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ABSTRACT 

Andrew George Chambers 

DEVELOPMENT OF MULTIDIMENSIONAL SEPARATIONS USING 

MICROFLUIDIC DEVICES FOR PROTEOMICS APPLICATIONS  

(Under the direction of J. Michael Ramsey) 
 

 This work describes the development of novel microfluidic tools for the analysis 

of complex peptide mixtures.  Gradient elution electrochromatography utilizing a 

reversed-phase monolith stationary phase is demonstrated on a microchip device.  Porous 

polymer monoliths were patterned within glass microchips by photopolymerization of 

acrylate monomers.  Mobile phase gradients were readily produced on-chip by computer-

controlled mixing of solvents.  Isocratic and gradient separations of protein digests were 

preformed to evaluate this device.     

 Several two-dimensional (2D) separation systems were constructed for online 

coupling of liquid chromatography (LC) and capillary electrophoresis (CE).  First, a 

hybrid 2D LC-CE system was constructed to perform LC in a capillary column and 

transfer the effluent to a microchip for CE with laser-induced fluorescence (LIF) 

detection.  This basic hybrid 2D LC-CE system was then directly interfaced with mass 

spectrometry (MS) detection by microfabricating an electrospray ionization (ESI) emitter 

on the microchip device.  This system new was used for rapid peptide mass fingerprinting 

of monoclonal antibody digests to confirm antibody identity and modification.  In a third 

2D system, the LC dimension was also integrated to produce a microchip device capable 
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of performing LC-CE-ESI.  This microchip incorporated a sample-trapping region and an 

LC channel packed with reversed-phase particles.  In addition to LC-CE-ESI, this device 

was used for LC-ESI without any instrumental modifications.   

 Finally, a dual microfluidic ESI source will be discussed for increasing the mass 

accuracy of microchip ESI measurements.  This device featured two independent ESI 

emitters that were used to sequentially introduce ions from two solutions into a mass 

spectrometer.  Using the second emitter to introduce a reference compound for internal 

calibration, accurate mass measurements (< 3 ppm mass error) were obtained with the 

microchip dual ESI device and time-of-flight MS. 
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CHAPTER 1:  Introduction to Multidimensional Separations for Proteomics  

 

 

1.1  Motivation 

1.1.1  Proteomics and the Complexity of Biological Samples 

 Proteomics is the global study of all proteins in an organism to determine how 

protein expression and interaction regulate biological pathways.  This information is 

crucial to improving our fundamental understanding of physiology and has immediate 

application in the diagnosis, monitoring and treatment of disease.  One key step in 

deciphering the proteome is the ability to identify and quantify proteins and peptides in 

biological samples.  This task is extremely challenging due to the complexity of 

biological systems.  For example, the human genome codes for approximately 20,000 to 

25,000 proteins.1  The actual number of proteins expressed is likely orders of magnitude 

higher due to several factors including alternative messenger ribonucleic acid splicing2 

and post-translational modifications.3  In addition, the range of protein concentration in 

some samples is a least ten orders of magnitude.4  To further complicate matters, protein 

expression changes in with time and in response to various environmental stimuli.    

 The comprehensive analysis of proteins in biological samples is dominated by 

mass spectrometry (MS)-based analytical methods because of their ability to 

unambiguously identify species by providing accurate mass and structural information.5-6  

There are two distinct strategies known as “bottom-up” and “top-down” proteomics.  In 

the bottom-up approach, proteins are enzymatically cleaved into their constituent 
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peptides prior to separation and MS analysis.  The MS data is then used to search protein 

sequence databases to identify the original proteins in the sample.  Alternatively, top-

down approaches focus on the separation and MS analysis of intact proteins.  There are 

many advantages and disadvantages to each approach that depend on the specific data 

desired.  A comprehensive approach combines data from both top-down and bottom-up 

approaches to obtain the most complete data set from the sample.  Regardless of which 

approach is selected, one of the largest obstacles in identifying proteins is sample 

complexity, which must be reduced prior to introduction into a mass spectrometer.    

1.1.2  The Necessity for High Peak Capacity 

 It may be useful to review a few metrics for assessing the performance of an 

analytical separation to further define what is necessary to separate complex biological 

samples.  The broadening of an analyte band as it travels through the separation space can 

be described using the height equivalent theoretical plate, H, which is calculated by,7  

    � = �� ��       (1-1) 

where � is the standard deviation of the peak width and L is the length that the peak is 

displaced.  The total number of plates, N, is the number of H units contained in the 

separation path,7 

    � = � ��       (1-2) 

The separation efficiency is typically reported in units of theoretical plates per meter 

(N/m).  High separation efficiency results in narrower peak widths and therefore less 

peak separation will be needed to resolve them.  While separation efficiency is an 

important metric, it does not fully define the ability to separate a large number of 
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components.  For this purpose, it may be better to use peak capacity, �	, which is defined 

as the maximum number of peaks that can theoretically fit in a given separation space,7  

�	 = � 
4 � ���      (1-3) 

where L is the space over which the peak may be distributed and the last peak and Rs is 

the resolution between adjacent peaks.  This equation assumes that peaks of equal width 

are evenly spaced at the highest density that allowed for a given resolution.  In practice, 

peaks are rarely spaced at even intervals and are often overlapped.  Thus a peak capacity 

value of 100 is not sufficient to resolve a mixture of 100 components.  The peak capacity 

required to resolve all components in a complex mixture for a given confidence interval 

can be described using the statistical model of overlap (SMO).8  This model assumes that 

peaks are randomly distributed throughout the given separation space.  Using SMO 

theory the probability that any given component will be resolved by a one-dimensional 

(1D) separation can be calculated by8  

   � = � �� = ���
� ��� �       (1-4) 

where � is the number of successfully resolved components and � is the total number 

components in the sample.  Figure 1-1 illustrates this probability as a percentage of 

components that are resolved (�/� ∗ 100) for mixtures containing 100, 250, 500 and 

1,000 components.  This shows that a peak capacity of 500 is expected to resolve 67% of 

components in a 100 component mixture.  However, this same peak capacity is only 

capable of resolving 1.8% of a 1,000 component mixture.  If the goal is to resolve 950 

components in a 1,000 component mixture (� � ∗ 100 = 95%� ), then the peak capacity 

required is 39,000.   
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 Current 1D separation methods lack the peak capacity to separate even 

moderately complex biological mixtures.  For example, reversed-phase liquid 

chromatography (LC) is among the best 1D separation methods for proteins and peptides.  

The highest reported peak capacity to date for reversed-phase LC separations of peptides 

is 1,500.9  Using Equation 1-4, a peak capacity of 1,500 will only resolve 0.13% a sample 

that contained 5,000 peptides.  It is readily apparent that this level of separation power is 

inadequate to resolve highly complex samples that may contain hundreds of thousands of 

peptides.  The inability to resolve peaks results in a loss of information as overlapping 

peaks prevents identification and quantification when using a general detection scheme, 

such as ultraviolet (UV)-absorbance.  MS detection can differentiate between several 

components introduced simultaneously; however, efficient sample ionization and data 

interpretation becomes problematic when large numbers of components are introduced 

together.  In general, increasing the resolving power of the separation will increase the 

number of proteins identified in the original sample.  The development of analytical 

instrumentation that can rapidly generate larger peak capacities is a critical step to 

advancing proteomic research. 

1.2  Multidimensional Separations 

1.2.1  Theory 

 Multidimensional separations are one strategy for dramatically increasing peak 

capacity.  The illustration of a two-dimensional (2D) separation in Figure 1-2 can be used 

to describe the basic concept for improving the overall resolution.  A 1D separation of a 

complex sample results in peaks that contain multiple components and in reality these 

peaks will also be overlapped as discussed in the preceding section.  Subjecting these 
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peaks to a second separation provides another opportunity for components to be resolved.  

Giddings described two general criteria for maximizing the peak capacity of a 

multidimensional separation method.10  First, separations to be coupled should be 

orthogonal so that there is no correlation in selectivity.  Generally, different separation 

mechanisms are coupled so each separates the sample based on a different set of chemical 

or physical properties.  The need for othogonality is illustrated using a 2D separation in 

Figure 1-3.  If the selectivity is the same in both dimensions, then the peaks will fall 

along a diagonal line without increasing resolution as shown in Figure 1-3A.  Conversely, 

a large difference in selectivity will result in peaks being distributed across the entire 2D 

separation space as shown in Figure 1-3B.  This additional resolution may also allow 

multiple components within the original peaks to be resolved.  The second criterion for 

multidimensional separations states that the resolution obtained in any dimension must be 

retained.  If these two criteria are met, then the maximum peak capacity is the product of 

the peak capacity in each dimension,10   

   �	� �!"
= �	# × �	% × �	&

⋯      (1-5) 

For example, a two dimensional (2D) separation method with a modest peak capacity of 

150 in the first dimension and 50 in the second dimension could be coupled to produce a 

total peak capacity of 7,500.   

It is important to point out that peak capacities generated by 1D and 2D 

separations are not equivalent.  An extension of SMO theory reveals that the probability 

of resolving any given component by a 2D separation is11 

    � = � �� = ��(
� ��� �      (1-6) 
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This equation shows that twice the peak capacity is needed for a 2D separation to resolve 

the same number of components as a 1D separation.  Figure 1-4 illustrates this difference 

by comparing the peak capacity required to separate 50% of the components (�/� ∗

100 = 50%) in a 100 component mixture using 1D and 2D methods.  Fortunately, 2D 

separation methods often increase the peak capacity by many fold to provide a large net 

gain in the ability to resolve complex mixtures.         

1.2.2  Conventional 2D Separations 

 Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the most 

common multidimensional separation method used in the analysis of proteins.12  This 

method utilizes isoelectric focusing (IEF) to separate proteins by their isoelectric point 

followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to 

further resolve proteins essentially by size.  2D-PAGE is a very powerful protein 

separation method as it can routinely resolve thousands of proteins.13  Following the 

separation, proteins of interest are typically excised from the gel and enzymatically 

digested prior to analysis by MS.  Although 2D-PAGE can provide a high resolving 

power, this method suffers from key limitations.13-15  This method is not well suited to the 

analysis of several classes of proteins as very large or hydrophobic proteins do not 

efficiently load into the gel and alkaline proteins are often poorly resolved.  The 

separation often takes days to complete and is difficult to automate.  The reproducibility 

of 2D-PAGE is poor due to considerable variation in polyacrylamide gel preparation and 

this is especially problematic for quantitative analysis.  Finally, protein identification 

generally requires each resolved spot to be excised from the gel, prepared, and introduced 
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into the mass spectrometer individually.  This laborious procedure makes comprehensive 

identification of complex samples largely impractical.  

 To address some of the limitations of 2D-PAGE, several column-based 2D 

separation methods have been developed.  These 2D methods couple linear separation 

columns by collecting fractions from the first dimension and injecting this material onto 

the second dimension.  One large advantage of column-based 2D separations is that they 

are readily coupled with MS detection via electrospray ionization (ESI).16  Columns may 

be coupled using an offline or online strategy.  Offline column coupling requires fractions 

from the first dimension to be stored for later analysis by the second dimension.  In 

online column coupling, fractions from the first column are immediately injected onto the 

second column for analysis.  The main advantage of online column coupling is that the 

entire analysis is completed in the time required for the first dimension.  This requires 

that the separation in second dimension is completed rapidly to prevent undersampling of 

the first dimension.  In theory, peaks from the first dimension should be sampled 3-4 

times by the second dimension to preserve the resolution already obtained.17  

   The majority of online 2D methods utilize LC in both dimensions (LC-LC), such 

as ion exchange chromatography followed by reversed-phase chromatography.18-22  This 

is largely due to the relative ease in coupling these separations as a standard LC valve can 

readily transfer fractions from the first column onto the second.  However, it is generally 

difficult to complete the second dimension fast enough to keep up with the peaks eluting 

from the first dimension.  Several alterative separation methods involving capillary 

electrophoresis (CE) have also been explored including LC-CE, CE-LC, and CE-CE.23-26   
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1.2.3  Microfluidic 2D Separations 

 Microfluidic devices provide a fundamentally different platform for performing 

chemical analysis.27-28  These microfabricated devices, also known as Lab-on-a-Chip or 

Micro Total Analysis Systems, are characterized by a network of interconnecting fluidic 

channels created in a single planer substrate.  Typical channels have dimensions in the 

micron range and are readily fabricated using well established technologies borrowed 

from the semi-conductor industry.  These properties give microfluidic devices inherent 

advantages over traditional instrumentation for chemical analysis.  The confined channel 

environment enables precise manipulation of fluid volumes in the picoliter to microliter 

range.  The reduced length scale also decreases sample and reagent consumption and 

often leads to shorter analysis time.  Parallel fabrication can reduce instrumentation cost 

and enable highly multiplexed systems, increasing sample throughput.  The most 

important advantage is the ability to integrate several fluidic operations on the same 

device.  This enables minute samples to be rapidly transported between several sequential 

processing steps with near zero band broadening.  Integration can also reduce the 

complexity of the instrumentation and facilitate automation.  Over the last two decades, 

numerous fluidic operations have been successfully implemented on microfluidic devices 

to enable a wide range of chemical analyses to be performed.29-34  In addition, there have 

been many strategies reported for coupling these devices with MS detection via ESI.35-37   

 There has been considerable development of 2D separations on microfluidic 

devices.38-39  Nearly all reports have coupled two electrokinetically-driven separation 

mechanisms due to the ease at which electroosmotic flow (EOF) can be controlled.  One 

of the first microfluidic 2D separations described used micellar electrokinetic 
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chromatography (MEKC) coupled with CE.40  Later improvements to this device allowed 

for a peak capacity of approximately 4,000 to be generated for protein digests in less than 

15 min.41  Shadpour and coworkers coupled gel CE with MEKC resulting in a peak 

capacity of over 1,000 for proteins in 12 min.42  Multiple groups have reported devices 

that perform IEF-CE that are able to generate peak capacities in excess of 1,700 for 

proteins in less than 15 min.43-44  This represents a reduction in analysis time of 

approximately two orders of magnitude when compared with conventional 2D-PAGE.  

These examples clearly demonstrate the power of microfluidic 2D separation systems to 

rapidly separate biological samples.  The next crucial step towards comprehensive 

analysis of biological samples using microfluidic devices is the development of 2D 

separations that can be directly integrated with MS detection.       
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1.3  Figures 

 

 

 

 

  

 

Figure 1-1.  The percentage of components resolved as a function of peak capacity 
for a 1D separation using SMO theory.  Traces are shown for mixtures containing 
100, 250, 500, and 1,000 components.  
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Figure 1-2.  General strategy for 2D separations.  Peaks from the first dimension 
are subjected to a second dimension of separation to increase the overall resolving 
power.  
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Figure 1-3.  Illustration of the need for orthogonality in 2D separation methods.  
A) non-orthogonal,  B) orthogonal 
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Figure 1-4.  The percentage of components resolved as a function of peak capacity 
for a 1D and 2D separation of a 100 component mixture using SMO theory.   
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CHAPTER 2:  Gradient Elution Capillary Electrochromatography using Monolith 

Stationary Phases on a Microfluidic Device 

 

 

2.1  Introduction 

 In capillary electrochromatography (CEC), the mobile phase is driven through 

separation column or channel by electroosmosis.  The velocity of this electroosmotic 

flow (EOF), ueo, can be determined by, 

ueo =
ζ )  ) *

η 
         (2-1) 

where ζ is the zeta potential,  +, is the permittivity of free space, + is the dielectric 

constant of the electrolyte solution, - is the electric field strength and η is the viscosity of 

the solution.  There are important considerations that arise when the mobile phase is 

driven by EOF as opposed to an applied pressure driven system as in LC.  The presence 

of the electric field will separate molecules by electrophoresis and thus CEC is a 

combination of electrophoretic and chromatographic separation mechanisms.  The main 

advantage of CEC over LC is that the flat flow profile of EOF introduces less band 

broadening than pressure-driven flow.1-2  In addition, velocity of the EOF is independent 

of column diameter or geometry of the stationary phase support under common operating 

conditions.  This means that very small packing material may be used to improve mass 

transfer efficiency.  The use of pressure-driven flow with this material may be 

challenging due to the high hydrodynamic resistance.  The elimination of high-pressure 

pumps may also reduce the instrumentation complexity and cost of CEC compared to LC.  
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Microfluidic devices are well suited to performing CEC separations due to the ease at 

which EOF can be precisely controlled.3-4    

 In early microchip CEC work, an open-channel design was used where the 

stationary phase was created by simply functionalizing the channel surface.5  Although 

efficiencies over 500,000 plates/m for isocratic separations were achieved,6 the mass 

loading capacity of open-channel devices is relatively low.7-8  Reducing the mass of the 

injected sample is not always feasible as the concentration of analytes may fall below the 

limit of detection.  Mass loading is an especially important consideration when samples 

are highly complex or when analytes are present over a wide range of concentrations.  

Consequently, there have been numerous studies focused on increasing the mass loading 

capacity by incorporating three-dimensional solid supports within the channels to 

increase the surface area of the stationary phase.  Several different strategies have been 

explored including packing channels with particles, synthesizing organic or inorganic 

monoliths, and fabricating micro pillar arrays within the channels. 9   

 One attractive approach for fabricating porous polymer monoliths in channels is 

to photopolymerize acrylate monomers in situ.10-11  By careful selection of the acrylate 

monomers and porogenic solvents, the monolith’s chemical and physical properties can 

be tailored for a given application.  The photopolymerization process allows for localized 

monolith formation since regions may be masked prior to irradiation.  In addition, these 

porous polymer monoliths can be electrokinetically flushed immediately after formation, 

eliminating the need for any external pumps at any point in the fabrication or operation.12  

Monolithic materials have been successfully used in microfluidic devices for various 

functions including solid phase extraction, separation, enzymatic digestion, microvalving 
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and ESI.13-14  There have been many reports on photopolymerized acrylate-based 

monoliths employed for microchip CEC separations.15-19  

 Gradient elution in CEC provides the same advantages as in LC, specifically 

reducing analysis times while increasing the overall resolution and sensitivity.  

