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ABSTRACT 
Michelle M. Langer: A Reexamination of Lord’s Wald Test for Differential Item Functioning 

using Item Response Theory and Modern Error Estimation  
(Under the direction of David Thissen, Ph.D.)  

 
 The detection of differential item functioning (DIF) is an essential step in increasing the 

validity of a test for all groups. The item response theory (IRT) model comparison approach 

has been shown to be the most flexible and powerful method for DIF detection; however, it is 

computationally-intensive, requiring many model-refittings. The Wald test, originally 

employed by Lord for DIF detection, is asymptotically equivalent to this approach and 

requires only one model fitting.  In this research, the Wald test for DIF detection was 

improved from Lord’s original conception through modern error estimation, concurrent 

calibration, maximum marginal likelihood item parameter estimation, conditional DIF tests, 

and extensions to commonly used IRT models as well as multiple groups.  

 This research examined the Type I error and power of the Wald test by varying the 

magnitude of DIF, the mean difference between groups, test length, and the sample size per 

group. Data were simulated under the graded response model and the three-parameter logistic 

(3PL) model. An additional simulation study compared the IRT model comparison approach 

to the Wald test under the two-parameter logistic model. The results indicated that the Wald 

test performs well detecting DIF. The performance improves with larger sample sizes, greater 

magnitudes of DIF, greater test lengths, and the random assignment estimation procedure. 

The use of larger sample sizes and greater test lengths is most critical for situations 

employing the 3PL model. The Wald test also performs well compared to the IRT model 
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comparison approach, although the results of the two methods should converge 

asymptotically.  

 This research also demonstrated the flexibility of the Wald test through its straightforward 

extension to multiple groups. An example was used to demonstrate the effectiveness of the 

Wald test and compare it to the IRT model comparison approach. The Wald test was able to 

accurately identify the source of DIF. However, the IRT model comparison approach 

appeared more powerful but confounded the results of the DIF tests, due to combining  

groups. Several considerations for designing a DIF detection framework given multiple 

groups were outlined, particularly the superiority of the Wald test when given unequal 

sample sizes.  
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Introduction 
 

 Differential item functioning (DIF) refers to a psychometric difference in how an item 

functions across groups. An item that performs differently must necessarily be less valid, in 

some senses, for at least one of the groups. As a result, an effort to detect and eliminate DIF 

from tests seeks to increase the validity of the test for all groups.  

 A variety of methods for detecting DIF have been developed. These methods include the 

Mantel-Haenszel procedure (MH; Holland & Thayer, 1988; Mantel, 1963; Mantel & 

Haenszel, 1959), logistic regression (Swaminathan & Rogers, 1990), proportion difference 

measures (Dorans & Kulick, 1983, 1986; Dorans & Schmitt, 1991), SIBTEST (Shealy & 

Stout, 1993),  the test of b difference (Lord, 1977, 1980), an item drift method (Bock, 

Muraki, & Pfeiffengerger, 1988; Muraki & Englehard, 1989), Lord’s Wald test1 (Lord, 

1980), empirical sampling distributions for DIF indices (Shepard, Camilli, & Williams, 

1984), model comparison measures (Judd & McClelland, 1989; Thissen, Steinberg, & 

Wainer, 1993), DFIT (Raju, van der Linden, & Fleer, 1995), and simple area indices 

(Hambleton & Rogers, 1989; Rudner, 1977; Rudner, Getson, & Knight, 1980). Of these 

methods, the IRT model comparison approach to DIF detection, using the likelihood ratio 

test, has been shown to be the most flexible and powerful (Thissen, Steinberg, & Wainer, 

1993; Teresi, Kleinman, & Ocepek-Welikson, 2000; Wainer, 1995). However, this approach 

can be computationally-intensive, involving many model re-fittings. 

                                                
1 Lord referred to his test as the chi-square test; however, the general procedure is more commonly called the 
Wald test. 
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 Lord’s Wald test (1977, 1980) for DIF detection is asymptotically equivalent to the 

likelihood ratio test (Thissen, Steinberg, & Wainer, 1993) and less computationally-intensive. 

However, the Wald test has not been frequently employed as a DIF detection method. Lord’s 

original implementation of the Wald test involved a different conception of the IRT model 

with less than desirable standard error estimation. However, given approximate normality 

and good estimates of the error covariance matrix, the Wald test could be improved upon as a 

more practical alternative to the likelihood ratio test. Good estimates of the item parameter 

error covariance matrix are an additional requirement for the Wald test in comparison to the 

likelihood ratio test, but modern error estimation could be implemented to ease computation.  

 The goal of this project is to reexamine Lord’s Wald test (1977, 1980) for DIF detection 

using modern error estimation. First, DIF detection methods and procedures will be 

discussed. Second, a simulation study to detect DIF using the Wald test with modern error 

estimation in two groups will be outlined. Third, simulation results will be presented and 

discussed. Fourth, the extension of the Wald test for DIF detection with modern error 

estimation to more than two groups will be examined with an example.  

 Given good error estimates and an effective implementation in the two-group case, the 

Wald test for DIF detection can be straightforwardly extended to multiple groups. Current 

DIF detection procedures have been developed exclusively for the two-group case. All of 

these approaches involve comparisons between a reference group and a focal group. 

However, it is often desirable to assess DIF for several focal groups. Numerous focal groups 

have been identified as important candidates for DIF analysis for measures of educational 

achievement: Asian Americans, African Americans, Hispanic groups, Native Americans, 

women, and examinees with disabilities (Zieky, 1993). In discriminating among groups, Linn 
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(1993) further suggested that Hispanic groups be subdivided to distinguish among Puerto 

Ricans, Mexican Americans, and Cubans. The practical need for considering multiple focal 

groups is demonstrated by numerous studies examining DIF among multiple ethnic groups 

(Schmitt, 1988; Schmitt & Dorans, 1990; Zwick & Ercikan, 1989) and multiple languages of 

administration (Angoff & Sharon, 1974; Ellis & Kimmel, 1992). Given the prevalence of 

multiple group DIF assessments, DIF studies would benefit from the availability of statistical 

procedures that test for DIF simultaneously across multiple groups.  

Differential Item Functioning Detection Methods 

 Methods of DIF detection can generally be categorized within two broad approaches: 

observed-score approaches and latent variable/item response theory (IRT) approaches. 

Observed-score approaches include the Mantel-Haenszel procedure (MH; Holland & Thayer, 

1988; Mantel, 1963; Mantel & Haenszel, 1959), logistic regression (Swaminathan & Rogers, 

1990), proportion difference measures (Dorans & Kulick, 1983, 1986; Dorans & Schmitt, 

1991), and SIBTEST (Shealy & Stout, 1993). Although applications of these observed-score 

approaches require few assumptions and are relatively easy to implement, their results may 

be sample-specific and, thus, inadequate for ensuring measurement invariance (Budgell, 

Raju, Quartetti, 1995; Hulin, Drasgow, Parsons, 1983). Given that the IRT assumptions hold, 

results from an IRT approach theoretically generalize beyond the sample being studied to the 

intended population.  

 Latent variable/item response theory (IRT) approaches propose a latent trait, usually 

denoted θ, that underlies the item responses. These approaches offer an advantage over the 

observed score approaches due to their ability to unconfound group mean differences on the 

latent trait and DIF. In practical applications using a latent variable/IRT approach, one of the 
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most commonly used models is the three-parameter logistic (3PL) model, frequently used for 

responses to multiple-choice items in educational research, which assumes that the 

probability that an examinee with trait value θ will respond correctly to item i is 

,
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i
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where ai is the item discrimination, or slope, ci is the item intercept, and gi is the lower 

asymptote. This slope-intercept form of the 3PL model is used for computational ease; 

however, the literature often refers to a location parameter, the b parameter, which is –c/a. 

The item parameters and trait values are estimated from examinees' responses to a set of 

items.  Predictions based on the estimated parameters and traits are then compared to 

observed data to examine whether the model actually fits the data (Yen, 1986).  

 An alternative model often used in psychological research is Samejima’s (1969, 1997) 

graded response model (GRM), a formulation that permits estimation of multiple cij 

parameters2 per item (j from 1 to m-1) associated with m response categories (e.g., items with 

the response scale “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”, and “Strongly 

Agree”). The formula, also in slope-intercept form, for a GRM trace line is  
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which states that the probability of responding in category j is the difference between the 

probability of responding in category j or higher and the probability of responding in 

category j+1 or higher. 

 DIF detection methods based on IRT include the test of b difference (Lord, 1977, 1980), an 

item drift method (Bock, Muraki, & Pfeiffengerger, 1988; Muraki & Englehard, 1989), 

                                                
2 Analogous to the 3PL model, the literature often refers to location parameters, bijs, which are - cij/a. 
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Lord’s Wald test (1977, 1980), empirical sampling distributions for DIF indices (Shepard, 

Camilli, & Williams, 1984), model comparison measures (Judd & McClelland, 1989; 

Thissen, Steinberg, & Wainer, 1993), DFIT (Raju, van der Linden, & Fleer, 1995), and 

simple area indices (Hambleton & Rogers, 1989; Rudner, 1977; Rudner, Getson, & Knight, 

1980). Of these methods, two are good candidates for situations involving more than two 

groups: model comparison measures and Lord’s Wald test.  

IRT Model Comparison Approach 

 The IRT model comparison approach to DIF detection has been shown to be more 

powerful than other methods (Thissen, Steinberg, & Wainer, 1993; Teresi, Kleinman, & 

Ocepek-Welikson, 2000; Wainer, 1995) and is implemented in available software 

(IRTLRDIF; Thissen, 2001). Under reasonable conditions, model-based likelihood ratio tests 

are closely related to the most powerful test given by the Neyman-Pearson (1928) lemma. 

This optimality of power, decreasing the chances of accepting the null hypothesis of no DIF, 

lends credibility to this type of test as one of the most powerful DIF detection tools. 

 Tests of statistical significance using the IRT model comparison approach (Thissen, 

Steinberg, & Wainer, 1993) always involve the comparison of two models, a compact model 

and an augmented model (Judd & McClelland, 1989). The compact model is hierarchically 

nested within the augmented model, which includes all of the parameters of the compact 

model as well as additional parameters. In DIF detection, the compact model involves the 

likelihood of the parameter estimates for a given item i, constrained to be DIF-free, compared 

to the likelihood of the augmented model that allows for additional parameters representing 

differences between the item i parameters for the reference and focal groups. The goal of this 
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approach is to test whether these additional parameters in the augmented model are 

significantly different from zero. The form of these likelihood ratio tests is always  

,
][
][

log2.).(2





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=
CLikelihood

ALikelihood
fdG  

where Likelihood [·] represents likelihood of the data given maximum likelihood estimates of 

the parameters of the model, and d.f. is the difference between the number of parameters in 

the augmented model and the number of parameters in the compact model. Under very 

general assumptions, the value of .).(2 fdG  is distributed as .).(2 fdχ  under the null 

hypothesis (Rao, 1973). Significant .).(2 fdG  values result in a rejection of the null 

hypothesis of no DIF, and thus the compact model. The test of the significance of DIF is on k 

degrees of freedom, where k is the number of item parameters differing between the 

reference and focal groups.  

 The main disadvantage of the IRT model comparison approach is that the number of 

models fitted increases with each additional set of hypotheses under consideration. The 

procedure involves fitting the model twice per hypothesis, once for the compact model and 

once for the augmented model. With more than two groups, the number of models required 

to be fitted results in an extravagant number of fittings and computational time. Lord’s Wald 

test (1977, 1980) is asymptotically equivalent and can be performed with just one fitting, 

making it more easily extended to multiple groups.  

Lord’s Wald Test 

 Lord’s Wald test (1977, 1980) for DIF detection compares vectors of IRT item parameters 

between groups. If, for a given item, the vectors of its parameters differ significantly between 

groups, then the trace lines differ across groups, and thus the item functions differentially for 
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the groups studied. For two groups, Lord first proposed a test to evaluate the significance of 

the DIF for the location parameters only, using: 

,
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in which 
igb̂  is the maximum likelihood estimate of the parameter bi in group g and Var (

igb̂ ) 

is the corresponding estimate of the sampling variance of 
igb̂ .  

 Lord observed that probability statements could be made by referring di to tables of the 

standard normal distribution. Lord also extended this test for differences between the 

discrimination parameters, developing the more general test of the joint difference between 

[ai, bi] for the two groups,  

,' 12
iiiiχ νΣν −=  

where 'iν  is [
iFâ - 

iRâ , 
iFb̂ - 

iRb̂ ], iΣ is the estimate of the sampling variance-covariance 

matrix of the differences between the item parameter estimates, and 2
iχ  is distributed on 2 

d.f. for large samples. Alternatively, an equivalent procedure tests the difference between 

intercept parameters, ci’s, instead of location parameters, bi’s
3. For this test, 'iν  is [

iFâ - 
iRâ , 

iFĉ - 
iRĉ ]. 

 For the 3PL model, Lord did not propose a test for the differences between the gi 

parameters; he specified that they should be constrained to be equal for all groups. However, 

the test of slopes and intercepts can be extended to include a test for the differences between 

the gi parameters. This test of the joint difference between [ai, ci, gi] for the two groups 

                                                
3 Reparameterization to slope-intercept form improves the stability of parameter estimation by working in a less 
correlated space. 
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follows the same general equation as above, allowing 'iν  to be [
iFâ - 

iRâ ,
iFĉ - 

iRĉ ,
iFĝ - 

iRĝ ]4. iΣ is the estimate of the sampling variance-covariance matrix of the differences 

between the three item parameter estimates, and 2
iχ  is distributed on 3 d.f. for large samples. 

