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ABSTRACT 

MEGHAN ANN McCAFFREY: Effects of High and Low Impact Magnitudes on 
Concussion Measures in Collegiate Football Players 

(Under the direction of Kevin M. Guskiewicz) 
    
    The purpose of this study was to investigate the effects of a theoretical concussive injury 

threshold on balance and neurocognitive performance in the absence of self-reported 

symptoms immediately following two different impact conditions (high and low) sustained in 

43 Division I football players. A double-blind study utilized the Head Impact Telemetry 

System to classify subjects into the two testing conditions. Data were collected during the 

2005 football season and 2006 spring season.  Balance performance, neuropsychological 

functioning and self-reported symptoms were all assessed and separate repeated measures 

ANCOVA’s were performed for each. Our data analyses resulted in significant differences 

for only a few of the comparisons made between the low and high magnitude conditions 

compared to baseline.  Overall, our findings suggest that sustaining an impact greater than 

100g does not result in acute observable balance and neurocognitive deficits. 
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PREFACE 

    My first experience with concussions was my first semester in my undergraduate career.  

My clinical site was at a private boarding high school.  During the first semester I had the 

opportunity to travel with my school’s football team for a big match up.  I was excited for my 

first big away trip with a team.  The game was full of big hits, questionable calls by the 

referees, and lots of shouting and the typical football atmosphere.  It was in the second half 

of the game when one of my athletes sustained a hard hit to the head and his teammates and 

coach told me he had no idea what plays they were running.  It was that time that the coach 

pulled him from the game and had me evaluate him.  Having no direct experience with 

concussions and evaluating them, I was nervous about what to do.  Upon my initial 

evaluation, it however, was obvious that he had a concussion and would not be returning to 

the game.  The part in my evaluation when the boy’s parents came over to check that he was 

ok was the point that drove home the purpose of my thesis.  His parents spoke to him and I 

stood there and watched in shock as the boy had no recognition of his parents whatsoever.  

That moment sparked my interest in concussions and the etiology of the injury, the diagnosis, 

and return to play aspects dealing with MTBI.  It is that particular image that has stayed with 

me and will continue to throughout my career.   
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CHAPTER I 

INTRODUCTION 

 

    Mild traumatic brain injuries are of growing concern throughout competitive sports.  A 

mild traumatic brain injury (MTBI) is defined as a traumatically induced alteration in neural 

function that may or may not involve loss of consciousness. (Collins, Grindel et al. 1999)  In 

the context of sports injuries, MTBI is often referred to interchangeably as a concussion.  

Due to the detrimental effects associated with MTBI, this type of injurious event is of great 

concern for sports medicine professionals.  Despite the amount of research being conducted 

in the field of sports-related MTBI, there is much still unknown about the injury.  An 

estimated 300,000 sports-related MTBI’s are reported each year in the United States among 

children, adolescents, and young adults. (1997)  Published research has promoted 

improvements in equipment, and changes in rules have been introduced in an attempt to 

reduce the incidence of MTBI among a continually growing athletic population. (Mueller 

2001)  Despite the improvements to facial and head protection, and the implementation of 

new rule changes, the number of athletes that sustain MTBI’s remains high throughout 

athletics. (McCrea, Guskiewicz et al. 2003) 

    There is arguably no one superior mechanism for managing MTBI.  Over 20 grading 

scales and return to play guidelines have been presented in the literature, although none have 

been empirically supported.  The continual evolution of our knowledge of MTBI has not 

allowed for a definitive grading scale or return-to-play guideline system within the sports 



medicine community.  American football, often categorized as a high risk contact sport, is 

one of the most commonly studied sports in the sports-related MTBI research model since 

athletes have a relatively high incidence of MTBI’s.  Players repeatedly sustain impacts to 

the head that are comparable to those sustained in car crashes. (Zhang, Yang et al. 2004)  

Zhang et al.’s observations have been corroborated in the last few years, as more information 

regarding the nature and magnitude of head impacts in football has been published. 

    Many MTBI’s are underreported and younger athletes are less likely to report his or her 

symptoms to the certified athletic trainer entrusted with his or her immediate care. (Collins 

and Hawn 2002)  Often times, the athlete lacks the education about the symptoms of MTBI 

and, therefore, will not realize he or she has a MTBI.  In addition, some athletes play in a 

very competitive atmosphere and feel a great deal of pressure to excel at the sport he or she is 

playing. (Collins and Hawn 2002)  Hence, even if the athlete is aware of the injury he or she 

has sustained, the symptoms are often ignored and participation is continued.  The latter can 

predispose an athlete to a greater risk for serious complications as a result of a MTBI, such as 

second impact syndrome.  In this respect, advancing technology may help certified athletic 

trainers to recognize a MTBI by monitoring the impacts sustained by the athletes under our 

care.   

    Studies have shown that sideline tests are able to detect impaired neurocognitive and 

neuromotor functioning.  There is a growing trend to record pre-season baseline measures on 

neurocognitive and neuromotor tests; this has provided valuable information to properly 

recognize and manage this condition.  Sideline tests such as the Standardized Assessment of 

Concussion (SAC) and Balance Error Scoring System (BESS) allow for the convenience of 

immediate sideline testing during practices or games.  Continuing research in the area of 
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postural control and neuropsychological testing of concussed athletes will allow improve the 

objective evaluation of MTBI.  However, there is still much to be learned regarding exactly 

how the impacts that a football athlete sustains on a daily basis affects the brain.  The 

biomechanics of a MTBI remain unclear for medical professionals; current research, however 

is attempting to answer some of these questions.   

Statement of the Problem 

    Mild traumatic brain injuries cause microscopic changes that occur at the cellular level in 

the brain and are often a result of deceleration force. (Gebke 2002)  An athlete that has 

sustained a concussion may present with symptoms such as headache, blurred vision, 

confusion, inability to remember where he or she is, or what he or she was doing. (Ferguson, 

Mittenberg et al. 1999)  Although a number of symptoms typically follow a MTBI, these 

symptoms might not present immediately; they often only appear 24 hours after the initial 

impact suffered.  By further examining the location, duration, and magnitude of impacts that 

football players are sustaining on a daily basis, the medical personnel will be able to provide 

the best medical care to the athlete in terms of the immediate recognition of injury and the 

effects it has on the body.  The primary purpose of this study was to compare measures of 

balance performance and neurocognitive function at baseline to those obtained after the 

participant had sustained an impact to the head with a magnitude of linear acceleration of at 

least 100 g.  The secondary purpose of this study was to compare the measures of balance 

and neurocognitive function at baseline to those obtained after the participant had sustained 

an impact to the head with a magnitude of linear acceleration of no greater than 70 g.  The 

overall objective was to observe if there were acute effects of magnitude of head impacts in 
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the participants’ balance and neurocognitive performance in the absence of self-reported 

symptoms.     

Research Questions 

1. Does an impact to the head with a linear acceleration of at least 100 g result in acute 

deficits in balance and neurocognitive performance in football players when 

compared to their baseline measures despite the absence of self-reported symptoms? 

2. Does an impact to the head with a linear acceleration of no greater than 70 g result in 

acute deficits in balance and neurocognitive performance in football players when 

compared to their baseline measures despite the absence of self-reported symptoms? 

Null Hypotheses 

1. An impact to the head with magnitude of linear acceleration of at least 100 g will not 

result in deficits in balance and neurocognitive performance relative to the athletes’ 

preseason baseline measures.  

2. An impact to the head with a linear acceleration no greater than 70 g will not result in 

deficits in balance and neurocognitive performance in football players when 

compared to their baseline measures despite the absence of self-reported symptoms.  

Research Hypotheses 

1. An impact to the head with a linear acceleration of at least 100 g will result in deficits 

in balance and neurocognitive performance relative to the athletes’ preseason baseline 

measures. 
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2. An impact to the head with a linear acceleration of no greater than 70 g will not result 

in deficits in balance and neurocognitive performance relative to the athletes’ 

preseason baseline measures. 

Definition of Terms 

1. Experimental session: Practice or game situation in which participants receive an 

impact to the head that measures at least 100 g. 

2. Control session: Practice or game situation in which participants receive an impact to 

the head no greater than 70 g. 

3. Mild traumatic brain injury (MTBI): immediate and transient post traumatic 

impairment of neural functions, such as alteration of consciousness, disturbance of 

vision, equilibrium, etc. due to biomechanical forces.(Congress of Neurological 

Surgeons, Committee on Head Injury Nomenclature 1966)  

4. Concussion: an injury resulting from impact with an object.  Partial or complete loss 

of function, as that resulting from a fall or blow. {Venes, 1997 #108} 

5. Standardized Assessment of Concussion (SAC): a systematic sideline evaluation 

tool for the immediate assessment of concussion in athletes.  The form tests 

immediate, delayed recall, digit span, coordination, upper and lower limb strength, 

sensation and function, as well as vision. 

6. NeuroCom: a system designed to assess vestibular and somatosenosry processing 

during balance tasks. 

7. Automated Neuropsychological Assessment Metrics (ANAM): Computerized 

neuropsychological testing battery which assesses simple reaction time, mental 

processing, attention, working memory, and concentration. 
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8. Graded Symptom Checklist (GSC): An eighteen point Likert scale checklist.  The 

list of eighteen self-reported symptoms commonly associated with MTBI are rated by 

the athlete based on severity (0=none, 1=mild, to 6=severe). 

Operational Definitions 

1. Balance performance: the ability of an athlete to maintain an upright position in 

normal stance position for him or her and maintain the center of gravity within the 

body’s base of support using a complex network of neural connections and centers 

that are related by peripheral and central feedback mechanisms. 

2. Impact threshold:  proposed minimum limit at which head contact sustained by a 

football player will predispose the athlete to a mild traumatic brain injury.  For this 

study, the threshold will be set at 100 g. 

3. Gravity (g): linear acceleration as measured by units of the force of gravity. For 

example, 100 g is a linear acceleration equivalent to 100 times the force of gravity. 

4. Frequency: the number of times that a player has received a head contact 

exceeding the impact threshold. 

5. Neuropsychological testing:  a series of written- or computer-based exercises in 

which the athletes’ cognitive functioning is assessed.  Paper and pencil tests include 

but are not limited to, the Hopkins Verbal Learning Test (HVLT), STROOP, and 

Color Word Association Test (COWAT). 

6. Postural sway: any deviation in the anterior-posterior or medial-lateral plane of an 

individual’s center of pressure from the neutral center of pressure as measured on a 

force plate. 
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Limitations 

1. Subjects experienced varying levels of exposure to potential injury. 

2. Concussion history was self-reported by the subjects participating in the study. 

3. Subjects were unable to complete the study due to an injury sustained during the 

season.  

4. The athletes were not all tested at the exact same following the experimental or 

control session. 

5. Subjects provided an honest effort in performance of postural stability testing. 

6. Subjects provided an honest effort in performing neuropsychological testing  

Delimitations 
 

1. 100 g was set as the criterion threshold limit.  

2. Testing the subjects was done within 24 hours of the experimental or control session. 

3. If a player became symptomatic, he was removed from the study due to exclusion 

criteria. 

Assumptions 
 

1. The Head Impact Telemetry (HIT) System provided accurate information about 

location and magnitude of impacts to the head during participation.   

2. Athletes practiced and played with proper technique as stated by the rules of the 

National Collegiate Athletic Association. 

3. The athletes reported previous concussion history and other previous medical 

conditions on their health history questionnaire honestly. 
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4. The NeuroCom & ANAM programs functioned properly, and were reliable in their 

measures. 

5. The athlete did not have any factors that might potentially be attributed to MTBI 

other than playing football (i.e. excessive dehydration, supplement use other than that 

given by the strength and conditioning staff). 

 

Significance of the Study 

    Investigating the balance and neurocognitive performance of football players after 

sustaining an impact greater than a speculated injury threshold has not yet been conducted.  

A series of studies conducted by Pellman et al. (Pellman 2003; Pellman, Viano et al. 2003) 

have proposed a theoretical threshold for concussive injuries.  Much is still unknown about 

the clinical manifestations observed in athletes following measurable impacts greater than 

this theoretical threshold.  As a result of ongoing research, the Head Impact Telemetry (HIT) 

System has been designed to look at the head impacts that football players regularly sustain.  

The HIT System is comprised of six-single axis accelerometers placed in a player’s helmet to 

measure the impact magnitude in units of gravity, duration of head impact in milliseconds, 

and the location of the impact sustained.  Given the nature of this technology, it is possible 

for a large amount of information to be collected.  A study that correlates the magnitude of an 

impact to the potential changes in neurocognitive and neuromotor functioning has never been 

conducted in the context of a field study.  Initial steps have been taken in this direction by 

Pellman et al.  They have conducted studies in which injury video footage has been analyzed 

and a recreation of these head impacts have been conducted in laboratory isolation. (Pellman 
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EJ 2003)  With this information and data that has been published, advancing on this area of 

research is imperative. 

    Recent studies have reported the dangers of multiple MTBI’s throughout an athletic career 

and in addition to the life-threatening repercussions of second impact syndrome (SIS). 

(Mueller 2001)  Generally occurring in adolescents and young adults, SIS is a condition that 

may occur when an athlete sustains a second MTBI before complications from the first injury 

have yet to resolve; the second, often a seemingly minor blow, can cause fatality. (Cantu 

2003)  A main concern in the context of SIS is the amount of concussions that go unreported.  

The underreporting of head injuries is often a direct result of the athlete’s unwillingness to 

inform the medical professional since doing so often results in a withholding from play. It 

may also be the result of a lack of education about the inherent risks associated with a 

premature return to play (i.e. SIS).  This study evaluated proposed threshold limits in clinical 

measures of balance and neuropsychological testing.  With the technology and the 

information from this study, the medical professional has more information available to him 

or her to better direct medical care for an athlete that would otherwise have repeated their 

injury.  The results of this study may allow the clinician to more effectively treat and protect 

the athlete from the detrimental effects of MTBI.  It will also allow researchers and clinicians 

to better understand the forces that the head receives during football participation and how 

that relates to changes in balance performance and neurocognitive function. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 

    As the sport of football continues to become increasingly competitive at all levels, rate of 

injuries also continue to rise.  It is unique to find an athlete who has gone through his or her 

athletic career without sustaining any kind of trauma to his or her body.  Mild traumatic brain 

injury (MTBI), also know as concussions in the realm of athletics, are a different nature of 

injury. Mild traumatic brain injury was defined in 1966 by the Congress of Neurological 

Surgeons as “an immediate and transient impairment of neural function such as an alteration 

of consciousness, disturbance of vision, equilibrium, and other similar symptoms.” 

(Committee on Head Injury Nomenclature, Bailes & Cantu 2001)  Research has provided 

information to show that equipment can help prevent MTBI’s, while signs and symptoms 

help diagnose and neuropsychological testing manages MTBI’s or the return to play criteria.  

Mild traumatic brain injuries have been a perplexing condition to the medical profession. The 

staggering number of MTBI’s that are brought to the emergency room prove how vital it is 

for the medical professional, especially for certified athletic trainers and team physicians to 

be sensitive to signs and symptoms of concussions, and have sound, objective assessment 

methods to evaluate and manage these injuries.  A vast array of research studies have been 

published which have helped reveal important information about concussions but the medical 

field has yet to reach a consensus about a standard grading scale or return to play criteria.  

Even with rule changes and equipment alterations, MTBI’s are still common among 



competitive athletes.  More prevalent in contact sports such as boxing, football, rugby, ice 

hockey, soccer and lacrosse, MTBI’s are a serious medical issue and should never be 

overlooked.  With a number of accomplished professional athletes forced into early 

retirement, public awareness of this type of injury has lead to a greater demand to better 

understand the nature of MTBI.  Advances in research in the field of bioengineering may be 

able to allow medical professionals to improve their understanding of the forces that are 

imparted on the head in American football leading to more conclusive findings related to the 

pathophysiology of concussions in athletics. 

Epidemiology of Concussion 

    Incidence 

    Mild traumatic brain injuries are not limited to one particular sport or one type of athlete.  

Trauma to the cranium is among the deadliest injury in sports and MTBI is grouped under 

this category of head trauma. (Mueller 2001)  Nine hundred deaths due to an injury to the 

brain are seen each year in sports. (Sosin, Sniezek et al 1996)  There are over 300,000 sports 

related brain injuries each year and 25,000 are seen in high school football alone. (Grindel 

2003; Longhi, Saatman et al. 2005)  A study conducted looking at the incidence among high 

school sports found an alarming number of MTBI’s.  In this study, ten sports were tracked 

over the course of three years in regards to the number of MTBI’s and causation of the 

MTBI’s.  The National Athletic Trainers’ Association (NATA) found concussions in 

football, basketball, soccer, wrestling, field hockey, baseball, softball, volleyball. (Powell 

2001)  Incidence of MTBI’s was much greater in game situations in all the sports with the 

exception of wrestling and volleyball.  The mechanism of injury was almost always some 

type of collision with another player or an object. (Powell and Barber-Foss 1999)  Organized 
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and recreational sports have an incurred risk of MTBI’s.  Equestrian, cheer leading, 

skateboarding, roller-skating, in-line skating, cycling, skiing and snowboarding are activities 

were MTBI’s have been reported. (Bailes and Cantu 2001; Bailes and Hudson 2001)  

Although football is the most common organized sport which concussions are seen, there are 

other sports in which the incidence is just as high.  Boxing, ice hockey and rugby are among 

the more common organized sports that reports MTBI’s. (Bailes and Cantu 2001)  Each sport 

varies in the theories as to why the incidence is so prevalent.  The sheer objective of the 

boxing (to damage the opponents cognitive functioning in simple terms for the boxer, to 

knock the opponent out) and lack of equipment contribute to the frequent rate of concussions.  

High contact rate in rugby combined with little equipment also aids in the high injury rate of 

MTBI.  Ice hockey although having comparable incidence rate to football, have seen 

decreases in the past few years due to changes in protective equipment, specifically in 

helmets. (Bailes and Cantu 2001)   

Anatomy of the Brain 

    Cranial Meninges 

    The cranial meninges isolate the brain and create the circulatory system of the brain.  

There are three main meninges.  The dura mater is the outermost layer.  It is thick, more 

durable and denser compared to the other two layers.  Dural infoldings are found in this layer 

which separates the various lobes of the brain.  The middle meningeal artery is the largest 

meningeal artery of the dura mater; its importance is understood as it is almost always 

involved in cases of reported fatalities associated with MTBI.  The arachnoid mater lies 

against the dura mater and is said to be web-like and delicate in nature.  The pia mater is the 
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innermost layer and is extremely vascular.  These layers enclose the cerebrospinal fluid 

which provides the brain its buoyancy within the cranium. (Martini 1998) 

    Cerebrospinal Fluid 

    Cerebrospinal fluid (CSF) plays an integral role in protecting the brain and also in the 

biomechanics of MTBI.  Specialized cells called ependymal cells secrete CSF into the 

ventricles of the brain.  This fluid allows the brain to float in the cranium while supporting it.  

In addition, the CSF protects the neural structures surrounding the brain and regulates the 

transportation of nutrients, wastes and chemical neurotransmitters.  However, it is this fluid 

that facilitates the acceleration-deceleration type of MTBI mechanism.  When the head has a 

rapid change in linear or rotational movement, the brain lags behind the skull while floating 

in the CSF. (Martini 1998)  Thus, as the skull begins moving in another direction, the brain 

will hit the skull due to the delay in momentum.  This impact of the brain on the skull creates 

trauma to the brain and can also cause microscopic structures to tear and bleed.   

    Frontal Lobe  

    This area of the brain is located anteriorly to the central sulcus.  Its functions are planning, 

organization, problem solving, selective attention, behavior and emotions.  The frontal lobe 

has been shown to be linked to memory and language processing. (Choi, Lee et al. 2005; 

Thompson-Schill, Bedny et al. 2005)  This lobe is very susceptible to effects of head injury 

and sustains many lesions as a result. 

    Temporal Lobe 

    Posterior to the lateral sulcus lays the temporal lobe.  There are two temporal lobes located 

in the brain.  The right temporal lobe is typically associated more with visual memory; this is 
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in contrast to the left temporal lobe, which is associated with verbal memory.  Both temporal 

lobes function together to identify smell and short term memory.  Studies have shown the 

medial temporal region contains the majority of family, personal memories and recognition 

in humans. (Bachevalier and Vargha-Khadem 2005; Manning, Chassagnon et al. 2005) 

    Occipital Lobe 

    Separated from the parietal lobe by the parieto-occipital sulcus, the occipital lobe is the 

most posterior lobe found in the brain.  Vision is controlled by this lobe; more specifically, it 

regulates the recognition of shapes and colors.  Studies in individuals with lesions, trauma to 

the occipital lobe almost always have issues with vision.  Hallucinations, distorted vision, 

and lack of vision have been observed in those with injury and disease affecting the occipital 

lobe. (Choi, Lee et al. 2005)  

    Parietal Lobe 

    The right and left parietal lobes function to distinguish touch and pressure.  The right 

parietal lobe particularly focuses on visuospatial recognition, determining where things are in 

space and relation to the body.  The left lobe concentrates on comprehending language both 

auditory and visually. 

   The Cerebellum 

    The cerebellum is located posterior to the brain stem and pons as well as inferior to the 

cerebrum.  Balance and muscle coordination are controlled by the cerebellum. (Martini 

1998), (Morton and Bastian 2004)  Schmahmann states that disorders affecting the 

cerebellum are consistent with deficits of muscular contraction resulting in ataxia, dysmetria, 

dysarthria, and dysphagia. (Schmahmann 2004)  There has also been research into control 
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over higher order functions such as emotions and personality. (Schmahmann 2004)  Research 

has found genetic abnormalities on the spinocerebellar ataxsis have been linked to problems 

with memory, concentration, an inability to efficiently reason, impulsitivity, and emotional 

instability. (Gambardella, Annesi et al. 1998; Storey, Forrest et al. 1999) 

    The Brainstem 

    The brainstem regulates life such that essential physiological actions are controlled by this 

structure.  Breathing, digestion, heart rate, blood pressure, awake and alert cycles, are all 

regulated by the brainstem.  Damage to the brainstem, even sometimes minor, can have lethal 

consequences.  Intracranial hemorrhaging more often than not results in brainstem herniation; 

the latter typically results in death. (Martini 1998) 

   Integrative Centers 

    Integrative centers are spread among the various lobes of the brain and have a variety of 

purposes.  There are three main integrative centers:  the prefrontal cortex, the speech center, 

and the general interpretative area.  The prefrontal cortex communicates the intellectual 

functions with the rest of the areas of the brain.  It analyzes situations and predicts what will 

happen in future events.  The origins of frustration, tension, and anxiety are developed here.  

