .

This approach is closely related to the method previously considered by Guo et al. [2011].

They considered the problem of estimating the inverse covariance matrix of Y(g). However,

we estimate the conditional inverse covariance matrix of Y(g) given X(g). Even though the

optimization problem in (3.6) is technically the same as that in their method, our resulting

estimator has different graphical interpretations.

3.2.3 Doubly Penalized Sparse Estimator

In Sections 3.2.1 and 3.2.2, we considered two plug-in methods for estimation of {(B(g),Ω(g))}.
In this section, we propose to estimate {(B(g),Ω(g))} simultaneously. We would like to in-

corporate the information among different response variables in estimation of {B(g)} and

encourage all groups to share some common structure among {(B(g),Ω(g))}. We propose a

joint penalized method, the doubly penalized sparse estimator (DPS), by solving

argmin
(B(g),Ω(g))Gg=1

G

∑
g=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩−lg(B
(g),Ω(g)) + λ1∑

jk

⎛⎝
G

∑
g=1
∣β(g)

jk
∣⎞⎠

1/2
+ λ2∑

s≠t
⎛⎝

G

∑
g=1
∣ω(g)st ∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (3.7)

where lg(B(g),Ω(g)) = ng log det(Ω(g)) − tr {(Y(g) −X(g)B(g))Ω(g)(Y(g) −X(g)B(g))T}. As a

group penalty, the first penalty term in (3.7) encourages the hierarchical sparsity among

{B(g)}. In the meantime, the second penalty term in (3.7) serves as a group penalty for

{Ω(g)}.
Similar to the argument stated in Section 2.2.3, the objective function in (3.7) is

not convex with respect to {(B(g),Ω(g))} and the optimization can be unstable when

max{n1, ..., nG} < p. With diagonal {Ω(g)}, the first term in lg(B(g),Ω(g)) can dominate

the other terms in the objective function if the trace terms are zero, which may occur when

max{n1, ..., nG} < p. Therefore, the objective function can keep decreasing as the diagonal

entries in {Ω(g)} continue to increase. Therefore, if max{n1, ..., nG} < p, the plug-in methods

in Sections 3.2.1 and 3.2.2 are recommended and can often perform better than the DPS
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method.

3.2.4 Model Selection

In Sections 3.2.1 - 3.2.3, we proposed two plug-in methods and one joint method for estima-

tion of {(B(g),Ω(g))}. To apply these methods, we first need to select the tuning parameters

λ1 and λ2 in (3.3), (3.6), and (3.7), which control the sparsity of the resulting estimators.

The tuning parameters can be selected either using validation sets or through K-fold cross-

validation as stated in Section 2.2.4. In particular, denote the data in the k-th segment by

{(X(g)(k),Y(g)(k))}. For any given λ1, λ2 and k, we estimate the regression coefficient matrices

and the inverse covariance matrices using all data except the data in the k-th part and

denote them by {(B̂(g)
λ1,(−k), Ω̂

(g)
λ2,(−k))}. For the PHL method, the optimal tuning parameter

λ̂1 is selected which minimizes the prediction error defined by

CV(λ1) = K

∑
k=1

G

∑
g=1
∥Y(g)(k) −X(g)(k)B̂(g)λ1,(−k) ∥

2

F
, (3.8)

where ∥ ⋅ ∥F is the Frobenius norm of a matrix. For the PHGL method, we select the

optimal tuning parameter λ̂2 which maximizes the predictive log-likelihood defined by

CV(λ2) = K

∑
k=1

G

∑
g=1
[n(g,k) log det(Ω̂(g)λ2,(−k)) − tr{(Y(g)(k) −X(g)(k)B̂(g))Ω̂(g)λ2,(−k)(Y(g)(k) −X(g)(k)B̂(g))T}] ,

(3.9)

where n(g,k) is the sample size of the g-th group in the k-th segment. In the DPS method,

we first choose the optimal λ̂1 using (3.8) with a prespecified λ2 and the optimal λ̂2 is

selected using (3.9) with the selected λ̂1. It helps to avoid a two dimensional grid search

of (λ1, λ2). We have found in simulations that within a certain range for λ2, the choice of

particular value for λ2 has very little effect on the optimal λ̂1.

The tuning parameters can be also selected using validation sets. In particular, we

split the dataset into the training set and the validation set. With given λ1 and λ2, we

construct the corresponding models by applying our methods to the training set. By using

the validation set as {(X(g)(k),Y(g)(k))} in (3.8) and (3.9), we can compute the prediction error

and the predictive log-likelihood on this set to select tuning parameters. The cross-validation
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method is computationally more intensive than using validation sets. We used validation

sets for our simulated examples and the 5-fold cross-validation for the glioblastoma cancer

data example.

3.3 Asymptotic Properties

In this section, we investigate the asymptotic behavior of our three proposed methods

in Sections 3.2.1 - 3.2.3 when sample sizes go to infinity. In particular, we show that

the resulting estimators of all three methods satisfy consistency and sparsity with proper

choices of tuning parameters. To this end, we use the set-up of Fan and Li [2001], Yuan

and Lin [2007] and Zou [2006]. The technical derivation uses the results in Knight and

Fu [2000]. Without loss of generality, we assume that n = n1 = ⋅ ⋅ ⋅ = nG and n goes to

infinity. Define a vector operator for any matrix A = [a1, ..., ap] by Vec(A) = (aT1 , ..., aTp )T .
Let β∗ = (Vec(B∗,(1))T , ...,Vec(B∗,(G))T )T be the true regression parameter vector and

ω∗ = (Vec(Ω∗,(1))T , ...,Vec(Ω∗,(G))T )T be the vector of the entries in the true inverse

covariance matrices. The following theorem shows the
√
n-consistency and the sparsity

of the solution in (3.3).

Theorem 4. Suppose that λ1n
− 1

2 → 0 as n→∞ and Ω̂(g) in (3.3) is a consistent estimator

of Ω∗,(g);g = 1, ...,G. Furthermore, suppose that 1
n
X(g)TX(g) → A(g) as n→∞ where A(g) is

a positive definite matrix; g = 1, ...,G.

1. (Consistency) There exists a local minimizer of (3.3) such that ∥ β̂ − β∗ ∥= Op( 1√
n
),

where β̂ = (Vec(B̂(1))T , ...,Vec(B̂(G))T )T ;
2. (Sparsity) If λ1n

− 1
4 →∞, limn P (β̂(g)jk

= 0) = 1 if β
∗,(g)
jk

= 0.

Theorem 4 states that with a consistent estimator of Ω∗,(g), the PHL estimator is
√
n-

consistent. Furthermore, it can identify the true subset of predictor variables asymptotically

with probability tending to 1. Similar asymptotic properties hold for the PHGL estimator

as stated in the following theorem.

Theorem 5. Suppose that λ2n
− 1

2 → 0 as n → ∞ and B̂(g) in (3.6) is a
√
n-consistent

estimator of B∗,(g);g = 1, ...,G.
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1. (Consistency) There exists a local minimizer of (3.6) such that ∥ ω̂ −ω∗ ∥= Op( 1√
n
),

where ω̂ = (Vec(Ω̂(1))T , ...,Vec(Ω̂(G))T )T ;
2. (Sparsity) If λ2n

− 1
4 →∞, limn P (ω̂(g)jk

= 0) = 1 if ω
∗,(g)
jk

= 0.

In theorems 4 and 5, we establish the consistency and sparsity of plug-in estimators.

The following theorem shows the similar asymptotic properties of the DPS solution in which

{B̂(g)} and {Ω̂(g)} are obtained together.

Theorem 6. Suppose that λ1n
− 1

2 → 0 and λ2n
− 1

2 → 0 as n→∞. In addition to that, suppose

that 1
n
X(g)TX(g) → A(g) as n→∞ where A(g) is a positive definite matrix; g = 1, ...,G.

1. (Consistency) There exists a local minimizer of (3.7) such that

∥ (β̂T , ω̂T )T − (β∗T ,ω∗T )T ∥= Op( 1√
n
),

where β̂ = (Vec(B̂(1))T , ...,Vec(B̂(G))T )T and ω̂ = (Vec(Ω̂(1))T , ...,Vec(Ω̂(G))T )T ;
2. (Sparsity of {B̂(g)} ) If λ1n

− 1
4 →∞, limnP (β̂(g)jk

= 0) = 1 if β
∗,(g)
jk

= 0;

3. (Sparsity of {Ω̂(g)} ) If λ2n
− 1

4 →∞, limnP (ω̂(g)jk
= 0) = 1 if ω

∗,(g)
jk

= 0.

3.4 Computational Algorithm

In this section, we describe computational algorithms to solve problems (3.3), (3.6), and

(3.7). In particular, we apply the coordinate-descent algorithms described in Section 2.4

iteratively, with combination of the local linear approximation (LLA) [Zou and Li, 2008].

We now describe the algorithm for the PHL method in details. Denote the estimates

of β(g)
jk

from the i-th iteration by (β̂(g)
jk
)(i). Then by applying the LLA, the penalty term in

(3.3) at the (i + 1)-th iteration can be approximated as follows,

p(βjk) = ⎛⎝
G

∑
g=1
∣β(g)

jk
∣⎞⎠

1/2
≈

∑G
g=1 ∣β(g)jk

∣
2(∑G

g=1 ∣(β̂(g)jk
)(i)∣)1/2 .

Then, at the (i + 1)-th iteration, the problem (3.3) is decomposed into G individual opti-

mization problems

argmin
B(g)

tr{(Y(g) −X(g)B(g))Ω̂(g)(Y(g) −X(g)B(g))T} + λ1∑
j,k

wjk ∣β(g)jk
∣ , (3.10)

53



where wjk = 1
2 (∑G

g=1 ∣(β̂(g)jk
)(i)∣)−1/2 and g = 1, ...,G. The optimization problem (3.10) is

exactly the problem of estimating the regression parameter matrix with the plug-in inverse

covariance matrix. It can be solved by applying the coordinate-descent algorithm for the

plug-in weighted LASSO method proposed in Section 2.2.1. Therefore, the algorithm for

(3.3) proceeds as follows:

Algorithm for the PHL Method

Step 1 (Initial value). Set the separate LASSO solution {(B̂(g))(i)};g = 1, ...,G as the initial

value for {B(g)}.
Step 2 (Updating rule). For g = 1, ...,G, update {(B̂(g))(i)} by applying the coordinate-

descent algorithm for the the plug-in weighted LASSO method in Section 2.2.1 to the

problem (3.10).

Step 3 (Iteration). Repeat Step 2 until convergence.

Next we describe the algorithm for the PHGL method in Section 3.2.2. Similar to the

algorithm for the PHL method, we first apply the LLA to the objective function in (3.6)

with the current estimates {(Ω̂(g))(i)}. Then, at the (i + 1)-th iteration, the problem (3.6)

is decomposed into G individual optimization problems

argmin
Ω(g)

{−ng log det(Ω(g)) + ngtr(S(g)Ω(g))} + λ2∑
s≠t

vst ∣ω(g)st ∣ , (3.11)

where vst = 1
2 (∑G

g=1 ∣(ω̂(g)jk
)(i)∣)−1/2 and g = 1, ...,G. The problem (3.11) can be solved by

applying the GLASSO algorithm. Therefore, the algorithm for (3.6) proceeds as follows:

Algorithm for the PHGL Method

Step 1 (Initial value). Set the separate GLASSO solution {(Ω̂(g))(i)};g = 1, ...,G as the

initial value for {Ω(g)}.
Step 2 (Updating rule). For g = 1, ...,G, update {(Ω̂(g))(i)} by applying the GLASSO

algorithm to the problem (3.11).

