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ABSTRACT

Ran Tao: Designs and Analysis of Two-Phase Studies, with Applications to Genetic
Association Studies

(Under the direction of Danyu Lin and Donglin Zeng)

The two-phase design is a cost-e�ective sampling strategy when investigators are inter-

ested in evaluating the e�ects of covariates on an outcome but certain covariates are too

expensive to be measured on all study subjects. Under such a design, the outcome of inter-

est and the covariates that are inexpensive to measure are observed for all subjects during

the �rst phase, and the �rst-phase information is used to select subjects for measurements

of �expensive covariates� during the second phase. This design greatly reduces the cost asso-

ciated with the collection of expensive covariate data and thus has been widely used in large

epidemiological studies.

In two-phase studies, if the second-phase selection depends on multiple outcomes, then

one should consider all of them simultaneously in a multivariate regression model in order to

obtain valid inference. We develop an e�cient likelihood-based approach to making inference

under multivariate outcome-dependent sampling. We implement a computationally e�cient

expectation-maximization algorithm and establish the theoretical properties of the resulting

maximum likelihood estimators. We demonstrate the superiority of the proposed methods

over standard linear regression through extensive simulation studies. We provide applications

to two large-scale sequencing studies.

In two-phase studies, the �inexpensive covariates� can be used to improve the design

e�ciency of second-phase sampling and control for confounding. However, accommodat-

ing continuous inexpensive covariates that are correlated with expensive covariates is very
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challenging because the likelihood function involves the conditional density functions of ex-

pensive covariates given continuous inexpensive covariates. We develop a semiparametric

approach to regression analysis by approximating the conditional density functions with

B-spline sieves. We establish the theoretical properties of the resulting estimators. We

demonstrate the superiority of the proposed methods over existing ones through extensive

simulation studies. We provide applications to a large-scale whole-exome sequencing study.

Previous research on two-phase studies has largely focused on the inference procedures

rather than the design aspects of two-phase studies. An important topic of investigation is

the optimal study design when the primary interest is to estimate the regression coe�cients

of the expensive covariates. We derive optimal two-phase designs, which can be substantially

more e�cient than the current designs.
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CHAPTER 1: INTRODUCTION

In epidemiological studies, the outcomes of interest (e.g, anthropometry measurements,

lipids levels, or disease status) and demographical and environmental variables (e.g., age,

gender, and smoking status) are typically available for all subjects. However, the covariates

of main interest often involve genotyping, biomarker assay, or medical imaging and thus are

prohibitively expensive to measure for all subjects, especially in a large study. If disease

status or another discrete outcome is of primary interest, then the case-control design with

an equal number of cases and controls is the most e�cient one (Scott and Wild 1997). If a

continuous outcome such as height is of primary interest, then a cost-e�ective strategy is the

�extreme-tail� sampling design, whereby one selectively measures the �expensive covariates�

only for subjects with extreme values of the primary outcome measure (Lin et al. 2013). In

either case, the e�ciency of the design can be improved by stratifying on the �inexpensive

covariates�.

The case-control and extreme-tail sampling designs can be viewed as special cases of

the two-phase, outcome-dependent sampling design, which was �rst introduced by White

(1982). In the �rst phase of such a design, the outcomes of interest and inexpensive covari-

ates are observed for all study subjects; the information collected during the �rst phase is

then used to determine which subjects to include for measurements on expensive covariates

during the second phase. This design greatly reduces the cost and other practical burdens

associated with the collection of expensive covariate data and thus has been widely used in

large epidemiological studies.

One recent example of the two-phase design is the National Heart, Lung, and Blood

1



Institute (NHLBI) Exome Sequencing Project (ESP), where 4494 subjects from seven cohorts

were selected for whole-exome sequencing (Lin et al. 2013). Among these subjects, 659, 806,

and 657 were selected because of extremely high or low values of body mass index (BMI),

blood pressure (BP) adjusted for age, gender, race, BMI, and anti-hypertensive medication,

and low-density lipoprotein (LDL) adjusted for age, gender, race, and lipid medication,

respectively.

In this dissertation, we develop novel statistical methods to solve problems arising in

the design and analysis of two-phase studies, and provide applications to genetic association

studies. The outline is as follows. In Chapter 2, we conduct a comprehensive literature

review on existing methods for the designs and analysis of two-phase studies. In Chapter

3, we develop an e�cient likelihood-based approach to making inference under multivariate

outcome-dependent sampling. In Chapter 4, we develop e�cient semiparametric inference

procedures for general two-phase studies. In Chapter 5, we study optimal two-phase designs

and point out some future directions.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Let Y denote the outcome of interest, X denote the vector of expensive covariates that

is measured on a fraction of subjects in the study, Z denote the vector of inexpensive co-

variates that is potentially correlated with X, and W denote the vector of inexpensive

covariates that is known to be independent of X given Z. The data (Y,X,Z,W ) are as-

sumed to be generated from the joint distribution Pθ(Y |X,Z,W )P (X|Z)P (Z,W ), where

Pθ(Y |X,Z,W ) is a parametric regression model indexed by parameter θ, P (X|Z) is the

conditional distribution of X given Z, and P (Z,W ) is the joint distribution of Z andW .

Under the two-phase design, (Y,Z,W ) is measured for all n subjects in the �rst phase,

and X is measured for a sub-sample of size n2 in the second phase. Let R indicate, by the

values 1 versus 0, whether the subject is selected for the measurement of X in the second

phase or not. The key assumption for any two-phase design is that the distribution of R

depends on (Y,X,Z,W ) only through the �rst-phase data (Y,Z,W ). Under this assump-

tion, the data on X are missing at random, such that the sampling indicators (R1, . . . , Rn)

can be omitted from the likelihood function when estimating θ. Thus, the observed-data

likelihood takes the form

n∏
i=1

{
Pθ(Yi|Xi,Zi,Wi)P (Xi|Zi)

}Ri
{

log

ˆ
Pθ(Yi|x,Zi,Wi)P (x|Zi)dx

}1−Ri

. (2.1)

In this chapter, we �rst review existing methods developed for regression analysis of

two-phase studies with a single outcome. These methods are classi�ed into two categories
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depending on whether they used the �rst-phase information for subjects not selected during

the second-phase or not. Then, we review existing methods for multiple outcomes. Finally,

we review existing literature on design e�ciencies of two-phase studies.

2.2 Methods for Analyzing Two-Phase Studies with a Single Outcome

2.2.1 Methods Using Second-Phase Subjects Only

If the �rst-phase information is not available for subjects not selected during the second

phase, then the resulting likelihood is

∏
i:Ri=1

P (Yi,Xi|Zi,Wi, Ri = 1)

=
∏
i:Ri=1

Pθ(Yi|Xi,Zi,Wi)P (Xi|Zi)P (Ri = 1|Yi,Zi,Wi)

P (Ri = 1|Zi,Wi)
, (2.2)

where P (R = 1|Z,W ) =
´
Pθ(y|x,Z,W )P (x|Z)P (R = 1|y,Z,W )dxdy. We can also

write down a conditional likelihood that does not involve P (x|Z):

∏
i:Ri=1

P (Yi|Xi,Zi,Wi, Ri = 1) =
∏
i:Ri=1

Pθ(Yi|Xi,Zi,Wi)P (Ri = 1|Yi,Zi,Wi)

P (Ri = 1|Xi,Zi,Wi)
, (2.3)

where P (R = 1|X,Z,W ) =
´
Pθ(y|X,Z,W )P (R = 1|y,Z,W )dy. Note that when both

the outcome and inexpensive covariates are discrete, one can show that expression (2.3)

is the semiparametric pro�le likelihood of θ obtained from expression (2.2) by using the

maximization process employed in Wild (1991) and Scott and Wild (1997).

Estimators Based on the Prospective Likelihood

If the second-phase sampling is completely random or depends on the inexpensive co-

variates (Z,W ) only, then P (Ri = 1|Yi,Zi,Wi) = P (Ri = 1|Zi,Wi). Therefore, P (Ri =
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1|Yi,Zi,Wi) and P (Ri = 1|Zi,Wi) cancel out in the numerator and denominator of expres-

sion (2.3), and it is e�cient to base inferences about θ on the prospective likelihood

∏
i:Ri=1

Pθ(Yi|Xi,Zi,Wi). (2.4)

If there are no inexpensive covariates (Z,W ) and the second-phase sampling depends

on a binary outcome, Anderson (1972) and Prentice and Pyke (1979) showed that standard

logistic regression based on the prospective likelihood (2.4) gives valid inferences for all re-

gression coe�cients except for the intercept. In fact, Prentice and Pyke (1979) showed that

the prospective likelihood (2.4) is the pro�le likelihood of θ based on the conditional likeli-

hood (2.2) with the marginal distribution of X maximized out nonparametrically. Unfortu-

nately, this feature does not carry over to arbitrary regression models in general two-phase,

outcome-dependent sampling studies. If the second-phase sampling depends on the outcome

of interest, then estimators based on expressions (2.4) are generally biased.

Maximum Semiparametric Empirical Likelihood Estimator

When the outcome is continuous but the second-phase selection depends on a small

number of strata, Zhou et al. (2002) proposed a maximum semiparametric empirical likeli-

hood estimator based on maximizing expression (2.2). Suppose that the domain of Y can

be partitioned into K mutually exclusive and exhaustive strata by the known constants

−∞ = a0 < a1 < · < aK−1 < aK = ∞. A simple random sample of size nk is drawn from

the kth stratum (k = 1, . . . , K) during the second phase. Assuming further that there are

no inexpensive covariates, the conditional likelihood (2.2) can be rewritten as

K∏
k=1

nk∏
j=1

Pθ(Ykj|Xkj)P (Xkj)

F (ak)− F (ak−1)

=
K∏
k=1

nk∏
j=1

Pθ(Ykj|Xkj)

F (ak|Xkj)− F (ak−1|Xkj)

K∏
k=1

nk∏
j=1

P (Xkj)
F (ak|Xkj)− F (ak−1|Xkj)

F (ak)− F (ak−1)
, (2.5)
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where (Ykj,Xkj) is the data for the jth subject in the kth stratum (k = 1, . . . , K, j =

1, . . . , nk), F (u) = P (Y ≤ u), and F (u|X) = P (Y ≤ u|X). To estimate θ, Zhou et al.

(2002) �rst pro�led the likelihood function (2.5) by �xing θ and obtaining the empirical

likelihood function of P (X) over all distributions whose support contain the observed X

values. They then maximized the resulting pro�le likelihood function with respect to θ.

Weighted Estimators

If every study subject have a positive probability of being selected during the second

phase, then the Horvitz-Thompson approach (Horvitz and Thompson 1952) commonly used

in survey sampling can be adopted (Hsieh et al. 1985, Scott and Wild 1986, Kalb�eisch and

Lawless 1988, Zhao and Lipsitz 1992, Whittemore 1997). If all variables had been fully ob-

served for all n subjects, then the log-likelihood function would be
∑n

i=1 logPθ(Yi|Xi,Zi,Wi).

An estimate of this quantity is obtained if we use the completely observed units only and

weight their contributions inversely according to their probability of selection, i.e.,

n∑
i=1

Ri

πi
logPθ(Yi|Xi,Zi,Wi), (2.6)

where π = P (R = 1|Y,Z,W ). The Horvitz-Thompson estimator of θ is based on maximiz-

ing expression (2.6). It provides unbiased estimation of the overall association in all study

subjects even when the regression model is misspeci�ed. However, the Horvitz-Thompson

estimator is ine�cient, especially when the inclusion probabilities are highly variable, which

is usually the case for an e�cient two-phase design.

E�ciency can be improved by modifying the sampling weights. When the regression

model is linear, Magee (1998) proposed to weight each subject selected during the second

phase by {πaα(X,Z,W )}−1 instead of π−1, where aα(X,Z,W ) belongs to a parameterized

family of functions indexed by the vector parameter α. They showed that under certain

moment assumptions, any estimator with positive weights {πaα(X,Z,W )}−1 is consistent
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for θ. Therefore, one can chose the optimal α that minimizes a scalar variance criterion

such as the determinant or the trace of the asymptotic variance estimator. The choice of

the function aα(X,Z,W ) is up to the analyst but the obvious idea is to choose a function

that is believed to be approximately inversely proportional to the residual variance under

the sample model.

Pfe�ermann and Sverchkov (1999) proposed another modi�cation. They showed that

E(Y |X,Z,W ) =
E(π−1Y |X,Z,W , R = 1)

E(π−1|X,Z,W , R = 1)
,

and proposed to use the weight π−1/E(π−1|X,Z,W , R = 1). This weight accounts only for

the aspect of the second-phase selection process that is not determined by the covariates in

the regression model. Because of the reduced variation of the weights, the resulting estimator

tends to be more powerful than the Horvitz-Thompson estimator.

2.2.2 Methods Using All Study Subjects

Pseudo-Likelihood Estimators

If the �rst-phase information is available for all study subjects, then it can be utilized

to improve e�ciency. When the second-phase sampling is completely random or depends

on the inexpensive covariates (Z,W ) only, Pepe and Fleming (1991) and Carroll and Wand

(1991) proposed to estimate θ by maximizing the likelihood

n∏
i=1

{
Pθ(Yi|Xi,Zi,Wi)

}Ri
{ˆ

Pθ(Yi|x,Zi,Wi)P (x|Zi)dx

}1−Ri

, (2.7)

where P (x|Z) is estimated nonparametrically using the second-phase sample alone. If Z is

discrete, then Pepe and Fleming (1991) estimated P (x|Z) by

P̂ (x|Z) = P̂ (x|Z, R = 1) =

{
n∑
i=1

RiI(Xi = x,Zi = Z)

}/{
n∑
i=1

RiI(Zi = Z)

}
. (2.8)
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If Z contains continuous components, then Carroll and Wand (1991) estimated P (x|Z) with

kernel smoothing techniques. That is,

P̂ (x|Z) = P̂ (x|Z, R = 1) =

∑n
i=1RiI(Xi = x)K(‖Z −Zi‖/h)∑n

i=1RiK(‖Z −Zi‖/h)
, (2.9)

where K(·) is a symmetric density function and h is the bandwidth. In addition, for scaler

Z, they obtained a representation for an optimal bandwidth through a detailed analysis of

the mean-squared error of the parameter estimate.

Mean Score Estimator

When both the outcome and inexpensive covariates are discrete, Reilly and Pepe (1995)

proposed a mean score estimator (MSE). It is based on solving the estimating equation

n∑
i=1

Rilθ(Yi|Xi,Zi,Wi) +
n∑
i=1

(1−Ri)E{lθ(Yi|X,Zi,Wi)|Yi,Zi,Wi} = 0, (2.10)

where lθ(Y |X,Z,W ) = ∂ logPθ(Y |X,Z,W )/∂θ. Reilly and Pepe (1995) proposed es-

timating E{lθ(Y |X,Z,W )|Y,Z,W } for a subject not selected during the second phase

by
´
lθ(Y |x,Z,W )dP̂ (x|Y,Z), where P̂ (x|Y,Z) is the empirical distribution of X given

(Y,Z) in the second-phase sample. This purely empirical mean score approach is valid

because P (X|Y ,Z) = P (X|Y ,Z, R = 1).

Maximum Likelihood Estimators Assuming Discrete First-Phase Information

When both the outcome and inexpensive covariates are discrete, Scott and Wild (1997)

proposed estimating θ by maximizing the full likelihood (2.1). This maximum likelihood

estimator (MLE) is the most e�cient among all valid estimators. Breslow and Holubkov

(1997) considered the special case of logistic regression.

For continuous �rst-phase data, Lawless et al. (1999) suggested to discretize them into
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a small number of strata and then use the stratum membership to select subjects in the

second phase. Speci�cally, suppose that the range of (Y,Z,W ) is partitioned into K strata

S1, . . . ,SK . The observed-data likelihood is

K∏
j=1

∏
i∈Dj

Pθ(Yi|Xi,Zi,Wi)g(Xi,Zi,Wi)

Qj(θ, G)nj−n2j , (2.11)

where Qj(θ, G) = Pr{(Y,X,Z,W ) ∈ Sj}, Dj = {i: (Y,X,Z,W ) ∈ Sj, Ri = 1}, n2j =

|Dj|, nj is the total number of subjects in stratum Sj, j = 1, . . . , K, and G(·) and g(·)

are the distribution and density functions corresponding to (X,Z,W ), respectively. From

expression (2.11), we see that for subjects not selected in the second phase, only the stratum

membership is used in the inference. Breslow et al. (2003) established the asymptotic prop-

erties of the corresponding MLE. Note that the discretization of �rst-phase data for subjects

not selected during the second-phase entails a substantial loss of information and may even

bias parameter estimation.

Pseudo-Score Estimators

To improve e�ciency, Chatterjee et al. (2003) proposed a pseudo-score estimator (PSE).

It allows the outcome of interest to be continuous but require the inexpensive covariates to

be discrete. This estimator of θ is based on solving the estimating equation

n∑
i=1

Rilθ(Yi|Xi,Zi,Wi)

+
n∑
i=1

(1−Ri)

´
lθ(Yi|x,Zi,Wi)Pθ(Yi|x,Zi,Wi)P (x|Zi)dx´

Pθ(Yi|x,Zi,Wi)P (x|Zi)dx
= 0, (2.12)

where the left-hand side is obtained by �rst taking log of expression (2.7) and then dif-

ferentiating with respect to θ. Next, one needs to �nd a valid estimator of the condi-

tional probability P (x|Z). If the second-phase sampling depends on the outcome, then
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P (x|Z) 6= P (x|Z, R = 1), and one cannot use expression (2.8), as in Pepe and Fleming

(1991), to estimate P (x|Z) anymore. From Bayes's theorem, if P (x|Z, R = 1) > 0 almost

surely, then

P (x|Z) =
P (x|Z, R = 1)P (R = 1|Z,W )

P (R = 1|X = x,Z,W )
, (2.13)

where P (R = 1|X = x,Z,W ) =
´
P (R = 1|y,Z,W )Pθ(y|X,Z,W )dy. Chatterjee et al.

(2003) proposed to estimate P (x|Z) by using expression (2.13), where P (x|Z, R = 1) is

estimated by expression (2.8) and P (R = 1|Z,W ) is ignored because it cancels out in the

numerator and denominator of the second term in the left-hand side of expression (2.12).

In order to accommodate continuous covariates, Chatterjee and Chen (2007) considered

the kernel smoothing approach similar to that considered by Carroll and Wand (1991). There

are, however, some complications if the second-phase sampling depends on Z. Speci�cally, if

Z is partitioned into a �xed number of strata, such that subjects are sampled with di�erent

selection probabilities across di�erent strata during the second phase, then the discontinuity

of the selection probabilities would cause the conditional expectation function E(U |Z, R = 1)

for a random variable U to have jumps between strata, even though E(U |Z) could be contin-

uous and smooth in the whole range of Z. To account for these discontinuities, Chatterjee

and Chen (2007) proposed to apply kernel smoothing within each partition of Z separately.

However, if the second-phase sampling depends on the partitions of the residuals calculated

from the regression model relating Y to Z and W , then the corresponding partition of Z

is hard to determine. In addition, it is di�cult to calculate P (R = 1|X = x,Z,W ) in this

case. Consequently, the PSE method of Chatterjee and Chen (2007) is only applicable when

the second-phase sampling depends on only discrete covariates.

Maximum Estimated Likelihood Estimator

Weaver and Zhou (2005) proposed a maximum estimated likelihood estimator (MELE).
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Similar to the PSE method of Chatterjee et al. (2003), it allows the outcome of interest to

be continuous but requires the inexpensive covariates to be discrete and the second-phase

selection to depend on a small number of strata. The MELE of θ is based on maximizing

expression (2.7), where P (x|Z) is estimated by

P̂ (x|Z = zj) =
K∑
k=1

P̂k(x|Z = zj)
Nk(zj)

N(zj)
. (2.14)

Here

P̂k(x|Z = zj) =

∑
i∈Sk

RiI(Xi = xi,Zi = zj)∑
i∈Sk

RiI(Zi = zj)
, k = 1, . . . , K, (2.15)

and Nk(zj) and N(zj) are the numbers of observations in the population and in the kth

stratum, respectively, that satisfy Z = zj. Simulation studies in Weaver and Zhou (2005)

showed that the MELE is consistently slightly less e�cient than the PSE. However, they

claimed that the MELE has computational advantages over the PSE.

Maximum Likelihood Estimator Assuming No Inexpensive Covariates

Both the PSE and MELE methods are statistically ine�cient. Song et al. (2009) and

Lin et al. (2013) considered e�cient estimation for two-phase studies without inexpensive

covariates. In this case, the observed-data likelihood (2.1) reduces to

n∏
i=1

{
Pθ(Yi|Xi)P (Xi)

}Ri
{

log

ˆ
Pθ(Yi|x)P (x)dx

}1−Ri

. (2.16)

Song et al. (2009) and Lin et al. (2013) maximized expression (2.16) using the nonparametric

maximum likelihood estimation, where P (X) is estimated by the discrete probabilities at the

observed values ofX. We denote this MLE approach by MLE0. If the inexpensive covariates

are available for all subjects but the second-phase selection does not depend on either Z or
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W , then the MLE0 method can be adopted by rede�ning the �expensive covariates� as

(XT,ZT,W T)T and disregarding Z and W for subjects not selected in the second phase.

This data reduction approach may entail a substantial loss of information. If the second-

phase selection does depend on Z andW , then expression (2.16) no longer correctly re�ects

the sampling mechanism, and the MLE0 method is generally biased.

Semiparametric E�cient Estimator

When every study subject have a positive probability of being selected during the second

phase, Robins et al. (1995) derived the e�cient score function Seff for general two-phase

studies with inexpensive covariates. De�ne O ≡ (Y,Z,W ), which is the �rst-phase infor-

mation. They showed that Seff = U(φop), where, for any function φ(o) taking values in Rd,

d is the dimension of θ,

U(φ) = U (1) + U (2)(φ),

U (1) = Rlθ(Y |X,Z,W )−RE {lθ(Y |X,Z,W )|X,Z, R = 1} ,

U (2)(φ) = −π−1RE {(1− π)φ(Y,Z,W )|X,Z,W }+ (1−R)φ(O),

and φop(O) is the unique solution to the functional equation

φ(O) =E {lθ(Y |X,Z,W )|O} − E

[
E {π(O)lθ(Y |X,Z,W )|X,Z,W }

E {π(O)|X,Z,W }

∣∣∣∣O]
− E

[
E {(1− π(O))φ(O)|X,Z,W }

E {π(O)|X,Z,W }

∣∣∣∣O] .
Robins et al. (1995) proposed a class of estimators based on the e�cient score function.

Speci�cally, given a correctly speci�ed model π(O;α) for π(O), they considered estimators
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θ̂(φ, α̂) solving

0 = n1/2Ū(θ, φ, α̂) = n−1/2

n∑
i=1

Ui(θ, φ, α̂),

where α̂ satis�es

n∑
i=1

Sα,i(α̂) = 0,

Sα(α) = ∂ [R log π(O;α) + (1−R) log {1− π(O;α)}] /∂α.

They showed that under certain regularity conditions, the estimator θ̂(φ, α̂) is consistent

and asymptoticly normal. In addition, if φ = φop, then θ̂(φop, α̂) is asymptoticly e�cient.

However, because φop(O) depends on the unknown joint distribution of the data, θ̂(φop, α̂)

cannot be used as a �estimator�. When both the outcome and the inexpensive covariates

are discrete, Robins et al. (1995) proposed an adaptive semiparametric e�cient estimator

θ̂(φ̂op, α̂) by replacing the unknown φop(O) with a consistent estimator φ̂op(O). When the

outcome of interest is continuous, however, this estimator is di�cult to implement because

it involves numerical solution of an in�nite dimensional integral equation.

2.3 Methods for Analyzing Multivariate Outcome-Dependent Sampling Studies

Weighted Estimator

Similar as in the single-outcome case, if every study subject have a positive probability

of being selected during the second phase, then the Horvitz-Thompson approach can be

adopted. This estimator avoids the joint modeling of the traits and thus can handle quan-

titative, binary, and censored time-to-event traits simultaneously. It yields unbiased e�ect

estimation and correct type I error. Such weighting methods, however, are substantially less

e�cient than standard linear regression ignoring the sample design (T. Lumley, personal
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communication, April 19, 2012). E�ciency is a major concern in genetic association studies

since many genetic e�ects are small and the correction for multiple comparisons is extremely

severe for tens of thousands of variants. In addition, the Horvitz-Thompson approach is not

applicable to the design where not every subject has positive probability of being selected

during the second phase.

Univariate Analysis Plus Meta-Analysis

Analysis methods for two-phase designs with a single outcome, such as that of Lin et al.

