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Abstract

Ronald Jerzy Jacak: Explicit Consideration of Solubility and Interaction Specificity in
Computational Protein Design

(Under the direction of Brian Kuhlman)

Most successes to date in computational protein design have relied on optimizing sequences

to fit well for a single structure. Multistate design represents a new approach to designing

proteins in which sequences are optimized for multiple contexts usually given by multiple

structures (states). In multistate design simulations, sequences that either stabilize the target

state or destabilize alternate competing states are selected. This dissertation describes the

application of multistate design to two problems in protein design: designing sequences for

solubility and increasing binding specificity in protein-protein interface design.

Previous studies with the modeling program Rosetta have shown that many designed

proteins have patches of hydrophobic surface area that are considerably larger than what is

seen in native proteins. These patches can lead to nonspecific association and aggregation. We

use a multistate design approach to address protein solubility by disfavoring the aggregated

state through the addition of a new solubility term to the Rosetta energy function. The score

term explicitly detects and penalizes the formation of hydrophobic patches during design.

Designing with this new score term results in proteins with naturally occurring frequencies of

hydrophobic amino acids on the surface without large hydrophobic patches.

Designing protein-protein interfaces with high affinity and specificity is still a challenge

for protein design algorithms. Multistate design is well-suited for addressing the problem of

specificity because it can explicitly disfavor off-target interactions. Using a new implementation

in Rosetta, multistate design is applied to the orthogonal interface design problem: redesign

a protein with many partners to interact with only one of the partners. We use the RalA

signaling network as the model system and make our design goal a redesigned RalA that

only interacts with the effector RalBP1. Multistate design is able to recover several of the
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known mutants important for effector binding and predicts many new mutations that alter

binding specificity. From in silico predictions, single-state design for Ral/RalBP1 by itself is

not sufficient to destabilize RalA’s interactions with its other effectors. Only multistate design

is able to destabilize both of the negative states and give the desired interaction specificity.
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Chapter 1

Introduction

1.1 Computational protein design

Simply stated, the goal of protein design is to find a sequence that will perform some desired

function. There are a myriad of functions for which protein design can be used. For example,

one may want to design a protein that binds to another protein, or to design an enzyme that

catalyzes a specific reaction. The reason protein design is difficult is that, even for a small

protein, the number of possible amino acid sequences is vast. Searching through this space

of all possible sequences to find the ones with the desired function is the problem of protein

design. In computational protein design, computer algorithms are used to search through this

space and to find sequences that hopefully have the desired function. Thus, the challenge for

computational protein design programs is to reliably find these sequences and to do so in a

reasonable amount of time.

Although the field of computational protein design is relatively young, it has already had

a large number of successes. In one of the first examples of computational protein design,

Desjarlais et al. (1) made redesigns of the core of phage 434 cro protein, with two of them

having native-like stabilities. Dahiyat and Mayo (2; 3) used their design algorithm to design

a zinc finger ββαmotif. Their design model displayed very good agreement with an NMR

solution structure. Nauli et al. (4) were able to stabilize and change the folding pathway of

protein G. In 2003, Kuhlman et al. (5) used computational protein design to make a completely

novel protein fold. Lippow et al. (6) were able to enhance the affinity of several antibodies



for their antigens beyond the in vivo maturation affinity. More recently, two studies reported

success in the design of novel enzymes: Rothlisberger et al. (7) were able to computationally

design an enzyme that catalyzes the Kemp elimination reaction and Jiang et al. (8) designed

retro-aldolase activity into a number of distinct proteins. A geometric hashing algorithm was

used to identify scaffolds suitable for the reaction, followed by design of the residues around

the substrate binding site to optimize the reaction.

A number of exciting results have also been obtained in computational protein interface

design, a subset of protein design, where the goal is to create novel or change existing protein-

protein interfaces. Reynolds et al. redesigned the β-lactamase inhibitor protein (BLIP) to

have higher affinity for SHV-1 β-lactamase over the wild type’s preferred target TEM-1 BETA-

lactamase(9). Sammond et al. used a variety of simulation schemes and experimental testing

to develop a protocol for increasing affinity at protein-protein interfaces(10). Liu et al. were

able to make a new erythropoietin receptor (EPOR) binding protein by grafting the key in-

teraction residues from erythropoietin onto rat PLCδ1-PH (pleckstrin homology domain of

phospholipase Cδ1) (11). This approach is only effective if a structure of a complex between

the target protein and another protein is known. Huang and Mayo were the first to design a de

novo protein interface(12). They redesigned the β1 domain of protein G to form a heterodimer

with an affinity of 300 µM. Recent work by Jha et al. improved upon this result by designing

a new p21-activated kinase 1 (PAK1) binding protein(13). Using a computational protocol

that combines rigid-body docking with design and minimization, they were able to redesign

human hyperplastic discs protein to bind to PAK1 with an affinity of 100 µM. Unfortunately,

high-resolution structures of both interfaces confirming the design model are not available.

Furthermore, in the realm of natural protein-protein interactions, both of these designed pro-

teins have relatively weak affinities. These results show that we still have a long way to go

when it comes to designing protein protein interfaces.

Another very common approach to designing proteins is through directed evolution. Tech-

niques such as phage display and yeast display have been used to design high-affinity inter-

actions for many target proteins and small molecules. Koide et al. obtained high-affinity

interactions between a fibronectin type III domain and maltose-binding protein using only the
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amino acids tyrosine and serine for interface positions(14). Using yeast cell surface display,

Boder et al. obtained single chain antibody fragments with femtomolar affinity for fluores-

cein, with dissociation kinetics even slower than that of biotin-streptavidin(15). Cochran et al.

engineered a 30-fold increase in affinity between human epidermal growth factor (EGF) and

the EGF receptor using yeast display(16). The success of directed evolution is limited by the

size of the library of variants that can be screened with a given technique. If all amino acids

are allowed at all positions, there are approximately 1013 possible sequences for a set of 10

residues. The maximum sized library that can be screened by phage display is 1012(17) with

1010 being more common. This limit means that at best 10% and in most cases only 0.1% of

all possible sequences are tested in the experiment. Some cell-free directed evolution meth-

ods such as ribosome display can screen 1013 − 1014 sequences(18), but even these methods

would come up short for larger design problems. The advantage computational protein design

has over directed evolution lies in being able to sample a much larger sequence space than

is available to even the best screening methods. Routine protein design simulations consider

1014 sequences with many orders of magnitude more possible(19). Another disadvantage to

directed evolution techniques is that none of them can tell you in what orientation the protein

is binding the target. Knowing where on the target and how the protein is binding may be

important for certain applications.

Despite the successes described above, many challenges remain for the field of protein

design. Although Kuhlman et al. was successful in designing a novel α/βprotein, the de novo

design of a helix bundle protein or a β-sheet protein has met with limited success. Summa et al.

reported the design of a heterotetrameric helical structure using a computational approach(20).

Their design is composed of four peptides which associate to form a tetramer, not one chain

which folds into a helix bundle. Kraemer-Pecore et al. designed sequences to fold into a

WW domain, a small β-sheet motif(21). A 1D NMR of their design had good overlap with

a wild-type WW domain. In neither case were high-resolution structures obtained for these

designs, leaving the design models unverified. The de novo design of protein interfaces has only

been slightly more successful. As described above, the affinities of computationally designed

interfaces are a long way off native protein-protein interaction affinities. Thus far, the best de
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novo interfaces have come about with the use of directed evolution(22). Computational protein

design, however, is very complementary to directed evolution. Combining protein design with

directed evolution in a hybrid approach has the potential to speed up the creation of new

protein-protein interfaces(23) and maybe will shed light on where protein design programs

fail. Another challenge for protein interface design lies in designing specific interactions. It is

not uncommon for designed proteins to interact with their target protein, but also to interact

with other proteins as strongly as or even better than with the target. Along the same

lines, designed proteins may bind their target, but not at the interface for which they were

designed. Multistate design approaches, described below, take a step toward addressing some

of these specificity challenges and hopefully will improve the success-rate of de novo protein

and protein-protein interface design.

1.2 Programs for CPD

The protein design program used in this work, Rosetta, was originally developed for protein

structure prediction(24; 25). Since that time, it has expanded and has demonstrated accom-

plishments in protein design(26; 27), protein-protein docking(28), ligand docking(29; 30; 31),

protein stability estimation(32), and enzyme design(7; 8). More recently, newer functions for

Rosetta have been emerging including RNA structure prediction(33; 34), crystal structure re-

finement (35; 36; 37), and NMR structure determination (38; 39). All computational protein

design programs have two components: a search algorithm which traverses sequence space

generating candidate sequences and a scoring, or energy, function which determines how well a

candidate sequence fits for the desired structure. Rosetta uses a Monte Carlo search algorithm

and a combination of physically based and knowledge based score terms as part of its energy

function. A complete description of the energy function and search algorithm, and how a

design simulation is performed with Rosetta is the subject of Chapter 2.

A number of other computational protein design programs have been developed. Of these

other protein design programs, ORBIT and EGAD are the most popular. ORBIT(40; 2; 3),

developed by Mayo and coworkers, uses a similar energy function but different search algorithm
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than Rosetta. Originally, ORBIT used the dead-end elimination (DEE) optimization method

for exploring sequence space. The advantage of DEE is that if it converges, the solution it

finds is the global minimum energy conformation(41). The algorithm works by eliminating

rotamers and rotamer pairs that have higher energy than other rotamers and thus would not

be part of the minimum energy conformation. Because it is an elimination algorithm and not

a deterministic one, it does not always converge. The DEE algorithm is also computationally

intensive. For these reasons, an alternative search algorithm called FASTER is more often used

in ORBIT(42). The FASTER algorithm always converges and is much faster than DEE(43).

The protein design program EGAD(44), developed by Handel and coworkers, has a more

physically-based energy function compared to Rosetta and uses either Monte Carlo or a genetic

algorithm to search sequence space. EGAD uses the OPLS-AA molecular mechanics force

field(45) for bonded interactions, generalized Born for electrostatics, and a solvent accessible

surface area-dependent solvation term(46). Details of EGAD can be found in reference (47).

1.3 Multistate protein design

Multistate design optimizes a sequence for multiple criteria by considering multiple states

simultaneously during the simulation. In single-state design, also called positive design, the

optimal sequence is the one that has the lowest energy for the desired structure. Some design

goals, however, are not amenable to single-state design. For example, designing a protein to

interact with the activate form of a target protein but not the inactive form would be difficult

with single-state design. In multistate design, the active and inactive conformations of the

target protein are modeled at the same time. During the simulation, substitutions that either

stabilize the interaction with the active form or destabilize the interaction with the inactive

form of the target protein are kept. This purposeful destabilization of undesired interactions in

multistate design is frequently called negative design. The use of multistate design to improve

the solubility of designed proteins and to improve the specificity of designed protein-protein

interactions is described below.
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1.3.1 Addressing solubility during protein design

It is widely accepted that protein cores are predominantly made up of hydrophobic residues

and that hydrophilic residues cover the surface. Large amounts of exposed hydrophobic surface

area tend to cause proteins to oligomerize as the free energy of desolvating those residues is

favorable (48). Exposed hydrophobic surface area can lead proteins to aggregate into non-

functional precipitate. Indeed, one study has shown a correlation between amount of exposed

hydrophobic surface area and rate of aggregation (49). However, small clusters of hydropho-

bic residues are commonly found on the surface of proteins (50) and surface hydrophobics

can contribute to protein stability(51; 52). Surface hydrophobic residues are also commonly

found at protein-protein interfaces(53). Clearly, proteins surfaces play an important role in

how proteins will behave in solution. The difficulty in protein and protein interface design is

in designing structures containing enough exposed hydrophobic surface area that the proteins

are stable but not so much that the proteins are insoluble.

Protein design programs have developed various methods for designing protein surfaces.

ORBIT restricts all surface positions to hydrophilic residues(40; 54). The design program

DESIGNER upweights hydrogen bond and electrostatics interaction energies at the surface

to favor the design of polar residues(55). Pokala and Handel experimented with using a hy-

drophobic SASA metric to filter designs made by their design program, EGAD, but found

that a simple reference state for surface residues was more effective for designing soluble

sequences(44). Rosetta implicitly designs sequences for solubility through the use of the refer-

ence energy term (56). Each amino acid type has an energy associated with it, the reference

state energy, which affects how often that residue type is used in a design run. The values for

each amino acid type were derived by iteratively performing design and adjusting the values

until redesigns had high sequence identity to the native proteins. The assumption is that,

since the native sequences are soluble, if Rosetta is trained to produce native-like sequences

the designs it makes should be soluble, too.

Despite the use of amino acid reference energies, Rosetta designed proteins have a tendency

to aggregate when expressed. It is true that the reference energies ensure that the surfaces of

designs have similar hydrophobic content as native proteins. However, in Rosetta redesigns,
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the surface hydrophobics tend to cluster together leading to large hydrophobic patches on the

surface. In a comparison of four proteins redesigned using EGAD and Rosetta, all of the re-

designs made with Rosetta had larger surface-exposed hydrophobic patches(44). Additionally,

several Rosetta designed proteins that have been expressed by members of the lab have failed

due to aggregation. In fact, one of the most common ways Rosetta fails is by identifying

sequences that, when tested experimentally, are insoluble.

We decided to apply a multistate design approach to address protein solubility during

design. If the folded and functional form of a protein is considered the target state, then

the aggregated form can be thought of as an alternative state. Negative design against this

alternate state should lead to more designed sequences adopting the target state. Instead of

trying to model the aggregated state as a separate structure for which energies would be made

unfavorable, we imposed negative design against this state by adding a solubility term to the

energy function. The development and application of this new, non-pairwise decomposable

score term against the aggregated state is described in chapter 3. The score term, named

hpatch, penalizes the exposure of large contiguous amounts of hydrophobic surface area. As

the desolvation of nonpolar surface area is very favorable energetically, we expect that proteins

designed with this new score will be less likely to oligomerize and/or aggregate when expressed.

1.3.2 Protein-protein interface specificity

Instead of creating novel protein-protein interfaces, many interface design studies have con-

centrated on changing interaction specificities. The Ca2+ binding protein calmodulin has been

used for a number of these studies. Calmodulin is a good test system because it interacts with

many proteins and structures of several calmodulin-peptide complexes have been solved(57).

In two separate studies, Shifman and coworkers (58; 59) redesigned calmodulin to bind pref-

erentially to a peptide construct of smooth muscle myosin light-chain kinase (smMLCK) over

several other calmodulin partners. Their best design showed a 155-fold increase in binding

specificity for smMLCK against a peptide designed to bind calmodulin(60). Taking into con-

sideration all of the calmodulin partners, however, they only achieved a 5-fold increase in

binding specificity. Only positive design for smMLCK was performed in their simulations.
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Yosef et al. (61) followed up on this by further redesigning calmodulin, in this case to have an

880-fold increase in specificity for calmodulin-dependent protein kinase (CaMKII) over another

calmodulin partner, calcineurin (CaN). The calmodulin/CaN interface is destabilized by three

orders of magnitude in the design, providing the large change in specificity. The authors did

not report the affinity of this design against the other calmodulin targets used by Shifman

et al. (59). Green and coworkers (62) used a less-automated approach that filters designs

based on the difference in energy between the cognate and non-cognate complexes. They were

able to design a calmodulin/M13 kinase pair that had affinity comparable to wild-type and

altered, but not ”fully orthogonal” specificity. The above studies demonstrate that recovering

wild-type binding affinity in redesigned complexes is feasible, but that new approaches for

obtaining specificity are needed.

To obtain higher amounts of specificity in redesigned interfaces, a computational ’second-

site suppressor’ strategy was developed by Kortemme et al. (63). Their protocol begins with

finding mutations on one partner that will eliminate binding, and then making mutations on the

other partner that will compensate and restore binding. Affinity is recovered by optimizing the

Rosetta predicted binding energy and specificity comes as a result of the disrupting mutation.

The strategy was used to redesign the interface between bacterial DNase colicin E7 and its

inhibitor protein Im7. Joachimiak et al. (64) extended this protocol by including rigid-body

translations of one of the bound proteins while evaluating mutations. Rigid-body translations

and rotations of Im7 helped identify a different set of mutants than those found previously.

In both studies, the final designed cognate pairs had affinity comparable to wild-type, but

specificity in only one direction.

Multistate design is well suited for the problem of designing specificity in protein-protein

interfaces because it expressly considers multiple structures simultaneously. Harbury and

coworkers (65) originally used the protocol to design sequences that would form coiled-coil

heterodimers, the target complex, and not homodimers, the alternative states. Bolon and

coworkers (66) were able to successfully design a specific, albeit less stable, heterodimer from

the wild-type homodimer SspB when using positive and negative design. Multistate design was

used by Ambroggio and Kuhlman (67) to design a sequence compatible with two different folds.
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The sequence changes conformations between a zinc finger-like fold and a trimeric coiled-coil

fold depending on whether Zn2+ is present in the solution. In their protocol sequences were

optimized for scoring well on both structures. Most recently, Grigoryan et al. (68) used a

multistate design approach to design specific peptide partners for 46 different human basic-

region leucine zipper (bZIP) transcription factors. A considerable amount of knowledge of

how bZIP coiled coils interact was included in their computational protocol. Nevertheless,

their results are a great example of the promise of negative design for altering protein-protein

interaction specificity.

We decided to use multistate design to redesign interactions in the small GTPase Ral

signaling network. To date, most of the work done with multistate design has been on coiled-

coils. The interfaces between Ral and its effectors are structurally more diverse than coiled

coils and make for a good next test for the Rosetta energy function and multistate design.

Chapter 4 describes a new implementation of multistate design in Rosetta and its application

to the design of a specific Ral-effector complex. In this case, multistate design is used in the

more intuitive sense. The off-target state structures are modeled explicitly and their energies

are purposefully made worse while trying to make the target state energy better. By using

a multistate design approach and modeling the off-target interactions as negative states, we

expect to recover the known and find new specificity-changing mutations in the Ral signaling

network.
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Chapter 2

Protein design with Rosetta

All protein design programs have two main components: a search algorithm which traverses the

space of all sequences and generates candidate sequences, and a scoring, or energy, function,

which determines how well a candidate sequence fits for the desired structure. The details of

both components, including how the energy function is trained, are provided below. The rest of

the chapter describes how a typical design simulation works and looks at some characteristics

of proteins designed with Rosetta.

2.1 Rosetta energy function

The scoring function in Rosetta contains a combination of terms that consider van der Waals

interactions, solvation, hydrogen bonding, electrostatics, and sterics (Figure 2.1). Some of the

terms are physically-based, such as the van der Waals energy, while the remaining terms are

knowledge-based, derived from statistics gathered from the Protein Data Bank (PDB) (1).

The expanded form of each energy term can be found in the Appendix. In a design run, all of

the energy terms are evaluated for every candidate sequence and their sum becomes the final

score for that sequence.

Eprotein = Wlj atrElj atr +Wlj repElj rep +WhbondEhbond +WsolvationEsolvation +WaaEaa+
WpairEpair +WramaErama +WrotamerErotamer −WreferenceEreference

Figure 2.1: Rosetta energy function. The current form of the Rosetta energy function is shown.



2.1.1 van der Waals energy

Rosetta uses the standard 12-6 Lennard-Jones potential to model van der Waals interactions.

The Lennard-Jones energy favors having atoms close to each other, but not so close that

they clash. This term is important for ensuring well-packed, hydrophobic cores in designed

proteins. In some applications, Rosetta uses a dampened Lennard-Jones potential, in which

the exponential component of the potential is linearized. This modification helps alleviate large

clashes that can results when designing with a fixed-backbone scaffold and discrete side-chain

conformations(2; 3). Well depths for the potential are taken from the CHARMM19 parameter

set(4; 5) and atom radii are taken from (6).

2.1.2 solvation energy

The solvation energy of a protein is the change in free energy observed when transferring the

protein from a vacuum to solvent water. Generally speaking, an accurate solvation energy

term favors the burial of hydrophobic surface area ensuring a mostly hydrophobic protein

core. While burial of polar surface area is penalized, favorable electrostatics interactions

can overcome the unfavorable energy of desolvating a polar group. The most precise way

of calculating solvation free energy is through molecular dynamics (MD) simulations using

explicit water. However, MD simulations take thousands of CPU hours for just one structure,

thereby making it impossible to do design with. Instead, all protein design program use implicit

solvent models, also called continuum models because they treat water as a continuous medium.

The first implicit solvent models estimated the solvation energy by combining the solvent-

accessible surface area (SASA) of every atom with a solvation parameter for that atom(7).

The atomic solvation parameters represent the amount of energy per unit area a given atom

type contributes to the free energy of solvation. More recently, continuum electrostatics models

such as Poisson-Boltzmann (PB) and Generalized Born (GB), an approximation to the PB

equation, have been incorporated into protein design programs(8; 9; 10). These methods

only model the electrostatic contribution to solvation free energy, and therefore sometimes are

augmented with a surface area term to model the nonpolar (or the solvent entropy) contribution

to solvation free energy(11). Both of these methods are still very demanding computationally.
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Furthermore, solving the PB equation analytically for proteins is not possible, so numerical

methods must be used to obtain solutions.

Instead of using one of the above implicit solvation models, Rosetta uses the Lazaridis-

Karplus, solvent-exclusion solvation model, also called EEF1(12). EEF1 estimates the solva-

tion free energy by taking the solvation free energy of a group i in a fully solvent-exposed

reference state and subtracting some energy to account for neighboring desolvating groups.

The total solvation free energy for the protein is then obtained by summing over all groups

in the protein. How much energy is subtracted from the reference state energy is determined

by looking at how much volume is excluded by each neighbor j around group i. The model

is parameterized so that the solvation energy of deeply buried groups is zero. The Lazaridis-

Karplus method for calculating solvation energy is very fast because it does not require solving

the Poisson-Boltzmann equation or calculation of the SASA.

