AN XML DTD FOR PROJECT GUTENBERG

Cynthia L. Blue

A Master's project submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements
for the degree of Master of Science in
Information Science.

Chapel Hill, North Carolina
April, 2001

Approved by:

Advisor

XML and Project Gutenberg 2

Abstract

Cynthia Blue. An XML DTD for Project Gutenberg. A Master’s project for the Master’s
of Science in Information Science degree. April, 2001. 76 pages. Advisor: Gregory B.
Newby.

Project Gutenberg is an electronic collection of documents and literature, the majority of
which exist in ASCII format. While the ASCII format has been an almost universally
accessible format since the Project started in 1971, the possibilities and advantages of
marking up the texts with the Extensible Markup Language (XML) are compelling.
Related efforts are detailed and analyzed for viability with the Gutenberg texts. This
project presents a direction for the future of this effort and a DTD suitable for the
collection. The prepared DTD provides the schema against which 5 test documents are
marked up with XML. A tutorial based on my experiences marking up the text and an

index of the available elements are included.

Headings:
XML (Document Markup Language)
Document Type Definitions (DTDs)

Schemas

XML and Project Gutenberg 3

An XML DTD for Project Gutenberg

Project Gutenberg is an online collection of documents and literature that is freely
available to anyone with Internet access around the world. Michael Hart started this
project in 1971 when he received an account and one hundred million dollars worth of
computer time at the University of Illinois Materials Research Lab. He felt that “the
greatest value created by computers would not be computing, but would be the storage,
retrieval, and searching of what was stored in our libraries” (Project Gutenberg, 1992).
Upon this windfall, he decided to use his account to convert literature to plain ASCII text,
in order to create a universally available electronic repository of literature and
documents. The first document on the network was the “Declaration of Independence,”
and texts such as the King James Bible and Edgar Allen Poe poetry followed. The
collection’s only restrictions are that the texts would have a large audience, and are in the
public domain, or otherwise have authorization to appear on the site. Throughout the
remainder of this paper, the word “text” is used to summarize the whole host of genres
contained within the Gutenberg collection.

In 1971, not nearly as many electronic formats were available as exist currently.
The reason that the ASCII format was chosen was due in major part to the fact that 99%
of the world’s computers can read these characters. The Gutenberg philosophy of a
universally available electronic document was supported by this format, and still is today.
While many have wondered about the viability of this format, as compared to others, the

ASCII format of text has been the only that could meet the following criteria:

XML and Project Gutenberg 4

» Ease of use, as was important to the philosophy of the project;

» As universally available as possible;

» Cost effective;

* Viable as operating systems, hardware and software change.

Today, the Project maintains over 4,000 “plain vanilla ASCII” texts that do not
contain additional markup. In regards to this issue, the Project website reads:

Thus any complaints about how we do italics, bold, and the underscoring, or

whether we should use this or that markup formula are sent back with

encouragement to do it any ways any person wants it, and with the basic work
already done, with our compliments... We need to have e-texts in files a Plain

Vanilla search/reader program can deal with; this is not to say there should never

be any markup...just those forms of markup should be easily convertible into

regular, Plain Vanilla ASCII files so their utility does not expire when programs

to use them are no longer with us (Project Gutenberg, 1992).

The languages and applications that are currently available to process texts are
changing rapidly. If the project were to add another format, finding a stable markup
language would be key. Project Gutenberg cannot commit to a language that would
require one to go through and modify each text as the markup language develops. In
recent years, how often have we had problems opening documents that are in previous or
latter version of the software that we are using, or that was developed in software that no
longer exists? We have become accustomed to updating our documents to the latest
version of software that we are using, but the ASCII texts have been functional and
accessible for 30 years.

Another very important factor to consider when attempting to change, reformat or

markup the Gutenberg texts in any way is that the size of the collection will prohibit

volunteers from effectively maintaining the texts. Certainly, scripts can be written that

XML and Project Gutenberg 5

could easily modify the texts, but the size and variety of the collection would prohibit any
thorough quality assurance efforts. A plain ASCII version of the text should always be
available, but the Project would be prematurely limiting options if new standards for
markup were never investigated.

In 1971, providing free, universally available texts was a revolutionary step as
disk space and processing speed were limited. However, current times have brought
drives with gigabytes of storage space and extremely fast processors. Some markup
languages can chunk the texts into separate files that will take up less storage space.
Most importantly, though, the users’ expectations of electronic texts have changed,;
expectations of appearance, format and usability have increased. Markup languages can
provide an efficient way to meet these expectations. Of all of the markup languages and
variations upon the languages that have appeared in the last 30 years, one in particular
has received a lot of attention in the past few.

XML Introduction

In the past few years, the attainable glories that the Extensible Markup Language
(XML) could provide to web applications have been proclaimed, questioned and tested.
While this introduction will not provide a detailed overview to XML, its functions and
possibilities must be introduced.

XML's roots lie in the Standard Generalized Markup Language (SGML). SGML
was developed as means for indicating the meaning and structure of documents, but was
so complex that widespread usage was never realized. The Hypertext Markup Language
(HTML), used for formatting purposes, proved to be a small but functional enough subset

of SGML to encourage greater usage. However, as the number of web developers

XML and Project Gutenberg 6

proliferated, the use of the HTML tags was pushed beyond stylistic purposes. The
myriad possibilities for Internet applications became clearer and included such
applications as data transfer, document management, information sharing and e-
commerce. The World Wide Web Consortium (W3C) started a working group for a new
subset of SGML, XML, in January 1997. The group "proposed a markup language that
could work in concert with existing Web technologies, using some of the tools developed
for use with HTML, while moving forward with more manageable techniques" (St.
Laurent, 1999, p.11).

The philosophy of XML is based on a few fundamental principles (Usdin &
Graham, 1998).

1. Separation of Content from Format: The role that a piece of information plays
should be distinguishable from the information’s appearance. Information’s use,
role, or nature in a particular application should be identified. For example,
"knowing that a phrase is in italic is useful; knowing that it is the title of a
subsection of a paper is more useful; and knowing that it is a genus and species
name is potentially more useful still" (p.126).

2. Hierarchical Data Structures: In XML, the data is assumed to be hierarchical; a
piece of information may contain other pieces of information. For example, a
book contains several chapters, each of which contains sections. Each section may
have a heading, paragraphs and subsections, which also contain a heading and

paragraphs.

XML and Project Gutenberg 7

3. Embedded Tags: XML documents consist of tags that identify where the data

structures begin and end. Tags can have attributes that provide additional
information about the data within the tags.

User-Definable Structures: As mentioned above, XML is a tool, and it defines a
method of customized tag creation while still providing flexibility and

extensibility by not providing a standard tag set.

XML and Project Gutenberg

The Gutenberg texts could benefit from being marked up in XML. Particularly:

ASCII presentation is bland and readers’ expect more. With XML, conversion of
the text for different formats is simple.

ASCII only supports the English character set; XML’s default is 8-bit Unicode,
which allows for alternate character sets.

The current documents have unstructured content which presents a major
drawback for searching; XML can describe the structure and content of the texts
(Boumphrey, 2000a).

Texts could easily be converted back to plain ASCII text.

Formatting can be applied to the texts with the use of Cascading or Extensible
style sheets.

From conception, the purpose of this project was to design a Document Type

Definition (DTD) for Project Gutenberg. However, very quickly upon beginning

research on the topic, many other viable options surfaced. Formatting, downloading,

searching, or otherwise processing the texts are the fundamental reasons for marking up

the texts, and often drive the DTD development process. However, no true standard has

XML and Project Gutenberg 8

emerged from among the various electronic publishing efforts. “There are many other
scattered efforts, and there is indeed a great need for a source to co-ordinate and
centralize all these efforts, so that they do become truly available to everyone”
(Boumphrey, 2000a).

Many factors that have been presented in the previous sections introducing
Project Gutenberg and XML are worth repeating here. Before the various available
DTDs are detailed, the fundamental philosophies of Project Gutenberg and the value that
XML can add to the texts should be kept in mind.

1. Any DTD used for Project Gutenberg should be free and publicly available, a

concept that is at the center of the Project Gutenberg philosophy.

2. In order for a majority, and hopefully all, of the documents to be marked up
by volunteers, the DTD must be intuitive and easy to learn.

3. The DTD must be flexible enough to accommodate all different types of tests,
from government documents to poems. “The aim is to...be suitable for:
books, poetry, plays, saga's, diaries, compendiums, letters, mixed content,
atlases, encyclopedias, dictionaries, historic documents, scientific documents
and parallel translations” (Boumphrey, 2000b).

4. The processes that will most likely be applied to the texts are formatting,
searching, downloading; DTDs designed for more complex application
processing may be unnecessarily complex.

The various electronic text markup efforts provide varying advantages and

disadvantages for the Gutenberg collection. Each of these efforts is presented below, and

must be considered with all of these issues in mind.

XML and Project Gutenberg 9

Related Efforts and Approaches

Open eBook Initiative

The Open eBook (OeB) Initiative is an organization concerned with bringing
together various markup standards in the eBook and epublishing worlds. The OeB
released the final 1.0 version of the Open eBook Publication Structure specification in
September of 1999. It defines the format for electronic content and a standard for
representing the content of electronic books. Specifically, the specification intends to: (a)
give eBook content and tool providers common guidelines to ensure accessibility and
consistent presentation of electronic content over various eBook platforms, (b) reflect
established content format standards, (c) provide the suppliers of electronic-book content
a format to use for supplying to multiple reading systems.

The specification is based on the assertion that electronic-book technology cannot
achieve widespread success in commercial markets unless reading systems much have
convenient access to a large quantity and variety of texts (Open eBook Forum, 2000).

A noteworthy point on the eBook standard is that it uses a combination of HTML,
XHTML and XML. While HTML is the markup used for formatting and appearance,
and XHTML is a structural language that describes the structure but not the content, this
combination of markup languages may not be desirable for Project Gutenberg’s
movement towards a straight XML markup. “The consortium's goal is to bring the Open
eBook standard as close to XML as possible. It will, however, take a few years to reach
that point, allowing time for hardware designs to catch up. Current e-book designs use

processors that are not powerful enough to render XML code” (Spooner, 1999).

XML and Project Gutenberg 10

Although the OeB is not pure XML, it is based on the general belief that its
flexibility and simplicity will support the lifespan of electronic documents, and support
compatibility and interoperability across systems. “[P]articipants...are concerned mostly
with an interoperable data specification ...[to] promote the rigorous separation of
structure and rendering semantics, ...to reconcile supporting innovation with maintaining
interoperability, and establish a foundation for supporting internationalization.” (Cover,
2001). Over 100 participants have collaborated on these standards including such well-
known and influential organizations as Microsoft and SoftBook Press (DeRose & Renear,
2000).

This specification defines two DTDs, the package DTD and the basic OeB
document DTD. The package provides the base of the publication which reading systems
would use to find and organize the text’s components. The basic OeB document DTD
maps the HTML subset described in this specification (Open eBook Forum, 1999).

Project Gutenberg would certainly benefit from the knowledge imparted by the
OeB efforts. However, since many of the biggest commercial players in the eBook and
epublishing markets have been involved with its development, one needs to consider the
role of the Gutenberg texts in the eBook world. The Gutenberg texts would greatly
benefit from some form of markup for flexibility of format, appearance and processing,
but they were never intended to compete with the publishers and other content providers.
Also, the OeB is concerned with hardware developers, whereas Project Gutenberg may
not take the needs of hardware developers into consideration. Furthermore, these
standards are currently fraught with contention and debate, and may continue to change

for quite sometime into the future, contrary to the previously established requirement of a

XML and Project Gutenberg 11

stable DTD for Project Gutenberg. Thus, some lessons can be learned from the OeB, and
perhaps incorporated into the DTD, but the OeB package DTD cannot be considered a
complete solution for the Gutenberg markup efforts.

Project Perseus

Project Perseus at Tufts University is a Digital Library that includes various
SGML and XML tools for document management and analysis. The tools were
originally developed for Ancient Greek, but were extended for use with Latin and Italian.
Their efforts include storage, morphological and lexical analysis, metadata and
cataloguing efforts, and display of texts (Mahoney, Rydberg-Cox, Smith and Wulfman,
2000). The Project is notable and worth watching, and some interesting lessons can be
extracted from their efforts. Currently, they are trying to generalize their tools for use
with other languages and projects. The system developed could be packaged and offered
to similar projects as open source in the near future.

Upon first researching the Perseus efforts, it seems as though many of the same
concerns and difficulties of marking up the Project Gutenberg texts has also been
considered with their efforts. “One of the greatest challenges in building and maintaining
a large, heterogeneous [Digital Library] is the necessity of managing documents with
widely varying encoding and markup practices...varying DTDs...” (Smith, Mahoney,
Rydberg-Cox, 2000). Texts in the collection vary in structure and use diverse DTDs.
The most common DTD used for Project Perseus texts is based on TEI, but the abstract
meanings of the elements of all DTDs used are mapped to one structure. This system
attempts “to extract structural and descriptive metadata from these documents and deliver

document fragments on demand; and to support other tools that analyze linguistic and

XML and Project Gutenberg 12

conceptual features and manage document layout...” (Smith et al, 2000). While Project
Perseus is a very flexible and modular document management system, it is way too
complex for Project Gutenberg.
DocBook

“Because DocBook is a large and robust DTD, and because its main structures
correspond to the general notion of what constitutes a ‘book,” DocBook has been adopted
by a large and growing community of authors writing books of all kinds” (Cover, 2000).

DocBook is an SGML DTD that was designed for marking up books about
computer hardware, software, and other technical documentation. It was started by
Norman Walsh in 1991, but was recently turned over to a technical committee of the
Organization for the Advancement of Structured Information Standards (OASIS) for
maintenance and development (Walsh & Muellner, 1999). While the official DocBook
distribution is an SGML DTD, an XML DTD based upon DocBook version 3.0 has been
under development for some time.