Step 3 (Iteration). Repeat Step 2 until convergence.

Next, we combine the above two algorithms to solve problem (3.7) for the doubly pe-

nalized method, DPS. The algorithm can be summarized as follows:

Algorithm for the DPS Method

Step 1 (Initial values of {B(g)} and {Ω(g)}). Set the separate LASSO solution {(B̂(g))(i)}
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as the initial value for {B(g)} and the separate GLASSO solution {(Ω̂(g))(i)} as the initial

value of {Ω(g)}.
Step 2 ({B(g)} updating rule). For a given {(B̂(g))(i)}, update {(Ω̂(g))(i)} by applying the

algorithm for the PHGL method.

Step 3 ({Ω(g)} updating rule). For a given updated {(Ω̂(g))(i)}, update {(B̂(g))(i)} by

applying the algorithm for the PHL method.

Step 4 (Iteration). Repeat Steps 2 and 3 until convergence.

As we point out in Section 3.2.3, when max{n1, ..., nG} < p, the solution can possibly be

unstable with very small residual variances. In that case, the plug-in methods may perform

better.

3.5 Simulated Examples

In this section, simulation studies are carried out to assess the performance of our proposed

methods. In particular, we compare our proposed methods with several existing methods.

All five methods are described below.

• Method 1 (M1). We model each group separately. In particular, we apply the doubly

penalized maximum likelihood (DML) method in Section 2.2.3 separately to each

group. The estimator is given by solving (3.2). This method will be referred as

DML1.

• Method 2 (M2). In this approach, all groups are combined into one dataset as if

they come from a common Gaussian distribution. We apply the DML method to the

combined dataset. We name this method as DML2.

• Method 3 (M3). We first estimate {B(g)} by applying LASSO to each response variable

separately in each group. Once we have an estimator of {B(g)}, we compute residuals

and apply GLASSO to estimate {Ω(g)}. In particular, the estimator of {Ω(g)} is given
by solving (1.6). The resulting estimator of {B(g)} will be called the LASSO estimator

and the resulting estimator of {Ω(g)} will be referred as the GLASSO estimator.

• Method 4 (M4). An initial estimate of {B(g)} is obtained by applying LASSO. With

the initial estimate of {B(g)}, we apply our proposed plug-in method, PHGL, to
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estimate {Ω(g)} jointly. Once we have the estimator of {Ω(g)}, another plug-in method,

PHL, is applied to obtain the final estimate of {B(g)}.
• Method 5 (M5). We model all groups jointly by applying our proposed method, DPS.

In this approach, we estimate both {B(g)} and {Ω(g)} simultaneously.

Note that Methods 1 and 3 model all groups separately and Method 2 does not allow

any unique structure to each group. On the other hand, our proposed methods (Methods

4 and 5) model all groups jointly while allowing unique structures to each group.

We set G = 3, p = 20 and m = 20. For each group, we generate training sets, validation

sets, and testing sets with the the same size of n = 40. Each data set is generated as

follows. First, we produce B and Ω common in all groups. Figure 3.3 shows the common

structure across groups. We create unique structures to each group by adding additional

nonzero parameters to each group. In particular, for each B(g), we randomly pick zero

entries and replace them with values randomly chosen from the interval [1,3]. For each

Ω(g), we randomly pick zero entries and make them have values randomly chosen from

interval [−1,−0.5] ∪ [0.5,1]. We define ρ as the ratio of the number of unique nonzero

entries to the number of common nonzero entries. We consider two values of ρ. The case

of ρ = 0 does not allow unique structure to each group. The second case has ρ = 0.25.

Finally, y(g)i is generated from N(B(g)Tx(g)i ,Ω(g)), where x(g)i ; i = 1, ..., n are i.i.d vectors

from N(0, Ip).
To assess prediction performance, we use the prediction error defined as,

PE =
1

nmG

G

∑
g=1
∥Y(g) − Ŷ(g) ∥2F ,

where ∥ ⋅ ∥F is the Frobenius norm of a matrix.

To compare performance in the estimation of {Ω(g)}, we report the average entropy loss

and the average Frobenius loss which are defined as,

EL =
1

G

G

∑
g=1
[tr(Σ(g)Ω̂(g)) − log(∣Σ(g)Ω̂(g)∣) −m] ,

FL =
1

G

G

∑
g=1
∥ Ω(g) − Ω̂(g) ∥2F /∥ Ω(g) ∥2F .
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Figure 3.3: Regression Parameter Structure and Inverse Covariance Structure that are
common in all groups. Non-zero entries are colored as black and zero entries are colored as
white.

Table 3.1: Average prediction error, entropy loss, and Frobenius loss based on 100 replica-
tions (The numbers in parentheses are standard errors)

ρ M1: DML1 M2: DML2 M3: LASSO M4: PHL M5: DPS

Prediction Error
0 2.23(0.011) 1.59(0.006) 1.90(0.008) 1.61(0.006) 1.61(0.006)

0.25 2.05(0.021) 4.51(0.018) 1.76(0.009) 1.50(0.007) 1.50(0.007)

ρ M1: DML1 M2: DML2 M3: GLASSO M4: PHGL M5: DPS

Entropy Loss
0 11.52(0.153) 1.17(0.020) 4.69(0.077) 4.40(0.079) 2.47(0.043)

0.25 11.58(0.149) 8.62(0.046) 5.22(0.058) 5.27(0.087) 3.31(0.051)

Frobenius Loss
0 0.82(0.019) 0.05(0.001) 0.36(0.006) 0.34(0.010) 0.15(0.003)

0.25 1.20(0.027) 0.47(0.002) 0.42(0.012) 0.46(0.012) 0.22(0.004)

Table 3.1 and Figures 3.4-3.6 summarize the results. When ρ = 0, M2 outperforms the

others in both prediction and estimation of {Ω(g)}. This is expected because M2 assumes

all groups come from the same distribution and that assumption is valid when ρ = 0.

Therefore, by combining all groups, M2 has more information than other methods. Note

that our proposed methods, M4 and M5, also show competitive performance in prediction.

When ρ = 0.25, M5, one of our proposed methods, shows the best performance in all criteria.

This implies that modeling all groups jointly can help us improve both prediction and the

estimation of {Ω(g)} when all groups share some common structure.

Table 3.2 summarizes the relative computational times of M4 and M5 compared with

that of M3. In terms of computational complexity, M5 is more intensive than the other
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Figure 3.4: Boxplots of prediction errors of all methods based on 100 replications. Left: All
groups are the same. Right: There exist the common and unique structures across groups.
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Figure 3.5: Boxplots of entropy losses of all methods based on 100 replications. Left: All
groups are the same. Right: There exist the common and unique structures across groups.
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Figure 3.6: Boxplots of Frobenius losses of all methods based on 100 replications. Left: All
groups are the same. Right: There exist the common and unique structures across groups.
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Table 3.2: Averages of relative computational time of M4 and M5 compared with M3 based
on 100 replications (The numbers in parentheses are standard errors). For example, when
ρ = 0, the computational time of M4 is 3.92 times of that for M3.

M3 M4: PHL M5: DPS

Simulated examples
ρ = 0 1 3.92(0.05) 38.40(0.35)

ρ = 0.25 1 3.44(0.04) 30.09(0.35)

methods while M4 shows competitive computational time. For instance, when ρ = 0.25,

the computational time of M5 is 30.09 times of that for M3. M5 is computationally more

intensive as it estimates all parameter matrices simultaneously. However, in terms of per-

formance, M5 outperforms M3 in both prediction and estimation of {Ω(g)} in our simulated

examples.

3.6 Application to the Glioblastoma Cancer Data

In this section, we apply our proposed methods to the GBM cancer dataset. In this dataset,

there are 17814 genes and 534 microRNAs of 482 GBM patients. The patients were clas-

sified into 4 gene expression-based subtypes, namely, Classical, Mesenchymal, Neural, and

Proneural with sample sizes of 127, 145, 85 and 125 respectively [Verhaak et al., 2010]. One

important goal is to regress genes on microRNAs to investigate the effect of microRNAs on

gene expressions. The other goal is to estimate the conditional inverse covariance matrix

of gene expressions given microRNAs. This matrix can help us to interpret the conditional

relationship among genes given microRNAs.

To proceed with the analysis, preprocessing is necessary. There are many possibilities

for preprocessing. For example, Bair and Tibshirani [2004] developed some procedures that

utilize both gene expression data and clinical data to select a list of genes for identifying

cancer subtypes. In our analysis, the preprocessing step proceeds as follows. Verhaak et al.

[2010] established 840 signature genes which are highly distinctive for four subtypes. The

expression levels of these genes are depicted in Figure 3.7. We use these 840 signature genes

to explore distinctive effects of microRNAs on them. Our proposed methods are needed for

genes having correlated residuals. Therefore, to apply our proposed methods, the genes are

first grouped into several gene modules with genes more related to each other within each
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Figure 3.7: Heatmap of expression levels of 840 signature genes established by Verhaak
et al. [2010].

module. Then our proposed methods are applied to each module separately. This approach

is sensible for our methodology as a gene module is a set of genes which are closely related.

To detect such gene modules, we perform the weighted gene co-expression network analysis

(WGCNA) by Zhang and Horvath [2005]. WGCNA detects modules using a hierarchical

clustering method with the topological overlap dissimilarity measure [Ravasz et al., 2002].

Zhang and Horvath [2005] pointed out that WGCNA can detect biologically meaningful

modules.

By performing WGCNA with the 840 signature genes, we found 14 modules with 60

genes per module on average. It turns out that one of them is particularly interesting as

many genes in the module such as EGFR and PDGFA are involved in cell proliferation.

Moreover, Verhaak et al. [2010] demonstrated the essential roles of these genes in GBM

tumor genesis. Therefore, we focus on that module hereafter. In particular, there are 90

genes in this module. Among them, we choose top 40 genes with largest Median Absolute

Deviations (MADs) since for the 50 genes with low MADs, all regression coefficients are

estimated nearly zeros which do not provide any meaningful interpretation. We also select

a subset of microRNAs which are predicted to target at least one of the selected genes and

have large MADs. As a result, 40 genes and 50 microRNAs are used for the results in this

analysis.
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Table 3.3: Averages of PE based on 100 replications (The numbers in parentheses are
standard errors)

DML LASSO PHL DPS

PE 1.373(0.004) 1.025(0.003) 1.050(0.004) 1.065(0.004)

We consider four approaches to estimate the regression coefficient matrices and the

residual inverse covariance matrices. In the first approach, we assume that the Gaussian

distributions in all subtypes are the same. Therefore, all subtypes are combined into one

data set and we apply the doubly penalized maximum likelihood (DML) method in Section

2.2.3 to the combined data. In particular, the estimator can be obtained by solving (3.2).

In the second approach, we apply LASSO and GLASSO. The detailed description of this

approach is presented in M3 in Section 3.5. In the third approach, we apply our proposed

plug-in methods, PHL and PHGL. The last approach uses the DPS method in which all

matrices are jointly estimated. The third and fourth approaches can help us to discover the

common and unique structures to each group.

For performance assessment, we randomly divide the data set of each subgroup into a

training set of size 70 and a test set of the remainder. The tuning parameters are selected

using 5-fold cross-validation as discussed in Section 3.2.4. We perform the random splitting

100 times. By using the test set, we assess prediction performance of several methods

including our proposed methods.

Table 3.3 shows average PE of 100 replications. Note that the DPS, PHL and LASSO

methods outperform the DML method. It implies that a single Gaussian assumption for

all subtypes might not be reasonable. The LASSO gives comparable, but slightly better

prediction accuracy than our PHL and DPS methods. One potential reason is that we allow

different tuning parameter values for each response in the LASSO. The more flexible tuning

may help the LASSO give slightly better PE.