The speech center regulates breathing, vocalization and formation of words.  There is a motor 

speech area named Broca’s area and a receptive speech area.  The latter interprets the motor 

commands given by the motor speech area.  Damage to the speech center will result in 

speech difficulties ranging from trouble forming auditory words to using the appropriate 

words to relay coherent information.  The general interpretive area is the collection center.  It 

takes information from all the other areas of the brain and interprets the commands from 

 15



these different areas.  It consists of what someone’s personality is and how he or she 

understands what is spoken or written. (Martini 1998) 

Mechanism of Injury 

    There are several means by which an athlete can sustain a MTBI.  An impact or 

compressive force, a shearing force, a rotational force and an acceleration or tensile force are 

all mechanisms of MTBI. (Echemendia and Julian 2001; Asplund, McKeag et al. 2004)  

Acceleration-deceleration is the most common mechanism for MTBI seen in sports, 

particularly football. (McCrory, Johnston et al. 2001)  The brain is contained in the cranium 

by the bones of the skull and rests in CSF.  When the head is moving the brain moves with it.  

With a sudden, abrupt change in direction, the brain tends to lag behind the skull itself, thus 

hitting the side of the skull with a significant force.  The result of this force is said to cause 

shearing and tearing of the axons in the brain. (Barth, Freeman et al. 2001; Broglio, 

Guskiewicz et al. 2004)  Impact loading results in the initiation of the cerebral cascade.  A 

cerebral cascade is defined in the literature as the pathophysiological response in the brain as 

a result of trauma to the brain. (Bailes and Cantu 2001)  Rotational movements can also lead 

to MTBI.  The movement of the brain causes microscopic tearing and bleeding within the 

various layers of the cerebral mater.  A rapid alteration in the head’s velocity over time will 

cause trauma to the brain tissue. (Barth, Freeman et al. 2001) The more traditional 

mechanisms of MTBI would be the impact and loading type.  A direct impact to the cranium 

will cause disruption of a delicate balance of neurotransmitters in the brain.  A number of 

theories have been established in terms of the biomechanics of MTBI.  Newton’s second law 

(F = m·a) has prevailed as an explanation of mechanics of the acceleration-deceleration type 

and MTBI of this nature will suffer the greatest axonal injury and impairments in 

 16



neuropsychological behavior. (Barth, Freeman et al. 2001)  The magnitude and force 

delivered by the object is determined by the characteristics of the object.  The more rapid the 

load is applied, the less force it has to be applied with to cause damage to the brain.  Lateral 

motions of the brain cause the most damage when compared to sagittal 

movements.(Echemendia and Julian 2001) 

Pathophysiology of MTBI 

    Despite a lack of obvious deformity from direct impact, forces can still be present to cause 

lethal damage. (Barth, Freeman et al. 2001)  The trauma induced to the brain causes a chain 

reaction on the cellular level.  Maximum dysfunction in the brain is seen within the first three 

days following the insult and scores on neuropsychological tests are the lowest. (Buczek, 

Alvarez et al. 2002)  The impact or acceleration-deceleration forces that cause the temporary 

displacement of the brain begins the sequelae of events known in literature as the cerebral 

cascade. (Echemendia and Julian 2001; Giza and Hovda 2001)  A disruption of numerous 

neurons and capillary damage has been seen in various studies. (Bailes and Hudson 2001)  

Axonal stretching as a result of the acceleration-deceleration forces triggers a release of 

neurotransmitters. (Grindel 2003)  An immediate release of neurotransmitters, particularly 

acetylcholine, causes the depolarization of neurons.  This depolarization causes an imbalance 

in the sodium-potassium pump.  There is an efflux of potassium, caused by glutamate, and an 

influx of calcium. (Bailes and Cantu 2001)  This disruption of the sodium-potassium pump 

causes the cells to work twice as hard.  An increase in ATP causes an increase in glucose 

which creates a hypermetabolic state and diminished cerebral blood flow.  Increased glucose 

levels can remain elevated for four hours in certain areas of the brain. (Giza and Hovda 2001)  

The elevated glucose levels were seen in the injured cortex of male rats after sustaining a 
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standardized parasagital fluid percussion brain injury. (Buczek, Alvarez et al. 2002)  The 

increased glycolysis, which lasts at least thirty minutes, produces an excess of lactate.  Thus, 

increases in calcium levels in the cells, seen in rats for two to four days, interferes with 

mitochondrial oxidative metabolism and accentuates the negative detoriating effects 

occurring to the neurons.  High levels of calcium are the primary cause in neuronal death. 

(Stelmasiak, Dudkowska-Konopa et al. 2000)  A reduction in cerebral blood flow is seen as a 

result of increased calcium flux. (Gebke 2002)  Susceptibility to mitochondrial damage is 

greater during MTBI and this damage causes a delay to the ATP synthesis, vital to normal 

neuronal functioning. (Buczek, Alvarez et al. 2002)  Acidosis causes membrane damage and 

alters the permeability of the blood brain barrier.  Magnesium is another mineral that is 

affected during this neurometabolic cascade following trauma.  There is a reduction of the 

levels cause neuronal dysfunction whereas normally it maintains the cell membrane 

permeability and initiates protein synthesis.  An alteration in NMDA (N-methyl-D-

aspartame) occurs and can last up to one week post injury and if over stimulation of the 

neurons occurs there is a greater risk for seizures and more cell death to happen. (Giza and 

Hovda 2001)  A study performed on rats that were inflicted with concussive insults reported 

that it took ten days for resolution of neuronal functioning and chemical balance in the brain 

to occur. (Cantu 2001) 

Types of Hematomas 

    Subdural Hematoma 

    Death is probable with those athletes that sustain a subdural hematoma, as it has been 

listed in literature as the most common cause of head injury death. (Logan, Bell et al. 2001)  

There are two main classifications: acute and chronic.  Acute hematomas are the most 
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dangerous and lethal.  This is defined as bleeding within the subdural space.  Symptoms 

usually do not present until 48 to 72 hours after insult and complications can occur.  

Complications usually result in irreversible damage and death despite surgical intervention.  

Chronic subdural hematomas are found around a week later when symptoms start 

manifesting post concussive symptoms. (Bailes and Hudson 2001) 

    Epidural Hematoma 

    This medical condition occurs when a traumatic force has caused blood to accumulate 

between the dura mater of the brain and the skull.  The mechanism of this injury is result of 

an acceleration-deceleration force.  Commonly associated with this type of hematoma is a 

skull fracture.  The skull fracture often causes a laceration in the middle meningeal artery or 

vein and the athlete will present with some type of deformity.  Athletes with an epidural 

hematoma have a period of time in which normal functioning occurs until the blood has 

significantly pooled.  This pooling of the blood causes compression and herniation of the 

brain stem. (Bailes and Hudson 2001)  Epidural hematomas are seen in sports that do not 

require helmets or other protection for the head. (Bailes and Cantu 2001) 

    Intracerebral Hematoma 

    A localized collection of blood within the brain is identified as an intracerebral hematoma.  

Typically there is a distinct deficit noted during an evaluation of an athlete assumed to have 

this but coma and death may be the end result if it is not diagnosed within a relatively short 

period of time. (Bailes and Hudson 2001) 
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Second Impact Syndrome 

    Second impact syndrome (SIS) involves two consecutive impacts to the head occurring 

when a second impact, often minor, is imparted when symptoms of the first have yet to 

resolve. (Echemendia and Julian 2001; Grindel, Lovell et al. 2001; Collins and Hawn 2002)  

The second impact does not have to be one of great magnitude for the cerebral bleeding to 

accumulate and markedly increase intracranial pressure.  The drastic increase in intracranial 

pressure leads to brain stem herniation thus causing death. (McCrory and Berkovic 1998; 

Randolph 2001)  This occurs within two to five minutes from the time of second impact.  An 

animal design looked at the effects of two concussions 24 hours apart and found no 

histological damage but long term microscopic evidence of axonal injury and alterations in 

motor tasks were found.  This study demonstrated that once a concussion is sustained there is 

a period in which the person is vulnerable to another concussion and there are prolonged 

cognitive and neuromotor impairments as a result of repeated impacts. (Longhi, Saatman et 

al. 2005)  Controversy over this condition is due to the lack of valid documentation and basis 

of hearsay.  (McCrory and Berkovic 1998)  McCrory analyzed seventeen case reports of SIS 

and found no definite cases.  The five probable cases were in young male athletes in contact 

sports.  However, there have been unexplained fatalities from impacts to the head that have 

been speculated to be from SIS.  As a result it is imperative that clinicians do not return an 

athlete back to activity if he or she is still symptomatic. 

Post-concussive syndrome 

    Post concussive syndrome is a lingering result of a MTBI in which the patient experiences 

prolonged symptoms.  Headache, dizziness, nausea, tinnitus, depression, irritability, slowed 

mental processing, impaired attention, and memory deficits are all associated with post-
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concussive syndrome.  It is typically it is defined as patients reporting two or more symptoms 

at 3 months post injury. (Ferguson, Mittenberg et al. 1999)  A person with this syndrome can 

experience these symptoms for years after suffering the initial MTBI, and in some cases can 

be permanent. (Grindel, Lovell et al. 2001)  Posttraumatic headache is the most common 

complaint of patients suffering from this syndrome. (Collins, Grindel et al. 1999)  A study on 

concussed athletes found those that had headaches seven days post injury performed 

significantly lower in reaction time and memory than those who were not experiencing a 

headache.  In addition, these athletes experienced more post concussive symptoms than those 

that had no headache.  Thus, these athletes experiencing headache 7 days post injury showed 

a slower neurocognitive recovery curve. 

Grading Scales 

    There are over 20 documented grading scales for MTBI’s, none of which has become the 

standard when assessing a MTBI’s.  The two most commonly used scales are the American 

Academy of Neurology and the Cantu Grading System. (Grindel 2003)  The three main 

classification categories are Grade I, (mild), Grade II, (moderate); Grade III, (severe).   

    The inconsistencies of the grading scales make it difficult for clinicians to properly assess 

the nature of the MTBI’s and as a result, unable to follow a set protocol.  Current evaluation 

of MTBI’s has moved away from quantifying and labeling the injury and more towards 

objectively treating the symptoms being experienced. 

    The Glasgow Coma Scale is a recent addition in the evaluation of MTBI’s.  Using the 

symptoms the athlete presents with, he or she is scored accordingly and determined which 

category to be placed in. (Gebke 2002)  The most commonly used scales consist of three 

grades.  Mild traumatic brain injuries can present with a wide array of symptoms, not all of 
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which are present in each case, making it more difficult to set a standard structure to classify 

them.  All grading scales are based primarily of self-report of symptoms, which most 

researchers have acknowledged is an acceptable limitation. 

Various Testing for Mild Traumatic Brain Injury 

   Diagnostic Imaging Testing 

    Diagnostic imaging for MTBI is not as conclusive as once thought.  Computerized 

tomography (CT) scans, magnetic resonance imaging (MRI), and electroencephalographs 

(EEG) although capable of identifying structural damage are insensitive to functional injuries 

such as MTBI.(Echemendia, Putukian et al. 2001; Collins and Hawn 2002)  Not surprising, 

athletes have demonstrated normal imaging results despite cognitive compromise displayed 

by decreased scores on neuropsychological tests. (Putukian 1996)  Thus, unless there is a 

severe intracranial disturbance, then any of these diagnostic tools will not be helpful in 

determining if the athlete does in fact have a MTBI. 

   Neuropsychological Testing 

    Many times there are postconcussive symptoms that go unnoticed or underreported by the 

athlete.  Microscopic trauma in the brain might only present with subtle changes in one or 

numerous areas of the brain function.  These changes might not be observed by the athlete or 

the medical professional on the initial evaluation.  Thus, it would be clinically significant to 

test the athlete and see where the deficits are that the athlete is suffering from.  

Neuropsychological testing is the most sensitive method of detecting postconcussive 

symptoms. (Lovell and Collins 1998; Randolph 2001; Gebke 2002) 
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    Neuropsychological testing began in the mid-1970 with a study conducted by Barth.  He 

administered baseline testing for 2,300 athletes and retested those athletes that had suffered a 

concussion.  Macciocchi et al. was the first large scale study to use the paper-and pencil tests. 

(Macciocchi, Barth et al. 1996)  Since then, the popularity of using neuropsychological 

testing as an evaluation and diagnostic tool has increased steadily as more research is being 

conducted to prove its importance.  Athletes have come to accept neuropsychological testing 

as part of the medical care that the sports medical staff provides. (Pellman, Lovell et al. 

2004)  A majority of professional football teams, collegiate contact sports and high school 

contact sports all have begun implementing a battery of neuropsychological tests. (Grindel, 

Lovell et al. 2001)  The Pittsburgh Steelers were the first professional football team to place 

the neuropsychological testing in place and were soon followed by the National Hockey 

League. (Macciocchi, Barth et al. 1996; Lovell and Collins 2002) 

    Neuropsychological tests are designed to target faculties of brain function commonly 

affected by MTBI.  These include concentration, attention, memory, information processing 

speed, motor speed and coordination. (Lovell and Collins 1998; Echemendia and Julian 

2001)  The true clinical significance of the neuropsychological testing is seen when the 

athlete has completed a preseason baseline test. (Grindel, Lovell et al. 2001)  This allows the 

medical professional to compare the post-injured values individualized with those pre-injury 

scores.  Any initial deficits will be detected and explored as learning disabilities but once a 

MTBI has been sustained the scores are compared to baseline and any decreases may be 

attributed to the trauma suffered. (Lovell and Collins 1998)  Along with the grading scales 

and return to play criteria there is no standard battery of tests or neuropsychological 
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assessment for athletes.  Numerous neuropsychological tests are available to use in a battery, 

such as: 

Paper and pencil tests 

1. Trail Making Tests, Parts A & B 

2. Stroop Test 

3. Digit Span from the Wechsler Memory Scale-Revised 

4. Symbol Digit Modalities Test 

5. Controlled Oral Word Association Test 

6. Hopkins verbal Learning Test 

7. Letter and Numbering Sequencing from Wechsler Memory Scale- III 

Computerized tests 

8. MicroCog 

9. CogScreen 

10. Automated Neuropsychological Assessment Metrics (ANAM) 

11. Vigil  

12. Immediate postconcussion assessment and cognitive test (ImPACT) 

13. Concussion Resolution Index (CRI) 

(Lovell 1998) 

    Studies conducted by Collins have revealed that football players at the collegiate level 

with a history of repeated MTBI perform lower on the neuropsychological tests post injury 

when compared to baseline measures than those who have not suffered a MTBI.  Collins 

subjected 393 Division I football players to a battery that consisted of eight paper and pencil 

neuropsychological tests.  This study revealed that those players having suffered multiple 
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concussions scored lower on the baseline testing than those without a previous history of 

head trauma.  In addition, those athletes who sustained a MTBI scored lower on those tests 

taken after the injury when compared to the baseline scores each received individually.  

Significant validity and reliability was shown for the tests administered. (Collins, Grindel et 

al. 1999; Collins and Hawn 2002)  In addition, it has been shown that neuropsychological 

tests are reliable and valid in assessing those deficits that show change with MTBI’s. (Rimel, 

Giordani et al. 1981; Dikmen, McLean et al. 1986)   

    Not only is neuropsychological testing useful in whether or not an athlete has suffered a 

MTBI but also in assisting in the return-to-play decision.  Improvements can be tracked over 

any given period of time that the medical professional deems necessary. (Oliaro 1998)  

However, testing is typically performed within the first twenty-four hour period, with follow-

up assessments taking place on days one, three, five, seven, and fourteen.  Medical 

professionals will base their return to play decision based upon the scores of the 

neuropsychological test result in conjunction with a thorough physical or clinical 

examination.  A recently published study found that concussed athletes performed 

significantly worse than those that did not sustain a concussion and most of the deficits were 

seen in the first 48 hours of injury. (Bleiberg, Cernich et al. 2004)  It has been generally 

accepted that athletes with abnormal neuropsychological test scores, indicating abnormal 

brain function, when compared to baseline be withheld from activity until the scores return to 

the baseline values. (Lovell and Collins 2002)  The neuropsychological data was the only 

revealing information to the deficits still being experienced by the athlete.  The post 

concussive symptom scale did not reveal any difference among the two groups at 48 hours 

post injury.  This reaffirms the significance of the neuropsychological testing battery in 
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regards to return to play decisions (RTP) due to its ability to identify subtle differences in the 

different cognitive domains.  (Echemendia, Putukian et al. 2001) 

   Standardized Assessment of Concussion 

    The Standardized Assessment of Concussion (SAC) is a brief mental status exam which 

takes approximately 6 minutes to administer and can be done on the sideline to assess the 

immediate severity of a MTBI. (McCrea 2001; Randolph 2001; Collins and Hawn 2002)  

The SAC was developed modeling suggestions from the AAN Practice Parameter and the 

Colorado Guidelines. (Kelly, Nichols et al. 1991; 1997)  It focuses on four main domains, 

(orientation, immediate memory, concentration and delayed recall) affected by MTBI and 

scores out of a possible thirty possible points.  Two alternate forms are available to reduce 

the practice effects often seen with traditional neuropsychological tests.  Deficits in 

neurocognitive functioning have been detected by administration of the SAC, despite 

variables unable to be controlled such as environment. (McCrea 2001)  The SAC has also 

been proven to be effective in detecting improvements over time as the patient recovers from 

the MTBI. (McCrea, Kelly et al. 1998)  A study conducted among 141 high school football 

players found those that were concussed obtained significantly lower scores on the 

neuropsychological tests immediately following injury.  When compared to respective 

baseline measures, each mean score was significantly lower after sustaining the concussion.  

This study also proved the validity of the standardized assessment of concussion 

administered by certified athletic trainers on the sidelines. (McCrea, Kelly et al. 1997)  A 

study conducted by the U.S. Naval Academy among their football players found SAC to be a 

very practical and efficient tool in assessing and monitoring concussions.  The SAC is 

popular among the certified athletic training population for assessing concussions due to the 
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convenience, low cost, practicality, and time efficient qualities it poses.  A survey revealed 

that 85% of certified athletic trainers who replied to the survey believe that SAC aids in 

confirming an athlete has sustained a MTBI. (Ferrara, McCrea et al. 2001)  A SAC database 

does exists that can be analyzed for trends, norms, and numerous other components of 

concussion. (McCrea 2001)  With further development of the SAC, it will allow the 

classifications of MTBI’s to be structured more definitively. 

    Interpreting the results 

    Controversy has arisen over interpreting the scores from the neuropsychological tests.  It 

has been stated that neuropsychologists are the medical professional that infer the actions to 

be taken with the patient. (Randolph, McCrea et al. 2005)  However, the reality of cost and 

accessibility of having a neuropsychologist in most instances is impractical and unrealistic.  

As a result, the development of computerized neuropsychological testing has become more 

efficient and effective in establishing this method in MTBI evaluation. (Lovell and Collins 

2002)  Much of the neuropsychological testing has evolved into computerized testing.  These 

computerized tests have been proven to have much more sensitivity than the traditional 

neuropsychological tests. (Bleiberg, Halpern et al. 1998; Randolph, McCrea et al. 2005)  

Specifically, the computerized complex reaction time based tests are able to determine 

reaction time to the milliseconds. (Bleiberg, Halpern et al. 1998) 

    It is imperative that with neuropsychological testing, baseline measurements are collected 

to accurately assess the deficits and improvements in cognitive functions. (Maroon, Lovell et 

al. 2000; Echemendia, Putukian et al. 2001; Erlanger, Saliba et al. 2001)  Each player scores 

differently on the various tests; therefore, it is crucial for comparison purposes to have scores 

that are deemed the ‘norm’ for that particular individual.  Reliable change index (RCI) is a 
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way for clinicians to compare an athlete’s performance on tests after suffering to baseline 

taking reliability and practice effects into account and see if the differences in scores are 

significant.   

    The Concussion Resolution Index (CRI) is a web-based program that provides a battery of 

neuropsychological test focused on addressing practice effects, time constraints, cost, and 

expertise of interpretations.  The web based program reports athletes’ symptoms and MTBI 

history.  Analysis of validity has proven the CRI indices are similar to traditional 

neuropsychological tests. (Erlanger, Saliba et al. 2001)  A study conducted using the CRI in 

over 14 teams and institutions revealed that those athletes who had MTBI’s had a statistically 

significant cognitive test result of three or more neuropsychologic symptoms, or both.  In the 

26 concussed athletes tested, 12% were withheld from activity due to the scores on the 

cognitive performance solely.  These same athletes would not have been withheld from 

activity or identified as having an MTBI if the clinician based his/her evaluation solely on the 

symptoms reported by the athlete. 

    The Automated Neuropsychological Assessment Metrics (ANAM) is a computerized 

battery that measures cognitive function using various tests.  This program has been utilized 

by various military personnel, professional sports teams, and various institutions from 

schools to hospitals and research centers. (Levinson and Reeves 1997)  It is composed of six 

subsets: Matching to Sample, Mathematical Processing, Spatial Processing, Sternberg 

Procedure, Simple Reaction Time, and the Continuous Performance Test. (Bleiberg, Cernich 

et al. 2004)   The battery is completed in roughly 20 minutes and records a throughput score.  