While DocBook is perhaps the most fleshed out and widely used DTD, the
simplified version alone was 26 printed pages on 8% by 11” paper in 10- poi nt
courier font. While this one DTD may accommodate several different types of texts
in Project Gutenberg, the lengthy and complex detail that lends to the DTDs flexibility
may be a hindrance to volunteers’ support. Even to people experienced with XML, the
notation is difficult to learn, and finding the elements that would be needed to markup a
simple piece of literature from the Gutenberg collection proves complicated. “DocBook
is not really suitable for working with literature, though it is (obviously) fantastic for

technical documentation” (Meggison, 2000). Furthermore, Norman Walsh owns the

XML and Project Gutenberg 13

copyright to the DTD, which is unlike most items in the collection that are in the public
domain.

HTML Writers Guild

The HTML Writer’s Guild (HWG) is a not-for-profit educational organization of
self-proclaimed HTML professionals that support the use of good quality markup in web
pages. In a volunteer effort to help markup the Project Gutenberg texts, members worked
to design a set of XML DTDs for the collection, and to encourage their members and
others to participate in the markup. While it seems that activity on this effort has waned
since the Spring of 2000, over 50 texts were marked up as of March 2000 in response to
their activities. “There are numerous DTDs that can be used...we are encouraging
everyone to use either XHTML, or one of our modular DTDs or TEI...any DTD you
want, however it must either be widely available to the public...” (HTML Writers Guild,
2001).

Frank Boumphrey, now President of the HWG, was very active in this effort; he
wrote the DTDs and all of the online documentation for this project. In an online
discussion forum about the differences between the various standards efforts and their
own, Mr. Boumphrey stated:

We have an open mind about eBook. Indeed we have an open mind about all

DTDs. We have people marking up documents against DocBook, TEI and

XHTML. If any one wants to use eBook to mark up books that’s fine by us, all

we ask is that the DTD used is freely available.

My own reservations about eBook are that it appears to mix css with XHTML for

a styled markup, and | feel that markup of historic documents should be entirely

semantic plus structure. So if that is what the marker wants to do | would prefer

XHTML plus a style sheet, but that is purely a personal opinion, officially the
marker can use eBook....

XML and Project Gutenberg 14

In fact 90% of the books marked up so far have used one of our own DTDs,
which are designed to be both descriptive and easy to use (2000c).

The Text Encoding Initiative

The Text Encoding Initiative (TEI) was established in 1987 in the hopes of
reducing the number of existing encoding practices and encouraging the sharing of
electronic texts. The TEI SGML DTD is large, flexible, and very widely used. Members
of the research and academic community with interests in the humanities computing
community, worked to develop a common method for encoding textual structures. Under
the auspices of an international cooperative project and with support from the Association
for Computers and the Humanities, the Association for Computational Linguistics, and
the Association for Literary and Linguistic Computing, the TEI DTD was developed.

Participants felt that their scheme could easily be extended to other text encoding
efforts, and considered TEI to be able to meet the markup requirements of myriad
disciplines. “Thus, the TEI became the only systematized attempt to develop a fully
general text encoding model and set of encoding conventions based upon it, suitable for
processing and analysis of any type of text, in any language, and intended to serve the
increasing range of existing (and potential) applications and use” (University of Virginia
Library, “...: Note™).

Specific objectives of TEI include the creation of a standard format for data
interchange and guidance for marking up texts in this format, providing a scheme that
would work for any feature studied by researchers, while remaining application
independent (University of Virginia Library, “...:Underlying principles”).

Several efforts to manage electronic texts and digital libraries include texts

marked up with the TEI DTD. Oxford University and the University of Virginia both

XML and Project Gutenberg 15

maintain large collections of electronic texts marked up with the TEI SGML DTD
(Boumphrey, 2000a). Simplified versions of the full DTD, also known as TEI Lite, seem
to be popular, and are intended to be easier to learn and use. An XML version of the
DTD is also under development.

Because of its roots in the humanistic research community, the TEI scheme would
likely be the closest option to a complete standard that would work for marking up the
Project Gutenberg texts. The Initiative is faithful to their goal of providing high levels of
clarity, flexibility, and extensibility; however, this DTD is also very complex and
difficult to learn, and would certainly require that very technically proficient volunteers
markup up the texts.

Summary and Rationale

With the groundwork for Project Gutenberg and XML laid, and the various
electronic text efforts and DTDs presented, the remainder of this paper details the
decisions that guided my project. While keeping in mind that the fundamental goals of
marking up the Gutenberg texts are to maintain an electronic version of texts in the public
domain that are as universally available as possible while maintaining an easy to use
format at a low cost, the means are clear. While DocBook is one of the oldest, most
widely used DTDs available, its origin in technical documentation becomes quickly
apparent in its difficulty to read and understand. TEI is also fairly difficult to learn,
although it comes closer to the needs of Project Gutenberg in that it was developed
around the humanities. Project Perseus was developed for Ancient Greek texts, and may
perhaps be an effective extension of the TEI Lite DTD, but its concentration on

morphological analysis and presenting lexica make it a much more powerful tool than

XML and Project Gutenberg 16

necessary for Project Gutenberg’s needs. The HTML Writer’s Guild has put together
some very user-friendly yet comprehensive DTDs specifically designed for the
Gutenberg texts, and thus seems the right direction for this project. Their DTDs, though,
could be improved upon to extend their capabilities, simplify use, and facilitate
management of the texts. Their coverage of the parts of a book, poem, and play seem
very comprehensive upon first examination, and were in part derived from The Chicago

Manual of Style. Adopting this structure would serve as a great advantage to this effort

by eliminating that initial process. For these reasons, the remainder of this paper will
detail the current DTDs, how and where | feel they can be improved upon, and a DTD
with my suggested changes.

A few issues regarding the logistics and direction of the DTD should be
considered before proceeding with the details. First, the HWG efforts allow and
encourage markers to use any DTD they feel comfortable with; the advantages of
allowing this may or may not outweigh the potential processing problems. While
allowing the use of multiple DTDs may encourage more volunteers to participate in
marking up the document, this may hinder effective searching of the collection. “A
programmer wishing to extract all of the book titles mentioned in a collection of
documents marked up in varying DTDs may have to look for <cit> in some documents
and <title> in others, whose DTD might use <cit> to mean a piece of quoted text” (Smith
et al, 2000). If the primary purpose of marking up the Gutenberg collection is purely
aesthetic, then use of varying DTDs is acceptable. However, if these types of processing

issues would burden future applications, than only one DTD should be supported. The

XML and Project Gutenberg 17

managers of Project Gutenberg should ultimately decide the guidelines for marking up
the documents with varying DTDs based on their goals.

Another outstanding decision is concerned with the documents that have already
been markup up by the HWG volunteers. For example, should an element name change
in the new DTD to a more intuitive name, should it matter that these documents will not
work with the new DTD? | decided not to concern myself with the texts that have
already been markup up, partially because the marked up documents number only about
50, a seemingly manageable number to revise, and because the goal of this project is to
create a DTD to meet the needs of the Project, not to accommodate what has already been
done.

While this DTD will not conform other publishing standards, it should still meet
the basic requirements of the XML Specification from the W3C, in order to potentially
increase the lifespan of Gutenberg XML documents, including:

« all documents are well formed,;

« documents have the correct XML declaration;

+ encoded in UTF-8 or UTF-16;

« empty elements uses only the empty element syntax with white space before the
trailing slash;

+ all element and attribute names must be in lower case.

Finally, if one single DTD is to be successful, the DTD must be flexible enough
to accommodate almost any possible document structure. Few constraints should be
placed on the order of elements, or the requirements on them. Furthermore, some 1,700

volunteers (Miller, 2001) that currently participate in the maintenance of the project may

XML and Project Gutenberg 18

be called upon to help to markup the documents. While someone may feasibly create
scripts that will markup the documents automatically, the DTD should still be as intuitive
and flexible as possible for volunteers to use.

Methodology

Top-level Structure

The HTML Writer’s Guild DTDs are four comprehensive, but individual DTDs:
gutbook1.dtd for books, gutplayl.dtd for plays, gutpoems1.dtd for poems, and
gutbkplayl.dtd for books with pieces of plays in them (HTML Writer’s Guild, 2001b).
Each of these four DTDs contains only the top-level DTD structure for the Gutenberg and
contains a reference to another DTD that contains the elements for the actual document
content. In other words, the actual “gutplay” DTD only consists of elements for the
metadata, and refers to another DTD, “playfrag” as an entity with <! ENTI TY %
pl ayfrag SYSTEM "pl ayfrag.dtd"> %l ayfrag; .

The benefit to structuring a DTD in this manner is not evident. My assumption is
that the purpose of this scheme was to separate the actual text from the Gutenberg
information; however, this is really not necessary with the processing capabilities
intrinsic to the XML language. This structure requires that the volunteers that are
marking up the documents understand the eight separate DTDs and how they work
together and contrast. Consequently, a volunteer that has marked up several documents
might remember an element or attribute that was available within the “titlepage” section
of one DTD and attempt to use it when working with another DTD that does not use this
element, or use it in the same way. By combining and sharing all of the available
elements, the initial learning curve for a volunteer marking up documents is steeper, but

then they only have to learn and refer to one DTD.

XML and Project Gutenberg 19

Upon reviewing the four DTDs, the amount of overlap between them was
immediately evident. Clearly, only three major elements are available: book, play, and
poem. While a fourth DTD covers the combination of a book with a play fragment in it, |
decided not to consider it as all of the elements that a book might need are available in
the book DTD, and all of the elements of a play are available in the play DTD.
Furthermore, these DTDs could not accommodate the government documents and
speeches that exist in the Gutenberg collection. Also, an overlap appears in the book
DTD, which contains a reference to a poem element that was only slightly different than
the complete, independent poem DTD. The complete poem DTD provides for more
elements than the poem element in the book DTD; all poem elements should be available
to poems that are within a book structure.

A new DTD should not be created for each new subset of elements. For example,
perhaps the collection contains a government document that contains elements that only
partially exist in the book DTD. Instead of pulling out all of the elements that are the
same and creating a new DTD with this new subset of elements, these new elements
should simply be added to the existing DTD. They are then also immediately available to
any of the other documents in the collection. Not only does combining these top-level
elements into one document simplify our DTD, but all elements and attributes are now
available to any document that needs to use them. Furthermore, maintaining several
DTDs may threaten elemental consistency throughout the collection and make processing
more difficult.

Thus, | chose to create one DTD, extend it for use with miscellaneous documents,

and extract all of the metadata into external entities. Since the book DTD seemed to be

XML and Project Gutenberg 20

the most comprehensive of the three DTDs, it was used as the base into which the
remaining DTDs were compiled. Any elements from the poem or play DTD that did not
exist in the book DTD were added to the book DTD.

| provide the original authors complete credit for their work, and provide my
changes and suggestions strictly as an offering of opinion and not a presentation of their
own research and efforts as my own. However, | would hope that this DTD remains
public and freely available to anyone who would like to extend or improve it.

Modifying the Parts — Elements, Attributes and Entities

The elements of the three DTDs -- book, poem, and play -- overlapped
tremendously. In Appendix A, Figure 1, the top-level structure of each of the HWG’s
poem, book and play DTDs are diagrammed as organizational charts. As demonstrated,
most of the top-level elements are the same between the three. Many of the sub-elements
and leaf elements (elements that have no children), are identical between these DTDs.
More accurately:

» 13 elements were the same between all three of these DTDs;
* 44 elements, in addition to the 13 above, were the same for the book and play

DTDs;

e Only 17 play-specific elements were added to book;
» 16 elements existed in book that were not available in poem or play;
* The original poem element in book was deleted.

By defining a group of DTD-wide attributes, they can easily be added to any

element with a simple reference. “DTDs that include a significant set of child elements

that can be used in multiple parent element can be simplified with parameter entities

XML and Project Gutenberg 21

listing the elements. The parser should parse the parameter entity and add its markup to
the element content declaration” (St. Laurent, 1999, p.136). | renamed the DTD-wide
attributes “dtdattribs,” as that seemed to me to be more intuitive to new users than the
current “stdatts” name used.

The inline.class and block.class declarations were not included in the poem DTD,
but were available in book and play, thus remain in the combined DTD. Block and inline
entities are used for parts of text that can appear anywhere, and are mainly defined as
inline or block based upon their general appearance within the text. Inline entities are
ones that appear within a line of text, but can appear anywhere within the text and
therefore do not have specific requirements for use within the elements. Block entities
are used in a similar manner, but appear within a separate paragraph or aesthetic chuck of
a text. An example of an inline element is a date, and a block entity might be a
blockquote or a table. Any references similar to <! ELEVMENT acknow edge (#PCDATA |
% nline. cl ass;)*> declares that the acknowledge element can contain PCDATA and
any of the elements declared in the inline.class entity.

In addition to the inline and block entities, entities have another very important
function in this DTD. XML has the capability to chunk documents into sections and
present them together seamlessly in the browser window by using entity and general
parameters. “General entities are simple and make many complex and annoying tasks
very simple, especially when it comes to filling in boilerplate text....Creating entities this
way is useful for repetitive information that is prone to change during the lifetime of the
document” (St. Laurent, 1999, p.153). This use of XML could benefit the Gutenberg

texts greatly by pulling out all of the Gutenberg-related metadata that is the same across

XML and Project Gutenberg 22

all of the texts into a separate entity or entities, that would be stored in separate files and
referenced or pulled into the XML document. Similar to the advantages of object-
oriented programming, this shared information would only have to be updated in one
place.