(2013), may be applied to the multivariate outcome-dependent sampling design. As men-

tioned in Section 2.2.2, Lin et al. (2013) proposed a likelihood-based approach for the uni-

variate outcome-dependent sampling design. They derived e�cient estimators for both the

primary trait, which is used for sampling, and the secondary trait, which is not used for

sampling. Suppose that we wish to make inference on the �rst trait under a multivariate

TDS design with K traits. We can analyze the �rst trait as the primary trait by treating the

individuals with extreme values of the �rst trait as sequenced individuals and all others as

nonsequenced individuals. We can also analyze the �rst trait as a secondary trait with each

of the remaining (K − 1) traits as the primary trait. We can then combine the summary

statistics of the K analyses. This meta-analysis is not valid because it does not account for

the correlations of the K statistics caused by overlapping individuals. To avoid overlaps of

sequenced individuals, we let each individual be considered �sequenced� in only one analysis.

This strategy, however, will introduce bias into the univariate analysis because the �selection�

for one trait depends on other traits.

2.4 Design E�ciency of Two-Phase Studies

When the outcome is continuous and there is no inexpensive covariate, Lin et al. (2013)

showed that the design is more e�cient if it selects subjects with more extreme values of Y .
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Speci�cally, suppose that the regression model is Y = α+βX+ ε, where ε ∼ N(0, σ2). It can

be shown that the conditional MLE is consistent and asymptotically equivalent to the full

MLE. The information for the conditional MLE is approximately the conditional variance

of the score function

X(Y − α− βG)

σ2
− E

{
X(Y − α− βG)

σ2

∣∣∣∣Y ∈ C} (2.17)

given Y ∈ C, where C is the sampling set. After tedious calculation, this information can be

expressed as

Var(Y |Y ∈ C)Var(G|Y ∈ C)/σ4 +O(β). (2.18)

This implies that the design is more e�cient if it selects subjects with more extreme values

of Y .
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CHAPTER 3: ANALYSIS OF SEQUENCE DATA UNDER MULTIVARIATE

TRAIT-DEPENDENT SAMPLING

3.1 Introduction

The past few years have seen progressive advances in high-throughput sequencing tech-

nologies that allow the sequencing of genomic regions for association studies. However, the

cost of performing high-throughput sequencing on a large number of individuals is still high

and will likely remain so in the near future. If a quantitative trait is of primary interest,

then a cost-e�ective strategy is to sequence individuals with the extreme trait values. This

trait-dependent sampling (TDS) strategy can substantially increase statistical power when

compared to a random sample of the same size (Allison 1997, Page and Amos 1999, Slatkin

1999, Chen et al. 2005, Huang and Lin 2007, Lin et al. 2013).

Many sequencing studies are derived from large, population-based cohorts, such as the

Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators 1989), Car-

diovascular Health Study (CHS) (Fried et al. 1991), and Framingham Heart Study (FHS)

(Dawber et al. 1951). In these cohorts, hundreds of traits are measured at baseline and

follow-up visits. Investigators are often interested in multiple (potentially correlated) quan-

titative traits. One may select an equal number of individuals from the upper and lower tails

of each trait distribution or select individuals from one tail of each trait distribution and

use a random sample as a common comparison group. The former design was adopted by

the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP)

Lin et al. (2013). The latter design was recently used in the Cohorts for Heart and Aging

Research in Genomic Epidemiology Targeted Sequencing Study (CHARGE-TSS) (Lin et al.
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2014).

The NHLBI ESP European American (EA) sample consists of 2538 individuals who

were selected for sequencing from six cohorts: ARIC, CHS, FHS, Coronary Artery Risk

Development in Young Adults (CARDIA) study (Friedman et al. 1988), Multi-Ethnic Study

of Atherosclerosis (MESA) (Bild et al. 2002), and Women's Health Initiative (WHI) (The

Women's Health Initiative Study Group 1998). The project contains several studies, each of

which was focused on a particular trait and some of which selected individuals with extreme

values of quantitative traits, including low-density lipoprotein (LDL) and blood pressure

(BP). The CHARGE-TSS involves three cohorts, ARIC, CHS and FHS, in which ∼200

individuals with extreme values from each of 14 traits, as well as a random sample of ∼2000

individuals, were selected for sequencing at a total of 77 genomic loci that had been identi�ed

by genome-wide association studies (GWAS) to be associated with one or more traits (Lin

et al. 2013).

Standard linear regression analysis based on least squares (LS) estimation only uses the

sequenced individuals and treats them as if they were randomly selected from the whole

cohorts. Thus, the multivariate TDS design is ignored with this approach. If the genetic

variant of interest is independent of all the traits used in the sampling, then the LS method

has correct type I error. If the genetic variant a�ects certain traits used in the sampling,

however, then the LS method yields biased estimates of the genetic e�ects. The type I error

for testing the genetic e�ect on one trait may also be in�ated if other traits that are used in

sampling are a�ected by the genetic variant.

Analysis methods for the univariate TDS design, such as that of Lin et al. (2013), may

be applied to the multivariate TDS design. Lin et al. (2013) analyzed the LDL data in

the NHLBI ESP by performing separate analysis in each study and combining the summary

statistics. This approach may not preserve the type I error because it cannot properly handle

sequenced individuals with extreme values in multiple traits, as elaborated in Section 3.2.
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In the CHARGE-TSS, the selection of individuals with the extreme values of the pulmonary

function was based on both the forced expiratory volume in the �rst second (FEV1) and

the ratio of FEV1 to forced vital capacity (FEV1/FVC) (Lin et al. 2013). The univariate

approach is not applicable to this case because it does not allow the selection of an individual

to depend on multiple traits. Another limitation of the univariate approach is that it cannot

perform simultaneous inference on multiple traits.

In this chapter, we develop a valid and e�cient likelihood-based approach to making

inferences about genetic e�ects under multivariate TDS. In our formulation, the sampling

can depend on multiple quantitative traits in any manner. Quantitative traits are related

to genetic variants and covariates through a multivariate linear regression model while the

distributions of genetic variants and covariates are unspeci�ed. We derive the likelihood

that accounts for the TDS and utilizes all available data. The computation is challenging

due to the presence of missing trait values with arbitrary patterns, the multivariate nature

of the model, and a potentially in�nite-dimensional covariate distribution. We develop a

novel expectation-maximization (EM) algorithm Dempster et al. (1977) to maximize the

likelihood. We establish the consistency, asymptotic normality, and asymptotic e�ciency

of the resulting estimators by using novel arguments to deal with the challenging issue of

partially missing trait values. We construct single-variant and gene-level association tests

(Li and Leal 2008, Madsen and Browning 2009, Price et al. 2010, Lin and Tang 2011, Wu

et al. 2011) for assessing the marginal genetic e�ects on each trait or the joint e�ects on any

subset of traits. We demonstrate the superiority of the proposed methods over the univariate

approach and standard linear regression through extensive simulation studies. Finally, we

provide applications to the CHARGE-TSS and NHLBI ESP data.
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3.2 Methods

Let Y ≡ (Y1, . . . , YK)T be a K × 1 vector of quantitative traits, G be a d × 1 vector of

genetic variables, and Z be a p× 1 vector of covariates (including the unit component). We

relate Y to G and Z through the multivariate linear model:

Y = βG+ γZ + ε, (3.19)

where β is a K × d matrix of regression parameters for the genetic e�ects, γ is a K × p

matrix of regression parameters for the covariate e�ects, and ε is a K-variate normal random

vector with mean 0 and covariance matrix Σ. In single-variant analysis, d = 1, and G is a

scalar that codes the number of minor alleles the individual carries at the variant site under

the additive model or indicates whether the individual carries any minor allele (or two minor

alleles) at that site under the dominant (or recessive) model. In gene-level analysis for rare

variants, G is a (weighted) sum of the numbers of mutations across multiple variant sites

within a gene or the vector of genotypes for individual variants.

Under the multivariate TDS design, Y is measured on all the N individuals in the cohort

(with potential missing values), and G is only collected for a sub-sample of size n. The

selection may depend on observed Y in an arbitrary manner. Under the �one-tail� design used

in the CHARGE-TSS, the sequenced individuals include those with extreme values of each

quantitative trait of interest plus a random sample. Under the �two-tail� design used in the

NHLBI ESP, the sequenced individuals have the largest or smallest trait values. If Z contains

demographic/environmental variables and ancestry information, such as the percentage of

African ancestry or the principal components (PCs) for ancestry, which is estimated from

the GWAS marker data, then Z may potentially be available for all N individuals. If the

ancestry information is obtained from the sequence data, then Z is available only for the

n sequenced individuals. Because it is often di�cult to retrieve covariate information for
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nonsequenced individuals, especially when multiple cohorts are involved, we require Z to be

available only for the n sequenced individuals.

We arrange the records such that the �rst n individuals are the sequenced ones and the

remaining (N − n) are the nonsequenced ones. Then the data consist of (Y obs
i ,Zi,Gi) for

i = 1, . . . , n and Y obs
i for i = n+1, . . . , N , where Y obs

i is the observed part of Yi. We include

all the individuals with at least one nonmissing trait � the largest possible sample � in

the analysis. We assume that the observations on Y are missing at random. We require

Z to be completely observed for all sequenced individuals, which is the case in both the

CHARGE-TSS and NHLBI ESP.

We represent β, γ, and Σ by θ. We show in Section 3.6 that the observed-data likelihood

takes the form

n∏
i=1

[
fθ(Y

obs
i |Zi,Gi)f(Zi,Gi)

] N∏
i=n+1

ˆ
z,g

fθ(Y
obs
i |z, g)dF (z, g), (3.20)

where fθ(·|z, g) is the joint density of Y obs conditional on (Z,G) = (z, g), f(·, ·) is the

joint density of (Z,G), and F (·, ·) is the distribution function of f(·, ·). Note that we do

not assume a speci�c form for f(·, ·) in (3.20). Thus, f(·, ·) is in�nite-dimensional when

Z contains continuous covariates. We estimate f(·, ·) by the discrete probabilities at the

observed distinct values of (Zi,Gi), i = 1, . . . , n, denoted by (z1, g1), . . . , (zm, gm), m ≤ n,

and maximize the above function over other parameters. Denote the point mass at (zj, gj)

as qj, j = 1, . . . ,m. The objective function to be maximized is equivalent to

n∑
i=1

[
log fθ(Y

obs
i |Zi,Gi) + log

m∑
j=1

I {(Zi,Gi) = (zj, gj)} qj

]

+
N∑

i=n+1

log
m∑
j=1

fθ(Y
obs
i |zj, gj)qj, (3.21)

where I(·) is the indicator function.
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We present in Section 3.7.2 a novel EM algorithm for maximizing (3.21) that is compu-

tationally e�cient and numerically stable. In addition, we prove in Section 3.7.3 that the

resulting maximum likelihood estimators (MLEs) are consistent, asymptotically normal, and

asymptotically e�cient. Thus, the corresponding association tests have correct type I error

and are the most powerful of all valid tests.

Inferences about the genetic e�ects on the traits of interest are �exible under our likeli-

hood framework, as detailed in Section 3.7.4. For single-variant analysis, G is a scalar, and

β reduces to a K×1 vector. We can use the Wald, score, or likelihood ratio statistics to test

any subset of β. The Wald tests are the most e�cient computationally because we only need

to �t the model once no matter how many and what kind of hypotheses we are interested in;

to perform the score or likelihood ratio tests, we need to obtain the restricted MLEs under

each null hypothesis. For variants with moderate minor allele frequencies (MAFs), the three

types of tests give similar results.

To perform a burden test for rare variants, we de�ne G as the total number of mutations

among variants whose MAFs are below a pre-speci�ed threshold, such as 1% or 5%, with

the corresponding tests denoted by T1 and T5, respectively; alternatively, we de�ne G as a

weighted sum of the mutation counts, using weights such as those de�ned by Madsen and

Browning (2009) to re�ect each variant's MAF, with the corresponding test denoted by MB.

For detecting variants with opposite e�ects on the traits, we extend the sequence kernel

association test (SKAT) (Wu et al. 2011) to the multivariate TDS setting. We can test

the null hypothesis that there is no genetic e�ect on a particular trait or the �global� null

hypothesis that there is no genetic e�ect on any trait. All our gene-level tests are based on

the score statistics, which are statistically more accurate and numerically more stable than

the Wald statistics for rare variants (Lin and Tang 2011).

Lin et al. (2013) proposed a likelihood-based approach for the univariate TDS design.

They derived e�cient estimators for both the primary trait, which is used for sampling, and
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the secondary trait, which is not used for sampling. Suppose that we wish to make inference

on the �rst trait under a multivariate TDS design with K traits. We can analyze the �rst

trait as the primary trait by treating the individuals with extreme values of the �rst trait

as sequenced individuals and all others as nonsequenced individuals. We can also analyze

the �rst trait as a secondary trait with each of the remaining (K − 1) traits as the primary

trait. We can then combine the summary statistics of the K analyses. This meta-analysis

is not valid because it does not account for the correlations of the K statistics caused by

overlapping individuals. To avoid overlaps of sequenced individuals, we let each individual

be considered �sequenced� in only one analysis. This strategy, however, will introduce bias

into the univariate analysis because the �selection� for one trait depends on other traits. We

label these two methods as (a) and (b), respectively.

For the design that contains a random sample, such as the one-tail design adopted by the

CHARGE-TSS, each individual in the cohort has a positive probability of being selected.

Then the inverse probability weighting (IPW) method commonly used in survey sampling

can be adopted. The IPW method avoids the joint modeling of the traits and thus can handle

quantitative, binary, and censored traits simultaneously. It yields unbiased e�ect estimation

and correct type I error. Such weighting methods, however, are substantially less e�cient

than the LS method (T. Lumley, personal communication, April 19, 2012). E�ciency is a

major concern in association studies since many genetic e�ects are small and the correction

for multiple comparisons is extremely severe for tens of thousands of variants. In addition,

IPW is not applicable to the design that does not contain a random sample.

3.3 Simulation Studies

We evaluated the performance of the MLE and LS methods in extensive simulation

studies. The ARIC data in the CHARGE-TSS are more complex than the NHLBI ESP

data because the former contain more sampling traits and more sequenced individuals with
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extreme trait values than the latter. Thus, we designed our simulation studies to mimic the

ARIC data in the CHARGE-TSS.

We generated 11 traits from the multivariate linear model given in (3.19) in which G is the

number of minor alleles for a SNP with MAF of 0.1, Z is a normally distributed confounder

(representing a PC for ancestry or some other genetically related variable) with mean G

and unit variance, and the error terms are multivariate normal with mean 0, variances

1, and correlations r under compound symmetry. (The Pearson correlation between G

and Z is ∼0.17.) We generated a cohort of 9000 individuals and selected individuals for

sequencing as follows: we �rst selected a random sample of 1000 individuals; we then selected

100 individuals with the largest values of Y1 from the remaining 8000 individuals; and we

continued to select 100 individuals with the largest values of Y2 from the remaining 7900

individuals, and so on, until we reached a �sequenced� sample of 2100 individuals. We set

β1 = 0 and considered two cases of non-zero e�ects for the other 10 traits: Case 1. �ve traits

with the same e�ect, i.e., β2 = · · · = β6 = 0.2, β7 = · · · = β11 = 0; and Case 2. six traits

with opposite e�ects, i.e., β2 = β4 = β6 = 0.2, β3 = β5 = β7 = −0.2, β8 = · · · = β11 = 0.

The value of 0.2 for β corresponds to R2 of 0.7% and 4.0% under γ = 0 and 0.3, respectively;

the value of −0.2 corresponds to R2 of 0.7% and 0.2% under γ = 0 and 0.3, respectively.

We assessed the bias, type I error, and power of the MLE and LS methods. The nominal

signi�cance level α was set to 0.001. All results are based on 100,000 replicates.

Table 3.1 shows the results for trait 1 (null e�ect) and trait 2 (positive e�ect) in Case 1.

The MLE method provides unbiased estimation of genetic e�ects and correct type I error.

The LS method is approximately unbiased for β1 when the confounder has no e�ect and the

traits are strongly correlated, and it has a negative bias for β1 when there is confounding or

the traits are weakly correlated or independent. When the confounder has no e�ect, the LS

method substantially overestimates β2. The bias is larger when the correlations are lower.

When there is confounding, the bias decreases as the correlations increase. When the traits
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are weakly correlated or independent, the LS method yields highly in�ated type I error,

whether or not the confounder has an e�ect. The type I error is also in�ated when the traits

are strongly correlated and the confounder has an e�ect. The MLE method is more powerful

than the LS method because its standardized test statistic tends to be larger. The largest

power di�erence is 0.188 under γ = 0.3 and r = 0.5. The MLE method always yields smaller

root mean squared error (RMSE) than the LS method (see Table 3.2).

Table 3.1: Simulation Results for Estimating the Genetic E�ects on Trait 1 (Null E�ect)
and Trait 2 (Positive E�ect) in Case 1, Five Traits with the Same E�ect

MLE LS
Trait γ r Bias SE SEE Power Bias SE SEE Power

1 0.0 0.00 0.000 0.048 0.048 0.0010 -0.018 0.059 0.060 0.0014
0.05 0.000 0.049 0.049 0.0010 -0.015 0.059 0.059 0.0012
0.10 0.000 0.050 0.049 0.0011 -0.010 0.058 0.059 0.0010
0.20 0.000 0.050 0.050 0.0010 -0.007 0.058 0.059 0.0010
0.50 0.001 0.050 0.050 0.0010 0.002 0.058 0.059 0.0008

0.3 0.00 0.000 0.044 0.044 0.0010 -0.026 0.053 0.053 0.0023
0.05 0.000 0.044 0.044 0.0008 -0.028 0.053 0.053 0.0026
0.10 0.000 0.045 0.045 0.0010 -0.032 0.052 0.053 0.0032
0.20 0.000 0.046 0.046 0.0010 -0.032 0.052 0.053 0.0031
0.50 0.000 0.048 0.048 0.0009 -0.034 0.051 0.053 0.0030

2 0.0 0.00 0.000 0.048 0.048 0.817 0.033 0.060 0.059 0.732
0.05 0.000 0.048 0.048 0.805 0.033 0.059 0.059 0.743
0.10 0.000 0.049 0.049 0.793 0.033 0.059 0.059 0.749
0.20 0.001 0.049 0.049 0.775 0.031 0.058 0.058 0.753
0.50 0.001 0.051 0.051 0.744 0.024 0.057 0.058 0.722

0.3 0.00 0.000 0.044 0.043 0.902 0.018 0.053 0.053 0.799
0.05 0.000 0.044 0.044 0.888 0.013 0.053 0.052 0.780
0.10 0.000 0.045 0.045 0.876 0.009 0.052 0.052 0.761
0.20 0.000 0.046 0.046 0.854 0.002 0.052 0.052 0.723
0.50 0.000 0.049 0.049 0.799 -0.013 0.051 0.052 0.611

NOTE: SE and SEE stand for standard error and standard error estimate, respec-
tively.

Table 3.3 shows the results for trait 1 (null e�ect), trait 2 (positive e�ect), and trait 3

(negative e�ect) in Case 2. The MLE method continues to provide unbiased estimation of
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Table 3.2: Percentage of Bias and RMSE for Estimating the Genetic E�ects on Trait 2
(Positive E�ect) in Case 1, and Traits 2 (Positive E�ect) and 3 (Negative E�ect) in Case 2
Under the One-Tail Design

Case 1: trait 2 Case 2: trait 2 Case 2: trait 3
γ r Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.0 0.00 0.2% 0.067 16.5% 0.091 0.2% 0.069 26.0% 0.102 0.2% 0.071 22.2% 0.097
0.05 0.2% 0.068 16.5% 0.090 0.2% 0.069 24.2% 0.099 0.1% 0.072 20.5% 0.095
0.10 0.2% 0.069 16.3% 0.089 0.2% 0.070 22.4% 0.097 0.1% 0.072 18.8% 0.093
0.20 0.3% 0.070 15.5% 0.088 0.3% 0.071 19.0% 0.093 0.0% 0.072 15.5% 0.089
0.50 0.3% 0.072 12.1% 0.085 0.3% 0.071 10.2% 0.086 0.0% 0.071 7.3% 0.085

0.3 0.00 0.1% 0.061 8.9% 0.077 0.1% 0.063 18.5% 0.085 0.1% 0.064 23.3% 0.089
0.05 0.1% 0.063 6.7% 0.076 0.1% 0.064 15.4% 0.082 0.1% 0.065 23.3% 0.089
0.10 0.1% 0.063 4.7% 0.075 0.2% 0.064 12.6% 0.080 0.1% 0.065 23.3% 0.089
0.20 0.2% 0.065 1.0% 0.073 0.2% 0.066 7.4% 0.077 0.1% 0.067 22.8% 0.088
0.50 0.2% 0.069 6.6% 0.074 0.2% 0.069 4.1% 0.075 0.0% 0.068 19.7% 0.084

NOTE: RMSE stands for root mean squared error.

genetic e�ects and correct type I error. The LS method tends to overestimate the e�ect on

trait 2 and underestimate the e�ect on trait 3, and the bias can be as high as 26%, which

is higher than in Case 1. The LS method also has in�ated type I error (as high as 80%)

when there is confounding. When the confounder has no e�ect, the LS method generally has

correct type I error, although it is not as powerful as the MLE method; the power di�erences

are larger when the correlations are higher, which is opposite to what we �nd in Case 1. The

MLE method always yields smaller root mean squared error (RMSE) than the LS method

(see Table 3.2). For both Case 1 and Case 2, we conducted other simulations with larger

genetic e�ects and lower MAFs or with 10% random missingness in all traits. The results

are similar to those of Tables 3.1 and 3.3 and thus not shown.

Due to the presence of a random sample, it was possible to evaluate the IPW method.

We set the weights for individuals with extreme trait values at 1 and set the weights for

individuals in the random sample at 9. These weights are not exactly equal to the inverse

selection probabilities, which are di�cult to calculate under the sequential selection mech-

anism, but the approximations are good enough for our illustration. The results for Case

1 and Case 2 are summarized in Table 3.4. Comparing Table 3.4 with Tables 3.1 and 3.3,
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Table 3.3: Simulation Results for Estimating the Genetic E�ects on Trait 1 (Null E�ect),
Trait 2 (Positive E�ect), and Trait 3 (Negative E�ect) in Case 2, Six Traits with Opposite
E�ects

MLE LS
Trait γ r Bias SE SEE Power Bias SE SEE Power

1 0.0 0.00 0.000 0.050 0.050 0.0011 -0.003 0.061 0.061 0.0010
0.05 0.000 0.050 0.050 0.0011 -0.003 0.061 0.061 0.0011
0.10 0.000 0.050 0.050 0.0010 -0.003 0.061 0.061 0.0010
0.20 0.000 0.051 0.051 0.0010 -0.002 0.060 0.060 0.0009
0.50 0.000 0.050 0.050 0.0010 -0.001 0.060 0.060 0.0009

0.3 0.00 0.000 0.045 0.045 0.0011 -0.008 0.054 0.054 0.0012
0.05 0.000 0.045 0.045 0.0010 -0.011 0.054 0.054 0.0011
0.10 0.000 0.046 0.046 0.0011 -0.014 0.053 0.054 0.0013
0.20 0.000 0.047 0.046 0.0010 -0.020 0.054 0.054 0.0018
0.50 0.000 0.049 0.049 0.0010 -0.025 0.052 0.053 0.0018

2 0.0 0.00 0.000 0.049 0.049 0.792 0.052 0.062 0.061 0.787
0.05 0.000 0.049 0.049 0.782 0.048 0.062 0.061 0.780
0.10 0.001 0.050 0.049 0.773 0.045 0.061 0.060 0.772
0.20 0.001 0.050 0.050 0.762 0.038 0.060 0.060 0.751
0.50 0.001 0.051 0.050 0.753 0.020 0.059 0.059 0.668

0.3 0.00 0.000 0.044 0.044 0.888 0.037 0.055 0.054 0.859
0.05 0.000 0.045 0.045 0.875 0.031 0.054 0.054 0.840
0.10 0.000 0.046 0.046 0.862 0.025 0.054 0.054 0.818
0.20 0.000 0.047 0.047 0.842 0.015 0.053 0.053 0.771
0.50 0.000 0.049 0.049 0.798 -0.008 0.052 0.053 0.622

3 0 0.00 0.000 0.050 0.050 0.754 -0.044 0.060 0.061 0.759
0.05 0.000 0.051 0.051 0.746 -0.041 0.060 0.061 0.750
0.10 0.000 0.051 0.051 0.742 -0.038 0.059 0.061 0.741
0.20 0.000 0.051 0.051 0.734 -0.031 0.059 0.060 0.718
0.50 0.000 0.050 0.050 0.747 -0.015 0.058 0.059 0.631

0.3 0.00 0.000 0.045 0.045 0.873 -0.047 0.053 0.054 0.895
0.05 0.000 0.046 0.046 0.861 -0.047 0.053 0.054 0.900
0.10 0.000 0.046 0.046 0.850 -0.047 0.053 0.054 0.904
0.20 0.000 0.047 0.047 0.831 -0.046 0.052 0.054 0.907
0.50 0.000 0.048 0.048 0.798 -0.039 0.051 0.054 0.888

NOTE: SE and SEE stand for standard error and standard error esti-
mate, respectively.

we observe that although the IPW method preserves the type I error, it is substantially less

powerful than the MLE and LS methods.
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Table 3.4: Simulation Results for the IPW Method Under the One-Tail Design

Case 1 Case 2
Trait 1 Trait 2 Trait 1 Trait 2 Trait 3

γ r Bias Power Bias Power Bias Power Bias Power Bias Power
0.0 0.00 -0.001 0.0011 0.010 0.366 0.000 0.0011 0.012 0.360 -0.009 0.345

0.05 0.000 0.0010 0.011 0.370 0.000 0.0010 0.011 0.356 -0.008 0.341
0.10 0.002 0.0011 0.012 0.373 0.000 0.0011 0.011 0.353 -0.007 0.336
0.20 0.004 0.0011 0.013 0.376 0.001 0.0011 0.009 0.347 -0.005 0.326
0.50 0.009 0.0010 0.013 0.369 0.002 0.0011 0.006 0.325 -0.001 0.302

0.3 0.00 -0.003 0.0011 0.008 0.411 -0.001 0.0010 0.011 0.412 -0.010 0.406
0.05 -0.002 0.0010 0.009 0.411 -0.001 0.0010 0.010 0.406 -0.009 0.401
0.10 -0.001 0.0011 0.009 0.409 -0.001 0.0011 0.009 0.398 -0.009 0.396
0.20 0.001 0.0011 0.009 0.404 -0.001 0.0011 0.008 0.385 -0.007 0.387
0.50 0.003 0.0010 0.008 0.384 -0.001 0.0011 0.003 0.349 -0.004 0.357

We also conducted simulation studies under the two-tail design. Speci�cally, we generated

the cohort in the same manner as in the previous simulation studies but sequentially selected

95 individuals from the upper and lower tails of each trait distribution to reach a �sequenced"

sample of 2090 individuals. The results that are analogous to those shown in Tables 3.1

and 3.3 are summarized in Tables 3.5 and 3.6. The MLE method continues to perform

well. Because the two-tail sampling is more extreme than the one-tail sampling used in the

previous simulation studies, the LS method tends to yield more bias. The loss of power by

the LS method compared to the MLE method tends to be more severe under the two-tail

design than under the one-tail design (with maximal di�erences of 0.583 vs. 0.188). In

addition, the MLE method is generally more powerful under the two-tail design than under

the one-tail design (with the power di�erence being as high as 0.184).

