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ABSTRACT

BENJAMIN DODSON: Caustics and the Indefinite Signature Schrödinger Equation,

Linear and Nonlinear

(Under the direction of Professor Michael Taylor)

The evolution of surface waves in deep water is given by a Schrodinger-like equation. In

deep water surface water waves evolve under the nonlinear equation

(0.0.1) 2iut =
1

4
(uxx − 2uyy) + q|u|2u

Where x, y are coordinates in R2, q is a constant. The techniques for the Schrodinger

equation can be used in the study of the evolution of (1.1.19), although the behavior is

often quite different.

This thesis will focus on three main areas. First, it will concentrate on the behavior

the linear Schrödinger equation iut + ∆u = 0, in particular, on the asymptotic behavior

of eit∆u0 as t ↘ 0. This has a connection to the asymptotic behavior of the pointwise

Fourier inversion SRf as R↗∞.

Secondly, this thesis will address the behavior of the indefinite signature Schrödinger

equation iut + Lu = 0, where
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L(p,q) =

p∑
i=1

∂2

∂x2
i

−
p+q∑
j=p+1

∂2

∂x2
j

,

as well as iut + Lu = F (u), where F is a nonlinearity.

Finally, some supercritical local existence results will be obtained for a power-type non-

linearity,

(0.0.2)

iut + ∆u = |u|αu

u(0, x) = χB(0;1),

and a global existence result for α = 4
n−2ρ

, u0 ∈ Hρ+ε,2(Rn)∩H1/2+ε,2(Rn)∩H1/2+ε,1(Rn),

u0 radial.
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CHAPTER 1

Introduction



1.1. Introduction

The linear Schrödinger equation on Euclidean space Rn is the partial differential equation

(1.1.1)

iut + ∆u = 0

u(0, x) = u0(x).

In phase space this has the representation

(1.1.2) i
∂

∂t
û(t, ξ)− |ξ|2û(t, ξ) = 0,

so the solution to (1.1.1) is given by the Fourier multiplier

(1.1.3) F(eit∆u0) = e−it|ξ|
2

û0(ξ).

Linear Schrödinger operator as t↘ 0:

Since |e−it|ξ|2| = 1,

‖eit∆u0‖Hσ,2(Rn) = ‖u0‖Hσ,2(Rn).

By the Lebesgue dominated convergence theorem, when u0 ∈ Hσ,2,

(1.1.4) lim
t↘0
‖eit∆u0 − u0‖Hσ,2 = 0.

By the Sobolev embedding theorem Hσ,2(Rn) ⊂ L∞(Rn) for σ > n/2, so if u0 ∈ Hσ,2(Rn)

(1.1.5) lim
t↘0
‖eit∆u0 − u0‖L∞(Rn) = 0.
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(1.1.5) is not true in general for σ ≤ n
2
. This failure gives rise to the Gibbs phenomenon.

If u0 ∈ L1(Rn), eit∆u0 is continuous for all t > 0. Thus if eit∆u0 → u0 uniformly, then u0

is continuous. Therefore, u0 discontinuous forces

(1.1.6) ‖eit∆u0 − u0‖L∞(Rn) ≥ c > 0

for all t > 0.

Definition 1.1.1. Suppose u0 is discontinuous in a neighborhood of x0 ∈ Rn. The

Gibbs phenomenon is the failure of uniform convergence, (1.1.6), in a neighborhood of

x0.

Remark: The Gibbs phenomenon was originally described in the context of Fourier

inversion. Let

(1.1.7)

SRf(x) = DR
n ∗ f(x),

DR
n (x) = (2π)−n/2

∫
|ξ|≤R

eix·ξdξ.

Again by Plancherel’s theorem

(1.1.8) lim
R→∞

‖SRf(x)− f(x)‖L2(Rn) = 0.

However, if f ∈ L1(Rn), SRf is continuous for every R <∞, so when f is discontinuous

(1.1.9) lim
R→∞

‖SRf − f‖L∞(Rn) ≥ c > 0.

3



See [29] for a detailed examination of this topic.

In contrast to the Gibbs phenomenon, the Pinsky phenomenon is a non-local phenome-

non. Let χΩ denote the characteristic function of a region Ω ⊂ Rn. When n ≥ 2,

(1.1.10) |eit∆χB(0;1)(0)− χB(0;1)(0)| = C(t)t(2−n)/2 +O(t(3−n)/2),

|C(t)| = c > 0, C(t) is an oscillatory function. B(0; 1) is the ball centered at 0 ∈ Rn of

radius 1. This is despite the fact that χB(0;1) is C∞ at the origin. A similar effect arises

in Fourier inversion. When n ≥ 3,

(1.1.11) |SRχB(0;1) − χB(0;1)| = C(R)R(n−3)/2 +O(R(n−4)/2),

with |C(R)| = c′ > 0, C(R) is an oscillatory function. There is, in fact, a connection

between the asymptotics of the Fourier inversion at a point x0 as R ↗ ∞ and the

asymptotics of the Schrödinger operator as t↘ 0 at that same point.

The behavior of the wave equation gives good intuition for the Pinsky phenomenon. For

the wave equation

(1.1.12)

∂ttu−∆u = 0,

u(0, x) = χB(0;1);ut(0, x) = 0,

the singularities at the boundary |x| = 1 will flow to the center and will focus at time

t = 1. By the work of [29], this effect explains the failure of convergence for (1.1.11) in

dimensions n ≥ 3. A similar focusing effect arises for the Schrödinger equation.

4



Theorem 1.1.2. Let f(x) be a compactly supported function, and suppose f(x) is C∞

in some neighborhood of x0. If

(1.1.13) SRf(x0) = f(x0) +
n∑
k=1

cke
iRtkRα +O(Rα−1/2),

as R→∞, then

(1.1.14) eit∆f(x0) = f(x0) +O(t−α−1/2).

Theorem 1.1.3. Suppose the Schrödinger equation has the asymptotic expansion

(1.1.15) eit∆f(x) = f(x) +O(tα)eiβ/t +O(tα+1/2).

Additionally suppose that f(x) is smooth in a neighborhood of x0 and is compactly sup-

ported. Then there is the pointwise Fourier convergence,

(1.1.16) SRf(x) = f(x) +O(R−1/2−α).

By inspecting (1.1.10) it is quite clear that in R3, eit∆χB(0;1) fails to have a uniform L∞

bound. In fact, as t↘ 0, all blowup is nonlocal for any χΩ, where Ω is a manifold with

corners.

Definition 1.1.4. In R2 a two dimensional manifold with corners is a two dimen-

sional manifold with boundary, Ω ⊂ R2, where ∂Ω = ∪Ni=1γi, where γi : [0, 1] → R2 are

smooth on [0,1].

5



Inductively, define Ω ⊂ Rm to be an n-dimensional manifold with corners if Ω is n-

dimensional and ∂Ω = ∪Ni=1Ki, where Ki is an n - 1 dimensional manifold with corners

embedded in Rm.

Choose η ∈ C∞0 , δ > 0 depends on Ω,

η(x) =


1, |x| < δ;

0, |x| > 2δ.

Theorem 1.1.5. There exists a constant 0 < C <∞ such that

(1.1.17) |eit∆(η(x− x0)χΩ)(x0)| ≤ C <∞

for any point x0 ∈ Rn, t ∈ (0,∞), Ω is a manifold with corners.

This is proved by applying the methods used to prove Theorem [1.1.2] and Theorem

[1.1.3],

Theorem 1.1.6. There exists a constant 0 < C <∞ such that

(1.1.18) |SR(η(x− x0)χΩ)(x0)| ≤ C <∞,

for any point x0 ∈ Rn, R ∈ (0,∞), Ω is a manifold with corners.

Indefinite Signature Schrödinger Equation

The evolution of surface waves in deep water is given by a Schrödinger-type equation On

deep water surface water waves evolve under the nonlinear equation

6



(1.1.19) 2iut =
1

4
(uxx − 2uyy) + q|u|2u,

where x, y are coordinates in R2.

This motivates the study of the linear equation

(1.1.20) iut + Lu = 0.

One could also choose an operator L with signature (1,1),

(1.1.21) L =
∂2

∂x2
1

− ∂2

∂x2
2

,

More generally take

(1.1.22) Lp,q =
∂2

∂x2
1

+ ...+
∂2

∂x2
p

− ∂2

∂x2
p+1

− ...− ∂2

∂x2
n

.

Both the Gibbs phenomenon and the Pinsky phenomenon will be different for an indefi-

nite signature Schrödinger equation than they are for the Schrödinger equation

iut + ∆u = 0.

Gibbs Phenomenon: Let A ∈ O(2), the group of orthogonal 2 × 2 matrices. Define the

unitary operator

(TAf)(x) = f(A−1x).

7



(1.1.23) eit∆(TAf)(x) = TA(eit∆f)(x).

This is not true when L has signature (1,1). When L has signature (p, q) let ek be

the vector corresponding to the differential operator ∂
∂xk

. Decompose Rn = Vp ⊕ Vq,

Vp = span {e1, ..., ep} and Vq = span {ep+1, ..., ep+q}. Define the group

(1.1.24) Gp,q = {

 A 0

0 B

 : A ∈ O(p), B ∈ O(q)}.

If g ∈ G ⊂ O(n),

(1.1.25) eitL(Tgf)(x) = Tg(e
itLf)(x).

But eitL(Thf)(x) 6= Th(e
itLf)(x) in general when h ∈ O(n), h /∈ G. So the Gibbs

phenomenon for eitLχΩ depends on both the shape and position Ω.

The Pinsky Phenomenon: Define a generalized ball in Rn,

(1.1.26) Ω = {x : |〈x, x〉| ≤ 1},

where 〈, 〉 is the inner product with signature (p, q). The region Ω is bounded by the

hyperboloids

x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q = ±1

8



So the Pinsky phenomenon for eitLχB(0;1) is weaker than for eit∆χB(0;1). In particular,

suppose L has signature (p,q) with p ≥ 2, p ≥ q. Then eitLχB(0;1) has divergence of order

O(t(2−p)/2) at 0 ∈ Rn. However, there is a price to pay.

Theorem 1.1.7. Let L be the differential operator

(1.1.27) L =
1

a1

p∑
i=1

∂2

∂x2
i

+
1

a2

n∑
j=p+1

∂2

∂x2
j

.

Make the decomposition Rn = Vp ⊕ Vq, x = (xp, xq), (xp, 0) ∈ Vp, (0, xq) ∈ Vq. There is

focusing of type C(t)O(t(2−p)/2) along the axis xp = 0 when |xp| < |a1−a2|
|a1| and pointwise

convergence when |xp| > |a1−a2|
|a1| . In particular, as a1 → a2 the focusing concentrates to

the center. C(t) is a function of the form Ceia/t, a ∈ R. When |C(t)| = 1, but when

a 6= 0, C oscillates more and more rapidly as t→ 0.

This type of focusing gives improved nonlinear results.

Theorem 1.1.8. When n = 1, 2, the equation

(1.1.28)

iut + ∆u = F (u),

u(0, x) = χB(0;1),

with F ∈ C∞, F (0) = F ′(0) = 0, F : C → C, has a local solution on [0, T ] for some

T > 0.

Proof: See [27].
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The proof makes heavy use of the uniform estimate ‖eit∆χB(0;1)‖L∞(Rn) ≤ C. This

estimate is not available when n ≥ 3 due to the Pinsky phenomenon. However, this

estimate is available when L has signature (2, 1), since ‖eitLχB(0;1)‖L∞(R3) ≤ C <∞.

Theorem 1.1.9. Let F ∈ C∞, F : R2 → R2, F (0) = F ′(0) = 0 be the nonlinearity.

Then the equation

(1.1.29)

iut + Lu = F (u),

u(0) = u0 = χB(0;1)

is locally well-posed on some time interval [0, T0).

Schrödinger Equation for Power-type nonlinearities The Schrodinger equation

(1.1.30)

iut + ∆u = ±|u|
4

n−2ρu,

u(0, x) = u0(x),

is called the defocusing Schrodinger equation when the sign is + and the focusing

Schrodinger equation when the sign is −. Solving (1.1.30) gives an entire class of so-

lutions due to scaling. If u(t, x) is a solution on some interval [t−, t+] ⊂ R then

λn/2−ρu(λ2t, λx)

is also a solution on the interval [λ−2t−, λ
−2t+].

