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ABSTRACT 

Brandon Michael Lee Linz: Cellular Mechanisms of Immune and Hematopoietic Dysfunction 

Following Radiation and Burn Injuries 

(Under the direction of Bruce A. Cairns and Robert Maile) 

 

The immune system has evolved to protect the body against damage from infection, 

disease, or injury. Severe injuries, such as large burns or radiation exposures, induce profound 

immune dysfunctions at the cellular and humoral levels that heighten the body’s susceptibility to 

infections. Despite progress made toward reducing the consequences of burn shock, translocation 

of intestinal bacteria and wound and pulmonary infections leading to sepsis are still major causes 

of mortality following a traumatic injury. Following a severe burn or radiation injury, the body 

must respond rapidly to activate or produce new immune cells to challenge the insult and to 

restore homeostasis also while preventing any bacteria from establishing an infection. Therefore, 

to improve patient outcomes, it is important to understand not only the immune but also the 

hematopoietic responses to injury and infection.  

NLRP12 is a member of the NLR family of proteins that are responsible for coordinating 

inflammatory responses upon recognition of invading pathogens and damage signals. Mutations 

in human NLRP12 have been linked to atopic dermatitis and hereditary periodic fevers with skin, 

however the mechanisms by which NLRP12 affects these conditions remain to be fully 

elucidated. To better understand these mechanisms, Nlrp12 knockout mice were subjected to a 

model of radiation-thermal combined injury. Remarkably, Nlrp12 deficient mice failed to 

repopulate their peripheral immune compartments in addition to a significant reduction in bone 

marrow cellularity. Prolonged, elevated serum concentrations of TNF in injury Nlrp12-deficient 
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animals induced the stem cells responsible for the bulk of myeloid cell production to undergo 

apoptosis. This defect in repopulation of the peripheral immune system lead all Nlrp12 knockout 

animals to quickly succumb to an infectious challenge, thus highlighting the importance of 

Nlrp12 in responding to infection or injury. 

Following a radiation-thermal combined injury, wild type myeloid progenitor cells 

underwent apoptosis at a low level. Administration of the glycoprotein granulocyte-monocyte 

colony stimulating factor was evaluated as a therapeutic to stimulate stem cell maturation and 

production of myeloid cells following injury. Treatment resulted in increased myeloid cell 

production: including increases in platelets, red blood cells, immature monocytes, dendritic cells, 

neutrophils, and macrophages. Notably, platelets and monocytes displayed increased function, in 

turn decreasing mortality and response to an infectious challenge. The innate immune response 

was then assessed early after only burn injury. Burn mice were susceptible to an early wound 

infection with Pseudomonas aeruginosa as shown with increased mortality and systemic 

bacterial colonization. The defective bacterial clearance was associated with a neutrophil anti-

inflammatory polarization phenotype (N2; IL-10+ IL-12-). This work expands on our 

understanding of NLRP12 function in vivo as well as insights into the cellular mechanisms of 

immune dysfunction and hematopoiesis following burn and radiation injuries. Furthermore, our 

results reveal novel treatments for improved hematopoietic and innate immune response to 

reduce the impact of sepsis and subsequent bacterial infections after injury.   
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CHAPTER 1: INTRODUCTION  

1.1 Burn injury  

Burn injuries occur when a hot liquid (scald), solid (contact burn), or flame are exposed 

to a tissue and cause subtotal or total destruction of the cells present in the skin or below. Burns 

can also be caused by exposure to radiation sources, electricity, and caustic chemicals 

(Gabrielsen, 2003). In 2007, there were 11 million cases of burns that required medical 

treatment, making it the fourth most common injury world-wide ("World Health Organization. 

The Global Burden of Disease: 2004 Update," 2008). In the US alone, there were 450,000 

emergency room visits and 3,500 deaths from burn injuries in 2010 (Miller et al., 2008). The 

rapid onset of burn shock following injury necessitates immediate, specialized care to reduce 

morbidity and mortality. Aggressive fluid resuscitation, regulation of body temperature, 

analgesics, wound debridement, wound excision and closure, and preventative infection are 

measures in which certified American Burn Associated burn centers specialize (Association, 

2015). The cost of treatment at one of these centers can be greater than $200,000 (Association, 

2015). However, this does not include expenses from rehabilitation, occupational and physical 

therapies, and any chronic complications.  

1.2 Grading of burn wounds 

Burn injuries are graded based on size and how many layers of skin have been injured. A 

first-degree or superficial burn only destroys the first layer of the epidermis and heals quickly; 

the most common first degree burn experienced is a sunburn (Gabrielsen, 2003). A second-

degree or partial thickness burn destroys both the epidermis and dermis tissues; this can result in 
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blisters that will often heal and scar over within 5 weeks (Roth & Hughes, 2015). A third-degree 

or full thickness burn extends through all layers of the skin and into the subcutaneous tissue. 

Since this depth includes the basement membrane and progenitor cells responsible for dermal 

maintenance and cell production, treatment of these wounds requires excision of the damaged 

tissue and a skin-graft to close the now open wound. Lastly, a fourth-degree burn involves other 

organ tissue below the skin and soft tissue, such as muscle, connective tissue, and bone. Burn 

injuries are also measured by size or area of injury (Gabrielsen, 2003). The percent total body 

surface area (TBSA) of an adult patient is typically assessed by the rule of nines where most 

areas of the body (i.e. an arm, back and front of the legs, half of the chest or back) can be 

assumed to be approximately 9% of the total body surface area of the adult. The overall burn size 

and depth help to guide fluid resuscitation and wound management within the burn unit (Roth & 

Hughes, 2015).  

1.3 Acute radiation exposure 

Exposure to high amounts of ionizing radiation can lead to numerous cellular and 

systemic damages. Ionization of DNA from radiation exposure leads to decreased ability for cells 

to divide due to ionization-induced mutation of key factors involved in cell division (Coleman, 

Stone, Moulder, & Pellmar, 2004). This elimination of rapidly dividing cells – namely 

hematopoietic stem cells, intestinal stem cells, and hair follicles – these symptoms and their 

consequences can start to be observed as early as one to two hours post exposure and may persist 

for weeks to months (Browne, 2013; Coleman et al., 2004; Gaugler, 2014). Acute exposure to 

high levels of ionizing radiation initially causes nausea, vomiting, diarrhea, headaches and a mild 

fever typically within 24 hours. However, the ionizing radiation also induced DNA-damage 

repair mechanisms that lead to the apoptosis or necrosis of dividing cells causing neurological, 
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gastrointestinal, and hematopoietic distress (Chua et al., 2012; Gaugler, 2014). The apoptosis of 

the majority of hematopoietic progenitor cells leads to severe leukopenia and subsequent 

increased susceptibility to infections (Chua et al., 2012; Heslet, Bay, & Nepper-Christensen, 

2012; Heylmann, Rödel, Kindler, & Kaina, 2014). 

1.4 Radiation-thermal combined injury  

Greater than 30%, and predicted to potentially be as high as 65-70%, of accidental or 

incidental exposures to high doses of radiation are coupled with a secondary burn injury either 

from the heat from the primary radiation exposure source or from a secondary fire created by an 

industrial accident or incidental exposures (Fushiki, 2013; Hasegawa et al., 2015; Shaw, 2014). 

Patients who receive a radiation-thermal combined injury (RCI) undergo physiologic changes 

and display cytokine profiles consistent with burn shock, but uniquely show immune and 

hematopoietic cell destruction consistent with total body radiation injury ablation of rapidly 

dividing cells (Cherry, Williams, O'Banion, & Olschowka, 2013; Chua et al., 2012; Coleman et 

al., 2004; Hasegawa et al., 2015). This combination of unique injuries leads to unique challenges 

for medical interventions that have been utilized for the individual injuries which may be 

counter-indicated in RCI in the absence of research into RCI-relevant treatments (Basile et al., 

2012; Browne, 2013). Despite no to low numbers of cases each year, the heightened security 

concerns of today coupled with the lack of clinically proven treatments necessitate inquiry. 

1.5 Systemic response to burn injury  

Severe burn injuries covering greater than 20% TBSA are typically followed by a period 

of hypermetabolism, altered hemodynamics, vascular permeability and edema, decreased renal 

blood flow, and increased gut mucosal permeability (Baker, Miller, & TRUNKEY, 1979; 

Hettiaratchy & Dziewulski, 2004; Miller et al., 2008). With burns of more the 20% TBSA, the 
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magnitude of immune impairment is proportional to the size of burn (Baker et al., 1979). The 

massive release of cellular debris and damage associated molecular patterns (DAMPs) trigger a 

systemic immune response (Finnerty, Przkora, Herndon, & Jeschke, 2009). This massive release 

of inflammatory mediators from the wound and other tissues is believed to impact and/or trigger 

multi-organ dysfunction (Santaniello et al., 2004). Following the initial systemic inflammatory 

response, there is also long-term immune suppression demonstrated by prolonged allograft skin 

survival on burn wounds (Lagus, Sarlomo-Rikala, Böhling, & Vuola, 2013; Mowlavi, Andrews, 

Milner, Herndon, & Heggers, 2000). Since burn injury impairs all parts of the immune system – 

hematopoietic, innate, and adaptive systems – patients are extremely susceptible to infection 

(Church, Elsayed, Reid, Winston, & Lindsay, 2006; Manson, Pernot, Fidler, Sauer, & Klasen, 

1992).  

1.6 Nucleotide-binding oligomerization domain family of receptors 

Pattern recognition receptors (PRR) play a key role in regulating acute and chronic innate 

immune responses to tissue damage or infection (Broz & Monack, 2013). In addition to toll-like 

receptors (TLRs), the more recently discovered family of intracellular receptors, the nucleotide-

binding oligomerization domain-like receptors (NLRs), have been found to not only cooperate 

with TLRs, but also both positively and negatively regulate inflammatory responses, initiate 

enzymatic cleavage of cytokines, as well as regulate apoptotic responses (Duran, Alvarez-Mon, 

& Valero, 2014). The majority of study has focused on a key members’ function as 

inflammasomes: namely NLRP3, NLRC4, NLRP1, and putatively NLRP12 (Jacobs, Tabor, 

Burks, & Campbell, 1989; Jeru et al., 2008; Mariathasan et al., 2004; Vladimer et al., 2012). 

These proteins, upon binding of their ligand (or by other mechanisms which remain to be fully 

elucidated), will undergo a conformational change that typically induces interaction with the 
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adaptor protein apoptosis-associated speck-like protein containing a c-terminal caspase 

recruitment domain (ASC) (Franklin et al., 2014; Hara et al., 2013). Following binding to ASC, 

the inchoate inflammasome will recruit either caspase-1 or caspase-11 (Aachoui et al., 2013; 

Guey, Bodnar, Manié, Tardivel, & Petrilli, 2014; Hagar, Powell, Aachoui, Ernst, & Miao, 2013; 

Kuida et al., 1995). Then, utilizing either its own caspase activation and recruitment domain 

(CARD) or the CARD adaptor on ASC, will oligomerize into a heptamer. This now active 

inflammasome will then begin to catalytically cleave pro-interleukin (IL)-1β (IL-1β) and pro-IL-

18 into their active forms (Aachoui et al., 2013; Groß et al., 2012; Guey et al., 2014; Hagar et al., 

2013; Kuida et al., 1995; Pilla et al., 2014). Active IL-1β is a pleiotropic cytokine that initiates 

cellular proliferation, cytokine production and secretion, induction of proptosis, and an anti-viral 

state(Ali, Karin, & Nizet, 2015); whereas IL-18 serves to increase interferon-γ (IFNγ) production 

by natural killer cells (NK cells) and T cells (Takeda et al., 1998; Wong, Muthuswamy, & 

Kalinski, 2012). In addition to the inflammasome subfamily, other NLRs have been primarily 

found to be involved in regulation of innate immune responses, most significantly through 

regulation of the NFκB signaling cascade proteins: NOD1 and NOD2 have been found to 

activate the kinase RIP2 that in turn activates IκB kinase, which in turn leads to NFκB activation 

(Caruso, Warner, Inohara, & Núñez, 2014; Lich & Ting, 2007); NLRX1 amplifies NFκB 

signaling and JNK signaling by increasing production of radical oxygen species (Irving C Allen 

et al., 2011; Tattoli et al., 2008); NLRP12 has been shown to interact with heat shock protein 90 

(Hsp90) and in turn with NFκB inhibitory kinase (NIK), this complex then in turn suppresses 

NFκB signaling (Arthur, Lich, Aziz, Kotb, & Ting, 2007; Krauss et al., 2015; Vitale et al., 2013; 

Ye et al., 2008). 
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1.7 NLRP12 

Mutations in Nlrp12, formerly known as Monarch-1 or Pypaf-7, have been shown to be 

associated with familial cold auto-inflammatory syndrome (FCAS), an extremely rare autosomal 

dominant disease that results in recurrent fever and skin urticarial due to cold conditions (Lich & 

Ting, 2007; Liu et al., 2013; Vitale et al., 2013; Xia et al., 2016). NLRP12 is expressed in innate 

immune cells (specifically monocytes and macrophages), intestinal cells, bone and bone marrow 

cells, as well as liver cells (Lech, Avila-Ferrufino, Skuginna, Susanti, & Anders, 2010). This is 

achieved by inducing proteasome-mediated degradation of NF-κB inducing kinase (NIK) in 

response to pathogens and activation through pro-inflammatory receptors (Arthur et al., 2007; 

Lord et al., 2009; Zaki et al., 2011). NLRP12 is stabilized by interaction with Hsp90, thus 

allowing for suppression of NFκB inhibitory kinase (NIK) (Arthur et al., 2007; Ataide et al., 

2014; Vladimer et al., 2012). Because NLRP12 functions to dampen these signals, it is clear that 

NLRP12 must be controlled in order to mount an adequate cellular response to such insults. 

However, NLRP12 has also been found to act as an inflammasome by oligomerizing with ASC 

and Caspase-1 during Yersinia pestis and malaria infections and mediate cleavage of IL-18 into 

its active form (Ataide et al., 2014; Vladimer et al., 2012). Additionally, molecular analysis 

reveals that in the absence of NLRP12, dendritic cells display an inappropriate activation of NIK, 

resulting in high levels of NIK dependent gene expression (Arthur et al., 2010; Krauss et al., 

2015). Taken together, NLRP12 function within the immune system has yet to be fully 

explained. 

1.8 NFkB signaling 

NFkB is a critical transcriptional regulator of cytokine production and cell survival as one 

of the first responding molecules to a harmful cellular stimulus. Induction of NFkB can be 
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caused by reactive oxygen species (ROS), lipopolysaccharides (LPS) from Graham – bacteria, 

interleukin-1β (IL-1β), ionizing radiation, and tumor necrosis factor (TNF) (Van Antwerp, 

Martin, Kafri, Green, & Verma, 1996; Ward-Kavanagh, Lin, Šedý, & Ware). Canonically, NFkB 

signaling cannot be achieved without activation by IkB kinase (IKK) composed of the two 

subunits IKKα and IKKβ in addition to the master regulatory IKKγ. IKK phosphorylates IkB, 

altering its quaternary structure and allowing ubiquitination and subsequent destruction through 

the proteasome (S.-C. Sun, 2011). Non-canonical signaling begins when the lympotoxin β-

receptor (LTβR), BAFF, or RANK activates NFkB inducing NIK (NIK) allowing IKKA to 

cleave p100 into the mature p52 subunit (S.-C. Sun, 2011). 

1.9 Tumor necrosis factor 

Following tissue damage, infection, or trauma, initial responses are initiated by the 

cytokine tumor necrosis factor (TNF, also known as TNFα) (Beg & Baltimore, 1996; Peschon et 

al., 1998). TNF can be secreted by macrophages, monocytes, CD4+ T cells, neutrophils, mast 

cells, and eosinophils (Schindler et al., 1990). Primarily, TNF acts as a pyrogen, mediates acute 

liver responses to damage, acts as a chemoattractant for neutrophils, stimulates increased 

macrophages phagocytosis, and pro-inflammatory cytokine production and expression (Kapas et 

al., 1992). High concentrations of TNF induce shock-like symptoms, with prolonged exposure 

resulting in cachexia, as typified by latent tuberculosis infections (Croft, Benedict, & Ware, 

2013; Di Paolo et al., 2016; Hayden & Ghosh, 2014). Moreover, high serum or tissue 

concentrations of TNF will act upon TNF Receptor 2 (TNFR2) that is uniquely expressed on 

leukocytes to recruit c-IAP1 and c-IAP2 (Vince et al., 2007; Zarnegar et al., 2008). Recruitment 

of these anti-apoptotic proteins likely functions by inducing degradation of TNFR2 and initiating 

and anti-apoptotic state (Croft et al., 2013; Hayden & Ghosh, 2014; Wei, Yue, & Qingwei, 
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2014). Following prolonged, high concentrations of serum TNF, leukocytes will downregulate 

their expression of TNFR2 and maintain or increase expression of TNFR1 (Wicovsky et al., 

2009). Prolonged signaling through TNFR1 on myeloid and myeloid progenitor cells will causes 

the cell to no longer signal through TNF receptor associated factor 2 (TRAF2) and (nuclear 

factor k B) NFκB signaling cascade, but rather to recruit TNFRSF1A-Associated via Death 

Domain (TRADD) and fas-associated protein with Death Domain (FADD) which in turn recruits 

the cysteine protease procaspase 8 (Micheau & Tschopp, 2003; Van Antwerp et al., 1996). This 

recruitment will activate proteolytically cleave caspase 3 into its active form. From which, the 

now active caspase 3 and 9 will lead to Bid-associated apoptosis (Cai et al., 2014; Croft et al., 

2013; Di Paolo et al., 2016; Hayden & Ghosh, 2014; Micheau & Tschopp, 2003; Wei et al., 

2014; Zhao et al., 2012). 

1.10 Hematopoiesis following injury 

In steady-state adult hematopoiesis, most hematopoietic stem cells (HSCs) are in the 

resting phase of the cell cycle (Panopoulos & Watowich, 2008). Upon enhanced hematopoietic 

demand, HSCs can be induced to divide and self-renew or differentiate (Kovtonyuk, Manz, & 

Takizawa, 2016). Following RCI, pro-inflammatory cytokines are elevated, such as IL-1β, TNF, 

IL-4, IL-6, IL-12, and IL-15 (Mendoza et al., 2012; Palmer et al., 2013). These cytokines act to 

promote increased progenitor cell production and maturation in order to repopulate the vacuum 

created by the radiation and burn inducted ablation of peripheral and expanding immune cells (T. 

Chen et al., 2007; Giron-Michel et al., 2005; Kominato, Galson, Waterman, Webb, & Auron, 

1995; Kopf et al., 1995; Musashi, Clark, Sudo, Urdal, & Ogawa, 1991). Following RCI, we have 

noted that the lymphocytic compartment is much slower to respond; however, two weeks after 

injury, the predominate cell type present in the bone marrow and peripheral tissues – namely 
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blood, spleen, lungs, and liver – is a cell type that by its cell surface protein expression 

(Ly6G+Ly6C+CD11b+) resembles myeloid derived suppressor cells (MSDCs) (Carter et al., 

2013; Mendoza et al., 2012; Palmer et al., 2013). However, upon further study, the cells 

promote, albeit weakly, T cell proliferation and IFNγ production (Mendoza et al., 2012). We 

have identified these cells as inflammatory monocytes and have shown that they are vital to 

responding to an infectious challenge after injury (Mendoza et al., 2012). 

1.11 Pulmonary Pseudomonas aeruginosa infections 

A major cause of mortality for patients who survive the initial shock of a burn injury are 

pulmonary bacterial infections. Prolonged ICU stays and ventilation increase a patient’s risk of 

developing a pulmonary infection, often termed ventilator-associated pneumonia (VAP). VAP 

typically occurs when a patient is mechanically ventilated for more than 48 hours (Chastre & 

Fagon, 2007; Fabian, 2000; Hollaar et al., 2016; Shorr, Sherner, Jackson, & Kollef, 2005). The 

Gram negative saprophyte, Pseudomonas aeruginosa, is one of the most common infectious 

agents in United States’ burn centers due to its ability to survive on many hospital surfaces 

(Lyczak, Cannon, & Pier, 2000). While the innate immune system of a healthy adult is able to 

easily clear P. aeruginosa infections, immunocompromised hosts are more susceptible to 

infection and mortality (Chitkara & Feierabend, 1980; Lavoie, Wangdi, & Kazmierczak, 2011; 

Lyczak et al., 2000). During infection, P. aeruginosa will downregulate synthesis of the motility 

protein flagellin, the major component of bacterial flagellum. This allows the bacterium to avoid 

detection by host Toll-like receptor 5 (TLR5), thus limiting humoral and cellular immune 

responses (Santangelo, Shoup, Gamelli, & Shankar, 2000; Sutterwala et al., 2007). 
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1.12 Immune response to infection  

The immune system is the body’s defense against infection and disease. It detects a wide 

variety of antigens derived from invading pathogens and distinguishes them from the host’s own 

tissue. The immune response can be divided into innate and adaptive immunity. The innate 

immune system is non-specific, meaning it recognizes and responds to pathogens in a generic 

way. More specifically, it depends upon germline-encoded receptors (e.g. TLRs) to recognize 

features that are common to many microbes (Duran et al., 2014). Most pathogens are detected 

and destroyed within minutes to hours of invasion by innate immune cells, which includes the 

neutrophils and macrophages. However, if a pathogen persists, the adaptive immune response 

ensues (Angus & Van der Poll, 2013; Baker et al., 1979). The adaptive immune system is 

specific and consists of T and B lymphocytes. It targets a precise pathogen by utilizing pathogen-

specific receptors, such as T cell receptors (TCR), which are acquired during the lifetime of the 

host (Ohkura et al., 2012). Induction of an adaptive immune response leads to immunological 

memory, which ensures a more rapid and effective response on subsequent encounters with the 

same pathogen (McHeyzer-Williams, Okitsu, Wang, & McHeyzer-Williams, 2012; Mueller, 

Gebhardt, Carbone, & Heath, 2013).  