 The Wald test can also be extended to include conditional DIF tests. For the graded model, 

the unconditional test of DIF in the a parameters is  

2
ˆ

2

2
)ˆˆ(

i

ii

i

a

RF

a

aa
Z

σ
−

= , 

where 2
ˆiaσ  is the variance of the difference between the a parameter estimates, and 2

iaZ  is 

chi-square distributed on 1 d.f. for large samples. Conditioning on the equal a parameter 

estimates, the conditional test of DIF in the c parameters may be computed as the difference 

between the overall chi-square test and the unconditional test of DIF in the a parameters, 

222
| iii aiac ZZ −= χ , 

where 2
| ii acZ  is chi-square distributed on (j – 1) d.f. for j categories in large samples. Because 

the commonly-used IRT location parameter b equals -c/a, when conditioned on equal a 

parameters, this is also a test of b-DIF.  

 For the 3PL model, the unconditional test of the DIF in the g parameters is  
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where 2
ˆ igσ  is the variance of the difference between the g parameter estimates, and 2

igZ  is 

chi-square distributed on 1 d.f. for large samples. Conditioning on the g parameter estimates, 

the conditional test of DIF in the a parameters is  
                                                
4 Computationally, the logit of gi is used. This transformation improves the normality of the likelihood and 
removes problematic boundary conditions. 



9 

2
ˆ|ˆ

2
2

|

ii

ii

ga

i
ga

u
Z

σ
= , 

where 

]ˆˆ[]ˆˆ[
2
ˆ

ˆˆ

ii

i

i

ii RF
g

ga
RFi ggaau −−−=

σ
σ

, 

2
ˆ

2
ˆˆ2

ˆ
2

ˆ|ˆ

i

i

iii

g

ga

aga σ
σ

σσ −= , 

iga ˆˆσ  is the covariance matrix of the difference between the a parameter estimates and the 

difference between the g parameter estimates, 2
ˆiaσ  is the variance of the difference between 

the a parameter estimates, 2
ˆ igσ  is the variance of the difference between the g parameter 

estimates, and 2
| ii gaZ  is chi-square distributed on 1 d.f. for large samples (Bock, 1985). This 

conditional test of the a parameters is similar to univariate regression, in which the regression 

weight is the covariance of the difference between the a parameter estimates and the 

difference between the g parameter estimates divided by the variance of the difference 

between the a parameter estimates. 

 Conditioning on both the a and g parameter estimates, the conditional test of DIF in the c 

parameters is simply the difference between the overall chi-square test and the sum of the 

unconditional test of DIF in the g parameters and the conditional test of DIF in the a 

parameters,  

][ 2
|

222
| iiiiii gagigac ZZZ +−= χ , 

where 2
| iii gacZ  is chi-square distributed on 1 d.f. for large samples. (This is also a test for 

location differences, commonly called b-DIF.) 
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Linking Procedures 

 A necessary preliminary step of DIF analyses is to place groups of examinees on a 

common scale of measurement. To link groups together, Lord used the Stocking-Lord 

approach (1983), an ad hoc method, to put estimates on the same scale. However, DIF 

detection using the Wald test could be improved by using an IRT-based linking procedure, 

such as concurrent calibration (Kolen & Brennan, 2004).  

 The main benefit of using an IRT-based linking procedure is that it is then possible to 

develop an estimate of an examinee’s ability that is independent of the set of items to which 

the examinee responds. The observed-score methods cannot accomplish this compensation 

for intended and unintended differences in item “difficulty” and sample ability (Skaggs & 

Lissitz, 1986). Furthermore, an IRT-based linking approach provides conversions that are 

independent of the group or groups used to obtain them. Another benefit of using an IRT-

based linking approach is the accuracy of the linking along the entire score scale.  

Anchoring Situations 

 Several different situations, in various contexts, exist for which DIF detection methods can 

be implemented. DIF methods have been extended beyond their original use of simply 

separating group and item differences, separating so-called “impact” from DIF (Angoff, 

1993). The first situation involves the case of two randomized groups with the same 

population mean. This circumstance does not involve the issue of determining an anchor with 

which to link the two groups; the statistical theory is straightforward. This case is 

exemplified by Steinberg’s (1994, 2001) research on context and serial-order effects in 

personality measurement, using a randomized-assignment experiment. The second, more 

traditional, situation allows for nonrandom groups and, thus, differing population means. 
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This circumstance necessarily involves selecting an anchor set of items to link the two 

groups.  Once anchor items are chosen, the statistical theory follows to use the anchor in 

effectively linking the groups together and testing group differences on the candidate items; 

this method is employed in the current version of IRTLRDIF (Thissen, 2001). This case is 

most often present in the educational context, when DIF detection methods are used to test 

differences between nonrandom groups such as gender or ethnicity.  

 Given nonrandom groups as in the second situation, the third situation arises in the absence 

of a pre-specified linking anchor test. The IRTLRDIF (2001) method uses an all-other 

procedure in which each item, in turn, is treated as a candidate item while the other items are 

treated as anchor items linking the groups together. Logistic regression (Swaminathan & 

Rogers, 1990) and Mantel-Haenszel (Holland & Thayer, 1988; Mantel, 1963; Mantel & 

Haenszel, 1959) methods use similar tactics, including candidate items in the score that is 

used as the conditioning variable.  A proposed Wald test-based alternative will employ a 

two-stage estimation procedure. The first stage constrains the item parameters to be the same 

in both groups to estimate the population mean and standard deviation of the focal group 

relative to the reference group, assuming no DIF in any items. The second stage then treats 

that estimated population mean and standard deviation as fixed, and allows the item 

parameters to differ for the detection of DIF.  

Estimation Methods 

 In Lord’s (1977, 1980) original implementation of the Wald test for DIF detection, 

standard error estimates obtained using joint maximum likelihood (JML; as implemented in 

LOGIST [Wood, Wingersky, & Lord, 1976]) were computed with θ considered a fixed 

variable (in the statistical sense). These standard error estimates are not accurate for the 
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modern conception of θ as a latent random variable. In a simulation study, McLaughlin and 

Drasgow (1987) observed that this inaccuracy of the standard errors resulted in overall 

proportions of significant DIF (in the null case) as high as 11 times the nominal α level. 

However, item parameter estimation procedures have greatly improved since Lord’s time, 

and with those improvements have come better estimates of the item parameter error 

covariance matrix. 

 For tests with data from an adequate number of examinees, maximum marginal likelihood 

(MML) item parameter estimation performs quite well. As an example of the superiority of 

MML estimation to JML estimation, Drasgow (1989) examined item parameter bias for the 

two-parameter logistic (2PL) model with tests ranging in length from 5 to 25 items and 

samples ranging in size from 200 to 1000. Average biases in both a and b parameter 

estimates were consistently much larger using JML estimation than for MML estimation. 

Thus, another way the Wald test for DIF detection can be improved is to use MML 

estimation rather than JML estimation. 

 Arguably the most fundamental problem with Lord’s Wald test (1977, 1980) for DIF 

detection was the less than desirable standard error estimates. This problem hopefully can be 

circumvented using the Supplemented EM (SEM) algorithm (Meng & Rubin, 1991) to obtain 

the item parameter error covariance matrix. This algorithm provides a convenient 

computational procedure for estimating the information matrix for item parameters (Cai, in 

press) and subsequently can provide more accurate standard errors for the estimated item 

parameters than the methods implemented in packages such as Multilog (Thissen, Chen, & 

Bock, 2003).  
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Method 

Empirical Parameter Distributions 

 To answer the questions posed in the introduction, a simulation study was conducted. Data 

were simulated using the 3PL model and the GRM. For the 3PL model, empirical inspiration 

for the parameter distributions was based on the 1998 National Assessment of Educational 

Progress (NAEP) Reading assessment, representing an educational context. Tables of item 

parameters are reported in The NAEP 1998 Technical Report (Allen, Donoghue, & Schoeps, 

2001). 

 The 1998 NAEP Reading assessment 3PL item parameters were compiled, and empirical 

parameter distributions were examined. The distribution of a parameters appears to be 

symmetric, suggesting that it could be approximated by a normal distribution. The mean is 

1.03, and the standard deviation is 0.37. Thus, similarly distributed a parameters could be 

drawn from a normal (1, 0.32) distribution. The distribution of the b parameters also appears 

roughly symmetric, suggesting that it could be approximated by a normal distribution. The 

mean is -0.13, and the standard deviation is 0.85.  Thus, similarly distributed b parameters 

could be drawn from a normal (0.0, 0.82) distribution, representing items centered at an 

average difficulty level. The g parameters are also distributed symmetrically and appear 

amenable to a normal approximation. The mean is 0.26, and the standard deviation is 0.06.  

Thus, similarly distributed g parameters could be drawn from a normal (0.25, 0.052) 

distribution, corresponding to items with four response alternatives and subsequently a ¼ 

chance of getting an item correct due to guessing. 

 For the GRM, empirical inspiration for the parameter distributions was based on 

psychological scales. A list of item parameters from 15 tests has been compiled (see Hill, 
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2004). Empirical histograms indicate that the distribution of the a parameters appears to be 

reasonably symmetric and suitable to be approximated by a normal (1.7, .32) distribution. 

Similarly, the b parameters are reasonably symmetric and suitable to be approximated by a 

normal distribution.  

 To generate item parameters for the GRM, dj values, the difference between the bj 

parameters, are employed, in addition to b1, the leftmost threshold. The dj value is the 

distance between bj and bj+1. For each item, there are one fewer dj values than there are bj 

parameters. The empirical histograms of the dj parameters for the 15 tests indicate that the dj 

parameters are roughly symmetric, suggesting that they could be approximated by a normal 

(1.0, .22) distribution for scales with 5, 7, or 9 response categories. Because the b parameters 

are suitable to be approximated by a normal distribution, drawing b1 from a normal (-1.5, .52) 

should result in a bj distribution centered around 0 for 5 response categories5. If the djs are at 

their expected values, then the subsequent bj parameters would be -.5, .5, and 1.5.  

Design 

 To reexamine Lord’s Wald test (1977, 1980), a simulation study was conducted. All data 

were simulated for two groups using the 3PL model or the GRM. Item parameter estimation 

used MML, with the SEM algorithm to compute the parameter error covariance matrix and 

concurrent estimation of the population parameters for the focal group. DIF was detected 

using the extensions of the Wald test. Data were simulated under the random assignment and 

two-stage estimation anchoring situations. The number of replications was 100. 

 The number of items was n = 5, 20, and 40, with N = 250 and 1000 simulees per group. 

The number of response categories for items following the GRM was 56. Mean differences 

                                                
5 Only 5 response categories are being considered in this simulation. 
6 Additional numbers of response categories may be considered in future investigations. 
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between groups were 0 and .6 standard deviations (with both populations having the same 

standard deviation)7. For the mean difference of .6 standard deviations, the focal group’s 

population mean was -.6, and the reference group’s population mean was 0. 

 In manipulating the amount of DIF simulated, several factors were varied. First, the 

magnitude of DIF was varied in both a and b item parameters. Items simulated with DIF had 

DIF present in both a and b parameters. For the GRM, the focal group’s a parameters for the 

DIF items were simulated to be the magnitude of the a parameters of those items in the 

reference group multiplied by a factor of either 1.25 or 0.875. For the 3PL model, the focal 

group’s a parameters for the DIF items were simulated to be either twice or one half the 

magnitude of the a parameters of those items in the reference group. Additionally, for the 

GRM, the focal group’s b parameters for the DIF items were simulated to be either .1 or .2 

greater than those items in the reference group. For the 3PL, the focal group’s b parameters 

for the DIF items were simulated to be either .4 or .8 greater than those items in the reference 

group8. The proportion of items with simulated DIF was 0 and .2. As a result of all varied 

factors, the total number of cells in the proposed simulation was 180; refer to Table 1, a 

tabular description of the simulation design.   

Evaluation Criteria 

 For each cell, empirical Type I error and the power of DIF detection were calculated.  

For each set of replications, the proportion of times a DIF-free item was mistakenly 

identified as a DIF item provides an estimate of Type I error. On the other hand, the 

proportion of times a DIF item was correctly identified provides an estimate of power. These 

                                                
7 This does not apply to the random assignment condition. 
8 The factors for simulating DIF were smaller for data simulated using the GRM versus the 3PL model due to 
the greater number of parameters being estimated. These values led to moderate amounts of DIF to effectively 
reexamine Lord’s Wald test. 
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proportions were further averaged across DIF-free and DIF items, respectively, to form the 

average Type I error and the average power. 

IRTLRDIF Comparison 

 The power of the Wald test was also compared, in a small separate study, to that of the IRT 

model comparison approach, using IRTLRDIF. Little comparable research on IRTLRDIF 

currently exists in the literature, with the exception of an unpublished simulation study by 

Brian Habing, described in a presentation at the annual meeting of the National Council on 

Measurement in Education in 2001. Habing used the IRTLRDIF approach (and several other 

methods) to evaluate DIF detection for conditions with a-DIF or b-DIF, and to estimate Type 

I error. An additional 36 simulation cells using the Wald test were run to mimic the 

simulation conditions used by Habing. This simulation study also allows us to examine the 

performance of the Wald test in detecting a-DIF and b-DIF separately when only one occurs.  