This score incorporates both the accuracy and speed at which the subject answers the 

questions. (Bleiberg, Cernich et al. 2004)  The Sternberg memory search (MS6) focuses on 
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reaction time combined with information processing.  In addition, short term and visual 

memory is assessed on this subtest.  The subject is presented with a set of letters, remember 

them and then identify them at a later point. (Levinson and Reeves 1997)   

The Mathematical Processing (MTH) focuses on simple arithmetic that uses twenty-

five three digit problems.  The subject must subtract the two numbers presented on the screen 

and determine if the resultant value is greater than or less than five. (Levinson and Reeves 

1997)  The Spatial Processing module presents the subject with histograms and asked about 

the visual characteristics of them.  The athlete is shown the histogram and then another 

histogram is displayed that is rotated from the original and the subject must determine if it is 

the same histogram or not. (Levinson and Reeves 1997)  Procedural Reaction Time (PRT) 

focuses on matching to sample, encoding and responding. (Levinson and Reeves 1997) 

    Studies conducted comparing cognitive performances between normal healthy individuals 

and individuals that have suffered some trauma to the brain have been using ANAM. 

(Levinson and Reeves 1997)  Studies conducted by Bleiberg et al have validated and shown 

accuracy of ANAM for the specific tasks measured in the battery.  ANAM has been found to 

be very sensitive to subtle changes in neurocognitive function as a result of trauma to the 

brain. (Levinson and Reeves 1997; Bleiberg, Halpern et al. 1998; Bleiberg, Cernich et al. 

2004)  In addition, ANAM has proven to detect neurocognitive changes in patients suffering 

in the early stages of Alzheimer’s disease. (Levinson, Reeves et al. 2005)  This study found 

that of the 16 elderly patients measured, the data analysis revealed a significant impairment 

on the ANAM general indicator of brain function. (Levinson, Reeves et al. 2005) 

    Neuropsychological tests show deficits in cognitive functioning within two hours of injury 

and even up to months later.  A majority of scores decline between the two hour and 48 hour 
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window of time. (Echemendia, Putukian et al. 2001)  Testing in this manner will allow the 

medical professional quantify just how severe the decline is and whether or not it warrants 

further medical attention.  

    Neuropsychological testing is a useful tool to aid in clinical diagnosis and management of 

MTBIs. (Lovell and Collins 2002)  Team physicians in the National Football League have 

found neuropsychological testing essential in managing more severe concussions.  At this 

point research has shown that it is the most sensitive tool in measuring cognitive dysfunction 

after a MTBI and most helpful in regards to RTP decisions. (Cantu 2001) 

    Neuropsychological testing allows the medical staff to quantify neurocognitive processing. 

(Pellman, Lovell et al. 2004)  There has been research to examine a tool used to aid in the 

RTP decision that would be as sensitive as the computerized neuropsychological tests that 

exist for cognitive functioning.  The computerized or paper-pencil methods of 

neuropsychological testing do not take into account functional impairment.  Therefore, 

further development is needed in this area of return to play criteria. (Johnson et al. 2001)  A 

study conducted looked at the ability of a subject to perform two separate tasks and then a 

dual task to see if any deficits occurred with the dual task in comparison to the individual 

tasks. (Broglio, Tomporowski et al. 2005)  It was found that balance affected the subjects’ 

reaction time of performing a set task. (Broglio, Tomporowski et al. 2005)  Along similar 

return to play measures, a study conducted testing the sensitivity of the Cybex Reactor had 

84 competitive athletes volunteer to perform a reactive functional assessment before and after 

sustaining a MTBI.  The results found that the Cybex Reactor was unable to detect the subtle 

deficits that the athlete residually suffers from. (Johnson et al 2001)  Therefore, a more 

sensitive or valid test needs to be developed to improve return to play decisions.   
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    Despite the clarity it has brought to evaluating MTBI and returning athletes to activity, 

there is still hesitation in solely relying on neuropsychological testing in evaluating a MTBI.  

There is not one computerized battery of neuropsychological tests that fulfill all the criteria to 

be a valid, reliable test that would detect deficits in neurocognitive performance after mild 

trauma to the head. (Randolph, McCrea et al. 2005)  There have been some studies conducted 

that have shown athletes with no deficits in scores when compared to baseline but have 

reported MTBI symptoms.  Clearly, further research is needed in the area of 

neuropsychological testing. 

Postural Stability 

    Trauma to the head causes changes in various parts of the brain thus, affecting the function 

controlled by that structure.  It has been seen that injuries to the head often affect the cochlear 

and vestibular components of the brain.  The cerebral cortex, cerebellum, basal ganglia, 

brainstem and spinal cord all play vital roles in postural stability.  The basal ganglia is the 

first structure to receive joint position sense while the cerebellum coordinates motor impulses 

and the signals are sent to the motor neurons through the brainstem. (Broglio, Guskiewicz et 

al. 2004; Broglio, Tomporowski et al. 2005)  The control center for balance and coordination 

is the cerebellum.  The cerebellum is responsible for the coordination of learning and 

controlling posture and balance as it gets information from other parts of the body. 

(Guskiewicz 2001)  Postural stability involves visual, somatosensory and vestibular 

information cohesively working fully.  Athletes suffering from a MTBI have disruption in the 

communication of these three systems.  This inability to receive and relay input causes 

postural instability in any direction. (Guskiewicz 2001)  Trauma to the head can cause an 

inability to organize sensory information needed for balance.  When visual cues are 
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diminished or there is an unstable surface a person is unable to maintain postural stability if 

suffered from head trauma.  As a result, the cerebellum is unable to accurately detect the 

current position of the body and gives the wrong signals to the brain stem which in turn 

causes improper and unnecessary motor patterns to engage inefficient posture. (Broglio, 

Guskiewicz et al. 2004)  There has been research which proves a correlation with postural 

stability and noticeable deficits post concussive injury.  Guskiewicz has shown that among 

collegiate and high school football players this domain of testing post concussion is sensitive 

to trauma in to the brain.  Decrease in neuromotor ability has been shown in the initial three 

days following a concussion.  A study looking at subjects who had suffered a mild head 

injury or whiplash injury and placed through a balance test showed significant anterior-

posterior movements when compared to healthy individuals. (Rubin, Woolley et al. 1995)  

Another study conducted focusing on young children (mean age of 11.7 years) found 

posturography was significantly disturbed in those children tested immediately after mild 

head trauma when compared with control subjects. (Lahat, Barr et al. 1996)  

   Measuring Postural Stability 

    Multiple methods to assess postural stability have been used throughout various research 

studies.  A measure recorded from a force plate in which the subject is standing on is one 

method commonly used.  Balance Error Scoring System (BESS) is a convenient and cost 

effective method to assessing postural stability and can be utilized immediately after insult in 

a game, practice situation.  The BESS is a clinical measure of postural stability involving six 

variations of the Rhomberg.  Three are performed on a stable surface while the other three 

are on an unstable surface.  It is calculated by adding a point for each error during each of the 

six 20-second tests.  Types of errors include lifting hands off the iliac crests, opening of eyes, 
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taking a step, stumble, or fall moving greater than 30 degrees of hip abduction, lifting of the 

forefoot or heel of the ground, and/or remaining out of the test position for greater than 5 

seconds.  Various professionals regard the ‘gold standard’ to measuring postural stability to 

be the Sensory Organization Tester.  This instrument incorporates three sensory systems of 

visual, vestibular and somatosensory into the various testing conditions and is thus able to 

detect differences in the subsystems of balance. (Peterson, Ferrara et al. 2003)  The protocol 

eliminates and creates confusion among the various systems.  In consists of a force plate that 

measures the change in the subject’s center of gravity.  Six different conditions are 

administered.  The first, the force plate and the surrounding walls remain stationary; the 

second condition the subject stands with his or her eyes closed while the force plate and 

surrounding walls remain stationary.  The third condition requires the athlete to have his or 

her eyes open and the force plate remains still while the surrounding walls shift away from 

the subject.  The fourth condition the athlete has eyes open and the surrounding walls remain 

stationary but this time the force plate tilts in the anterior and posterior direction.  The fifth 

condition requires the athlete to have the eyes closed while just the force plate tilts in the 

anterior and posterior direction.  The last condition has the athlete with both eyes open while 

the force plate and surrounding walls move simultaneously. (Guskiewicz, Ross et al. 2001)  

The scores that are reported include: equilibrium score measures center of gravity sway 

under each condition; sensory analysis ratios identify impairments of the individual sensory 

systems; strategy analysis measures the amount of movement that occurs at the ankles and 

hips while the person balances; and center of gravity measure that determines how much 

deviation from the original COG that the subject has moved throughout the trial. 
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    There are newer testing modules that are being studied which incorporate both a cognitive 

and motor task.  When determining if an athlete is ready to return to play, often he or she will 

be out through various testing that does not closely relate to his or her sport.  The dual task 

testing is thought to better replicate the functions of the brain during activity.  It was found 

that those subjects who participated in the study had better postural control when performing 

the dual task.   

Graded Symptoms Checklist 

    The graded symptom checklist cannot be the sole decision making piece of information to 

determine whether a player has a concussion or not.  Players often do not report symptoms 

for a multitude of reasons. (McCrea 2001; Collins and Hawn 2002)  A study conducted 

among Canadian football players found that slightly less than half of the players had suffered 

the symptoms of a concussion during the season but only 18.8% reported those symptoms to 

their athletic trainer because they realized that they had a concussion.  Nearly 70% of 

concussed players experienced more than one concussion per season. (Delaney, Lacroix et al. 

2000; Echemendia and Julian 2001)  It has been reported in the literature many return-to-play 

decisions have been based upon the athlete’s self-reported symptoms which typically 

resolves in three days or less when neurocognitive deficits are present at least seven days 

after injury. (Field, Collins et al. 2003)  The validity of the GSC has been studied and 

evidence is there to support it.  The evidence shows strong validity of the test and addressed 

earlier limitations about sample size. (Piland, Motl et al. 2006) 
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 Return to Play 

    The various grading scales, graded symptom checklist, neuropsychological, postural 

assessment, as mentioned above are all components of the return to play criteria.  

Standardized assessment evaluation methods are more commonly used by ATC’s versus 

routine clinical examinations. (McCrea 2001)  Determining the severity of the athlete is vital 

when managing the athlete and predicting how long the athlete will be out of activity 

however, ultimately the various components of the initial evaluation will be compared to the 

new results to determine if the athlete is ready to get back. 

Prevalence in Football 

    Mild traumatic brain injuries are inherent in the sport of football.  A full contact, high 

intensity sport, football puts the athlete at a higher risk of sustaining a MTBI.  This is due to 

the sheer number of exposures that the athlete receives during any given practice or game 

situation.  The contact in football far outweighs that experienced in sports such as field 

hockey, basketball, soccer, volleyball, tennis, gymnastics and the many other sports people 

participate in.  Mild traumatic brain injury has become an increasing entity in the football 

arena.  Football has the greatest amount of participants in the U.S., thus MTBI are more 

common in high school and collegiate football.  The NATA reported football with the 

highest incidence of MTBI among high school sports over a three year period. (Powell 2001)  

In this study, football accounted for 63% of MTBI among ten sports tracked. (Powell and 

Barber-Foss 1999)  Acceleration-deceleration forces are common with tackling and blocking. 

(Bailes and Hudson 2001)  An estimated 1.5 million compete in football alone which 

increases the amount of exposures each person can have. (Gerberich, Priest et al. 1983)  

Another study published by the NATA reported a head injury rate of 0.59 per 1000 athletic 

 35



exposures of which, football players represents two thirds of this statistic. (Gebke 2002) 

Concussions are just as prevalent at the professional level as 100-120 concussions are 

documented each year. 

    Schneider studied and analyzed the incidence of MTBI in football and as a result changes 

were made in protective head gear, resulting in the switch to football helmets are made with a 

hard protective outer shell versus the old leather helmets used in the beginnings of the sport. 

(Bailes and Cantu 2001)  The National Operating Committee for Safety in Athletic 

Equipment (NOCSAE) set a standard that all football helmets must meet.  Certification of 

football helmets began in 1975 must be recertified each year and is backed by the NCAA and 

the National Federation of State High School Associations. (Bailes and Cantu 2001)  Aside 

from equipment changes in the sport of football, changes in the rules of the game have come 

as a result of research conducted in regards to MTBI.  1976 saw an implementation of new 

rules to the game. 

    A study was conducted comparing impacts to the head in football players, hockey players 

and soccer players in which each was fitted with accelerometers in the helmets each adorned.  

An offensive and defensive were analyzed in this particular study.  The offensive lineman 

experienced the most extreme head acceleration during a blocking drill, while the defensive 

lineman experienced the peak during tackling a running back.  During the game were data 

was collected, there was an average of 40.5 impacts per player per hour with an average peak 

acceleration of 29.2 ± 1.1 g.  This study mentioned a theoretical impact threshold of 200g. 

(Naunheim, Standeven et al. 2000) 
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    National Football League 

    An effort made by the National Football League to learn more about MTBI put 

together a committee on this topic.  This committee lead by Elliot J Pellman has 

conducted a large scale study over a six year period to analyze multiple aspects of 

MTBI.  Eleven manuscripts have been published thus far, each focusing on a different 

component of MTBI on professional football players.  In a number of the studies 

published the methodology consisted of analyzing network tapes of NFL games and 

replication of those studies in a laboratory setting.  

    It was found that a majority of the impacts resulting in concussions occur from the 

facemask.  More than half of the impacts were from another player’s helmet and it was 

generally the player being struck that sustained the MTBI.  Quarterbacks were found to have 

the greatest risk of MTBI with wide receivers and the offensive and defensive were least 

susceptible to suffer from MTBI.  Severity Index, Head Injury Criterion, peak translational 

acceleration and head velocity change all impact the severity of the MTBI. (Pellman, Viano 

et al. 2003)  The epidemiological aspect of the study found that out of the 787 reported cases 

of MTBI, the offensive unit experienced the most MTBI, more MTBI occurred in passing 

plays followed by running plays and the mechanism was tackling or being tackled versus 

blocking or being blocked.  In addition the top three symptoms reported most frequently 

were headache, dizziness, and blurred vision. (Pellman, Powell et al. 2004)  Multiple MTBI’s 

resulted in higher somatic complaints in comparison to the first MTBI.  More often players 

were withheld from competition for longer than 7 days if previous history of MTBI was 

present. (Pellman, Viano et al. 2004)  Newman found that those players which sustained 

concussions had a greater maximum resultant linear and angular acceleration than those who 
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did not sustain a MTBI. (Newman, Beusenberg et al. 2005)  The study replicated 31 impacts 

and using Hybrids fitted with helmets equipped with nine linear accelerometer.  Various 

measures of acceleration, linear and angular, were recorded from the reconstructions. 

(Newman, Beusenberg et al. 2005)  Information and technology used in studies such as these 

have aided in the development a system being studied in select collegiate football programs 

in the nation. 

Head Impact Telemetry System 

    The Head Impact Telemetry (HIT) System measures linear acceleration of the head.  The 

system utilizes six dime-sized accelerometers placed in the helmet.  The accelerometers are 

powered by a battery pack which also is housed on the accelerometer unit.  The magnitude, 

duration, date and time, and impact location, are displayed on a laptop.  The information is 

transmitted via radio signals from the accelerometer units to the laptop.  This allows the 

researcher to gather real-time data which, it is theorized, could be helpful in identifying 

someone at risk for being diagnosed with a MTBI.  In 2003, a study used the HIT System to 

record data from accelerometer units in 38 football helmets for ten games and thirty-five 

practices.  Over 3,300 hits were recorded over the course of the season with an average of 

about thirty to fifty significant impacts.  The average peak head acceleration was 32g ± 25 g, 

with an injury threshold of 95 g.  It is important to note that this injury threshold was based 

on data from one concussion, measured at 81 g, and should be interpreted with extreme 

caution.  Impact locations were found to be dependent on the position of the player as well as 

the technique he used to play the position.  Wide receivers received more frontal impacts 

compared to linebackers that had more variability in the location of head impacts.  (Duma, 

Manoogian et al. 2005)  It is thought that the data collected and analyzed from the study 
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being conducted may also help medical professional in diagnosing MTBIs as well as 

determining a standard RTP guideline.  A number of studies are incorporating this helmet 

accelerometer technology, allowing clinicians and researchers to observe head impacts 

sustained by football players in real-time.  
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CHAPTER III 

METHODOLOGY 

 

Participants 

    Forty- three Division I male collegiate football players (20.74 ± 1.83 years old; 242.64 ± 

41.02 kg, 73.41± 2.50 cm) (Table 1) were initially enrolled in this study.  Subsequently, 24 

players were used in the comparison of scores between impacts greater than 100 g and 

baseline, while 38 completed testing in the less than 70 g and baseline.  Our sample included 

a variety of playing positions such as: defensive linemen (8 DL), offensive linemen (10 OL), 

offensive backs (12 OB) and defensive backs (13 DB).  Subjects had no serious medical 

conditions or any serious injury to the lower extremity within six weeks of testing that 

affected their ability to perform balance tasks.  Participants were required to fill out a medical 

health history questionnaire.  Exclusion criteria included previous head injury within the last 

six months, or having a current vestibular, visual, or balance disorder.  Participants 

underwent baseline testing prior to the start of the season.  The participants were given an 

information packet with information about the study and what it entailed.  All subjects signed 

the appropriate informed consent form that was approved by the institution of review board 

at The University of North Carolina (Appendix A). 



Equipment 

Head Impact Telemetry System  

    In order to identify players who had sustained a given impact magnitude, we used the 

Head Impact Telemetry (HIT) System (Riddell Corp.; Elyria, OH). The HIT System obtained 

data from units comprised of six spring-mounted single-axis accelerometers (Figure 1) 

embedded into selected Riddell VSR-4 and Revolution football helmets (Riddell Corp.; 

Elyria, OH).  The signal transducer was linked to a laptop computer in the Sideline Response 

System (Figure 2) via radiowave transmission (903-927 MHz).  The information was stored 

on an onboard memory system (up to 100 impacts) or was immediately transferred to the 

laptop computer system (8 bit, 10000 Hz/channel).  Twelve milliseconds of data were stored 

prior to the impact as well as 28 ms after the impact.  It had the ability to simultaneously 

monitor a total of 64 players.  The downloaded impacts were then processed through a 

validation algorithm; variables such as peak head linear acceleration, impact location, Gadd 

Severity Index (GSI), Head Injury Criteria (HIC), sagittal and lateral peak rotational 

acceleration, were computed (Figure 3).  The HIT System was previously validated in 

laboratory testing with Hybrid dummies equipped with football helmets. (Padgaonkar AJ 

1975; DiMasi 1995; Duma, Manoogian et al. 2005)  

Balance Performance 

    The Sensory Organization Test (SOT; NeuroCom International Inc.; Clackamas, OR) was 

used to assess participants’ balance performance during preseason baseline screening, and in 

both follow-up test sessions.  The SOT is able to assess balance performance by disrupting 

input from the visual, vestibular, and somatosensory systems.  The participants stood with 
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feet shoulder width apart on the force platform with arms comfortably at both sides (Figure 

4).  Participants were asked to complete three 20-second trials of six different sensory 

conditions in random order.  The six testing conditions (Figure 5) were as follows:  normal 

vision and normal support surface, eyes closed with normal support surface, sway-referenced 

visual input with normal support surface, normal vision and sway referenced support surface, 

eyes closed and sway referenced visual and support surface.  The outcome measures 

represented how much that particular component (visual, vestibular, somatosensory is 

contributing to the overall composite score.     

Neurocognitive Function 

    Participants were tested using the Automated Neuropsychological Assessment Metrics 

(ANAM) battery to assess neurocognitive performance.  This computerized test battery 

focused on seven main sub-tests (Simple Reaction time 1, simple reaction 2, math 

processing, match to sample, sleep scale, procedural reaction time, code sub 9, memory 

search 6) (Figure 6).  Although the participant undergoes testing of the various subtests of 

ANAM in the same order, the stimuli presented each time varied to limit practice effects.   

Symptomatology 

    The Graded Symptom Checklist (GSC) is a self-reported symptom scale that assesses the 

presence of 18 concussion-related symptoms and severity using a seven-point Likert scale 

ranging from asymptomatic (0), to mild (1), to severe (6) (Figure 7).  During our baseline 

evaluation, participants were instructed to rate the severity of any symptom they reported 

feeling at least three times per week over the course of the summer preceding the baseline 
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test session.  During follow-up test sessions, the participants were asked to rate the severity 

of their symptoms based on what they felt at that time.      

Procedures 

    This was a double-blind, randomized study.  The primary investigator was blinded from 

the test condition and the test results until the completion of the study.  The participants were 

blinded from which condition each was being tested.  The primary investigator performed the 

testing during the preseason baseline screening and during the follow-up test sessions.  One 

of the co-investigators determined which players were to be tested on that particular day to 

ensure the primary investigator and players were blinded.  Once the season was complete, 

clinicians trained in administration and evaluation of the tests interpreted the results.  

Random test administration order occurred during this study to remove possible effects of 

testing order (Table 2).  

Preseason Baseline Evaluation 

    Each player who participated in the study signed an IRB consent form and a sheet 

explaining the purpose and procedures of the study.  A medical health history questionnaire 

was given to each subject and each then got baseline tested, so that baseline measurements 

could be obtained, for balance and neuropsychological testing.  Testing was conducted in the 

Sports Medicine Research Lab at The University of North Carolina prior to the start of the 

2005 collegiate football season.  Subjects were seated in a quiet room in order to perform the 

computerized neuropsychological testing using the ANAM.  This testing procedure, 

consisting of seven modules, took about 20 minutes to complete.  Balance performance was 

measured using the Sensory Organization Test (SOT).  Directions were verbally recited to 
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the athlete by the examiner prior to the start of test administration.  The participant was asked 

to stand as motionless as possible in normal stance; feet shoulder width apart, for each trial.  

Testing lasted approximately 15 minutes.  A Graded Symptom Checklist was also completed 

by the athlete in whom he reported and rated any symptom he is experienced at the time of 

test administration.   

Post Impact Evaluation 

    Post impact sessions began two weeks prior to the start of preseason camp and continued 

until the completion of the fall season and resumed in the spring season to reach the desired 

number of subjects (Figure 8).  Athletes were targeted by the co-investigator (JPM) based on 

the impacts they had sustained during the practice or game.  The co-investigator targeted 

athletes that met one of the following criteria: they had sustained at least one impact greater 

than 100 g, or they had sustained no impacts greater than 70 g.  Testing session order was 

randomized among the population.  Testing (ANAM, SOT, and GSC) were carried out within 

24 hours of the end of the respective session.  The athletes were instructed to place their GSC 

into an envelope in order to blind the investigators from this information.  Each test session 

lasted approximately 45 minutes to complete and once again, the order in which the 

participant completed the various tests was randomized.  Once an athlete had been tested 

under one condition, they were not targeted for the other condition for a period no less than 

two weeks.   