1.13 Granulocyte-monocyte colony stimulating factor 

Granulocyte-monocyte colony stimulating factor (GM-CSF) is a monomeric glycoprotein 

produced by macrophages, T cells, mast cells, NK cells, endothelial cells and fibroblasts (Egea et 

al., 2013). GM-CSF acts to bring myeloid stem cells (including mono-, myeloid-, proerythro-, 

and megakaryoblasts) out of their steady state in order to produce more stem cells as well as 

fully differentiated cells (platelets, neutrophils, macrophages, dendritic cells, monocytes, 

eosinophils, and basophils (J. G. Noel et al., 2002; Singh, Newman, & Seed, 2015). In addition 
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to stimulating stem cell function, GM-CSF inhibits neutrophil migration, increases reactive 

oxygen species production, and acts as an embryokine. Administration of GM-CSF to mice and 

humans results in the production of leukocytes following chemotherapy to prevent neutropenia 

(Dragon, Saffar, Shan, & Gounni, 2008; Dugan et al., 2002; Gardner et al., 2014; J. G. Noel et 

al., 2005; J. G. Noel et al., 2002; Reeves, 2014). Additionally, GM-CSF has been used clinically 

under the name Sargramostin as a therapeutic for inflammatory bowel disease, leukemia, and 

acute lung injury (Campo et al., 2012; J. B. Cohen et al., 2015; Danese, 2012). 

1.14 Platelets 

Small fragments of megakaryocyte cytoplasm, platelets, or thrombocytes, play important 

roles in primary and secondary hemostasis as crucial steps of the coagulation cascade occur on 

their cell surfaces (Hess et al., 2014; Vieira-de-Abreu, Campbell, Weyrich, & Zimmerman, 

2012). Despite their primary function as hemostatic regulators, platelets can also act as 

inflammatory cells through the release of cytokines, chemokines, expression of pro-

inflammatory surface markers, interactions with leukocytes and endothelial cells, and release of 

inflammatory mediators through degranulation (Vieira-de-Abreu et al., 2012). 

1.15 Neutrophils 

The first immune cell type recruited to sites of infection and injury are neutrophils that 

extravasate through the vasculature to the site of injury following a chemokine gradient such as 

human IL-8 or murine keratinocyte-derived cytokine (KC) secreted by resident mast cells or 

macrophages (Dragon et al., 2008; Gil et al., 2012). Once activated, these cells can survive 

anywhere from 1-5 days (Pillay et al., 2010). During this time the cells will phagocytose 

pathogens or cellular degree for internal phagosome processing and destruction; phagosome-

lysosomal fusion will digest and kill the pathogen (Nordenfelt & Tapper, 2011). In addition to 
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phagocytosis, activated and recruited neutrophils will generate a variety of toxic byproducts to 

help destroy invading pathogens through an oxidative burst. Degranulation of secretory vesicles 

called granules releases cytotoxic molecules to aid in bacterial killing (Borregaard, 1997). One 

study showed that neutrophils have decreased Fc receptor mediated phagocytosis, as well as a 

50% reduction in intracellular killing, after burn injury (Adediran et al., 2010; Bjerknes, 

Vindenes, & Laerum, 1989). This group also showed that the ability of circulating neutrophils to 

undergo oxidative burst gradually declines during the first two weeks after burn injury. Another 

study reported that there is an increased number of neutrophils in the peritoneal cavity and an 

increase in neutrophil oxidative burst at one day after burn (Bjerknes et al., 1989; L. W. Chen, 

Huang, Lee, Hsu, & Lu, 2006). Neutrophils have also been reported to be immunosuppressive 

after burn injury as demonstrated by their secretion of IL-10, a potent anti-inflammatory 

cytokine, upon TLR2 stimulation (S. W. Jones et al., 2013; G. Noel et al., 2010; Greg Noel et al., 

2011).  

1.16  Macrophages  

Macrophages are capable of phagocytosis, cytokine production, oxidative bursts, and 

antigen presentation (Fujiwara & Kobayashi, 2005). With their ability to rapidly respond to 

infection as circulating monocytes recruited to tissues, or as resident macrophages, these cells 

play central roles in the initiation and resolution of injury and infection. Antigen presentation 

consists of the macrophages internally digesting pathogens or antigens and processing these 

proteins for presentation as fragments on MHC-complexes, to in turn. Upon activation, 

macrophages can produce significant amounts of IL-1β, IL-6, and transforming growth factor-β 

(TFGβ) (Fujiwara & Kobayashi, 2005; J. G. Noel et al., 2005). Macrophage activation represents 

a spectrum from fully pro-inflammatory macrophages (M1) that produce IL-12 in response to 
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interferon-gamma (IFN-γ) compared to anti-inflammatory macrophages (M2) that produce IL-

10. This shift toward an M2 phenotype is achieved by exposure to IL-10, glucocorticoids, or 

TLR ligation (N. Wang, Liang, & Zen, 2015). Macrophage hyperactivity and shifts in 

macrophage polarization toward M2 phenotypes have been suggested as a cause of increased 

bacterial susceptibility following injury (Greg Noel et al., 2011; J. G. Noel et al., 2005). 

1.17  Dendritic cells 

Similar to macrophages, dendritic cells (DCs) are capable of both phagocytosis and 

antigen presentation. The primary function of DCs are to bridge innate immune cell activation 

and responses to adaptive and humoral efforts (Auffray, Sieweke, & Geissmann, 2009; Savina & 

Amigorena, 2007). DCs achieve this by presenting foreign antigens to stimulate T cell activation 

directly as well as through secretion of a variety of cytokines, namely IL-12 (Auffray et al., 

2009). A significant reduction in the total number of DCs have been reported after burn injury, 

specifically myeloid DCs (mDCs) and plasmacytoid DCs (pDCs); this reduction is directly 

correlated with burn size and depth. 

1.18  Toll-like receptors  

TLRs are PRRs that respond to pathogen associated molecular patterns (PAMPs) and 

endogenous stress signals termed danger associated molecular patterns (DAMPs) (Matzinger, 

2012; O'Neill, Golenbock, & Bowie, 2013). TLRs, expressed by both immune and non-immune 

cells, are activated by binding to their specific ligand: TLR2 binds membrane bound 

lipoproteins, TLR4 binds lipopolysaccharide (LPS), and TLR5 binds flagellin. TLR signaling 

through the transcription factors nuclear factor k B (NFκB) and activator protein-1 (AP1) to 

induce expression of cytokines, chemokines, antimicrobial molecules, major histocompatibility 

complex, and T cell receptor (TCR) costimulation molecules, all of which are required to mount 
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an inflammatory response (Buechler, Teal, Elkon, & Hamerman, 2013; L. W. Chen et al., 2006; 

Duran et al., 2014; Lee, Avalos, & Ploegh, 2012; Moore et al., 2007; O'Neill et al., 2013; 

Paterson et al., 2003). Both in vitro and in vivo studies have shown that TLR2 and TLR4 

responses are heightened between 1-7 days after burn injury (B. A. Cairns, C. M. Barnes, S. 

Mlot, A. A. Meyer, & R. Maile, 2008). Upon TLR stimulation, macrophages, dendritic cells, and 

γδ T cells from burn mice have increased cytokine production compared to non-burn controls 

(Neely et al., 2011). The precise mechanism responsible for TLR hyper-responsiveness after 

burn injury is unknown. However, there is evidence to suggest that increased cell surface 

expression of TLR proteins and increased phosphorylation of p38 MAP kinase, a component of 

the TLR signaling cascade, both contribute (B. A. Cairns et al., 2008; Hagar et al., 2013; 

Moresco, LaVine, & Beutler, 2011).  

1.19  Remaining questions 

The data outlined above describes the complexity of burn and radiation combined injury 

and in particular the profound immune impairment observed following RCI in the absence of 

NLRP12. A better understanding of the basic mechanisms underlying burn-induced immune 

dysfunction may lead to development of novel therapeutic options. This body of work attempts 

to dissect specific aspects of the immune response following radiation and thermal combined 

injuries, specifically by determining their contributions to hematopoiesis and modulation of 

inflammation.   



15 

 
CHAPTER 2: INNATE IMMUNE CELL RECOVERY IS POSITIVELY REGULATED 

BY NLRP12 DURING EMERGENCY HEMATOPOESIS1 

 

2.1 Summary 

With enhanced concerns of terrorist attacks, dual exposure to radiation and thermal 

combined injury (RCI) has become a real threat with devastating immunosuppression. NLRP12, 

a member of the NOD-like receptor family, is expressed in myeloid and bone marrow cells and 

has been implicated as a checkpoint regulator of inflammatory cytokines as well as an 

inflammasome activator. We show that NLRP12 has a profound impact on hematopoietic 

recovery during RCI by serving as a checkpoint of TNF signaling and preventing hematopoietic 

apoptosis. Using a mouse model of RCI, increased NLRP12 expression was detected in target 

tissues. Nlrp12-/- mice exhibited significantly greater mortality, inability to fight bacterial 

infection, heightened levels of pro-inflammatory cytokines, overt granulocyte/monocyte 

progenitor cell apoptosis and failure to reconstitute peripheral myeloid populations. Anti-TNF 

antibody administration improved peripheral immune recovery. These data suggest that NLRP12 

is essential for survival after RCI by regulating myelopoiesis and immune reconstitution. 

2.2 Introduction 

The hematopoietic system is capable of rapidly increasing myeloid cell production in 

response to tissue damage and is critical for wound healing and infection clearance (Baldridge, 

King, & Goodell, 2011; Dugan et al., 2002; Gardner et al., 2014; Manz & Boettcher, 2014; J. G. 

Noel et al., 2005; J. G. Noel et al., 2002; Santangelo et al., 2000; Serafini et al., 2007; Toliver-

                                                           
1 This chapter is currently under review at the Journal of Immunology 
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Kinsky, Lin, Herndon, & Sherwood, 2003; H. Zhang et al., 2010). While the factors that initiate 

emergency myelopoiesis are not fully elucidated, it is generally accepted that emergency 

myelopoiesis is tightly coupled with cytokine and growth factor production, namely TNF and IL-

6, and is mediated by NF-κB and other immune regulatory transcription factors.  

Rare mutations in Nlrp12, a nucleotide-binding leucine rich repeat and pyrin domain-

containing receptor (NLR, also known as NOD-like receptor), have been associated with 

periodic fevers in humans although the association needs to be further studied. Nonsense and 

splice mutations within human-Nlrp12 have been shown to diminish suppression of NF-κB 

signaling (Jeru et al., 2008), however some variants do not exhibit such activity but are 

associated with modestly enhanced or more rapid inflammasome activation (Borghini et al., 

2011). The different functions observed with NLRP12 may be consistent with NLRP12 

exhibiting an inflamamsome function in certain infections (Ataide et al., 2014; Vladimer et al., 

2012) but not other infections or inflammatory conditions (Zaki, Man, Vogel, Lamkanfi, & 

Kanneganti, 2014). While the pyrin-domain containing members of the NLR family have largely 

been studied in the context of the inflammasome (Wen, Miao, & Ting, 2013), there is growing 

evidence that a few play an important role in regulating inflammatory signaling. Some NLR 

proteins have been shown to be positive regulators of NF-κB, while NLRP12 has been 

implicated as a negative regulator of both the canonical and non-canonical pathways of NF-κB 

(I. C. Allen et al., 2012; Arthur et al., 2010; Savic, Dickie, Battellino, & McDermott, 2012; Ye et 

al., 2008; Zaki et al., 2011). NLRP12-mediated NF-κB suppression has been implicated in 

colonic inflammation and tumorigenesis (I. C. Allen et al., 2012) and osteoclast differentiation 

(Krauss et al., 2015).  
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The cytokines that regulate hematopoietic stem cell (HSC) function, such as IFNα/β, 

IFNγ, IL-12, and TNF, are tightly controlled elements of cell expansion. Type I IFNs and TNF, 

induced by TLR signaling, can act upon myeloid progenitors to promote the expansion of 

granulocyte/monocyte progenitors (GMP), leading to systemic myeloid expansion (Buechler et 

al., 2013). Alternatively, excessive TNF signaling reduces myelopoiesis by inducing caspase-

3/caspase-8-dependent progenitor cell apoptosis (Wei et al., 2014). Excessive TNF, TLR 

signaling, and deficiencies in negative regulation of NF-κB lead to apoptosis of HSCs and 

defects in myeloid progenitor function (Buechler et al., 2013; Stein & Baldwin, 2013). 

We and others have shown that burn and radiation injuries lead to increased susceptibility 

to infection within survivors (Dugan et al., 2002; Mendoza et al., 2012; J. G. Noel et al., 2005). 

This is a pressing clinical problem in the face of nuclear accidents and possible incorporation of 

nuclear materials within explosives. This susceptibility has been attributed to a loss of 

inflammatory regulation, incomplete immune restoration and a systemic anti-inflammatory 

response following sepsis and shock (S. W. Jones et al., 2013; Neely et al., 2014; Neely et al., 

2011). Following a radiation-thermal combined injury (RCI), an immature monocyte population 

(iMo) rapidly expands and predominates the periphery (Mendoza et al., 2012). Using this model, 

we observed that TNF is significantly increased in RCI compared to burn, radiation, and sham 

alone.  

Given that NLRP12, which is known to suppress a number of cytokines, is present in 

bone marrow and myeloid cells (Baldridge et al., 2011; Stein & Baldwin, 2013), we tested 

NLRP12-mediated regulation of TNF signaling within the context of emergency myelopoiesis. 

Unexpectedly, we demonstrate that NLRP12-deficient mice are vulnerable to RCI due to 

decreased myelopoiesis.  
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2.3 Methods and Materials 

Mice and Combined Irradiation and Burn Injury procedure 

The Nlrp12-/-, Caspase1/11-/-, Asc-/- and IL-1Ra-/- mouse strains have been described 

(Arthur et al., 2007; Hirsch, Irikura, Paul, & Hirsh, 1996; Kuida et al., 1995; Takeda et al., 

1998). All experiments were conducted with female mice housed under SPF conditions that were 

age-matched and backcrossed for at least nine generations onto the C57BL/6 background. All 

studies were conducted in accordance with the IACUC guidelines of the University of North 

Carolina at Chapel Hill and NIH Guidelines for the Care and Use of Laboratory Animals. Our 

model of RCI has been previously described; briefly, mice received a subcutaneous injection of 

morphine (3mg/kg body weight) for pain control immediately before burn injury. A full-

thickness contact burn of 20% total body surface area (TBSA) was produced and within 1 hour, 

mice received a 5Gy (dose rate of 0.98 Gy/min) whole-body dose of ionizing radiation and were 

maintained on oral morphine for the duration of the experiment. Sham controls with 0% TBSA 

underwent all described interventions except for the burn and γ-irradiation exposure. 

Quantitative RT-PCR 

RNA was extracted from organ homogenates, suspended in TRIzol and isolated 

according to the manufacturer’s protocol (Life Technologies, Carlsbad, CA). qPCR was 

performed using the Verso 1-step RT-qPCR SYBR Green Fluorescein Kit (Thermo Fisher, San 

Jose, CA). The expression of mouse mRNA encoding NLRP12 and GAPDH was assessed using 

the SYBR kit and analyzed on an Applied Biosystems machine; results were normalized to 

expression of the gene encoding GAPDH and were quantified by the change-in-threshold method 

(ΔΔCT) using primers previously described (Arthur et al., 2010). 
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Histology 

Mouse femurs were extracted and muscle and connect tissue were removed and initially 

preserved in 10% formalin. Femurs were then decalcified with Immunocal, water washed, and 

paraffin infused. Following sectioning and processing, sections were then stained by 

hematoxylin and eosin. Samples were processed using ImageJ to determine area of cell loss 

within each femur.  

Pseudomonas aeruginosa infection 

 A wildtype strain (PAK) of P. aeruginosa was obtained from M. Wolfgang (University 

of North Carolina, Chapel Hill, NC). 106 bacteria were then aerosolized intratracheally as 

described previously. 

Serum Collection and Cytokine ELISA 

 Animals underwent a submandibular bleed and systemic cytokines were measured by 

single-plex ELISA (eBioscience, CA, USA or Biolegend, CA, USA) according to the 

manufacturer’s instructions or by Cytokine Mouse 20-Plex Panel (Life Technologies, Carlsbad, 

CA) on Luminex Bead Array technology. 

Flow Cytometry 

All fluorescence-conjugated FACS antibodies were purchased from BD Biosciences or 

Biolegend. Antibody panel used to identify neutrophils and macrophages are described in the 

figures. The antibody panel for monocyte and neutrophil analysis was comprised of CD11c-

PerCPCy5.5, CD11b-PECy7, Ly6G-APC, Ly6G-PE, and F4/80-FITC. The antibody panel for 

progenitor analysis was comprised of CD3, CD8, NK1.1, CD19, CD45RA, TER-119 (Ly-76) as 

a lineage negative gate with all antibodies conjugated to FITC, CD127-PE/CF594, Sca1-APC, 
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cKit-BUV395, FcγR-BV605, CD34-Alexa647, and Annexin V-Pacific Blue. In each case, a 

million cells per organ were used for flow cytometric analysis.  

Intracellular Staining and Phospho-flow 

 Intracellular staining was performed using a BD Bioscience Cytofix/Cytoperm kit. 

Antibodies used were TNF-PE (BD Biosciences), phosphor-p65 S528 (BD Biosciences), 

phospho-IκBa S32/536-eFlour 660 (eBiosciences), phospho-p38 ST180/Y182-PE and phospho-

IKKα/β S176/180-PE (Cell Signaling Technologies). In each case, a million cells per organ were 

used for flow cytometric analysis.  

TNF-Depletion  

 Immediately following combined irradiation and burn injury, mice were given 25mg/kg 

of rat IgG1, kappa anti-mouse TNF, clone MP6-XT3 or ratIgG1 isotype control (eBioscience, 

CA, USA) intraperitoneally dissolved in PBS (Sigma, CA, USA).  

Statistical Analysis 

 Analysis was carried out with Prism 7.0 for Windows. All data are presented as the mean 

+/- standard error of the mean (SEM). Complex data sets were analyzed by analysis of variance 

(ANOVA) with a Tukey-Kramer post-test HSD for multiple comparisons. Single data points 

were assessed by the Student’s two-tailed t test. The product limit method of Kaplan-Meier was 

utilized for generating the survival curves, which were compared using the log rank test. A p 

value less than 0.05 was considered statistically significant for all data sets.  

2.4 Results 

NLRP12 limits morbidity and mortality following RCI 

 Previous work has implicated NLRP12 in suppression of canonical and non-canonical 

NF-κB, a key driver of inflammatory cytokine signaling (I. C. Allen et al., 2012; Arthur et al., 
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2010; Moore et al., 2007; Vladimer et al., 2012; Zaki et al., 2014; Zaki et al., 2011). We 

therefore investigated whether NLRP12 was acting to limit excessive inflammatory signaling 

and consequently promote peripheral immune reconstitution in our model of emergency 

myelopoiesis.  

Wild type and Nlrp12-/- mice received a 20% TBSA burn and were irradiated with 5-Gy 

of γ-irradiation within an hour of burn injury. In wild type mice, we observed elevated NLRP12 

expression in spleen, bone marrow and lung tissues early (3, 7, and 14 days post-injury) after 

RCI (Figure 2.1A) compared to burn or radiation alone and sham controls. Mortality among 

NLRP12-deficient mice was significantly elevated following RCI, but not following burn or 

radiation alone (Figure 2.1B). While RCI-wild type animals lost weight initially, they were able 

to return to a baseline weight by seven days after injury and exceed their baseline weight by 14 

days post injury; RCI-Nrlp12-/- animals lost more weight and did not fully recover weight in 

comparison to wild type animals (Figure 2.1C). These data suggest that NLRP12 protected 

against morbidity after RCI. 