 The simulation conditions used by Habing and replicated in this simulation study involved 

20-item tests, for which only one item was the candidate item. This was the only item 

simulated to have DIF or not, and evaluated for DIF. As a result, the remaining 19 items 

functioned as a DIF-free anchor set. Items were simulated under the 2PL model, which is the 

3PL model with the g parameter set to zero or the GRM with only two categories. The a 

parameters for the anchor items were drawn from a lognormal distribution9, such that  

),exp(za =  

and z is drawn from a normal (0, 0.352) distribution. The b parameters for the anchor items 

were drawn from a normal (0, 1) distribution. The number of replications was 400. 

                                                
9 This distribution is based on parameters published by Lord and Novick (1968).  
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 For the 12 cells used to estimate Type I error, the candidate item’s a parameters were fixed 

at 1 in both groups. The candidate item’s b parameters were fixed at 0 or 1 in both groups. 

The sample size for each group was 250 or 1000 simulees. The mean difference between 

groups was 0, .5, and 1 standard deviation (with both populations having the same standard 

deviation). The means of both groups were centered around 0 so that the pair of means for 

each cell was effectively (0, 0), (-0.25, 0.25) or (-0.5, 0.5).  

 For the 12 cells with simulated a-DIF in the candidate item, the reference group’s a 

parameter for the candidate item was fixed at 1.20072 or 1.35251, and the focal group’s a 

parameter for the candidate item was fixed at 0.83283 or 0.73937, respectively. These fixed a 

parameters reflect differences in parameter magnitude of approximately .4 and .6, 

respectively, centered around an a parameter value of 1.  The candidate item’s b parameter 

was fixed at either 0 or 1 in both groups. The sample size was 250 simulees per group. 

Similar to the cells without simulated DIF, the mean difference between groups was 0, .5, 

and 1 standard deviation (with both populations having the same standard deviation), with 

the two group means centered around 0. 

 For the 12 cells with simulated b-DIF in the candidate item, the reference group’s b 

parameter for the candidate item was fixed at 0.15, 0.25, 1.15 or 1.25, and the focal group’s b 

parameter for the candidate item was fixed at -0.15, -0.25, 0.85, or 0.75, respectively. These 

fixed b parameters reflect differences in parameter magnitude of approximately .3 or .5, 

centered around a b parameter value of 0 or 1. The candidate item’s a parameter was fixed at 

1 in both groups. The sample size was 250 simulees per group. Analogous to all other cells 

for this comparison simulation study, the mean difference between groups was 0, .5, and 1 
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standard deviation (with both populations having the same standard deviation), with the two 

group means centered around 0. 

Simulation Results 
 

 For each cell, empirical Type I error and the power of DIF detection were calculated. For 

the cells without simulated DIF, the proportion of times an item was mistakenly identified as 

a DIF item provides an estimate of Type I error, alpha. For the cells with simulated DIF, the 

proportion of times a DIF item was correctly identified provides an estimate of power. On the 

other hand, the proportion of times a DIF-free item, in the presence of DIF items, was 

mistakenly identified as a DIF item provides an estimate of the false alarm rate. 

Graded Response Model 

 For the cells simulating data using the GRM, the estimated alpha rates are presented in 

Table 210. Under random assignment, across all sample size and test length conditions, the 

estimated alpha rate falls within a 95% confidence interval of .05 as expected. The random 

assignment cells simulating larger sample sizes per group (1000 versus 250) exhibit an alpha 

rate of exactly .0511. Under the two-stage estimation procedure, almost all of the estimated 

alpha rates fall below the 95% confidence interval around .05. This underestimate of alpha is 

likely a result of a portion of the random DIF being absorbed into the estimated mean 

difference between the groups in the first stage of the estimation procedure. Alpha rates 

appear not to differ based on whether the mean difference between groups was simulated to 

be 0 or -.6.  

 Table 3 provides the chi-square means and variances for the no-DIF cells using the GRM. 

Given five response categories, the GRM estimates five parameters: one a parameter and 

                                                
10 Overall DIF results are presented rather than separate a-DIF and b-DIF results. None of the individual IRT 
parameter alpha rates were large, and the overall alpha rate provides a complete summary. 
11 To two decimal places. 
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four b parameters. As a result, we would expect the chi-square means to be approximately 5. 

Similarly, a chi-square distribution should possess a variance twice its mean, so we would 

expect the chi-square variances to be approximately 10. The pattern of chi-square means and 

variances in Table 3 naturally follows the same pattern as the alpha rates in Table 2. Under 

random assignment, the estimated chi-square means and variances are relatively close to their 

expected values, with the larger sample size per group conditions providing a better 

approximation. Under the two-stage estimation procedure, the estimated chi-square means 

and variances fall shy of their expected values, reflected in the lower alpha rates of Table 2 

and again explained by the absorption of some random DIF into the estimated mean 

difference between the groups. 

 For the conditions simulating DIF for 20% of the items, the estimated false alarm rates are 

presented in Table 412. Under random assignment, with the exception of one cell out of the 

24, the estimated false alarm rate falls within a 95% confidence interval of .05 as expected. 

Nearly all of the random assignment cells simulating larger sample sizes per group (1000 

versus 250) exhibit false alarm rates of .0513. Under the two-stage estimation procedure, 

almost all of the estimated false alarm rates fall short of the 95% confidence interval around 

.05. Similar to the underestimate of the alpha rate, these false alarm rates can likely be 

attributed to some of the random DIF being absorbed into the estimated mean difference 

between the groups in the first stage of the estimation procedure. False alarm rates appear not 

to differ based on whether the mean difference between groups was simulated to be 0 or -.6. 

There is some improvement for the cells simulating larger sample sizes per group (1000 

                                                
12 Overall DIF results are presented rather than separate a-DIF and b-DIF results. None of the individual IRT 
parameter false alarm rates were large, and the overall false alarm rate provides a complete summary. 
13 To two decimal places. 
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versus 250). These results follow the same pattern of the alpha rates, suggesting that the 

presence of DIF simulated in 20% of the items is not affecting the alpha/false alarm rate. 

 Table 5 provides the chi-square means and variances for the statistics used to estimate the 

false alarm rates using the GRM. As with the alpha rate estimates, we would expect the chi-

square means to be approximately 5 and the chi-square variances to be approximately 10. 

The pattern of chi-square means and variances in Table 5 follows the same pattern as the 

false alarm rates in Table 4. Under random assignment, the estimated chi-square means and 

variances are relatively close to their expected values, with the larger sample size per group 

providing a better approximation. Under the two-stage estimation procedure, the larger 

sample size per group (1000 versus 250) also provides a better approximation. However, for 

the two-stage estimation cells, the estimated chi-square means and variances fall shy of their 

expected values, reflected in the lower false alarm rates of Table 4 and likewise explained by 

the absorption of some random DIF into the estimated mean difference between the groups. 

 The proportions of overall DIF, a-DIF, and b-DIF14 detected at the .05 level for the cells 

simulating data using the GRM under random assignment are displayed in Figure 1 as an 

estimate of power. In general, power is most affected by the sample size per group. With 

1000 simulees per group, the DIF items are detected at least 50% of the time. With 250 

simulees per group, the DIF items are detected less than 50% of the time. Inflating the a 

parameters by a factor of 1.25 induces greater DIF detection as compared to reducing the a 

parameters by a multiple of .875. Shifting the b parameters by a factor of .2 also results in 

greater DIF detection as compared to shifting the b parameters by .1. For the sample size of 

                                                
14 b-DIF is actually a test of the significance of the difference between intercept (c) parameters conditional on 
equal slope (a) parameters. Because the DIF was generated with a shift in the b parameter in the slope-threshold 
form of the model, and because it is interpreted as b-DIF in practice, this test is referred to as b-DIF in the 
figures. 
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only 250 simulees per group, increasing the test length from 5 items to either 20 or 40 items 

did not greatly improve DIF detection. On the other hand, for the sample size of 1000 

simulees per group, increasing the test length from 5 items to 20 items tended to increase DIF 

detection, although a test length of 40 items did not add much power over a test length of 20 

items. Across simulation conditions for the GRM under random assignment, power was 

greatest, almost 100%, for the cells simulating sample sizes of 1000 per group, a-DIF of 1.25 

and b-DIF of .2. On the other hand, power was minimally above a .05 chance level for the 

cells simulating sample sizes of 250 per group, a-DIF of .875 and b-DIF of .1. 

 The proportions of overall DIF, a-DIF, and b-DIF detected at the .05 level for the cells 

simulating data using the GRM with two-stage estimation and no simulated mean difference 

between the groups are displayed in Figure 2 as an estimate of power. The pattern of results 

is very similar to that of random assignment. However, power is generally lower for these 

two-stage estimation cells as compared to random assignment, particularly when the sample 

size is only 250 per group. This can likely be attributed to a portion of the simulated DIF 

being absorbed into the estimated mean difference between the groups in the first stage of the 

estimation procedure. This is consonant with the observation that the differences in the 

proportions of b-DIF detection between the two-stage estimation and random assignment 

cells tend to be greater than the differences in the proportions of a-DIF detection with 250 

per group.  

 As an estimate of power, Figure 3 presents the proportions of overall DIF, a-DIF, and b-

DIF detected at the .05 level for the cells simulating data using the GRM with two-stage 

estimation and a -.6 simulated mean difference between the groups. The pattern of power for 

detecting DIF is nearly identical to that for two-stage estimation with no simulated mean 
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difference between the groups. The only noticeable difference is a slight general reduction in 

power for cells simulating a -.6 mean difference between the groups as compared to no mean 

difference. This can be explained by the additional difficulty in estimating a -.6 mean 

difference between the groups. 

3PL Model 

 For the simulation cells using the 3PL model, some items exhibited infinite slope estimates 

due to the error covariance matrix becoming singular. These items were not included in the 

computations for the estimated alpha rates, false alarm rates, and power. The percentages of 

items per cell displaying such extreme slopes are included in Appendix A. These instances 

occurred for cells with few items and small sample sizes. The 3PL model is difficult to 

estimate with a small sample size because the effective sample size for the g parameter 

includes only the subset of the sample who did not know the answer. The 3PL model is not 

used in practice when the sample size is only 250 or with only 5 items.  Although one would 

not necessarily compute power under these conditions, this simulation further demonstrates 

that the model should not be used in such cases. A possible option for such situations may be 

the use of informative priors to prevent extreme slopes. 

 For the cells simulating data using the 3PL model, the estimated alpha rates are presented 

in Table 615. Across all simulation conditions for the 3PL model, the estimated alpha rate 

falls below a 95% confidence interval around .05. The cell simulating a sample size of 1000 

per group for a test length of 40 items under random assignment should provide results 

closest to the nominal value; however, the estimated alpha rate is only .02, significantly less 

than the expected .05. These lower overall alpha rates can be attributed to near-zero alpha 

                                                
15 Overall DIF results are presented rather than separate a-DIF, b-DIF, and g-DIF results. None of the individual 
IRT parameter alpha rates were large, and the overall alpha rate provides a complete summary. 
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rates for detecting g-DIF due to the prior on the g parameter. The prior shrinks estimates to 

the same value, reducing the chance that any two g parameters will differ. As a result, the 

3PL DIF test is very conservative because it is nominally a 3 d.f. test, however the g 

parameter does not exhibit a full range of variation and it is more like a 2 d.f. test with a 3 d.f. 

criterion. 

 Table 7 provides the chi-square means and variances for the no-DIF cells using the 3PL 

model. The 3PL model estimates three parameters: one a parameter, one b parameter, and 

one g parameter. As a result, we would expect the chi-square means to be approximately 3. 

Similarly, a chi-square distribution should possess a variance twice its mean, so we would 

expect the chi-square variances to be approximately 6. The pattern of chi-square means and 

variances in Table 7 follows the same pattern as the alpha rates in Table 6. Across all 

simulation conditions, the estimated chi-square means and variances fall shy of their 

expected values, reflected in the lower overall alpha rates in Table 6. Again, these 

underestimates are due to the prior on the g parameter producing near-zero alpha rates for 

detecting g-DIF. There is some improvement for the cells simulating larger sample sizes per 

group (1000 versus 250), as well as the cells with greater test length (40 items versus 5 

items); however, such differences are small relative to the underestimation of alpha across all 

cells. 

 In hopes of better estimating alpha, a small study was conducted using the 3PL model 

without a prior on the g parameter. Without a prior on the g parameter, the sample sizes need 

to be large for effective estimation. Simulation runs were conducted for both the random 

assignment and the two-stage estimation procedures, with only the zero mean difference 

between groups simulated for the two-stage estimation procedure. For each estimation 
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procedure, three simulation cells were run: a sample size of 4000 examinees per group paired 

with 40 items, a sample size of 8000 examinees per group paired with 40 items, and a sample 

size of 8000 per group paired with 80 items. The results of this small study are displayed in 

Table 8. In general, removing the prior on the g parameter greatly improved the estimates of 

alpha. Alpha rates appear to be approaching .05 with greater sample sizes per group. Also, 

the chi-square means and variances are nearing their expected values of 3 and 6. Again, the 

random assignment procedure outperforms the two-stage estimation procedure due to a 

portion of the simulated DIF being absorbed into the estimated mean difference between the 

groups in the first stage of the two-stage estimation procedure. These results support the 

hypothesis that the prior on the g parameter was producing near-zero alpha rates for g-DIF 

detection, rendering the Wald test conservative. 