(1.1.31) ‖λn/2−ρu(0, λx)‖Ḣρ(Rn) = ‖u(0, x)‖Ḣρ(Rn)

10



(1.1.30) is called a Ḣρ(Rn) - critical nonlinear Schrodinger equation. When α = 4
n

(1.1.30)

is called an L2 - critical nonlinear Schrödinger equation, and when α = 4
n−2

, (1.1.30) is a

Ḣ1 - critical nonlinear Schrödinger equation. Such equations are particularly important,

because the mass

(1.1.32) M(u(t)) =

∫
|u(t, x)|2dx = M(u(0)),

and energy

(1.1.33) E(u(t)) =
1

2

∫
|∇u(t, x)|2dx± 1

2 + α

∫
|u(t, x)|2+αdx,

are conserved. The sign depends on the sign in (1.1.30). For the defocusing Schrödinger

equation, using quite different methods than the ones that will be used in this thesis,

substantial global well-posedness results have been obtained in each special case.

Theorem 1.1.10. The energy critical Schrödinger equation is globally well-posed and

scatters for u0 ∈ Ḣ1(Rn).

Proof: See [17] when n = 3, [34] when n = 4, and [35] for n ≥ 5.

Theorem 1.1.11. The mass critical Schrödinger equation is globally well-posed and

scatters for u0 ∈ L2(Rn), radial.

Proof: See [36] when n = 2, [40] for n ≥ 3.

11



Lemma 1.1.12. If u0 ∈ Ḣρ(Rn) for some 0 ≤ ρ < n
2
, n ≥ 3, then (1.1.30) has a

solution for some interval [0, T ], where T (u0) > 0. If u0 ∈ Hρ+ε(Rn), then (1.1.30) is

locally well-posed on some interval [0, T ], T (‖u0‖Hρ+ε(Rn)) > 0.

Combining this lemma with the conservation of L2(Rn) and conservation of Ḣ1 in the

defocusing case gives a global solution when u0 ∈ H1(Rn), 4
n
≤ α < 4

n−2
, simply by

iterating the local solutions.

The first improvement of these results came in [1], which extended global well-posedness

to

(1.1.34)

iut + ∆u = |u|2u,

u(0, x) ∈ Hs(R2), s > 3/5.

This method motivated [20], [18], [19], and [32] to extend H1(Rn) global well-posedness

results to lower regularity u0 ∈ Hs(Rn), s < 1, via the I-method. If u(t) solves (1.1.30),

then INu(t) solves the equation

(1.1.35) iINut + IN∆u = IN(|u|αu).

Where IN is a smooth Fourier multiplier,

(1.1.36) ÎNu(ξ) = mN(|ξ|)û(ξ),

12



(1.1.37) mN(|ξ|) =


1, |ξ| ≤ N ;

|ξ|s−1, |ξ| ≥ 2N .

‖INu0‖H1(Rn) ≤ N1−s‖u0‖H1(Rn).

However, IN(|u|αu) 6= |INu|α(INu), so to prove global existence one must endeavor to

control the modified energy

(1.1.38) E(INu(t)) =
1

2

∫
|∇INu(t, x)|2dx+

1

2 + α

∫
|INu(t, x)|2+αdx.

Currently the best results are global well-posedness for s > 1/3 for

(1.1.39) iut + ∆u = |u|2u

in R2 (see [11]) and s > 4/5 in R3 (see [18]). For the L2-critical nonlinear Schrodinger

equation

(1.1.40) iut + ∆u = |u|4/nu,

there is global well-posedness for s >
√

7−1
3

when n = 3, and s >
−(n−2)+

√
(n−2)2+8(n−2)

4

for n ≥ 4 (see [32]).

The method used in this thesis was inspired by the I-method, and seeks to take advantage

of the special structure of many types of solutions to (1.1.30). For many types of u0,

13



(1.1.30) has a local solution with some additional structure that can be exploited to prove

global existence.

(1.1.30) fails to be locally well-posed for u0 ∈ Hs(Rn), s < ρ. See [21] and [22]. Never-

theless, as was demonstrated in [27], when n = 1, 2,

iut + ∆u = |u|2ku

has a local solution for some interval [0, T ]. In particular, when n = 2, there is a local

solution for any Ḣ1 - subcritical Schrödinger equation. This can be extended to higher

dimensions (n ≥ 3) for a Ḣ1 subcritical Schrödinger equation.

Theorem 1.1.13. The nonlinear Schrödinger equation

(1.1.41)

iut + ∆u = |u|αu,

u0 = χΩ,

has a local solution as long as α < 4
n−2

. Ω is a smoothly bounded region in Rn.

For this initial data, the Duhamel term smooths the local solution, and thus it is of the

form

(1.1.42)

u(t, x) + v(t, x),

v(t, x) ∈ L∞t H1
x([0, T ]×Rn).

When n = 3,

14



(1.1.43)

iut + ∆u = |u|2u,

u(0, x) = χΩ,

has a solution of the form

eit∆χΩ + w(t, x),

w(t, x) ∈ L∞t H1
x([0, T ]×R3). It is clear that the equation

(1.1.44)

ivt + ∆v = |v|2v,

v(T, x) = w(T, x),

has a global solution since v ∈ H1(R3). But since

‖∇eit∆χΩ‖L∞x (R3) ≤
1

t3/2
,

then on [T,∞), eiT∆χΩ + w(T, x) can be treated very effectively as a perturbation of

w(T, x).

Theorem 1.1.14. (1.1.30) has a global solution for u0 = χΩ when Ω is a compact

region in Rn with smooth boundary and α = 4
n−2ρ

, 1 ≤ ρ < 4
n−2

.

Secondly, after making two more restrictions on the initial data (u0 radial and u0 ∈

H1/2+ε,1(Rn)), there are global existence results.

Theorem 1.1.15. (1.1.30) has a global solution for u0 radial,

(1.1.45) u0 ∈ Hρ+ε,2(Rn) ∩H1/2+ε,2(Rn) ∩H1/2+ε,1(Rn).

15



Remark: This method can also be applied to equations with combined power-type

nonlinearities.

Theorem 1.1.16. If u0 ∈ Hρ+ε,2(Rn) ∩ H1/2+ε,2(Rn) ∩ H1/2+ε,1(Rn) then there is a

global solution to

(1.1.46) iut + ∆u =
k∑
i=1

ci|u|αiu

With 4
n
≤ αi ≤ 4

n−2ρ
and ci > 0.
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CHAPTER 2

Positive Definite Signature



2.1. The Fourier Transform

The Fourier transform is an essential tool to the study of the linear Schrödinger

equation, and the free solution of the Schrodinger equation sheds light on the inverse

Fourier transform. Consider the function f : Rn → C.

(2.1.1) f̂(ξ) = (2π)−n/2
∫

Rn

f(x)e−ix·ξdx.

Since |e−ix·ξ| = 1, this function is well defined for f ∈ L1(Rn). We have

(2.1.2) F : L1(Rn)→ L∞(Rn).

Definition 2.1.1. The Schwartz function space is a Frechet space of functions with

bounded seminorms

(2.1.3) S(Rn) = {f : ‖xα∂βxf‖∞ ≤ C(α, β) <∞}

Here α = (α1, ..., αn) and β = (β1, ..., βn) are multiindices.

Let F denote the Fourier transform operator

(2.1.4) F : f(x)→ f̂(ξ).

The inverse of the Fourier transform is denoted F−1. This operator will be denoted f̌ .

(2.1.5) F−1 : f̂(ξ)→ f(x),
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(2.1.6) ǧ(x) = (2π)−n/2
∫

Rn

g(ξ)eix·ξdξ.

This function is well defined on S(Rn) and in fact defines a 1-1 isomorphism.

(2.1.7)

F : S → S,

F−1 : S → S.

This can be proved using the integration by parts identities.

∫
Rn

∂xif(x)e−ix·ξdx = −
∫

Rn

f(x)∂xie
−ix·ξdx

= −iξi
∫

Rn

f(x)e−ix·ξdx = −iξif̂(ξ),

∫
Rn

−ixif(x)e−ix·ξdx =

∫
f(x)

∂

∂ξi
e−ix·ξdx =

∂

∂ξ
f̂(ξ).

Then by the fact that (1+ |x|2)−n ∈ L1 and the commutator relations of ∂αx and the xα ·f

multiplier, (2.1.6) is well-defined on S(Rn). The proof that F−1 is the proper inverse

can be found in [26], for example.

Then by a change in the order of integration, for f, g ∈ S(Rn),

Theorem 2.1.2.

(2.1.8)

∫
Rn

f̂(ξ)g(ξ)dξ =

∫
Rn

f(x)ǧ(x)dx.
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This proves, in particular that F−1 is the adjoint of F .

‖f̂‖2
L2(Rn) = 〈F(f),F(f)〉 = 〈f,F−1F(f)〉 = ‖f‖2

L2(Rn)

This proves Plancherel’s theorem.

Theorem 2.1.3.

(2.1.9) ‖f‖L2(Rn) = ‖f̂‖L2(Rn).

This in turn proves F is an isomorphism on L2(Rn). In order to make sure f̂ ∈ L1(Rn), it

was necessary to integrate by parts, which required some degree of smoothness of f. Thus

there is no guarantee that this inversion formula will work for any old f(x) ∈ Lp(Rn),

1 ≤ p ≤ ∞. Certainly it will work if f̂(ξ) ∈ L1, and then f(x) ∈ L∞. However, there

does not exist an Lp space that will guarantee that f̂ ∈ L1.

Consider f(x) = χB(0;1) in R, where χΩ be the characteristic function of the set Ω ⊂ Rn,

and B(x; δ) is the ball of radius δ centered at x ∈ Rn.

f̂(ξ) =

∫ 1

−1

e−ix·ξ =
1

−iξ
[e−iξ − eiξ] =

2 sin(−ξ)
−ξ

=
2 sin(ξ)

ξ
.

f̂ is not integrable even though f ∈ L1(R) ∩ L∞(R).

Parseval’s theorem and Plancherel’s theorem will often arise in the analysis of the linear

Schrödinger equation. Let ǧ(ξ) = F−1(g).

Take the Cauchy Schwartz inequality.

(2.1.10)

∫
Rn

f(x)g(x)dx ≤ ‖f‖L2(Rn)‖g‖L2(Rn).
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Now, (1 + |x|)−α ∈ L2(Rn) for all α > n/2. This leads to the definition of the L2 based

Sobolev spaces.

Definition 2.1.4. The Sobolev space Ḣα is the space of functions such that

(2.1.11) |ξ|αf̂(ξ) ∈ L2(Rn),

and Hα is the space of functions such that

(2.1.12) (1 + |ξ|)αf̂(ξ) ∈ L2(Rn).

Then Hα ⊂ L∞(Rn) for α > n/2. In fact, f is also continuous by the dominated

convergence theorem.

When f does not lie in Hn/2+ε,2(Rn), pointwise Fourier inversion is not so easy. So

instead, consider a family of partial Fourier inverses for some f(x) ∈ L1(Rn). Since

f̂(ξ) ∈ L∞(Rn), f̂χB(0;R) ∈ L1. So define the partial Fourier inverse

(2.1.13) SRf(x) = (2π)−n
∫
|ξ|≤R

f̂(ξ)eix·ξdξ.

It has been a subject of some discussion whether or not SRf(x)→ f(x) as R→∞, and

if it does, what the rate of convergence is. This phenomenon is closely related to the

formation of caustics in the wave equation. See for example, [10], [29]. For a general

introduction to the theory of Fourier transforms, see [8], [26], Chapter three.

Given some extra symmetry, some additional estimates can be made in Rn.
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Lemma 2.1.5. For |t| < 1, |x| > 1.

(2.1.14) t−n/2
∫
|r|=1

e−ix·r/2tdσ(r) = t−1/2|x|−(n−1)/2[C1e
−i|x|r/2t+C2e

i|x|r/2t]+O(|x|−n/2).

Proof: After a rotation of coordinates, let x = (0, ..., 0, 1). x·r = |x||r| cos(θ) = |x| cos(θ),

where θ is the angle between (0, ..., 0, 1) and r. Rewrite the integral in polar coordinates.

∫
|r|=1

e−ix·r/2tdσ(r) =

∫ π/2

−π/2
e−i|x|r sin(θ)/2t(cos(θ))n−2dθ.

Make a change of variables, u = sin(θ), du = cos(θ)dθ.

=

∫ 1

−1

e−i|x|u/2t(1− u2)(n−3)/2du.

If n is odd, integrate by parts n−1
2

times. If n is even, integrate by parts n−2
2

times and

then let x = v2, dx = 2vdv,

∫ 1

0

x−1/2eix/tdx =
1

2

∫ 1

0

eiv
2/tdv = eiπ/4t1/2 +O(t).

This completes the proof �.

Theorem 2.1.6. If u is a radial function, u ∈ H1/2+ε,2(Rn),

(2.1.15) ‖|x|(n−1)/2−εu‖L∞(Rn) . ‖u‖H1/2+ε,2(Rn)

Proof: Make the Fourier inversion,

u(x) =

∫
|ξ|≤ 1

|x|

eix·ξf̂(ξ)dξ +

∫
|ξ|> 1

|x|

eix·ξf̂(ξ)dξ.
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∫
|ξ|=r

eix·ξdσ(ξ)dξ ∼ (
1

r|x|
)(n−1)/2.

