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ABSTRACT 

 

Kaitlin Christine Lenhart:  The Rho-GAP GRAF1 Regulates Skeletal Muscle  

Maturation and Repair 

(Under the direction of Joan M. Taylor) 

 

 

Skeletal muscle is a large and highly specialized tissue requiring tightly regulated 

processes during development and maintenance to prevent the manifestation of debilitating 

myopathies.  The fusion of myoblasts into mature multinucleated syncitia is a critical 

component of muscle formation and is regulated by the tight coordination of actin- and 

membrane-based dynamics; however, the spatial/temporal regulation of and interrelationship 

between these processes is incompletely understood.  We recently reported that the BAR 

domain-containing Rho-GAP, GRAF1, is particularly abundant in perinatal muscle 

undergoing fusion to form multinucleated muscle fibers and that enforced expression of 

GRAF1 in cultured myoblasts induced robust fusion by a process that required GAP-

dependent actin remodeling and BAR domain-dependent membrane sculpting.  Herein we 

developed a novel GRAF1-deficient mouse line to explore a role for this protein in the 

formation/maturation of myotubes in vivo.  Adult GRAF1-deficient mice exhibited a 

significant decrease in grip strength with muscle analysis revealing a significant reduction in 

cross-sectional area and impaired regenerative capacity, indicating a deficiency in myoblast 

fusion.  Indeed, a significant fusion defect was recapitulated in isolated myoblasts depleted of 

GRAF1.  Mechanistically, we show that GRAF1 associates with endocytic recycling vesicles 
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and facilitates myoblast fusion, at least in part, by promoting vesicle-mediated translocation 

of fusogenic ferlin proteins to the plasma membrane.  

Muscle plasma membrane is particular vulnerability to contraction-induced rupture 

and possesses specialized mechanisms for rapid membrane repair so as to preserve the 

syncytia.  Dysferlin has been established as a critical regulator of muscle plasma membrane 

resealing; however, the mechanism(s) which govern dysferlin trafficking to sites of 

membrane damage require further investigation.  We show that GRAF1 associates with and 

mediates deposition of dysferlin at plasma membranes of injured muscle, implicating a novel 

role for GRAF1 in dysferlin-mediated membrane repair.  In support of this, GRAF1 

depletion enhanced susceptibility to induced membrane injury in isolated myoblasts and as 

anticipated, exacerbated some hallmarks of muscle degeneration in the mdx mouse. 

Interestingly, GRAF1-deficient mdx mice exhibited unprecedented myofiber expansion and 

muscle growth, implicating an additional role for GRAF1 in skeletal muscle-injury response.  

Together, these data shed new light on the importance of GRAF1 in skeletal muscle 

formation and maintenance.  
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CHAPTER 1 

 

 

BACKGROUND AND SIGNIFICANCE 

 

SKELETAL MUSCLE DISEASES:  A BRIEF OVERVIEW 

Skeletal muscle diseases, or myopathies, can be acquired or congenital, and 

encompass a wide array of disorders with varying effects on the body—muscle wasting and 

weakness being the most common symptoms.  Acquired myopathies are often inflammatory 

and include dermatomyositis, polymyositis, and inclusion body myositis.  Congenital 

myopathies, on the other hand, are more pathologically diverse and encompass the class of 

muscular dystrophies, mitochondrial myopathies, and other various non-categorized 

myopathies.  The reason individuals afflicted with congenital myopathies present with such 

diverse symptoms is due to either inherited or de novo mutations which occur in an array of 

genes that play varying roles in the structural maintenance and/or repair of muscle.  

 Muscular dystrophies, for instance, often result from mutations in striated muscle 

plasma membrane (PM), or sarcolemma, -associated proteins which aid in the attachment of 

muscle fibers to the extracellular matrix (ECM).  When any of these components are 

misexpressed, the myofibers become vulnerable to damage.  For a comprehensive review of 

muscular dystrophy-linked proteins, see the works of Davies and Nowak, and Rahimov and 

Kunkel [1, 2].  Dystrophin, for example, is an integral member of the transmembrane 

dystrophin glycoprotein complex (DGC), a multi-protein complex which anchors the 
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sarcolemma to both the actin cytoskeleton and the ECM, thereby creating a structural 

scaffold which reinforces PM integrity.  In instances of dystrophin depletion, the DGC 

becomes destabilized resulting in a fragile sarcolemma that is increasingly vulnerable to 

contraction-induced injury [3, 4].  In patients with Duchenne muscular dystrophy (DMD) or 

Becker muscular dystrophy, mutations in the dystrophin gene result in absent or defective 

protein, respectively.  This aberrant expression augments membrane fragility and subsequent 

muscle fiber degeneration which becomes progressively more severe as the muscle loses the 

ability to regenerate.  

 Muscular dystrophies can also result from defects in sarcolemmal repair mechanisms 

such as what occurs in patients with dysferlinopathies.  Dysferlinopathies result from 

mutations in the dysferlin gene and are characterized by progressive muscle wasting and are 

diagnosed as either Limb-girdle muscular dystrophy type 2B or Miyoshi muscular dystrophy 

[5, 6].  Following PM injury, all cell types must utilize a rapid and proficient mechanism to 

reseal or “patch” their membranes; skeletal muscle, being a highly strained tissue, depends 

heavily upon this repair process.  Indeed, it has been demonstrated that dysferlin mediates 

Ca
2+

-dependent membrane resealing of adult myofibers following injury, implicating an 

important role for this protein in sarcolemmal repair [7], (a more complete description of 

dysferlin-mediated membrane repair follows below).  In summary, by understanding the 

diverse mechanisms which lead to muscular defects, we will be better able to appreciate 

proper muscle function as well as improve upon current therapeutics for treating muscular 

diseases. 
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SKELETAL MUSCLE MATURATION DURING DEVELOPMENT AND ADULT 

MYOGENESIS 

 

Skeletal muscle maturation is a finely tuned multi-step process that is initiated by the 

specification of mesodermal precursors into proliferating myoblasts which undergo cell cycle 

withdrawal, differentiation and fusion to form multinucleated muscle fibers.  In developing 

vertebrates, muscle progenitor cells are initially specified from precursors derived from the 

dermomyotome, a region of the maturing somite which forms from a tissue compartment 

known as the paraxial mesoderm [8].  The transcription factor, Pax3, has been shown to be 

important for organizing dermomyotome formation as depletion of this protein induces 

malformed musculature in the developing mouse [9].  Further work done in gene-ablated 

mice have demonstrated that the subsequent specification of myoblasts is regulated through 

the activation of “early” myogenic regulatory factors (MRFs), which include myf-5 and 

myoD [10].  Moreover, Pax3 has been implicated in determining myogenic cell fate through 

MyoD [11].  These myoblasts can proliferate to self-renew, or be induced to exit the cell 

cycle and turn on the “late” MRFs, myogenin  and MRF4, to induce muscle differentiation 

[12-15].  The upregulation of muscle-specific genes such as tropomyosin, myosin heavy 

chain and skeletal-α-actin then facilitate terminal differentiation and subsequent fusion to 

form the mature, contractile muscle syncytia (Figure 1.1).   

Adult skeletal muscle tissue maintains a high capacity for regeneration, a mechanism 

which mimics developmental myogenesis in many aspects.  This regenerative power is due to 

a population of resident muscle progenitor cells (termed satellite cells) which intercalate 

between the basal lamina and the muscle fiber sarcolemma [16].  For a comprehensive 

description of satellite cell biology and their pivotal role in muscle regeneration, see the 

excellent review by Relaix and Zammit [17].  Satellite cells are specified during 
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developmental myogenesis and are demarcated by expression of the transcription factor 

Pax7.  Pax7, along with Pax3, are expressed within the somites, but become downregulated 

once MRFs activate.  However, a proportion of Pax3
+
/Pax7

+
 cells will retain Pax7 and never 

express MRFs; these are the cells which will make up the satellite cell niche in the adult 

muscle (Figure 1.1).  Following muscle injury, satellite cells will proliferate to self-renew, or 

they will differentiate and fuse with each other to form nascent myofibers or fuse with 

injured myofibers to repair the established muscle syncytia.  Although debates remain 

regarding what dictates satellite cell fate, Kuang et. al. postulate that activated satellite cells 

undergo asymmetric division into two unequal daughter cells, with the fate of the daughter 

cell being determined by its locale.  Specifically, the daughter that remains in contact with 

the basal lamina adopts a self-renewal fate and the daughter that loses basal lamina contact 

attains a differentiated fate.  This method of asymmetric cell fate segregation would also 

facilitate the fusion of the differentiating daughter, as it is directly pushed into the mature 

myofiber upon cell division [18].  The discovery that satellite cells adopt multiple fates is 

significant in regards to therapeutic intervention for muscular diseases such as DMD, where 

satellite cell exhaustion has been shown to contribute to impaired muscle regeneration [19, 

20].   

 

THE RHO FAMILY OF GTPASES AND THEIR TRANSCRIPTIONAL CONTROL 

DURING MYOGENESIS 

 

The Rho family of GTPases comprises a group of small molecular weight (~21 kDa) 

signaling guanosine nucleotide-binding proteins (G proteins) that play important and well-

documented roles in various aspects of intracellular actin dynamics.  The best described Rho 

GTPases include Rac1, cdc42 and RhoA.  Rac1 regulates the formation of membrane ruffles 
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and lamellopodia, while cdc42 controls filopodia formation at the cell periphery [21, 22].  

RhoA, on the other hand, regulates contractile actin:myosin filaments to stimulate stress fiber 

and focal adhesion assembly [23].  Moreover, it is currently known that Rho GTPases 

coordinate an additional array of diverse cellular functions, including cell polarity, 

microtubule dynamics, vesicular trafficking, cell cycling and genetic regulation which may 

or may not be regulated through cytoskeletal reorganization.  For extensive reviews on 

cellular Rho GTPase signaling, see the excellent works of Burridge and Wennerberg, 

Etienne-Manneville and Hall, Fukata et. al., Ridley, and Raftopoulou and Hall [24-28].  

Rho GTPases behave as molecular switches by possessing two interconvertible states:  

the inactive guanosine diphosphate (GDP)-bound state and the active guanosine triphosphate 

(GTP)-bound state.  The binding of GDP and GTP is tightly regulated by three classes of 

catalytically active proteins, which include guanine nucleotide exchange factors (GEFs), 

guanine dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), each of 

which having specific affinities towards one or more Rho GTPases.  In order to propagate 

cell signaling, GEFs activate GTPase activity by catalyzing the release of GDP to allow for 

subsequent GTP binding.  Once in the active GTP-bound state, the Rho GTPase is able to 

bind its effector protein to mediate a downstream biological response.  To shut down 

signaling, GDIs downregulate GTPase activity by either promoting GDP binding or 

sequestering the GTPase in the cytosol away from downstream effectors.  Alternatively, 

GAPs typically serve to downregulate the activity of GTPases by promoting the hydrolysis of 

bound GTP to GDP.  Since small Rho GTPases exhibit slow intrinsic rates of GTP 

hydrolysis, GAPs play a critical role in the fine tuning of these molecules between active and 

inactive states.  
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In addition to regulating actin dynamics during muscle maturation (which is 

described in the following section), the Rho GTPases have also been shown to coordinate the 

transcriptional activity of skeletal muscle cells during myogenesis.  For instance, studies 

performed in cultured murine myoblasts have demonstrated that Rac1 and cdc42 inhibit 

myogenesis through activation the C-jun N-terminal kinase (JNK) pathway which prevents 

withdrawal of myoblasts from the cell cycle [29, 30].  Alternatively, Rac1, cdc42 and RhoA 

have been shown to promote myogenesis through the activation of the serum response factor 

(SRF) and p38 pathways [29, 31, 32].   

Furthermore, it has been shown that the activity of RhoA must be tightly regulated to 

allow for proper skeletal muscle formation.  Interestingly, while some studies have shown 

RhoA to be a potent activator of skeletal muscle differentiation, others have shown that 

RhoA actually inhibits differentiation.  Although this discrepancy may be due to variances in 

experimental design, such as timing of RhoA perturbation, it implicates the tight regulation 

of RhoA activity during myogenesis.  For instance, while active RhoA is required for 

establishing myogenic cell fate and coordinating SRF-dependent transcription of myogenic 

factors [31-34], RhoA activity must be downregulated to promote the subsequent 

differentiation of muscle [29, 35, 36].  Indeed, this discrepancy was settled by Iwasaki et. al. 

who demonstrated stage-specific roles for RhoA and its effector, myocardin-related 

transcription factor-A (MRTF-A), during differentiation of cultured C2C12 myoblasts [37].  

Specifically, RhoA activity was found to be upregulated in proliferating myoblasts; however, 

a subsequent downregulation of RhoA activity was required for cell cycle withdrawal, 

differentiation, and myoblast fusion.  Moreover, it was demonstrated that the upregulation of 

RhoA during myoblast specification/proliferation induces MRTF-A activation, which in turn 
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enhanced the expression of the transcriptional inhibitor Id3 [37].  It is thought that Id3 may 

then bind to MRFs, such as myoD, to form transcriptionally inactive complexes which will 

inhibit myogenesis [38].  Once RhoA activity is diminished, data supports the idea that Id3 

becomes re-repressed and terminal differentiation of myoblasts ensues.   

 

MECHANISMS UNDERLYING MUSCLE FUSION    

Myoblast fusion contributes to developmental myogenesis and the regeneration of 

mature muscle as described previously.  Briefly, during initial muscle development, 

myoblasts fuse with one another and then to nascent multi-nucleated myofibers to form the 

mature skeletal muscle syncytia.  Once the syncytia is subject to injury, satellite cells are 

specified to myoblasts which then fuse in a similar fashion similar to developmental 

myogenesis, as well as to sites of muscle fiber damage.  The cellular mechanisms which 

control myoblast fusion are not completely understood; however, it has been shown that 

dynamic and coordinated changes in actin polymerization and vesicle trafficking drive 

skeletal muscle formation. 

 

Actin dynamics in myoblast fusion 

The actin cytoskeleton in pre-fused and fusing myoblasts is highly dynamic and 

undergoes dramatic changes to facilitate proper myoblast-myoblast fusion.  Most of the 

current studies of myoblast fusion have been carried out in Drosophila melanogaster.  In this 

fly model, it has been demonstrated by live-cell imaging that adhesion-dependent F-actin foci 

accumulate at pre-fusion sites which undergo dissolution just prior to myoblast fusion [39].  

Genetic mutations in actin remodeling regulators of the Kette-SCAR/WAVE-Arp2/3 
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pathway have been shown to block fusion as enlarged F-actin foci fail to dissolve in these 

models [39].  Importantly, this same phenotype was also observed in mouse C2C12 

myoblasts [40], demonstrating an important and conserved functional role for the actin 

cytoskeleton in myoblast fusion.  Moreover, the Chernomordik laboratory and others have 

demonstrated that local depolymerization of the actin cortex at the site of cell-cell contact 

enhances viral fusogen-initiated syncytium formation by promoting the expansion of so-

called fusion pores [41, 42].  Fusion pores form between two cells at early stages of cell 

fusion, and expand during later stages to form bridges which promote lipid mixing and 

cytoplasmic coalescence to drive fusion.  In addition to actin disassembly, fusion pore 

formation and expansion is also driven by intracellular membrane shaping proteins 

(described below). 

Signaling molecules, particularly those which effect Rho GTPase activity, have also 

been extensively implicated in cytoskeletal reorganization during myoblast fusion.  Integrins, 

for instance, are heterodimeric transmembrane proteins that bind ECM proteins and 

indirectly interact with the actin cytoskeleton through focal adhesion complexes [43, 44].  As 

focal adhesions accumulate at pre-fusion sites, it is postulated that integrins become activated 

and signal through the Rho GTPase Rac1 to coordinate cytoskeletal rearrangements prior to 

fusion.  Indeed, Rac1 activation has been shown to facilitate myoblast fusion by coordinating 

actin dynamics in various model systems [45-47]; however, Rac1 is also poised to antagonize 

RhoA activity at these sites [48], a process known to facilitate C2C12 myoblast fusion [35].  

Cadherins, which are calcium-dependent membrane glycoproteins, are also important for 

reorganizing the cytoskeleton of myoblasts.  M-cadherin, for instance, plays an important 

role in the adhesion of myoblasts prior to fusion.  In vitro studies in C2C12 myoblasts have 
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demonstrated that M-cadherin-dependent adhesion activates Rac1 and is required for 

myoblast fusion [49].  However, if RhoA is activated, M-cadherin is degraded and fusion 

becomes blocked [35].  Thus, cadherin-dependent adhesion could act in concert with integrin 

signaling to reorganize actin and facilitate myoblast fusion.  

While established data has demonstrated an important role for various Rac1-specific 

GEFs in myoblast fusion, such as Drosophila myoblast city (Mbc) and the corresponding 

mammalian ortholog Dock180 [50, 51], the specific signaling molecules which directly 

affect RhoA activity is mostly undefined.  Our recent data demonstrated that the Rho-specific 

GAP, GRAF1, translocates to pre-fusion complexes and contributes to the down regulation 

of RhoA and localized actin depolymerization which is imperative for facilitating skeletal 

muscle differentiation and fusion [52], (a more complete description of GRAF1-dependent 

myogenesis follows below).  