Figure 3.8 shows the averaged estimated regression coefficients over 100 replications of

several microRNAs for some selected genes. In order to produce the heatmap, the DPS

estimates are used. The results show some interesting relationships between genes and

microRNAs that are specific to certain GBM subtypes. For instance, we have observed a
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Figure 3.8: Heatmap of averaged estimated regression coefficients of several microRNAs for
some selected genes. The DPS estimates are used to generate the heatmap.

negative correlation between miR222 and its predicted target GLI2 in the Mesenchymal

subtype. GLI2 is an essential transcription factor mediating cytokine expression in cancer

cells [Elsawa et al., 2011]. It has been shown that the knockdown of GLI2 mRNA has

significantly decreased the migratory ability of human glioblastoma cells [Uchida et al.,

2011]. Herein, our results suggest that the accelerated inflammatory response observed

in the GBM Mesenchymal subtype might be partially through miR222-dependent GLI2

regulation [Verhaak et al., 2010].

Another example is the anti-correlation between miR130b and its predicted target

ARAP2 (CENTD1) in the GBM Neural subtype. This subtype is typically associated

with the gene ontology (GO) categories such as neuron projection and axon and synaptic

transmission. Yoon et al. [2006] have reported that ARAP2 associates with focal adhesions

and functions downstream of RhoA to regulate focal adhesion dynamics in glioblastoma

cells. Consistent with this report, our findings suggest that miR130b regulates ARAP2

specifically in the neural subtype.

Additionally, we have observed the subtype-specific correlation between microRNAs and

non-target genes, indicating an indirect regulation between the two. For instance, our results

have identified distinct EGFR-miR21 correlations in different subtypes. Several research
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Figure 3.9: A graphical model of gene expressions based on the estimated inverse covariance
matrix. Black lines are common edges across all subgroups. Grey lines are unique edges to
some subgroups. The DPS estimates are used to generate the network.

papers have shown that EGFR regulates miR21 in a couple of cancers, including human

glioblastoma and lung cancers [Zhou et al., 2010; Seike et al., 2009]. Here our observation

further indicates that this regulation is subtype-specific in GBM. In the Neural subtype,

there was positive correlation between EGFR and miR21 while negative correlations are

observed in the subtypes, Messenchymal and Proneural.

Figure 3.9 shows the estimated conditional inverse covariance structure of genes given

microRNAs. This structure is obtained from the model using our proposed DPS method.

Black edges represent the common structure shared among all subgroups while grey edges

represent unique structures to some subgroups. Verhaak et al. [2010] claimed that FGFR3,

PDGFA and EGFR are all Classical genes in sense that they tend to be highly expressed

only in Classical subtype. Thus, it is expected that they have some connectivity among

them. However, in Figure 3.9 from our results, none of them are connected for all subtypes.

This implies that in all subtypes, they can be conditionally independent given other genes

once we take out the effects of given 50 microRNAs on them even though they are marginally

correlated. Therefore, joint modeling of all subtypes using our DPS method can help us to

interpret similarities and differences of the conditional gene relationships given microRNAs
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among different cancer subtypes.

3.7 Discussion

In this chapter, we propose three methods for modeling several groups jointly to estimate

both the regression coefficient matrix and conditional inverse covariance matrix. All meth-

ods are derived in a penalized likelihood framework with hierarchical group penalties. Our

theoretical investigation shows that our proposed estimators are consistent and can identify

true zero parameters with probability tending to 1 as the sample size goes to infinity. Sim-

ulated examples demonstrate that our proposed methods can improve estimation of both

regression coefficient matrix and conditional inverse covariance matrix.

In very high dimensional problems, our joint method (DPS) may have numerical diffi-

culty as discussed in Section 3.2.3. In that case, the proposed plug-in methods are recom-

mended and can often perform better than the DPS method. In certain applications such as

our GBM cancer example, a preprocessing step can be first performed before applying the

DPS method to reduce dimensions. With moderate dimensions of predictors and response

variables, the joint method can be applied and its performance can be very competitive.

Our current theoretical study is on the case when n goes to infinity. However, for high

dimensional cases, it will be also interesting to investigate asymptotic behaviors of our

methods when the dimension of predictors p, and the dimension of response variables m,

both go to infinity.

Our methods are based on the multivariate Gaussian assumption. Recently, there are

some research developments on extending Gaussian graphical models to non-Gaussian cases

such as Liu, Lafferty and Wasserman [2009] and Cai, Liu and Luo [2011]. Another research

direction is to extend our methods to non-Gaussian situations. Further exploration is

needed.
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3.8 Proofs

3.8.1 Proof of Theorem 4

Consistency

Let β = (Vec(B(1))T , ...,Vec(B(G))T )T and define Q(β) as
Q(β) = G

∑
g=1

tr{(Y(g) −X(g)B(g))Ω̂(g)(Y(g) −X(g)B(g))T} + λ1∑
j,k

p(βjk). (3.12)

To show the results, we use the similar technique in the proof of Theorem 1 in Fan and Li

[2001]. It suffices to show that for any given δ > 0, there exists a large constant D such that

P { sup
∥U∥=D

Q(β∗ + 1√
n
U) >Q(β∗)} > 1 − δ, (3.13)

where U = (U (1)T , ...,U (G)T )T is a m × p ×G-dimensional vector.

Let y(g) = Vec(Y(g)), Xm,(g) = Im ⊗X(g) and β(g) = Vec(B(g));g = 1, ...,G. Then we can

rewrite Q(β) in (3.12) as

Q(β) = G

∑
g=1
(y(g) −Xm,(g)β(g))T (Ω̂(g) ⊗ In)(y(g) −Xm,(g)β(g)) + λ1∑

j,k

p(βjk). (3.14)

Define Vn(U) = Q(β∗ + 1√
n
U) −Q(β∗). Using (3.14), we can show that

Vn(U) = G

∑
g=1

U (g)
T (Ω̂(g) ⊗

1

n
X(g)TX(g))U (g) − G

∑
g=1

2
1√
n
ǫ(g)

T (Ω̂(g) ⊗ In)Xm,(g)U (g)

+ λ1∑
j,k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
+

1√
n
u
(g)
jk
∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (3.15)

where ǫ(g) = Vec(e(g));g = 1, ...,G. Define I = {(j, k)∣β∗,(g)
jk
≠ 0 for some g = 1, ...,G}.

Since (∑G
g=1 ∣β∗,(g)jk

+ 1√
n
u
(g)
jk
∣)1/2 − (∑G

g=1 ∣β∗,(g)jk
∣)1/2 = (∑G

g=1 ∣ 1√
n
u
(g)
jk
∣)1/2 ≥ 0 for (j, k) ∉ I,

we have that

Vn(U) ≥ G

∑
g=1

U (g)
T (Ω̂(g) ⊗

1

n
X(g)TX(g))U (g) − G

∑
g=1

2
1√
n
ǫ(g)

T (Ω̂(g) ⊗ In)Xm,(g)U (g)

+ λ1 ∑
(j,k)∈I

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
+

1√
n
u
(g)
jk
∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.16)

For the first term on the right-hand side of (3.16), note that
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G

∑
g=1

U (g)
T (Ω̂(g) ⊗

1

n
X(g)TX(g))U (g) = G

∑
g=1

U (g)
T (Ω∗,(g) ⊗A(g))U (g) + op(1)

as 1
n
X(g)TX(g) → A(g) and Ω̂(g) →p Ω

∗,(g);g = 1, ...,G.

For the second term on the right-hand side of (3.16), note thatRRRRRRRRRRR
G

∑
g=1

2
1√
n
ǫ(g)

T (Ω̂(g) ⊗ In)Xm,(g)U (g)
RRRRRRRRRRR ≤ 2

G

∑
g=1
∥ 1√

n
ǫ(g)

T (Ω̂(g) ⊗ In)Xm,(g) ∥∥ U (g) ∥

≤ 2
G

∑
g=1
∥ 1√

n
ǫ(g)

T (Ω̂(g) ⊗ In)Xm,(g) ∥∥ U ∥

= Op(1) ∥ U ∥
as 1√

n
ǫ(g)

T (Ω̂(g) ⊗ In)Xm,(g) →d Z where Z has multivariate normal distribution.

For the third term on the right-hand side of (3.16), we can show that

λ1 ∑
(j,k)∈I

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
+

1√
n
u
(g)
jk
∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭
= λ1 ∑

(j,k)∈I

G

∑
g=1

1

γjk
{∣β∗,(g)

jk
+

1√
n
u
(g)
jk
∣ − ∣β∗,(g)

jk
∣}

=
λ1√
n
∑
(j,k)∈I

G

∑
g=1

1

γjk
{∣u(g)

jk
∣ sign(β∗,(g)

jk
) + o(1)} = op(1),

where γjk = {(∑G
g=1 ∣β∗,(g)jk

+ 1√
n
u
(g)
jk
∣)1/2 + (∑G

g=1 ∣β∗,(g)jk
∣)1/2}.

By combining above statements, we have

Vn(U) ≥ G

∑
g=1

U (g)
T (Ω∗,(g) ⊗A(g))U (g) +Op(1) ∥ U ∥ +op(1).

By choosing a sufficiently large D, Vn(U) > 0 uniformly on {U ∶∥ U ∥= D} with the

probability greater than 1 − δ as Ω∗,(g) and A(g) are positive-definite. Therefore, (3.13)

holds. This completes the proof of the consistency.

Sparsity

It is sufficient to show that with probability tending to 1 as n→∞, for any (j, k) such that

β
∗,(g)
jk

= 0, the partial derivative of Q in (3.12) with respect to β
(g)
jk

at β̂
(g)
jk

has the same

sign as β̂
(g)
jk

. Let β(g) = Vec(B(g)) and note that
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∂

∂β(g)
(y(g) −Xm,(g)β(g))T (Ω̂(g) ⊗ In)(y(g) −Xm,(g)β(g))∣

β(g)=β̂(g)

= (Ω̂(g) ⊗X(g)TX(g))(β̂(g) − β∗,(g)) − (Ω̂(g) ⊗X(g)T )ǫ(g)
=
√
n{(Ω̂(g) ⊗

1

n
X(g)TX(g))√n(β̂(g) − β∗,(g)) − 1√

n
(Ω̂(g) ⊗X(g)T )ǫ(g)}

=
√
nOp(1)

as (Ω̂(g) ⊗ 1
n
X(g)TX(g)) →p Ω∗,(g) ⊗ A(g),

√
n(β̂(g) − β∗,(g)) = Op(1) and 1√

n
(Ω̂(g) ⊗

X(g)T )ǫ(g) → Z where Z has multivariate normal distribution. Therefore, the partial deriva-

tive of Q can be written as

∂Q

∂β
(g)
jk

∣
β
(g)
jk
=β̂(g)

jk

=
√
nOp(1) + λ1

sign(β̂(g)
jk
)

2(∑G
g=1 ∣β̂(g)jk

∣)1/2 =
√
n
⎛⎝Op(1) + λ1

n1/4
sign(β̂(g)

jk
)

2(∑G
g=1 ∣√nβ̂(g)jk

∣)1/2
⎞⎠ .

Since λ1

n1/4 → ∞ as n → ∞, the sign of the derivative is completely determined by that of

β̂
(g)

jk
. This completes the proof of the sparsity.