Then split the integral into two pieces.

∫
|ξ|≥1/|x|

eix·ξf̂(ξ)dξ ∼
∫ ∞

1/|x|
rn−1(

1

r|x|
)(n−1)/2f̂(r)dr =

1

|x|(n−1)/2

∫ ∞

1/|x|
f̂(r)r(n−1)/2dr.

∫ ∞

0

|f̂(r)r1/2+ε|2rn−1dr +

∫ ∞

0

|f̂(r)|2rn−1dr.

∫ ∞

1/|x|
|f̂(r)|r(n−1)/2dr

≤ (

∫ ∞

1/|x|
|f̂(r)|2rn−1(1 + r1+2εdr)1/2(

∫ ∞

1/|x|
(1 + r)−1−2εdr)1/2 ≤ ‖f‖H1/2+ε(Rn).

Now for the second piece.

∫
|ξ|≤ 1

|x|

|f̂(ξ)|dξ . (

∫ 1/|x|

0

|f̂(r)|2r(n−1)(1 + r1+2ε)dr)1/2(

∫ 1/|x|

0

(1 + r1+2ε)dr)1/2

. |x|−(n−1)/2‖f‖H1/2+ε(Rn).

2.2. The Free Schrodinger Equation

The solution for the linear Schrödinger equation.

(2.2.1)

iut = ∆u

u(0, x) = u0(x)

is given by the function
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(2.2.2) u(x, t) = e−it∆u0.

By the Fourier transform identities of section 1.

∆f = −(ξ2
1 + ξ2

2)f̂(ξ).

More generally for the equation

(2.2.3) (a+ ib)ut = ∆u,

where a ≥ 0 and |a+ ib| = 1 the solution is given by

(2.2.4) et∆/(a+ib)u0 = F−1(e−t|ξ|
2/(a+ib)û0(ξ))

(2.2.5) û(x, t) = e−t(|ξ|
2/(a+ib))f̂(ξ)

(2.2.6) u(x, t) =
1

4π2

∫ ∫
e−t|ξ|

2/(a+ib)f(y)ei(x−y)·ξdydξ.

By a well-known approximation argument, found in [26], for example, the order of inte-

gration can be switched for f ∈ L2(Rn).

(2.2.7) u(x, t) =

∫
f(y)

∫
e−t|ξ|

2/(a+ib)ei(x−y)·ξdξdy.
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Now complete the square.

tξ2
2 + (x2 − y2)ξ2 = t(ξ2 +

(x2 − y2)

2t
)2 − (x2 − y2)2

4t
,

tξ2
1 − (x1 − y1)ξ1 = t(ξ1 −

(x1 − y1)

2t
)2 − (x1 − y1)2

4t
,

t

a+ ib
|ξ|2 − (x− y) · ξ =

t

a+ ib
|ξ − (a+ ib)

2t
(x− y)|2 − a+ ib

4t
|x− y|2.

Changing the contour gives the identities.∫ ∞

−∞
eix

2

dx =
√
πeiπ/4,

∫ ∞

−∞
e−ix

2

dx =
√
πe−iπ/4.

So e
t∆
a+ib has convolution kernel

(2.2.8) K(x, y) =
(−a− ib)n/2

(4πt)n/2
e(a+ib)

|x−y|2
4t .

Theorem 2.2.1. Since |eit|ξ|2| = 1 and eit∆ is a Fourier multiplier, by Plancherel’s

theorem there is an L2 identity.

(2.2.9) ‖eit∆f‖L2(Rn) = ‖f‖L2(Rn).

Also, by properties of convolution

(2.2.10) ‖eit∆f‖L∞(Rn) ≤
C(n)

tn/2
‖f‖L1(Rn).
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These identities can be interpolated for 2 < p <∞.

(2.2.11) ‖eit∆f‖Lp(Rn) ≤
C(n, p)

tn(1/2−1/p)
‖f‖Lp′ (Rn).

Here p′ is the dual Hölder exponent to p.

1

p
+

1

p′
= 1.

Remark: eit∆ is in fact an Hs,2(Rn) isometry for any Hs,2(Rn) space of functions for

any s.

(2.2.12) eit∆u0(x) = C(n)

∫
Rn

ei|x−y|
2/4tu0(y)dy

2.3. The Free Wave Operator

For the free wave equation

(2.3.1)

(∂tt −∆)u = 0,

u(0, x) = f(x),

ut(0, x) = 0,

the solution is given by

(2.3.2) cos(t
√

∆)f(x) = u(t, x),

26



(2.3.3) cos(t
√
−∆) =

1

2
(eit
√
−∆ + e−it

√
−∆),

which in turn is given by the Fourier multiplier

(2.3.4) cos(t|ξ|) =
1

2
(eit|ξ| + e−it|ξ|).

Now by a change of variables

∫ ∞

−∞
e−iu

2

e−2iut|ξ|e−it
2|ξ|2du = C,

For some constant C.

Ceit
2|ξ|2 =

∫ ∞

−∞
e−iu

2

e−2iut|ξ|du.

On the other hand

∫ ∞

0

α1/2e±iα(x−1/x)2

dx

=

∫ ∞

1

α1/2e±iα(x−1/x)2

dx+

∫ 1

0

α1/2e±i(x−1/x)2

dx.

(Let u = x− 1
x
⇒ du = dx+ 1

x2dx) Then the previous quantity

=

∫ ∞

0

α1/2e±iαu
2

du−
∫ ∞

1

α1/2

x2
e±iα(x−1/x)2

dx+

∫ 1

0

α1/2e±iα(x−1/x)2

dx.

After a change of variables x 7→ 1
x
, dx 7→ − 1

x2dx.
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∫ 1

0

α1/2e±iα(x−1/x)2

dx =

∫ ∞

1

α1/2

x2
e±iα(x−1/x)2

dx

(2.3.5) Ce±iπ/4 =

∫ ∞

0

α1/2e±iα(x−1/x)2

dx

So,

(2.3.6)

∫ ∞

0

α1/2e±iα(x−1/x)2

dx =

∫ ∞

0

α1/2e±i(α
1/2x−α

1/2

x
)2

dx

(2.3.7) =

∫ ∞

0

e±i(x−
α
x

)2

dx

(2.3.8) Ce±
iπ
4 =

∫ ∞

0

e±iu
2

e∓2iαe±i
α2

u2 du.

Now let t|ξ| = α.

(2.3.9) Ce±
iπ
4 e±2it|ξ| =

∫ ∞

0

e±iu
2

e±i
t2|ξ|2

u2 du.

(2.3.10) Ce±2it|ξ| = e∓
iπ
4

∫ ∞

0

e±iu
2

e±i
t2|ξ|2

u2 du.

(2.3.11) 2C cos(2t|ξ|) =

∫ ∞

0

[e−
πi
4 eiu

2

ei
t2|ξ|2

u2 + e
πi
4 e−iu

2

e−i
t2|ξ|2

u2 ]du.
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Next, an identity derived in [29] will be applied to (2.3.11). For the reader’s convenience,

teh derivation of the identity will be written below. Let ϕ be a Borel function of the

operator A.

(2.3.12) ϕ(A) =

∫ ∞

−∞
ϕ(λ)dEλ,

Where Eλ is the spectral resolution of A, dEλ is the spectral measure of A. If there is a

sequence of Borel functions ϕν → ϕ a.e. with respect to dEλ, |ϕν | ≤ C,

(2.3.13) ϕ(A)f = lim
ν→∞

∫ ∞

−∞
ϕν(λ)dEλf.

Suppose that both ϕ, ϕ̂ ∈ L1(R).

ϕ(λ) =
1

2π

∫ ∞

−∞
ϕ̂(t)eitλdt.

From the definition of the spectrum,

∫ ∞

−∞
eitλdEλdλ = eitA.

1

2π

∫ ∞

−∞

∫ ∞

−∞
ϕ̂(t)eitλdEλdtdλ =

1

2π

∫ ∞

−∞
ϕ̂(t)eitAdt.

If ϕ is an even function,

(2.3.14) ϕ(A) =
1

2π

∫ ∞

−∞
ϕ̂(t) cos(tA)dt.
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In particular, for the Fourier multiplier

SR(A) =


1, |A| ≤ R;

0, |A| > R.

ϕ̂(t) =

∫ R

−R
e−itxdx = 2

sin(Rt)

t
.

(2.3.15) SRf = lim
ν→∞

1

π

∫ ν

−ν

sinRt

t
cos(tA)fdt.

Combine (2.3.11) and (2.3.15),

(2.3.16) SRf = lim
ν→∞

1

π

∫ ν

−ν

∫ ∞

0

sin(Rt)

t
[e−

πi
4 eiu

2

e
−it2∆

4u2 + e
πi
4 e−iu

2

e
it2∆
4u2 ]f(x)dudt.

This establishes a close connection between the behavior of SRf as R→∞ and eit∆f as

t↘ 0.

2.4. Gibbs Phenomenon on R

Because eit∆ is a Fourier multiplier with |e−it|ξ|2| ≤ 1, if u0 ∈ Hs for some s ≥ 0, then by

the Lebesgue dominated convergence theorem there will be convergence in Hs.

(2.4.1) ‖eit∆u0 − u0‖2
Hs =

∫
|eit|ξ|2 − 1|2|û(ξ)|2〈ξ〉2sdξ → 0,

as t→ 0.

Similarly, for Fourier inversion, |SR(ξ)| ≤ 1 so
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(2.4.2) ‖SRf(x)− f(x)‖2
Hs(Rn) =

∫
|ξ|≥R

|f̂(ξ)|2〈ξ〉2sdξ,

which will converge by the Lebesgue dominated convergence theorem.

If s > n/2, then by the Sobolev embedding theorem

lim
R→∞

‖SRf − f‖L∞(Rn) = 0,

lim
t→0
‖eit∆f − f‖L∞(Rn) = 0.

Moreover if 1
p
≥ 1

2
− s

n
,

lim
R→∞

‖SRf − f‖Lp(Rn) = 0,

lim
t→0
‖eit∆f − f‖Lp(Rn) = 0.

On the other hand, by (2.2.12) and the dominated convergence theorem, if f ∈ L1(Rn)

and t > 0, then eit∆f is a continuous function. If f ∈ L1(Rn), |f̂(ξ)| ≤ C‖f‖L1(Rn), so

SRf is also continuous by the dominated convergence theorem. If f ∈ L2(Rn) then by

(2.4.2), eit∆f → f and SRf → f almost everywhere.

If eit∆f → f uniformly as t→ 0, or SRf → f uniformly as R→∞, then f is a continuous

function. So for f discontinuous the best that can be hoped for is pointwise convergence.
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Definition 2.4.1. Suppose for some x ∈ Rn,

(2.4.3) lim
t↘0
|eit∆u0(x)− u0(x)| = 0

Then eit∆u0(x) converges to u0(x).

If for every x ∈ Rn, (2.4.3) holds, then eit∆u0 → u0 pointwise.

Remark: The rate of convergence may depend on x.

Example: Let

u0 = χ[−1,1]


1, |x| < 1;

1/2, |x| = 1;

0, |x| > 1.

Suppose without loss of generality that x ≥ 0.

(2.4.4) t−1/2

∫ 1

−1

ei(x−y)2/tdy = t−1/2

∫ 1+x

−1+x

eiy
2/tdy =

∫ (1+x)/t1/2

(−1+x)/t1/2
eiy

2

dy,

=

∫ ∞

(−1+x)t−1/2

eiy
2

dy −
∫ ∞

(1+x)t−1/2

eiy
2

dy

(2.4.5) =

∫ ∞

(−1+x)t−1/2

eiy
2

dy +O(t1/2).

Here the estimate

(2.4.6)

∫ ∞

A

eix
2

dx =

∫ ∞

A

1

2ix

d

dx
(eix

2

)dx =
1

2ix
eix

2|∞A +

∫ ∞

A

1

2ix2
eix

2

dx = O(
1

A
)
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has been used. Fix an x. If x > 1, (2.4.5)→ 0 as t→ 0. If x < 1, (2.4.5)→
√
πeiπ/4. If

x = 1, (2.4.5) =
√
π

2
eiπ/4 + O(t1/2), so there is pointwise convergence. However, uniform

convergence fails.

Consider the sequence (xn, tn) where tn → 0, xn = 1 + Ct
1/2
n for some C 6= 0,

eitn∆u0(xn) =

∫ ∞

C

eiy
2

dy +O(t1/2n ).

Therefore

(2.4.7) lim
n→∞

eitn∆u0(xn) =

∫ ∞

C

eiy
2

dy,

and
∫∞
C
eiy

2
dy will not equal 0 for a generic C > 0, nor will it equal

√
πeiπ/4 for a generic

C < 0.