We conducted additional simulation studies under simple random sampling. We gener-

ated the cohort in the same manner as before but selected a simple random sample of 2100

individuals. The LS method is valid in this setting. The power is approximately 0.61 for

all traits with non-zero e�ects (positive or negative) in both Case 1 and Case 2 with any

combination of γ and r. When comparing with the power estimates for trait 2 in Tables 3.1

and 3.5 and traits 2 and 3 in Tables 3.3 and 3.6, we see that the two multivariate TDS
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Table 3.5: Simulation Results for Estimating the Genetic E�ects on Trait 1 (Null E�ect)
and Trait 2 (Positive E�ect) in Case 1 Under the Two-Tail Design

MLE LS
Trait γ r Bias SE SEE Power Bias SE SEE Power

1 0.0 0.00 0.000 0.046 0.045 0.0010 0.000 0.067 0.067 0.0009
0.05 0.000 0.046 0.046 0.0011 0.018 0.066 0.066 0.0014
0.10 0.000 0.046 0.046 0.0011 0.033 0.066 0.067 0.0026
0.20 0.000 0.045 0.045 0.0010 0.058 0.069 0.070 0.0066
0.50 0.000 0.042 0.041 0.0010 0.098 0.078 0.078 0.0198

0.3 0.00 0.000 0.044 0.044 0.0010 -0.027 0.063 0.064 0.0017
0.05 0.000 0.046 0.046 0.0010 -0.017 0.061 0.062 0.0013
0.10 0.000 0.046 0.046 0.0011 -0.011 0.061 0.062 0.0011
0.20 0.000 0.046 0.046 0.0010 0.000 0.062 0.063 0.0008
0.50 0.000 0.043 0.043 0.0010 0.017 0.069 0.071 0.0010

2 0.0 0.00 0.001 0.046 0.046 0.856 0.085 0.066 0.066 0.844
0.05 0.001 0.046 0.046 0.856 0.098 0.066 0.066 0.886
0.10 0.001 0.046 0.046 0.860 0.111 0.066 0.067 0.911
0.20 0.001 0.046 0.046 0.864 0.125 0.068 0.068 0.928
0.50 0.000 0.043 0.043 0.909 0.135 0.076 0.076 0.865

0.3 0.00 0.000 0.045 0.045 0.874 0.047 0.061 0.062 0.754
0.05 0.000 0.046 0.046 0.864 0.049 0.061 0.062 0.767
0.10 0.000 0.046 0.046 0.857 0.050 0.061 0.062 0.775
0.20 0.001 0.046 0.046 0.850 0.053 0.062 0.063 0.776
0.50 0.000 0.045 0.045 0.875 0.053 0.067 0.068 0.660

NOTE: SE and SEE stand for standard error and standard error estimate, respec-
tively.
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Table 3.6: Simulation Results for Estimating the Genetic E�ects on Trait 1 (Null E�ect),
Trait 2 (Positive E�ect), and Trait 3 (Negative E�ect) in Case 2 Under the Two-Tail Design

MLE LS
Trait γ r Bias SE SEE Power Bias SE SEE Power

1 0.0 0.00 0.000 0.046 0.046 0.0010 0.000 0.065 0.066 0.0009
0.05 0.000 0.046 0.046 0.0010 0.000 0.065 0.066 0.0010
0.10 0.000 0.046 0.046 0.0011 -0.001 0.066 0.066 0.0011
0.20 0.000 0.044 0.044 0.0010 -0.001 0.070 0.070 0.0008
0.50 0.000 0.043 0.043 0.0011 -0.006 0.075 0.076 0.0009

0.3 0.00 0.000 0.045 0.045 0.0010 -0.011 0.064 0.064 0.0010
0.05 0.000 0.045 0.045 0.0009 -0.014 0.063 0.064 0.0010
0.10 0.000 0.045 0.045 0.0009 -0.018 0.063 0.064 0.0012
0.20 0.000 0.045 0.045 0.0011 -0.025 0.065 0.066 0.0016
0.50 0.000 0.042 0.042 0.0009 -0.038 0.070 0.072 0.0021

2 0.0 0.00 0.001 0.046 0.046 0.860 0.084 0.065 0.066 0.846
0.05 0.001 0.046 0.046 0.861 0.080 0.066 0.066 0.826
0.10 0.001 0.046 0.046 0.863 0.075 0.066 0.067 0.800
0.20 0.001 0.045 0.045 0.874 0.064 0.067 0.068 0.725
0.50 0.000 0.042 0.042 0.924 0.028 0.075 0.076 0.386

0.3 0.00 0.000 0.045 0.045 0.869 0.064 0.062 0.063 0.824
0.05 0.000 0.046 0.046 0.860 0.056 0.062 0.063 0.791
0.10 0.001 0.046 0.046 0.856 0.048 0.062 0.063 0.752
0.20 0.001 0.046 0.046 0.853 0.033 0.062 0.063 0.656
0.50 0.000 0.044 0.044 0.890 -0.007 0.067 0.069 0.307

3 0.0 0.00 -0.001 0.046 0.046 0.861 -0.085 0.066 0.066 0.846
0.05 -0.001 0.046 0.046 0.863 -0.081 0.066 0.066 0.830
0.10 -0.001 0.046 0.045 0.868 -0.077 0.066 0.067 0.806
0.20 -0.001 0.045 0.045 0.878 -0.068 0.068 0.068 0.739
0.50 0.000 0.042 0.042 0.931 -0.043 0.075 0.076 0.457

0.3 0.00 0.000 0.045 0.045 0.870 -0.082 0.062 0.063 0.882
0.05 0.000 0.046 0.046 0.864 -0.083 0.062 0.063 0.884
0.10 0.000 0.046 0.046 0.859 -0.082 0.062 0.063 0.882
0.20 0.000 0.046 0.046 0.861 -0.080 0.063 0.064 0.864
0.50 0.000 0.044 0.044 0.900 -0.068 0.068 0.070 0.713

NOTE: SE and SEE stand for standard error and standard error esti-
mate, respectively.
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Table 3.7: Simulation Results for Estimating the Genetic E�ects on Trait 1 (Null E�ect)
and Trait 2 (Positive E�ect) in Case 1 When the Traits Follow Multivariate T Distributions

Trait 1 Trait 2
MLE LS MLE-INV MLE LS MLE-INV

ν Bias Power Bias Power Bias Power Bias Power Bias Power Bias Power
5 0.021 0.0023 -0.019 0.0012 0.013 0.0017 -0.052 0.319 0.010 0.158 -0.078 0.358
10 0.015 0.0015 -0.025 0.0015 0.009 0.0012 -0.023 0.648 0.012 0.431 -0.049 0.631
15 0.010 0.0012 -0.026 0.0018 0.007 0.0010 -0.015 0.744 0.013 0.551 -0.038 0.725
20 0.008 0.0011 -0.028 0.0018 0.005 0.0010 -0.011 0.788 0.013 0.612 -0.032 0.771
30 0.005 0.0010 -0.028 0.0023 0.003 0.0009 -0.007 0.826 0.013 0.672 -0.026 0.812

designs are much more e�cient than simple random sampling.

To assess the robustness to the normality assumption, we simulated data in the setup

of Case 1 under the one-tail design but let ε follow a multivariate t distribution tν(0,Σ),

where Σ is the scale matrix, and ν is the degrees of freedom. We set γ = 0.3 and r = 0.05.

We added a variation of the MLE method that applies the inverse normal transformation

to the trait values, which is referred to as MLE-INV. The results are summarized in Table

3.7. The MLE method has appreciable bias and in�ated type I error for trait 1 (null e�ect)

when ν is small but performs reasonably well when ν is moderate or large. The MLE-INV

method has better control of the type I error than the MLE method when ν is small. The

LS method is biased and its performance worsens as ν increases.

To compare our multivariate approach with the univariate approach of Lin et al. (2013),

we simulated a cohort of 10,000 individuals with two traits. We set the genetic variable to

be the number of minor alleles for a SNP with MAF of 0.1, the e�ect sizes at 0.2 and 0 for

the two traits; we did not include any confounder in the model. We adopted the two-tail

design by sequentially selecting 250 individuals from the upper and lower tails of the two

trait distributions. We used score tests for both approaches. We set the nominal signi�cance

level at 0.001 and varied the correlation between the two traits and the proportion of random

missingness for each trait. As shown in Table 3.8, the univariate approach has in�ated type

I error, which is caused by the underestimation of the variance in method (a) and the bias
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Table 3.8: Simulation Results for Comparing the Multivariate and Univariate Approaches

Multivariate Univariate (a) Univariate (b)
Trait r % Missing Mean SE SEE Power Mean SE SEE Power Mean SE SEE Power

1 0.0 0 114.5 24.0 24.1 0.935 120.0 25.7 25.0 0.936 118.9 25.0 25.5 0.931
20 103.2 22.8 22.9 0.892 107.8 24.3 23.7 0.898 107.0 23.7 24.1 0.885

0.1 0 114.5 24.0 24.1 0.934 120.3 25.9 25.1 0.936 119.0 25.1 25.5 0.926
20 103.3 22.8 22.9 0.895 108.1 24.3 23.7 0.899 107.1 23.7 24.2 0.888

0.3 0 114.5 23.9 24.1 0.934 122.7 26.6 25.3 0.936 120.1 25.3 25.9 0.925
20 103.6 22.9 22.9 0.894 109.7 25.0 23.9 0.900 107.7 24.1 24.5 0.879

0.5 0 114.9 24.1 24.1 0.934 129.6 29.2 26.2 0.937 122.4 26.7 27.1 0.901
20 104.6 23.2 23.0 0.895 114.5 26.8 24.5 0.904 109.3 25.0 25.3 0.861

0.7 0 117.0 24.4 24.2 0.941 149.6 34.6 28.7 0.949 125.4 30.0 30.6 0.802
20 108.0 23.5 23.3 0.910 127.7 30.5 26.3 0.922 112.1 27.2 27.5 0.792

2 0.0 0 0.0 24.2 24.3 0.0009 0.0 25.8 24.8 0.0017 0.0 24.2 24.2 0.0009
20 0.0 23.1 23.0 0.0009 0.0 24.5 23.5 0.0015 0.0 23.0 23.0 0.0009

0.1 0 0.0 24.3 24.3 0.0010 0.0 26.0 24.8 0.0017 -2.4 24.2 24.2 0.0011
20 0.0 23.1 23.0 0.0010 0.1 24.6 23.5 0.0016 -1.8 23.0 23.0 0.0011

0.3 0 0.0 24.5 24.5 0.0010 0.1 27.1 25.3 0.0021 -7.6 24.2 24.2 0.0017
20 0.0 23.3 23.3 0.0009 0.1 25.5 23.9 0.0017 -5.8 23.0 23.0 0.0014

0.5 0 0.1 25.1 25.1 0.0010 0.1 29.7 26.6 0.0035 -14.4 24.3 24.4 0.0032
20 0.0 23.8 23.8 0.0011 0.1 27.3 24.8 0.0027 -10.7 23.1 23.1 0.0022

0.7 0 0.1 26.1 26.2 0.0010 0.1 34.7 29.3 0.0053 -24.9 25.3 25.5 0.0096
20 0.1 24.8 24.8 0.0011 0.2 30.9 26.8 0.0039 -17.5 23.8 23.9 0.0047

NOTE: SE and SEE stand for the standard error and standard error estimate of the score statistic.

in method (b). The in�ation increases as the correlation between the two traits becomes

stronger. There is power loss in (b) as compared to the multivariate approach, which is

caused by the larger variances of the test statistics. The power di�erence is larger when the

correlation is higher and is not a�ected much by the level of missingness.

3.4 CHARGE-TSS ARIC Data

We considered the ARIC data in the CHARGE-TSS. As described, a random sample

plus individuals with extreme values for 11 traits were selected from ∼9000 ARIC whites

who provided informed consent for use of their genetic data and had su�cient DNA for

sequencing. The selected individuals were sequenced for 77 genomic loci that had previously

been found to be associated with one or more of 14 traits. (Three traits were not used for

sampling in the ARIC data.) After quality control (QC), the genotype data included 31,813
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SNPs and 2003 individuals. Details for the design, sample selection criteria, genotype QC,

and annotation can be found in Lin et al. (2013).

We removed individuals without PCs (calculated from GWAS data) and obtained 9103

individuals, among whom 1927 were sequenced. Table 3.9 shows the number of individuals

with nonmissing trait values in the cohort, the speci�c sampling strategy, and the achieved

number of extreme cases for sequencing, as well as that number after QC for each of the 11

traits. (Note that the numbers of extreme cases for all traits may add up to be greater than

n since some individuals may have extreme values for multiple traits.) Of the 11 traits used

for sampling, stroke is an age-at-onset trait that cannot be incorporated into our model. We

treated the 60 individuals who were selected solely due to stroke as nonsequenced individuals.

As noted before, the pulmonary function trait comprised two traits � FEV1 and FEV1/FVC

� such that the total number of traits entering into the analysis remained at 11. C-reactive

protein (CRP) and retinal venule diameter have about 20% missingness in the whole cohort,

while all the other traits have less than 5% missingness.

In the CHARGE-TSS, the selections for certain traits were based on the residuals of the

original values adjusted for various covariates. For those traits, we used the residuals in the

analysis. Most of the traits are positively correlated, and there is no pairwise correlation less

than −0.15. The correlations are 0.56 between fast insulin and body mass index (BMI), 0.49

between the two pulmonary function traits, 0.30 between BMI and CRP, and 0.22 between

fast insulin and hematocrit, as well as between fast insulin and CRP. All the other positive

correlations are well below 0.2, and many of them are essentially 0 (see Table 3.10). We

included age, gender, study centers, and the top �ve PCs as covariates.

We focused on BMI. We restricted the single-variant analysis to SNPs with MAFs larger

than 5% and ended up with 2971 SNPs. We chose the additive genetic model. Table 3.11

shows the top 10 SNPs for the MLE method and the corresponding LS results. The LS

method consistently yields larger e�ect estimates for SNPs with positive e�ects and smaller
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Table 3.9: Summary of the ARIC Data in the CHARGE-TSS

No. (%) of non- Sampling No. sequenced
Trait missing values strategy (No. after QC)

ECG PR interval 8996 (98.82) high residual 94 (92)
ECG QRS interval 9053 (99.45) high residual 90 (89)
Blood pressure 9091 (99.87) high/low residual 93 (89)
Body mass index 9095 (99.91) high 90 (79)
Fasting insulin 8896 (97.73) high 94 (94)
C-reactive protein 7211 (79.22) high residual 93 (90)
Hematocrit 9071 (99.65) low residual 97 (85)
Retinal venule diameter 7099 (77.99) high 156 (154)
Carotid wall thickness 8725 (95.85) high 91 (87)
Pulmonary: FEV1 8958 (98.41)

low 186 (185)
Pulmonary: FEV1/FVC 8956 (98.39)
Stroke early onset 74 (70)
Random sample 946 (913)
Total 9103 (100.00) 2003 (1927)

NOTE: For the sampling strategy, �high" (�low") means sampling from the
upper (lower) tail of the trait distribution; �residual" indicates that the sampling
is based on the residuals of the original values adjusted for covariates.

e�ect estimates for SNPs with negative e�ects. This is similar to what we �nd in most

scenarios under Case 2 in the simulation studies. As shown in Figure 3.1 of the Supplemental

Material, the p-values for the MLE and LS methods are similar.

In gene-level analysis of rare variants, we considered �functional coding� variants, i.e., non-

synonymous, splicing, and stop-gain variants, and ended up with a total of 2360 variants. We

removed any targeted region with minor allele count (MAC) � the number of individuals

with at least one mutation � less than �ve. For MB and SKAT tests, we only included

variants with MAFs less than 5%. Table 3.12 shows the results for the top �ve targeted

regions in each of the four types of tests based on the MLE method. We also performed

gene-level tests of the global null hypothesis that there is no genetic e�ect on any trait. Table

3.13 shows the results for the top �ve targeted regions in each of the four types of tests. It

would be worthwhile to follow up the regions identi�ed in Tables 3.12 and 3.13 in larger
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Figure 3.1: Plot of the p-values for the MLE versus LS methods in the analysis of the BMI
data in the CHARGE-TSS ARIC sample. SNPs with MAFs greater than 5% are included.
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Table 3.10: Pairwise Correlations of the 11 Traits Used for Sampling in the CHARGE-TSS
ARIC Data

PR QRS BP BMI FI CRP HEMA EYE IMT FEV1

QRS 0.04
BP 0.02 0.04
BMI 0.00 0.00 0.00
FI 0.00 −0.04 0.12 0.56
CRP −0.01 −0.03 0.04 0.30 0.22
HEMA −0.02 −0.02 0.11 0.13 0.22 0.06
EYE 0.00 −0.04 −0.05 0.03 0.04 0.08 0.18
IMT 0.02 0.01 0.08 0.08 0.07 0.08 0.05 0.07
FEV1 0.01 0.03 −0.07 −0.04 −0.11 −0.14 −0.05 −0.05 −0.06
FEV1/FVC 0.02 0.04 −0.02 0.17 0.15 0.05 0.01 −0.02 −0.01 0.49

NOTE: PR: ECG PR interval; QRS: ECG QRS interval; BP: blood pressure; BMI:
body mass index; FI: fast insulin; CRP: C-reactive protein; HEMA: hematocrit;
EYE: retinal venule diameter; IMT: carotid wall thickness; FEV1: forced expiratory
volume in 1 second; FVC: forced vital capacity.

samples.

3.5 NHLBI ESP EA Data

The NHLBI ESP EA data consist of the six cohorts mentioned previously and include

four types of study designs. The �rst study is a TDS study consisting of 872 individuals

who were selected from the upper and lower tails of the LDL and BP distributions. The

second study is a random sample of 721 individuals with measurements on a common set of

phenotypes; this study is referred to as the deeply phenotyped reference (DPR). The third

study is a case-control study of early myocardial infarction (MI) consisting of 220 cases and

390 controls. The fourth study is a case-only study of stroke consisting of 335 individuals

with ischemic stroke. Exome sequencing was performed on the selected individuals at the

University of Washington and the Broad Institute. We implemented the genotype QC steps

described by Lin et al. (2013) and obtained 1,281,645 variants.

In the TDS study, we excluded individuals (either sequenced or nonsequenced) who were
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Table 3.11: Top 10 SNPs in the Single-Variant Analysis of the BMI Data in the CHARGE-
TSS ARIC Sample

MLE LS
Variant ID Gene MAF Est SE p-value Est SE p-value

chr02:000649384 TMEM18 2.87E-01 1.12E-01 3.21E-02 4.89E-04 1.34E-01 4.04E-02 9.07E-04
chr02:000669959 TMEM18 2.98E-01 −1.06E-01 3.19E-02 8.79E-04 −1.34E-01 4.11E-02 1.09E-03
chr12:000547464 NINJ2 6.43E-02 −1.96E-01 5.92E-02 8.98E-04 −2.47E-01 7.41E-02 8.38E-04
chr01:068340029 WLS 4.94E-01 −9.41E-02 2.86E-02 9.93E-04 −1.17E-01 3.65E-02 1.36E-03
chr02:000648937 TMEM18 2.95E-01 1.01E-01 3.23E-02 1.72E-03 1.19E-01 4.07E-02 3.31E-03
chr02:000648595 TMEM18 3.00E-01 9.75E-02 3.19E-02 2.27E-03 1.15E-01 4.04E-02 4.43E-03
chr02:000645222 TMEM18 1.12E-01 −1.44E-01 4.74E-02 2.47E-03 −1.71E-01 5.96E-02 4.09E-03
chr02:000649218 TMEM18 2.60E-01 1.01E-01 3.36E-02 2.59E-03 1.23E-01 4.24E-02 3.76E-03
chr02:000647954 TMEM18 2.95E-01 9.83E-02 3.27E-02 2.61E-03 1.15E-01 4.10E-02 4.97E-03
chr02:000648157 TMEM18 2.99E-01 9.34E-02 3.20E-02 3.53E-03 1.10E-01 4.04E-02 6.35E-03

NOTE: Variant ID is in �chromosome:position� format, where the positions are based on the reference
human genome (NCBI Genome Build 36, 2006). Est and SE stand for the genetic e�ect estimate and
standard error, respectively.

not eligible for either the LDL or BP selection. In the FHS, which contains related individu-

als, we removed one individual from each pair of �rst- or second-degree relatives. The actual

sample selections for LDL and BP were based on the residuals rather than the original val-

ues. We used the LDL residuals (log-transformed LDL values adjusted for age, age-squared,

gender, and lipid medication) and BP residuals (mean of the residuals for diastolic and

systolic BPs adjusted for age, gender, BMI, and anti-hypertensive medication) as the trait

values in the analysis. We considered LDL as the trait of interest and removed individuals

with missing LDL values in the DPR, MI, and stroke studies. Note that individuals with

missing LDL or BP values (but not both) were still included in the analysis of the TDS

study. Table 3.14 summarizes the sample sizes of the four studies in each cohort after QC.