 For the conditions simulating DIF for 20% of the items, the estimated false alarm rates are 

presented in Table 916. Under random assignment, the estimated false alarm rate falls below 

the 95% confidence interval of .05 for all cells. Under the two-stage estimation procedure, 

almost all of the estimated false alarm rates fall outside of the 95% confidence interval 

around .05. Similar to the alpha rates in Table 6, the underestimated false alarm rates can 

likely be attributed to the prior on the g parameter producing near-zero alpha rates for 

detecting g-DIF. However, for the two-stage estimation procedure, the cells with sample 

sizes of 1000 per group and simulated b-DIF of .8 for the DIF items exhibit false alarm rates 

greater than the expected .05 value. It is likely that the .8 shift in the b parameters of the DIF 

items is shifting the estimated mean difference in stage 1 of the two-stage estimation 

procedure, which subsequently causes some false alarm in the DIF-free items. False alarm 

                                                
16 Overall DIF results are presented rather than separate a-DIF, b-DIF, and g-DIF results. None of the individual 
IRT parameter false alarm rates were large, and the overall false alarm rate provides a complete summary. 
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rates appear not to differ greatly based on whether the mean difference between groups was 

simulated to be 0 or -.6. Overall, these results do not follow the same pattern as the alpha 

rates, suggesting that the presence of DIF simulated in 20% of the items using the 3PL model 

results in a false alarm rate that is different from the pure alpha rate due to difficulties 

estimating the mean difference between groups. 

 Table 10 provides the chi-square means and variances for the statistics used to estimate the 

false alarm rates using the 3PL model. As with the alpha rate estimates, we would expect the 

chi-square means to be approximately 3 and the chi-square variances to be approximately 6. 

The pattern of chi-square means and variances in Table 10 follows the same pattern as the 

false alarm rates in Table 9. For the two-stage estimation procedure, the cells with sample 

sizes of 1000 per group and simulated b-DIF of .8 for the DIF items exhibit large chi-square 

values, corresponding to the inflated false alarm rates in Table 9 due to the effect of b-DIF on 

the estimated mean difference between groups. Under all other conditions, the estimated chi-

square means and variances fall shy of their expected values, reflected in the lower false 

alarm rates of Table 9 and likewise explained by the prior on the g parameter producing near-

zero alpha rates for detecting g-DIF. 

 The proportions of overall DIF, a-DIF, b-DIF, and g-DIF detected at the .05 level for the 

cells simulating data using the 3PL model under random assignment are displayed in Figure 

4 as an estimate of power. In general, power is most affected by the sample size per group. 

With 1000 simulees per group, the DIF items are for the most part detected more than 50% of 

the time. With 250 simulees per group, the DIF items are generally detected less than 50% of 

the time. This reduction in power can be partially attributed to the near zero rates of g-DIF 

detection due to the prior on the g parameter. Halving the a parameters induces slightly 
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greater DIF detection as compared to doubling the a parameters. However, shifting the b 

parameters has a greater effect on DIF detection than halving or doubling the a parameters: a 

shift of .8 greatly increases DIF detection as compared to a shift of .4. Additionally, for 

sample sizes of only 250 simulees per group, greater levels of b-DIF tend to be detected in 

comparison to overall DIF. This may be due to the near-zero rates of g-DIF detection, a 

greater effect of b-DIF as compared to a-DIF, and difficulties estimating the g asymptote 

complicating a-DIF and b-DIF separation. For sample sizes of only 250 simulees per group, 

increasing the test length from 5 items to either 20 or 40 items did not greatly improve DIF 

detection. On the other hand, for the sample size of 1000 simulees per group, increasing the 

test length from 5 items to 20 items tended to increase DIF detection, although a test length 

of 40 items did not add as much power. Across simulation conditions for the 3PL model 

under random assignment, power was greatest for the cells simulating sample sizes of 1000 

per group, a-DIF of 2 and b-DIF of .8.  

 The proportions of overall DIF, a-DIF, b-DIF, and g-DIF detected at the .05 level for the 

cells simulating data using the 3PL model with two-stage estimation and no simulated mean 

difference between the groups are displayed in Figure 5. The pattern of results is very similar 

to that of random assignment. However, power is generally lower for these two-stage 

estimation cells as compared to random assignment, particularly when the sample size is only 

250 per group. This can likely be attributed to the low alpha and false alarm rates due to the 

near-zero rates of g-DIF detection resulting from the prior on the g parameter. As with the 

GRM, a portion of the simulated DIF may also be absorbed into the estimated mean 

difference between the groups in the first stage of the estimation procedure, reducing power.  

This is consonant with the observation that the differences in the proportions of b-DIF 



27 

detection between the two-stage estimation and random assignment cells are often greater 

than the differences in the proportions of a-DIF detection.  

 As an estimate of power, Figure 6 presents the proportions of overall DIF, a-DIF, b-DIF, 

and g-DIF detected at the .05 level for the cells simulating data using the 3PL model with 

two-stage estimation and a -.6 simulated mean difference between the groups. The pattern of 

power for DIF detection is very similar to that for two-stage estimation with no simulated 

mean difference between the groups. The primary difference is a slight general reduction in 

power for cells simulating a -.6 mean difference between the groups as compared to no mean 

difference; this difference is most salient when the sample size is 250 examinees per group. 

This can be explained by the additional difficulty in estimating a -.6 mean difference between 

the groups. 

IRTLRDIF Comparison 

 For the simulation cells mimicking Habing’s IRTLRDIF study, empirical Type I error and 

the power of DIF detection were calculated. For the cells without simulated DIF, the 

proportion of times the candidate item was mistakenly identified as a DIF item provides an 

estimate of Type I error, alpha. For the cells with simulated DIF, the proportion of times the 

candidate item was correctly identified provides an estimate of power. False alarm rates are 

not reported. 

 For the cells without simulated DIF, the estimated alpha rates at the .05 level are presented 

in Table 11. Across all conditions, the estimate of the overall alpha rate obtained by Habing 

using IRTLRDIF is higher than the estimate using the Wald test. The overall alpha rate for 

the Wald test improves, approaching the expected .05 rate, with sample sizes of 1000 

simulees versus 250 simulees. There are not large differences in alpha rates between cells 
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varying the mean difference between groups or the b parameter. The average overall alpha 

rate estimated for the Wald test is .025. This may be due to a platykurtic likelihood or an 

overcorrection of the parameter error variances by the SEM procedure. To quantify the latter 

possibility: if the distribution of the standardized difference between the item parameters 

approximated a normal (0, 1.1252) distribution instead of the assumed (0, 1) distribution, we 

would expect alpha rates of .025, which corresponds to our observed estimate. So if the 

standard errors of the parameter estimates are as little as 12.5% too large, the result would be 

the observed lower-than-nominal alpha rates. 

 The difference in alpha rate between IRTLRDIF and the Wald test is reflected more greatly 

in underestimates of alpha rates for b-DIF detection than a-DIF detection. This may be due to 

the conditional nature of the b-DIF detection using the Wald test; when a-DIF is present, 

even due to sampling error, b-DIF is evaluated based on equal a parameters. 

 For the cells simulating only a-DIF in the candidate item, the proportions of overall DIF, 

a-DIF, and b-DIF detected at the .05 level are presented in Table 12 as an estimate of power. 

Across the majority of conditions, the overall power obtained by Habing using IRTLRDIF 

tends to be higher than the estimate using the Wald test. However, the estimates obtained 

using the Wald test are not always substantially lower than those for the IRTLRDIF 

approach. Some of the underestimation may be due to the differences in estimated alpha 

rates, as the Wald test appears to be conservative with lower alpha rates. There are not large 

differences in power between cells varying the mean difference. However, both IRTLRDIF 

and the Wald test produce greater rates of DIF detection given greater differences simulated 

between the a parameters.  
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 These results also suggest that the Wald test can effectively detect a-DIF in the absence of 

b-DIF. Some b-DIF is being detected above the .05 level, but this is due to the conditional 

nature of the test; the b-DIF detection test using the Wald test is conditional on the a  

parameters set equal. This “false-alarm” b-DIF is not an area of concern given that b-DIF is 

generally not interpreted in the presence of a-DIF.  

 For the cells simulating only b-DIF in the candidate item, the proportions of overall DIF, 

a-DIF, and b-DIF detected at the .05 level are presented in Table 13. Again, the overall 

power obtained by Habing using IRTLRDIF is a little higher than that estimated using the 

Wald test. However, greater power is evident for both IRTLRDIF and the Wald test for the 

cells with greater differences simulated between the b parameters. These results also suggest 

that the Wald test can effectively detect b-DIF in the absence of a-DIF. Unlike the detection 

of only a-DIF, there is no evidence of increased “false-alarm” a-DIF; this is because the a-

DIF detection test is not conditional on another parameter test. 

Discussion of Simulation Results 

 The implications of the simulation results are optimistic. For the GRM, the Wald test 

performed well, producing nearly nominal alpha rates and false alarm rates, as well as the 

correspondingly expected chi-square means and variances, with improved performance given 

larger sample size. Similarly, the Wald test provided evidence of adequate power, with 

greater power attributed to greater magnitudes of simulated DIF, larger sample size, and in 

some cases, greater test length. The two-stage estimation procedure, in comparison to 

random assignment, is somewhat conservative due to a portion of the random DIF being 

absorbed into the estimated mean difference between the groups at stage 1. This also results 

in somewhat lower power, particularly when sample size is also small.  



30 

 On the other hand, the Wald test under the 3PL model yielded lower alpha and false alarm 

rates, as well as lower chi-square means and variances, and lower power than expected. 

However, this performance was primarily due to a near-zero alpha rate for detecting g-DIF as 

a result of the prior on the g parameter. The results of a small study removing this prior 

confirm this assertion and suggest that performance is further improved with larger sample 

size and the use of the random assignment estimation procedure versus the two-stage 

estimation procedure. This is reassuring, given that the 3PL is not used in practice for small 

sample sizes or short test lengths. For the two-stage estimation procedure, the false alarm rate 

and power were affected by difficulties estimating the mean difference between groups. In 

general, under the 3PL model, greater power was evident with greater sample size, greater 

magnitude of simulated DIF, and in some cases, greater test length.  

 For the simulation cells mimicking Habing’s IRTLRDIF study, the Wald test performed 

with a lower than nominal alpha rate. This may be due to a platykurtic likelihood or an 

overcorrection of the parameter error variances by the SEM procedure. However, Habing’s 

study only used small sample sizes; alpha rates improve with larger sample sizes and greater 

test lengths, suggesting that the two methods will converge asymptotically. Power is 

somewhat greater for IRTLRDIF, for the conditions simulated by Habing, as compared to the 

Wald test due to the lower alpha rates. Although IRTLRDIF appears to have more power 

than the Wald test at small sample sizes, this is a relatively minor issue due to the small 

magnitude of the simulated DIF; in practice, only a small proportion of DIF items fall in that 

gray area separating the performance of these two methods. This comparison also 

demonstrates that the Wald test can effectively separate a-DIF and b-DIF when they occur in 

isolation of one another, with the caveat that some b-DIF is detected when a-DIF is present 



31 

due to the conditional nature of the test. Fortunately, b-DIF is generally not interpreted in the 

presence of a-DIF.  

 In summary, the Wald test performs well, detecting DIF as expected. The performance of 

the test improves with large sample sizes and the random assignment estimation procedure. 

Furthermore, in general, the power of DIF detection increases with greater magnitudes of 

simulated DIF and greater test length. The use of large sample sizes and greater test lengths 

is especially important when the 3PL model is employed. The Wald test holds up well 

against IRTLRDIF, although the results of the two methods should converge, again, with 

larger sample sizes. The comparison study with IRTLRDIF also demonstrates the ability of 

the Wald test to effectively isolate a-DIF and b-DIF when they do not occur jointly. 

Extension to Multiple Groups 

 Most of the literature on DIF involves methods and procedures for the comparison of the 

performance of items for two groups. However, a practical need for considering more than 

two groups has been demonstrated by numerous studies; DIF methodology would benefit 

from statistical procedures that assess DIF simultaneously across multiple groups. Current 

DIF methods and procedures have been discussed with respect to their applicability to 

multiple group situations; two approaches, the Mantel-Haenszel (MH; 1959) method and 

Lord’s Wald test (1977, 1980) have been implemented to detect DIF in multiple group 

situations. When more than two groups are involved, the Wald test offers several advantages: 

it allows a single test of significance that may be more powerful than individual tests for each 

pair of groups, and it avoids the increase in Type I error associated with an individual test for 

each focal group.  
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 The use of the MH procedure was investigated for DIF detection among multiple groups 

by Penfield (2001). The choice of this DIF detection procedure to extend to multiple groups 

is natural given its popularity. Assessing DIF across multiple groups using the MH procedure 

essentially involves performing individual tests for each pair of groups to be compared, 

leading to the problem of an increased probability of committing a Type I error. To control 

for a potentially spiraling Type I error, Penfield’s study compared the MH chi-square statistic 

with no adjustment to the alpha level, the MH chi-square statistic with a Bonferroni adjusted 

alpha-level (BMH), and the Generalized Mantel-Haenszel (GMH; Somes, 1986) statistic that 

offers a single test of significance across all groups. The use of the GMH procedure for a 

polytomous group variable and dichotomous response variable is analogous to a previous 

application by Zwick, Donoghue, and Grima (1993) that involved a dichotomous group 

variable and a polytomous response variable.  