Similarly, for Fourier inversion,

∫ 1

−1

e−iyξdy =
2 sin(ξ)

ξ
,

SRu0(x) =

∫ R

−R
eixξ

2 sin(ξ)

ξ
,

take x close to one.

(2.4.8) 2

∫ R

−R
ei(x+1)ξ 1

ξ
dξ = 2

∫ R
x+1

− R
(x+1)

eiξ

ξ
dξ,
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(2.4.9) = 2

∫ R

−R

ei(x+1)ξ

ξ
dξ = 2

∫ ∞

−∞

eiξ

ξ
dξ +O(

1

R
).

Using the estimate

∫ ∞

K

eiξ

ξ
dξ =

1

iξ
eiξ|∞K −

∫ ∞

K

1

iξ2
eiξdξ = O(

1

K
).

For x close to one,

2

∫ R

−R

ei(x−1)

ξ
dξ = 2

∫ R(x−1)

−R(x−1)

eixξ

ξ
dξ.

This time take a sequence xn = 1 + K
Rn

, Rn → ∞. This will exhibit the same type of

Gibbs phenomenon as is exhibited for the Schrödinger equation.

Remark: LetRn = 1
tn

. Then (SRnf)(1+ C
Rn

) approaches a constant, as does (ei∆/Rnf)(1+

C

R
1/2
n

). So xn can approach 1 faster in the case of pointwise Fourier inversion than in the

case of the Schrödinger equation. This phenomenon is not unique to this particular

example.

2.5. The Pinsky Phenomenon

The Pinsky phenomenon is perhaps the most intuitively obvious in the case of the wave

equation, where it arises as a perfect focus caustic. The wave front set of a function,

WF (u0), is important to understanding the formation of caustics for the wave equation.

Definition 2.5.1. Choose (x0, ξ0) ∈ Rn × RN \ {0}. If there exists β ∈ C∞0 such

that β ≡ 1 in a neighborhood of x0, and for ξ in some conic neighborhood of ξ0,
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(2.5.1) |β̂u0(ξ)| ≤ CM(1 + |ξ|)−M ,

for each M ∈ Z, then (x0, ξ0) /∈ WF (u0). Let B(x0) be the collection of all β ∈ C∞0 (Rn)

such that β ≡ 1 near x0.

(2.5.2) WF (u0) =
⋃

x0∈Rn

⋂
B(x0)

(Rn ×RN \ {0}) \ {(x0, ξ) : |β̂u0(ξ)| ≤ CM(1 + |ξ|)−M}.

For example, if u0 = δ0, then WF (u0) = (0,RN \ {0}). If u0 = χB(0;1),

WF (u0) = {(x, ξ) : x ∈ Sn−1, ξ · x = ±|ξ|}.

Definition 2.5.2. The set of singularities of u is the projection of WF (u) ⊂ Rn ×

RN \ {0} onto Rn.

(2.5.3) Sing(u) = {x : ∃(x, ξ) ∈ WF (u)}.

Let u(t, x) solve the wave equation.

(2.5.4)

utt −∆u = 0,

u(0, x) = u0,

ut(0, x) = 0.

The singularities at (x0, ξ0) will flow in the direction ξ0 at velocity one. Let u0 = χB(0;1).

For t small, Sing(u(0)) 7→ Sing(u(t)) is a 1-1 differentiable mapping. But at t = 1 the
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mapping is no longer 1-1, since the flow under ξ0 · x = −|ξ0| will map Sn−1 to the origin.

This produces a perfect focus caustic.

Remark: When inverting the Fourier transform of u0 = χB(0;1), the Fourier transform

will converge pointwise at the origin when n ≤ 3. For n = 3 SRu0 − u0 is a bounded,

oscillatory function of R. When n > 3, |SRu0 − u0| = O(R(n−3)/2). The connection

between the analysis of pointwise Fourier inversion and the formation of caustics can be

found in [29].

Lemma 2.5.3. Let u0 = χB(0;1) in R2k+1. As R→∞,

(2.5.5) SRχB(0;1) = O(Rk−1).

Proof: Take the spherical averages about a point

(2.5.6) f̄x(|t|) =

∫
Sn−1

f(x+ |t|σ)dσ,

(2.5.7) cos t
√
−∆f(x) = Ckt(

1

t

∂

∂t
)k(t2k−1f̄x(|t|)).

Then the pointwise Fourier inversion operator is defined:

(2.5.8) SRf(x) =

∫
|ξ|≤R

f̂(ξ)eix·ξdξ,
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(2.5.9)

SRf(x) =
1

π

∫ ∞

−∞

sin(Rt)

t
u(t, x)dt,

u(t, x) = cos(t
√
−∆)f(x),

SRf(0) = Ck

∫ ∞

−∞

sin(Rt)

t
t(

1

t

∂

∂t
)k(t2k−1f̄x(|t|))dt.

Suppose f(x) = χB(0;1) in R2k+1. u(t, x) is symmetric about t = 0.

SRf(0) = 2Ck

∫ ∞

0

sin(Rt)tk−1δ
(k−1)
t=1 (t) + l.o.t.

SRf(0) = 2CkR
k−1


(−1)(k−1)/2 sin(R), k is odd;

(−1)(k−2)/2 cos(R), k is even.

+ l.o.t.

A similar calculation can be made for n = 2k �.

A similar phenomenon also arises for the Schrödinger operator eit∆ as t ↘ 0. However

in this case eit∆u0 − u0 is oscillatory for n = 2 and blows up for n ≥ 3.

(2.5.10)

eit∆u0(0) =
C(n)

tn/2

∫
B(0;1)

ei|y|
2/tdy =

C(n)

tn/2

∫ 1

0

rn−1eir
2/tdr

=
C(n)

tn/2

∫ 1

0

r(n−2)/2eir/tdr =
C(n)

tn/2−1
ei/t −


C(n), if n = 2;

0, if n > 2.

+ l.o.t.

The similarities between (2.5.5) as R → ∞ and (2.5.10) as t ↘ 0 are evident. For

simplicity take n = 2k.

eit∆f(x) =
C(n)

tn/2

∫
ei|x−y|

2/tf(y)dy =

∫ ∞

0

Rn−1eiR
2/tf̄x(R)dR.
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(Make a change of variables u = R2)

= Ck

∫ ∞

0

(
d

du
)k(eiu/t)uk−1f̄x(

√
u)du

= Ck

∫ ∞

0

eiu/t(
d

du
)k(uk−1f̄x(

√
u))du+ f(x)

= Ck

∫ ∞

0

eiR
2/t(

1

R

d

dR
)k(R2k−2f̄x(R))RdR + f(x).

Lemma 2.5.4. If

u0 =


1, if |x| < 1;

2− |x|, if 1 ≤ |x| ≤ 2;

0, if |x| > 2.

,

(2.5.11) lim
t→0
‖eit∆u0 − u0‖L∞(|x|>1/2) = 0

But at the origin

|eit∆u0| ∼ t−n/2+2.

*This lemma is in response to a question asked during my defense by Mark Williams.

Proof: By Theorem [2.1.6], since u0 ∈ H3/2−ε,2(Rn), (4.8.15) is immediate. In fact,

‖eit∆u0 − u0‖L∞(|x|>1/2) . t1/3−ε. However, to compute the focusing at the origin,

t−n/2
∫ 2

0

t

2ir
rn−1(

d

dr
eir

2/t)f(r)dr = −t−n/2
∫ 2

0

−t
2i

d

dr
(f(r)rn−2)eir

2/tdr,
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= −C1t
−n/2+1

∫ 2

1

rn−2eir
2/tdr + C2t

−n/2+1

∫ 2

0

rn−3eir
2/tf(r)dr,

= −C1t
−n/2+2rn−3eir

2/t|21 + C2t
−n/2+1

∫ 2

0

rn−3eir
2/tf(r)dr,

∼ t−n/2+2[2n−3e4i/t − ei/t] +O(t−n/2+3).

So it is possible to have a Pinsky phenomenon without a Gibbs phenomenon �.

2.6. Pointwise Fourier Inversion: a Schrödinger Equation approach

The close correspondence between the asymptotics of the Schrödinger equation and

for pointwise Fourier inversion for χB(0;1) was established in the previous section. This

connection can be extended to more general situations.

Theorem 2.6.1. Let f(x) be a compactly supported function, and suppose f(x) is C∞

in some neighborhood of x0. If

(2.6.1) SRf(x0) = f(x0) +
n∑
k=1

cke
iRtkRα +O(Rα−1/2),

as R→∞, then

(2.6.2) eit∆f(x0) = f(x0) +O(t−α−1/2).
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Proof: The solution to Schrödinger equation can be expressed as a superposition of the

solutions of wave equations.

∫ ∞

−∞
e−ix

2

e−2ixt|ξ|e−it
2|ξ|2dx = C

This constant is independent of ξ.

Ceit
2|ξ|2 = eit

2|ξ|2
∫ ∞

−∞
e−ix

2

e−2ixt|ξ|e−it
2|ξ|2dx

=

∫ ∞

−∞
e−ix

2

e−2ixt|ξ|dx =

∫ ∞

0

e−ix
2

cos(2xt|ξ|)dx

Since f is smooth in a neighborhood of x0, f can be modified by a C∞0 function h so that

f(x)− h(x) = 0 in a neighborhood of x0. Since h is a C∞0 function, h ∈ S(Rn).

Suppose f(x)− h(x) is supported on 2
C
≤ |x| ≤ C

2
. Let χ ∈ C∞0 be a smooth cutoff such

that χ ≡ 1 on 1
C
≤ |x| ≤ C and χ is supported on 1

2C
≤ |x| ≤ 2C. Set

(2.6.3) χt(x) = χ(xt).

For now, suppose

(2.6.4)∫ ∞

0

sin(Ry)

y
(1−χ(y))u(y, x)dy+

∫ ∞

0

sin(Ry)

y
χ(y)u(y, x)dy =

n∑
k=1

cke
iRtkRα +O(Rα−1),

u(y, x) = u(−y, x), so
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∫ ∞

−∞
cos(Ry)

χ(y)

y
u(y, x0)dy = 0.

Take the Fourier transform of

χ(y)

y
u(y, x0),

∫ ∞

−∞

sin(Ry)

y
(1− χ(y))u(y, x0)dy +

∫ ∞

−∞
sin(Ry)

χ(y)

y
u(y, x0)dy = CSRf(x0),

for some constant C.

χ(y)

y
u(y, x0) =

∫ ∞

0

SRf(x0) sin(Ry)dR− 1− χ(y)

y
u(y, x0).

Introduce another cutoff function η(y) ∈ C∞0 , η is supported on 1
4C
≤ |y| ≤ 4C and

η(y) = y on the support of χ(y), 1
2C
≤ |y| ≤ 2C.

∫ ∞

0

e−iy
2χ(2ty)η(2ty)

2ty
u(2ty, x0)dy =

1

2t

∫ ∞

0

e−iy
2/4t2χ(y)

y
η(y)u(y, x0)dy

=
1

2t

∫ ∞

0

e−iy
2/4t2η(y)

∫ ∞

0

SRf(x0) sin(Ry)dRdy

− 1

2t

∫ ∞

0

e−iy
2/4tη(y)

(1− χ(y))

y
dy

=
n∑
k=1

1

2t

∫ ∞

0

cke
iRtk

∫ ∞

0

e−iy
2/4t2 sin(Ry)Rαη(y)dydR,

+
1

2t

∫ ∞

0

∫ ∞

0

e−iy
2/4t2 sin(Ry)η(y)O(Rα−1)dydR,
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− 1

2t

∫ ∞

0

e−iy
2/4tη(y)

(1− χ(y))

y
dy.

Assume that the quantity is bounded by

(2.6.5)
1

t

∫ ∞

0

e−iy
2/4t2 sin(Ry)η(y)dy = eiR

2t2η(2Rt2) +O(t)

when 1
10Ct2

≤ R ≤ 10C
t2

, and bounded by and is O(R−N tN) when R /∈ [ 1
10Ct2

, 10C
t2

].

∫ ∞

0

cke
iR2t2eiRtkη(2Rt2)RαdR = O(t−2α−1),

∫ c2/t2

c1/t2
RαtdR = O(t−2α−1),

∫ 10C
t2

1
10Ct2

O(Rα−1/2)dR = O(t−2α−1).

This proves the theorem, assuming Lemma [2.6.2] is true �.

Lemma 2.6.2. Suppose u(t, x0) is the function just described. Then

(2.6.6)

∫ ∞

0

(1− χ(t))
sin(Rt)

t
u(t, x0)dt = O(R−N),

(2.6.7)

∫ ∞

0

eiy
2/t2(1− χ(y)η(y)

y
)u(y, x0)dy = O(tN),
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(2.6.8)
1

t

∫ ∞

0

e−iy
2/4t2 sin(Ry)η(y)dy = eiR

2t2η(2Rt) +O(t),

when 1
10Ct2

≤ R ≤ 10C
t2

, and

(2.6.9)
1

t

∫ ∞

0

e−iy
2/4t2 sin(Ry)η(y)dy = O(tNR−N/2)

outside this region.