In the TDS study, we used both the MLE and LS methods to analyze LDL. For case-

control and case-only studies with rare diseases, standard linear regression analysis of sec-

ondary quantitative traits conditional on the disease status yields approximately correct

results (Lin and Zeng 2009). Because early MI and ischemic stroke are relatively rare, we

performed standard linear regression in the MI (adjusted for the MI status), stroke, and DPR

studies. We included cohorts and sequencing centers/targets as covariates. We performed
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Table 3.12: Top Five Targeted Regions for the T1, T5, MB, and SKAT Tests in the Analysis
of the BMI Data Using the MLE Method in the CHARGE-TSS ARIC Sample

Test Region MAC MLE p-value LS p-value
T1 chr05:087819438-088215292 6 1.90E-03 2.21E-01

chr01:168853417-168975265 6 3.52E-03 4.59E-01
chr12:111338491-111436622 8 1.73E-02 5.37E-01
chr05:156830995-156936446 60 1.84E-02 2.16E-01
chr07:100054874-100079499 48 2.59E-02 2.88E-02

T5 chr05:087819438-088215292 6 1.90E-03 2.21E-01
chr01:168853417-168975265 6 3.52E-03 4.59E-01
chr12:111338491-111436622 8 1.73E-02 5.37E-01
chr07:100054874-100079499 48 2.59E-02 2.88E-02
chr10:104579177-104619322 23 2.90E-02 9.45E-01

MB chr13:109599195-109758700 18 2.32E-02 2.52E-01
chr06:025857845-025987550 57 2.78E-02 4.67E-01
chr10:104579177-104619322 6 4.64E-02 1.85E-01
chr11:046720500-046832766 6 7.68E-02 8.90E-01
chr12:110374301-110521963 46 8.63E-02 7.69E-02

SKAT chr05:156830995-156936446 71 3.18E-03 4.57E-01
chr06:025857845-025987550 57 9.32E-03 3.41E-01
chr06:135322113-135417715 58 1.34E-02 9.81E-03
chr13:109599195-109758700 18 2.31E-02 2.52E-01
chr10:104579177-104619322 6 4.65E-02 1.85E-01

NOTE: Region is in �chromosome:start-stop� format, where the posi-
tions are based on the reference human genome (NCBI Genome Build
36, 2006).
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Table 3.13: Top Five Targeted Regions for the T1, T5, MB, and SKAT Tests of the Global
Null Hypothesis in the CHARGE-TSS ARIC Sample

Test Region MAC p-value
T1 chr05:156830995-156936446 60 1.03E-03

chr11:046720500-046832766 43 2.74E-02
chr12:101312706-101455233 7 4.51E-02
chr12:111338491-111436622 8 4.70E-02
chr07:115925580-115935931 5 4.85E-02

T5 chr05:156830995-156936446 104 1.05E-02
chr11:046720500-046832766 43 2.74E-02
chr11:016764687-016993639 155 3.30E-02
chr11:046695000-046720000 53 4.15E-02
chr12:101312706-101455233 7 4.51E-02

MB chr05:156830995-156936446 104 2.15E-03
chr11:016764687-016993639 155 1.54E-02
chr10:070698661-070832743 41 3.68E-02
chr07:115925580-115935931 5 4.83E-02
chr12:111338491-111436622 8 4.85E-02

SKAT chr06:135322113-135417715 85 3.57E-03
chr12:111338491-111436622 8 4.21E-03
chr13:109599195-109758700 102 2.07E-02
chr07:115925580-115935931 5 2.52E-02
chr11:046695000-046720000 53 3.03E-02

NOTE: Region is in �chromosome:start-stop� format,
where the positions are based on the reference human
genome (NCBI Genome Build 36, 2006).
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Table 3.14: Sample Size Summary of the NHLBI ESP EA Data

With nonmissing LDL
LDL BP DPR MI Stroke Nonsequenced

ARIC 172 93 84 136 6 9553
CARDIA 14 66 32 0 0 1530
CHS 15 3 77 43 1 1186
FHS 12 52 34 147 15 2245
MESA 60 19 159 0 7 1310
WHI 46 8 286 156 49 5115
Total 319 241 672 482 78 20939

meta-analysis of the four studies using software MASS (Tang and Lin 2013).

We restricted the single-variant analysis to SNPs with MACs ≥ 5 and ended up with

109,607 SNPs. We chose the additive model and used score statistics to ensure numerical

accuracy for SNPs with low MACs. Figure 3.2 shows the quantile-quantile plots using the

MLE and LS methods in the TDS study only and in all four studies. Although the trends in

the quantile-quantile plots of the TDS study appear to be similar between the MLE and LS

methods, the MLE method clearly produces more signi�cant results than the LS method in

the meta-analysis. Table 3.15 lists the top 10 SNPs for the MLE method in the meta-analysis.

For the MLE method, the top SNP (chr19:45397229) in the meta-analysis is also the top

SNP in the TDS study, with the p-value in the meta-analysis being much more signi�cant

(2.08× 10−10 vs. 2.64× 10−7). For the LS method, although the top SNP remains the same,

its p-value in the meta-analysis is less signi�cant than that in the TDS study (1.17 × 10−6

vs. 4.29× 10−7).

The forest plots shown in Figure 3.3 help to explain the results in Figure 3.2 and Ta-

ble 3.15. The MLE estimates in the TDS study are very similar to the estimates in the DPR,

MI, and stroke studies. (The estimates in the stroke study tend to have large standard errors

due to its small sample size.) Thus, the MLE estimates from the meta-analysis are similar to

the MLE estimates in the TDS study but with smaller standard errors. Because of its bias,
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Figure 3.2: Quantile-quantile plots for the single-variant analysis of the LDL data using the
MLE and LS methods in the TDS study only and in all four studies included in the NHLBI
ESP EA sample. The values of the genomic control λ, de�ned as the ratio between the
observed median of the test statistics and the median of the χ2

1 distribution, are also shown.

the LS method yields larger e�ect estimates as well as (proportionately) larger standard

errors than the MLE method in the TDS study, such that the two methods have similar

standardized test statistics in the TDS study. Because the LS estimates in the TDS study

are much larger than the LS estimates in the other three studies, meta-analysis of the LS
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Table 3.15: Top 10 SNPs in the Single-Variant Analysis of the LDL Data in the NHLBI ESP
EA Sample

MLE LS
Variant ID Gene MAC All studies TDS study All studies TDS study

chr19:045397229 TOMM40 132 2.08E-10 2.64E-07 1.17E-06 4.29E-07
chr01:109814880 CELSR2 538 6.48E-08 8.57E-05 3.51E-06 9.42E-05
chr12:101685691 UTP20 546 2.06E-07 2.45E-04 6.08E-06 2.10E-04
chr12:101685852 UTP20 548 4.85E-07 5.25E-04 7.53E-06 4.61E-04
chr12:101693534 UTP20 614 9.28E-07 1.62E-03 3.35E-06 1.44E-03
chr12:101776996 UTP20 554 1.09E-06 6.76E-04 1.85E-05 6.15E-04
chr19:002039746 MKNK2 9 2.66E-06 1.91E-06 1.20E-02 9.17E-06
chr07:121513561 PTPRZ1 492 1.57E-05 3.89E-03 5.87E-05 3.84E-03
chr01:186089112 HMCN1 916 1.73E-05 1.08E-04 4.28E-03 1.14E-04
chr12:101705477 UTP20 560 1.83E-05 3.67E-03 1.05E-04 3.55E-03

NOTE: Variant ID is in �chromosome:position� format, where the positions are based
on the human reference sequence (UCSC Genome Browser, hg19).

estimates from the four studies yields less signi�cant results than the MLE meta-analysis.

We also performed single-variant analysis in the TDS study using the univariate approach

of Lin et al. (2013). Figure 3.4 compares the p-values for the multivariate and univariate

methods. The two methods yield similar results for most SNPs. This is because the correla-

tion between LDL and BP among individuals in the TDS study is only 0.01. Note that the

multivariate approach produces a more signi�cant p-value for the top SNP (chr19:45397229)

than the univariate approach does (2.64× 10−7 vs. 1.24× 10−5).

In gene-level analysis for rare variants, we considered variants that are nonsynonymous,

stop-gain, stop-loss, or splicing mutations. Other steps were the same as in the analysis of the

CHARGE-TSS ARIC data. The results are displayed in Figures 3.5�3.8 and in Tables 3.16�

3.19. The conclusions regarding the performance of the MLE and LS methods are similar to

those of the single-variant analysis. Again, the MLE method yields more signi�cant results

than the LS method. We also performed gene-level tests of the global null hypothesis. The

results are displayed in Figure 3.9 and in Tables 3.20�3.22. The strongest signals appear in

the T1 tests.
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Figure 3.3: Forest plots based on the MLE and LS methods for the third, sixth, and ninth
most signi�cant SNPs in the analysis of the LDL data in the NHLBI ESP EA sample. Est,
SE, and CI stand for the genetic e�ect estimate, standard error, and con�dence interval,
respectively.
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Figure 3.4: Plot of the p-values for the multivariate versus univariate methods in the analysis
of the LDL data in the TDS study in the NHLBI ESP EA sample. SNPs with MACs ≥ 5
are included.
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Figure 3.5: Quantile-quantile plots for the T1 tests based on the MLE and LS methods in
the analysis of the LDL data in the TDS study only and in all four studies included in the
NHLBI ESP EA sample. The values of the genomic control λ are also shown.
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Figure 3.6: Quantile-quantile plots for the T5 tests based on the MLE and LS methods in
the analysis of the LDL data in the TDS study only and in all four studies included in the
NHLBI ESP EA sample. The values of the genomic control λ are also shown.
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Figure 3.7: Quantile-quantile plots for the MB tests based on the MLE and LS methods in
the analysis of the LDL data in the TDS study only and in all four studies included in the
NHLBI ESP EA sample. The values of the genomic control λ are also shown.
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Figure 3.8: Quantile-quantile plots for the SKAT tests based on the MLE and LS methods
in the analysis of the LDL data in the TDS study only and in all four studies included in
the NHLBI ESP EA sample.
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Figure 3.9: Quantile-quantile plots for the T1, T5, and SKAT tests of the global null hy-
pothesis in the NHLBI ESP EA sample. The values of the genomic control λ are also shown
for the T1 and T5 tests.
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Table 3.16: Top 10 Genes for the T1 Tests in the Analysis of the LDL Data Using the MLE
Method in the NHLBI ESP EA Sample

MLE LS
Gene MAC ALL studies TDS study ALL studies TDS study

LDLR 70 6.90E-07 2.12E-05 1.38E-04 2.39E-05
AZIN1 42 7.71E-05 1.96E-04 1.43E-02 2.12E-04
ACTL6A 54 1.52E-04 4.31E-03 1.74E-03 7.03E-03
PPP1R15A 59 2.20E-04 2.55E-03 4.53E-03 3.64E-03
ZFP91 14 2.46E-04 5.10E-04 5.06E-03 7.96E-04
MAGEB10 15 4.64E-04 2.30E-01 3.76E-05 2.28E-01
JAKMIP2 15 4.94E-04 5.07E-02 1.67E-03 6.11E-02
C14orf21 39 7.22E-04 4.64E-03 1.16E-02 5.69E-03
NCOA3 43 9.19E-04 2.29E-03 3.24E-02 3.01E-03
PHC2 28 1.06E-03 1.00E-01 1.37E-03 1.25E-01

3.6 Discussion

Multivariate TDS is a useful and cost-e�ective design when investigators are interested

in multiple quantitative traits but cannot a�ord to sequence all cohort members. The

CHARGE-TSS and NHLBI ESP are two recent examples of this design. It is not hard

to envision that many large-scale whole-exome and whole-genome sequencing projects will

adopt similar multivariate TDS designs. As demonstrated in the simulation studies and in

the two real examples, standard linear regression without regard to the sampling design can

result in estimation bias, type I error in�ation, and power loss, and the existing methods for

univariate TDS have important limitations.

In this paper, we propose for the �rst time a valid and e�cient likelihood-based approach

to making inferences under multivariate TDS, paying special attention to gene-level tests

for rare variants. The methodology is very general and can be applied to both genetic and

non-genetic studies. The proposed EM algorithm is stable and the software is available on

our website.

Our approach is scalable to whole-exome and whole-genome sequencing studies. In our

49



Table 3.17: Top 10 Genes for the T5 Tests in the Analysis of the LDL Data Using the MLE
Method in the NHLBI ESP EA Sample

MLE LS
Gene MAC ALL studies TDS study ALL studies TDS study

LDLR 70 6.90E-07 2.12E-05 1.38E-04 2.39E-05
AZIN1 42 7.71E-05 1.96E-04 1.43E-02 2.12E-04
ACTL6A 54 1.52E-04 4.31E-03 1.74E-03 7.03E-03
PPP1R15A 59 2.20E-04 2.55E-03 4.53E-03 3.64E-03
MAGEB10 17 4.05E-04 6.24E-01 2.22E-05 6.06E-01
IGSF1 117 4.21E-04 2.13E-02 3.18E-04 2.20E-02
JAKMIP2 15 4.94E-04 5.07E-02 1.67E-03 6.11E-02
C14orf21 41 5.42E-04 4.64E-03 8.33E-03 5.69E-03
TCF20 95 7.41E-04 5.62E-03 1.37E-02 5.90E-03
MACC1 143 7.54E-04 5.03E-03 1.07E-02 4.76E-03

Table 3.18: Top 10 Genes for the MB Tests in the Analysis of the LDL Data Using the MLE
Method in the NHLBI ESP EA Sample

MLE LS
Gene MAC ALL studies TDS study ALL studies TDS studies

LDLR 70 1.19E-07 4.44E-06 1.59E-05 6.44E-06
SERPINB6 13 1.86E-04 4.43E-02 5.40E-04 7.81E-02
OSBPL11 11 2.41E-04 8.56E-04 1.45E-02 2.18E-03
ZFP91 123 2.51E-04 5.26E-04 6.39E-03 8.25E-04
EFEMP2 23 3.08E-04 8.67E-02 1.95E-04 8.92E-02
NLRC5 390 5.23E-04 1.11E-02 4.06E-03 1.52E-02
COBLL1 216 7.05E-04 1.88E-02 4.12E-03 2.72E-02
DSCC1 31 7.13E-04 8.94E-02 3.20E-04 1.08E-01
JAKMIP2 15 7.64E-04 5.07E-02 2.05E-03 6.11E-02
USP54 121 9.36E-04 1.07E-02 5.03E-03 1.09E-02
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Table 3.19: Top 10 Genes for the SKAT Tests in the Analysis of the LDL Data Using the
MLE Method in the NHLBI ESP EA Sample

MLE LS
Gene MAC ALL studies TDS study ALL studies TDS study

IL8 5 1.55E-06 1.92E-01 2.01E-08 2.16E-01
ECH1 6 3.72E-05 6.32E-04 5.09E-03 2.75E-03
MAGEB10 17 4.14E-05 2.42E-01 4.30E-05 2.29E-01
EGR1 12 7.00E-05 � 7.00E-05 �
PPP1R15A 59 7.42E-05 1.76E-04 8.23E-03 3.74E-04
CEP128 354 1.33E-04 8.76E-01 9.07E-05 8.66E-01
GRB14 100 3.09E-04 2.66E-02 6.60E-04 2.49E-02
GNA14 27 3.96E-04 9.00E-02 5.30E-04 1.03E-01
ACTL6A 54 4.60E-04 1.59E-03 1.79E-02 2.80E-03
MVK 17 5.10E-04 1.47E-04 3.28E-01 3.00E-04

Table 3.20: Top 10 Genes for the T1 Tests of the Global Null Hypothesis in the NHLBI ESP
EA Sample

Gene MAC p-value
CCDC62 7 1.96E-05
CXCR5 5 2.10E-05
PLCG1 10 4.69E-05
LDLR 31 1.04E-04
EPHX1 13 2.39E-04
CHAF1A 12 3.83E-04
SFXN5 8 5.33E-04
AZIN1 15 7.03E-04
IGSF11 7 8.28E-04
PCK1 15 1.05E-03
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Table 3.21: Top 10 Genes for the T5 Tests of the Global Null Hypothesis in the NHLBI ESP
EA Sample

Gene MAC p-value
PLCG1 10 4.69E-05
LDLR 31 1.04E-04
AQP8 66 1.36E-04
EPHX1 13 2.39E-04
PHKB 66 2.83E-04
RETSAT 74 3.77E-04
SFXN5 8 5.33E-04
AZIN1 15 7.03E-04
IGSF11 7 8.28E-04
NSMAF 23 9.53E-04

Table 3.22: Top 10 Genes for the SKAT Tests of the Global Null Hypothesis in the NHLBI
ESP EA Sample

Gene MAC p-value
RPP38 61 4.16E-04
PPP1R15A 21 5.80E-04
CKM 37 7.44E-04
C22orf31 37 7.83E-04
REV3L 103 8.25E-04
MRPS6 21 8.66E-04
MVK 6 1.08E-03
SPG7 29 1.10E-03
ARNTL2 119 1.29E-03
C7orf58 26 1.62E-03
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single-variant analysis of the NHLBI ESP EA data, it took ∼5 seconds on an IBM HS21

machine to perform one association analysis. The computation time increases as the number

of traits or the percentage of missing data increases. When there are no covariates or

covariates are categorical (i.e. when m is small), the computation is fast. When there are

continuous covariates, we recommend splitting the genome and using multiple CPUs.

As shown in the simulation studies, the MLE method has appreciable bias and in�ated

type I error when the normality assumption on ε is severely violated. In practice, one

should inspect the trait distributions and explore parametric transformations, such as the log

transformation, or the rank-based inverse normal transformation. In genome-wide studies, a

well-behaved quantile-quantile plot for the association tests would imply that non-normality

has no undue in�uence on the type I error.

For single-variant analysis, we compared the MLE method with the univariate LS method.

It is also possible to consider the multivariate LS method. If one is only interested in the

marginal genetic e�ects on each trait and the traits are completely observed for all sequenced

individuals, then univariate and multivariate LS methods yield the same results. If there is

a small proportion of missingness, then the two methods should still yield similar results. If

one is interested in the joint genetic e�ects on multiple traits, then a multivariate model is

necessary. We adopt a multivariate model in our MLE approach primarily because the sam-

pling scheme involves multiple traits. Our model is more elaborate than a univariate model,

but it is the only approach that provides valid and e�cient inferences for the multivariate

TDS design.

In both the simulation studies and the real examples, all traits in the model are used in

the sampling process. In practice, investigators may be interested in secondary quantitative

traits which are not directly used for sampling but are correlated with the primary traits.

(Note that standard linear regression is valid only when a secondary trait is independent of

all primary traits, which is an unlikely scenario.) It is straightforward to analyze secondary
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traits with our MLE method. Using a multivariate normal distribution for the primary and

secondary traits, one can include each secondary trait of interest as an additional �primary"

trait and use our MLE method with these (K + 1) traits.

Our approach does not require Z for nonsequenced individuals. In the NHLBI ESP,

part of Z (sequencing centers/targets) is not available for nonsequencd individuals. In

the CHARGE-TSS, Z is available for all individuals. Incorporating Z of nonsequenced

individuals into the analysis has two advantages. First, it allows the selection of individuals

for sequencing to depend on Z. Second, it improves the e�ciency of estimation. Then the

likelihood involves the conditional distribution of G given Z(1), which is the part of Z that

is correlated with G. We plan to incorporate kernel smoothing into the likelihood to handle

continuous components in Z(1). Table 3.23 shows the estimated distribution of (Z,G) in

the analysis of the second most signi�cant SNP in the NHLBI ESP EA sample; there is no

strong evidence of correlation between Z and G. A similar issue arises when some part of

Z is subject to missingness. We denote that part of Z and G as G̃ and denote the rest of

Z as Z̃. We plan to formulate the conditional distribution of G̃ given Z̃ through general

odds ratio functions (Hu et al. 2010).

We have focused on the inference procedures rather than the design aspects. Although

our simulation studies indicate that the two-tail design can be more e�cient than the one-

tail design, the optimal design remains unknown. It is unclear what the best sampling

strategy is when multiple quantitative traits are of equal interest. Because our likelihood

framework applies to any multivariate TDS, our variance formulas can be used to compare

the e�ciencies of di�erent designs.
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Table 3.23: Estimation of f(Z), f(Z,G), and f(G|Z) in the Analysis of the Second Most
Signi�cant SNP of the LDL data in the NHLBI ESP EA Sample

Z f̂(Z,G) f̂(G|Z)

Center Target f̂(Z) G = 0 G = 1 G = 2 G = 0 G = 1 G = 2
ARIC broad_ESP_new 0.165 0.122 0.040 0.003 0.741 0.241 0.019
ARIC uwrefseq_2009 0.317 0.204 0.104 0.009 0.645 0.327 0.029
CARDIA broad_ESP_new 0.118 0.079 0.039 0.000 0.671 0.329 0.000
CARDIA V2refseq2010 0.024 0.015 0.009 0.000 0.636 0.364 0.000
CHS broad_ESP_new 0.005 0.005 0.000 0.000 1.000 0.000 0.000
CHS uwrefseq_2009 0.027 0.019 0.008 0.000 0.693 0.307 0.000
FHS broad_ESP_new 0.097 0.075 0.018 0.003 0.778 0.189 0.033
FHS uwrefseq_2009 0.022 0.019 0.002 0.002 0.853 0.079 0.068
MESA broad_ESP_new 0.032 0.017 0.015 0.000 0.523 0.477 0.000
MESA V2refseq2010 0.097 0.068 0.027 0.002 0.702 0.282 0.016
WHI broad_ESP_new 0.013 0.010 0.003 0.000 0.751 0.249 0.000
WHI V2refseq2010 0.084 0.061 0.018 0.005 0.734 0.211 0.055

3.7 Theoretical Details

3.7.1 Derivation of the Observed-Data Likelihood

Let Vi ≡ (Vi1, . . . , ViK)T be a K×1 vector of ones and zeros indicating which components

of Yi are observed or missing for the ith individual. Let Ri indicate, by the values 1 versus

0, whether the ith individual is selected for sequencing. We make the following assumptions:

Assumption 3.1. The conditional distribution of Vi given (Yi,Zi,Gi) is a function of

(Y obs
i ,Zi,Gi) for sequenced individuals and a function of Y obs

i for nonsequenced individuals.

Assumption 3.2. The distribution of R ≡ (R1, . . . , RN) depends on (V ,Y ,Z,G) ≡

{(V1,Y1,Z1,G1), . . . , (VN ,YN ,ZN ,GN)} only through V ◦ Y ≡ (V1 ◦ Y1, . . . ,VN ◦ YN),

where �◦� denotes component-wise product.

Assumption 3.3. f(R|V ◦ Y )
∏n

i=1 f(Vi|Vi ◦ Yi,Zi,Gi)
∏N

i=n+1 f(Vi|Vi ◦ Yi) does not

contain parameters θ and F .

Under Assumptions 3.1-3.2, the complete-data density for the underlying variables (Ri,Vi,
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Yi,Zi,Gi), i = 1, . . . , N , is

f(R,V ,Y ,Z,G)

=f(R|V ◦ Y )
N∏
i=1

f(Vi,Yi,Zi,Gi)

=f(R|V ◦ Y )
n∏
i=1

f(Vi|Vi ◦ Yi,Zi,Gi)fθ(Yi|Zi,Gi)f(Zi,Gi)

×
N∏

i=n+1

f(Vi|Vi ◦ Yi)fθ(Yi|Zi,Gi)f(Zi,Gi).

The observed data are (Ri,Vi,Vi ◦ Yi, RiZi, RiGi), i = 1, . . . , N , whose density is obtained

by integrating over the unobserved variables in the complete-data density, i.e.,

f(R,V ,V ◦ Y ,R ◦Z,R ◦G)

=f(R|V ◦ Y )
n∏
i=1

f(Vi|Vi ◦ Yi,Zi,Gi)

{ˆ
Y mis

fθ(Yi|Zi,Gi)dY
mis

}
f(Zi,Gi)

×
N∏

i=n+1

f(Vi|Vi ◦ Yi)
ˆ
z,g

{ˆ
Y mis

fθ(Yi|z, g)dY mis

}
dF (z, g)

=f(R|V ◦ Y )
n∏
i=1

f(Vi|Vi ◦ Yi,Zi,Gi)
N∏

i=n+1

f(Vi|Vi ◦ Yi)

×
n∏
i=1

fθ(Y
obs
i |Zi,Gi)f(Zi,Gi)

N∏
i=n+1

ˆ
z,g

fθ(Y
obs
i |z, g)dF (z, g),

where R ◦ Z = (R1Z1, . . . , RNZN), R ◦G = (R1G1, . . . , RNGN), and Y mis is the missing

part of Y . We can ignore f(R|V ◦Y )
∏n

i=1 f(Vi|Vi ◦Yi,Zi,Gi)
∏N

i=n+1 f(Vi|Vi ◦Yi) because

of Assumption 3.3. The remaining part of the above density is exactly the observed-data

likelihood given in (3.20).
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3.7.2 Estimation

To calculate the MLEs for (3.21), we use the EM algorithm in which missing data contain

the partially missing Yi's and the missing observations on (Z,G) for individuals not selected

for sequencing. The complete-data log-likelihood function is

N∑
i=1

[
m∑
j=1

I{(Zi,Gi) = (zj, gj)} {log fθ(Yi|zj, gj) + log qj}

]
.

At the tth iteration, the M-step maximizes

N∑
i=1

m∑
j=1

ψ̂
(t)
ij

[
E{log fθ(Yi|zj, gj)|Y obs

i , zj, gj; θ̂
(t)}+ log qj

]
,

where E(·|Y obs
i , zj, gj; θ̂

(t)) is the conditional expectation given Y obs
i , (Zi,Gi) = (zj, gj),

evaluated at θ̂(t), and ψ̂(t)
ij is the conditional probability of I{(Zi,Gi) = (zj, gj)} = 1 given

Y obs
i , (z1, g1), . . . , (zm, gm), evaluated at θ̂(t), q̂(t)

1 , . . . , q̂
(t)
m . That is,

ψ̂
(t)
ij =


I{(Zi,Gi) = (zj, gj)} i = 1, . . . , n;

f
θ̂(t)

(Y obs
i |zj ,gj)q̂

(t)
j

m∑
l=1

f
θ̂(t)

(Y obs
i |zl,gl)q̂

(t)
l

i = n+ 1, . . . , N.