Data Reduction and Analysis 

    Outcome measures obtained from the SOT included an overall balance composite, as well 

as ratio scores related to somatosensory, visual, and vestibular performance.  Each outcome 
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measure was taken from the computer printout.  The ANAM yielded throughput scores for 

each of the individual test modules which were taken from the database on the computer.  

The GSC was analyzed for both the total symptom score and the number of symptoms 

reported.  The total symptom score was obtained by summing all the individual symptom 

scores in the GSC and the number of symptoms was obtained as well.  

    In order to answer our first research question, we performed a within-subject repeated 

measures analysis of covariance (ANCOVA) on each outcome measure while covarying for 

the number of impacts greater than 70 g the participant had sustained since the beginning of 

the season and within the seven days leading up to the session in which they sustained an 

impact greater than 100 g.  Other repeated measures ANCOVA, while controlling for the 

same two covariates, were performed on our outcome measures in order to assess the second 

research question.  An alpha level of .05 was set prior to analysis and data was analyzed 

using SPSS for Windows Version 13.0 (SPPS, Inc.; Chicago, IL). 
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CHAPTER IV 

RESULTS 

 

    A total of 43 Division I collegiate football players completed the baseline and at least one 

follow-up test session: 24 participants completed the high testing condition and 36 participants 

completed the low testing condition. Twenty-two participants were able to complete both testing 

conditions.  The results we observed for measures of balance performance, neurocognitive 

function, and symptomatology are detailed below.  

Balance Performance 

    Results from our balance performance assessment are provided in Table 4.  In assessing our 

first research question, we did not find any statistically significant differences in balance 

performance scores following an impact of 100 g.  This was true for all our outcome measures, 

including an overall composite score (F(1, 24)=.015, p=.905)(Figure 10), somatosensory (F(1, 

24)=.065 p=.801)(Figure 7), vestibular (F(1,24)=.126, p=.727)(Figure 8), and visual (F(1,24) = .101, 

p=.754)(Figure 9) ratios.  For our second research question, a statistically significant difference 

was observed for the vestibular ratio (F(1,36)=.8.677, p=.006)(Figure 11) and composite (F(1, 

36)=2.482, p=.124)(Figure 12).  There were no observable differences in the somatosensory 

(F(1,36)=1 p=.325)(Figure 13), and visual (F(1, 36) = 4.052, p=.052)(Figure 14) ratios.  



Neurocognitive Performance 

    Following an impact greater than 100 g, we observed a statistically significant difference from 

baseline in the MTH module of ANAM (F1, 24=17.04, p<.001)(Figure 15).  In response to our 

first research question, there were no other observable differences in the ANAM modules: SRT1 

(F(1, 24)=.492, p=.491)(Figure 16), SRT2 (F(1, 24)=.009, p=.927)(Figure 17), MSP (F1, 24=.498, 

p=.488)(Figure 18), PRT (F(1, 24)=1.43 p=.245)(Figure 19), CS9 (F(1, 24)=.027, p=.87)(Figure 20), 

and MS6 (F(1, 24)=.087, p=.771)(Figure 21).  Following a session where a head impact no greater 

than 70 g was sustained, statistically significant differences in the MTH (F1,36=10.584, 

p=.003)(Figure 22), SRT1 (F(1, 36)=6.012, p=.02)(Figure 23), CS9 (F(1, 36)=4.836, p=.035)(Figure 

24), and MS6 (F(1, 36)=.5.402, p=.026)(Figure 25) modules of ANAM were observed.  No 

observable differences, in response to our second research question, were observed for the SRT2 

(F(1, 36)=.943, p=.338)(Figure 26), MSP (F(1, 36)=2.129, p=.154)(Figure 27), and PRT (F(1, 36)=.758 

p=.39)(Figure 28) modules of ANAM.  Finally, there were no differences observed with the low 

condition comparison SS (F(1, 36)= 3.77, p=.061), a subjective measure of cognitive fatigue 

assessed at the end of the ANAM testing protocol. 

Symptomatology 

    Two subcomponents of the graded symptom checklist were analyzed, the total number of 

symptoms reported (F (1, 24) =3.540, p=.075)(Figure 29), (F (1, 36) =1.4, p=.245)(Figure 30) and the 

total severity of symptoms reported (F (1, 24) =.209, p=.652)(Figure 31), (F (1, 36) =.001, 

p=.977)(Figure 32).  The data analysis revealed the scores were relatively similar among the 

testing conditions and there were no statistically significant differences present.   
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    Absolute Means versus Adjusted Means  

    Absolute means were compared with the adjusted means used for the ANCOVA’s and there 

was little difference between the two values for each outcome measure.  Both means were 

examined to detect if there was more clinical significance with the differences found and whether 

the absolute means illustrated the statistically significant differences between the various impact 

condition and testing parameters better than the adjusted means but found the numbers were 

exceedingly analogous.   
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CHAPTER V 

 
DISCUSSION 

 

    The purpose of this study was to examine the effects of impact magnitude on the immediate 

performance of balance, neuropsychological functioning and symptomatology despite no clinical 

diagnosis of a MTBI.  This study was the first to collect real time data on collegiate football 

players and compare clinical outcome measures between high and low impact conditions.  

Finding the exact mechanism of MTBI is needed in order to address prophylactic measures 

relevant to the medical profession.   A number of studies have investigated various 

biomechanical aspects of concussions in football; however, the majority of these studies have 

been in a laboratory setting using hybrid dummies.  Some authors (Pellman, Viano et al. 2003; 

Zhang, Yang et al. 2004) have proposed an injury threshold, but these thresholds have not been 

confirmed through controlled field studies.   The first study to investigate real-time impacts in 

collegiate football players was conducted using fewer subjects than used for this study.  Duma et 

al. reported an average linear acceleration of 32 ± 25 g that did not result in concussion in 38 

players whereas Pellman (Pellman, Viano et al. 2003) reported 60 ± 24 g in non-injured football 

players. (Duma, Manoogian et al. 2005)  Mihalik et al (Mihalik 2005) documented from data 

collected from the fall 2004 football season using the HIT System, players on average received 

impacts to the head around 19.46 ± 2.29 g.  He reported a maximum average impact of 199.98 g 

with the highest impacts typically being recorded during practices. (Mihalik 2005)  This 
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information combined with the findings from this study perpetuates the need for a better 

understanding of impact biomechanics during participation in football.  Various magnitudes have 

been reported in the literature to cause concussive injuries.  Pellman et al has reported that a 

suspected injury threshold of 75-90g’s to the head.  Duma reported 25 impacts greater than 98 g, 

none of whom had a concussion, further questioning the speculated threshold however, the issue 

of underreporting was mentioned as a possible explanation of those findings.  Pellman et al. have 

investigated the biomechanics of improved helmet structures, biomechanics of the striking player 

and the results of concussion. These studies have been conducted in the laboratory and have 

limited field relevance. (Pellman 2003; Pellman, Viano et al. 2003; Pellman, Viano et al. 2003; 

Pellman, Lovell et al. 2004; Pellman, Powell et al. 2004; Pellman, Viano et al. 2004; Pellman, 

Viano et al. 2004; Newman, Beusenberg et al. 2005; Pellman, Viano et al. 2005)  

    This study was conducted in an attempt to determine the efficacy of using helmet telemetry to 

identify concussion and/or concussion-like signs and symptoms in the absence of subjective 

information provided by the athlete.  The results of this study revealed no major differences 

between the two impact magnitude conditions when compared to baseline measures, thus 

refuting our first research hypotheses.  In addition, this study also raises questions about the 

validity and clinical significance of those studies conducted by Pellman, Zhang, and Newman.  

Questions about a much higher injury threshold are raised, as are the role that other factors in an 

impact to the head might play to causing a MTBI, are raised. 

    A study conducted at Wayne State (Zhang, Yang et al. 2004) investigated an injury threshold 

and found that rotational and translational acceleration were the most important factors in the 

severity of the presence of a MTBI. (Zhang, Yang et al. 2004)  The study did not use real life 

subjects, rather brain models created with synthetic materials replicated to be just like a cadaver 
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brain and skull, was able to look at the effects impacts had to the brain itself, not just the skull.  

The basis of the threshold is gathered from a study conducted in the laboratory, using game film 

to recreate the impacts and on models that are not exact to the players head in the video.  The 

threshold was examined from a physiological perspective versus this study done which examined 

real field situations and effects on test measures of balance and neuropsychological functioning.  

It may be that the theoretical threshold speculated by Zhang et al. has effects and causes changes 

in the structure of the brain microscopically but does not effect the gross motor skills tested in 

the various MTBI batteries.  Perhaps the single measure of linear acceleration was not enough of 

a predictor, or a different predictor than the rotational and translational acceleration mentioned in 

the Wayne State study.  The linear acceleration associated with the combination of the rotational 

and translational may be significantly higher as proven by this study.  The suspected threshold of 

98 g should be reevaluated and if the injury threshold is in fact much higher, than there would be 

no decline in the scores we gathered for balance, neuropsychological and symptomatology at the 

current level.   

    SOT Measures 

    Balance was not largely affected by the magnitude of the impact to the head.  The low impact 

condition actually resulted in an increase in balance performance (composite and vestibular) 

when compared to baseline scores.  The visual component of the SOT in the low impact 

condition was approaching significance, thus marking an increase in balance performance.  

However when looking at the outcome measures, the effect sizes are so small that the difference 

is negligible from a clinical perspective.  This study investigated players that did not self-report 

symptoms to the certified athletic trainer and were not clinically diagnosed with a concussion.  

The majority of published studies have reported that balance performance is affected in athletes 
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diagnosed with concussion. (Levinson and Reeves 1997; Guskiewicz 2003)  The increase in 

balance scores in the pool of participants that took part in the study could be for a number of 

reasons.  These participants were not clinically diagnosed with a MTBI; therefore changes 

should not be expected to be seen. The sheer magnitude of the impact the players took was not of 

a value that it affected the various components of the vestibular and somatosensory system.  The 

studies conducted by Pellman, Zhang and Newman did not look at test measures as a result of the 

impact rather, took those that were diagnosed with a MTBI and recreated the impact.  The 

authors conducted the study as impact magnitude being the sole predictor of the concussion, 

rather than taking other aspects of concussion into account.   

    If the low impact testing condition resulted in significant improvements in balance 

performance, as a clinician, one should question the lack of improvement in the high impact 

condition.  Since random testing order occurred, it negates the effects of learning.  If it is natural 

to have an improvement on balance performance as the duration of training continues, then a 

lack of one with the high impact condition might indicate a clinical significance to the medical 

professional.   A study conducted by Mrazik et al. looked at the effects of severity of injury on 

various parametric measures and found some variation in balance testing.  There were no 

significant trends seen in the various sub-components of the SOT measures.  All tests were taken 

at least 24hrs. post injury whereas our study performed the testing within the first 24 hrs. of the 

session in which he sustained the impact. This same study found that the player who sustained a 

grade I concussion had virtually no deviation from baseline measures, thus confirming that the 

magnitude of the impact may not be the sole determinant of a MTBI.   This information suggests 

that balance performance cannot be the only factor the clinician uses to determine return to play.   

 52



    Neuropsychological Measures 

    Significant differences were observed between baseline and the low testing condition on the 

ANAM battery.  The most obvious decline in performance was observed for both the Simple 

reaction time-1 and Code substitution subtests, suggesting that reaction time and delayed 

memory are negatively affected following the day in which the players experienced no impacts 

greater than 70 g.  Improvements in performance observed in Procedural reaction time, and 

Memory search-6 are difficult to explain.  The inconsistencies among the change in scores could 

have been a result of any number of unforeseen and uncontrollable variables.  For example, 

similar to the SOT outcome measures, the effect size is small leading us to find little clinical 

significance.  The study conducted by Mrazik et al. as mentioned above found that the individual 

who was diagnosed with a grade I concussion actually had an improvement from baseline scores 

on the first post-injury evaluation, and the overall test results showed virtually no impact of the 

MTBI on his performance in the various tests. (Mrazik, Ferrara et al. 2000)  In the other two 

cases of MTBI, even the more severe cases, the athlete surpassed the baseline measures on that 

particular individual.  Peterson et al. also concluded that group mean comparisons on the various 

tests to determine if the scores are at the baseline values, may not be the best indicator of return 

to play decisions. (Peterson, Ferrara et al. 2003)  

    In addition, it has been reported in the literature that learning effects are found with repeated 

use of the ANAM battery that cause perhaps a false sense of improvement in scores on the 

ANAM.(Levinson and Reeves 1997)  The study conducted by Levinson and Reeves had the 

subjects retaking the test every two to three months as opposed to the typical serial testing that 

occurs in sports medicine.  Practice effects are a valid limitation of neuropsychological tests.  

The amount of practice effect that has been incurred depends on the nature of the test, the time 
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period of testing, and how many times the subject is tested.(Echemendia and Julian 2001; 

Grindel, Lovell et al. 2001)  Practice effects can alter the course of action that the athlete should 

be receiving.  An athlete has the potential to improve the scores from the baseline battery due to 

these practice effects.  Most research has also shown that these practice effects are null and void 

after a period of two weeks but in some cases may last upwards of seven weeks.  This study 

mandated a two week ‘buffer period’ to allow at least two weeks in between test session one and 

test session two.  This two week period was an effort to eliminate the practice effects 

experienced with ANAM.  In addition to the learning effect between each session, it was later 

found out that the incoming freshmen were given a similar battery to test for learning disabilities 

by the academic center.  This administration of a test of this nature further perpetuates the 

learning effect.   

    Another confounding variable to consider when interpreting improvements on the ANAM 

scores should be the effects of attention deficit disorder (ADD), a learning disorder which was 

prevalent in a significant number of our subjects (DO WE KNOW A NUMBER or % TO ADD 

HERE?).  The variability of this learning disorder and how the outcome measures of ANAM are 

altered has historically been avoided.  The effects of this disorder may help explain why there 

was in fact an improvement.  Often athletes are medicated for ADD and typically only take their 

medicine to focus on academics.  During the summer, a majority of athletes do not take their 

medication since most are taking a reduced course load if any.  Baseline measures are taken 

during the summer, generally during that time period that the athlete is not taking the prescribed 

medication.  Thus, when the athlete retakes the test during the season, the athlete is medicated 

and as a result, is able to better focus.  However, this gray area is one that warrants further study 

so that we might better understand the full repercussions of ADD on neuropsychological tests.  
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    Other test results have been shown to discern the minute deficits in neurocognitive functioning 

that occurs with concussion. (Lovell 2002)  Different types and severity of concussions have 

been documented to have different results in symptom reporting and neuropsychological testing.  

Echemendia et al. discussed the differences in concussions and how some do not disturb those 

parts of the brain that affect the results of neuropsychological tests. (Echemendia, Putukian et al. 

2001)  Instead, the athlete may demonstrate deficits elsewhere or be extremely symptomatic.  

They also state that neuropsychological testing is not as sensitive as clinicians typically need it to 

be, although still represents the best tool athletic trainers have to assess deficits following 

concussion. (Echemendia and Julian 2001)   

    GSC measures 

    The main purpose of this study was to see if there were deficits in balance and 

neuropsychological function in the absence of self reported symptoms.  Underreporting is a 

global problem when dealing with MTBI and looking at other ways to identify people who have 

suffered from an MTBI without their self report was of great interest to the primary investigator.  

Our analyses showed no significant difference between the two testing conditions and baseline 

with symptom reporting or severity of symptoms reported.  These players had received a 

significantly higher magnitude impact to the head and even within 24 hours they still were 

symptom free relative to pre-season baseline measures.  It has been long thought that a hard hit 

to the head would result in a concussion however; this study suggests that the magnitude is not 

the only factor in predicting a concussion.  As clinicians, we often rely on the athlete to be honest 

with us when dealing with a concussion.  Our results support the notion that if an athlete is 

symptomatic, he or she will be unable to do the activity without having those symptoms 

interfere.   
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    It has been stated in literature that self-reported symptoms should never be the sole 

determinant of a concussion.   As stated earlier, football players compete in a demanding and 

intensely physical environment where many players have little knowledge about the 

physiological reaction as a result of impacts to the head, the concussive cascade, and their 

disposition later in life as a result of repeated impacts to the head. (Kaut, DePompei et al. 2003)  

Underreporting is a large and prominent issue in dealing with concussions. (Lovell and Collins 

1998; Echemendia and Julian 2001; Collins and Hawn 2002; Field, Collins et al. 2003; Kaut, 

DePompei et al. 2003)  The nature and environment of the sport breeds the growing problem of 

underreporting.   

    Football players have become accustom to symptoms that are commonly associated with 

concussions.  Athletes often learn to expect these symptoms from the nature of their sport and do 

not think they are abnormal.  Many of the athletes had difficulty distinguishing what symptoms 

were appropriate to indicate because they did not feel it was due to the impact sustained, rather 

the norm of how they should feel at the end of a hard practice.  One study documented that half 

of the participants did not understand the correlation of symptoms to a head injury. (Kaut, 

DePompei et al. 2003)  A study conducted by Macciocchi found the most common symptoms 

reported in concussed individuals were headache, dizziness, and memory problems. (Macciocchi, 

Barth et al. 1996)  A study conducted by Kaut et al. found that 30% of athletes reported receiving 

a direct blow to the head that resulted in dizziness, proving to be the highest frequency of 

symptoms reported by football players (35%).  A study conducted by Erlanger et al reported 12 

% of subject pool would not have been identified as having a concussion if based solely on self-

reported symptoms.  He sampled a group of concussed athletes that underwent CRI evaluation 
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and the scores revealed deficits in cognitive functioning among all the subjects. (Erlanger, Saliba 

et al. 2001)  

    Symptoms have been shown to resolve before balance and neurocognitive functioning return 

to normal.(Collins, Grindel et al. 1999; Echemendia, Putukian et al. 2001; Field, Collins et al. 

2003) Another study found that high school and collegiate football players reported fewer 

symptoms five to seven days post concussive injury than they reported on their baseline 

measures. (Field, Collins et al. 2003)   

    The ability of the program to determine the various components of the impact such as time, 

location, duration, magnitude and history of hits to the head is important because in the future 

that particular information may be a key criteria needed to identify those players that may have 

suffered a concussion.  Football historically has been known to view loss of play due to a 

concussion as a sign of weakness.  With this mentality, many inherent risks are present in this 

sport and many injuries are treated each year.       

    Future Direction 

    With the vast technology that has and continues to be created, much more field data will be 

required before we fully understand the best utilization of these methods and results.  With these 

data, researchers can learn more about the specific biomechanics of impacts in football to the 

head.  Analysis of impact location, number of impacts, previous history, and position may play a 

significant part in determining the threshold magnitude of a concussion.  With more information 

about impacts to the head, strides will hopefully be made to prevent concussion & to make more 

sound return to play decisions following concussion.  Research must determine a way to improve 

early recognition of those players susceptible to concussive injuries.  Once the recognition and 

the preventative component have been determined then research about return to play can be more 
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easily tackled.  Improvements in helmet design and tackling techniques need to be addressed 

once the research provides the data to support the efforts.  Education and getting the players 

involved is vital to further research in this area.  Throughout the course of this study players had 

little interest or desire to take part in a study that would benefit them based on their participation.  

Football players underreport concussions because of the seriousness with which the medical staff 

appoints to them, however, the players make no effort to learn how to avoid getting a concussion 

in the first place.  The more research that is conducted in the field on actual football players in 

addition to those tests conducted in the laboratory, the more athletic trainers will be able to 

effectively educate their athletes.   

    Limitations 

    Due to time conflicts, subject compliance and injuries suffered throughout the season, all 43 

players that were baselined were unable to complete both test conditions.  Throughout the data 

analysis many measures were approaching significance but perhaps due to the small sample size, 

that significance was not reached.   

    The 16-24 hour window in which the players were tested was possibly not early enough to 

identify deficits that would have been present immediately after the impact. However, as 

previously stated, underreporting is extremely frequent in football thus; a majority of players 

would not have reported their symptoms to the ATC until the next day.  Due to the desire to 

replicate a realistic situation in the field, the time window in which the testing was done in was 

clinically practical.  At the University of North Carolina- Chapel Hill, the normal protocol for 

testing concussed athletes is to wait until they are at least asymptomatic.  The earliest that this 

would typically occur is 16-24 hours after the impact.   
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    Much is unknown about many components of concussions and the concept of an injury 

threshold existing is speculation.  The results from this study raise more questions as to what 

other important components must be analyzed to see how the “pieces of the puzzle” in the 

mechanism of injury for a concussion fits together.   

    Clinical Significance 

    This study has resulted in new and important information regarding the most predictive factor 

of an impact that results in a MTBI.  This was the first field study to really examine the 

theoretical concussive injury threshold in actual live subjects in real-time situations on various 

concussion testing protocol.  Surprisingly, there were little to no acute deficits seen after an 

impact greater than a 100 g to the head and improvements seen in testing parameters with 

impacts below 70 g.  The results on the neuropsychological test battery support the statement that 

there need not be a deficit in scores from baseline to indicate a MTBI, rather an absence or 

reduction of learning effects can be just as conclusive that the subject has a concussion.  The 

finding on the symptomatology emphasizes the importance of the athletes’ self-reported 

symptoms.  If the athlete receives a high magnitude impact and does not have any symptoms 

associated with a concussion, then we are less likely to assume that he or she has in fact suffered 

a concussion.  The clinician should make an effort to inquire about symptoms with an athlete 

who has taken a ‘hard hit’ not just immediately, but within 24 hours of the impact.  The findings 

with the balance scores support evidence in the literature that the vestibular and visual 

components of balance are the most sensitive to trauma and will be the first to show changes in 

score.  As clinicians, if a MTBI is suspected and sophisticated technology is unavailable, then 

giving the athlete a task that challenges the visual and vestibular components of balance should 

aid in the assessment of MTBI.   
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    Anecdotally, there have been several cases in which players have been diagnosed with 

concussion after a moderate magnitude impact (approximately 60-70 g).  Three players in 

particular have received impacts below the 98 g threshold.  These particular cases illustrate that 

the theoretical concussive injury threshold is not the sole predictor of injury as previously 

speculated and many other factors may play a role in the effect of the magnitude impact on 

causing a concussive injury.  