Proof: When |t| ≤ 1
C

, by Huygens principle, u(t, x0) = 0 in even or odd dimensions.

When n is odd, u(t, x0) = 0 for |t| > C
2

, which takes care of (2.6.6), (2.6.7). When

n = 2k,

u(t, 0) =
1

t
(
∂

∂t

1

t
)k−1tn−1

∫
|y|≤1

f(ty)√
1− |y|2

dy.

For |t| ≥ C,

∫
|y|≤1

f(ty)√
1− |y|2

dy =
1

tn

∫
|y|≤t

f(y)√
1− |y|2

t2

dy =
1

tn

∫
|y|≤C/2

f(y)√
1− |y|2

t2

dy.

(
∂

∂t
)N

1

tn

∫
|y|≤C/2

f(y)√
1− |y|2

t2

dy . t−n−N .

Apply integration by parts.

∫ ∞

C

(1− χ(t))
sin(Rt)

t
u(t, x0)dt =

∫ ∞

C

(1− χ(t))
u(t, x0)

t

1

R4N
(
∂

∂t
)4Nsin(Rt)dt,

= R−4N

∫ ∞

C

sin(Rt)(
∂

∂t
)4N((1− χ(t))

u(t, x0)

t
)dt . O(R−4N).
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Similarly for the second integral, define the operator Lf = ∂
∂y

( 1
2iy
f),

∫ ∞

C

eiy
2/t2(1− χ(y)η(y)

y
)u(y, x0)dy,

= (−1)N t2N
∫ ∞

C

eiy
2/t2LN((1− χ(y)η(y)

y
)u(y, x0))dy . t2N .

Now for the third integral:

∫ ∞

−∞
η(y)e−iy

2/4t2eiRydy = e−iR
2t2/4

∫ ∞

−∞
η(y)e−i(y/t−Rt/2)2

.

This has a root R = 2y/t2. Take 1
10Ct2

≤ R ≤ 10C
t2

.

e−iR
2t2/4

∫ ∞

−∞
η(
Rt2

2
)e−i(y/t−Rt/2)2

dy = Ce−iR
2t2/4η(

Rt2

2
).

The remainder can be estimated by Taylor’s inequality.

η(ty)− η(
Rt2

2
) = (ty − Rt2

2
)

∫ 1

0

η′(
Rt2

2
+ τ(ty − Rt2

2
))dτ.

By a change of variables,

∫ ∞

−∞
η(y)e−i(y/t−Rt/2)2

= t

∫ ∞

−∞
η(ty)e−i(y−Rt/2)2

dy.

Let u = (y −Rt/2)2.

t

∫ ∞

−∞
[η(ty)− η(

Rt2

2
)]e−i(y−Rt/2)2

dy

=
t2

2

∫ ∞

−∞

d

dy
(ei(y−Rt/2)2

)

∫ 1

0

η′(
Rt2

2
+ τ(ty − Rt2

2
))dτdy,

= t3
∫ ∞

−∞
ei(y−Rt/2)2

∫ 1

0

τη′′(
Rt2

2
+ τ(ty − Rt2

2
))dτdy . O(t2)

When R ≥ 10C
t2

, η(y) is supported on 1
4C
≤ y ≤ 4C,
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1

t

∫ 4C

1/4C

e−i(y/2t−tR)2

η(y)dy =

1

t

∫ 4C

1/4C

(
1

2i(y/2t−Rt)
∂

∂y
)Ne−i(y/2t−tR)2

η(y)dy;

=
1

t

∫ 4C

1/4C

e−i(y/2t−tR)2

(
∂

∂y

1

y/2t−Rt
)Nη(y)dy = O(tNR−N/2).

When R ≥ 10C
t2

, Rt− y
2t
≥ R

2
t+ C

2t
≥
√
RC+ C

2t
. Similarly, if R ≤ 1

10Ct2
, y/2t−Rt ≥ 1

2Ct
+R,

and again integrate by parts.

N can be arbitrarily large �.

Thus if the convergence of SRf(x0) is O(R−α) then the convergence of eit∆f(x0) is no

worse than O(R−α+1/2), where t = 1
R

.

A lemma will be needed to go in the converse direction.

Lemma 2.6.3.

(2.6.10)

∫ M

1/2

eiR(x2+ 1
x2 )dx = O(R−1/2),

for any M ∈ [1/2,∞].

Proof:

2(2.6.10) =

∫ M

1/2

eiR(x2+x−2)(1 +
1

x2
)dx+

∫ M

1/2

eiR(x2+x−2)(1− 1

x2
)dx

∫ M

1/2

eiR(x2+x−2)(1− 1

x2
)dx =

∫ M

1/2

1

2iR

(1− x−2)

(x− x−3)

d

dx
(eiR(x2+x−2))dx
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=
1

2iR

1

x
(eiR(x2+x−2))|M1/2 −

∫ M

1/2

1

2iR
x−2eiR(x2+x−2)dx = O(R−1).

Estimate the first integral by a change of variables.

∫ M

1/2

eiR(x2+x−2)(1 + x−2)dx

= e2iR

∫ M

1/2

eiR(x−1/x)2

(1 + x−2)dx =

∫ M−1/M

−3/2

eiRu
2

du = O(R−1/2).

This proves the lemma �.

The converse will utilize the expression of a wave operator as a superposition of Schrödinger

operators. Combining (2.3.11) with the fact that F(∆f) = −|ξ|2f̂(ξ),

(2.6.11)

2SRf(x) =e−πi/4
∫ ∞

0

sin(Rt)

t

∫ ∞

0

eiu
2

e−i∆t
2/4u2

f(x)dudt

+eπi/4
∫ ∞

0

sin(Rt)

t

∫ ∞

0

e−iu
2

ei∆t
2/4u2

f(x)dudt.

Theorem 2.6.4. Suppose the Schrödinger equation has the asymptotic expansion

(2.6.12) eit∆f(x) = f(x) +O(tα)eiβ/t +O(tα+1/2).

Additionally suppose that f(x) is smooth in a neighborhood of x0 and is compactly sup-

ported. Then there is the pointwise Fourier convergence,

(2.6.13) SRf(x) = f(x) +O(R−1/2−α).
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Proof: As in the other case, let h(x) ∈ C∞0 , h(x) = f(x) in a neighborhood of x0.

Subtract off h(x) so that f(x0)− h(x0) = 0. Write the integral in polar coordinates. Let

t = cu.

r2 = t2 + u2 = (c2 + 1)u2.

For a fixed θ, c is fixed.

rdr = (c2 + 1)udu.

∫ ∞

0

f(r, θ)rdr = (c(θ)2 + 1)

∫ ∞

0

f(c(θ), u)udu.

dc = sec2 θdθ,

dθ = cos2(θ)dc =
dc

1 + c2
.

By (2.6.4),

∫ ∞

0

sin(Rt)

t
u(t, x0)dt = O(R−N) +

∫ ∞

0

sin(Rt)

t
χ(t)u(t, x0)dt.

So without loss of generality evaluate the integral.

(2.6.14)

∫ ∞

0

∫ ∞

0

χ(cu)
sin(Rcu)

c
eiu

2

(eic
2∆/4f)(x)dudc.

The free Schrödinger operator is a convolution operator
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SRf(x) = (K1,R(x, y) ∗ f)(x) + (K2,R(x, y) ∗ f)(x) + (K3,R(x, y) ∗ f)(x)

(2.6.15) K1,R(x, y) =

∫ ∞

κR−1/2

χ(cu)

∫ ∞

0

sin(Rcu)

cn+1
eiu

2

e−i|x−y|
2/c2dudc

(2.6.16) K2,R(x, y) =

∫ κR−1/2

δR−1/2/2

∫ ∞

0

χ(cu)
sin(Rcu)

cn+1
eiu

2

e−i|x−y|
2/c2dudc

(2.6.17) K3,R(x, y) =

∫ δR−1/2/2

0

∫ ∞

0

χ(cu)
sin(Rcu)

cn+1
eiu

2

e−i|x−y|
2/c2dudc,

for some κ. Consider the first integral. Take a C∞ cutoff,

ψ(x) =


1, x ≥ 1/C;

0, x < 0.

Integrating by parts,

∫ ∞

0

ψ(cu)eiu
2

eiRcudu . R−N ,

∫ ∞

κR−1/2

R−N
1

cn+1
dc = O(R−N).

When c > κR−1/2,

∫ ∞

−∞
ψ(cu)eiu

2

e−iRcudu =
√
πeiπ/4e−iR

2c2/4 +O(R−N),
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d

dc
[
R2c2

4
] +

d

dc
[
|x− y|2

c2
] =

R2c

2
− 2|x− y|2

c3
.

It suffices to take η a C∞ cutoff, η ≡ 0 on [0, κ/2) and η ≡ 1 on [κ,∞), and evaluate the

integral

∫ ∞

0

η(R−1/2c)c−n−1e−iR
2c2/4e−i|x−y|

2/c2dc.

Since f(x) is compactly supported, |x− y| is bounded, so when κ is sufficiently large.

R2c

2
− 2|x− y|2

c3
∼ R3/2.

Then applying integration by parts,

∫ ∞

0

η(R−1/2c)c−n−1e−iR
2c2/4e−i|x−y|

2/c2dc = O(R−N).

This gives an L∞ bound on the kernel.

(2.6.18) ‖K1(x, y)‖∞ ≤ O(R−N),

(2.6.19) ‖K1 ∗ f‖∞ ≤ O(R−N),

when f ∈ L1(Rn).

Next analyze the third piece. When c is small, χ(cu) = 0 unless u is very large. When

c < δR−1/2 for some δ, (u − Rc/2)2 has the root u = Rc
2

, and cu = Rc2

2
< δ2

2
. For δ

sufficiently small the integral can be regularized:
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∫ ∞

0

eiu
2

eiRcuχ(cu)du = e−iR
2c2/4

∫ ∞

0

ei(u−Rc/2)2

χ(cu)du

=

∫ ∞

0

(
1

2u−Rc
∂

∂u
)Nei(u−Rc/2)2

χ(cu)du

(u ∼ c−1 on the support of χ(cu))

=

∫ ∞

0

ei(u−Rc/2)2

(
∂

∂u

1

2u−Rc
)Nχ(cu)du . cN ,

for any N. Then integrate: ∫ δR−1/2

0

cNdc = O(RN/2).

Thus (2.6.18) and (2.6.19) hold for K3(x, y).

Finally, analyze the second piece. Recall that the convergence of

(2.6.20) eit∆(f − h) = Ceiβ/tt−α +O(t−α+1/2),

as t↘ 0.

e−ic
2∆/4(f − h) = Ce−4iβ/c2c−2α +O(c−2α+1).

Evaluate the integral

∫ κR−1/2

δR−1/2

∫ ∞

0

sin(Rcu)eiu
2

eiα/c
2

c−2βdudc.

∫ κR−1/2

δR−1/2

∫ ∞

0

χ(cu) sin(Rcu)eiu
2

e−4iβ/c2c−2αdudc

∼ Rα

∫ κR−1/2

δR−1/2

∫ ∞

0

χ(cu) sin(Rcu)eiu
2

e−4iβ/c2dudc
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∼ Rα

∫ κR−1/2

δR−1/2

e−iR
2c2/4e−4iβ/c2dc = Rα−1/2

∫ κ

δ

e−iRc
2/4e−4iβ/c2dc.

After a change of variables

∫ 0.5

δ

eiR(c2+ 1
c2

)dc = O(R−1),

∫ κ

1.5

eiR(c2+ 1
c2

)dc = O(R−1),

∫ 1.5

0.5

eiR(c2+c−2)dc = O(R−1/2).

The first two identities follow from taking the derivative of the phase function. The third

identity follows from Lemma [2.6.3]. This completes the proof in the opposite direction

�.

Remark: If f(x) has only jump discontinuities, is compactly supported, and f is smooth

in a neighborhood of x0, then f(x) satisfies the hypotheses for Theorem [2.6.1] and

Theorem [2.6.4].

2.7. A Manifold with corners

Now consider eit∆χΩ, where Ω is a more general region. The methods of the Schrodinger

operator can be carried over to simplicies, complexes, or manifolds with corners.

Definition 2.7.1. In R2 a two dimensional manifold with corners is a two dimen-

sional manifold with boundary, Ω ⊂ R2, where ∂Ω = ∪Ni=1γi, where γi : [0, 1] → R2 are

smooth on [0,1].
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Inductively, define Ω ⊂ Rm to be an n-dimensional manifold with corners if Ω is n-

dimensional and ∂Ω = ∪Ni=1Ki, where Ki is an n - 1 dimensional manifold with corners

embedded in Rm.