Write Wj = (gT
j , z

T
j )T and η = (βT,γT)T. The M-step involves the following calculations:

(η̂
(t+1)
k )T =

(
N∑
i=1

m∑
j=1

ψ̂
(t)
ij W

⊗2
j

)−1 [ N∑
i=1

m∑
j=1

ψ̂
(t)
ij E{Yki|Y obs

i , zj, gj; θ̂
(t)}Wj

]
, 1 ≤ k ≤ K,

Σ̂(t+1) = N−1

N∑
i=1

m∑
j=1

ψ̂
(t)
ij E

{(
Yi − η̂(t+1)Wj

)⊗2 |Y obs
i , zj, gj; θ̂

(t)
}
,

q̂j
(t+1) = N−1

N∑
i=1

ψ̂
(t)
ij ,
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where ηk is the kth row of η, and a⊗2 = aaT. We start with initial values η̂(0) = 0, Σ̂(0)

being the sample covariance matrix based on those Yi's with complete observations, and

q̂
(0)
j = n−1

n∑
i=1

I{(Zi,Gi) = (zj, gj)}, j = 1, . . . ,m, and iterate until convergence to obtain

the MLEs (β̂, γ̂, Σ̂, q̂1, · · · , q̂m). In the above expressions, the conditional expectations can

be evaluated by using the fact that the missing part of Yi, denoted by Y mis
i , given Y obs

i

and (zj, gj), follows a normal distribution with mean βmisi gj +γmisi zj + Σmo
i {Σoo

i }−1(Y obs
i −

βobsi gj − γobsi zj) and variance Σmm
i − Σmo

i {Σoo
i }−1{Σmo

i }T, where βmisi and βobsi are the

corresponding parts for Y mis
i and Y obs

i in β, and the same partitions apply to γ to yield

γmisi and γobsi and to Σ to yield Σmm
i ,Σmo

i , and Σoo
i .

We estimate the asymptotic covariance matrix of the MLEs by the Louis formula (Louis

1982). We use Akl to denote the (k, l)th element of any matrix A. For i = 1, . . . , N and

j = 1, . . . ,m, we calculate the derivatives of log f(Yi|zj, gj) + log qj to obtain the {K(p +

d) +K(K + 1)/2 +m} × 1 complete-data score vector

l1ij =
[
ST

1ij, . . . ,S
T
Kij, T11ij, T12ij, . . . , TKKij,P

T
ij

]T
,

where Skij = Wje
T
k Σ̂−1(Yi− η̂Wj), with ek being the kth canonical vector of length K, i.e.

with 1 in the kth position and 0 in all the other positions,

Tklij =− 1

2
{1 + I(k 6= l)}(Σ̂−1)kl

+
1

4
{1 + I(k 6= l)}(Yi − η̂Wj)

TΣ̂−1(ekl + elk)Σ̂
−1(Yi − η̂Wj), k ≤ l,

with ekl = eke
T
l and Pij = (0, . . . , 0, 1/q̂j, 0, . . . , 0)T.We also calculate the second derivatives

as a {K(p + d) + K(K + 1)/2 + m} × {K(p + d) + K(K + 1)/2 + m} matrix, which is the
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block diagonal matrix

l2ij =

 l11ij 0{K(p+d)+K(K+1)/2}×m

0m×{K(p+d)+K(K+1)/2} l22ij

 ,
where

l11ij =



∂S1ij

∂η1
· · · ∂S1ij

∂ηK

∂S1ij

∂Σ11
· · · ∂S1ij

∂ΣKK

...
...

...
...

...
...

∂SKij

∂η1
· · · ∂SKij

∂ηK

∂SKij

∂Σ11
· · · ∂SKij

∂ΣKK

∂S1ij

∂Σ11

T
· · · ∂SKij

∂Σ11

T ∂T11ij
∂Σ11

· · · ∂T11ij
∂ΣKK

...
...

...
...

...
...

∂S1ij

∂ΣKK

T
· · · ∂SKij

∂ΣKK

T ∂TKKij

∂Σ11
· · · ∂TKKij

∂ΣKK


,

and l22ij is a diagonal matrix with diagonal elements {0, . . . , 0,−1/q̂2
j , 0, . . . , 0}. In the above

matrix,

∂Skij
∂ηl

= −WjW
T
j ek

TΣ̂−1el,

∂Skij
∂Σk′l′

=− 1

2
{1 + I(k′ 6= l′)}Wje

T
k Σ̂−1(ek′l′ + el′k′)Σ̂

−1(Yi − η̂Wj),

∂Tklij
∂Σk′l′ij

=
1

4
{1 + I(k 6= l)}{1 + I(k′ 6= l′)}

{
Σ̂−1(ek′l′ + el′k′)Σ̂

−1
}
kl

− 1

8
{1 + I(k 6= l)}{1 + I(k′ 6= l′)}(Yi − η̂Wj)

T{
Σ̂−1(ek′l′ + el′k′)Σ̂

−1(ekl + elk)Σ̂
−1
}

(Yi − η̂Wj)

− 1

8
{1 + I(k 6= l)}{1 + I(k′ 6= l′)}(Yi − η̂Wj)

T{
Σ̂−1(ekl + elk)Σ̂

−1(ek′l′ + el′k′)Σ̂
−1
}

(Yi − η̂Wj).
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We then calculate the information matrix as

Q =−
N∑
i=1

m∑
j=1

ψ̂ijE{l2ij|Y obs
i , zj, gj} −

N∑
i=1

[
m∑
j=1

ψ̂ijE{l⊗2
1ij|Y obs

i , zj, gj}

−

(
m∑
j=1

ψ̂ijE{l1ij|Y obs
i , zj, gj}

)⊗2
 .

To account for the constraint that
∑m

j=1 qj = 1, we de�ne D to be the derivative matrix of

(β,γ,Σ, q1, · · · , qm) with respect to (β,γ,Σ, q1, · · · , qm−1). Then, the covariance matrix for

(β̂, γ̂, Σ̂, q̂1, · · · , q̂m−1) is estimated by Ω = F−1, where F = DTQD.

3.7.3 Asymptotic Properties

Let Θ denote the parameter space of θ, which is a bounded open set in the interior of the

domain of θ, and F denote the space of the joint distributions of (Z,G). Let θ0 ∈ Θ and

F0 ∈ F denote the true values of θ and F . We impose the following regularity conditions

and state the asymptotic results in Theorem 1.

Assumption 3.4. With probability one, Pr(R = 1, Vk = Vl = 1|V ◦ Y ,Z,G) is bounded

away from zero, for each pair of k and l ∈ {1, . . . , K}.

Assumption 3.5. For any nonzero β and γ, Pr(βG+ γZ = 0) < 1.

Assumption 3.6. The density function of F0 is positive in its support and continuously

di�erentiable with respect to a suitable measure.

Theorem 3.1. Under Assumptions 3.1�3.6, θ̂ and F̂ (·, ·) are consistent in that |θ̂− θ0|+

supz,g|F̂ (z, g)−F0(z, g)| → 0 almost surely. In addition,
√
n(θ̂−θ0) converges in distribution

to a zero-mean normal random vector whose covariance matrix attains the semiparametric

e�ciency bound.

Proof. The observed-data likelihood given in (3.20) is similar to the likelihood given in (6)

of Lin and Zeng (2006), which pertains to haplotype rather than genotype e�ects. In (3.20),

fθ(Y
obs|Z,G) is the density of a multivariate linear regression model with partial missingness
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in Y , whereas in (6) of Lin and Zeng (2006), mg(Y,X;θ), which reduces to Pα,β,ξ(Y |X)

when haplotypes are replaced by genotypes, is the density of a univariate generalized linear

model with Y being always observed. If we can verify that Conditions 1�3 for Pα,β,ξ(Y |X)

in Lin and Zeng (2006) are satis�ed by fθ(Y obs|Z,G), we can use Theorem 1 of Lin and

Zeng (2006) to show the consistency, asymptotic normality, and asymptotic e�ciency of our

estimators.

Before verifying Conditions 1-3 in Lin and Zeng (2006), we need some additional notation.

Suppose that there are s distinct missing patterns in Y , each with a positive probability of

being observed. Let δt be the indicator of the tth missing pattern. Let Y obs(t) and Y mis(t)

denote the observed and missing parts of Y for the tth missing pattern, t = 1, . . . , s. Then

fθ(Y
obs|Z,G) can be rewritten as

∏s
t=1

{
fθ(Y

obs(t)|Z,G)
}δt .

Condition 1 in Lin and Zeng (2006) pertains to the identi�ability of the regression

model. Suppose that two sets of parameters θ and θ̃ yield the same likelihood value. Then∏s
t=1

{
fθ(Y

obs(t)|Z,G)
}δt

=
∏s

t=1

{
fθ̃(Y

obs(t)|Z,G)
}δt for sequenced individuals. By As-

sumption 3.4, we can �nd, for each pair of k and l ∈ {1, . . . , K}, some t0 ∈ {1, . . . , s},

such that Yk and Yl are observed in the t0th missing pattern. Setting δt0 = 1, δt = 0, and

t 6= t0, we have fθ(Y obs(t0)|Z,G) = fθ̃(Y
obs(t0)|Z,G), where both sides are multivariate

normal densities. Because Yk and Yl are components of Y obs(t0), we have ηk = η̃k, ηl = η̃l,

Σkk = Σ̃kk, Σll = Σ̃ll, and Σkl = Σ̃kl. Condition 1 in Lin and Zeng (2006) is veri�ed.

Conditions 2 and 3 in Lin and Zeng (2006) are the same if we replace haplotypes by

genotypes. Thus, it remains to show that the information operator for θ and F is continu-

ously invertible at the true parameter values. This is tantamount to showing that the score

function at any non-trivial submodel is non-zero because the information operator is the

sum of an invertible operator and a compact operator mapping the score space of (θ0, F0) to
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itself. To this end, suppose that there exists a constant vector u, such that

uT

{
s∑
t=1

δt
∂

∂θ
log fθ(Y

obs(t)|Z,G)

}
= 0. (3.22)

Let b(t) ≡ (b
(t)
1 , . . . , b

(t)
K )T = {D(V (t))ΣD(V (t))}+{V (t) ◦ (Y − ηW )}, where V (t) represents

V in the tth missing pattern, D(V (t)) represents the diagonal matrix with the diagonal

vector being V (t), and A+ represents the Moore-Penrose generalized inverse of any square

matrix A. Then

∂

∂θ
log fθ(Y

obs(t)|Z,G) =
[
(S

(t)
1 )T, . . . , (S

(t)
K )T, T

(t)
11 , T

(t)
12 , . . . , T

(t)
KK

]T

,

where S(t)
k = W b

(t)
k , and

T
(t)
kl =− 1

2
{1 + I(k 6= l)}[{D(V (t))ΣD(V (t))}+]kl

+
1

2
{1 + I(k 6= l)}b(t)

k b
(t)
l , k ≤ l.

By Assumption 3.4, we can �nd, for each pair of k and l ∈ {1, . . . , K}, k ≤ l, some t0 ∈

{1, . . . , s}, such that V (t0)
k = V

(t0)
l = 1. Set δt0 = 1, δt = 0, and t 6= t0. Since Yk and Yl

can take arbitrary values and b(t0)
k and b(t0)

l are non-degenerate linear functions of Yk and Yl,

we see that b(t0)
k and b(t0)

l can take arbitrary values. By examining the linear and quadratic

terms of b(t0)
k and b(t0)

l in equation (3.22), we conclude that their corresponding coe�cients

must be zero. That is, uT
kW = 0, uT

l W = 0, and ukl = 0, where uk, ul, and ukl are

the components of u associated with S(t)
k , S(t)

l , and T (t)
kl , respectively. By Assumption 3.5,

uk = 0 and ul = 0. It follows that u = 0. Thus, the score function is non-zero at any

non-trivial submodel, and Conditions 2 and 3 in Lin and Zeng (2006) hold.

Remark. Assumption 3.4 suggests that we need to observe with positive probability each

pair of components of Y in some individuals selected for sequencing in order for the MLE
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method to be applicable. We do not require a fully-observed Y for any individual. On the

other hand, both the CHARGE-TSS ARIC data and NHLBI ESP EA data contain a large

proportion of sequenced individuals with fully-observed Y . Thus, Condition 1 is not an issue

but mainly serves theoretical purposes.

3.7.4 Association Tests

For Wald tests employed in single-variant analysis, we estimate all parameters under the

alternative hypothesis. Suppose that we decompose β into (βT
a ,β

T
b )T and wish to test the

null hypothesis Ha
0 : βa = 0. The Wald test statistic is Ta ≡ β̂T

a Ω−1
aa β̂a, where β̂a is the MLE

of βa, and Ωaa is the covariance matrix of β̂a, which is the submatrix of Ω corresponding to

βa. We refer Ta to the χ2
da

distribution, with the degree of freedom da being the dimension

of βa. In particular, to test the genetic e�ect on each trait, we consider the null hypothesis

H
(k)
0 : βk = 0 for k = 1, . . . , K. The test statistic is Tk ≡ β̂2

k/Ωkk, where Ωkk is the variance

estimate of β̂k. We refer Tk to the χ2
1 distribution.

Gene-level tests for rare variants rely on score statistics. To test the global null hypothesis

that there is no genetic e�ect on any trait, i.e. H0 : β = 0, we calculate the restricted MLE

of (γ,Σ, q1, · · · , qm−1) under H0. This is accomplished through the above EM algorithm

in which β is set to 0 and only (γ,Σ, q1, · · · , qm−1) is estimated. The score statistic for

testing H0 : β = 0 is U1 ≡
N∑
i=1

m∑
j=1

ψ̂ijl
(1)
1ij, where l

(1)
1ij is the subvector of l1ij corresponding to

β. It can be shown that U1 is asymptotically normal with mean 0 and covariance matrix

V1 = F11 − F12F
−1
22 F21, where

F11 F12

F21 F22

 is the partition of F with respect to β and the

other parameters.

For T1 and T5 tests, G is the total number of mutations among variants whose MAFs are

below 1% and 5%, respectively. For the MB test, G is the weighted sum of mutations with

weights de�ned as {MAF(1−MAF)}−1/2 for each variant (Madsen and Browning 2009). For

the above three tests, G is a scalar, and d = 1. The test statistic for testing H0 : β = 0 is
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T(1) ≡ UT
1 V

−1
1 U1. We refer T(1) to the χ2

K distribution.

For SKAT, G is a vector of the genotypes of individual variants within a gene. A SKAT-

type statistic can be de�ned as Q2 ≡ UT
1 BU1, where B is a diagonal matrix of weights that

depend on the MAFs through a beta function. The null distribution of Q2 is approximated

by
∑Kd

j=1 λjχ
2
1,j, where (λ1, . . . , λKd) are the eigenvalues of V

1/2
1 BV

1/2
1 , and (χ2

1,1, . . . , χ
2
1,Kd)

are independent χ2
1 random variables (Wu et al. 2011).

To test the genetic e�ect on a particular trait, say, the k0th trait, i.e. H0 : βk0 = 0,

where βk0 is the k0th row of β re�ecting the genetic e�ect on the k0th trait, we estimate

({ηk}k=1,...,K,k 6=k0 ,γk0 ,Σ, q1, · · · , qm−1) under H0. This is accomplished through the above

EM algorithm (with a modi�ed M-step) in which βk0 is set to 0 and only ({ηk}k=1,...,K,k 6=k0 ,

γk0 ,Σ, q1, · · · , qm−1) is estimated. The M-step for estimating η is

[
η̂

(t+1)
1 , . . . , γ̂

(t+1)
k0

, . . . , η̂
(t+1)
K

]T

=

[
AT

{(
Σ̂(t)

)−1

⊗

(
N∑
i=1

m∑
j=1

ψ̂
(t)
ij W

⊗2
j

)}
A

]−1

AT

[
N∑
i=1

m∑
j=1

ψ̂
(t)
ij

{(
Σ̂(t)

)−1

⊗Wj

}
E{Yi|Y obs

i , zj, gj; θ̂
(t)}

]
,

where A is a pK × (pK − 1) matrix constructed by deleting the {p(k0 − 1) + 1}th column

of the pK × pK identity matrix IpK , and A⊗B denotes the Kronecker product of matrices

A and B. The score statistic for testing H0 : βk0 = 0 is U2 ≡
N∑
i=1

m∑
j=1

ψ̂ijl
(21)
1ij , wherel(21)

1ij

l
(22)
1ij

 and

F (2)
11 F

(2)
12

F
(2)
21 F

(2)
22

 are the partitions of l1ij and F with respect to βk0 and the other

parameters. It can be shown that U2 is asymptotically normal with mean 0 and covariance

matrix V2 ≡ F (2)
11 − F

(2)
12

(
F

(2)
22

)−1

F
(2)
21 . All tests of H0 : βk0 = 0 can be constructed in a

similar manner. For SKAT tests, we use the vector of genotypes of individual variants as

the genetic variables for the k0th trait and use the burden scores for other traits to ensure

numerical stability.
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CHAPTER 4: EFFICIENT SEMIPARAMETRIC INFERENCE UNDER

TWO-PHASE, OUTCOME-DEPENDENT SAMPLING

4.1 Introduction

In epidemiological studies, the outcomes of interest (e.g, anthropometry measurements,

lipids levels, or disease status) and demographical and environmental variables (e.g., age,

gender, and smoking status) are typically available for all subjects. However, the covariates

of main interest often involve genotyping, biomarker assay, or medical imaging and thus are

prohibitively expensive to measure for all subjects, especially in a large study. If disease

status or another discrete outcome is of primary interest, then the case-control design with

an equal number of cases and controls is the most e�cient one (Scott and Wild 1997). If a

continuous outcome such as height is of primary interest, then a cost-e�ective strategy is the

�extreme-tail� sampling design, whereby one selectively measures the �expensive covariates�

only for subjects with extreme values of the primary outcome measure (Lin et al. 2013). In

either case, the e�ciency of the design can be improved by stratifying on the �inexpensive

covariates�.

The case-control and extreme-tail sampling designs can be viewed as special cases of the

two-phase, outcome-dependent design, which was �rst introduced by White (1982). In the

�rst phase of this design, the outcome of interest and inexpensive covariates are observed for

all study subjects; the information collected during the �rst phase is then used to determine

which subjects to include for measurements on expensive covariates during the second phase.

This design greatly reduces the cost and other practical burdens associated with the collection

of expensive covariate data and thus has been widely used in large epidemiological studies.
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One recent example of the two-phase design is the National Heart, Lung, and Blood

Institute (NHLBI) Exome Sequencing Project (ESP), where 4494 subjects from seven cohorts

were selected for whole-exome sequencing (Lin et al. 2013). Among these subjects, 659, 806,

and 657 were selected because of extremely high or low values of body mass index (BMI),

blood pressure (BP) adjusted for age, gender, race, BMI, and anti-hypertensive medication,

and low-density lipoprotein (LDL) adjusted for age, gender, race, and lipid medication,

respectively.

Several methods have been developed for regression analysis of two-phase studies. Semi-

parametric methods, which specify a parametric form for the regression model but allow

for an arbitrary covariate distribution, are particularly appealing. In particular, Robins

et al. (1995) proposed a semiparametric estimator based on inverse probability of inclusion

weighting. Their approach requires every study subject to have a positive probability of

being selected in the second phase and thus cannot be applied to the extreme-tail design

adopted by the NHLBI ESP. In addition, their estimator can be di�cult to implement in

practice because it involves numerical solution of an in�nite-dimensional integral equation

when the outcome of interest is continuous. Lawless et al. (1999) suggested to discretize the

continuous �rst-phase data into a small number of strata and then use the stratum member-

ship to select subjects in the second phase. For subjects not selected in the second phase,

only the stratum membership is used in the inference. Breslow et al. (2003) established

the asymptotic properties of the corresponding maximum likelihood estimator (MLE). Such

data discretization entails a substantial loss of information and may even bias parameter

estimation.

To improve e�ciency, Chatterjee et al. (2003) proposed a pseudo-score estimator (PSE),

and Weaver and Zhou (2005) proposed a maximum estimated likelihood estimator (MELE).

Both methods allow the outcome of interest to be continuous but require the inexpensive

covariates to be discrete. Chatterjee and Chen (2007) extended the PSE method to allow
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for continuous inexpensive covariates in the regression analysis by using kernel smoothing

but required the second-phase selection to depend on only discrete covariates. Both the

PSE and MELE methods are statistically ine�cient. Song et al. (2009) and Lin et al.

(2013) considered e�cient estimation for two-phase studies without inexpensive covariates.

When the inexpensive covariates are available, however, this approach is ine�cient because

it disregards the inexpensive covariates for subjects not selected in the second phase. More

important, this approach may yield biased estimators if the second-phase selection depends

on the inexpensive covariates.

In this paper, we study e�cient semiparametric estimation for regression models under

general two-phase designs such that the sampling in the second phase can depend on the �rst-

phase data in any manner. We allow the outcome variable to be discrete or continuous, and

we accommodate inexpensive covariates. E�cient estimation under such general designs has

not been pursued previously. We stress the importance of using inexpensive covariates, which

are available in virtually all epidemiological studies, to improve the e�ciency of the second-

phase sampling, control for confounding, and evaluate interactions among the expensive and

inexpensive covariates. We allow inexpensive covariates to be continuous and correlated

with expensive covariates, and we do not parametrize the distribution of covariates. Dealing

with this general situation is very challenging because the likelihood function involves the

conditional density functions of expensive covariates given continuous inexpensive covariates.

We overcome this di�culty by incorporating sieve approximations (Grenander 1981) of the

conditional density functions into the nonparametric likelihood function. We develop a

computationally e�cient and numerically stable expectation-maximization (EM) algorithm

to maximize the sieve likelihood. We establish the consistency, asymptotic normality, and

asymptotic e�ciency of the resulting estimators through a novel combination of modern

empirical process theory and sieve approximation theory. We demonstrate the superiority of

the proposed methods over the existing ones through extensive simulation studies. Finally,
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we provide applications to the aforementioned NHLBI ESP.

4.2 Methods

4.2.1 Sieve Maximum Likelihood Estimation

Let Y denote the outcome of interest, X denote the vector of expensive covariates that

is measured on a fraction of subjects in the study, Z denote the vector of inexpensive co-

variates that is potentially correlated with X, and W denote the vector of inexpensive

covariates that is known to be independent of X given Z. The data (Y,X,Z,W ) are as-

sumed to be generated from the joint distribution Pθ(Y |X,Z,W )P (X|Z)P (Z,W ), where

Pθ(Y |X,Z,W ) is a parametric regression model indexed by parameter θ, P (X|Z) is the

conditional distribution of X given Z, and P (Z,W ) is the joint distribution of Z andW .

For linear regression,

Pθ(Y |X,Z,W ) =
1√

2πσ2
exp

{
−(Y − α− βTX − γTZ − ηTW )2

2σ2

}
,

where θ = (α,βT,γT,ηT, σ2)T; for logistic regression,

Pθ(Y = 1|X,Z,W ) =
[
1 + exp

{
−(α + βTX + γTZ + ηTW )

}]−1
,

where θ = (α,βT,γT,ηT)T. The linear predictors can be modi�ed to include the interaction

terms among X, Z, and W .

Under the two-phase design, (Y , Z,W ) is measured for all n subjects in the �rst phase,

and X is measured for a sub-sample of size n2 in the second phase. Let R indicate, by the

values 1 versus 0, whether the subject is selected for the measurement of X in the second

phase. We make the following assumption:

(A.1) The distribution of R depends on (Y,X,Z,W ) only through the �rst-phase data

(Y,Z,W ).
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Under Assumption (A.1), the data on X are missing at random, such that the sampling

indicators (R1, . . . , Rn) can be omitted from the likelihood function when estimating θ. Thus,

the observed-data log-likelihood takes the form

n∑
i=1

Ri {logPθ(Yi|Xi,Zi,Wi) + logP (Xi|Zi)}

+
n∑
i=1

(1−Ri) log

ˆ
Pθ(Yi|x,Zi,Wi)P (x|Zi)dx. (4.23)

We maximize expression (4.23) using the nonparametric maximum likelihood estimation

(NPMLE). For each distinct observed z, we estimate P (X|z) by a discrete probability

function on the distinct observed values of X, denoted by x1, . . . ,xm (m ≤ n2). Even

with this discretization, maximization of expression (4.23) is not feasible when Z contains

continuous components because then only a small number of the observations on X are

associated with each distinct observed z.