 

Membrane dynamics and vesicle trafficking in myoblast fusion 

 In this final stage of cell-cell fusion, nascent fusion pores of a few nanometers in 

diameter undergo an active expansion to yield a lumen of 10-15 µm in size.  It has been 

shown that expansion of such pores that contain strongly bent plasma membrane rims 

requires persistent energy input and it has been postulated that curvature generating proteins 

that relax the bending energy of the rim are likely required to make expansion energetically 

favorable [53].  Indeed, overexpression of the lipid membrane sensing/sculpting BAR (Bin–

amphiphysin–rvs) domains of GRAF1 of FCHo2 has been shown to promote viral fusogen-

initiated syncytium formation [54].  
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Localized F-actin dissolution is believed to facilitate trafficking of intracellular 

vesicles to fusion sites in order to propagate fusogenic signals.  In support of this, vesicle 

accumulation and alignment at the PMs of two apposed Drosophila myoblasts was captured 

by electron microscopy prior to fusion pore formation [55].  While this alignment of vesicles 

has been shown to be necessary for PM coalescence [55], the nature of these vesicles and 

their role in fusion is still largely unknown.  Recent studies from the McNally laboratory 

have indicated that endocytic recycling vesicles are involved in myoblast fusion and that the 

ferlin family members dysferlin, myoferlin and Fer1L5 are fusogenic cargo that associates 

with these structures. 

  The ferlins make up a family of striated muscle-specific C2 domain-containing 

proteins that are involved in various aspects of vesicle trafficking during myoblast fusion.  

Dysferlin, the first family member discovered, is a membrane-associated protein that was 

initially found to be involved in sarcolemmal resealing of  skeletal muscle fibers following 

injury [7].  Moreover, dysferlin has recently been implicated in intracellular vesicular 

trafficking; a process also important for membrane resealing [56], (dysferlin-mediated 

membrane resealing and repair is described in the following section).  Myoferlin is expressed 

predominantly within myoblasts at sites of myoblast-myoblast or myoblast-myocyte fusion 

and has been shown to mediate endocytic recycling by returning internalized vesicles back to 

the plasma membrane [57].  Myoferlin-null mice exhibit smaller muscle fibers and a 

dystrophic phenotype due to myoblast-myotube fusion defect [57].  Fer1L5, the most 

recently characterized ferlin, is expressed in small multinucleated myotubes and directly 

binds to the endocytic recycling proteins EPS15 homology domain-containing 1 and 2 

(EHD1 and EHD2).  Moreover, in the absence of EHD2, Fer1L5 cannot be recruited to the 
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cell membrane and myoblast fusion is inhibited [58].  These data demonstrate that ferlin-

dependent endocytic processes may play an important role in properly localizing integral 

proteins to sites of fusion in order to regulate normal muscle growth and repair.  Moreover, in 

addition to mediating GAP-dependent actin dynamics, GRAF1 has been previously 

implicated in regulating clathrin-independent endocytosis, and as such, likely plays a role 

during ferlin-mediated endocytic recycling.  In Chapter 2, I demonstrate that GRAF1 

associates with EHD1-containing endocytic recycling vesicles and promotes myoblast fusion 

by vesicle-mediated translocation of myoferlin and Fer1L5 to pre-fusion complexes at the 

cell periphery.    

 

DYSFERLIN-MEDIATED SARCOLEMMAL INJURY REPAIR 

 

Membrane rupture occurs frequently in mechanically active tissues, particularly in the 

skeletal muscle which can exhibit signs of membrane damage even under basal conditions.   

The transient nature of sarcolemmal injuries under normal conditions indicates that muscle 

cells contain intrinsic mechanisms for rapid membrane repair.  Dysferlin was the first striated 

muscle-specific protein identified that permitted rapid sarcolemmal resealing following 

mechanically-induced injury. This role for dysferlin was initially demonstrated in isolated 

myofibers and primary muscle cells from dysferlin-null mice that were subject to laser-

induced injury or microinjury, respectively [7, 59].  Investigators found that dysferlin-

depleted cells exhibited delayed membrane patching and a more severe injury as assessed by 

uptake of a membrane impermeable fluorescent dye.  Moreover, lipid vesicles were shown to 

accumulate at sites of sarcolemmal injury in dysferlin-deficient cells as well as biopsies from 

humans with dysferlin mutations [7, 60], indicating that dysferlin is important for mediating 
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fusion of vesicles to the PM.  Indeed, the presence of dysferlin in both repair vesicles and 

PMs has been shown to promote docking and fusion of a “patch” to reseal the injured 

membrane [7, 61].  Although dysferlin has been established as an integral component of 

sarcolemmal injury repair, further work is required to identify additional components which 

aid dysferlin recruitment to sites of membrane damage.  In Chapter 3, I show that GRAF1 

associates with dysferlin at injured PMs and that depletion of GRAF1 prohibits sarcolemmal 

localization of dysferlin and impairs injury-induced membrane resealing. 

 

 

THE RHO-GAP GRAF1 AND ITS ROLE IN NON-MUSCLE CELLS 

 GAPs, as previously described above, are signaling molecules which act to finely 

tune Rho GTPase activity.  GRAF1 (GTPase regulator associated with focal adhesion kinase-

1) is a Rho-specific GAP that, like several other GAPs, contains additional functional 

domains which not only influences GTPase specificity, but also allows for coupling of 

GTPase regulation with other cellular processes mediated by the domains.  The functional 

domains of GRAF1 include an N-terminal lipid binding/bending BAR domain, a 

phosphatidyl serine-binding plekstrin homology (PH) domain, a proline/serine rich domain 

which harbors multiple phosphorylation sites, and a C-terminal protein-interaction Src 

homology 3 (SH3) domain through which GRAF1 interacts with focal adhesion kinase 

(FAK) [62-65].  

 GRAF1 was first identified by the Parsons’ laboratory as a binding partner for FAK 

that exhibited GAP activity preferentially for RhoA and cdc42 in vitro [62].  In vivo studies 

from this group have demonstrated that GRAF1 colocalizes with cortical actin structures and 

stress fibers, and that ectopic expression of this protein in fibroblasts induces GAP-dependent 



13 

 

clearance of Rho-mediated stress fibers, but could not inhibit cdc42-mediated filopodial 

extensions, indicating that GRAF1 behaves as a Rho-specific GAP in vivo [62, 63].  Further 

evidence indicates that mitogen-activated protein (MAP) kinase catalyzes the 

phosphorylation of GRAF1 on serine 510 within the serine/proline rich domain [64].  It has 

been postulated that such a modification so near to the protein-interacting SH3 domain may 

induce a conformational change, as indicated by a GRAF1 band shift following Western blot 

analysis, which could influence interactions with FAK or other binding partners at this site.   

BAR domains have been shown to be potent inducers of lipid membrane 

sensing/sculpting and are often present in proteins involved in various aspects of membrane 

dynamics, including tubulation, endocytic vesicle budding, secretory vesicle fission, fusion 

pore expansion and autophagy [66].  Indeed, previous studies have shown that BAR domain 

of GRAF1, in conjunction with its phosphatidyl serine-binding PH domain, promotes 

GRAF1 localization to and induction of tubular membranes, in order to drive clathrin-

independent/ GPI-enriched endocytosis (CLIC/GEEC) in cultured fibroblasts and HeLa cells 

[67].  Interestingly, overexpressed dominant-negative cdc42 associates with GRAF1-positive 

endocytic membranes [67], implicating a role for GRAF1 in coordinating Rho GTPase 

signaling and membrane remodeling to facilitate endocytosis.  What’s more, recent studies 

have shown that the BAR-PH domain of GRAF1 can actually form a direct interaction with 

its GAP domain to inhibit catalytic activity [68].  In this autoinhibited state, the BAR-PH 

domain maintains membrane bending properties as it was shown to induces lipid tubules in 

HeLa cells [68], indicating that GRAF1 can autoregulate GAP activity while simultaneously 

altering membrane properties.  Taken together, this data demonstrates how GRAF1 can 

couple actin- and membrane-based dynamics by virtue of its multi-domain structure.  
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GRAF1 REGULATION OF SKELETAL MUSCLE DIFFERENTIATION 

As previously mentioned, coordinated changes in actin polymerization and vesicle 

trafficking drive skeletal myogenesis, making GRAF1 a likely regulator of this process.  We 

and others have previously shown that GRAF1 is highly expressed in terminally 

differentiated tissues such as the heart and brain [52, 62, 63].  Additionally, our analysis 

indicated that GRAF1 expression is transiently and markedly upregulated in the developing 

musculature of neonatal rats, but is downregulated within the adult muscle.  In vitro studies 

in C2C12 skeletal myoblasts demonstrated that GRAF1 expression is upregulated in 

myoblasts induced to differentiate, concomitant with a reduction in RhoA activity (Figure 

1.1).  siRNA-mediated GRAF1 depletion of myoblasts induced attenuation of skeletal muscle 

differentiation marker expression and a significant increase in RhoA activity.  Interestingly, 

treatment of GRAF1-depleted cells with Y27632, an inhibitor of the RhoA/ROCK pathway, 

completely restored myoblast differentiation [52].  This data taken together indicates that 

GRAF1 promotes skeletal muscle differentiation in a cell autonomous fashion by limiting the 

activity of RhoA.   

Since it is postulated that RhoA activity may be necessary to keep myoblast cells in a 

proliferative state, we also wanted to determine whether ectopically expressing GRAF1 in 

C2C12s could sufficiently promote their differentiation by inactivating RhoA.  As 

anticipated, ectopic expression of GRAF1 in C2C12 myoblasts resulted in a concomitant 

upregulation of skeletal muscle differentiation markers.  To determine whether this process is 

dependent on the ability of GRAF1 to downregulate RhoA, we overexpressed a catalytically-

inactive GAP domain-containing GRAF1 variant (GAPm) and found that the protein did not 
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induce differentiation.  [52]   

Moreover, Xenopus laevis embryos depleted of GRAF1 using morpholino antisense 

technology exhibited decreased expression of skeletal muscle differentiation markers and 

increased RhoA activity, indicating that the Rho-GAP activity of GRAF1 acts to 

downregulate RhoA activity during muscle development in vivo.  Interestingly, the somitic 

structure of the GRAF1 morphants remained unaltered until stage 32, where we found 

evidence of somite tearing and myofiber splitting, which became more pronounced overtime, 

suggesting that GRAF1 depletion leads to progressive somite degeneration.  Moreover, 

GRAF1 morphants exhibit a striking swimming defect and died prior to metamorphosis [52].  

Collectively, this data demonstrates that GRAF1-dependent differentiation is required for 

proper skeletal muscle formation as well as preservation of sarcolemma integrity.  Further 

studies utilizing an in vivo model to demonstrate the functional role of GRAF1 in mammalian 

skeletal muscle would ultimately confirm our previous findings and provide a more relevant 

system for studying the potential role of GRAF1 in myogenesis and sarcolemmal 

maintenance.   

 

GRAF1 REGULATION OF MYOBLAST FUSION BY GAP- AND BAR-DEPENDENT 

MECHANISMS 

 

After having established that GRAF1 is both necessary and sufficient to induce 

skeletal muscle differentiation, we next wanted to determine whether GRAF1 is important 

for promoting differentiation-dependent myoblast fusion.  Indeed, ectopic expression of 

GRAF1 in pre-differentiated C2C12 myoblasts by way of a Cre recombinase-inducible 

construct promoted marked myoblast fusion, while expression of the GAPm variant blocked 

fusion, indicating the importance of GRAF1-dependent downregulation of RhoA activity 
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prior to myoblast fusion.  Moreover, we also observed that GRAF1 translocates to polarized 

tips of myoblasts (presumed pre-fusion sites) where it promotes GAP-dependent actin 

dissolution to likely aid in vesicle trafficking during myoblast fusion.  Interestingly, 

expression of a GRAF1 variant containing a mutated BAR domain resulted in the same loss 

of fusion, indicating that GRAF1 may also modulates membrane dynamics at these pre-

fusion sites [52].   

 

MOUSE MODELS UTILIZED HEREIN 

The Taylor lab has previously demonstrated skeletal muscle-specific expression of 

GRAF1 in vitro and its striking in vivo upregulation during the perinatal window of 

mammalian development [52].  This temporal upregulation of GRAF1 coincides with initial 

myogenic events, and therefore demonstrates correlative evidence for the involvement of 

GRAF1 in mammalian muscle formation.  To date, there are no reported loss-of-function 

mouse models for GRAF1.  Therefore, in order to determine a role for GRAF1 in this 

process, I have utilized a novel gene trap mouse model to examine depletion of this protein in 

vivo.  Our lab obtained a mouse line from the Texas A&M Institute for Genomic Medicine’s 

Gene Trap Resource, which was generated for us from a GRAF1 gene-trapped embryonic 

stem cell clone in their gene trap repository.  A gene trap is a DNA cassette that is designed 

to function when inserted into an intron of a target gene.  The insertion produces incorrect 

splicing such that all exons downstream of the insertion site are not expressed.  The GRAF1 

gene trap mice have an insertion within intron 1 of the endogenous GRAF1 gene, resulting in 

a truncated and non-functional protein product (Figure 1.2).  In Chapter 2, I demonstrate the 
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ability of this gene trap to globally deplete GRAF1 mRNA and protein products in the 

mouse, and describe the consequential affects on muscle formation therein.    

 Although GRAF1 is basally expressed at low levels in adult muscle, I demonstrate in 

Chapter 2 that GRAF1 is upregulated in injured and nascent myofibers following 

cardiotoxin-induced muscle injury.  Furthermore, GRAF1 gene trap mice exhibit impaired 

muscle regeneration following injury, implicating an important role for GRAF1 in muscle 

maintenance.  In order to test this possibility, I generated dystrophin/GRAF1 double-

deficient mice by breeding our GRAF1 gene trap mice with dystrophic mdx mice (refer to 

Figure 3.6 for details of genetic cross) and analyzed the effects of GRAF1 deficiency on 

disease progression.  The mdx mouse is an established and extensively utilized genetic-based 

model for DMD that lacks functional dystrophin protein and undergoes repeated cycles of 

muscle degeneration and regeneration [69, 70].  Importantly, unlike human DMD patients, 

mdx mice exhibit a much milder dystrophic phenotype, making them an excellent model in 

which to assess disease exacerbation/improvement following genetic or therapeutic 

interventions [71].  In Chapter 3, I show that dystrophin deficiency unmasks a role for 

GRAF1 in maintaining sarcolemmal integrity as well as an unexpected role in muscle 

growth, and propose the likely mechanisms for how GRAF1 regulates these processes in 

instances of severe muscular damage.  
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Figure 1.1:  Skeletal myogenesis is controlled GRAF1-dependent downregulation of 

RhoA.  Once myoblasts are specified towards a myogenic lineage, they can proliferate to 

self-renew or be induced to exit the cell cycle and turn on factors which facilitate progressive 

differentiation and myocyte fusion to form mature multinucleated myofibers.  Moreover, 

adult skeletal muscle maintains a high capacity for regeneration, which mimics this 

myogenic process in many aspects.  Adult muscle is intercalated with numerous muscle 

progenitors called satellite cells which are the major source of regeneration in this tissue.  

When muscle becomes injured, satellite cells will proliferate, differentiate and fuse either 

with each other to form nascent myofibers, or they will fuse to the injured myofiber to repair 

the muscle syncytium.  Interestingly, it has been shown that the activity of RhoA is tightly 

regulated during muscle maturation, in that there needs to be an initial upregulation of active 

or GTP-bound RhoA to commit the progenitors to a myogenic lineage, followed by a 

subsequent downregulation of RhoA to facilitate progressive myogenic differentiation.  This 

transition of RhoA from and active to inactive state relies on GTPase activating proteins, or 

GAPs, to hydrolyze the bound GTP to GDP.  Our lab has identified Rho-specific GAP, 

termed GRAF1, which promotes skeletal muscle differentiation and fusion by down-

regulating RhoA activity.  
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Figure 1.2:  Generation of GRAF1 gene trap mice.  GRAF1 gene trap (GT) mice 

generated and obtained from the Texas A&M Institute for Genomic Medicine harbor the 

gene trapping vector VICTR48 within the first intron of Graf1 allele.  Following pre-mRNA 

splicing, the fusion mRNA is translated into a biologically inactive truncated protein.  
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CHAPTER 2 

 

 

GRAF1 PROMOTES FERLIN-DEPENDENT MYOBLAST FUSION
1 

 

INTRODUCTION 

Myogenesis occurs through the fusion of singly nucleated myoblasts into 

multinucleated myotubes and this process is essential for proper skeletal muscle formation 

and injury repair. It is becoming clear that dynamic and coordinated changes in actin 

polymerization and vesicle trafficking are required for skeletal muscle formation. For 

example, formation and subsequent dissolution of an F-actin focus at the distal ends of fusion 

competent myoblasts is essential for myoblast-myoblast fusion [72],
 
[55, 73, 74]. The 

dissolution of actin is thought to be important for promoting intercellular lipid bilayer fusion 

and perhaps for the recruitment of unilamellar vesicles that deposit essential fusogenic 

proteins and phospholipids [75], but the molecular machinery that orchestrate coordinated 

changes in vesicular trafficking and actin dynamics remain elusive. 