Although the manifold does not have smooth boundary, and thus the normal vector field

will not vary smoothly along ∂Ω, ∂Ω is a finite union of smooth pieces, like a soccer ball.

There is a maximum sectional curvature for the manifold Ω that has corners. Call this

curvature κ. Take a smooth cutoff

χ(x1) · · ·χ(xn),

χ ∈ C∞0 , χ ≡ 1 for |x| < 1
4κ

and χ = 0 for |x| > 1
2κ

. Define

η(x) = χ(x1) · · ·χ(xn).

A lemma will be needed.

Lemma 2.7.2. Suppose q = k − (α1 + ...+ αl). Then

(2.7.1)

∫
Rn−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2qdx = O(1)

Proof: Let ε = min{ε1, ..., εl} and make the change of variables x 7→ εx.

(2.7.1) =

∫ ∞

0

rn−l−1r−2q ε1
(ε21 + r2)α1

· · · εl
(ε2l + r2)αl

dr

=

∫ ∞

0

r2(α1+...+αl)−l−1 ε1
(ε21 + r2)α1

· · · εl
(ε2l + r2)αl

dr
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=

∫ ∞

0

(ε1/ε)

((ε1/ε)2 + r2)α1
· · · (εl/ε)

((εl/ε)2 + r2)αl
r2(α1+...+αl)−l−1dr.

Now suppose without loss of generality 1 = ε1 < ε2 < ... < εl.

∫ εj+1

εj

ε1 · · · εl
r2α1+...+2αj

r2α−l−1

ε
2αj+1

j+1 · · · ε
2αl
l

dr

ε1 · · · εl
ε

2αj+1

j+1 · · · ε
2αl
l

ε
2αj+1+...+2αl−l
j

= ε1 · · · εjε
−2αj+1+1
j+1 · · · ε−2αl+1

l ε−jj ε
2αj+1−1
j · · · ε2αl−1

j .

This quantity is uniformly bounded. As is

= ε1 · · · εjε
−2αj+1+1
j+1 · · · ε−2αl+1

l ε−jj+1ε
2αj+1−1
j+1 · · · ε2αl−1

j+1 ,

∫ ∞

εl

ε1 · · · εlr−l−1dr = O(1)

as long as l > 0. Since the integrand is uniformly bounded on B(0; 1), this completes the

proof �.

Theorem 2.7.3. There exists a constant 0 < C <∞ such that

(2.7.2) |eit∆(η(x− x0)u0)(x0)| ≤ C <∞

for any point x0 ∈ Rn, t ∈ (0,∞), u0 = χΩ.
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Without loss of generality make a translation such that x0 = 0.

(2.7.3) eit∆(ηu0)(0) = t−n/2
∫

Ω

ei|x|
2/tη(x)dx.

Define the operator

(2.7.4) L =
n∑
i=1

t

2i

xi
|x|2

∂

∂xi
.

∫
L(ei|x|

2/t)dx =

∫
ei|x|

2/tdx.

Divide the analysis into two cases. First suppose t = 2k for some k. Also define the

operator R.

(2.7.5) Rf =
t

i

n∑
j=1

∂

∂xj
(
xj
|x|2

f).

(2.7.6) (2.7.3) = t−n/2+1

∫
∂Ω

(x · −→n )

|x|2
(η(x)dσ(x) + t−n/2+1

∫
Ω

R(η(x))dx,

where dσ(x) is the measure along ∂Ω. Since Ω is a manifold with corners, ∂Ω =

∪Nn−1

j=1 Kj,n−1, where each Kj,n−1 is also an n - 1 dimensional region with corners, and

in fact is the graph of an n - 1 dimensional subset of Rn−1 with corners. Locally Kj,n−1

has the expression
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(2.7.7)

∂Ω = {(x, ε1 + f(x)) : x ∈ Kj,n−1 ⊂ Rn−1},

f(0) = ∇f(0) = 0, ‖ ∂2f

∂xi∂xj
‖ ≤ κ.

Where ‖(aij)‖ denotes the norm of a matrix. Now return to (2.7.6). The integral over

Ω can obviously be regularized again. On the other hand, the integral over Kj,n−1 can

be regularized as well. In the case where n/2 = k, we regularize k - 1 times. For the R

operator,

∫
Kj,n−1

∂

∂xj
(O(|x|−2l−1)

ε

ε2 + |x|2
)dx

=

∫
Kj,n−1

(O(|x|−2l−2)
ε

ε2 + |x|2
)dx+

∫
Kj,n−1

O(|x|−2l)
ε

(ε2 + |x|2)2
dx.

Each regularization involves a boundary restriction and a regularization derivative. So

if the regularization operator is applied k - 1 times, there will be one term that involves

an integral over Ω, and all the other terms will be some type of integral over a lower

dimensional space of the form

(2.7.8)
1

t

∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2qei|x|
2/tdx,

where q = k − 1− (α1 + ...+ αl).

0 ≤ q ≤ k − 1− l.

This integral can be regularized again without fear. Suppose ∪j′Kj′,n−l−1 make up the

boundary of Kj,n−l.
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(2.7.8) ≤
∑
j′

∫
Kj′,n−l−1

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

εl+1

(ε2l+1 + |x|2)
|x|−2q

+

∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2q−2dx

+

∫
Kj,n−l

ε1
(ε21 + |x|2)α1+1

· · · εl
(ε2l + |x|2)αl

|x|−2qdx+

...+

∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl+1

|x|−2qdx.

All of these integrals will converge by Lemma [2.7.2].

Similarly let n = 2k+ 1. In this case, the integral can be regularized k times. There will

be one term that involves an integral over Ω, and all the other terms will be an integral

over a lower dimensional region. So all the other terms will be an integral over a lower

dimensional region of the form,

(2.7.9)
1

t1/2

∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2qei|x|
2/tdx,

where q = k − (α1 + ...+ αl).

0 ≤ q ≤ k − l

Define a C∞0 cutoff

(2.7.10) φ(x) =


1, if |x| < 1;

0, if |x| > 2.

Now apply the estimate

ε

ε2 + x2
≤ 1

|x|
.
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(This can be seen by checking |x| < ε and |x| > ε separately).

t−1/2

∫
Rn−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2qφ(t−1/2x)dx

. t−1/2

∫ t1/2

0

rn−1

rn−1
dr = O(1).

So it remains to consider

(2.7.11)
1

t1/2

∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

(1− φ(t−1/2x))|x|−2qei|x|
2/tdx.

We have

(2.7.11) ≤ t1/2
∑
j′

∫
Kj′,n−l−1

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

εl+1

(ε2l+1 + |x|2)
|x|−2qφ(t−1/2x)dx

+t1/2
∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2q−2φ(t−1/2x)dx

+t1/2
∫
Kj,n−l

ε1
(ε21 + |x|2)α1+1

· · · εl
(ε2l + |x|2)αl

|x|−2qφ(t−1/2x)dx+

...+ t1/2
∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl+1

|x|−2qφ(t−1/2x)dx

+

∫
Kj,n−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2q−1φ′(t−1/2x)dx.
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These integrals are O(1) also.

t1/2
∫ ∞

t1/2
rl+1rn−l−2 1

rn+1
dr = t1/2

∫ ∞

t1/2
r−2dr = O(1),

t1/2
∫ ∞

t1/2
rlrn−l−1 1

rn+1
dr = O(1).

Finally φ′(t−1/2x) is supported on a ball of radius t1/2. The integrand is

∼ 1

rn−l
∼ t−(n−l)/2

on the support of the integrand.

Finally, the integral over Ω. When n = 2k,

1

t

∫
Ω

O(|x|−2k+2)(1− φ(t−1/2x))ei|x|
2/tdx ≤

∼
∫
∂Ω

ε

(ε2 + |x|2)k
dx

(2.7.12) −
∫

Ω

O(|x|−2k)(1− φ(t−1/2x))ei|x|
2/tdx

−t−1/2

∫
Ω

O(|x|−2k+1)φ′(t−1/2x)ei|x|
2/tdx.

The first integral is O(1) by Lemma [2.7.2]. In the third integral, |x| ∼ t−n/2+1/2 on the

support of φ′(t−1/2x).

∫
|x|≤t1/2

t−n/2dx = O(1).
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Take two separate cases for (2.7.12). If ε ≤ 1
2
t1/2,

(2.7.12) ∼ −t
∫
∂Ω

1

(|x|2 + ε2)k
ε

ε2 + |x|2
(1− φ(2t−1/2x))ei|x|

2/tdx

+t

∫
Ω

O(|x|−2k−2)(1− φ(t−1/2x))ei|x|
2/tdx+ t1/2

∫
Ω

O(|x|−2k−1)φ′(t−1/2x)ei|x|
2/tdx.

The first integral is an integral over Rn−1 with integrand bounded by 1
rn+1 . The second

integral is an integral over Rn with integrand bounded by 1
rn+2 .

t

∫ ∞

t1/2

rn−2

rn+1
dr = O(1),

t

∫ ∞

t1/2

rn−1

rn+2
dr = O(1).

Finally the last integral is supported on B(0; t1/2) ⊂ Rn with integrand bounded by

t−n/2. Thus the third integral is also O(1).

If ε ≥ t1/2,

(2.7.12) ∼ −t
∫
∂Ω

1

(|x|2 + ε2)k
ε

ε2 + |x|2
ei|x|

2/tdx

+t

∫
Ω

O(|x|−2k−2)(1− φ(t−1/2x))ei|x|
2/tdx+ t1/2

∫
Ω

O(|x|−2k−1)φ′(t−1/2x)ei|x|
2/tdx.

For the first integral,

1

ε2 + |x|2
≤ 1

t
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Thus the integral converges by using Lemma [2.7.2]. The other two integrals are the

same as before.

Now for the case when n = 2k + 1.

t−1/2

∫
Ω

O(|x|−2k)(1− φ(t−1/2x))ei|x|
2/tdx

If ε ≤ t1/2,

(2.7.12) ∼ t1/2
∫
∂Ω

1

(ε2 + |x|2)k
ε

ε2 + |x|2
(1− φ(2t−1/2x))ei|x|

2/tdx

−t1/2
∫

Ω

O(|x|−2k−2)(1− φ(t−1/2x))ei|x|
2/tdx−

∫
Ω

O(|x|−2k−1)φ′(t−1/2x))ei|x|
2/tdx

The first integral is of the form

t1/2
∫ ∞

t1/2

rn−2

rn
dr = O(1).

The second integral is

≤ t1/2
∫ ∞

t1/2

rn−1

rn+1
dr = O(1).

Finally the last integral is

≤ t−n/2
∫

Rn:|x|≤t1/2
1dx = O(1),

and if ε ≥ t1/2,

(2.7.12) ∼ t1/2
∫
∂Ω

1

(ε2 + |x|2)k
ε

ε2 + |x|2
ei|x|

2/tdx
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−t1/2
∫

Ω

O(|x|−2k−2)(1− φ(t−1/2x))ei|x|
2/tdx−

∫
Ω

O(|x|−2k−1)φ′(t−1/2x))ei|x|
2/tdx.

In this case

1

(ε2 + |x|2)1/2
≤ t−1/2.

This integral is O(1) by Lemma [2.7.2].

Remark: This correspondence proved in Section 6 can carry over some of the calculations

on the Gibbs phenomenon for the Schrödinger equation over to Fourier inversion.

Theorem 2.7.4. There exists a constant 0 < C <∞ such that

(2.7.13) |SR(η(x− x0)u0)(x0)| ≤ C <∞,

for any point x0 ∈ Rn, R ∈ (0,∞), u0 = χΩ. Ω is some manifold with corners.

Proof: Take the cutoff φ(Rx).

(2.7.14) ‖φ(R(x− x0))u0(x)‖L1(Rn) ≤ C(n)R−n.

As before translate so that x0 = 0. Since ‖χ|ξ|≤R‖Rn ≤ C(n)Rn,

(2.7.15) ‖SRφ(R(x− x0))u0(x)‖∞ ≤ C <∞.

So it remains to consider the part outside the cutoff. The presence of the cutoff requires

the computation of the commutator,
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(2.7.16)
∂

∂xj
(
xj
|x|2

η(Rx)f)− η(Rx)
∂

∂xj
(
xj
|x|2

f) = Rη′(Rx)
xj
|x|2

f.