2.1.3 electrostatics energy

Electrostatics are modeled in Rosetta using two energy terms: an orientation-dependent

hydrogen-bond potential(13) and a residue-pair potential(14). Hydrogen bonds are impor-

tant for the stabilization of secondary and tertiary structure in proteins and provide specificity

to protein-protein interactions. The pair energy term captures electrostatic interactions not

scored by the EEF1 solvation energy term. Both of these terms are knowledge-based terms

derived from statistics of structures deposited in the PDB. The hbond potential is a linear

combination of a distance-dependent energy term for the hydrogen-acceptor atom distance,

and three angular-dependent energy terms. The angular-dependent energy terms capture

preferences for the angle at the hydrogen bond, the angle at the acceptor atom, and the

acceptor/acceptor-base dihedral angle (for sp2 hybridized acceptors). The pair energy term is

based on the probability of seeing two amino acids close together after adjusting for the prob-

ability of seeing those two amino acids in the given environment. The pair residue potential

is only evaluated for polar residues.
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2.1.4 torsional energy

Bonded atom interactions in Rosetta are evaluated by the ramachandran torsional energy term

and a rotamer self-energy term. The ramachandran energy is the inverse log of the probability

of seeing specific φand ψbackbone angles given a particular amino acid and secondary structure

(helix, strand, or loop). The rotamer self-energy term measures the internal energy of a side

chain. More specifically, it measures the probability of an amino acid type in a specific rotamer

given specific φand ψbackbone torsion angles, adjusted for amino acid frequencies in the PDB.

Rosetta uses the rotamer probabilities derived by Dunbrack and Cohen(15).

2.1.5 reference energy

The reference energy term in the energy function serves as a pseudo unfolded state energy

and as a way to bias surface amino acid composition. The reference energies were originally

parameterized to reproduce native protein sequences(16). The reference energies, which favor

the placement of polar residues, offset the solvation energy term which, in general, favors the

design of hydrophobic residues.

2.2 Search algorithm

All protein design programs use a search function of some sort. A search function is necessary,

as exhaustively testing all possible sequences for a given fold is computationally prohibitive.

Search functions fall into two categories: stochastic and deterministic. Stochastic search func-

tions include Monte Carlo (MC) and genetic algorithms, while deterministic search algorithms

include dead-end elimination (DEE) and self-consistent mean field algorithms. There is a

tradeoff between speed and finding the optimal solution that has to be considered when se-

lecting a search algorithm(17). MC is significantly faster than the DEE method, but does

not guarantee finding the global minimum. If it converges, DEE is guaranteed to find the

global minimum(18). Other search algorithms including branch-and-bound(19), integer linear

programming(20), and tree decomposition methods (21) have been described.

Rosetta uses a Metropolis Monte Carlo(22) simulated annealing(23) search algorithm to
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explore sequence space. During a simulation, a random position is selected for substitution.

The change in energy for that substitution is determined using the energy function described

above. Changes are accepted or rejected based on the Metropolis criterion. If the change

in energy is favorable, the substitution is accepted. If the change in energy is unfavorable,

it is accepted with probability exp(∆E/kT) where E is the energy, T is the temperature,

and k is Boltzmann’s constant. The Metropolis condition ensures that more time is spent

evaluating low-energy states. To sample a larger amount of conformation space, a simulated

annealing approach is used in conjunction with MC. In simulated annealing, the temperature

used for the Metropolis criterion is started at a high value, thereby increasing the probability

with which substitutions that increase the energy are accepted. During the optimization,

the temperature is gradually decreased, decreasing the probability of accepting unfavorable

substitutions. At the end of simulated annealing, only substitutions which lower the energy

are accepted. By starting off with high temperatures, simulated annealing algorithms are less

likely to get trapped in local minima.

2.3 Fixed-backbone design

Protein design simulations take as input a set of backbone coordinates and output a structure

with a sequence that has low energy for that structure. A typical design simulation proceeds

as follows. A PDB file for an existing protein structure is given to Rosetta with a specification

of which residues should be allowed to vary. Rosetta removes all of the side chains from the

input structure and builds conformations, or rotamers, of all possible side chains for every

designable position. By default, all positions in the input structure are allowed to change.

Disallowing certain positions from being changed (e.g. active-site residues in an enzyme) may

be desirable for some applications. The Dunbrack backbone-dependent rotamer library(24),

and ideal bond lengths and angles are used when making rotamers. Using a rotamer library to

create side chain conformations significantly reduces the size of conformation space that needs

to be searched. The simulation starts by first calculating energies between all pairs of rotamers

using the energy function described above. Most of the time in a design simulation is spent
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in calculating these rotamer pair energies (RPE), which are stored in a large table in memory.

After calculation of the RPEs, side chain optimization, or packing, can start. Using the table of

RPEs and the search algorithm described above, Rosetta simultaneously optimizes the identity

and conformation of all positions of the backbone. Millions of substitutions are considered and

evaluated with the Metropolis criterion. When the simulated annealing finishes, the side chain

assignment that had the lowest energy is recovered and that structure is output.

Native sequence recovery represents one way to train and/or test protein design energy

functions. In these tests, Rosetta is used to redesign an existing protein and how much of the

native sequence is recovered is calculated. Table 2.1 shows the native sequence recovery broken

down by amino acid type for proteins redesigned with the current Rosetta energy function.

Rosetta redesigned proteins have 49% core and 33% overall identity to the native sequences.

Core sequence recovery is higher than surface recovery because neighboring residues in the core

only allow for certain amino acid types to fit. The Rosetta energy function has been trained

to reproduce native protein sequences. Thus, the sequence recoveries obtained by Rosetta

are high compared to other protein design programs. Although the recoveries are good, the

amino acid composition of the designed proteins differs somewhat from the composition seen

in native proteins. For example, Rosetta designs twice as many tryptophanes and less than

half as many prolines as the number present in native proteins. A measure of this difference

between the two distributions will be given later.

2.4 Energy function weight optimization

The weights on the terms in the Rosetta energy function can be optimized to create energy

functions that perform better in certain applications. For example, there is considerable in-

terest in obtaining an energy function that can reliably discriminate the native structure of

a protein from thousands of low energy decoys. Such an energy function would be extremely

useful in ab initio structure prediction. Alternatively, one may want an energy function that

can correctly predict the experimental change in free energy for mutations to a protein. The

weights currently in Rosetta were parameterized so that redesigned proteins would reproduce
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Residue No.
correct
core

No.
native
core

No.
designed
core

No.
correct/
No.
native
core

No.
correct

No.
native

No.
de-
signed

No.
cor-
rect/
No.
native

No.
correct
surface

No.
native
surface

No.
de-
signed
surface

No.
cor-
rect/
No.
native
surface

LEU 66 122 92 0.54 180 378 454 0.48 18 54 174 0.33
GLY 56 69 66 0.81 302 400 368 0.75 164 210 205 0.78
ASP 10 20 29 0.5 80 268 354 0.3 49 167 221 0.29
SER 20 37 106 0.54 79 258 348 0.31 25 119 128 0.21
GLU 2 7 16 0.29 54 289 308 0.19 31 180 158 0.17
PHE 37 60 69 0.62 98 193 302 0.51 6 23 68 0.26
LYS 2 11 9 0.18 62 325 285 0.19 30 193 148 0.16
ARG 4 14 20 0.29 37 185 262 0.2 10 85 76 0.12
ALA 57 103 94 0.55 118 385 259 0.31 9 144 30 0.06
ILE 41 83 70 0.49 105 242 231 0.43 7 33 39 0.21
THR 19 41 62 0.46 61 291 225 0.21 30 145 110 0.21
TYR 9 40 27 0.22 39 158 224 0.25 6 23 98 0.26
VAL 47 98 67 0.48 107 308 194 0.35 8 60 37 0.13
HIS 10 18 41 0.56 30 118 176 0.25 5 37 32 0.14
GLN 3 17 6 0.18 18 186 172 0.1 10 94 110 0.11
ASN 3 14 11 0.21 33 206 158 0.16 20 110 120 0.18
TRP 10 23 21 0.43 32 76 145 0.42 4 12 56 0.33
PRO 6 18 7 0.33 61 229 77 0.27 29 144 40 0.2
MET 10 31 25 0.32 20 90 70 0.22 1 20 5 0.05
CYS 0 12 0 0 0 27 0 0 0 2 0 0
Total 412 838 0.492 1516 4612 0.329 462 1855 0.249

Table 2.1: Native sequence recovery of Rosetta redesigns. Native sequence recoveries by amino
acid type are reported for a set of 32 proteins redesigned with Rosetta.

native protein sequences. This result was obtained by maximizing the Boltzmann probability

of the native amino acid over all positions in a set of 30 proteins. Sharabi et al. (25) recently

described an optimized energy function for protein-protein interface design.

A new, flexible, weight-fitting protocol was recently implemented in Rosetta (Andrew

Leaver-Fay, in preparation). The protocol works by searching the space of all weights for a

combination that maximizes the fitness of the selected objective function(s). For example,

the protocol can be used to train weights for highest native sequence recovery. In this case,

the protocol starts by calculating the unweighted energies of every possible rotamer at every

position in a set of proteins. The positions surrounding the one being considered are held fixed

at their native amino acid. The dot product of a candidate set of weights with the unweighted

energies is used to obtain a fitness. In the case of native sequence recovery, the fitness is
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calculated according to the equation below:

Fitness =
�

proteins

�

positions

− ln

�
e−E(aanat)

�
aa,i e

−E(aai)

�

where E(aanat) is the energy of the native amino acid at a position and the denominator is

the partition function for all 20 amino acids at that position. Instead of multiplying many

small probabilities, the sum of the inverse log of the probabilities is minimized. If the protocol

is instead used to optimize for predicting changes in free energy, the fitness is the sum of

squared differences between the predicted and experimental ∆∆G for all mutants. Candidate

weight sets are obtained by using particle swarm optimization (PSO) to search weight space.

The best weight set found by PSO in each round is minimized using conjugate gradient-based

minimization. If optimizing for native sequence recovery, the minimized weight set is then

used to do full protein redesigns. This complete redesign step ensures that weights optimized

in a fixed environment are still good for whole protein redesigns. More details of the protocol

are provided in the Methods section of chapter 3.

Added later to the weight fitting protocol was the ability to optimize the weights so that

redesigns had native-like amino acid (AA) composition. Unlike native amino acid probability

or ∆∆G prediction, energy function weights cannot be optimized directly for AA composition.

Instead, AA composition is optimized for after the complete redesign step of the protocol,

by adjusting the reference energies up or down depending on whether that residue type is

designed too much or too little. The cross entropy, a measure of the difference between two

distributions, between the designed and native amino acid distributions was used to determine

if AA composition was becoming more native-like. Only weight sets that increased the overall

sequence recovery and decreased the cross entropy were accepted.

The ideal energy function for protein design would produce native-like designed proteins

and be accurate in predicting changes in stability for point mutants. Using the weight-fitting

protocol described above, a great amount of effort was spent in optimizing weights and different

energy term combinations during the development of the score term described in chapter 3.

Energy function optimization is a very hard problem because of the vast size of weight space,
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the number of options present in Rosetta, and the variety of metrics which must be examined

for each energy function. The first generations of weight optimization runs trained for overall

native sequence recovery. The only metrics considered were core and overall native sequence

recovery. Shortly later, the goal was changed to optimizing weights to do well at sequence

recovery and ∆∆G prediction. This added the ∆∆G correlation coefficient to the list of metrics

that had to be considered for a set of weights. Many different options in Rosetta were tested

to see what effect they had on the metrics: extra rotamers at surface positions, extra rotamers

throughout, multiple packing runs, inclusion of crystal structure rotamers, and modifications

to the pair energy term and solvation term. Over time, the list of metrics expanded to include

total hydrophobic surface area, percent of residues on the surface that were hydrophobic, and

AA composition. In the end, because of difficulties in accurately predicting ∆∆G, energy

function weights were only optimized for native sequence recovery and AA composition.

Training weights to accurately predict ∆∆G proved considerably more difficult than ex-

pected. We found that if weights were trained to reproduce changes in stability, designing

proteins with this energy function resulted in proteins that were composed almost entirely of

hydrophobic residues. This result makes sense because the folded state is almost always desol-

vated to some extent compared to the unfolded state. Because solvation energy represents one

of the biggest contributions to total energy, hydrophobic residues are favored on the surface

because of the favorable energy of desolvation. We also found many mutations were predicted

to be significantly more destabilizing than they were in reality because of high Lennard Jones

repulsive energies. This result made us realize that predicting ∆∆G depends greatly on how

the mutant structures are created. In fact, a study describing different methods of creating

mutant structures and what effect that had on ∆∆G prediction(26) was published around the

same time we were experimenting with ∆∆G prediction. The authors found that allowing

more conformational freedom to relax away clashes during mutant structure creation greatly

improves the correlations that are obtained. Instead of trying to optimize weights for ∆∆G

prediction on a set of poorly made mutant structures, we elected to optimize energy functions

only for native sequence recovery and AA composition and then test ∆∆G prediction accuracy

using the protocol described by Kellogg et al.(26).
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Chapter 3

Computational Protein Design with
Explicit Consideration of Surface

Hydrophobic Patches

3.1 Abstract

De novo protein design requires the identification of amino acid sequences that favor the

target folded conformation and are soluble in water. One strategy for promoting solubility

is to disallow hydrophobic residues on the protein surface during design. However, naturally

occurring proteins often have hydrophobic amino acids on their surface that contribute to

protein stability via the partial burial of hydrophobic surface area or play a key role in the

formation of protein-protein interactions. A less restrictive approach for surface design that

is used by the modeling program Rosetta is to parameterize the energy function so that the

number of hydrophobic amino acids designed on the protein surface is similar to what is

observed in naturally occurring monomeric proteins. Previous studies with Rosetta have shown

that this limits surface hydrophobics to the naturally occurring frequency (∼28%) but that it

does not prevent the formation of hydrophobic patches that are considerably larger than those

observed in naturally occurring proteins. Here, we describe a new score term that explicitly

detects and penalizes the formation of hydrophobic patches during computational protein

design. With the new term we are able to design protein surfaces that include hydrophobic

amino acids at naturally occurring frequencies, but do not have large hydrophobic patches. By

adjusting the strength of the new score term the emphasis of surface redesigns can be switched



between maintaining solubility and maximizing folding free energy.

3.2 Introduction

In addition to adopting a stable folded conformation, many proteins must be soluble in water

in order to perform their biological function. This requirement constrains protein evolution, as

sequences that are optimized only for folding free energy may not be optimized for solubility,

and vice a versa (1). Folding free energy is equal to the difference in free energy of the folded

and unfolded states. In the unfolded state proteins adopt an ensemble of conformations that

are less compact and more solvated than folded protein. In the folded state proteins adopt a

unique set of structures with desolvated cores. The desolvation of hydrophobic amino acids is

a primary driving force for protein folding, and increasing the difference in buried hydrophobic

surface area between the folded and unfolded state will often stabilize proteins (2; 3). Even

partially buried hydrophobic amino acids on the surface of a protein can dramatically boost

protein stability. For example, introducing a cluster of four hydrophobic amino acids on to

the surface of procarboxypeptidase A2 stabilizes the protein by more than 5 kcal/mol (4).

Protein solubility is determined by many factors, including net electrostatic charge(5),

folding free energy, and the amount of exposed hydrophobic surface area in the folded state. A

comparison of the surfaces of proteins that are monomeric and water-soluble with the surfaces

of proteins that form obligate oligomers provides an indication of what surface features prevent

association. The most striking difference between the two sets of proteins is the amount of ex-

posed hydrophobic surface area. Jones and Thornton(6) found that the interfaces of oligomeric

proteins are more hydrophobic than the interfaces of other protein-protein complexes and of

non-interface surfaces. In the set of oligomeric proteins examined by Janin et al.(7), the aver-

age amount of non-polar surface area at oligomer interfaces is 8% greater than the amount seen

in monomeric protein surfaces. In agreement with these findings, Chiti et al.(8) found that the

rate of aggregation of proteins and peptides increases as the amount of exposed hydrophobic

surface area increases. Because exposed hydrophobic surface area can be so detrimental to

protein fitness, computer-based methods for protein design must take this in to account when
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designing sequences for the surfaces of proteins.

Protein design programs contain two key components, a score function for evaluating the

fitness of an amino acid sequence for a given target structure and an optimization procedure

for identifying low scoring sequences. Several studies have shown that if the score function is

constructed to model only folding free energy then the surfaces of the designed proteins do

not resemble the surfaces of naturally occurring proteins (9; 10). In these cases, structural

models of the unfolded and folded state are used to calculate the free energy difference between

the folded and unfolded state. Pokala and Handel observed protein surfaces dominated by

hydrophobic amino acids because their model emphasizes the importance of the hydrophobic

effect in driving protein folding and surface residues were predicted to bury more hydrophobic

surface area in the folded state than in the unfolded state. This problem can be alleviated

by explicitly disallowing hydrophobic amino acids at all surface positions(11; 12), but this

solution is not ideal because partially exposed hydrophobics can contribute significantly to

protein stability and surface hydrophobic amino acids are often important for protein function.

A more permissive approach is to allow surface hydrophobics, but modify the score function

so that it disfavors surfaces that are likely to promote aggregation.

A variety of scoring schemes have previously been used to control the placement of sur-

face hydrophobic amino acids in design simulations(10; 12; 13; 14; 15). In many cases, the

end result is that the score function represents more than folding free energy. This outcome

can be achieved by including separate scoring terms for aggregation propensity and folding

energy, or by creating a single score that implicitly reflects both criteria. Explicit scoring

terms that have been used include penalties for exposed hydrophobic surface area(13; 14) and

negative design against sequences with favorable energy in a low dielectric environment(16).

More implicit strategies include constraining amino acid composition to match naturally oc-

curring proteins(17; 18; 19) and up weighting the strength of hydrogen bonds and electrostatic

interactions on protein surfaces(15).

The computer program we use for protein design studies, Rosetta, produces a single score

that depends on both protein stability and aggregation propensity. Instead of parameterizing

the Rosetta score function to predict folding free energies, Rosetta was trained to recapitulate
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naturally occurring sequences when performing design simulations with naturally occurring

protein backbones. Critical to this recapitulation is the inclusion of reference energies for

each amino acid type. These energies are subtracted from the total energy of the protein,

and their main function is to control amino acid composition during design simulations. By

setting the reference values to favor the correct ratio of polar and hydrophobic amino acids in

protein sequences, the design of polar protein surfaces is implicitly favored. However, we have

observed that in many cases the Rosetta scoring function fails to prevent large hydrophobic

clusters on the surface of proteins, even though the overall amino acid composition of the

protein surface is not significantly different from other soluble proteins. This result reflects

the favorable energetics of placing similar types of amino acids near each other. Pokala and

Handel(10) used an alternative strategy for setting amino acid reference values. They used

their force field to calculate the average energy of each amino acid type on the surface for

a large set of proteins and used these values as reference values. This strategy reduced the

formation of hydrophobic clusters, but it also resulted in an underrepresentation of leucine,

isoleucine, valine, phenylalanine and tyrosine on protein surfaces.

Here we describe the implementation of a new, non-pairwise-decomposable scoring term

(called hpatch) that penalizes the formation of hydrophobic patches on the surfaces of de-

signed proteins. Unlike previously described scoring terms that disfavor aggregation, the new

term explicitly disfavors large patches, rather than the total amount of exposed hydropho-

bic surface area. We find that redesigning proteins with the hpatch score term reduces the

size of hydrophobic patches to levels seen in native proteins, but preserves a natural ratio of

hydrophobic and polar amino acids on the surface. We parameterize a new Rosetta scoring

function using the hpatch score and assess its performance on native sequence recovery and

ability to predict changes in free energy for characterized protein mutants. We find that we

are able to create a single score function that performs well in sequence recovery tests when

the hpatch score is included, and additionally performs well in predicting changes in protein

stability if the weight on the hpatch score is set to zero.
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3.3 Methods

3.3.1 Rosetta energy function

Rosetta uses a Monte Carlo search algorithm with simulated annealing to find low scoring se-

quences for a target backbone(19; 20; 21; 22). The energy function uses the 12-6 Lennard-Jones

potential, the Lazardis-Karplus implicit solvation model(23), a statistics-based electrostatics

term(24), an explicit hydrogen-bond potential(25), a side-chain rotamer preference term, a

knowledge-based backbone torsional term, and reference energies that are assigned to each

amino acid type. Side chain conformations are restricted to those found in the Dunbrack

backbone-dependent rotamer library(26).

3.3.2 Monomer protein set

A monomer protein set was assembled from structures available in the PDB using metadata

from the EBI macromolecule database PISA(27) and the PDB header. First, all structures

listed as monomers in PISA with the keyword Protein were downloaded. This query resulted in

2489 structures. All PDB files which contained the words dimer or any higher-order oligomer

were removed, leaving ∼2300 structures. ∼570 of these were definite monomers with a line

indicating the biological unit to be monomeric in the PDB header. The remaining structures

had nothing to indicate oligomerization, and were assumed to be monomeric. Additional

monomeric structures were downloaded from the RCSB(28) using the Advanced Search page.

The PDB files for all single-chain, protein-containing structures determined using X-ray crys-

tallography, having <1.8Åresolution and <50% sequence identity were downloaded and those

containing monomer as the biological unit were saved. This query resulted in 285 structures,

approximately 50 of which were also contained in the previous set. The two sets of ∼2500

structures were then clustered with CD-HIT(29), using a sequence identity threshold of 40%.

CD-HIT performs sequence-based clustering using a greedy incremental algorithm, making it

much faster than doing all-by-all comparisons using BLAST. The algorithm generated 1300

clusters, of which the representative PDB from each cluster was used for statistics.

A subset of the monomer protein set was used for energy function weight optimization.
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The 64 smallest structures in the set of structures returned by the RCSB search page were

randomly assigned into training and testing sets of equal size. The PDB codes for these

structures are listed in the supplementary material (Table S3.1).

3.3.3 Development of a score term that disfavors hydrophobic patches

Our goal was to create a score term that favors protein surfaces with distributions of hydropho-

bic amino acids similar to the distributions observed in naturally occurring soluble proteins.

Two different implementations of the hpatch score, hpatch-fast and hpatch-SASA, were devel-

oped and tested. Both versions are knowledge-based and are derived from the typical amounts

of hydrophobic surface area exposed on protein surfaces. Statistics on hydrophobic accessible

surface area were calculated from the set of monomeric structures described above.