To tackle this challenge, we approximate P (X|z) by the method of sieves (Grenander

1981). Speci�cally, we use the B-spline basis (Schumaker 1981) to construct the approx-

imating functions. Assuming that Z has bounded support, we center and rescale each

component of Z such that it has support on [0, 1]. We then partition the interval [0, 1]

as ∆ ≡ {t−q+1 = . . . = t−1 = 0 = t0 < t1 < . . . < tbn+1 = 1 = . . . = tq+bn}, where

{tl: l = −q + 1, . . . , q + bn} are the knots, q is the order of the B-spline basis, and bn is the

number of interior knots. The number bn is determined by the �rst-phase sample size n.

For ease of implementation, we choose the interior knots as evenly spaced partitions in [0, 1]

with gap 1/(bn + 1). Let {N q
l (z)}bnl=−q+1 be a one-dimensional normalized B-spline basis of

order q associated with ∆. We construct N q
l (z) from the recursive formula

N q
l (z) =

z − tl
tl+q−1 − tl

N q−1
l (z) +

tl+q − z
tl+q − tl+1

N q−1
l+1 (z), l = −q + 1, . . . , bn,
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where N1
l (z) = I(tl ≤ z ≤ tl+1), l = 0, . . . , bn. We refer to {N1

l (z)}bnl=0 as the histogram

basis. We then construct the multivariate B-spline basis on the support of Z as

{Bq
l (Z): Bq

l (Z) = N q
l1

(Z1) · · ·N q
ldz

(Zdz), l = (l1, . . . , ldz)
T, l1, . . . , ldz = −q + 1, . . . , bn},

where Zv is the vth component of Z, and dz is the dimension of Z. To simplify notation, we

order the (bn + q)dz multivariate basis functions as Bq
(−q+1,...,−q+1)(Z), . . . , Bq

(bn,...,bn)(Z) and

then re-index them with j = 1, . . . , (bn+q)dz . Because the B-spline basis functions have local

support, we approximate logP (Xi|Zi) and P (x|Zi) in expression (4.23) by
∑m

k=1 I(Xi =

xk)
∑sn

j=1B
q
j (Zi) log pkj and

∑m
k=1 I(x = xk)

∑sn
j=1B

q
j (Zi)pkj, respectively, where sn = (bn+

q)dz , and pkj = sn
´
P (xk|z)Bq

j (z)dz.

We aim to maximize the following function

ln(θ, {pkj}) =
n∑
i=1

Ri

{
logPθ(Yi|Xi,Zi,Wi) +

m∑
k=1

sn∑
j=1

I(Xi = xk)B
q
j (Zi) log pkj

}

+
n∑
i=1

(1−Ri) log

{
m∑
k=1

Pθ(Yi|xk,Zi,Wi)
sn∑
j=1

Bq
j (Zi)pkj

}
(4.24)

under the constraints of
∑m

k=1 pkj = 1 and pkj ≥ 0 (k = 1, . . . ,m; j = 1, . . . , sn). With the

use of the empirical distribution function of X given Z, parameter estimation based on the

maximization of expression (4.24) is feasible even when X is multidimensional.

Remark 4.1. If there are no inexpensive covariates Z and W , then the observed-data

log-likelihood (4.23) reduces to

n∑
i=1

Ri {logPθ(Yi|Xi) + logP (Xi)}+
n∑
i=1

(1−Ri) log

ˆ
Pθ(Yi|x)P (x)dx. (4.25)

Song et al. (2009) and Lin et al. (2013) maximized expression (4.25) using the NPMLE,

where P (X) is estimated by the discrete probabilities at the observed values of X. This

MLE approach, denoted by MLE0 hereafter, can be regarded as a special case of our proposed
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SMLE approach. If the inexpensive covariates are available for all subjects but the second-

phase selection does not depend on either Z orW , then the MLE0 method can be adopted

by rede�ning the �expensive covariates� as (XT,ZT,W T)T and disregarding Z and W

for subjects not selected in the second phase. This data reduction approach may entail a

substantial loss of information. If the second-phase selection does depend on Z and W ,

then expression (4.25) no longer correctly re�ects the sampling mechanism, and the MLE0

method is generally biased.

4.2.2 EM Algorithm

Direct maximization of expression (4.24) is di�cult due to the intractable form of the

second term. To make the problem more tractable, we arti�cially create a latent variable U

for subjects with R = 0 such that U takes values on 1/sn, . . . , 1 and satis�es the equations

P (U = j/sn|Z,W ) = Bq
j (Z), P (X = xk|Z,W , U = j/sn) = P (X = xk|U = j/sn) = pkj,

and P (Y |X,Z,W , U) = P (Y |X,Z,W ). Consequently, P (X = xk|Z) =
∑sn

j=1 B
q
j (Z)pkj

for subjects with R = 0, and the second term in expression (4.24) is equivalent to the log-

likelihood of (Yi,Zi,Wi), assuming that the complete data consist of (Yi,Xi,Zi,Wi, Ui) but

with both Xi and Ui missing.

We devise an EM-type algorithm to maximize expression (4.24) by treating (X, U) for

subjects with R = 0 as missing. The complete-data log-likelihood is

n∑
i=1

Ri

{
logPθ(Yi|Xi,Zi,Wi) +

m∑
k=1

sn∑
j=1

I(Xi = xk)B
q
j (Zi) log pkj

}

+
n∑
i=1

(1−Ri)
m∑
k=1

I(Xi = xk) logPθ(Yi|xk,Zi,Wi)

+
n∑
i=1

(1−Ri)
m∑
k=1

sn∑
j=1

I(Xi = xk, Ui = j/sn) log pkj.

In the E-step, we calculate the conditional expectations of I(Xi = xk) and I(Xi = xk, Ui =
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j/sn) given the observed data for the ith subject with Ri = 0 as

q̂ik =
Pθ(Yi|xk,Zi,Wi)

∑sn
j=1B

q
j (Zi)pkj∑m

k′=1 Pθ(Yi|xk′ ,Zi,Wi)
∑sn

j=1B
q
j (Zi)pk′j

, k = 1, . . . ,m,

and

ψ̂kji =
Bq
j (Zi)pkj∑sn

j=1B
q
j (Zi)pk′j

q̂ik, k = 1, . . . ,m, j = 1, . . . , sn,

respectively. In the M-step, we update θ by maximizing

n∑
i=1

Ri logPθ(Yi|Xi,Zi,Wi) +
n∑
i=1

(1−Ri)
m∑
k=1

q̂ik logPθ(Yi|xk,Zi,Wi). (4.26)

Expression (4.26) is a weighted sum of the log-likelihood functions for the regression model

Pθ(Y |X,Z,W ). Thus, we can use existing algorithms for weighted regression to maximize

expression (4.26). We update pkj (k = 1, . . . ,m; j = 1, . . . , sn) by maximizing

n∑
i=1

Ri

m∑
k=1

sn∑
j=1

I(Xi = xk)B
q
j (Zi) log pkj +

n∑
i=1

(1−Ri)
m∑
k=1

sn∑
j=1

ψ̂kji log pkj

such that

pkj =

∑n
i=1

{
RiI(Xi = xk)B

q
j (Zi) + (1−Ri)ψ̂kji

}
∑m

k=1

∑n
i=1

{
RiI(Xi = xk)B

q
j (Zi) + (1−Ri)ψ̂kji

} .

We start with initial values α̂(0) = 0, β̂(0) = 0, γ̂(0) = 0, η̂(0) = 0, σ̂2
(0)

being the sample

variance of Y (in linear regression), and p̂(0)
kj =

∑n
i=1RiI(Xi = xk)B

q
j (Zi)/

∑n
i=1 Ri

Bq
j (Zi), and we iterate until convergence to obtain the sieve maximum likelihood estimators

(SMLEs) θ̂ and p̂kj (k = 1, . . . ,m; j = 1, . . . , sn). Because the MLE for the distribution func-

tion of Z is the empirical distribution function based on (Z1, . . . ,Zn), the joint distribution
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function of (X,Z), denoted by F (·, ·), can be estimated by

F̂ (x, z) = n−1

m∑
k=1

n∑
i=1

I(xk ≤ x,Zi ≤ z)
sn∑
j=1

Bq
j (Zi)p̂kj.

Remark 4.2. When Z is a scalar, we can use the histogram basis {B1
j (z)}bn+1

j=1 to estimate

P (X|Z) (see Section 4.2.3). In this case, the arti�cial latent variable U is not needed, and

the EM algorithm can be greatly simpli�ed. The complete-data log-likelihood becomes

n∑
i=1

Ri

{
logPθ(Yi|Xi, Zi,Wi) +

m∑
k=1

sn∑
j=1

I(Xi = xk)B
1
j (Zi) log pkj

}

+
n∑
i=1

(1−Ri)
m∑
k=1

I(Xi = xk)

{
logPθ(Yi|xk, Zi,Wi) +

sn∑
j=1

B1
j (Zi) log pkj

}
.

Consequently, in the E-step, we only need to calculate q̂ik for the ith subject with Ri = 0 as

q̂ik =
sn∑
j=1

B1
j (Zi)

Pθ(Yi|xk, Zi,Wi)pkj∑m
k′=1 Pθ(Yi|xk′ , Zi,Wi)pk′j

, k = 1, . . . ,m.

In the M-step, we update θ by maximizing expression (4.26) and update pkj (k = 1, . . . ,m;

j = 1, . . . , sn) by the following simple formula

pkj =

∑n
i=1

{
RiI(Xi = xk)B

1
j (Zi) + (1−Ri)B

1
j (Zi)q̂ik

}∑n
i=1B

1
j (Zi)

.

4.2.3 Asymptotic Properties

Let Θ denote the parameter space of θ, which is a bounded open set in the interior of the

domain of θ, and let F denote the space of the joint distributions of (X,Z). Let θ0 ∈ Θ and

F0 ∈ F denote the true values of θ and F , respectively. We impose the following regularity

conditions:

(C.1) The set of covariates (X,Z,W ) has bounded support.
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(C.2) If there exist two sets of parameters (θ1, F1) and (θ2, F2) such that

Pθ1(Y |X,Z,W )F1(X,Z) = Pθ2(Y |X,Z,W )F2(X,Z),

where (Y,X,Z,W ) ∈ C ≡ {(y,x, z,w): P (R = 1|y, z,w) ≥ q0}, and q0 is a positive

constant, then θ1 = θ2 and F1 = F2. In addition, if there exists a constant vector v such

that [∂ log{Pθ0(y1|x, z,w1)/Pθ0(y2|x, z,w2)}/∂θ]Tv = 0 for any (yi,x, z,wi) ∈ C, i = 1, 2,

then v = 0.

(C.3) The density function of F0 is positive in its support and q-times continuously di�eren-

tiable with respect to a suitable measure.

(C.4) The function E(R|X,Z) is q-times continuously di�erentiable with respect to X and

Z.

(C.5) As n→∞, sn →∞, and n1/2s
−q/dz
n → 0.

Remark 4.3. The �rst part of Condition (C.2) pertains to model identi�ability with com-

plete data. For many commonly used regression models, the set C, where P (R = 1|y, z,w) ≥

q0, does not necessarily need to cover the entire support of (Y,X,Z,W ). For example, in

linear regression, C can consist of data points with extremely large or small values of Y

only. The second part of Condition (C.2) ensures that the score functions for θ are of full

rank on C. For linear regression, this condition follows from the linear independence of the

covariates (1,XT,ZT,W T)T. Condition (C.3) pertains to the smoothness of the joint distri-

bution function of (X,Z). Condition (C.4) holds for all commonly used two-phase designs,

including the extreme-tail design adopted by the NHLBI ESP. Under Condition (C.5), the

order of the B-spline basis q should be greater than dz/2. Consequently, when dz = 1, we

can choose q = 1 and use the histogram basis {B1
j (z)}bn+1

j=1 to estimate P (X|Z).

We state the asymptotic results in two theorems, whose proofs are given in the Appendix.

Theorem 4.1. Under Assumption (A.1) and Conditions (C.1)�(C.5), ‖θ̂−θ0‖+supx,z|F̂ (x,

z)− F0(x, z)| → 0 almost surely.
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Theorem 4.2. Under Assumption (A.1) and Conditions (C.1)�(C.5), n1/2(θ̂ − θ0) con-

verges in distribution to a zero-mean normal random vector whose covariance matrix attains

the semiparametric e�ciency bound.

The pro�le log-likelihood function for θ is pl(θ) ≡ max{pkj} ln(θ, {pkj}). As justi�ed at

the end of the Appendix, we can estimate the limiting covariance matrix of θ̂ by the negative

inverse of the Hessian matrix of pl(θ̂). Speci�cally, we obtain the value of pl(θ) by holding

θ �xed in the EM algorithm and obtaining the value of ln(θ, {pkj}) at convergence. Then,

we estimate the covariance matrix of θ by the negative inverse of the matrix whose (k, l)th

element is h−2
n

{
pf(θ̂ + ekhn + elhn)− pf(θ̂ + ekhn)− pf(θ̂ + elhn) + pf(θ̂)

}
,

where ek is the kth canonical vector, and hn is a constant of the order n−1/2.

4.3 Simulation Studies

We conducted extensive simulation studies to compare the performance of the SMLE

and MLE0 methods in realistic situations. In the �rst set of studies, we set X = U1,

Z = rU1 + U2, and W = U3, where U1, U2, and U3 are independent Uniform(0,1) variables,

and r is a parameter controlling the correlation betweenX and Z. We generated the outcome

from the linear model: Y = 0.5X + 0.5Z + 0.5W + ε, where ε is a standard normal random

variable independent of U1, U2, and U3. We let n = 2000 and selected 150 subjects with the

highest and 150 subjects with the lowest values of Y in the second phase. For the subjects

selected in the second phase, the data consist of (Y,X,Z,W ); for those not selected in the

second phase, the data utilized by the SMLE and MLE0 methods consist of (Y, Z,W ) and

Y , respectively. In the SMLE method, we estimated P (X|Z) using the histogram basis. We

partitioned the domain of Z using evenly-spaced quantiles and varied the number of regions

sn from 5 to 15 to assess its e�ects on model-�tting. The results with di�erent sn are very

similar. The maximum di�erence in the coverage probability of the 95% con�dence interval

for any parameter is only 0.5%. Therefore, we only report the results for sn = 10. We
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estimated the covariance matrix of θ̂ by the pro�le likelihood method with step size of n−1/2.

The results of the simulation studies are summarized in Table 4.24. Both the SMLE and

MLE0 parameter estimators are virtually unbiased. The SMLE variance estimator accu-

rately re�ects the true variation, and the corresponding con�dence intervals have reasonable

coverage probabilities. The SMLE estimator is much more e�cient than the MLE0 estima-

tor for Z and W because the SMLE method utilizes additional data on (Z,W ) for those

subjects not selected in the second phase. The SMLE estimator is also more e�cient than

the MLE0 estimator for X, and the e�ciency gain increases as the correlation between X

and Z increases.

Table 4.24: Simulation Results Under the Model Y = 0.5X + 0.5Z + 0.5W + ε With the
Second-Phase Sample Selection Depending Only on Y

SMLE MLE0

r Covariate Bias SE SEE CP RE Bias SE
0.0 X 0.004 0.112 0.108 0.943 1.029 0.005 0.114

Z 0.001 0.082 0.083 0.951 1.923 0.006 0.114
W −0.001 0.078 0.078 0.952 2.126 0.005 0.114

0.1 X 0.005 0.112 0.109 0.941 1.036 0.004 0.114
Z 0.004 0.081 0.082 0.951 1.973 0.006 0.114
W −0.001 0.078 0.078 0.952 2.153 0.005 0.115

0.2 X 0.005 0.112 0.109 0.945 1.077 0.004 0.116
Z 0.005 0.081 0.082 0.952 2.029 0.006 0.115
W −0.001 0.078 0.078 0.952 2.167 0.005 0.115

0.3 X 0.004 0.114 0.111 0.945 1.104 0.005 0.119
Z 0.005 0.081 0.082 0.952 2.056 0.006 0.116
W −0.001 0.078 0.078 0.953 2.189 0.005 0.115

NOTE: Bias and SE are, respectively, the empirical bias and standard
error of the parameter estimator; SEE is the empirical mean of the
standard error estimator; CP is the coverage probability of the 95%
con�dence interval; RE is the empirical variance of MLE0 over that of
SMLE. Each entry is based on 10,000 replicates.

In the second set of simulation studies, we generated the data from the model Y =

0.5X + 0.5Z + 0.5W + 0.4XW + ε. The results are summarized in Table 4.25. The SMLE
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estimator is much more e�cient than the MLE0 estimator for all covariates. In addition, the

relative e�ciency of the SMLE estimator to the MLE0 estimator for X is much higher with

the interaction term than without the interaction term in the regression model.

Table 4.25: Simulation Results Under the Model Y = 0.5X + 0.5Z + 0.5W + 0.4XW + ε
With the Second-Phase Sample Selection Depending Only on Y

SMLE MLE0

r Covariate Bias SE SEE CP RE Bias SE
0.0 X 0.009 0.225 0.214 0.935 1.207 0.010 0.248

Z 0.001 0.087 0.087 0.950 1.885 0.008 0.120
W 0.005 0.208 0.199 0.941 1.400 0.011 0.246

XW −0.008 0.388 0.374 0.941 1.275 0.001 0.438

0.1 X 0.012 0.224 0.213 0.934 1.244 0.011 0.250
Z 0.006 0.086 0.086 0.951 1.972 0.007 0.121
W 0.005 0.206 0.199 0.944 1.454 0.012 0.248

XW −0.009 0.385 0.372 0.940 1.321 0.000 0.443

0.2 X 0.011 0.220 0.211 0.935 1.316 0.011 0.252
Z 0.007 0.084 0.085 0.949 2.082 0.007 0.122
W 0.005 0.202 0.196 0.943 1.535 0.012 0.251

XW −0.009 0.377 0.365 0.941 1.396 0.000 0.446

0.3 X 0.009 0.218 0.209 0.938 1.387 0.011 0.256
Z 0.007 0.083 0.084 0.950 2.147 0.007 0.122
W 0.004 0.199 0.192 0.944 1.635 0.012 0.254

XW −0.008 0.369 0.358 0.942 1.494 0.000 0.451

NOTE: See the Note to Table 1.

In the above two sets of simulation studies, the second-phase selection depends on the

outcome only such that MLE0 provides unbiased estimation of all parameters. If the second-

phase selection depends on both the outcome and inexpensive covariates, then MLE0 may

be biased, whereas PSE (Chatterjee et al. 2003, Chatterjee and Chen 2007) can still be

adopted provided that the sampling depends on only discrete covariates. In a third set of

simulations, we compared the SMLE, MLE0, and PSE methods in this scenario. Speci�cally,

we set X = I(U1 > 0.8) and Z = I(Z̃ > z̃0.8), where Z̃ = rX + U2, r is a parameter

controlling the correlation between X and Z, U1 and U2 are independent Uniform(0,1), and
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z̃0.8 is the 80% quantile of Z̃. We generated the outcome from the model Y = X + Z + ε,

where ε is a standard normal random variable independent of U1 and U2. In the �rst phase,

we simulated a cohort of 4000 subjects and de�ned six strata according to the values of Z

and Y . That is, for subjects with Z = 0, we de�ned three strata according to whether their

values of Y are less than the 5% quantile, greater than the 95% quantile, or between these

two quantiles; for subjects with Z = 1, we de�ned another three strata according to whether

their values of Y are less than the 20% quantile, greater than the 80% quantile, or between

these two quantiles. The quantiles were chosen such that each of the extreme-tail strata

contained ∼160 subjects. In the second phase, we only included subjects with values of Y in

the four extreme-tail strata such that n2 ≈ 640. Because Z is binary, for the SMLE method

we estimated P (X|Z) by the empirical probability of X given Z. As shown in Table 4.26,

the SMLE method is much more e�cient than the PSE method, and the e�ciency gain

increases as the correlation between X and Z decreases. The MLE0 parameter estimators

are severely biased whether X and Z are correlated or not.

Table 4.26: Simulation Results When the Second-Phase Sample Selection Depends on Both
Y and Z

SMLE MLE0 PSE
r Covariate Bias SE SEE CP RE Bias SE Bias SE
0.0 X 0.005 0.074 0.073 0.952 1.307 0.291 0.096 0.006 0.085

Z 0.000 0.047 0.047 0.947 1.146 −0.499 0.044 0.000 0.051

0.1 X 0.004 0.070 0.070 0.952 1.220 0.267 0.093 0.004 0.078
Z 0.000 0.049 0.049 0.945 1.123 −0.556 0.041 0.001 0.052

0.2 X 0.003 0.067 0.067 0.952 1.154 0.254 0.090 0.002 0.072
Z 0.000 0.052 0.051 0.944 1.106 −0.609 0.039 0.000 0.055

0.3 X 0.003 0.066 0.066 0.950 1.118 0.241 0.089 0.002 0.070
Z 0.000 0.056 0.055 0.945 1.092 −0.658 0.038 0.000 0.059

NOTE: Bias and SE are, respectively, the empirical bias and standard error of the pa-
rameter estimator; SEE is the empirical mean of the standard error estimator; CP is the
coverage probability of the 95% con�dence interval; RE is the empirical variance of PSE
over that of SMLE. Each entry is based on 10,000 replicates.
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4.4 NHLBI ESP

The NHLBI ESP was designed to identify genetic variants in all protein-coding regions of

the human genome that are associated with heart, lung, and blood diseases. It involves seven

cohorts: the Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators

1989); Coronary Artery Risk Development in Young Adults (CARDIA) study (Friedman

et al. 1988); Cardiovascular Health Study (CHS) (Fried et al. 1991); Framingham Heart

Study (FHS) (Dawber et al. 1951); Jackson Heart Study (Taylor Jr et al. 2005); Multi-

Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002); and Women's Health Initiative

(WHI) (The Women's Health Initiative Study Group 1998). As mentioned in Section 1,

the NHLBI ESP consisted of multiple studies, some of which employed two-phase designs.

Exome sequencing was performed on the selected subjects at the University of Washington

and the Broad Institute. Details for the design, sample selection criteria, genotype quality

control, and annotation can be found in Lin et al. (2013). We provide applications to the

BP and LDL studies in the NHLBI ESP.

4.4.1 BP Study

We considered the BP study in the NHLBI ESP. The �rst phase was comprised of 28,202

subjects from the ARIC, CARDIA, CHS, FHS, JHS, and MESA cohorts. In the second phase,

253 and 245 subjects from the upper and lower tails of the BP distribution, respectively, were

selected by the NHLBI ESP investigators for sequencing. The selection was not based on the

original BP values, but rather the average residuals from the linear models relating diastolic

and systolic BP values to age, gender, race, BMI, and anti-hypertensive medication. In

addition to the 498 subjects selected from the two tails of the BP distribution, the second-

phase sample also included 410 subjects from the deeply phenotyped reference (DPR) group,

which is a random sample of subjects with measurements on a common set of phenotypes.

Because the original BP values were not available for those subjects without the sequence
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data, we considered the average BP residuals as the outcome of interest in the analysis. We

included log-transformed BMI, race, age, age-squared, and cohort indicators as covariates.

Although BMI and race are not correlated with the BP residuals, they are potentially corre-

lated with single-nucleotide polymorphism (SNP) genotypes and thus may provide informa-

tion on SNP genotypes for those subjects without the sequence data. When implementing

the SMLE method, we let Z include log-transformed BMI and race andW include the other

covariates. In the sieve approximation, we used the histogram basis because Z contains only

one continuous component (i.e., log-transformed BMI). We partitioned the domain of BMI

using separate evenly-spaced quantiles for the European Americans (EAs) and African Amer-

icans (AAs). In genome-wide association studies, a well-behaved quantile-quantile (QQ) plot

and a close-to-one genomic control λ, which is de�ned as the ratio between the observed me-

dian of the test statistics and the median of the χ2
1 distribution, would imply good model

�tting and proper type I error control. We used the QQ plot and genomic control λ to select

the number of regions; this resulted in three regions for the EAs and one region for the AAs

(Figure 4.10).

We restricted our analysis to the 31,009 SNPs with minor allele frequencies (MAFs)

greater than 10%. We chose the additive genetic model, under which the genetic variable

codes the number of minor alleles that an subject carries at a variant site. Figure 4.11 shows

the QQ plots for the SMLE and MLE0 methods. Because the second-phase selection is

solely determined by the outcome of interest, the MLE0 method is valid. The SMLE method

produces more signi�cant results than the MLE0 method. Table 4.27 lists the top 10 SNPs

for the SMLE method. The genetic e�ect estimates are similar between the two methods.