By declaring in the DTD <! ENTI TY net adata SYSTEM "I egal net a. xm " >,
the external file named “legalmeta.xml” is made available to any XML document that is
using this DTD. Any text that appears identically in several texts can exist in one file that
can be pulled into the document when displayed. This is a huge advantage for the
maintenance of Project Gutenberg. The metadata is currently inconsistent across the
collection. The content of this metadata, especially the legal notices concerning
copyright issues, should be identical on every document. This can easily be achieved
with this method of including external files as entities.

Five samples studied and marked up for this project presented a variety of
metadata; some that was very general information about Project Gutenberg, and other
pieces that were very specific to the document. In general, the metadata is easily divided
into logical chunks that are pulled out into separate files. The advantage of doing this is
twofold. First, the information in these files would be very easily managed, and second,
documents would only have to contain the chunks of metadata that were relevant. The
chunks of metadata added to the documents are as follows:

1. generalmeta — This information is very basic, generic information that is present
in almost every file. It consisted of some form of “Welcome to the world of plain
vanilla ASCII texts...” and some additional information about the copyright

information to follow.

XML and Project Gutenberg 23

2. releasemeta — Found in 4 out of the 5 samples, this file contains information about
how the Gutenberg files are released, at what times, etc.

3. gutinfometa — The specific Gutenberg information covering FTP information and
ways to volunteer and/or donate to the project.

4. legalmeta — Contains the “small print” from legal counsel about copyright issues
and other legal matter related to these files; should be in every text in the
collection.

5. experimentmeta — Found only in one of the five samples, contains information
about the experiment to put multiple texts in one file.

6. worldlibmeta — This information gives credit to the World Library for providing
the text.

Each of the documents has different combinations of these chunks of metadata.
They allowed me as the marker to include the simple entity references to the files,
without having to markup up this content further. The entity files are all XML files that
can contain mixed content, as declared by the <gutmeta> in the DTD, including <title>
and <para>.
Results

Discussion - Applying the DTD on Gutenberg Texts

To test the DTD, | marked up a few texts that are representative of some of the
different structures and formats. The Dubliners by James Joyce models a fairly typical
book structure. A collection of poems by Emily Dickinson contains not only poem
structures, but was created as a book containing the collection poems. With the

combined DTD, | was able to use a book element with several chapters of poems within

XML and Project Gutenberg 24

them. Next, Abraham Lincoln’s first inaugural address is representative of a government

document or speech. Romeo and Juliet by William Shakespeare is a sample of a play

format. An Edgar Allan Poe collection of stories is marked up, and contains several
types of literary structure. All of these texts are from the Project Gutenberg website. The
original document content was not changed, but the metadata entities may vary, only
slightly, from the original in an attempt to create boilerplate pieces of metadata.

All marked up documents can be found in Appendix C and online at
http://ils.unc.edu/~bluec/gutenbergDTD.

Initial Analysis — Experience Using the Combined DTD

I downloaded Microsoft’s XML Validator (“XML Validator,” 1999) to use for
testing the XML documents, and Edit Pad Lite (Goyvaerts, 2001) for marking up the
documents. 1 chose the texts that | wanted to markup and saved the text files to my hard
drive, opened them in Edit Pad, stripped out any metadata that was related only to Project
Gutenberg and left any metadata specific to the text, and Saved As an XML file,
preserving the original text.

Immediately, | included the opening and closing <guttext> tags around the entire
body of the document, including all remaining metadata and the original document. All
boilerplate metadata I then enclosed with the <gutmeta> start and end tags and any
metadata about the text that remained was enclosed within <markupmeta> tags. This
element is detailed below. Then, I immediately decided what top-level element the
document required, and put the entire document body within the appropriate tag (i.e.,
<book>content</book>). Any additional notation after the document body was put into

<endgutmeta> tags. At this point, the markup is not well formed or valid, but one can

XML and Project Gutenberg 25

easily identify the logical structure of the entire Gutenberg text, and the original
document body within it.

Two very distinct, yet highly inconsistent chunks of metadata are now clear:
gutmeta, and markupmeta. The content of these two categories of metadata are the same
in that they contain material that was added to the original document by Project
Gutenberg, but differ in that gutmeta contains all of the boilerplate metadata entities that
may follow, and markupmeta contains any added info that is specific to this document.
While all of this information varies greatly throughout the collection, a few very specific
pieces of this metadata are defined as their own elements in the DTD. Certainly, the
DTD could have defined elements for every possible piece of information that might
appear in the metadata, but only those common pieces, that might possibly be searched
on or otherwise processed someday, are defined. Specifically: textnum, gutdate,
preparer, gutfilename are available in the DTD as children elements of markupmeta.
Every document in the collection has a number, presumably a unique identifier of the
document that would be a likely candidate for future processing efforts. The date that the
document was added to the collection should be contained within gutdate tags, and if a
volunteer is mentioned as preparing, proofreading or scanning the document, this
information can be contained within preparer tags. Finally, each document contains
information on how the file should be named within the collection, and this information
can be marked as gutfilename. In this section of the Gutenberg texts, I did take it upon
myself to delete some information that seemed to me redundant with the addition of the

XML tags. For example, if the document contained “Etext #,” “Author:,” or “Title:” to

XML and Project Gutenberg 26

describe the data that followed, after marked up as <textnum> or <title>, the labels
seemed unnecessary .

Again, these few tags represent the minimal amount of detail that markupmeta
can and should contain, but these pieces of information are helpful for managing the
collection, and thus should be marked. Other information such as the title and author of
the document may also be included, and the respective tags are available for use within
markupmeta as well.

For marking up the main body of the document, using the Search and Replace
function of Edit Pad proved invaluable. While each text varied in its structure, quick
Replace functions could achieve the majority of the markup of the text. For “The Raven”
in the Edgar Allan Poe collection, | searched for end of line markers (/n in some editors,
Shift + Enter in Edit Pad Lite) in the Search box, and replaced them with </line>(end of
line)<line>. Now the beginning and ending of every line is marked. Then I replaced all
instances of <line></line> with <verse>, as | could easily identify the line elements with
no content as the place in the original text where a verse started or ended. However, for
“The Masque of the Red Death” in the same collection, | searched for all instances with
two end of line markers in a row, and replaced them with </para>(end of line)<para>, and
then moved the last <para> to the beginning. Each of the texts had obvious patterns that
could be discovered and then replaced with markup, but there are no hard and fast rules
to follow when doing this. For example, Romeo and Juliet proved very difficult to
markup, as stage directions <stagedir> could be found within <speech> or on their own.

Some were contained in [brackets], which made them targets for Search and Replace [

XML and Project Gutenberg 27

with <stagedir>, and] with </stagedir>. Furthermore, to maintain Shakespeare’s iambic
pentameter each section of speech included <line> tags to maintain the literary structure.

In addition to the content elements and entities, special characters are not parsed
properly in XML. For example, an ampersand (&) will not parse correctly as content, as
they are typically used to refer to entities. Thus, the marker must enter & in place of
the ampersand. The Open eBook Initiative provides an additional DTD entity that
provides names for each of the common special characters that can easily be referred to
in the document. Perhaps this idea could be incorporated into the Project Gutenberg
DTD should the need for it arise.

The best way, in my experience, to check for well formedness, was to simply
open the XML document, without a stylesheet, in the Microsoft Internet Explorer 5.0
browser window. While this method does not check for valid XML, it will provide the
line number on which the well formedness failed, at which point a marker can return to
Edit Pad, and select to view the line numbers, or by selecting Ctrl + G, to geta “Go To
Line” box into which you can enter and go straight to the line number causing the error.
Document validation can easily be tested with the XML Validator (“XML Validator,”
1999), but for the purposes of the Project Gutenberg texts, document well formedness is
required, validation is not.

| can foresee that some of these very general and simplistic tasks could be written
into scripts that automate this process. The Gutenberg texts might not be the preferred
version of the text to run a script on, as the line breaks and paragraph breaks are
inconsistent. If another version of the same electronic text can be found that is more

consistent, it would be much easier to automate the markup process.

XML and Project Gutenberg 28

My experience with my prepared DTD only confirmed my earlier suspicions that
the DTD needs to be as flexible as possible, with very few unnecessary validity
constraints. For example, | had to add <scene> as a child entity to <playbody> when

marking up Romeo and Juliet because the prologue of the play is written as a scene, but

was not within a <part> or <act> as the original DTD required. | also added <title> as a
child element of <scene> as dictated by the Shakespeare play. When marking up the
collection of Emily Dickinson plays, | immediately discovered that the constraint of only
one title was too restrictive for <poembody>, because poets are renowned for breaking
common literary conventions such as this. Many of the Dickinson plays are titled only
with a number, such as “IV.” whiles others have both a number and a traditional title.
Thus, I chose to enclose both pieces of information, if available, within <title> tags, as no
other logical structure was available.

It seems that the markup of documents is often subjective. While semantics and
structure are often very obvious, the multitude of possible combinations of elements in
the Project Gutenberg collection is unpredictable. A marker can include a lot of detail if
they perceive it to be necessary, whereas others may not.

Future Steps

To restate the intentions of the project, | feel that this DTD should remain as free
and publicly available as the Project Gutenberg staff and volunteers deem necessary.
Neither the DTD nor the documents marked up should be copyrighted by anyone other
than the original copyright holder, if their rights still apply.

As volunteers markup the Gutenberg documents, the DTD will undoubtedly

evolve. The DTD will be dynamic, but not so much as to prevent backward

XML and Project Gutenberg 29

compatibility. Releases of point versions (i.e., version 1.1) might be released monthly,
while new versions (2.0) with fundamental structural changes should only be released
annually.

Some decisions on the metadata content entities will have to be settled by the
Gutenberg staff, particularly the legal information regarding copyright. However, this
should be a very easy step to accomplish even before calling upon volunteers to begin
marking up documents. If the entities that | have summarized and extracted from my
sample documents do not cover an important chunk of Gutenberg metadata, a manager
should determine how to pull it out and define it, so that it can thereafter be updated in
only one place.

A long-term possibility of marking up Project Gutenberg texts with XML could
provide for foreign language texts and higher bit Unicode character sets. For the
management of a collection as large a Project Gutenberg, it might be useful to somehow
mark the language of each text. The xml:lang attribute can be included in the XML
document to specify the language used. “The intent declared with xml:lang is considered
to apply to all attributes and content of the element where it is specified, unless
overridden with an instance of xml:lang on another element within that content” (World
Wide Web Consortium, 2000). While this capability was not included within this project,
the attribute might prove useful at a later date.

Another potential use of this management structure would allow documents to be
broken up into smaller, more logical parts. For example, collections of poetry are
currently contained in one large file, partially because each file had to contain all of the

legal and other metadata, most of which would exceed the size of the document! With

XML and Project Gutenberg 30

the functionality of entities in XML, each poem could stand on its own, yet still be
presented as one collection by pulling them all in to one document as entities. On the
other extreme, very large texts could be separated into files based on their chapters, or
other structure intrinsic to the text. By doing so, users could download and search very
specific texts much more quickly and accurately, without increasing the physical size of
the files.

Conclusion

While the ASCII format has been a functional and universally available format for
the Project Gutenberg texts for 30 years, the Extensible Markup Language has proven to
be a stable and viable format that could provide numerous advantages to the collection at
a very low cost. This project includes analyses of similar efforts and their viability for
use with Gutenberg, and a suggested path to follow for this effort. | prepared a
comprehensive, standalone DTD based upon the efforts of the HTML Writer’s Guild
DTDs, and marked up a few very different texts from the Gutenberg collection.

The potential for this structure will yield only to the dynamics of the DTD.
Should the DTD go through several revisions, evolving too quickly for marker to keep up
with and marked up texts to comply with, the future effectiveness of XML with Project
Gutenberg could wane. The staff and all volunteers involved with the effort of marking
up the texts in this collection must remember to keep this DTD and all marked up
documents free of copyright and freely available. While the DTD will likely evolve with
the collective experience marking up texts, it must not grow too complex or large to learn

and manage.

XML and Project Gutenberg 31

After thirty years, Project Gutenberg is still functional and thriving. Continuing
efforts should always lend to the longevity and lifespan of the texts and the project, and
not create a new collection of texts that will soon be obsolete. These principles should

guide all future endeavors.

XML and Project Gutenberg 32

References

Boumphrey, F. (2000a, July). European literature and Project Gutenberg. [On-

line]. Cultivate Interactive, 1(3). Available: http://www.cultivate-

int.org/issuel/qutenberg.

Boumphrey, F. (2000b, March 7). Gutenberg Project<longish>. Personal
Communication: xml-dev@xml.org [On-line]. Available:

http://lists.xml.org/archives/xml-dev/200003/msg00232.html.

Boumphrey, F. (2000c, February 11). Re: (Pre)Announce: gutenberg at HWG.
Personal Communication: xml-dev@xml.org [On-line]. Available:

http://lists.xml.org/archives/xml-dev/200002/msg00264.html.

Cover, R. (2000, November 6). Davenport Group: DocBook DTD. OASIS: The
XML Cover Pages: General SGML/XML Applications [On-line]. Available:

http://www.0asis-open.org/cover/gen-apps.html.

Cover, R. (2001, February 22). Open eBook initiative. OASIS: The XML Cover

Pages [On-line]. Available: http://xml.coverpages.org/openEbook.html.

DeRose, S. & Renear, A. (2000, April 29). Open eBook publication structure.
Providence, Rhode Island: Brown University, Scholarly Technology Group [On-line].

Available: http://www.stg.brown.edu/projects/indexcard/displaycard.php3?card=10.

Goyvaerts, J. (2001). EditPad Lite (Version 4.2.0) [Computer software].

Flanders, Belgium: JGsoft. Available: http://www.editpadpro.com/editpadlite.html.

XML and Project Gutenberg

HTML Writers Guild. (2001a). Getting started: Gutenberg at HWG. [On-line].

Available: http://qutenberg.hwg.org/guthowtol.html.