Splenic and pulmonary immune repopulation is impaired following RCI in Nlrp12-/- mice 

 During events that induce enhanced myelopoiesis and inflammation, specifically RCI, we 

have shown that immature monocytes with high granularity comprise the majority of the 

peripheral immune system (Mendoza et al., 2012). We examined the splenic compartment in the 

Nlrp12-/- mice after RCI. NLRP12 deficiency resulted in a significant decrease in the total 

number of splenocytes by 14 days post-injury (Figure 2.2A). Using flow cytometry, with 

representative staining in Figure 2.2B, we observed a decreased number of splenic neutrophils 

(CD11b+ Ly6Cint Ly6G+ F4/80-) and immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) 

post-injury in Nlrp12-/- mice (Figure 2.2C). We also investigated the contribution of NLRP12 to 
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the repopulation of lung immune cells—common sites of opportunistic infection in burn 

patients—after RCI. Nlrp12-/- mice displayed a reduced ability to repopulate the lung after RCI. 

This inability was characterized by a decrease in total CD45+ leukocytes and by the absence of 

the immature monocyte accumulation normally observed following RCI at two weeks post-

injury (Figure 2.3A-B). There were no differences in macrophage (CD11b+ Ly6C+Ly6GloF4/80hi) 

accumulation in Nlrp12-/- mice when compared to wild type (Figure 2.4A). The total number of 

pulmonary macrophages, B and T cells were similar in Nlrp12-/-and wild type mice (Figure 

2.4B-D). These data implicate a role for NLRP12 in regulating emergency hematopoiesis 

following RCI. 

Nlrp12-/- mice show decreased bone marrow and peripheral cell numbers following RCI 

 NLRP12 has been shown to be expressed constitutively in bone marrow cells (Arthur et 

al., 2010; Savic et al., 2012; Vitale et al., 2013; Zaki et al., 2014). We hypothesized that reduced 

immune repopulation in the periphery of injured Nlrp12-/- mice was due to reduced cell 

generation and output by the bone marrow. To test this, we investigated the impact of NLRP12 

deficiency on bone marrow populations after RCI. Nlrp12-/- mice had reduced total bone marrow 

cells compared to wild type mice after RCI. We also observed a decrease in total iMO and 

neutrophils (Figure 2.3C) within the bone marrow of Nlrp12-/- mice as early as seven days post 

injury compared to wild type mice. Additionally, we observe decreases in the total numbers of 

monocytes and neutrophils in the peripheral blood (Figure 2.3D). These data suggest that 

peripheral immune repopulation defects after RCI are likely attributed to decreased bone marrow 

cell numbers, which appear to be regulated by NLRP12.  
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Defects in myelopoiesis following RCI are not observed in inflammasome-deficient animals 

 NLRP12 is also found to form an inflammasome complex or regulate caspase-1 activity 

(I. C. Allen et al., 2012; Vladimer et al., 2012; Ye et al., 2008) and regulates IL-1β processing by 

complexing with ASC during infection with Yersinia or malaria (Vladimer et al., 2012). To 

examine whether NLRP12 is important for inflammasome activation following RCI, we assessed 

IL-1β levels after RCI in wild type or Nlrp12-/- mice. There were no detectable levels of IL-1β at 

any time point measured (Figure 2.5A) nor was than any differences in serum IL-18 (data not 

shown). Due to inability to capture IL-1β levels in serum because of its high turnover, we 

examined the role of the inflammasome in RCI. We applied the RCI model to various mice 

strains lacking key components of genes encoding proteins that encode common shared 

components of the inflammasome. These include Caspase1/11-/- which lacks both canonical and 

noncanonical inflammasome caspases, Asc-/- which lacks the common adaptor shared by 

multiple inflammasome NLRs and AIM2, or Il1r-/- which lacks the IL-1 receptor protein. 

Following RCI, Caspase1/11-/-, Asc-/- and Il1r-/- mice had a similar immune repopulation in the 

lung and spleen as wild type mice (Figure 2.5B-C). We also saw no significant differences in 

bone marrow populations in Caspase-1/11-/-, Asc-/- or Il1r-/- mice following RCI (Figure 2.5D). 

Additionally, injured Caspase-1/11-/-, Asc-/- or Il1r-/- animals did not show an increase in 

mortality compared to wild type (Figure 2.5E). Together, these results suggest that NLRP12 

controls myelopoiesis in an inflammasome-independent pathway.  

Nlrp12-/-mice display increased serum TNF, IL-6 and IL-12 cytokine and bone marrow TNF- 

receptor expression 

 Cytokines that are attenuated by NLRP12, in particular TNF, have been shown to 

enhance hematopoietic stem cell (HSC) expansion (Gardner et al., 2014; Manz & Boettcher, 

2014; Stein & Baldwin, 2013; Toliver-Kinsky et al., 2003). We therefore examined NLRP12-
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dependent production of selected cytokines and their receptors after RCI. In wild type animals, 

serum TNF expression increased early following injury and declined over time (Mendoza et al., 

2012). In sham-treated Nlrp12-/-animals, the TNF level was similar to sham wildtype controls. 

However, during RCI in Nlrp12-/-animals, the TNF increased initially and was maintained over 

time – a significant elevation when compared to wild type mice (Figure 2.6A). In addition, 

Nlrp12-/- bone marrow cells displayed increased TNFR expression (Figure 2.6B) as well as CD40 

and RANK (Figure 2.6C). Using intracellular straining, we observed that monocyte production 

of TNF after RCI is increased when compared to burn and radiation controls; however, in the 

absence of NLRP12, monocyte production of TNF is significantly elevated compared to wild 

type controls (Figure 2.6D). As well as TNF, other cytokines such as IL-6, IL-12, IFNα, and 

IFNγ were increased in Nlrp12-/- mice compared to wild type mice but less so than TNF (Figure 

2.6A). This elevation is potentially derived from the initial shock and the selective apoptotic 

environment induced by the absence of NLRP12 and necessary myelopoiesis. Heightened levels 

of IL-6 following trauma have been shown to be the major predictor of poor outcome (bacterial 

infection) following a traumatic injury (Gebhard, Pfetsch, Steinbach, & Strecker, 2000). Other 

cytokines and growth factors (IL-4, IL-10, and GM-CSF) were measured but showed no 

significant differences between wild type and Nlrp12-/- animals (Figure 2.6B). 

IκBa activity is increased in CD34+ cells Nlrp12-/- animals after RCI 

 Both the canonical and non-canonical pathways of NFκB have been shown to be 

negatively regulated by NLRP12(I. C. Allen et al., 2012; Ataide et al., 2014; Krauss et al., 2015). 

We therefore examined NLRP12-dependent activation of key regulators of each pathway. No 

changes were seen in phosphorylation levels in sham, burn, or radiation controls; however, RCI 

NLRP12-deficient animals showed greater levels of pIκBα as well as pp65 (Figure 2.6D). 
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Increased phosphorylation is indicative of increased canonical NFκB signaling in the absence of 

NLRP12. However, pIKKα/β and the downstream p38/MAPK showed no changes in activity 

when comparing wild type to Nlrp12-/- injured animals. Taken with the increased TNFR 

expression on marrow cells, these results suggest that NLRP12 is negatively regulating the 

canonical NFκB signaling cascade. 

RCI of Nlrp12-/- animals leads to increased granulocyte/monocyte progenitor apoptosis 

We observed that NLRP12 regulates reconstitution of granulocytic and monocytic bone 

marrow and peripheral cells in Nlrp12-/- mice following RCI. We therefore hypothesized that 

NLRP12 regulates bone marrow granulocyte/monocyte progenitors (GMP), the source of 

granulocytes and immature monocytes. To test this, we utilized flow cytometric analysis to 

evaluate the number of GMP (Lin- IL7R- Sca1- cKit+ FcγRhi CD34+) in Nlrp12-/- mice following 

RCI.  

We detected a similar number of bone marrow GMP in Nlrp12-/- and wild type mice at 3 

days after injury. However, at 7 and 14 days after injury, wild type GMP expanded and increased 

in numbers while Nlrp12-/-GMP expansion was attenuated (Figure 2.8A). There were no 

measured differences in lymphoid lineage progenitors (Figure 2.9A). We tested the hypothesis 

that the significant decrease in GMP in Nlrp12-/- mice is due to increased apoptosis. To 

distinguish apoptotic cells from necrotic cells, 7-AAD and Annexin V staining was performed. 

While sham control revealed no difference in WT and Nlrp12-/- mice, a significant percent of 

Nlrp12-/- GMP underwent apoptosis compared to wild type GMP during RCI. This increase in 

apoptosis was detected as early as 3-days post injury (Figure 2.8B). Representative flow gating is 

shown in Figure 2.7C. 
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Increased apoptosis and decreased bone marrow cellularity was confirmed by histological 

staining. H&E femur sections were obtained at 14 days post injury. There were no histological 

changes from wild type to Nlrp12-/- mice in sham, burn, or radiation alone animals. However, 

RCI-Nlrp12-/- mice displayed medial patches of cell loss within the femurs, which was not 

present in RCI-wild type femurs (Figure 2.8D). Collectively, our findings imply that NLRP12 

prevents progenitor cell apoptosis, thus allowing myelopoiesis and peripheral immune cell 

reconstitution to occur in wild type animals.  

Leukopenia can have complex etiologies in both inflammatory and non-inflammatory 

conditions, many of which involve alterations in HSC steady-state hematopoiesis (T. D. Jones, 

Morris, Young, & Kehlet, 1993; Serafini et al., 2007; Toliver-Kinsky et al., 2003). Our data 

show that NLRP12 limits TNF following RCI, resulting in expansion of myeloid precursors and 

monocyte populations throughout the periphery. Previous studies showed increased 

hematopoiesis following total body irradiation; however, our results are novel because we have 

shown that NLRP12 promotes hematopoiesis of specific lineages during RCI (Baldridge et al., 

2011; Mendoza et al., 2012).  

Anti-TNF antibody administration prevents NLRP12-associated GMP apoptosis after 

combined injury 

After observing significantly elevated levels of TNF and reduced myelopoiesis in injured 

Nlrp12-/- mice, we hypothesized that increased levels of TNF were leading to pathology through 

TNF-mediated apoptosis of immune progenitor cells as seen in other models of excessive 

TNF(Micheau & Tschopp, 2003). Specifically, we hypothesized that GMP were undergoing 

TNF-mediated apoptosis with reduced peripheral neutrophil and inflammatory monocyte 

accumulation. To test this, wild type and Nlrp12-/- mice received a single administration of anti-

TNF or isotype control antibody immediately following RCI.  
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 We observed significantly fewer GMP in the Nlrp12-/- mice given the isotype control 

compared to wild type mice. However, Nlrp12-/- mice given the anti-TNF antibody had similar 

numbers of GMP compared to isotype and anti-TNF treated wild type mice (Figure 2.9A). 

Additionally, the proportion of GMP actively undergoing apoptosis was higher in the Nlrp12-/- 

isotype treated animals compared to Nlrp12-/- mice treated with anti-TNF (Figure 2.9B). This is 

correlated with a decrease in the total CD45+ pulmonary cells as well as pulmonary iMO (Figure 

2.9C-D). These data indicate that in the absence of NLRP12, TNF mediates the enhanced bone 

marrow death during RCI and resultant incomplete restoration of the peripheral immune system. 

Nlrp12-/- mice lack control of pulmonary infection following radiation-thermal combined 

injury 

 In a clinical setting, patients that are able to survive initial shock from a burn or radiation-

thermal-combined injury will often succumb to a pulmonary infection associated with the 

prolonged hospital stay (Moore et al., 2007). We sought to evaluate the role NLRP12 deficiency 

plays in a clinically relevant model of a lung infection following injury. Wild type and Nlrp12-/- 

animals were subjected to either sham, burn, or radiation only, and RCI. Mice were then 

sustained for two weeks in individual housing wherein they were infected intratracheally with 

1x106 CFU of Pseudomonas aeruginosa (PAK).  

 RCI-Nlrp12-/- infected animals displayed a significant increase in mortality, with animals 

starting to succumb to infection after as few as 12 hours. All Nlrp12-/- animals became moribund 

within 36 to 48 hours after infection (Figure 2.10A). Lung and liver from infected animals that 

survived until 48 hours post infection were collected and plated to enumerate bacterial load 

locally and systemically. RCI-Nlrp12-/- mice lungs and liver showed a 10-fold increase in 

bacteria compared to injured, wild type animals (Figure 2.10B). These data suggest that NLRP12 

plays a vital role in response to an infection insult following a traumatic injury.  
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 We next sought to determine the immune response to infection following RCI. Nlrp12-/- 

mice showed a decrease in innate, pulmonary immune cell populations following RCI and 

infection (Figure 2.10C), leading us to conclude that NLRP12 results in increased hematopoietic 

recovery which is likely crucial to the effective control of infection after traumatic injury. 

2.5 Conclusions 

Our study demonstrates that NLRP12 suppresses TNF signaling in vivo during 

inflammation-induced emergency myelopoiesis. Most importantly, our research indicates a role 

for NLRP12 in hematopoietic progenitor cells by limiting TNF-induced apoptosis of these cells. 

TNF inflammation initiated by RCI without NLRP12 leads to the apoptosis of progenitor cells 

and a defective peripheral immune reconstitution, associated with increased mortality and 

inability to control an infectious challenge.  

In addition to inhibiting inflammation, defects in NF-κB signaling lead to weakened 

hematopoiesis (Stein & Baldwin, 2013). There is no single mechanism that has been defined for 

immune suppression in the response to traumatic injury, but hematopoietic stem cell (HSC) 

expansion and immune repopulation have been shown to be important factors (Gardner et al., 

2014; T. D. Jones et al., 1993; Manz & Boettcher, 2014; Stein & Baldwin, 2013; Toliver-Kinsky 

et al., 2003). We propose that NLRP12 suppression of immune signaling pathways leading to 

attenuated cytokines contributes to homeostatic proliferation of granulocytes and monocytes 

following induction of severe leukopenia. Moreover, this NLRP12-mediated suppression limits 

overt TNF-induced inflammation that could lead to HSC apoptosis by limiting canonical NFκB 

signaling. Our findings add to the studies that suggest that NLRP12 acts as a cellular rheostat to 

limit inflammation, and is emerging as a “checkpoint” or inhibitor (I. C. Allen et al., 2012; 

Krauss et al., 2015) of canonical NFκB signaling. This immune inhibition is mediated, at least in 
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part, by suppression of the non-canonical NFκB pathway and cross talk with the canonical 

pathway (I. C. Allen et al., 2012; Arthur et al., 2007; Lich & Ting, 2007; Lich et al., 2007). 

NLRP12-mediated NFκB suppression likely limits TNF and cellular death during inflammation 

and hematopoiesis. Our data in NLRP12-deficient mice shows compromised hematopoiesis due 

to enhanced TNF production, leading to flagrant HSC/GMP apoptosis. This lack of HSC 

function leads to global leukopenia and correlates with increased mortality compared to wild 

type mice. These studies would be applicable in instances of increased myelopoiesis, TNF-driven 

inflammation, and induced apoptosis. 
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Figure 2.1. NLRP12 expression is increased after combined injury, and acts to limits mortality and 

weight loss. Wildtype C57BL/6 mice were subjected to sham, 5Gy of γ-irradiation, a 20% total body 

surface area burn or a combined injury (RCI). (A) mRNA was isolated from spleen, bone marrow, and 

whole lung at 3, 7, and 14 days post injury. Relative Nlrp12 - expression was determined by qRT-PCR. 

(n=6/timepoint). Wildtype C57BL/6 or Nlrp12-/- mice were subjected to sham, 5Gy of γ-irradiation, a 

20% total body surface area burn or RCI. (B) Survival and (C) weight loss were quantified. Data 

represented as mean ± SEM, with statistical significance compared to sham defined as *, p<0.05, **, 

p<0.005 and ***, p<0.001 by Student’s t test, with experiments performed in triplicate.  
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Figure 2.2. NLRP12 regulates peripheral immune repopulation after combined injury. Wildtype 

C57BL/6 or Nlrp12-/- mice were subjected to sham or combined radiation and burn injury (RCI). Spleens 

were harvested 3, 7 and 14 days post injury and the total number of (A) splenocytes, neutrophils (CD11b+ 

Ly6Cint Ly6G+ F4/80-) and immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) were quantified 

by flow cytometry analysis, (B) representative flow cytometric gating from an RCI mouse after gating on 

CD45+ and F4/80 expression level). Data represented as mean ± SEM, with statistical significance 

defined as *, p<0.05 and **, p<0.005 by Student’s t test with n=10 mice per group, with experiments 

performed in triplicate. 
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Figure 2.3. NLRP12 regulates pulmonary immune repopulation and bone marrow cell numbers 

after combined injury. Wildtype C57BL/6 or Nlrp12-/- mice were subjected to sham or combined 

radiation and burn injury (RCI). Lungs were harvested 14 days post injury and the total number of (A) 

CD45+ cells, (B) neutrophils (CD11b+ Ly6Cint Ly6G+ F4/80-) and immature monocytes (iMOs; CD11b+ 

Ly6C+ Ly6GhiF4/80hi) were quantified by flow cytometry analysis. Wildtype C57BL/6 or Nlrp12-/- mice 

were subjected to sham or combined radiation and burn injury (RCI). Bone marrow from femurs and 

tibias and blood from a cheek bleed were harvested 3, 7 and 14 days post injury and the total number of 

(C) bone marrow cells, immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi), neutrophils 

(CD11b+ Ly6Cint Ly6G+ F4/80-) from the bone marrow and platelets (CD62P+TER119-), monocyte and 

neutrophils from blood were quantified by flow cytometry analysis. Data represented as mean ± SEM, 

with statistical significance defined *, p<0.05, **, p<0.005 and ***, p<0.001 by Student’s t test with n=6 

mice per group, with experiments performed in triplicate. 
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Figure 2.4. NLRP12 deficiency does not result in macrophage, B or T cell changes after 

injury. Wildtype C57BL/6 or Nlrp12-/- mice were subjected to sham, burn, radiation, or 

combined radiation and burn injury (RCI). Spleens were harvested at 14 days post injury and the 

total number of (A) splenic and (B) pulmonary macrophages (CD11b+ Ly6C+ Ly6G-F4/80hi), 

and (C) pulmonary B and (D) T cells were quantified by flow cytometry analysis. Data 

represented as mean ± SEM, with statistical significance defined as *, p<0.05 and **, p<0.005 

by Student’s t test with n=4 mice per group, with experiments performed in triplicate. 
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Figure 2.5. Defects in myelopoiesis following RCI are not observed in inflammasome-

deficient animals. Caspase1/11-/-, adaptor Asc-/-, or receptor Il1r-/- mouse strains were 

subjected to sham or combined radiation and burn injury (RCI). After 14 days we quantified the 

(A) serum levels of IL-1β by ELISA total number of (B) splenocytes, (C) pulmonary CD45+ 

cells and (D) total bone marrow cells by flow cytometry (E) survival of mice after injury. 
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Figure 2.6. Nlrp12-/- animals have increased serum cytokine and bone marrow receptor expression 

following combined injury. Wildtype C57BL/6 or Nlrp12-/- mice were subjected to sham or combined 

radiation and burn injury (RCI). The concentration of (A) TNF was quantified using ELISA in serum 3, 7, 

and 14 days post injury. We also analyzed mean fluorescent intensity of (B) TNFR, CD40, and RANK on 

bone marrow cells harvested at 14 days post injury using flow cytometry. (D) The percentage of TNF 

producing iMos was determined using intracellular staining and flow cytometry. (E) The level of 

phospho-IκBα, phospho-IKKα/β, phosphor-p65, and phospho-p38 was quantified using intracellular 

staining and flow cytometry. Data represented as mean ± SEM, with statistical significance defined as ** 

p<0.005 by Student’s t test with n=5 mice per group, with experiments performed in triplicate. 
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Figure 2.7. NLRP12 regulates serum cytokines. Wildtype C57BL/6 or Nlrp12-/- mice were 

subjected to sham or combined radiation and burn injury (RCI). (A) Serum was collected at days 

3,7, 14 and IFNα, IFNγ, IL-6 and IL-12p40 were quantified by ELISA. (D) Serum was collected 

at day 14 and IL-4, IL-10, and GM-CSF were quantified by ELISA. Data represented as mean ± 

SEM, with statistical significance defined as *, p<0.05 and **, p<0.005 by Student’s t test with 

n=6 mice per group, with experiments performed in triplicate. 
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Figure 2.8 Nlrp12-/- animals have increased granulocyte/monocyte progenitor apoptosis after 

combined injury. Wildtype C57BL/6 or Nlrp12-/- mice were subjected to sham or combined radiation 

and burn injury (RCI). Bone marrow was collected from wild type and Nlrp12-/- mice at 3, 7, and 14 days 

post RCI or sham treatment (n= 6/group). Using flow cytometric analysis, (A) the total number of bone 

marrow Granulocyte/Monocyte Progenitors (GMP, Lin- IL7R- Sca1- ckit+ FcγRhi CD34+) and (B) the 

percentage of GMP cells undergoing apoptosis was determined by positive Annexin V staining in the 

absence of 7-AAD- staining cells; representative flow staining from Nlrp12-/- mice is shown is shown in 

(C). Data represented as mean ± SEM, with statistical significance defined *, p<0.05, **, p<0.005 and 

***, p<0.001 by Student’s t test with n=5 mice per group. In separate experiments, wildtype C57BL/6 or 

Nlrp12-/- mice were subjected to sham, irradiation, burn or RCI. Femurs were collected 14 days post 

injury and H&E staining performed for histological analysis. (D) shows representative sections from each 

group, with areas of cell death marked by white arrow (white bar represents 25um;), (E) quantification of 

cell death area was performed using ImageJ, with experiments performed in triplicate.  
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Figure 2.9. NLRP12 deficiency results in no changes in lymphoid progenitors. Wildtype 

C57BL/6 or Nlrp12-/- mice were subjected to sham or combined radiation and burn injury (RCI). 