Myoferlin and its family members (dysferlin and Fer1L5) are large membrane 

anchored proteins that contains six to seven calcium response domains (so-called C2 

domains) and their structures closely resemble that of synaptotagmins, proteins that facilitate 

fusion of membrane-bound vesicles to the plasma membrane during exocytic 

neurotransmitter release [76].  Dysferlin-deficiency is causal for Limb girdle muscular 

dystrophy 2B, and studies in muscle fibers lacking dysferlin revealed defects in membrane 
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resealing following mechanical or laser-induced membrane rupture [7, 77]. The finding that 

dysferlin-null muscle retained accumulation of vesicles near membrane damage sites 

indicates that dysferlin likely mediates the final step of fusion necessary for plasma 

membrane repair [78]. Myoferlin and Fer1L5 which are transiently expressed during 

myogenesis and are known to facilitate myoblast fusion during the development of nascent 

muscle fibers likely function in a similar fashion.  Ferlins are only transiently expressed on 

muscle plasma membranes and their active recruitment to the sarcolemma is tightly regulated 

by endocytic recycling mediated by the Eps15 homology domain (EHD)-containing proteins 

1 and 2 [78-80]. While several muscular dystrophies are associated with abnormal plasma 

membrane localization of dysferlin, indicating the significance of this regulatory process [81, 

82],
 
[83, 84], the precise mechanisms that govern ferlin recruitment during myoblast fusion 

or to sites of injury are still poorly understood.   

 We recently identified a striated muscle enriched protein termed GRAF1 that is 

poised to co-regulate actin- and lipid-dynamics by virtue of its multi-domain structure that 

includes a N-terminal lipid binding/bending BAR domain, a phosphatidyl serine (PS)-

binding PH domain, a central Rho-GAP domain, and a C-terminal protein-interaction SH3 

domain that interacts with focal adhesion kinase (FAK) [85-87]. We reported that depletion 

of GRAF1 from developing tadpoles induced a highly penetrable dystrophic phenotype that 

that led to immobility [88]. Moreover, we showed that ectopic expression of GRAF1 in 

cultured myoblasts induced robust fusion by a process that required both GAP-dependent 

actin remodeling and BAR domain-dependent membrane binding or sculpting.  However, 

since myoblast fusion does not occur in developing tadpoles, questions remained as to 

whether (or to what extent) GRAF1 was necessary for myoblast fusion in vivo. We 
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developed a novel line of GRAF1-deficient mice and our studies detailed herein reveal that 

while viable, these mice exhibit limited myogenesis. Moreover, our mechanistic studies 

reveal that GRAF1 and its related family member, GRAF2, regulate myoblast fusion by 

promoting endocytic recycling-dependent membrane recruitment of the fusogenic ferlin 

proteins to the plasma membrane.  

 

RESULTS 

Generation of GRAF1-deficient mice 

To explore a role for GRAF1 in promoting myoblast fusion in vivo, we generated a 

GRAF1-deficient mouse line using ES cells that contained an inhibitory gene trap within the 

first intron of Graf1 (Figure 2.1a).  Crosses between GRAF1
+/gt

 mice yielded offspring in the 

appropriate Mendelian ratios as assessed by validated PCR genotyping (Figure 2.1b; Table 

2.1).   GRAF1 was strongly but not completely depleted in all tissues evaluated indicating 

that our model results in a hypomorphic allele.  Importantly, GRAF1 mRNA levels and 

protein were virtually undetectable in all skeletal muscle types evaluated (gastrocnemius, 

quadriceps femoralis, triceps, and diaphragm) supporting the value of this model to further 

investigate a role for GRAF1 in the development and maintenance of these tissues (Figure 

2.1c).  As previously reported, GRAF1 is also highly expressed in the brain and while a 

significant reduction in message and protein was observed therein, some residual expression 

did remain. The tissue-specific differences in residual GRAF1 mRNA levels in the 

GRAF1
gt/gt 

mice were likely due to the differential expression or activity of splicing factors 

[89].   
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GRAF1 is necessary to promote proper muscle growth in vivo 

No overt phenotypes were observed in GRAF1
+/gt

 or GRAF1
gt/gt

 mice for up to 1 year, 

though a modest reduction in body weight was observed in young adult homozygous mutant 

mice (27.2 +/-1.0 g versus 24.3 +/- 1.6 g; p=0.13 at 4 months of age).  To determine if 

GRAF1 is necessary for efficient muscle growth, we quantified the cross sectional area 

(CSA) of different muscle types.  As shown in figure 2.2, the distribution of fiber size 

showed a relative lack of large myofibers and more small fibers in GRAF1
gt/gt 

diaphragm and 

gastrocnemius muscles compared to littermate controls.   Concomitantly, mean fiber size of 

both muscles types were significantly smaller in GRAF1
gt/gt 

mice than in littermate controls.   

Since myofiber CSA is known to correlate with force production, we next measured the grip 

force of GRAF1
+/+

 and GRAF1
gt/gt

 mice using a digital strain gauge [90].  Confirming an 

important role for GRAF1 in muscle formation, we found that GRAF1
gt/gt 

mice exhibited a 

significant reduction in grip strength compared to GRAF1
+/+

 mice (137.9 +/- 6.2N versus 

151.2 +/- 6.8 N respectively; p<0.05).  No significant difference in levels of differentiation 

markers were observed in P1 or P10 muscles, indicating that the muscle development defect 

was likely due to impaired muscle fusion, not differentiation (Figure 2.3a).   

Besides its importance in formation of large muscle fibers during development, 

myoblast fusion plays a key role in the regeneration of injured muscle.  To determine if 

GRAF1 might also function in this setting, we treated WT mice with cardiotoxin and 

evaluated GRAF1 expression 3, 14, and 28 days later (Figure 2.4a).  We found that while 

GRAF1 was expressed in very low levels in un-injured adult muscle, GRAF1 was transiently 

increased at early stages of muscle regeneration particularly within the smaller nascent 

myotubes that were most abundant 3 days following injury.  To explore a functional role for 
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GRAF1 in mediating fusion during muscle regeneration we quantified nuclear accretion and 

growth in regenerating WT and GRAF1
gt/gt 

muscles 14 and 28 days post-injury.  As shown in 

figure 2.4b, a significant reduction in the average number of nuclei was observed in 

regenerating GRAF
gt/gt 

myofibers compared to GRAF1
+/+

 littermates.  Moreover, after 14 

days, the GRAF1
gt/gt

 mice exhibited a significant reduction in the number of regenerating 

myofibers with two or more nuclear foci (in vivo fusion index) (Figure 2.4c,d; Figure 2.5a).  

This reduction in nuclear foci persisted to 28 days post-injury and a concomitant significant 

reduction in the CSA of the regenerating myofibers was observed at this time point (Figure 

2.4d,e; Figure 2.5c,d).  Collectively, these data indicate that GRAF1 is required for optimal 

fusion and growth of myofibers during development and following injury.    

 To confirm and extend these findings, we next compared the fusion capabilities of 

myoblast cultures isolated from the hindlimb muscles of P2 GRAF1
gt/gt

 and GRAF1
+/+

 

littermates.  Cells were plated at high density and subjected to differentiation media (DM) to 

induce myotube formation.  While no significant difference was observed in the 

differentiation index (i.e. tropomyosin positive nuclei/total nuclei) or differentiation marker 

expression (Figure 2.3b), a significant decrease in the fusion index (i.e. the percentage of 

nuclei present in multinucleated cells) was observed in GRAF
gt/gt 

compared to GRAF1
+/+

 

cultures (Figure 2.6a-c).  As well, while the cell density (nuclei/area) was not different in 

these cultures, the number of nuclei in multinucleated cells was lower in tropomyosin-

positive GRAF
gt/gt 

cells and a concomitant significant reduction in myotube length was 

observed (Figure 2.6d-f).  Collectively, these studies indicate that GRAF1 is necessary for 

appropriate myoblast fusion.  
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GRAF1 associates with endocytic recycling vesicles and regulates Golgi to plasma 

membrane vesicle trafficking  

 

We next utilized a well-established multipotent mesenchymal progenitor cell line 

(C2C12) to deconstruct the mechanisms whereby GRAF1 promotes myoblast fusion.  C2C12 

cells undergo asynchronous but spontaneous differentiation into multinucleated skeletal 

muscle myotubes when cultured under high confluence in DM [91, 92].  We previously 

showed that GRAF1 is recruited to discrete actin-devoid complexes at the tips of pre-fused 

differentiated C2C12 myoblasts [88] and our subsequent finding that Rho-GAP activity was 

necessary for GRAF1-dependent induction of myoblast fusion led us to speculate that 

GRAF1-dependent cytoskeletal remodeling was necessary for membrane merging (see figure 

2.7a for example of GRAF1 locale in actin devoid region at the juncture of two cells 

undergoing end-to-end alignment/fusion).  While GRAF1’s BAR domain was also necessary 

for GRAF1-dependent myoblast fusion, the precise mechanism was not clear [88]. 

Interestingly, using differential interference contrast (DIC) microscopy to further analyze 

GRAF1-containing complexes in differentiated C2C12 cells, we found that endogenous 

GRAF1 is localized to sub-membranous vesicles at these sites (Figure 2.7b).  Moreover, we 

found that GRAF1 co-localized with a subset of Rab5 labeled endosomes within these pre-

fusion complexes but did not co-localize with Lamp2 (a marker for degrading lysosomes), 

indicating that GRAF1 may be a component and/or regulator of recycling endosomes.  In 

support of this possibility, we found significant intracellular co-localization of GRAF1 with 

the GPI-anchored membrane protein, Thy-1, which is known to recycle from the endosomes 

through the Golgi apparatus and back to the plasma membrane (Figure 2.7c and [93]).  

 3-D reconstruction of confocal Z-stacks revealed that GRAF1 enriched regions 

protruded from the cell surface, and that these protrusions are localized to the precise point of 
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contact between fusing myoblasts (Figure 2.8a; Figure 2.9; Figure 2.10).  These findings are 

consistent with the postulate that GRAF1-laden vesicles are recruited to the plasma 

membranes of fusing cells and that this process may facilitate cell to cell adhesion/fusion.  In 

support of a role for GRAF1 in promoting vesicle to plasma membrane trafficking, we found 

that ectopic expression of GRAF1 in myoblasts led to pronounced cell elongation and 

significant surface area expansion, which necessitates addition to the plasma membrane 

(Figure 2.8b).  This phenotype was fully attenuated by treatment with Brefeldin A (BFA), a 

drug that inhibits the translocation of secretory and endocytic recycling vesicles from the 

Golgi to the cell membrane, indicating that GRAF1 promotes plasma membrane expansion 

by enhancing vesicle recruitment (Figure 2.8b).  To explore a role for this process in the 

capacity of GRAF1 to promote myoblast fusion, we utilized our Cre-inducible GRAF1 

cDNA variant (termed GRAF1
loxp

) that contains a GFP reporter gene (Figure 2.11 and [88]).  

GRAF
loxp

 transfected C2C12 cells were transferred to DM prior to treatment with either LacZ 

(control) or Cre adenovirus to induce GRAF1 expression.  Eighteen hours later, subsets of 

LacZ or Cre-infected cells were then treated with BFA and nuclear accretion was assessed 24 

hr later.  As shown in figure 2.8c, GRAF1 expressing cells (in the Cre-treated cultures) 

exhibited a significant increase in myotube fusion when compared with Lac-Z treated cells 

that contained the GRAF
loxp

 construct, consistent with our previous findings that GRAF1 

promotes cell fusion in pre-differentiated myoblasts [88].  Importantly, BFA treatment 

significantly reversed the pro-fusogenic capacity of GRAF1, indicating that GRAF1 

promotes fusion of differentiated myoblasts in a vesicle trafficking-dependent manner.  
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GRAF1 promotes plasma membrane recruitment of the fusogenic proteins EHD1, myoferlin, 

and Fer1L5 

 

The endocytic recycling proteins EHD1 and EHD2 were recently shown to facilitate 

myoblast fusion by inducing the release of vesicles from the endocytic recycling 

compartment and promoting subsequent ‘exocytic’ vesicle merging to the plasma membrane 

[78-80].  As shown in figure 2.12a, GRAF1 and EHD1 exhibited remarkable co-localization 

in pre-fusion complexes, while little overlap was observed between GRAF1 and EHD2. This 

finding is noteworthy, because recent studies indicate that EHD2 is primarily localized to 

caveolae and unlike depletion of EHD1, depletion of EHD2 does not block endocytic 

recycling in fibroblasts [94].  As EHD1 was previously reported to bind avidly to the 

fusogenic proteins, myoferlin and its family member, Fer1L5, and to promote their transport 

to the plasma membrane [78, 79], we next sought to determine if GRAF1 co-associated with 

these proteins.  Indeed, we observed significant co-localization between GRAF1 and 

myoferlin as well as GRAF1 and Fer1L5 in pre-fusion complexes in isolated myoblasts and 

in intact muscle (Figure 2.12a,b).  Moreover, myoferlin and GRAF1 exhibited a strong 

interaction as assessed by co-immunoprecipitation (Figure 2.12c).  We next explored our 

hypothesis that GRAF1 might facilitate the recruitment of these proteins to discrete plasma 

membrane complexes.  Since pre-fusion complexes are more readily observed in C2C12 cells 

than in primary myoblast cultures (because the latter fuse very rapidly in culture), we treated 

C2C12 cells with GRAF1 siRNAs (which resulted in a partial reduction of GRAF1 protein; 

Fig. 7d) and analyzed the localization of Fer1L5, myoferlin and EHD1 in cells following 

exposure to DM.  As shown in figure 2.12e, Fer1L5 was no longer localized to foci at the 

plasma membrane in GRAF1-deficient cells.  Additionally, we observed a significant but 

incomplete reduction of myoferlin and EHD1 localization to these sub-plasma membrane 
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structures accompanied by an increase in perinuclear vesicular staining (Figure 2.12e,f).  

Taken together, these data indicate that GRAF1 regulates the intracellular trafficking of the 

fusogenic ferlin proteins to promote membrane coalescence. 

 

Redundancy of GRAF proteins in myoblast fusion 

Studies detailed above indicate that loss of GRAF1 renders myoblast fusion less 

efficient but does not prevent myotube formation.  Thus we next queried whether other 

members of the GRAF family might serve a redundant role in this process.  In mammals, 

GRAF1 has two closely related family members, GRAF2 and GRAF3.  We recently reported 

that GRAF3 was not expressed in muscle fibers, but instead was strictly restricted to visceral 

and vascular smooth muscle cells [95].   On the other hand all three GRAF2 isoforms [96] 

were expressed in peri-natal muscles, in a temporal fashion that mirrored expression of 

GRAF1, indicating the possibility that GRAF2 might exhibit functional redundancy and 

potentially compensate for the loss of GRAF1 during myotube formation (Figure 2.13a).   In 

support of this possibility, GRAF2 expression was markedly induced upon subjecting C2C12 

cells to differentiating conditions (Figure 2.13b).  Moreover, GRAF2 accumulated into 

similar peri-nuclear and pre-fusion complexes (Figure 2.13b, bottom) where it co-localized 

with myoferlin. To further explore a role for GRAF2 in muscle fusion, we depleted GRAF2 

from primary GRAF1
+/+

 and GRAF1
gt/gt

 myocytes using validated siRNAs (Figure 2.13c).  

We next subjected these cultures to DM for 48 hr and quantified nuclear accretion in 

tropomyosin positive myoblasts.  As shown in figure 2.13d, GRAF2 depletion led to a 

significant reduction in myoblast-myoblast (bi-nucleated) and myoblast-myotube fusion (≥3 

nuclei). Notably, the lack in fusion in GRAF2-depleted GRAF1
+/+

 cells was even more 
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pronounced than was observed in myoblasts cultured from GRAF1
gt/gt

 littermates.  However, 

depletion of GRAF2 from the GRAF
gt/gt 

cultures did not result in an additive fusion defect, 

indicating that the two family members exhibit redundant overlapping functions.  In support 

of this notion, the recruitment of EHD1 to the tips of GRAF2 depleted C2C12
 
cells was 

markedly reduced in comparison to either control or GRAF1-depleted
 
cells (Figure 2.13e,f).  

 

DISCUSSION 

A clear understanding of the molecular mechanisms that govern myogenesis is 

important for the future development of therapies directed towards ameliorating muscle 

wasting that occurs with aging and is exacerbated in muscular dystrophies.  We previously 

showed that the Rho-GTPase-activating protein, GRAF1, was transiently up-regulated during 

myogenesis, and that forced expression of GRAF1 in pre-differentiated myoblasts promoted 

robust muscle fusion by a process that required GTPase-activating protein-dependent actin 

remodeling and BAR-dependent membrane binding or sculpting.  Through the use of our 

novel GRAF1 depleted mice, we now show that GRAF1 is essential for efficient myofiber 

growth in vivo.  Post-natal GRAF1
gt/gt 

muscles exhibited a significant and persistent reduction 

in cross-sectional area and adult muscles had an impaired capacity to regenerate following 

injury, suggestive of a lack of efficient myoblast fusion.  Indeed, we found that myoblasts 

isolated from GRAF1 depleted mice exhibited impaired myoblast to myoblast and myoblast 

to myotube fusion.  Our mechanistic studies reveal that GRAF1 and its related family 

member, GRAF2, facilitate myoblast fusion by promoting endocytic recycling-dependent 

membrane recruitment of the fusogenic ferlin proteins to the plasma membrane.  
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It has become clear that myoblast fusion occurs in a multi-step fashion in which actin 

cytoskeletal dynamics and membrane remodeling play key roles, but questions remain 

regarding the spatial/temporal regulation of and interrelationship between these processes.  