    Contrary, we have had numerous players receive a plethora of impacts with a magnitude 

greater than 100 g that have had no clinical symptoms of a MTBI.  This study highlighted the 

clinical evidence that there were no statistically significant decreases in the various outcome 

measures that is used to help solidify the diagnosis of a MTBI.  Bleiberg concurs with Collins 

that cognitive deficits as a result of a MTBI not always need to be in the form of a decrease in 

scores when compared to baseline scores but rather an absence or reduction of practice effects in 

the various outcome measures. (Bleiberg, Cernich et al. 2004)  This study does support the 

notion that a lack of practice effects may signify a deficit due to the impact magnitude.  

However, having said that and looking back at the anecdotally evidence, magnitude may not be 

the sole predictor of the mechanism of concussions.   

    Examining the frequency of impacts that had a magnitude greater than 100 g, one can 

conclude it is very diminutive.  The majority of the impacts sustained by the football players in 

this study were well concentrated in the lower ranges of impact magnitudes.  Nearly ninety 

percent of the impact magnitudes recorded over the time period of the study ranged from 10 g- 

70 g.  This range should alert the certified athletic trainer that a majority of the impacts players 

receive are not of the higher accelerations (>80-100 g) believed to cause concussion.   
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University of North Carolina-Chapel Hill 
Consent to Participate in a Research Study 
Adult Subjects 
___________________________________________________________________________ 
 
Medical IRB Study #04-EXSS-366  
Consent Form Version Date: August 6, 2004  
 
Title of Study: Prospective investigation of sport-related concussion: relationship between 
biomechanical, neuroanatomical, and clinical factors 
 
Principal Investigator: Kevin M. Guskiewicz, PhD, ATC 
UNC-CH Department: Exercise and Sport Science 
Phone number: 919-962-5175 
 
Co-Investigators: Keith Smith, MD, PhD; Weili Lin, PhD; Mario Ciocca, MD; Stephen 
Marshall, PhD; Daniel Hooker, PhD, ATC, PT; Scott Oliaro, MA, ATC; Dean Crowell, MA, 
ATC 
 
Sponsor: Centers for Disease Control and Prevention 
___________________________________________________________________________ 
 
You are being asked to take part in a research study.  The investigators listed above are in charge 
of the study; other professional persons may help them or act for them. 
 
What are some general things you should know about research studies? 
 
Research studies are designed to gain scientific knowledge that may help other people in the 
future.  You may not receive any direct benefit from participating. There may also be risks 
associated with participating in research studies. 
 
Your participation is voluntary.  You may refuse to participate, or may withdraw your consent to 
participate in any study at any time, and for any reason, without jeopardizing your future care 
and status as a student athlete at this institution or your relationship with your athletic trainer, 
doctor, coach or team.   
 
As a UNC-CH student 
You may choose not to be in the study or to stop being in the study before it is over at any time.  
This will not affect your evaluation at UNC-CH.  The researcher also may end your part in the 
research study.  If this happens, your evaluation will not be affected.  You will not be offered or 
receive any special consideration if you take part in this research. 
 
Details about this particular study are discussed below.  It is important that you understand this 
information so that you can decide in a free and informed manner whether you want to 
participate.  You will be given a copy of this consent form.  You are urged to ask the 
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investigators named above, or staff members who may assist them, any questions you have about 
this study at any time.            
 
What is the purpose of this study?  
Management of sport-related concussion can be challenging for clinicians, and it is important to 
learn more about how doctors and athletic trainers should grade the severity of concussions. The 
purpose of this study is to compare clinical characteristics of players who suffer a concussion to 
those who play football, but do not sustain concussions.  The study will attempt to determine 
how different magnitudes of head impacts affect the risk of concussion, and to determine if 
certain magnitudes result in abnormal neuroimaging (MRI) and clinical characteristics (poor 
balance or slowed thought processes) specifically related to concussion.  Additionally, 
comparisons will be made between concussed players with a history of previous concussion to 
concussed players without a history of previous concussion on measures taken from the helmet 
sensors (accelerometers), the imaging of your brain (MRI), clinical measures such as balance and 
concentration/memory tests, and duration of recovery following concussion. 
 
How many subjects will participate in this study?
If you decide to participate, you will be one of approximately 60 subjects in this research study at 
any one time.  Over the course of the 5 year project, there will be approximately 150 different 
subjects who will participate.   
 
How long will your participation last?  
Your participation in this study will initially last about 60 minutes for the pre-season baseline 
assessment.  However, your football helmet will be fitted with a device that will measure how 
fast your helmet accelerates and decelerates during any impacts.  These measurements will be 
taken during all practices and games during each of the seasons that you agree to participate.  
Once enrolled, you may continue to participate as long as you are a member of the UNC-CH 
football team, unless you decide to withdraw. There are two scenarios that might qualify you to 
be re-assessed on these same measures during the season: 1) if you sustain a concussion, or 2) if 
a teammate playing a similar position sustains a concussion, you may be asked to participate as a 
control subject.  If asked to return for testing, you will be asked to participate in 7 additional 
(control subjects) or 8 additional (concussed subjects) assessments that will take approximately 
45 minutes in duration.  If you are recruited as control subject, you may later be enrolled as concussed 
subject if you sustain a concussion at some point later in the study.  In this case, they would be tested 
again under the same protocol. These assessments will take place outside of your scheduled class 
time and regular football commitments. You will only be asked to participate in a baseline 
assessment at the time of your enrollment into the study. The information gathered at this 
baseline assessment will be utilized throughout the duration of the study. 
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What will happen if you take part in the study? 
During the course of this study, the following will occur: 
Pre-season screening:  You will first be asked some questions about the number of concussions 
you have sustained over the past 5 years.  You will be asked about any symptoms that you may 
still experience as a result of any previous concussions.  You will then be tested on your ability 
to maintain your balance while standing on a force plate that measures how much you sway.  
This test will then be repeated on a firm surface (floor) and again while standing on a piece of 
foam. You will then be asked to take a computer test that measures your short-term memory and 
concentration abilities.  This is a computerized neuropsychological test commonly used to assess 
mental processing problems after a concussion.  Another brief memory test called the 
Standardized Assessment of Concussion will be administered at the end of the session.  
    
Helmet fitting:  Your football helmet will then be fitted with the Head Impact Telemetry System 
(HITS), which will measure the magnitude and location of any impacts to the helmet.  The 
device includes 6 small (dime-sized) accelerometers that will communicate through radio 
frequency with a sideline computer.  The 6 small accelerometers will be placed in the helmet 
padding, and should not cause your helmet to fit or feel any different than normal.  You will be 
able to perform your normal football activities while wearing the device in your helmet.  
However, if you do feel any discomfort from the helmet, you should report immediately to one 
of the athletic trainers.   
 
Post-concussion testing:  In the event that you sustain a concussion during the season, you will 
be asked to re-take the tests outlined above under pre-season screening.  Some of these tests will 
be administered twice within the first few hours of the injury (most likely at the game or practice 
site), while more comprehensive assessments will take place within the next 7 days following the 
injury.  Additionally, at 2 days and 4 days post-injury, you will be asked to report to the MRI 
Research Center to have an image taken of your brain.  Prior to the imaging, called an MRI, you 
will be given an intravenous (IV) injection of a contrast dye commonly used for these 
procedures.  This dye will allow the neuroradiologist to observe the blood flowing through 
vessels within your brain.  This MRI will take place in a large tube shaped magnet. You will be 
asked to lie on a long narrow table that will slide inside the magnet. The imaging and study 
measurements produce a knocking noise, so you will be given earplugs. You will be asked to lie 
still during the entire exam. The MRI will be conducted by a trained technician, and the 
neuroradiologist (medical doctor) assisting with our project.  Although MRI may not tell us 
much about your concussion, the procedure will be useful in finding any more severe conditions 
that may have resulted as a result of your concussion.  This procedure will take approximately 40 
minutes.  All findings from these tests will be communicated to Dr. Ciocca, the team physician.   
 
If you are asked to participate as a control subject, you will already have undergone procedures 
outlined above for pre-season screening and helmet fitting.  You will be asked to undergo the 
same procedures for post-concussion testing (with the exception of the second MRI), even 
though you will not have sustained a concussion.     

 
 
 
Are there any reasons you should not participate?
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You should not participate in this study if you have used mind altering drugs or alcohol within 
the last two days or if you have any associated injuries (e.g., broken bones, sprained lower 
extremity joints).  Additionally, if you have ever been diagnosed with a stroke, have any 
psychiatric disorders other than depression (e.g., anxiety disorders, psychotic disorders, 
somatoform disorders, and substance-related disorders), or other known central nervous system 
diseases, you should not participate.  You should also not participate if you have a condition that 
makes MRI unsafe for you (e.g., metal implants, cardiac pacemaker, epicardial pacemaker leads, 
cochlear implants, ferromagnetic aneurysm clip, or iron filings in your eyes).  In the event that 
you should sustain a concussion and be referred for an MRI, the imaging technician will review 
all of the conditions with you to ensure that the MRI is safe for you to undergo.   
  
What are the possible risks or discomforts?  
This study might involve the following risks and/or discomforts to you:   
1)  The neuropsychological testing and balance testing should not be challenging during the 
baseline testing, or in the event that you serve as a control subject.  Following concussion, these 
tests may be more challenging for you to complete, but will not place you in any danger or 
discomfort beyond that which you are experiencing from the concussion. 
2)  MRI is an approved imaging technique that does not involve the use of ionizing radiation 
(standard x-rays).  It does involve the use of magnetic fields to image the body.  There are no 
apparent risks from MRI, diffusion imaging, blood flow measurements, or oxygen tension 
measurements.  The examination is not uncomfortable, but does take place in a small space.  If 
you have claustrophobia (fear of enclosed spaces) you should let the technician in charge of the 
examination know. In addition, there may be uncommon or previously unrecognized risks that 
might occur.   
3)  There is a slight risk of contrast reaction to the intravenous contrast dye (gadolinium 
DTPA) given for the MRI. This risk is estimated to be less than 1:100,000 chance of a serious 
reaction. Becasuse of this slight risk, the contrast is administered only when a physician is 
present, and a contrast allergy treatment kit is available in the imaging suite. 
 
What are the possible benefits?
Standard care for a UNC-CH football player following a concussion is to undergo a physician 
examination and most of the clinical assessments utilized in this study (neuropsychological 
testing, postural stability testing, and symptom checklist).  The direct benefit for participating is 
that in the event of a concussive injury, you will receive more extensive follow-up assessments 
(including neuroimaging – MRI), regardless of the severity of the concussion. Your participation 
in this study will potentially provide you and the medical team with additional information about 
your injury that could be helpful in making return to play decisions.  For example, in the rare 
event that the MRI revealed damage to one of your blood vessels, you would be informed by the 
neuroradiologist that follow-up treatment is recommended.  Wearing the HITS system in your 
helmet will also provide the athletic trainers with additional information about the helmet 
impacts you receive.   Your participation may benefit society if the results of this study find new 
technologies that can be useful in helping clinicians make safe return to play decisions.  
  
What if we learn about new risks during the study?  
You will be given any new information gained during the course of the study that might affect 
your willingness to continue your participation. 
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How will your privacy be protected? 
No subjects will be identified in any report or publication about this study. Although every effort 
will be made to keep research records private, there may be times when federal or state law 
requires the disclosure of such records, including personal information.  This is very unlikely, 
but if disclosure is ever required, UNC-CH will take all steps allowable by law to protect the 
privacy of personal information. 
 
Your data will be coded with a number and stored in a computer.  No individual will have access 
to the computer or the number that identifies your data.  Access to this information is limited to 
Dr. Kevin Guskiewicz, the principal investigator, and Dr. Mario Ciocca, the team physician.  
 
Will you be paid for participating? 
You will not be paid for your participation in this study. 
 
Will it cost you anything to participate? 
There will be no costs to you for participating. 
 
Who is sponsoring this study? 
This research is being funded by the Centers for Disease Control and Prevention. 
 
What will happen if you are injured by this research? 
All types of research involve possible risk, some including the risk of personal injury. In spite of 
all precautions, you might develop complications from participating in this study. If such  
complications arise, the researchers will assist you in obtaining appropriate medical treatment, 
but any costs associated with the treatment will be billed to you and/or your insurance company. 
The University of North Carolina at Chapel Hill has not set aside funds to compensate you for  
any such complications or injuries, or for related medical care. However, by signing this form, 
you do not waive any of your legal rights. 
 
What if you want to stop before your part in the study is complete? 
You can withdraw from this study at any time, without jeopardizing your future care and status 
as a student athlete at UNC-CH or your relationship with your athletic trainer, doctor, coach or 
team..  The investigators also have the right to stop your participation at any time. This could be 
because you have had an unexpected reaction, or have failed to follow instructions, or because 
the entire study has been stopped. 
 
 
 
What if you have questions about this study? 
You have the right to ask, and have answered, any questions you may have about this research. If 
you have further questions, or if a research-related injury occurs, you should call Dr. Kevin 
Guskiewicz at (919)962-5175 or Dr. Mario Ciocca at (919) 966-3655. 
 
What if you have questions about your rights as a subject? 
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This research has been reviewed and approved by the Committee on the Protection of the Rights 
of Human Subjects (Medical IRB) at the University of North Carolina at Chapel Hill.  If you 
have any questions or concerns regarding your rights as a research subject, you may contact the 
Chairman of the Committee at (919) 966-1344.  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
Subject’s Agreement: 
 
I have read the information provided above. I voluntarily agree to participate in this study.  
 
_________________________________________   _________________ 
Signature of Research Subject     Date 
 
_________________________________________ 
Printed Name of Research Subject 
 
_________________________________________  _________________ 
Signature of Person Obtaining Consent   Date 
 
_________________________________________ 
Printed Name of Person Obtaining Consent 
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Table 1. Demographic Information 
ht wt age 

76 285.6 20 
77 278.2 23 
68 181.2 21 
74 217 19 
71 252 20 
73 255 21 
71 210.4 21 
75 240 20 
78 290 23 

69.2 202.4 19 
75 273.8 19 
74 300 21 
75 252 21 
76 276.2 20 
76 295.6 22 

74.6 206.8 22 
73 256.4 20 

77.4 300.2 18 
74 268.2 23 
74 233 20 

70.6 218 21 
73 200 23 
72 255 19 
69 180 21 
75 317.2 21 

76.6 242 19 
71 236.8 19 
78 295 24 
73 216.8 20 
71 270 23 
74 300 19 
74 241.2 19 
70 198.2 24 

73.6 213.8 20 
75.6 326 19 

76 231.6 19 
71 206 27 
71 184 22 
71 219 19 
72 187 20 
72 167 21 
74 220 19 
72 235 21 

3156.6 10433.6 892 
73.41 242.64 20.74 
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Table 2. Means (±SD) compared between pre-season baseline and high impact testing condition (n=24) 

Outcome Measure Baseline High-Impact F p-value Effect Size 
Simple reaction time-1 237.34 ± 35.93 248.38 ± 29.89 0.492 0.491 0.31 
Simple reaction time-2 229.67±47.04 228.85±51.40 0.068 0.796 0.017 
Math processing* 20.58±5.99 23.56±7.24 17.04 0.001* 0.5 
Matching to sample 40.3135±13.99 43.56±14.49 0.498 0.488 0.23 
Sleep Scale* 3.0417±1.55 3.79±1.69 6.52 0.019* 0.48 
Procedural Reaction 
Time 84.85±17.66 99.77±28.35 1.43 0.245 0.84 
Code Sub 9 51.91±11.21 53.40±7.77 0.027 0.87 0.13 
Memory Search 6 81.11±13.60 85.02±17.83 0.087 0.771 0.29 
Total # of symptoms 
reported 1.65±2.06 3.04±2.76 3.54 0.075 0.67 
Total symptom score 4.04±5.96 5.22±5.89 0.209 0.652 0.2 
Somatosensory 96.69±2.62 98.18±4.26 0.065 0.801 0.57 
Visual 92.10±5.65 90.08±11.19 0.101 0.754 0.36 
Vestibular 78.07±10.89 77.99±11.02 0.126 0.727 0.007 
Composite 81.34±5.65 80.10±7.66 0.015 0.905 0.22 

 
 
 
* Indicates significance at the .05 level
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Table 3. Means (±SD) compared between pre-season baseline and low impact testing condition (n=36) 
Outcome Measure Baseline Low-Impact F p-value Effect Size 
Simple Reaction Time 1* 238.89±33.57 252.92±28.27 6.012 0.020* 0.42
Simple Reaction Time 2 233.35±42.34 237.01±33.72 0.943 0.338 0.45
Math Processing* 20.45±6.11 22.63±6.61 10.584 0.003* 0.36
Match To Sample 40.49±13.39 47.85±13.21 2.129 0.154 0.55
Sleep Scale 2.97±1.66 3.06±1.41 3.77 0.061 0.05
Procedural Reaction Time 88.50±17.58 97.27±23.16 0.758 0.390 0.5
Code Sub 9* 51.65±11.40 55.38±9.59 4.836 0.035* 0.33
Memory Search 6* 79.10±16.95 89.72±19.11 5.402 0.026* 0.63
Total # symptoms 
reported 1.81±2.44 2.61±2.567 1.4 0.245 0.33
Total symptom score 3.92±6.583 4.03±4.582 0.001 0.977 0.02
Somatosensory 97.09±2.83 96.03±3.50 1 0.325 0.37
Visual 92.02±6.19 90.05±10.88 4.052 0.052 0.32
Vestibular* 76.92±11.52 79.80±8.82 8.677 0.006* 0.25
Composite* 81.21±5.45 81.76±7.22 12.754 0.001* 0.1

 

 

* Indicates significance at the .05 level. 
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Figure 1.   Accelerometers that fit into the Riddell Helmets. 

 81



 

Figure 2.  Sideline control unit that stores and displays the information collected. 
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Figure 3. Display screen that shows the players’ impact history and information. 
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Figure 4.  NeuroCom used for the SOT test which assesses balance performance.   
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Figure 5.  Various SOT conditions that the subject is tested on. 
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GGrraaddeedd  SSyymmppttoomm  CChheecckklliisstt  ((GGSSCC))  
  
  

  
  SSYYMMPPTTOOMM      NNOONNEE        MMIILLDD            MMOODDEERRAATTEE            SSEEVVEERREE  
                              00    11  22  33                44  55                66    
  HHeeaaddaacchhee  

  NNaauusseeaa    

                  VVoommiittiinngg  

  BBaallaannccee  PPrroobblleemmss  

  DDiizzzziinneessss  

  SSeennssiittiivviittyy  ttoo  LLiigghhtt    

  BBlluurrrreedd  VViissiioonn  

  SSeennssiittiivviittyy  ttoo  NNooiissee  

  NNeerrvvoouussnneessss  

  NNuummbbnneessss//  TTiinngglliinngg  

  FFeeeelliinngg  SSlloowweedd  DDoowwnn  

  FFeeeelliinngg  lliikkee  ““IInn  aa  FFoogg””  

  DDiiffffiiccuullttyy  CCoonncceennttrraattiinngg  

  DDiiffffiiccuullttyy  RReemmeemmbbeerriinngg  

  NNeecckk  PPaaiinn  

  FFaattiigguuee  

            DDrroowwssiinneessss  

  DDiiffffiiccuullttyy  sslleeeeppiinngg  

  SSaaddnneessss  

  IIrrrriittaabbiilliittyy  

Figure 6. Graded symptom checklist; a 7 pt. likert scale. 
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High Impact Condition: Vestibular SOT Scores
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High Impact Condition: Visual SOT Scores
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High Impact Condition: Composite SOT Scores
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Low Impact Condition: Vestibular SOT Score
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Low Impact Condition: Composite SOT Scores 
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Low Imapct Condition: Somatosensory Score
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Low Impact Condition: Visual  SOT Score
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High Impact Condition: Math Processing 
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High Impact Condition: Simple Reaction Time (SRT1)
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High Impact Condition: Simple Reaction Time (SRT2)
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High Imapct Condition: Match to Sample
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High Impact Condition: Procedural Reaction Time
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High Impact Condition: Code Sub 9
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High Impact Condition: Memory Search 6
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Low Impact Condition: Math Processing
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Low Impact Condition: Simple Reaction Time 1 (SRT1)
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Low Impact Condition: Code Sub 9
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Low Impact Condition: Memory Search 6
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Low Impact Condition: Simple Reaction Time (SRT2)
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Low Impact Condition: Match to Sample
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Low Impact Condition: Procedural Reaction Time
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Figure 28
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High Impact Condition: Total # of Symptoms Reported
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High Impact Condition: Total Symptom Severity Score 
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Low Impact Condition: Total # of Symptoms Reported
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Low Impact Condition: Total Symptom Severity Score
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Testing Schedule 
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AUGUST 2005 
Sun       Mon Tue Wed Thu Fri Sat 

  

1 
Baseline 
testing 

completed 

 

2 
 

3 
 

4 
 

5 
HITS 

arrives 

6 
 

7 
 

8 
helmet 

installations 

9 
 

10 
athletes report 

11 
camp begins 

12 
 

13 
 

14 
Baseline 

 completed for  

freshmen 

15 
testing begins 

16 
 

17 
 

18 
 

19 
 

20 
 

21 
 

22 
 

23 
 

24 
 

25 
 

26 
 

27 
 

28 
 

29 
 

30 
 

31 
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SEPTEMBER 2005 
 

Sun Mon Tue Wed Thu Fri Sat 

        1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
@ GA TECH 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17
WISCONSIN 

18 
 

19 
 

20 
 

21 
 

22 
 

23 
 

24 
@ NC STATE 

25 
 

26 
 

27 
 

28 
 

29 
 

30 
   

Holidays and observances: 5: Labor Day  
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OCTOBER 2005 
 