Bone marrow was harvested at day 14 and (A) common lymphoid progenitors (Flk2+Lin- IL7R+ 

ckit+ Sca1+) were quantified by flow cytometric analysis. Data represented as mean ± SEM, 

with n=5 mice per group, with experiments performed in triplicate. 
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Figure 2.10. Anti-TNF antibody administration prevents NLRP12-associated GMP apoptosis after 

combined injury. Wild type and Nlrp12-/- C57/BL6 mice received a single administration of anti-TNF 

or isotype control antibody immediately following combined radiation and burn injury (RCI). We 

harvested bone marrow and lung from these mice 14 days after injury. We quantified (A) the total number 

of bone marrow Granulocyte/Monocyte Progenitors (GMP, Lin- IL7R- Sca1- ckit+ FcγRhi CD34+) and 

(B) the percentage of GMP cells undergoing apoptosis by 7-AAD- Annexin V+ staining by flow 

cytometry. We measured (C) the total number of pulmonary CD45+ cells and immature monocytes 

(iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) by flow cytometry analysis. Data represented as mean ± SEM, 

with statistical significance defined as *, p<0.05 by Student’s t test with n=5 mice per group, with 

experiments performed in triplicate. 

 

  



40 

 
Figure 2.11 Nlrp12-/- mice lack control of pulmonary infection following combined injury. Wildtype 

C57BL/6 or Nlrp12-/- mice were subjected to sham or combined radiation and burn injury (RCI). Mice 

were inoculated 14 days post-injury intratracheally with 1x106 CFU of Pseudomonas aeruginosa (PAK). 

We quantified (A) survival, (B) bacterial load within lungs and liver by culture, and (C) number of 

splenic CD45+ cells, neutrophils (CD11b+ Ly6Cint Ly6G+ F4/80-) and immature monocytes (iMOs; 

CD11b+ Ly6C+ Ly6GhiF4/80hi) harvested two days after inoculation. Data represented as mean ± SEM, 

with statistical significance defined as *, p<0.05; **, p<0.05 by Student’s t test with n=6 mice per group 

(3 for burn and radiation only), with experiments performed in triplicate. 
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CHAPTER 3: DELETION OF NLRP12 IMPARES INNATE IMMUNE REPONSES 

DURING RADIATION-THERMAL COMBINED INJURY AND SHOCK 

 

3.1 Summary 

During a traumatic event that induces emergency myelopoiesis, innate immune signaling 

helps to control how inflammatory cells respond and what new immune cells the hematopoietic 

system will produce. The severe immune impairment after a radiation thermal combined injury is 

exacerbated in the absence of NLRP12 as NLRP12 has been shown to play a role in limiting 

TNF-induced apoptosis of progenitors. Using a bone marrow chimera, a mixture of wild type and 

Nlrp12-/- cells, we show that NLRP12 acts intrinsically within the bone marrow progenitor 

population to directly limit induction of TNF and to limit TNF- and inflammation-induced 

apoptosis of progenitor cells after a radiation-thermal combined injury. Additionally, that 

excessive TNF signaling leads to further defects in innate immune signaling, by altering TLR 

signaling. Furthermore, TNF administration without further injury is sufficient to induce 

progenitor apoptosis. Taken together, these data show the NLRP12 acts as an intrinsic regulator 

of innate inflammation with progenitors during emergency hematopoiesis.  

3.2 Introduction 

The innate immune system is the primary responder and major source of dysfunction 

after injury(Manz & Boettcher, 2014; Mendoza et al., 2012; Vieira-de-Abreu et al., 2012). The 

absence of NLRP12 leads increased production of TNF and a subsequent increased in TNF-

induced apoptosis of bone marrow progenitors, specifically granulocyte monocyte progenitor 

cells, the cells responsible for the production of the cell type the predominates the immune 
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system after RCI – as shown in Chapter 1. This increased TNF and reduction of peripheral innate 

immune cells leads to an increased susceptibility to infection. Several open questions remain 

regarding NLRP12: Is NLRP12 acting within the hematopoietic compartment to limit 

inflammation, or acting with peripheral immune cells to reduce TNF production? Is NLRP12 

impacting other inflammatory pathways? Can the increased apoptosis of progenitors be seen in 

other models of shock? 

Use of bone marrow chimeras has been an integral part of studying basic immunology 

using mouse models(Kuida et al., 1995; Onoe, Fernandes, & Good, 1980). This allows scientist 

to differentiate between affects non-hematologic cells play and those from the bone marrow 

compartment. More importantly, chimers allow to determine the affect an immune environment 

plays on two different cells (i.e. Wt and Nlrp12-/-progenitors) after injury. 

TNFR1 ligation of TNF signals through p65/NFκB and induces production of pro-

inflammatory cytokines like IL-6, pro-IL1β, chemoattractants, and further promotes cell 

survival(Rothe, Pan, Henzel, Ayres, & Goeddel, 1995; Wicovsky et al., 2009). Contrastingly, the 

TNFR2 variant signals through the Fas-associated protein with a death domain (FADD) adaptor 

protein to engage Caspases 3 and 8 and causes the cell to undergo apoptosis(Rothe et al., 1995; 

F. Wang et al., 2006).  

TLRs are responsible for conducting and initiating inflammatory responses as pattern 

recognition receptors to respond to bacterial, fungal, and viral ligands(B. A. Cairns et al., 2008). 

These signaling prime and activate innate immune cells to create and anti-microbial environment 

and cellular phenotype that will leads to the eventual clearance of the pathogen. However, 

increased signaling can lead to immune exhaustion, tissue immunopathology, and that inability 

to fight an infection.  
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Given that NLRP12 suppresses apoptosis of GMPs during emergency hematopoiesis, we 

sought to determine NLRP12 impact on innate immune signaling and reconstitution using RCI 

and other models of shock. We demonstrate that NLRP12 works intrinsically within the bone 

marrow compartment and works to limit pro-inflammatory responses during an infection and that 

a model of TNF-shock can replicate the apoptosis phenotype seen in Nlrp12-/- animals after 

RCI. 

3.3 Methods and Materials 

Mice and Combined Irradiation and Burn Injury procedure 

The Wt and Nlrp12-/- C57/B6 mouse strains have been described (Arthur et al., 2010; 

Honda et al., 2005; Kaisho & Akira, 2001). All experiments were conducted with female mice 

housed under SPF conditions that were age-matched and backcrossed for at least nine 

generations onto the C57BL/6 background. All studies were conducted in accordance with the 

IACUC guidelines of the University of North Carolina at Chapel Hill and NIH Guidelines for the 

Care and Use of Laboratory Animals. Our model of RCI has been previously described; briefly, 

mice received a subcutaneous injection of morphine (3mg/kg body weight) for pain control 

immediately before burn injury. A full-thickness contact burn of 20% total body surface area 

(TBSA) was produced and within 1 hour, mice received a 5Gy (dose rate of 0.98 Gy/min) whole-

body dose of ionizing radiation and were maintained on oral morphine for the duration of the 

experiment. Sham controls with 0% TBSA underwent all described interventions except for the 

burn and γ-irradiation exposure. 

Murine Chimeras 

 4-6 week old, Wt C57/B6.SJL mice (B6 CD45.1, Pep Boy), a congenic strain of mice 

who express a differential Ptprca pan leukocyte marker known as CD45.1. These mice differ 
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from C57/B6 mice as they express the canonical CD45.1 marker(Mercier, Sykes, & Scadden, 

2016). Wt CD45.1 and Nlrp12-/- CD45.2 mice were given a lethal dose of γ-irradiation from a 

Cs137 source (Stanford and Associate, CA, USA) as previously described. Mice were then 

maintained for 24 hours after irradiation and then given an adoptive transfer of Wt CD45.1 and 

Nlrp12-/- CD45.2 bone marrow (10^7 cells, intravenously via tail vein). Mice were allowed to 

recover from radiation and bone marrow transplant for 4-6 weeks and then underwent burn and 

radiation procedures as described above. 

Pseudomonas aeruginosa infection 

 A wildtype strain (PAK) of P. aeruginosa was obtained from M. Wolfgang (University 

of North Carolina, Chapel Hill, NC). 106 bacteria were then aerosolized intratracheally as 

described previously. 

Serum Collection and Cytokine ELISA 

 Animals underwent a submandibular bleed and systemic cytokines were measured by 

single-plex ELISA (Biolegend, CA, USA) according to the manufacturer’s instructions. 

Flow Cytometry 

All fluorescence-conjugated FACS antibodies were purchased from BD Biosciences or 

Biolegend. Antibody panel used to identify neutrophils and macrophages are described in the 

figures. The antibody panel for monocyte and neutrophil analysis was comprised of CD11c-

PerCPCy5.5, CD11b-PECy7, Ly6G-APC, Ly6G-PE, and F4/80-FITC. The antibody panel for 

progenitor analysis was comprised of CD3, CD8, NK1.1, CD19, CD45RA, TER-119 (Ly-76) as 

a lineage negative gate with all antibodies conjugated to FITC, CD127-PE/CF594, Sca1-APC, 

cKit-BUV395, FcγR-BV605, CD34-Alexa647, and Annexin V-Pacific Blue. CD45.2-BV630 

was used to distinguish between CD45.2 and CD45.1 transplanted cells. TLR2-PE, TLR4-PE, 
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TLR5-PE, and TLR9-PE were used to determine TLR expression on monocytes. In each case, a 

million cells per organ were used for flow cytometric analysis.  

Intracellular Staining 

 Intracellular staining was performed using a BD Bioscience Cytofix/Cytoperm kit. 

Antibodies used were TNF-PE (BD Biosciences). In each case, a million cells per organ were 

used for flow cytometric analysis.  

TNF-Induced Shock 

 Wt and Nlrp12-/- C57/B6 mice were give 50 or 100ug of murine recombinant-TNF 

(R&D System, CA, USA) intravenously via tail vein injection suspended in PBS. Mice were 

monitored for weight and temperature changes after induction of shock.  

LPS- and PolyIC-induced shock 

 Wt and Nlrp12-/- C57/B6 mice were given 50ug of LPS or 100ug of PolyIC (R&D 

systems, CA, USA) intravenously via tail vein suspended in PBS. Animals were monitored for 

signs of disease after LPS or PolyIC administration. 

Statistical Analysis 

 Analysis was carried out with Prism 7.0 for Windows. All data are presented as the mean 

+/- standard error of the mean (SEM). Complex data sets were analyzed by analysis of variance 

(ANOVA) with a Tukey-Kramer post-test HSD for multiple comparisons. Single data points 

were assessed by the Student’s two-tailed t test. The product limit method of Kaplan-Meier was 

utilized for generating the survival curves, which were compared using the log rank test. A p 

value less than 0.05 was considered statistically significant for all data sets. 
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3.4 Results 

Adoptive transfer of chimera bone marrow (Wt:Nlrp12-/-) reveals intrinsic defect in Nlrp12-/- 

GMP apoptosis signaling 

 Following a radiation-thermal combined injury, Nlrp12-/- deficient animals show 

decreased peripheral innate immune cell repopulation that is attributed to dysregulation of TNF, 

resulting in increased TNF-induced apoptosis of myeloid progenitor cells. This data, however, 

does not address whether NLRP12 is acting within the remaining peripheral immune cells in 

which more TNF is produced or whether Nlrp12-/- myeloid cells are more susceptible to the 

basal level of TNF to undergo apoptosis. In order to investigate this, Wild type and Nlrp12-/- 

mice were irradiated to destroy their native bone marrow, and transplanted with a 1:1 mixture of 

CD45.2 marker Wild type bone marrow cells and CD45.1 marked Nlrp12-/- bone marrow cells 

resulting in a Wt:Nlrp12-/- bone marrow chimera. After allowing transplant recipient animals 

immune systems to reach homeostasis, animals either underwent sham or RCI procedures. No 

changes in TNF production in Wt or Nlrp12-/- recipient animals was observed (Figure 3.1A). 

This supports previous evidence that NLRP12 does not act from epithelial cells, but rather from 

myeloid cells – of which the two recipients are identical after transplant. However, when 

comparing the ratio of Wt:Nlrp12-/- granulocyte monocyte progenitors undergoing apoptosis 

(competitive index, normalized to the input ratio), we observed that nearly two-fold more 

Nlrp12-/- GMPs were actively undergoing programmed cell death than Wild type GMPs (Figure 

3.1B). Additionally, we observed no significant increase in the total number of GMPs from Wt to 

Nlrp12-/- recipients (Figure 3.1C), again suggesting that defects due to NLRP12 deficiency is 

arising within the bone marrow compartment. Moreover, when comparing the ratio of Wt GMPs 

to Nlrp12-/- GMPs, we see that by two weeks after injury, Wt GMPs outnumber Nlrp12-/- GMPs 

two-fold (Figure 3.1D). Taken together, these data suggest that NLRP12 works intrinsically, on a 
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single cell basis, from the bone marrow compartment to limit TNF-mediated inflammation and 

apoptosis. 

NLRP12 deficiency leads to higher TNFR1 but not TNFR2 on GMPs after RCI 

 In Chapter 2, we showed that TNFR expression was increased on bone marrow cells in 

Nlrp12-/- animals after injury. However, the antibody used recognized both variants of the TNF-

receptor (TNFR1 and TNFR2). We therefore examined whether there were differences in 

expression of TNFR1 and TNFR2 on GMPs following RCI. We see that after 14 days post 

injury, GMPs express high levels of the pro-apoptotic CD120b (TNFR2) compared to Wild type, 

RCI animals (Figure 3.2A); whereas, there are no differences from Nlrp12-/- and Wild type 

expression of the pro-inflammatory CD120a (TNFR1) after RCI (Figure 3.2B). This data furthers 

the assertion that TNF is species responsible for the increased apoptosis of bone marrow 

progenitor after RCI, specifically through induction of TNFR2. 

RCI-NLRP12 Have Greater M1 Balance and More Polarization following Infection AND 

NLRP12 Controls TLR Expression following RCI on iMos 

 The ratio of the anti-inflammatory cytokine IL-10 compared to the pro-inflammatory IL-

12 can be used as a clinical indicator of injury severity and gives an impression of the M1/M2 

axis of macrophage polarization after injury. We therefor sought to determine whether NLRP12-

deficiency would alter pulmonary macrophages responses when trying to fight a pulmonary 

infection. RCI animals were infected with P. aeruginosa two weeks after injury via 

aerosolization. Whereas Wt animals had a reduction in the cells actively producing either IL-10 

and IL-12 after infection, displaying a reduction in responses to infection to limit 

immunopathology, Nlrp12-/- animals showed higher M1 skewing after injury alone and an 

increase in both IL-10 producing M2s and IL-12 producing M1s (Figure 3.3A). Moreover, 

Nlrp12-/- macrophages expressed higher levels off all TLRs examined, TLR2, TLR4, TLR5, and 
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TLR9 when compared to Wild type-infected macrophages (Figure 3.3B). This data leads us to 

conclude that NLRP12’s role in limiting inflammation may be more widespread than just TNF-

induction of apoptosis.  

Wild type animals are less susceptible to TNF-shock compared to Nlrp12-/- animals 

 Following RCI, we observe an initial spike of TNF which wains within days following 

injury. However, in Nlrp12-/- animals this spike persists and wreaks havoc on the hematopoietic 

system. Despite our attributing TNF as responsible for the increased apoptosis seen in the bone 

marrow compartment of Nlrp12-/- animals, burn and radiation injuries are complex injuries, 

resulting in numerous physiological and immunological impairments that make studying more 

difficult, but nonetheless pressing for study. We therefore chose to examine whether the 

decreased resistance to apoptosis could be replicated in a model of TNF-shock. No appreciable 

differences in mortality were observed in Wt and Nlrp12-/- animals given 50ug of recombinant-

TNF (Figure 3.4A); however, Nlrp12-/- mice given 100ug of TNF exhibited higher mortality 

than Wt animals with all animals succumbing to shock by 15 hours post injection (Figure 3.4A) 

and Nlrp12-/- mice lost more weight than Wt mice (Figure 3.4B). This increase in mortality was 

correlated with a significant decrease in the number of GMPs present in the bone marrow (Figure 

3.4C) when bone marrow aspirates were collected at 8 hours post injection. Moreover, at this 

time, Nlrp12-/- TNF-treated animals showed an increase in both IL-6 and IL-12, in addition to an 

increase in the anti-inflammatory IL-10 (Figure 3.4D). Taken together, this data shows the 

clinical relevance of RCI to study basic immunology as well as supporting NLRP12 control of 

TNF-induced apoptosis within the hematopoietic compartment during a traumatic event. 
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LPS, but not PolyIC, induces granulocyte monocyte progenitor expansion 

Administration of LPS to Wild type animals induces expansion of the GMP population, 

however this increase is not seen in Nlrp12-/- animals (3.5A). However, when further staining 

the cells with Annexin V and 7-AAD to examine their apoptotic status, there were no appreciable 

differences between Wild type and Nlrp12-/- levels of apoptosis (3.5B). Administration of 

PolyIC resulted in expansion of GMPs in both Wt and Nlrp12-/- animals (Figure 3.5C), but no 

significant increase in apoptosis (Figure 3.5D). From this, we conclude that the LPS induction of 

inflammation is sufficient to cause differences in the GMP populations in Wt and Nlrp12-/- 

animals. However, we observed no elevation in the level of apoptosis after LPS administration, 

indicating that the inflammatory response may not be strong enough from LPS alone. 

3.5 Conclusions 

 This study demonstrates that wide impact that NLRP12 deficiency plays in the innate 

immune response to RCI, infection, and during shock. In Chapter 2, we showed that NLRP12 

deficiency results in a global immunocompromised state that results from increased serum levels 

of TNF, causing TNF-dependent apoptosis of myeloid progenitor cells after a radiation-thermal 

combined injury. However, these studies did not address in which compartment (i.e. myeloid or 

progenitor) NLRP12 works under homeostatic conditions. We therefor utilized Wt:Nlrp12-/- 

chimeras in both Wt and Nlrp12-/- recipients. When Wt and NLRP12-deficient animals’ immune 

systems were reconstituted with equal parts Wt:Nlrp12-/- cells, we observed a noted specific 

increase of apoptosis only those progenitors lacking Nlrp12, whereas Wt progenitors were able 

to survive and proliferate support that NLRP12 activity is intrinsic to hematopoietic cells after 

injury.  
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Previous work has shown IL-6, IL-12, and IL-10 to be use prognostic tools to examine 

patient outcomes after burn and trauma (Jeannin, Duluc, & Delneste, 2011; S. W. Jones et al., 

2013; Steensberg, Fischer, Keller, Møller, & Pedersen, 2003; Steinhauser et al., 1999). 

Moreover, after burn injury the ratio of IL-10 compared to IL-12 is a useful tool to determine a 

patient’s pro-bacterial responses compared to anti-inflammatory and wound healing responses as 

shown in bronchoscopy-derived correlates after burn and radiation injuries (S. W. Jones et al., 

2013).  

Furthermore, we show that NLRP12 is vital to prime resident macrophages to limit 

immunopathology as seen by the increase in IL-10 and IL-12 polarization and TLR surface 

expression. These studies would be valuable as a basis to further study the role NLRP12 plays 

during injuries that induce complex, robust inflammatory responses resulting in wide spread 

immunocompromised states. 