The hpatch-fast score assigns all surface residues a score that depends on the amount of

exposed hydrophobic surface area (hSASA) in their vicinity. Precalculated average hSASA

values that depend on amino acid type and degree of burial (as measured by number of

neighbors) are used to rapidly estimate the hSASA for each residue. To derive these average

values, the exact amount of hSASA exposed by every residue with 24 or fewer neighbors (Cβ

within 10 Å) in the monomer protein set was calculated using Rosetta. The areas were grouped

by residue type and number of neighbors and averaged (Table S3.2). Five different levels of

burial were considered: residues with 10 or fewer neighbors, 11 to 13 neighbors, 14 to 16

neighbors, 17 to 20 neighbors, and 21 to 24 neighbors. Using these precalculated values avoids

the slow calculation of exact SASA, making optimization of the score during a design run fast.

The hpatch-fast score for a given position depends on two things: the total amount of

hSASA surrounding that position and the number of neighbors it has (Cβ distance), both

within 10 Å. To parameterize the score, the hSASA around every surface residue in the set

of naturally occurring monomeric structures was calculated using Rosetta. Residues were

considered surface residues if they had 20 neighbors or less. Using the precalculated average

values for the hydrophobic area exposed by each residue type, the sum of the amount of

hydrophobic area exposed by a given surface residue and all of its neighbors within 10 Å,

along with that residues number of neighbors, was saved. Neighboring residues with greater
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than 24 neighbors were assumed to have zero exposed hydrophobic surface area. All of the

hSASA values were then grouped by number of neighbors. The distribution of areas was

binned into increments of 25 Å2 and the inverse log of the probabilities was taken to create

a score that favors native-like amounts of hydrophobic area surrounding residues on protein

surfaces (Figure S3.1). The score values are reported in the supplementary material (Table

S3.3). The score is defined out to a maximum area size of 1100 Å2. Areas of size greater than

1100 Å2 are given a score of 25.

The hpatch-SASA score uses the exact SASA for each atom in the protein and, instead

of assigning a score to each surface residue, explicit patches that can span many residues are

detected and given a score. During rotamer optimization, the SASA of the protein is kept

up-to-date in the same manner as in Leaver-Fay et al.(30). Briefly, a set of dots is distributed

evenly on a sphere centered on an atom, where the radius of the sphere is the radius of the

atom plus the probe radius. Each dot keeps track of the number of other residues that ”cover”

it, determined by using distance and angle calculations and precalculated masks that specify

which dots are covered given two spheres(31). When a rotamer substitution is considered, only

the dot coverage counts for atoms which have overlapping SASA radii with either the previous

rotamer or the new rotamer are updated. The SASA of each atom is determined by counting

the number of dots not covered by any other atoms.

The hpatch-SASA score also uses a more rigorous method for finding hydrophobic patches,

similar to that of the program QUILT(32). After the SASA computation has completed, all

hydrophobic atoms with nonzero SASA are assigned as nodes in a graph. An edge is placed

between two nodes in this graph if their corresponding atoms have exposed overlap. The

requirements for being considered exposed overlap are given in the following section. The

union-find algorithm(33) is run on the graph to find all of its connected components. Each

connected component represents a hydrophobic patch on the surface of the protein.

Statistics on the patches found in native proteins were calculated to derive the function

used for the hpatch-SASA score. A distribution of patch size for all patches with four or more

atoms in the set of monomeric structures is shown in Figure S3.2. Using the inverse log of the

probabilities does not provide a score bonus for splitting a large patch into two smaller sized
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patches as the score is mostly linear with a slope close to 0.5. Therefore, various exponential

curves were plotted with the inverse log probabilities and score = 0.4 ∗ ((patch area/50)− 1)2

was selected for the score because it greatly penalizes large patches without overpenalizing

smaller, native-sized patches. The score values were adjusted so that patches with an area of

50 Å2 or less receive a score of 0.0 (Table S3.4). During scoring, patch areas are binned to the

nearest 50 Å2. Patches of size 900 Å2 or greater are assigned a score of 100.

Hydrogen atoms are excluded from both SASA calculations and patch identification. The

van der Waals radii used here were taken from Chothia et al.(34) (Table S3.5). For comparison,

hydrophobic patch areas were also calculated using QUILT(32). All QUILT runs used the

maximum number of dots per atom, 252, the recover option -R, and a polar expansion radius

of 1.4.

Figure 3.1: Overview of how the hpatch-fast score updates in response to a sequence substi-
tution. Consider a substitution from tyrosine to asparagine at position (node) 6. Each of the
neighbors within 10 Å(solid circle) of node 6 - nodes 2, 5, 7, 9 and 10 (indicated by arrows) -
updates its record of the total amount of hydrophobic accessible surface area (hASA) within
10 Åassuming the substitution is accepted. The sum of the change in the hpatch-fast score
at node 6 and all of the neighboring nodes becomes the hpatch-fast score change for the sub-
stitution. The table shows how the hASA and hpatch-fast score change at all of the nodes.
Dashed circle, neighbors within 10 Åof node 2.

3.3.4 Implementation of the hpatch scores as non-pairwise decomposable

terms in Rosetta

As patch identification is not pairwise decomposable, the hpatch scores were implemented

differently than the other score terms in the Rosetta energy function. Their implementation
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closely follows that of the SASApack score described in Leaver-Fay et al.(30). During a design

simulation using the hpatch-fast score, each surface-exposed residue keeps track of the sum

of exposed hydrophobic area within 10 Å. An amino acid substitution at an exposed residue

causes that residue and all its neighboring residues to update their hSASA sums (Fig. 3.1).

The updated hSASA is used to get the new hpatch-fast score for that residue. The hpatch-fast

score of the protein is the sum of the hpatch-fast score of all residues. For the hpatch-SASA

score, two sets of calculations are performed after every amino acid or rotamer substitution

(Fig. 3.2). First, the SASA values of the residues near the changing residue are updated.

Then, all of the hydrophobic patches for the current rotamer assignment are found using the

union-find algorithm. The sum of the scores of all patches with four or more atoms becomes

the hpatch-SASA energy for that state assignment.

Figure 3.2: Overview of how the hpatch-SASA score finds and scores hydrophobic patches.
Consider a protein being designed (A). During simulated annealing, after each substitution all
nonpolar atoms with nonzero SASA (B) are assigned to nodes in a graph (C). The union-find
algorithm is run on this graph, which places edges between nodes whose atoms have exposed
overlap. The output of the union-find algorithm is the set of all connected components in the
input graph (D), which represents all of the hydrophobic patches on the protein. The largest
hydrophobic patch on the input protein is shown in green in (E), with the atom radii expanded
to their SASA radii in (F).

Two additional considerations are necessary with the hpatch-SASA score to prevent as-

signing all of the hydrophobic surface area to one large patch. One way an overly large patch
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A B

Figure 3.3: Checking for exposed overlap. A) Dots on the surface of PHE4 from ubiquitin
(PDB id: 1UBQ). The white dots are buried, all other dots are exposed. The neighbors of this
PHE, which bury most of its surface, are not shown. Atoms CZ (yellow) and CE1 (green) have
exposed overlap according to the criteria used in this paper. The white dots and dark-yellow
dots represent the set of dots on CZ adjacent to the plane of intersection with CE1. The dark
green dots on the surface of CE1 are both exposed and adjacent to the intersection with CZ.
Because both the dark-yellow set and the dark-green set are non-empty, atoms CZ and CE1
are said to have exposed overlap. B) If the adjacency condition for considering two atoms as
part of the same patch were merely sphere overlap, instead of exposed overlap, then the two
dimensional atoms A and B would be considered part of the same patch. Intuitively, this is
mistaken, since the nitrogen (blue) and oxygen (red) atoms pictured here disrupt the patches
from joining. A and B overlap, but the region where they overlap is not exposed to solvent.

can arise is if narrow strips of hydrophobic surface area connect large regions of hydrophobic

surface area. As was done by Lijnzaad et al.(32) to avoid this situation, the polar atom SASA

radii are expanded by 1.4 Å. Expanding the polar atom radii reduces the number of thin strips

of hydrophobic area, delimiting the surface into separate hydrophobic patches. The other way

in which an overly large patch can arise is if atom-pair adjacency is considered by sphere-

overlap alone. Instead, the overlap region must be exposed for two atoms to be considered to

contribute to the same patch. Two overlapping atoms, a and b, are defined to have exposed

overlap if there exists an exposed dot on a adjacent to the plane of intersection with atom b,

and if there exists an exposed dot on the surface of b adjacent to the plane of intersection

with atom a (Figure 3.3A). Computing whether any dot on atom a is adjacent to the plane of

intersection with atom b is logically a boolean AND of the bit-vector representing a’s exposed

dots and the pre-computed overlap mask(31) for b’s overlap on a taken at distance max(0, r
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- τ), where r is the actual distance between a and b, and τ is the distance threshold limiting

a dot’s distance from the plane of intersection to be considered adjacent to the intersection.

In this work, we use a cutoff distance τ= 0.8Å. Not checking for exposed overlap between two

atoms can result in overlapping atoms with noncontiguous surface area being assigned to the

same connected component (Figure 3.3B). With this approach, it is possible that two atoms

are placed into the same patch even though their accessible hydrophobic surface area is not

contiguous. This result would occur when the exposed dots in each ring are on opposite sides

of the plane of intersection between the two atoms. We assume this case happens rarely and

do not check for it during simulations.

As with the SASApack score, to speed up design simulations, hpatch score evaluations are

procrastinated if the change in energy of the pairwise-decomposable terms for a rotamer sub-

stitution exceeds some threshold value. If the substitution is later accepted by the Metropolis

criterion, the hpatch calculations are performed. This optimization is particularly helpful at

the end of simulated annealing when most rotamer substitutions are rejected.

3.3.5 Explicit unfolded state energy term

An explicit unfolded state energy was used in place of the reference energies for some of the

simulations. The unfolded state energy was calculated using a peptide-based model, which

uses the energy of amino acids in fragments of structure to approximate the unfolded state

energy. The average energy of each amino acid in the unfolded state was obtained by excising

fragments from a set of PDB files and calculating the energy of the central residue. The set of

PDB files used was the Dunbrack non-redundant subset of crystal structures with resolution

≤2.0 Å and R-factor ≤0.25 assembled in June 2005(35). Fragments of size 13 were randomly

selected from each structure and repacked. Additional rotamers were created by expanding all

χ angles ±1 standard deviation around their preferred values. The number of residues in the

protein multiplied by 0.1 determined the number of fragments taken from each structure. The

unweighted energies of the central residue in every fragment were stored and then grouped

by residue type. Unweighted, as opposed to weighted, energies were kept so that the same

weights found during weight optimization and applied to the folded state could be used for the
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unfolded state. The mean values of the total unfolded energy for each residue type are shown

in the supplementary material (Table S3.6).

3.3.6 Rosetta energy function and weight optimization

The various energy functions tested in this work were each optimized for native sequence re-

covery using a weight-fitting protocol implemented in Rosetta (Andrew Leaver-Fay, in prepa-

ration). The current Rosetta energy function was optimized using an approach similar to the

one used here(20). The protocol works by adjusting the weights of the energy terms and the

reference energies so that the Boltzmann probability of the native amino acid is maximal over

all positions in a set of proteins. More formally, the fitness is defined as

�

proteins

�

positions

− ln

�
e−E(aanat)

�
aa,i e

−E(aai)

�

where E(aanat) is the energy of the native amino acid at a position and the denominator is the

partition function for all 20 amino acids at that position. To reduce floating-point errors from

multiplying probabilities, the sum of inverse log of the probability was minimized. At each

position in a representative set of proteins, the unweighted energy for all rotamers for every

amino acid were obtained at that position, holding the other positions in the protein fixed at

their native rotamers. Extra χ1 and χ2 torsion angles were used for all residue types at all

positions. The best scoring rotamer for each residue type was used for evaluation of the fitness

function. Candidate weight sets were created using particle swarm optimization followed by

conjugate-gradient-based minimization of the best set of weights found using the swarm. The

best, minimized weight set is then used to fully redesign all proteins in the set. Weight sets

that improve both the overall sequence recovery and the designed amino acid composition are

accepted, and the weight optimization-redesign cycle is repeated until the weights converge.

If the overall sequence recovery or amino acid composition worsens, the reference energies are

adjusted and redesign of the training set is repeated iteratively until both improve or until a

predefined limit of 6 iterations is reached. If the limit is reached, the weight set is rejected and

the next cycle of weight optimization begins from the previously accepted weight set. Natural
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amino acid composition is obtained by minimizing the cross entropy between the distribution

of designed amino acids and native amino acids. The cross entropy is minimized by raising the

reference energy of amino acids overrepresented in the redesigned proteins and lowering those

that are underrepresented. Typically, 6-8 rounds of reference energy adjustment are needed to

obtain native-like amino acid compositions. Only a subset of the terms in the standard Rosetta

energy function were optimized. The omega, long-range and short-range backbone-backbone

hydrogen bond weights were held fixed at 0.5, 1.17, and 0.585, respectively. In fixed-backbone

design, these terms do not help in improving sequence recovery as all backbone coordinates

are fixed. The fa atr term, representing the attractive portion of the Lennard-Jones potential,

was also held fixed at 0.8 so that the optimized weights could be compared to the current

Rosetta weights. Because only one residue is being considered at a time during fitness function

evaluation, the weight optimization procedure is also not appropriate for fitting the weights

for the hpatch scores. Therefore, multiple weight optimization simulations were performed

with varying fixed weights on the hpatch scores. The weight on the hpatch-fast score was left

at 1.0. A weight of 0.3 on the hpatch-SASA score gave the best results without changing the

sequence recoveries and amino acid composition. In addition to the standard Rosetta energy

function, additional energy functions using the hpatch score and/or the unfolded state energy

term described above were optimized (Table S3.7). The other energy functions optimized are

as follows: the standard energy function with the hpatch-fast term (standard + hpatch-fast)

and with the hpatch-SASA term (”standard + hpatch-SASA”); a standard one which replaces

the reference energies with the unfolded state energy term (standard, no refE + unfoldedE),

and the same with the hpatch-SASA score added (”standard, no refE + unfoldedE, hpatch-

SASA”).

3.3.7 Predicting changes in free energy for protein mutants

Some of the optimized energy functions were also used to predict the change in free energy for

a set of experimentally characterized mutants. Wild type and mutant structures were relaxed

using the protocol described in Row 16 of Table 1 in Kellogg et al.(36). Briefly, all of the

side chains are first repacked using a soft repulsive energy function. Then the structures side-
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chain and backbone torsions are minimized using a hard-repulsive energy function. During

minimization, harmonic restraints are placed on all pairs of C-alpha atoms within 9 Å keeping

the backbone from moving too far from the crystal structure. Three rounds of minimization

are performed, where the weight on the repulsive term is increased, starting at 1/10th of its

full weight, then at 1/3rd of its full weight, and ending at the full weight. This protocol is

applied 50 times to both the wild type and mutant species, and the average of the three-lowest

energies for each species is taken as its energy. The predicted ∆∆G is the difference between

the energies of the mutant and wild type species. A set of 1210 mutants assembled by Yin et

al.(37) and Guerois et al.(38) were used for testing prediction accuracy. When weight sets that

included the hpatch term were used in ∆∆G prediction, the weight on the hpatch term was

set to 0. Prediction accuracy was measured by calculating the Pearson correlation coefficient.

3.4 Results

We first examined the performance of the current full atom energy function from Rosetta

(version 3.1), which was originally parameterized to best reproduce native amino acid sequences

when performing whole protein redesigns of high-resolution crystal structures(4; 19). Sequence

redesigns were performed on a test set of 32 monomeric proteins. The results were similar to

what we have observed previously(19). In the core of the proteins, 49% of the wild type

amino acids and 33% of all residues were recovered (Table 3.1). The surfaces of the redesigns

have 1270 Å2 of hSASA, on average, similar to the wild type proteins which have 1100 Å2

on average. However, in the redesigns the surface hydrophobics are more clustered than in

the wild type proteins. The average size of the largest hydrophobic patch on the wild type

proteins is 476 Å2, while for the redesigns it is 813 Å2. For three designs there were extremely

large hydrophobic patches, with areas greater than 1200 Å2. Surface residue design is heavily

influenced by the amino acid reference energies. To see if the patches are a result of the current

reference energies, we used a weight optimization protocol to refit the reference energies holding

the weights on the other energy terms fixed. Designing with this energy function results in

redesigns with sequence recoveries of 52% in the core and 35% overall. The amount of total
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hydrophobic surface area in the redesigns, 1206 Å2, is again similar to what is seen in natives,

1100 Å2. As with the current Rosetta energy function, though, large hydrophobic patches are

found on the surfaces of the redesigns. The average size of the largest hydrophobic patch in

the redesigns is 694 Å2, 1.5 fold larger than the patches seen on wild type proteins. As before,

there are several proteins with very large patches. This set includes two all-β proteins, on

which the largest hydrophobic patch in each protein spans the surface of a β-sheet. Refitting

the reference energies is not sufficient for producing native-like surfaces.

sequence recovery
energy function core overall surface avg

QUILT
-ep 1.4
(Å2)

avg
total
hASA
(Å2)

% hp
on

surface

hpatch
score
weight

natives (all/train/test) — — — 462 448
476

1090
1080
1100

27.4
27.0
27.8

—

current Rosetta weights 49.2 32.9 24.9 813 1270 29.5 —

current Rosetta, fit refEs only, training 56.5 38.0 24.9 775 1213 31.2 —
current + hpatch-SASA, fit refEs only, training 55.8 38.2 26.3 385 984 26.1 0.3
current Rosetta, fit refEs only, test 51.7 35.1 27.9 694 1206 31.8 —
current + hpatch-SASA, fit refEs only, test 52.5 35.5 27.3 446 1046 27.1 0.2

standard, training 56.7 38.1 25.9 697 1134 27.7 —
standard + hpatch-fast, training 56.9 37.9 24.1 590 1078 24.9 1.0
standard + hpatch-SASA, training 55.4 37.4 25.3 374 970 24.6 0.5
standard, test 51.6 35.2 27.3 735 1225 28.9 —
standard + hpatch-fast, test 51.6 35.2 26.6 723 1105 23.8 1.0
standard + hpatch-SASA, test 52.3 36.5 28.9 433 1089 27.7 0.3

Table 3.1: Recoveries and energies of weight optimized standard and standard + hpatch en-
ergy functions. This table reports the native sequence recoveries, largest hydrophobic patch
area and total hydrophobic surface area averages for various energy functions. The energy
functions tested include the current Rosetta energy function, the current energy function with
the hpatch-SASA score (current + hpatch-SASA), a reweighted standard energy function, the
standard energy function with the hpatch-fast term (standard + hpatch-fast) and with the
hpatch-SASA term (”standard + hpatch-SASA”). Each of the reweighted energy functions
were optimized for native sequence recovery and native amino acid composition. Extra χ1 and
χ2 rotamers were used for all residues (-ex1 -ex2 -extrachi cutoff 0) except for training of the
standard + hpatch-SASA energy function which used extra rotamers around χ1 only.

The energy function currently used by Rosetta has been modified since the weights on

the score terms were last parameterized. New smoothing functions have been applied to the

Lennard-Jones and solvation potentials and hydrogen bond energies are scaled so that buried

interactions score more favorably. To create a more appropriate point of reference, we also used
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the weight optimization protocol to refit the weights on the Rosetta score terms in addition to

the amino acid reference energies. With the reweighted energy function 52% of amino acids

are recovered in the core of proteins and 35% are recovered for all residues. The surfaces of

these redesigns have 1225 Å2 of hydrophobic surface area, on average. Large hydrophobic

patches are still present in these redesigns, with the average largest hydrophobic patch being

735 Å2. Refitting the weights on the energy terms and/or the reference energies improves

native sequence recovery, but does not change how hydrophobic residues are clustered on the

surface of designed proteins.

3.4.1 Redesigning proteins with the hpatch score

To counter the tendency of Rosetta to place hydrophobic residues near other hydrophobic

residues on the surface, we developed and tested two score terms that explicitly penalize

surface hydrophobic patches. Our first implementation was that of the hpatch-fast score,

which gives all surface residues a score that depends on the amount of exposed hydrophobic

surface area within 10 Å and the number of neighbors that residue has. Each surface residue

calculates the sum of the amount of hydrophobic area exposed by all of its neighbors within 10

Å. Average precalculated SASA values based on residue type and number of neighbors are used

instead of explicit SASA calculations to approximate how much exposed hydrophobic area a

residue adds to the total. Residues with more exposed hydrophobic area surrounding them

than what is seen in native proteins get a high score. From tests on individual structures, we

found that the hpatch-fast score slightly reduced the size of hydrophobic patches in redesigned

proteins. As part of a larger test, and to see what effect the score has on native sequence

recovery, we optimized an energy function that included the hpatch-fast score. The weight

on the hpatch-fast score was held fixed at 1.0. Sequence recoveries for the proteins created

by this optimized energy function are given in Table 3.1. Core and overall recovery are 52%

and 35%, respectively, the same as recoveries obtained from the reweighted standard energy

function. No significant change is seen in the sizes of the hydrophobic patches in the redesigns,

however. The average largest patch size goes from 735 Å2 in the standard redesigns to 723 Å2

in the hpatch-fast redesigns. These designs have more native-like amounts of total hydrophobic
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surface area, 1105 Å2 on average, but this improvement does not extend to the hydrophobic

patches. Increasing the weight on the hpatch-fast score does result in smaller patches, but

only because the surfaces become less hydrophobic overall compared to natives.

Since the hpatch-fast redesigns still had large hydrophobic patches, we implemented an-

other version of the score that more rigorously identifies and penalizes patches. Our hypothesis

was that the hpatch-fast score was not effective for two reasons. First, we noticed that us-

ing precomputed average values for the amount of hydrophobic area each residue adds to a

patch introduces a considerable amount of error into the patch areas. Second, hydrophobic

patches can easily extend beyond the 10 Å threshold the score considers. For these reasons, the

hpatch-SASA score uses the exact SASA for patch areas and the union-find graph algorithm

for patch detection (see Methods). In tests on individual structures, adding the hpatch-SASA

score with a weight of 1.0 to the standard energy function caused a dramatic decrease in the

size and number of hydrophobic patches in the designs.