Previously, we have demonstrated gradient elution integrated with MEKC20 and open-

channel CEC on microchips.6,8  At the time of this research, all previous microchip CEC 

with three-dimensional stationary phase supports utilized isocratic mobile phase elution.  

Some recent research by Watson and coworkers has explored this technique with some 

success.21  In this chapter, CEC with monolithic stationary phases is combined with 

gradient elution for improving separations of protein digests. 

2.2  Experimental 

2.2.1  Reagents 

 All water used in this experiment was deionized and filtered through a Nanopure 

Diamond purification system (Barnstead, Dubuque, IA).  The following materials were 

obtained from Sigma-Aldrich Chemical Co. (St. Louis, MO):  1,3-butanediol diacrylate, 

2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), 2,2’-azobisisobutyronitrile 

(AIBN), 3-trimethoxysilylpropyl acrylate , bovine serum albumin (BSA), butyl acrylate, 

rhodamine B and trypsin from bovine pancreas.  The following peptides were purchased 

from American Peptide Co. (Sunnyvale, CA):  G-P-R, G-F-R, bradykinin (1-6) and 

enkephalin [Met5, Arg6]. The fluorescent labels tetramethylrhodamine-5(and 6)-

isothiocyanate (5(6)-TRITC) and tetramethylrhodamine-5-isothiocyanate (5-TRITC) 

were purchased from Molecular Probes (Eugene, OR).  All other chemicals were 

purchased from Fisher Chemicals (Fairlawn, NJ) and used without further purification.  



21 
 

Stock buffer solutions were prepared by combining sodium phosphate monobasic and 

dibasic to give a concentration of 100 mM and a pH of 7.  For all experiments, the buffer 

was diluted with water and acetonitrile to a final concentration of 10 mM. 

2.2.2  Sample Preparation 

 Preparation of fluorescently-labeled peptides was adapted from a previously 

reported procedure.7  Individual peptides where dissolved in 100 mM sodium bicarbonate  

(pH 9) at a concentration of 10 mg/mL.  For the digest, BSA was dissolved in 100 mM 

sodium bicarbonate (pH 9) at a concentration of 20 mg/mL, thermally denatured at 80 °C 

for 45min and then cooled to room temperature for subsequent digestion.  Trypsin was 

dissolved in 100 mM sodium bicarbonate (pH 9) at a concentrated of 2 mg/mL.  The 

BSA and trypsin solutions were then combined at a 40:1 ratio (substrate/trypsin) by 

weight and allowed to react overnight at 37 °C.   

 Digest peptide mixtures and single peptides were fluorescently labeled using the 

following procedure.  TRITC was dissolved in dimethyl sulfoxide at 10 mg/mL, 

combined with the peptides at approximately a 1:1 molar ratio, and allowed to react 

between 3-5 hours at room temperature.  All peptides were labeled with 5-TRITC except 

G-P-R and G-F-R, which were labeled with the mixed isomers 5(6)-TRITC.  The 

chemical structure for 5-TRITC and the general scheme for the labeling reaction are 

shown in Figure 2-1.  Individual labeled peptides were diluted approximately 8-fold with 

water.  All samples were frozen until needed.  Just prior to use, samples were diluted with 

run buffer to a final concentration of 10 µM for individual peptides and 5 µM for the 

BSA digest. 
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 2.2.3  Microchip Fabrication 

 Microchips were fabricated from glass substrates (White Crown B-270; Telic Co., 

Valencia, CA) using standard photolithography, wet chemical etching, and bonding 

procedures.22  Figure 2-2A shows the basic layout of the channels and reservoirs for the 

microchip device.  Glass cylinders were attached to the access ports at the channel 

termini using chemically resistant epoxy (Hysol E-120HP; Loctite, Rocky Kill, CT) and 

were used as fluid reservoirs.  The serpentine separation channel incorporated 

asymmetric turns to minimize band broadening as previously discussed.23-25  All channels 

were 13 µm deep and 96 µm wide at full width except for the asymmetric turns that were 

37 µm wide at full width and exhibited the expected edge profile of an isotopic etch with 

good mask integrity.  The separation channel was 192 mm in length; however, the 

effective separation distance was defined by the point of laser-induced fluorescence (LIF) 

detection (see microchip operation).  The distance from the “T” intersection to the 

injection cross was 5 mm.  A photograph of the microchip is shown in Figure 2-2B.   

2.2.4  Monolith Synthesis 

 The monolith synthesis within the microchannels was adapted from a previously 

reported procedure.16  The channels were first functionalized with an acrylate that was 

later incorporated into the monolith structure during the photopolymerization to provide 

attachment to the channel walls.  The channels were prepared by sequentially flushing 

with the following solutions:  1 N sodium hydroxide, water, 1 M hydrochloric acid, 

water, and methanol.  The chip was then dried in a vacuum oven at 50 °C for 6 hours.  

The glass channel walls were functionalized by continuous flushing with 1% 

3-trimethoxysilylpropyl acrylate in dry toluene for 1 hour.  All percentages are 
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volumetric unless otherwise noted.  Afterwards, the chip was flushed with dry toluene, 

and then acetonitrile, before being briefly dried under vacuum. 

 Figure 2-3 shows the chemical structure of the acrylate monomers and the general 

mechanism for polymerization.26  The acrylate monomers were filtered through basic 

activated alumina to remove inhibitors before use.  The monomer mixture consisted of 

69% butyl acrylate as the hydrophobic monomer, 30% 1,3-butanediol diacrylate as the 

crosslinker, 0.25% AMPS to provide the negative surface charge, and 0.30% 

3-trimethoxysilylpropyl acrylate for enhanced surface attachment and structural stability.  

This concentration of AMPS corresponds to half the amount stated in the previously 

reported procedure.  The free-radical initiator, AIBN, was added at 0.5% (w/w) of the 

monomers.  The monomer casting solvent was created from 5 mM sodium phosphate 

(pH 7), ethanol, and acetonitrile in a 1:1:3 ratio.  The monomers and casting solvent were 

then combined at a ratio of 1:2 (monomers : casting solvent).   This solution was 

sonnicated for 5 min before use to ensure uniform distribution.  Note that excessive 

sonication will heat the solution and initiate free radical production prematurely.   

 Monolith formation was only desirable in the separation channel therefore all 

other regions were masked off with general purpose laboratory tape.  The final 9 mm of 

the separation channel was also masked off to provide an open channel region for LIF 

detection.  Care was taken to fill all reservoirs equally with the combined monomer and 

casting solvent solution to avoid generating fluid flow by hydrostatic pressure.  The chip 

was then exposed to UV radiation from a 100 W UV lamp (Blak-Ray, San Gabriel, CA) 

from below at a distance of 7.5 cm for 25 min.  After polymerization, the chip was 

electrokinetically flushed for 2 hours with a solution containing 2.5 mM sodium 
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phosphate, pH 7 and 75% acetontirile.  The distance between the injection cross and the 

monolith in the separation channel was 1 mm.  The microchip was stored with buffer in 

the channels; however, the reservoirs were filled with water to prevent the acetonitrile 

from diminishing the epoxy’s structural integrity.  The chip was placed in a sealed 

container to prevent the monolith from drying out when not in use. 

2.2.5  Microchip Operation 

 The schematic for the complete experimental setup is shown in Figure 2-4.  The 

EOF was controlled by varying the voltages applied to each reservoir.  The mobile phase 

gradient was formed by the mixing of two electroosmotic flows with different organic 

composition at a “T” intersection as previously described.20  This was accomplished by 

adjusting the voltages applied to buffer A and buffer B to select the desired solvent 

composition delivered to the injection cross.  Buffer A was composed of 10 mM sodium 

phosphate (pH 7) in water and buffer B was 10 mM sodium phosphate (pH 7) in 1:1 ratio 

of water and acetonitrile.  All sample injections were performed using the gated injection 

scheme.27  Four positive high voltages were supplied by a +10 kV power supply (2866A; 

Bertan, Hicksville, NY) and one negative high voltage lead was supplied by a custom-

built, -10 kV power supply (Ultravolt, Ronkonkoma, NY).  Both power supplies were 

controlled by a Power Macintosh G5 via an I/O board (PCI-6713; National Instruments, 

Austin, TX).   Analytes were detected by LIF in the open channel region immediately 

following the monolith in the separation channel, defining a separation length of 183 mm.  

An argon ion laser (543-AP-A01; Melles Griot, Carlsbad, CA) supplied a continuous 

power of 10 mW of 514.5 nm light that was focused at the microchip by a 150-mm focal 

length lens (Newport Corp., Irvine, Ca).  Fluorescence emission was collected by a 40x 
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microscope objective (CD-240-M40; Creative Devices, Neshanic Station, NJ), spatially 

filtered with a 800-µm diameter pinhole, filtered spectrally by a long pass filter (LP02-

514RU-25; Semrock, Rochestor, NY), and detected by a photomultiplier tube (R928; 

Hamamatsu, Bridgewater, NY).  The photomultiplier signal was amplified by a low-noise 

current amplifier (SR570; Stanford Research Systems, Sunnyvale, CA) and read into the 

computer by a second I/O board (PCI-6251; National Instruments, Austin, TX). 

2.2.6  Data Analysis 

 Peak capacity values were calculated using open source software (Peak Finder, 

available at http://omics.pnl.gov/software).  This program fits the peaks with a Gaussian 

curve and then calculates the median peak width (4σ).  The peak capacity is then 

calculated by Equation 1-3 using a resolution of 1.   

2.3  Results and Discussion 

2.3.1  Photopatterned Monolith Material 

 Negatively charged porous polymer monoliths were fabricated in glass 

microchips by photopolymerization of acrylate monomers following established 

procedures.16  No gaps or voids were observed in the monolith material when inspected 

with a light microscope.  For a closer look, scanning electron microscope (SEM) images 

of a microchip filled with this material were obtained.  To expose the monolith for SEM 

imaging, a microchip was scored with a diamond tipped scribe and cleaved into two 

pieces.  Two SEM images of the channel cross-section are shown in Figure 2-5.  The 

globular structure of the monolith appears to be more dense here than in a previous 

report.12  A difference in UV irradiance during the monolith synthesis will change the 

rate of polymerization and this may account for the small difference in the monolith 
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structure.  This material has been previously characterized and found to have a average 

pore size of 1 µm (by mercury porosimetry) and a surface area ~1-3 m2/g (by the BET 

method).12  As previously noted, the monolith material could be readily removed from 

the device by thermal decomposition.17  A 6 hr dwell time at 400 °C was sufficient to 

completely remove the material without damaging the microchip device.  Thus a single 

microchip device could be used to evaluate several different monolith formulations.    

 By simply masking off areas to be irradiated, the monolith formation was easily 

localized to the separation channel.  There are several advantages to photopatterning the 

monolith material in the separation channel as opposed to filling the entire device.  First, 

an open sample channel reduces the loading time required for hydrophobic analytes to 

travel to the injection cross.  This is especially important when one desires to load an 

aqueous sample as often done in gradient elution separations.  Secondly, an open 

injection cross reduces the injection bias based on the analyte’s hydrophobicity.   

 However, a photopatterned device has both open and monolith filled regions that 

may lead to significant drawbacks.  A change in the surface charge at the interface 

between the open channel and monolith will result in a different zeta potential and by 

Equation 2-1 the velocity of the EOF will be different.  This difference in EOF will create 

a pressure gradient that will produce recirculating flow.28-29  It is advantageous to 

eliminate pressure-driven flow as it complicates fluid control in the device and introduces 

axial dispersion, lowering separation efficiency.  In this study, the previously reported 

monolith formulation was found to have a larger EOF than the open channel regions.16  

This created an area of low pressure in the separation channel near the injection cross.  

This induced hydrodynamic flow forced sample into the separation channel, making it 
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difficult to establish the gated injection scheme.  To correct this mismatch in EOF, the 

amount of AMPS in the monomer solution was reduced to lower the EOF in the 

monolith.  The new monolith produced an EOF velocity approximately equal to the open-

channel regions.  This was verified qualitatively by fluorescence imaging of rhodamine B 

injections. 

2.3.2  Isocratic Separations 

 Although the separation mechanism for electrochromatography is a combination 

of electrophoresis and chromatography, neutral molecules are separated solely by 

chromatographic partitioning.  As test analytes, four short peptides were chosen that had 

a net charge after labeling with TRITC near zero.  CE separations using an identical 

microchip without the monolith could not resolve these labeled peptides with a field 

strength of 0.45 kV/cm.  In addition, CEC separations were not able to separate these 

peptides when the mobile phase contained over 50% acetonitrile.  Figure 2-6 shows an 

isocratic separation of three of these peptides using 30% acetonitrile.  Since these 

molecules are only separated by chromatographic partitioning, the optimal linear velocity 

for the mobile phase can be determined by constructing a van Deemter plot.  However, 

there was difficultly in determining the mobile phase velocity in these experiments.  In 

LC experiments, the mobile phase velocity is generally determined by measuring the 

dead time, meaning the time required for an unretained molecule to elute.  Commonly 

used dead time markers for reversed-phase LC with UV-absorbance detection are 

hydrophilic, low molecular weight organic molecules that are not charged such as 

thiourea or uracil.  Dead time markers for CEC-LIF must also have a high quantum yield 

to be compatible with LIF detection.  A fluorescent dye that was sufficiently hydrophilic 
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without being charged was not readily available.  However, the mobile phase velocity is 

directly proportional to the applied field strength as shown in Equation 2-1.  Figure 2-7A 

shows that the velocity for each peptide is linearly related to the applied field strength.  

This data suggests that the mobile phase velocity is also linearly related to the applied 

field strength.  Therefore plotting the plate height as a function of the field strength 

produces a pseudo-van Deemter plot shown in Figure 2-7B.  Although the linear velocity 

of the mobile phase was not known, the optimum conditions for reducing H could be 

readily obtained.  A separation field strength of 0.38 kV/cm produces the optimum 

mobile phase linear velocity for these three peptides.  Here, the separation efficiency for 

enkephalin [Met5, Arg6] was 570,000 plates/m, which corresponds to 105,000 plates 

generated on the device.  This efficiency value compares well with previously reported 

isocratic electrochromatography results using a similar monolith material.17   

2.3.3  Gradient Separations 

 The voltages applied to the buffer A and buffer B reservoirs for gradient 

production were determined experimentally.  This was done by adding rhodamine B to 

the buffer B reservoir and monitoring the “T” intersection by fluorescence imaging.  

Figure 2-8A shows a light field image of the “T” intersection.  The three other images in 

the figure show fluorescence images of buffer mixing at 0%, 50%, and 100% buffer B.  

Note that there is no significant fluid flow from the buffer A channel into the buffer B 

channel and vice-versa.  The fluorescence of rhodamine B across the channel width was 

approximately uniform at the injection cross.  This suggests that the buffers were well 

mixed before the separation channel, especially considering that the diffusion coefficient 

of a molecule of acetonitrile is much larger than rhodamine B.  
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 Figure 2-9A shows the separation of four TRITC-labeled peptides with a net 

charge near zero under isocratic elution conditions using 25% acetonitrile.  As the solvent 

strength is increased in subsequent separations, resolution decreased until ultimately all 

four peptides coelute at 50% acetonitrile shown in Figure 2-9B.  Increasing the amount of 

acetonitrile slightly reduces the EOF as previously observed in CE experiments.30  

Figure 2-9C shows the separation of the same analytes employing a mobile phase 

gradient from 20% to 50% acetonitrile.  The resolution between the first two peptides is 

maintained while the time necessary to elute the later eluting peptides is decreased 

considerably.  In addition, the last two peptides are greatly focused by the gradient, which 

increased their signal-to-noise ratio.   

 A BSA tryptic digest was analyzed to further illustrate the advantage of gradient 

elution in microchip CEC.  Figure 2-10A shows an isocratic separation of the BSA digest 

using 10% acetonitrile.  Many of the earlier eluting peaks are overlapped while the later 

peaks are quite broad.  It is likely that several components either remain on the separation 

column or their efficiency is so poor that their concentration is below the limit of 

detection.  Figure 2-10B shows a gradient elution separation of the same sample.  Here, 

the peak widths are more or less constant throughout the chromatogram and many more 

peaks are observed.  The peak capacity for the isocratic and gradient elution separations 

were 50 and 115, respectively.  To increase sample throughput, it is helpful to decrease 

the analysis time.  Figure 2-11 shows an analysis of the same BSA digest where the field 

strength is increased by a factor of 3 and the slope of the gradient is increased 4 fold.  