 Utilizing a model of a model of radiation-thermal combined injury may not be warranted 

in the future. Primarily, the model induces numerous immunological and hematological 

dysfunction, whose ramifications are not fully understood. Using a high dose of TNF, animals 

showed rapid development of morbidity in both Wt and Nlrp1-/- animals, but Nlrrp12-/- animals 

succumb to shock significantly more quickly than their Wt counterpoints. Additionally, Nlrp12-

/- animals showed significant increases in granulocyte monocyte progenitor apoptosis, correlated 

with a decrease in total GMP numbers. Conversely, treatment with PolyIC, the ligand for TLR9, 

showed neither an increase in apoptosis nor a decrease in GMP numbers. Moreover, treatment 

with TLR4, the ligand for TLR4 and NLRC4, showed a significant reduction in GMP numbers, 

but no differences between apoptosis. These studies provide support that investigating NLRP12 

may better be done utilizing a model of shock using TNF-administration alone, but not LPS or 

PolyIC.  
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Figure 3.1 NLRP12 acts intrinsically to granulocyte monocyte progenitor apoptosis 

signaling in bone marrow chimeras. Wild type B6.SJL CD45.2 and Nlrp12-/- CD45.1 mice 

were subjected to 9Gy of lethal irradiation and received a bone marrow transplant 24 hours after 

injury of a 1:1 mixture of Wt:Nlrp12-/- bone marrow. After 4 weeks of recovery, animals were 

subjected to sham, 5Gy of γ-irradiation, a 20% total body surface area burn or a combined injury 

(RCI). (A) serum levels of TNF were quantified using an ELISA at 14 days post injury. (B) The 

ratio of Wt:Nlrp12-/- granulocyte monocyte undergoing apoptosis was determined using flow 

cytometry and CD45.1/CD45.2 to distinguish between the two donor types, at 14 days post 

injury. (C) The total number of GMPs and (D) the competitive index of Wt:Nlrp12-/- GMPs 

were quantified using flow cytometry. Data represented as mean ± SEM with statistical 

significance compared to sham defined as *, p<0.05 by Student’s t test. 
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Figure 3.2 TNFR2 expression, but not TNFR1, is increased on GMPs after injury. Wild 

type and Nlrp12-/- C57/B6 animals were subjected to sham, 5Gy of γ-irradiation, a 20% total 

body surface area burn or a combined injury (RCI). (A) TNFR2 (CD120b) and (B) TNFR1 

(CD120a) expression was quantified using flow cytometry. Data represented as mean ± SEM 

with statistical significance compared to sham defined as *, p<0.05, ***P<0.001 by Student’s t 

test. 
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Figure 3.3 Nlrp12-/- show greater monocyte inflammation after injury. Wild type and 

Nlrp12-/- C57/B6 animals were subjected to sham, 5Gy of γ-irradiation, a 20% total body 

surface area burn or a combined injury (RCI). (A) Splenocytes were collect at 14 days post 

injury and intracellular flow cytometry staining was used to quantify expression of IL-10 and IL-

12 directly within splenic monocytes. (B) TLR2, TLR4, TLR5, and TLR9 expression was 

quantified on monocytes using flow cytometry. Data represented as mean ± SEM with statistical 

significance compared to sham defined as *, p<0.05, **, p<0.001 by Student’s t test. 
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Figure 3.4 A model of TNF-shock replicates granulocyte monocyte progenitor apoptosis 

after RCI. Wild type and Nlrp12-/- mice were administered either 50 or 100ug of recombinant 

murine TNF and followed for (A) survival, data represented as Kaplan-Meier log-rank test with 

data represented as *, p<0.05. Wild type and Nlrp12-/- mice were give 100ug of murine TNF and 

their (B) body temperature was quantified. 8 hours after TNF treatment, bone marrow aspirates 

were collected and used to determine the (C) total numbers of GMPs, (D) serum IL-12p40, IL-6, 

and IL-10 cytokines were measure using ELISA. Data represented as mean ± SEM with 

statistical significance compared to sham defined as *, p<0.05, **, p<0.005 by Student’s t test or 

two-way ANOVA.  
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Figure 3.5 LPS treatment, but not PolyIC, reduces granulocyte monocyte progenitor 

numbers. Wt and Nlrp12-/-mice were given either 50ug of LPS or 100ug of PolyIC. Twelve 

hours after injection, bone marrow aspirates were collected and stained using flow cytometry for 

(A) granulocyte monocyte numbers after LPS administration, (B) quantification of GMP 

apoptosis after LPS administration, (C) GMP numbers after PolyIC administration, and (D) 

quantification of GMP apoptosis after PolyIC administration. Data represented as mean ± SEM 

with statistical significance compared to sham defined as *, p<0.05, by Student’s t test.  
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CHAPTER 4: GM-CSF TREATMENT FOLLOWING RADIATION-THERMAL 

COMBINED INJURY IMPROVES PLATELETS AND MONOCYTE RECOVERY AND 

FUNCTION2 

4.1 Summary 

 With increased concerns for a terrorist attack, countermeasures are needed to adequately 

improve patient outcomes following a combined radiation exposure and thermal injury (RCI). 

Radiation destruction of bone marrow progenitors in concert with the immune consequences of a 

thermal injury result in severe leukopenia and platelet dysfunction. Under homeostatic condition, 

granulocyte-monocyte colony stimulating factor is tightly controlled to regulate innate immune 

cell and platelet production. We hypothesized that using our animal model of RCI, GM-CSF 

administration would result in increases leukocyte and platelet production as well as improving 

cellular functions in response to sterile injury and an infectious challenge. In GM-CSF-treated 

animals, we observed a significant increase in numbers of granulocyte-monocyte and 

megakaryocyte-erythrocyte progenitors, but no increase in lymphoid progenitors. This 

heightened number of progenitors correlated with a decrease in progenitor apoptosis, as well as 

an increase of circulating platelets and monocytes as well as their function. Additionally, when 

challenged with a systemic infection of Pseudomonas aeruginosa, GM-CSF treated animals 

showed a nearly 10-fold improved ability to control infection systemically and at target organs 

compared to vehicle treated and injury animals. Our studies suggest that GM-CSF administration 

can improve hematopoietic production of new cells after a radiation-thermal combined injury 

and may be a useful therapeutic to treat this unique form of trauma.  

                                                           
2 This chapter is currently under review as an article at Shock, injury, Inflammation, and Sepsis.  
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4.2 Introduction 

The hematopoietic system can rapidly increase myelopoiesis in response to tissue damage 

and plays a vital role in cellular responses for wound healing and infection clearance (T. D. Jones 

et al., 1993; Manz & Boettcher, 2014). Emergency myelopoiesis is a tightly coupled process 

governed by the inflammatory cytokines TNF, IL-1β, and IL-6 through NFκB activation as well 

as specific growth factors, namely granulocyte-monocyte colony stimulating factor (GM-

CSF)(T. Chen et al., 2007; Kopf et al., 1995; Stein & Baldwin, 2013). TNF and IL-6, produced 

through toll-like receptor signaling, can act to promote the expansion of granulocyte/monocyte 

progenitors (GMP), resulting in systemic myeloid expansion (Buechler et al., 2013). GM-CSF 

signaling can limit apoptosis and promote survival and differentiation of progenitor cells within 

the bone marrow niche; specifically, by promoting progenitor amplification, megakaryocyte 

production, and differentiation of progenitors into innate cell subsets, including monocytes, 

eosinophils, neutrophils, and dendritic cells (Egea et al., 2013; Reeves, 2014).  

After severe burn and radiation injury, many complications may arise that affect the 

patient’s blood supply and circulation. Vessel damage can result in excessive fluid loss and 

hypovolemia; tissue damage results in excessive platelet degranulation and inflammatory 

activation and binding of platelets resulting in increased tissue damage; and depletion of 

coagulation factors after the initial injury leads to the inability to properly clot after a burn 

injury(Heslet et al., 2012). Prolonged hospitalization, mechanical ventilation, and immunological 

perturbations from burn and radiation injuries lead to an increased susceptibility to lung and 

system infections within survivors (S. W. Jones et al., 2013). This is a pressing clinical problem 

in the face of nuclear accidents and possible incorporation of nuclear materials within explosives.  
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This susceptibility has been attributed to a loss of inflammatory regulation, incomplete 

immune restoration and a systemic anti-inflammatory response following sepsis and shock (S. 

W. Jones et al., 2013; Neely et al., 2014; Neely et al., 2011). Following a radiation-thermal 

combined injury (RCI), an immature monocyte population (iMo) rapidly expands and 

predominates the periphery (Mendoza et al., 2012). This weakly inflammatory population is 

necessary to fight infection, but lacks a fully mature phenotype needed for phagocytic and 

immune regulatory functions. 

 Using our murine model of radiation and thermal combined injury (RCI), we tested 

whether repeated administration of GMSF would improve progenitor differentiation of immature 

immune cells and improve responses to injury and challenge to infection. We observed that GM-

CSF treated, RCI mice had greater survival and peripheral cellularity compared to vehicle treated 

controls. Additionally, these animals displayed a reduction in serum inflammatory cytokines and 

platelet activation. When challenged with a systemic infection of Pseudomonas aeruginosa, GM-

CSF treated injured animals were able to better control bacterial numbers than animals treated 

with vehicle alone. These results suggest that GM-CSF administration after a traumatic injury 

may be a suitable treatment to reverse leukopenia and immunosuppression. 

4.3 Materials and Methods 

Mice and combined irradiation and burn injury procedure 

All experiments were conducted with C57BL/6 female mice housed under SPF 

conditions that were age-matched. All studies were conducted in accordance with the IACUC 

guidelines of the University of North Carolina at Chapel Hill and NIH Guidelines for the Care 

and Use of Laboratory Animals. Our model of RCI has been previously described; briefly, 

following a subcutaneous injection of morphine, a full-thickness contact burn of 20% total body 
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surface area (TBSA) was produced and within 1 hour, mice received a 5Gy (dose rate of 0.98 

Gy/min) whole-body dose of ionizing radiation. Sham controls with 0% TBSA underwent all 

described interventions except for the burn and γ-irradiation exposure. Mice were weighed and 

had body temperatures taken rectally through the duration of experiments.  

GM-CSF administration 

 GM-CSF (2.7mg/kg in PBS) (Life Technologies, Carlsbad, CA) or vehicle control were 

administered intravenously immediately following injury and on days 1, 3, 5, 7, 9, 11, 13, and 15 

post-injuries.  

Pseudomonas aeruginosa infection 

 A wildtype strain (PA01) of P. aeruginosa was obtained from M. Wolfgang (University 

of North Carolina, Chapel Hill, NC). 104 bacteria were then injected intravenously as described 

previously.  

Serum collection and cytokine quantification 

 Animals underwent a submandibular bleed, blood was collected in EDTA coated 

collection tubes, and systemic cytokines were measured by LEGENDplex Mouse Cytokine Panel 

2 bead-based immunoassay (Biolegend, CA, USA) according to the manufacturer’s instructions 

on a BDFortessa at the UNC Flow Cytometry Core Facility. 

Flow cytometry 

All fluorescence-conjugated FACS antibodies were purchased from Biolegend or BD 

Biosciences (CA, USA). Antibody panel used to identify neutrophils and macrophages are 

CD11b-PE/Cy7, CD11c-PerCPCy5.5, CD45-Pacific Blue, Ly6G-APC, Ly6C-PE, F4/80-FITC. 

The antibody panel for progenitor analysis was comprised of CD3, CD8, NK1.1, CD19, 

CD45RA, TER-119 (Ly-76) as a lineage negative gate with all antibodies conjugated to FITC, 
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CD127-PE/CF594, Sca1-APC, cKit-BUV395, FcγR-BV605, CD34-Alexa647, and Annexin V-

Pacific Blue. Whole blood samples were stained using TER-119-FITC to discriminate against 

red blood cells, platelets were then identified using CD62P-APC, CD107a-BV421, CD63-

PerCPCy5.5, CD62P-PECy7, and CD42b-BV605. In each case, a million cells per sample were 

used for flow cytometric analysis.  

Statistical analysis 

 Statistical analysis was carried out with Prism 7.0 for Windows and flow cytometry 

results were analyzed using FlowJoVX for Windows. All data are presented as the mean +/- 

standard error of the mean (SEM). Complex data sets were analyzed by analysis of variance 

(ANOVA) with a Tukey-Kramer post-test HSD for multiple comparisons. Single data sets were 

assessed by the Student’s two-tailed t test. The product limit method of Kaplan-Meier was 

utilized for generating the survival curves, which were compared using the log rank test. A p 

value less than 0.05 was considered statistically significant for all data sets.  

4.4 Results 

GM-CSF increases survival and weight following RCI 

GM-CSF under homeostatic conditions is a cytokine that maintains survival and a low 

level of differentiation of hematopoietic stem cells and myeloid progenitor cells. Moreover, 

following a tissue ablative injury such as a total body radiation exposure, GM-CSF production is 

increased by macrophages, T and NK cells, fibroblasts, and endothelial cells. However, dual 

exposure to radiation and burn results in not only bone marrow ablation, but also a severe 

immunocompromised that state weakens the ability of these cells to respond appropriately to the 

injury, namely increased inflammatory cytokine production and delayed production of GM-CSF 
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and G-CSF. We therefore investigated whether repeated administration of GM-CSF to radiation-

thermal combined injured animals would improve survival and immune responses. 

No differences in mortality were observed in sham treated animals, however GM-CSF 

treated, injured animals showed no instances of mortality compared to the 20 percent mortality 

observed in vehicle treated animals (Figure 4.1A). GM-CSF treated injured animals increased 

body weight and temperature more quickly than vehicle control animals (Figure 4.1B-C). These 

data suggest that repeated GM-CSF administration was able to reduce mortality and improve 

body temperature and weight recovery after a radiation-thermal combined injury.  

GM-CSF increases granulocyte-monocyte progenitor numbers following RCI 

Following a radiation-thermal combined injury, we have shown highly granular, 

immature monocyte predominate the peripheral immune system (Mendoza et al., 2012). These 

cells were immediately produced through GM-CSF induced differentiation of granulocyte-

monocyte progenitor cells (GMPs) within the bone marrow. We therefore investigated the affect 

GM-CSF administration plays on these and other progenitor cells following RCI. GM-CSF 

treated, RCI animals had significantly increased numbers of GMPs at one and two weeks after 

injury compared to vehicle animals (Figure 4.2A). Additionally, megakaryocyte-erythrocyte 

progenitors (MEPs), that give rise to megakaryocytes and erythrocytes, also showed greater signs 

of expansion compared to vehicle treated, injured animals (Figure 4.2B). In contrast, the 

common B and T cell lymphoid progenitor, and has not been reported to be affected by GM-

CSF, showed no significant expansion (Figure 4.2C). These data implicated that GM-CSF 

specifically improves myeloid progenitor survival and proliferation after RCI.  
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Progenitor increase is attributed to decreased apoptosis of progenitor cells  

 The inflammatory cytokine milieu present after RCI is unique in that it results in a 

sustained increase in pro-inflammatory and anti-inflammatory cytokines long after the initial 

injury (Mendoza et al., 2012). Prolonged exposure to elevated pro-inflammatory cytokines, 

namely TNF, can induce program cell death instead of initiating survival and proliferation 

(Micheau & Tschopp, 2003). We therefore investigated whether GM-CSF treatment would 

impact the level of apoptosis that occurs in progenitor cells after injury. Both the GMP and MEK 

populations showed significantly lower levels of apoptosis as detected by Annexin-V/7-AAD 

staining (Figure 4.3A-B), while no reduction was seen in CLPs (Figure 4.3C). These data suggest 

that GM-CSF treatment improves progenitor survival by reducing their susceptibility to 

inflammation-mediated apoptosis. 

Peripheral innate immune cells and platelets expand following GM-CSF treatment after RCI 

 Following RCI, we have previously observed that despite radiation-ablation of much of 

the bone marrow and peripheral immune system including peripheral blood mononuclear cells 

(PBMCs) and platelets, we observed the expansion of a radio-resistant, immature myeloid 

population. We then sought to determine if GM-CSF administration improves expansion of 

monocytes and platelets after injury. We found that GM-CSF significantly increases the numbers 

of platelets (Figure 4.4A) after one week of GM-CSF treatment compared to untreated controls, 

while neutrophils (Figure 4.4B) and monocytes (Figure 4.4C) had a weak, yet significant 

expansion at 7 and 14 days, respectively. These data indicated that repeated GM-CSF 

administration improves platelet and PBMC expansion following RCI. 

Platelets display normalized phenotype following GM-CSF treatment and RCI 

 Following a burn or radiation injury, platelets rapidly respond to clot off any open 

wounds and to initiate a wound healing response. However, this initial injury depletes many 
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clotting factors and circulating platelets (Levin & Egorihina, 2010; Takashima, 1997). Following 

the immunosuppression that follows, many new platelets are not able to function appropriately 

leading to defects in clotting, increased levels of degranulation and release of inflammatory 

mediators, and increased adhesion to circulating monocyte and neutrophils, leading to further 

aberrant immune activation. We sought to determine the impact GM-CSF has on platelet 

function after injury. 

 To examine the coagulation ability of platelets, we utilized flow cytometry staining of 

CD42b (glycoprotein 1b), whose expression is directly correlated with platelets ability to initiate 

the coagulation cascade. GM-CSF treated, injured animals showed higher platelet expression of 

CD42b (Figure 5A) indicating there are better prepared clot should the need arise. Additionally, 

GM-CSF treated animal’s platelets displayed decreased surface expression of CD62P (P-

selectin) (Figure 4.5B) indicating a decreased activation and decreased potential to effectively 

bind circulating monocyte and neutrophils compared to untreated RCI mice.  

 As previously reported, platelets after RCI show an increased degranulation of both alpha 

and dense granules compared to uninjured controls (Bergmann et al., 2016; Vieira-de-Abreu et 

al., 2012). Alpha granules, which contain insulin-like growth factor-1, platelet-derived growth 

factor, TFGβ, and numerous clotting proteins, also express CD107a (LAMP-1) on the vesicle 

wall. Upon alpha granule release, platelets display increased surface expression of CD107a 

compared to untreated RCI mice (Figure 4.5C). GM-CSF administration reduces as early as three 

days post injury compared to untreated RCI mice, the expression of CD107a indicating a 

reduction in degranulation. Additionally, dense granules, which contain ADP, ATP, ionized 

calcium, and histamine and serotonin, can be traced by surface expression of CD63 (LAMP-3). 

Platelets from GM-CSF treated, injury animals showed a reduction of CD63 expression as early 
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as 3 days compared to untreated RCI mice. These data show that GM-CSF treatment is not only 

able to increase platelet numbers, but also to return them to a more homeostatic state after RCI. 

GM-CSF treated animals show a reduction in serum IL-6 and an increase in IL-10 

Following a burn and radiation injury, heightened levels of IL-6 or reduced levels of IL-

12 following trauma have been shown to be the major predictor of poor outcome (bacterial 

infection) following a traumatic injury (Gebhard et al., 2000). We observed a reduction in IL-6 

after one week of GM-CSF treatment (Figure 4.6A) and reduction of IL-12 after two weeks 

(Figure 4.6B) compared to untreated RCI mice. Increased TNF levels are beneficial to promote 

bacterial clearance, while prolonged heightened levels induce immunopathology of sensitive 

organs, namely the lung, after a burn or radiation injury. We observe no difference in TNF after 

GM-CSF treatment (Figure 4.6C). The anti-inflammatory cytokine IL-10 promotes a wound 

healing response (Edwards & Harding, 2004; Werner & Grose, 2003). We observe an increase in 

serum IL-10 at 3 days compared to untreated RCI controls, but see no significant differences at 

one and two weeks after injury following GM-CSF treatment (Figure 4.6D). These data suggest 

that GM-CSF treatment reduces the inflammatory responses to injury, while promoting a wound 

healing environment. 

GM-CSF treatment improves systemic infection responses to Pseudomonas aeruginosa 

 Following a prolonged hospital stay, patients that survive the initial shock from a burn or 

radiation-thermal combined injury succumb to systemic or pulmonary infections (Chitkara & 

Feierabend, 1980). We sought to determine the effect GM-CSF has on the ability of animals to 

control a systemic infectious challenge. Animals underwent the radiation-thermal combined 

injury as described before, mice were then sustained for two weeks in individual housing 

wherein they were infected intravenously with 1x104 CFU of Pseudomonas aeruginosa (PA01). 
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Spleen and lungs from infected animals that survived until 48 hours post infection were collected 

and plated to enumerate bacterial load systemically. We observed nearly a 5-fold reduction in 

bacterial load in the spleen (Figure 4.7A) and a 10-fold reduction in the lung load (Figure 4.7B) 

in GM-CSF treated animals compared to vehicle treated RCI animals. These data suggest that 

GM-CSF can significantly improve the ability of animals to effectively control an infectious 

challenge after a radiation-thermal combined injury. 

4.5 Discussion 

Our study demonstrates that repeated GM-CSF administration improves survival after a 

radiation-thermal combined injury. Moreover, GM-CSF improves progenitor cell survival and 

differentiation, resulting in an increase in total peripheral and tissue leukocyte numbers 

compared to injured animals alone. This increased cellularity and immune responses lead to an 

improved ability to control and infectious challenge. 

 Hematopoietic stem cell expansion and differentiation have been shown to be important 

factors in the immune suppression that follows a traumatic injury (Manz & Boettcher, 2014; J. G. 