3.8.2 Proof of Theorem 5

Consistency

Let ω = (Vec(Ω(1))T , ...,Vec(Ω(G))T )T and define Q(ω) as
Q(ω) = G

∑
g=1
{−n log det(Ω(g)) + ntr(S(g)Ω(g))} + λ2∑

s≠t
⎛⎝

G

∑
g=1
∣ω(g)st ∣⎞⎠

1/2
(3.17)

To show the results, we use the similar technique in the proof of Theorem 4. It suffices

to show that for any given δ > 0, there exists a large constant D such that

P { sup
∥U∥=D

Q(ω∗ + 1√
n
U) >Q(ω∗)} > 1 − δ, (3.18)

where U = (Vec(U (1))T , ...,Vec(U (G))T )T is a m ×m ×G-dimensional vector.

Using (3.17), define Vn(U) as
Vn(U) = Q(ω∗ + 1√

n
U) −Q(ω∗)

=
G

∑
g=1
{−n log det((Ω∗,(g) + U (g)√

n
)(Ω∗,(g))−1) + ntr(U (g)S(g)√

n
)}

+ λ2∑
s≠t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣ω∗,(g)st +

1√
n
u
(g)
jk
∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣ω∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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Using the similar argument as in the proof of Lemma 2, it can be shown that

Vn(U) = G

∑
g=1

tr(U (g)Σ(g)U (g)Σ(g)) + G

∑
g=1

tr[U (g)√n(S(g) −Σ(g))]
+ λ2∑

s≠t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣ω∗,(g)st +

1√
n
u
(g)
jk
∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣ω∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ + o(1). (3.19)

For the second term on the right-hand side of (3.19), by using the similar argument as

in the proof of Theorem 2, it can be shown that

G

∑
g=1

tr[U (g)√n(S(g) −Σ(g))] = G

∑
g=1

tr[U (g)√n(S∗,(g) −Σ(g))] + op(1)
where S∗,(g) = 1

n
(Y(g)−X(g)B∗,(g))(Y(g)−X(g)B∗,(g))T . Note that √n(S∗,(g)−Σ(g)) converges

in distribution to multivariate normal distribution by the central limit theorem.

For the third term on the right-hand side of (3.19), by using the similar argument as in

the proof of Theorem 4, it can be shown that

λ2∑
s≠t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣ω∗,(g)st +

1√
n
u
(g)
jk
∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣ω∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ = op(1).

By combining the above statements, we can conclude that the first term on the right-

hand side of (3.19) dominates the other terms. Therefore, by choosing a sufficiently large

D, Vn(U) > 0 uniformly on {U ∶∥ U ∥= D} with the probability greater than 1 − δ. This

completes the proof of the consistency.

Sparsity

Similar to the proof of the sparsity in Theorem 4, it is sufficient to show that with probability

tending to 1 as n → ∞, for any (s, t) such that ω
∗,(g)
st = 0, the partial derivative of Q in

(3.17) with respect to ω
(g)
st at ω̂

(g)
st has the same sign as ω̂

(g)
st . Note that

∂Q

∂ω
(g)
st

∣
ω
(g)
st =ω̂(g)st

=n(s(g)st − σ̂
(g)

st ) + λ2
sign(ω̂(g)st )

2(∑G
g=1 ∣ω̂(g)st ∣)1/2

where S(g) = (s(g)st ) and (Ω̂(g))−1 = (σ̂(g)st ). By using the argument in the proof of Theorem 2

in Guo et al. [2011], one can show that (s(g)st − σ̂
(g)

st ) = Op(1/√n). Therefore, we have

∂Q

∂ω
(g)
st

∣
ω
(g)
st =ω̂(g)st

=
√
n
⎛⎝Op(1) + λ2

n1/4
sign(ω̂(g)st )

2(∑G
g=1 ∣√nω̂(g)st ∣)1/2

⎞⎠ .
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Since λ2

n1/4 → ∞ as n → ∞, the sign of the derivative is completely determined by that

of ω̂(g)st . This completes the proof of the sparsity.

3.8.3 Proof of Theorem 6

Consistency

Define Q(β,ω) as
Q(β,ω) = G

∑
g=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩−lg(β,ω) + λ1∑
jk

⎛⎝
G

∑
g=1
∣β(g)

jk
∣⎞⎠

1/2
+ λ2∑

s≠t
⎛⎝

G

∑
g=1
∣ω(g)st ∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (3.20)

where lg(β,ω) = n log det(Ω(g)) − tr{(Y(g) −X(g)B(g))Ω(g)(Y(g) −X(g)B(g))T }.
To show the results, we use the similar technique in the proof of Theorem 4. It suffices

to show that for any given δ > 0, there exists a large constant D such that

P { sup
∥U∥=D

Q(β∗ + 1√
n
U1,ω

∗ + 1√
n
U2) > Q(β∗,ω∗)} > 1 − δ, (3.21)

where U = (UT
1 ,UT

2 )T , U1 = (Vec(U (1)1 )T , ...,Vec(U (G)1 )T ) and U2 = (Vec(U (1)2 )T , ...,Vec(U (G)2 )T )
Using (3.20), define Vn(U) = Q(β∗ + 1√

n
U1,ω

∗ + 1√
n
U2) −Q(β∗,ω∗). It can be shown

that

Vn(U) = G

∑
g=1
{−n log det((Ω∗,(g) + U

(g)

2√
n
)(Ω∗,(g))−1) + ntr(U (g)2 S∗,(g)√

n
)}

+
G

∑
g=1
{tr [(Ω∗,(g) + U

(g)

2√
n
)(X(g)U

(g)

1√
n
)T (X(g)U

(g)

1√
n
)]}

− 2
G

∑
g=1
{tr [(Ω∗,(g) + U

(g)

2√
n
)(Y(g) −X(g)B∗,(g))T (X(g)U

(g)

1√
n
)]}

+ λ1∑
j,k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
+

1√
n
u
(g)
1,jk∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ λ2∑

s≠t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣ω∗,(g)st +

1√
n
u
(g)
2,jk∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣ω∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.22)

For the first term on the right-hand side of (3.22), it has been shown in Theorem 4 that

G

∑
g=1
{−n log det((Ω∗,(g) + U

(g)

2√
n
)(Ω∗,(g))−1) + ntr(U (g)2 S∗,(g)√

n
)} = G

∑
g=1

tr(U (g)2 Σ(g)U
(g)

2 Σ(g)) +Op(1)
For the second term and the third term on the right-hand side of (3.22), by using the
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similar argument in the proof of Lemma 3, it can be shown that

G

∑
g=1
{tr [(Ω∗,(g) + U

(g)

2√
n
)(X(g)U

(g)

1√
n
)T (X(g)U

(g)

1√
n
)]} = G

∑
g=1

U
(g)

1

T (Ω∗,(g) ⊗A(g))U (g)1 + op(1)
and

G

∑
g=1
{tr [(Ω∗,(g) + U

(g)

2√
n
)(Y(g) −X(g)B∗,(g))T (X(g)U

(g)

1√
n
)]} = Op(1).

For the fourth and fifth term on the right-hand side of (3.22), it has been shown in

Theorems 4 and 5 that

λ1∑
j,k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
+

1√
n
u
(g)
1,jk∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣β∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ = op(1),

λ2∑
s≠t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝

G

∑
g=1
∣ω∗,(g)st +

1√
n
u
(g)
2,jk∣⎞⎠

1/2
−
⎛⎝

G

∑
g=1
∣ω∗,(g)

jk
∣⎞⎠

1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭ = op(1).

By combining the above statements, we can conclude that the right-hand side of (3.22)

is dominated by ∑G
g=1 tr(U (g)2 Σ(g)U

(g)

2 Σ(g)) and ∑G
g=1U (g)1

T (Ω∗,(g) ⊗A(g))U (g)1 . Therefore, by

choosing a sufficiently large D, Vn(U) > 0 uniformly on {U ∶∥ U ∥=D} with the probability

greater than 1 − δ. This completes the proof of the consistency.

Sparsity

Note that (β̂, ω̂) is a
√
n-consistent local minimizer of Q(β,ω) defined in (3.20). As β̂ =

argminβ Q(β, ω̂) and ω̂ is
√
n-consistent, the sparsity of β̂ holds by Theorem 4. Similarly,

since ω̂ = argminω Q(β̂,ω) and β̂ is
√
n-consistent, the sparsity of ω̂ holds by Theorem 5.

These complete the proof of this theorem.
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Chapter 4

Joint Estimation of Multiple Precision

Matrices

4.1 Introduction

In Chapters 2-3, we considered simultaneous modeling of the regression coefficient matrix

and the inverse of residual covariance matrix. In this chapter, we mainly focus on the

estimation of precision matrices.

As stated in Section 1.2, estimation of a precision matrix, which is an inverse covariance

matrix, has attracted a lot of attention recently in the context of the Gaussian graphical

model. The precision matrix also plays an important role in other various areas of statistical

analysis. For example, some classification techniques such as linear discriminant analysis

and quadratic discriminant analysis require good estimates of precision matrices.

All approaches in Section 1.2 focus on estimation of a single precision matrix. The

fundamental assumption of these approaches is that all observations follow the same dis-

tribution. However, in some real applications, this assumption can be unreasonable. For

instance, as pointed out in Section 3.1, the GBM cancer can be classified into four sub-

types [Verhaak et al., 2010]. In this case, it would be more realistic to assume that the

distribution of gene expression levels can vary from one subtype to another, which results

in multiple precision matrices for estimation. A naive approach is to model each subtype

separately. However, in this separate approach, modeling of one subtype completely ignores

the information on other subtypes. This can be suboptimal if there exists some common

structure across different subtypes.

To improve the estimation in presence of some common structure, Guo et al. [2011]



proposed a joint estimation method in a penalized likelihood framework. This method

employs a hierarchical penalty in the Gaussian likelihood framework to link the estimation

of separate precision matrices. Their approach explores the common and unique structures

via the hierarchical penalty.

In this chapter, we propose a new method to jointly estimate multiple precision matrices.

Our approach uses a novel representation of each precision matrix as a sum of a common

and unique matrices. Then we apply sparse constrained optimization on the common and

unique components. The proposed method is applicable for a broader class of distributions

including both the Gaussian and some non-Gaussian cases. The main strength of our

method is that it utilizes all available information to jointly estimate the common and

unique structures, which is not achievable in separate modelings. Therefore, the estimation

can be improved if the precision matrices are similar to each other. Furthermore, our

method is able to discover unique structures of each precision matrix, which enables us to

identify differences among multiple precision matrices. The proposed estimator is shown to

achieve a faster convergence rate for the common structure in certain cases.

The rest of this chapter is organized as follows. In Section 4.2, we introduce our proposed

method after reviewing some separate approaches. We establish its theoretical properties

in Section 4.3. Section 4.4 develops computational algorithms to obtain a solution for

the proposed method. Simulated examples are presented in Section 4.5 to demonstrate

performance of our estimator and analysis of a glioblastoma cancer data example is provided

in Section 4.6. Section 4.7 provides some discussions. The proofs of theorems are provided

in 4.8.

4.2 Methodology

In this section, we introduce a new method for estimating multiple precision matrices in

a L1 minimization framework. Consider a heterogeneous dataset with G different groups.

For the gth group (g = 1, . . . ,G), let {x(g)1 , . . . ,x(g)ng
} be an independent and identically

distributed random sample of size ng, where x
(g)

k
= (x(g)

ki
, . . . , x

(g)

kp
)T is a p-dimensional random

vector with the covariance matrix Σ(g)0 and precision matrix Ω(g)0 ∶= (Σ(g)0 )−1. For detailed

illustration of our proposed method, we first define some notations similar to Cai, Liu and
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Luo [2011]. For a matrix X = (xij) ∈ Rp×q, we define the elementwise L1 norm ∣∣X ∣∣1 =
∑p

i=1∑
q
j=1 ∣xij ∣, the elementwise l∞ norm ∣X ∣∞ =max1≤i≤p,1≤j≤q ∣xij ∣ and the matrix L1 norm

∣∣X ∣∣L1
=max1≤j≤q∑p

i=1 ∣xij ∣. For a vector x = (x1, . . . , xp)T ∈Rp, ∣x∣1 and ∣x∣∞ denote vector

L1 and l∞ norm respectively. The notation X ≻ 0 indicates that X is positive definite. Let

I be a p× p identity matrix. For the gth group, Σ̂(g) denotes the sample covariance matrix.