Now the entire separation is complete in just over 8 min, although some loss in 

performance is observed as the peak capacity is now 72.   
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2.4  Conclusions 

 Porous polymer monoliths created by the photopolymerization of acrylate 

monomers are well suited for microchip CEC due to their ease of fabrication and the 

tunability of their chemical and physical properties.  Adjusting the surface charge to 

balance the EOF between the monolith and open-channel regions largely avoided the 

drawbacks of pressure driven flow.  The ability to perform gradient elution significantly 

increased the separation power of CEC, leading to high efficiency separations of protein 

digests.  Gradient elution CEC is likely a good candidate to be coupled with CE for 2D 

microfluidic separations.   Future work should also focus on the integration of mass 

spectrometry detection for comprehensive identification of peptides in complex mixtures.  
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2.6  Figures 

 
 
 
 
 
 
 
 

 
 
 
  

 

 

Figure 2-1.  A) Chemical structure for 5-TRITC, B) Schematic for the labeling 
reaction involving an isothiocyanate and a primary amine. 
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Figure 2-2.  A) Channel layout for the gradient elution CEC microchip device.  B) 
Photograph of the device with channels filled with ink for contrast.  The 
dimensions of the microchip are 25 mm by 50 mm. 
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Figure 2-3.  A)  Chemical structures for the acrylates used in the monolith 
synthesis, B) mechanism for the polymerization of butyl methacrylate where I is 
the free radical initiator and R is a butyl group. 
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Figure 2-4.  The schematic for the complete gradient elution CEC-LIF setup. 
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Figure 2-5.  SEM images of a microchannel cross-section filled with the monolith 
material. 
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Figure 2-6.  CEC separation of peptides under isocratic conditions.  Mobile phase: 
10 mM sodium phosphate, pH 7 with 30% acetonitrile.  Analytes: 1) G-P-R, 2) 
Bradykinin (1-6), 3) Enkephalin [Met5, Arg6].  Field strength: 0.38 kV/cm. 
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Figure 2-7.  A) Linear velocity and B) plate height vs field strength.  Mobile 
phase: 10 mM sodium phosphate, pH 7 with 30% acetonitrile.  Analytes: G-P-R 
(cicles), Bradykinin (1-6) (squares), Enkephalin [Met5, Arg6] (triangles).   
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Figure 2-8.  A) Photograph of the “T” intersection.  The arrows denote the 
direction of the fluid flow.  B-D) Flourescence imaging of buffer mixing at 
different compositions.  Rhodamine B was added to buffer B. 
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Figure 2-9.  Isocratic and gradient elution CEC separations of peptides.  Mobile 
phase: 10 mM sodium phosphate, pH 7 with A) 25% acetonitrile, B) 50% 
acetonitrile, C) 20% to 50% acetonitrile in 2 min.  Analytes: 1) G-P-R , 2) G-F-R, 
3) Bradykinin (1-6), and 4) Enkephalin [Met5, Arg6, Phe7].  Field strength: 
0.42 kV/cm.   
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Figure 2-10.  Isocratic and gradient elution CEC separation of a BSA trypic digest.   
Mobile phase: 10 mM sodium phosphate, pH 7 with A) 10% acetonitrile, B) 0% to 
50% acetonitrile in 33 min.  Field strength: 0.3 kV/cm.  
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Figure 2-11.  Fast gradient elution CEC separation of a BSA tryptic digest.  
Mobile phase: 10 mM sodium phosphate, pH 7 with 0% to 50% acetonitrile in 
8 min.  Field strength: 1.0 kV/cm. 



42 
 

2.7  References 

1. Bartle, K. D.; Myers, P.  Theory of capillary electrochromatograpy.  J. 

Chromatogr. A 2001, 916, 3. 

2. Rathore, A. S.  Theory of electroosmotic flow, retention and separation efficiency 
in capillary electrochromatography.  Electrophoresis 2002, 23, 3827. 

3. Stachowiak, T. B.; Svec, F.; Frechet, J. M. J.  Chip electrochromatography.  J. 

Chromatogr. A 2004, 1044, 97. 

4. Pumera, M.  Microchip-based electrochromatography: designs and applications.  
Talanta 2005, 66, 1048. 

5. Jacobson, S. C.; Hergenroder, R.; Koutny, L. B.; Ramsey, J. M.  Open-channel 
electrochromatography on a microchip.  Anal. Chem. 1994, 66, 2369. 

6. Kutter, J. P.; Jacobson, S. C.; Matsubara, N.; Ramsey, J. M.  Solvent-programmed 
microchip open-channel electrochromatography.  Anal. Chem. 1998, 70, 3291. 

7. Gottschlich, N.; Jacobson, S. C.; Culbertson, C. T.; Ramsey, J. M.  Two-
dimensional electrochromatography/capillary electrophoresis on a microchip.  
Anal. Chem. 2001, 73, 2669. 

8. Broyles, B. S.; Jacobson, S. C.; Ramsey, J. M.  Sample filtration, concentration, 
and separation integrated on microfluidic devices.  Anal. Chem. 2003, 75, 2761. 

9. Peterson, D. S.  Solid supports for micro analytical systems.  Lab Chip 2005, 5, 
132. 

10. Viklund, C.; Ponten, E.; Glad, B.; Irgum, K.; Horstedt, P.; Svec, F.  ''Molded'' 
macroporous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) 
materials with fine controlled porous properties: Preparation of monoliths using 
photoinitiated polymerization.  Chemistry Of Materials 1997, 9, 463. 

11. Yu, C.; Svec, F.; Frechet, J. M. J.  Towards stationary phases for chromatography 
on a microchip: Molded porous polymer monoliths prepared in capillaries by 
photoinitiated in situ polymerization as separation media for 
electrochromatography.  Electrophoresis 2000, 21, 120. 

12. Ngola, S. M.; Fintschenko, Y.; Choi, W. Y.; Shepodd, T. J.  Conduct-as-cast 
polymer monoliths as separation media for capillary electrochromatography.  
Anal. Chem. 2001, 73, 849. 

13. Svec, F.; Tennikova, T. B.; Deyl, Z. Monolith Materials; Elsevier New York, 
2003. 



43 
 

14. Ro, K. W.; Nayalk, R.; Knapp, D. R.  Monolithic media in microfluidic devices 
for proteomics.  Electrophoresis 2006, 27, 3547. 

15. Shediac, R.; Ngola, S. M.; Throckmorton, D. J.; Anex, D. S.; Shepodd, T. J.; 
Singh, A. K.  Reversed-phase electrochromatography of amino acids and peptides 
using porous polymer monoliths.  J. Chromatogr. A 2001, 925, 251. 

16. Fintschenko, Y.; Choi, W. Y.; Ngola, S. M.; Shepodd, T. J.  Chip 
electrochromatography of polycyclic aromatic hydrocarbons on an acrylate-based 
UV-initiated porous polymer monolith.  Frensen. J. Anal. Chem. 2001, 371, 174. 

17. Throckmorton, D. J.; Shepodd, T. J.; Singh, A. K.  Electrochromatography in 
microchips: Reversed-phase separation of peptides and amino acids using 
photopatterned rigid polymer monoliths.  Anal. Chem. 2002, 74, 784. 

18. Lazar, I. M.; Li, L. J.; Yang, Y.; Karger, B. L.  Microfluidic device for capillary 
electrochromatography-mass spectrometry.  Electrophoresis 2003, 24, 3655. 

19. Faure, K.; Bias, M.; Yassine, O.; Delaunay, N.; Cretier, G.; Albert, M.; Rocca, J. 
L.  Electrochromatography in poly(dimethyl)siloxane microchips using organic 
monolithic stationary phases.  Electrophoresis 2007, 28, 1668. 

20. Kutter, J. P.; Jacobson, S. C.; Ramsey, J. M.  Integrated microchip device with 
electrokinetically controlled solvent mixing for isocratic and gradient elution in 
micellar electrokinetic chromatography.  Anal. Chem. 1997, 69, 5165. 

21. Watson, M. W. L.; Mudrik, J. M.; Wheeler, A. R.  Gradient elution in 
microchannel electrochromatography.  Anal. Chem. 2009, 81, 3851. 

22. Jacobson, S. C.; Hergenroder, R.; Koutny, L. B.; Ramsey, J. M.  High-speed 
separations on a microchip.  Anal. Chem. 1994, 66, 1114. 

23. Griffiths, S. K.; Nilson, R. H.  Low dispersion turns and junctions for 
microchannel systems.  Anal. Chem. 2001, 73, 272. 

24. Molho, J. I.; Herr, A. E.; Mosier, B. P.; Santiago, J. G.; Kenny, T. W.; Brennen, 
R. A.; Gordon, G. B.; Mohammadi, B.  Optimization of turn geometries for 
microchip electrophoresis.  Anal. Chem. 2001, 73, 1350. 

25. Ramsey, J. D.; Jacobson, S. C.; Culbertson, C. T.; Ramsey, J. M.  High-
efficiency, two-dimensional separations of protein digests on microfluidic 
devices.  Anal. Chem. 2003, 75, 3758. 

26. Legido-Quigley, C.; Marlin, N. D.; Melin, V.; Manz, A.; Smith, N. W.  Advances 
in capillary electrochromatography and micro-high performance liquid 
chromatography monolithic columns for separation science.  Electrophoresis 
2003, 24, 917. 



44 
 

27. Jacobson, S. C.; Koutny, L. B.; Hergenroder, R.; Moore, A. W.; Ramsey, J. M.  
Microchip capillary electrophoresis with an integrated postcolumn reactor.  Anal. 

Chem. 1994, 66, 3472. 

28. Potocek, B.; Gas, B.; Kenndler, E.; Stedry, M.  Electroosmosis in capillary zone 
electrophoresis with nonuniform zeta-potential.  J. Chromatogr. A 1995, 709, 51. 

29. Rathore, A. S.; Horvath, C.  Axial nonuniformities and flow in columns for 
capillary electrochromatography.  Anal. Chem. 1998, 70, 3069. 

30. Schwer, C.; Kenndler, E.  Electrophoresis in fused-silica capillaries - The 
influence of organic-solvents on the electroosmotic velocity and the zeta-
potential.  Anal. Chem. 1991, 63, 1801. 

 
 
 



 
 

 

 

 

 

 

CHAPTER 3:  Hybrid 2D Liquid Chromatography-Capillary Electrophoresis with 

Laser-Induced Fluorescence Detection 

 

3.1  Introduction 

The Jorgenson group reported the first online system for comprehensive LC-CE 

separations.1  This system utilized a 6-port valve and sample loop to interface the LC 

column and CE capillary.  The valve was setup such that fresh buffer was presented to 

the CE capillary while the LC effluent filled the sample loop.  To perform CE injections, 

the CE voltage was turned off and the valve was actuated to deliver the LC effluent in the 

sample loop to the CE capillary.  After a short electrokinetic injection at low voltage, the 

valve was actuated to again present buffer to the CE capillary and the CE voltage was 

restored.  All of the LC effluent in the sample loop was not injected but rather a very 

small fraction.  The CE injections were performed frequently such that a fraction of every 

LC peak was injected at least once into the CE dimension.  The large dead volume 

associated with the valve and loop setup prompted the same group to develop a 

“transverse flow gating” interface that sufficiently reduced the band broadening to allow 

capillary LC columns to be employed.2  In this new system, the interface was constructed 

to position the end of the LC capillary on axis with the CE capillary but with a small gap 

between the two.  A second LC pump was used to generate transverse flow that flushed 

this narrow gap to prevent the LC effluent from entering the CE capillary during CE 

separations.  For each CE injection, the transverse flow and the CE voltage were stopped 

to allow the LC effluent to reach the CE capillary and electrokinetic sample injection at 
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low voltage.  The transverse flow and the CE voltage were then turned back on to 

perform the CE separation.  Additional modifications to this basic interface have 

improved performance and ease of use.3   

One challenging aspect of the transverse flow gating system was that it relied 

upon the precise alignment of the LC and CE capillaries.  The gap between the capillaries 

must be within tens of microns to prevent excessive dilution of the LC effluent before it 

reaches the CE capillary.  More recently, Bergstrom and coworkers partially addressed 

this issue by designing a microfabricated interface from polydimethylsiloxane.4-5  This 

created a confined region between the LC and CE capillaries to reduce the dilution of the 

LC effluent when performing CE injections.  Unfortunately, this benefit was largely 

rescinded by the fact these injections were transported back to a capillary for the CE 

separation.  The band broadening that occurs in the interface/CE capillary connection is 

much more critical than the LC capillary/interface connection due to the much smaller 

volumes of the CE peaks. 

Another strategy for 2D LC-CE separations is to use a hybrid system where the 

capillary LC is coupled with CE performed on a microfluidic device.  The interconnected 

channels of a microfluidic device enable extremely narrow CE injection plugs to be 

routinely realized.  In addition, the CE separation is performed on the same device to 

maintain high separation efficiency throughout the analysis.  Furthermore, the increased 

rate of heat transfer on microchips allows for higher electric field strengths to be used 

without encountering Joule heating which causes band broadening.6  These advantages 

have allowed for microchip-based CE to outperform capillary-based CE in terms of both 
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speed and efficiency.  For example, our group has demonstrated that microchip CE can 

generate over 18,000 plates/s which resulted in a peak capacity of 48 in only 0.8 s.7   

The greatest challenge in a hybrid LC-CE system is overcoming the large dead-

volume usually associated with transferring fluid from capillaries to microfluidic devices.  

If this can be overcome, a system would combine state of the art LC separations 

performed in capillaries at ultra high pressures with the speed and efficiency of microchip 

CE would be feasible.  Yang and coworkers reported a hybrid system that coupled 

capillary-based LC with microchip-based CE.8  They were able to couple a 250 µm i.d. 

capillary LC column operated at a flow rate of 1.5 µL/min to a simple cross channel 

microchip using a pinched injection scheme.9  However, this injection scheme does not 

allow for rapid consecutive CE injections due to the time required to load sample at the 

injection cross after each injection.   

This chapter will describe the development of a hybrid 2D LC-CE separation 

system.  First, a custom fitting was developed to connect capillaries to microchips with 

limited dead volume.  A modified version of the gated injection scheme is demonstrated 

for coupling LC and CE at flow rates that are an order of magnitude lower than those 

demonstrated in the work by Yang et al.8  The hybrid 2D LC-CE system was then used 

for high efficiency separations of protein digests labeled with TRITC.  Finally, the 

labeling of peptides with TRITC will be investigated by LC-LIF in an attempt to 

determine the source of the additional sample complexity.  



48 
 

3.2  Experimental 

3.2.1  Reagents 

  Water used in this experiment was deionized and filtered (Nanopure Diamond, 

Barnstead International, Dubuque, IA).  The following materials were purchased from 

Fisher Chemicals (Fairlawn, NJ): acetone (HPLC grade), acetonitrile (HPLC grade), 

acetic acid (HPLC grade), tetrahydrofuran (HPLC grade).  The following materials were 

obtained from Sigma Chemical Co. (St. Louis, MO):  

1,2-bis(3-aminopropylamino)ethane, bovine serum albumin, cytochrome c from horse 

heart, epichlorohydrin, formic acid (Acros Organics, 99%), trypsin from bovine pancreas, 

and rhodamine B. The 5-TRITC was purchased from Molecular Probes (Eugene, OR).  

The Kasil 2130 potassium silicate solution can be obtained from PQ Corp. (Valley Forge, 

PA).  The PolyE-323 polymer was synthesized as previously described, adjusted to pH 7 

with acetic acid, and diluted with water to 15% (by mass) polymer.10     

3.2.2  Sample Preparation 

 Proteins were digested with trypsin and labeled with 5-TRITC as described in 

Chapter 2 and frozen until needed.  Just prior to experiments, the digest was diluted with 

an aqueous solution of 0.1% (v/v) formic acid and 3% (v/v) acetronitrile to a final 

concentration of 1 µM. 

3.2.3  Capillary LC Column 

 All LC separations were performed using an in-house packed capillary LC 

column.  The fused-silica capillary (Polymicro Technologies Inc., Phoenix, AZ) had an 

internal diameter (i.d.) of 75 µm and an outer diameter (o.d.) of 360 µm.  The outlet frit 

was prepared using glass microfibers from filter paper and a sol-gel mixture using a 1:1 
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ratio of Kasil 2130 to formamide.11  The 2.5 µm diameter porous particles (X-Bridge 

C18, Waters Corp., Milford, MA) were suspended in tetrahydrofuran at 2.5 mg/mL and 

sonicated briefly.  This slurry of particles was forced into the capillary at a pressure of 

2000 bar using a previously described apparatus12 with an updated capillary fitting.13  

After a sufficient length of the capillary was packed, the column was flushed with 

acetonitrile and then water.  A temporary inlet frit was formed with a heated wire stripper 

while the column was flushed with an aqueous solution at a pressure of 700 bar.  The 

packed capillary was cut to a length of 54 cm and a new inlet frit was prepared using the 

same sol-gel fused microfiber procedure mentioned above. 

3.2.4  Capillary-to-Microchip Fittings 

 Fittings were developed to connect capillary tubing to microchips.  Photographs 

of the fittings are displayed in Figure 3-1.  A C-clamp was used to compress a modified 

LC fitting against a microchip.  The C-clamp was machined from an 8-mm square 

stainless steel rod cut to a length of 20 mm.  A 3-mm-wide slot was cut in one end of the 

rod to accept the microchip.  A hole was drilled perpendicularly to the slot and tapped to 

match the thread of the fitting assembly.  The fitting assembly consisted of a 

polyetheretherketone nut (F121-H, Upchurch Scientific, Oak Habor, WA) modified to 

hold a stainless steel coned insert.  The cone of the insert was used to press a 

polytetrafluoroethylene (PTFE) ferrule against the surface of the microchip.   The PTFE 

ferrule deformed easily to seal against both the capillary and the glass microchip surface. 

To install the fitting, a capillary was threaded through the loose fitting/C-clamp assembly 

and into the access port on the microchip.  As the nut was finger tightened, the capillary 

would remain aligned with the access port on the microchip. The alignment could be 
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checked by inspecting the capillary’s position through the hole drilled in the bottom of 

the C-clamp. 