 Penfield’s (2001) investigation of MH, BMH, and GMH for detecting DIF among multiple 

groups varied several factors in a simulation study, including the number of focal groups 

with DIF, sample size per group, the differences among the ability distributions of the 

reference and focal groups, and magnitude of matching criteria contamination. His results 

suggested that within the MH framework for detecting DIF in more than two groups, GMH is 

the most useful procedure because its Type I error rate remained at the nominal level of 0.05, 

and its power was consistently among the highest. If a significant value of GMH is obtained, 

the null hypothesis that there is no DIF among any of the groups is rejected. As a result, post 

hoc paired comparisons may be performed between each focal group and reference group 

using the BMH procedure to determine which groups exhibit DIF, while ensuring the Type I 

error rate across all comparisons does not exceed the intended nominal familywise error rate.  
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 Although Penfield’s (2001) study provided evidence that a MH method, specifically GMH, 

can effectively detect DIF among more than two groups, there are several limitations. First, 

Penfield’s investigation considered only a consistent magnitude of DIF set by increasing the 

difficulty parameter and did not consider manipulating item discrimination between groups 

(probably because the MH procedure does not detect DIF in discrimination). Furthermore, a 

problem inherent to all MH methods is an inability to unconfound DIF with mean differences 

on the latent ability measured across groups (Stark, Cherynshenko, & Drasgow, 2004). 

Second, large sample sizes (e.g., N > 1000) were not included in the simulation conditions. 

This is particularly relevant to MH statistics, which employ chi-square tests, because 

statistical significance is often observed even though no substantially meaningful level of 

DIF is found in the data. Currently, a measure of effect size associated with GMH has not 

been proposed, and thus no method exists for assessing DIF in more than two groups that 

incorporates both statistical significance and effect size (Penfield, 2001).  

 Lord’s Wald test (1977, 1980) for DIF detection was explored for the multiple group case 

by Kim, Cohen, and Park (1995). Kim et al. developed the Qj statistic to compare vectors of 

IRT item parameters between three or more groups. Kim, Cohen, and Park (1995) presented 

one example to illustrate the use of their proposed Qj statistic. The data contained responses 

to 14 items from three groups of 200 students each. The 2PL model was used to fit the data 

sets. MML estimation, as implemented in Bilog 3 (Mislevy & Bock, 1990), was used to 

obtain the item parameters, and an iterative linking using the test characteristic curve method 

developed by Stocking and Lord (1983) was used to place the groups on the same scale. For 

comparison, three pairwise multiple group DIF statistics were also obtained and tested with a 

Bonferroni-corrected Type I error rate. These two approaches yielded different equating 
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coefficients due to the iterative linking procedure and, consequently, different sets of DIF 

items. Their results are discouraging but may be due to several constraints of the method. 

 The extension of Lord’s Wald test (1977, 1980) to the multiple group case by Kim, Cohen, 

and Park (1994) suffered from several limitations. First, it was only examined in one case 

study and would benefit from a simulation study to fully explore the effects of various 

factors. Second, the Qj statistic does not consider the density of examinees in the sample 

along the ability continuum, and thus may signal DIF in regions of the ability scale with 

sparse data (Penfield, 2001). This constraint is known to negatively impact the performance 

of Lord’s chi-square method (Camilli & Shepard, 1994), and likely has a similar effect on the 

performance of the Qj statistic. However, this statistic could be weighted to account for the 

density of examinees. Finally, the MML estimation of the item parameter error covariance 

matrix is not fully documented in the literature. A more complete attempt to obtain the item 

parameter error covariance matrix, and thus more accurate standard errors, should lead to 

better results.  

Comparison of IRTLRDIF and the Wald Test Approaches to Multiple Group DIF Detection 

 Both the Wald test and IRTLRDIF could be extended to detect DIF across multiple groups. 

However, each method has important pros and cons to weigh before developing a new DIF 

detecting system for multiple groups. IRTLRDIF has been shown to be powerful with alpha 

levels near nominal both in the small simulation study conducted by Habing and in the 

existing literature (Thissen, Steinberg, & Wainer, 1993; Teresi, Kleinman, & Ocepek-

Welikson, 2000; Wainer, 1995). Given the current simulation study, the Wald test also 

produces alpha levels near nominal, with a conservative tendency. The conservative tendency 

renders the Wald test somewhat less powerful than IRTLRDIF, but this difference may not 
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be practically meaningful given the rarity of items that would be differentially flagged by the 

two methods.  

 However, for I items and (G – 1) contrasts among G groups, IRTLRDIF requires 2[I(G – 

1)] + 1 model fittings for the all-other anchor procedure, whereas the Wald test requires I(G – 

1) + 1 model fittings. IRTLRDIF requires twice as many fittings because the procedure 

involves fitting the model twice per hypothesis, once for the compact model and once for the 

augmented model. Furthermore, the two-stage estimation procedure, which is not available 

for IRTLRDIF, can be used by the Wald test. The two-stage estimation procedure effectively 

uses all the items as the anchor in the second stage of the procedure, thus requiring only two 

model fittings, a substantially smaller number of fittings than IRTLRDIF using the all-other 

anchor procedure. 

 Given more than one contrast between unequally sized groups, IRTLRDIF is limited to all 

pair-wise comparisons or contrasts ignoring all others, e.g. combining groups for each 

contrast without consideration of the other contrasts/dependencies between the groups. In 

addition, these contrasts must be simple contrasts, e.g. the “plus and minus” type. In contrast, 

the Wald test can evaluate both contrasts ignoring all others or contrasts that eliminate 

dependence on other contrasts in a given order. The Wald test can also handle more 

complicated contrasts, such as testing for a linear trend. These additional contrasts provided 

by the Wald test could be produced by IRTLRDIF, but would require implementation of a 

linear model for the parameters in the IRT estimation program. On the other hand, such 

contrasts are only a trivial additional computation with the use of the Wald test.  

 To detect DIF across multiple groups, the IRTLRDIF procedure would first fit the compact 

model with all item parameters equal across groups to obtain population differences and the 
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baseline -2LL. Next, two augmented models are fit for each contrast for each item. For each 

contrast, a model is fit with all parameters constrained equal for each “sign” (side) of the 

contrast. Another model is also fit with only the slope, a, parameters constrained equal for 

each side in the contrast. Finally, three likelihood ratio tests are computed: one testing all 

parameters to be different, one testing the slope, a, parameters to be different, and one testing 

the location, b, parameters to be different. These likelihood ratio tests yield a test of each 

contrast ignoring the dependence of that contrast on other contrasts. In order to include tests 

that eliminate dependence on other contrasts, a linear model for each item parameter would 

need to be implemented; then, the model would need to be refit with appropriate coefficients 

of the linear model set to zero.  

 Detecting DIF across multiple groups is more straightforward employing the Wald test. 

First, a model is fit with all item parameters equal across groups to obtain population 

differences. Next, the population differences are fixed at the values obtained in the previous 

step, and a model is fit with all item parameters freed, allowing different item parameters for 

each group. Subsequently, all relevant Wald tests can be computed, as well as the slope-

intercept decomposition for each item. For unequal group sizes, contrasts comparable to 

those available using IRTLRDIF, e.g. ignoring between-contrast dependence, can be 

achieved by using non-orthogonal contrasts weighted by the sample size of each group. 

Additionally, contrasts that eliminate between-contrast dependence in a given order can be 

tested by orthogonalizing the contrasts in the metric of the group sample sizes. 

 The utility of the Wald test in detecting DIF with multiple groups can be illustrated using 

an example. 

 



37 

Detecting DIF with Multiple Groups Using the Wald Test: An Example 

 To explore the flexibility of the Wald test to detect DIF with multiple groups, items from 

the Everyday Discrimination Scale (EDS; Williams et al., 1997) were analyzed. This scale 

measures “chronic, routine, and relatively minor experiences of unfair treatment” (pp. 340). 

Nine items were originally included by Williams et al.; however, we only considered the 

following five items, a more unidimensional set according to item factor analyses conducted 

by Stucky and Gottfredson (2008): 

1. You are treated with less courtesy than other people. 

2. People act as if they think you are not smart. 

3. People act as if they are afraid of you. 

4. People act as if they’re better than you. 

5. You are threatened or harassed.  

The response options are: “never,” “less than once a year,” “a few times a year,” “a few times 

a month,” “at least once a week,” and “almost everyday.” 

 Data were collected in 2004 by a multi-site, multidisciplinary team of researchers working 

on the Educational Diversity Project (EDP; www.unc.edu/edp)17. Participants included 6,100 

incoming law students from a nationally representative sample of 50 American Bar 

Association (ABA) approved law schools in the United States. Schools with very high 

minority populations were over-sampled. Of the 6,100 students in the sample, 4,079 (66.9%) 

are white, 589 (9.7%) are African-American, 508 (8.3%) are Asian-American, 493 (8.1%) 

are multi-racial, 327 (5.3%) are Latino, and 104 (1.7%) are unknown. The sample also 

includes 3,177 (52.1%) females and 2,921 (47.9%) males. DIF analyses were limited to 

females/males crossed by blacks/whites because these are the primary groups of interest for 
                                                
17 These data were generously provided by Abigail Panter for use in this illustration. 
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applied researchers. Sample sizes for these groups are: 2,085 (44.7%) white males, 1994 

(42.7%) white females, 402 (8.6%) black females, and 187 (4.0%) black males. In the future, 

other groups could be considered as well. 

 Employing the first stage of the two-stage estimation procedure in which all item 

parameters are constrained to be equal across groups, Table 14 displays the estimated means 

and variances for the four groups defined by race crossed with gender18. For comparison, the 

all-other anchor procedure was also used to test DIF for item 1, constraining the item 

parameters for items 2-5 to be equal across the four groups. The resulting estimated group 

means and variances are also provided in Table 14. The estimated group means and variances 

do not substantially differ between these two methods. However, the all-other anchor 

procedure must be repeated for each item under consideration for DIF; results for the other 

items are not tabulated here.  

 IRTLRDIF, like other DIF methods currently limited to pair-wise comparisons, can only 

use combinations of relevant groups when conducting multiple group DIF analyses. For 

illustrative purposes, several variations of the all-other anchor procedure were used to 

estimate group means and variances that would mimic these combinations. Focusing only on 

the groups defined by race, the black females and black males were constrained to have the 

same estimated group mean, as well as the same estimated item parameters. 

Correspondingly, the white females and white males were given analogous constraints. 

Combining the groups across race, the resulting estimated group means and variances are 

shown in the line labeled “Combined Groups-Race” in Table 14. Because the black females 

                                                
18 Confirming the accuracy of the estimation procedure, estimated means and variances as well as estimated 
item parameters matched, within 2 decimal places, results from Multilog (Thissen, Chen, & Bock, 2003).  
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are a much larger group than the black males, this combination essentially compares black 

females versus whites.  

 In the same manner, groups were combined within males and females. The resulting 

estimated group means and variances are shown in the line labeled “Combined Groups-

Gender” in Table 14. The estimated group mean for the two female groups (0.18) is nearly 

identical to the previously estimated group mean for white females (0.17) when all groups 

were considered separately due to the much larger sample size of the white females. As a 

result of these inequalities in sample size, this gender comparison more closely resembles a 

comparison limited to white females and white males.  

 To mimic the group combinations necessary to test an interaction between race and gender, 

the black females and white males were combined, with the same estimated group mean, as 

well as the same estimated item parameters. Accordingly, the white females and black males 

were given analogous constraints. The resulting estimated group means and variances using 

these constraints are shown in the line labeled “Combined Groups-Interaction” in Table 14. 

Again, unequal sample sizes result in a group comparison that essentially functions as white 

females versus white males.  

 The results of using IRTLRDIF to test each respective combination of groups for DIF in 

item 1 are reported in the first column of Table 15. This set of results required three model 

fittings, and evaluation of DIF in the other four items would require 12 more model fittings. 

This set of tests detecting DIF separately by race, gender, and their interaction using 

IRTLRDIF is essentially a set of comparisons, each of which ignores the others, given that 

each test is confounded with the other two tests. Disregarding this confounding, the results of 
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these tests indicate significant race-DIF, gender-DIF, and DIF due to the race by gender 

interaction. 

 For a direct comparison with these results, the Wald test was employed for combined 

groups and the all-other anchor procedure, to produce analogous estimated item parameter 

estimates and estimated group means. Non-orthogonal contrasts (including weighting by 

sample size) were used for the Wald test. The matrix of contrasts used is:  

















−−
−−
−−

8384.9143.0857.1616.

9177.8322.0823.1678.

5112.4888.3175.6825.

, 

where the first row represents the race test, the second row represents the gender test, and the 

third row represents the interaction test. The order of the columns from left to right is black 

females, black males, white females, and white males, and the entries are proportional to 

sample size for each sign of the contrast. The results of these comparisons using the Wald 

test are provided in the second column of Table 15.  Although results for IRTLRDIF and the 

Wald test are similar for the gender and interaction DIF tests, the Wald test yields a higher 

chi-square value for race DIF. However, it is difficult to interpret any of these statistics given 

the degree of confounding resulting from the group combinations.  

 To reduce error correlation between the comparisons, a set of orthogonal contrasts was also 

employed with the Wald test. The matrices of contrasts used are:  

















−−
−−
−−

650.10650.10650.10650.10

097.30097.30769.3769.3

596.11090.11203.7484.15

 and 

















−−
−−

−−

650.10650.10650.10650.10

628.7870.14628.7870.14

339.31420.28811.2730.5

, 
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where the order of the columns from left to right is black females, black males, white 

females, and white males. These contrasts are orthogonalized in the metric of the sample 

sizes (from Table 14), and then weighted by those sample sizes.  