Confident that the score was penalizing hydrophobic patch formation, we again used the

weight fitting protocol to optimize the weights of the other energy terms around the hpatch-

SASA score. As was done for the standard Rosetta energy function, the protocol was used to

refit the values of the reference energies alone and for all energy terms and reference energies

together. Weight fitting was done for both the standard Rosetta energy function and the

standard energy function with the hpatch-SASA score. The recoveries and surface metrics

for proteins redesigned with the reweighted energy functions are given in Table 3.1. For the

energy function where only the reference energies were optimized, core and overall recovery

stand at 53% and 36%, respectively. These recoveries are very close to the recoveries obtained

with the reweighted standard Rosetta energy function. The average largest hydrophobic patch

size in these redesigns is 446 Å2, much smaller than what is seen in the current and reweighted

standard Rosetta redesigns and smaller also than what is seen in the native proteins. The

total amount of hydrophobic surface area in these redesigns, 1046 Å2, is close to what is seen

in natives, 1100 Å2. When allowing all weights and reference energies to be optimized, the

hpatch-SASA energy function gets recoveries of 52% in the core and 37% overall. The average

largest hydrophobic patch size in these redesigns is 433 Å2 and the average total amount of
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Figure 3.4: Surfaces of native and redesigned proteins. From left to right, the native pro-
tein in cartoon representation, and spherical representations of the native protein, a current
Rosetta redesign, and a reweighted Rosetta + hpatch-SASA redesign. Hydrophobic patches
are colored according to size (largest to smallest: dark green, green, lime, pale green, gray).
Oxygen and nitrogen atoms colored red and blue, respectively, and all other atoms are colored
gold. Proteins shown are histidine-containing protein (1OPD), histidine-containing protein
phosphotransfer domain (2A0B), uracil DNA glycosylase (3EUG), and toxic shock syndrome
toxin-1 (3TSS). Figures created with PyMOL(39).

hydrophobic surface area in these redesigns is 1089 Å2. The reduction in the average largest

hydrophobic patch size is achieved without a change to the total amount of hydrophobic surface

area. Examples of the difference in largest hydrophobic patch size between a native protein, a

reweighted standard Rosetta redesign, and a redesign with the hpatch-SASA score are shown

in Figure 3.4.

Designing with the hpatch-SASA score results in distributions of hydrophobic patch sizes
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Figure 3.5: Hydrophobic patches in native and redesigned proteins. The bar graphs show
hydrophobic patch area distributions for the largest (A) and all (B) patches in native (blue),
current Rosetta redesigns (red), reweighted Rosetta redesigns (orange) and reweighted Rosetta
+ hpatch-SASA redesigns (dark blue).

more like that of native proteins. A histogram of largest hydrophobic patch size for the native

and redesigned proteins is shown in Figure 3.5A. There is a noticeable shift toward larger

patches in the proteins redesigned with the current and reweighted Rosetta energy functions

that is shifted back to near-native levels with the addition of the hpatch-SASA score. The

score also corrects the size distribution of all patches, not just the largest patch. Figure 3.5B

shows the distribution of patch sizes for all patches in the native and redesigned proteins. The

redesigns created with the hpatch-SASA score have patch sizes that track the sizes seen in
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native proteins better than the current and reweighted standard energy function redesigns.

Using the hpatch-SASA score, it is possible to design surfaces with native-like amino acid

composition and smaller than native sized patches of hydrophobic area.

protein no.
residues

rotamers score function hpatch-
SASA
score

area
largest
QUILT
patch
(Å2)

total
time (s)

sim
annealing
time (s)

1HZ5A 72 — native 6.88 258 — —
96520 standard redesign 26.3 548 344 327
96551 standard + hpatch-SASA redesign 5.1 399 6691 6667

1LMBA 87 — native 14.2 563 — —
114005 standard redesign 15.7 493 478 457
114057 standard + hpatch-SASA redesign 2.2 463 8184 8152

1QYS 92 — native 12.2 481 — —
127087 standard redesign 21.8 661 546 522
127132 standard + hpatch-SASA redesign 5.9 588 12419 12390

1FKB 107 — native 7.7 585 — —
134025 standard redesign 16.2 674 578 551
134096 standard + hpatch-SASA redesign 7.4 525 11330 11297

1IFC 131 — native 11.0 554 — —
183274 standard redesign 15.8 767 879 840
183342 standard + hpatch-SASA redesign 8.0 558 21755 21715

1GBS 185 — native 6.2 411 — —
195483 standard redesign 27.7 426 1161 1115
195563 standard + hpatch-SASA redesign 2.6 309 22965 22905

Table 3.2: Energies, hydrophobic patch areas and run times of proteins redesigned with the
hpatch score. Each protein was redesigned with the current Rosetta energy function and the
optimized standard + hpatch-SASA energy function. All residue types were allowed at all
positions, and extra χ1 and χ2 torsion angles were used for all residues. Hydrophobic patch
areas were calculated using QUILT, with a polar expansion radius of 1.4Å. Sim. annealing
time represents the time spent in the sequence optimization part of the simulation.

Design simulations using the hpatch-SASA score take longer to complete because patch

energies cannot be precalculated and stored in memory, as can rotamer pair energies. To see

what effect the hpatch-SASA score has on the final energies and run times of design simulations,

we performed complete redesigns of seven proteins using the standard Rosetta energy function

and the hpatch-SASA optimized energy function. Protein names, final energies, and running

times are reported in Table 3.2. The total time of simulations with the hpatch-SASA score

increases by a factor of 21, on average. This increase appears to be independent of protein

size as the fold increase in runtime for the 72 residue protein 1HZ5A is roughly the same as

the increase for the 185 residue protein 1GBS.
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3.4.2 Design using an energy function with an explicit unfolded state energy

Instead of explicitly modeling the unfolded state Rosetta uses amino acid-specific reference

energies that are parameterized to favor a native-like distribution of amino acids in designed

sequences. This implicitly favors proteins with hydrophobic cores and polar surfaces as the

solvation model in Rosetta strongly penalizes the burial of polar chemical groups. Because

the hpatch score provides an alternative mechanism for controlling amino composition on

the protein surface we were curious if we could replace Rosettas reference energies with an

explicit unfolded state energy term in combination with the hpatch score. The attractiveness

of this approach is that it removes 19 adjustable parameters from the weight fitting process

and creates a score function with an explicit protein stability term (energy of the folded state

minus the unfolded state) and an explicit measure of protein solubility (hpatch score). A

variety of approaches can be used to model the unfolded state. Creamer and Rose(40) found

that using fragments excised from the structures of folded proteins serve as better models of

the unfolded state than do tripeptides. Based on this conclusion, Pokala and Handel(10) used

the average energy of amino acids in short fragments as a per-residue unfolded state energy in

their design algorithm. They found that the fragment-based unfolded state model outperforms

the tripeptide model in predicting changes in stability for a large number of protein mutants.

Here, we use 13-residue fragments excised from folded proteins to estimate the average energy

of each amino acid type in the unfolded state (see Methods).

Several energy functions using the unfolded state energy in place of the reference energies

with and without the hpatch-SASA score were optimized for native sequence recovery and

amino acid composition (Table 3.3). Using the unfolded state energy term in place of the

Rosetta reference energies lowers native sequence recovery and leads to very hydrophobic

surfaces with an excessive amount of tryptophans on the surface (Table S3.8). Core and

overall recovery with this energy function are 48% and 31%, respectively, and the average

amount of hydrophobic SASA is 1844 Å2, nearly twice as large as the wild type proteins.

The average largest hydrophobic patch size jumps to 1479 Å2 compared to 735 Å2 for the

reweighted standard Rosetta energy function.

We next added the hpatch-SASA score term to the energy function with the unfolded state
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sequence recovery
energy function core overall surface avg

QUILT
-ep 1.4
(Å2)

% hp
on

surface

avg
total
hASA
(Å2)

hpatch
score
weight

natives — — — 476 27.8 1100 —
current, no refE + unfoldedE, test 37.2 24.4 17.8 1173 51.2 1935 —
current, no refE + unfoldedE, hpatch-SASA, test 37.1 25.2 18.7 445 35.8 1206 0.30*
standard, no refE + unfoldedE, training 55.9 32.8 17.9 1403 48.1 1837 —
standard, no refE + unfoldedE, hpatch-SASA, training 50.6 31.8 18.9 424 29.3 1024 0.50*
standard, no refE + unfoldedE, test 47.7 30.5 21.0 1479 46.4 1844 —
standard, no refE + unfoldedE, hpatch-SASA, test 48.4 29.8 19.9 464 30.3 1064 0.50*

Table 3.3: Recoveries and energies of weight optimized standard and standard + unfolded
state energy and/or hpatch energy functions. This table reports the native sequence recoveries,
largest hydrophobic patch area and total hydrophobic surface area averages for various weight
optimized energy functions. The energy functions tested include the current energy function
which replaces the reference energies with the unfolded state energy term (current, no refE
+ unfoldedE), the current energy function with the unfolded state energy and the hpatch-
SASA score (”standard, no refE + unfoldedE, hpatch-SASA”), a reweighted standard energy
function, and a reweighted standard energy function with the hpatch-SASA score (standard,
no refE + unfoldedE, hpatch-SASA). Both of the reweighted energy functions were optimized
for native sequence recovery alone. Extra χ1 and χ2 rotamers used for all residues (-ex1 -ex2
-extrachi cutoff 0).

term. The core and overall recoveries with this energy function, 48% and 30% respectively,

are similar to the recoveries of the energy function without the hpatch-SASA score. However,

the surfaces of these redesigns have considerably smaller hydrophobic patches than when the

hpatch-SASA score is not present. The average largest hydrophobic patch size goes from 1479

Å2 to 464 Å2 upon addition of the hpatch-SASA score and the total average hSASA, 1064

Å2, is similar to the wild type proteins. Despite having a more native-like distribution of

hydrophobic surface area on the surface, the amino acid composition on the surface is still

significantly different than the native sequences (Table S3.8). While the native sequences have

37 histidines and 12 tryptophans on their surfaces in total, the designs have 308 histidines and

168 tryptophans. Conversely, alanine and lysine are grossly underrepresented on the surfaces

of the designs. These results can be interpreted in a variety of ways. The peptide model of

the unfolded state may be missing important features that determine the favorability of each

amino acid in the unfolded state. The over abundance of tryptophan in the design models

indicate that tryptophan makes more favorable interactions on a protein surface (using the

Rosetta energy function) than in the peptide fragments used here. This could indicate that
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true unfolded states allow for more contacts and burial than is present in the fragments.

Alternatively, the additional tryptophans on the surface may be favorable for folding free

energy, but may have other negative consequences, such as favoring misfolded conformations

or non-specific interactions with other proteins. Amino acid composition may also be partially

determined by metabolic constraints that influence the overall fitness of an organism.

energy function ∆∆G R
current Rosetta weights 0.69
current Rosetta, fit refEs only 0.68
current + hpatch-SASA 0.68
current, no refE + unfoldedE 0.66
current, no refE + unfoldedE, hpatch-SASA 0.66
standard 0.61
standard + hpatch-SASA 0.63
standard, no refE + unfoldedE 0.58
standard, no refE + unfoldedE, hpatch-SASA 0.44

Table 3.4: Correlation coefficients for predicting changes in stability. Correlation coefficients
between experimental and predicted ∆∆G for a set of protein mutants using the various
optimized energy functions.

3.4.3 Predicting changes in stability for mutations

Rosetta can also be used to predict the change in free energy for protein mutants (∆∆G). Given

that we optimized the energy functions described above only for native sequence recovery, we

wanted to see how they would perform at predicting ∆∆G. We follow the protocol described

in Kellogg et al.(36), which uses repacking and side-chain and backbone torsion minimization

to create mutant structures. First, all residues in the mutant structure are repacked using

the Rosetta energy function with a dampened Lennard Jones energy. Then the structures are

cycled through side-chain and backbone torsion minimization using either the standard Rosetta

energy function or one of the weight-optimized energy functions described above. The results

of using the various energy functions to predict ∆∆G of stability can be found in Table 3.4.

With the current Rosetta energy function there is a correlation coefficient of 0.69 between the

experimental and predicted ∆∆G values(36). When only the reference energies are reweighted,

both the standard Rosetta energy function and the standard energy function with the hpatch-
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SASA score have correlation coefficients of 0.68. If all of the score terms and the reference

energies are reweighted, the standard Rosetta energy function and the hpatch-SASA energy

function get correlation coefficients of 0.61 and 0.64 respectively. Using the unfolded term

in place of the reference energies and reweighting all of the score terms for native sequence

recovery gives a correlation coefficient of 0.58.

3.5 Discussion

In previous de novo protein design projects with Rosetta it has been necessary to restrict the

amino acid alphabet available at specific surface residue positions in order to avoid the design

of large hydrophobic patches on the protein surface(20; 41; 42). As seen in the tests performed

here, the primary problem is not the overall amino acid composition of the protein surface,

but rather the clumping of similarly typed amino acids. Hydrophobic and polar amino acids

probably segregate on the surfaces of the designs for the same reason that oil and water do not

mix, the hydrophobic amino acids can not satisfy the hydrogen bonding potential of the polar

amino acids. Most protein design algorithms, including Rosetta, use energy functions that are

pairwise additive at the residue level. In this case, there is not a straightforward mechanism

for explicitly disfavoring hydrophobic patches while maintaining a native-like distribution of

amino acids on the surface. Here, we have shown that a non-pairwise additive score function

that explicitly detects patches of exposed hydrophobic surface area can be combined with

the standard Rosetta energy function to design surfaces that more closely resemble naturally

occurring monomeric proteins.

Our use of the hpatch score to disfavor hydrophobic patches is an example of negative

design. The purpose of the score term is not to increase the thermodynamic favorability of the

folded state relative to the unfolded state, but rather to disfavor aggregation. This suggests

that by changing the weight on the hpatch score it will be possible to shift the emphasis

of surface redesigns between maintaining solubility and maximizing folding free energy. For

example, in a previous study, Rosetta was used to redesign the sequence of the activation

domain of human procarboxypeptidase A2(43). The redesigned protein was 10 kcal/mol more
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stable than the wild type protein. In these simulations, all amino acids were allowed at each

sequence position in the protein and a large hydrophobic patch, with an area of 730 Å2,

was created on the surface of the proteins β-sheet. Subsequent NMR analysis indicated that

at concentrations >100 µM the redesigned protein self-associates and buries the hydrophobic

residues on the surface of the β-sheet(4). A similar interaction was seen in the crystal structure

of the protein. If we redesign procarboxypeptidase (1VJQ) using the hpatch score, a large

hydrophobic patch is no longer placed on the surface of the sheet. Instead, the largest patch

in this redesign is created by one of the loops of A2 and has an area of 257 Å2.

Because patch identification is not pairwise-decomposable, simulations with either imple-

mentation of the hpatch score take longer to complete than standard Rosetta design runs.

For comparison, designing with another non-pairwise-decomposable score term in Rosetta, the

SASApack score, increased the runtimes of simulation by 26-fold. Design simulations with the

hpatch-SASA score increase the runtime by a factor of 21. In addition to making the surface

area calculations, time is also spent finding patches using the union-find algorithm with the

hpatch-SASA score. As with the SASApack score, procrastination of hpatch score calculations

helps to speed up the simulations. If a substitution causes an increase in the energy of the

other energy terms over some threshold amount, the hpatch score is not calculated unless the

substitution is later accepted. This optimization applies to both forms of the hpatch score. As

simulations with the hpatch-SASA score take longer than current Rosetta, we recommend that

the hpatch-SASA score only be used during the final design runs of a protocol. Alternatively,

as the score is fast to compute for a single structure, it could be used as a filter at the end of

a protocol. Chennamsetty et al.(44) recently used a spatial aggregation propensity score that

gives positions with exposed hydrophobic neighbors a high score to increase the solubility of

two antibodies.

As discussed above, one function of the 20 amino acid reference values used in Rosetta is

to implicitly disfavor the placement of large numbers of hydrophobic amino acids on the sur-

faces of redesigns. For this reason, we tested if the reference values could be replaced with the

hpatch score and explicitly calculated unfolded state energies. The hpatch score was successful

at preventing large hydrophobic patches on the surface; however, the amino acid composition
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of the redesigned surfaces was considerably different than naturally occurring proteins. The

amino acid composition of proteins is probably determined by several factors including: pro-

tein stability, protein solubility, metabolic constraints and negative design against alternative

structures and complexes. Without an empirical energy term that can be varied to titrate

amino acid compositions, it is difficult to match the naturally occurring frequencies on protein

surfaces. Pokala and Handel had some success using amino acid reference energies that were

derived from calculating the average energies of the various amino acids on a protein surface,

but hydrophobic amino acids were underrepresented with this approach. In future surface

redesigns with Rosetta, we plan to continue using the empirically determined reference values

in combination with the hpatch score.

In this study we have focused on the surfaces of monomeric proteins. The hpatch-SASA

score may also prove useful when designing transient protein-protein interactions. In this

scenario, proteins must be soluble in the unbound state, and therefore, cannot rely on large

hydrophobic surfaces to mediate the interaction with the target protein. When performing

standard single-state computational protein design on a protein-protein complex there is no

energetic penalty for designing an interface mediated by hydrophobics as the solubility of the

unbound state is not being considered during the simulation. The solution to this problem is

to perform a multi-state design simulation in which the sequence is simultaneously optimized

for binding as well as solubility in the unbound state(16). The hpatch-SASA score could be

used to provide a measure of solubility in the unbound state for candidate sequences.

Code availability

Source code for the hpatch scores is available for free as part of the Rosetta molecular modeling

program, version 3.3.
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3.6 Supplementary Material

Computational Protein Design with Explicit Consideration of Surface Hydrophobic Patches

Ron Jacak, Andrew Leaver-Fay, and Brian Kuhlman

training set size fold test set size fold
2igd 61 a/b 1a8o 70 all a
1orc 64 a/b 1hyp 75 a
1hoe 74 b 1bdo 80 all b
1aba 87 a/b 1opd 85 a/b
2acy 98 a/b 1opc 99 a/b
1bm8 99 a/b 1by2 110 a/b
1bxv 99 b 2mcm 112 b
1co6 107 a/b 1bea 116 a
1tmy 118 a/b 2a0b 118 all a
1mai 119 a/b 2mhr 118 a
3pyp 125 a/b 1b9o 123 a
1c52 131 a 1bqk 124 a/b
1vsr 134 a/b 1bfg 126 all b
1akr 147 a/b 1ifc 131 b
1bd8 156 all a 1bk9 134 a
1bgc 165 all a 1pne 139 a/b
1kao 167 a/b 2sns 141 a/b
1koe 172 a/b 1amx 150 b
1b2v 173 a/b 1bj7 150 a/b
2sga 181 a/b 1a6m 151 all a
1gbs 185 a/b 1ra9 159 a/b
1qf9 194 a/b 1qst 160 a/b
1nkr 195 all b 1cjw 166 a/b
1cex 197 a/b 1mh1 181 a/b
1rgp 199 all a 3tss 190 a/b
1ppn 212 a/b 2pth 193 a/b
1a7s 225 a/b 2eng 210 a/b
1azo 226 a/b 1lbu 213 a/b
1uch 226 a/b 1g3p 217 a/b
1bio 228 b 3eug 225 a/b
1amf 231 a/b 1atg 231 a/b
3seb 238 a/b 1lst 240 a/b

Table S3.1: PDB codes of proteins used in design and weight optimization runs
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Figure S3.1: Plot of hpatch-fast score by hydrophobic patch area and number of neighbors.
Each line represents the score for a given number of neighbors. Residues are only given hpatch-
fast scores for having too much surrounding hydrophobic surface area. No score is given to
residues with a patch area smaller than the most common patch area for that number of
neighbors observed in native proteins. Patches of size greater than 1200 Å2 are given a score
of 25.
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amino acid nbs1-10 nbs11-13 nbs14-16 nbs17-20 nbs21-24
PHE 140.33 97.01 58.46 30.86 11.48
TRP 139.78 95.72 58.85 34.59 16.70
MET 129.12 97.25 61.79 33.03 11.05
LEU 119.66 85.25 53.91 26.87 7.93
TYR 114.72 83.56 55.49 30.61 13.05
ILE 114.64 80.00 52.77 25.21 7.48
LYS 101.83 81.16 63.23 42.99 23.74
VAL 97.18 70.04 47.46 23.49 6.79
PRO 93.59 72.40 52.45 31.07 12.69
HIS 90.26 68.55 48.19 30.81 15.02
CYS 80.59 53.46 32.72 16.52 5.64
ARG 71.21 56.79 42.58 26.33 11.48
THR 68.93 53.70 38.04 21.79 8.33
ALA 63.72 50.20 35.41 17.71 5.48
GLU 59.10 44.45 32.77 19.46 8.16
GLN 51.72 39.30 29.56 17.62 7.27
SER 47.41 37.45 27.29 14.82 5.37
ASP 42.50 31.62 22.33 12.67 5.78
GLY 38.24 31.12 23.67 13.42 5.24
ASN 36.32 27.02 19.65 10.92 4.51

Table S3.2: Average amount of hydrophobic accessible surface area exposed by each residue
type at 5 levels of burial: 10 of fewer neighbors, 11 to 13 neighbors, 14 to 16 neighbors, 17-20
neighbors, and 21-24 neighbors. The aromatic residues expose the most hydrophobic surface
area, while asparagine and glycine expose the least.
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Figure S3.2: Plot of hpatch-SASA score by hydrophobic patch area. Blue bars represent the
counts of the indicated patch size found in the set of monomeric structures. The red line is
the hpatch-SASA score. The black line shows the score if the inverse log of the probabilities
is used. Patches of size greater than 900 Å2 are given a score of 100.
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patch area count hpatch-SASA score
0 9692 0.00
50 8613 0.16
100 3740 0.64
150 1645 1.44
200 844 2.56
250 484 4.00
300 281 5.76
350 190 7.84
400 134 10.24
450 78 12.96
500 59 16.00
550 37 19.36
600 29 23.04
650 22 27.04
700 14 31.36
750 9 36.00
800 5 40.96
850 3 46.24
900 100.00
950 100.00