HTML Writers Guild. (2001b). Book DTD's I: Gutenberg at HWG. [On-line].

Available: http://qutenberg.hwg.org/qutdtdsl.html..

Mahoney, A., Rydberg-Cox, J. A., Smith, D. A. and Wulfman, C. E. (2000).
Generalizing the Perseus XML document manager. Boston, Massachusetts: Tufts
University, Project Perseus Digital Library. [On-line]. Available:

http://www.perseus.tufts.edu/Articles/exploration.html.

Meggison, D. (2000, March 7). Use TEI. Personal communication [On-line].

Available: http://lists.xml.org/archives/xml-dev/200003/msg00248.html.

Miller, R. (2001, March 5). Nupedia and Project Gutenberg directors answer.
Slashdot [On-line]. Available:

http://slashdot.org/article.pl?sid=01/03/02/1422244&mode=nested.

Open eBook Forum. (2000). Open eBook publication structure: Specification.

[On-line]. Available: http://www.openebook.org/specification.htm.

33

Open eBook Forum. (1999, September 16). Open eBook publication structure 1.0.

[On-line]. Available: http://www.openebook.org/OEB1.html.

Project Gutenberg. (1992, August). History and philosophy of Project Gutenberg.

[On-line]. Available: http://promo.net/pa/history.html.

Smith, D. A., Mahoney, A., Rydberg-Cox, J. A. (2000, August). Management of

XML documents in an integrated digital library. Boston, Massachusetts: Tufts

XML and Project Gutenberg

University, Project Perseus Digital Library. Paper presented at Extreme Markup
Languages 2000: The Expanding XML/SGML Universe, Montreal. [On-line].

Available: http://www.perseus.tufts.edu/Articles/hopper.html.

Spooner, J. G. (1999, August 13). New eBook standard: A best seller? ZDNet
News [On-line]. Available:

http://www.zdnet.com/zdnn/stories/news/0,4586,2314515,00.html.

St. Laurent, S. (1999). XML.: A primer (2nd ed.). Foster City, CA: M&T Books.

University of Virginia Library. TEI guidelines for electronic text encoding and
interchange: Note. [On-line]. Charlottesville: University of Virginia, Electronic Text

Center. Available: http://etext.lib.virginia.edu/bin/tei-tocs?div=DIV1&id=PF.

University of Virginia Library. TEI guidelines for electronic text encoding and
interchange: Underlying principles and intended use, design principles of the TEI
scheme. [On-line]. Charlottesville: University of Virginia, Electronic Text Center.

Available: http://etext.lib.virginia.edu/bin/tei-tocs?div=DIV2&id=ABDPIU.

Usdin, T. & Graham, T. (1998). XML.: Not a silver bullet, but a great pipe

wrench. StandardView 6(3), p.125-132.

Walsh, N. & Leonard M. (1999). DocBook: The Definitive Guide. Sebastopol,

CA: O’Reilly and Associates.

World Wide Web Consortium (W3C). (2000, October 6). Extensible Markup
Language (XML) 1.0 (2nd ed.). W3C Recommendation [On-line]. Available:

http://www.w3.0rg/TR/2000/REC-xml-20001006.

34

XML and Project Gutenberg 35

XML Validator. [Computer software]. (1999). Redmond, Washington: Microsoft

Corporation.

XML and Project Gutenberg 36

Appendix A
Figure 1. The three main structures from the HTML Writer’s Guild DTDs (poem, book
and play) contain similar top-level structures, making them likely candidates for

combining into one DTD to share these common elements.

HWG Poem DTD top

level structure: poemirag. did |

meta acknowledge toc poem | simplesect | para | | endmeta
HWG Book DTD top

level structure: bookfrag,dtd

| | | | |
meta | | acknowledge | | frontmatter | | bookbody | | backmatter | | endmeta

HWG Play DTD top
level structure: playfrag,did

I I I I |
meta | | acknowledge | | fronimatier | | playbody backmaiter | | endmeia

XML and Project Gutenberg

Appendix B

37

The complete DTD created for this project; the DTD should be named gutdtd.dtd

and referred to accordingly in the prologue of the XML documents that are adopting this

schema. The DTD has been modified from its original formatting for aesthetic reasons,

but is available in its originally formatted condition online at

http://ils.unc.edu/~bluec/qutenbergDTD/.

<l--- START DID -->

<! ELEMENT gutt ext
(gut et a, mar kupnet a, (book| pl ay| poen{ docunent) *, endgut net a?) >

<l-- Put all info related to Project Gutenberg in here -->
<l ELEMENT gut et a (#PCDATA| par a| si npl esect|title)*>

<l-- Put all text-specific info in here -->
<! ELEMENT mar kupret a

(#PCDATA| t ext num preparer | gutdate| gutfilenane|title|author| paralsinplese

ct)*>

<! ELEMENT endgut neta (#PCDATA| par a| si npl esect|title)*>

<l oo dxkkkkkkkkkkkdkkkkkk ENTITY DECLARATIO\IS khkhkkkhkhkkkkhkhkkkhkhkxkkhkhkkkkxk

<l-- Ceneral PGintro, Welconme to the Wrld of...-->
<IENTI TY general neta SYSTEM "general neta. xm ">

<l-- Legal info, should be the sane for each -->
<IENTITY | egal neta SYSTEM "I egal neta. xnl ">

<l-- General PG info, howtexts are released -->
<IENTITY rel easeneta SYSTEM "rel easeneta. xnl ">

-->

<l-- Only found in a few texts, about nulitple items in single file -->

<IENTITY experinentmeta SYSTEM "experi nent neta.xm ">

<l-- About Project Cutenberg, donations, FTP info -->
<IENTITY gutinfoneta SYSTEM "guti nfoneta. xm ">

<I-- Information and Credit for the Wrld Library -->
<IENTITY worl dli bneta SYSTEM "worl dli bneta. xm ">

XML and Project Gutenberg 38

<IENTITY % dtdattribs
"ref | DREF #| MPLI ED
id I D #| MPLI ED
type CDATA #| MPLIED
role CDATA #l| WPLI ED
cl ass CDATA #l| MPLI ED'
>

<IENTITY % inline.class

"| quot e| enph|ital|reference| date| pl ace| nane| graphi c|txterr| nkuperr|m sc
>

<IENTITY % bl ock. cl ass
"|letter]| bl ockquote| footnote| note|list|deflist|table|blockgraphic">

<|__ khkkkhkkkhkkhkkhkhkkhkhkkhkhkkhk*x ,\/ETADATA ELE'\/ENTS kkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkk* - >

<l-- Put the Gutenberg E-text number in here -->
<! ELEMENT t ext num (#PCDATA % nl i ne. cl ass;)*>
<I ATTLI ST t ext num
%t dattri bs;
>

<l-- Use for "prepared, proofread, or scanned by -->
<! ELEMENT preparer (#PCDATA % nline.class;)*>
<I ATTLI ST preparer
%t dattri bs;
>

<l-- Use Qutenberg date (when added to collection -->
<l ELEMENT gut dat e (#PCDATA % nli ne. cl ass;)*>
<I ATTLI ST gutdate
Y%t dattribs
>

<l-- Use "This file should be nanmed..." -->
<l ELEMENT gutfil ename (#PCDATA % nli ne. cl ass;)*>
<I ATTLI ST gutfil enane
Y%t dattribs
>

<!__ kkhkhkkhkhkkhkkhkkhkkhkkkhkkkhkkkhkkkk*k TG) LEVEL ELENENTS kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkkkhhkkhkkkk*k - >
<l-- The text can be any of the follow ng el enents -->

<! ELEMENT book
(acknow edge?, net a*, front mat t er ?, bookbody, backmat t er ?, endnet a*) >

<! ELEMENT pl ay
(acknow edge?, net a*, front mat t er ?, pl aybody, backmat t er ?, endnet a*) >

<! ELEMENT poem
(acknow edge?, net a*, t oc*, (poenbody| si npl esect | para) *, endnet a*) >

<! ELEMENT docunent
(acknow edge?, net a*, front mat t er ?, docunent body, backmat t er ?, endrret a*) >

XML and Project Gutenberg 39

<!__ kkhkkkkhkhkkkkhkkkkx TG) LEVEL ELENENT DECLARATIO\IS dhkkkkkkkdkkxkkdk _ 5

<l ELEMENT acknow edge (#PCDATA % nli ne.cl ass;)*>
<I ATTLI ST acknow edge

Y%t dattribs
>

<! ELEMENT neta EMPTY>
<I ATTLI ST neta
content CDATA #REQUI RED
id ID #1 MPLI ED
>

<! ELEMENT endneta EMPTY >
<! ATTLI ST endnet a
content CDATA #REQUI RED
id ID #| MPLI ED
>

<! ELEMENT bookbody (part*|chapter*)>

<! ELEMENT poenbody
((prenote|title)*, (author| prose|subtitle|verse|line|paraltune|note|footn
ote)*)>

<! ELEMENT pl aybody (part|act|scene)*>
<! ELEMENT docunent body ((prenote|title)*, (speech|para| note|msc*))>

<! ELEMENT backmatter ((appendi x|i ndex| gl ossary]| bi blio| note)*, col ophon?) >

<!__ kkkkhkkkhkhkkhkk END T(P LEVEL ELE,\/ENT DECLARATIO\IS khkkkhkkkhkkhkkhkhkkhkhkk*k - >

<l-- *xxdkxxxkixx BEG N FRONTMATTER ELEMENT DECLARATI ONS ******xxkkxx .. >
<IELEMENT frontmatter (htitl epage| copypage| epigraph|titlepage
toc| acksect | dedi cati on| pr ef ace| prol ogue| per sonae| i ntroducti on| m scfm*>

<I ELEMENT htitl epage (#PCDATA|titl e|subtitle|author|paral poenbody|song
% nline.class;)*>
<I ATTLI ST htitl epage
Y%t dattribs
>

<! ELEMENT copypage (#PCDATA| par a| poenbody| song| note % nli ne. cl ass;)*>
<I ATTLI ST copypage

Y%t dattribs
>

<! ELEMENT epi graph (#PCDATA| par a| poenbody| song| not e| bl ockquot e
% nline.class;)*>
<I ATTLI ST epi graph
%t dattri bs;
>

XML and Project Gutenberg 40

<!l ELEMENT titl epage
(#PCDATA| partnunjtitl e| subtitl e|author| pubi nfo| para| poenbody| song| not e|
ine % nline.class;)*>
<I ATTLI ST titl epage
Y%t dattribs
>

<! ELEMENT part num (#PCDATA % nl i ne. cl ass;)*>
<I ATTLI ST part num

Y%t dattribs
>

<! ELEMENT pubi nf o (#PCDATA| paralline %nline.class;)*>
<I ATTLI ST pubi nfo

Y%t dattribs
>

<l ELEMENT toc (#PCDATA|title|subtitle|subsubtitle|itemlist]|deflist
% nline.class;)*>
<! ATTLI ST toc
toctype (contents| maps|graphics|tabl es|other) "contents"
%t dattri bs;
>

<! ELEMENT acksect (#PCDATA| par a| poenbody| song| note % nli ne. cl ass;)*>
<! ATTLI ST acksect

%t dattri bs;
>

<! ELEMENT dedi cati on (#PCDATA|titl e| para| poenbody| song| note
% nline.class;)*>
<! ATTLI ST dedi cati on
%t dattri bs;
>

<! ELEMENT preface
((title|chapheader)?, (paral poenmbody| song| sect 1| si npl esect
%l ock. cl ass;) *, endchap?, preaut hor ?) >

<I ATTLI ST preface %dtdattri bs;

>

<I ELEMENT prol ogue ((title|chapheader)?, (para| poenbody| song| si npl esect
%l ock. cl ass;) *, endchap?, preaut hor ?) >

<I ATTLI ST prol ogue %dtdattri bs;
>

<! ELEMENT personae (#PCDATA|titl e| pgroup| persona| para| note
% nline.class;)*>

<I ATTLI ST personae %dtdattri bs;

>

<! ELEMENT i ntroduction
((title|chapheader)?, (paral poenbody| song| sect 1| si npl esect
%l ock. cl ass;) *, endchap?) >

<I ATTLI ST introduction % ltdattribs;

>

XML and Project Gutenberg 41

<! ELEMENT m scf m (#PCDATA| par a| poenbody| song| ver se| not e
% nline.class;)*>
<! ATTLI ST mi scfm
%t dattri bs;
>

<! ELEMENT preaut hor (#PCDATA| aut hor % nli ne. cl ass;)*>
<I ATTLI ST preaut hor

Y%t dattri bs;
>

<l wxxkxkxkxkxks END FRONTMATTER ELEMENT DECLARATI ONS **#xkxkxssss __ >

<!__ *kkhkhkkkkhkkkkkk*k*k BEG N BO:)Y ELENENT DECLARATIO\IS *kkhkhkkhkhkkhkhkkhkkhkkkhkkxk*k*k - >
<l-- BOOKBODY (part|chapter) -->

<!-- PLAYBODY (scene|part|act) -->

<l-- POEMBODY (prenote, title,

aut hor | prose| subtitl e|tune| note|footnote|verse) -->

<l-- DOCUMENTBODY (prenote|title, speech|para|note|msc) -->

<!l ELEMENT part
(acknow edge?, (titl epage|toc|htitl epage| act| prose)*, chapter*)>
<I ATTLI ST part
Y%dt dattribs
>

<l ELEMENT chapt er
((title|chapheader)?, (paral poenbody| pl aybody| song| sect 1| si npl esect | page
%l ock. cl ass;) *, endchap?) >

<I ATTLI ST chapter %dtdattri bs;

>

<! ELEMENT act

(title| scene| speech| poenbody| pl aybody| song| scndesc| st agedi r | prose| not e) *
>

<I ATTLI ST act %dtdattri bs;