 Repeated model fittings using combined groups and the all-other procedure were used to 

match item parameter and group mean equality constraints to those of IRTLRDIF. Due to 

their orthogonality, these contrasts resulted in a set of tests that followed an ignoring-

eliminating order. When race is the first contrast, depicted in the matrix on the left above, it 

ignores dependencies on gender and the race by gender interaction. However, the second 

contrast, gender, is independent of race, and the third contrast, the race by gender interaction, 

is independent of both the race and gender tests. This order can also be reversed so that race 

is the first contrast and gender follows second; this is depicted in the matrix above on the 

right. The results of both ignoring-eliminating orders using orthogonal contrasts are reported 

in columns 3 and 4 of Table 15. Compared to the Wald tests using non-orthogonal contrasts, 

these results do not differ much for race or gender, but the chi-square values are much higher 

for the interaction. This could be due to a large interaction effect, or it could be due to the 

fact that these comparisons do not fully unconfound item parameter differences from 

differences among the means and standard deviations for all four groups.  

 To eliminate the effects of combining groups, all four groups’ means and item parameters 

were estimated separately, again using items 2-5 as the anchor. The Wald test procedure was 

employed for each ignoring-eliminating order of the contrasts orthogonalized in the metric of 

the sample sizes. The results of both orders of elimination are provided in the fifth and sixth 

columns of Table 15. Using uncombined groups in the DIF analysis has a large effect 

compared to the previous models fit using combined groups; the chi-square values are much 
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lower for all DIF comparisons. DIF due to gender19 or the race by gender interaction is no 

longer significant. This suggests that combining pairs of the four groups before estimating 

the group means and standard deviations may have inflated the chi-square values, indicating 

greater levels of DIF than actually exist. 

 Basing the analyses on all four distinct means and standard deviations from Table 14, and 

eliminating the error correlation between comparisons by using orthogonalized contrasts, the 

DIF analyses should be more valid. The all-other anchor procedure is also a more valid 

procedure than the two-stage estimation procedure because the candidate item for DIF 

analysis is not included in the anchor set used to estimate the group means. The group means 

corresponding to these more valid applications of the Wald test are provided in the second 

row of Table 14. The expected score on item 1 for each group of interest is provided in 

Figure 7. The curves indicate some race DIF. Weak gender DIF appears to be present, but 

most of the DIF seems to be accounted for by the race DIF. Given the nearly parallel curves, 

there does not appear to be an interaction. These observations are reflected in the chi-square 

values in Table 15; not surprisingly, the significance of the gender DIF changes based on the 

ignoring-eliminating order of the contrast employed. 

 Although the use of all the other items as the anchor is more valid than the two-stage 

estimation procedure, it requires a separate item parameter estimation for every candidate 

item tested for DIF. Using the Wald test for each set of contrasts, with the two-stage 

estimation procedure and the two sets of orthogonalized contrasts in the ignoring-eliminating 

order, produces the results displayed in the seventh and eighth columns of Table 15. 

Including the candidate item in the estimation of the group means, given only five items, 

                                                
19 According to the race-gender ignoring-eliminating order, which tests for gender-DIF independent of race-
DIF. 



43 

results in a somewhat biased anchor that seems to decrease the magnitude of DIF detected in 

this particular example. However, the results of both the two-stage estimation and all-other 

anchor procedures, holding all else constant, are not substantially different, and in this case, 

would not lead to different conclusions regarding the nature of DIF present in item 1. 

 In summary, the IRTLRDIF procedure confounded race-DIF with gender-DIF and the race 

by gender interaction-DIF. This confounding was due to combining groups, which ignores 

dependencies among the DIF tests, and fails to correct for all of the population distribution 

differences among the four groups. Essentially, group mean differences are estimated using 

“hybrid” populations. As a result, IRTLRDIF did not accurately identify the source of DIF. 

On the other hand, the Wald test produces more interpretable results, using estimated group 

means and standard deviations for all four groups, as well as orthogonal contrasts, which do 

not ignore dependencies between DIF tests. Using either the all-other anchor procedure or the 

two-stage estimation procedure, the Wald test was able to identify race as the primary source 

of DIF for item 1, without unnecessary and inaccurate confounding. 

Considerations When Performing Multiple Group DIF Analyses 

 Based on the application of the Wald test in the preceding example, this method may be an 

effective tool for detecting DIF across multiple groups. However, there are several 

considerations to take into account when constructing a framework for DIF detection given 

multiple groups. Unequal sample sizes are frequently encountered in real data, particularly 

when groups are defined by demographic variables. Given their prevalence, the estimation of 

uncombined group means and the use of orthogonal contrasts weighted by sample size are of 

a high priority. These methods are easily implemented in the procedures outlined using the 

Wald test and should be given great weight in decisions involving the choice of the Wald test 
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to detect DIF simultaneously across multiple groups or a set of paired comparisons using 

another DIF detection method, which  are limited to group means estimated using combined 

populations and non-orthogonal contrasts. 

 Once the Wald test has been chosen to detect DIF across multiple groups, it is necessary to 

choose between the use of all other items as the anchor or the two-stage estimation 

procedure. In this example, both methods provide comparable results. However, the all-other 

anchor method is more valid to a degree, as it does not include the candidate item being 

detected for DIF in the anchor. However, the remaining items used as an anchor are not 

necessarily free of DIF themselves, unless they have been previously subjected to rigorous 

DIF analyses. The use of the all-other anchor also requires the model to be fit repeatedly for 

each item under consideration. On the other hand, the two-stage estimation procedure 

requires only one model fitting. The computational ease and savings in time comes at the 

price of potentially biased results, given that the candidate item is included in the anchor 

during the first stage of the estimation procedure. In the end, given the similarity in results 

between the two procedures, it will ultimately be a decision based on resources available to 

the particular researcher conducting the DIF analyses. 

 A final consideration when conducting DIF analyses with multiple groups is the set of 

contrasts used. The preceding example highlighted the importance of contrasts that are 

orthogonal in the metric of the sample sizes. Such contrasts can be ordered with any of the 

given contrasts as a test that ignores the other effects, followed by a sequence of the other 

contrasts that eliminate those preceding. The possibilities of contrast order multiply given 

more contrasts. In the example, given only three contrasts of interest, two ignoring-

eliminating orders were tested. Even with only two orders, the results varied slightly 
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depending on which contrast was tested first. The researcher must decide whether to employ 

only one order, several select orders, or all possible orders of contrasts. The most practical 

method may be to use as many orders as necessary to obtain for each contrast of interest the 

results from only the eliminating tests, as these tests take into account the dependencies of 

the other tests. However, this approach requires more than one order of contrasts. Again, this 

decision is best made based on available resources, as determined by the researcher.   

Conclusion 
 

 In an effort to increase the validity of a test for all groups, effectively detecting and 

eliminating DIF is a necessary step. In this regard, the IRTLRDIF approach has been shown 

to be the most flexible and powerful method for DIF detection (Thissen, Steinberg, & 

Wainder, 1993; Teresi, Kleinman, & Ocepek-Welikson, 2000; Wainer, 1995). However, this 

method is computationally-intensive, requiring many model-refittings. The Wald test for DIF 

detection, asymptotically equivalent to IRTRLDIF and requiring only one model fitting, has 

been demonstrated in the current research as a practical alternative. In this research, the Wald 

test for DIF detection was improved from Lord’s original conception (1977, 1980) through 

modern error estimation, concurrent calibration, MML item parameter estimation, 

conditional DIF tests, and extensions to commonly used IRT models as well as multiple 

groups.  

 The simulation research employing the improved Wald test suggests reasonable levels of 

DIF detection, in analogs to both educational and psychological contexts. The performance 

of the Wald test improves with larger sample sizes, greater magnitudes of DIF, greater test 

lengths, and the random assignment estimation procedure. The use of larger sample sizes and 

greater test lengths is most critical for situations employing the 3PL model. The Wald test 
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performs reasonably well compared to IRTLRDIF, exhibiting somewhat less power, although 

the results of the two methods should converge asymptotically.  

 In addition to establishing the practicality of using the improved Wald test to detect DIF in 

the two-group case, a goal of this research has been to demonstrate the flexibility of the Wald 

test through its straightforward extension to multiple groups. Given the need for an accurate 

and efficient DIF detection method for multiple groups and the prevalence of multiple group 

DIF assessments, this extension is a natural step. A two by two example (with four groups) 

was used to demonstrate the effectiveness of the Wald test, as well as compare it to the 

IRTLRDIF procedure. As currently implemented, the IRTLRDIF approach confounds the 

results of the DIF tests with  population distribution differences, due to combining groups. As 

a result, IRTLRDIF yields spuriously large test statistics and is unable to accurately identify 

the source of DIF. On the other hand, the Wald test using orthogonal contrasts, which do not 

ignore dependencies between DIF tests, is able to effectively estimate means and standard 

deviations for multiple groups and provide more interpretable results. 

 Several considerations for designing a DIF detection framework given multiple groups 

were outlined. The superiority of the procedures used with the Wald test is most salient with 

unequal sample sizes. Such situations are prevalent in the literature; focal groups identified as 

important candidates for DIF analysis include various ethnic groups, women, examinees with 

disabilities, and various modes and languages of administration. Other considerations include 

choosing between the all-other anchor procedure and the two-stage estimation procedure, as 

well as determining the set of contrasts used.  

 This research demonstrates the efficacy, accuracy, and flexibility of the improved Wald 

test for DIF detection. As this was only an initial investigation, further exploration of the 
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Wald test and its applications remain. Future directions include considering other IRT 

models, other manipulations of DIF, and other practical applications. The multiple group 

extension allows for much future examination: exploring various numbers of groups, 

combinations of sample sizes, and contrasts, including more complicated contrasts such as 

testing for linear trends. The Wald test has been shown to be a practical alternative to the 

IRTLRDIF approach for DIF detection, particularly in the multiple group case, and it is 

hoped that future explorations will further demonstrate the applicability and flexibility of the 

method.   



 

 

Table 1 
 
Simulation design 
 
Anchoring Situation Randomized Groups Two-Stage Estimation 
 
Test Length 
 

5, 20, 40 (x3) 
 

5, 20, 40 (x3) 
 

Sample Size per Group 
 

250, 1000 (x2) 
 

250, 1000 (x2) 
 

Mean Difference Between Groups 
 

0 (x1) 
 

0, -.6 (x2) 
 

Models 
 

3PL, GRM (x2) 
 

3PL, GRM (x2) 
 

Amount/Proportion of DIF 0 20% 0 20% 

Magnitude of DIF in a’s: Multiply by - 

 
.5, 2 (3PL) 

.875, 1.25 (GRM) 
(x2) 

 

- 
.5, 2 (3PL) 

.875, 1.25 (GRM) 
(x2) 

 

Magnitude of DIF in b’s: Shift by 
 

- 
 

.4, .8 (3PL) 
.1, .2 (GRM) 

(x2) 
 

- 
 

.4, .8 (3PL) 
.1, .2 (GRM) 

(x2) 
 

 
Number of Cells 
 
 

 
3 x 2 x 1 x 2  

= 12 

 
3 x 2 x 1 x 2 x 2 x 2 

= 48 

 
3 x 2 x 2 x 2  

= 24 

 
3 x 2 x 2 x 2 x 2 x 2 

= 96 

Total Number of Cells 
 

 
12 + 48 + 24 = 96 = 180 
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Table 2 
 
Estimated alpha rates at the .05 level for overall DIF using the GRM 
 

N Test length 
Randomized 

Groups α 
Two-Stage: 

0 Mean Diff α 
Two-Stage: 

-.6 Mean Diff α 
 

  250 
 

  5 .03  .01*  .02* 
 

  250 
 

20 .03  .02*  .03* 

  250 
 

40 .05  .02*  .02* 
 

1000 
 

  5 .05 .03 .03 
 

1000 
 

20 .05  .02*  .03* 
 

1000 40 .05  .03*  .02* 
     

*Estimated proportion falls outside of a 95% confidence interval around .05. 
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Table 3 
 
Chi-square means and variances for no-DIF cells using the GRM 
 

  
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N Test length 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
 

  250 
 

  5 4.67   7.82 3.72 4.89 3.57 6.29 
 

  250 
 

20 4.74   8.13 4.18 7.18 4.25 7.45 

  250 
 

40 5.03   9.50 4.30 7.18 4.29 7.24 
 

1000 
 

  5 5.07 10.13 4.21 7.32 4.17 7.31 
 

1000 
 

20 5.10   9.93 4.28 7.45 4.30 7.89 
 

1000 40 4.95   9.37 4.34 7.78 4.28 7.63 
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Table 4 
 