Table S3.4: hpatch-SASA score by hydrophobic patch area. The number of occurrences of each
patch area in the set of monomeric proteins was determined using Rosetta. An exponential
curve that more strongly penalizes large patches was used instead of the inverse log of the
probabilities to obtain the score. The entire score was shifted down so that the minimum
hpatch-SASA score is 0. Patches of size 900 Å2 or greater are given a score of 100.
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atom type vdW radius
CNH2 1.76
COO 1.76
CH1 1.87
CH2 1.87
CH3 1.87
aroC 1.76
Ntrp 1.65
Nhis 1.65
NH2O 1.65
Nlys 1.5
Narg 1.65
Npro 1.65
OH 1.4

ONH2 1.4
OOC 1.4
Oaro 1.4
S 1.85

Nbb 1.65
CAbb 1.87
CObb 1.76
OCbb 1.4

Table S3.5: van der Waals radii used for SASA calculations
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energy term current
Rosetta

current
Rosetta,
fit refEs
only

hpatch
EF,
reweight
refEs
only

unfolded
EF,
score12
unfold-
edEs
(normal-
ized)

unfolded
+ hpatch
EF,
score12
unfold-
edEs
(normal-
ized)

standard
REF,
reweight
all terms

hpatch
EF,
reweight
all terms

unfolded
EF,
reweight
all terms
(normal-
ized)

unfolded
+ hpatch
EF,
reweight
all terms
(normal-
ized)

fa atr 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
fa rep 0.44 0.44 0.44 0.44 0.44 0.560924 0.437555 0.593519 0.497965
fa sol 0.65 0.65 0.65 0.65 0.65 0.997569 0.938886 1.33295 1.43525
fa intra rep 0.004 0.004 0.004 0.004 0.004 0.1822 0.2196 0.0556 0.5576
pro close 1 1 1 1 1 0.010 0.008 0.001 0.095
fa pair 0.49 0.49 0.49 0.49 0.49 0.665853 0.642108 0.457219 0.428062
hbond sr bb 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585
hbond lr bb 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17
hbond bb sc 1.17 1.17 1.17 1.17 1.17 3.39777 3.50261 3.21955 3.6468
hbond sc 1.1 1.1 1.1 1.1 1.1 1.3483 1.23576 1.30316 1.83379
dslf ss dst 1 1 1 0.5 1 1 1 1 1
dslf cs ang 1 1 1 2 1 1 1 1 1
dslf ss dih 1 1 1 5 1 1 1 1 1
dslf ca dih 1 1 1 5 1 1 1 1 1
rama 0.2 0.2 0.2 0.2 0.2 0.0045 0.0018 0.0452 0.0381
omega 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
fa dun 0.56 0.56 0.56 0.56 0.56 0.507731 0.332697 0.282501 0.27986
p aa pp 0.32 0.32 0.32 0.32 0.32 0.981461 1.04745 0.949626 1.02642
ref/unfolded 1 1 1 1 1 1 1 1 1
hpatch — — 0.2 — 0.3 — 0.3 — 0.5

ALA 0.16 0.12 0.20 0.56 0.56 0.83 0.60 0.52 1.53
CYS 1.7 -0.04 0.07 -0.14 -0.14 0.44 0.36 -0.27 0.63
ASP -0.67 -0.48 -0.42 -0.22 -0.22 -0.66 -0.45 -0.58 -0.26
GLU -0.81 -0.61 -0.55 -0.34 -0.34 -0.65 -0.27 -0.42 -0.12
PHE 0.63 1.17 1.01 0.54 0.54 0.26 -0.18 0.29 -1.94
GLY -0.17 -0.40 -0.27 0.12 0.12 0.42 0.18 1.07 2.29
HIS 0.56 0.98 0.97 -0.13 -0.13 1.02 1.11 -0.36 0.21
ILE 0.24 0.38 0.31 0.53 0.53 -0.03 -0.20 0.50 -0.73
LYS -0.65 -0.42 -0.41 -0.33 -0.33 -0.28 -0.10 -0.27 0.29
LEU -0.1 0.20 0.09 0.57 0.57 0.27 -0.03 0.48 0.57
MET -0.34 -0.20 -0.25 -0.25 -0.25 0.02 0.13 -0.07 0.48
ASN -0.89 -0.76 -0.72 -0.49 -0.49 -0.87 -0.59 -0.71 -0.47
PRO 0.02 -0.81 -0.89 -0.32 -0.32 0.57 0.88 1.02 2.10
GLN -0.97 -0.82 -0.62 -0.45 -0.45 -0.80 -0.45 -0.59 -0.29
ARG -0.98 -0.79 -0.74 -0.69 -0.69 -0.87 -0.47 -0.64 -0.62
SER -0.37 -0.23 -0.26 -0.24 -0.24 0.27 0.14 -0.32 0.60
THR -0.27 -0.18 -0.20 0.04 0.04 -0.19 -0.34 -0.22 -0.04
VAL 0.29 0.22 0.25 0.47 0.47 0.15 -0.03 0.53 0.05
TRP 0.91 1.73 1.50 0.28 0.28 0.29 0.12 -0.08 -2.20
TYR 0.51 0.95 0.91 0.48 0.48 -0.18 -0.42 0.11 -2.07

ddG 0.69 0.68 0.681 0.662 0.662 0.609 0.635 0.579 0.436

core 49.2 51.7 52.5 36.3 37.1 51.6 52.3 47.7 48.4
overall 32.9 35.1 35.5 24.0 25.2 35.2 36.5 30.5 29.8
surface 24.9 27.9 27.3 17.6 18.7 27.3 28.9 21.0 19.9
%hp/surface 29.5 31.8 27.1 50.3 35.8 28.9 27.7 46.4 30.3
largest patch 813 694 446 1169 445 735 433 1479 464

Table S3.7: Final weights obtained from weight optimization runs for various energy functions
including the hpatch score and/or the unfolded state energy term.
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Table S3.8: Sequence recoveries by amino acid for various weight optimized energy functions.
Core, overall, and surface native sequence recoveries for a test set of 32 proteins, reported in
total and by amino acid type. Core positions are defined as those residues having 24 or more
neighbors, and surface positions are defined as having 16 or fewer neighbors.

Recoveries are reported for each of the following energy functions:
current Rosetta - the current Rosetta energy function previously optimized for native sequence
recovery only
current Rosetta, fit refEs only - the current Rosetta energy function with the reference energies
optimized for native sequence recovery and amino acid composition
current Rosetta + hpatch-SASA - the current Rosetta energy function using the hpatch-
SASA score, with the reference energies optimized for native sequence recovery and amino
acid composition
current Rosetta, no refE + unfoldedE - the current Rosetta energy function with reference
energies replaced by an explicit unfolded state energy term (no optimization)
current Rosetta, no refE + unfoldedE, hpatch-SASA - the current Rosetta energy function
with the reference energies replaced by an explicit unfolded state energy term, and using the
hpatch-SASA score (no optimization)
standard energy function, reweight all terms - a reweighted Rosetta energy function optimized
for native sequence recovery and amino acid composition
standard + hpatch-SASA energy function - a reweighted Rosetta energy function using the
hpatch-SASA score, optimized for native sequence recovery and amino acid composition
standard, no refE + unfoldedE - a reweighted Rosetta energy function with the reference
energies replaced by an explicit unfolded state energy term, optimized for native sequence
recovery and amino acid composition
standard, no refE + unfoldedE, hpatch-SASA - a reweighted Rosetta energy function using
the hpatch-SASA score and with the reference energies replaced by an explicit unfolded state
energy term, optimized for native sequence recovery and amino acid composition

Residue No.

correct

core

No.

native

core

No. de-

signed

core

No.

correct/

No.

native

core

No.

correct

No. na-

tive

No. de-

signed

No.

cor-

rect/

No.

native

No.

correct

surface

No.

native

surface

No. de-

signed

surface

No.

cor-

rect/

No.

native

surface

current Rosetta weights

LEU 66 122 92 0.54 180 378 454 0.48 18 54 174 0.33

GLY 56 69 66 0.81 302 400 368 0.75 164 210 205 0.78

ASP 10 20 29 0.5 80 268 354 0.3 49 167 221 0.29

SER 20 37 106 0.54 79 258 348 0.31 25 119 128 0.21

GLU 2 7 16 0.29 54 289 308 0.19 31 180 158 0.17

PHE 37 60 69 0.62 98 193 302 0.51 6 23 68 0.26

LYS 2 11 9 0.18 62 325 285 0.19 30 193 148 0.16

ARG 4 14 20 0.29 37 185 262 0.2 10 85 76 0.12

ALA 57 103 94 0.55 118 385 259 0.31 9 144 30 0.06

ILE 41 83 70 0.49 105 242 231 0.43 7 33 39 0.21

THR 19 41 62 0.46 61 291 225 0.21 30 145 110 0.21

TYR 9 40 27 0.22 39 158 224 0.25 6 23 98 0.26

Continued on next page
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Table S3.8 – continued from previous page

Residue No.

correct

core

No.

native

core

No. de-

signed

core

No.

correct/

No.

native

core

No.

correct

No. na-

tive

No. de-

signed

No.

cor-

rect/

No.

native

No.

correct

surface

No.

native

surface

No. de-

signed

surface

No.

cor-

rect/

No.

native

surface

VAL 47 98 67 0.48 107 308 194 0.35 8 60 37 0.13

HIS 10 18 41 0.56 30 118 176 0.25 5 37 32 0.14

GLN 3 17 6 0.18 18 186 172 0.1 10 94 110 0.11

ASN 3 14 11 0.21 33 206 158 0.16 20 110 120 0.18

TRP 10 23 21 0.43 32 76 145 0.42 4 12 56 0.33

PRO 6 18 7 0.33 61 229 77 0.27 29 144 40 0.2

MET 10 31 25 0.32 20 90 70 0.22 1 20 5 0.05

CYS 0 12 0 0 0 27 0 0 0 2 0 0

Total 412 838 0.492 1516 4612 0.329 462 1855 0.249

Continued on next page
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Table S3.8 – continued from previous page

Residue No.

correct

core

No.

native

core

No. de-

signed

core

No.

correct/

No.

native

core

No.

correct

No. na-

tive

No. de-

signed

No.

cor-

rect/

No.

native

No.

correct

surface

No.

native

surface

No. de-

signed

surface

No.

cor-

rect/

No.

native

surface

current Rosetta, fit refEs only

GLY 55 69 71 0.8 311 400 431 0.78 172 210 252 0.82

ALA 67 103 128 0.65 146 385 403 0.38 17 144 100 0.12

VAL 60 98 93 0.61 146 308 364 0.47 18 60 104 0.3

LEU 61 122 84 0.5 170 378 336 0.45 16 54 85 0.3

ASP 9 20 30 0.45 79 268 286 0.29 46 167 158 0.28

GLU 2 7 9 0.29 47 289 278 0.16 26 180 144 0.14

ARG 6 14 22 0.43 36 185 265 0.19 7 85 81 0.08

THR 17 41 51 0.41 75 291 259 0.26 43 145 146 0.3

ILE 45 83 79 0.54 110 242 254 0.45 9 33 48 0.27

LYS 1 11 7 0.09 44 325 233 0.14 19 193 97 0.1

SER 16 37 61 0.43 60 258 229 0.23 19 119 90 0.16

GLN 2 17 7 0.12 20 186 228 0.11 9 94 142 0.1

PRO 14 18 19 0.78 141 229 217 0.62 79 144 143 0.55

TYR 14 40 36 0.35 46 158 214 0.29 4 23 59 0.17

ASN 3 14 7 0.21 37 206 181 0.18 23 110 144 0.21

PHE 31 60 53 0.52 74 193 162 0.38 5 23 21 0.22

HIS 8 18 28 0.44 22 118 97 0.19 2 37 11 0.05

MET 11 31 25 0.35 24 90 90 0.27 1 20 15 0.05

TRP 9 23 14 0.39 26 76 43 0.34 2 12 3 0.17

CYS 2 12 14 0.17 4 27 42 0.15 0 2 12 0

Total 433 838 0.517 1618 4612 0.351 517 1855 0.279

current Rosetta + hpatch-SASA

GLY 55 69 67 0.8 308 400 402 0.77 168 210 228 0.8

LEU 66 122 96 0.54 182 378 361 0.48 19 54 81 0.35

SER 19 37 88 0.51 84 258 325 0.33 28 119 131 0.24

ALA 64 103 110 0.62 127 385 314 0.33 8 144 59 0.06

GLU 3 7 15 0.43 51 289 312 0.18 27 180 178 0.15

THR 14 41 46 0.34 77 291 306 0.26 44 145 181 0.3

VAL 57 98 88 0.58 129 308 296 0.42 11 60 75 0.18

ASP 10 20 27 0.5 77 268 289 0.29 47 167 176 0.28

LYS 2 11 11 0.18 50 325 285 0.15 19 193 120 0.1

ARG 4 14 14 0.29 35 185 263 0.19 9 85 97 0.11

ILE 45 83 80 0.54 114 242 248 0.47 8 33 38 0.24

ASN 2 14 5 0.14 40 206 227 0.19 23 110 182 0.21

PRO 13 18 17 0.72 138 229 213 0.6 76 144 140 0.53

TYR 14 40 27 0.35 46 158 208 0.29 6 23 66 0.26

PHE 38 60 56 0.63 87 193 192 0.45 4 23 19 0.17

HIS 7 18 26 0.39 22 118 106 0.19 2 37 16 0.05

MET 10 31 28 0.32 21 90 88 0.23 1 20 7 0.05

GLN 3 17 3 0.18 10 186 78 0.05 3 94 44 0.03

TRP 13 23 23 0.57 34 76 70 0.45 3 12 9 0.25

CYS 1 12 11 0.08 4 27 29 0.15 1 2 8 0.5

Total 440 838 0.525 1636 4612 0.355 507 1855 0.273

Continued on next page
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Table S3.8 – continued from previous page

Residue No.

correct

core

No.

native

core

No. de-

signed

core

No.

correct/

No.

native

core

No.

correct

No. na-

tive

No. de-

signed

No.

cor-

rect/

No.

native

No.

correct

surface

No.

native

surface

No. de-

signed

surface

No.

cor-

rect/

No.

native

surface

current Rosetta, no refE + unfoldedE

TRP 14 23 44 0.61 48 76 878 0.63 10 12 517 0.83

HIS 8 18 127 0.44 45 118 816 0.38 12 37 344 0.32

SER 20 37 166 0.54 75 258 445 0.29 20 119 117 0.17

GLY 50 69 60 0.72 292 400 356 0.73 162 210 197 0.77

PHE 29 60 53 0.48 82 193 304 0.42 4 23 100 0.17

TYR 10 40 21 0.25 25 158 182 0.16 3 23 88 0.13

VAL 35 98 54 0.36 78 308 167 0.25 6 60 32 0.1

ILE 28 83 45 0.34 73 242 161 0.3 5 33 28 0.15

MET 9 31 29 0.29 23 90 159 0.26 3 20 47 0.15

ASP 8 20 31 0.4 42 268 156 0.16 20 167 60 0.12

ARG 3 14 15 0.21 21 185 155 0.11 6 85 57 0.07

ALA 38 103 53 0.37 75 385 142 0.19 5 144 13 0.03

THR 13 41 46 0.32 34 291 126 0.12 11 145 33 0.08

GLU 1 7 18 0.14 16 289 104 0.06 5 180 28 0.03

LEU 22 122 27 0.18 62 378 103 0.16 2 54 20 0.04

PRO 8 18 11 0.44 73 229 103 0.32 37 144 59 0.26

LYS 2 11 4 0.18 19 325 97 0.06 8 193 50 0.04

CYS 1 12 27 0.08 3 27 96 0.11 1 2 29 0.5

ASN 2 14 4 0.14 14 206 40 0.07 6 110 24 0.05

GLN 3 17 3 0.18 5 186 22 0.03 1 94 12 0.01

Total 304 838 0.363 1105 4612 0.24 327 1855 0.176

current Rosetta, no refE + unfoldedE, hpatch-SASA

HIS 8 18 121 0.44 57 118 1016 0.48 16 37 472 0.43

TRP 11 23 40 0.48 43 76 693 0.57 8 12 383 0.67

SER 22 37 163 0.59 84 258 463 0.33 24 119 140 0.2

GLY 52 69 63 0.75 294 400 358 0.74 163 210 199 0.78

ARG 6 14 16 0.43 28 185 218 0.15 7 85 103 0.08

TYR 8 40 24 0.2 30 158 218 0.19 5 23 95 0.22

ASP 8 20 38 0.4 49 268 192 0.18 28 167 86 0.17

PHE 28 60 49 0.47 74 193 188 0.38 5 23 36 0.22

GLU 2 7 20 0.29 32 289 176 0.11 11 180 66 0.06

ILE 29 83 49 0.35 76 242 151 0.31 4 33 15 0.12

VAL 37 98 58 0.38 80 308 150 0.26 3 60 26 0.05

ALA 36 103 49 0.35 73 385 135 0.19 4 144 12 0.03

THR 15 41 41 0.37 41 291 133 0.14 14 145 40 0.1

PRO 7 18 9 0.39 72 229 99 0.31 34 144 55 0.24

LYS 2 11 2 0.18 21 325 92 0.06 8 193 46 0.04

LEU 27 122 34 0.22 65 378 91 0.17 3 54 8 0.06

MET 8 31 26 0.26 17 90 86 0.19 2 20 16 0.1

CYS 1 12 27 0.08 4 27 82 0.15 0 2 19 0

ASN 2 14 6 0.14 16 206 40 0.08 7 110 22 0.06

GLN 2 17 3 0.12 4 186 31 0.02 1 94 16 0.01

Total 311 838 0.371 1160 4612 0.252 347 1855 0.187

Continued on next page
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Table S3.8 – continued from previous page

Residue No.

correct

core

No.

native

core

No. de-

signed

core

No.

correct/

No.

native

core

No.

correct

No. na-

tive

No. de-

signed

No.

cor-

rect/

No.

native

No.

correct

surface

No.

native

surface

No. de-

signed

surface

No.

cor-

rect/

No.

native

surface

standard energy function, reweight all terms

GLY 55 69 79 0.8 309 400 420 0.77 169 210 223 0.8

ALA 73 103 139 0.71 138 385 370 0.36 10 144 47 0.07

VAL 70 98 121 0.71 147 308 358 0.48 15 60 75 0.25

LEU 67 122 96 0.55 181 378 358 0.48 14 54 82 0.26

GLU 3 7 10 0.43 64 289 296 0.22 38 180 196 0.21

PRO 12 18 21 0.67 155 229 290 0.68 87 144 178 0.6

ASP 6 20 22 0.3 74 268 285 0.28 45 167 182 0.27

LYS 1 11 11 0.09 48 325 279 0.15 17 193 110 0.09

ILE 46 83 67 0.55 112 242 262 0.46 6 33 47 0.18

THR 12 41 34 0.29 74 291 242 0.25 44 145 137 0.3

ARG 3 14 16 0.21 28 185 242 0.15 8 85 90 0.09

SER 19 37 72 0.51 68 258 234 0.26 10 119 62 0.08

ASN 3 14 7 0.21 46 206 207 0.22 24 110 163 0.22

GLN 3 17 8 0.18 14 186 198 0.08 6 94 134 0.06

PHE 31 60 55 0.52 83 193 162 0.43 5 23 14 0.22

TYR 6 40 16 0.15 26 158 158 0.16 5 23 63 0.22

MET 11 31 36 0.35 19 90 102 0.21 1 20 12 0.05

HIS 3 18 10 0.17 15 118 74 0.13 2 37 22 0.05

TRP 8 23 11 0.35 22 76 48 0.29 3 12 12 0.25

CYS 0 12 7 0 1 27 27 0.04 0 2 6 0

Total 432 838 0.516 1624 4612 0.352 509 1855 0.274

standard + hpatch-SASA energy function

LEU 79 122 123 0.65 205 378 429 0.54 18 54 96 0.33

GLY 53 69 72 0.77 299 400 405 0.75 165 210 225 0.79

SER 21 37 79 0.57 88 258 333 0.34 25 119 127 0.21

ALA 68 103 107 0.66 133 385 303 0.35 13 144 56 0.09

THR 17 41 45 0.41 84 291 293 0.29 50 145 178 0.34

VAL 53 98 84 0.54 128 308 288 0.42 12 60 64 0.2

LYS 2 11 10 0.18 65 325 288 0.2 24 193 104 0.12

ASP 6 20 25 0.3 80 268 278 0.3 47 167 164 0.28

GLU 3 7 10 0.43 58 289 269 0.2 36 180 178 0.2

ILE 49 83 85 0.59 114 242 256 0.47 4 33 39 0.12

ARG 4 14 20 0.29 27 185 235 0.15 6 85 79 0.07

PRO 12 18 19 0.67 146 229 229 0.64 85 144 141 0.59

GLN 3 17 11 0.18 16 186 191 0.09 7 94 124 0.07

PHE 36 60 63 0.6 92 193 188 0.48 4 23 20 0.17

ASN 3 14 8 0.21 50 206 182 0.24 28 110 131 0.25

TYR 7 40 15 0.17 31 158 165 0.2 4 23 64 0.17

HIS 7 18 20 0.39 24 118 116 0.2 4 37 32 0.11

MET 9 31 27 0.29 16 90 80 0.18 0 20 5 0

TRP 6 23 11 0.26 26 76 68 0.34 4 12 22 0.33

CYS 0 12 4 0 0 27 16 0 0 2 6 0

Total 438 838 0.523 1682 4612 0.365 536 1855 0.289

Continued on next page
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Table S3.8 – continued from previous page

Residue No.

correct

core

No.

native

core

No. de-

signed

core

No.

correct/

No.

native

core

No.

correct

No. na-

tive

No. de-

signed

No.

cor-

rect/

No.

native

No.

correct

surface

No.

native

surface

No. de-

signed

surface

No.

cor-

rect/

No.