>

<! ELEMENT prenot e (#PCDATA) >
<I ATTLI ST prenote %ltdattri bs;
>

<l ELEMENT title (#PCDATA % nline.class;)*>
<I ATTLI ST title

%t dattri bs;
>

<! ELEMENT aut hor (#PCDATA % nline.cl ass;)*>
<! ATTLI ST aut hor

%t dattri bs;
>

<! ELEMENT prose (#PCDATA|titl e|sinplesect|para %nline.class;)*>
<I ATTLI ST prose %ltdattri bs;
>

XML and Project Gutenberg 42

<! ELEMENT subtitle (#PCDATA % nline.class;)*>
<! ATTLI ST subtitle

%t dattri bs;
>

<! ELEMENT tune (#PCDATA) >
<! ATTLI ST tune %tdattri bs;
>

<! ELEMENT verse (title|subtitle|line|note)*>
<I ATTLI ST verse

%t dattri bs;
>

<1-. wxxxxxxxckxx BEG N LONERLEVEL ELEMENT DECLARATI ONS ****xxxxxxxx __>

<! ELEMENT subsubtitle (#PCDATA % nli ne.cl ass;)*>
<! ATTLI ST subsubtitle

Y%t dattribs
>

<l ELEMENT chapheader
(title|subtitle|chapnun chapsumary| bl ockquot e| par a| note) *>
<I ATTLI ST chapheader

Y%t dattribs
>

<! ELEMENT chapnum (#PCDATA % nl i ne. cl ass;)*>
<I ATTLI ST chapnum

%t dattri bs;
>

<! ELEMENT chapsummary (#PCDATA % nl i ne. cl ass;)*>
<I ATTLI ST chapsumary

%t dattri bs;
>

<! ELEMENT endchap (para %l ock. cl ass;)*>
<I ATTLI ST endchap %dtdattri bs;
>

<l ELEMENT attri b (#PCDATA % nline.class;)*>
<I ATTLI ST attrib

Y%t dattribs
>

<! ELEMENT capti on (#PCDATA % nli ne.cl ass;)*>
<I ATTLI ST caption

Y%t dattribs
>

<! ELEMENT song (#PCDATA|title|subtitle|verse|line|note|footnote
% nline.class;)*>
<I ATTLI ST song
%t dattri bs;
>

XML and Project Gutenberg 43

<!l ELEMENT | i ne (#PCDATA % nline.cl ass;)*>
<I ATTLI ST line

%t dattri bs;
>

<! ELEMENT para (#PCDATA|title % nline.class;)*>
<I ATTLI ST para

%t dattri bs;
>

<! ELEMENT si npl esect (title, (subtitle|paral poenbody|song
%l ock. cl ass;) *) >
<I ATTLI ST si npl esect
%t dattri bs;
>

<I ELEMENT sect1 (title, (sect?2|sinplesect|paral poenbody|song
%l ock. cl ass;) *) >
<I ATTLI ST sect 1l
Y%t dattribs
>

<l ELEMENT sect2 (title, (sect3|sinplesect|subtitle|paral poenmbody|song
%l ock. cl ass;)*) >
<! ATTLI ST sect 2
Y%t dattribs
>

<I ELEMENT sect3 (title, (sect4|sinplesect|subtitle|paral poenmbody|song
%l ock. cl ass;) *) >
<! ATTLI ST sect3
%t dattri bs;
>

<! ELEMENT sect4 (title, (sinplesect|subtitle|paralpoenbody|song
%l ock. cl ass;) *) >
<! ATTLI ST sect4
%t dattri bs;
>

<l ELEMENT page (#PCDATA % nli ne. cl ass;)*>
<I ATTLI ST page

Y%t dattribs
>

<l-- start play elenments -->

<! ELEMENT speech (#PCDATA| speaker | st agedir| song| poenbody|!|i ne
% nline.class;)*>

<I ATTLI ST speech %dtdattri bs;

>

<! ELEMENT scene

(titl e| speech| poembody| song| scndesc| st agedi r| prose| note) *>
<I ATTLI ST scene %ltdattri bs;

>

XML and Project Gutenberg

<! ELEMENT speaker (#PCDATA % nli ne.cl ass;)*>
<I ATTLI ST speaker %dtdattri bs;
>

<! ELEMENT scndesc (#PCDATA % nli ne. cl ass;)*>
<I ATTLI ST scndesc %dtdattri bs;
>

<l ELEMENT st agedir (#PCDATA %nline.class;)*>
<I ATTLI ST stagedir %dtdattri bs;
>

<! ELEMENT pgroup (#PCDATA|titl e| personal paralnote % nline.class;)*>
<I ATTLI ST pgroup %ltdattribs;
>

<! ELEMENT persona (#PCDATA| actor|actress % nline.cl ass;)*>
<I ATTLI ST persona %tdattri bs;
>

<! ELEMENT actor (#PCDATA % nline.class;)*>
<I ATTLI ST actor %dtdattri bs;
>

<! ELEMENT actress (#PCDATA % nli ne.cl ass;)*>
<I ATTLI ST actress %tdattri bs;
>

<l-- end play elenents -->

<l wxxwxkxkxkxks BEG N BACKMATTER ELEMENT DECLARATI ONS * k%

<I ELEMENT index (title|litemlist|deflist|note)*>

<! ATTLI ST i ndex
i ndt ype (contents|authors|firstlines|tables|other) "contents"
Y%t dattri bs;

>

<I ELEMENT gl ossary (title|itemlist|deflist|note)*>
<I ATTLI ST gl ossary

%t dattri bs;
>

<IELEMENT biblio (title|litemlist|deflist|note)*>
<! ATTLI ST biblio

%t dattri bs;
>

<! ELEMENT appendi x
((title|chapheader)?, (paral poenmbody| song| sect 1| si npl esect
%l ock. cl ass;) *, endchap?) >

<I ATTLI ST appendi x % ltdattribs
>

XML and Project Gutenberg 45

<! ELEMENT col ophon (#PCDATA| par a| poenbody| song % nl i ne. cl ass;) *>
<I ATTLI ST col ophon
%t dattri bs;

>
<l-- the block elenments -->
<l-- letter elenments, a block elenment -->

<l ELEMENT Il etter
(address|to|fronjsalut|sig|title|subtitle|paral poenbody|song]|!ine|note)*
>
<I ATTLI ST letter
Y%t dattribs
>

<! ELEMENT addr ess (#PCDATA| paralline %nline.class;)*>
<! ATTLI ST address
Y%t dattribs

>
<!l ELEMENT to (#PCDATA| paralline %nline.class;)*>
<I ATTLI ST to
Y%t dattribs
>
<! ELEMENT from (#PCDATA| para|line %nline.class;)*>

<

ATTLI ST from
odt dattri bs;
>

<! ELEMENT sal ut (#PCDATA| para|line %nline.class;)*>
<! ATTLI ST sal ut

%t dattri bs;
>

<! ELEMENT si g (#PCDATA| paralline %nline.class;)*>
<! ATTLI ST sig
%t dattri bs;

>
<l-- end letter elenents-->
<! ELEMENT bl ockquote (title?, (paral poenbody|song)*,attrib?)>

<

ATTLI ST bl ockquot e
%t dattri bs;
>

<
<

ELEVENT f oot note (#PCDATA % nline.cl ass;)*>
ATTLI ST footnote

%t dattri bs;

>

XML and Project Gutenberg 46

<! ELEMENT not e (#PCDATA % nli ne. cl ass;)*>
<I ATTLI ST note

%t dattri bs;
>

<l-- |list elenents, a block elenent -->

<I'ELEMENT list (title? (list]item*)>
<! ATTLI ST I st

Y%t dattri bs;
>

<I ELEMENT it em (#PCDATA| par a|] poenbody| song| si npl esect %l ock. cl ass;
% nline.class;)*>
<I ATTLI ST item
Y%t dattri bs;
>

<! ELEMENT deflist (title?, (itemdesc?, def*)*)>
<I ATTLI ST defli st

Y%t dattri bs;
>

<

ELEVENT desc (#PCDATA % nline.cl ass;)*>

<! ATTLI ST desc
odt dattri bs;
>
<! ELEMENT def (#PCDATA % nli ne.cl ass;)*>
<! ATTLI ST def
odt dattri bs;
>
<l-- end list elenents -->
<l-- table elenents, a block elenent -->
<l ELEMENT table (title?, row, caption?)>

<

ATTLI ST table
odt dattri bs;
>

<! ELEMENT row (cell)*>
<! ATTLI ST row

odt dattri bs;
>

<! ELEMENT cel | (#PCDATA %l ock. cl ass; % nline.cl ass;)*>
<! ATTLI ST cel |

%t dattri bs;
>

<l--end table elenents-->

XML and Project Gutenberg 47

<l --graphics-->
<l-- an inline elenment, description required -->
<! ELEMENT graphi ¢ EMPTY >
<I ATTLI ST graphic
desc CDATA #REQUI RED
href CDATA #REQUI RED
%t dattri bs;

>
<!-- a block element -->
<! ELEMENT bl ockgraphic (title?,graphic, caption?)>

<I ATTLI ST bl ockgr aphi c
%t dattri bs;
>
<l-- the inline elenments-->
<! ELEMENT quote (#PCDATA % nline.class;)*>

<

ATTLI ST quote
%dt dattri bs;
>

<!
<

ELEVENT enph (#PCDATA % nline.cl ass;)*>
ATTLI ST enph

%t dattri bs;

>

<!l ELEMENT ital (#PCDATA % nline.class;)*>
<I ATTLI ST ital

%t dattri bs;
>

<! ELEMENT ref erence (#PCDATA % nline.cl ass;)*>
<! ATTLI ST reference
%t dattri bs;

>
<! ELEMENT dat e (#PCDATA % nli ne.cl ass;)*>
<! ATTLI ST date
%t dattri bs;
>
<! ELEMENT pl ace (#PCDATA % nline.cl ass;)*>

<

ATTLI ST pl ace
%dt dattri bs;
>

<! ELEMENT nane (#PCDATA % nli ne. cl ass;)*>
<! ATTLI ST nanme

%t dattri bs;
>

<l-- inline error elements, use to enclose or note potential errors in
text -->

XML and Project Gutenberg 48

<! ELEMENT txterr (#PCDATA)*>
<I ATTLI ST txterr
explain CDATA #l MPLI ED
odt dattri bs;
>

<l--an explanation is required-->
<! ELEMENT nkuperr EMPTY>
<I ATTLI ST nkuperr
explain CDATA #REQU RED
Y%t dattri bs;
>

<I ELEMENT mi sc (#PCDATA % nline. cl ass;)*>
<I ATTLI ST mi sc

Y%t dattri bs;
>

<l-- end inline elenents -->

<l-- END DITD -->

XML and Project Gutenberg 49

Appendix C
Each of the documents from the Project Gutenberg collection used for testing with

the gutdtd DTD are online, in their entirety at http://ils.unc.edu/~bluec/gutenbergDTD/;

however, due to their length, each document is only presented as a screen shot.

Figure C1. “The Raven,” by Edgar Allan Poe marked up using the gutdtd DTD without a
stylesheet; use of poem, poembody, title, several verse and line elements are visible in
this Figure. The complete document is available online at

http://ils.unc.edu/~bluec/gutenbergDTD/docs/1epoel0.xml.

T ki £y s vt "B Agterbeyg 0 [3odee s Clepen 10 sl W peeg |rdpersed § aplese

| e b Yee Fpose lwh e
-+ ; a3 - o W s

.h}ﬂlq}:l.uﬁm‘ i et 0 1T e b et] 0 sl d L] | Lnkr
PRI =|

T|-|= RAWER: f1ins

AT
£ b g OnEa wpan & mkln g droary, vl 0 I‘.'.IIIIll"HIL ik, anil l-'l"lﬂﬂ
wr D mmany o quoinl and curbees wyolees of Fergoliban lere o/
chrpidhim | noddud, smardy nappisg, suddesly Ehem c.:rnr.:‘h:pmq,.
~e=dx af wama one ganbly rapping, rapping & my amber dear, o e
v "Ms some wiadier,” | minbered, "tappdng at my ohamnler door-- <0 res
b e i thd s el o by e, i
e LH
it J
s dly, divtinetly [rermmbor B mas i lka Baak Dnmmbern, 2
= ez And mach veparake dyisg mmidar vrought e ghosk opon Ehe Anore: Sme s
rxFagerty | wishad thes morme;--wainly | bad snughi ko honmies o Gees
e Fradm iy hnoks Seeraase of Soemaas-—soemass faor the et Lenans-- <0
caFof ey rare and relan masdan ~1'|‘|l:||||l||l:- S0 AT Ll
o b o Pearma bk Dirn e drva e, oo
ST
SIS
exdnd the clken sad snoerialn rustiing of sech purpls curtsdn o ioes
e Therillnd i - -1illod ma wigh fsnkasiic beerers newer felt hedors A re s
a0 bl Teletd, 0 ST TRy Eepbing of iy Fega), | S00d regaating s
“is sding wiHLEr dntaaaling anlranio 8 sy chamise daor— 0o
wsBome |olu vt e ek reabing snbranou of ooy dambas dear; < es
chmesThie H v ored nof hing mom < e

R

i Present by iy Soml groe SIFnngEee | B Sl ing e o e, e
“Bin " sali 1, “er Mslaim; ey b faegaiaiiss | gl e s
wBagt Wi el b 1 rais mappiesg, and so gimlly yioe Came mapgEng, -
chresdnd so Bently you came tapping,. Eapping at my chembar door, < S me=
~ e Thak 1 wearen vaam surs | hesrd you™--Bare [apened mida the dzar--c‘me=
elarinmes thers and nothdng mans.c Jnss
e

XML and Project Gutenberg 50

Figure C2. A collection of Emily Dickinson poems marked up using the gutdtd DTD
without a stylesheet. This section of the text shows the <markupmeta> element, and its
use of the title, author, gutdate, textnum, gutfilename and preparer tags to mark the
metadata added to the text by the Gutenberg staff and volunteers, as well as the book
frontmatter and titlepage information and preface. The complete document is available

online at http://ils.unc.edu/~bluec/qutenbergDTD/docs/1mlyd10.xml.