Sun Mon Tue Wed Thu Fri Sat 

            
1 

UTAH 

 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
@ LOUISVILLE 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 
 

21 
 

22 
VIRGINIA 

23 
 

24 
 

25 
 

26 
 

27 
 

28 
 

29 
@ MIAMI 

 

30 
 

31 
           

Holidays and observances: 10: Columbus Day  
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NOVEMBER 2005 
 

Sun Mon Tue Wed Thu Fri Sat 

    
1 
 

2 
 

3 
 

4 
 

5 
BC 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
MARYLAND 

 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
DUKE 

20 
 

21 
 

22 
 

23 
 

24 
 

25 
 

26 
@ VA TECH 

 

27 
 

28 
 

29 
 

30 
       

Holidays and observances: 11: Veterans Day, 24: Thanksgiving Day  
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MARCH 2005 
 

Sun Mon Tue Wed Thu Fri Sat 

          1 
 

2 
 

3 
testing 
begins 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 17 
 

18 
 

19 
 

20 
 

21 
 

22 
 

23 
 

24 
 

25 
 

26 
 

27 
 

28 
 

29 
testing ends 

30 
 

31 
 

1 
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APPENDIX E 

SPSS Output 
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Within-Subjects Factors

Measure: MEASURE_1

blsrt1
t1srt1

session
1
2

Dependent
Variable

 
 

 

Descriptive Statistics

237.3446 35.93402 24

248.3754 29.88646 24

baseline simple
reaction time1
test session 1 simple
reaction time 1

Mean Std. Deviation N

 
 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

309.062 1 309.062 .492 .491
309.062 1.000 309.062 .492 .491
309.062 1.000 309.062 .492 .491
309.062 1.000 309.062 .492 .491
29.715 1 29.715 .047 .830
29.715 1.000 29.715 .047 .830
29.715 1.000 29.715 .047 .830
29.715 1.000 29.715 .047 .830

.131 1 .131 .000 .989

.131 1.000 .131 .000 .989

.131 1.000 .131 .000 .989

.131 1.000 .131 .000 .989
13182.866 21 627.756
13182.866 21.000 627.756
13182.866 21.000 627.756
13182.866 21.000 627.756

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsrt1
t1srt1

session
1
2

Dependent
Variable

 
Descriptive Statistics

236.0860 35.73587 25

248.3716 29.25721 25

baseline simple
reaction time1
test session 1 simple
reaction time 1

Mean Std. Deviation N

 
 
 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

1886.700 1 1886.700 3.298 .082
1886.700 1.000 1886.700 3.298 .082
1886.700 1.000 1886.700 3.298 .082
1886.700 1.000 1886.700 3.298 .082

13729.637 24 572.068
13729.637 24.000 572.068
13729.637 24.000 572.068
13729.637 24.000 572.068

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsrt2
t1srt2

session
1
2

Dependent
Variable

 
 

 

Descriptive Statistics

229.6704 47.04461 24

228.8529 51.39511 24

basline simple
reaction time 2
test session 1 simple
reaction time 2

Mean Std. Deviation N

 
 
 
 
 
 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

74.284 1 74.284 .068 .796
74.284 1.000 74.284 .068 .796
74.284 1.000 74.284 .068 .796
74.284 1.000 74.284 .068 .796

663.537 1 663.537 .611 .443
663.537 1.000 663.537 .611 .443
663.537 1.000 663.537 .611 .443
663.537 1.000 663.537 .611 .443
584.680 1 584.680 .538 .471
584.680 1.000 584.680 .538 .471
584.680 1.000 584.680 .538 .471
584.680 1.000 584.680 .538 .471

22822.394 21 1086.781
22822.394 21.000 1086.781
22822.394 21.000 1086.781
22822.394 21.000 1086.781

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsrt2
t1srt2

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

230.7676 46.37967 25

229.9424 50.60702 25

basline simple
reaction time 2
test session 1 simple
reaction time 2

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

8.512 1 8.512 .009 .927
8.512 1.000 8.512 .009 .927
8.512 1.000 8.512 .009 .927
8.512 1.000 8.512 .009 .927

23540.735 24 980.864
23540.735 24.000 980.864
23540.735 24.000 980.864
23540.735 24.000 980.864

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Tests of Within-Subjects Effects

Measure: MEASURE_1

93.077 1 93.077 17.040 .000
93.077 1.000 93.077 17.040 .000
93.077 1.000 93.077 17.040 .000
93.077 1.000 93.077 17.040 .000
11.248 1 11.248 2.059 .166
11.248 1.000 11.248 2.059 .166
11.248 1.000 11.248 2.059 .166
11.248 1.000 11.248 2.059 .166

.648 1 .648 .119 .734

.648 1.000 .648 .119 .734

.648 1.000 .648 .119 .734

.648 1.000 .648 .119 .734
114.707 21 5.462
114.707 21.000 5.462
114.707 21.000 5.462
114.707 21.000 5.462

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsrt2
t1srt2

session
1
2

Dependent
Variable

  
Descriptive Statistics

230.7676 46.37967 25

229.9424 50.60702 25

basline simple
reaction time 2
test session 1 simple
reaction time 2

Mean Std. Deviation N

 
 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

8.512 1 8.512 .009 .927
8.512 1.000 8.512 .009 .927
8.512 1.000 8.512 .009 .927
8.512 1.000 8.512 .009 .927

23540.735 24 980.864
23540.735 24.000 980.864
23540.735 24.000 980.864
23540.735 24.000 980.864

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blmth
t1mth

session
1
2

Dependent
Variable

 
 
 

Descriptive Statistics

20.5829 5.98786 24

23.5554 7.23841 24

baseline math
processing
test session 1
math processing

Mean Std. Deviation N

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

93.077 1 93.077 17.040 .000
93.077 1.000 93.077 17.040 .000
93.077 1.000 93.077 17.040 .000
93.077 1.000 93.077 17.040 .000
11.248 1 11.248 2.059 .166
11.248 1.000 11.248 2.059 .166
11.248 1.000 11.248 2.059 .166
11.248 1.000 11.248 2.059 .166

.648 1 .648 .119 .734

.648 1.000 .648 .119 .734

.648 1.000 .648 .119 .734

.648 1.000 .648 .119 .734
114.707 21 5.462
114.707 21.000 5.462
114.707 21.000 5.462
114.707 21.000 5.462

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blmth
t1mth

session
1
2

Dependent
Variable

 
 
 
 

Descriptive Statistics

20.6488 5.87104 25

23.8604 7.24823 25

baseline math
processing
test session 1
math processing

Mean Std. Deviation N

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

128.930 1 128.930 20.671 .000
128.930 1.000 128.930 20.671 .000
128.930 1.000 128.930 20.671 .000
128.930 1.000 128.930 20.671 .000
149.692 24 6.237
149.692 24.000 6.237
149.692 24.000 6.237
149.692 24.000 6.237

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blmts
t1mts

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

40.3135 13.99346 23

43.5630 14.48864 23

baseline match
to sample
test session 1
match to sample

Mean Std. Deviation N

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

54.208 1 54.208 .498 .488
54.208 1.000 54.208 .498 .488
54.208 1.000 54.208 .498 .488
54.208 1.000 54.208 .498 .488

189.411 1 189.411 1.741 .202
189.411 1.000 189.411 1.741 .202
189.411 1.000 189.411 1.741 .202
189.411 1.000 189.411 1.741 .202

4.201 1 4.201 .039 .846
4.201 1.000 4.201 .039 .846
4.201 1.000 4.201 .039 .846
4.201 1.000 4.201 .039 .846

2175.894 20 108.795
2175.894 20.000 108.795
2175.894 20.000 108.795
2175.894 20.000 108.795

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blmts
t1mts

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

40.6600 13.79076 24

43.2800 14.23785 24

baseline match
to sample
test session 1
match to sample

Mean Std. Deviation N

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

82.373 1 82.373 .721 .405
82.373 1.000 82.373 .721 .405
82.373 1.000 82.373 .721 .405
82.373 1.000 82.373 .721 .405

2627.199 23 114.226
2627.199 23.000 114.226
2627.199 23.000 114.226
2627.199 23.000 114.226

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blss
t1ss

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

3.0400 1.51327 25

3.8800 1.71561 25

baseline sleep scale
test session 1 sleep
scale

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

8.820 1 8.820 10.756 .003
8.820 1.000 8.820 10.756 .003
8.820 1.000 8.820 10.756 .003
8.820 1.000 8.820 10.756 .003

19.680 24 .820
19.680 24.000 .820
19.680 24.000 .820
19.680 24.000 .820

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blprt
t1prt

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

84.8458 17.65716 24

99.7696 28.34877 24

baseline procedural
reaction time
test session 1
procedural reaction time

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

869.914 1 869.914 1.429 .245
869.914 1.000 869.914 1.429 .245
869.914 1.000 869.914 1.429 .245
869.914 1.000 869.914 1.429 .245
171.712 1 171.712 .282 .601
171.712 1.000 171.712 .282 .601
171.712 1.000 171.712 .282 .601
171.712 1.000 171.712 .282 .601
376.820 1 376.820 .619 .440
376.820 1.000 376.820 .619 .440
376.820 1.000 376.820 .619 .440
376.820 1.000 376.820 .619 .440

12781.519 21 608.644
12781.519 21.000 608.644
12781.519 21.000 608.644
12781.519 21.000 608.644

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blcs9
cs9

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

51.9083 11.20913 24
53.3992 7.77197 24

baseline code sub 9
test session 1 code sub 9

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

2.412 1 2.412 .027 .870
2.412 1.000 2.412 .027 .870
2.412 1.000 2.412 .027 .870
2.412 1.000 2.412 .027 .870

31.383 1 31.383 .357 .557
31.383 1.000 31.383 .357 .557
31.383 1.000 31.383 .357 .557
31.383 1.000 31.383 .357 .557
74.463 1 74.463 .846 .368
74.463 1.000 74.463 .846 .368
74.463 1.000 74.463 .846 .368
74.463 1.000 74.463 .846 .368

1847.869 21 87.994
1847.869 21.000 87.994
1847.869 21.000 87.994
1847.869 21.000 87.994

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blms
ms6

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

81.1163 13.60006 24

85.0213 17.82978 24

baseline memory
search 6
test session
memory search 6

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

16.611 1 16.611 .087 .771
16.611 1.000 16.611 .087 .771
16.611 1.000 16.611 .087 .771
16.611 1.000 16.611 .087 .771

914.569 1 914.569 4.799 .040
914.569 1.000 914.569 4.799 .040
914.569 1.000 914.569 4.799 .040
914.569 1.000 914.569 4.799 .040
552.476 1 552.476 2.899 .103
552.476 1.000 552.476 2.899 .103
552.476 1.000 552.476 2.899 .103
552.476 1.000 552.476 2.899 .103

4002.040 21 190.573
4002.040 21.000 190.573
4002.040 21.000 190.573
4002.040 21.000 190.573

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsxitem
t1sxitem

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

1.65 2.058 23

3.04 2.755 23

baseline # of symptoms
test session 1 #
symptoms

Mean Std. Deviation N

 
 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

11.926 1 11.926 3.540 .075
11.926 1.000 11.926 3.540 .075
11.926 1.000 11.926 3.540 .075
11.926 1.000 11.926 3.540 .075

.073 1 .073 .022 .885

.073 1.000 .073 .022 .885

.073 1.000 .073 .022 .885

.073 1.000 .073 .022 .885

.022 1 .022 .007 .936

.022 1.000 .022 .007 .936

.022 1.000 .022 .007 .936

.022 1.000 .022 .007 .936
67.373 20 3.369
67.373 20.000 3.369
67.373 20.000 3.369
67.373 20.000 3.369

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsxscor
t1sxscor

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

4.04 5.958 23

5.22 5.893 23

baseline symptom score
test session 1 symptom
score

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

4.737 1 4.737 .209 .652
4.737 1.000 4.737 .209 .652
4.737 1.000 4.737 .209 .652
4.737 1.000 4.737 .209 .652

19.565 1 19.565 .864 .364
19.565 1.000 19.565 .864 .364
19.565 1.000 19.565 .864 .364
19.565 1.000 19.565 .864 .364
26.993 1 26.993 1.191 .288
26.993 1.000 26.993 1.191 .288
26.993 1.000 26.993 1.191 .288
26.993 1.000 26.993 1.191 .288

453.111 20 22.656
453.111 20.000 22.656
453.111 20.000 22.656
453.111 20.000 22.656

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsom
t1som

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

96.6910 2.62263 24

98.1808 4.25806 24

baseline somatosensory
test session 1
somatosensory

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

.596 1 .596 .065 .801

.596 1.000 .596 .065 .801

.596 1.000 .596 .065 .801

.596 1.000 .596 .065 .801
20.294 1 20.294 2.223 .151
20.294 1.000 20.294 2.223 .151
20.294 1.000 20.294 2.223 .151
20.294 1.000 20.294 2.223 .151
1.513 1 1.513 .166 .688
1.513 1.000 1.513 .166 .688
1.513 1.000 1.513 .166 .688
1.513 1.000 1.513 .166 .688

191.704 21 9.129
191.704 21.000 9.129
191.704 21.000 9.129
191.704 21.000 9.129

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blvis
t1vis

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

92.0967 5.65651 24
90.0804 11.18863 24

baseline visual
test session 1 visual

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

7.346 1 7.346 .101 .754
7.346 1.000 7.346 .101 .754
7.346 1.000 7.346 .101 .754
7.346 1.000 7.346 .101 .754

146.551 1 146.551 2.009 .171
146.551 1.000 146.551 2.009 .171
146.551 1.000 146.551 2.009 .171
146.551 1.000 146.551 2.009 .171
167.105 1 167.105 2.291 .145
167.105 1.000 167.105 2.291 .145
167.105 1.000 167.105 2.291 .145
167.105 1.000 167.105 2.291 .145

1531.753 21 72.941
1531.753 21.000 72.941
1531.753 21.000 72.941
1531.753 21.000 72.941

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blvest
t1vest

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

78.0673 10.89173 24
77.9928 11.01965 24

baseline vestibular
test session vestibular

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

14.809 1 14.809 .126 .727
14.809 1.000 14.809 .126 .727
14.809 1.000 14.809 .126 .727
14.809 1.000 14.809 .126 .727
72.707 1 72.707 .616 .441
72.707 1.000 72.707 .616 .441
72.707 1.000 72.707 .616 .441
72.707 1.000 72.707 .616 .441
37.957 1 37.957 .322 .577
37.957 1.000 37.957 .322 .577
37.957 1.000 37.957 .322 .577
37.957 1.000 37.957 .322 .577

2476.931 21 117.949
2476.931 21.000 117.949
2476.931 21.000 117.949
2476.931 21.000 117.949

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blnccomp
t1nccomp

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

81.3385 5.64698 24

80.0968 7.66214 24

baseline neurocom
compsite
test session 1
neurocom compsite

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

.533 1 .533 .015 .905

.533 1.000 .533 .015 .905

.533 1.000 .533 .015 .905

.533 1.000 .533 .015 .905
116.836 1 116.836 3.189 .089
116.836 1.000 116.836 3.189 .089
116.836 1.000 116.836 3.189 .089
116.836 1.000 116.836 3.189 .089
90.637 1 90.637 2.474 .131
90.637 1.000 90.637 2.474 .131
90.637 1.000 90.637 2.474 .131
90.637 1.000 90.637 2.474 .131

769.454 21 36.641
769.454 21.000 36.641
769.454 21.000 36.641
769.454 21.000 36.641

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov1

session * cov2

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsrt1
t2srt1

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

238.8861 33.57134 36

252.9186 28.26507 36

baseline simple
reaction time1
test session 2
simple reaction 1

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

4528.973 1 4528.973 6.012 .020
4528.973 1.000 4528.973 6.012 .020
4528.973 1.000 4528.973 6.012 .020
4528.973 1.000 4528.973 6.012 .020

77.321 1 77.321 .103 .751
77.321 1.000 77.321 .103 .751
77.321 1.000 77.321 .103 .751
77.321 1.000 77.321 .103 .751

234.644 1 234.644 .311 .581
234.644 1.000 234.644 .311 .581
234.644 1.000 234.644 .311 .581
234.644 1.000 234.644 .311 .581

24858.418 33 753.285
24858.418 33.000 753.285
24858.418 33.000 753.285
24858.418 33.000 753.285

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.

 

 141



Within-Subjects Factors

Measure: MEASURE_1

blsrt2
t2srt2

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

233.3494 42.34026 36

237.0100 33.71660 36

basline simple
reaction time 2
test session 2
simple reaction 2

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

1258.631 1 1258.631 .943 .338
1258.631 1.000 1258.631 .943 .338
1258.631 1.000 1258.631 .943 .338
1258.631 1.000 1258.631 .943 .338

.012 1 .012 .000 .998

.012 1.000 .012 .000 .998

.012 1.000 .012 .000 .998

.012 1.000 .012 .000 .998
500.950 1 500.950 .376 .544
500.950 1.000 500.950 .376 .544
500.950 1.000 500.950 .376 .544
500.950 1.000 500.950 .376 .544

44022.284 33 1334.009
44022.284 33.000 1334.009
44022.284 33.000 1334.009
44022.284 33.000 1334.009

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blmth
t2mth

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

20.4486 6.11066 36

22.6258 6.60505 36

baseline math
processing
test session 2
math processing

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

59.911 1 59.911 10.584 .003
59.911 1.000 59.911 10.584 .003
59.911 1.000 59.911 10.584 .003
59.911 1.000 59.911 10.584 .003
1.104 1 1.104 .195 .662
1.104 1.000 1.104 .195 .662
1.104 1.000 1.104 .195 .662
1.104 1.000 1.104 .195 .662
5.991 1 5.991 1.058 .311
5.991 1.000 5.991 1.058 .311
5.991 1.000 5.991 1.058 .311
5.991 1.000 5.991 1.058 .311

186.800 33 5.661
186.800 33.000 5.661
186.800 33.000 5.661
186.800 33.000 5.661

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.

 

 143



Within-Subjects Factors

Measure: MEASURE_1

blmts
t2mts

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

40.4867 13.38647 36

47.8522 13.21119 36

baseline match
to sample
test session 2
match to sample

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

212.502 1 212.502 2.129 .154
212.502 1.000 212.502 2.129 .154
212.502 1.000 212.502 2.129 .154
212.502 1.000 212.502 2.129 .154
11.519 1 11.519 .115 .736
11.519 1.000 11.519 .115 .736
11.519 1.000 11.519 .115 .736
11.519 1.000 11.519 .115 .736
5.431 1 5.431 .054 .817
5.431 1.000 5.431 .054 .817
5.431 1.000 5.431 .054 .817
5.431 1.000 5.431 .054 .817

3293.686 33 99.809
3293.686 33.000 99.809
3293.686 33.000 99.809
3293.686 33.000 99.809

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blss
t2ss

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

2.9722 1.66452 36

3.0556 1.41309 36

baseline sleep scale
test session 2 sleep
scale

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

4.103 1 4.103 3.765 .061
4.103 1.000 4.103 3.765 .061
4.103 1.000 4.103 3.765 .061
4.103 1.000 4.103 3.765 .061
1.480 1 1.480 1.358 .252
1.480 1.000 1.480 1.358 .252
1.480 1.000 1.480 1.358 .252
1.480 1.000 1.480 1.358 .252
.604 1 .604 .554 .462
.604 1.000 .604 .554 .462
.604 1.000 .604 .554 .462
.604 1.000 .604 .554 .462

35.966 33 1.090
35.966 33.000 1.090
35.966 33.000 1.090
35.966 33.000 1.090

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blprt
t2prt

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

88.5028 17.57839 36

97.2744 23.16368 36

baseline procedural
reaction time
test session 2
procedural reaction time

Mean Std. Deviation N

 
 
 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

246.473 1 246.473 .758 .390
246.473 1.000 246.473 .758 .390
246.473 1.000 246.473 .758 .390
246.473 1.000 246.473 .758 .390
54.112 1 54.112 .166 .686
54.112 1.000 54.112 .166 .686
54.112 1.000 54.112 .166 .686
54.112 1.000 54.112 .166 .686

258.401 1 258.401 .794 .379
258.401 1.000 258.401 .794 .379
258.401 1.000 258.401 .794 .379
258.401 1.000 258.401 .794 .379

10733.655 33 325.262
10733.655 33.000 325.262
10733.655 33.000 325.262
10733.655 33.000 325.262

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blcs9
t2cs9

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

51.6456 11.39935 36
55.3775 9.58960 36

baseline code sub 9
test session 2 code sub 9

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

275.378 1 275.378 4.836 .035
275.378 1.000 275.378 4.836 .035
275.378 1.000 275.378 4.836 .035
275.378 1.000 275.378 4.836 .035
51.587 1 51.587 .906 .348
51.587 1.000 51.587 .906 .348
51.587 1.000 51.587 .906 .348
51.587 1.000 51.587 .906 .348

162.880 1 162.880 2.860 .100
162.880 1.000 162.880 2.860 .100
162.880 1.000 162.880 2.860 .100
162.880 1.000 162.880 2.860 .100

1879.265 33 56.947
1879.265 33.000 56.947
1879.265 33.000 56.947
1879.265 33.000 56.947

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blms
t2ms6

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

79.0969 16.94917 36

89.7181 19.11151 36

baseline memory
search 6
test session 2
memory search 6

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

1320.820 1 1320.820 5.402 .026
1320.820 1.000 1320.820 5.402 .026
1320.820 1.000 1320.820 5.402 .026
1320.820 1.000 1320.820 5.402 .026

16.496 1 16.496 .067 .797
16.496 1.000 16.496 .067 .797
16.496 1.000 16.496 .067 .797
16.496 1.000 16.496 .067 .797
91.458 1 91.458 .374 .545
91.458 1.000 91.458 .374 .545
91.458 1.000 91.458 .374 .545
91.458 1.000 91.458 .374 .545

8068.651 33 244.505
8068.651 33.000 244.505
8068.651 33.000 244.505
8068.651 33.000 244.505