Correlations between log-transformed BMI and the SNP genotypes are weak. When the

SNP genotypes are weakly correlated with race, the standard error estimates of the SMLE

method are comparable to those of the MLE0 method; when the SNP genotypes are strongly

correlated with race, the standard error estimates of the SMLE method are much smaller
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Figure 4.10: Quantile-quantile plots for the analysis of the BP study in the NHLBI ESP
using the SMLE method with di�erent numbers of sieve regions.

than those of the MLE0 method. These results are consistent with the theoretical and

simulation results.
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Figure 4.11: Quantile-quantile plots for the analysis of the BP study in the NHLBI ESP
using the SMLE and MLE0 methods.

4.4.2 LDL Study

We next considered the LDL study in the NHLBI ESP. The �rst phase was comprised

of 49,904 subjects from the aforementioned seven cohorts. In the second phase, 604 sub-

jects with extremely large or small values of the residuals from the linear regression of

log-transformed LDL on age, gender, race, and lipid medication and 923 subjects from the

DPR group were selected by the NHLBI ESP investigators for sequencing. We considered
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Table 4.27: Top 10 SNPs in the Analysis of the BP Study in the NHLBI ESP

Correlation SMLE MLE0

SNP MAF log (BMI) Race Est SE p-value Est SE p-value
19:001061910 0.12 0.13 0.68 3.37E-01 6.92E-02 1.14E-06 5.06E-01 2.21E-01 2.20E-02
18:044595809 0.43 0.00 0.11 2.04E-01 4.63E-02 9.93E-06 2.05E-01 4.61E-02 8.37E-06
18:051904644 0.25 0.00 −0.27 2.29E-01 5.63E-02 4.65E-05 2.14E-01 5.64E-02 1.47E-04
08:017478527 0.14 0.08 0.40 3.18E-01 7.84E-02 4.98E-05 3.21E-01 9.10E-02 4.19E-04
20:033874784 0.11 0.10 0.64 3.33E-01 8.28E-02 5.73E-05 4.18E-01 1.47E-01 4.46E-03
18:051904641 0.25 −0.01 −0.27 2.23E-01 5.62E-02 7.13E-05 2.09E-01 5.59E-02 1.86E-04
07:101713590 0.18 0.01 −0.02 2.58E-01 6.59E-02 9.24E-05 2.17E-01 6.63E-02 1.06E-03
09:019087196 0.12 0.06 0.43 3.80E-01 9.94E-02 1.30E-04 4.22E-01 1.18E-01 3.43E-04
18:044585955 0.38 −0.08 −0.05 1.84E-01 4.81E-02 1.34E-04 1.89E-01 4.73E-02 6.54E-05
19:007166388 0.28 0.09 0.39 2.01E-01 5.39E-02 1.93E-04 1.79E-01 5.55E-02 1.29E-03

NOTE: SNP name is in the �chromosome:position� format, where the positions are based on the
human reference sequence (UCSC Genome Browser, hg19). Est and SE stand for the genetic e�ect
estimate and standard error, respectively. Correlation pertains to the SNP and the covariate.

log-transformed LDL as the outcome of interest and included log-transformed BMI, race,

age, age-squared, gender, and cohort as covariates. As in Section 4.4.1, when implementing

the SMLE method, we let Z include log-transformed BMI and race andW include the other

covariates. In the sieve approximation, we used the histogram basis and partitioned the do-

main of BMI using separate evenly-spaced quantiles for the EAs and AAs. We used the QQ

plot and genomic control λ to select the number of regions; this resulted in one region for

both EAs and AAs (Figure 4.12).

We restricted our analysis to the 26,431 SNPs with MAFs greater than 15%. We chose

the additive genetic model. Figure 4.13 shows the QQ plots using the SMLE and MLE0

methods. The observed p-values of the SMLE method agree very well with the global null

hypothesis of no association, except at the extreme right tail. By contrast, the observed

p-values of the MLE0 method deviate substantially from the null distribution, re�ecting

excessive false-positive results. This is because the second-phase selection is determined by

both the outcome of interest and the inexpensive covariates. Incidentally, the PSE method

of Chatterjee and Chen (2007) could not be applied here because it does not allow the

second-phase selection to depend on continuous covariates.

83



Figure 4.12: Quantile-quantile plots for the analysis of the LDL study in the NHLBI ESP
using the SMLE method with di�erent numbers of sieve regions.

4.5 Discussion

We have developed e�cient semiparametric inference procedures for general two-phase

designs. The likelihood function of interest is not tractable because it involves the con-

ditional density function of expensive covariates given continuous inexpensive covariates.

We approximate this conditional density function by the method of sieves. We prove the
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Figure 4.13: Quantile-quantile plots for the analysis of the LDL study in the NHLBI ESP
using the SMLE and MLE0 methods.

asymptotic properties of the proposed estimators through a novel combination of modern

empirical process theory and sieve approximation theory. Our framework does not require

every study subject to have a positive selection probability in the second phase and thus cov-

ers a wide spectrum of two-phase designs. We provide easily-veri�able conditions on model

identi�ability that rely only on subjects with complete data.
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The proposed EM algorithm is numerically stable and computationally e�cient. The M-

step only involves maximizing the log-likelihood of weighted regression, and the calculations

of q̂ik and ψ̂kji in the E-step, as well as p̂kj, have explicit formulas. If Z is a scalar, then

one can use the histogram basis, such that the algorithm becomes extremely simple. In our

analysis of the BP and LDL studies in the NHLBI ESP, it took ∼10 seconds on an IBM HS21

machine to perform one association analysis. An R package that implements the proposed

method is available on our website.

Lin et al. (2013) analyzed the LDL study in the NHLBI ESP using the MLE0 method.

To avoid the dependence of the second-phase selection on the inexpensive covariates, they

used the residuals instead of the original LDL values as the outcome of interest, even though

the LDL values were available for all subjects. This workaround is not desirable because the

resulting genetic e�ect estimates are di�cult to interpret and not comparable with estimates

from studies that use the original LDL values.

In our sieve approximation to P (X|Z), the number of interior knots bn in the domain

of Z can be chosen in a data-adaptive manner. One possible approach for choosing bn is

through cross-validation. For any �xed bn, we use part of the data as the test set and the

remainder as the validation set. We evaluate expression (4.24) in the validation set using

estimates obtained from the test set. The optimal number of interior knots bn is the value

that maximizes the average cross-validation likelihood. Alternative approaches can also be

used to choose bn. As demonstrated in Section 4, one can use the QQ plot and genomic

control λ to choose the appropriate bn in genetic association studies.

We have assumed that the second-phase selection depends on a single outcome. If the

selection depends on multiple outcomes in one study, then one should consider all of them

simultaneously in a multivariate regression model in order to obtain valid inference. Recently,

Tao et al. (2015) extended the MLE0 approach to multivariate outcome-dependent sampling
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without inexpensive covariates. We can extend our SMLE approach to multivariate outcome-

dependent sampling with inexpensive covariates. We simply replace Pθ(Y |X,Z,W ) in

expression (4.24) by the conditional density function Pθ(Y |X,Z,W ) of the multivariate

outcome Y given covariates. If Y contains missing components, then we need to modify

the EM algorithm in Section 2.2 by �rst calculating the conditional expectations of the

missing components given the observed data in the E-step and then replacing the missing

components with their conditional expectations in the M-step. We expect Theorems 1 and

2 to continue to hold.

In both the simulation studies and NHLBI ESP applications, the outcome of interest

is always used in the second-phase sampling process. In practice, investigators may be

interested in a secondary outcome that is not used for sampling but is correlated with the

primary outcome used for sampling. In light of the above discussion on multivariate outcome-

dependent sampling, it is straightforward to analyze the secondary outcome by assuming a

bivariate regression model for the primary and secondary outcomes.

Although we have focused on the parametric regression model Pθ(Y |X,Z,W ), our ap-

proach can be extended to semiparametric regression models, particularly those with cen-

sored time-to-event outcomes. When θ contains both Euclidean and in�nite-dimensional

components, the maximizization of expression (4.26) in the EM algorithm is more involved,

and the proof of Theorem 1 requires modi�cation. Recently, Zeng and Lin (2014) considered

e�cient estimation of semiparametric transformation models for two-phase cohort studies

with censored data. They employed a kernel smoothing approach to approximate P (X|Z)

when Z contains continuous components. Both kernel smoothing and sieve approximation

are powerful nonparametric tools for density estimation. We adopted the sieve approxima-

tion approach because it is computationally more e�cient, especially when the dimension of

Z is one.

This paper is focused on the inference procedures rather than the design aspects of
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two-phase studies. An important topic of investigation is the optimal study design when

the primary interest is to estimate β. When the outcome is continuous and there is no

inexpensive covariate, Lin et al. (2013) showed that the e�cient information for estimating

β using the MLE0 method is approximately Var(Y |R = 1)Var(X|R = 1)/σ4 (assuming that

X is a scalar). This implies that the study design is more e�cient if it selects subjects

with more extreme values of Y . For general two-phase studies with (possibly multivariate)

continuous outcomes of interest, it is unclear what the best sampling strategy is. Because

our likelihood framework applies to any two-phase design, the variance estimators for the

SMLE method can be used to evaluate the e�ciencies of di�erent designs.

4.6 Proofs of Theorems

Proof of Theorem 4.1. Because θ̂ is bounded and F̂ (x, z) is a distribution function with

bounded support, it follows from Helly's selection theorem that, for any subsequence of θ̂

and F̂ (x, z), there exists a further subsequence, still denoted as θ̂ and F̂ (x, z), such that θ̂

converges almost surely to some vector θ∗ and F̂ (x, z) converges weakly to some function

F ∗(x, z). Theorem 1 will hold if we can show that θ∗ = θ0 and F ∗ = F0.

Because p̂kj maximizes expression (4.24), di�erentiating expression (4.24) with respect

to pkj yields

n∑
i=1

Ri

I(Xi = xk)B
q
j (Zi)

pkj

+
n∑
i=1

(1−Ri)
Pθ̂(Yi|xk,Zi,Wi)B

q
j (Zi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j′(Zi)pk′j′

= µ̂j, (4.27)

where µ̂j is the Lagrange multiplier for the constraint that
∑m

k=1 p̂kj = 1. By multiplying

both sides of equation (4.27) with pkj and then summing over k, we have

µ̂j =
n∑
i=1

RiB
q
j (Zi) +

n∑
i=1

(1−Ri)

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j (Zi)pk′j∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j′(Zi)pk′j′

.
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Consequently,

p̂kj =

∑n
i=1 RiI(Xi = xk)B

q
j (Zi)

µ̂j −
∑n

i=1(1−Ri)
P
θ̂

(Yi|xk,Zi,Wi)B
q
j (Zi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q

j′ (Zi)p̂k′j′

,

and

F̂ (x, z) = n−1

m∑
k=1

n∑
i=1

I(xk ≤ x,Zi ≤ z)
sn∑
j=1

Bq
j (Zi)p̂kj.

It follows that

P̂ (X = xk|z) =
sn∑
j=1

Bq
j (z)p̂kj

=
sn∑
j=1

Bq
j (z)

∑n
i=1RiI(Xi = xk)B

q
j (Zi)∑n

i=1

{
Ri + (1−Ri)

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)p̂k′j−Pθ̂(Yi|xk,Zi,Wi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q

j′ (Zi)p̂k′j′

}
Bq
j (Zi)

.

Because the B-spline basis functions have local support, we have |Bq
j (z̃)−Bq

j (z)I(‖z̃−z‖ ≤

ξn)| . ξn for nonzero Bq
j (z̃) and Bq

j (z), j = 1, . . . , sn, where ξn = (bn + 1)−1, and �.�

means less than or equal to up to a constant. Thus, the distribution function F̂ (x, z) is

asymptotically equivalent to

n−1

m∑
k=1

n∑
i=1

I(xk ≤ x,Zi ≤ z)

∑sn
j=1

∑n
i′=1Ri′I(Xi′ = xk, ‖Zi′ −Zi‖ ≤ ξn)Bq

j (Zi)

g1n(xk,Zi; θ̂, F̂ )
,

where

g1n(x, z; θ̂, F̂ ) =
sn∑
j=1

n∑
i=1

{
1− (1−Ri)

Pθ̂(Yi|x,Zi,Wi)∑sn
j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j′(Zi)p̂k′j′

}

× I(‖Zi − z‖ ≤ ξn)Bq
j (z).

We wish to show that (nsn)−1g1n(x, z; θ̂, F̂ ) is bounded away from zero for su�ciently
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large n. Because

n−1

sn∑
j′=1

m∑
k=1

Pθ̂(y|xk, z,w)Bq
j′(z)pkj′

=

ˆ
x̃

Pθ̂(y|x̃, z,w)F̂ (dx̃, z)→
ˆ
x̃

Pθ∗(y|x̃, z,w)F ∗(dx̃, z)

uniformly in (y, z,w), (nsn)−1g1n(x, z; θ̂, F̂ ) converges to g1(x, z;θ∗, F ∗) for (x, z) in the

support of (X,Z), where

g1(x, z;θ∗, F ∗) = E

[{
1− (1−R)

Pθ∗(Y |x,Z,W )
´
x̃
F ∗(dx̃,Z)´

x̃
Pθ∗(Y |x̃,Z,W )F ∗(dx̃,Z)

}
fz(Z)

∣∣∣∣Z = z

]
≥ 0,

and fz(·) is the density function of Z. Consequently,
∑m

k=1 P̂ (X = xk|z) converges to

ˆ
E {Rfz(Z)|Z = z}
g1(x, z;θ∗, F ∗)

dx = 1.

If g1(x, z;θ∗, F ∗) is not bounded away from zero, then there exists x0 ∈ Dx, where Dx is the

support of X, such that g1(x0, z;θ∗, F ∗) = 0. Because g1(x0, z;θ∗, F ∗) is a smooth function

of the continuous components of x, there exists a positive constant δ such that for any ε > 0,

1 ≥
ˆ

E {Rfz(Z)|Z = z}
g1(x, z;θ∗, F ∗) + ε

dx ≥
ˆ
‖x−x0‖≤δ

E {Rfz(Z)|Z = z}
|g1(x, z;θ∗, F ∗)|+ ε

dx

&
ˆ
‖x−x0‖≤δ

E {Rfz(Z)|Z = z}
‖x− x0‖+ ε

dx, (4.28)

where �&� means greater than or equal to up to a constant. Because
´
‖x−x0‖≤δ(1/‖x−x0‖)dx

is in�nite, the last integration in expression (4.28) also goes to ∞ when ε → 0, which is a

contradiction. Thus, g1(x0, z;θ∗, F ∗) is bounded away from zero for (x, z) in the support of

(X,Z). The same conclusion holds for (nsn)−1g1n(x, z; θ̂, F̂ ) when n is su�ciently large.

The �nal step is to prove that θ∗ = θ0 and F ∗ = F0 through the Kullback-Leibler
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inequality. Let

p̃kj =

∑n
i=1 RiI(Xi = xk)B

q
j (Zi)/P (Ri = 1|Yi,Zi,Wi)∑n

i=1RiB
q
j (Zi)/P (Ri = 1|Yi,Zi,Wi)

,

and let F̃ (x, z) = n−1
∑m

k=1

∑n
i=1 I(xk ≤ x,Zi ≤ z)

∑sn
j=1 B

q
j (Zi)p̃kj. By the approxima-

tion theory of B-splines (Schumaker 1981), F̃ (x, z) → F0(x, z) uniformly. Furthermore,

it follows from the de�nitions of F̂ and F̃ that F̂ is absolutely continuous with respect to

F̃ . Thus, dF̂ /dF̃ converges uniformly to dF ∗/dF0. By Condition (C.3), F ∗ is continuously

di�erentiable with respect to x and z.

By the de�nitions of θ̂ and {p̂kj}, we have n−1ln(θ̂, {p̂kj}) ≥ n−1ln(θ0, {p̃kj}), i.e.,

− n−1

n∑
i=1

Ri log
Pθ̂(Yi|Xi,Zi,Wi)

Pθ0(Yi|Xi,Zi,Wi)
− n−1

n∑
i=1

Ri

m∑
k=1

I(Xi = xk)
sn∑
j=1

Bq
j (Zi) log

p̂kj
p̃kj

− n−1

n∑
i=1

(1−Ri) log

´
Pθ̂(Yi|x,Zi,Wi)F̂ (dx,Zi)´
Pθ0(Yi|x,Zi,Wi)F̃ (dx,Zi)

≤ 0. (4.29)

The �rst term in expression (4.29) converges to

−E

{
R log

Pθ∗(Y |X,Z,W )

Pθ0(Y |X,Z,W )

}
. (4.30)

By the approximation theory of B-splines (Schumaker 1981),
∑sn

j=1B
q
j (z) log(p̂kj/p̃kj) is

asymptotically equivalent to

log

∑sn
j=1B

q
j (z)p̂kj∑sn

j=1B
q
j (z)p̃kj

= log
dF̂ (x, z)

dF̃ (x, z)

∣∣∣∣∣
x=xk

.

Thus
∑sn

j=1B
q
j (z) log(p̂kj/p̃kj) converges uniformly to log{dF ∗(x, z)/dF0(x, z)}|x=xk

. As a

result, the second term in expression (4.29) converges to

−E

{
R log

dF ∗(X,Z)

dF0(X,Z)

}
. (4.31)
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The third term in expression (4.29) converges to

−E

{
(1−R) log

´
Pθ∗(Y |x,Z,W )F ∗(dx,Z)´
Pθ0(Y |x,Z,W )F0(dx,Z)

}
. (4.32)

By combining expressions (4.30), (4.31), and (4.32), we conclude that the Kullback-

Leibler information of the density indexed by θ∗ and F ∗ with respect to the true density is

nonpositive and thus must be zero. Therefore, the two densities are identical almost surely.

For R = 1, this implies that Pθ∗(Y |X,Z,W )F ∗(X,Z) = Pθ0(Y |X,Z,W )F0(X,Z). It

follows from Condition (C.2) that θ∗ = θ0 and F ∗ = F0. Thus, Theorem 1 holds. �

Proof of Theorem 4.2. Let lθ denote the score function for θ0 and lF (h) denote the score

function along the submodel {1 + εh(x, z)}dF0(x, z) based on one complete observation

(Y,X,Z,W ), where h ∈ L2(P), P is the probability measure indexed by (θ0, F0), and

E{h(X,Z)} = 0. We have lθ = ∂ logPθ0(Y |X,Z,W )/∂θ and lF (h) = h. For two-phase

studies, the score operators are loθ = Rlθ + (1 − R)E(lθ|Y,Z,W ) and loF = RlF + (1 −

R)E(lF |Y,Z,W ). The information operator is

loθ∗loθ loθ
∗loF

loF
∗loθ loF

∗loF

 ,
where loθ

∗ and loF
∗ are the adjoint operators of loθ and loF , respectively. We calculate the

information operator as

loθ
∗loθ = E

{
Rlθ

⊗2 + (1−R)E(lθ|Y,Z,W )⊗2
}
,

loθ
∗loF (h) = loF

∗loθ(h)T = E [E {Rlθ + (1−R)E(lθ|Y,Z,W )|X,Z}h(X,Z)] , and

loF
∗loF (h) = E(R|X,Z)h(X,Z) + E {(1−R)E(h(X,Z)|Y,Z,W )|X,Z} .

This information operator is the sum of an invertible operator and a compact operator from

the space M ≡ Rd ×BV (Dx,z) to itself, where d is the dimension of θ, and BV (Dx,z) is the
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space of functions with bounded total variation in the support of (X,Z). By Theorem 4.7

of Rudin (1973), the information operator is invertible if it is one to one, or equivalently, the

Fisher information along any nontrivial submodel is nonzero.

Suppose that the Fisher information is zero along some submodel [θ0 + εv, dF0(x, z){1 +

εh(x, z)}]. Then, the score function along this submodel, i.e., loθ
Tv + loF (h), is zero. We

set R = 1 to obtain lTθ v + lF (h) = 0 for any (Y,X,Z,W ) ∈ C. Speci�cally, for any

(yi,x, z,wi) ∈ C, i = 1, 2, we have

{
∂

∂θ
logPθ0(y1|x, z,w1)

}T

v + h(x, z) =

{
∂

∂θ
logPθ0(y2|x, z,w2)

}T

v + h(x, z),

which can be rewritten as a linear equation on v, i.e.,

{
∂

∂θ
logPθ0(y1|x, z,w1)− ∂

∂θ
logPθ0(y2|x, z,w2)

}T

v = 0.

By Condition (C.2), v = 0 and h = 0 with probability one. Thus, the information operator

is invertible. Consequently, there exists a function h such that loF
∗loF (h) = loF

∗loθ, i.e.,

E(R|X,Z)h+ E {(1−R)E(h|Y,Z,W )|X,Z}

=E {Rlθ + (1−R)E(lθ|Y,Z,W )|X,Z} . (4.33)

This means that the least favorable direction for θ0 exists. In addition, by using the argu-

ments in the proof of Theorem 3.4 of Zeng (2005), we can show that h is q-times continuously

di�erentiable.

Because (θ̂, F̂ ) maximizes expression (4.24), the derivatives of the log-likelihood function

with respect to ε along the submodel (θ̂ + εv, dF̂ ) for any v and the submodel {θ̂, dF̂ (1 +

εhn)} must be zero, where hn is the projection of h onto the tangent space of the sieve

space. By the approximation theory of B-splines (Schumaker 1981), we have ‖hn − h‖L2 .
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s
−q/dz
n . Therefore, (θ̂, F̂ ) is the solution to the functional Ψn(θ, F ) = 0, where Ψn(θ, F ) =

Ψ1n(θ, F )−Ψ2n(θ, F ),

Ψ1n(θ, F ) = Pn
{
R
∂

∂θ
logPθ(Y |X,Z,W )

}
+ Pn

{
(1−R)

ˆ
∂

∂θ
logPθ(Y |x,Z,W )g2(Y,Z,W ,x;θ, F )F (dx,Z)

}
,

Ψ2n(θ, F ) = Pn {Rhn(X,Z)}

+ Pn
{

(1−R)

ˆ
g2(Y,Z,W ,x;θ, F )hn(x,Z)F (dx,Z)

}
,

Pn is the empirical measure of the sample, and

g2(Y,Z,W ,x;θ, F ) =
Pθ(Y |x,Z,W )´

Pθ(Y |x̃,Z,W )F (dx̃,Z)
.

Let Ψ(θ, F ) be the same as Ψn(θ, F ) except that Pn is replaced by P . Clearly, θ̂ satis�es

the following equation:

n1/2
{

Ψn(θ̂, F̂ )−Ψ(θ̂, F̂ )
}

= −n1/2Ψ(θ̂, F̂ ). (4.34)

We wish to use Theorem 2.11.22 of van der Vaart and Wellner (1996) to show that

n1/2
{

Ψn(θ̂, F̂ )−Ψ(θ̂, F̂ )
}

= n1/2(Pn − P) {loθ − loF (hn)}+ op(1). (4.35)

Note that the left-hand side of equation (4.35) is an empirical process of the following two

classes of functions indexed by (θ̂, F̂ ):

F1n =

{
R
∂

∂θ
logPθ(Y |X,Z,W ) + (1−R)

ˆ
∂

∂θ
logPθ(Y |x,Z,W )

× g2(Y,Z,W ,x;θ, F )F (dx,Z) : |θ − θ0|+ ‖F − F0‖ ≤ ε0

}
;
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F2n =

{
Rhn(X,Z) + (1−R)

ˆ
g2(Y,Z,W ,x;θ, F )hn(x,Z)F (dx,Z) :

|θ − θ0|+ ‖F − F0‖ ≤ ε0

}
,

where ‖F − F0‖ is the supreme norm in Dx,z. By Theorem 1 and the approximation theory

of B-splines (Schumaker 1981), it is straightforward to verify that

R
∂

∂θ
logPθ̂(Y |X,Z,W ) + (1−R)

ˆ
∂

∂θ
logPθ̂(Y |x,Z,W )

× g2(Y,Z,W ,x; θ̂, F̂ )F̂ (dx,Z)

→ R
∂

∂θ
logPθ0(Y |X,Z,W ) + (1−R)

ˆ
∂

∂θ
logPθ0(Y |x,Z,W )

× Pθ0(Y |x,Z,W )F0(dx,Z)´
Pθ0(Y |x,Z,W )F0(dx,Z)

= Rlθ + (1−R)E{lθ|Y,Z,W } = loθ,

and

Rhn(X,Z) + (1−R)

ˆ
g2(Y,Z,W ,x; θ̂, F̂ )hn(x,Z)F̂ (dx,Z)

→ Rh(X,Z) + (1−R)

´
h(x,Z)Pθ0(Y |x,Z,W )F0(dx,Z)´

Pθ0(Y |x,Z,W )F0(dx,Z)

= Rh(X,Z) + (1−R)E {h(X,Z)|Y,Z,W } = loF (h)

uniformly in (Y,X,Z,W ).