T B Sy e ovis ™ b Aguberkbeng | Do s Cledpd 10 el WrsFonng Dsimrel Egdores

| Be b e fpue Dmn b

w2 A2 AR Y.

!‘_I-ll (1R PR Pog L AR TS 2O] gt SR TR | B

] e
T '-.I-u'llu--) =|
itk ePgnme [Seras i Jorinks
ot 1 Pl ey O e o311 ol e =l

gl cha U o D, POL < b s
il s 2E Pl maluns
<hiilmFroject Cutenbarg's Finxt of Peams, Serns 1, By By Db o/ e
wautfls e e = F RS Thig Ale shauld he samsd Smibyd 0 bt @ Imdypd i0urip ® 99 =* ¢ Somectad FDITIONA af nur skt gt a
rees BRUMIBER, im0, et VYESRIAE hasod on sopsrats snumss gol nos LETTER, {andyd Dl 5wt < s Tlsromss
corepara=ERned scannnd by 3m Tineley jbinainyg $pohos oo ores arers
ofmarkip ey
hegpdoe
o P 17 2 1T
o 1o ans
chbles POE M < e
cwsthor>by ERELY DECKINGD e 'sufnors
e puarinum > Herisx Onec i
< pasbn fos Edignd by fvwo of her fdsnds SABEL LOOY IS TODE and T,W Sl S 808 rain o
T e g
sprelaas
MR e JENE
cpara: THE varsns of Emily Mckissos helfong ampheticaly io mhet Emarion long sinm callmd “the Powiry ol the
Portioln, " --samething pradumed shasloialy wilboul b thought of publl cabion, e solely by way ol sgerecadon af
the wrker's orn mind. Such verse mand irmsilably lodeil whalesur adveanbesgu Bus in Vs discpline of puslic
corftickas aii Uik Gidorodd Cond ey 10 SO0 plad sieg=. i Ui abieie B, B sy 0 an gaka SevialBng thao g
the habit of fresdom and the unmnveatianal uitersnce of dadng thoughts, Inthe caso of bhe present authar,
thern veax ahsolfnly no cheirs in Ba matber; she must srdis Bus, or noi at all. & reciuss hy Eemparasrani and
halst, Blaraly »peeding yeors withool setting ber loot begond the dosmtep, and many more yeors durdng sshich
hor walis e stdonly ledbed 10 his fothiods grounis, sho bab@usily cosceslon har i, 180 Bar poeeos, fross all
hirt @ wary e fisnds; s & sams sith grest Sifoily that dhe aas persiaded ta prim, didng her Pebis, thres
or haur pommn. ¥ she veois vemas in grest sbundence; and Ehaugh Broeght coricusly indifemnt b= all
oy i lonal rulics, Bad yat & dgomus Berary stasdard of br s, and olten aenmd @ mond ey Umes 1o sull
EOE S T S TR R TR L TR RS BT T SR
< puarss Milas Dicking nn was hom indmbesd, Macc., Dec, 10, PR30, s disd thers Way U5, 13006, Her Fabhen, Bon.
Edwand Dickingon, et 1ho lnadnng lasper of Ledarsn, ani w85 Drasines of the woll-kagen ool thiso
witustnd. B was hin cushoms onen & geertn kald & large receptlon ot b Bouse, stbesdad by sl the lamilas
SR P - . e b

P e Y P TAS T e [oy 1 o B odmiw TSR By [y | P .

milee =l
i

il e

XML and Project Gutenberg 51

Figure C3. William Shakespeare’s Romeo and Juliet was a test document for marking up
a play with the DTD. This figure demonstrates the complexity of some of the texts in the
Gutenberg collection, here stage directions (<stagedir>) can appear anywhere throughout

the text, and the iambic pentameter of the famous Shakespeare play must be maintained

with <line> tags. On-line at: http://ils.unc.edu/~bluec/qutenbergDTD/docs/1ws1610.xml.

L e e e
B i
i 3 H s
Fack '3 nﬂ— E. amh Fm mu. 'I-Tl &-:J—
"h’l}ﬂlﬁ'\- e il B A rbat g [T\ et B 1 o d Sdn Lnkr
- =|
i J="F
hHe=ACT IL.<fhila

“a*

:lnlnn 1. & lanm By ihe waall H |:i|r|||I-I ‘w archand
1ok e Fad e Freses o Al ne,
¥

1o M SdEEY
=1 -fiom I guo Boerward shes my baart B hareTs
™= rurn beck, dull warth, ored Hired they anirm out .«

] rik |i.":|ln|hl: dhim wasll anid Isaps dawsa sk hils B
Jeck e ERd nr Banslio with Moncanio |

| “Hun.s]
™ l:urnuul my corwin Formman! Homess - (]

e [T
) A, o
v iy, iy g B, hatth stad's hiss home b baid.

-AmEn, -
=+ wim ran this waeg, and lespt thic srchard mal
vetiil, gdd et
f

pueakars-ar. I

= My, Il conjers Eno .«

res s EmmeEnl humvssiirel madmand paszian Invsri o0

< v s pugeia ¥ Dhepas i iy Blopnioas of a sigh,

ot i . Dol D AT, S 1 B SS T e

= ey bl “Ey el pronrsunos bl Tove' ol duvu_.

= -Fouak lg my aossmo Yarens anm feir vvard. < =l

XML and Project Gutenberg 52

Figure C4. The Dubliners by James Joyce is typical of a book structure. In the section

provided below, the opening book tag prefaces the book’s frontmatter with a table of
contents,<toc toctype = “contents”>, and the start of the bookbody and chapter. The
complete XML document is available online at

http://ils.unc.edu/~bluec/gutenbergDTD/docs/dblnr10.xml.

T e £y s vt "B Agterkeg0 0 (3o s bl 10 vl W presg [rd gl L siess

| Be b e fpue Dmn b

- ol B Dk i W BN

hl-lllq}.‘.i.u’!m‘ e abaariane g 1 D gl | 1 sl d e Lnkr

T o 1 =|
~ha

. =
e —
o hitle e iihEn s itk
it by BATIGS oo ot
T g
zlos et ypa=' mnienks'=

chies CONTE NTE < Tl
mxThe Slsbmrs: tar
i el N ST e
7o ey P A
v] e D
<A The Maoe e
3 =Twn Dalams: bam:
e >The Bsarding House</item=
1o e LRl Cloasd S tera

(SRR H TR T PR

e G M L

e sd Paloiul Case filams
criern =lvy Doy in Ehe CommEbss Bosmee hiere
crimrn A Mok here b bsre

i el race . fe

1o e Whin D 1 evie

=

azhazbars
title=THE SERTERS: /il

« e THE RE was no hope fer Bm this time; it was the third siroke, Mghi atier night | hed passed the houss (i wees

waation thred and Sudied tho Bphted Sgeane of wndor sad sighn after sighn | hed Tound it Bghied i tha same
weay, Taintly sl mwenly. Wb mas dead, | iraunhs, | enukd ses the reflsction ol candiss on the darkcssad Bind for
krmvr Hhat Ern comddlos s he wet of fthe Baad of 0 comes. He hod otan said bo ma: ©1 am not loeg for s
wyarld, “ aed [hail Uhaughl his verds e, Mo | Bniss Cleieg sens Troee. Eviery sdgii as | gaeed up 80 the sdnies 1
il Softly A0 SRl tha sioedd paralysis, 1 hod alveys somndod Sreagoly o my sars, Bke i sord geaman in thi

Eurld grd Hiss o 5l b i, 7 Hark s F g o e B s nseves, ol @ ms m alaflrant and d

el | I

XML and Project Gutenberg 53

Figure C5. This screen shot is the source of Abraham Lincoln’s first inaugural address,
which shows the XML document without the browser’s interpretation. Noteworthy
portions of this Figure are the prologue, the entity declarations within the <gutmeta> tags.
Each chunk of metadata that appeared to be boilerplate information was deleted and

replaced with the appropriate entity reference.

8 b 18] Wb ‘OO
fe Edt jemnm Hoh

Tuml e slen- 0,00 Facoling=TuTE-acy -
S1ORGEYPE geilexl SNEFEH “qeldid. aréy

tgukirets

piCiELar
Egrerralerts;
Blegalmetag
BgpiCinFom-T 3]
riguimetal

I bl o T
cpubtdatwl pcrsber . 197EC gutdated
LR atmund B s

CULELed The Pra ject Culmbirg CRest of Liscaln®s 190 Iadugor sl EldressLinLer

Sl £ i e
seswelhls File Shimild b pamed LEEE100.080 @F 1lacn1)_glpeeess
[errecked CFITIONE ed cur sbreis geb 0 new HSEDR, Ddac§i¥_kxE
SERGTIHE hased o8 separabe sosrces gt new LETTER, Ddscedlds.tat
CAGuLF L LE e i

L) ETL TRV =8 F53
tdacusent’

SEPENERIL >

fELElepagrl

dilblediinceda's Flret [nsugurs] dddreasdfiitle
LTI SRS T T T L) BT R R AT

CrLAlLepage)

fiFrmmtmatiers

il umarn L g

fparal

Fellioe cirlreas &F e ilsdted ftates; 1 complilance =08 5 castan 35 old
a% Ll geiserpmaml LUeedd . | appear beters ysu Lo sldeess yow brilefly

ared ®a take, in gour presence, the sath prescribed by Ehe Censblbuotdion

a¥ the ilndted Stanes, b0 b= takes by the Fresloest “hefore e enbevs

#n Chie enitellon of his @fFioe .

Liparal

Cparah

I i @t coRclier LU Aecestarg, Al preseal. e e Do alscuss Dhiss RalLers
of sdminiwbtratios abouk which Ehere 45 ne special asxieby, o excitement.

L paral

o o

XML and Project Gutenberg 54

Figure C6. The browser rendered version of Abraham Lincoln’s first inaugural address.
As demonstrated in this Figure, the syntax of the entity references is not visible, instead
they pull in their respective boilerplate metadata content. Available online at

http://ils.unc.edu/~bluec/qutenbergDTD/docs/linc111.xml.

et b kel | e s bz 1] el W el indmeed ok

el weraona® | IF snoodnnaUTE-8 e
I TEPE guiiesn (Ware Soieron e A6 dbodyng. . b
LT LT
£ s brran | >
czaraCoperight lams arm changing all over tha word, be sum fo check Ehe cepyighd leses fer your couniry Baiore posting
A Tl lic o
czara-Pmase lake alopk of The impordanst niorenatien e lkis heedur, 'We eoesroge o bz muep Ehi Sle 2n pour oo e,
kmnping an plecirenic path span ferthe nons readems. Ds nof ramove P, < parec
ca a0 sl lagally B Ve st Thissg saan shan spanmng The Book * [nlacl, sur legsl sdvlsors 1okl me cos'l aven dsange
tha margns. < pes e
s a st Ena e T Thes Wislid of Frao Maks vanils Elettron: Tasts® * < paas
Az Ebexts Resdable By Both Humam sod By Sompulsrs, Bnon LTI panas
czariz=*Thesn Ebe=ts Pmpomd By Hurdreds ot Yohnteers and Donofiom® < perec

coarazInlormatien o conbaciing Pregec llenhem o gat Ebests, and lurther isfermstion |y ncuded hekesy. ‘W sand your
dematiane. < osss

czar iz ¥ mmmatinon pregared by B Projo duinnbery Ingel sdeisor®® [Thraa Fages o /peras

CoararTEFHTART*=THE BMALL PRINTIS*FOE PURLIC EOMALS FTEETS¥FRTARTH ¥ ¥ Why I this "Small PAim ™ siatemant hera T
f il kereaas; lareyers. Thisy fall s yain mibght sees s I Phees 15 somatdng veorsg sith s cogsy of this stest, sesn F you g
E fur irea fram snmpona sther than e, and swen iF shst's greng i not our fauk. 82, amoeg other things, this =Semall
Prird?* slatermanl disdakrn meast of gur lebibty bo you, 10 abvo Debs you bos yeu can distdbote copss of This @lasl i oo
L2l LU T R T

srara = PREFOREI® Y41 LEE 0 READ THIA FTEXT By wsheag or readding sey paet ol this PEOIECT GLITESBERD-imn miedt, you
mativate hsl yoil i and, e 10 sd soosp this "Bmiall Pring ™ satemiant . I gl &0 nid, i can fecnive & Folied
o Ehis maney (H any) you gald far thic steet by ssnding s reguast sibhin 30 days of recsluing i to tha peraon gou gat i
trem [¥ gou rucnivad this et on a physical medium (sech as a Sisk’), you meed rebtum it vebh pour request . pe e

i = ABTUT PROJECT SGUTENBERG- TV ETERTE This PROMRCT GUTERBERG-Uin &L=, Bd inosl PROECT GUTERNBERG- Dé
wlurls, s a ‘pehic domain™ mork distrboted by Profusser Macaual 5. Hert Urough L Projec Getenburg Assocdation al
i (b M bt Uk eE Ry (1o B0 ™). aivong 0tFer Chisgs, Dhis oot Thal ne one Gung o Unilid B1abes coggrsght
mni ar far this wark, soths Brnject {and youl} can cnpy and distribaets i in the Dnled Staes wlihoot permisdon snd
miEhme paying cepyrghi reyakies. Sgadal rulas, et forbh belews, apply # you wish o opy and distribuie this o ned usdar
1ha Frojecl s "PROECT GUTERMBERG bradessark b s

0 AN CRRaDE TRl UeNTs, Thio Project aupind s oonHderabbe oo s e kit rans oriles ool proolissd galilo dom b
ik, Dospia thesa efeets, 1ho Projeo s aleuls sl by mslum thisy may bo sn ey oo Lsin “Telne®, Laedig of his
Things, Delects sy Taks Tha Toerm of inoo mpkets, iNBCOURSTD oF COImugt @506, Dranson plinn srors, & oopyright oF othior
skl nrctusl prperty Infringamaem, o delect lve or dessanged disk or obsar abest e dloes, @ cnmpetsr wiroe, Gr mmpeEer

sl b PPy e

I 1T

il e

XML and Project Gutenberg 55

Appendix D
The information in this section is a Word revision of the online tutorial for this
project that details the components of XML and DTDs in general, and specifics of the
DTD prepared for this project, including an index of the elements available in the DTD
with brief descriptions. Available online at:

http://ils.unc.edu/~bluec/qutenbergDTD/tutorial.html.