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsxitem
t2sxitem

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

1.81 2.436 36

2.61 2.567 36

baseline # of symptoms
test session 2 # of
symptoms

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

8.285 1 8.285 1.400 .245
8.285 1.000 8.285 1.400 .245
8.285 1.000 8.285 1.400 .245
8.285 1.000 8.285 1.400 .245
1.447 1 1.447 .245 .624
1.447 1.000 1.447 .245 .624
1.447 1.000 1.447 .245 .624
1.447 1.000 1.447 .245 .624
.533 1 .533 .090 .766
.533 1.000 .533 .090 .766
.533 1.000 .533 .090 .766
.533 1.000 .533 .090 .766

195.248 33 5.917
195.248 33.000 5.917
195.248 33.000 5.917
195.248 33.000 5.917

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsxscor
t2sxscor

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

3.92 6.583 36

4.03 4.582 36

baseline symptom score
test session 2 score of
symptoms

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

.029 1 .029 .001 .977

.029 1.000 .029 .001 .977

.029 1.000 .029 .001 .977

.029 1.000 .029 .001 .977
1.979 1 1.979 .057 .813
1.979 1.000 1.979 .057 .813
1.979 1.000 1.979 .057 .813
1.979 1.000 1.979 .057 .813
3.595 1 3.595 .103 .750
3.595 1.000 3.595 .103 .750
3.595 1.000 3.595 .103 .750
3.595 1.000 3.595 .103 .750

1153.163 33 34.944
1153.163 33.000 34.944
1153.163 33.000 34.944
1153.163 33.000 34.944

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blsom
t2som

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

97.0900 2.82393 36

96.0252 3.50081 36

baseline somatosensory
test session 2
somatosensory

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

8.538 1 8.538 1.000 .325
8.538 1.000 8.538 1.000 .325
8.538 1.000 8.538 1.000 .325
8.538 1.000 8.538 1.000 .325
5.480 1 5.480 .642 .429
5.480 1.000 5.480 .642 .429
5.480 1.000 5.480 .642 .429
5.480 1.000 5.480 .642 .429
5.347 1 5.347 .626 .434
5.347 1.000 5.347 .626 .434
5.347 1.000 5.347 .626 .434
5.347 1.000 5.347 .626 .434

281.762 33 8.538
281.762 33.000 8.538
281.762 33.000 8.538
281.762 33.000 8.538

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blvis
t2vis

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

92.0163 6.19000 36
90.0501 10.87690 36

baseline visual
test session 2 visual

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

213.784 1 213.784 4.052 .052
213.784 1.000 213.784 4.052 .052
213.784 1.000 213.784 4.052 .052
213.784 1.000 213.784 4.052 .052
447.951 1 447.951 8.489 .006
447.951 1.000 447.951 8.489 .006
447.951 1.000 447.951 8.489 .006
447.951 1.000 447.951 8.489 .006
13.721 1 13.721 .260 .613
13.721 1.000 13.721 .260 .613
13.721 1.000 13.721 .260 .613
13.721 1.000 13.721 .260 .613

1741.255 33 52.765
1741.255 33.000 52.765
1741.255 33.000 52.765
1741.255 33.000 52.765

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blvest
t2vest

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

76.9210 11.51643 36
79.8029 8.81868 36

baseline vestibular
test session 2 vestibular

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

558.648 1 558.648 8.677 .006
558.648 1.000 558.648 8.677 .006
558.648 1.000 558.648 8.677 .006
558.648 1.000 558.648 8.677 .006
860.196 1 860.196 13.360 .001
860.196 1.000 860.196 13.360 .001
860.196 1.000 860.196 13.360 .001
860.196 1.000 860.196 13.360 .001
273.253 1 273.253 4.244 .047
273.253 1.000 273.253 4.244 .047
273.253 1.000 273.253 4.244 .047
273.253 1.000 273.253 4.244 .047

2124.738 33 64.386
2124.738 33.000 64.386
2124.738 33.000 64.386
2124.738 33.000 64.386

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Within-Subjects Factors

Measure: MEASURE_1

blnccomp
t2nccomp

session
1
2

Dependent
Variable

 
 

Descriptive Statistics

81.2124 5.44771 36

81.7563 7.22218 36

baseline neurocom
compsite
test session 2
neurocom composite

Mean Std. Deviation N

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

263.112 1 263.112 12.754 .001
263.112 1.000 263.112 12.754 .001
263.112 1.000 263.112 12.754 .001
263.112 1.000 263.112 12.754 .001
182.740 1 182.740 8.858 .005
182.740 1.000 182.740 8.858 .005
182.740 1.000 182.740 8.858 .005
182.740 1.000 182.740 8.858 .005

.651 1 .651 .032 .860

.651 1.000 .651 .032 .860

.651 1.000 .651 .032 .860

.651 1.000 .651 .032 .860
680.757 33 20.629
680.757 33.000 20.629
680.757 33.000 20.629
680.757 33.000 20.629

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
session

session * cov3

session * cov4

Error(session)

Type III Sum
of Squares df Mean Square F Sig.
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Effects of High and Low Impact Magnitudes on Concussion Measures in Collegiate 

Football Players 

    

 

  Context: Concussion remains a topic of interest for sports medicine professionals. There is 

speculation that high-magnitude impacts result in concussive injuries. It has been speculated 

that a theoretical injury threshold for mild traumatic brain injuries of 98 g exists. 

  Objective: To investigate how balance and neurocognitive performance are affected by 

head impacts exceeding a theoretical injury threshold in the absence of self-reported 

symptoms.  

  Design: Participants completed a series of balance and neuropsychological tests using a 

double-blind, repeated measures design.  

  Settings: Sports Medicine Research Laboratory.  

  Patients or Other Participants:  Forty-three Division I collegiate football players.  

  Interventions: Subjects participated in three test sessions (baseline, low-impact, and high-

impact) separated by at least two weeks.  Participants were selected for participation based 

on the magnitudes of the head impacts they sustained in a given practice or game session.  

  Main Outcome Measure(s): The Head Impact Telemetry (HIT) System was used to record 

real-time head impacts sustained in practices and games.  The Automated 

Neuropsychological Assessment Metrics (ANAM) was used to assess neurocognitive 

performance.  The NeuroCom Sensory Organization Test (SOT) was used to assess postural 

stability.  The Graded Symptom Checklist (GSC) was used to assess symptom presence and 

severity in our participants.   
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  Results: Significant differences were found in the low test conditions (F(1,36)=.8.677, 

p=.006) for SOT vestibular scores, whereby the score improved after the low impact 

magnitude testing.  In addition, the composite score (F (1,36) = 12.754, p=.001) for the low 

impact condition increased when compared to the baseline measures.  No differences were 

found among any other conditions for SOT ratio scores. Observable improvements in the 

math processing subtest of ANAM (F1,24=17.04, p<.001); (F1,36=10.584, p=.003); simple 

reaction time (F(1, 36)=6.012, p=.02), code sub 9 (F(1, 36)=4.836, p=.035) and memory search 6 

(F(1, 36)=.5.402, p=.026) were likely attributed to a learning effect. No differences were 

observed in any other ANAM subtest, or for the GSC severity score or the number of 

symptoms endorsed. 

  Conclusions: Our findings suggest that sustaining an impact greater than 100 g does not 

result in acute observable balance and neurocognitive deficits within 24 hours of sustaining 

the impact. Although previous studies have suggested a theoretical injury threshold, none 

have been founded on empirical data collected in real-time on the playing field. Future 

studies should consider the cumulative effects of impacts of varying magnitudes.  

  Key Words:  mild traumatic brain injury, head impact telemetry system, concussive injury 

threshold, concussion 
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INTRODUCTION 

    Mild traumatic brain injuries are of growing concern throughout competitive sports.  A 

mild traumatic brain injury (MTBI) is defined as a traumatically induced alteration in neural 

function that may or may not involve loss of consciousness.(Collins, Grindel et al. 1999)  

Despite the amount of research being conducted in the field of sports-related MTBI, much is 

still unknown about the injury.  An estimated 300,000 sports-related MTBI’s are reported 

each year in the United States among children, adolescents, and young adults.(1997)  

Published research has promoted improvements in equipment, and changes in rules have 

been introduced in an attempt to reduce the incidence of MTBI among a continually growing 

athletic population.(Mueller 2001)  Despite the improvements to facial and head protection, 

and the implementation of new rule changes, the number of athletes that sustain MTBI’s 

remains high throughout athletics.(McCrea, Guskiewicz et al. 2003) 

    There is arguably no gold standard for managing MTBI.  Over 20 grading scales and 

return to play guidelines have been presented in the literature, although none have been 

empirically supported.  American football, often categorized as a high risk contact sport, is 

one of the most commonly studied sports in the sports-related MTBI research model since 

athletes have a relatively high incidence of MTBI’s.  Players repeatedly sustain impacts to 

the head that are comparable to those sustained in car crashes.(Zhang, Yang et al. 2004)  

Many MTBI’s are underreported and younger athletes are less likely to report his or her 

symptoms to the certified athletic trainer entrusted with his or her immediate care.(Collins 

and Hawn 2002)  This is due to a number of factors that vary with both sport and athlete.  

Preventing fatalities from MTBI has always been a goal of the medical field.  A need for 

exploring new methods of better monitoring the impacts an athlete may sustain during 
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participation remains an area of much interest in the sports medicine community.  Thus, there 

is still much to be learned regarding exactly how the impacts that a football athlete sustains 

on a daily basis affects the brain.  Although laboratory testing of head impact biomechanics 

has become quite advanced, athletic environments offer a rich opportunity for collecting data 

on large numbers of head impacts sustained by many players.  Without this knowledge, 

clinicians must often resort to the self-report of symptoms by their athletes.   

    Although a number of symptoms typically follow a MTBI, these symptoms might not 

present immediately; they often manifest 24 hours after the initial impact suffered.  By 

further examining the location, duration, and magnitude of impacts that football players are 

sustaining on a daily basis, it has been suggested that the medical personnel will be able to 

provide better medical care to the athlete in terms of the immediate recognition of injury and 

the effects it may have on the body.  Much is still unknown about the clinical manifestations 

observed in athletes following measurable impacts greater than previously reported injury 

thresholds.   

    The primary purpose of this study was to compare measures of balance performance and 

neurocognitive function at baseline to those obtained after the participant had sustained an 

impact to the head with a magnitude of linear acceleration greater than 100 g.  The secondary 

purpose of this study was to compare the measures of balance and neurocognitive function at 

baseline to those obtained after the participant had sustained an impact to the head with a 

magnitude of linear acceleration less than 70 g.  The overall objective was to observe if there 

were acute effects of magnitude of head impacts in the participants’ balance and 

neurocognitive performance in the absence of self-reported symptoms. 
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METHODS  

Participants 

     Forty-three Division I male collegiate football players (20.74 ± 1.62 years old; 110.29 ± 

15.78 kg, 73.41±     cm) were initially enrolled in this study.  Subsequently, 24 players were 

used in the comparison of scores between impacts greater than 100 g and baseline, while 38 

completed testing in the less than 70 g and baseline comparison.  Our sample included a 

variety of playing positions such as: defensive linemen (DL), offensive linemen (OL), wide 

receivers (WR), linebackers (LB), offensive backs (OB), and defensive backs (DB).  Subjects 

had no medical conditions or injury to the lower extremity within six weeks of testing that 

may have affected their ability to perform balance tasks.  Participants were required to fill out 

a medical health history questionnaire.  Exclusion criteria included previously diagnosed 

head injury within the last six months, or having a current vestibular, visual, or balance 

disorder.  Participants underwent baseline testing prior to the start of the season.  The 

participants were given a packet with information about the study and what it entailed.  All 

subjects signed the appropriate informed consent form that was approved by the university’s 

institutional review board. 

Instrumentation 

Head Impact Telemetry (HIT) System  

    In order to isolate players who had sustained a given impact magnitude, we used the Head 

Impact Telemetry (HIT) System (Riddell Corp.; Elyria, OH). The HIT System obtained data 

from accelerometer units comprised of six spring-mounted single-axis accelerometers 

embedded in Riddell VSR-4 and Revolution football helmets (Riddell Corp.; Elyria, OH).  

The signal transducer was linked to a laptop computer in the Sideline Response System via 
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radiowave transmission (903-927 MHz).  The information was stored on an onboard memory 

system (up to 100 impacts) or was immediately transferred to the laptop computer system (8 

bit, 10000 Hz/channel).  The HIT System has the ability to simultaneously monitor a total of 

64 players.  The downloaded impacts were then processed through a validation algorithm; 

variables such as peak head linear acceleration, impact location, Gadd Severity Index (GSI), 

Head Injury Criteria (HIC), sagittal and lateral peak rotational acceleration, were computed.  

The HIT System was previously validated in laboratory testing with Hybrid dummies 

equipped with football helmets. (Padgaonkar AJ 1975; DiMasi 1995; Duma, Manoogian et 

al. 2005)  

Sensory Organization Test 

    The Sensory Organization Test (SOT; NeuroCom International Inc.; Clackamas, OR) was 

used to assess participants’ balance performance during preseason baseline screening, and in 

both follow-up test sessions.  The SOT is able to assess balance performance by disrupting 

input from the visual, vestibular, and somatosensory systems.  The participants stood with 

feet shoulder width apart on the force platform with arms comfortably at both sides.  

Participants were asked to complete three 20-second trials of six different sensory conditions 

in random order.  The six testing conditions were as follows:  normal vision and normal 

support surface, eyes closed with normal support surface, sway-referenced visual input with 

normal support surface, normal vision and sway referenced support surface, eyes closed and 

sway referenced visual and support surface.  The outcome measures represented how much 

that particular component (visual, vestibular, somatosensory) is contributing to the overall 

composite score.     

Automated Neuropsychological Assessment Metrics 
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    Participants were tested using the Automated Neuropsychological Assessment Metrics 

(ANAM) battery to assess neurocognitive performance.  This computerized test battery 

consists of seven modules that include the follow: Simple Reaction Time 1 (SRT1), Simple 

Reaction Time 2 (SRT2), Math Processing (MTH), Match to Sample (MTS), Sleep Scale 

(SLP), Procedural Reaction Time (PRT), Code Substitution 9 (CS9), Memory Search 6 

(MS6).  Although the order by which the modules are presented to the participant remain 

constant, the stimuli in each of the modules is randomly presented in follow-up test sessions 

to limit practice effects.   

Graded Symptom Checklist 

    The Graded Symptom Checklist (GSC) is a self-report symptom scale that assesses the 

presence of 18 concussion-related symptoms and severity using a seven-point Likert scale 

ranging from asymptomatic (0), to mild (1), to severe (6).  During our baseline evaluation, 

participants were instructed to rate the severity of any symptom they reported feeling at least 

three times per week over the course of the summer preceding the baseline test session.  

During follow-up test sessions, the participants were asked to rate the severity of their 

symptoms based on what they felt at the time of testing.      

Procedures 

    This was a double-blind, randomized study.  The primary investigator was blinded from 

the test condition and the test results until the completion of the study.  The participants were 

blinded from under which condition they were being tested.  The primary investigator 

performed the testing for all preseason baseline screening and follow-up test sessions.  One 

of the co-investigators (JPM) identified players to be tested after a given practice or game, 

but blinded the PI for which condition they were being tested.  Once the season was 

 163



complete, clinicians trained in the evaluation of the tests interpreted the results.  Random test 

administration order occurred during this study to remove possible effects of testing order.  

The procedures used for the preseason baseline evaluation and those used for follow-up test 

sessions are detailed below. 

Preseason Baseline Evaluation 

    Subjects were seated in a quiet room in order to perform the computerized 

neuropsychological testing using the ANAM battery.  This testing procedure, consisting of 

seven modules, took about 20 minutes to complete.  Balance performance was measured 

using the Sensory Organization Test (SOT).  Directions were verbally recited to the athlete 

by the examiner prior to the start of test administration.  The participant was asked to stand as 

motionless as possible in normal stance for each trial with feet shoulder width apart.  Testing 

lasted approximately 10 minutes.  A Graded Symptom Checklist was also completed by the 

athlete in which he reported and rated any symptom he experienced at the time of test 

administration.   

Post Impact Evaluation 

    Post impact sessions began two weeks after the start of preseason camp and continued 

until the completion of the fall season and resumed in the spring season to reach the desired 

number of subjects.  As stated earlier, athletes were identified by the co-investigator (JPM) 

based on the impacts they had sustained during a given practice or game.  The co-investigator 

targeted athletes that met one of the following criteria: they had sustained at least one impact 

greater than 100 g, or they had sustained no impacts greater than 70 g.  Testing session order 

was randomized among the population.  Testing procedures performed during the preseason 

baseline screening were repeated within 24 hours of the end of the given practice or game.  
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The athletes were instructed to place their GSC into an envelope in order to blind the 

investigators from this information.  Each test session lasted approximately 40 minutes to 

complete and, once again, the order in which the participant completed the various tests was 

randomized.  Once an athlete had been tested under one condition, they were not targeted for 

the other condition for a period no less than two weeks.   

Data Reduction and Analysis 

    Outcome measures obtained from the SOT included an overall balance composite, as well 

as ratio scores related to somatosensory, visual, and vestibular performance.  Each outcome 

measure was taken from the computer printout.  The ANAM yielded throughput scores for 

each of the individual test modules which were taken from the database on the computer.  

The GSC was analyzed for both the total symptom score and the number of symptoms 

reported.  The total symptom score was obtained by summing all the individual symptom 

scores in the GSC and the number of symptoms was obtained as well.  

    In order to answer our first research question, we performed a within-subject repeated 

measures analysis of covariance (ANCOVA) on each outcome measure while covarying for 

the number of impacts greater than 70 g the participant had sustained since the beginning of 

the season and within the seven days leading up to the session in which they sustained an 

impact greater than 100 g.  Other repeated measures ANCOVA, while controlling for the 

same two covariates, were performed on our outcome measures in order to assess the second 

research question.  An alpha level of .05 was set prior to analysis and data was analyzed 

using SPSS for Windows Version 13.0 (SPPS, Inc.; Chicago, IL). 
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RESULTS 

    A total of 43 Division I collegiate football players completed the baseline and at least one 

follow-up test session: 24 participants completed the high testing condition and 36 

participants completed the low testing condition. Twenty-two participants were able to 

complete both testing conditions.  The results we observed for measures of balance 

performance, neurocognitive function, and symptomatology are detailed below.  

Balance Performance 

    Results from our balance performance assessment are provided in Table 4.  In assessing 

our first research question, we did not find any statistically significant differences in balance 

performance scores following an impact of 100 g.  This was true for all our outcome 

measures, including an overall composite score (F(1, 24)=.015, p=.905), somatosensory (F(1, 

24)=.065 p=.801), vestibular (F(1,24)=.126, p=.727), and visual (F(1,24) = .101, p=.754) ratios.  

For our second research question, a statistically significant increase was observed for the 

vestibular ratio (F(1,36)=8.677, p=.006) and the composite ratio (F(1, 36)=12.754, p=.001). 

There were no observable differences in the overall, somatosensory (F(1,36)=1 p=.325), and 

visual (F(1, 36) = 4.052, p=.052) ratios.  
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Figure 1. Low Impact Vestibular SOT scores vs. Pre-season baseline. 
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Figure 2.  Low Impact Condition SOT Composite Scores versus Pre-season baseline. 
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Neurocognitive Performance 

    Following an impact greater than 100 g, we observed a statistically significant difference 

from baseline in the MTH module of ANAM (F1,24=17.04, p<.001) (Figure 1).  In response to 

our first research question, there were no other observable differences in the ANAM 

modules: SRT1 (F(1, 24)=.492, p=.491), SRT2 (F(1, 24)=.009, p=.927), MSP (F1, 24=.498, 

p=.488), PRT (F(1, 24)=1.43 p=.245), CS9 (F(1, 24)=.027, p=.87), and MS6 (F(1, 24)=.087, 

p=.771).  Following a session where a head impact no greater than 70 g was sustained, 

statistically significant differences in the MTH (F1,36=10.584, p=.003), SRT1 (F(1, 36)=6.012, 

p=.02), CS9 (F(1, 36)=4.836, p=.035), and MS6 (F(1, 36)=5.402, p=.026) modules of ANAM 

were observed.  No observable differences, in response to our second research question, were 

observed for the SRT2 (F(1, 36)=.943, p=.338), MSP (F1, 36=2.129, p=.154), and PRT (F(1, 

36)=.758 p=.39) modules of ANAM.  Finally, there were no differences observed with the low 

condition comparison SS (F(1, 36)= 3.77, p=.061), a subjective measure of cognitive fatigue 

assessed at the end of the ANAM testing protocol.   
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High Impact Condition: Math Processing 
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Figure 3.  High impact condition math processing module scores versus preseason baseline. 
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Figure 4.  Low impact condition simple reaction time module versus preseason baseline.  
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Low Impact Condition: Math Processing
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Figure 5.  Low impact condition math processing module versus preseason baseline. 
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Figure 6.  Low impact condition code substitution 9 module versus preseason baseline. 
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Low Impact Condition: Memory Search 6
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Figure 7.  Low impact memory search module versus preseason baseline. 

 

 

Symptomatology 

    Two subcomponents of the graded symptom checklist were analyzed, the total number of 

symptoms reported (F (1, 24) =3.540, p=.075), (F (1, 36) =1.4, p=.245) and the total severity of 

symptoms reported (F (1, 24) =.209, p=.652), (F (1, 36) =.001, p=.977) (Figure 10).  The data 

analysis revealed the scores were relatively similar among the testing conditions and there 

were no statistically significant differences present. 
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DISCUSSION 

    The purpose of this study was to examine the effects of impact magnitude on the 

immediate performance of balance, neuropsychological functioning and symptomatology 

despite the clinical diagnosis of MTBI.  This study was the first to collect real time data on 

collegiate football players and compare clinical outcome measures between high and low 

impact conditions. Finding the exact mechanism of this injury is needed in order to address 

prophylactic measures.   A number of studies have investigated various biomechanical 

aspects of concussions in football; however, the majority of these studies have been in a 

laboratory setting using hybrid dummies.  Some authors (Pellman, Zhang) have proposed an 

injury threshold, but these thresholds have not been confirmed through controlled studies.   