First consider the case where n = 2k. After k regularizations eit∆η(x)(1 − φ(Rx)) is a

sum of terms of the form

(2.7.17)

∫
Rn−l

e−i|x|
2/t ε1

(ε21 + |x|2)α1
· · · εl

(ε2l + |x|2)αl
|x|−2q+mRmφ(m)(Rx),

where q = k − α, α = α1 + ... + αl, and m ≤ k − l. By the subordination identity it is

necessary to consider terms of the form

(2.7.18)

∫ ∞

0

∫ ∞

0

sin(Rcu)

c
eiu

2

eic
2∆/4u0(x)dcdu

(2.7.19) ∼
∫ ∞

0

e−iR
2c2/4eic

2∆/4u0(x)dc.

(2.7.19) is a sum of terms of the form

(2.7.20)

∫ ∞

0

∫
Rn−l

1

c
e−iR

2c2/4e−i|x|
2/c2 ε1

(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2q+mRmφ(m)(Rx)dxdc

(2.7.21) ∼
∫

Rn−l

1

R1/2|x|1/2
ε1

(ε21 + |x|2)α1
· · · εl

(ε2l + |x|2)αl
|x|−2q+mRmφ(m)(Rx)dx.

When |x| ∼ 1
R

, the integrand is
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.
|x|l

|x|n+1/2
|x|mRm ∼ Rn−l+1/2.

On the other hand φ(m)(Rx) is supported on |x| ≤ 2
R

when m > 0 so for m > 0,

(2.7.21) ≤ O(1)

Finally consider the integral when m = 0.

(2.7.21) . R1/2

∫
Rn−l:|x|≥ 1

R

1

|x|n−l+1/2
dx = O(1)

which takes care of the n = 2k case.

In the n = 2k + 1 case eit∆u0 is a sum of integrals of the form

(2.7.22) t1/2
∫

Rn−l
e−i|x|

2/t ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2q−2+mRmφ(m)(Rx).

Thus SRu0(x) is a sum of integrals of the form

(2.7.23)
1

R

∫
Rn−l

ε1
(ε21 + |x|2)α1

· · · εl
(ε2l + |x|2)αl

|x|−2q−2+mRme−i|x|Rφ(m)(Rx)dx,

when |x| ∼ 1
R

the integrand is ∼ Rn−l. Meanwhile for m > 0, φ(m)(Rx) is supported on

|x| ≤ 2
R

. Thus |(2.7.23)| ≤ O(1) for m > 0. When m = 0,

1

R

∫
Rn−l:|x|≥ 1

R

(1− φ(Rx))
1

|x|n−l+1
dx = O(1).

The proof is complete �.
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CHAPTER 3

Indefinite Signature



3.1. Focusing in the wave and Schrödinger equations

The following heuristic is introduced to shed some light on the formation of caustics of

eitLu0. As in the positive definite signature case, it is helpful to compare the indefinite

signature Schrödinger equation,

(3.1.1)

(i
∂

∂t
+

∂2

∂x2
1

− ∂2

∂x2
2

)u = 0,

u(0, x) = u0(x),

with the indefinite signature wave equation,

(3.1.2)

(
∂2

∂t2
− ∂2

∂x2
1

+
∂2

∂x2
2

)u = 0,

u(0, x) = u0(x),

ut(0, x) = 0.

The wave operator

�L =
∂2

∂t2
− ∂2

∂x2
1

+
∂2

∂x2
2

would be an ordinary wave operator if x1 was the time variable and x2, t were the space

variables. So redefine this to be the ordinary wave equation.

(3.1.3)

�v = 0

∂

∂t
v(x1, x2, 0) = 0

v(x1, x2, 0) = u0(x1, x2)
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Under the rotation of coordinates, this is a wave equation whose value on the {y = 0}

line is specified for all time, and is symmetric about that line.

Suppose u0(x) = χΩ(x)β(x), where β ∈ C∞0 (R2) and Ω = {(x1, x2) : x2
1−x2

2 ≥ 1, x1 ≤ 0}.

Sing(u0) ⊂ {(x1, x2) : x2
1 − x2

2 = 1}.

Let d((x1, x2, t), (y1, y2, τ)) denote the Minkowski distance

(3.1.4) d((x1, x2, t), (y1, y2, τ))2 = (y2 − x2)2 + (t− τ)2 − (x1 − y1)2,

(3.1.5) d((−
√

1 + r2, r, 0), (0, 0, 1)) = 0.

The origin at time t = 1 and the hyperbola at time t = 0 lie on the same light cone,

which gives the perfect focusing phenomenon for β(x)χΩ(x). For a metric of signature

(1, n), focusing would arise from a jump across x2
1−x2

2− ...−x2
n+1 = 1. If the metric has

signature (p, q), it would arise from a jump across

x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q = 1.

The stationary phase estimate will be needed.

Lemma 3.1.1.

(3.1.6)

∫ 1

0

1

x1/2
eix/tdx =

t1/2

2
eiπ/4 +O(t).
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Proof: Make a change of variables, x = y2, dx = 2ydy.

∫ 1

0

1

x1/2
eix/tdx =

1

2

∫ 1

0

eiy
2/tdy =

t1/2

2
eiπ/4 +O(t).

Let Lp,q denote the Laplacian of signature (p, q),

∂2

∂x2
1

+ ...+
∂2

∂x2
p

− ∂2

∂x2
p+1

− ...− ∂2

∂x2
p+q

.

Let ek be the eigenvector corresponding to ∂
∂xk

. Let Vp = span {e1, ..., ep} and Vq =

span {ep+1, ..., ep+q}. Then let y = (yp, yq), (yp, 0) ∈ Vp, (0, yq) ∈ Vq. Let rp = |yp| and

rq = |yq|.

The focusing phenomenon for eitL(p,q)χB(0;1) at the origin is not nearly as bad at the origin

as it is in the ∆ case. Without loss of generality suppose p ≥ q.

(3.1.7) eitL(p,q)χB(0;1)(0) = t−n/2
∫ 1

0

rp−1
p eir

2
p/t

∫ √1−|rq |2

0

rq−1
q e−ir

2
q/tdrpdrq.

t−p/2
∫ √1−|rq |2

0

rp−1
p e−ir

2
p/t =

t−(p−2)/2

2i
[rp−2
p e−ir

2
p/t|
√

1−r2
q

0 ]

−t
−(p−2)/2(p− 2)

2i

∫ √1−|rq |2

0

rp−3
p e−ir

2
p/tdrp].

Case 1, p > 2:

(3.1.8)

(3.1.7) = Ct−(n−2)/2[

∫ 1

0

rq−1
q (1− r2

q)
(q−2)/2ei(2r

2
q−1)/tdrq

−(p− 2)

∫ 1

0

rq−1
q eir

2
q/t

∫ √1−r2
q

0

rp−3
p e−ir

2
p/tdrqdrp]
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For the first integral, make a change of variables, u = r2
q . Combining integration by parts

with (1.1.23),

(3.1.9) t−(n−2)/2

∫ 1

0

u(p−2)/2(1− u)(q−2)/2eiu/tdu ∼ t−n/2+1+q/2.

The second integral can be regularized again, and has faster convergence.

Case 2, p = 2:

1

2t

∫ √1−r2
q

0

eir
2
p/t2rpdrp =

1

2t

∫ (1−r2
q)

0

eiu/tdu =
1

2i
[ei(1−r

2
q)/t − 1].

eitLχB(0;1) =
t−q/2

2i

∫ 1

0

ei(1−2r2
q)/trq−1

q drq −
t−q/2

2i

∫ 1

0

e−ir
2
q/trq−1

q drq

When q = 2,

ei/t

2it

∫ 1

0

e−2ir2
q/trqdrq =

ei/t

2it

∫ 1/2

0

e−4iu/tdu =
ei/t

8
[e−2i/t − 1].

1

2it

∫ 1

0

e−ir
2
q/trqdrq =

1

4it

∫ 1

0

e−iu/tdu =
1

4
[e−i/t − 1].

When q = 1,

ei/t

2it1/2

∫ 1

0

e−2ir2
q/tdrq = Cei/t

1

2it1/2

∫ 1

0

e−ir
2
q/t = C ′

In either case the Pinsky phenomenon at the origin is oscillatory. This proves the theorem,
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Theorem 3.1.2. When q > 2 eit∆(p,q)χB(0;1) has divergence O(t(2−q)/2) at the center.

When q = 2,

(3.1.10) eit∆(p,2)χB(0;1)(0) = 1 + C1e
i/t + C2e

−i/t +O(t).

This divergence is an improvement over the signature (n, 0) case by O(tp/2). However,

there is a price to pay for this improved convergence at the center.

Suppose xp = 0 and xq 6= 0.

t−n/2
∫
B(0;1)

ei|xq−yq |
2/t

∫
B(0;
√

1−|yq |2)

e−i|yq |
2/tdyqdyp

= t−n/2
∫
B(0;1)

ei|xq−yq |
2/t

∫ √1−|yq |2

0

rq−1
q e−ir

2
q/tdrqdyp

= Ct−n/2+1

∫
B(0;1)

ei|xq−yq |
2/t[rp−2

p e−ir
2
p/t|
√

1−r2
q

0 − C2

∫ √1−r2
q

0

rp−3
p eir

2
p/tdrp]dyq.

Once again, separate into two cases.

Case 1, p > 2: In this case the first integral is

(3.1.11) Ct−n/2+1

∫
B(0;1)

ei|xq−yq |
2/t(1− r2

q)
(p−2)/2e−i(1−r

2
q)/tdyp

|xq − yq|2 − (1− |yq|2) = |xq|2 + |yq|2 − 2xq · yq − 1 + |yq|2.

Completing the square,
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= 2|yq|2 + |xq|2 − 2xq · yq − 1 = |ỹq − x̃q|2 − 1 +
3

4
|xq|2,

ỹq =
√

2yq, x̃q =
1√
2
xq.

If 1√
2
|xq| <

√
2, |xq| < 2, |x̃q − ỹq|2 has a stationary point in |yq| ≤ 1, and (3.1.11) is

O(t(2−p)/2). The coefficient of the leading order term will decay to 0 as |xq| → 2.

(3.1.11) = Ct−n/2+1

∫
B(0;
√

2)

ei(|ỹq−x̃q |
2−1+ 3

4
|xq |2)/t(1−

r̃2
q

2
)dyq,

= Ceiπ/4t−p/2+1ei(3|xq |
2/4−1)/t(1− |xq|

2

4
)(p−2)/2.

For |xq| > 2, the decay of (1 − r̃2
q/2)(p−2)/2 at r̃q =

√
2 of order p−2

2
allows additional

regularization.

(
√

2yq −
1√
2
xq) = 0⇔ xq = 2yq.

So if |xq| > 2, |ỹq − x̃q|2 is not stationary on B(0;1). Use the regularization operator

(3.1.12) L =
t

2i

(xq − yq) · ∇
|xq − yq|2

.

Lei|xq−yq |2/t =
t

2i

(xq − yq) · ∇
|xq − yq|2

ei|xq−yq |
2/t = ei|xq−yq |

2/t.

Suppose p is even. Then

ei(−1/t+3|xp|2/4)/tCt−n/2+1

∫
L(p−2)/2ei|ỹq−x̃q |

2/t(1− r̃2
q/2)(p−2)/2χB(0;1)dyq
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= ei(−1/t+3|xp|2/4)/tCt−n/2+1

∫
ei|ỹq−x̃q |

2/t(Lt)(p−2)/2((1− r̃2
q/2)(p−2)/2χB(0;1))dyq.

This integration by parts is allowable since

(1− r̃2
q/2)(p−2)/2χB(0;1) ∈ C(p−2)/2(Rn).

t−n/2+p/2+1

∫
ei|ỹq−x̃q |

2/t(Lt)(p−2)/2((1− r̃2
q/2)(p−2)/2χB(0;1))dyq

∼ t−q/2+1

∫
Sq(0;

√
2)

ei|x̃q−ỹq |
2/tf(ỹq)dỹq = O(t1/2),

since f(ỹq) is a smooth function on B(0;
√

2). S(0;
√

2) is the sphere of radius
√

2 centered

at 0. The same thing holds when p is odd, making use of (3.1.6).

Case 2, p = 2: In this case the Pinsky phenomenon is oscillatory when |xp| < 2, and

there is the usual convergence when |xp| > 2. This result can be generalized in the

following way.

Theorem 3.1.3. Let A be the differential operator

(3.1.13) A =
1

a1

p∑
i=1

∂2

∂x2
i

+
1

a2

n∑
j=p+1

∂2

∂x2
j

.

Make the decomposition Rn = Rp ⊕Rq. There is focusing of type C(t)O(t(2−p)/2) along

the axis xp = 0 when |xp| < |a1−a2|
|a1| and convergence when |xp| > |a1−a2|

|a1| . In particular,

as a1 → a2 the focusing concentrates to the center. C(t) is a function of the form Ceia/t,

a ∈ R. When |C(t)| = 1, but when a 6= 0, C oscillates more and more rapidly as t→ 0.
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Proof: Make a calculation analogous to the calculation in the first theorem. For the first

integral the phase function is

(3.1.14) a1|xp − yp|2 + a2(1− |yp|2) = (a1 − a2)|yp|2 + a1|xp|2 − 2a1xp · yp + a2.