Clearly, all functions in the classes F1n and F2n are uniformly bounded. We wish to verify

the conditions in Theorem 2.11.22 of van der Vaart and Wellner (1996). We �rst show that

the classes of functions F1n and F2n satisfy the uniform entropy condition. Pick any two

functions from F1n, say f1 and f2, which are indexed by (θ1, F1) and (θ2, F2), respectively.
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The di�erence between the two functions is bounded from above by

∣∣∣∣ ∂∂θ logPθ1(Y |X,Z,W )− ∂

∂θ
logPθ2(Y |X,Z,W )

∣∣∣∣
+

∣∣∣∣ˆ ∂

∂θ
logPθ1(Y |x,Z,W )g2(Y,Z,W ,x;θ1, F1)(F1 − F2)(dx,Z)

∣∣∣∣
+

∣∣∣∣ˆ { ∂

∂θ
logPθ1(Y |x,Z,W )− ∂

∂θ
logPθ2(Y |x,Z,W )

}
× g2(Y,Z,W ,x;θ1, F1)F2(dx,Z)

∣∣∣∣
+

∣∣∣∣ ˆ ∂

∂θ
logPθ2(Y |x,Z,W )

{
g2(Y,Z,W ,x;θ1, F1)

− g2(Y,Z,W ,x;θ2, F2)
}
F2(dx,Z)

∣∣∣∣
≡ (i) + (ii) + (iii) + (iv).

By the mean-value theorem, (i) . ‖θ1 − θ2‖. Because the denominator in the expression of

g2(Y,Z,W ,x;θ, F ) is bounded away from zero, we obtain that

(ii) .
ˆ
|F1(x,Z)− F2(x,Z)| dx .

ˆ
|F1(x, z)− F2(x, z)| dxdz.

By the mean-value theorem,

(iii) . ‖θ1 − θ2‖
ˆ
g2(Y,Z,W ,x;θ1, F1)F2(dx,Z) . ‖θ1 − θ2‖ .

Likewise,

(iv) . ‖θ1 − θ2‖+

ˆ
|F1(x, z)− F2(x, z)|dxdz.

Combining the above inequalities for (i), (ii), (iii), and (iv), we have

|f1 − f2| . ‖θ1 − θ2‖+

ˆ
|F1(x, z)− F2(x, z)|dxdz.
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Thus, the Cauchy-Schwartz inequality implies that, for any �nite measure Q,

‖f1 − f2‖L2(Q) . ‖θ1 − θ2‖+

{ˆ
|F1(x, z)− F2(x, z)|2dxdz

}1/2

= ‖θ1 − θ2‖+ ‖F1(X,Z)− F2(X,Z)‖L2(Q̃), (4.36)

where Q̃ is the uniform measure on Dx,z. We conclude that

N{ε,F1n, L2(Q)) .N(ε/2, (θ : ‖θ − θ0‖ < ε0), | · |}

×N(ε/2, (F : ‖F − F0‖∞ < ε0), L2(Q̃)}, (4.37)

where N(·, ·, ·) denotes the covering number. On the right-hand side of (4.37), the �rst

covering number is O(1/εd). The second covering number is O[exp{ε−2V/(V+2)}], where V is

some positive index. To see the latter result, we observe that (F : ‖F − F0‖∞ < ε) is in

the symmetric convex hull of a Vapnik-Chervonenkis class [I{a < (XT,ZT)T ≤ b}: a, b ∈

Rdx+dz ], where dx denotes the dimension of X. The result follows from Theorem 2.6.9 of

van der Vaart and Wellner (1996). Therefore, expression (4.37) implies that F1n satis�es

the uniform entropy condition in Theorem 2.11.22 of van der Vaart and Wellner (1996). By

similar arguments and the fact that ‖hn‖L2 . ‖h‖L2 , we can show that F2n also satis�es the

uniform entropy condition.

If we replace measure Q by P , then expression (4.36) implies that the functions in F1n

and F2n are Lipschitz continuous with respect to (θ, F ) in the metric de�ned as

ρ{(θ1, F1), (θ2, F2)} = ‖θ1 − θ2‖+ ‖F1 − F2‖L2(P).

As a result, condition (2.11.21) in Theorem 2.11.22 of van der Vaart and Wellner (1996)

holds. In addition, the total boundedness of the index set (θ, F ) holds due to the precom-

pactness of (θ, F ) under the uniform metric. We have now veri�ed all of the conditions in
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Theorem 2.11.22 of van der Vaart and Wellner (1996). Thus, equation (4.35) follows from

that theorem.

By combining equations (4.34) and (4.35), we have

−n1/2
{

Ψ1(θ̂, F̂ )−Ψ2(θ̂, F̂ )
}

= n1/2(Pn − P){loθ − loF (hn)}+ op(1), (4.38)

where Ψ1(θ, F ) and Ψ2(θ, F ) are the same as Ψ1n(θ, F ) and Ψ2n(θ, F ), respectively, except

that Pn is replaced by P . The left-hand side of equation (4.38) can be linearized around

(θ0, F0). Speci�cally,

Ψ1(θ̂, F̂ ) = Ψ1(θ0, F0) + P{R ∂2

∂θT∂θ
logPθ∗(Y |X,Z,W )(θ̂ − θ0)}

+P
[
(1−R)

ˆ
∂

∂θ

{
∂

∂θ
logPθ∗(Y |x,Z,W )g2(Y,Z,W ,x;θ∗, F ∗)

}
× (θ̂ − θ0)F̂ (dx,Z)

]
+P
[
(1−R)

ˆ
∂

∂θ
logPθ∗(Y |x,Z,W )

{
∂

∂F
g2(Y,Z,W ,x;θ∗, F ∗)

× F ∗(dx,Z)

}
(F̂ − F0)

]
,

where ∂/∂F denotes the pathwise derivative, and (θ∗, F ∗) lies between (θ̂, F̂ ) and (θ0, F0).

Similar expansions can be obtained for Ψ2(θ̂, F̂ ). By the approximation theory of B-splines

(Schumaker 1981), we can show that the left-hand side of (4.38) equals

− n1/2 {1 + op(1)}E
{
loθθ(θ̂ − θ0) + loθF (F̂ − F0)− loFθ(hn)(θ̂ − θ0)− loFF (hn, F̂ − F0)

}
− n1/2 {Ψ1(θ0, F0)−Ψ2(θ0, F0)} , (4.39)

where loθθ is the derivative of l
o
θ with respect to θ, loθF (h) is the derivative of loθ with respect

to F along the direction h, loFθ(h) is the derivative of loF (h) with respect to θ, and loFF (h1, h2)

is the derivative of loF (h1) with respect to F along the direction h2.
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Because we have chosen h to be the least favorable direction for θ0 and ‖hn − h‖L2 .

s
−q/dz
n , we have E{loFF (hn, F̂ −F0)} = E{loθF (F̂ −F0)}+O(s

−q/dz
n ) and E{loFθ(hn)(θ̂−θ0)} =

E{loFθ(h)(θ̂−θ0)}+O(s
−q/dz
n ). Thus, by Condition (C.5), the �rst term in expression (4.39)

is n1/2Σ(θ̂ − θ0) + O(n1/2s
−q/dz
n ) = n1/2Σ(θ̂ − θ0) + o(1), where Σ = −E{loθθ − loFθ(h)},

which is an invertible matrix due to the invertibility of the information operator for (θ0, F0).

Because P {R∂ logPθ0(Y |X,Z,W )/∂θ} = 0 and

P
{

(1−R)

ˆ
∂

∂θ
logPθ0(Y |x,Z,W )

Pθ0(Y |x,Z,W )F0(dx,Z)´
Pθ0(Y |x,Z,W )F0(dx,Z)

}
= 0,

the last term in (4.39) equals zero. It follows from equation (4.38) that

n1/2{1 + op(1)}Σ(θ̂ − θ0) + op(1) = n1/2(Pn − P) {loθ − loF (h)} .

Thus, we have established the asymptotic normality in Theorem 4.2. Because Σ−1{loθ −

loF (h)} is the e�cient in�uence function for θ0, its limiting covariance matrix attains the

semiparametric e�ciency bound. �

For a given θ, we de�ne F̂θ as the joint distribution function of (X,Z) that maximizes

ln(θ, {pkj}). By the arguments in the proof of Theorem 4.1, we can show that for any

θ̂ → θ0 in probability, the estimator F̂θ̂ → F0 uniformly. Furthermore, given the existence

of the least favorable directions, we can construct the least favorable model. These two facts

imply that the pro�le likelihood theory in Murphy and van der Vaart (2000) holds for our

approach. Thus, the inverse of the negative Hessian matrix of the pro�le likelihood function

is a consistent estimator for the limiting covariance matrix of n1/2(θ̂ − θ0).

99



CHAPTER 5: OPTIMAL TWO-PHASE DESIGNS AND FUTURE

RESEARCH

5.1 Optimal Two-Phase Designs

5.1.1 Introduction

Previous research on two-phase studies has largely focused on the inference procedures

rather than the design aspects. An important topic of investigation is the optimal study

design when the primary interest is to estimate the regression coe�cients of the expensive

covariates. If a discrete outcome is of primary interest and there are no inexpensive covari-

ates, then it is well known that the case-control design with an equal number of cases and

controls is the most e�cient one. When a continuous outcome is of primary interest, two

types of designs are commonly used in practice. The �rst design selects subjects from the

two tails of the outcome distribution in the second phase. We call this design the outcome-

dependent sampling (ODS) design. If the inexpensive covariates are also available in the �rst

phase, then we can �t a marginal model relating the outcome to inexpensive covariates and

use the residuals from the �tted model to select subjects. We call this design the residual-

dependent sampling (RDS) design. Both the ODS and RDS designs have been adopted in

the NHLBI ESP. Speci�cally, the ODS design has been adopted in the BMI study and the

RDS design has been adopted in the BP and LDL studies.

Although the design issue is important, little research has been done to study the optimal

design. Recently, Lin et al. (2013) showed that the ODS design is optimal when there is no

inexpensive covariates. For general two-phase studies, it is unclear what the best sampling

strategy is. In this project, we study optimal designs for parametric and semiparametric
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regression problems under general two-phase studies. We derive the e�cient information

for estimating the regression coe�cients of the expensive covariates under local alternatives.

We compare e�ciencies between the optimal and existing designs in extensive simulation

studies.

5.1.2 Methods

Let Y be the outcome(s) of interest, X denote the expensive covariate, and Z denote the

vector of inexpensive covariates. The data (Y,X,Z) are assumed to be generated from the

joint distribution Pθ,φ(Y |X,Z)η(X,Z), where Pθ,φ(Y |X,Z) = f{Y |µ(X,Z);φ} is a regres-

sion model indexed by θ = (α, β, γT)T and φ, (α, β, γ) are the regression coe�cients in the

linear predictor µ(X,Z) = α + βX + γTZ, φ is a (possibly in�nite-dimensional) nuisance

parameter, and η(X,Z) is the joint distribution of X and Z.

If (Y,X,Z) is observed for all n subjects in the study, then it is standard to base inferences

about θ on the conditional distribution of Y given (X,Z), such that the likelihood is

n∏
i=1

Pθ,φ(Yi|Xi, Zi).

Under the two-phase design, however, only (Y, Z) is measured for all n subjects in the �rst

phase, and X is measured for a sub-sample of size n2 in the second phase. Let R indicate, by

the values 1 versus 0, whether the subject is selected for the measurement of X in the second

phase. A key assumption for the two-phase design is that the distribution of R depends on

(Y,X,Z) only through the �rst-phase data (Y, Z). Under this assumption, the data on X are

missing at random, such that the sampling indicators (R1, . . . , Rn) can be omitted from the

likelihood function when estimating θ. Thus, the observed-data likelihood and log-likelihood

take the forms

L(θ, φ, η) =
n∏
i=1

{Pθ,φ(Yi|Xi, Zi)η(Xi, Zi)}Ri

{ˆ
Pθ,φ(Yi|x, Zi)η(x, Zi)dx

}1−Ri

,
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and

l(θ, φ, η) =
n∑
i=1

Ri logPθ,φ(Yi|Xi, Zi) +
n∑
i=1

Ri log η(Xi, Zi)

+
n∑
i=1

(1−Ri) log

ˆ
Pθ,φ(Yi|x, Zi)η(x, Zi)dx,

respectively. Our main interest lies in the inference of β.

Let fµ{Y |µ(X,Z), φ} ≡ ∂ logPθ,φ(Y |X,Z)/∂µ, and fφ(h1) denote the score for φ along

the submodel t→ φt(h1) for one complete observation (Y,X,Z), where h1 ∈ L2(P), P is the

probability measure indexed by (θ, φ, η), and φ0(h1) = φ. Let Uθ ≡ (Uα, Uβ, U
T
γ )T denote

the score for θ, Uφ(h1) denote the score for φ along the submodel φt(h1), and Uη(h2) denote

the score for η along the submodel {1 + th2(x, z)}η(x, z) under the two-phase design, where

h2 ∈ L0
2(η). We have

Uα =Rfµ{Y |µ(X,Z), φ}+ (1−R)E [fµ{Y |µ(X,Z), φ}|Y, Z] ,

Uβ =Rfµ{Y |µ(X,Z), φ}X + (1−R)E [fµ{Y |µ(X,Z), φ}X|Y, Z] ,

Uγ =Rfµ{Y |µ(X,Z), φ}Z + (1−R)E [fµ{Y |µ(X,Z), φ}Z|Y, Z] ,

Uφ(h1) =Rfφ(h1) + (1−R)E {fφ(h1)|Y, Z} ,

Uη(h2) =Rh2(X,Z) + (1−R)E [h2(X,Z)|Y, Z] .

The information operator is


U∗θUθ U∗θUφ U∗θUη

U∗φUθ U∗φUφ U∗φUη

U∗ηUθ U∗ηUφ U∗ηUη

 ,

where U∗θ = (U∗α, U
∗
β , U

∗
γ ), and U∗α, U

∗
β , U

∗
γ , U

∗
φ, and U

∗
η are the adjoint operators of Uα, Uβ,

Uγ, Uφ, and Uη, respectively. Under the null hypothesis β = 0, we have µ(X,Z) = α+γTZ ≡
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µ(Z). Thus, fµ{Y |µ(Z), φ} and fφ(h1) do not depend on X. Consequently, we calculate the

information operator as

U∗αUα =E
(
Rf 2

µ{Y |µ(Z), φ}+ (1−R)E [fµ{Y |µ(Z), φ}|Y, Z]2
)

= E
[
f 2
µ{Y |µ(Z), φ}

]
,

U∗γUγ =E
[
f 2
µ{Y |µ(Z), φ}ZZT

]
,

U∗αUγ =E
[
f 2
µ{Y |µ(Z), φ}ZT

]
,

U∗αUβ =E
[
Rf 2

µ{Y |µ(Z), φ}X
]

+ E ((1−R)E [fµ{Y |µ(Z), φ}|Y, Z] E [fµ{Y |µ(Z), φ}X|Y, Z])

=E
[
f 2
µ{Y |µ(Z), φ}E (X|Z)

]
,

U∗βUγ =E
[
f 2
µ{Y |µ(Z), φ}E (X|Z)Z

]
,

U∗βUβ =E
(
Rf 2

µ{Y |µ(Z), φ}X2 + (1−R)E [fµ{Y |µ(Z), φ}X|Y, Z]2
)

=E
[
Rf 2

µ{Y |µ(Z), φ}X2 + (1−R)f 2
µ{Y |µ(Z), φ}E (X|Z)2]

=E
[
f 2
µ{Y |µ(Z), φ}E (X|Z)2]+ E

[
Rf 2

µ{Y |µ(Z), φ}Var (X|Z)
]
,

U∗αUφ(h1) =E {fµ{Y |µ(Z), φ}fφ(h1)} ,

U∗γUφ(h1) =E {fµ{Y |µ(Z), φ}Zfφ(h1)} ,

U∗βUφ(h1) =E {fµ{Y |µ(Z), φ}E(X|Z)fφ(h1)} ,

U∗φUφ(h1) =f ∗φfφ(h1),

U∗αUη(h2) =E {E (Rfµ{Y |µ(Z), φ}+ (1−R)E [fµ{Y |µ(Z), φ}|Y, Z] |X,Z)h2(X,Z)}

=E (E [fµ{Y |µ(Z), φ}|Z]h2(X,Z)) = 0,

U∗γUη(h2) =0,

U∗φUη(h2) =0,

U∗βUη(h2) =E {E (Rfµ{Y |µ(Z), φ}X + (1−R)E [fµ{Y |µ(Z), φ}X|Y, Z] |X,Z)h2(X,Z)}

=E (E [Rfµ{Y |µ(Z), φ}|Z] {X − E(X|Z)}h2(X,Z)) ,

U∗ηUη(h2) =E(R|X,Z)h2(X,Z) + E [(1−R)E {h2(X,Z)|Y, Z} |X,Z]
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=E(R|X,Z)h2(X,Z) + E {(1−R)|X,Z}E {h2(X,Z)|Z}

=E(R|Z) [h2(X,Z)− E {h2(X,Z)|Z}] + E {h2(X,Z)|Z} ,

where f ∗φ is the adjoint operator of fφ.

To calculate the e�cient information of β, denoted by Iββ, we observe that the score

spaces for (α, γ, φ) and η are orthogonal. Therefore, we have

Iββ =U∗βUβ − 〈M1Uβ, Uβ〉 − 〈M2Uβ, Uβ〉

=E
[
f 2
µ{Y |µ(Z), φ}E (X|Z)2]− 〈M1Uβ, Uβ〉 − 〈M2Uβ, Uβ〉

+ E
[
Rf 2

µ{Y |µ(Z), φ}Var (X|Z)
]
,

where

M1 =

[
Uα Uγ Uφ

]
U∗αUα U∗αUγ U∗αUφ

U∗γUα U∗γUγ U∗γUφ

U∗φUα U∗φUγ U∗φUφ


−1 

U∗α

U∗γ

U∗φ

 ,

and M2 = Uη(U
∗
ηUη)

−1U∗η are the projection operators onto the score spaces of (α, γ, φ) and

η, respectively. Let Iββ0 ≡ E
[
f 2
µ{Y |µ(Z), φ}E (X|Z)2] − 〈M1Uβ, Uβ〉. We observe that Iββ0

is the e�cient information for β in the regression model Pθ,φ(Y |X,Z), except that X is

replaced by E(X|Z). Because Iββ0 does not depend on R, it is invariant under any type of

two-phase design.

Next, we calculate 〈M2Uβ, Uβ〉 as follows:

(U∗ηUη)
−1(h2) =E(R|Z)−1 [h2(X,Z)− E {h2(X,Z)|Z}] ,

(U∗ηUη)
−1U∗η (h2) =h2(X,Z)− E {h2(X,Z)|Z} ,

Uη(U
∗
ηUη)

−1U∗η (h2) =R [h2(X,Z)− E {h2(X,Z)|Z}] ,

104



M2Uβ =R
(
E [Rfµ{Y |µ(Z), φ}|Z]X + (1−R)E [fµ{Y |µ(Z), φ}|Z] E(X|Z)

− E [Rfµ{Y |µ(Z), φ}X|Z]− E [(1−R)fµ{Y |µ(Z), φ}E(X|Z)|Z]
)

=RE [Rfµ{Y |µ(Z), φ}|Z]X −RE [Rfµ{Y |µ(Z), φ}X|Z]

−RE [(1−R)fµ{Y |µ(Z), φ}E(X|Z)|Z]

=RE [Rfµ{Y |µ(Z), φ}|Z] {X − E(X|Z)},

〈M2Uβ, Uβ〉 =E
{
RE [Rfµ{Y |µ(Z), φ}|Z] {X − E(X|Z)}

× (Rfµ{Y |µ(Z), φ}X + (1−R)E [fµ{Y |µ(Z), φ}X|Y, Z])
}

=E
(
RE [Rfµ{Y |µ(Z), φ}|Z] {X − E(X|Z)}fµ{Y |µ(Z), φ}X

)
=E
(
E [Rfµ{Y |µ(Z), φ}|Z]2 Var(X|Z)

)
.

Consequently,

Iββ = Iββ0 + E
(
E
[
Rf 2

µ{Y |µ(Z), φ} − E [Rfµ{Y |µ(Z), φ}|Z]2
∣∣Z]Var (X|Z)

)
. (5.40)

The design is more e�cient if the second term on the right-hand side of equation (5.40) is

larger.

5.1.3 Simulation Studies

We conducted simulation studies to compare the e�ciencies of di�erent designs when the

outcome is continuous. Speci�cally, we set Z to be a Bernoulli random variable with mean

0.5, and X to be a Bernoulli random variable with mean p0 or p1 depending on whether

Z = 0 or 1. We generated the outcome from the linear model: Y = βX + γZ + ε1, where

ε1 is a standard normal random variable independent of X and Z. We set n = 4000 and

considered three types of two-phase designs. The ODS design selects 200 and 200 subjects

with extremely large and small values of Y, respectively; the RDS design selects 200 and 200

subjects with extremely large and small values of Y −γ̂Z, respectively; and the optimal design
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selects 200 and 200 subjects with extremely large or small values of
√

Var(X|Z)(Y − γ̂Z),

respectively, where Var(X|Z = j) = pj(1 − pj), j = 0, 1. For benchmark comparisons, we

included a forth design where the �rst-phase information is ignored and a simple random

sample (SRS) of 400 subjects is selected.

The relative e�ciencies between each of the three types of two-phase designs and the SRS

design are shown in Table 5.28. We can see that all three designs are much more e�cient

than the SRS design. When Z has no e�ect on Y, the ODS design is as e�cient as the RDS

design. When Z has e�ects on Y, the RDS design is more e�cient than the ODS design.

When Var(X|Z) is a constant, the RDS design is as e�cient as the optimal design. When

Var(X|Z) depends on Z, the optimal design is substantially more e�cient than the RDS

design.

Table 5.28: E�ciency Comparisons Between the ODS, RDS, and Optimal Designs

SE of β̂ RE
p0 and p1 β γ SRS ODS RDS Optimal ODS RDS Optimal
p0 = p1 = 0.7 0.0 0.0 0.110 0.053 0.053 0.053 4.25 4.32 4.32

0.5 0.110 0.059 0.053 0.053 3.47 4.32 4.32
1.0 0.110 0.078 0.053 0.053 1.99 4.32 4.32

0.3 0.0 0.108 0.054 0.054 0.054 4.01 3.98 3.98
0.5 0.108 0.059 0.054 0.054 3.34 3.98 3.98
1.0 0.108 0.080 0.054 0.054 1.82 3.98 3.98

p0 = 0.5, p1 = 0.9 0.0 0.0 0.125 0.060 0.060 0.056 4.29 4.29 5.05
0.5 0.125 0.069 0.060 0.056 3.34 4.29 5.05
1.0 0.125 0.093 0.060 0.056 1.80 4.29 5.05

0.3 0.0 0.119 0.061 0.061 0.055 3.79 3.81 4.72
0.5 0.119 0.070 0.061 0.055 2.86 3.81 4.72
1.0 0.119 0.098 0.061 0.055 1.48 3.81 4.72

NOTE: SE is standard error; RE is the empirical variance of β̂ under the two-phase
design over that under the SRS design.
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5.2 Future Extensions

5.2.1 E�cient Inference Under General Two-Phase Sampling

In many epidemiological studies, the covariates of primary interest involve biochemical

or genetic analysis of blood specimens or extraction of detailed exposure histories and thus

are prohibitively expensive to measure in large studies. Two-phase designs that concen-

trate resources on where there is the greatest amount of information are extremely useful

in this setting. The NHLBI ESP and CHARGE TSS are two recent examples. It is not

hard to envision that many large-scale studies will adopt two-phase designs. I am in the

progress of extending my research on e�cient semiparametric inference under general two-

phase sampling to di�erent types of outcomes, including combinations of continuous and

discrete outcomes, longitudinal outcomes, and censored time-to-event outcomes. I will study

the theoretical properties and �nite sample performance of each of these extensions. Another

important direction worth pursuing is the analysis of secondary outcomes that are not used

for sampling but are correlated with the primary outcome(s) used for sampling. To popular-

ize our methods and facilitate broad collaborations, I will develop computationally e�cient

software packages that are capable of handling large datasets, including whole-exome and

whole-genome sequencing studies.

5.2.2 Optimal Two-Phase Designs

I will continue my research on optimal two-phase designs. We have derived the e�cient

information for estimating the regression coe�cients of the expensive covariates. We will use

this general result to study the optimal design for a number of scenarios, including binary

outcomes with inexpensive covariates, multiple continuous outcomes of equal interest, longi-

tudinal outcomes with interest either in the baseline e�ect or the trend e�ect, and censored

time-to-event outcomes. It would be also of interest to study the optimal design when the

interaction e�ect between expensive and inexpensive covariates is of primary interest.
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