Noel et al., 2002). Previous studies have shown GM-CSF stimulation can improve survival, and 

enhance proliferation and differentiation of bone marrow progenitors (Reeves, 2014). With little 

study of the biology of radiation combined with a thermal injury, there have been few 

therapeutics developed to combat this unique and devastating injury. We propose that repeated 

GM-CSF administration following a traumatic injury that causes emergency hematopoiesis will 

improve peripheral immune reconstitution and survival.  

 Under homeostatic conditions, bone marrow progenitor cells undergo low levels of 

differentiation and are resistant to many pro-apoptotic signaling pathways (Wilson & Trumpp, 

2006). GM-CSF has been shown to be important to activate, Mcl1, a member of the anti-
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apoptotic BCL2 family (Derouet, Thomas, Cross, Moots, & Edwards, 2004; Opferman et al., 

2005). Additionally, others have shown that GM-CSF reverses monocyte anergy that occurs 

during sepsis (Williams, Withington, Newland, & Kelsey, 1998). GM-CSF is a pluripotent 

cytokine whose role as a therapeutic following RCI requires more investigation. 

However, after RCI, we observed a limited repopulation of the peripheral immune system 

with an immature monocyte population in addition to an increase in apoptosis of granulocyte-

monocyte progenitor and megakaryocyte-monocyte progenitor cells. 

Because of its anti-apoptotic and stimulatory effects, we sought to determine the impact 

GM-CSF would have on immune reconstitution and cell function following RCI. GM-CSF 

treatment not only abrogates the progenitor apoptosis and survival defects observed after injury. 

Additionally, GM-CSF treatment improves platelet numbers and function from the improves 

megakaryocyte function. This increased function of platelets and improved repopulation after 

GM-CSF treatment improves systemic responses to an infectious challenge. Taken together, our 

studies suggest that GM-CSF could be utilized as a treatment to improve immune outcomes and 

responses following a traumatic injury. 
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Figure 4.1. GM-CSF treatment increases temperature, survival and weight following RCI C57BL/6 

mice were subjected to sham, 5Gy of γ-irradiation, a 20% total body surface area burn or a combined 

injury (RCI); mice were then either given 2.7mg/kg GM-CSF or vehicle control. (A) survival, (B) weight, 

and (C) temperature was measured at 1, 3, 5, 7, 11, and 16 days post injury. Survival data was analyzed 

using Kaplan-Meier log rank test. Data represented as mean ± SEM, with statistical significance 

compared to sham defined as *, p<0.05, **, p<0.005 and ***, p<0.001 by Student’s t test, with 

experiments performed in duplicate (n=5 per group).  
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Figure 4.2. GM-CSF administration increases progenitor cell numbers following RCI 

Wildtype C57BL/6 mice were subjected to sham or combined radiation and burn injury (RCI) and GM-

CSF treatment. Bone marrow was aspirated at 3, 7 and 16 days post injury and the total number of (A) 

common lymphoid progenitors, (B) granulocyte-monocyte progenitors, and (C) megakaryocyte-

erythrocyte progenitors were quantified by flow cytometry. Data represented as mean ± SEM, with 

statistical significance defined as *, p<0.05 and **, p<0.005 by Student’s t test with n=5 mice per group, 

with experiments performed in duplicate. 
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Figure 4.3. GM-CSF reduces progenitor apoptosis following RCI Wildtype C57BL/6 mice were 

subjected to sham or combined radiation and burn injury (RCI) and GM-CSF treatment. Bone marrow 

was aspirated at 3, 7, and 16 days post injury and the percentage of (A) granulocyte-monocyte 

progenitors, (B) megakaryocyte-erythrocyte progenitors, and (C) common lymphoid progenitors cells 

undergoing apoptosis was determined by positive Annexin V staining in the absence of 7-AAD- staining 

cells. Data represented as mean ± SEM, with statistical significance defined *, p<0.05, **, p<0.005 and 

***, p<0.001 by Student’s t test with n=5 mice per group, with experiments performed in duplicate. 
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Figure 4.4. GM-CSF increases circulating platelet, neutrophil, and monocyte numbers after RCI 

Wildtype C57BL/6 mice were subjected to sham or combined radiation and burn injury (RCI) and GM-

CSF treatment. Cheek bleeds were performed at 3, 7 and 16 days post injury and the number of (A) 

platelets, (B) neutrophils, and (C) monocytes were quantified by flow cytometry. Data represented as 

mean ± SEM with n=5 mice per group, with experiments performed in duplicate. 
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Figure 4.5. GM-CSF increases platelet function after RCI Wildtype C57BL/6 mice were subjected to 

sham or combined radiation and burn injury (RCI) along with GM-CSF treatment or vehicle alone. Cheek 

bleeds were performed at 3, 7, and 16 days post injury and (A) CD42b, (B) CD62P, (C) CD107a and (D) 

CD63 mean fluorescent intensity were determined using flow cytometry. Data represented as mean ± 

SEM, with statistical significance defined *, p<0.05, **, p<0.005 and ***, p<0.001 by Student’s t test 

with n=5 mice per group with experiments performed in duplicate.  
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Figure 4.6. GM-CSF treatment reduces IL-6 and increases IL-10 after RCI Wildtype C57BL/6 mice 

were subjected to sham or combined radiation and burn injury (RCI) along with GM-CSF treatment or 

vehicle alone. Cheek bleeds were performed at 3, 7, and 16 days post injury and cytokine concentrations 

of (A) IL6, (B) IL12, (C) TNF, and (D) IL10 were determined using LEGENDplex bead-based assay. 

Data represented as mean ± SEM, with statistical significance defined *, p<0.05, **, p<0.005 and ***, 

p<0.001 by Student’s t test with n=5 mice per group with experiments performed in duplicate.  
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Figure 4.7. GM-CSF mice show greater bacterial clearance than vehicle treated Wildtype C57BL/6 

mice were subjected to sham or combined radiation and burn injury (RCI). Mice were injected 14 days 

post-injury intravenously with 1x104 CFU of Pseudomonas aeruginosa (PA01). We quantified (A) 

bacterial load within spleen and (B) lungs liver by culture. Data represented as mean ± SEM, with 

statistical significance defined as *, p<0.05; **, p<0.05 by Student’s t test with n=5 mice per group, with 

experiments performed in duplicate. 
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CHAPTER 5: FLAGELLIN TREATMENT PREVENTS INCREASED 

SUSCEPTIBILITY TO SYSTEMIC BACTERIAL INFECTION AFTER INJURY BY 

INHIBITING IL-10+ IL-12- NEUTROPHIL POLARIZATION3 

5.1 Summary  

Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial 

clearance has been linked to specific deviations in the innate immune response. We hypothesized 

that innate immune modulations observed during sepsis also contribute to increased bacterial 

susceptibility after severe trauma. A well-established murine model of burn injury, used to 

replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly 

spreads systemically. The systemic IL-10/IL-12 axis was skewed after burn injury with infection 

as indicated by a significant elevation in serum IL-10 and polarization of neutrophils into an anti-

inflammatory (“N2”; IL-10+ IL-12−) phenotype. Infection with an attenuated P. aeruginosa strain 

(ΔCyaB) was cleared better than the wildtype strain and was associated with an increased pro-

inflammatory neutrophil (“N1”; IL-10−IL-12+) response in burn mice. This suggests that 

neutrophil polarization influences bacterial clearance after burn injury. Administration of a TLR5 

agonist, flagellin, after burn injury restored the neutrophil response towards a N1 phenotype 

resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation. This study 

details specific alterations in innate cell populations after burn injury that contribute to increased 

                                                           
3 This chapter was previously appeared as an article in Plos One. The original citation is as follows: Neely, Crystal 

J., Kartchner, L, Mendoza, A, Linz, B, Wolfgang M, Frehlinger J, Maile R, Cairns B. "Flagellin treatment prevents 

increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12-

neutrophil polarization." PloS one 9.1 (2014): e85623. 
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susceptibility to bacterial infection. In addition, for the first time, it identifies neutrophil 

polarization as a therapeutic target for the reversal of bacterial susceptibility after injury. 

5.2 Introduction  

Each year traumatic injury accounts for over 40 million emergency room visits and 2 

million hospital admissions across the United States (Santaniello et al., 2004). Severe trauma 

predisposes patients to infection with rates as high as 37% of patients (Papia et al., 1999). 

Infectious complications, such as sepsis and pneumonia, increase the length of hospitalization 

and cost of treatment (Glance, Stone, Mukamel, & Dick, 2011; Niven, Fick, Kirkpatrick, Grant, 

& Laupland, 2010). Furthermore, infection increases a traumatically injured patient's mortality 

rate by 5-fold (Patel, Mollitt, & Tepas, 2000). 

It is clear that severe burn-injury results in a complex interaction of both innate and 

adaptive immunity that leads to immune dysfunction, infection and often sepsis. Much work has 

been focused on defining alterations in the adaptive immune system, with T cell apoptosis 

(Fukuzuka, Edwards III, et al., 2000; Pellegrini et al., 2000), lymphopenia (Maile et al., 2006), T 

cell cytokine polarization (B. A. Cairns et al., 2001; Guo et al., 2003; Kovacs, Duffner, & 

Plackett, 2004; Zedler, Bone, Baue, Donnersmarck, & Faist, 1999) and upregulation of 

regulatory T cell (Treg) suppressive function (Choileain et al., 2006; MacConmara et al., 2006; 

Scumpia et al., 2006) being key players. However, in healthy individuals, the innate immune 

system is sufficient for clearing most invading bacteria. Neutrophils, which are considered the 

first-responders of the innate immune system, have a wide variety of anti-microbial functions 

including phagocytosis, release of granule proteins, and generation of neutrophil extracellular 

traps (NETs) (Borregaard, 1997; Brinkmann et al., 2004; Nordenfelt & Tapper, 2011). 

Macrophages and dendritic cells are also phagocytic, and antigen presentation and pro-
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inflammatory cytokine secretion (such as TNF-α and IL-12) by these cells induce and shape the 

adaptive immune response (Fujiwara & Kobayashi, 2005; Savina & Amigorena, 2007). Toll-like 

receptors (TLRs), which recognize conserved microbial products, are vital for detection of 

invading pathogens. TLR signaling leads to the induction or suppression of hundreds of 

inflammatory genes that further influence an immune response (Lien & Ingalls, 2002; van 

Putten, Bouwman, & de Zoete, 2010). Collectively, these innate immune responses lead to 

clearance of invading bacteria. 

During sepsis, defective bacterial clearance has been linked to alterations in the innate 

immune response. TLR expression and signaling is often altered leading to hypo- or hyper-

responsiveness (Harter, Mica, & Stocker, 2004; Martins et al., 2008). In addition, macrophages 

and neutrophils, which are extremely plastic, tend to be polarized into an anti-inflammatory 

phenotype due to TLR-signaling by danger-associated molecular patterns (DAMPS) released 

from damaged tissue (Biswas, Chittezhath, Shalova, & Lim, 2012; Hotchkiss, Coopersmith, 

McDunn, & Ferguson, 2009; Kasten, Muenzer, & Caldwell, 2010; Qin et al., 2012; X. Zhang & 

Mosser, 2008). These polarized macrophage (M2) and neutrophil (N2) cells secrete high 

amounts of IL-10, a potent anti-inflammatory cytokine and have been implicated in burn injury 

(B. A. Cairns et al., 2008; M. J. Cohen et al., 2007; Greg Noel et al., 2011; Schwacha, Chaudry, 

& Alexander, 2003). IL-10 can limit tissue damage by dampening the exaggerated production of 

pro-inflammatory cytokines observed during sepsis and induce tissue healing (Kahlke et al., 

2002; Kalechman et al., 2002). However, excessive IL-10 has been shown to be detrimental for 

bacterial clearance by attenuating protective pro-inflammatory cytokines, such as IL-12 

(Steinhauser et al., 1999; L. Sun et al., 2009; Yamaguchi et al., 2000) and correlates with worse 

outcome after burn injury (S. W. Jones et al., 2013). Additionally, in various models of trauma a 
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Ly6g+ CD11b+ myeloid cell population has been shown to arise (Cuenca et al., 2011; John G 

Noel et al., 2007) which are thought to be analogous to the Myeloid-derived Suppressor Cells 

(MDSC) that mediate immune suppression in the tumor microenvironment although their role in 

injury is controversial (Cuenca et al., 2011; Cuenca & Moldawer, 2012). We hypothesized that 

these innate immune modulations observed during sepsis also contribute to increased bacterial 

susceptibility after severe trauma. 

Utilizing a well-established murine model of burn injury to replicate infection following 

trauma, we found that burn mice were highly susceptibility to systemic wildtype P. aeruginosa 

infection after wound inoculation. The systemic IL-10/IL-12 axis was skewed after burn injury 

and infection demonstrated by a substantial elevation in serum IL-10. Furthermore, a significant 

number of neutrophils, but not macrophages, were polarized into an IL-10+ IL-12− N2 anti-

inflammatory phenotype. To confirm if neutrophil polarization played a role in bacterial 

clearance after burn injury, mice were then infected with attenuated P. aeruginosa strain 

(ΔCyaB). We found that better clearance of ΔCyaB compared to the wildtype strain was 

associated with an increased N1 response in burn mice. Also, we were able to skew the 

neutrophil response towards a pro-inflammatory N1 phenotype by the administration of a TLR5 

agonist, flagellin, immediately after burn injury that correlated with an increased clearance of 

wildtype P. aeruginosa after wound inoculation. 

These findings, for the first time, detail specific alterations in innate cell populations after 

burn injury that contribute to increased susceptibility to bacterial infection and reveal neutrophil 

polarization as a therapeutic target for the reversal of bacterial susceptibility after injury. 
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5.3 Methods and Materials 

Animals 

Wildtype C57BL/6 (B6) mice were purchased from Taconic Farms (Hudson, NY). All 

mice used in the study were maintained under specific pathogen-free conditions in the Animal 

Association of Laboratory Animal Care-accredited University of North Carolina Department of 

Laboratory Animal Medicine Facilities. All protocols were approved by the University of North 

Carolina Institutional Animal Care and Use Committee and performed in accordance with the 

National Institutes of Health guidelines. 

Mouse Burn Injury 

Eight to 12 week old (>18 grams), female B6 mice were used for all experiments. 

Animals were anesthetized by inhalation of vaporized isoflurane (Baxter Healthcare, Deerfield, 

IL) and had their dorsal and flank hair clipped. A subcutaneous injection of morphine (3 mg/kg 

body weight; Baxter Healthcare) was given prior to burn injury for pain control, and an 

intraperitoneal injection of lactated Ringer's solution (0.1 mL/g body weight; Hospira, Lake 

Forest, IL) was given immediately after burn injury for fluid resuscitation. To create a full-

contact burn of approximately 20% total body surface area (TBSA), a 65 g rod copper rod (1.9 

cm in diameter), heated to 100°C was used. Four applications of the rod, each for 10 seconds, to 

the animal's dorsal/flank produced the wound. Previous studies analyzing skin biopsies of the 

burn wound have demonstrated full-thickness cutaneous burn with visible unburned muscle 

beneath when following this procedure. Animals were returned to individual cages, provided 

food and morphinated water ab libitum, and monitored twice a day. Sham controls with 0% 

TBSA underwent all described interventions except for the actual burn injury. There was 

negligible mortality (<1%) after burn injury alone. 
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Bacterial strains and preparation 

A wildtype strain (PAK) and a mutant strain (ΔCyaB) of P. aeruginosa were obtained 

from M. Wolfgang (University of North Carolina, Chapel Hill, NC) (Wolfgang, Lee, Gilmore, & 

Lory, 2003). Bacteria were grown from frozen stock at 37°C overnight in Luria-Bertani (LB) 

broth then transferred to fresh medium and grown for an additional 2 hours or until mid-log 

phase. The cultures were centrifuged at 13,000 rpm for 30 seconds, and the pellet washed with 1 

mL of 1 % protease peptone in phosphate buffered saline (PBS +1%PP). Following a second 

wash, the bacterial concentration was determined by assessing optical density at 600 nm. After 

diluting the bacteria to obtain the desired concentration, the inoculum was verified by plating 

serial 10-fold dilutions on LB agar plates containing 25 µg/L irgasan (Sigma-Aldrich, St. Louis, 

MO). 

Animal infections 

Twenty-four hours following burn or sham injury, mice were anesthetized by 

intraperitoneal injection of Avertin (0.475 mg/g body weight; Sigma-Aldrich). A subcutaneous 

injection of bacteria was injected in the mid-dorsal region. For burn mice, this was in unburned 

skin surrounded by burn wound. Initial experiments monitored survival until 120 hours post 

infection (hpi). In subsequent experiments, mice were sacrificed at 48hpi to enumerate bacterial 

load and analyze immune responses. In select experiments, mice were administrated flagellin 

two hours prior to infection. Ultrapure flagellin from S. typhumurium (InvivoGen; San Diego, 

CA) was given intraperitoneally at a concentration of 0.125 ng/100 µl per mouse. 

Determination of bacterial infection 

At time of sacrifice, a 5 mm skin biopsy of the initial injection site, the left lobe of the 

liver, and the lungs were aseptically removed and placed in 0.5 mL of LB broth. The tissues were 



80 

homogenized using 3.2 mm stainless steel beads and a BulletBlender (Next Advance; Averill 

Park, NY). Serial dilutions of tissue homogenates were plated on LB agar containing irgasan and 

incubated overnight at 37°C. 

CD11b+ cell enrichment 

Cells suspensions were prepared from spleens of mice. CD11b+ cells were positively 

selected using the BD Imag Mouse CD11b Magnetic Particles according to manufacturer's 

instructions (BD Biosciences). This method routinely provided a highly enriched population of 

CD11b+ cells. 

In vitro stimulation 

Following the CD11b enrichment, both CD11b+ and CD11b− cells were resuspended in 

RMPI containing 10% fetal bovine serum to achieve 106cells/mL. Cells were plated in a 48 well 

plate and cultured for 6 hours with 0.1 ng/mL of LPS (Sigma-Aldrich) at 37°C at 5% CO2. 

During the last 4 hours of the stimulation, 3.0 µl/mL of brefeldin-A solution (eBioscience; San 

Diego, CA) was added to block protein secretion. 

Flow cytometric analysis 

Splenocytes were incubated with anti-mouse CD16/32 (BD Biosciences; San Jose, CA) at 

a concentration of 1 µg per million cells for 5 min at 4°C to block Fc receptors. The panel of 

mAbs used for flow cytometric analyses were anti-Gr1 (RD-8C5), anti-CD11b (M1/70), anti-

Ly6C (AL21), anti-Ly6G (1A8), anti-CD11c (N418), anti-F4/80 (BM8), anti-NK1.1 (PK136), 

anti-TLR2 (6C2), anti-TLR4 (MTS510), anti-TLR5 (85B152.5), anti-IL-10 (JES5-E16E3), and 

anti-IL-12 (p40/p70), which were purchased from BD Biosciences, eBiosciences, and BioLegend 

(San Diego, CA). Intracellular staining was performed using BD Cytofix/Cytoperm Kit (BD 
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Bioscience). Data were collected on a Dako CyAN and analyzed using Summit software (Dako; 

Carpinteria, CA). 

Serum cytokine analysis 

Submandibular bleeds were performed on mice prior to organ harvest. Serum was 

collected using MicroTubes with gel and following manufacturer's protocol (IRIS International, 

Westwood, MA). Serum IL-10 and IL-12 levels were determined using the BD Cytometric Bead 

Array (Becton Dickinson, San Diego, CA). 

Statistical analysis 

Data were analyzed using Student's t test for differences in CFU recovery, cell staining, 

and cytokine assays; log-rank analysis was used to test differences in mouse survival; two-way 

ANOVA with Tukey post-test was used to test differences in TLR expression GraphPad Prism 

version 5 was used for the analyses. Statistical significance was defined as p≤0.05 unless 

indicated otherwise. 

5.4 Results 

Burn mice, but not sham mice, developed a systemic infection following wound inoculation 

with wildtype P. aeruginosa 

Initial studies assessed survival of burn and sham mice following wound infection with a 

wildtype strain of P. aeruginosa, PAK. At 24 hours following burn or sham procedure, mice 

were anesthetized and given a subcutaneous injection of bacteria (2×103, 2×104, or 2×105 

CFU/100 µl) at the mid-dorsum. There was 100% survival of sham mice, even with the highest 

dose of 2×105 CFU (Figure 5.1A). Burn mice, however, exhibited mortality that was dose 

dependent (Figure 5.1A). Mortality of infected burn mice began as early as 1 day after 

inoculation. To evaluate bacterial clearance in burn and sham mice various tissues were 

harvested 48 hours following infection (2×104 CFU/100ul), which was before significant 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g001
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mortality occurred. As shown in Figure 5.1B, sham mice had no bacteria recovered from skin 

biopsies of the injection site while all burn mice had bacteria detected. Furthermore, the number 

of bacteria recovered from the skin of burn mice was 1–4 logs higher than the initial inoculum. 