Over the past several years, studies have revealed that prior to fusion, differentiated 

myoblasts assume a bipolar elongated shape that is induced by the interaction of nonmuscle 

myosin 2A with actin at the plasma membrane and that these so-called F-actin foci mark the 

future site of myoblast fusion [72, 97].  However, subsequent dissolution of the actin focus is 

essential for cell-cell fusion as evidenced by the findings in Drosophila that mutations in 

known actin-remodeling genes such as kette, mbc, and SCAR/WAVE all lead to defective 

fusion accompanied by enlarged F-actin foci that fail to dissolve [55, 73].  The small GTPase 

RhoA has been shown to initiate actin polymerization [98, 99] and we previously showed 

that recruitment of the Rho-GAP GRAF1 from the perinuclear region (its sub-cellular locale 

in proliferating myoblasts) to the tips of pre-fused bipolar differentiated myoblasts is 

essential for limiting Rho-dependent actin polymerization at these sites [88].  One of the 

potential functions of localized actin de-polymerization is to facilitate trafficking of 

intracellular vesicles to the fusion site.  Elegant electron microscopy studies in Drosophila 

myoblasts have shown that vesicles accumulate at juxtaposed inner membranes of fusing 

cells and that this alignment of vesicles is essential for subsequent membrane merging [55].  

While the exact nature of these vesicles is not clear, studies from the McNally laboratory and 

others indicate that endocytic recycling vesicles (regulated by EHD1 and EHD2) are 

involved and that myoferlin and Fer1L5 are critical fusogenic cargo carried by these vesicles 

[78, 79]. Indeed, expression of a mutant EHD2 that inhibits endocytic vesicle trafficking led 

to cytoplasmic sequestration of ferlins and inhibited myoblast fusion.  
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Ferlins have been proposed to be important for mediating plasma membrane 

‘capturing’ of intracellular vesicles, though the precise means by which the subsequent 

merging of plasma membranes of two cells is not clear [100].  Our findings that GRAF1 

associates with myoferlin and is co-recruited to the plasma membrane with EHD1-containing 

endocytic vesicles indicates that GRAF1 is part of this fusogenic complex. Because GRAF1 

functions to accelerate actin de-polymerization, and is necessary and sufficient for mediating 

the recruitment of endocytic recycling vesicles to the plasma membrane, we favor a model in 

which GRAF1 associates with vesicles through its BAR domain and that vesicle-associated 

GRAF1 facilitates clearing of sub-plasmalemmal actin to aid in vesicle capture.  In support 

of this hypothesis, GRAF1 contains a PS-binding PH domain and PS is known to be exposed 

on the inner leaflets of injured membranes and the outer leaflets of exocytic vesicles (Gerke 

et al., 2002).  Notably, our 3-D reconstructions of pre-fusion/fusion complexes reveal that the 

GRAF1-laden vesicles are located to regions of the cell membrane that protrude outward 

from the cell body.  It is likely that GRAF1 facilitates this outward membrane curvature via 

interactions of its BAR domain with the inner neck of the membrane protrusion as has been 

shown for its F-BAR containing Rho-GAP relative, srGAP2 [101].  Interestingly, GRAF1 

protrusions appear at the point of cell-cell contact of pre-fused cells indicating that these 

complexes might function to promote adhesion of two apposed myoblasts.  At this stage, 

these protrusive complexes could promote enhanced hydrophobic attractions between the 

interiors of the two bilayers, and facilitate lipid transfer from one membrane to another [102, 

103].   Buckled membranes also exhibit curvature-induced stress and thus can accelerate the 

fusion process by reducing the energy barrier membranes need to overcome at intermediate 

stages of fusion [76].  While our data strongly support a model whereby GRAF1 facilitates 
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membrane merging by promoting the recruitment of ferlin-containing vesicles, numerous 

cell-surface receptors have been implicated in promoting the initial stages of myoblast fusion 

including M-cadherin and NCAM that mediate cell recognition and integrins that mediate 

cell-cell adhesion and it is formally possible that GRAF1-dependent recruitment of these 

receptors is involved[104]. 

Besides specifying the position of cell-cell fusion and promoting membrane contact, 

GRAF1 may also play an important role in the late stages of syncytium formation which 

involves fusion pore expansion to allow complete coalescence of cytoplasms.  In this final 

stage of cell-cell fusion, initial pores of a few nanometers in diameter undergo an active 

expansion to yield a lumen of 10-15 µm (i.e. the diameter of a typical myoblast).  The 

Chernomordik laboratory and others have shown that expansion of such pores that contain 

strongly bent plasma membrane rims requires persistent energy input and they have 

postulated that curvature generating proteins that relax the bending energy of the rim are 

likely required to make expansion energetically favorable [53].  BAR domain-containing 

proteins are likely candidates as these domains form elongated homodimers characterized by 

a shallow curvature formed by the anti-parallel interaction of two α-helical coils that 

facilitate membrane deformation [105].  Previous studies showed that the GRAF1 BAR 

domain is capable of inducing tubulation of spherical lipids and can promote clathrin-

independent endocytosis in fibroblasts and HeLa cells [106, 107].  Interestingly, the 

curvature of the membrane at the fusion pore rim and the curvature of endocytic vesicles are 

similar, and using an elegant model system to study the efficiency of late stages of cell-cell 

fusion initiated by influenza and baculoviruses, Richard et  al. showed that the GRAF1 BAR 

domain promoted syncytium formation [108].  In support of a putative role for GRAF1 in 
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mediating this process during skeletal muscle cell fusion, we found that GRAF1 protein 

accumulates within the narrow neck that joins two fusing myoblasts (see figure 2.7a for 

example).  Whether GRAF1 serves to stabilize the fusion pore and/or to promote 

endocytosis-dependent internalization of excess plasma membrane from fusing cells [75] are 

interesting questions for future studies.    

While the loss of GRAF1 clearly makes myoblast fusion less efficient, muscle 

development was not completely blocked in GRAF1
gt/gt 

mice.  This finding indicates that 

other proteins are able to compensate for the loss of GRAF1. One attractive candidate is 

GRAF2, a closely related family member that is widely expressed [109].  We showed that 

like GRAF1, mammalian GRAF2 is also highly up-regulated during skeletal muscle 

maturation, and that GRAF2 depletion significantly attenuated myoblast-myoblast and 

myoblast-myotube fusion in WT primary muscle cell cultures.  Moreover, GRAF2 was 

localized to similar pre-fusion complexes, and its depletion resulted in a marked reduction of 

EHD1 and myoferlin accumulation to these sites.  These data taken together with the lack of 

an additive effect of GRAF1 and GRAF2 depletion on myotube formation indicates that 

these family members have functionally overlapping roles during muscle development.  

However, while GRAF1 and GRAF2 exhibit an identical BAR-PH-GAP-SH3 domain 

structure, they do have a variable serine/proline region which we previously showed is a hot-

spot for phosphorylation [87], thus it is possible that these proteins are differentially 

regulated by kinase signaling pathways.  While we did not see evidence of GRAF2 

overexpression in isolated GRAF1
gt/gt 

myoblasts when compared to GRAF1
+/+

 cells, we have 

not ruled out the possibility that transient up-regulation occurs in developing GRAF
gt/gt 

muscles.  Other classes of BAR domain containing proteins may also be important for 
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promoting GRAF-independent muscle fusion. For example, two members of the Bridging 

integrator (Bin) family, Bin1 and Bin3 have been shown to regulate differentiation and fusion 

of skeletal myoblasts [110-112].  Interestingly, while Bin3 is an N-BAR only containing 

protein, recent studies indicate that it, like GRAF1, also regulates actin dynamics. 

Simionescu-Bankston et  al. recently showed that Bin3 associates with and promotes the 

activation of the Rho-related GTPases Cdc42 and Rac1 in myoblasts [112].  Notably, 

activation of these GTPases is often associated with an inhibition of RhoA; however the 

effect of Bin3 on RhoA activity was not directly tested in this model.  It will be of interest to 

determine whether the Bin proteins also exhibit some functional overlap with the GRAF 

proteins or are co-regulated through putative BAR domain heterodimerization as has been 

observed in other BAR family members.    

In summary, we provide the first evidence that GRAF1 is necessary for efficient 

muscle formation in vivo.  The phenotype of the GRAF1
gt/gt 

mice resembles myoferlin-null 

mice [57] and our mechanistic studies reveal that GRAF1 co-associates with myoferlin and 

EHD1-containing endocytic recycling vesicles and regulates the recruitment of these 

fusogenic vesicles to the plasma membrane.  This study furthers our understanding of the 

inter-relationship between cytoskeletal and membrane dynamics during myotube formation.  

 

MATERIALS AND METHODS 

Generation of GRAF1 gene trap mice 

GRAF1 gene trap mice were generated and obtained from the Texas A&M Institute 

for Genomic Medicine (College Station, TX) using the OmniBank ES cell clone OST135790 

which harbors the gene trapping vector VICTR48 within the first intron of Graf1 (Arhgap26, 
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accession #: NM_175164).  To generate a stable mutant mouse line, 129SvEv-derived ES 

cells were microinjected into host C57BL/6J mice for germline transmission of the GRAF1 

mutation.  All experimental mice were maintained on a mixed 129/SvEv-C57BL/6J genetic 

background.  Mice were genotyped utilizing the following primers:  forward Primer A (5-

AGCACTGTGAACACCATTCTG-3’), forward Primer C (5’-

AAATGGCGTTACTTAAGCTAGCTTGC-3’), and reverse Primer B (5’-

AAAGGACATCTGACACTACCAAA-3’). Animals were treated in accordance with the 

approved protocol of the University of North Carolina (Chapel Hill, NC) Institutional Animal 

Care and Use Committee, which is in compliance with the standards outlined in the guide for 

the Care and Use of Laboratory Animals.   

 

Primary antibodies and cDNA constructs 

Commercial anibodies were purchased from Sigma (laminin, tropomyosin (CH1) and 

monoclonal γ-tubulin); Abcam (EHD2, Lamp2 and Thy-1); BD Biosciences (GM130 and 

Rab5); Epitomics (EHD1); Cell Signaling (Myc-tag, 9B11); GAPDH (Imgenex); Novus 

Biologicals (myoferlin); and Developmental Studies Hybridoma Back, Univ. of Iowa (MHC, 

NA4).  The GRAF2 (PS-GAP) antibody was a generous gift from Dr. Wen-Cheng Xiong 

(Georgia Regents University, GA) [109].  Derivation of the polyclonal Fer1L5 and GRAF1 

antibodies was previously described [78, 88].
 
A hamster monoclonal GRAF1 antibody was 

designed in house using the identical peptide immunogen by standard methodology. The 

GRAF1
loxP

 cDNA construct was described [88, 113].  Briefly, Myc-tagged GRAF1 was 

subcloned into a Cre recombinase-inducible construct, downstream of a beta-actin promoter 

and a GFP reporter followed by a transcriptional ‘stop’ site flanked as a unit by loxP sites.  
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As such, the GRAF1
loxP

 construct allows for Cre-dependent expression of GRAF1 in a time-

dependent manner.  The Ad5CMV Cre recombinase adenovirus was purchased from the 

University of Iowa Gene Transfer Vector Core (Iowa City, IA), and the Ad5CMV LacZ 

adenovirus was purchased the University of North Carolina Viral Core (Chapel Hill, NC).   

 

Semi-quantitative RT-PCR analysis  

Total RNA was isolated from homogenized whole mouse tissues or primary mouse 

myoblast cultures using RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions.  

Complimentary DNA (cDNA) was obtained from 1 µg of RNA isolate using the iScript 

cDNA Synthesis Kit (Bio-Rad,), and PCR amplifications of 30 cycles were performed using 

2.5% of total synthesized cDNA and TaKaRa Ex Taq Polymerase (Millipore) according to 

manufacturer’s instructions using the following primers graf1 forward 5’-

TGGAAGGGTACCTGTACGTG-3’ and graf1 reverse 5’-ATCCCGTTGGTAGGTACAGT-

3’, Ta=60°C; graf2 forward 5’-TAACAGTCATATGAAGATTTTTCGAACCTCGCCTG-3’ 

and graf2 reverse 5’-CTGATGGATCCTTATGCCCGAGCCTTTCGATTGAT-3’, Ta=56°C 

[114]; skeletal alpha actin forward 5’-CAGAGCAAGCGAGGTATCC-3’ and skeletal alpha 

actin reverse 5’-GTCCCCAGAATCCAACACG-3’, Ta=50°C; and gapdh forward 5’-

ATGGGTGTGAACCACGAGAA-3’ and gapdh reverse 5’-

GGCATGGACTGTGGTCATGA-3’, Ta=43°C.  RT–PCR products were analyzed by 

electrophoresis using 2.0% agarose gels.   

 

Cell culture, transfection and siRNA treatment 

Primary myoblasts were maintained in growth media (GM; Dulbecco’s modified 
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Eagle’s medium (DMEM) supplemented with 20% fetal bovine serum (FBS), 10% horse 

serum (HS) and penicillin/streptomycin).  C2C12 mouse myoblasts obtained from ATCC 

(Catalog number CRL-1772) were maintained in DMEM supplemented with 10% FBS and 

antibiotics.  C2C12 cells maintained in GM were transfected with Myc-tagged GRAF1 

cDNA or GRAF1
loxp

 cDNA using TransIT transfection reagent (Mirus) according to 

manufacturer’s instructions.  Myoblasts were infected with Cre- or LacZ-expressing 

adenoviruses at 100 multiplicities of infection.  For differentiation, myoblasts were plated on 

Lab-Tek CC2 chamber slides or plastic dishes pre-coated with rat tail collagen, Type I (10 

μg/ml) and transferred to differentiation medium (DM; DMEM containing 2% HS). In some 

instances, myoblasts were treated with brefeldin A (Sigma) at indicated concentrations 12 

hours prior to fixation.  GRAF1 and GRAF2 were depleted from cultured myoblasts using 

short interfering RNA (siRNA) duplex oligoribonucleotides obtained from Invitrogen with 

the following sequences: graf1a sense 5’-GCAGCUGUUGGCCUAUAAU(dT)(dT)-3’ and 

anti-sense 5’-AUUAUAGGCCAACAGCUGC-3’; graf1b sense 5’-

AAGUGGACCUGGUUCGGCAACAUUU-3’ and anti-sense 5’-

AAAUGUUGCCGAACCAGGUCCACUU-3’; and graf2 sense 5’-

CAAAGGUCCAGAGACUUCUGAGUAU-3’ and anti-sense 5’-

AUACUCAGAAGUCUCUGGACCUUUG-3’.  Myoblasts maintained in GM or DM were 

transfected with 150 nM of total gene-specific siRNA (GRAF1 was knocked down using 

75nM of both graf1a and graf1b, GRAF2 was knocked down using 150 nM of graf2, double 

depletion of GRAF1 and GRAF2 required 37.5 nM each of graf1a and graf1b and 75 nM of 

graf2, and 150nM of a GFP-specific siRNA was used as a non-target control (NTC) using 

DharmaFECT reagent 1 according to manufacturer’s instructions (Thermo Scientific).  In 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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some experiments, 50 nM of Block-IT red fluorescent oligonucleotides (Invitrogen) was 

concomitantly transfected with the siRNAs to assess transfection efficiency.  After 8 hr, 

media was exchanged and cells were fixed or snap-frozen at indicated time points. 

 

Primary myoblast isolation 

Skeletal muscle from GRAF1
gt/gt

 and GRAF1
+/+

 littermates was meticulously isolated 

from 3-4 P2 neonatal mouse pups per genotype and placed in ice-cold PBS.  Once all tissue 

was harvested, the PBS was exchanged for Hank’s Balanced Salt Solution (HBSS; GIBCO) 

and tissue was transferred to a sterile 100 mm petri dish for mincing using a sterile razor 

blade in minimal HBSS.  Tissue was digested using 0.2% Collagenase, Type II (Worthington 

Biochemicals) in HBSS incubated at 37°C for 40 min, briefly swirling every 10 minutes 

during incubation.  Digested muscle was triturated 5 times using a wide-mouth pipette and 

filtered through a 100 µm nylon mesh cell strainer (BD Biosciences).  The cell suspension 

was then incubated at room temperature for 1 hr followed by addition of 30 mL GM and 

centrifuged at 2,000 rpm for 3 min.  Cells were pre-plated in GM for 45 min and the 

remaining suspension was gently transferred to new 100 mm dishes at 1 X 10
6
 cells/dish and 

incubated undisturbed for 72 hr prior to use.   