3.2.5  Microchip CE Device 

 Figure 3-2A shows a schematic of the simple cross channel microchip used for 

2D LC-CE separations.  Microchips were fabricated from 150-µm-thick glass substrates 

(Corning 0211 borosilicate, Erie Scientific Co., Portsmouth, NH) by standard 

photolithography, wet-chemical etching, and bonding procedures.14  Microchips were 

attached to 0.9-mm-thick glass with UV epoxy (68, Norland Products Inc., Cranbury, NJ) 

to provide greater structural support.  The 4-cm-long CE channel was 7 µm deep and 

65 µm wide at full width as measured by profilometry (P15, KLA, Tencor Corp., San 

Jose, CA).   

 After the device fabrication was complete, all channel surfaces were coated with 

PolyE-323.   PolyE-323 is a polyamine that adheres to the silanol groups on the glass by 

electrostatic interactions and hydrogen bonding to provide stable EOF when using acidic 

to neutral background electrolyte solutions.10,15 The chemical structure for PolyE-323 is 

shown in Figure 3-2B.  The coating procedure has been previously reported and will only 

be briefly described here.14  Flushing the device was accomplished by applying vacuum  

to select fluid reservoirs. The channels were first cleaned by flushing with 1N sodium 

hydroxide for 30 min followed by a 5 min rinse with water.  Next, the channels were 

coated by flushing with the PolyE-323 solution for 1 hr.  Excess polymer was removed 

by flushing the channels with 60 mM ammonium acetate for 5 min and finally water for 

5 min.  
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3.2.6  System Operation   

 Figure 3-2A shows the experimental setup for the 2D LC-CE separation system.  

The LC pump (nanoAcquity Binary Solvent Manager, Waters Corp., Milford, MA) 

delivered the mobile phase at 150 nL/min.  Mobile phase A was 0.1% formic acid in 

water and mobile phase B was 0.1% formic acid in acetonitrile.  A standard 6-port valve 

(C72, VICI Valco Intruments Co. Inc., Houston, TX) was used for sample injection onto 

the capillary LC column.  The outlet of this column was connected to a 30 µm i.d. 

transfer capillary that was 3 cm-long using a PTFE sleeve.  The transfer capillary was 

then connected to the microchip using the custom capillary-to-chip fittings.  This transfer 

capillary was used to prevent potential damage to the LC capillary oulet frit in the 

capillary-to-microchip fitting.  The LC effluent was directed towards the CE or sample 

waste channel by controlling the EOF within the device.  Electric potentials were applied 

to the buffer, sample waste and waste reservoirs using a computer-controlled, high 

voltage power supply (2866A; Bertan, Hicksville, NY).  The voltage rise and fall times 

(10-90%) were approximately 5 ms for this power supply.  The background electrolyte 

(BGE) for CE separations was an aqueous solution with 1% or 0.1% formic acid and 25% 

acetonitrile.  The CE injections were accomplished using a slight variation of the “gated” 

injection scheme16 as described later.   

Analytes were detected by the LIF system described in Chapter 2.   For 

separations of flourescein and rhodamine B an excitation wavelength of 488 nm and a 

band pass emission filter (575 DF 50) were employed.  Separations of 5-TRITC labeled 

peptides utilized a 514 nm excitation wavelength and a long pass emission filter 

(LP02-514RU-25; Semrock, Rochestor, NY).  For LC-LIF analysis, a detection window 
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was made on the transfer capillary by removing the polyimide coating with a flame and 

cleaning the bare capillary with acetone.  The data acquisition rate was 300 Hz with 

exception of the 2D separation where the rate was increased to 1000 Hz. 

3.2.7  Data Analysis 

 Peak capacities for individual LC and CE separations were calculated using 

software described in Chapter 2.  The 2D plot was created as follows:  The linear string 

of 2D data was segmented according to the individual CE separation windows by an in-

house written LabVIEW program (National Instruments, Austin, TX).  This data was 

then loaded into Igor Pro (WaveMetrics, Lake Oswego, OR) to stack each CE run 

according to LC retention time and create an image. 

3.3  Results and Discussion 

3.3.1  Capillary-to-Microchip Fittings 

A custom fitting connected the transfer column to the microchip as shown in 

Figure 3-1A.  In this hybrid LC-CE-LIF system, the capillary-to-microchip connection is 

after the LC column and therefore this connection only experienced low pressure.  The 

peaks eluting from the LC dimension must be efficiently transferred on the microchip to 

retain the resolution obtained in the first dimension.   To minimize the dead volume in the 

capillary-to-microchip connection, care was taken to create a small access port at the LC 

inlet channel during microchip fabrication.  The access ports powder blasted into the 150-

µm-thick substrates had an i.d. of 400 µm.  The cylindrical volume of the access port was 

18 nL; however, the dead volume in the connection was less as the inserted capillary and 

compressed ferrule displaced some of this volume. 
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 These fittings were convenient to use as the installation or removal took only 30 s.  

Since this is a low pressure connection, very little force was needed for the PTFE ferrule 

to reliably seal against the capillary and microchip.  No damage to the end of the 

capillary in the fitting was observed as long as the capillary was cut with a clean edge 

that was perpendicular with its length.    

 The amount of band broadening caused by the capillary-to-microchip connection 

was then determined.  For this experiment, the LC column was replaced with an open 

capillary and the six-port valve was used to perform injections of rhodamine B at 

100 nL/min.  LIF detection was performed in either the transfer capillary or the LC inlet 

channel on the microchip.  Figure 3-3 shows 7 consecutive injections monitored by LIF 

at each location after the peak height for each trace was normalized.  The peak tailing 

seen at the on-capillary detection location is likely a result of the dead volume in the 

valve used for injections and the PTFE sleeve connection to the transfer capillary.  Any 

additional peak broadening in the on-microchip detection trace is a result of the capillary-

to-microchip fitting.  The average peak full width at half max was 20% greater for the on-

microchip detection.  A larger difference is observed at the base of the peaks where peak 

tailing resulting from the capillary-to-microchip fitting is evident.  The average peak 

width at 10% of the peak height was 38% greater for the on-microchip detection.   

3.3.2  CE Injection Interface 

The CE injection strategy was similar to the gated injection scheme16 that our 

group previously employed to perform MEKC-CE17-18 and CEC-CE.19  The fluid from 

the buffer channel was directed across the injection cross by controlling the EOF to gate 

the effluent from the first dimension to waste.  A portion of the flow from the buffer 
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channel is also directed to the CE channel for the separation.  Injections are made by 

adjusting the applied potentials to effectively stop the fluid flow in the buffer and waste 

channel.  The material from the first dimension is then transported directly into the CE 

channel.  The basic fluid routing path is similar to the transverse flow gate designed by 

the Jorgenson group except that we generate the transverse flow by EOF instead of 

pressure-driven flow.  As a result, the microfluidic gated injection scheme can be 

performed at least an order of magnitude faster than the transverse flow gating interface 

which relies on a mechanical valve to start and stop the transverse flow.   

For the microchip devices used in this work, there were no problems establishing 

the gated injection scheme when the LC flow rate was approximately equal to the CE 

flow rate.  At lower LC flow rates, the LC effluent was diluted during CE injections 

unless the CE filed strength was reduced.  At higher LC flow rates, the EOF-driven 

transverse flow was insufficient to gate the LC effluent to waste.  If a different LC flow 

rate is desired, the microchip could be redesigned to accommodate the change.  For 

example, if the LC flow rate was increased by a factor of two, then the cross-sectional 

area of the channels should be two fold larger to increase the EOF proportionally while 

using the same applied field strength.       

Consecutive CE injections were performed to evaluate the stability of the 

microchip LC-CE injection interface.  A 2 µL sample loop in the 6-port valve 

continuously delivered a solution containing 30 µM fluroescein and rhodamine B to the 

microchip at 120 nL/min via an open capillary.  The microchip used in this experiment 

was similar to the device in Figure 3-2, except the CE channel was 10 cm long and 

featured two asymmetric turns described in Chapter 2.  Figure 3-4 shows a plot for the 
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retention times for 80 consecutive separations of these fluorescent dyes.  The relative 

standard deviation (RSD) for the fluorescein and rhodamine B retention time was 0.27% 

and 0.33%, respectively.  The deviation in the migration times may largely be due to 

temperature changes as no attempt was made to control this variable.  The peak area for 

both fluorescent dyes for each injection is shown in Figure 3-5.  The RSD for the peak 

area was 5.8% for fluorescein and 6.5% for rhodamine B.    

3.3.3  CE Injection Sequence 

 For a 2D separation to be considered comprehensive, each component that elutes 

from the first dimension must be analyzed by the second dimension.  To preserve the 

resolution obtained in the first dimension using the gated injection scheme, 3-4 CE 

injections must be performed for each LC peak.19  Given this criteria, efforts were made 

to increase the number of CE separations per unit time.  A normal injection scheme for 

consecutive CE separations is shown in the top trace of Figure 3-6.  Injections are 

represented by the red arrows and the resulting separation is indicated by the bracket 

above the peaks.  Each injection and the corresponding separation is labeled with the 

same number.  The run time, ./0�, is the elapsed time from injection to the detection of 

the last peak.  If the same sample is analyzed in each CE separation, then ./0� is constant.  

However, ./0� will vary in a 2D LC-CE analysis because the sample composition in the 

LC effluent varies with time.  To take this into account we will modify the definition of 

./0� to refer to the elapsed time from injection to the detection of the last peak for the CE 

separation that requires the longest time to complete.  Similarly, we will define the CE 

separation window, .12�3,1, as the elapsed time from the peak with the earliest migration 

time to the latest migration time among any of the CE separations.  These values for ./0� 
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and .12�3,1 must be determined in advance to construct the optimal CE injection 

frequency.  This information can readily be obtained from a single CE separation of the 

sample without performing the LC separation.   

 To maximize the number of CE separations using the normal injection scheme, 

the second injection is performed immediately after the previous run is completed as 

shown in the top trace of Figure 3-6.  However, .12�3,1 is only half of ./0� so there are 

no peaks being detected during the first half of any CE separation.  As a result, this time 

is wasted as no information is obtained about the sample.  Jorgenson and coworkers 

described the use of an injection technique known as “overlapping injections” to utilize 

this down time to analyze additional separations.1-2  Using this technique, additional 

injections may be performed while the first separation is still in the column.  For this 

example where .12�3,1 is half of ./0�, the use of “overlapping injections” is shown in the 

second trace of Figure 3-6.  As a result, twice as many separations are completed in the 

same amount of time.  This increases the number of times a peak eluting from the first 

dimension is sampled by the second.  In theory, the maximum use of the time in the 

second dimension will always occur when the injection frequency is equal to .12�3,1.  

As long as ./0� is divided evenly by .12�3,1, the injection will fall between each 

separation window.  This last consideration is only important if the injection method 

changes the CE field strength or some other condition which would impair the 

simultaneous detection of peaks.  In this device the CE field strength is held constant 

even during the CE injections. 
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3.3.4  LC-CE-LIF System 

 The labeled BSA digest was first separated by LC to obtain 1D data to compare 

with subsequent 2D LC-CE separations.  Here, LIF detection was performed in a 

detection window created within the transfer capillary attached to the capillary LC 

column.   The chromatogram for this 1D separation is shown in Figure 3-7.  The peak 

capacity was calculated to be 127 using a median peak width of 19.5 s.  Due to the 

complexity of the sample there are few baseline resolved peaks.     

 Next a 2D LC-CE separation was performed using the same sample and LC 

conditions as the 1D separation.  The LC effluent was transferred onto a microchip and 

repetitive CE injections were performed.  The voltages applied to the buffer, sample 

waste and waste reservoirs for injection and separation were 0 kV, 0 kV, +7 kV and 0 kV, 

+4 kV, +10 kV, respectively.  These voltages resulted in a CE field strength of 1.7 kV/cm 

during both the injection and separation configuration.  The CE separations were 

monitored by LIF at a distance of 23.5 mm from the injection cross.  Previous CE 

separations of the sample under these CE conditions resulted in a .12�3,1 that was 

approximately 3 s.  Here, “overlapping injections” were performed at an interval of 3.2 s 

to ensure that peaks from adjacent CE separations did not mix.  The duration of each CE 

injection was 20 ms which was the shortest injection time possible with the high voltage 

power supply.  A total of 1,490 CE separations were performed during the 80 min 

analysis.   

 The fluorescence signal for all CE separations was recorded in a single data file 

and is shown in Figure 3-8A.  At this time scale, the 2D chromato-electropherogram 

appears similar to the 1D chromatogram in Figure 3-7.  Figure 3-8B shows an expanded 
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time axis for a segment of the run where 4 individual CE separations are shown in greater 

detail.  The dashed lines represent the individual CE separation windows for injection 

number 832 to 835.  The peaks were very narrow and fit well with a Gaussian function, 

which suggests that there was minimal peptide adsorption to the PolyE-323 surface.  The 

median peak width for the 13 most intense peaks in Figure 3-8B was calculated to be 

43 ms.  Using an average migration time for these 13 peaks of 3.70 s, the number of 

plates generated was calculated to be 7404, which corresponds to 3.2x105 plates/m.   

 The data was then segmented according to the individual CE separation windows 

and stacked to produce the 2D image plot as shown in Figure 3-9.  This 2D plot shows 

that a large number of components were isolated in this separation.  The horizontal 

streaking observed at an LC retention time of 29 min is was likely caused by a 

component continuously leaking into the CE channel.  Figure 3-10 an enlarged image of 

a spot taken from the 2D plot in Figure 3-9 as indicated by the box.  The horizontal 

dashes indicate the individual CE separations that were stacked to produce this image.  It 

is clearly seen that at least 6 CE injections were preformed of the same component 

eluting from the LC dimension.  This high sampling rate (≥4 CE injections per LC peak) 

allows the resolution attained in the first dimension to be maintained.   

The maximum theoretical peak capacity for a 2D separation is the product of the 

single dimension peak capacities.20  To estimate the peak capacity of the first dimension, 

the LC chromatogram was reconstructed form the 2D data.  This was accomplished by 

summing the fluorescence intensity in each CE run to represent a single point in the LC 

chromatogram.  The peak capacity of this reconstructed chromatogram was 134 using a 

median peak width of 21.3 s.  The higher flow rate used in this 2D separation likely 
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reduced the effect of the band broadening caused by the capillary-to-microchip fittings.  

The peak capacity in the CE dimension was calculated to be 58 using a median CE peak 

width of 43 ms and a separation window of 2.5 s.  Therefore the maximum peak capacity 

for this system would be 7772.  However, Figure 3-8 shows a large amount of the total 

separation space is not occupied by peaks.  This is especially apparent in the upper right 

corner of the 2D plot.  To explain this phenomenon it is useful to estimate the properties 

of analytes likely to occupy this region of the separation space.  The polyE-323 coated 

CE channel provided anodic (reversed) EOF and no TRITC-labeled peptides in the 

sample are not expected to have a net negative charge at pH 2.5.  Therefore, peptides 

eluting early in the CE dimension (CE migration time near 3.25 s) have a relatively low 

electrophoretic mobility, µep, against the EOF.  Later eluting peptides (CE migration time 

near 5 s) have a relatively high µep against the EOF.  For a peptide to elute in the upper 

right hand corner it would have to be very hydrophobic and have a relatively high µep.  

However, it is unlikely that a peptide would be both very hydrophobic and a high 

mobility (a high charge to hydrodynamic drag ratio).  Thus there is some correlation in 

selectivity between reversed-phase LC and CE for TRITC-labeled peptides under these 

conditions.  Since roughly one-third of the separation space is occupied by peaks, the 

practical peak capacity for this 2D separation may be estimated to be 2591 (one-third of 

the original estimate).  Interestingly, a similar skew in the 2D pattern was also observed 

for a MEKC-CE separation of BSA digest.18   

One strategy to increase the orthogonality of reversed-phase LC-CE separations is 

to alter the properties of the peptides after the first dimension analysis is completed.  This 

approach was taken by Hooker et al. by using an acidic LC mobile phase (pH ~2) 
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followed by a basic CE BGE  (pH 10.5).3  In our microchip device it was easier to 

perform the electrokinetic injections using solutions with a similar pH in both 

dimensions.  

3.3.5  TRITC Labeled Peptides 

 Theoretically, a complete tryptic digest of BSA is expected to produce 

approximately 74 peptide fragments.  The additional components observed in Figure 3-9 

may be caused by multiple factors including:  impurity of the labeling reagent, 

incomplete protein digestion, auto-digestion of trypsin, and amine containments.  In an 

attempt to identify the source of these “extra” peaks, the following three solutions were 

labeled with TRITC: 1) digestion buffer; 2) digestion buffer and trypsin; 3) digestion 

buffer, trypsin and cytochrome c.  The three solutions were prepared in parallel using the 

same digestion and labeling procedure as the BSA digest.  The only modification was 

that all three solutions were filtered through a 10,000 MW regenerated cellulose cut-off 

filter (Micron YM-10, Millipore Corp., Bedford, MA) after labeling.  These three 

solutions were analyzed by LC-LIF without moving any component of the LIF detection 

setup so the relative fluorescence intensities can be compared among these three 

chromatograms.  The chromatogram for the labeled digestion buffer is shown in 

Figure 3-11A.  There are several intense peaks observed but it is difficult to reach any 

conclusions from this separation alone.  The analysis of the labeled digestion buffer and 

trypsin solution is shown in Figure 3-11B.  This chromatogram is very similar to the 

labeled digestion buffer which suggests the “extra” peaks are not from the auto-digestion 

of trypsin or contaminates in the trypsin reagent.  The analysis of the digestion buffer, 

trypsin, and cyctochrome c digest is shown in Figure 3-11C.  All of the intense peaks 
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from the previous two samples are greatly reduced and numerous smaller peaks now 

appear.  One can speculate that the large peaks are multiple forms of the TRITC which 

are consumed in the labeling reaction.  This would also suggest that other amine 

contaminates in the solvents or buffers do not significantly contribute to these extra 

peaks.  Interestingly, few extra peaks were observed when single peptides were labeled 

with the same reagent and analyzed by CEC-LIF as shown in Chapter 2.   