This suggests bacterial recovery was not solely due to a lack of clearance, but that bacteria were 

actively replicating in the skin. Distal organs were also analyzed to examine bacterial 

dissemination. The liver, lungs, wound-draining lymph nodes and spleen of sham mice had no 

detectable bacteria, whereas the organs of burn mice had a high bacterial load (Figure 5.1C–1F). 

These data show that burn mice develop a systemic infection by 48 hours following wound 

inoculation with a wildtype strain of P. aeruginosa (PAK). 

Innate cell populations had altered TLR expression with the combination of burn injury and 

infection 

We and others have shown that Toll-like receptor (TLR) mRNA(Bruce A Cairns, Carie 

M Barnes, Stefan Mlot, Anthony A Meyer, & Robert Maile, 2008; Maung et al., 2005) and 

protein (B. A. Cairns et al., 2008) levels changes after burn injury. Since TLR2, TLR4, and 

TLR5 are involved in control of P. aeruginosa infection by recognizing outer membrane 

lipoproteins, LPS, and flagellin, respectively (Balloy et al., 2007; Feldman et al., 1998; Hajjar, 

Ernst, Tsai, Wilson, & Miller, 2002), we hypothesized that decreased bacterial clearance after 

burn injury was due to reduced expression of these TLRs on innate immune cells. In order to 

perform a systemic and detailed quantification of various immune cell populations after burn 

injury and infection, we devised a flow cytometric staining panel to differentiate between innate 

cell populations (Neutrophils, Gr1+, Ly6C+, Ly6G+, CD11b+, CD11c+, F4/80-; macrophages, 

Gr1+, Ly6C+, Ly6G-, CD11b+, CD11c-, F4/80+; dendritic cells, Gr1-, Ly6C-, Ly6G-, CD11b+, 

CD11c+, F4/80- and Gr1+ myeloid MDSC, Gr1+, Ly6C+, Ly6G+, CD11b+, CD11c-, F4/80-). 

The absolute number of these innate populations were similar in all treatment groups (data not 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g001
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g001
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shown). Adaptive cell populations (T and B cell) were also largely unchanged (data not shown), 

with a significant decrease in CD8 T cell number only upon injury, as we have documented 

before (Maile et al., 2006). Upon bacterial infection, splenic neutrophils and Ly6G+ CD11b+ 

myeloid cells from burn mice had significantly reduced TLR2, TLR4 and TLR5 expression 

compared to uninfected burn and infected sham mice (Figure5. 2A and 5.2B). In contrast, splenic 

macrophages from infected burn mice had increased TLR2 and TLR4 but unchanged TLR5 

expression compared to uninfected burn and infected sham mice (Figure 5.2C). These data 

demonstrate that on specific innate cell populations there are acute alterations in TLR expression 

in response to bacterial infection after burn injury. 

Infection following burn injury resulted in a systemic increase in IL-10 

Many studies have shown that IL-10 is deleterious whereas IL-12 is beneficial for 

clearance of P. aeruginosa (Steinhauser et al., 1999; L. Sun et al., 2009; Yamaguchi et al., 2000). 

Therefore, we hypothesized that infected burn mice would have a skewing in the IL-10/IL-12 

axis towards an IL-10 response. Three days following burn or sham treatment, there was no 

detectable IL-10 in the serum (data not shown). Infection of burn mice resulted in a substantial 

elevation of serum IL-10 while infection of sham mice did not induce an IL-10 response (Figure 

5.3A). Burn and sham mice also had no detectable IL-12 at three days post treatment (data not 

shown). However, infection caused an increase in serum IL-12 for both groups of mice (Figure 

5.3B). In summary, infection following burn injury led to a predominant systemic IL-10 

response, while infection after sham treatment induced an IL-12 response. 

Infected burn mice had an increased polarization of neutrophils, but not macrophages, into an 

IL-10+ IL-12− phenotype 

Macrophages and neutrophils can be polarized into pro- (M1/N1) and anti-inflammatory 

states (M2/N2) (Biswas et al., 2012; Hotchkiss et al., 2009; Kasten et al., 2010; Qin et al., 2012) 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g002
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g003
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g003
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after TLR stimulation, particularly in the context of injury where there is release of tissue 

DAMPs (X. Zhang & Mosser, 2008). Infected burn mice had a systemic anti-inflammatory 

response following infection, which was marked by elevated serum IL-10 levels; therefore, we 

hypothesized the innate cells were polarized towards an anti-inflammatory phenotype (IL-10+IL-

12−) following burn and infection. Splenocytes were harvested at 48 hours post infection and 

underwent intracellular staining for cytokine analysis without further stimulation in vitro. IL-10 

producing Gr1+ CD11b+ cells were readily detected in the spleen of the infected burn mice 

(representative histogram, Figure 5.4A). Due to these data along with previous reports about IL-

10 production by innate cells following burn injury (Greg Noel et al., 2011; Schwacha, 2003), 

we focused our subsequent studies on these cell types. Splenocytes were harvested at 48 

following infection, then underwent CD11b enrichment by magnetic selection. CD11b+ cells 

were cultured in the presence of LPS and brefeldin-A to measure intracellular accumulation of 

IL-10 and IL-12. Cell surface, intracellular staining and side/forward scatter indicated that 

neutrophils (Gr1+, Ly6C+, Ly6G+, CD11b+, CD11c+, F4/80-), but not macrophages (Gr1+, 

Ly6C+, Ly6G-, CD11b+, CD11c-, F4/80+), were the major immune cell type producing IL-10 in 

the spleen. Furthermore, infected burn mice had a significantly higher percentage of splenic 

neutrophils producing IL-10 than infected sham mice (Figure 5.4B). As for IL-12 production, 

infected burn mice had a significantly lower percentage of splenic neutrophils, dendritic cells, 

and macrophages producing this cytokine than infected sham mice (Figure 5.4C–E). These data, 

along with the serum cytokine response, suggest that following burn injury, the immune system 

mounts an inappropriate systemic IL-10 response with neutrophils exhibiting a N2 phenotype 

upon bacterial infection. 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g004
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g004
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Increased resistance of burn mice to systemic infection with an attenuated strain (ΔCyaB) P. 

aeruginosa correlated with reduced N2 polarization of neutrophils 

ΔCyaB is a mutant strain of P. aeruginosa that has been previously reported to be 

attenuated in an adult mouse model of acute pneumonia (Smith, Wolfgang, & Lory, 2004). We 

predicted that burn mice could control infection with ΔCyaB better than wildtype PAK. Also, we 

hypothesized that any differences in the innate immune response between ΔCyaB and PAK 

infection would reveal mechanisms that contribute to enhanced bacterial clearance and thus 

identify potential targets for immune modulation. Twenty-four hours following burn or sham 

treatment, mice were given a subcutaneous injection of wildtype PAK or ΔCyaB mutant (2×104 

CFU/100 µl). At 48 hours following infection, skin biopsies at the injection site were harvested 

to measure localized bacterial clearance. Distal organs were also harvested to assess bacterial 

dissemination from the injection site. Regardless of P. aeruginosa strain, infected sham mice had 

no bacteria recovered from their skin, liver, and lung samples (data not shown). Infection with 

PAK or ΔCyaB following burn injury resulted in a similar bacterial load at the injection site (data 

not shown). In contrast, burn mice infected with ΔCyaB had significantly less bacterial recovery 

in the distal organs than burn mice infected with PAK (Figure 5.5A and 5.5B). These data 

indicate that burn mice are more resistant to developing systemic infection with an attenuated 

strain of P. aeruginosa than with wildtype PAK. Therefore, burn mice retain some antibacterial 

activity which allows for improved control of the attenuated strain. 

Infection of burn mice, regardless of bacterial strain, caused an elevation of serum IL-10 

compared to sham mice (Figure 5.5C). In contrast to PAK, infection with ΔCyaB following burn 

injury resulted in a significant increase in serum IL-12 levels (Figure 5.5D). In both treatment 

groups, the main source of IL-10 in the spleen was neutrophils. Also, the percentage of splenic 

neutrophils producing IL-10 was similar in burn mice infected with ΔCyaB and those infected 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g005
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with PAK (Figure 5.5E). ΔCyaB infection also resulted in a higher percentage of IL-

12+neutrophils within the spleen (Figure 5.5F). Hence, infection with ΔCyaB following burn 

injury results in a higher percentage of IL-12+ cells within the spleen and an increase in serum 

IL-12. TLR2, TLR4, and TLR5 expression on the various immune cells was comparable between 

PAK and ΔCyaB infected burn mice (data not shown). These data suggest that the reduced 

susceptibility to ΔCyaB in the burn mice is due to a skewing of the IL-10/IL-12 balance to a 

protective IL-12 response. 

Treatment of mice with flagellin after burn injury enhanced clearance of wildtype P. 

aeruginosa 

Flagellin, the ligand of TLR5, has been shown to increase IL-12 production (Vicente‐

Suarez et al., 2007). Therefore, we hypothesized that flagellin could improve clearance of 

wildtype P. aeruginosa (PAK) in burn mice by increasing the protective IL-12 response. Burn 

mice were resuscitated after burn injury and received an intraperitoneal injection of flagellin 

(0.125 ng/100 µl) twenty-hours later. Twenty-four hours after burn they were then infected 

subcutaneously with PAK. Forty-eight hours following infection with or without treatment with 

flagellin, various organs were harvested to determine bacterial load. Pretreatment with flagellin 

did not affect bacterial recovery from skin biopsies at the injection site (data not shown). 

However, there were significantly less bacteria recovered from the liver and lungs of burn mice 

pretreated with flagellin compared to untreated controls (Figure 5.6A and 5.6B). The reduced 

bacterial load in the periphery correlated with an increased percentage of IL-12 producing 

neutrophils whereas IL-10 production by neutrophils was unchanged (Figure 5.6C and 5.6D). 

The absolute number of innate and adaptive cells were unchanged between flagellin and 

flagellin-untreated burn mice. These data suggest that a single treatment with flagellin after 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g005
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g006
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085623#pone-0085623-g006
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injury is sufficient to reduce the systemic infection of wildtype P. aeruginosa by skewing more 

neutrophils towards a pro-inflammatory phenotype. 

5.5 Discussion 

Severe trauma results in a period of immune impairment that predisposes the patient to 

infectious complications, such as sepsis. However, the specific mechanisms that contribute to 

diminished bacterial clearance are not clearly defined. In this study, we utilized a murine model 

of severe burn injury and challenged mice with a clinically relevant pathogen to reveal specific 

trauma-induced deviations in the innate immune response that contribute to increased 

susceptibility to infection. Within 48 hours of wound inoculation with a wildtype strain of P. 

aeruginosa (PAK), bacteria replicate to a high titer and spread to distal organs resulting in 

bacterial sepsis. Neutrophils and Ly6g+ CD11b+ myeloid cells have decreased TLR expression. 

In addition, the neutrophils are profoundly polarized into an anti-inflammatory (“N2”; IL-10+ IL-

12−) phenotype. 

Furthermore, we hypothesized that some antimicrobial effector functions are retained 

after severe burn injury and that amplifying these responses therapeutically can enhance bacterial 

clearance even if in face of overt immune suppression. To identify these potential targets, mice 

were infected with an attenuated strain of P. aeruginosa (ΔCyaB). We found that burn mice have 

greater control of ΔCyaB infection than wildtype PAK infection, which is exhibited by reduced 

bacterial recovery systemically. By comparing various aspects of the innate immune response, it 

appears that increased neutrophil polarization towards a pro-inflammatory phenotype (N1; IL-

12+ IL-10−) is responsible for improved clearance of ΔCyaB in the periphery. We next 

investigated the effectiveness of flagellin, a natural TLR5 ligand that can induce IL-12 

production, as a therapeutic agent in our model (Vicente‐Suarez et al., 2007). We found that 
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treatment with flagellin after burn injury enhances clearance of wildtype P. aeruginosa (PAK) in 

the periphery and increases the percentage of IL-12 producing neutrophils in the spleen. 

Nevertheless, IL-10 production by splenic neutrophil remained elevated compared to sham 

controls. These data suggest that although infection following burn injury polarizes neutrophils 

towards an anti-inflammatory phenotype, flagellin administration can tilt this back towards a 

pro-inflammatory response that is beneficial for bacterial clearance. 

Previous studies have attempted to delineate cellular mechanisms underlying the 

increased susceptibility to infection after injury, which is a very pressing clinical need. This 

study utilized a very precise panel of antibodies for the flow cytometric identification of specific 

innate cell populations so that their role in infection after burn injury could be better assessed. 

Using cell surface markers CD11b, CD11c, F4/80, Gr1, Ly6C, and Ly6G, we can clearly define 

neutrophils (F4/80− Gr1+ (Ly6C+ Ly6G+) CD11b+ CD11c+), macrophages (F4/80+ Gr1+ (Ly6C+ 

Ly6G−) CD11b+ CD11c−), a Ly6g+ CD11b+ myeloid population (F4/80+ Gr1+ (Ly6C+ Ly6G+) 

CD11b+CD11c−) and dendritic cells (F4/80− CD11b+ Gr1− CD11c+). Using such an in depth 

staining panel and gating scheme allowed for quantification of various immune innate cell 

populations after injury that has not been reported to date. 

Controversy exists as to whether the Ly6g+ CD11b+ cells that arise after trauma are 

analogous to the Myeloid-derived Suppressor Cells (MDSC) that mediate T cell suppression in 

the tumor microenvironment (Cuenca et al., 2011). Our laboratory has recently described that 

burn-induced Ly6g+ CD11b+cells suppress T cell proliferation (Mendoza et al., 2012) and 

polarize T cells towards a Th2-anti-inflammatory response (B. Cairns, Maile, Barnes, Frelinger, 

& Meyer, 2006) suggesting they mimic aspects of MDSC function. Ly6g+ CD11b+ cells employ 

various mechanisms, such as arginase, IL-10, and nitric oxide production, to inhibit T cell 
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proliferation and activation (Movahedi et al., 2008; Youn, Nagaraj, Collazo, & Gabrilovich, 

2008). This study did not reveal IL-10 secretion by Ly6G+CD11b+ myeloid cells after burn 

injury and/or an acute bacterial infection, but we predict that these cells become a predominant 

population at later time points after burn injury (Mendoza et al., 2012) due to continuous 

myelopoiesis. IL-10 itself has many effects on other immune cells, including upregulation of Treg 

suppression, decreased effector T cell function. IL-10 can also downregulate innate cell function 

including inhibition of reactive oxygen species vital for killing of bacteria. The innate system is 

thought to drive the resultant adaptive response. Further work is required to determine if and how 

these cells impact both the innate and adaptive arms of the immune system later after burn 

injury. 

As for the other innate cells populations, we observed neutrophil, but not macrophage, 

polarization in our model system. Polarization of adaptive immune cells, such as naïve CD4+ T 

cells into a Th1 or Th2 phenotype, is well established (Mosmann & Sad, 1996). However, the 

polarization and plasticity of innate immune cell populations has only been recently recognized. 

Most of the information within the field originates from tumor research and mainly focuses on 

macrophage polarization (Sica et al., 2008). Although the details are still unclear, the literature 

suggests that the local microenvironment in which a cell is activated determines the cell's 

subsequent phenotype and that changing this microenvironment can skew polarization of the cell 

population. For example, a macrophage can be polarized towards a pro-inflammatory phenotype 

(M1) marked by production of IL-12, as well as other pro-inflammatory mediators, when 

activated in the presences of interferon-gamma (Jeannin et al., 2011). However, if a macrophage 

is then exposed to IL-10, glucocorticoids, or immune complexes in the presence of the TLR 

ligands, it can exhibit an anti-inflammatory phenotype (M2, IL-10+ IL-12−) (Ambarus et al., 
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2012; Martinez, Sica, Mantovani, & Locati, 2007). In our model system, we find that 

neutrophils, not macrophages, are the main innate immune cell population that is polarized. It 

appears that infection following burn injury skews neutrophils towards an anti-inflammatory 

phenotype. Yet when mice are administered flagellin, they exhibit a mixed N1/N2 phenotype 

that correlates with enhanced bacterial clearance in the periphery. In the context of sepsis, a 

predominant M1 response is detrimental to local tissue since the robust pro-inflammatory 

cytokine production by the macrophages can exacerbate tissue damage (Qin et al., 2012). Also, 

an overt M2 response is believed to deleterious by significantly impairing bacterial clearance 

(Shigematsu, Asai, Kobayashi, Herndon, & Suzuki, 2009). Thus, a mixed M1/M2 response 

appears to be ideal during sepsis. Our data support the idea that a mixed N1/N2 response is also 

beneficial after sepsis; however, future research is needed to delineate this correlation in more 

detail. 

Since infectious complications are a main cause of mortality after traumatic injury, it is 

essential to identify biomarkers of infection and drug targets to improve control of invading 

pathogens. Numerous studies have linked high circulating levels of IL-10 with poor outcome 

following burn injury, sepsis, and a wide variety of bacterial infections (Csontos et al., 2010; 

Steinhauser et al., 1999; L. Sun et al., 2009). In our model system, serum IL-10 is elevated in 

infected burn mice, regardless of strain, but not in uninfected controls. Collectively, this supports 

the use of IL-10 as a useful biomarker of bacterial infection. 

Taken together these data detail specific changes in innate cell populations following 

burn injury that contribute to increased susceptibility to bacterial infection and reveal neutrophil 

polarization as a therapeutic target for the reversal of bacterial susceptibility after injury. Future 

experiments should examine other aspects of neutrophil function, such as phagocytosis and NET 
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formation, after burn injury and infection and determine if flagellin administration impacts these 

antimicrobial activities. Furthermore, the timing of treatment should be investigated to determine 

if flagellin administration could improve clearance of an established bacterial infection, which 

would be extremely valuable in the clinical setting.  
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Figure 5.1. Burn mice, but not sham mice, exhibit dose-dependent mortality and develop a 

systemic infection following a P. aeruginosa wound inoculation. Wildtype P. aeruginosa 

(PAK) was administered subcutaneously at 24 hours after burn or sham treatment. A) Various 

doses of bacteria (2×103, 2×104, or 2×105 CFU/100 µl) were given and survival was monitored 

for 120 hours post infection (hpi). B–F) Using a dose of 2×104 CFU, bacterial load at the 

injection site and distal organs was assessed at 48 hpi in sham (open circles) and burn (closed 

circles) mice. (n = 4–9 per group) *, p≤0.05. **, p≤0.005. These experiments were repeated three 

times with similar results. 
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Figure 5.2. TLR expression is decreased on splenic neutrophils and Ly6G+ CD11b+ 

myeloid cells, but not macrophages, after burn injury with infection. 

Splenocytes were harvested and mean fluorescence intensity (MFI) of TLR2, TLR4, and TLR5 

expression was elevated on splenic A) neutrophils, b) Ly6G+ CD11b+ cells, and B) 

macrophages at 3 days post burn (solid) or sham (open) treatment combined with (PAK) or 

without (-) P. aeruginosa wound inoculation. Data expressed as mean ± SEM. (n = 4–10) *, 

p≤0.05. **, p≤0.005. ***, p≤0.0005. ****, p<0.0001 by two-way ANOVA with Tukey posttest. 