Estimated false alarm rates at the .05 level for overall DIF using the GRM 
 
  DIF Items    

N 
Test 

length a-DIF b-DIF 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

 
  250 

 
  5 0.875 .1 .03   .01*   .02* 

 
  250 

 
  5 0.875 .2 .03   .01*   .01* 

  250 
 

  5 1.250 .1 .03   .01*   .01* 

  250 
 

  5 1.250 .2 .03   .01*   .02* 
 

  250 20 0.875 .1   .03*   .02*   .03* 
 

  250 
 

20 0.875 .2 .04   .02*   .03* 

  250 
 

20 1.250 .1 .04   .02*   .03* 

  250 
 

20 1.250 .2 .04   .02*   .03* 
 

  250 
 

40 0.875 .1 .04   .02*   .02* 
 

  250 
 

40 0.875 .2 .04   .02*   .02* 

  250 
 

40 1.250 .1 .05   .02*   .02* 

  250 
 

40 1.250 .2 .04   .02*   .02* 
 

1000 
 

  5 0.875 .1 .05 .03 .03 
 

1000 
 

  5 0.875 .2 .05 .03 .03 

1000 
 

  5 1.250 .1 .05 .03 .03 

1000 
 

  5 1.250 .2 .05 .04 .03 
 

1000 20 0.875 .1 .05   .02*   .02* 
 

1000 
 

20 0.875 .2 .05   .03*   .03* 

1000 
 

20 1.250 .1 .05   .02*   .03* 
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Table 4: Estimated false alarm rates at the .05 level for overall DIF using the GRM 
(continued) 
 
  DIF Items    

N 
Test 

length a-DIF b-DIF 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

 
1000 

 
20 1.250 .2 .05   .03*   .03* 

 
1000 

 
40 0.875 .1 .05   .03*   .03* 

 
1000 

 
40 0.875 .2 .06   .03*   .03* 

1000 
 

40 1.250 .1 .05   .03*   .03* 

1000 
 

40 1.250 .2 .05 .04 .04 
       

* Estimated proportion falls outside of a 95% confidence interval around .05. 
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Table 5 
 
Chi-square means and variances for no-DIF items in the presence of DIF items using the 
GRM  
 
  

DIF Items 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N 
Test 

length a-DIF b-DIF 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
 

  250 
 

  5 0.875 .1 4.76   7.53 3.84 5.16 3.71 6.34 
  

  250 
 

  5 0.875 .2 4.76   7.53 3.90 5.22 3.90 5.22 

  250 
 

  5 1.250 .1 4.75   7.47 3.85 5.12 3.85 5.12 

  250 
 

  5 1.250 .2 4.75   7.49 3.94 5.28 3.83 6.48 
  

  250 20 0.875 .1 4.77   8.26 4.25 6.79 4.33 7.48 
 

  250 
 

20 0.875 .2 4.76   8.21 4.30 6.90 4.38 7.58 

  250 
 

20 1.250 .1 4.79   8.46 4.23 6.62 4.35 7.53 

  250 
 

20 1.250 .2 4.77   8.23 4.36 7.05 4.44 7.69 
  

  250 
 

40 0.875 .1 5.00   9.45 4.28 7.14 4.29 7.09 
 

  250 
 

40 0.875 .2 5.00   9.42 4.34 7.23 4.33 7.20 

  250 
 

40 1.250 .1 5.04   9.55 4.31 7.23 4.27 7.12 

  250 
 

40 1.250 .2 5.04   9.53 4.39 7.40 4.36 7.18 
 

1000 
 

  5 0.875 .1 5.15 10.12 4.32 7.24 4.30 7.59 
 

1000 
 

  5 0.875 .2 5.15 10.05 4.54 7.57 4.50 7.90 

1000 
 

  5 1.250 .1 5.16 10.13 4.40 7.40 4.35 7.60 

1000 
 

  5 1.250 .2 5.16 10.09 4.76 8.07 4.72 8.23 
 

1000 20 0.875 .1 5.09   9.64 4.34 7.31 4.29 7.38 
 

1000 
 

20 0.875 .2 5.09   9.62 4.56 7.62 4.49 7.71 
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Table 5: Chi-square means and variances for no-DIF items in the presence of DIF items 
using the GRM (continued) 
 
  

DIF Items 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N 
Test 

length a-DIF b-DIF 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 

1000 
 

20 1.250 .1 5.09   9.63 4.40 7.35 4.39 7.51 
 

1000 
 

20 
 

1.250 
 

.2 5.10   9.66 4.75 7.94 4.74 7.96 
 

1000 
 

40 0.875 .1 5.10 10.15 4.42 7.84 4.38 7.86 
 

1000 
 

40 0.875 .2 5.10 10.17 4.62 8.23 4.57 8.28 

1000 
 

40 1.250 .1 5.11 10.19 4.49 8.00 4.48 8.07 

1000 
 

40 1.250 .2 5.10 10.16 4.85 8.75 4.85 8.88 
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Table 6 
 
Estimated alpha rates at the .05 level for overall DIF using the 3PL model 
 

N Test length 
Randomized 

Groups α 
Two-Stage: 

0 Mean Diff α 
Two-Stage: 

-.6 Mean Diff α 
 

  250 
 

  5 .00* .00* .00* 
 

  250 
 

20 .00* .00* .00* 

  250 
 

40 .01* .00* .00* 
 

1000 
 

  5 .01* .00* .00* 
 

1000 
 

20 .01* .00* .01* 
 

1000 40 .02* .01* .01* 
     

* Estimated proportion falls outside of a 95% confidence interval around .05. 
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Table 7 
 
Chi-square means and variances for no-DIF cells using the 3PL model 
 

  
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N Test length 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
 

  250 
 

  5 1.20 1.09 0.94 0.71 1.01 0.90 
 

  250 
 

20 1.65 2.05 1.48 1.59 1.48 1.56 

  250 
 

40 1.88 2.30 1.70 1.48 1.71 1.89 
 

1000 
 

  5 1.53 2.01 1.23 1.20 1.29 1.40 
 

1000 
 

20 2.11 2.98 1.86 2.27 1.91 2.54 
 

1000 40 2.31 3.67 2.08 2.97 2.11 2.90 
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Table 8 
 
Estimated alpha rates at the .05 level for overall DIF and corresponding chi-square means 
and variances using the 3PL model without a prior 
 

  Randomized Groups  Two-Stage: 0 Mean Diff 

N Test length α 
Χ2 

Mean 
Χ2 

Variance α 
Χ2 

Mean 
Χ2 

Variance 
 

4000 
 

40   .03* 2.70 4.48   .01* 2.35 3.57 
 

8000 
 

40 .04 2.92 5.51   .02* 2.46 4.04 

8000 
 

80   .04* 2.66 4.69   .02* 2.36 3.78 
        

* Estimated proportion falls outside of a 95% confidence interval around .05. 
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Table 9  
 
Estimated false alarm rates at the .05 level for overall DIF using the 3PL model 
 
  DIF Items    

N 
Test 

length a-DIF b-DIF 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

 
  250 

 
  5 .5 .4 .00*   .00*   .00* 

 
  250 

 
  5 .5 .8 .00*   .00*   .00* 

  250 
 

  5  2 .4 .00*   .00*   .00* 

  250 
 

  5  2 .8 .01*   .01*   .00* 
 

  250 20 .5 .4 .00*   .00*   .00* 
 

  250 
 

20 .5 .8 .00*   .00*   .00* 

  250 
 

20  2 .4 .00*   .00*   .00* 

  250 
 

20  2 .8 .00*   .01*   .00* 
 

  250 
 

40 .5 .4 .00*   .00*   .00* 
 

  250 
 

40 .5 .8 .01*   .00*   .00* 

  250 
 

40  2 .4 .01*   .00*   .00* 

  250 
 

40  2 .8 .00*   .01*   .01* 
 

1000 
 

  5 .5 .4 .01*   .01*   .01* 
 

1000 
 

  5 .5 .8 .01* .05 .03 

1000 
 

  5  2 .4 .01*   .01*   .01* 

1000 
 

  5  2 .8 .01*   .14* .07 
 

1000 20 .5 .4 .01*   .02*   .02* 
 

1000 
 

20 .5 .8 .01* .04   .03* 

1000 
 

20  2 .4 .01*   .02*   .03* 
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Table 9: Estimated false alarm rates at the .05 level for overall DIF using the 3PL model 
(continued) 
 
  DIF Items    

N 
Test 

length a-DIF b-DIF 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

 
1000 

 
20 

 
 2 

 
.8 

 
.01* 

 
  .10*   .11* 

 
1000 

 
40 .5 .4 .02*   .03*   .02* 

 
1000 

 
40 .5 .8 .02* .06 .05 

1000 
 

40  2 .4 .02*   .03*   .03* 

1000 
 

40  2 .8 .02*   .10*   .11* 
       

* Estimated proportion falls outside of a 95% confidence interval around .05. 
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Table 10 
 
Chi-square means and variances for no-DIF items in the presence of DIF items using the 
3PL model 
 
  

DIF Items 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N 
Test 

length a-DIF b-DIF 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
 

  250 
 

  5 .5 .4 1.19 1.24 1.04 1.09 0.98 0.97 
 

  250 
 

  5 .5 .8 1.18 1.19 1.17 1.44 1.11 1.12 

  250 
 

  5  2 .4 1.22 1.29 1.11 1.06 1.20 1.19 

  250 
 

  5  2 .8 1.23 1.44 1.58 2.13 1.30 1.26 
 

  250 20 .5 .4 1.61 1.94 1.57 1.77 1.56 1.27 
 

  250 
 

20 .5 .8 1.62 1.98 1.69 2.02 1.62 1.30 

  250 
 

20  2 .4 1.68 2.01 1.59 1.76 1.64 1.34 

  250 
 

20  2 .8 1.68 2.06 1.94 2.55 1.83 1.46 
 

  250 
 

40 .5 .4 1.86 2.26 1.80 2.04 1.78 1.94 
 

  250 
 

40 .5 .8 1.86 2.26 1.91 2.31 1.87 2.14 

  250 
 

40  2 .4 1.86 2.31 1.80 2.04 1.82 2.10 

  250 
 

40  2 .8 1.81 2.27 2.08 2.70 2.09 2.68 
 

1000 
 

  5 .5 .4 1.54 2.17 1.67 2.61 1.54 1.44 
 

1000 
 

  5 .5 .8 1.53 2.17 2.46 8.21 2.03 2.19 

1000 
 

  5  2 .4 1.56 2.11 1.88 2.73 1.86 1.72 

1000 
 

  5  2 .8 1.49 1.90 3.88 13.77 2.89 2.82 
 

1000 20 .5 .4 2.08 2.91 2.35 3.62 2.28 1.85 
 

1000 
 

20 .5 .8 2.07 2.88 2.91 5.44 2.83 2.23 
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Table 10: Chi-square means and variances for no-DIF items in the presence of DIF items 
using the 3PL model (continued) 
 
  

DIF Items 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N 
Test 

length a-DIF b-DIF 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 
Χ2 

Mean 
Χ2 

Variance 

1000 
 

20  2 .4 2.10 2.98 2.37 3.64 2.52 2.05 
 

1000 
 

20 
 

 2 .8 1.99 2.85 3.83 8.75 4.13 3.14 
 

1000 
 

40 .5 .4 2.29 3.64 2.64 4.70 2.54 4.01 
 

1000 
 

40 .5 .8 2.27 3.61 3.27 6.78 3.09 5.60 

1000 
 

40  2 .4 2.28 3.61 2.55 4.36 2.69 4.44 

1000 
 

40  2 .8 2.23 3.58 3.93 8.94 4.10 8.44 
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Table 11 
 
Comparison of Habing’s IRTLRDIF results to the Wald test results: Estimated alpha rates at 
the .05 level 
 
 

N 
Mean 
Diff 

Fixed 
a: Ref 

Fixed 
a: Foc 

Fixed 
b: Ref 

Fixed 
b: Foc 

Overall-
DIF a-DIF b-DIF 

          
IRTLRDIF  250 0.00 1 1 0 0 .06 .06 .05 
Wald Test  250 0.00 1 1 0 0 .03 .05 .02 
          
IRTLRDIF  250 0.50 1 1 0 0 .05 .05 .04 
Wald Test  250 0.50 1 1 0 0 .02 .04 .02 
          
IRTLRDIF  250 1.00 1 1 0 0 .07 .06 .05 
Wald Test  250 1.00 1 1 0 0 .03 .03 .02 
          
IRTLRDIF  250 0.00 1 1 1 1 .05 .06 .06 
Wald Test  250 0.00 1 1 1 1 .02 .03 .02 
          
IRTLRDIF  250 0.50 1 1 1 1 .03 .04 .04 
Wald Test  250 0.50 1 1 1 1 .01 .02 .03 
          
IRTLRDIF  250 1.00 1 1 1 1 .05 .05 .03 
Wald Test  250 1.00 1 1 1 1 .03 .03 .04 
          
IRTLRDIF 1000 0.00 1 1 0 0 .05 .06 .04 
Wald Test 1000 0.00 1 1 0 0 .02 .02 .02 
          
IRTLRDIF 1000 0.50 1 1 0 0 .05 .06 .05 
Wald Test 1000 0.50 1 1 0 0 .02 .04 .02 
          
IRTLRDIF 1000 1.00 1 1 0 0 .05 .05 .06 
Wald Test 1000 1.00 1 1 0 0 .04 .05 .03 
          
IRTLRDIF 1000 0.00 1 1 1 1 .06 .06 .04 
Wald Test 1000 0.00 1 1 1 1 .02 .03 .02 
          
IRTLRDIF 1000 0.50 1 1 1 1 .06 .05 .06 
Wald Test 1000 0.50 1 1 1 1 .03 .03 .02 
          
IRTLRDIF 1000 1.00 1 1 1 1 .06 .03 .06 
Wald Test 1000 1.00 1 1 1 1 .04 .05 .02 
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Table 12 
 
Comparison of Habing’s IRTLRDIF results to the Wald test results: Proportion of only a-
DIF detected 
 
 