3.4  Conclusion 

 In conclusion, novel instrumentation for performing 2D LC-CE separations has 

been presented.  The custom capillary-to-microchip fittings enabled small volume LC 

peaks to be transferred onto the microchip without excessive band broadening.  This is 

the first report of an electrokinetically-controlled gated injection scheme used for 

performing CE injections in a LC-CE system.  This injection strategy significantly 

reduced the complexity of the instrumentation and enabled faster CE separations to be 

achieved.  The polyE-323 surface coating enabled reproducible CE migration times and 

peak areas to be obtained.  The LIF detection system provided high sensitivity at an 

acquisition rate that was able to fully characterize the very narrow CE peaks.  The 

separation power of this system was illustrated by highly efficient separations of 

peptides. 

 Future work should address the skew in the overall peptide map shown in the 2D 

LC-CE plot to maximize the practical peak capacity for peptide separations.  In addition, 

it may be possible concentrate the material injected into the CE dimension by selecting a 

BGE to optimize electrokinetic sample stacking.  The procedure for labeling peptides 

with fluorescent molecules should be reviewed further to identify sources that add to the 
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sample complexity.  It is likely that other forms of LC, such as size exclusion 

chromatography or hydrophilic interaction liquid chromatography, may also be utilized in 

this LC-CE system with minor modifications.  In addition, the integration of MS 

detection would allow confident identification of the separated components and is 

address in the next chapter.    
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3.5  Figures 

 

 

 

 

  

 

Figure 3-1.  Photographs of the capillary-to-microchip fittings:  A) disassembled 
fittings, B) side view of the assembled fitting in use. 
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Figure 3-2.  A) Schematic for the hybrid 2D LC-CE-LIF separation system, B) 
chemical structure for the PolyE-323 channel surface coating. 
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Figure 3-3.  LIF detection of rhodamine B peaks at the transfer capillary (black) 
and in the LC inlet channel on the microchip (red). 
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Figure 3-4.  Migration times for 80 consecutive CE injections of the same 
fluorescein and rhodamine B sample.  Analysis performed on a microfluidic 
device with a 10 cm CE separation channel.  BGE:  0.1% formic acid, 25% 
acetonitrile, pH 2.5, E = 1 kV/cm, L = 95 mm. 
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Figure 3-5.  Peak area for 80 consecutive CE injections of the same fluorescein 
and rhodamine B sample.  Analysis performed on a microfluidic with a 10 cm CE 
separation channel.  BGE:  0.1% formic acid, 25% acetonitrile, pH 2.5, 
E = 1 kV/cm, L = 95 mm. 
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Figure 3-6.  Diagram of injection sequences for maximizing the number of 
separations per unit time using normal and “overlapping” injections.  See text for a 
detailed explanation. 
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Figure 3-7.  LC-LIF separation of a BSA tryptic digest.  Flow rate: 150 nL/min. 
Gradient:  15-50% B in 60 min (MPA: 0.1% formic acid in water, MPB: 0.1% 
formic acid in acetonitrile.) 
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Figure 3-8.  LC-CE-LIF separation of a BSA tryptic digest.  Flow rate: 150 
nL/min. Gradient:  15-50% B in 60 min (MPA: 0.1% formic acid in water, MPB: 
0.1% formic acid in acetonitrile.)  CE BGE:  1% formic acid, 25 % acetonitrile; L: 
23.5 mm, E: 1.5 kV/cm. 
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Figure 3-9.  A 2D plot of the LC-CE-LIF data shown in Figure 3-7.  The red box 
indicates the region that is enlarged and shown in Figure 3-10. 
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Figure 3-10.  Enlarged spot from the 2D LC-CE-LIF data in Figure 3-9. 
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Figure 3-11.   LC-LIF analysis of A) digestion buffer, B) digestion buffer and 
trypsin, and C) digestion buffer, trypsin and cytochrome c.   Flow rate: 150 
nL/min. Gradient:  15-50% B in 60 min (MPA: 0.1% formic acid in water, MPB: 
0.1% formic acid in acetonitrile.) 
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CHAPTER 4:  Hybrid 2D Liquid Chromatography-Capillary Electrophoresis with 

Mass Spectrometry Detection for the Analysis of Monoclonal Antibodies 

 
 

4.1  Introduction 

 The hybrid 2D LC-CE separation system described in Chapter 3 will now be 

extended to incorporate mass spectrometry detection.  This work utilizes a fully 

integrated microchip ESI interface that was previously used for CE-MS.1-2  In this chapter 

the operation of a hybrid 2D LC-CE-MS system will be described in detail and compared 

with conventional 1D LC-MS analysis.  This 2D system will also be evaluated for 

peptide mapping applications focusing on the determination of both monoclonal antibody 

(mAb) identity and modification. 

4.2  Experimental 

4.2.1  Reagents 

 Water used in this experiment was deionized and filtered (Nanopure Diamond, 

Barnstead International, Dubuque, IA).  The following materials were purchased from 

Fisher Chemicals (Fairlawn, NJ):  2-propanol (HPLC grade), acetonitrile (optima grade), 

glacial acetic acid (sequencing grade), hydrochloric acid (ACS certified plus), hydrogen 

peroxide (30%, ACS certified), sodium acetate (enzyme grade), sodium chloride (ACS 

certified) and sodium hydroxide.  The following materials were obtained from Sigma 

Chemical Co. (St. Louis, MO): 1,2-bis(3-aminopropylamino)ethane, epichlorohydrin, 

formic acid (Acros Organics, 99%), trichloro(1H,1H,2H,2H-perfluorooctyl)silane and 
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Trizma Pre-Set Crystals (pH 8.0 and pH 8.5).  The trypsin (sequencing grade modified) 

was from Promega (Madison, WI) and the lysyl endopeptidase (lys-C) (sequencing 

grade) was from Wako (Richmond, VA).  Leucine enkephalin was purchased from 

American Peptide Co., Inc. (Sunnyvale, CA).  The PolyE-323 polymer was synthesized 

as previously described, adjusted to pH 7 with acetic acid and diluted with water to 15% 

(by mass) polymer.3  

4.2.2  Sample Preparation 

 The monoclonal antibody (mAb) material was provided by the sponsor of this 

research who wishes to remain unnamed.  This mAb is proprietary and therefore neither 

the amino acid sequence nor mass measurements with precision beyond nominal mass 

values will be reported.  A solution containing the mAb at a concentration of 11.8 mg/mL 

was received without any further details regarding the solution composition.   The protein 

digestion procedures were adapted from protocols provided with the mAb material.   

 The tryptic digestion of the mAb was performed as follows.  The stock mAb 

solution was diluted to 4 mg/mL with an aqueous solution of 20 mM sodium acetate and 

140 mM sodium chloride.  An aliquot of 100 mL of this solution was combined with 

50 µL of acetonitrile.  The trypsin digestion buffer was prepared from 3.28 g of Trizma 

Pre-Set Crystals (pH 8.5) in 50 mL of water.  A volume of 10 µL of this digestion buffer 

was added to the mAb mixture.  One vial containing 20 µg of lyophilized trypsin was 

reconstituted by adding 20 µL of Trypsin Resuspension Buffer (provided with the 

product) and incubated at 30 °C for 15 min.  The entire mAb mixture was then 

transferred into the activated trypsin vial and incubated at 37 °C for 24 hours.  This 
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digestion was quenched by adding 10 µL of 1 M hydrochloric acid.  The mixture was 

diluted to 1.5 µM with water and frozen at -20 °C until use.   

 The lys-C digestion of the mAb was performed as follows.  The stock mAb 

solution was diluted to 2 mg/mL with an aqueous solution of 20 mM sodium acetate and 

140 mM soldium chloride.  A volume of 500 µL of this solution was combined with 

25 µL of acetonitrile.  The lys-C digestion buffer was prepared by dissolving 1.4 g of 

Trizma Pre-set Crystals (pH 8.0) in 100 mL of water.  A volume of 455 µL of this 

digestion buffer was added to the mAb mixture.  Lys-C was diluted to 1.0 mg/mL with 

water and 20 µL of this solution was added to the mAb mixture.  The digestion was 

allowed to procede for 24 hours at 37 °C before quenching with 50 µL of 1 M 

hydrochloric acid.  The lys-C digest was diluted to 1.0 µM with water and frozen at 

-20 °C until required.   

 The 10% oxidized control for the lys-C digestion was prepared by forced 

oxidation of a fraction of this digest.  A volume of 38 µL of lys-C digest was combined 

with 2 µL of 30% hydrogen peroxide and allowed to react for 1 hour.  The 10% spike 

oxidized control was then created by adding 360 µL of the original lys-C digest to this 

oxidized sample.       

4.2.3  Microchip Fabrication 

 Microchips were fabricated from 150-µm-thick glass substrates (Corning 0211 

borosilicate, Erie Scientific Co., Portsmouth, NH) using standard photolithography, wet-

chemical etching, and bonding procedures.1  The microchip layout is shown in 

Figure 4-1A.  The channel lengths were as follows:  LC inlet, 7 mm; waste A, 8 mm; 

waste B, 8 mm; buffer, 8 mm; waste C, 8 mm; segment between crosses, 4 mm; CE, 
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100 mm; and electroosmotic (EO) pump, 20 mm.  All channels had a depth of 10 µm and 

a full width of 75 µm except waste A and buffer channels which had a full width of 

330 µm.  The electrospray tip was machined by cutting the bonded microchip with a 

precision dicing saw (Dicing Technology, San Jose, CA) so that the CE channel 

terminated at a 90° corner of the microchip.   

 The surface of all channels, except the EO pump channel, were coated with 

PolyE-323 to reverse the EOF and prevent peptide adsorption as previously described in 

Chapter 3.  The exterior of the integrated electrospray tip was coated with 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane to make the surface hydrophobic as 

previously reported.2  The use of this coating on the electrospray tip prevents wetting and 

droplet formation improving electrospray stability over a wide range of conditions 

without raising the background in the MS signal.   

4.2.4  Capillary LC 

 The LC pump (nanoAcquity, Waters Corp., Milford, MA) delivered the mobile 

phase at 500 nL/min.  Mobile phase A was 0.1% formic acid in water and mobile phase B 

was 0.1% formic acid in acetonitrile.  The LC injection volume was 200 nL for the tryptic 

digests and 400 nL for the lys-C digests.  The profile of the mobile phase gradient was as 

follows: 3-10% B step, 10-40% B in 15 min.  The capillary LC column used in all 

experiments was 0.1 mm x 150 mm and packed with 1.7 µm BEH C4 bonded particles 

with a 300 Å pore size (Waters Corp.)  The column was held at 30 °C.  These 

chromatography conditions were chosen for analysis of the larger peptide fragments 

resulting from the lys-C digest.  Largely due to convenience, these same conditions were 

also employed to analyze the tryptic digests. 
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4.2.5  Microchip CE 

 The capillary LC column was connected to the microchip CE-ESI device using a 

custom low dead-volume fitting described in Chapter 3.  The effluent from the LC 

column was split at the first cross channel intersection (waste A and waste B) to reduce 

the flow rate to 100 nL/min.  Electrokinetic CE injections were performed at the second 

cross using the modified gated injection scheme described in Chapter 3.  High voltages 

were generated by an in-house built power supply that was computer-controlled via 

LabVIEW software (National Instruments, Austin TX).  During CE separations, the 

voltages applied to the buffer, waste C and EO pump reservoirs were -6.0 kV, -3.0 kV 

and +5.0 kV, respectively.  For each CE injection these voltages were adjusted to 

-5.8 kV, -5.8 kV and +5.0 kV.  Both voltage profiles resulted in a CE field strength of 

0.8 kV/cm.  The background electrolyte (BGE) for the CE separations was an aqueous 

solution that contained 0.1% formic acid and 5% 2-propanol by volume.  

4.2.6  Microchip ESI Interface  

 The operation of the integrated ESI interface relies on a reversed electroosmotic 

pumping strategy, which will be described briefly.1  The PolyE-323 coated CE channel 

had anodic (reversed) EOF while the uncoated EO pump channel had cathodic (normal) 

EOF.  When the voltages described above were applied, the direction of the EOF in both 

the CE and EO pump channels was toward the electrospray tip.  This created a positive 

pressure at the intersection which pumped fluid out of the microchip through the short 

channel segment leading to the electrospray orifice.  The voltage at the intersection of the 

CE and EO pump channels provided the ESI potential.  Given the relative channel 

lengths, the voltage at the ESI tip was calculated to be +3.3 kV.  The ESI tip was 
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positioned approximately 5 mm from the inlet of the mass spectrometer.  A voltage of 

0.5-1.0 kV was applied to an external copper plate near the ESI tip to shield the 

electrospray region from the high voltages applied to the fluid reservoirs.  A photograph 

of the microchip positioned in front of the inlet of the mass spectrometer is shown in 

Figure 4-1B.  The electrospray plume was illuminated using a 3-mW green diode laser 

and imaged with a zoom lens (VZM 450, Edmund Optics Inc., Barrington, NJ) and a 

CCD camera (Sony SSC-DC83).  Alternatively, LC-MS analysis was performed by 

connecting the capillary LC column to a capillary ESI emitter (10-µm i.d. PicoTip, New 

Objective, Woburn, MA). 

4.2.7  Mass Spectrometry  

 All MS data was acquired on a time-of-flight instrument (LCT-Premier, Waters 

Corp.) using MassLynx software (v4.1, Waters Corp.).  No sheath gas or curtain gas was 

used and the sample cone voltage was set to 100 V.  The desolvation temperature on the 

mass spectrometer was set to 170 °C.  The mass analyzer was operated in V mode and 

MS data over a range of 300-1600 mass-to-charge (m/z) was acquired at 10 Hz unless 

otherwise noted. 

4.2.8  Data Analysis 

 All LC chromatograms were smoothed twice by the Savitzky-Golay method 

(3 scans) using software within Masslynx.  The time axis for all chromatograms shown in 

the figures is given in minutes.  The 2D chromato-electropherograms were background 

subtracted using software within Masslynx.  Peak capacity values for the LC separations 

were calculated with software described in Chapter 2.  The creation of 2D image plots 

was done as follows: the “chromatogram list” was copied from MassLynx and pasted into 
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a spreadsheet program used to segment the 2D data according to the individual CE 

separation windows.   This data was then loaded into imaging software (Image J, 

available at http://rsb.info.nih.gov/ij; developed by Wayne Rasband, National Institutes 

of Health, Bethesda, MD) using an available plug-in (XYZ2DEM importer).  Images 

were then imported into a second imaging program (Igor Pro, WaveMetrics, Lake 

Oswego, OR) for additional graphing options.   

4.3  Results and Discussion 

4.3.1  LC-CE-MS System Characterization 

 The mAb tryptic digest was first analyzed by LC-MS and LC-CE-MS to evaluate 

the basic operation of the 2D system shown in Figure 4-1A.  Figure 4-2A shows the base 

peak index (BPI) chromatogram for the LC-MS analysis of 300 fmol of the mAb tryptic 

digest.  Figure 4-2B shows a separate LC-CE-MS analysis of the same sample in which 

the LC effluent was transferred to the microchip and CE injections were performed every 

10 s.  Identical LC and MS conditions were employed for both analyses.  The ion count 

for the most intense m/z value in each chromatogram is displayed in the upper right 

corner.  The median LC peak width (4σ) was 10.1 s as measured from the LC-MS 

analysis.  With a 10 s interval between CE injections, each component eluting from the 

LC dimension was only injected once on average during the 2D experiment.  Therefore it 

is unlikely that each LC peak was sampled at its maximum peak amplitude and this may 

largely explain the reduced signal intensity for the LC-CE-MS analysis.        

 Figure 4-3 shows the data from Figure 4-2 where the regions between 6.0 min to 

7.5 min have been expanded.  The dashed lines indicate the individual CE separation 

windows in the LC-CE-MS analysis.  Components are observed to elute several seconds 
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later in the 2D experiment due to the additional time required to perform the CE 

separation.  The CE peaks were roughly 0.45 s wide (4σ) and therefore an average of 4.5 

MS data points were recorded for each peak.  The components corresponding to the 

654 m/z and 506 m/z ions coeluted in the LC dimension, but were baseline resolved in 

the CE dimension.  A similar result can be seen for the components that correspond to the 

644 m/z and 933 m/z ions.  Sequential CE separation windows were stacked to create the 

2D plot shown in Figure 4-4A.  Several components from Figure 4-3 are correlated and 

identified in the 2D plot by their m/z values.  Analytes are well distributed across both 

dimensions of the 2D plot and there are a relatively large number of fully resolved spots 

for this 15 min analysis.  For reasons unknown, the skew observed in the 2D LC-CE-LIF 

analysis in Figure 3-9 is not observed here. 

   To improve the sampling of the first dimension, “overlapping injections” were 

employed as discussed in Chapter 3.4-5   This CE injection strategy enabled multiple CE 

separations to occur simultaneously as long as the time interval between injections was 

sufficient to prevent peaks in adjacent CE separations from overlapping before arrival at 

the ESI emitter.  Figure 4-4B shows a 2D plot for the LC-CE-MS analysis of the same 

sample using a 5 s CE injection interval.  Several peptide fragments of interest are labeled 

in this 2D plot and will be discussed in the next section of this chapter.  The use of 

overlapping injections doubled the number of CE injections performed for each 

component eluting from the LC column.  The component with a CE migration time of 

~10 s was observed to wrap around to the other side of the 2D plot because the CE 

injection interval was slightly shorter than the CE separation window.  The interval 
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between consecutive CE injections should have been at least 5.25 s to prevent this from 

occurring.   