native

surface

standard, no refE + unfoldedE

TRP 6 23 12 0.26 22 76 480 0.29 4 12 314 0.33

ALA 78 103 177 0.76 155 385 451 0.4 11 144 44 0.08

HIS 4 18 22 0.22 31 118 438 0.26 10 37 275 0.27

PHE 41 60 94 0.68 123 193 428 0.64 7 23 85 0.3

GLY 50 69 61 0.72 284 400 345 0.71 160 210 190 0.76

LEU 59 122 89 0.48 171 378 328 0.45 10 54 46 0.19

ILE 47 83 95 0.57 113 242 321 0.47 5 33 53 0.15

SER 18 37 74 0.49 68 258 282 0.26 13 119 110 0.11

MET 8 31 40 0.26 20 90 250 0.22 3 20 83 0.15

VAL 53 98 93 0.54 111 308 232 0.36 9 60 33 0.15

PRO 12 18 19 0.67 139 229 224 0.61 74 144 127 0.51

ARG 3 14 8 0.21 16 185 142 0.09 5 85 71 0.06

LYS 1 11 3 0.09 27 325 120 0.08 13 193 64 0.07

TYR 4 40 9 0.1 12 158 104 0.08 2 23 52 0.09

THR 6 41 14 0.15 34 291 102 0.12 18 145 52 0.12

ASN 1 14 1 0.07 21 206 93 0.1 14 110 77 0.13

GLN 2 17 2 0.12 13 186 88 0.07 6 94 69 0.06

CYS 1 12 18 0.08 2 27 67 0.07 0 2 24 0

GLU 2 7 2 0.29 20 289 65 0.07 12 180 53 0.07

ASP 4 20 5 0.2 23 268 52 0.09 13 167 33 0.08

Total 400 838 0.477 1405 4612 0.305 389 1855 0.21

standard, no refE + unfoldedE, hpatch-SASA

HIS 4 18 17 0.22 32 118 495 0.27 11 37 308 0.3

ALA 76 103 181 0.74 150 385 462 0.39 7 144 42 0.05

GLY 49 69 61 0.71 282 400 348 0.7 158 210 189 0.75

SER 17 37 80 0.46 74 258 339 0.29 15 119 112 0.13

TRP 4 23 15 0.17 23 76 313 0.3 5 12 168 0.42

LEU 60 122 88 0.49 176 378 301 0.47 10 54 29 0.19

ILE 52 83 95 0.63 114 242 298 0.47 6 33 52 0.18

PHE 39 60 75 0.65 101 193 293 0.52 5 23 51 0.22

ARG 3 14 5 0.21 20 185 247 0.11 10 85 153 0.12

VAL 59 98 97 0.6 115 308 237 0.37 8 60 30 0.13

GLN 3 17 4 0.18 17 186 213 0.09 9 94 174 0.1

MET 10 31 40 0.32 19 90 161 0.21 0 20 32 0

TYR 7 40 15 0.17 19 158 158 0.12 5 23 73 0.22

PRO 10 18 16 0.56 98 229 134 0.43 50 144 69 0.35

THR 7 41 16 0.17 38 291 130 0.13 18 145 67 0.12

GLU 1 7 3 0.14 21 289 117 0.07 12 180 88 0.07

ASP 3 20 5 0.15 29 268 104 0.11 18 167 77 0.11

ASN 1 14 2 0.07 27 206 101 0.13 16 110 85 0.15

LYS 1 11 3 0.09 19 325 94 0.06 6 193 40 0.03

CYS 0 12 20 0 1 27 67 0.04 1 2 16 0.5

Total 406 838 0.484 1375 4612 0.298 370 1855 0.199
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Command lines used in this work:
Design runs
mini/bin/fixbb.macosgccrelease
-database minirosetta_database
-s 1FKB.pdb
-ex1 -ex2 -extrachi_cutoff 0 -linmem_ig 10
-ignore_unrecognized_res -no_optH false -skip_set_reasonable_fold_tree -no_his_his_pairE
-mute core.io core.scoring core.conformation
[-score:weights ./hpatch_weights.txt]

Weight optimization runs
mpirun mini/bin/surface_optE_parallel.linuxgccrelease
-database minirosetta_database
-s nataa_recovery_pdbids.test.list
-optE:optimize_nat_aa true
-optE:fit_reference_energies_to_aa_profile_recovery true
-optE:n_design_cycles 10
-optE:mpi_weight_minimization true
-optE:optimize_starting_free_weights true
[ -optE:rescore:weights weights.txt -optE:rescore:outlog rescore.log ]
[ -optE:rescore:measure_sequence_recovery true ]
-optE:number_of_swarm_particles 75 -optE:number_of_swarm_cycles 30
-optE:repeat_swarm_optimization_until_fitness_improves true
-optE:free free_wts.txt -optE:fixed fixed_wts.txt
-ignore_unrecognized_res -no_optH false -skip_set_reasonable_fold_tree -no_his_his_pairE
-mute core.io core.pack core.scoring core.conformation
-ex1 -ex2 -extrachi_cutoff 0 -linmem_ig 10 -options:user

free.txt fixed.txt
fa_rep fa_atr 0.8
fa_sol omega 0.5
fa_intra_rep hbond_lr_bb 1.17
pro_close hbond_sr_bb 0.585
fa_pair dslf_ss_dst 1.0
hbond_bb_sc dslf_cs_ang 1.0
hbond_sc dslf_ss_dih 1.0
rama dslf_ca_dih 1.0
fa_dun hpatch 0.3
p_aa_pp

QUILT runs
quilt n 252 ep 1.4 R 1FKB.pdb

Sequence recovery runs
~/minibin/sequencerecovery.macosgccrelease -database ~/minidb/
-native_pdb_list seqrecovery.list -redesign_pdb_list redesigned.list
-ignore_unrecognized_res -mute core

Scoring runs
~/minibin/score.macosgccrelease -database ~/minidb/
-l redesigns.list
-ignore_unrecognized_res mute core
[-score:weights design_hpatch.wts]
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Chapter 4

A Generic Program for Multistate Protein
Design

The text of this chapter is adapted from a submitted manuscript that was co-authored with

Andrew Leaver-Fay, Ben Stranges, and Brian Kuhlman

4.1 Abstract

Multistate protein design optimizes a single protein sequence in multiple contexts given by

multiple structures (states). After a sequence has been imposed on each of the states, and

the rotamers on those states have been optimized, a fitness function must be used to capture

how well that sequence meets the design goals. The fitness function guides the search through

sequence space. We present here an implementation of multistate design where the user may

specify their fitness function from a text file. We test the implementation in silico with the

orthogonal interface redesign problem: redesigning a promiscuous protein to bind only a single

partner. We choose the RalA signaling network as the model system and make our design goal

a redesigned RalA that only interacts with the effector RalBP1 and not the other effectors,

Sec5 and Exo84. Negative design is used to explicitly disfavor binding between RalA/Sec5 and

RalA/Exo84. We find that multistate design is able to recapitulate experimentally character-

ized mutations known to disrupt Ral-effector interactions and predict many new mutations

that alter binding specificity. Single state design for Ral/RalBP1 does not significantly affect

the Ral/Sec5 and Ral/Exo84 interactions; only multistate design is able to destabilize both



negative states. Finally, we observe that expanding the set of negative state structures by

computationally redocking the structures output from design leads to greater accuracy in pre-

dicting negative state binding energies. The paper concludes with a discussion of some of the

challenges we encountered while performing negative design.

4.2 Introduction

In single-state protein design, the sequence of one or more proteins is optimized to minimize

the energy of a single conformation. Computational approaches for this optimization typically

search through sidechain sequence and conformation space simultaneously(1; 2; 3; 4; 5; 6; 7; 8;

9; 10; 11; 12). In multistate protein design, the sequence of one or more proteins is optimized

so that they will behave in different ways in different contexts. Computational approaches for

this optimization typically divide the search through sequence space and the search through

conformation space(13; 14; 15; 16; 17; 18); the sequence space search is performed in an outer

loop, and rotamer optimization for the outer-loop sequence is performed in an inner loop.

Formulation of the multistate design optimization problem is considerably more complicated

than in single-state design.

In multistate design, a fitness function must capture the quality of a sequence mathemat-

ically from the optimal energies of each of the states being modeled. Havranek and Harbury

maximized the probability of homodimer formation for a pair of coiled coils where their parti-

tion function included competing homodimer states as well as an aggregate state(13). Ambrog-

gio and Kuhlman optimized the sum of the energies of two conformations for a single sequence

so that it would form a monomer in the presence of zinc, and a trimer in its absence(14).

Grigoryan, Reinke, and Keating optimized the energy of basic-region leucine zipper (bZIP)

peptide heterodimerization under the constraint that the energy gap between heterodimers

and homodimers exceed some threshold(19). Ashworth et al. optimized the specificity of the

I-Msol1 homoendonuclease by favoring the binding energy for I-Msol1 to the target DNA se-

quence over alternate DNA sequences(18). A serious challenge in each of these design tasks

was formulating the correct fitness function to produce the desired protein behaviors.
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This chapter presents a multistate design implementation for solving arbitrary multistate

design problems: the software is generic in that it allows the user to program their fitness

function from a text file, encouraging the user to search through fitness-function space, and

not just sequence space. We test our multistate design implementation with the orthogonal

interface design problem where promiscuous protein A, which naturally binds proteins B, C

and D, must be redesigned so that A continues to bind B, but no longer binds C or D. We

demonstrate, in silico, that multistate design does a better job than single-state design in

preserving the AB binding energy while decreasing the AC and AD binding energies.

To succeed in obtaining specificity for the desired interaction, explicit destabilization, or

negative design, of some of the states must be used. To properly perform negative design, we

present an iterative approach where, after each round of multistate sequence design, we redock

the negative states (the AC and the AD species) to relieve strain introduced during design. The

resulting redocked conformations are then fed back into the next round of design, expanding

the pool of negative states that should be designed against. Due to the ease with which states

can be added to the design problem, and their energies managed through the fitness function

definition, we are able to demonstrate in silico what had previously been hypothesized about

this approach (13): that representing many conformations for the negative states improves the

accuracy of multistate design.

The Ral signaling network was selected as the model system for the interface redesign

task. Ral is a small GTPase protein that is involved in a wide variety of cellular functions

including endocytosis, transport and tethering of secretory vesicles to the plasma membrane,

regulation of transcription, and maintenance of the cytoskeleton, among many others (22)

(Figure 4.1). Ral exists in two isoforms, RalA and RalB, which are 82% identical, and has five

known effectors: RalBP1, Sec5, Exo84, Filamin, and ZONAB. The Ral signaling network is an

attractive system for testing the multistate design protocol for two reasons. First, structures

of RalB in complex with RalBP1 (PDB: 2KWI) (23) and RalA in complex with Sec5 (PDB:

1UAD) (24) and Exo84 (PDB: 1ZC3) (25) have been solved. Second, some amino acid positions

on Ral are contacted by more than one effector, making it a nontrivial design problem. We

decided to make our design goal to redesign RalA so that it only binds to RalBP1 and not the
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Figure 4.1: RalA signaling interactions and associated downstream functions. All effectors
shown interact with RalA in a GTP-dependent manner. Sec5 and Exo84 are subunits in the
heterooctameric exocyst complex, which delivers secretory vesicles to the plasma membrane.
RalBP1 has been implicated in receptor-mediated endocytosis from its interaction with POB1
and Reps1 (20). ZONAB is a transcription factor which regulates the expression of genes
containing inverted CCAAT boxes in their promoters(21). Not pictured is the interaction
between RalA and Filamin A. Figure taken from reference (22).

other effectors. Given the flexibility of our method, the goal could be easily changed to design

for one of the other effectors. We show that by using multistate design, we can recover the

known effector domain mutants of Ral and propose new RalBP1-specific mutants for testing.

4.3 Methods

4.3.1 Software

Our software separates its search through sequence space and its search through conformation

space. A genetic algorithm explores sequence space in an outer loop, and each state optimizes
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its rotamers for a given sequence in an inner loop. The energies produced in this inner loop

are fed to a user-defined fitness function that guides the genetic algorithm’s search through

sequence space. To keep simulations fast, the implementation uses MPI to distribute the inner-

loop calculations across multiple processors. The software is written as part of the Rosetta3

molecular modeling suite (26) and will be available in the 3.3 release. We rely on Rosetta’s

standard “score12” score function (27) and refer to units of this score function when referring

to Rosetta Energy Units (REU).

Genetic Algorithm

The genetic algorithm, described first in the context of mulitistate design by Havranek and

Harbury (13) and whose implementation comes from Ashworth et al.(18), maintains a popu-

lation of 100 sequences and is run for 15 ∗ |seq| generations, where |seq| is the length of the

sequence being designed (i.e. the number of positions being mutated). Between generation i

and generation i+1, the genetic algorithm propagates the 50 sequences with the best (lowest)

fitness, and generates 50 new sequences with 98% generated as point mutants from the best

50 sequences of the previous generation, and 2% generated as crossover combinations of exist-

ing sequences. These parameters were chosen by testing the algorithm at interface sequence

recovery with a fitness function described by the energy of the complex – effectively, single-

state design. These parameters yielded energies and sequence recovery rates comparable to

Rosetta’s existing single-state design algorithm (data not shown).

State Definition

A state in our implementation refers to one of the many possible structures on which a sequence

is being optimized. Each state is defined by three things: 1) a fixed backbone scaffold, 2) a

mapping between some or all of the residues on this scaffold and positions in the sequence being

optimized in the outer loop, and 3) a secondary packing file. The fixed backbone scaffold is

given by a PDB file; the sidechains present on this backbone at repackable positions can be

included in the rotamer set if the user desires. The mapping is given in a correspondence file

that lists which residues on the scaffold follow which positions in the sequence optimized by the

80



genetic algorithm. Each of the residues listed in the correspondence file are repacked in each

iteration through the outer-loop. The secondary packing file defines which additional residues

besides those listed in the correspondence file are allowed to repack; this is also referred to as

the secondary resfile, as Rosetta’s standard input file for describing how residues are allowed

to change is called a resfile. Examples of state definition files are given in the Supplementary

Materials.

Fixed Sequence Sidechain Optimization

At the start of execution, the program builds a fixed set of rotamers for all allowed amino

acids at each residue for each state. When a particular sequence is assigned to a state, the

program selects the appropriate subset of rotamers and performs rotamer optimization with

this subset. It uses a slight variation on the original FASTER algorithm(10) of first assigning

the backbone-minimum-energy conformation (BMEC) and then performing iterative single-

residue perturbation / relaxation (sPR) until convergence. It incorporates a performance

enhancement of only relaxing the ten neighbors of the perturbation residue that have the

greatest-magnitude-interaction energies with the perturbed rotamer (28).

Over the course of a multistate design trajectory, rotamer-pair energies are computed

as needed and stored in an interaction graph data structure for reuse (29; 11; 30) instead

of all being computed up-front; this saves roughly 25% of the pair energy calculations and

the memory needed to store those pair energies. Optionally, the user may set a ceiling on

the amount of memory dedicated toward pair energy storage. The interaction graph storing

pair energies for reuse honors that ceiling by discarding submatrices of rotamer-pair energies

for particular amino-acid pair interactions; it maintains a binary heap of amino-acid-pair-

submatrix-access orders and, when discarding a submatrix, chooses the submatrix whose most

recent access was furthest in the past. This behavior means that the same rotamer-pair energies

may be computed multiple times.
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Fitness Function Definition

The genetic algorithm evaluates the fitness function once for every sequence it examines; the

format for the fitness file is geared toward describing how the energies of all the states being

modeled, once they have been repacked with a particular sequence, should be combined to

compute the fitness for that sequence. This file has two responsibilities: state declaration and

fitness-function specification. The fitness-function-definition file format provides seven com-

mands to meet these two responsibilities. The seven commands are STATE, STATE VECTOR,

VECTOR VARIABLE, SCALAR EXPRESSION, VECTOR EXPRESSION, ENTITY FUNC-

TION and FITNESS.

Four of the commands rely on a common expression syntax, which allows arbitrary compli-

cated combinations of addition, subtraction, multiplication, division and (predefined) function

evaluations. The set of predefined functions available are: abs, exp, ln, vmax, vmin, pow, sqrt,

eq, gt, gte, lt, lte, and, or, not, and ite. The vmin and vmax functions are the vector-minimum

and vector-maximum functions, returning the smallest or largest element from a vector ex-

pression. The pseudo-boolean logic functions (e.g. gt is “greater than”) return 0.0 for false

and 1.0 for true. The if-then-else function (ite) takes three arguments: if the first argument

evaluates to a non-zero value, then it returns the value of the second argument, else, it returns

the value of the third argument. New functions can be easily added, but their addition would

require recompiling.

The STATE and the STATE VECTOR commands define states that are to be repacked

in each iteration through the outer-most loop. The syntax for a STATE command is:

STATE <varname> <pdbfile> <correlationfile> <secondaryresfile>

which both declares that a particular state should be modeled and declares the scalar variable

with the name varname which will be assigned the energy of that state after that state is

repacked. This variable can then be used in subsequent expressions. The STATE VECTOR

command is:

STATE_VECTOR <varname> <statefile>
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where each line of the specified state file should contain an ordered triple with the names of

1) a PDB file, 2) a correlation file, and 3) a secondary resfile. This command declares a set of

states which should be modeled, and declares a vector variable with the name varname which

will be assigned the energies of each of the states after they have been repacked. This variable

can be used in subsequent expressions. A vector variable is useful for when modeling many

states which are in some way interchangeable. In this paper, all states are declared inside state

vectors; and always, the lowest-energy state is extracted from the state vector with the vmin

(vector-min) function.

The SCALAR EXPRESSION command is used to express succinctly some value which is

useful in one or more later expressions or the fitness function itself. The SCALAR EXPRES-

SION command is:

SCALAR_EXPRESSION <varname> = <expression>

which declares the variable with the name varname which may be used in subsequent expres-

sions. Note that variables may only be declared once and are only assigned a single value.

They cannot be reassigned values in the way variables in most programming languages can be.

The ENTITY FUNCTION command allows the user to define arbitrary contributions to

the fitness function given the sequence assigned. The command itself is:

ENTITY_FUNCTION <varname> <entityfunctionfile>

The expressions defined in the entity-function file may again be composed using the same

mathematical expressions used to define the fitness function; the full file format is described in

the Supplementary Material. The user may compare the amino acid assigned to any position in

the given sequence against any other position, examine whether an assigned amino acid belongs

to a set of amino acids, and can, with that information, compose arbitrarily complicated (e.g.

non-linear and/or non-pairwise decomposable) penalties or bonuses. Such penalties could be

used a) to reward the placement of net positive charge on chain A and net negative charge

on chain B (assuming that local pH effects are negligible), b) to penalize making more than

X mutations to the native sequence, c) to penalize the design of a homodimer while trying

to design a heterodimer, or d) to reward the placement of exactly one tryptophan on each
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of chain A and chain B. Such penalties are notably non-pairwise decomposable and could

not be expressed in any piece of software performing single-state design with a purely pairwise

decomposable energy function. Of course, there is no guarantee that the penalties will produce

the sequences that the user is seeking, and may require the user to strengthen or weaken

individual terms to meet their needs. It should also be noted that these constraints do not

have access to the conformation of the states or to their energies, so it would not be possible

with these constraints to, for example, give a bonus to a sequence in which one structure forms

a hydrogen bond with residue 18’s backbone carbonyl.

Exactly one FITNESS command must be included in the fitness definition file. The com-

mand is:

FITNESS <expression>

The value the fitness expression evaluates to is the value that will be fed to the genetic algo-

rithm as the sequence’s fitness. Output PDB files are generated for all states whose energies

contribute to the fitness expression for the best sequences encountered in each design trajec-

tory. In the case that only one state from a state-vector contributes to the fitness for a given

sequence (e.g. the lowest energy state amongst the set, selected through the vmin function),

then only that state will be output.

Redocking

After each round of multistate design, we redocked the negative states to find alternate low-

energy conformations, and then designed against these alternate docked conformations in sub-

sequent rounds. We used the dock pert rigid-body docking protocol (31) that begins with

a small random rigid body perturbations of an initial docked conformation. Starting from

the output structures from multistate design, we split the two chains, repacked each chain

separately, and concatenated the repacked structures. This step relieved intra-chain colli-

sions frequently present in the negative states which the shorter docking local refine protocol

seemed willing to leave intact. These structures were then fed as input for fifty trajectories

of the dock pert protocol. The lowest energy docked conformation of these fifty was split, its
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chains repacked individually, and the ∆Gbind was calculated as the difference in energy of the

bound and unbound chains.

Figure 4.2: Iterative expansion of the negative state set. A) the crystal structure of
RalA/Exo84 used as the negative state in the first round of multistate design, B) the thirteen
negative states used in the second round, C) the thirty-one negative states used in the third
round, and D) the forty-nine negative states used in the fourth round.

4.3.2 Orthogonal Interface Redesign Task Workflow

For the actual design simulation, an iterative process was used where, starting with the crystal

and NMR structures as models for the positive and negative states, we ran multistate design

to generate candidate sequences and then ran rigid-body docking to relax the structures of

the negative states. Sequences were evaluated on the basis of the binding energy of both the

desired and undesired interactions after redocking.

Input file preparation: An important step in setting up the orthogonal interface design is

obtaining reliable starting structures for design. The crystal structures for the RalA/Sec5 and

RalA/Exo84 interactions were repacked and minimized using Rosetta to obtain low energy
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models. The structure of Ral/RalBP1 is more difficult to handle in this way because its

PDB entry is an ensemble of NMR models which vary in conformation considerably. (While

2KWI is actually the structure of the interaction between RalB/RalBP1, RalA and RalB have

complete sequence identity at all of the interface positions considered in this study. We assume

the two Ral isoforms bind RalBP1 in the same manner and use this structure to model the

RalA/RalBP1 state.) All of the models in the 2KWI structure were separated into individual

models, repacked, and minimized. We then chose the four lowest-energy structures, models 1,

15, 29 and 30, and redocked them with Rosetta (31). Model 30 produced the best docking

funnel and binding energy, and did not substantially change the conformation of the interface

(Cα RMSD < 2.0 Å). The lowest-energy docked conformation starting from model 30 was used

for the Ral/RalBP1 complex.