N 
Mean 
Diff 

Fixed 
a: Ref 

Fixed 
a: Foc 

Fixed 
b: 

Ref 

Fixed 
b: 

Foc 
Overall-

DIF 
a-

DIF 
b-

DIF 
          
IRTLRDIF  250 0.00 1.20072 0.83283 0 0 .27 .36 .04 
Wald Test  250 0.00 1.20072 0.83283 0 0 .22 .35 .02 
          
IRTLRDIF  250 0.50 1.20072 0.83283 0 0 .29 .38 .05 
Wald Test  250 0.50 1.20072 0.83283 0 0 .23 .33 .01 
          
IRTLRDIF  250 1.00 1.20072 0.83283 0 0 .32 .37 .08 
Wald Test  250 1.00 1.20072 0.83283 0 0 .22 .33 .03 
          
IRTLRDIF  250 0.00 1.20072 0.83283 1 1 .31 .37 .06 
Wald Test  250 0.00 1.20072 0.83283 1 1 .27 .27 .12 
          
IRTLRDIF  250 0.50 1.20072 0.83283 1 1 .41 .36 .22 
Wald Test  250 0.50 1.20072 0.83283 1 1 .25 .25 .11 
          
IRTLRDIF  250 1.00 1.20072 0.83283 1 1 .39 .33 .20 
Wald Test  250 1.00 1.20072 0.83283 1 1 .25 .29 .12 
          
IRTLRDIF  250 0.00 1.35251 0.73937 0 0 .72 .79 .06 
Wald Test  250 0.00 1.35251 0.73937 0 0 .58 .73 .01 
          
IRTLRDIF  250 0.50 1.35251 0.73937 0 0 .72 .83 .05 
Wald Test  250 0.50 1.35251 0.73937 0 0 .58 .72 .01 
          
IRTLRDIF  250 1.00 1.35251 0.73937 0 0 .70 .77 .06 
Wald Test  250 1.00 1.35251 0.73937 0 0 .53 .70 .03 
          
IRTLRDIF  250 0.00 1.35251 0.73937 1 1 .69 .76 .04 
Wald Test  250 0.00 1.35251 0.73937 1 1 .67 .62 .24 
          
IRTLRDIF  250 0.50 1.35251 0.73937 1 1 .78 .71 .45 
Wald Test  250 0.50 1.35251 0.73937 1 1 .70 .66 .23 
          
IRTLRDIF  250 1.00 1.35251 0.73937 1 1 .66 .57 .35 
Wald Test  250 1.00 1.35251 0.73937 1 1 .66 .64 .20 
          
 



64 

Table 13 
 
Comparison of Habing’s IRTLRDIF results to the Wald test results: Proportion of only b-
DIF detected 
 
 

N 
Mean 
Diff 

Fixed 
a: Ref 

Fixed 
a: Foc 

Fixed 
b: 

Ref 

Fixed 
b: 

Foc 
Overall-

DIF a-DIF b-DIF 
          
IRTLRDIF  250 0.00 1 1 1.15 0.85 .37 .07 .44 
Wald Test  250 0.00 1 1 1.15 0.85 .26 .03 .37 
          
IRTLRDIF  250 0.50 1 1 1.15 0.85 .32 .03 .46 
Wald Test  250 0.50 1 1 1.15 0.85 .22 .02 .34 
          
IRTLRDIF  250 1.00 1 1 1.15 0.85 .34 .06 .41 
Wald Test  250 1.00 1 1 1.15 0.85 .19 .03 .28 
          
IRTLRDIF  250 0.00 1 1 0.15 -0.15 .49 .05 .58 
Wald Test  250 0.00 1 1 0.15 -0.15 .32 .04 .45 
          
IRTLRDIF  250 0.50 1 1 0.15 -0.15 .48 .05 .57 
Wald Test  250 0.50 1 1 0.15 -0.15 .33 .04 .44 
          
IRTLRDIF  250 1.00 1 1 0.15 -0.15 .47 .05 .57 
Wald Test  250 1.00 1 1 0.15 -0.15 .27 .03 .37 
          
IRTLRDIF  250 0.00 1 1 1.25 0.75 .82 .04 .90 
Wald Test  250 0.00 1 1 1.25 0.75 .72 .03 .84 
          
IRTLRDIF  250 0.50 1 1 1.25 0.75 .83 .06 .91 
Wald Test  250 0.50 1 1 1.25 0.75 .69 .03 .82 
          
IRTLRDIF  250 1.00 1 1 1.25 0.75 .73 .05 .82 
Wald Test  250 1.00 1 1 1.25 0.75 .57 .02 .70 
          
IRTLRDIF  250 0.00 1 1 0.25 -0.25 .92 .07 .96 
Wald Test  250 0.00 1 1 0.25 -0.25 .83 .03 .92 
          
IRTLRDIF  250 0.50 1 1 0.25 -0.25 .90 .04 .94 
Wald Test  250 0.50 1 1 0.25 -0.25 .83 .03 .91 
          
IRTLRDIF  250 1.00 1 1 0.25 -0.25 .88 .05 .92 
Wald Test  250 1.00 1 1 0.25 -0.25 .76 .04 .84 
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Table 14 
 
Multiple groups DIF example: Estimated means and variances for relevant groups 
administered the EDS 
 
 Black Female Black Male White Female White Male 
 (N = 402) (N = 187) (N = 1994) (N = 2085) 
 Mean (Var) Mean (Var) Mean (Var) Mean (Var) 
  
Two-Stage 0.88 (0.89) 1.21 (1.24) 0.13 (0.60) 0.00 (1.00)† 
  
All-Other Anchor* 0.85 (0.90) 1.17 (1.22) 0.17 (0.59) 0.00 (1.00)† 
  
    Combined Groups-  
    Race* 

 
0.98 (1.30) 

 
0.98 (1.30) 

 
0.00 (1.00)† 

 
0.00 (1.00)† 

  
    Combined Groups-  
    Gender* 

 
0.18 (0.63) 

 
 0.00 (1.00)† 

 
0.18 (0.63) 

 
0.00 (1.00)† 

  
    Combined Groups-  
    Interaction* 
 

 
 0.00 (1.00)† 

 
0.11 (0.67) 

 
0.11 (0.67) 

 
0.00 (1.00)† 

†  Reference group. 
* Means are estimated using items 2-5 as the anchor. 
 



 

 

Table 15 
 
Comparison of IRTLRDIF results to the Wald test results for the multiple groups DIF example:  EDS item 1 
 
                                                All-Other Anchor               Two-Stage    
                            Combined Groups                                                            Uncombined Groups                              
  

  Ignoring Tests Only 
Race-

Gender† 
Gender-
Race† 

Race-
Gender† 

Gender-
Race† 

Race-
Gender† 

Gender-
Race† 

 
  IRTLRDIF Wald Wald Wald Wald Wald Wald Wald 

Race d.f. χ2 χ2 χ2 χ2 χ2 χ2 χ2 χ2 
 

Overall-DIF 6 36.2* 48.2* 48.2* 48.7* 24.7* 24.6* 19.2* 18.3* 
a-DIF 1 2.8   4.5*   4.5*   4.5* 3.1 2.7 2.5 2.3 
b-DIF 

 
5 33.4* 43.7* 43.7* 44.2* 21.6* 21.9* 16.8* 16.0* 

Gender d.f. χ2 χ2 χ2 χ2 χ2 χ2 χ2 χ2 
 

Overall-DIF 6 23.1* 21.9* 21.3* 21.9*        12.3 13.6* 9.6       11.7 
a-DIF 1 0.9 1.0 1.0 1.0 0.1 0.3 0.0 0.1 
b-DIF 

 
5 22.3* 20.9* 20.4* 20.9* 12.2* 13.3* 9.6 11.6* 

Interaction d.f. χ2 χ2 χ2 χ2 χ2 χ2 χ2 χ2 
 

Overall-DIF 6 23.6* 23.5* 37.3* 37.3* 6.4 6.4 5.0 5.0 
a-DIF 1 3.1   3.9*   6.2*   6.2*   5.0*   5.0* 3.6 3.6 
b-DIF 5 20.5* 19.6* 31.1* 31.1* 1.4 1.4 1.4 1.4 

          
†  Ignoring-eliminating order. 
* Significant at the .05 level. 
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Figure 1 
 
Proportions of overall DIF, a-DIF, and b-DIF detected at the .05 level for each simulation condition under the GRM with randomized 
groups. 
 
 

N = 250/group                  N = 1000/group 
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Figure 2 
 
Proportions of overall DIF, a-DIF, and b-DIF detected at the .05 level for each simulation condition under the GRM with two-stage 
estimation and no simulated mean difference between the groups. 
 
 

N = 250/group                  N = 1000/group 
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Figure 3 
 
Proportions of overall DIF, a-DIF, and b-DIF detected at the .05 level for each simulation condition under the GRM with two-stage 
estimation and a -.6 simulated mean difference between the groups. 
 
 

N = 250/group                  N = 1000/group 
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 Figure 4 
 
Proportions of overall DIF, a-DIF, b-DIF, and g-DIF detected at the .05 level for each simulation condition under the 3PL model with 
randomized groups. 
 
 

N = 250/group                  N = 1000/group 
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Figure 5 
 
Proportions of overall DIF, a-DIF, b-DIF, and g-DIF detected at the .05 level for each simulation condition under the 3PL model with 
two-stage estimation and no simulated mean difference between the groups. 
 
 

N = 250/group                  N = 1000/group 
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Figure 6 
 
Proportions of overall DIF, a-DIF, b-DIF, and g-DIF detected at the .05 level for each simulation condition under the 3PL model with 
two-stage estimation and a -.6 simulated mean difference between the groups. 
 
 

N = 250/group                  N = 1000/group 
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Figure 7 
 
Multiple groups DIF example: Expected score on item 1 of the EDS, using the all-other anchor procedure. 
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Appendix A 

Tables of Percentages of Extreme Slopes using the 3PL Model 
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Table A1 
 
Percentages of items with extreme slopes for no-DIF simulation cells using the 3PL model 
 

N Test length 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

 
  250 

 
  5 19.6 19.8 24.0 

 
  250 

 
20   2.8   2.8   4.8 

  250 
 

40   1.9   1.9   3.5 
 

1000 
 

  5   7.0   7.0   9.4 
 

1000 
 

20   0.3   0.3   0.7 
 

1000 40   0.2   0.2   0.4 
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Table A2 
 
Percentages of items with extreme slopes for DIF simulation cells using the 3PL model 
 
  

DIF Items 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N 
Test 

length a-DIF b-DIF 
no-DIF 
items 

DIF 
items 

no-DIF 
items 

DIF 
items 

no-DIF 
items 

DIF 
items 

 
  250 

 
  5 .5 .4 20.3 14.0 20.3 14.0 26.3 23.0 

 
  250 

 
  5 .5 .8 19.3 15.0 19.3 15.0 25.5 30.0 

  250 
 

  5  2 .4 19.8 38.0 19.3 38.0 25.0 35.0 

  250 
 

  5  2 .8 19.3 42.0 19.5 42.0 23.8 51.0 
 

  250 20 .5 .4   3.0   3.0   3.0   3.0   6.0   3.3 
 

  250 
 

20 .5 .8   3.3   2.8   3.4   2.5   5.8   3.8 

  250 
 

20  2 .4   2.5 11.3   2.6 11.3   4.5 18.3 

  250 
 

20  2 .8   2.8 17.5   3.9 18.3   4.6 24.5 
 

  250 
 

40 .5 .4   2.0   2.9   2.0   2.9   3.8   2.8 
 

  250 
 

40 .5 .8   2.1   3.3   2.1   3.1   3.5   4.4 

  250 
 

40  2 .4   1.8   6.4   1.8   6.6   3.0 11.0 

  250 
 

40  2 .8   1.6 10.0   1.6 10.3   3.0 17.9 
 

1000 
 

  5 .5 .4   7.0   9.0   6.8   9.0 11.0   9.0 
 

1000 
 

  5 .5 .8   7.5   8.0     7.3   8.0 12.3 11.0 

1000 
 

  5  2 .4   5.0 26.0   5.0 26.0   9.3 26.0 

1000 
 

  5  2 .8   6.8 31.0   6.8 32.0   9.8 31.0 
 

1000 20 .5 .4   0.4   0.3   0.4   0.3   0.0   0.8 
 

1000 
 

20 .5 .8   0.3   0.3   0.3   0.3   0.8   0.5 
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Table A2: Percentages of items with extreme slopes for DIF simulation cells using the 3PL 
model (continued) 
 
  

DIF Items 
Randomized 

Groups  
Two-Stage: 
0 Mean Diff 

Two-Stage: 
-.6 Mean Diff 

N 
Test 

length a-DIF b-DIF 
no-DIF 
items 

DIF 
items 

no-DIF 
items 

DIF 
items 

no-DIF 
items 

DIF 
items 

1000 
 

20  2 .4 0.3 2.3 0.3 0.2 0.6 4.5 
 

1000 
 

20 
 

 2 .8 0.3 5.5 0.3 5.5 0.6 7.0 
 

1000 
 

40 .5 .4 0.2 0.5 0.2 0.5 0.3 1.0 
 

1000 
 

40 .5 .8 0.2 0.5 0.2 0.5 0.2 1.1 

1000 
 

40  2 .4 0.2 1.6 0.2 1.6 0.2 3.5 

1000 
 

40  2 .8 0.2 3.1 0.2 3.0 0.2 5.9 
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