 For the LC-CE-MS analysis in Figure 4-5B, the estimated peak capacities for the 

LC and CE dimensions were 55 and 11, respectively.  Theoretically this system could 

produce an overall peak capacity of 605 (the product of the individual peak capacities).6-7  

However, the actual peak capacity is slightly lower because the peaks eluting from the 

LC dimension were only sampled twice on average.  In theory, 3-4 CE injections per LC 

peak are required to retain the resolution obtained in the first dimension.8  Two different 

approaches could to be taken to achieve optimal sampling between dimensions to 

maintain the same separation power in each dimension.   The LC peak widths could be 

doubled by increasing the duration of the LC mobile phase gradient, but this would 

double the overall analysis time.  Alternatively, the time required to perform the second 

dimension can be reduced.  For example, the LC-CE-LIF system described in Chapter 3 

generated a peak capacity of 58 in the CE dimension every 3.25 s.  If this rate of peak 

generation could be duplicated by this LC-CE-MS device, then a peak capacity of 11 

could be achieved every 0.6 s.  The challenge would be obtaining a mass spectrometer 

with an acquisition rate fast enough to adequately sample CE peaks that are only tens of 

ms wide.  Therefore the first approach is more feasible until considerable increases in MS 

data acquisition rates are realized.     

 To evaluate the run-to-run reproducibility of the 2D LC-CE-MS system, three 

replicate analyses of mAb tryptic digest were performed.  The 10 most intense 

components (spots) were selected to compare their LC retention time and CE migration 

time among the three 2D plots shown in Figure 4-5.  The average RSD for the LC 
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retention times and CE migrations times was 0.33% and 3.3%, respectively.  These low 

RSD values compare favorably with those typically reported in the literature for LC and 

CE separations of peptides.   

4.3.2  Antibody Tryptic Peptide Mapping 

 The sponsor of this research identified the amino acid sequence of 7 peptides that 

they commonly use for identifying this particular mAb.  Reconstructed ion 

chromatograms for 5 of these peptides identified in the mAb digest by LC-MS are shown 

in Figure 4-6.  Only peptide 4 is baseline resolved in the BPI chromatogram shown in the 

lower trace.  Peptides 1 and 2 were not observed.  It is likely that these peptides are not 

sufficiently retained on the C4 stationary phase.  Peptides that are unretained are not 

concentrated on the column during the sample injection resulting in reduced sensitivity.  

In addition, these peptides likely elute with the high concentration buffers used in the 

protein digest, and therefore suffer reduced ionization efficiency in the ESI-MS process.  

For the tryptic digest, a stationary phase with a longer alkyl chain, such as C12 or C18, 

would have been more appropriate for retaining these smaller peptides.  In addition, the 

step at the beginning of the LC mobile phase gradient could be replaced with a linear 

ramp.  A 2D plot of the mAb tryptic digest is shown in Figure 4-4B.  All 5 peptides 

observed in the LC-MS analysis were also located in this LC-CE-MS analysis and are 

labeled in this 2D plot.   

 In addition to manually identifying these peptides of interest, attempts were made 

to identify all peptides in the sample using the ProteinLynx Global Server (PLGS) 

software published by Waters Corp.  Figure 4-7 shows the masses observed in the 

LC-MS (Figure 4-2A) and LC-CE-MS (Figure 4-2B) analyses.  Only masses in the range 
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of 1,500-2,000 Da are shown for simplicity.  The numerical labels indicate the peak 

elution time (LC retention time with additional CE migration time if applicable) in 

minutes.  As mentioned earlier, the analysis time for the same component in the LC-CE-

MS analysis is slightly longer due to the time required to perform the CE separation.  The 

masses highlighted in blue were identified as masses of peptides from the mAb tryptic 

digest.  There are several masses in the LC-CE-MS analysis that have the same analysis 

time as an identified peptide but are 22 Da larger in mass.  For example, the first two 

labeled masses in Figure 4-7B have an analysis time of 9.44 min.  The larger mass in 

each pair is likely a sodium adduct of the corresponding peptide.  Sodium hydroxide was 

occasionally used to flush the EO pump channel after microchip storage.  As long as the 

device was rinsed well with water after the sodium hydroxide flush, these sodium adducts 

were not normally observed. 

 A total of 25 peptides were identified by LC-MS analysis generating a sequence 

coverage of 55% for the light mAb chain and 35% for the heavy mAb chain.  Only 18 

peptides were identified in the LC-CE-MS analysis resulting in a sequence coverage of 

50% for the light mAb chain and 22% for the heavy mAb chain.  There are two main 

reasons why there were fewer identifications observed in the 2D experiment.  First, the 

formation of sodium adducts reduced the abundance of native peptide ions.  Secondly, 

LC peaks were undersampled by the CE dimension reducing the sensitivity of the 2D 

system as discussed earlier. 

4.3.3  Foreign Contaminate Identification 

 To simulate the introduction of a foreign contaminate, leucine enkephalin was 

spiked into the mAb tryptic digest at a 1:1 molar ratio.  Figure 4-8 shows expanded BPI 
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chromatograms from the LC-MS analysis of the original and spiked samples over a two 

minute window that includes the leucine enkephalin retention time.  It is difficult to 

determine the presence of the leucine enkephalin peak ([M+H]+, 556 m/z) from the 

chromatogram alone because it coelutes with other components at 9.17 min.  The mass 

spectra at this retention time for the original and spiked samples are shown in Figure 4-9 

to reveal the other ions that are present.  The three most intense ions in the spectrum from 

the original sample were identified as tryptic peptides from the mAb digest.  The 556 m/z 

ion (leucine enkephalin) is the base peak in the spectrum of the spiked sample.  

Figure 4-10 shows the 2D plots of the LC-CE-MS analysis of original and spiked 

samples.  Although the leucine enkephalin spot is not completely resolved, it is readily 

visible as a new component without using the mass spectral information.     

4.3.4  Determination of Methionine Oxidation 

 The LC-MS analysis of 400 fmol of the original mAb lys-C digest and the 

corresponding 10% spiked oxidized control are shown in Figure 4-11.  When comparing 

the chromatograms, three peaks in the 10% spiked oxidized control are shifted to earlier 

LC retention times and gained a mass of 16 amu.  This may suggest methionine oxidation 

of a peptide fragment.  The isotope patterns for suggested native and oxidized pairs are 

similar which helps to confirm the relation of these components.  The masses of these 

components correspond to peptides resulting from a lys-C digest of the mAb material that 

have a methionine amino acid residue.  The blue numbers in Figure 4-11 indicate peaks 

that contain native peptides and the red numbers indicate peaks that contain 

corresponding oxidized peptides.  Some of these indicated peaks contain multiple 

components; therefore, the m/z labels in the figure do not necessarily correspond to the 
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native or oxidized peptides.  This data was also processed by PLGS and the observed 

masses for these peptides are shown in Figure 4-12.  The native peptide masses are 

highlighted in blue and the oxidized peptide masses are highlighted in red.  In all three 

cases, no native peptides are observed in the 10% spiked oxidized control and therefore it 

is likely that these peptides are completely oxidized.  It is suspected that the excess 

hydrogen peroxide in the oxidized material was sufficient to cause complete oxidation of 

components in the 10% spiked oxidized control.    

 The LC-CE-MS analyses of these samples are shown in Figure 4-13.  The 

horizontal streaking is a result of a slight malfunction of the CE injection interface that 

allowed a small amount of LC effluent to be continuously injected into the CE channel.  

The blue numbers identify native peptides and the red numbers identify oxidized 

peptides.  These numbers also correspond with the labeled peptides in the LC-MS 

analysis in Figures 4-11 and 4-12.  A very small amount of the oxidized form of peptide 3 

can be observed in the 2D plot of the original sample.  As expected, the oxidized peptides 

elute slightly earlier than their parent peptides in the LC dimension.  Very little change 

was observed in the CE migration times for the native and oxidized peptides, but the CE 

dimension helped to resolve these peptides from other analytes.  Figure 14 is an overlay 

of the LC-CE-MS results for the original sample and the 10% oxidized control to show 

the subtle change in spot position more clearly.  The analysis of this data by PLGS 

revealed similar masses as in the LC-MS analysis in Figure 4-12 with the exception that 

the oxidized form of peptide 1 was not observed in the LC-CE-MS analysis of the 

original sample.  This mass was present at relatively low abundance in the LC-MS 
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analysis and it is likely that this LC peak was not sampled near its maximum in the LC-

CE-MS experiment.  

4.4  Conclusion 

 In conclusion, a novel 2D LC-CE-MS system proved useful in the rapid analysis 

of mAb digests.  This 2D system was shown to increase the peak capacity compared to 

LC-MS analysis.  The increased resolving power of the LC-CE-MS system allowed the 

presence of contaminate peaks to be observed in the 2D plot without relying on mass 

spectral information.  This work focused on high-speed analysis (≤15 min); however, the 

analysis time could be lengthened to generate higher peak capacities if required.  The 2D 

separation system presented here is compatible with LIF, using methods described in 

Chapter 3, and MS detection.  Ultimately, MS detection could identify the components in 

the peptide map and LIF could be utilized for routine quantitative analysis.  
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4.5  Figures 

 

  

 

Figure 4-1.  A) Schematic for the hybrid 2D LC-CE-MS system.  ESI was 
performed from the lower right corner of the glass microchip device.  B) 
Photograph of the microchip device mounted in front of the inlet of a mass 
spectrometer. 
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Figure 4-2.  Analysis of the mAb tryptic digest by 1D and 2D methods. A) LC-MS 
BPI chromatogram, B) LC-CE-MS BPI chromato-electropherogram. 
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Figure 4-3.  An enlarged time axis of the mAb tryptic digest analyses shown in 
Figure 4-2.  A) LC-MS, B) LC-CE-MS.  The dashed lines represent the individual 
CE separation windows.   
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Figure 4-4.  Two-dimensional LC-CE-MS analysis of the mAb tryptic digest.  
A) CE injections were performed every10 s.  The m/z values for several 
components are labeled.  B)  CE injections every 5 s.  Five peptides of interest are 
labeled P3-P7. 
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Figure 4-5.  Three replicate LC-CE-MS analyses of the mAb tryptic digest. 
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Figure 4-6.  LC-MS of the mAb tryptic digest.  Reconstructed ion chromatograms for 
5 common tryptic peptides labeled P3-P7 and the BPI chromatogram (bottom trace). 
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Figure 4-7.  Observed ions in the 1,500-2,000 Da range from the mAb tryptic 
digest.  A) LC-MS and  B) LC-CE-MS.  The numerical labels indicate the peak 
elution times for the detected masses in minutes.  The masses highlighted in blue 
were identified as peptides from the mAb tryptic digest. 
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Figure 4-8.  BPI chromatograms for the LC-MS analysis of the mAb tryptic digest.  
A) original sample, B) sample material spiked with leucine enkephalin (556 m/z). 
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Figure 4-9.  Mass spectra from the LC-MS analysis shown in Figure 4-8 at the 
retention time of leucine enkephalin.  A) original sample, B) sample material 
spiked with leucine enkephlain (556 m/z). 
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Figure 4-10.  Two-dimensional LC-CE-MS analysis of the mAb tryptic digest.  
A) original sample, B) sample material spiked with leucine enkephalin.  The arrow 
indicates the location of the leucine enkephalin.  
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Figure 4-11. BPI chromatograms for LC-MS of the mAb lys-C digests.  
A) original sample, B) 10% spiked oxidized control.  The blue numbers indicate 
native peptides and red numbers indicate oxidized peptides.  Data was acquired at 
2 Hz.   



101 
 

 

  

 

Figure 4-12.  Masses observed in the LC-MS analysis of A) the original sample 
and B) 10% spiked control for peptides 1-3.  Native peptides (blue), oxidized 
peptides (red).  The numerical labels indicate the peak elution time in minutes for 
the detected masses. 
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Figure 4-13. Two-dimensional LC-CE-MS analysis of the mAb Lys-C digests.  
A) original sample, B) 10% spiked oxidized control.  The blue numbers indicate 
native peptides and red numbers indicate oxidized peptides. 
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Figure 4-14. Two-dimensional LC-CE-MS analyses showing with the original 
sample and the 10% spiked oxidized sample control overlaid in the red color 
scheme. 
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Figure 4-15.  Masses observed in the LC-CE-MS analysis of A) the original 
sample and B) 10% spiked control for peptides 1-3.  Native peptides (blue), 
oxidized peptides (red).  The numerical labels indicate the peak elution time in 
minutes for the detected masses.   
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CHAPTER 5:  Monolithic 2D Liquid Chromatography-Capillary Electrophoresis 

with Mass Spectrometry Detection  

 

 

5.1  Introduction  

 Chapters 3 and 4 presented hybrid 2D LC-CE systems that coupled capillary-

based LC and microchip-based CE.  One drawback to this approach was the band 

broadening of LC peaks within the capillary-to-microchip connection.  This Chapter will 

discuss the integration of the first dimension on the microchip.  This new device 

incorporates a sample-trapping region and LC channel packed with commercial porous 

particles.  This system is capable of performing LC-ESI and LC-CE-ESI without 

modifying the instrumental setup.  To evaluate the system, LC-MS and LC-CE-MS 

analysis of standard protein digests were performed and compared. 

5.2  Experimental 

5.2.1  Reagents and Materials 

 Deionized water was obtained from a Nanopure water purifier fitted with a 

0.2-µm filter (Barnstead International, Dubuque, IA).   Acetone, acetonitrile, methanol, 

and ammonium acetate were all HPLC grade from Fisher Chemical (Fairlawn, NJ).  The 

PolyE-323 polymer was synthesized as previously described from 1,2-bis(3-

aminopropylamino)ethane and epichlorohydrin both obtained from Sigma Chemical Co. 

(St. Louis, MO).1 The PolyE-323 solution was adjusted to pH 7 with acetic acid (Fisher) 

and diluted with water to 15% (by mass) polymer.  The trichloro(1H,1H,2H,2H-
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perfluorooctyl)silane and rhodamine B were also acquired from Sigma Chemical Co.  

Tryptic digests of bovine serum albumin (BSA), yeast enolase, and Escherichia coli 

(MassPREP, Waters Corp., Milford, MA) were reconstituted in 0.1% (v/v) formic acid 

(99%, Fisher) in water prior to use.  

5.2.2  Microchip Fabrication 

 Microchips were fabricated from 150-µm-thick glass substrates (Corning 0211 

borosilicate, Erie Scientific Co., Portsmouth, NH) using standard photolithography and 

wet-chemical etching methods as previously described.2  A schematic for the microchip 

is shown in Figure 5-1.  A simple multi-step etching process was used to create channels 

with different depths.  First, all channels were etched to the desired depth for the 

shallowest feature.  After the substrate was rinsed and dried, photoresist (Microposit 

S1813, Microchem Corp., Newton, MA) was manually applied and cured at the location 

of the shallowest feature to prevent further etching.  The remaining uncoated channels 

were then etched to the second depth and the process was repeated until all three selective 

depths were achieved.  Access ports with a 400-µm internal diameter were created in the 

etched substrates by powder blasting (Microblaster, Comco, Inc., Burbank, CA).  

Channel depths and widths were measured with a profilometer (P15, KLA-Tencor Corp., 

San Jose, CA).  The electrospray tip was machined by cutting the bonded microchip with 

a precision dicing saw (Dicing Technology, San Jose, CA) so that the CE channel 

terminated at a 90° corner of the microchip.  The microchip was attached to 0.9-mm-thick 

glass with transparent UV epoxy (68, Norland Products Inc., Cranbury, NJ) to protect the 

device from mechanical damage.  Glass cylinders with a volume of 200 µL were attached 

to the buffer, waste and electroosmotic (EO) pump channel access ports using chemically 
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resistant epoxy (Hysol E-120HP; Henkle Corp., Morrisville, NC) and used as fluid 

reservoirs.  The channel lengths were as follows: LC inlet, 10 mm; vent, 22 mm; LC, 

100 mm; buffer, 11 mm; waste, 3 mm; CE, 50 mm; and EO pump, 30 mm.  The inlet, 

vent and LC channels were 25-µm deep and 120-µm at full width.  The buffer, waste, CE 

and EO pump channels were 8-µm deep and 50 µm at full width.  Both weirs were etched 

to a depth of 6 µm.   