 

Myoblast differentiation and fusion assays 

Myoblasts were seeded at subconfluent densities on collagen-coated slides in GM and 

after 12 hr switched to DM for indicated time.  The differentiated index, fusion index, and 

number of nuclei per field were quantified as described previously, with slight modifications 

[115]. Briefly, the differentiation index is defined as the ratio of number of nuclei in Tm-
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positive cells to total number of nuclei counted, while the fusion index is defined as the ratio 

of number of nuclei in myotubes (≥2 nuclei) to total nuclei counted.  Images were analyzed 

using ImageJ software (NIH) to measure the long axis of the cell.   

 

Immunohistochemistry and Immunocytochemistry 

Upon harvest, tissues were immediately embedded in Tissue-Tek O.C.T.  compound 

(Sakura), snap-frozen in 2-Methylbutane cooled over dry ice, and cross-sectioned at 8 µm 

using a cryotome.  Sections were post-fixed (or cultured myoblasts were fixed) in 4% 

paraformaldehyde, permeabilized, and stained using standard techniques.  The GRAF2, 

tropomyosin, MHC, Myc-tag, and myoferlin antibodies were diluted at 1:500; The GRAF1, 

EHD1, EHD2, and Fer1L5 antibodies were diluted at 1:200; The Lamp2 and GM130 

antibodies were diluted at 1:100; and the Rab5 antibody was diluted at 1:50.  A mouse anti-

hamster linker (SouthernBiotech) was used at 1:500 for conjugation to the GRAF1 hamster 

antibody.  Cells/tissues were then incubated with Alexa Fluor secondary antibodies 

(Invitrogen), Alexa Fluor phalloidin (Invitrogen), Alexa Fluor wheat germ agglutinin 

(Invitrogen) and DAPI at 1:500 in PBS for 1 hr, washed and mounted.  

 

Muscle injury model and in vivo myofiber analysis 

Gastrocnemius and diaphragm muscles were harvested from 4 month old GRAF1
gt/gt

 

and GRAF1
+/+

 littermates and processed as described previously. To induce muscle injury, 

100 µL of 20 µM cardiotoxin (Naja nigricollis, Calbiochem) was injected into the 

gastrocnemius muscle of 4 month old littermates. Muscles were harvested 3, 14 and 28 days 

post-injury and processed as described. Images were acquired and analyzed using ImageJ 
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software to quantify myofiber cross sectional area. The in vivo fusion index was quantified as 

described previously [116].  Briefly, the in vivo fusion index is described as the ratio of 

number of myofibers with ≥2 centrally located nuclear foci to total number of regenerating 

myofibers.  

 

Fluorescence ratio analysis 

The EHD1 fluorescence ratio is defined as the ratio of the EHD1 signal within a pre-

fusion complex (10 µm
2
 yellow box, Figure 2.12f) to the EHD1 signal within the remainder 

of the cell.  Integrated density values obtained using ImageJ were used in the calculation of 

EHD1 fluorescence ratios. Tm-positive cells which contained 1 or 2 nuclei, and exhibited an 

elongated phenotype with a prominent pre-fusion complex were imaged using a Zeiss 710 

confocal microscope set to a 2 µm pinhole. 

   

Protein isolation, Western blotting and co-immunoprecipitation 

Tissue samples were snap-frozen in liquid nitrogen, sonicated in modified 

radioimmune precipitation assay (RIPA) buffer (50mM HEPES pH 7.2, 0.15 M NaCl, 2 mM 

EDTA, 0.1% Nonidet P-40, 0.05% sodium deoxycholate, 0.5% Triton X-100 plus 1mM 

sodium orthovanadate and 1X concentrations of both Halt Protease Inhibitor Cocktail 

(Thermo Scientific) and Halt Phosphatase Inhibitor Cocktail (Thermo Scientific)), and 

cleared by centrifugation.  Cultured C2C12 mouse myoblasts were directly lysed and cleared 

in RIPA buffer.  For immunoprecipitation studies, 1 mg of cleared lysate was incubated with 

10 µg of either an anti-GRAF1 antibody (polyclonal) or the corresponding non-immune sera 

(NIS) overnight at 4°C.  The solution was then mixed with 75 µL of a 50% slurry of Protein 
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A Sepharose beads (Sigma) in TBS and rotated at 4°C for 2 hr.  Beads were then quickly 

tapped down in a refrigerated centrifuge and rinsed 3 times with ice-cold RIPA + inhibitors 

and once with TBS before beads were boiled in 50 µL of sample buffer.  Lysates were 

resolved by SDS-PAGE, transferred to nitrocellulose membranes, and immunoblotted with 

antibodies at 1:1000 dilutions using standard techniques.  

 

Microscopy 

Cells and tissue sections were examined by confocal microscopy using a Zeiss CLSM 

710 Spectral Confocal Laser Scanning Microscope. Confocal Z-stack images were obtained 

and 3D images were reconstructed using AMARIS software. 

 

Statistical analyses 

All statistical analyses were performed using Student’s t-test.  Data are expressed as 

mean ± s.e.m. and p-values <0.05 were considered statistically significant.  Western blots 

were performed three separate times with representative images shown.  Cellular phenotypes 

were scored from three independent experiments.  
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Parental 
Genotypes 

Total 
Offspring 

Pup Genotype 
P-

value +/+                        +/-                       -/- 
n (%)                    n (%)                  n (%) 

+/-  X  +/- 458 109 (23.8)            233 (50.9)          116 (25.3) 0.767 
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Table 2.1:  Genotype distribution among offspring of Graf1 heterozygous (+/−) 

intercross. n = number of animals; P-value is compared to normal Mendelian distribution 

(25%, 50%, 25%) using a chi-squared test.  
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Figure 2.1:  Gene trap insertion at the Graf1 locus disrupts gene expression.  (a) The 

gene trap vector VICTR48 integrated into the first intron of the mouse Graf1 gene.  

Arrowheads indicate primer annealing sites for genotype analysis.  (b) PCR-based 

genotyping of isolated tail DNA differentiate wildtype (GRAF1
+/+

) and homozygous mutant 

(GRAF1
gt/gt

) animals by fragments of 500 and 280 bp, respectively.  Heterozygotes 

(GRAF1
+/gt

) present with both fragments.  (c) RT-PCR analysis (top) of GRAF1 cDNA and 

Western blot analysis (bottom) of GRAF1 protein from P7 pups confirm reduced tissue 

expression from (1) wildtype, to (2) heterozygous, to (3) homozygous mutant animals.  

GAPDH (cDNA) and γ-tubulin (protein) were used as loading controls.  

Gastroc.=Gastrocnemius; Quad.=Quadriceps femoris; Diaph.=Diaphragm. 
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Figure 2.2:  GRAF1 regulates myofiber growth in vivo.  (a) Gastrocnemius muscle from 4 

month old GRAF1
gt/gt

 mice exhibit smaller myofibers than GRAF1
+/+

 mice.  Laminin (green) 

demarks myofiber boundaries.  Nuclei are counterstained with DAPI (blue).  (b,c) Frequency 

histograms demonstrating myofiber distribution by cross-sectional area (CSA) of diaphragm 

and gastrocnemius muscle from 4 month old GRAF1
+/+

 and GRAF1
gt/gt

 mice.  (d,e) Average 

myofiber CSA of diaphragm and gastrocnemius muscle (*p<0.05; n=350 myofibers/mouse, 

N=5 mice per genotype).  Data are represented as ± s.e.m.  Scale bars=100 µm. 
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Figure 2.3:  GRAF1-depletion does not alter muscle differentiation in vivo.  (a) 

Differentiation was assessed in gastrocnemius and quadriceps muscle lysates from GRAF1
+/+

 

and GRAF1
gt/gt

 P1 and P10 pups.  No significant difference was seen in the relative amount 

of tropomyosin (Tm) protein between genotypes compared with γ-tubulin as a loading 

control.  Data are represented as ± s.e.m.  (b) Differentiation was assessed in GRAF1
+/+

 and 

GRAF
gt/gt

 primary myoblasts cultured in DM for 36 hr.  Reverse transcriptase-PCR analysis 

of skeletal  -actinin dicates comparable differentiation marker expression.  GAPDH is 

shown as a loading control.    
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Figure 2.4:  GRAF1 depletion impairs muscle regeneration.  (a) Immunohistochemical 

analysis of GRAF1 expression (green) in uninjured adult gastrocnemius muscle and at 3, 14, 

and 28 days following cardiotoxin-induced injury.  Wheat germ agglutinin (WGA) (red) 

demarks myofiber boundaries.  Nuclei are counterstained with DAPI (blue).  (b) Graphical 

representation of average nuclear foci per regenerating myofiber 14 and 28 days following 

cardiotoxin injection into the gastrocnemius muscle (*p<0.005, **p<0.05; n=250 and n=500 

myofibers/mouse at 14 and 28 days-post injury, respectively; N=3-5 mice per genotype).  (c) 

Regenerating gastrocnemius muscle from GRAF1
gt/gt

 mice (14 days following cardiotoxin-

induced injury) display fewer regenerating myofibers with 2 (arrowheads) or 3 (asterisks) 

nuclear foci in comparison to GRAF1
+/+

 mice.  Laminin (green) demarks myofiber 

boundaries.  Nuclei are counterstained with DAPI (blue). Scale bars=20 µm.  (d) Graphical 

depiction of the in vivo fusion index for regenerating myofibers 14 and 28 days-post injury 

(*p<0.005, **p<0.05; n=250 and n=500 myofibers/mouse at 14 and 28 days-post injury, 

respectively; N=3-5 mice per genotype).  (e) Average CSA of regenerating myofibers 28 

days post-injury (*p<0.05; n=350 myofibers/mouse, N=3-4 mice per genotype).  Data are 

represented as ± s.e.m.  Scale bars=100 µM, unless otherwise indicated.   
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Figure 2.5:  GRAF1 depletion impairs muscle regeneration (supplemental).  (a,b) 

Quantification of nuclear foci per regenerating myofiber 14 and 28 days following 

cardiotoxin injection into the gastrocnemius muscle (*p<0.005, **p<1X10
-4

, 
#
p<0.05, 

##
p<0.01; n=250 and n=500 myofibers/mouse at 14 and 28 days-post injury, respectively; 

N=3-5 mice per genotype).  Data are represented as ± s.e.m.  (c) Frequency histogram 

demonstrating regenerating myofiber distribution by cross-sectional area (CSA) of 

gastrocnemius muscle 28 days post-injury.   
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Figure 2.6:  GRAF1 depletion inhibits in vitro myotube formation.  (a) Representative 

images of GRAF1
+/+

 and GRAF1
gt/gt

 primary cultures immunostained for tropomyosin (Tm) 

at 72 hr in differentiation media (DM).  F-actin and nuclei were counterstained with 

phalloidin and DAPI, respectively. (b) GRAF1
+/+

 and GRAF1
gt/gt

 cells immunostained in (3a) 

exhibited no significant difference in their differentiation index.  (c) The GRAF1
gt/gt

 cells 

exhibited a significant decrease in their fusion index (*p<0.005).  (d) Tm-positive GRAF1
+/+

 

cells were significantly longer than GRAF1
gt/gt

 cultures (*p<5X10
-4

).  The number of nuclei 

per field was comparable between GRAF1
+/+

 and GRAF1
gt/gt

 cultures.  (f) GRAF1
gt/gt

 cells 

exhibited reduced nuclear accretion with a significant increase in mononucleated cells 

(*p<0.005) and decrease in bi-nucleated (**p<0.01) and multi-nucleated (
#
p<0.05) cells in 

comparison to GRAF1
+/+

 controls.  At least 1,000 Tm-positive cells, 250 myotubes, and 

10,000 nuclei were scored over 50 images per genotype for each assay.  Data are represented 

as ± s.e.m., N=3 independent experiments.  Scale bars=100 µm. 
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Figure 2.7:  GRAF1 is present within endocytic structures in pre-fused myoblasts.      

(a) GRAF1 is selectively accumulated within the cytoplasmic bridge (white arrow) between 

actively fusing C2C12 myoblasts.  (b) GRAF1 co-localizes with intracellular vesicles 

(arrows) as visualized by DIC microscopy in 48 hr differentiated C2C12 myoblasts.  (c) 

Membrane-associated GRAF1 co-localizes with the early endosomal marker Rab5 (top), but 

not with Lamp2-positive lysosomes (middle). Peri-nuclear GRAF1 co-localizes with the 

endocytic recycling protein Thy-1 (bottom). Nuclei are counterstained with DAPI (blue).  

Scale bars=20 µm. 
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Figure 2.8: GRAF1-dependent membrane protrusions and myoblast fusion are 

dependent on vesicular trafficking.  (a) C2C12 cells were treated with DM for 49-72 hrs, 

stained for endogenous GRAF1 (and other indicated antibodies), and visualized by confocal 

microscopy. Confocal slice views and digital decovolution and 3-D renderings are shown. 

GRAF1 is localized to complexes that protrude from cells at pre-fusion complexes (top, also 

see figure 2.4 for confocal slice view) and at the points of cell-cell attachment (middle, white 

arrows) as demonstrated using image deconvolution of confocal Z-stacks. GRAF1 is 

localized to the precise point of contact between fusing myoblasts (bottom, white arrow), 

note high levels of GRAF1 accumulation in the protrusion of a myoblast that appears to be 

diving in to a GRAF1-labeled region of a myotube. See figure 2.9 for the gallery view of 

confocal slices of this 6.71 µm maximum intensity projection (MIP). Myosin heavy chain 

(MHC) demarks cell boundaries in top and middle panels.  GM130 demarks Golgi bodies in 

bottom panel.  (b) Representative images of C2C12 cells maintained in growth media and 

transfected with Myc-tagged GRAF1 for 24 hr.  Twelve hr prior to fixation, cells were 

treated with (left) or without (right) 0.1 µg/mL brefeldin A (BFA).  Myc (red) demarks 

GRAF1 overexpressing cells.  Nuclei are counterstained with DAPI (blue).  Scale bars=50 

µm.  (c) C2C12 cells were transfected with a Cre recombinase-inducible Myc-tagged GRAF1 

targeting construct, induced to differentiate for 48 hr in DM, and transduced with Cre or 

control LacZ adenovirus for 36 hr.  Twelve hr prior to fixation, cells were treated with 0.3 

µg/mL BFA.  Dual Myc and DAPI staining were used to quantify the fusion index 

(*p<1X10
-4

, **p<0.005).  Data are represented as ± s.e.m., n=75-100 cells/condition, N=3 

independent experiments.  Scale bars=10 µm, unless otherwise indicated. 
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Figure 2.9: GRAF1 expression in a pre-fused myoblasts.  Top panel is a maximum 

intensity projection (MIP) of an 8.05 µm section of a C2C12 myoblast differentiated for 72 

hr in DM and immunostained for GRAF1 (green), myosin heavy chain (MHC) (red), and 

DAPI (blue).  Bottom panel is a gallery view of the MIP.  White arrow denotes GRAF1 

accumulation at pre-fusion site.  Scale bars=10 µm. 
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Figure 2.10:  GRAF1 expression in fusing myoblasts.  Gallery view of a 6.71 µm section 

of two fusing C2C12 myoblasts. GRAF1 (green), myosin heavy chain (MHC) (red), and 

DAPI (blue).  Scale bar=10 µm. 
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Figure 2.11:  Cre recombinase-induclible GRAF1 expression.  (a) Diagram illustrates the 

protocol used for the treatment of C2C12 myoblasts with Brefeldin A. Refer to methods for 

experimental details. (b) 24 hr post-transfection with the GRAF1
loxP

 construct, cells were 

exposed to DM for 48 hr then transduced with LacZ (left) or Cre (right) adenovirus for an 

additional 24 hr.  Representative images reveal marked cell fusion in GRAF1-overexpressing 

cells in comparison to controls. Scale bars=50 µm. 
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Figure 2.12:  GRAF1 associates with the fusogenic ferlin proteins and promotes 

recruitment of the endocytic recycling machinery to pre-fusion complexes.  (a) C2C12 

cells exposed to DM for 36 hr were co-immunostained with GRAF1 and EHD1 (top), EHD2 

(top middle), myoferlin (bottom middle) or Fer1L5 (bottom) antibodies.  White arrows 

indicate co-localization of proteins at pre-fusion sites.  High power inset reveals limited co-

localization of GRAF1 and EHD2.  (b) Tibialis anterior muscle cryo-sections from a 6 month 

old wildtype mouse were co-stained with GRAF1 and Fer1L5 antibodies (note sarcolemmal 

co-localization).  (c) Anti-GRAF1 rabbit polyclonal antibody and non-immune sera (NIS) 

immunoprecipitations (IP) from C2C12 cells exposed to DM for 72 hr.  Blots were probed 

with an anti-myoferlin antibody or hamster anti-GRAF1 antibody.  Input contains 20% of 

cellular lysate used for IP.  (d) C2C12 cells transfected with GRAF1-specific (G1si) or 

control (NTC) siRNA and exposed to DM for 36 hr were lysed and immunoblotted with 

GRAF1 antibody to assess knockdown efficiency.  γ-tubulin is shown as a loading control.  