Write Ω(g)0 = (ω(g)ij,0);g = 1, . . . ,G.

Our aim is to estimate the precision matrices, Ω(1)0 , . . . ,Ω(G)0 . The most naive way to

achieve this goal is to estimate each precision matrix separately by taking the inverses of

the sample covariance matrices. However, in high dimensional cases, the sample covari-

ance matrices are not only unstable for estimating the covariance matrices, but also not

invertible. To estimate the precision matrix in high dimensions, various estimators have

been introduced in the literature. For example, various L1 penalized Gaussian likelihood

estimators have been studied intensively in the literature [Yuan and Lin, 2007; Banerjee,

Ghaoui and d’Aspremont, 2008; Friedman, Hastie and Tibshirani, 2008; Rothman et al.,

2008]. In this framework, the precision matrices can be estimated by solving the following

G optimization problems:

min
Ω(g)≻0

tr(Σ̂(g)Ω(g)) − log{det(Ω(g))} + λg∑
i≠j
∣w(g)ij ∣, g = 1, . . . ,G, (4.1)

where λg is a tuning parameter which controls the degree of the sparsity in the estimated

precision matrices. Other sparse penalized Gaussian likelihood estimators have been pro-

posed as well [Lam and Fan, 2009; Fan, Feng and Wu, 2009].

Recently, Cai, Liu and Luo [2011] proposed an interesting method of constrained L1

minimization for inverse matrix estimation (CLIME), which can be directly implemented

using linear programming. In particular, the CLIME estimator of Ω(g)0 is the solution of the

following optimization problem:

min ∣∣Ω(g)∣∣1 subject to: ∣Σ̂(g)Ω(g) − I ∣∞ ≤ λg, (4.2)

where Σ̂(g) is the sample covariance matrix and λg is a tuning parameter. As the optimiza-

tion problem in (4.2) does not require symmetry of the solution, the final CLIME estimator
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is obtained by symmetrizing the solution of (4.2). The CLIME estimator does not need the

Gaussian distributional assumption. Cai, Liu and Luo [2011] showed that the convergence

rate of the CLIME estimator is faster than that of the L1 penalized Gaussian likelihood

estimator if the underlying true distribution has polynomial-type tails.

To estimate multiple precision matrices, Ω(1)0 , . . . ,Ω(G)0 , we can build G individual models

using the optimization problem (4.1) or (4.2). However, these separate approaches can be

suboptimal when the precision matrices share some common structure. For example, Guo

et al. [2011] proposed a joint estimation of multiple precision matrices under the Gaussian

distributional assumption to improve estimation. In particular, the estimator is the solution

of

min
(Ω(g))G

g=1

G

∑
g=1
[tr(Σ̂(g)Ω(g)) − log{det(Ω(g))}] + λn∑

i≠j
⎛⎝

G

∑
g=1
∣ω(g)ij ∣⎞⎠

1/2
, (4.3)

where λn is a tuning parameter. In some simulation settings, they showed that the joint

estimation can perform better than separate L1 penalized normal likelihood estimation.

However, this approach requires the Gaussian distributional assumption. In this chapter,

we propose a new joint estimation of multiple precision matrices for both Gaussian and

non-Gaussian cases.

In our joint estimation method, we first define the common structure M0 and the unique

structure R
(g)

0 as

M0 ∶=
1

G

G

∑
g=1

Ω(g)0 ,R
(g)

0 ∶= Ω
(g)

0 −M0;g = 1, . . . ,G.

It follows from the definition that ∑G
g=1R(g)0 = 0. If all precision matrices are very similar,

then the unique structures defined above would be close to zero. In this case, it can be

natural and advantageous to encourage sparsity among {R(1)0 , . . . ,R
(G)

0 } in the estimation.

To estimate the precision matrices consistently in high dimensions, it is also necessary to

assume some special structure of M0 as well. In our work, we also assume that M0 is sparse.

To estimate {M0,R
(1)

0 , . . . ,R
(G)

0 }, we propose the following constrained L1 minimization
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criterion:

min{∣∣M ∣∣1 + ν G

∑
g=1
∣∣R(g)∣∣1}

s.t ∣ 1
G

G

∑
g=1
{Σ̂(g)(M +R(g)) − I}∣∞ ≤ λ1, ∣Σ̂(g)(M +R(g)) − I ∣∞ ≤ λ2,

G

∑
g=1

R(g) = 0, (4.4)

where λ1 and λ2 are tuning parameters and ν is a prespecified weight. Note that if λ1 >

λ2, then the second inequality constraints in (4.4) imply the first inequality constraint.

Therefore, we only consider a pair of (λ1, λ2) satisfying λ1 ≤ λ2. The first inequality

constraint in (4.4) reflects how close the final estimators are to the inverses of the sample

covariance matrices in an average sense. On the other hand, the second inequality constraint

controls an individual level of closeness between the estimators and the sample covariance

matrices.

For illustration, consider an extreme case where all the precision matrices are the same.

In this case, the unique structures can be negligible and the first inequality constraint

in (4.4) reduces to ∣(G−1∑G
g=1 Σ̂(g))M − I ∣∞ ≤ λ1. Therefore, we can pool all the sample

covariance matrices to estimate the common structure which is the precision matrix in this

case. This would be advantageous than building each model separately. The value of ν

in (4.4) reflects how complex the unique structures of the resulting estimators are. If the

resulting estimators are expected to be very similar from each other, then a large value of

ν is preferred. In Section 4.3, ν is set to be G−1 or G−1/2 for our theoretical results.

Similar to Cai, Liu and Luo [2011], the solutions in (4.4) are not symmetric in general.

Therefore, the final estimators are obtained after a symmetrization step. Denote the solution

of (4.4) by {M̂ , R̂(1), . . . , R̂(G)}. Then we define Ω̂(g)1 ∶= M̂ + R̂(g);g = 1, . . . ,G. The final

estimator of {Ω(1)0 , . . . ,Ω(G)0 } is obtained by symmetrizing {Ω̂(1)1 , . . . , Ω̂(G)1 } as follows. Let

Ω̂(g)1 = (ω̂(g)ij,1). Our joint estimator of multiple precision matrices (JEMP), {Ω̂(1), . . . , Ω̂(G)},
is defined as symmetric matrices, {Ω̂(g) = (ω̂(g)ij );g = 1, . . . ,G} with

ω̂
(g)

ij = ω̂
(g)

ij,1I{ G

∑
g=1
∣ω̂(g)ij,1∣ ≤ G

∑
g=1
∣ω̂(g)ji,1∣} + ω̂(g)ji,1I{ G

∑
g=1
∣ω̂(g)ij,1∣ > G

∑
g=1
∣ω̂(g)ji,1∣};g = 1, . . . ,G. (4.5)
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4.3 Theoretical Properties

In this section, we investigate theoretical properties of our proposed joint estimator JEMP.

In particular, we first construct the convergence rate of our estimator in the high dimensional

setting. Then we show that the convergence rate can be improved for the common structure

of the precision matrices in certain cases. Finally, the model selection consistency is shown

with an additional thresholding step.

For theoretical properties, we follow the set-up of Cai, Liu and Luo [2011] and the results

therein are also used for our technical derivations. In this section, for simplicity, we assume

that n = n1 = ⋯ = nG. We consider the following class of matrices,

U ∶= {Ω ∶ Ω ≻ 0, ∥Ω∥L1
≤ CM},

and assume that Ω(g)0 ∈ U for all g = 1, . . . ,G. This assumption requires that the true

precision matrices are sparse in terms of the L1 norm while allowing them to have many small

entries. Write E(x(g)) = (µ(g)1 , . . . , µ(g)p )T. We also make the following moment condition on

x(g) for our theoretical results.

Condition 1. There exists some 0 < η < 1/4 such that E[exp{t(x(g)i − µ
(g)

i )2}] ≤K <∞ for

all ∣t∣ ≤ η and all i, g and G log p/n ≤ η, where K is a bounded constant.

Condition 1 indicates that the components of x(g) are uniformly sub-Gaussian. This

condition is satisfied if x(g) follows a multivariate Gaussian distribution or has uniformly

bounded components.

Theorem 7. Assume Condition 1 holds. Let λ1 = λ2 = 3CMC0(log p/n)1/2, where C0 =

2η−2(2 + τ + η−1e2K2)2 and τ > 0. Set ν = G−1. Then

max
ij

⎛⎝ 1G
G

∑
g=1
∣ω̂(g)ij − ω

(g)

ij,0∣⎞⎠ ≤ 6C2
MC0( log p

n
)1/2, (4.6)

with probability greater than 1 − 4Gp−τ .

In an average sense, the convergence rate can be viewed the same as that of the CLIME

estimator which is of order (log p/n)1/2. In this theorem, the first inequality constraint in

(4.4) does not play any role in the estimation procedure as we set λ1 = λ2. In the next

76



theorem, with properly chosen λ1, we construct a faster convergence rate for the common

part under certain conditions.

Theorem 8. Assume Condition 1 holds. Suppose that there exists CR > 0 such that

∥R(g)0 ∥L1
≤ CR for all g = 1, . . . ,G and (∑G

g=1 ∥R(g)0 ∥L1
) ≤ CRG

1/2. Set ν = G−1/2 and let

λ1 = (CM +CR)C0{log p/(nG)}1/2 and λ2 = CMC0(log p/n)1/2. Then

∣M̂ −M0∣∞ ≤ C0(2C2
M + 4CMCR +C2

R)( log p
nG
)1/2, (4.7)

with probability greater than 1 − 2(1 + 3G)p−τ .
Theorem 8 states that our proposed method can estimate the common part more ef-

ficiently with the corresponding convergence rate of order {log p/(nG)}1/2, which is faster

than the order (log p/n)1/2.
Besides its estimation consistency, we also prove the model selection consistency of our

estimator which means that it reveals the exact set of nonzero components in the true

precision matrices with high probability. For this result, a thresholding step is introduced.

In particular, a threshold estimator Ω̃(g) = (ω̃(g)ij ) based on {Ω̂(1), . . . , Ω̂(G)} is defined as,

ω̃
(g)

ij = ω̂
(g)

ij I{∣ω̂(g)ij ∣ ≥ δn}, (4.8)

where δn ≥ 2CMGλ2 and λ2 is given in Theorem 7. To state the model selection consistency

precisely, we define

S0 ∶= {(i, j, g) ∶ ω(g)ij,0 ≠ 0}, Ŝ ∶= {(i, j, g) ∶ ω̃(g)ij ≠ 0} and θmin ∶= min(i,j)∈S0

G

∑
g=1
∣ω(g)ij,0∣.

Then the next theorem states the model selection consistency of our estimator.