5.2.3  Particle Packing 

 The sample-trapping region and LC channel were packed with C18-bonded, 

3.5-µm porous particles (X-Bridge, Waters Corp.).  The particles were suspended in 

acetone at 5 mg/mL by vortexing and brief sonication.  This slurry was then placed in a 

vial within a stainless steel vessel and helium gas pressure (70 bar) was used to force the 

slurry through a 50 µm i.d. capillary (Polymicro Technologies, Phoenix, AZ).  The 

capillary was connected to the LC inlet channel on the microchip using the capillary-to 

microchip fitting described in Chapter 3.  The vent channel was connected to a capillary 

leading to a union LC fitting.  During packing the vent could be opened or closed by the 

use of a plug in the union.  The vent was initially closed during the packing procedure to 

direct the particles towards the LC channel.  Even though the weirs in the channels were 

6-µm deep, they successfully retained the 3.5 µm particles.  It is suspected that the 

particles were partially trapped by the “keystone effect,” where particle aggregation at a 

taper is sufficient for retention of a packed bed.3-4  Packing of the device was monitored 

using an optical microscope.  When the packing reached the vent channel junction, the 

gas cylinder was shut off and the system was slowly depressurized to avoid 

decompression of the bed.  As long as the device was not rapidly depressurized to 
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atmospheric pressure there was no need to frit the inlet of the packed channel.  The vent 

was then opened and low pressure was used to pack the particles in the vent channel 

against the weir.  Packing was continued until the bed extended 3 mm into the LC inlet, 

beyond the intersection of the vent channel.  This 3 mm segment of packed particles 

functioned as the sample-trapping region.  The microchip was then connected to the LC 

pump (nanoAcquity Binary Solvent Manager, Waters Corp.) and the packed LC channel 

was flushed overnight using a linear gradient from acetonitrile to water.  Using a light 

microscope, no voids or other defects were visible in the packed LC channel.  Figure 5-2 

shows SEM images of a cross-section of a channel with similar dimensions packed with 

the same 3.5-µm particles.  

5.2.4  Surface Modifications 

 The surface of the CE buffer, waste, and CE channels was coated with PolyE-323 

to reverse the EOF and prevent peptide absorption as described in Chapter 3.  The 

exterior of the integrated electrospray tip was coated with trichloro(1H,1H,2H,2H-

perfluorooctyl)silane to make the surface hydrophobic as described in Chapter 4. 

5.2.5  Microchip Operation 

 The experimental setup is shown in Figure 5-1.  All of the fluidic connections 

outside of the microchip were made with 20 µm i.d. fused silica capillary tubing.  The 

capillaries were attached to the microchip with in-house designed fittings described in 

Chapter 3.  These fittings were capable of routinely holding over 100 bar pressure.  The 

LC pump (nanoAcquity Binary Solvent Manager, Waters Corp.) delivered the LC mobile 

phase at 700 nL/min.  Mobile phase A was 0.1% formic acid in water and mobile phase B 

was 0.1% formic acid in acetonitrile.  The LC injections were performed with a 6-port 
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valve (C72, Valco Instruments Co. Inc., Houston, TX) with a 1 µL sample loop (labeled 

as V1 in Figure 5-1).   After the injector, a low dead volume tee (MT.5XCS6, Valco) was 

used as a splitter to reduce the flow rate delivered to the inlet of the microchip device.  A 

flow sensor (µ-Flow, Bronkhurst, Bethlehem, PA) was connected to the waste line to 

measure the split flow rate and to monitor flow stability.  The capillary connected to the 

vent channel on the microchip was connected to a second 6-port valve (labeled as V2 in 

Figure 5-1) to open or close the vent.  The vent was open during the LC injection 

providing a low flow resistance path through the sample-trapping region on the 

microchip.  This resulted in 80% of the flow (570 nL/min) being delivered to the 

microchip.  After the sample was loaded the vent was closed, reducing the flow rate 

through the microchip to 65 nL/min.  A linear mobile phase gradient from 5 to 50% B in 

30 min was used for all separations.   

The effluent from the LC channel was directed towards the CE or waste channel 

by controlling the EOF within the microchip.  The electric potentials were applied by a 

custom power supply built using three (two negative and one positive) 10-kV power 

supply modules (UltraVolt Inc., Ronkonkoma, NY.) The power supply was computer-

controlled using an analog output board (PCI-6713; National Instruments, Austin, TX) 

and an in-house written LabVIEW program (National Instruments).  Electrical 

connections were made to the buffer, waste and EO pump channel reservoirs with 

platinum electrodes.  The background electrolyte for the CE separations was an aqueous 

solution of 0.1% formic acid with 25% acetonitrile, pH 2.5.  CE injections were 

accomplished using a modified “gated” injection scheme as described in Chapter 3.  

Typical voltages applied to the CE buffer, waste and EO pump reservoirs were -0.8 kV, 
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-0.8 kV, and +8.0 kV for injections and -4.0 kV, 0.0 kV, and +8 kV for separations, 

respectively.  Due to the electrical resistance of the channels in the device, both sets of 

applied voltages resulted in a potential of -0.6 kV at the injection cross and +5.0 kV at the 

electrospray tip.  This relatively low potential at the injection cross minimized the electric 

field dropped across the LC channel to the valves and flow sensor, which were all held at 

ground.  Furthermore, because the potentials at the beginning and the end of the CE 

channel did not change during injections, the separation field strength of 1.1 kV/cm was 

held constant.  This provided stable electrospray and allowed the use of “overlapping 

injections” as described in Chapter 3.  For the protein digests studied here, the CE 

separation window was 9 s while the run time was 18 s.  Therefore, the CE injections 

were spaced 10 s apart to increase the sampling of peaks eluting from the first dimension 

while ensuring that peaks from adjacent CE runs would not overlap before arrival at the 

ESI emitter.  When LC-MS analysis was performed, the CE injection interface was left in 

the “injection” voltage profile for the duration of the LC run.   

Details regarding the operation of the integrated ESI interface are provided in 

Chapter 4.  The microchip was positioned with the electrospray tip approximately 5 mm 

from the inlet of the mass spectrometer (Micromass QTof Micro, Waters Corp.)  For 

optimal ESI, a voltage of approximately +5 kV was required at the electrospray tip with 

the inlet of the MS held at ground.  The electrospray plume was visualized using a 3-mW 

green diode laser and a CCD camera.  For all experiments, the mass spectrometer was set 

to scan a range of 300-1000 m/z with 0.24 s per summed scan and 0.1 s interscan delay to 

maximize the data acquisition rate.   



112 
 

5.2.6  Data Processing.  

 Peak capacities for the LC-MS runs were calculated using software described in 

Chapter 2.  Chromatograms were produced by importing data from Masslynx (Waters 

Corp.) into Igor Pro (WaveMetrics, Lake Oswego, OR) for additional graphing options.  

LC-CE-MS data were processed into 2D image plots using the procedures outlined in 

Chapter 4.    

5.3  Results and Discussion   

5.3.1  ESI-MS   

 The integrated ESI interface was previously characterized and found to provide 

sensitivity and stability comparable to a commercial fused-silica nanospray emitter.2  

Initial stability tests were performed over 5 min intervals, which was adequate for the 

rapid CE-MS separations demonstrated on the device.  In the current work the 

electrospray stability was measured for longer periods of time to ensure stable operation 

throughout the LC-CE-MS analysis.  For this experiment rhodamine B (10 µM) was 

added to the background electrolyte in the buffer reservoir and it was continuously 

infused using the “separation” voltage profile of the CE injection interface.  The ESI-MS 

signal from the rhodamine B protonated molecular ion was monitored for 60 min.  The 

relative standard deviation (RSD) was 4.3% which agrees well with previous ESI 

stability tests.2  Then the ESI flow rate was estimated by performing gated injections of 

rhodamine B-free buffer from the LC column and measuring the time until a decrease in 

the rhodamine B signal was observed.  By this procedure, the rhodamine B-free buffer 

was essentially used as a dead time marker.  Three injections of the rhodamine B-free 
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buffer were made and had a dead time of 12.2 s corresponding to a flow rate of 

98 nL/min.  

5.3.2  LC-MS 

 To test the chromatographic performance of the packed microchip channel, the 

device was utilized for reversed phase LC-MS.  Figure 5-3A shows a BPI chromatogram 

for an LC-MS analysis of tryptic peptides from BSA and yeast enolase.  The low flow 

resistance of the integrated sample-trapping region allowed for 800 nL of the dilute 

sample (0.25 µM) to be loaded onto the device in less than 2 min.  In addition to 

preconcentration, the sample-trapping region may also be used to perform sample clean-

up, such as desalting peptides, prior to the LC run.  The peak capacity for this one-

dimensional separation was 64.  To illustrate the potential for analyzing more 

complicated samples, Figure 5-3B shows a separation of 800 ng of a tryptic digest of 

E. coli cell lysate.  The peak capacity for this separation was 58.  Both separations show 

that the device is capable of efficient LC separations in a relatively short analysis time.  

Tandem MS could be used to identify analytes in these microchip LC-MS experiments, 

but was not performed in this work.     

5.3.3  LC-CE-MS 

 As mentioned in Chapter 4, one challenging aspect of performing online 2D 

separations with MS detection is ensuring adequate sampling between dimensions and 

between the second dimension and the mass spectrometer.  With the gated injection 

scheme, a fraction of the LC effluent is injected into the CE dimension at regular 

intervals.  For this method to be comprehensive, each component eluting from the LC 

channel must be injected into the CE dimension.  To retain the resolution achieved in the 
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first dimension, a frequency of at least 3-4 injections per peak eluting from the first 

dimension to the second is required.5  A limiting factor for obtaining this frequency is the 

time required to complete the second dimension separation and detection.  Microchip CE 

is capable of extremely fast separations as demonstrated in Chapter 3 where a peak 

capacity of 58 was generated every 3.25 s.  However, this requires a high bandwidth 

detection scheme, such as LIF, to adequately sample CE peaks that are only tens of 

milliseconds wide.  Unfortunately, commercially available mass spectrometers have 

much slower sampling rates.  As a result the CE peaks must be significantly wider to 

ensure adequate peak detection.  In this work, we have purposely lengthened the CE 

injection time to produce wider peaks to improve detection with the relatively slow mass 

spectrometer.   

 A BPI chromato-electropherogram for the 2D analysis of tryptic peptides from 

BSA and enolase is shown in Figure 5-4A.  The median base peak width for components 

eluting from the LC dimension was 15.7 s (as determined from the LC-MS separation) 

and the calculated peak volume was 17 nL.  Since the time between successive CE 

injections was 10 s the components eluting from the LC channel were only sampled 1.6 

times on average.  Each 0.5 s CE injection corresponded to a volume of 0.8 nL.  In 

Figure 5-4B an expanded time interval of the 2D analysis shows a few of the CE runs in 

greater detail, with dashed lines indicating individual CE separation windows. Due to the 

relatively slow data acquisition rate of the mass spectrometer (~3 Hz) these peaks were 

undersampled.  An accurate measurement of CE peak widths was not possible as only 1-2 

MS data points were obtained per component.  It was estimated that the CE base peak 

widths were slightly greater than 0.5 s. 
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 The sequential CE separation windows were stacked according to the 

corresponding LC retention to simulate the 2D plot shown in Figure 5-5.  Analytes were 

fairly well distributed across both dimensions and there are a relatively large number of 

baseline resolved peaks (spots). The estimated peak capacities for the LC and CE 

dimensions are 64 and 10, respectively.  If higher sampling rates could be achieved (4 CE 

injections per LC peak and 6-10 MS data points per CE peak), the theoretical peak 

capacity for this separation would be 640 for the 30 min analysis.   

  Three replicate 2D separations were performed using the same tryptic digest of 

BSA and enolase to evaluate the reproducibility of the system.  The position of 15 

components (spots) in the 2D plots in Figure 5-6 were used to compare the LC retention 

times and CE migration times.  The average RSD for the LC retention times and CE 

migration times was 0.35% and 2.4%, respectively.  The slow data acquisition rate 

(~3 Hz) likely contributed significantly to the observed variation in CE migration times.  

To show the ability to separate more complex samples, a tryptic digest of E. coli 

cell lysate was analyzed by LC-CE-MS.  The overall pattern of the 2D separation shown 

in Figure 5-7A matches well with the 1D separation of the same sample shown in 

Figure 5-3B.  There are many components in this sample that fill the full CE separation 

windows shown in Figure 5-7B.  The 2D plot for this separation is shown in Figure 5-8.  

Although many peaks were not baseline resolved due to the complexity of the sample, the 

2D analysis clearly offered higher resolution as compared to the LC-MS analysis shown 

in Figure 5-3B. The increase in separation power is also illustrated by the reduction of the 

complexity in the mass spectra. Figure 5-9 shows single scan spectra containing the 

highest intensity for an abundant ion (552.2 m/z) from the LC-MS and LC-CE-MS 
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analyses. Fewer ions are present in the spectrum obtained from the 2D run. The intensity 

for the 552.2 m/z ion is also 23% higher in the 2D analysis. Although there are numerous 

variables that affect MS intensity, coeluting components may induce ionization 

suppression in the ESI process, which may account for the reduced intensity of the 

552.2 m/z ion in the 1D analysis. 

In the 2D LC-CE-MS analyses presented, the greatest limitation was the relatively 

slow scan rate of the mass spectrometer employed.  While the maximum data acquisition 

rate for the instrument was ~3 Hz, commercially available time-of-flight instruments are 

capable of speeds in excess of 100 Hz.  This faster acquisition rate would enable a 100 

ms wide CE peak to be sampled 10 times providing a peak capacity of 30 in the CE 

dimension in only 3 s (assuming 6 s CE runs and “overlapping injections”).  Therefore 

LC peaks would only have to be 12 s wide to obtain optimal sampling between separation 

dimensions (4 CE injections per LC peak).  This system could potentially provide a 30-

fold increase in total peak capacity compared to 1D separation methods with currently 

available MS technology.   

5.4  Conclusion  

 A microchip device for performing 2D LC-CE-ESI is described for the analysis of 

protein digests for MS-based proteomic applications.  Integrating all functional elements 

on the microfluidic platform enabled the use of low flow rates without incurring 

substantial band-broadening.  Tryptic digests were separated to demonstrate the first 

report of microfluidic LC-CE separations directly coupled with MS detection.  Faster 

data acquisition rate mass spectrometers (without loss of resolution or mass accuracy) 

will be required to take full advantage of the high-speed separation capabilities of the 
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device.  In order to obtain tandem MS data, in particular, significant increases in data 

acquisition rates are needed. Future work should include modifying the LC-CE interface 

to incorporate sample preconcentration between the separation dimensions.  In addition, 

enzymatic digestion and other processing steps may be integrated onto the device to 

further reduce the overall analysis time.  
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5.5  Figures 

 

 

 

 

 

  

Figure 5-1.  Schematic for the microchip-based LC-CE-MS system.  The blue squares 
outlined in dashes on the microchip denote the location of the weirs that were used to 
retain the packed particles.  Valve 1 (V1) was used to perform LC injections and 
valve 2 (V2) was used to open and close the vent line.  Valves are shown in the 
“sample loading” configuration.  Electrospray was performed from the lower right 
corner of the microchip. 
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Figure 5-2.  SEM images of the cross section of a microchip channel, 33 µm deep 
and 131 µm at full width, packed with 3.5 µm particles. 
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Figure 5-3.  BPI chromatogram for the LC-MS analysis of A) 200 fmol of a tryptic 
digest of a bovine serum albumin and yeast enolase mixture B) 800 ng of E.coli 
lysate tryptic digets.  MPA, 0.1% formic acid in water; MPB, 0.1% formic acid in 
acetonitrile; gradient 5 to 50% B in 30 min; flow rate 65 nL/min.   
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Figure 5-4.  A) BPI chromato-electropherogram for the LC-CE-MS analysis of the 
same tryptic digest of BSA and enolase shown in Figure 5-3A.  B) An expanded 
view of a 1 min interval in the separation above.  Dashed lines indicate CE 
separation windows. 
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Figure 5-5.  A two-dimensional plot for an LC-CE-MS analysis of 200 fmol of a 
tryptic digest of a bovine serum albumin and yeast enolase mixture.    
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Figure 5-6.  Three replicate LC-CE-MS analyses of 200 fmol of the BSA and 
enolase tryptic digest. 
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Figure 5-7.  A) BPI chromato-electropherogram for the LC-CE-MS analysis of the 
same tryptic digest of E. coli lysate shown in Figure 5-3B.  B) An expanded view 
of a 1 min interval in the separation above.  Dashed lines indicate CE separation 
windows. 
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Figure 5-8.  A two-dimensional plot of the LC-CE-MS analysis of 800 ng of an 
E. coli cell lysate tryptic digest. 
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Figure 5-9.  Mass spectra containing the highest abundance of the 552.2 m/z ion from 
an E. coli cell lysate tryptic digest analyzed by (A) LC-MS and (B) LC-CE-MS. 

 



127 
 

5.6  References 

 

1. Hardenborg, E.; Zuberovic, A.; Ullsten, S.; Soderberg, L.; Heldin, E.; Markides, 
K. E.  Novel polyamine coating providing non-covalent deactivation and reversed 
electroosmotic flow of fused-silica capillaries for capillary electrophoresis.  J. 

Chromatogr. A 2003, 1003, 217. 

2. Mellors, J. S.; Gorbounov, V.; Ramsey, R. S.; Ramsey, J. M.  Fully integrated 
glass microfluidic device for performing high-efficiency capillary electrophoresis 
and electrospray ionization mass spectrometry.  Anal. Chem. 2008, 80, 6881. 

3. Lord, G. A.; Gordon, D. B.; Myers, P.; King, B. W.  Tapers and restrictors for 
capillary electrochromatography and capillary electrochromatography mass 
spectrometry.  J. Chromatogr. A 1997, 768, 9. 

4. Ceriotti, L.; de Rooij, N. F.; Verpoorte, E.  An integrated fritless column for on-
chip capillary electrochromatography with conventional stationary phases.  Anal. 

Chem. 2002, 74, 639. 

5. Gottschlich, N.; Jacobson, S. C.; Culbertson, C. T.; Ramsey, J. M.  Two-
dimensional electrochromatography/capillary electrophoresis on a microchip.  
Anal. Chem. 2001, 73, 2669. 