For convenience it is useful to describe the proteins modeled by different chemical species.

Each protein monomer is described as A (RalA), B (RalBP1), C (Sec5) or D (Exo84). The three

dimers can be described as AB (Ral/RalBP1), AC (RalA/Sec5) or AD (RalA/Exo84). The

AB species refers to the best repacked, minimized, and docked model 30 from 2KWI while AC

and AD refer to the repacked and minimized 1UAD and 1ZC3 structures respectively. The A

(RalA) species was further subdivided into A b, A c, and A d, which use the RalA coordinates

in the AB, AC, and AD dimers, respectively. The A species was divided in this way because

of differences in the backbone between the three dimer structures.

Choosing what to design: We decided to make our design goal a redesigned RalA that

retains its affinity for RalBP1 and has no affinity for Sec5 and Exo84. Two different setups of

the redesign task were performed with multistate design. In the first setup, we selected residues

on RalA that we thought could destabilize the interface between RalA/Sec5 and RalA/Exo84

without disturbing the Ral/RalBP1 interaction. The following list of residues were designed

in this setup: L14, Y36, E38, K47, A48, R49, S50, R52, Q63, and E73. Residues 14, 36, 63,

and 73 were chosen because they interact with either Sec5 or Exo84 and not RalBP1. The

other positions were included because of mutagenesis studies indicating these residues affect

Sec5 and Exo84 binding (25). Note that RalA residues A48, D49, S50 and R52 are in close

proximity to RalBP1; mutations to these residues would impact both RalA’s interactions with
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Sec5 and Exo84 and its interactions with RalBP1. Design at these positions is non-trivial.

For the second setup of this task, we excluded some of the already-characterized specificity-

determining positions and also allowed more residues at the Ral/RalBP1 interface to be de-

signed. From the structures of the Ral-effector complexes, mutations on Ral that disrupt

binding to each individual effector have already been identified. For example, the D49N mu-

tant of RalA disrupts binding to RalBP1 but not Sec5 or Exo84, and the D49E mutant disrupts

binding to Sec5 and Exo84 but not to RalBP1 (32; 33). Similarly, the mutations E38R and

A48W have been shown to destroy binding with Sec5 and Exo84, respectively (25). In or-

der to make the design task more challenging, we left these positions fixed to their native

amino acids. Additionally, for this setup we allowed more residues at the interface between

Ral/RalBP1 to be designed, to see if the binding energy of the positive state could be further

improved. Together, these changes expanded the number of designable residues from 8 to 16.

The residues allowed to change in this setup were L14, K16, Y36, K47, S50, R52, Q63, D65,

L67, E73, D74, Y75, A77, I78, N81, and Y82. With this design definition, we hoped to identify

new specificity-conferring mutations for Ral.

Fitness function definition: The fitness function used for design was constructed to use

the binding energy of the desired Ral/RalBP1 interaction and the binding energies of the

undesired RalA/Sec5 and RalA/Exo84 interactions. Using the nomenclature described above,

with AB, AC, AD, Ab, Ac, Ad, B, and C, representing the energy of each of the corresponding

dimer or monomer under a particular sequence assignment (Ab representing the energy of the

Ral backbone taken from the Ral/RalBP1 structure, Ac representing the energy of the RalA

backbone taken from the RalA/Sec5 structure, andAd representing the energy of the RalA

backbone taken from the RalA/Exo84 structure), the fitness function we minimized was as

follows:
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fitness = AB + w ∗ (∆∆GAB,AC +∆∆GAB,AD)

∆∆GAB,AC = ∆GAB −∆GAC

∆∆GAB,AD = ∆GAB −∆GAD

∆GAB = AB −Ab −B

∆GAC = min(AC −Ac − C, 0)

∆GAD = min(AD −Ad −D, 0)

where ∆∆GAB,AC and ∆∆GAB,AD represent the binding-energy gaps, and the binding-energy-gap

weight, w, balances the total energy of the AB complex with the binding-energy-gaps for AC

and AD. The weight was varied in independent runs between 1 and 12. We computed binding

energies by comparing the energies of the dimers with the energies of the monomers sharing

the same backbone conformations; this meant modeling extra states (Ac and Ad), but gave

more reliable results than if we had only modeled the Ab monomer. The Discussion section

raises this point again. Binding energies of the negative states were capped at 0. This cap is

also described in greater detail in the Discussion section.

We ran two separate single state design (SSD) jobs as controls for this method. These jobs

only optimized the binding energy of AB and ignored the binding energies of AC and AD. In

the first control run, we allowed design of all of the same residues included in the multistate

design setup-scheme 2 (SSD1). In the second control run, we designed only residues on RalA

that are at the interface with RalBP1, in an effort to mirror the way typical redesigns of only

one complex are done. The set of residues in this case was as follows: K16, A48, D49, S50, R52,

D65, L67, N81, Y82, R84, S85, G86. For both single state jobs, we used the same multistate

protocol as above except that the weight (w) of the fitness function is set to 0 to force the

design algorithm to ignore the binding energies of AC and AD.

Job management: Each batch of jobs was composed of two main features: the set of PDB
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files defining the states which should be optimized (the state version), and the set of residues

which were allowed to redesign and repack on each of the states (the design definition). Each

batch ran separate jobs for each combination of models of the positive state (AB) and weight,

w, on the binding-energy-gap bonus. A Python v2.6 script created the set of files necessary

for a single batch of multistate design jobs. This script, the set of input files necessary for

it, and the command lines we used to execute this script are provided in the Supplementary

Material. Following each round of multistate design, we redocked the AB, AC and AD dimers

using the RosettaScripts executable (34), and then repacked the monomers using the fixbb

(fixed-backbone design) executable. All simulations were performed with SVN revision 39931

of the Rosetta3 source code and SVN revision 39914 of the Rosetta3 database. Sequence

logos were created using WebLogo v.2.8.2 (35).

Design Designed sequence Total ∆GAB ∆GAB−AC ∆GAB−AD RMSD to native
no. Energy AB AC AD

wt lkyk srqd ledy ainy -466.2 -22.5 2.8 8.8 — — —

msd,1 WFKF sFSG lKQH SWDy -460.4 -25.9 -17.0 -11.8 0.1 4.5 0.8
2 EHKN sFEd YGRE STDF -465.5 -25.0 -15.8 -16.2 0.1 6.6 2.2
3 RRTQ sLVV YKRE SSDF -465.6 -25.0 -12.9 -15.5 0.0 6.0 1.3
4 DHTF sITd lKNQ SWDy -463.2 -24.7 -10.1 -13.8 0.1 0.6 1.0
5 EHKT sFES lKSR SLDy -462.6 -24.5 -14.6 -13.7 0.1 6.2 0.4
6 EHKT sFES lDSR SLDy -464.5 -24.5 -15.5 -14.9 0.1 6.2 0.4
7 KRRF sLVV lKQH SWDy -462.5 -24.2 -14.4 -14.5 0.1 0.9 3.3
8 EHKT sFES lDSR SLDy -464.3 -24.1 -14.8 -14.2 0.1 5.4 0.6
9 EHKT sFES lNSR SLDy -464.0 -24.0 -14.5 -15.8 0.1 5.4 1.8
10 EHKG sFEd lKQH SRDy -464.1 -23.8 -14.9 -12.8 0.1 6.3 4.8

Table 4.1: Selected orthogonal design sequences from setup-scheme 1. Sequences, energies (in
REUs), and RMSD’s of designs created multistate design (MSD) setup-scheme 1. All of the
MSD designs shown have binding energy gaps between the positive and negative states greater
than 10 REU.

4.4 Results

As a test of our multistate design implementation, we decided to use the protocol to redesign

specificity in the Ral signaling network. Our design goal for this task was to redesign RalA

so that it would only interact with RalBP1 and not with Sec5 or Exo84. The protocol starts
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Figure 4.3: Binding energy differences using multistate and single state design. Binding energy
differences between the positive state AB (Ral/RalBP1) and negative states AC (RalA/Sec5)
and AD(RalA/Exo84) following multistate design (MSD) and single state design (SSD). Bind-
ing energy differences between the native AB and AC, and AB and AD states (black) are shown
for reference. Consecutive rounds of MSD (red, blue, and purple) on protein A residues, listed
in Methods, decrease the binding energy to C and D by a larger magnitude than SSD. Two
different methods of SSD are shown: SSD 1 (green) allows design on the same residues as
MSD, and SSD 2 (orange) allows design on residues that are at the AB interface. Neither of
the SSD methods explicitly disfavor binding to C or D. AB binding energy maintained, in all
cases, between -22.0 and -25.0 REU.

with fixed-backbone design on each of the states, identifying mutations that either stabilize

the Ral/RalBP1 interface or destabilize the RalA/Sec5 and RalA/Exo84 interfaces. After the

design finishes, the RalA/Sec5 and RalA/Exo84 complexes are redocked. The redocked com-

plexes with the lowest binding energies are used as alternate conformations for the second round

of design. Figure 4.2 shows the expansion of negative state conformations for RalA/Exo84 seen

during three rounds of the design protocol. This process of design, redocking and feeding in

the low-energy docked conformation back into the next round of design can be iterated until
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the the desired binding energy gaps are achieved or the sequences converge.

Two different setups of the design problem were tested: one where known specificity-

changing positions on RalA were allowed to change and one where these positions were held

fixed. The set of residues allowed to change in each setup is described in the Methods. For

the first setup, any position on RalA that we thought could be used to improve specificity for

RalBP1 was allowed to change. The results of using the multistate protocol on this design

setup are shown in Table 4.1. All of the complexes output by the design protocol were redocked

before calculating the predicted binding energy. After only one round of design and docking,

many designs showed large destabilizations to the RalA/Sec5 and RalA/Exo84 interfaces while

maintaining native-like Ral/RalBP1 binding energies.

It was reassuring to us to see that the multistate protocol recapitulated some known

specificity-changing mutations. In some of the round 2 designs, glutamic acid-38 was mutated

to tryptophan. This mutation decreases Sec5 binding ∼600-fold while having no effect on

Exo84 binding (24). Lysine-47 in wild-type RalA was mutated exclusively to glutamic acid

in the round 1 designs. Fukai et al. found that the K47E mutation weakens binding to Sec5

10-fold and to Exo84 100-fold (24). Alanine-48 of RalA, part of the switch I region and at

the interface of all three effectors, is mutated to arginine in all of the round-1 and most of

the round-2 designs (and mutated to tryptophan in the other round-2 designs). A tryptophan

mutation at this residue was previously found to prevent binding of Exo84 but had no effect on

Sec5 (24). We suspect that this tryptophan’s effect on Exo84 binding is due to steric repulsion

and hypothesize that an arginine at this residue would work equally well. Unfortunately, not

all specificity changing mutations were recovered. The multistate design protocol failed to

identify the destabilization of both Sec5 and Exo84 binding induced by the glutamic acid

mutation at residue 49; instead, it placed an aspartic acid at this residue in all of the designs.

For the second design setup, we again used the iterative design and redock protocol to create

RalA variants optimized for RalBP1 binding. In this setup, we also compared the iterative de-

sign strategy against the simpler single-state design strategy, which used the multistate design

algorithm but optimized only for the energy of the Ral/RalBP1 state (Figure 4.3). Single state

design produced designs that have good binding energy for the target interface Ral/RalBP1,

91



but that also have good binding energy for the RalA/Exo84 interaction. In contrast, multi-

state design is able to produce the desired destabilization of both off-target interactions, as

is shown by the points in the lower left quadrant of Figure 4.3. Table 4.2 highlights a few

designs where both RalA/Sec5 and RalA/Exo84 were destabilized by at least 10 REU relative

to Ral/RalBP1 and the Ral/RalBP1 total energy has not been overly compromised relative

to the native.

Our results also show that iterative negative design improves multistate design. In the first

round of multistate design, the fixed-backbone models of RalA/Sec5 and RalA/Exo84 suggest

that these complexes cannot form; however, subsequent redocking of these complexes is able to

relieve collisions and find low-energy conformations. We measured the difference in predicted

binding energy gaps as reported by 1) the multistate design algorithm and 2) the subsequent

redocking step to yield a pair of ∆∆∆Gs, which we interpreted as a vector. The ”magnitude”

of this vector, taken as
�
∆∆∆G2

AB,AC +∆∆∆G2
AB,AD, gives a measure of the inaccuracy of

the fixed-backbone assumption. The median ∆∆∆G-vector magnitudes for rounds 1, 2, and

3 were 46.6, 16.3, and 10.1 REU showing that multistate design’s accuracy at negative design

increases as the number of negative states increases.

Many new RalA mutations that have not been previously characterized were found in

the second design setup. The designed amino acids from this second design setup fell into

three categories: those which appeared important for RalA stability or RalBP1 binding (often

including the native amino acid), those which appeared to destabilize either Sec5 binding or

Exo84 binding, and those which showed no clear preference. The sequence profile of these

designs is given in Figure 4.4. In most of the designs, multistate design chose the native Ral

amino acid for positions which are important for RalBP1 binding, or for Ral stability. For

example, serine-50, which is consistently recovered, forms hydrogen bonds with two residues

on RalBP1, threonine-437 and glutamine-433, and tyrosine-82, in the core of the interface,

maintains its contact with RalBP1 histidine-413. The wild type leucine at the very buried

position 67 is the most frequently selected amino acid at that position. Tyrosine is also

designed frequently at this position because it can form a good intramolecular hydrogen bond

with arginine-78. Similarly, multistate design preferred arginine or histidine, instead of the
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wild-type lysine, at position 16 because of weak intramolecular hydrogen bonds.

Multistate design readily identified positions that destabilized the negative states. Ral

positions 36 and 52 are important specificity positions for Sec5. Multistate design favored

lysine at position 36 because it creates a clash with Sec5 residue glycine-28. Similarly, it liked to

mutate position 52, an arginine in wild-type Ral which points out into solvent, to phenylalanine,

leucine, or isoleucine. These residues all create clashes with threonine-28 on Sec5. Several

positions appear to be important for preventing association with Exo84. Multistate design

frequently mutated residue 14 to glutamic acid which clashes with a loop in Exo84. The wild

type asparagine at position 81 in Ral makes two sidechain-backbone hydrogen bonds with

Exo84. Multistate design changed this position to aspartic acid exclusively, and its sidechain

cannot form hydrogen bonds in the low-energy redocked Exo84 structures. This aspartic acid

interacts favorably with RalBP1’s lysine at residue 421 in the Ral/RalBP1 design models.

Any large, bulky residue at position 78 can produce a clash with Exo84. Multistate design

favored placing arginine at this position, but even leucine is enough to cause problems. Finally,

multistate design almost always placed either the wild-type alanine or a serine at position 77.

Serine is a good choice for this position as it forms a small clash with the Exo84 backbone and

adds a favorable interaction with RalBP1 residue glutamine-417.

A number of positions, specifically 47, 73, 74 and 75, displayed no clear preference among

the designed sequences. Multistate design generally favored placing polar amino acids at

these positions given that they are surface-exposed. Except for position 47, none of these

positions look like they could provide significant amounts of specificity to the interface. The

wild type Ral tyrosine at position 75 participates in a hydrogen bond with Exo84 serine-276.

Multistate design removed this favorable interaction, and placed mostly histidine and arginine

at this position. Positions 63 and 65, natively glutamine and aspartic acid, respectively, are

in the middle of a beta-sheet in RalA and were also mutated to a wide variety of amino

acids. Multistate design displayed a small preference for glutamic and aspartic acids at these

positions. These mutations make sense as in the wild-type Ral/RalBP1 structure an arginine

residue on RalBP1, arginine-434, interacts with the aspartic acid at Ral position 65. This

same arginine residue can interact with a glutamic acid at position 63, if an aspartic acid at
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position 65 is not present.

Design Total ∆GAB− ∆GAB− RMSD to native
no. Designed sequence Energy ∆GAB ∆GAC ∆GAD AB AC AD

wt lkyk srqd ledy ainy -466.2 -22.5 2.8 8.8 — — —

ssd,1 VRyE srEd YDKy SRDy -472.5 -24.0 -2.2 -6.5 0.1 0.3 0.2
2 VRyF srEd FDEH STDy -469.1 -23.7 -1.9 -6.5 0.1 0.2 0.3
3 VRyE srEd YDKy SRDy -472.2 -23.3 -0.5 -4.4 0.1 0.1 0.2
4 VRyE srEd YDKy SRDy -472.1 -23.3 -3.7 -5.3 0.1 0.2 0.2
5 VRyE srEd YDKy SRDy -472.0 -23.1 -3.2 -5.4 0.1 0.1 0.4
6 VRyE srEd YDKy SRDy -471.9 -23.0 -2.8 -4.2 0.1 0.1 0.1
7 VRyE srEd YDKy SRDy -470.8 -22.9 0.9 -5.4 0.1 0.1 0.1
8 RRyE sHEE YDKy SRDy -471.1 -22.6 2.1 -7.3 0.2 0.1 0.9
9 VRyE srEd YDKy SRDy -471.1 -22.4 1.2 -5.3 0.1 0.1 0.2
10 VRyE srEd YDKy SRDy -471.1 -22.3 2.4 -4.3 0.1 0.1 0.1

msd,1 WFKF sFSG lKQH SWDy -460.4 -25.9 -17.0 -11.8 0.1 4.5 0.8
2 EHKN sFEd YGRE STDF -465.5 -25.0 -15.8 -16.2 0.1 6.6 2.2
3 RRTQ sLVV YKRE SSDF -465.6 -25.0 -12.9 -15.5 0.0 6.0 1.3
4 DHTF sITd lKNQ SWDy -463.2 -24.7 -10.1 -13.8 0.1 0.6 1.0
5 EHKT sFES lKSR SLDy -462.6 -24.5 -14.6 -13.7 0.1 6.2 0.4
6 EHKT sFES lDSR SLDy -464.5 -24.5 -15.5 -14.9 0.1 6.2 0.4
7 KRRF sLVV lKQH SWDy -462.5 -24.2 -14.4 -14.5 0.1 0.9 3.3
8 EHKT sFES lDSR SLDy -464.3 -24.1 -14.8 -14.2 0.1 5.4 0.6
9 EHKT sFES lNSR SLDy -464.0 -24.0 -14.5 -15.8 0.1 5.4 1.8
10 EHKG sFEd lKQH SRDy -464.1 -23.8 -14.9 -12.8 0.1 6.3 4.8

Table 4.2: Selected orthogonal design sequences from setup-scheme 2. Sequences, energies (in
REUs), and RMSD’s of designs created with single state design (SSD) and multistate design
(MSD). All of the MSD designs shown have binding energy gaps between the positive and
negative states greater than 10. None of the SSD designs are predicted to have this amount
of specificity.

4.5 Discussion

Here we have presented a generic implementation of multistate design which allows users to

rapidly customize the fitness function to be optimized, and have shown how the implemen-

tation can be used in the orthogonal interface design problem. In fact, the ease with which

new states can be added and their energies managed through the fitness-function-definition file

made it possible to perform multiple rounds of negative design, which to our knowledge has

not previously been reported. The implementation separates its search through sequence space
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Figure 4.4: Sequence propensity of RalA residues in designs created with multistate design
setup-scheme 2 for the orthogonal interface redesign task. Sequence logo of the designs pro-
duced by multistate design. Positions 50, 67, and 16 showed preferences for amino acids that
stabilized the RalA monomer or that stabilized the Ral/RalBP1 complex. Positions 36 and 52
showed preferences for amino acids that destabilized the RalA/Sec5 interaction; positions 14,
77, 78, and 81 showed preferences for amino acids that destabilized the RalA/Exo84 interface.
Positions 47, 73, 74 and 75 displayed no clear preferences, except for non-wildtype amino acids,
as the native amino acids formed favorable contacts with either Sec5 or Exo84.

and conformation space as many prior examples of multistate design have (13; 14; 15; 18), as

opposed to their simultaneous optimization in the belief-propagation algorithm presented by

Fromer et al. (36), or the reduced-representation, sequence-space-only optimizations presented

by Nautiyal et al.(37) and by Grigoryan et al. (38; 19). The explicit rotamer optimization

we perform in our inner loop was able to find interesting through-residue interactions where

one residue can pre-order a neighboring residue such that this residue’s interaction with a

third (or fourth) residue would be unfavorable; in contrast, Grigoryan et al.’s (38) score func-

tion, which represents amino-acid pair interactions by their average rotamer-pair interaction

energies, would likely be unable to capture this pre-ordering effect. In contrast to the multi-

specificity algorithms presented by Humphris and Kortemme (15) and Fromer et al.(39; 36),

the implementation is suited to perform both positive and negative design. We have tuned the

parameters of our genetic algorithm to behave as well as Rosetta’s existing single-state design
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algorithm at single-state design problems, but we have not compared the genetic algorithm’s

performance to the intriguing FASTER-MSD algorithm presented by Allen and Mayo (16),

whose implementation starting from our existing code should be straightforward.

The use of negative design in our simulations had some interesting and unexpected effects

on the results of design. Most of these effects stem from the use of fixed-backbones in our

simulations. There are three ways in which the fixed-backbone assumption affected our results.

The first two relate to restrictions on the rigid-body degrees of freedom connecting the two

chains, and the third relates to the restriction on the internal degrees of freedom in each

individual chain. We discuss our findings below which will be of interest to those seeking to

perform negative design.

In the first case, we found that multistate design would often introduce the largest collision

it could in the negative states in order to increase the gap between the positive and negative

state energies. This result is desirable if all negative states are destabilized; however, in many

trajectories, multistate design would introduce collisions into one of the negative states and

fail to destabilize the other. The fitness function rewarded a pair of binding energy gaps of

(-1000, +3) more than it rewarded binding energy gaps of (-10, -10). Allen and Mayo observed

a similar behaviors in negative design and chose to cap repulsive interactions between residue

pairs at +50 (16). This problem is due to the fixed backbone assumption. Once the apparent

binding energy from a particular conformation goes positive, that conformation can no longer

be considered valid; the model of two proteins held rigidly docked against each other breaks

down. There are two solutions to this problem: cap the binding energies for the negative states

at zero (which we did) or add an alternate undocked conformation containing both chains, but

where they are physically separated; this undocked conformation would presumably be chosen

as the minimum energy conformation once collisions had been introduced into all the other

docked conformations. The first solution is one CPU per negative species cheaper to execute.