Theorem 9. Assume Condition 1 holds. If θmin > 2δn and Gp−τ → 0, then

pr(S0 = Ŝ)→ 1.
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4.4 Numerical Algorithm

In this section, we describe how to obtain the numerical solutions of the optimization

problem (4.4). Similar to the Lemma 1 in Cai, Liu and Luo [2011], we can show that the

optimization problem (4.4) can be decomposed into p individual minimization problems. In

particular, let ei be the ith column of I. For 1 ≤ i ≤ p, let {m̂i, r̂
(1)

i , . . . , r̂
(G)

i } be the solution
of the following optimization problem:

min{∣m∣1 + ν G

∑
g=1
∣r(g)∣1}

s.t. ∣ 1
G

G

∑
g=1
{Σ̂(g)(m + r(g)) − ei}∣∞ ≤ λ1, ∣Σ̂(g)(m + r(g)) − ei∣∞ ≤ λ2,

G

∑
g=1

r(g) = 0, (4.9)

wherem, r(1), . . . , r(G) are vectors inRp. We can show that solving the optimization problem

(4.4) is equivalent to solving the p optimization problems in (4.9). The optimization problem

in (4.9) can be further relaxed to be a linear programming problem and the simplex method

approach is used to solve this problem [Boyd and Vandenberghe, 2004].

To apply our method, we need to choose the tuning parameters, λ1 and λ2. In practice,

we construct several models with many pairs of λ1 and λ2 satisfying λ1 ≤ λ2 and evaluate

them to determine the optimal pair. To evaluate each estimator, we measure the likelihood

loss (LL) used in Cai, Liu and Luo [2011] and its definition is

LL =
G

∑
g=1

tr(Σ̂(g)v Ω̂(g)) − log{det(Ω̂(g))},

where Σ̂(g)v is the sample covariance matrix of the gth group computed from an independent

validation set. Among several pairs of tuning values, we select the pair which minimizes

LL. If a validation set is not available, a K-fold cross-validation can be combined to this

criterion. In particular, we first randomly split the dataset into K parts of equal sizes.

Denote the data in the kth part by {X(1)

(k), . . . ,X
(G)

(k)} which is used as a validation set for the

kth estimator. For each k, with a given value of (λ1, λ2), we obtain an estimator using all

observations which do not belong to {X(1)

(k), . . . ,X
(G)

(k)} and denote them as {Ω̂(G)(k), . . . , Ω̂(G)(k)}.
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Then the likelihood loss (LL) is defined as

LL =
K

∑
k=1

G

∑
g=1

tr(Σ̂(g)(k)Ω̂(g)(k)) − log{det(Ω̂(g)(k))},

where Σ̂(g)(k) is the sample covariance matrix of the gth group using X
(g)

(k). Once the optimal

pair is selected which minimizes LL, the final model is constructed using all data points

with the selected pair.

4.5 Simulated Examples

In this section, we carry out simulation studies to assess the numerical performance of our

proposed method. In particular, we compare the numerical performance of four methods:

two separate methods and two joint methods. In separate approaches, each precision matrix

is estimated separately via the CLIME estimator or the GLASSO estimator. On the other

hand, in joint approaches, all precision matrices are estimated together using our JEMP

estimator or the joint estimator by Guo et al. [2011], which we refer to as JOINT estimator

hereafter. In our proposed method, ν is set to be G−1/2. We also tried different values

of ν such as G−1, and the results are similar thus omitted. We consider three models as

described below: the first two from Guo et al. [2011] and the last from Rothman et al.

[2008]; Cai, Liu and Luo [2011]. In all models, we set p = 100, G = 3 and Ω(g)0 = Ωc + U (g),

where Ωc is common in all groups and U (g) represents unique structure to the gth group.

The common part, Ωc, is generated as follows:

Model 1. Ωc is a tridiagonal precision matrix. In particular, Σc ∶= Ω−1c = (σij) is first

constructed, where σij = exp(−∣di − dj ∣/2), d1 < . . . < dp, and di − di−1 ∼ Unif(0.5,1), i =
2, . . . , p. Then let Ωc = Σ−1c .

Model 2. Ωc is a 5 nearest-neighbor network. In particular, p points are randomly picked

on a unit square and all pairwise distances among the points are calculated. Then we find

5 nearest neighbors for each point and a pair of symmetric entries in Ωc corresponding to a

pair of neighbors has a value randomly chosen from the interval [−1,−0.5] ∪ [0.5,1].
Model 3. Ωc = Γ + δI, where each off-diagonal entry in Γ is generated independently

from 0.5y, with y following the Bernoulli distribution with success probability 0.1. Here, δ

is selected so that the condition number of Γ is equal to p.
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For each U (g), we randomly pick a pair of symmetric off-diagonal entries and replace

them with values randomly chosen from the interval [−1,−0.5] ∪ [0.5,1]. We repeat this

procedure until ∑i<j I(∣u(g)ij ∣ > 0)/∑i<j I(∣ωij,c∣ > 0) = ρ, where Ωc = (ωij,c) and U (g) = u(g)ij .

Therefore, ρ is the ratio of the number of unique nonzero entries to the number of common

nonzero entries. We consider four values of ρ = 0,0.25,1 and 4. Finally, each matrix Ω(g)0 is

standardized to have unit diagonals.

For each group in each model, we generate a training sample of size n = 100 from a

multivariate normal distribution N(0,Σ(g)0 ). In order to select optimal tuning parameters,

an independent validation set of size n = 100 is also generated from the same distribution.

For each estimator, optimal tuning parameters are selected as described in Section 4.4. We

replicate simulations 50 times for each model. To compare performance of four different

methods, we use several criteria as follows. For estimation quality, we use the average

entropy loss and the average Frobenius loss defined as,

EL = G−1
G

∑
g=1
{tr(Σ(g)0 Ω̂(g)) − log det(Σ(g)0 Ω̂(g)) − p} ,

FL = G−1
G

∑
g=1
∥ Ω(g)0 − Ω̂

(g) ∥2
F
,

where ∥ . ∥F is the Frobenius norm of a matrix. To measure selection quality, we use the

average false positive rate and the average false negative rate defined as,

FP =
1

G

G

∑
g=1
∑i<j I(ω(g)ij,0 = 0, ω̂

(g)

ij ≠ 0)
∑i<j I(ω(g)ij,0 = 0) ,

FN =
1

G

G

∑
g=1
∑i<j I(ω(g)ij,0 ≠ 0, ω̂

(g)

ij = 0)
∑i<j I(ω(g)ij,0 ≠ 0) .

Table 4.1 reports the results for all models. In terms of the average entropy loss and

Frobenius loss, two joint estimation methods, JEMP and JOINT, outperform two separate

estimation methods. Our proposed method, JEMP, has the best performance overall. JEMP

shows slightly worse false positive rates. On the other hand, from all examples, it can be

seen that there are some improvements in the false negative rates.

Figure 4.1 shows the estimated receiver operating characteristic (ROC) curves averaged

over 50 replications. In Model 1, the ROC curves estimated by JEMP and JOINT seem
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Table 4.1: Average entropy loss (EL), Frobenius loss (FL), false positive rate (FP), and
false negative rate (FN) for three models over 50 replications (The numbers in parentheses
are standard errors)

Model ρ Method EL FL FP FN

Model 1

0

CLIME 7.58 (0.035) 12.69 (0.066) 0.05 (0.000) 0.05 (0.002)
GLASSO 6.65 (0.027) 10.79 (0.045) 0.09 (0.001) 0.03 (0.001)
JOINT 3.03 (0.025) 4.87 (0.044) 0.00 (0.000) 0.01 (0.001)
JEMP 2.41 (0.020) 5.04 (0.060) 0.09 (0.005) 0.00 (0.000)

0.25

CLIME 7.60 (0.032) 12.97 (0.053) 0.05 (0.000) 0.23 (0.002)
GLASSO 6.81 (0.034) 10.99 (0.048) 0.09 (0.001) 0.18 (0.002)
JOINT 3.90 (0.031) 6.16 (0.043) 0.00 (0.000) 0.21 (0.003)
JEMP 3.13 (0.021) 6.03 (0.065) 0.10 (0.006) 0.16 (0.002)

1

CLIME 7.09 (0.028) 12.72 (0.064) 0.05 (0.001) 0.56 (0.003)
GLASSO 6.52 (0.024) 10.88 (0.042) 0.07 (0.001) 0.54 (0.004)
JOINT 5.19 (0.032) 8.58 (0.057) 0.00 (0.000) 0.63 (0.004)
JEMP 3.87 (0.022) 7.39 (0.065) 0.10 (0.006) 0.43 (0.005)

4

CLIME 4.75 (0.018) 9.18 (0.035) 0.04 (0.001) 0.90 (0.003)
GLASSO 3.97 (0.012) 7.29 (0.024) 0.01 (0.001) 0.96 (0.003)
JOINT 3.97 (0.012) 7.33 (0.024) 0.00 (0.000) 0.99 (0.001)
JEMP 3.11 (0.013) 6.28 (0.028) 0.07 (0.001) 0.82 (0.001)

Model 2

0

CLIME 7.06 (0..027) 12.93 (0.056) 0.05 (0.001) 0.58 (0.003)
GLASSO 6.45 (0.023) 11.06 (0.034) 0.06 (0.001) 0.55 (0.004)
JOINT 5.57 (0.034) 9.86 (0.053) 0.00 (0.000) 0.66 (0.007)
JEMP 3.27 (0.024) 6.29 (0.079) 0.15 (0.006) 0.14 (0.007)

0.25

CLIME 6.33 (0.025) 11.66 (0.062) 0.05 (0.001) 0.70 (0.003)
GLASSO 5.78 (0.022) 9.93 (0.035) 0.05 (0.001) 0.69 (0.004)
JOINT 6.00 (0.030) 10.33 (0.045) 0.01 (0.000) 0.84 (0.004)
JEMP 5.47 (0.019) 10.80 (0.033) 0.12 (0.006) 0.48 (0.007)

1

CLIME 5.46 (0.020) 10.44 (0.045) 0.05 (0.001) 0.85 (0.003)
GLASSO 4.85 (0.015) 8.66 (0.027) 0.03 (0.001) 0.89 (0.004)
JOINT 5.09 (0.017) 9.19 (0.032) 0.00 (0.000) 0.99 (0.001)
JEMP 4.73 (0.014) 9.45 (0.031) 0.09 (0.002) 0.83 (0.004)

4

CLIME 3.47 (0.017) 6.62 (0.031) 0.04 (0.001) 0.95 (0.001)
GLASSO 2.45 (0.013) 4.74 (0.027) 0.00 (0.000) 1.00 (0.000)
JOINT 2.45 (0.012) 4.73 (0.026) 0.00 (0.000) 1.00 (0.000)
JEMP 2.17 (0.011) 4.37 (0.023) 0.07 (0.001) 0.93 (0.001)

Model 3

0

CLIME 4.21 (0.019) 8.27 (0.034) 0.04 (0.001) 0.92 (0.002)
GLASSO 3.29 (0.013) 6.30 (0.026) 0.00 (0.001) 0.99 (0.001)
JOINT 3.28 (0.014) 6.30 (0.027) 0.00 (0.000) 1.00 (0.000)
JEMP 2.68 (0.010) 5.57 (0.023) 0.07 (0.001) 0.77 (0.002)

0.25

CLIME 4.55 (0.017) 8.83 (0.034) 0.04 (0.001) 0.91 (0.002)
GLASSO 3.78 (0.014) 7.04 (0.026) 0.01 (0.001) 0.97 (0.002)
JOINT 3.85 (0.014) 7.19 (0.026) 0.00 (0.000) 1.00 (0.000)
JEMP 3.47 (0.010) 7.05 (0.023) 0.07 (0.001) 0.88 (0.002)

1

CLIME 3.68 (0.014) 7.06 (0.026) 0.04 (0.001) 0.95 (0.001)
GLASSO 2.69 (0.013) 5.15 (0.027) 0.00 (0.000) 1.00 (0.001)
JOINT 2.69 (0.013) 5.15 (0.027) 0.00 (0.000) 1.00 (0.000)
JEMP 2.42 (0.009) 4.87 (0.020) 0.07 (0.001) 0.92 (0.001)

4

CLIME 2.67 (0.018) 4.92 (0.036) 0.04 (0.001) 0.96 (0.001)
GLASSO 1.60 (0.015) 3.27 (0.035) 0.00 (0.000) 1.00 (0.000)
JOINT 1.60 (0.015) 3.26 (0.036) 0.00 (0.000) 1.00 (0.000)
JEMP 1.36 (0.010) 2.68 (0.018) 0.07 (0.001) 0.93 (0.001)
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Figure 4.1: Receiver operating characteristic curves averaged over 50 replications. In each
panel, the horizontal and vertical axes are false positive rate and sensitivity respectively.
Here, ρ is the ratio of the number of unique nonzero entries to the number of common
nonzero entries. The red dotted-dash, solid, dotted, and dashed lines correspond to JEMP,
JOINT, GLASSO, and CLIME respectively.
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to be close while they dominate the ROC curves estimated by CLIME and GLASSO. In

Model 2, when ρ is 0 or 0.25, the ROC curve from JEMP dominates the other curves. As

ρ increases, all ROC curves move closer together. This is because the precision matrices

become much different from each other and the joint estimation methods eventually do not

have any advantage. In Model 3, JEMP estimator outperforms the other estimators when

ρ is 0. Overall, our proposed JEMP estimator delivers very competitive performance in

terms of both estimation accuracy and selection.