The first study to investigate real-time impacts in collegiate football players was conducted 

using fewer subjects than used for this study. Duma et al. reported an average linear 

acceleration of 32 ± 25 g that did not result in concussion in 38 players, whereas Pellman 

reported an average impact acceleration of 60 ± 24g in non-injured football players. Mihalik 

et al documented from data collected from the fall 2005 football season using the HIT 

System, players on average received impacts to the head around 19.46 ± 2.29g. He reported a 

maximum average impact of 199.98g with the highest impacts typically being recorded 

during practices.(Mihalik 2005)  This information combined with the findings from this 

study perpetuates the need for a better understanding of impact biomechanics during 

participation in football.  Various magnitudes have been reported in the literature to cause 

concussive injuries.  Pellman et al has reported that a suspected injury threshold of 75-90g’s 

to the head.  Duma reported 25 impacts greater than 98 g, none of whom had a concussion, 

further questioning the speculated threshold but the issue of underreporting was mentioned as 
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a possible explanation of those findings.  Pellman et al. have investigated the biomechanics 

of improved helmet structures, biomechanics of the striking player and the results of 

concussion. These studies have been conducted in the laboratory and have limited field 

relevance. (Pellman 2003; Pellman, Viano et al. 2003; Pellman, Viano et al. 2003; Pellman, 

Lovell et al. 2004; Pellman, Powell et al. 2004; Pellman, Viano et al. 2004; Pellman, Viano et 

al. 2004; Newman, Beusenberg et al. 2005; Pellman, Viano et al. 2005)  

    This study was conducted in an attempt to determine the efficacy of using helmet 

telemetry to identify concussion and/or concussion-like signs and symptoms in the absence 

of subjective information provided by the athlete.  The results of this study revealed no major 

differences between baseline and either of the two impact magnitude conditions, thus 

refuting our research hypotheses.  In addition this study also raises questions about the 

validity and clinical significance of those studies conducted by Pellman, Zhang, and 

Newman. Questions about a much higher injury threshold are raised, as are the role other 

factors in an impact to the head might play to causing a MTBI, are raised. 

    A study conducted at Wayne State investigated an injury threshold and found that 

rotational and translational acceleration were the most important factors in the severity of the 

presence of a MTBI.  The study although not using real life subjects, rather brain models 

created with synthetic materials replicated to be just like a cadaver brain and skull, was able 

to look at the effects impacts had to the brain itself, not just the skull.  The basis of the 

threshold is gathered from a study done in the laboratory, using game film to recreate the 

impacts and on models that are not exact to the players head in the video.  The threshold was 

examined from a physiological perspective versus this study done which examined real field 

situations and effects on test measures of balance and neuropsychological functioning.  It 
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may be that the theoretical threshold speculated by Zhang et al. has effects and causes 

changes in the structure of the brain microscopically but does not effect the gross motor skills 

tested in the various MTBI batteries.  Perhaps the single measure of linear acceleration was 

not enough of a predictor, or a different predictor than the rotational and translational 

acceleration mentioned in the Wayne State study.  The linear acceleration associated with the 

combination of the rotational and translational may be significantly higher as proven by this 

study.  The suspected threshold of 98 g should be reevaluated and if the injury threshold is in 

fact much higher, than there would be no decline in the scores we gathered for balance, 

neuropsychological and symptomatology at the current level.   

 

SOT Measures 

    Balance was not largely affected by the magnitude of the impact to the head.  The low 

impact condition actually resulted in an increase in balance performance (composite and 

vestibular) when compared to baseline scores.  The visual component of the SOT in the low 

impact condition was approaching significance, thus marking an increase in balance 

performance.  However when looking at the outcome measures, the effect sizes are so small 

that the difference is negligible from a clinical perspective.  This study investigated players 

that did not self-report symptoms to the certified athletic trainer and were not clinically 

diagnosed with a concussion.  The majority of published studies have reported that balance 

performance is affected in athletes diagnosed with concussion.[20] & [21]  The increase in 

balance scores in the pool of participants that took part in the study could be for a number of 

reasons.  These participants were not clinically diagnosed with a MTBI; therefore changes 

should not be expected to be seen. The sheer magnitude of the impact the players took was 
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not of a value that it affected the various components of the vestibular and somatosensory 

system.  The studies conducted by Pellman, Zhang and Newman did not look at test 

measures as a result of the impact rather took those that were diagnosed with a MTBI and 

recreated the impact.   

    If the low impact testing condition resulted in significant improvements in balance 

performance, as a clinician, one should question the lack of improvement in the high impact 

condition.  Since random testing order occurred, it negates the effects of learning.  If it is 

natural to have an improvement on balance performance as the duration of training continues, 

then a lack of one with the high impact condition might indicate a clinical significance to the 

medical professional.   A study conducted by Mrazik et al. looked at the effects of severity of 

injury on various parametric measures and found some variation in balance testing.  There 

were no significant trends seen in the various sub-components of the SOT measures.  All 

tests were taken at least 24hrs. post injury whereas our study performed the testing within the 

first 24 hrs. of the session in which he sustained the impact. This same study found that the 

player who sustained a grade I concussion had virtually no deviation from baseline measures, 

thus confirming that the magnitude of the impact may not be the sole determinant of a MTBI. 

Neuropsychological Measures 

    Significant differences were observed between baseline and the low testing condition on 

the ANAM battery.  The most obvious decline in performance was observed for both the 

Simple reaction time-1 and Code substitution subtests, suggesting that reaction time and 

delayed memory are negatively affected following the day in which the players experienced 

no impacts greater than 70 g.  Improvements in performance observed in Procedural reaction 

time, and Memory search-6 are difficult to explain.  The inconsistencies among the change in 
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scores could have been a result of any number of unforeseen and uncontrollable variables.  

For example, similar to the SOT outcome measures, the effect size is small leading us to find 

little clinical significance.  The study conducted by Mrazik et al. as mentioned above found 

that the individual who was diagnosed with a grade I concussion actually had an 

improvement from baseline scores on the first post-injury evaluation, and the overall test 

results showed virtually no impact of the MTBI on his performance in the various tests.  In 

the other two cases of MTBI, even the more severe cases, the athlete surpassed the baseline 

measures on that particular individual.  This information suggests that balance performance 

cannot be the only factor the clinician uses to determine return to play.  Peterson et al. also 

concluded that comparing just the means of the various tests between the two groups, it 

emphasizes that return to baseline is the best indicator of return to play decisions.   

    In addition, it has been reported in the literature that learning effects are found with 

repeated use of the ANAM battery that cause perhaps a false sense of improvement in scores 

on the ANAM.(Levinson and Reeves 1997)  The study conducted by Levinson and Reeves 

had the subjects retaking the test every two to three months as opposed to the typical serial 

testing that occurs in sports medicine.  Practice effects are a valid limitation of 

neuropsychological tests.  The amount of practice effect that has been incurred depends on 

the nature of the test, the time period of testing, and how many times the subject is 

tested.(Echemendia and Julian 2001; Grindel, Lovell et al. 2001)  Practice effects can alter 

the course of action that the athlete should be receiving.  An athlete has the potential to 

improve the scores from the baseline battery due to these practice effects.  Most research has 

also shown that these practice effects are null and void after a period of two weeks but in 

some cases may last upwards of seven weeks.  This study mandated a two week ‘buffer 
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period’ to allow at least two weeks in between test session one and test session two.  This 

two week period was an effort to eliminate the practice effects experienced with ANAM.  

    In addition to the learning effect between each session, it was later found out that the 

incoming freshmen were given a similar battery to test for learning disabilities by the 

academic center.  This administration of a test of this nature further perpetuates the learning 

effect.  Other test results have been shown to discern the minute deficits in neurocognitive 

functioning that occurs with concussion.(Lovell 2002)  Different types and severity of 

concussions have been documented to have different results in symptom reporting and 

neuropsychological testing.  Echemendia et al. discussed the differences in concussions and 

how some do not disturb those parts of the brain that affect the results of neuropsychological 

tests.  Instead, the athlete may have deficits else where or be extremely symptomatic.  He 

also states that neuropsychological testing is not as sensitive as clinicians typically need it to 

be, although still represents the best tool athletic trainers have to assess deficits following 

concussion.(Echemendia and Julian 2001) 

    Another confounding variable to consider when interpreting improvements on the ANAM 

scores should be the effects of attention deficit disorder (ADD), a learning disorder which 

was prevalent in a significant percentage of our football team has been diagnosed with.  The 

variability of this learning disorder and how the outcome measures of ANAM are altered has 

historically been avoided.  The effects of this disorder may help explain why there was in 

fact an improvement.  Often athletes are medicated for ADD and typically only take their 

medicine to focus on academics.  During the summer a majority of athletes do not take their 

medication since most are taking a reduced class load, if any.  Baseline measures are taken 

during the summer, generally during that time period that the athlete is not taking the 
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prescribed medication.  Thus, when the athlete retakes the test during the season, the athlete 

is medicated and as a result, is able to better focus.  However, this gray area is one that 

warrents further study so that we might better understand the full repercussions of ADD on 

neuropsychological tests. 

    Other test results have been shown to discern the minute deficits in neurocognitive 

functioning that occurs with concussion. (Lovell 2002)  Different types and severity of 

concussions have been documented to have different results in symptom reporting and 

neuropsychological testing.  Echemendia et al. discussed the differences in concussions and 

how some do not disturb those parts of the brain that affect the results of neuropsychological 

tests. (Echemendia, Putukian et al. 2001)  Instead, the athlete may have deficits else where or 

be extremely symptomatic.  They also state that neuropsychological testing is not as sensitive 

as clinicians typically need it to be, although still represents the best tool athletic trainers 

have to assess deficits following concussion. (Echemendia and Julian 2001) 

GSC measures 

    The main purpose of this study was to see if there were deficits in balance and 

neuropsychological function in the absence of self reported symptoms.  Underreporting is a 

global problem when dealing with MTBI and looking at other ways to identify people who 

have suffered from an MTBI without their self report was of great interest to the primary 

investigator.  Our analyses had no significant differences between the two testing conditions 

and baseline with symptom reporting or severity of symptoms reported.  These players had 

received a significantly high magnitude impact to the head and even within 24 hours they 

were still symptom free relative to pre-season baseline measures.  It has been long thought 

that a hard hit to the head would result in a concussion however; this study proves that the 
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magnitude is not the only factor in predicting a concussion.  As clinicians we often rely on 

the athlete to be honest with us when dealing with a concussion and our results support the 

notion that if an athlete is symptomatic he or she will be unable to do the activity without 

having those symptoms interfere.  Therefore, there is something to be said about the 

symptom reporting by the athlete.   

    It has been stated in literature that self-reported symptoms should never be the sole 

determinant of a concussion.  Underreporting by the athletes is a problem that plagues the 

prevention of the detrimental effects suffered by a concussion.  As stated earlier, football 

players compete in a demanding and intensely physical environment where many players 

have little knowledge about the physiological reaction as a result of impacts to the head, the 

concussive cascade, and their disposition later in life as a result of repeated impacts to the 

head.(Kaut, DePompei et al. 2003)  Underreporting is a large and prominent issue in dealing 

with concussions.(Lovell and Collins 1998; Echemendia and Julian 2001; Collins and Hawn 

2002; Field, Collins et al. 2003; Kaut, DePompei et al. 2003)  The nature and environment of 

the sport breed the growing problem of underreporting.   

    Football players have become accustom to symptoms that are commonly associated with 

concussions.  Athletes learn to expect these symptoms from the nature of their sport and do 

not think it is abnormal.  Many of the athletes had difficulty distinguishing what symptoms 

were appropriate to put down because they did not feel it was due to the impact sustained, 

rather the norm of what they feel at the end of a hard practice.  One study documented ½ 

participants did not understand the correlation of symptoms to a head injury.(Kaut, 

DePompei et al. 2003)  A study done conducted by Macciocchi found the most common 

symptoms reported in concussed individuals were headache, dizziness, and memory 
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problems.(Macciocchi, Barth et al. 1996)  A study conducted by Kaut et al. found that 30% 

of athletes reported receiving a direct blow to the head that resulted in dizziness, proving to 

be the highest frequency of symptoms reported by football players (35%).  A study 

conducted by Erlanger et al reported 12 % of subject pool would not have been identified as 

having a concussion if based solely on self-reported symptoms.  He sampled a group of 

concussed athletes that underwent CRI evaluation and the scores revealed deficits in 

cognitive functioning among all the subjects.(Erlanger, Saliba et al. 2001)  

    Symptoms have been shown to resolve before balance and neurocognitive functioning had 

returned to normal.(Collins, Grindel et al. 1999; Echemendia, Putukian et al. 2001; Field, 

Collins et al. 2003) Another study found that high school and collegiate football players 

reported fewer symptoms five to seven days post concussive injury than they reported on 

their baseline measures. (Field, Collins et al. 2003)  The ability of the program to determine 

the various components of the impact such as time, location, duration, magnitude and history 

of hits to the head is important because in the future that particular information may be a key 

criteria needed to identify those players that may have suffered a concussion.  Football 

historically has been known to view loss of play due to a concussion as a sign of weakness.  

With this mentality, many inherent risks are present in this sport and with the largest number 

of participants in the world; many injuries are treated each year.   

      

Future Direction 

    With the vast technology that has and continues to be created, much more field data will 

be acquired.  With this data, researchers can learn more about the specific biomechanics of 

impacts in football to the head.  Analysis of impact location, number of impacts, previous 
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history, and position may play a significant part in determining the threshold magnitude of a 

concussion.  With more information about impacts to the head, strides will be hopefully be 

made in the prevention & return to play of concussion.  Research must determine a way to 

perfect early recognition of those players susceptible to concussive injuries.  Once the 

recognition, preventative component has been determined then research about return to play 

can be engaged.  Improvements in helmet design and tackling techniques need to be 

addressed once the research provides the data to support the efforts.  Education and getting 

the players involved is vital to further research in this area.  Throughout the course of this 

study players had little interest or desire to take part in a study that would benefit them based 

on their participation.  Football players underreport concussions because of the seriousness 

with which the medical staff appoints to them, however, the players make no effort to learn 

how to avoid getting a concussion in the first place.  The more research that is done in the 

field on actual football players versus those tests done in the laboratory, the more athletic 

trainers can educate their athletes.   

Limitations 

    Due to time conflicts, subject compliance and injuries suffered throughout the season, not 

all 43 players that were baselined were able to complete both test conditions.  Throughout the 

data analysis many measures were approaching significance but perhaps due to the small 

sample size, that significance was not reached.   

    The 16-24 hour window in which the players were tested was possibly not early enough to 

identify deficits that would have been present immediately after the impact. However, as 

previously stated, underreporting is extremely frequent in football thus; a majority of players 

would not have reported their symptoms to the ATC until the next day.  Due to the desire to 
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replicate a realistic situation in the field, the time window in which the testing was done in 

was clinically practical.  At the University of North Carolina- Chapel Hill, the normal 

protocol for testing concussed athletes is to wait till they are at least asymptomatic.  The 

earliest that would typically occur is 16- 24 hours of the impact.   

    Much is unknown about many components of concussions and the concept of an injury 

threshold existing is speculation.  The results from this study raise more questions as to what 

other important components must be analyzed to see how the “pieces of the puzzle” in the 

mechanism of injury for a concussion fits together.   

 Clinical Significance 

    This study has resulted in new and important information regarding the most predictive 

factor of an impact that results in a MTBI.  This was the first field study to really examine the 

theoretical concussive injury threshold in actual live subjects in real-time situations on 

various concussion testing protocol.  Surprisingly, there were little to no acute deficits seen 

after an impact greater than a 100 g to the head and improvements seen in testing parameters 

with impacts below 70 g.  The results on the neuropsychological battery support the 

statement that there need not be a deficit in scores from baseline to indicate a MTBI, rather 

an absence or reduction of learning effects can be just as conclusive that the subject has a 

concussion.  The finding on the symptomatology emphasizes the importance of the athletes’ 

self-reported symptoms.  If the athlete receives a high magnitude impact and does not have 

any symptoms associated with a concussion, then we are less likely to assume that he or she 

has in fact suffered a concussion.  The clinician should make an effort to inquire about 

symptoms with an athlete who has taken a ‘hard hit’ not just immediately but within 24 hours 

of the impact.  The findings with the balance scores support evidence in the literature that the 

 182



vestibular and visual components of balance are the most sensitive to head trauma and will 

be the first to show changes in score.  As clinicians, if a MTBI is suspected and sophisticated 

technology is unavailable than giving the athlete a task that challenges the visual and 

vestibular components of balance should aid in the assessment of MTBI.   

   Anecdotally, there have been several cases in which players have been diagnosed with 

concussion after a moderate impact magnitude (approximately 60-70 g). Three players in 

particular have received impacts below the 98 g threshold.  These particular cases illustrate 

that the theoretical concussive injury threshold is not the sole predictor of injury as 

previously speculated and many other factors may play a role in the effect of the magnitude 

impact on causing a concussive injury.  

    Contrary, we have had numerous players receive a plethora of impacts with a magnitude 

greater than 100 g that have had no clinical symptoms of a MTBI.  This study highlighted the 

clinical evidence that there were no statistically significant decreases in the various outcome 

measures that is used to help solidify the diagnosis of a MTBI.  Bleiberg concurs with 

Collins that cognitive deficits as a result of a MTBI not always need to be in the form of a 

decrease in scores when compared to baseline scores but rather an absence or reduction of 

practice effects in the various outcome measures. (Bleiberg, Cernich et al. 2004)  This study 

does support the notion that a lack of practice effects may signify a deficit due to the impact 

magnitude.  However, having said that and looking back at the anecdotally evidence, 

magnitude may not be the sole predictor of the mechanism of concussions.   

    Examining the frequency of impacts that had a magnitude greater than 100 g, one can 

conclude it is very diminutive.  The majority of the impacts sustained by the football players 

in this study were well concentrated in the lower ranges of impact magnitudes.  Nearly ninety 
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percent of the impact magnitudes recorded over the time period of the study ranged from 10 

g- 70 g.  This range should alert the certified athletic trainer that a majority of the impacts 

players receive are not of the higher accelerations (>80-100 g) believed to cause concussion.   
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Figure 8.  Sensory Organization Test conditions. 
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Table1. Means (±SD) compared between pre-season baseline and high impact testing condition (n=24) 

Outcome Measure Baseline High-Impact F 
p-

value 
Effect 
Size 

Simple reaction time-1 237.34 ± 35.93 248.38 ± 29.89 0.492 0.491 0.31
Simple reaction time-2 230.76±46.38 229.94±50.61 0.009 0.927 0.017
Math processing* 20.58±5.99 23.56±7.24 17.04 0.001* 0.5
Matching to sample 40.3135±13.99 43.56±14.49 0.498 0.488 0.23
Sleep Scale* 3.0417±1.55 3.79±1.69 6.52 0.019* 0.48
Procedural Reaction Time 84.85±17.66 99.77±28.35 1.43 0.245 0.84
Code Sub 9 51.91±11.21 53.40±7.77 0.027 0.87 0.13
Memory Search 6 81.11±13.60 85.02±17.83 0.087 0.771 0.29
Total # of symptoms 
reported 1.65±2.06 3.04±2.76 3.54 0.075 0.67
Total symptom score 4.04±5.96 5.22±5.89 0.209 0.652 0.2
Somatosensory 96.69±2.62 98.18±4.26 0.065 0.801 0.57
Visual 92.10±5.65 90.08±11.19 0.101 0.754 0.36
Vestibular 78.07±10.89 77.99±11.02 0.126 0.727 0.007
Composite 81.34±5.65 80.10±7.66 0.015 0.905 0.22

 
 
 
* Indicates significance at the .05 level
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Table 2. Means (±SD) compared between pre-season baseline and low impact testing condition (n=24) 

Outcome Measure Baseline Low-Impact F 
p-

value 
Effect 
Size 

Simple Reaction Time 1* 238.89±33.57 252.92±28.27 6.012 0.020* 0.42
Simple Reaction Time 2 233.35±42.34 237.01±33.72 0.943 0.338 0.45
Math Processing* 20.45±6.11 22.63±6.61 10.584 0.003* 0.36
Match To Sample 40.49±13.39 47.85±13.21 2.129 0.154 0.55
Sleep Scale 2.97±1.66 3.06±1.41 3.77 0.061 0.05
Procedural Reaction Time 88.50±17.58 97.27±23.16 0.758 0.390 0.5
Code Sub 9* 51.65±11.40 55.38±9.59 4.836 0.035* 0.33
Memory Search 6* 79.10±16.95 89.72±19.11 5.402 0.026* 0.63
Total # symptoms 
reported 1.81±2.44 2.61±2.567 1.4 0.245 0.33
Total symptom score 3.92±6.583 4.03±4.582 0.001 0.977 0.02
Somatosensory 97.09±2.83 96.03±3.50 1 0.325 0.37
Visual 92.02±6.19 90.05±10.88 4.052 0.052 0.32
Vestibular* 76.92±11.52 79.80±8.82 8.677 0.006* 0.25
Composite* 81.21±5.45 81.76±7.22 12.754 0.001* 0.1

 

 

* Indicates significance at the .05 level. 
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Figure 9.  Frequency of impact magnitudes over the testing period. 
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LEGEND TO FIGURES 

 

Figure 1: Low impact condition ratio scores versus preseason baseline ratio scores for 

vestibular component. * indicates significance at the .05 level.  

Figure 2: Low impact condition ratio score versus preseason baseline ratio scores for 

composite component.  * indicates significance at the .05 level. 

Figure 3:  High impact throughput score versus preseason baseline throughput scores for 

math processing on ANAM.  * indicates significance at the .05 level. 

Figure 4:  Low impact throughput score versus preseason baseline throughput scores for 

simple reaction time 1 on ANAM.  * indicates significance at the .05 level. 

Figure 5:  Low impact throughput scores versus preseason baseline throughput scores for 

math processing on ANAM.  * indicates significance at the .05 level. 

Figure 6:  Low impact throughput scores versus preseason baseline throughput scores for 

code substitution on ANAM.  * indicates significance at the .05 level. 

Figure 7:  Low impact throughput scores versus preseason baseline throughput scores for 

memory search 6.  * indicates significance at the .05 level. 

Figure 8: 6 conditions of the Sensory Organization Test (NeuroCom)  

Figure 9: Frequency of impact magnitudes over testing period.  
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