 
 



 
 

 

 

 
CHAPTER 6:  Microfluidic Dual Electrospray Ionization Source for Accurate Mass 

Measurements 

 

6.1  Introduction 

 Accurate mass measurements are crucial for providing elemental analysis of small 

molecules and improving peptide and protein identification.1-2  Such measurements can 

be routinely obtained by ESI-MS using internal calibration.  By this method, the signal 

from a reference compound corrects for drift in the mass spectrometer’s calibration over 

the course of the experiment.  The introduction of a reference compound was traditionally 

accomplished by mixing analyte and reference materials prior to ESI; however, this 

strategy has several critical limitations.  The presence of both analyte and reference 

materials may lead to ionization suppression which lowers the sensitivity of the method.3  

When a column-based separation is performed, the solutions are commonly mixed at a 

post-separation “T” junction.  This mixing introduces extra-column band broadening that 

is especially problematic when performing low flow rate separations, such as capillary 

LC or CE.  A valve may be placed after the separation to sequentially introduce solutions, 

but this connection also introduces substantial extra-column band broadening.4  Another 

alternative is the use of dual emitters that provide independent ionization without 

sacrificing the quality of the separation.5-7  It is also advantageous to introduce the analyte 

and reference materials sequentially to avoid interference that arises if both have the 

same nominal m/z value.  In this case, sampling of the reference material must be 

performed quickly to prevent undersampling of the analyte peaks.  Numerous methods 
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have been reported for sequential introduction of analyte and reference solutions using 

two capillary ESI emitters including repositioning the ESI emitters,8-12 mechanical 

baffles,13-14 dynamic control of the ESI voltage,15 and modification of external electric 

fields.16-18  These methods typically allow the reference material to be sampled in less 

than 1 s. 

 There have been many reports of microfabricated devices which have multiple 

ESI emitters.19  The majority of these devices simply contain duplicate channel structures 

that are not utilized in the same experiment.  Here we are interested in multiple ESI 

emitters that can be operated on a rapid time scale.  It is also important that the emitters 

are fabricated directly onto the device to facilitate zero dead-volume integration with 

microscale separations.  Dayon and coworkers described a microfluidic device that meets 

some of these criteria.  Their polyethylene terephthalate microchip device integrated six 

ESI emitters for potential use in high-throughput screening applications.20  The gravity 

fed solutions were electrosprayed sequentially without moving the device by modulating 

the ESI voltage of each emitter at intervals as short as 6 s. 

 This chapter describes the development of a microfluidic dual ESI source for 

rapid analysis of two different solutions.  Two different experimental setups were 

explored in developing a prototype device.  Both strategies relied on two independent ESI 

emitters which can be turned on and off by the modulation of the applied voltage.  First, a 

pressure-driven approach that utilized two separate microchip devices and off-microchip 

pumping is presented.  This short study was conducted to test the feasibility of integrating 

dual ESI emitters in our experimental setups and proved useful in identifying parameters 

needed to design an integrated device.  Secondly, an electrokinetically-driven strategy is 
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discussed in which all of the fluidic handling was performed on the microchip.  After the 

initial characterization of this device, the ability to obtain accurate mass measurements is 

demonstrated.   

6.2  Experimental  

6.2.1  Pressure-Driven Strategy 

 The schematic for the pressure-driven dual ESI experiment is shown in 

Figure 6-1.  Two identical glass microchips were fabricated from 150 µm thick glass 

substrates using the procedures described in Chapters 4 and 5.  Each device had a straight 

channel that connected the fluid access port directly to an integrated ESI tip formed at a 

90° corner.  The channel cross-sections had a depth of 12 µm and a full width of 56 µm.  

The surface of the channels was not modified for these experiments.  The exterior of the 

ESI tip was coated with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma Chemical 

Co.) to reduce surface wetting as previously described.  

 The ESI solution consisted of 5 µM leucine enkephalin (American Peptide Co., 

Inc., Sunnyvale, CA) or 5 µM angiotensin II (American Peptide Co., Inc., Sunnyvale, 

CA) in an aqueous solution of 0.1% formic acid and 50% methanol.  Fluid was delivered 

to each device using a syringe pump.  The needle of each electrically floated syringe 

(1801, Hamilton Co., Reno, Nevada) was connected to 50 µm i.d. capillary with a PTFE 

sleeve.  This capillary was connected to a stainless steel union to allow the ESI potential 

to be applied from an in-house built power supply controlled by LabVIEW (National 

Instruments, Austin, TX).  From this union another 50 µm capillary was connected to the 

microchip devices using the capillary-to-chip connectors described in Chapter 3.  Mass 

spectral data was collected with a QTof instrument (QTof Micro II, Waters Corp, 
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Milford, MA) using the maximum acquisition rate (~3 Hz).  A photograph of both 

emitters positioned in front of the mass spectrometer inlet is shown in Figure 6-2. 

6.2.2  Electrokinetically-Driven Strategy 

 The channel layout for the EK-driven microchip dual ESI device is shown in 

Figure 6-3.  Microchannels were fabricated into 150-µm-thick glass substrates (Corning 

0211 borosilicate, Erie Scientific Co., Portsmouth, NH) by standard photolithography, 

wet-chemical etching procedures as described in Chapters 4 and 5.  The depth and full 

width of the channels were measured with a profilometer (P15, KLA-Tencor Corp., San 

Jose, CA) to be 8 µm and 60 µm, respectively.  The lengths of the channels were as 

follows:  analyte and reference 5 mm, buffer and waste 14 mm, transfer 42 mm, and U-

shaped electroosomtic (EO) pump 12 mm.  A nanojunction with dimensions 50 nm deep 

and 50 µm wide was created by focused ion beam milling (FEI Helios Nanolab 600, 

Hillsboro, OR) to connect the 75 µm gap between the U-shaped (EO) pump channel and 

the transfer channel.  The electrospray tips were machined by dicing the bonded 

microchip with a precision dicing saw (Dicing Technology, San Jose, CA) so that the 

transfer channels terminated at ~50° edges. The distance between the electrospray 

emitters was 3.6 mm.  All channels except the EO pump channel were coated with 

PolyE-323 as described in Chapter 3 to provide stable anodic EOF when using a neutral 

to acidic background electrolyte.  In addition, the exterior of the electrospray tips were 

coated with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma Chemical Co.) to 

prevent wetting as described in Chapter 4.    

 Infusion of analyte and reference materials was accomplished by applying electric 

potentials to select reservoirs to generate EOF within the device. Electric potentials were 
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applied using two independent power supplies (2866A; Bertan, Hicksville, NY) that had 

voltage rise and fall times of approximately 5 ms.  The power supplies were computer-

controlled using an analog output board (PCI-6713, National Instruments) and LabVIEW 

software (version 8.5, National Instruments).  High voltage was applied to the U-shaped 

EO pump reservoir located closer to the ESI spray tip.  Typical voltages applied to this 

reservoir during the “off” and “on” states were approximately 0 kV and +4.8 kV, 

respectively. The analyte and reference reservoirs were held at ground.  No electrical 

connection was made to the buffer and waste channels as they were not utilized in these 

infusion experiments. The operation of the electroosmotically pumped electrospray 

interface has been described in Chapter 4.   The nanojunction between the transfer 

channel and the U-shaped EO pump channel reduced the EOF in the EO pump channel 

by creating electrical double layer overlap.21-22  Given the relative channel dimensions, 

the voltage at the ESI tip during the “on” state was calculated to be +2.4 kV.  An x-y-z 

translational stage was used to position the microchip emitters approximately 5 mm from 

the plane of the mass spectrometer inlet orifice.  Both ESI emitters were aligned an equal 

distance (1.8 mm) from the axis of the mass spectrometer inlet orifice unless otherwise 

stated  and the device remained stationary during all experiments.  MS data was acquired 

using a quadrupole time-of-flight (QTof) mass spectrometer (Micromass QTof Micro, 

Waters Corp., Milford, MA) except as indicated in the text where a Tof mass 

spectrometer (LCT-Premier, Waters Corp.) was utilized for its faster data acquisition rate.  

Data was acquired by the QTof using 1 s summed scans and an interscan delay of 0.1 s 

whereas the Tof acquired data using 0.05 s summed scans and an interscan delay of 

0.01 s.  Both MS instruments were configured to acquire spectra over a m/z range of 100-
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1000.  For accurate mass measurements, the switching of the electrospray signals was 

synchronized with the data acquisition on the QTof instrument.  The instrument software 

(MassLynx version 4.1, Waters Corp.) was originally designed to control the baffle 

position in the commercial dual ESI source (NanoLockSpray, Waters Corp.) to select the 

analyte or reference electrospray signal.13-14  Here, we used this trigger voltage from the 

mass spectrometer to switch the voltages applied to the microchip device.  

6.3  Results and Discussion 

6.3.1  Pressure-Driven Setup 

 The effects of modulating the ESI voltage were first investigated for a single 

microchip emitter positioned directly on axis with the inlet of the mass spectrometer.  

Using a flow rate of 100 nL/min and an emitter distance of 5 mm from the inlet, the 

optimal ESI voltage was +5.0 kV.  If the ESI voltage was lowered to 0 kV, the ESI 

ceased and a relatively large fluid volume immediately pooled at the ESI emitter.  This 

fluid at the tip prevented the ESI from restarting when the high voltage (+5.0 kV) was 

restored.  Alternatively, the ion signal could be eliminated by reducing the voltage to 

+3.5 kV.  At this attenuated voltage, droplets that formed on the ESI emitter were ejected 

due to the electric field before the fluid wet the entire ESI emitter.  This allowed the 

electrospray to be readily restored on demand with the return to the optimal ESI voltage.  

Images of the ESI region of the microchip during the “active” (optimal ESI voltage) and 

“inactive” (attenuated ESI voltage) states are provided in Figure 6-4. 

 Next, two identical emitters were positioned in front of the inlet of the mass 

spectrometer as show in Figure 6-1 and Figure 6-2.  The left emitter was supplied with 

5 µM of leucine enkephalin while the right emitter was supplied with 5 µM of 
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angiotensin II.  The emitter positions and ESI voltages were adjusted to obtain the highest 

signal intensity when one emitter was in the “active” state and the other in the “inactive” 

state.  The most favorable emitter positions were approximately 3-4 mm apart and 5 mm 

from the plane of the inlet of the mass spectrometer.  The optimal emitter voltages for the 

“active” and “inactive” states were approximately +5.0 kV and +1.5 kV, respectively.  To 

demonstrate rapid switching between the two solutions, electrospray was alternated 

between the left emitter (leucine enkephalin) and the right emitter (angiotensin II) every 

5 s.  Figure 6-5 shows the reconstructed ion chromatograms for each peptide.     

 Although electrospray could be generated from both emitters simultaneously, 

signal was only observed from one emitter at a time despite attempts to optimize emitter 

positions and applied voltages.  The coulombic repulsion between electrospray plumes 

likely prevented simultaneous detection.23 It may be possible to achieve simultaneous 

detection by reorientation of the ESI emitters or the use of a mass spectrometer with 

multiple inlets.5,16,24  However, sequential introduction of the analyte and reference 

materials was preferred in this work for reasons discussed above. 

6.3.2  Electrokinetically-Driven Setup 

 In the electrokinetically-driven device, the voltage applied at the EO pump 

channels generated both the EOF and the ESI potential. When the voltage was turned off, 

the fluid flow stopped immediately, preventing droplet formation on the electrospray tip 

and minimizing the time required for the electrospray to be restarted.  Similarly to the 

pressure-driven dual ESI setup, electrospray could be generated from both emitters but 

ions were observed only from one emitter at a time.  
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 Previously, a single integrated ESI emitter was characterized and found to yield 

sensitivity and stability comparable to a commercial capillary emitter.25  Here we 

compared the sensitivity of a single emitter in isolation to a single emitter in the 

sequentially operated, dual ESI configuration.  For the single emitter in isolation 

configuration, the analyte emitter was aligned on axis with the mass spectrometer inlet 

orifice and the reference emitter was floated (no electrical contact was made to any 

channels connected to the reference emitter).  For the sequentially operated, dual emitter 

configuration, both emitters were positioned an equal distance from the axis of the mass 

spectrometer inlet orifice as shown in Figure 6-6, and 0 kV was applied to the EO 

pump B channel.  In both configurations, the voltage applied to the EO pump A channel 

was optimized for the highest signal from the analyte emitter.  An infusion of leucine 

enkephalin revealed a similar composition of ions for both configurations; however, a 

12% decrease in signal intensity was observed for the sequentially operated, dual emitter 

configuration. 

 To demonstrate the speed at which two solutions can be analyzed, reserpine 

(reference emitter) and leucine enkephalin (analyte emitter) were sequentially 

electrosprayed at 2 s intervals.  Photographs of the laser light scatter from the 

electrospray plumes are shown in Figure 6-6.  Reconstructed ion chromatograms for the 

[M+H]+ ions of reserpine (609 m/z) and leucine enkephalin (556 m/z), as measured by the 

Tof instrument, are shown in Figure 6-7A,B.  Each time the voltage was applied, the 

electrospray signal immediately recovered from the “off” state to its previous signal 

intensity.  In this experiment, the ion intensities of the analyte and reference signals were 

approximately equal.  A reconstructed ion chromatogram for both ions, shown in 
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Figure 6-7C, had an RSD of 7.2%.  Even with the fast data acquisition rate (~15 Hz), 

large spikes or dips in the combined signal were not observed, demonstrating a seamless 

transition from one electrospray source to another.  A portion of the time scale in 

Figure 6-7 is expanded in Figure 6-8 to reveal the switching speed between electrospray 

signals.  At the time of 14.52 s the reference electrospray was turned off and the analyte 

electrospray was turned on.  This data shows that the switch occurred in less than 70 ms 

(the time required for 1 summed scan and 2 interscan delays).  Video imaging of the light 

scattered by the electrospray plume suggests that the switching time was <33 ms as only 

one video frame shows electrospray plumes from both emitters. 

 Next, the dual ESI device was synchronized with the QTof mass spectrometer and 

used for infusion ESI-MS with internal calibration.  During these experiments a single 

reference scan was completed every 5 s.  The software (MassLynx, Waters Corp.) 

automatically stored the reference and analyte data in separate files.  Ideally there should 

be no analyte signal present in the reference data file and no reference signal in the 

analyte data file.  To quantify the amount of crosstalk, 1 min of data from the reference 

and analyte data file was summed and is shown in Figure 6-9.  No analyte signal was 

found in the reference data file and vice versa.  The raw analyte data was stored and the 

“accurate mass measure” function in the software (MassLynx, Waters Corp.) was later 

used to apply a “continuous masslock correction” using the reserpine [M+H]+ ion 

(609.2812 m/z).  A comparison of the mass error between the raw and corrected analyte 

signal is shown in Figure 6-10A.  Each data point represents 12 spectra from the analyte 

signal (leucine enkephalin, [M+H]+) that were summed, smoothed (twice by Savitzky-

Golay, 4 channels) and centroided (top 80% of peak).  The mass error root mean squared 
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values for the raw and corrected analyte signal were 61.9 ppm and 1.4 ppm, respectively.  

All corrected measurements had a mass error less than 3 ppm as shown in Figure 6-10B, 

which is within the 5 ppm specification for the commercial dual ESI source on this 

instrument.    

6.4  Conclusion 

 Simple microfluidic devices were used for sequential electrospray of two different 

solutions without the need for external pressure sources or any moving parts.  In this 

demonstration, a single ion was used for internal calibration; however, multiple ions over 

the entire m/z range of interest may also be used to improve the mass accuracy.  Future 

work should focus on integration of electrokinetically-driven separation mechanisms (e.g. 

CE, CEC, MEKC) on the microchip dual ESI device.  In addition to internal calibration, 

this dual emitter technology may prove useful in monitoring multiple microfluidic 

separations with a single mass spectrometer.   
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6.5  Figures 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

 

 
Figure 6-1.  Schematic for the pressure-driven dual ESI setup.   
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Figure 6-2.  Photograph of the two pressure-driven microchip emitters positioned 
in front of the inlet of the mass spectrometer according to the schematic 
in Figure 6-1. 
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Figure 6-3.   Schematic of the microchip dual ESI device.  A nanojunction 
connects the transfer channels and the U-shaped EO pump channels. 
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Figure 6-4.  A single microchip emitter positioned on axis with the inlet of the 
mass spectrometer showing A) the electrospray plume at the optimal emitter 
voltage, B) droplet formation at an attenuated emitter voltage.  
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Figure 6-5.  Sequential sampling of ions produced from the A) left emitter [leucine 
enkephalin], B) right emitter [angiotensin II], C) both emitters (overlaid) 
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Figure 6-6.  Microchip dual ESI device with A) analyte emitter active and B) 
reference emitter active.  The electrospray plumes are illuminated with green 
diode lasers. 
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Figure 6-7.  Sequential sampling of analyte and reference materials every 2 s.  
Reconstructed ion chromatograms are shown for A) reference signal [reserpine] B) 
analyte signal [leucine enkephalin] and C) the combined reference and analyte 
signal. 



145 
 

 
 

 
  

 

Figure 6-8.  Enlarged section of the data in Figure 3.  Reconstructed ion 
chromatograms are shown for A) reference signal [reserpine] B) analyte signal 
[leucine enkephalin] and C) the combined reference and analyte signal.  At 14.52 s 
the reference electrospray is turned off and the analyte electrospray is turned on. 
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Figure 6-9.  One minute of summed mass spectra from the A) reference [reserpine] 
and B) analyte [leucine enkephalin] data file. 
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Figure 6-10.  A) Mass measurement errors for infusion ESI-MS of leucine 
enkeplain.  Raw data (open circles), corrected data (closed circles). B) Expansion 
of the mass error axis for the corrected data showing all measurements were within 
3ppm. 
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