Second, we found that rigid-body docking was often able to relax away collisions present

in the negative states that came out of the early rounds of design. Multistate design can

only design against states it can see, and there are a surprising number of low-energy docked

conformations for the negative states. Keating et al. (40) similarly noticed that allowing
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their backbones to relax after introducing mutations improved their ability to predict the

adopted conformations and binding energies of heterodimeric coiled-coils. Havrakek and Har-

bury (13) noticed that a single round of multistate design overstated the destabilization of the

heterodimeric species they were designing against; they suggested that the addition of more

states could overcome this problem and our in silico results are consistent with this hypothesis.

Our simulations demonstrate that the addition of alternate conformations for the undesired

interactions decreases the discrepancy between the energies that multistate design believes it

produces and the energies obtained after redocking.

Figure 4.5: Pitfalls of designing on multiple backbone conformations. Placing both F52 and
W63 on RalA (green) destabilizes its interaction with Sec5 (magenta). In the docked confor-
mation, the F52 and W63 rotamers collide in the least-awful-rotamer placement available. In
the unbound state (orange) these residues relax out of collision. W63 disrupts binding with
Sec5 through F52, but neither residue disrupts binding on its own. Unfortunately, W63 is
incompatible with the RalA backbones from the crystal structures, though it is compatible
with the RalB backbone in the NMR structure. Here, a discrepancy between the backbone
conformations of Ral in its various states leads to a questionable design.

The third way that the fixed backbone assumption impacted our results is more difficult

to describe. In the setup-scheme 1 designs for the RalA task, multistate design found a pair

of mutations, W63 and F52 (Figure 4.5), where the binding with Sec5 was disrupted, but
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at the cost of destabilizing the RalA backbone taken from the crystal structures (states Ac

and Ad). In contrast, the NMR models of RalB bound to RalBP1 were able to accommodate

these mutations. Since the Ac and Ad energies of the RalA monomers from the negative

states were invisible to the fitness function, multistate design dutifully chose these mutations.

The destabilization of the backbone conformation for RalA from the Sec5 crystal structure is

worrisome in this case because the section of the RalA backbone being designed has such high

agreement between the Sec5-bound and Exo84-bound crystal structures (though, the RalBP1-

bound NMR models showed significant disagreement). We did not want to disrupt the crystal

structure conformation. The fixed-backbone assumption was more of a requirement in this

case: we designed for a backbone we were unsure about (the NMR model) without considering

a backbone we were interested in preserving (the crystal backbone), but, if the same backbone

had been present in all three models, we would not have encountered this issue. We tried twice

to skirt this problem by docking the crystal structure of RalA against the RalBP1 models,

and by docking the RalA-NMR structures against the Sec5 and Exo84 models, but neither

approach resulted in good docking funnels or satisfactory binding energies. What to do?

There were two possible solutions: modify the fitness function to disfavor the destabiliza-

tion of the RalA crystal structure, or redefine the set of positions which are allowed to design.

Taking the first approach, one could have included the energies of the crystal forms of the un-

bound RalA states in the fitness function: fitness = AB +w ∗ (∆∆GAB,AC +∆∆GAB,AD) +

Ac + Ad. Such a fitness function has the unfortunate consequence of triple-counting stabi-

lizing mutations to the RalA structure. Alternatively, one could penalize the destabilization

of the crystal forms of RalA beyond some threshold: fitness = AB + w ∗ (∆∆GAB,AC +

∆∆GAB,AD) + max(Ac − x, 0)2 + max(Ad − y, 0)2 where x and y are some predetermined

constants representing an upper bound on how destabilized the RalA monomers could become

before the penalty kicks in. We went with the second option and expanded the set of des-

ignable positions. This change had the serendipitous effect of favoring sequences on the RalA

backbone which were compatible with all three structures; the fitnesses for the best designs

which lacked the F52/W63 pair were better than those with them.

It should be noted that the W63/F52 pair was preferred by multistate design not because it
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destabilized the RalA monomer, but because it destabilized the RalA/Sec5 interface. However,

if we had not compared the AC energy against the Ac monomer energy, but instead compared

it against the energy from a different backbone conformation, (e.g. if we had defined ∆GAC

as AC − Ab − C), then multistate design would have been able to destabilize the RalA/Sec5

interface by destabilizing the backbone conformation for RalA present in the RalA/Sec5 in-

teraction. This would be done by introducing intra-chain collisions within the RalA chain as

long as those collisions were not present in the Ab state. In some other design problem, this

might be a valid design strategy. For example, in orthogonal interface redesign for a protein

known to adopt different conformations to interact with different partners, destabilizing the

conformation required to interact with one partner is a fine way to destabilize that interac-

tion. The fitness function must be carefully constructed when designing on different backbone

conformations to ensure that the desired result is obtained.
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Chapter 5

Conclusion

The goal of protein design programs is to produce sequences that will fold and perform some

desired function. Most successes to date in protein design have been obtained using positive

design only. In positive design, sequences are optimized to fit well for one structure and one

function alone. Multistate design is a new approach to protein design which optimizes se-

quences simultaneously for the desired structure and against competing, undesired structures.

This dissertation describes the use of multistate design for two problems in protein design: the

de novo design of stable and soluble proteins and protein-protein interaction specificity. For

the first problem, negative design is used against the aggregated state via the development

of the hpatch score. Havranek and Harbury also applied negative design in this way, i.e. by

using a modified scoring scheme, to disfavor the aggregated state(1). The second way negative

design is used in this thesis is for improving binding specificity during protein interface design.

The previous chapter showed that in silico multistate design does a better job than single

state design in destabilizing undesired interactions in redesigns of the Ral signaling network.

In this chapter, I discuss how the hpatch score fits in with the other Rosetta energy function

terms and another way the score might be used in the future. This chapter will conclude with

some of the future directions and exciting applications of computational protein design on the

horizon.



5.1 Remarks about the hpatch score

Many different forms of the hpatch score were tested before arriving at the implementation

described in chapter 3. Early versions of the score were residue-centric, in that each surface-

exposed residue was assigned a score. The first version of the score looked only at the number

of hydrophobic residues around the residue being scored. The big flaw with this version was

that it gave a residue surrounded by four alanines the same score as a residue surrounded by

four tryptophanes. Subsequent versions of the score looked at the identities of the neighboring

side chains. The hpatch-fast score was one of the final residue-centric scores tested. Although

this score is good at identifying residues with greater-than-native amounts of hydrophobic

surface area surrounding them, designing with the score was not able to prevent patches

from forming. The key to obtaining a good score for favoring or penalizing some protein

characteristic is having a good measure of that characteristic. In the best case, there will

be a significant difference in that measure between native and designed proteins. The reason

patches were still able to form when using the hpatch-fast score is because most of the positions

in designed proteins had scores similar to those of natives. The score was looking at surface

hydrophobicity within a certain distance, and, in most cases, the value was not significantly

different from what is seen in native proteins. It failed to see that patches could form over

the area surrounding multiple residues. Only by implementing a true patch-finding approach,

as used by the hpatch-SASA score, was it possible to keep patches from forming on designed

proteins.

5.1.1 How the hpatch score fits in with solvation energy

The solvation energy of a protein is the change in free energy that occurs when transferring

a protein from vacuum to water. Typically the solvation energy is divided into nonpolar

and polar terms. The nonpolar term represents the cost of forming a solute-sized cavity

in water, solvent rearrangement and solute-solvent dispersion interactions, while the polar

term describes the energy of electrostatic interactions between the solute and the solvent(2).

Most programs estimate the nonpolar contribution to the solvation energy using surface-area

105



dependent models, pioneered by Eisenberg et al.(3). With these approaches, the assumption

is that the solvation energy of a protein can be obtained by summing up the contributions

of all atomic groups. The contribution of each atom to the solvation energy depends on the

solvent accessible surface area (SASA) of that atom and an atomic solvation parameter, a value

derived from amino acid transfer free energies. Because calculating SASA is time-consuming,

Rosetta uses the much faster Lazaridis-Karplus (LK) solvation model to calculate the nonpolar

contribution of the solvation energy. The LK model, also called EEF1, is based on volume

exclusion, and not on atom SASA(4). EEF1 estimates the solvation free energy by taking the

solvation free energy of a group i in a fully solvent-exposed reference state and subtracting

some energy to account for neighboring desolvating groups. The total solvation free energy

for the protein is then obtained by summing over all groups in the protein. How much energy

is subtracted from the reference state energy is determined by looking at how much volume

is excluded by each neighbor j around group i. The Lazaridis-Karplus method for calculating

solvation energy is very fast because it does not require the calculation of SASA.

In general, solvation energy terms penalize the burial of polar atoms and favor the burial of

hydrophobic residues. Why then does the LK model not penalize the formation of hydrophobic

patches? The answer lies in the reference state for the LK model. For most positions in a

globular protein, the folded state will be more desolvated than in the reference state. Therefore,

design of hydrophobic residues at these positions will be favored because of the energetic bonus

of desolvating a hydrophobic residue. To avoid designing all hydrophobic surfaces, Rosetta uses

the amino acid reference energies which exert their greatest effect to surface positions. The

reference energies favor the design of polar residues and offset the bias to design hydrophobic

residues by the LK model.

In some respects, the use of the hpatch score with the Lazaridis-Karplus solvation model

works similarly to a surface-area dependent solvation model. The LK model favors the burial

of nonpolar surface area and penalizes the burial of polar surface area. The hpatch score

complements the LK term and penalizes hydrophobic patches on the surface, not to be confused

with a penalty for hydrophobic surface area. Mayo and coworkers have experimented with the

use of a nonpolar surface area penalization term in their energy function(5; 6; 7). The concern
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with such a term is what effect it has on overall hydrophobic surface area. Protein surfaces do

have hydrophobic surface area, whether its for stability or for function, and a general nonpolar

exposure penalty may result in designed proteins with artificially low amounts of hydrophobic

surface area. Even if the penalty on this term was set to be low, clustering of hydrophobic

surface area into patches could still occur. The advantage of the hpatch score is that it penalizes

only large patches of hydrophobic surface area, not the total overall hydrophobic surface area.

The disadvantage of the score is that is requires the calculation of SASA which slows down

design simulations approximately 20-fold. For this reason, the hpatch score will most likely

be used as a filter in protein design protocols. Designs will continue to be created with the

standard Rosetta energy function and the hpatch score will be used during post-processing to

remove designs with large hydrophobic patches.

5.1.2 Decoy discrimination with the hpatch score

Predicting the three-dimensional structure of a protein from its primary sequence is still an

unsolved problem. Most structure prediction programs work by sampling protein conformation

space and then ranking candidate structures using a scoring function(8). These protocols can

generate thousands of models, called decoys, during a simulation. These decoys are then

typically clustered in some way and the lowest energy or best scoring structures are submitted

as the prediction. The key to obtaining the correct prediction comes down to the ability to

identify the native structure from thousands of other decoys, assuming the native structures

conformation was sampled during the protocol. In the world of protein structure prediction,

this recognition step is referred to as decoy discrimination. Protein folding program energy

functions are commonly trained and tested with decoy discrimination tests. In these tests, the

native protein, several relaxed natives, and thousands of incorrect structures are combined and

the energy function is asked to separate the native structures from the decoys. The better an

energy function can determine native from non-native, the better it should be able to predict

structure from sequence alone.

By scoring a feature not currently captured by the Rosetta energy function, the hpatch

score may be useful in ab initio structure prediction. To see if the hpatch score provides any
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Figure 5.1: Decoy discrimination tests using the pre-hpatch score. The scatterplots show the
Rosetta score, Rosetta with pre-hpatch score, and pre-hpatch score alone versus RMSD to the
native structure for 5 different proteins. Decoys are indicated with black dots, relaxed natives
are indicated with blue dots. These targets have been very hard to predict successfully because
the high-RMSD decoys have scores as good as the low-RMSD decoys and relaxed natives. The
pre-hpatch score seems to provide some amount of discrimination for proteins B and E, as can
be seen from the shift of the high-RMSD decoy points to higher scores.
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benefit in decoy discrimination, we used a preliminary version of the score (pre-hpatch) by

itself and in conjunction with the Rosetta energy function to identify the native structure in

a set of five CASP(9) targets that have been very difficult for Rosetta to predict successfully

(Mike Tyka, personal communication). The decoys in these sets of structures have native-like

Rosetta energies but high RMSD to the native structure. Therefore, finding a way to detect

these structures as being non-native is of high interest. Plots of Rosetta score, Rosetta with

pre-hpatch score, and pre-hpatch score alone versus RMSD for all five targets are shown in

Figure 5.1. In two of the five targets, the pre-hpatch score gives the high-RMSD decoys higher

energies than the native and low-RMSD decoys (Fig. 5.1B, E). It will be interesting to see

how the final version of the hpatch score and the optimized energy functions perform in these

tests.

5.2 Challenges for multistate design

Many design tasks taken on in the future will likely make use of multistate design. For

example, in a recent study by Suarez et al., the authors wanted to design an enzyme capable

of catalyzing two reactions(10). By using multistate design, in which sequences were optimized

for folding free energy and the de novo catalytic activity, the authors were able to redesign E.

coli thioredoxin so that it had esterase activity and retained the native oxidoreductase activity.

The biggest limitation currently for multistate design is the lack of high-resolution structures

for the modeling of negative states. One way to sidestep this issue is by using currently available

protein modeling tools to predict the negative states. Although structure prediction algorithms

are not perfect, de novo designed sequences can be fed into these programs to predict how they

will fold(11). If the folding trajectory converges on the design model, that gives support that

the design model will indeed adopt the desired fold. If the folding trajectory converges to other

structures, those structures can be used as negative states during a following round of sequence

design. This iterative approach to de novo design should increase the probability for obtaining

the target state fold. This idea also applies to the design of specific protein-protein interfaces.

Docking programs can be used to create negative states for interface design problems, as was
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done in Chapter 4.

In the near future, it will be desirable to compare different multistate design approaches

with experimental results to see which methods perform best. Since multistate design is

applied most to changing protein binding specificities, large protein-protein interaction data

sets will be needed. Obtaining these affinities one at a time even for small interface design

problems is not practical. Experimental methods that can quantitatively test large numbers

of interactions quickly, such as protein microarrays(12), will be needed to validate multistate

design algorithms. Grigoryan et al. recently described the use of coiled coil arrays to test their

implementation of multistate design(13). These protein-protein interaction data sets will also

be useful in training and testing energy functions for protein interface design.

5.3 Future directions for protein design

Computational protein design will likely be combined with directed evolution in future design

projects. Already a number of studies have used computational design with library screening

to rapidly obtain proteins with the desired function(14; 7; 15). In one of the first examples

of directed library screening, Hayes et al. succeeded in making β-lactamase mutants highly

resistant to the antibiotic cefotaxime(14). Treynor et al. used several computational methods

to design libraries of GFP variants and screened them for fluorescence(7). Guntas et al.

used a computationally directed library to engineer a protein-protein interface(15). Using

Rosetta to design a library, they were able to create E3 ubiquitin-ligase E6AP variants that

had nanomolar affinities for a variant of Ubc12. For new design projects, the library approach

will probably be taken a step further with the addition of directed evolution to optimize protein

properties. Computational protein design and directed evolution are very complementary in

that protein design energy functions can sample a much larger space than is accessible with

even the best screening methods in directed evolution, and directed evolution is not limited

by the inaccuracies that are present in protein design energy functions. The way these two

methods would be used for interface design would be that computational design would be

used create weakly interacting interfaces followed by directed evolution to increase affinity.

110



Karanicolas et al. used exactly this type of approach to create a pair of proteins that interact

with an affinity of 180 picomolar(16)! Computational design was able to create an interface

with 130 nM affinity, and directed evolution was able to find point mutants that increased

affinity 1000-fold.

Another area of future work in protein interface design lies in how sampling is performed.

A number of approaches currently under development are borrowing information from existing

protein-protein interfaces to increase the likelihood of success. Anchored design is an approach

where 1-3 continuous residues important for binding in a protein-protein interface, the anchor,

and placed in the same orientation into a scaffold protein. The residues surrounding this

anchor in the scaffold protein are then optimized for binding the target protein. Building

the interface around 1-3 residues that are known to interact with the target in some other

protein ensures that at least some affinity will be obtained for the target. Another way to

make protein interface design a little easier is to only go after certain types of interfaces.

For example, a number of interfaces are formed by two proteins pairing exposed βstrands.

Backbone-backbone hydrogen bonds largely determine how two βstrands will come together.

Targeting proteins with an exposed β-strand using scaffolds that also have exposed β-strands

ensures the proteins will, at the least, interact in the desired orientation. How strongly they

interact depends on how complementary the rest of the proteins are. Designing metal atom

binding sites at protein-protein interfaces is a third way of reducing the conformational space of

protein-protein interface design. In this approach, metal coordinating residues such as cysteine

and histidine are introduced on both sides of an interface in the proper geometry for metal

binding. The rest of the interface is designed as usual. If the interface is designed well, addition

of metal to the solution should lead to the proteins interacting. This approach has already

been used with some success(17; 18).

The scoring functions used by protein design programs to rank sequences are not perfect.

Identifying where and why the scoring functions fail and fixing them is critical for compu-

tational protein design to continue to have success. Scoring functions can be improved by

adjusting the parameters of the underlying score terms and/or optimizing the weights of the

various terms. Haidar et al. trained an energy function on a set of experimentally characterized
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enzyme/inhibitor complex point mutants and then used it to design a mutant T-cell receptor

(TCR) with 99-fold higher affinity to its MHC complex than the wild type TCR(19). Sharabi

et al. optimized the ORBIT energy function for side chain rotamer recovery and then used this

energy function in various interface design tests(20). Alternatively, new scoring terms can be

added as our understanding of protein folding and design improves. Sheffler et al. developed

a new score term for Rosetta which measures the quality of packing in the interior of proteins

and protein-protein interfaces(21). Very important to this long-term effort will be a way to

see how energy function changes affect performance in the various areas Rosetta is used. For

example, changes to the energy function that improve protein design may worsen the qual-

ity of predictions made during ab initio structure prediction. Having a system in place that

benchmarks performance in different areas will be key to further improvements of the energy

function.

5.4 New applications of computational protein design

Numerous applications of computational protein design have been discussed in this thesis.

Two uses of designed proteins not previously discussed are as therapeutics and biosensors. A

number of protein therapeutics are already in use and biologics represent the fastest growing

class of therapeutics being approved by the FDA(22). Most of these biologics are monoclonal

antibodies that are targeted to various extracellular receptors. Protein therapeutics for targets

inside the cell have largely been avoided because of the difficulty of getting drugs inside cells.

Liu et al. recently described an approach for delivering functional proteins into mammalian

cells. In the study, they were able to deliver active Cre recombinase to 5 different cell lines

by fusing the protein to GFP variants with high positive charge(23; 24). Other approaches

for delivering proteins into cells have been reviewed(25). Intracellular delivery of designed

proteins has the potential to revolutionize medicine. Computational protein design also offers

a unique way to study cellular processes in vivo. A very active area of work currently lies in

the design of biosensors, designed proteins that can detect changes in cells(26). Wu et al. were

able to design a Rac1 fusion protein that they used to study Rac1 interactions in living cells
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(27). By fusing the protein to the photoactivatable LOV domain, they were able to activate

Rac1 spatially and temporally to observe the active Rac1 phenotype very precisely. Finally,

not only can designed proteins be used to learn about signaling networks, someday they might

even be used to create synthetic cellular networks(28; 29).
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Appendix A

The Rosetta all-atom energy function

The functional form of each term in the Rosetta all-atom energy function. Equations repro-

duced from Rohl et al. (1) and Kuhlman et al. (2).

Lennard Jones

�

i

�

j>i

��
rij
dij

�12

− 2

�
rij
dij

�6
�
eij , if

dij
rij

< 0.6
�
−8759.2

�
dij
rij

�
+ 5672.0

�
eij , else

(A.1)

where i, j = residue indices, d = interatomic distance, e = geometric mean of atomic well

depths, and r = summed van der Waals radii

Hydrogen bonding

�

i

�

j

(− ln[P (dij |hjssij ]− ln[P (cosφij |dijhjssij ]− ln[P (cosψij |dijhjssij ]) (A.2)

where i = donor residue index, j = acceptor residue index, d = acceptor-proton interatomic dis-

tance, h = hybridization (sp2, sp3), φ = proton-acceptor-acceptor base bond angle, ψ =donor-

proton-acceptor base bond angle

Solvation

�

i



∆Gref
i −

�

j

�
2∆Gfree

i

4π3/2λjr2ij
e−d2ijVj +

2∆Gfree
j

4π3/2λjr2ij
e−d2jiVi

�

 (A.3)

where i, j = atom indices, d = interatomic distance, r = summed van der Waals radii, λ =

correlation length, V = atomic volume, ∆Gref ,∆Gfree = energy of a fully solvated atom
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Amino acid self-energy

�

i

− ln

�
P (aai|φi, ψi)

P (aai)

�
(A.4)

where i = residue index, aa = amino acid type, ψ, ψ =backbone torsion angles

Residue pair interactions

�

i

�

j>i

−ln

�
P (aai, aaj |dij , envi, envj)

P (aai|dij , envi)P (aaj |dij , envj)

�
(A.5)

where i, j = residue indices, d = distance between residues, aa = amino acid type, envi,j =

enviroment of residue i or j

Ramachandran torsion preferences

�

i

− ln[P (φi, ψi|aai, ssi)] (A.6)

where i = residue index, ψ, ψ = backbone torsion angles (36o bins), aa = amino acid type,

ss = secondary structure

Rotamer self-energy

�

i

− ln

�
P (roti|φi, ψi)P (aai|φi, ψi)

P (aai)

�
(A.7)

where i = residue index, rot = Dunbrack backbone-dependant rotamer, aa = amino acid type,

ψ, ψ = backbone torsion angles

Reference energy

�

aa

naa (A.8)

where aa = amino acid type, n = number of residues
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