(e) C2C12 cells treated as in (6d) were co-stained with GRAF1 and either Fer1L5 or 

myoferlin antibodies. GRAF1 and ferlins co-localization at polarized tips in NTC treated 

cells, but both Fer1L5 and myoferlin mis-localized in GRAF1 knockdown cells.  (f) C2C12 

cells treated as in (6d) were co-stained with EHD1 and Tm antibodies to demark 

differentiated myoblasts.  Images illustrate the method of quantifying EHD1 protein at pre-

fusion complexes. ImageJ software was used to measure the intensity of EHD1 signal at a 

pre-fusion complex (yellow box) relative to the signal within the rest of the cell.  Refer to 

figure 2.13f for quantification.  Scale bars=20 µm. 
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Figure 2.13:  GRAF1 and GRAF2 have functionally overlapping roles in muscle fusion.  

(a) Western blot analysis of GRAF1 and GRAF2 protein levels in postnatal (P) and adult 

(Ad) mouse quadriceps at the indicated time of development.  γ-tubulin and Ponceau S-

stained blots are shown as loading controls.  (b) Cells exposed to GM and DM for indicated 

times were immunostained for GRAF2. Note increased expression during C2C12 

differentiation and recruitment of GRAF2 to pre-fusion complexes (arrows).  Scale bars=50 

µm. Bottom panels are high magnification images that reveals co-localization of GRAF2 and 

myoferlin at the tip of a myoblast exposed to DM for 48 hr.  (c) GRAF1
+/+

 and GRAF
gt/gt

 

primary myoblasts transfected with GRAF2-specific or control (NTC) siRNA and exposed to 

DM for 36 hr were assessed for GRAF2 and GRAF1 expression by reverse transcriptase-

PCR.  GAPDH is shown as a loading control.  (d) GRAF1
+/+

 primary myoblasts depleted of 

GRAF2 by siRNA knockdown exhibited reduced nuclear accretion in comparison to NTC-

treated control GRAF1
+/+

 myoblasts.  Moreover, depletion of GRAF2 in GRAF1
gt/gt 

cells 

exhibited a further reduction in nuclear accretion in comparison to NTC-treated GRAF1
+/+

 

and GRAF1
gt/gt

 myoblasts (*p<1X10
-4

, **p<0.005, 
#
p<0.05, n.s.=not significant; n=300 

cells/condition, N=3 independent experiments).  (e) C2C12 cells were transfected with 

control (NTC), GRAF1-, GRAF2-, or both GRAF1- and GRAF2-specific siRNAs and 

exposed to DM for 36 hr before being lysed and immunoblotted with a GRAF2 antibody to 

assess protein knockdown efficiency.  γ-tubulin is shown as a loading control.  (f) 

Quantification of the EHD1 fluorescence ratio (refer to figure 2.12f and methods for details) 

in C2C12 cells transfected with control (NTC), GRAF1-, GRAF2-, or both GRAF1- and 

GRAF2-specific siRNAs that were exposed to DM for 36 hr and immunostained for EHD1 

and Tm to demark differentiated myoblasts (*p<0.05, **p<0.005; n=50 cells/condition, N=3 
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independent experiments).  Data are represented as ± s.e.m.  Scale bars=10 µm, unless 

otherwise indicated. 
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CHAPTER 3 

 

GRAF1 DEFICIENCY IMPAIRS SARCOLEMMAL INJURY REPAIR AND 

VARIABLY INFLUENCES MUSCLE PATHOLOGY IN DYSTROPHIN-DEFICIENT 

MICE
2 

 

 

 

INTRODUCTION 

The plasma membrane (PM) functions as a physical barrier which protects the 

intracellular environment from the extracellular milieu, and continuous maintenance of this 

barrier is essential to support the proper function and vitality of all cells.  The PM of striated 

muscle cells, or sarcolemma, is particularly susceptible to rupture as it endures significant 

mechanical stress and strain during muscle contraction.  As such, muscle possesses a 

remarkable ability to maintain sarcolemmal integrity and function, and previous studies have 

demonstrated two prominent mechanisms responsible for such efficient maintenance:  1) 

sarcolemmal stabilization and 2) sarcolemmal membrane repair.   

Sarcolemmal stabilization is mediated by the dystrophin glycoprotein complex 

(DGC) which localizes to the inner surface of the PM.  The DGC functions primarily as a 

strong mechanical link between the intracellular cytoskeleton and the extracellular matrix 

(ECM) to stabilize the sarcolemma and transmit force laterally during muscle lengthening 

and contraction [117].  An integral component of the DGC, dystrophin, is responsible for 

directly linking the contractile cytoskeleton to the sarcolemma through interaction with the 

transmembrane protein, β-dystroglycan [117, 118].  It has long been known that patients with 
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Duchenne muscular dystrophy or the milder Becker muscular dystrophy exhibit a loss of or 

reduction in dystrophin expression, respectively [119].  This deficiency increases 

sarcolemmal fragility in the heart and skeletal muscle and leads to severe muscular injury in 

the presence of even mild stress, resulting in cardiac damage and progressive skeletal muscle 

degeneration and weakness [4]. 

Sarcolemmal injury repair is mediated by various mechanisms which become 

activated in response to an influx of extracellular Ca
2+

 in order to rapidly reseal the PM.  

Ca
2+

-sensing annexin proteins act as first responders to sarcolemmal insult by sequestering 

intracellular vesicles to form an endomembrane patch that is trafficked to the site of 

disruption.  Dysferlin, a membrane anchored calcium-binding protein present on repair 

vesicles and on the plasma membrane, mediates docking and fusion of the patch to reseal the 

membrane breach and prevent further influx of Ca
2+

.  Dysferlin and its family members 

(myoferlin and Fer1L5) share functional similarities to synaptotagmins, proteins which are 

known to facilitate synaptic vesicle fusion and plasma membrane repair [76, 120].  Recent 

studies have shown that dysferlin is rapidly recruited to PM-repair patches in response to 

injury [7], and that skeletal muscle fibers lacking dysferlin exhibited defects in Ca
2+

-

dependent membrane resealing following mechanical or laser-induced membrane rupture [7, 

77].  Indeed, dysferlin deficiency is causal for Limb-girdle muscular dystrophy 2B and 

Miyoshi myopathy in humans [5, 6], and dysferlin null mice have been shown to develop 

progressive muscular dystrophy as well.  What’s more, these mice also exhibit significant 

systolic dysfunction when stressed by conditions known to promote cardiomyocyte 

membrane disruption including exercise, isoproterenol (ISO) infusion, or genetic depletion of 

dystrophin  [121, 122].  These data indicate that dysferlin plays a crucial role in repairing 
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sarcolemmal wounds to maintain integrity of both heart and skeletal muscle tissues.  

However, further work is required to identify additional components which aid dysferlin 

recruitment to sites of membrane damage.  

We previously showed that GRAF1 (GTPase regulator associated with FAK-1) is a 

Rho-specific GTPase activating protein that is expressed predominantly in striated muscle 

and mediates actin- and membrane-based dynamics to promote myoblast fusion [52]. 

Interestingly, we found that depletion of GRAF1 from developing tadpoles induced a highly 

penetrable dystrophic phenotype that that led to immobility [88].  Moreover, we showed that 

GRAF1-deficient mice exhibited a reduced capacity to regenerate following cardiotoxin-

induced muscle injury (see Chapter 2 for review).  Taken together, this data indicates a role 

for GRAF1 in the maintenance/repair of skeletal muscle.  We previously showed that 

GRAF1 associates with the ferlin family members, myoferlin and Fer1L5, and that GRAF1 is 

required for proper sarcolemmal recruitment of these proteins in order to promote myoblast 

fusion (see Chapter 2 for review).  Therefore, we hypothesized that GRAF1 would also 

regulate the trafficking of dysferlin to sites of injured sarcolemma in order to facilitate 

membrane patch-repair.  Our studies show that GRAF1 associates with and mediates 

deposition of dysferlin at plasma membranes of injured muscle.  Moreover, depletion of 

GRAF1 enhanced susceptibility to membrane injury in isolated myoblasts and exacerbated 

some hallmarks of muscle degeneration in the mdx mouse.  Interestingly, GRAF1-deficient 

mdx mice exhibited unprecedented myofiber expansion and muscle growth, implicating an 

alternative role for GRAF1 in skeletal muscle-injury response.   
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RESULTS 

GRAF1 is recruited to disrupted plasma membranes and associates with the membrane 

repair protein dysferlin 

 

 Dysferlin is anchored to both intracellular vesicles and PMs and its distribution 

between these compartments is tightly regulated by endocytic recycling. In response to injury 

in normal muscle, dysferlin is rapidly recruited to PM-repair patches [7].  Notably, 

aggregation and reduced PM association of dysferlin are observed in several muscular 

dystrophies including caveolinopathies and sarcoglycanopathies, suggesting that dysferlin 

mis-targeting could also play a role in the pathogenesis of these diseases [81-84].  We found 

that GRAF1 re-distributed from Z-bands (where it colocalizes with -actinin) to the 

plasmalemma in dystrophin-depleted muscle from a golden retriever dog model of Duchenne 

muscular dystrophy (GRMD) (where it co-localized and co-associated with dysferlin; Figure 

3.1a,b).  Since GRAF1 is expressed at high levels in the adult heart, we wanted to assess the 

effect of GRAF1 depletion on dysferlin localization.  As shown in figure 3.1c, PM 

localization of dysferlin was reduced in GRAF1-depleted hearts, indicating that GRAF1 may 

be important for the trafficking of dysferlin to sites of repair, as GRAF1
gt/gt

 hearts show signs 

of cardiac muscle degeneration (data not shown). 

 In strong support of a role for GRAF1 in mediating vesicle trafficking during injury 

repair, we found that mechanically-induced myotube membrane rupture resulted in the rapid 

(within 2 min) recruitment of endogenous GRAF1 from peri-nuclear compartments to the site 

of membrane lesion where it co-localized in sub-membranous vesicles with the membrane 

trafficking protein, annexin A1 (Figure 3.2).  Co-staining with phalloidin indicated that these 

regions are nearly completely devoid of actin-based structures and we have previously shown 

that ectopic expression of GRAF1 induced a marked clearing of cortical F-actin [88].  
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Together, this data indicates the possibility that GRAF1 regulates a general repair mechanism 

necessary for re-sealing membranes damaged by mechanical stress 

 

GRAF1 is required for optimal striated muscle membrane repair in vitro 

To directly test whether GRAF1 is necessary for membrane repair, we have 

developed a sophisticated in vitro laser-injury/repair system.  GRAF1
+/+

 and GRAF1
gt/gt

 

primary myoblasts were incubated with membrane-impermeable FM 1-43 dye prior to a laser 

pulse on a defined area of the cell (Figure 3.3a).  Time lapse images revealed efficient PM 

resealing following laser injury as demonstrated by a transient increase in FM 1-43 

fluorescence within the wounded region in GRAF1
+/+

 myoblasts (Figure 3).  In contrast, 

when myotubes isolated from GRAF1
gt/gt

 mice were subjected to an identical laser burst, a 

pronounced and widespread increase in FM 1-43 fluorescence and dramatic membrane 

blebbing were observed (Figure 3).  Moreover, 21/28 of the injured GRAF1 null cells 

succumbed to Ca
2+

 overload as assessed by hyper-contracture and release from the 

substratum, while all GRAF1
+/+

  cells (23/23) remained well-spread and adherent.  Moreover, 

our data in adult ventricular cardiomyocytes indicate that, similar to skeletal muscle cells, 

GRAF1 is rapidly recruited to sub-plasmalemmal sites following membrane permeabilization 

with saponin (Figure 3.4), and that pronounced re-sealing defects were found in GRAF1-

depleted cardiomyocytes prior to and after saponin treatment in comparison to control cells 

as assessed by FM 1-43 uptake (Figure 3.4b).  \ 

 

GRAF1 depletion compromises sarcolemmal integrity under pathological conditions  

To determine whether GRAF1 (like dysferlin) was critical for maintenance of 
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membrane integrity, GRAF1
gt/gt

 mice were subjected to cardiotoxin (CTX) into the left 

ventricular wall or to 3x5 mg/kg intraperitoneal (i.p.) injections of isoproterenol (ISO) over a 

24 hr period.  Sarcolemmal damage was evaluated in these models by standard Evans blue 

dye (EBD) exclusion protocols (i.p. injection immediately following injury).  As shown in 

figure 3.5a, cardiomyocyte sarcolemmal damage was minimal in CTX-injected control mice 

and, when found, was restricted to the sub-epicardial zone.  In stark contrast, large clusters of 

EBD-positive cardiomyocytes were apparent in the myocardial wall adjacent to the 

cardiotoxin injection site in GRAF1
gt/gt

 hearts.  Likewise, ISO-induced contraction led to an 

increase in EBD-positive myocytes in GRAF1-depleted hearts.  Moreover, myocardial injury 

can be assessed by the presence of cardiac troponin within the blood which leaks from 

cardiomyocytes with injured PMs.  Therefore, we measured serum cardiac troponin levels in 

CTX- and ISO-treated GRAF1-depleted mice, and found that they exhibited significantly 

higher levels versus GRAF1
+/+

 control mice (Figure 3.5b,c).  Taken together, these data 

indicate that GRAF1 is required to maintain proper cardiomyocyte integrity during muscle 

contraction.  

Dystrophin deficiency has been shown to exacerbate cardiac and skeletal defects in 

dysferlin-null mice [121, 123]. Therefore, we wanted to determine if depleting GRAF1 in the 

context of muscular dystrophy could unmask its function in contraction-induced membrane 

repair.  To test this hypothesis, dystrophin/GRAF1 double-deficient offspring were generated 

using the breeding scheme depicted in figure 3.6 (refer to figure legend for description of 

mouse nomenclature).  Male and female offspring were age matched to 6 and 7 months, 

respectively, to ensure sufficient disease progression. As shown in figure 3.7a, hearts from 

male mdx mice present with increased interstitial fibrosis (i.e. collagen deposition as 
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visualized by Sirius red staining under polarized light) in comparison to GRAF1
+/+

 (WT) 

controls.  As anticipated, dystrophin/GRAF1 double-deficient (mdx/GT
Hom

) mouse hearts 

exhibited a further increase in interstitial fibrosis in comparison to mdx mice, with small 

patches of fibrotic scars indicating areas of focal necrosis. The exacerbated cardiac damage 

in the GRAF1 deficient mdx heart indicates that GRAF1 is protective against contraction-

induced myocyte damage under pathological conditions.  Indeed, we found that female 

mdx/GT
Hom

 hearts exhibited a significant increase in left ventricle (LV) size and mass in 

comparison to mdx hearts as assessed by echocardiography (Figure 3.7b,c).  Moreover, 

mdx/GT
Hom

 hearts exhibited enhanced ventricular dysfunction as assessed by ejection 

fraction (EF) and fractional shortening (FS). Collectively, these data indicate that GRAF1 

plays a critical role in maintaining cardiomyocyte sarcolemmal integrity and in facilitating 

intrinsic cardiomyocyte membrane repair processes during pathological insults. 

We next wanted to determine if GRAF1 plays a similar role in maintaining skeletal 

muscle sarcolemmal integrity.  It is well documented that mdx mice undergo a period of 

acute skeletal myofiber necrosis and degeneration that begins around 3-4 weeks of age. 

Therefore, we harvested tibialis anterior muscle from 3 week old pups injected with EBD and 

assessed dye accumulation in disrupted fibers. While punctuate areas of EBD-positive 

muscle fibers were detected in mdx muscle (indicative of focal necrosis) [124], mdx mice 

lacking just one functional copy of GRAF1 (mdx/GT
Het

) mice was sufficient to promote 

wide-spread EBD accumulation (Figure 3.8).  It is worth mentioning that GRAF1
gt/gt

 (GT) 

and WT muscle did not exhibit any EBD-positive muscle fibers, which implies that depletion 

of GRAF1 does not destabilize DGCs at the sarcolemma.  This data indicates that GRAF1 

likely maintains sarcolemmal integrity by repairing contraction-induced membrane damage. 
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GRAF1 depletion induces myofiber expansion and muscle growth in mdx mice 

 Skeletal muscle tissue, unlike cardiac tissue, maintains a high capacity for 

regeneration and our previous work has shown that GRAF1-deficient muscle exhibit delays 

in this process (see Chapter 2 for review).  Therefore, we hypothesized that adult 

dystrophin/GRAF1 double-deficient mice would exhibit an exacerbated dystrophic 

phenotype in comparison to mdx mice.  Interestingly, and contrary to our hypothesis, adult 

mdx/GT
Hom

 mice exhibited a gross increase in body size due solely to marked growth of the 

musculature in these animals (Figure 3.9a,b).  This muscle growth significantly increased the 

body weight of mdx/GT
Hom

 mice in comparison to mdx and WT controls.  As previously 

mentioned, GRAF1 is a negative regulator of RhoA activity, and elevated RhoA activity has 

been shown to be associated with muscle hypertrophy.  Therefore, we next wanted to 

determine if this increase in mdx/GT
Hom

 muscle size was the result of induced myofiber 

hypertrophy.  As the frequency histogram in figure 3.10a demonstrates, mdx/GT
Hom

 tibialis 

anterior muscle actually contained a larger percentage of smaller-sized myofibers than mdx 

muscle, which is confirmed by a significant decrease in overall myofiber size in these mice 

(Figure 3.10b).  Although mdx/GT
Hom

 mice exhibited smaller fibers than mdx and WT 

controls, the muscle from these mice contained significantly more myofibers per area, 

indicating that myofiber expansion is likely causal for the marked growth observed in these 

mice (Figure 3.10c).  Moreover, mdx/GT
Hom

 tibialis anterior muscle did not exhibit any 

obvious increases in fibrosis or myofiber splitting in comparison to mdx muscle (data not 

shown), which could contribute to increases in muscle mass and cross-sectional myofiber 

number, respectively.  Since myofiber CSA is known to correlate with force production, we 

next measured the forelimb grip force of these mice and found that while mdx/GT
Hom 

and 
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mdx/GT
Het

 mice exhibited a significant reduction in grip strength compared to WT, these 

mice exhibited a small, though not significant, increase in grip strength compared to mdx 

mice.  Taken together this data indicates that depletion of GRAF1 induces the expansion of 

smaller-sized myofibers in the context of chronic injury, which may play a protective role 

against muscle degeneration and loss of function.  However, it’s worth noting that 

mdx/GT
Hom

 muscle exhibited fiber size variability, a hallmark of ongoing muscle 

degeneration/regeneration, indicating that these myofibers are not protected against injury 

(Figure 3.10a).   