These experiments were repeated three times with similar results. 
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Figure 5.3. Burn mice, but not sham mice, mount a robust serum IL-10 response after P. 

aeruginosa wound inoculation. Twenty-four hours after sham (open) or burn (solid) treatment, 

mice were given a subcutaneous injection of wild-type P.aeruginosa PAK. Forty-hours 

following infection, serum was collected to determine circulating levels of A) IL-10 and B) IL-

12p40 by cytometric bead array. Data expressed as mean ± SEM. (n = 10–15) *, p≤0.05. 
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Figure 5.4. Infected burn mice have a higher percentage of IL-10+ neutrophils and a lower 

percentage of IL-12+ neutrophils, dendritic cells, and macrophages than infected sham 

mice. A) Splenocytes were harvested at 48 hours post infection and underwent intracellular 

staining for cytokine analysis without further stimulation in vitro. Shown is a representative 

histogram from an infected burn mouse, which indicates that IL-10 is being produced by Gr1+ 

CD11b+ cells within the spleen. B–E) Splenocytes were collected at 48 following infection and 

underwent CD11b enrichment by magnetic selection. CD11b+ cells were cultured in the presence 

of LPS and brefeldin-A then were subjected to cell surface and intracellular staining. Percentage 

of B) IL-10+ neutrophils, as well as IL-12+ C) neutrophils, D) dendritic cells, and E) 

macrophages were measured for infected sham (open) and burn (solid) mice. Data expressed as 

mean ± SEM. (n = 6, 7) **, p≤0.005. ***, p≤0.0005. ****, p<0.0001. These experiments were 

repeated three times with similar results. 
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Figure 5.5. Reduced bacterial load at distal organs following wound inoculation with an 

attenuated P. aeruginosa strain (ΔCyaB) is associated with an increased serum IL-12 and 

pro-inflammatory neutrophil (N1; IL-10−IL-12+) response in burn mice. Forty-eight hours 

following wildtype PAK (circles/solid bars) or ΔCyaB (triangles/checkered bars) wound 

infection, various organs were harvested from burn mice. Bacterial load in A) liver and B) lung 

samples was determined by colony forming unit (CFU) assay. Serum C) IL-10 and D) IL-12 

levels were assessed by cytometric bead array. Also, the percentage of splenic neutrophils 

producing E) IL-10 and F) IL-12 was determined by flow cytometric analysis. Data expressed as 

mean ± SEM. (n = 8, 8) *, p≤0.05. **, p≤0.005. ****, p<0.0001. These experiments were 

repeated three times with similar results. 
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Figure 5.6. Administration of flagellin at burn resuscitation and prior to wound infection 

with wildtype P. aeruginosa (PAK) reduces bacterial load in the periphery and increases 

the percentage of IL-12 producing neutrophils within the spleen. Burn mice were given an 

intraperitoneal injection of flagellin (circles/solid bars) or left untreated (squared/striped bars) 

twenty-two hours after burn injury. Twenty-four hours after burn injury, mice were challenged 

with subcutaneous wound infection with PAK. Forty-eight hours following the bacterial 

challenge, various organs were harvested. Bacterial load in A) liver and B) lung samples was 

determined by colony forming unit (CFU) assay. The percentage of splenic neutrophils 

producing C) IL-10 and D) IL-12 was determined by flow cytometric analysis. Data expressed as 

mean ± SEM. (n = 8–10) *, p≤0.05. **, p≤0.005. These experiments were repeated three times 

with similar results. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 A clinical need 

Currently there are 444 nuclear reactors operating in 30 countries. Despite wavering 

public opinion of nuclear energy, there are 63 new nuclear plants that are under construction in 

15 countries (Budnitz, 2016). With increasing concern for a terrorist attack and the potential for 

state-sanctioned nuclear attacks, research concerning the medical consequences of a blast is 

necessary to properly treat any potential victims. Radiation accidents or attacks are not isolated 

exposures, but are often coupled with initial blasts, secondary gas explosions, as well as other 

various forms of physical trauma (Bui et al., 2014). From the documented nuclear accidents, 

ranging from the Three Mile Island plant partial meltdown, the Chernobyl nuclear meltdown in 

1986, as well as the more recent Fukushimi-Diachi that occurred after a tsunami hit mainland 

Japan, those that were exposed to radiation, between 20-60% also experienced a secondary form 

of trauma (Fushiki, 2013). 

Both burn and radiation injuries induces profound immune system dysfunction that 

renders patients to be highly susceptible to infection (Church et al., 2006; Gordon, Ruml, Hahne, 

& Miller, 1955). The immune cell ablation of the radiation injury, combined in the context of a 

full-thickness skin burn distorts the immune systems response even further (Cherry et al., 2013; 

Mendoza et al., 2012). Despite progress made in reducing instances of wound infection after a 

burn through wound debridement and the aggressive use of antibiotics, wound and pulmonary 

infections remain a major cause of mortality (Church et al., 2006). Therefore, to improve patient 

outcome, it is necessary to elucidate the immune responses to a radiation-thermal combined 



99 

injury, and how the immune system responses to an infection after such injury. Additionally, due 

to the highly dynamic responses of the immune system after a burn injury, it is important to also 

study the impact that burn alone has on the ability of the immune system to control and infection 

6.2 Cellular mechanisms of immune dysfunction following radiation-thermal combined 

injury in the absence of NLRP12 

Immediately following a thermal injury, the resident macrophages and T cells respond by 

rapidly elevating numerous pro-inflammatory cytokines (Bergmann et al., 2016; Greg Noel et al., 

2011; J. G. Noel et al., 2005). These circulate systemically and reach the bone marrow 

compartment. Hematopoiesis is a tightly controlled, homeostatic process that involves 

hematopoietic stem cells and progenitor cells expanding and producing new, naïve immune cells. 

Under natural, homeostatic conditions the hematopoietic compartment works to slowly produce 

new lymphoid (e.g. B and T cells), that leave the tissue for maturation in the thymus, spleen, 

lymph nodes, or other target tissues (Ansel & Cyster, 2001; Kincade, Lee, Pietrangeli, Hayashi, 

& Gimble, 1989). Myeloid lineage cells are also produced within the bone marrow and undergo 

minimal amount of maturation and priming (T. D. Jones et al., 1993). Upon stimulation with 

through a chemotactic gradient, myeloid cells will leave the bone marrow niche. Macrophages, 

monocyte, and neutrophils have a variety of half-lives ranging from several days to weeks for 

macrophages, and hours to days for neutrophils. Naturally, these are the most predominant 

species of cell present in the hematopoietic compartment (J. G. Noel et al., 2002). Upon 

recognition of a damage or pathogen associated molecular pattern, these myeloid cells will 

receive chemotactic signals and follow this gradient to the site of injury (J. G. Noel et al., 2002). 

In immune cells, NFkB acts as a transcription factor to initiate production of pro-

inflammatory cytokines, chemokines, and changes to the cell cycle. Moreover, canonical NFkB, 

or p65/RelA, works to maintain HSC renewal and proliferation during homeostatic conditions 
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and in response insults (Stein & Baldwin, 2013). Previous studies have shown NLRP12 to act as 

negative regulator of NFkB through association with NIK (I. C. Allen et al., 2012). Increased 

activity of NLRP12 leads to a reduction in the production of NFkB-dependent chemokines and 

pro-inflammatory cytokines. Canonical NFkB signaling through STAT3 and the type II TNF-

receptor promotes pro-inflammatory environment, improves survival, but under prolonged 

exposure to TNF, expression of the type I TNF-receptor and signaling through TRADD/FADD 

can initiate inflammation-induced, programmed cell death – apoptosis (Croft et al., 2013; 

Hayden & Ghosh, 2014).  

The NLR family of proteins has been most widely studied in the context of the 

inflammasome, a catalytic oligomer that processes IL-1β and IL-18 into the bioactive forms, and 

support secretion from the cytosol. However, some members of the NLR family have been 

shown to be direct regulators of innate immune signaling and the NFkB pathway (Irving C Allen 

et al., 2011; Vladimer et al., 2012). NLRP12 has been shown to act as an inflammasome in the 

lungs of animals infected with Yersinia pestis and acting specifically to cleave pro-IL-18 to 

activate and recruit Natural Killer (NK cells) (Vladimer et al., 2012). NLRP12 has also been 

shown to process IL-18 in the cytosol of malaria parasite infected monocyte (Ataide et al., 2014). 

Using our animal model of radiation-thermal combined injury, we investigated the 

contribution NLRP12 plays in the immune and hematopoietic response following injury. We 

observed relative increases in Nlrp12 transcript in lung, spleen, and bone marrow tissues of wild 

type mice after RCI, but not after burn or radiation alone. Nlrp12-/- deficient animals also 

displayed a significant increase in morbidity and mortality after RCI compared to wild type 

animal. This decrease in survival also correlated with decrease myeloid cellularity in the spleen, 

lungs, bone marrow, and blood. Contrastingly, animals deficient in other components of the 
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inflammasome complex (Caspases 1 and 11, and ASC) or IL1ra did not display a myeloid cell 

defect indicating that NLRP12 is not acting as an inflammasome within our model.  

 In addition to decreased myeloid cellularity in the bone marrow compartment, Nlrp12-/- 

animals have a significant reduction in the numbers of myeloid progenitors as early as three days 

post injury. This decrease was correlated with significantly high levels of TNF in Nlrp12-/- RCI 

animals, but not in wild type RCI animals. These high TNF levels were then shown to be 

responsible for the progenitor cell apoptosis by neutralizing circulating TNF immediately after 

injury. In addition to higher levels of progenitor cells actively undergoing apoptosis, Nlrp12-/- 

RCI animals showed higher levels of canonical NFkB signaling through phosphorylation of IκBa 

and p65, but not IKK or p38. Animals were then subjected to a systemic infection of 

Pseudomonas aeruginosa, with all NLPR12 animals eventually succumbing to infection. Taken 

together, these data show that NLRP12 acts to control the inflammatory responses during an 

emergency hematopoietic event by limiting TNF production and responses to excessive 

inflammatory signaling. 

6.3 Future directions: Characterization of NLRP12 impact on canonical NFκB induction of 

apoptosis 

Using our model of radiation thermal combined injury and mice deficient in Nlrp12, we 

showed that excessive levels of TNF in NLRP12-deficient animals results in increased levels of 

TNF-induced apoptosis of progenitor cells. Within the cells, we observed increase activation of 

the canonical NFkB signaling indicated by increased phosphorylation of p65/RelA and the 

inhibitor IkBa with no changes observed in non-canonical pathway proteins. Further 

investigation should elucidate the signaling abnormalities in Nlrp12-/- animals after injury. More 

specifically if NLRP12 is working to limit canonical signaling of NFkB and limiting Caspase 3 

and Caspase 8 activity to suppress TNF-induced apoptosis, or if it suppressing RIP1/3 kinases 
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induction of necroptosis, another form of programmed cell death. Staining of progenitor cells for 

the phosphorylated epitopes of these proteins would help to examine this. Additionally, co-

immunoprecipitations of progenitor cells would allow for the study of the proteins NLRP12 is 

interacting with in progenitor cells and monocyte.  

6.4 Rescue of platelet and myeloid populations after radiation-thermal combined injury 

 Platelets are one of the first cells to respond to a burn injury. They initiate coagulation to 

close any open wound and degranulate, releasing chemokines, chemoattractants, and cytokines to 

recruit activated monocytes, neutrophils, and T cells that begin the wound healing process and 

countervene any infectious insult (Levin & Egorihina, 2010; Takashima, 1997). However, after 

the initial injury, many soluble clotting factors and the systemic platelet compartment is severely 

diminished (Takashima, 1997). Additionally, the platelets that remain are hyper-reactive, 

displaying more degranulation for several days after the initial injury (Takashima, 1997). GM-

CSF is a glycoprotein growth factor that stimulates proliferation and survival of myeloid lineage 

progenitor cells and myeloid cells (Reeves, 2014). Previous studies have shown the beneficial 

impact that GM-CSF plays after a radiation injury alone with limit success in restoring 

myelopoiesis and peripheral restoration.  

Following two week of continuous treatment with GM-CSF, injured animals displayed 

increased peripheral innate populations of monocyte and neutrophils, as well as platelets. 

Moreover, these platelets showed higher ability to initiate coagulation, in addition to a reduction 

in degranulation. This increased cellularity correlated not only with an increase in myeloid cell 

progenitor expansion in the GM-CSF treated, injured animals compared to vehicle-treated, 

injured animals, but also with a decrease in the number of progenitors undergoing inflammation-
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induced apoptosis. Consequently, when challenged with a systemic infection, GM-CSF-treated, 

injured animals were better able to control spread of bacteria. 

6.5 Future directions: Investigate contribution of platelets to radiation-thermal combined 

injury 

 Using our model of radiation-thermal combined injury, regular administration of 

granulocyte-monocyte colony stimulating factor (GM-CSF) after RCI improves innate immune 

cell and platelet function compared to vehicle treated controls. Further understanding of the role 

GM-CSF plays as a cellular therapeutic after injury may help to provide for better care and 

patient outcomes. The impact GM-CSF is playing on specific progenitor populations, 

specifically on their proliferation, inflammatory-induction of apoptosis, and their ability to resist 

exhaustion through prolonged exposure to stimulatory cytokine could be examined by using a 

methylcellulose-based colony forming unit assay. Additionally, higher doses administered as a 

bolus or in a contracted regime may further improve cellular and infection outcomes.  

Further studies are necessary to elucidate platelet phenotypic improvements following 

GM-CSF including megakaryocyte phenotyping, platelet clotting and activity assays through 

aggregrometry. Moreover, the role GM-CSF plays in improving innate immune cell responses 

against pathogens requires further study. Other bacteria, fungal or viral challenges such as the 

Graham + Staphylococcus aureus, Aspergillus fumigatis, and Human/Murine Cytomegalovirus 

are all common within burn units and patients, and the use of GM-CSF may improve outcomes 

to these agents following a burn and radiation injury. 

6.6 Cellular mechanisms of increased susceptibility to early wound infection after thermal 

injury 

 The major cause of mortality of both burn and radiation-thermal combined injury patients 

is a wound or lung infection often acquired in their long-term hospital stay and attributed to their 

highly immunocompromised state (Roth & Hughes, 2015). Immediately following a burn injury, 
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the body enters burn shock – a highly specific type of shock in which hypovolemic shock, septic 

shock, and emotional shock – in which many organ systems are directly impact (Angus & Van 

der Poll, 2013; Roth & Hughes, 2015). In addition to the obvious dermatologic, cardiologic, and 

gastrointestinal complications that occur, the immune system initial enters into a profound pro-

inflammatory cytokine storm (Church et al., 2006).  

Despite this pro-inflammatory, which can be beneficial in response to an infectious insult, 

the destructive damage caused by incidental immune cell activation, however, elicits a poor 

response to infectious challenge, especially at the damaged wound bed (Church et al., 2006). 

This initially pro-inflammatory response dampens in the days after injury, but the 

immunocompromised state remains (Chastre & Fagon, 2007; Shorr et al., 2005). The wound 

healing process involves a tight coordination of growth factors, anti-inflammatory cytokines, and 

cell migration toward the injured site. In the first weeks after a burn, the overwhelming anti-

inflammatory, wound healing state hinders the innate and adaptive immune systems in mounting 

appropriate reactions to bacterial, fungal, and viral challenges(S. W. Jones et al., 2013). This is 

all in spite of CD4+ and CD8+ T cells showing enhanced allograft and xenograft rejection (B. 

Cairns et al., 2006).  

Utilizing our murine model of thermal injury, the initial innate immune responses to a 

wound infection were investigated. The most common Graham negative bacteria that burn 

patients, let alone hospital patients acquire taken all together, is the pathogen Pseudomonas 

aeruginosa. Twenty-four hours following the burn or sham procedures, mice were challenged 

with P. aeruginosa at the site of injury. Within 48 hours of infection, the bacteria had replicated 

to a high titer and spread resulting in a bacterial sepsis. Dendritic cells and CD8+ T cells after 

infection are necessary regulatory cells to promote an anti-bacterial response (D’Arpa et al., 
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2009), however these cells in burned mice exhibit hire levels of apoptosis, a form of 

programmed cell death, in addition to alterations in TLR expression also exhibited by other 

innate immune cells. 

As previously mentioned, the body response to traumatic injuries initially with a pro-

inflammatory response, burn shock. The hallmark cytokines that have been used as biomarkers 

to predict patients are IL-6 and IL-12. IL-6 is a pleiotropic cytokine/myokine that is vital for 

bactericidal activity and to lessen TNF and IL1 family responses (Pedersen & Fischer, 2007; 

Steensberg et al., 2003). IL-12 is produced by various immune cells – dendritic cells, 

neutrophils, macrophages, and B cells – that alters the transcriptional responses of immune cells 

to increase their production of TNF and IFNγ to in turn activate Natural Killer (NK) cells and T 

cells (T. Chen et al., 2007). In a wound healing response, the anti-inflammatory cytokine IL-10 

regulates production of growth factors for angiogenesis and tissue repair, but lessens the 

bactericidal capacity of many innate immune cells. Consequently, the balance of these two 

cytokines is vital to patient outcomes and responses to infection (S. W. Jones et al., 2013). The 

systemic IL-10/IL-12 axis was skewed in burn animals after infection, with elevated levels of IL-

10 and a concordant polarization of neutrophils into an anti-inflammatory phenotype (N2; IL-

10+ IL-12).  

The adenylate cyclase gene cyaB is a bacterial enzyme of P. aeruginosa that converts 

adenosine triphosphate (ATP) into cyclic adenosine monophosphate (cAMP) (Topal et al., 2012). 

cAMP acts as a secondary messenger to initiate an acute virulence program including 

downregulation of flagellin production, increased virulence factor production, and decreased 

biofilm formation. Infection with an attenuated isogenic mutant strain of P. aeruginosa, lacking 

the adenylate cyclase gene cyaB, (∆cyaB) was cleared better than the wildtype strain and was 
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associated with an increased pro-inflammatory neutrophil (N1; IL-10-IL-12+) response in burn 

mice. Moreover, administration of bacterial flagellin increases bacterial clearance of wild type 

PAK and neutrophils skewing toward an N1 phenotype. 

6.7 Future directions: characterization of neutrophil response early after burn injury 

Utilization of our model of thermal injury has shown that neutrophil polarity with regards 

to IL-12 and IL-10 is directly correlated with bacterial clearance. Further understanding of the 

molecular processes that govern neutrophil polarization is needed. Delineating the phagocytic 

capacity, oxidative burst potential, and innate immune signaling cascades of neutrophils after a 

burn injury could help to improve patient outcomes by providing interventions or treatments to 

directly modulate these changes.  

 We find that neutrophils, not macrophages, are the primary innate immune cell 

population that is polarized early after a thermal injury. Neutrophil activation during infection or 

following trauma can be regulated by the pattern recognition receptors (TLRs). TLR2, TLR4, 

and TLR5 ligation with lipoproteins, LPS, and bacterial flagellin, respectively, can rapidly 

induce a neutrophil burst to produce radical oxygen and nitrogen species (Ayala et al., 2002; 

Maung et al., 2005; Sabroe et al., 2003; Shen, de Almeida, Kang, Yao, & Chan, 2012). We find 

that early after a thermal injury and subsequent wound infection with WT P. aeruginosa, that 

neutrophils display decreased expression of TLR2, TLR4, and TLR5 compared to infected, sham 

controls. Moreover, following infection neutrophils shift toward an anti-inflammatory (N2: IL-

10+ IL-12+) phenotype that is detrimental to bacterial clearance. This decrease in TLR 

expression and resulting diminishment of bactericidal activity or hypo-responsiveness should be 

investigated further. 
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Similarly, as within the tumor microenvironment, the burn wound has high levels of TNF 

locally and drives a systemic increase as well. This TGFβ increase drives anti-inflammatory 

neutrophil responses. TGFβ drives naïve CD4+ T cells to differentiate in Th17 cells within the 

wound draining lymph nodes, it is therefore possible that TGFβ-receptors on neutrophils have 

alterations in p38 and ERK1/2 signal transduction (Amento & Beck, 2008). Use of sTβRII, a 

soluble TGFβ type II receptor, and a TGFβ broadly neutralizing antibody, could be used to 

determine TGFβ’s involvement in neutrophil polarization. Glucocorticoid release from the 

wound bed induces an anti-inflammatory macrophage phenotype that is beneficial to wound 

healing and induces lymphocyte apoptosis (Fukuzuka, Edwards, et al., 2000; Lang, Silvis, 

Nystrom, & Frost, 2001). It is therefore conceivable that burn-dependent glucocorticoids are 

driving an anti-inflammatory response within the neutrophil compartment. A possible means to 

test this would be by blocking the glucocorticoid receptor with RU-486. As previously 

mentioned a single treatment with flagellin after burn injury skewed the neutrophil response 

towards a pro-inflammatory (N1) phenotype. Flagellin is detected by both TLR5 and the NLRC4 

inflammasome. It is currently unclear which immune sensor is mediating the polarization of 

neutrophils towards a N1 response. Lastly, it is not known if flagellin is interactive directly with 

neutrophils or another cell type. In order to use flagellin as a viable therapeutic, further 

investigation is required to delineate how flagellin impacts neutrophil functions – i.e. 

phagocytosis, NET formation, degranulation – after burn injury and infection. 

6.8 Closing remarks 

 Collectively, these studies demonstrate the dynamic responses that the immune system 

has following a radiation-thermal combined injury or a thermal injury alone. The havoc that a 

prolonged immunocompromised state response wreaks on the body following a trauma is not 
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well understood. Moreover, the understanding of the complex interplay the immune system and 

hematopoietic system play in trying to regulate an appropriate balance between pro-

inflammatory, bacterial response and that of an anti-inflammatory, wound healing response is 

poorly understood.  

 Taken together, these studies describe that that cytokines that act to activate and drive 

responses peripherally can be detrimental to stable hematopoiesis. NLRP12 seems to act as a 

repressor of inflammation in this instance, but reducing the TNF-dependent apoptosis of 

hematopoietic progenitor cells. TLR signaling promotes an altered neutrophil inflammatory 

phenotype, resulting in poorer bactericidal activity. GM-CSF, which under hemostatic conditions 

induces survival and proliferation of progenitors, can be used to improve poor cellular recovery 

due to radio-ablation of immune cells. Additionally, flagellin administration can help to limit 

neutrophil anti-inflammatory polarization to help neutrophils mount an appropriate response to 

fight bacterial challenges. The work presented in this dissertation furthers our knowledge of the 

role innate immune cells in the responses to traumatic events that induce emergency 

myelopoiesis and increased susceptibilities to infection.   
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