4.6 Application to the Glioblastoma Cancer Data

In this section, we apply our methodology to the GBM cancer dataset described in Section

3.6. The dataset consists of 17814 gene expression levels of 482 GBM patients. The patients

were classified into four subtypes, namely, classical, mesenchymal, neural, and proneural

with sample sizes of 127, 145, 85, and 125 respectively [Verhaak et al., 2010]. These subtypes

are shown to be different biologically, while at the same time, share similarities as well since

they all belong to GBM cancer. In this application, we consider the signature genes reported

by Verhaak et al. [2010]. They established 210 signature genes for each subtype, which

results 840 signature genes in total. These signature genes are highly distinctive for four

subtypes and each class of genes tends to be highly expressed only in their corresponding

subtype.

To produce an interpretable size of models, top 15 genes with large median absolute

deviation were selected from each set of 210 signature genes, which results 60 genes in

total. Our aim is to estimate four precision matrices of the 60 genes for four corresponding

subtypes. We consider four methods described in Section 4.5. For performance assessment,

the dataset of each subtype is divided into a training set of size 75 and a test set of the

remainder. The tuning parameters are selected using 5-fold cross-validation as discussed in

Section 4.4. We perform the random splitting 100 times. Each estimator is evaluated using

the likelihood loss on the test set defined in Section 4.4.

Table 4.2 shows the average likelihood loss based on 100 replications. The joint esti-

mation methods outperform the separate approaches. Among all estimators, our estimator

shows the lowest likelihood loss. This result indicates that there may exist some noticeable
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Table 4.2: Comparison of the average likelihood loss based on 100 replications (The numbers
in parentheses are standard errors)

CLIME GLASSO JOINT JEMP

Likelihood loss 91.71(0.39) 87.03(0.66) 74.80(0.94) 67.01(0.36)

common structure shared by all precision matrices.

To depict the common and unique structures among the estimated precision matrices,

graphical networks are constructed using our joint estimator. In each subtype, two genes

have an edge if the corresponding element in the estimated precision matrix is nonzero for all

100 replications. The resulting gene networks are shown in Figure 4.2. The thin dark grey

lines are the edges appearing in all subtypes and the thick black lines are the unique edges

to certain subtypes. It is noticeable that most of edges are dark grey lines, which means

that they appear in all subtypes. This indicates that the networks of 60 genes from GBM

patients are very similar across all subtypes although they have some unique structures for

each subtype as well. The red genes are signature genes for the classical subtype. Likewise,

green, blue and purple genes are the mesenchymal, proneural and neural signature genes

respectively. Each class of signature genes tends to have more links with the genes in the

same class. This is expected because each class of signature genes is more likely to be

highly co-expressed. Some genes such as GJA1, ELOVL2, and FHL2, have many links with

other class of genes. This may indicate that these genes may have information for multiple

subtypes and it will be interesting to investigate these genes further.

4.7 Discussion

In this chapter, we proposed a new method for jointly estimating multiple precision ma-

trices with some common structure. The proposed method is derived in a constrained L1

minimization framework. Our theoretical investigation shows that the estimation can be

improved for the common structure in certain cases. Simulated examples and an application

to the GBM cancer data set demonstrate that our proposed methods perform competitively.

Our current method defines the common structure of multiple precision matrices as the

average of these matrices. One future research direction is to extend the proposed method
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Figure 4.2: Graphical presentation of conditional dependence structures among genes using
our estimator of precision matrices. The thin dark grey lines are the edges appearing in all
subtypes and the thick black lines are the unique edges to certain subtypes. The red, green,
blue and purple genes are classical, mesenchymal, proneural and neural genes respectively
[Verhaak et al., 2010].

with other definitions of the common structure. For instance, the common structure can

be defined as the intersection of the index sets of non-zero components of the precision

matrices. It will be interesting to compare the performance with various definitions of the

common structure.

Our methodology mainly focuses on the sparse estimation of precision matrices. The

proposed method can be very useful statistical tools for exploring common and unique

structures of multiple precision matrices. On the other hand, it is not clear how to make

valid inferences on our estimator. Although some parameters are estimated numerically as

zeros by our sparse technique, one may need to perform hypothesis tests to determine if

they are zeros in the statistical sense. Therefore, a natural future direction is to develop

valid inference tools for our estimator, such as performing hypothesis tests and constructing

confidence intervals.
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4.8 Proofs

4.8.1 Proof of Theorem 7

Write Σ(g)0 = (σ(g)ij,0) and Σ̂(g) = (σ̂(g)ij ). Let mj,0 and r
(g)

j,0 be the jth columns of M0 and R
(g)

0

respectively. Define the jth columns of M̂ and R̂(g) as m̂j and r̂
(g)

j respectively. We first

state some results established by Cai, Liu and Luo [2011] in the proof of their Theorem 1.

lemma 4. Suppose Condition 1 holds. For any fixed g = 1, . . . ,G, with probability greater

than 1 − 4p−τ ,

max
ij
∣σ̂(g)ij − σ

(g)

ij,0∣ ≤ C0 ( log p
n
)1/2 ,

where C0 is given in Theorem 7.

It follows from Lemma 4 that

max
ij
∣σ̂(g)ij − σ

(g)

ij,0∣ ≤ λ2/(3CM ) for all g = 1, . . . ,G, (4.10)

with probability greater than 1−4Gp−τ . All following arguments assume (4.10) holds. First,

we have that

∣(Ω̂(g)1 −Ω
(g)

0 )ej ∣∞ = ∣Ω(g)0 (Σ(g)0 Ω̂(g)1 − I)ej ∣∞ ≤ ∣∣Ω(g)0 ∣∣L1
∣(Σ(g)0 Ω̂(g)1 − I)ej ∣∞

≤ CM {∣(Σ(g)0 − Σ̂
(g))Ω̂(g)1 ej ∣∞ + ∣(Σ̂(g)Ω̂(g)1 − I)ej ∣∞}

≤ CM ∣Ω̂(g)1 ej ∣1∣Σ(g)0 − Σ̂
(g)∣∞ +CMλ2

≤ ∣Ω̂(g)1 ej ∣1λ2/3 +CMλ2,

for all g = 1, . . . ,G. Second, note that {M0,R
(1)

0 , . . . ,R
(G)

0 } is a feasible solution of (4.4)

as ∣I − Σ̂(g)(M0 +R
(g)

0 )∣∞ = ∣(Σ(g)0 − Σ̂
(g))Ω(g)0 ∣∞ ≤ ∣∣Ω(g)0 ∣∣L1

∣Σ(g)0 − Σ̂
(g)∣∞ ≤ CMλ2/(3CM ) < λ2

and λ1 = λ2. Therefore, we have that

G

∑
g=1

∣(Ω̂(g)
1
−Ω(g)

0
)ej ∣∞ ≤

G

∑
g=1

∣Ω̂(g)
1
ej ∣1λ2/3 +GCMλ2 ≤ G

⎧⎪⎪⎨⎪⎪⎩
∣m̂j ∣1 +G−1

G

∑
g=1

∣r̂(g)j ∣1
⎫⎪⎪⎬⎪⎪⎭
λ2/3 +GCMλ2

≤ G
⎧⎪⎪⎨⎪⎪⎩
∣mj,0∣1 +G−1

G

∑
g=1

∣r(g)j,0∣1
⎫⎪⎪⎬⎪⎪⎭
λ2/3 +GCMλ2

≤ G3CMλ2/3 +GCMλ2 = 2GCMλ2 = 6GC2

MC0(log p/n)1/2.
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By the inequality

max
ij

⎛⎝ 1G
G

∑
g=1
∣ω̂(g)ij − ω

(g)

ij,0∣⎞⎠ ≤max
j

1

G

G

∑
g=1
∣(Ω̂(g)1 −Ω

(g)

0 )ej ∣∞ ≤ 6C2
MC0( log p

n
)1/2,

the proof is completed.

4.8.2 Proof of Theorem 8

lemma 5. With probability greater than 1 − 2(1 +G)p−τ , the following holds:

max
ij
∣ G∑
g=1
(σ̂(g)ij − σ

(g)

ij,0)∣ ≤ C0 (G log p

n
)1/2 .

Proof. We adopt a similar technique used in Cai, Liu and Luo [2011] for the proof of

their Theorem 1. Without loss of generality, we assume that µ
(g)

i = 0 for all i and g.

Let y
(g)

kij
∶= x

(g)

ki
x
(g)

kj
− E(x(g)

ki
x
(g)

kj
). Define x̄

(g)

i ∶= ∑
n
k=1 x

(g)

ki
/n; i = 1, . . . , p, g = 1, . . . ,G. Then

∑G
g=1(σ̂(g)ij −σ

(g)

ij,0) = ∑G
g=1 (∑n

k=1 y
(g)

kij
/n − x̄(g)i x̄

(g)

j ). Let t ∶= η(log p)1/2(nG)−1/2 and C1 ∶= 2+τ+

η−1K2. Using the Markov’s inequality and the inequality ∣ exp(s)−1−s∣ ≤ s2 exp{max(s,0)}
for any s ∈R, we can show that

pr

⎧⎪⎪⎨⎪⎪⎩
1

n

G

∑
g=1

n

∑
k=1

y
(g)

kij
≥ η−1C1 (G log p

n
)
1/2⎫⎪⎪⎬⎪⎪⎭

= pr
⎧⎪⎪⎨⎪⎪⎩

G

∑
g=1

n

∑
k=1

y
(g)

kij
≥ η−1C1 (nG log p)1/2

⎫⎪⎪⎬⎪⎪⎭
≤ exp{−tη−1C1(nG log p)1/2}E

⎧⎪⎪⎨⎪⎪⎩
exp
⎛
⎝t

G

∑
g=1

n

∑
k=1

y(g)
kij

⎞
⎠
⎫⎪⎪⎬⎪⎪⎭

= exp{−C1 logp}
G

∏
g=1

n

∏
k=1

E {exp(ty(g)
kij
)}

= exp
⎡⎢⎢⎢⎣−C1 logp +

G

∑
g=1

n log{E (ety(g)kij)}
⎤⎥⎥⎥⎦

≤ exp
⎡⎢⎢⎢⎣−C1 logp +

G

∑
g=1

n{E (ety(g)kij) − 1}⎤⎥⎥⎥⎦
= exp

⎡⎢⎢⎢⎣−C1 logp +
G

∑
g=1

n{E (ety(g)kij − ty(g)
kij
− 1)}

⎤⎥⎥⎥⎦
≤ exp

⎧⎪⎪⎨⎪⎪⎩
−C1 logp +

G

∑
g=1

nt2E (y(g)kij

2

e
∣ty
(g)

kij
∣)
⎫⎪⎪⎬⎪⎪⎭

≤ exp
⎧⎪⎪⎨⎪⎪⎩
−C1 logp +

G

∑
g=1

(ηG)−1K2 log p

⎫⎪⎪⎬⎪⎪⎭
. (4.11)

The last inequality (4.11) holds since nt2E (y(g)
kij

2
e
∣ty(g)

kij
∣) = (ηG)−1(log p)E {(η3/2∣y(g)

kij
∣)2 et∣y(g)kij

∣}
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and

E {(η3/2∣y(g)
kij
∣)2 et∣y(g)kij

∣} ≤ E {eη3/2 ∣y(g)kij
∣
e
t∣y(g)

kij
∣} ≤ E {eη3/2 ∣y(g)kij

∣
e
η3/2 ∣y(g)

kij
∣} ≤ E {eη∣y(g)kij

∣}
≤ E {eη∣x(g)ki

x
(g)
kj
∣+ηE(∣x(g)

ki
x
(g)
kj
∣)} ≤ {E (eη∣x(g)ki

x
(g)
kj
∣)}2

≤ {E (eηx(g)ki

2/2+ηx(g)
kj

2/2)}2 ≤ E (eηx(g)ki

2)E (eηx(g)kj

2) ≤K2.