 

GRAF1 depletion does not alter tibialis anterior muscle regeneration in the mdx mouse 

 In Chapter 2, we demonstrated that regeneration of GRAF1-deficient muscle 

following acute CTX injury was delayed due to a defect in fusion; however, the data in figure 

3.10 indicates that regeneration may actually be enhanced (i.e. increase in myofiber number 

and presence of myofiber size variability) under conditions of chronic injury.  To test this, we 

quantified nuclear accreation and growth of regenerating myofibers in mdx/GT
Hom

 and mdx 

tibialis anterior muscles from adult mice.  Interestingly, mdx/GT
Hom

 muscle contained a 

comparable percentage of regenerating fibers (as demarcated by centrally-localized nuclear 

foci) to mdx muscle.  Moreover, these muscles exhibited no change in the average number of 

nuclear foci per regenerative fiber or the number of regenerating fibers with two or more 

nuclear foci (in vivo fusion index) (Figure 3.11c,d).  Taken together, this data indicates that 

depletion of GRAF1 in the mdx mouse does not enhance or diminish regeneration under 

conditions of chronic muscle injury.  
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Depletion of GRAF1 prohibits hallmarks of muscle degeneration in the mdx diaphragm 

 Since the tibialis anterior muscle of mdx/GT
Hom

 mice did not exhibit altered 

regeneration or other signs of increased muscle pathology (such as fibrosis) compared to mdx 

mice, we decided to investigate the diaphragms of these mice, as this muscle exhibits the 

most severe dystrophy of all muscle types in the mdx mouse.  Interestingly, immunostaining 

diaphragm cross-sections for embryonic MHC (eMHC) to demark regenerating myofibers 

revealed that while mdx mice exhibited numerous eMHC-positive fibers, mdx/GT
Het

 and 

mdx/GT
Hom

 diaphragms exhibited minimal eMHC staining (Figure 3.12).  The diaphragm, 

like the other muscle in the GRAF1-depleted mdx mice, exhibited significant growth (as 

quantified by diaphragm cross-sectional thickness) and myofiber expansion (Figure 3.13a,b).  

Interestingly, Sirius red staining demonstrated that while mdx diaphragms exhibited 

profound fibrosis (measured as collagen deposition; see methods for quantification details), 

the mdx/GT
Hom

 diaphragms exhibited a significant reduction in fibrosis while mdx/GT
Hwt

 

diaphragms manifested an intermediate phenotype (Figure 3.13a,c).  Taken together, this data 

indicates that established hallmarks of muscular dystrophy (i.e. presence of centrally-

nucleated regenerating myofibers and increased fibrosis) were reversed in GRAF1 depleted 

mdx mice.  Interestingly, although mdx/GT mice exhibited a reduction in diaphragm fibrosis 

compared to mdx mice, the composition of the collagen in the mdx/GT diaphragm resembled 

that of mdx diaphragm (Figure 3.13d; refer to methods for quantification details).  

Specifically, Sirius red stained mdx and mdx/GT diaphragms exhibited enhanced red 

birefringence in comparison to normal muscle, indicative of increased deposition of Type I 

collagen and other dense and highly ordered collagens in the ECM of these tissues.  This data 

suggest that although mdx/GT muscle is less fibrotic than mdx muscle, it still requires a 
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strong extracellular scaffold in which to maintain muscle function. 

 

DISCUSSION 

Previous studies have demonstrated that dysferlin null skeletal myoblasts exhibit 

delayed membrane patching and a more severe injury following laser-induced injury as 

assessed by uptake of FM 1-43 dye [7].  Our data shows that GRAF1 deficient myoblasts 

also undergo a similar attenuation in laser-induced membrane repair. Moreover, the 

association of GRAF1 with dysferlin in injured muscle indicates that GRAF1 may play an 

important role in dysferlin-mediated membrane repair.  We propose that GRAF1 may 

regulate the trafficking of dysferlin to sites of sarcolemmal injury, and indeed, we have 

previously shown that GRAF1 is required for proper trafficking of other ferlin proteins to the 

PM prior to myoblast fusion (see Chapter 2 for details).  However, examining these processes 

by way of live-cell imaging could provide useful information regarding the dynamic 

interaction between GRAF1 and ferlin proteins in muscle fusion and sarcolemmal repair.   

ISO injury of dysferlin null hearts has been shown induced marked sarcolemmal 

injury as demonstrated by EBD uptake [125].  Interestingly, we also showed that GRAF1
gt/gt

 

hearts exhibit an increased susceptibility to sarcolemmal injury following both ISO treatment 

and CTX injection.  Furthermore, the loss of dysferlin at the PM of cardiomyocytes in the 

GRAF1 deficient hearts supports the notion that GRAF1 may regulate the trafficking of 

dysferlin to the sarcolemma. While the exact mechanism of CTX injury is not well-

understood, ISO has been shown to increase contractility of the heart which is, in part, 

dependent on RhoA activity.  Therefore, under conditions of contraction-induced injury, 

altered RhoA activity in the GRAF1 deficient hearts may impart altered cytoskeletal 
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dynamics which my induce DGC instability or prevent proper trafficking of vesicles to sites 

of membrane rupture.  Since GRAF1-depleted muscle does not exhibit significant membrane 

fragility under basal conditions, it is likely that GRAF1 does not destabilize DGCs. 

Immunostaining of GRAF1 deficient hearts and skeletal muscle for components of the DGC, 

such as dystrophin and -dystroglycan, could be done to support this notion.  

Previous studies have demonstrated that dysferlin/dystrophin double-deficient mice 

exhibit a more severe muscle pathology than both mdx or dysferlin null mice, and, 

importantly, the onset of the muscle pathology occurred much earlier than it did in dysferlin 

null mice [123].  Therefore, based on our findings that GRAF1 may be a component of 

dysferlin-mediated membrane repair, we hypothesized that GRAF1/dystrophin double-

deficient mice would exhibit an exacerbated dystrophic phenotype similar to 

dysferlin/dystrophin double-deficient mice.  Although we found some indication of increased 

muscle pathology in these mice, we also observed robust muscle growth and myofiber 

expansion which is not present in dysferlin/dystrophin double-deficient mice, indicating an 

additional role for GRAF1 under conditions of chronic pathological insult. 

Although GRAF1 deficient mdx diaphragms exhibit a reduction in fibrosis and 

regenerative fibers, our preliminary data indicates that these mice exhibit elevated levels of 

serum creatine kinase (sCK), a marker of muscle membrane damage (data not shown).  

Further assessments needs to be made to determine how sCK levels of GRAF1 deficient mdx 

mice compares to that of mdx; however it is presumed that double-deficient mice will exhibit 

higher levels based on our findings that muscle from these mice at 3 weeks of age exhibit 

marked sarcolemmal instability. Moreover, an assessment of EBD accumulation in muscle of 

these adult mice should confirm the sCK analysis. 
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 Interestingly, although GRAF1-depleted mdx hearts exhibited increased fibrosis, the 

diaphragm exhibited less in comparison to mdx.  This discrepancy is likely due to the 

regenerative capacity of skeletal muscle, which is lacking in the heart.  In mdx skeletal 

muscle, the increased sarcolemmal injury induces robust myogenesis in order to repair the 

musculature as well as form new myofibers.  We show that in the absence of GRAF1, mdx 

muscle undergoes more severe sarcolemmal injury (presumably due to defects in PM injury 

repair), as demonstrated in 3 week old mice.  Therefore, we postulate that the signal to 

induce myogenesis is enhanced in these mice, accounting for the significant growth of the 

muscle.  However, due to defects in fusion in the absence of GRAF1, myofibers do not fuse 

as readily, and as such, may account for the increase in myofiber number.  Since we see 

decreases in fibrosis and regenerative fibers in mdx/GT mice, it may be that the smaller 

fibers confer a resistance to contraction-induced damage, thereby acting to protect the muscle 

as opposed to exacerbating the dystrophic phenotype.  

Although we show that tibialis anterior muscle from 6 month old male mdx/GT
Hom

 

mice maintained regenerative capacity, it would be interesting to know if the propensity of 

muscle regeneration is altered in aged mice.  To test this, Pax7+ satellite cell expansion could 

be quantitated in muscle sections from aged mice subjected to a bout of acute CTX-induced 

muscle injury.  Additionally, regeneration could be quantified by staining for markers of 

differentiation, such as myogenin or MHC.  

In summary, we provide the first evidence that GRAF1 associates with the membrane 

repair protein, dysferlin, and is necessary for efficient skeletal and cardiac PM repair. The 

GRAF1/dystrophin double-deficient mice exhibited more severe muscle pathology than both 

mdx and GRAF1-depleted mice, while also exhibiting muscle growth which was not 
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consistent with dysferlin/dystrophin double-deficient mice.  This data implicates an 

additional role for GRAF1 in skeletal muscle-injury response, which requires further 

investigation.  

 

MATERIALS AND METHODS 

Generation of mice 

Double-deficient mice (mdx/GT
Het

 and mdx/GT
Hom

) and control mice (WT, GT and 

mdx) were generated by breeding female mdx/C57/B10 (mdx) mice with male GRAF1-

depleted (GRAF1
gt/gt

) mice (refer to page 102 for description of genotype) through two 

generations (Figure 3.6).  The genetic background of all experimental mice is a mixture of 

C57/B10, 129/SvEv and C57BL/6J.  F2 pups were genotyped for the mdx allele and the 

GRAF1 allele as described previously [126], (refer to page 38).  Echocardiographic analysis 

was performed in age-matched female offspring.  All other analyses were performed in age-

matched male offspring. Animals were treated in accordance with the approved protocol of 

the University of North Carolina (Chapel Hill, NC) Institutional Animal Care and Use 

Committee, which is in compliance with the standards outlined in the guide for the Care and 

Use of Laboratory Animals.   

 

Echocardiography 

  Left ventricular function was assessed by 2D echocardiography in conscious 7 month 

old female mice using the Visualsonic Ultrasound System (Vevo 660) with a 30 MHz high-

frequency transducer as described previously [127].  Echocardiographic measurements from 

three consecutive cycles were averaged using Visual Sonics software.  
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Grip force measurements 

Muscle forelimb grip strength was analyzed using an automated strain gauge as 

described previously [128]. 

 

In vivo muscle injury models 

To induce cardiac injury, GRAF1
+/+

 (wildtype) and GRAF1
gt/gt 

(GRAF1-depleted)
 

mice were subject to intracardic injections of 25 µL of 20 µM cardiotoxin (CTX) (Naja 

nigricollis, Calbiochem).  After 24 hr, mice were subject to intraperitoneal injection of PBS 

containing 5% Evans blue dye (EBD), and hearts were harvested 24 hr later.  Alternatively, 

mice were injected with EBD and subsequent injections of isoproterenol (ISO) at 0, 16 and 

23 hr timepoints, and hearts were harvested 1 hr following final injection.  For both injury 

models, blood was collected at time of tissue harvest and serum isolated to assess troponin T 

levels according to manufacturer’s instructions (Life Diagnostics).  To induce skeletal muscle 

injury, 50 µL of 20 µM CTX was injected into the quadriceps and tibialis anterior muscles of 

4 month and 12 month old male mice, respectively.  Mice were injected with EBD after 6 

days and muscle harvested 24 hr later.  

 

Primary cell isolation, cell culture and siRNA treatment  

Primary and C2C12 mouse skeletal myoblasts were isolated and cultured as described 

previously (refer to pages 40-41).  Primary adult rat cardiomyocytes were isolated by the 

Langendorff method (see review [129]).  GRAF1 was depleted from cultured myocytes using 

short interfering RNA (siRNA) duplex oligoribonucleotides obtained from Invitrogen with 

the following sequences: graf1a sense 5’-GCAGCUGUUGGCCUAUAAU(dT)(dT)-3’ and 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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anti-sense 5’-AUUAUAGGCCAACAGCUGC-3’; and graf1b sense 5’-

AAGUGGACCUGGUUCGGCAACAUUU-3’ and anti-sense 5’-

AAAUGUUGCCGAACCAGGUCCACUU-3’.  Myocytes were transfected with 50 nM of 

GRAF1 siRNA (25nM of both graf1a and graf1b) or a GFP-specific siRNA as a non-target 

control using DharmaFECT reagent 1 according to manufacturer’s instructions (Thermo 

Scientific).  After 24 hr, media was exchanged and cells were fixed. 

 

In vitro injury repair assays 

For laser repair assay, GRAF1
+/+

 and GRAF1
gt/gt

 primary skeletal myoblasts were 

differentiated for 72 hr before addition of FM 1-43 (Invitrogen), a membrane-impermeable 

dye, for 5 min prior to laser injury.  Healthy, intact myoblasts were targeted with a 10 second 

laser pulse, mode-locked on a 2µm (l) x 0.5µm (w) x 2µm (d) region of the plasma 

membrane (PM).  Time-lapse images were acquired prior to and for up to 45 min following 

injury. The fluorescent intensity within (and remote to) the damaged site was quantified 

using Zeiss LSM 710 imaging software.  Furthermore, to investigate GRAF1 redistribution to 

disrupted PMs, differentiated C2C12 myoblasts were mechanically injured with a scalpel 

blade 2 min prior to fixation and immunohistochemical analysis.  For saponin repair assay, 

siRNA-treated primary cardiomyocytes were treated with FM 1-43 and permeabilized with 

0.01% saponin, or left untreated as a control, for 1 min prior to fixation. 

 

Immunohistochemistry and immunocytochemistry 

Harvested mouse hearts and diaphragm muscles were immediately fixed in 4% 

paraformaldehyde, and processed for paraffin embedding using standard techniques.  
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Unfixed frozen dog tissues, a generous gift from Dr. Joe Kornegay, were fixed and processed 

as above.  Alternatively, mouse tibialis anterior muscles were immediately embedded in 

Tissue-Tek O.C.T. compound (Sakura) and snap-frozen in 2-Methylbutane cooled over dry 

ice. For immunohistochemistry, tissues were cross-sectioned at 8 µm, post-fixed in 4% 

paraformaldehyde (frozen sections), treated for antigen retrieval using 10 mmol/L citrate 

buffer (pH 6.0), and stained using standard techniques.  For immunostaining of cultured 

myocytes, cells were fixed in 4% paraformaldehyde, permeabilized using PBS containing 

0.1%Triton X-100 and 0.1% sodium citrate (for cardiac myocytes) or PBS containing 0.4% 

Triton A-100 (for skeletal myocytes).  Tissues/cells were incubated with primary antibodies 

at 1:200 dilutions at 4°C overnight.  Commercial anibodies were purchased from Sigma 

(laminin, monoclonal γ-tubulin); Abcam (-actinin); Lifespan Biosciences (annexin a1); 

Leica Microsystems (dysferlin); and Developmental Studies Hybridoma Back, Univ. of Iowa 

(eMHC, troponin T).   Derivation of the GRAF1 rabbit and hamster antibodies were 

described previously (refer to page 38).  Tissues were then incubated with Alexa Fluor 

secondary antibodies (Invitrogen), Alexa Fluor phalloidin (Invitrogen), Alexa Fluor wheat 

germ agglutinin (Invitrogen) and DAPI at 1:500 in PBS for 1 hr, washed and mounted. 

Flourescent images were acquired using a Zeiss LSM 710 confocal laser-scanning 

microscope. ImageJ software was used to quantify myofiber cross sectional area and the in 

vivo fusion index (refer to page 42 for details). 