Marking up Project Gutenberg Texts with the guttext DTD and XML
The following sections cover the basics of XML, DTDs, and some suggestions on
how to proceed with marking up the Project Gutenberg texts with the gutdtd DTD.

Components of XML

The components of XML will look familiar to HTML users: tags, elements and
attributes. A tag is a piece of markup, an opening tag <title>, and a closing tag </title>.
Tags are used in the composition of elements. This method of markup is used to create
XML documents. XML documents can be well formed and valid. A well formed
document is syntactically correct and can be interpreted by the computer but does not
refer to a Document Type Definition (DTD). Syntactical correctness includes:

» Utilizing a root element;
+ Providing closing tags for all opening tags;
+ Placing quotes around all attribute values;

« Ensuring the same case is maintained throughout the tags.

XML and Project Gutenberg 56

A valid XML document is well formed but also complies with the requirements of
a DTD. A DTD can be part of the XML document, or an external DTD referred to by the
XML document.

The collaboration of the document marked up with XML and the DTD provides
content for the browser to interpret and display. The XML document must start with a
declaration such as <?xmlversion 1.0?> to tell the browser the version of XML the
document is using. Next, if an external DTD is being used, the <!DOCTYPE topelement
SYSTEM "file_name.dtd"> announces which DTD is to be used, making up the prolog of
the XML document, or "the glue that binds DTDs to the code that applies to them" (St.
Laurent, 1999, p.117), and contains the physical location of the DTD as well as whether
is it a system or a public DTD. A system DTD is one that has been developed for a
particular Web site or organization, while a public DTD has been developed for use by
many organizations, mainly for interoperability.

The elements and attributes comprise the logical structure of the XML document.
The DTD defines the available elements and attributes, and these specifications can be
incorporated by a single XML document or document groups. The contents of the XML
documents are not formatted; formatting requires the use of a stylesheet such as
Cascading Style Sheets (CSS) or Extensible Style Language (XSL). In the XML
document, a line is added to the prologue that contains a reference to the stylesheet such
as, <?xml-stylesheet href="xml.css" type="text/css"?>. Each element of the DTD and
hence the resulting XML document are displayed according to formatting qualities such

as display, font-size, font-weight, and color. The display style determines whether the

XML and Project Gutenberg 57

contents of an element will be displayed as a separate paragraph or within an existing
paragraph. Font-size, weight and color all refer to the style of the text.

Components of a DTD

Elements

The element, declared by <IELEMENT name data>, defines a storage unit in
which data will be held. The "data" portion defines the type of data an element can
contain, including other elements and attributes (World Wide Web Consortium, 2000).
The content of an element can be of four types:

1. Mixed content - usually declared with parsed character data (#PCDATA).
#PCDATA allows any text or any child elements to appear without placing any
restrictions on them.

2. List of elements - with rules setting which are required and the order they appear
in, how many times they are allowed to be used

3. EMPTY - no content, may have attributes but that this all

4. ANY - is acceptable, but not recommended.

There are several other notations that appear throughout this and other DTDs that
identify what content or type of content an element may hold, as well as what order and
frequency the elements can appear in. The following list summarizes the symbols used:

« ELEMENT - alone signifies that the element can appear once and only once.

ELEMENT+ - is required to appear at least once, but can appear many times.

« ELEMENT™ - signifies that any number can appear, including zero

ELEMENT? - this element is optional, but can only appear once.

ELEMENT, ELEMENT - these elements must appear in this order

XML and Project Gutenberg 58

ELEMENT | ELEMENT - or

(ELEMENT | ELEMENT)* - parentheses group elements; this group suggests
that many of either element could appear in any sequence.

Attributes

<IATTLIST name values> declares additional attributes for an element, and for

clarity should appear immediately beneath the element that they describe, but do not have

to. They mainly function just for processing, adding additional information that could be

used. Attributes can be required (#REQUIRED), optional (#IMPLIED), have a fixed

value (#FIXED value), or have a default value. Attributes can have the following types:

CDATA - character data

ID - unique value

IDREF - refers to an ID value somewhere else within the document
ENTITY(S) - correspond to the name of an external entity

NMTOKEN(s) - like CDATA, but restricted to letters, digits, periods, dashes,
underscores, or colons.

(value | value) - the value of the attributes must be on of the ones listed
NOTATION(value | value) - value of the attribute must match the name of one of
the NOTATION names listed. CDATA, ID and enumerated types are the most
common (St. Laurent, 1999, p.138).

Entities

Block and inline entities are used for parts of text that can appear anywhere, and

are mainly defined as inline or block based upon their general appearance within the text.

Inline entities are ones that appear within a line of text, but can appear anywhere within

XML and Project Gutenberg 59

the text and therefore do not have specific requirements for use within the elements.
Block entities are used in a similar manner, but appear within a separate paragraph or
aesthetic chuck of a text. An example of an inline element is a 'date’, and a block entity

might be a 'blockquote’ or a 'table.” Any references similar to:
<! ELEMENT acknow edge (#PCDATA | % nline.class;)*>

declares that the acknowledge element can contain PCDATA any of the elements, in any
order, any number of times, that were declared within the inline.class entity.

Entities are also used to pull out all of the Gutenberg-related metadata that is the
same across all of the texts into a separate entity or entities, that would be stored in

separate files and referenced or pulled into the XML document. By declaring in the DTD:
<IENTI TY netadata SYSTEM "I egal net a. xm ">

the external file named "legalmeta.xml" is made available to any XML document that is
using this DTD. Any boilerplate text that appears identically in several texts can exist in
one file which can be pulled into the document when displayed.

A few other entities are also available for use throughout the DTD. First, the
entity "dtdattribs™ declares five attributes that can easily be added to any element, and
updated in one place for the entire DTD. These attributes are: ref, id, type, role, and class.

Marking-up a Text

All Project Gutenberg texts that will be marked up with this DTD will start with
the <guttext> tag. This tag simply represents the beginning and ending of the markup,
inside which all of the other elements and markup must reside. This is an easy first step to
take for existing and unmarked etexts, as well as for texts that are being newly typed or

scanned.

XML and Project Gutenberg 60

While the fundamental content of any Gutenberg text is the original book, play,
poem or document, there is additional text that is added by the Project Gutenberg texts.
Therefore, the <guttext> element can contain 4 main elements that must appear in
sequence if they appear. These are <gutmeta>, <markupmeta>, either <book, poem, play,
or document> and <endgutmeta>. Think of this topmost level as the entire Gutenberg
text, not just the book or poem it might contain. Setting up these first tags sets the
container for all of the content of the text. The main document content will always appear
within the opening and closing.

Start by adding opening and closing <guttext> tags around the entire body of the
document, including all remaining metadata and the original document. All boilerplate
metadata should be enclosed with the <gutmeta> start and end tags, and any metadata
about the text within <markupmeta> tags. Then, decide what top-level element the
document requires, and put the entire document body within the appropriate tag (i.e.,
<book>content</book>). Put any additional notation after the document body into
<endgutmeta> tags. At this point, the markup is not well formed or valid, but one can
easily identify the logical structure of the entire Gutenberg text, and the original
document body within it.

Two very distinct, yet highly inconsistent chunks of metadata are now clear:
gutmeta, and markupmeta. The content of these two categories of metadata are the same
in that they contain material that was added to the original document by Project
Gutenberg staff, but differ in that gutmeta contains all of the boilerplate metadata entities
that may follow, and markupmeta contains any added info that is specific to this

document. While all of this information varies greatly throughout the collection, a few

XML and Project Gutenberg 61

very specific pieces of this metadata are defined as their own elements in the DTD,
specifically: textnum, gutdate, preparer, gutfilename. Every document in the collection
has a number, presumably a unique identifier of the document that would be a likely
candidate for future processing efforts. The date that the document was added to the
collection should be contained within gutdate tags, and if a volunteer is mentioned as
preparing, proofreading or scanning the document, this information can be contained
within preparer tags. Finally, each document contains information on how the file should
be named within the collection, and this information can be marked as gutfilename. In
this section of the Gutenberg texts, it is suggested that some information is deleted; if the
document contains “Etext #,” “Author:,” or “Title:” to describe the data, after marked up
as <textnum> or <title>, the labels are unnecessary .

So far, this is fairly simple. To review, we have:

<?xm version="1. 0" encodi ng="UTF-8""?>
<I DOCTYPE guttext SYSTEM "nmy_dtd. dtd">
<gutt ext>

<gutneta>entity reference</gutneta>

<mar kupnet a>t est </ mar kupnet a>

<book, poem play or docunent>
The remai nder of this tutorial will focus on this main content section

and how to mark it up.

</ book, poem play or docunent>

</ guttext>

XML and Project Gutenberg 62

The next step for a marker is the hardest one, and requires one to think about the
substance of the text, and the roles and functions of the content, in order to mark it up
properly. In the <guttext> declaration, the DTD allows for the marker to add a book,
play, poem or document. These elements are optional, and can appear in any order, as
many times as necessary. They should each contain a distinct work. In other words, a
collection of poems could contain dozens of <poem> elements, but they would all clearly
represent the beginning and ending of one poem in the collection. Each of the four has a
distinct set of elements that can appear within them.

1. book: acknowledge, meta, frontmatter, bookbody, backmatter, endmeta

2. poem: acknowledge, meta, toc, poembody, simplesect, para, endmeta

3. play: acknowledge, meta, frontmatter, playbody, backmatter, endmeta

4. document: acknowledge, meta, frontmatter, documentbody, backmatter, endmeta

While quite a few of these sets of elements overlap, they will help to define the
structure of the texts further. Notice also that each of these three lists is comma-delimited
in the DTD, signifying that they must appear in this sequence if they appear. The
selection of this top-level element should be easy to determine (i.e., the text is either a
book or a poem); the document entity can be used for miscellaneous government
documents or speeches.

So how does one decide which elements to use and how to use them? My opinion
is to think abstractly at first to find the major sections of the text. For example, skim a
large book to see if it has parts and chapters or just chapters. Take notice of the front and

back matter of the book; is there a table of contents or an index, a glossary or an

XML and Project Gutenberg 63

appendix? For the purposes of Project Gutenberg, display and searching needs will
probably make use of these tags the most.

With these larger sections in mind, markup can begin, and the smaller details can
be taken into consideration. The remainder of this tutorial provides and index and a
description of each of the elements available in this DTD.

The Elements

All of the elements in the gutdtd DTD can be found indexed here by the following
categories: metadata elements, top-level elements, frontmatter elements, main body
elements, lower-level elements, play elements, backmatter elements, block elements,
inline elements.

These categories are only intended to help the marker visualize the main types of
content and elements of a text, and do not restrict that element to a particular category or
use. The nature of the DTD allows elements to refer to each other and share a set of
elements. Some of the elements contain only other elements, and thus may be considered
more of a "top-level” or "main body" element, and yet others might be considered leaf
elements in that they contain PCDATA or generic child elements (such as para or line) so
appear as "lower-level" elements.

Since the DTD is a revision of the HTML Writer's Guild DTDs designed for use
with the Gutenberg texts, much of the credit for this list must be attributed to them. The
HTML Writer's Guild based most of their structure on the "Parts of the Book" from The

Chicago Manual of Style. Some elements are unique to this project. The following lists

contain information about the intended use of elements that may be unclear, and the types

of data and sub-elements that can appear within them. However, to determine the

XML and Project Gutenberg 64

requirements of the element in regards to the order or number of times that its sub-

elements can appear, refer to the complete DTD.

The Metadata Elements

1.

gutmeta — “Gutenberg metadata,” use this tag to enclose all boilerplate metadata
that is added to the texts in the collection by the Project Gutenberg staff and
volunteers. Usually will contain only entity references to the external boilerplate
files, but can also contain PCDATA, para, simplesect, and title elements.
markupmeta - all additional metadata added by the Project Gutenberg staff that is
unique to this particular text, should be enclosed within this tag; can contain
PCDATA, textnum, preparer, gutdate, gutfilename, title, author, para, or
simplesect elements.

textnum - the "Etext # " found within the metadata of the Gutenberg collection;
can contain PCDATA, any of the inline elements, or the DTD attributes.

preparer - use for information about who may have prepared, proofread or
scanned the document for the collection; can contain PCDATA, any of the inline
elements, or the DTD attributes.

gutdate — “Gutenberg date,” use for the date found in the metadata, can contain
PCDATA, any of the inline elements, or the DTD attributes.

gutfilename - use for any information about how the file should be named, can
contain PCDATA, any of the inline elements, or the DTD attributes.

endgutmeta — “End Gutenberg metadata,” any additional information that is found
at the end of the text can be enclosed within these tags, can contain PCDATA, or

the para, simplesect, or title elements.