From (4.11), it follows that

pr

⎧⎪⎪⎨⎪⎪⎩
1

n

G

∑
g=1

n

∑
k=1

y
(g)

kij
≥ η−1C1 (G log p

n
)1/2⎫⎪⎪⎬⎪⎪⎭ ≤ exp{−C1 log p + η−1K2 log p} ≤ p−(τ+2).

Therefore, we have

pr

⎧⎪⎪⎨⎪⎪⎩max
ij

RRRRRRRRRRR
1

n

G

∑
g=1

n

∑
k=1

y
(g)

kij

RRRRRRRRRRR ≥ η
−1C1 (G log p

n
)1/2⎫⎪⎪⎬⎪⎪⎭ ≤ 2p

−τ . (4.12)

Next, let C2 = 2 + τ + η−1(eK)2. Cai, Liu and Luo [2011] showed in the proof of their

Theorem 1 that

pr(max
ij
∣x̄(g)i x̄

(g)

j ∣ ≥ η−2C2
2 log p/n) ≤ 2p−τ−1.

Using this result, we have that

pr
⎛⎝max

ij
∣ G∑
g=1

x̄
(g)

i x̄
(g)

j ∣ ≥ η−2C2
2G log p/n⎞⎠ ≤ pr⎛⎝

G

∑
g=1

max
ij
∣x̄(g)i x̄

(g)

j ∣ ≥ η−2C2
2G log p/n⎞⎠

≤
G

∑
g=1

pr(max
ij
∣x̄(g)i x̄

(g)

j ∣ ≥ η−2C2
2 log p/n)

≤
G

∑
g=1

2p−τ−1 ≤ 2Gp−τ (4.13)
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By (4.12), (4.13) and the inequality C0 > η−1C1 + η−2C2
2(G log p/n)1/2, we see that

pr
⎛⎝max

ij
∣ G∑
g=1
(σ̂(g)ij − σ

(g)

ij,0)∣ ≥ C0 (G log p

n
)1/2⎞⎠

≤ pr
⎧⎪⎪⎨⎪⎪⎩max

ij

RRRRRRRRRRR
1

n

G

∑
g=1

n

∑
k=1

y
(g)

kij

RRRRRRRRRRR ≥ η
−1C1 (G log p

n
)1/2⎫⎪⎪⎬⎪⎪⎭ + pr

⎛⎝max
ij
∣ G∑
g=1

x̄
(g)

i x̄
(g)

j ∣ ≥ η−2C2
2G log p/n⎞⎠

≤ 2(1 +G)p−τ .
The proof is completed.

By Lemma 4 and 5, we see that

max
ij
∣ G∑
g=1
(σ̂(g)ij − σ

(g)

ij,0)∣ ≤ C0 (G log p

n
)1/2 andmax

ij
∣σ̂(g)ij − σ

(g)

ij,0∣ ≤ C0 ( log p
n
)1/2 , (4.14)

for all g = 1, . . . ,G with probability greater than 1 − 2(1 + 3G)p−τ . All following argu-

ments assume (4.14) holds. Note that {M0,R
(1)

0 , . . . ,R
(G)

0 } is a feasible solution of (4.4) as

∣I − Σ̂(g)(M0 +R
(g)

0 )∣∞ = ∣(Σ(g)0 − Σ̂
(g))Ω(g)0 ∣∞ ≤ ∣∣Ω(g)0 ∣∣L1

∣Σ(g)0 − Σ̂
(g)∣∞ ≤ CMC0(log p/n)1/2 =

λ2 and

∣G−1 G

∑
g=1

{I − Σ̂(g)(M0 +R
(g)

0
)} ∣∞ ≤ ∣G−1

G

∑
g=1

(Σ(g)
0
− Σ̂(g))M0∣∞ + ∣G−1

G

∑
g=1

(Σ(g)
0
− Σ̂(g))R(g)

0
∣∞

≤ ∣∣M0∣∣L1
∣G−1 G

∑
g=1

(Σ(g)
0
− Σ̂(g))∣∞ +G−1

G

∑
g=1

∣∣R(g)

0
∣∣L1
∣Σ(g)

0
− Σ̂(g)∣∞

≤ CMC0 {log p/(nG)}1/2 +CRC0 {log p/(nG)}1/2 = λ1.

Now, we find an upper bound of ∣G(M̂ −M0)ej ∣∞ = ∣∑G
g=1(Ω̂(g)1 −Ω

(g)

0 )ej ∣∞. In particular,

we use

∣ G∑
g=1
(Ω̂(g)1 −Ω

(g)

0 )ej ∣∞ ≤ ∣ G∑
g=1

Ω(g)0 (Σ(g)0 − Σ̂
(g))Ω̂(g)1 ej ∣∞ + ∣ G∑

g=1
Ω(g)0 (Σ̂(g)Ω̂(g)1 − I)ej ∣∞. (4.15)
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First, consider the first term in the right-hand side of (4.15). We can show that

∣ G∑
g=1

Ω(g)
0
(Σ(g)

0
− Σ̂(g))Ω̂(g)

1
ej ∣∞ ≤ ∣

G

∑
g=1

M0(Σ(g)0
− Σ̂(g))m̂j ∣∞ + ∣

G

∑
g=1

M
(g)

0
(Σ(g)

0
− Σ̂(g))r̂(g)j ∣∞

+ ∣ G∑
g=1

R(g)

0
(Σ(g)

0
− Σ̂(g))m̂j ∣∞ + ∣

G

∑
g=1

R(g)

0
(Σ(g)

0
− Σ̂(g))r̂(g)j ∣∞

≤ ∣∣M0∣∣L1

⎧⎪⎪⎨⎪⎪⎩
∣ G∑
g=1

(Σ(g)
0
− Σ̂(g))∣∞∣m̂j ∣1 +

G

∑
g=1

∣Σ(g)
0
− Σ̂(g)∣∞∣r̂(g)j ∣1

⎫⎪⎪⎬⎪⎪⎭
+

G

∑
g=1

∣R(g)

0
(Σ(g)

0
− Σ̂(g))∣∞∣m̂j ∣1 +

G

∑
g=1

∣R(g)

0
(Σ(g)

0
− Σ̂(g))∣∞∣r̂(g)j ∣1.

Using the assumptions ∣∣R(g)0 ∣∣L1
≤ CR and ∑G

g=1 ∣∣R(g)0 ∣∣L1
≤ G1/2CR, we have

∣ G∑
g=1

Ω(g)
0
(Σ(g)

0
− Σ̂(g))Ω̂(g)

1
ej ∣∞ ≤ CMC0(G log p/n)1/2∣m̂j ∣1 +CMC0(log p/n)1/2

G

∑
g=1

∣r̂(g)j ∣1

+CRC0(G log p/n)1/2∣m̂j ∣1 +CRC0(logp/n)1/2
G

∑
g=1

∣r̂(g)j ∣1

≤ C0(CM +CR)(G log p/n)1/2(∣m̂j ∣1 +G−1/2
G

∑
g=1

∣r̂(g)j ∣1)

≤ C0(CM +CR)(G log p/n)1/2(∣mj,0∣1 +G−1/2
G

∑
g=1

∣r(g)j,0∣1)

≤ C0(CM +CR)2(G log p/n)1/2. (4.16)

For the second term in the right-hand side of (4.15), note that

∣ G∑
g=1

Ω(g)0 (Σ̂(g)Ω̂(g)1 − I)ej ∣∞ ≤ ∣ G∑
g=1

M0(Σ̂(g)Ω̂(g) − I)ej ∣∞ + ∣ G∑
g=1

R
(g)

0 (Σ̂(g)Ω̂(g) − I)ej ∣∞
≤ ∣∣M0∣∣L1

∣ G∑
g=1
(Σ̂(g)Ω̂(g) − I)ej ∣∞ + G

∑
g=1
∣∣R(g)0 ∣∣L1

∣(Σ̂(g)Ω̂(g) − I)ej ∣∞
≤ CMλ1 +G

1/2CRλ2 = C0CM(CM + 2CR)(G log p/n)1/2. (4.17)

By (4.15), (4.16), (4.17) and the equality ∣M̂ −M0∣∞ =maxj ∣(M̂ −M0)ej ∣∞ , we have

∣M̂ −M0∣∞ ≤ C0(2C2
M + 4CMCR +C

2
R)( log p

nG
)1/2 .

The proof is completed.
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4.8.3 Proof of Theorem 9

By Theorem 7, we see that

max
ij

G

∑
g=1
∣ω̂(g)ij − ω

(g)

ij,0∣ ≤ 2GCMλ2 ≤ δn, (4.18)

with probability greater than 1 − 4Gp−τ . We show that S0 = Ŝ when (4.18) holds. For

any (i, j, g) ∉ S0, we have ∣ω̂(g)ij ∣ = ∣ω̂(g)ij − ω
(g)

ij,0∣ ≤ ∑G
g=1 ∣ω̂(g)ij − ω

(g)

ij,0∣ ≤ δn. Therefore, we

see ω̃
(g)

ij = 0, which implies Ŝ ⊂ S0. On the other hand, for any (i, j, g) ∈ S0, we have

∣ω̂(g)ij ∣ ≥ ∣ω(g)ij,0∣ − ∣ω̂(g)ij − ω
(g)

ij,0∣ ≥ ∣ω(g)ij,0∣ −∑G
g=1 ∣ω̂(g)ij − ω

(g)

ij,0∣ > δn. Therefore, we see that ω̃
(g)

ij ≠ 0,

which implies S0 ⊂ Ŝ. In summary, we see that S0 = Ŝ if (4.18) holds, which implies that

pr(S0 = Ŝ) ≥ pr(maxij∑G
g=1 ∣ω̂(g)ij − ω

(g)

ij,0∣ ≤ δn). As Gp−τ → 0, pr(maxij∑G
g=1 ∣ω̂(g)ij − ω

(g)

ij,0∣ ≤
δn)→ 1 and the proof is completed.
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