 

Histological analysis 

Tissue sections processed as above were subjected to haematoxylin and eosin (H&E) 

staining using standard techniques or Picrosirius red staining according to manufacturer’s 
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instructions (Polysciences), and visualized using bright field microscopy.  To quantify 

diameter thickness, cross-sectional widths along the length of a tissue section were measured 

and averages calculated using ImageJ software.  To quantify diaphragm fibrosis, Sirius red-

stained tissues were first imaged under linear polarized light using identical gain.  ImageJ 

was then used to quantify the integrated density of the red and green signal from each image.  

Collagen deposition is described as the sum of the red and green signal density per area of 

tissue.  Collagen composition is described as the the average ratio of red to green signal 

density per area of tissue. Images were acquired using an Olympus BX61 microscope.   

 

Co-immunoprecipitation  

For immunoprecipitation studies, isolated mouse quadriceps muscle was sonicated in 

modified radioimmune precipitation assay (RIPA) buffer (50mM HEPES pH 7.2, 0.15 M 

NaCl, 2 mM EDTA, 0.1% Nonidet P-40, 0.05% sodium deoxycholate, 0.5% Triton X-100 

plus 1mM sodium orthovanadate and 1X concentrations of both Halt Protease Inhibitor 

Cocktail (Thermo Scientific) and Halt Phosphatase Inhibitor Cocktail (Thermo Scientific)), 

and cleared by centrifugation. 1,000 µg of cleared lysate was incubated with 10 µg of either 

an anti-GRAF1 antibody (polyclonal) overnight at 4°C.  The solution was then mixed with 

75 µL of a 50% slurry of Protein A Sepharose beads (Sigma) in TBS and rotated at 4°C for 2 

hr. Beads were then quickly tapped down in a refrigerated centrifuge and rinsed 3 times with 

ice-cold RIPA + inhibitors and once with TBS before beads were boiled in 50 µL of sample 

buffer.  Eluates and a 2% lysate input were resolved by SDS-PAGE, transferred to 

nitrocellulose membranes, and immunoblotted with an anti-dysferlin antibody and an anti-

GRAF1 antibody (monoclonal) at 1:1000 dilutions using standard techniques. 
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Statistical analyses 

All statistical analyses were performed using Student’s t-test.  Data are represented as 

mean ± s.e.m. and p-values <0.05 were considered statistically significant.   
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Figure 3.1:  GRAF1 redistributes to the plasma membrane in injured/dystrophic 

muscles, complexes with dysferlin, and is necessary for dysferlin localization.  (a) 

Immunohistochemical analysis of GRAF1 expression (green) in normal and dystrophic 

(golden retriever muscular dystrophy (GRMD)) muscle.  Co-staining for α-actinin and 

dysferlin (red) demonstrates localization of GRAF1 at Z-discs and plasmalemma in normal 

muscle and GRMD muscle, respectively.  (b) Anti-GRAF1 rabbit polyclonal antibody 

immunoprecipitation (IP) from adult quadricep muscle 7 days following cardiotoxin-induced 

injury.  Blots were probed with an anti-dysferlin antibody or hamster anti-GRAF1 antibody.  

Input contains 2% of cellular lysate used for IP.  (c) Immunohistochemical analysis of 

dysferlin (red) in GRAF1
+/+

 and GRAF1
gt/gt

 adult mouse hearts indicates mis-localization in 

the absence of GRAF1.  Nuclei are counterstained with DAPI (blue). 
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Figure 3.2:  GRAF1 is dynamically recruited to disrupted plasma membranes. (a) A 72 

hr differentiated C2C12 myoblast cut with a scalpel blade was fixed 2 min post-injury and 

stained for GRAF1 (red). Note accumulation of GRAF1 at the site of injury. F-actin and 

nuclei were counterstained with phalloidin (green) and DAPI (blue), respectively.  (b) 

GRAF1 (green) co-localizes with the membrane fusion/repair protein, Annexin A1 (red), in 

pre-fused myoblasts (36 hr differentiation). Note GRAF1 co-localization in sub-membranous 

vesicles (arrow) as visualized by DIC microscopy.  
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Figure 3.3:  GRAF1 depletion impairs skeletal myotube membrane repair.  (a) 

GRAF1
+/+

 and GRAF1
gt/gt

 primary myotubes were treated with FM 1-43 membrane dye (red) 

for 5 min and imaged prior to confocal-directed laser injury (denoted by red square) (top 

panels) and 15 min (middle panels) and 45 min (bottom panels) post-injury. Note 

pronounced FM 1-43 accumulation and membrane blebbing (arrowheads) in GRAF1
gt/gt

 

cells.  (b) Quantification of dynamic FM 1-43 dye accumulation up to 25 min following 

injury (n=23-28 cells per genotype; N=5).  Data are represented as ± s.e.m.   
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Figure 3.4:  GRAF1 depletion reduces the membrane repair capability of cultured 

cardiomyocytes.  (a) Immunohistochemical analysis of GRAF1 expression (red) in control 

and saponin treated (injured) cultured adult rat ventricular cardiomyocytes.  Note the 

translocation of GRAF1 to the plasma membrane of injured cardiomyocytes (white arrows).  

Nuclei are counterstained with DAPI (blue).  (b) Quantification of FM 1-43 dye-positive 

cardiomyocytes treated with or without saponin following transfection with control (GFP) or 

GRAF1-specific siRNAs. Note significant increase in dye accumulation in GRAF1-depleted 

cells following injury. Western blot demonstrates efficient GRAF1 knockdown. γ-tubulin 

stained blot is shown as loading control.  
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Figure 3.5:  GRAF1 is required for optimal cardiomyocyte membrane repair in vivo.  

(a)  Representative images of Evans blue dye (EBD) (red) uptake in hearts of GRAF1
+/+

 and 

GRAF1
gt/gt

 adult mice 24 hrs after subjection to intracardiac injection of cardiotoxin (CTX) 

(top panels) or intraperitoneal injection of isoproterenol (ISO) (bottom panels).  

Cardiomyocytes and nuclei are counterstained with troponin T antibody (green) and DAPI 

(blue), respectively.  (b) Graphical representation of the area of EBD uptake in the left 

ventricle (LV) cross section of injured hearts.  (c) Quantification of serum troponin levels in 

injured mice. Note significant increases in markers of cardiomyocyte damage in GRAF
gt/gt

 

mice. (N=6-7 mice per genotype).  Data are represented as ± s.e.m.   
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Figure 3.6:  Mouse breeding scheme for genetic-based model of muscle injury. 

Genotypes of experimental mice are denoted in gray boxes.  WT=wildtype; GT=GRAF1
gt/gt 

(GRAF1-deficent); mdx=mdx (dystrophin-deficient); mdx/GT
Het

=mdx/GRAF1
+/gt

 

(dystrophin-deficent/GRAF1 haploinsufficient); mdx/GT
Hom

=mdxGRAF1
gt/gt

 

(dystrophin/GRAF1 double-deficent). 
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Figure 3.7:  GRAF1 depletion exacerbates cardiac fibrosis and reduces cardiac output 

in mdx mice. (a) Heart cross sections from 6 month old male mice with indicated genotypes 

stained with Sirius red and visualized using bright field microscopy (upper panels) or under 

polarized light (bottom panels).  Note fibrotic patches in the mdx/GT
Hom

 heart (arrowheads). 

(b) and (c) Conscious echocardiographic analysis of left ventricular internal diameter (LVID) 

and LV mass, respectively, in 7 month old female mice.  (d) Evaluation of cardiac output by 

calculated left ventricular ejection fraction (EF) and fractional shortening (FS).  (*p<0.005, 

**p<0.01; N=4-5 mice per genotype).  Data are represented as ± s.e.m.  Scale bars=1.0 mm.  
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Figure 3.8:  GRAF1 depletion increases Evans blue dye accumulation in young mdx 

muscle. Representative images of EBD (red) accumulation in tibialis anterior muscle of 3 

week old littermates with indicated genotypes.  Mice were injected with EBD 24 hr prior to 

tissue harvest. Nuclei are counterstained with DAPI (blue).   Scale bars=100 µm.  
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Figure 3.9:  GRAF1-depleted mdx mice exhibit increased muscle growth.  (a) Whole 

body images of 6 month old male mice with indicated genotypes.  Note pronounced size 

increase of the whole body (top panels), forelimbs (middle panels), and hindlimbs (bottom 

panels)  of mdx/GT
Hom

, compared to age-matched controls.  (b) Comparison of 

gastrocnemius muscles isolated from mice in (a) demonstrate marked muscle growth in 

mdx/GT
Hom

 mice.  (c) Average body mass of 6 month old male mice.  (*p<5X10
-4

; N=5 mice 

per genotype).  Data are represented as ± s.e.m. 
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Figure 3.10:  mdx/GT
Hom

 mice exhibit reduced myofiber size and grip strength.  (a) 

Frequency histogram demonstrating myofiber distribution by cross-sectional area (CSA) of 

tibialis anterior muscle from 6 month old male mice with indicated genotypes.  (b) Average 

myofiber CSA of tibialis anterior muscle.  (*p<0.001; n=350 myofibers per mouse; N=5 mice 

per genotype).  (c) Average myofiber number per 0.5 mm
2
 in cross sections of tibialis 

anterior muscle.  (*p<0.05; N=5 mice per genotype).  (d) To assess muscle strength, forelimb 

peak grip force was measured in 6 month old male mice.  (*p<0.01, n.s.=no significance; 

N=5 mice per genotype).  Data are represented as ± s.e.m.   
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Figure 3.11:  GRAF1 depletion does not alter the regenerative capacity of tibialis 

anterior muscle in adult mdx mice.  (a) Representative cross-sectional images of tibialis 

anterior muscle from 6 month male mice with indicated genotypes. Note extensive nuclear 

foci in mdx and mdx/GT
Hom

 muscle.  Wheat germ agglutinin (WGA) (red) demarks myofiber 

boundaries. Nuclei are counterstained with DAPI (blue).  (b) Graphical representation of the 

percentage of regenerating myofibers in the muscle.  (c) Average nuclear foci per 

regenerating myofiber.  (d) In vivo fusion index for regenerating myofibers.  (n.s.=no 

significance; n=300 myofibers per mouse; N=5 mice per genotype).  Data are represented as 

± s.e.m. Scale bars=100 µm. 
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Figure 3.12:  GRAF1 depleted mdx diaphragms exhibit fewer regenerative fibers.   

(a) Diaphragm cross sections from 6 month old male mice with indicated genotypes 

immunostained with eMHC (green) to demark regenerative fibers.  Laminin (red) demarks 

myofiber boundaries.  Note marked reduction in regenerating fibers in mdx/GT mice 

(arrows).  Scale bars=20 µm. 
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Figure 3.13:  GRAF1 depletion reduces diaphragm fibrosis but does not alter collagen 

composition in adult mdx mice.  (a) Diaphragm cross sections from 6 month old male mice 

with indicated genotypes stained with haematoxylin and eosin (H&E) (top panels) or Sirius 

red and imaged under polarized light to visualize fibrosis (bottom panels).  (b) Quantification 

of average diaphragm thickness. Note significant increase mdx/GT mice. Data are 

represented as average±s.e.m. (*p<0.005, **p<0.05, n.s.=no significance; N=5 mice per 

genotype).  (c) and (d) Graphical representations of collagen deposition and composition, 

respectively, of diaphragms from 6 month old male mice (refer to methods for quantification 

details).  (*p<1X10
-4

, **p<0.001, 
#
p<0.005, 

#
p<0.05, n.s.=no significance; N=5 mice per 

genotype).  Black scale bars=25 µm; White scale bars=100 µm.  
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CHAPTER 4 

 

CONCLUSIONS, PERSPECTIVES AND FUTURE DIRECTIONS 

 

The data presented in this thesis supports a role for GRAF proteins in muscle 

maturation and repair.  However, there are no documented instances of muscle disorders 

resulting solely from altered GRAF expression in either the skeletal or cardiac musculature 

of humans.  However, we have shown that GRAF1 and GRAF2 are robustly expressed in 

regenerative skeletal myofibers in an adult patient with mixed myopathy (Figure 4.1).
3
  

Therefore, although GRAF may not be the main player of disease, based on our mechanistic 

studies, it may act as a genetic modifier of various monogenic or multi-factorial muscular 

disorders.  Indeed, the pace and pattern of muscle weakness, along with onset of 

cardiomyopathy, is highly variable even when associated with the same identical mutation.  

Therefore, despite advancements in our understanding of the pathological mechanisms which 

lead to muscle disease (i.e. defects in the structural maintenance and repair of the plasma 

membrane), further work is required to identify other components which may explain the 

variation in disease severity.  Such components will serve as candidate genes for the muscle 

diseases of unknown etiology as well as open up new avenues for therapeutic intervention.  

Although the role of GRAF family members as genetic modifiers is yet to be 

determined, gene expression profiling of patients with Duchenne or Limb-girdle muscular 

dystrophies have demonstrated alterations in GRAF1 gene expression levels (NCBI GEO 
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Profiles).  Furthermore, it would be interesting to assess whether GRAF1 levels actually 

correlate with disease onset or severity.  Moreover, given that GRAF1 is a moderately large 

catalytic protein containing phosphorylation sites within its regulatory/protein-interacting 

domains, it is plausible that various single nucleotide polymorphisms (SNPs) may 

significantly alter the activity of this protein which could also influence muscle pathology.  

The fact that GRAF1 maintains the ability to auto-inhibit its catalytic activity as well as self-

dimerize through it’s BAR domain, strengthens this notion.  Moreover, GRAF proteins make 

good targets for therapeutic intervention, as their catalytic activity may be relatively easily 

manipulated with pharmaceutical drugs.  This is a simpler alternative to current, complicated 

therapeutic strategies for muscular dystrophies, such as DMD, which includes viral delivery 

of ‘mini-dystrophins’ and in vivo exon-skipping.    

The GRAF1 gene trap mouse has been a wonderful model to study muscle biology, 

owing to the fact that GRAF1 is expressed and functions predominantly in muscle tissues. 

Moreover, the residual expression of GRAF1 in the brains of these mice may in fact be 

beneficial as altered GRAF1 regulation has been implicated in cases of mental retardation 

[130] and cerebellar ataxia [131-133].  However, it is important to bear in mind that this 

mouse is globally deficient for GRAF1, and therefore off target affects may influence 

skeletal muscle regulation in a non-cell autonomous fashion.  For instance, GRAF1 has been 

extensively described as a putative tumor suppressor gene in cases of acute myeloid leukemia 

[134-140]. Indeed, GRAF1 gene trap mice may exhibit alterations in blood cell biology, 

although that remains to be determined.  Nonetheless, alterations in blood cell dynamics 

could certainly affect muscle function, particularly in our dystrophin/GRAF1 double-

deficient mouse model, as vascularization and inflammation are key determinants of disease 
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progression and severity in muscular dystrophies. Therefore, alternative models which 

present with skeletal muscle-specific alterations in GRAF1 may be warranted. Our lab has 

generated mice that can be induced to express recombinant GRAF1 or a dominant-negative 

variant (GAPm) that inhibits function of all GRAF family members in a Cre-dependent 

fashion. By crossing these mice with various skeletal muscle-specific gene promoter-driven 

Cre mouse lines, we can control GRAF1 expression, both upregulation or downregulation, in 

a temporal fashion during various stages of muscle development.   

Moreover, this Cre-driven GRAF1 transgene could be bred into GRAF1-deficient or 

dystrophin/GRAF1 double-deficient mice to determine if we can restore proper muscle 

physiology or recapitulate the dystrophic phenotype, respectively. Alternatively, rescue 

experiments could be performed more easily, albeit with less specificity, by injection of 

AAV-GRAF1 into GRAF1-deficient mice. What’s more, it would be interesting to see if 

treatment with the pharmacological RhoA/ROCK pathway inhibitor Y27632 could rescue 

normal muscle function and physiology in GRAF1-deficient mice, thereby demonstrating 

whether loss of GRAF1-dependent RhoA regulation is causal for the muscular defects seen 

in these mice.  
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Figure 4.1:  GRAF1 and GRAF2 are up-regulated in diseased human muscle.  

Immunohistochemistry for GRAF1 and GRAF2 was performed on paraffin-embedded 

sections of muscle sections from a 40 year old patient with mixed myopathy. Both proteins 

were strongly expressed in regenerating fibers demarcated by centrally located nuclei (DAPI, 

blue, arrows).  Data are representative of biopsies from 4 separate patients.   

Scale bars=50 µm.
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ENDNOTES 

 
1
 This chapter consists of material from a manuscript submitted to Dev. Biol. for peer review  

on March 12, 2014 and is co-authored by Kaitlin C. Lenhart, Abigail Becherer, Jianbin Li, 

Xiao Xiao, Elizabeth M. McNally, Christopher P. Mack, and Joan M. Taylor.  Figures 2.7, 

2.11b, 2.12a and 2.13b were collected by Joan M. Taylor, figures 2.8a, 2.9 and 2.10 were 

collected by Abigail Becherer, and grip force measurements were collected by Jianbin Li and 

printed in this chapter with their permission.  

 
2
 Figures 3.1, 3.2, 3.3, 3.4 and 3.5 and corresponding data were collected and analyzed by 

Joan M. Taylor and Thomas J. O’Neill and printed in this chapter with their permission. 

 
3
 Figure 4.1 was collected by Joan M. Taylor and printed with her permission.  
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