XML and Project Gutenberg 65

The Top-level Elements

1.

guttext — “Gutenberg text,” the very, highest, absolutely required element in that
should appear as the very first and very last tag in the XML document, enclosing
all pieces of the text - both the information added by Project Gutenberg and the
original document; can contain gutmeta, markupmeta, book, play, poem and/or
document, and endgutmeta elements.

book - the main book element, can contain: acknowledge, meta, frontmatter,
bookbody, backmatter, endmeta.

play - the main play element, can contain: acknowledge, meta, frontmatter,
playbody, backmatter, endmeta.

poem - the main poem element, can contain: acknowledge, meta, toc, poembody,
simplesect, para ,endmeta.

document - the main document element, for any other text such as a speech or
government document that does not make sense as a book, play or poem; can
contain acknowledge, meta, frontmatter, documentbody, backmatter, endmeta.
acknowledge - ? for the main book, poem, document and play elements. It can
contain PCDATA, any of the inline elements and the DTD attributes. Common
usage of this element would likely be any recognition given to others at the
beginning of the text.

meta - * for each of book, poem, document and play, is EMPTY but has the
content and id attributes.

endmeta - * for each of book, poem, document and play, EMPTY but has the

content and id attributes.

XML and Project Gutenberg 66

9. frontmatter - ? for book, document and play, not available to poem. Frontmatter
contains only sub-elements, not actual content, and should be used to enclose any
information that is contained before the actual body of the document starts. These
available sub-elements include: htitlepage, copypage, epigraph, titlepage, toc,
acksect, dedication, preface, prologue, personae, introduction, or miscfm.

10. backmatter - ? for book, document and play, not available to poem. Back matter
contains only sub-elements. This element should be used to enclose any
information that is contained after the actual body of the document ends. The sub-
elements available within backmatter are: appendix, index, glossary, biblio, note
and colophon.

11. bookbody - required for book, can contain as many parts and chapters as needed.

12. poembody - required for poem, can contain prenote, title, author, prose, subtitle,
tune, note, footnote and verse.

13. playbody - required for play, can contain as many parts and acts as needed.

14. documentbody - required for document, can contain prenote, title, speech, para,
note, misc.

Frontmatter Elements

While these sub-elements are not restricted for use within the frontmatter parent
element, the frontmatter parent element has provided the context for these initially.
1. htitlepage - can contain PCDATA, any of the inline elements or DTD attributes,
or the following sub-elements: title, subtitle, author, para, poem or song. This
element can otherwise be thought of as a "half" titlepage, or a page that only

contains the title.

XML and Project Gutenberg 67

copypage - can contain PCDATA, any of the inline elements or DTD attributes,
or the following sub-elements: para, poem, song or note. Typically this it the
copyright page of a text.

epigraph - can contain PCDATA, any of the inline elements or DTD attributes, or
the following sub-elements: para, poem, song, note or blockquote. Suggested use
of this element if for any quote or statement found before the text begins.
titlepage - can contain PCDATA, any of the inline elements or DTD attributes, or
the following sub-elements: partnum, title, subtitle, author, pubinfo, para, poem,
song, note or line. The main title page of a book usually contains the publication
information (pubinfo, see below).

pubinfo - can contain PCDATA, any of the inline elements or DTD attributes, or
the following sub-elements: para or line. This element is available to the entire
DTD, but is listed here in the context of the title page reference.

toc - can contain PCDATA, any of the inline elements or DTD attributes, or the
following sub-elements: title, subtitle, subsubtitle, item, list or deflist. Also
contains an additional attribute "toctype" that allows the marker to specify
whether this is a table of contents, maps, graphics, tables or other type, defaults to
‘contents.” Usually tables of contents are irrelevant in etexts as page numbers are
meaningless.

acksect - can contain PCDATA, any of the inline elements or DTD attributes, or

the following sub-elements: para, poem, song or note.

10.

11.

12.

13.

XML and Project Gutenberg 68

dedication - can contain PCDATA, any of the inline elements or DTD attributes,
or the following sub-elements: title, para, poem, song, or note. Most often,
dedications are present on their own page.

preface - can contain PCDATA, any of the block elements or DTD attributes, or
the following sub-elements: a title or chapheader, any of para, poem, song, sectl,
simplesect, and endchap or preauthor. Prefaces usually include an author's
motivation for writing the book or the sources and assistance they might have
received in writing it.

prologue - can contain PCDATA, any of the block elements or DTD attributes, or
the following sub-elements: a title or chapheader, any of para, poem, song,
simplesect, and endchap or preauthor.

personae - can contain PCDATA, any of the inline elements or DTD attributes, or
the following sub-elements: title, pgroup, persona, para or note.

introduction - can contain PCDATA, any of the block elements or DTD attributes,
or the following sub-elements: a title or chapheader, any of para, poem, song,
sectl, simplesect, and endchap. Introductions are text that is related directly to the
main body of the text, but should be read before reading the body of the text.
miscfm — “miscellaneous frontmatter,” can contain PCDATA, any of the inline
elements or DTD attributes, or the following sub-elements: para, poem, song or
note. This category is reserved for any additional frontmatter not covered by
another element, like a list of abbreviations that might be used in the text, an

editorial or chronology that helps to set up, or give context to the main body.

XML and Project Gutenberg 69

14. preauthor - can contain PCDATA, any of the inline elements or DTD attributes,
or the author sub-element. A preauthor element would be used if someone other
than the author of the text wrote the preface, etc. While this element is available
to the entire DTD, it is included here in context of the frontmatter elements.

Main Body Elements

The following elements are ones that are usually in context with the bookbody,
playbody or poembody main text body content.

1. part - * for bookbody and playbody, can contain PCDATA, any of the DTD
attributes, or the following sub-elements: acknowledge, titlepage, toc, htitlepage,
act, prose or chapter. Sometimes large books have parts with the chapters inside
them, the sub-elements represent, for example, a title page specific to that part.

2. chapter - can contain PCDATA, any of the block elements or DTD attributes, or
the following sub-elements: title or chapheader, para, poem, song, sectl,
simplesect, page and endchap.

3. act - can contain PCDATA, any of the DTD attributes, or the following sub-
elements: title, scene, speech, poem, song, scndesc, stagedir, prose or note. Used
to signify the acts in a play.

4. prenote - a leaf element that can contain PCDATA or any of the DTD attributes.
Use for an introductory note.

5. partnum - a leaf element that can contain PCDATA, the inline elements or any of
the DTD attributes. Use on titlepage for volume or part numbers of the text.

6. title - a leaf element, can contain PCDATA, any of the inline elements or DTD

attributes.

XML and Project Gutenberg 70

7. author - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

8. prose - a mixed content element, can contain PCDATA, any of the inline elements
of DTD attributes, or the following sub-elements: title, simplesect or para.

9. subtitle - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

10. tune - a leaf element that can contain PCDATA or any of the DTD attributes.

11. verse - can contain any of the DTD attributes or the following sub-elements: title,
subtitle, line, or note.

Lower-level Elements

1. subsubtitle - a leaf element, can contain PCDATA, any of the inline elements or

DTD attributes.

N

chapheader - the collective element containing the title, subtitle, chapnum,
chapsummary, and other generic leaf elements that comprise the introduction to a

chapter. Can contain any of the DTD attributes.

w

chapnum - a leaf element, can contain PCDATA, any of the inline elements or

DTD attributes.

e

chapsummary - a leaf element, can contain PCDATA, any of the inline elements

or DTD attributes.

o

endchap - if the end of a chapter contains a lot of additional information, enclose
it with the endchap tag, which can contain the para element, and of the block

elements, or DTD attributes.

10.

11.

12.

13.

XML and Project Gutenberg 71

attrib - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

caption - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

song - self-explanatory, can contain PCDATA, title, subtitle, verse, line, note,
footnote, any of the inline elements or the DTD attributes.

line - a leaf element defined as a possible child element of several other elements,
can contain PCDATA, any of the inline elements or DTD attributes.

para - can be used almost anywhere within this DTD to define a block of text, a
paragraph; can contain PCDATA or the inline elements, and any of the DTD
attributes.

simplesect - a "simple section,” likely a visually blocked but small section of text,
can contain one title, which must appear first, and the following: subtitle, para,
poem, song or block elements, DTD attributes.

sectl — “section 1,” included as a child to several elements including the preface,
introduction, chapter, appendix, the sectl, sect 2, etc. are available for sections
that appear almost as an outline, each section being a subsection of its parent; can
contain one title which must appear first, and sect2, simplesect, para, poem, song
or the block elements, and the DTD attributes.

sect2 - child only to sectl, can contain one title which must appear first, sect3,
simplesect, subtitle, para, poem, song or block elements, and any of the DTD

attributes.

XML and Project Gutenberg 72

14. sect3 - child only to sect2, can contain one title which must appear first, sect4,
simplesect, subtitle, para, poem, song or block elements, and any of the DTD
attributes.

15. sect4 - child only to sect3, can contain one title which must appear first,
simplesect, subtitle, para, poem, song or block elements, and any of the DTD
attributes.

16. page - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

Play Elements

1. speech - can contain PCDATA, speaker, stagedir, song, poem, line and the inline
elements, or DTD attributes.

2. scene - usually the scene of a play, can contain the following elements: speech,
poem, song, scndesc, stagedir, prose, note or the DTD attributes.

3. speaker - a leaf element, can contain PCDATA, any of the inline elements or
DTD attributes.

4. scndesc - "scene description,” a leaf element, can contain PCDATA, any of the
inline elements or DTD attributes.

5. stagedir - "stage direction,"” a leaf element, can contain PCDATA, any of the
inline elements or DTD attributes.

6. pgroup - a grouping of persona, for example, "the chorus," can include PCDATA,
title, persona, para, note or the inline elements, as well as the DTD attributes.

7. persona - a character in a story or play, can contain PCDATA, or the actor, actress

and inline elements, and the DTD attributes.

XML and Project Gutenberg 73

8. actor - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

9. actress - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

Back Matter Elements

1. index - an index in a traditional print book contains a list of terms with the page
numbers in which they can be found within the book. While they are often
omitted in electronic texts, if present can include title, item, list, deflist and note
elements, and can contain the following types: contents, authors, firstlines, tables,
or other.

2. glossary - a list of terms with definitions, can contain: title, item, list, deflist, or
note elements and any of the DTD attributes.

3. biblio - meaning bibliography, usually contains external references to relevant,
related reading material. Can contain title, item, list, deflist, note, and any of the
DTD attributes.

4. appendix - most appendices resemble additional chapters to a text; can contain a
title or chapheader, para, poem, song, sectl, simplesect, any of the block, and the
endchap elements, as well as the DTD attributes.

5. colophon - a colophon is an embellishment upon the preceding text, or can
contain a brief description of how the text was produced; it can contain PCDATA,
the DTD attributes, and the following elements: para, poem song, and the inline

elements.

XML and Project Gutenberg 74

The Block Elements

1.

blockquote - a long quotation included in a text, can contain: title, para,
poembody, song, attrib.

footnote - initially declared within the block class, but also defined as a child of
several other elements including poem and song; can contain PCDATA, any of
the inline elements, and the DTD attributes.

note - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

blockgraphic - whereas a graphic is considered an inline element, a blockgraphic,
typically defined by its presentation within the document, can contain title,

graphic, and caption elements.

Letter Elements

5.

letter - the container element for all parts of a letter: address, to, from, salut, sig,
title, subtitle, para, poembody, song, line, note.

address - can contain PCDATA, para, line and any of the inline elements or DTD
attributes.

to - can contain PCDATA, para, line and any of the inline elements or DTD
attributes.

from - can contain PCDATA, para, line and any of the inline elements or DTD
attributes.

salut — “salutation” can contain PCDATA, para, line and any of the inline

elements or DTD attributes.

XML and Project Gutenberg 75

10. sig — “signature” can contain PCDATA, para, line and any of the inline elements
or DTD attributes.

List Elements

11. list - the container element for any type of list, can contain title, list, item elements
and the DTD attributes.

12. item - a very generic element that can be used for any item in a list, can contain
PCDATA, para, poembody, song, simplesect and any of the block or inline
elements and the DTD attributes.

13. deflist - similar to list, with the addition of “definitions;” can contain title, item,
desc, def and the DTD attributes.

14. desc - a leaf element, can contain PCDATA, any of the inline elements or DTD
attributes.

15. def — “definition,” a leaf element, can contain PCDATA, any of the inline
elements or DTD attributes.

Table Elements

16. table - a container element for the elements of a table, can contain title, row,
caption and the DTD attributes.

17. row - a child only to table, can contain cells and have any of the DTD attributes.

18. cell - a child only to row, can almost anything: PCDATA, and any of the block or
inline elements and have any of the DTD attributes.

Inline Elements

1. quote - a leaf element, can contain PCDATA, any of the other inline elements or

DTD attributes.

10.

11.

XML and Project Gutenberg 76

emph - “emphasis,” a leaf element, can contain PCDATA, any of the other inline
elements or DTD attributes.

ital — “italics,” a leaf element, can contain PCDATA, any of the other inline
elements or DTD attributes.

reference - a leaf element, can contain PCDATA, any of the other inline elements
or DTD attributes.

date - a leaf element, can contain PCDATA, any of the other inline elements or
DTD attributes.

place - a leaf element, can contain PCDATA, any of the other inline elements or
DTD attributes.

name - a leaf element, can contain PCDATA, any of the other inline elements or
DTD attributes.

graphic - this inline element is actually EMPTY, but must have the required
attributes desc (description) and href (location of the graphic file), and well as any
of the DTD attributes.

txterr - an interesting inline element provided in the HTML Writer's Guild DTDs,
"for use to enclose the text you think is in error optional explanation if error is not
obvious." Can contain PCDATA, and an attribute, "explain,”" as well as any of the
DTD attributes.

mkuperr - similar to txterr, use to enclose any markup errors, an explanation is
required.

misc - a leaf element, can contain PCDATA, any of the other inline elements or

DTD attributes.