Without loss of generality suppose a1 > 0 and a1 > a2. Make a change of variables.

ỹp =
√

(a1 − a2)yp,

x̃p =
a1√

(a1 − a2)
xp,

(3.1.15) (3.1.14) = |ỹp − x̃p|2 + (a1 −
a2

1

a1 − a2

)|xp|2 + a2.

If |xp| < a1−a2

a1
there is focusing along the xp = 0 axis. If |xp| > a1−a2

a1
then there is

convergence. If a2 → a1, then the focusing concentrates to the center �.

Theorem 3.1.4. As usual assume p ≥ q.

(3.1.16) eitAχB(0;1)(0) =
Ct−q/2+1

a2

1

(a1 − a2)p/2
+O(t−q/2+2)

In particular as a1 → a2 this converges to the usual Pinsky phenomenon.

Proof: Without loss of generality suppose a2 = 1, and a1 > 1/2.

t−n/2
∫ 1

0

rq−1
q eia2r2

q/t

∫ (1−r2
p)1/2

0

eia1r2
p/trp−1

p drpdrq

∼ t−n/2+1

2ia1

∫ 1

0

rq−1
q eia2r2

q/t(1− r2
q)

(p−2)/2rq−1
q eia1(1−r2

q)/tdrq + l.o.t.
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=
t−n/2+1

2ia1

∫ 1

0

ei/tu(q−2)/2ei(a2−a1)u/t(1− u)(p−2)/2du+ l.o.t.

∼ t−p/2+1

a1(a2 − a1)q/2
.

Remark: The geometric picture of this is to take B(0; 1) ⊂ R2. Now allow the flow

velocity to v(θ), v(0) = v(π) = a1 and v(π/2) = v(3π/2) = a2. The caustic will not be a

single point, but it will be in a small neighborhood of the origin for |a1−a2|
|a1| small.

3.2. Gibbs Phenomenon for the indefinite signature Schrodinger equation

The Gibbs phenomenon for the characteristic function of a set Ω with smooth boundary,

eitLχΩ, is controlled by a boundary integral.

Theorem 3.2.1. Take Ω ⊂ R2 to be a region with C∞ boundary. Let

L =
1

a1

∂2

∂x2
1

+
1

a2

∂2

∂x2
2

.

Then take the phase function

(3.2.1) ψ(x, y) = a1(x1 − y1)2 + a2(x2 − y2)2.
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(3.2.2)

eitLχΩ =
1

2i

∫
∂Ω:|x−y|>t1/2

eiψ(x,y)/t 〈a1(y1 − x1), a2(y2 − x2)〉 · −→n
a2

1(y1 − x1)2 + a2
2(y2 − x2)2

[1− t

2i
(
∂

∂y1

+
∂

∂y2

)(
a1(y1 − x1) + a2(y2 − x2)

a2
1(y1 − x1)2 + a2

2(y2 − x2)2
)]dσ(y)

+R(t, x, y),

R(t, x, y) = o(1).

Here, −→n is the unit normal to the boundary, pointing outward.

Proof: Take a C∞ cut-off

(3.2.3) η(t, y) =


1, |y| > 2t1/2;

0, |y| < t1/2.

Define the operator

(3.2.4) L =
t

i

a1(y1 − x1) ∂
∂y1

+ a2(y2 − x2) ∂
∂y2

a2
1(y1 − x1)2 + a2

2(y2 − x2)2
,

Leiψ(x,y)/t = eiψ(x,y)/t.

It is possible to regularize the integral.

∫
Rn

Leiψ(x,y)/tχΩ(y)dy =

∫
Rn

eiψ(x,y)/tLtχΩ(y)dy.

From integration by parts,
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(3.2.5) LtχΩ = −LχΩ(y) +
t

2i
(
∂

∂y1

+
∂

∂y2

)[
a1(y1 − x1) + a2(y2 − x2)

a2
1(y1 − x1)2 + a2

2(y2 − x2)2
]χΩ(y).

LχΩ a finite measure supported on ∂Ω. The second term can be regularized again, and

gives (3.2.2) with remainder term R(t, x, y).

(3.2.6)

R(t, x, y) = Ct

∫
Ω

eiψ(x,y)/t(
∂

∂y1

+
∂

∂y2

)(
a1(y1 − x1) + a2(y2 − x2)

a2
1(y1 − x1)2 + a2

2(y1 − x1)2
×

(
∂

∂y1

+
∂

∂y2

)(
η(y)(a1(y1 − x1) + a2(y2 − x2))

a2
1(y1 − x1)2 + a2

2(y1 − x1)2
))dy + (3.2.7).

This is a second order differential operator. If both derivatives miss η(y), then the

integrand is O( 1
|x−y|4 ).

t

∫ ∞

t1/2

1

r3
dr = O(1)

χ′(y) = O(t−1/2), χ′′(y) = O(t−1), and are supported on supp(χ).

t1/2
∫ 2t1/2

t1/2
r−2dr = O(1),

∫ 2t1/2

t1/2
r−1dr = O(1).

Moreover, since ψ(x, y) is non-constant,

(3.2.7)
1

t

∫
(1− η(y))ei((y1−x1)2−(y2−x2)2)/tdy = o(1).

The proof is complete �.
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Remark: The second integral term is bounded by

t

∫
∂Ω∩|x−y|>t1/2

O(
1

|x− y|3
)dσ(y).

Parameterize the boundary by the unit speed curve γ(t) where γ(0) is the y-value closest

to x in ∂Ω ∩ |x− y| > t1/2. Then as long as d(x, γ(t)) > ct, the second integral is O(1).

So it is the first term where the most trouble is caused.

This can be generalized to higher dimensions. Let Ω be a set in Rn and let u0 = χΩ.

Corollary 3.2.2. Let N = [n
2
]. Then

f(x, y) =
a1(y1 − x1) + ...+ an(yn − xn)

a2
1(y1 − x1)2 + ...+ a2

n(yn − xn)2

(3.2.8)

eitLu0 =
N∑
j=0

t−n/2+1+j(−1)j

∫
∂Ω:|x−y|>t1/2

(f(x, y)(
∂

∂y1

+ ...+
∂

∂yn
))j(η(y)f(x, y))eiψ(x,y)/tdσ(y) +R(t, x, y).

As in the previous calculation R(t, x, y) = o(1).

Proof: This is also proved by integration by parts.

Theorem [3.2.1] implies that calculation of the Gibbs phenomenon for L having signature

(1, 1) is reduced to the computation of a one dimensional boundary integral. Make a

change of variables so that a1 = 1 and a2 = −1. Suppose x0 is a point on the boundary

where the boundary is tangent to a line of slope ±1. Rotate the coordinate axes so that

the x1 and x2 axes are the lines of slope ±1. The phase function is

(y1 − x1)(y2 − x2).
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Make a translation so that x0 is the origin. In a neighborhood of x0 the boundary has

the representation

{(x, f(x))}.

Suppose that locally f(x) = xm. The region R2 \ {(0, y) : y 6= 0} can be foliated by the

curves (x, cxm), where c ∈ (−∞,∞). When δ and cδm are small,

(3.2.9)

∫ 1

−1

b1(x+ δ) + b2(cδm + xm)

(x+ δ)2 + (cδm + xm)2
ei(x

m+cδm)(x+δ)/tdx =∫ ∞

−∞

b1(x+ δ) + b2(cδm + xm)

(x+ δ)2 + (cδm + xm)2
ei(x

m+cδm)(x+δ)/tdx+O(t).

Then make a change of variables. Let τ = t
δm+1 .

(3.2.10)

∫ ∞

−∞

b1(x+ δ) + b2(cδm + xm)

(x+ δ)2 + (cδm + xm)2
ei(x

m+cδm)(x+δ)/tdx =∫ ∞

−∞

b1(x+ 1) + b2(c+ xm)

(x+ 1)2 + (c+ xm)2
ei(x

m+c)(x+1)/τdx.

Let

(3.2.11) K(c, τ) =

∫ ∞

−∞

b1(x+ 1) + b2(c+ xm)

(x+ 1)2 + (c+ xm)2
ei(x

m+c)(x+1)/τdx.

Combining (3.2.2), (3.2.9), and (3.2.10) gives

(3.2.12) eitLχΩ((αt)1/(m+1), c(αt)m/(m+1)) = K(c,
1

α
) +R(t, x).

This gives a good description of the Gibbs phenomenon along the different leaves of the

foliation. For a sequence tn → 0,
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(eitnLχΩ)((αtn)1/(m+1), c(αtn)m/(m+1)) = K(c,
1

α
) + o(1)

Remark: One leaf is the boundary. Another leaf is the caustic, as will soon be demon-

strated.

Now to understand how the Gibbs phenomenon depends on c. This is more difficult to

calculate, so it will be done only for m = 2. Here,

∂

∂x
(x2 + c)(x+ 1) = 3x2 + 2x+ c,

∂2

∂x2
(x2 + c)(x+ 1) = 6x+ 2.

Checking the equation, the phase function has two critical points when c < 1
3
, and zero

critical points when c > 1
3
. It has a double root when c = 1

3
, which is the equation for

the caustic.

F ′(c) =
∂

∂c

∫ ∞

−∞

b1(x− 1) + b2(c+ xm)

(x− 1)2 + (c+ xm)2
ei(x

m+c)(x−1)/tdx

=
1

t

∫ ∞

−∞

b1(x− 1)2 + b2(c+ xm)(x− 1)

(x− 1)2 + (c+ xm)2
ei(x

m+c)(x−1)/tdx.

First consider c < 1/3.

(3.2.13) F ′(c) =
κ

t

∫ ∞

−∞
ei(x

3−ε2x+(4/3)(1/9+c))/tdx+ l.o.t.

κ denotes a fixed constant and

ε(c) =

√
1− 3c

3
.
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By stationary phase calculations

(3.2.14)

F ′(c) =
1

t1/2
e−iπ/4

(1− 3c)1/4
ei(−(8/3)(1−3c)3/2−4/9(1−3c)+16/27)/t

+
1

t1/2
eiπ/4

(1− 3c)1/4
ei((8/3)(1−3c)3/2−4/9(1−3c)+16/27)/t + l.o.t.

−8
3

(1 − 3c)3/2 − 4
9
(1 − 3c) + 16

27
is not stationary when c < 1/3, so the calculations will

concentrate on the second term in (3.2.14). Make a change in variables, z = (1− 3c),

(3.2.15)
1

t1/2

∫ α

0

x−1/4ei((8/3)x3/2−4/9x)/tdx =
1

t1/2

∫ α4/3

0

ei((8/3)x2−(4/9)x4/3)/tdx.

The phase function has a root at x = 1
27

. This integral is O(1). This gives a uniform

bound for c1, c2 ≤ 1
3
.

(3.2.16) |K(c1, t)−K(c2, t)| ≤ C <∞.

When c > 1
3
, the phase function does not have a stationary point. First consider c > 1.

F ′(c) =
κ

t

∫ ∞

−∞
ei(x

3−x2+cx−c)/tdx+ l.o.t.

After a change of variables the phase function ∼ x3 + cx+ d. Integrate by parts twice.

1

t

∫ ∞

−∞
ei(x

3+cx)/tdx = t

∫ ∞

−∞

∂

∂x
(

1

3x2 + c
(
∂

∂x

1

3x2 + c
))ei(x

3+cx)/tdx.

∫ ∞

−∞
| ∂
∂x

(
1

3x2 + c
(
∂

∂x

1

3x2 + c
))|dx ≤ 1

c2
.
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When 1/3 < c < 1, use the estimate

∫ 1

0

1

ε+ x2
dx . | ln(ε)√

ε
|

to prove

(3.2.17) |F ′(c)| . | ln(c− 1/3)√
c− 1/3

|.

So if c1, c2 ≥ 1
3
,

(3.2.18) |K(c1, t)−K(c2, t)| ≤ C <∞.

Lemma 3.2.3.

eitLχB(0;1)

is uniformly bounded on [0, T ]×R2.

Proof: By the previous analysis, it suffices to prove an L∞ bound on the boundary. The

boundary has contact of order 2 with a line of slope ±1.

(3.2.19) F (−1) =

∫ ∞

−∞

1

x+ 1
ei(x−1)(x+1)2/tdx,

which is bounded uniformly for t ∈ [0, 1] �.

Remark: For pieces of the boundary that are some distance away from a line of slope

±1, the phase function has a representation f(x)2 +x2. Thus the analysis for the positive

definite case can be applied.
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Remark: The calculation of the Gibbs phenomenon slicing between the foliations re-

duces the L∞ boundedness question to the L∞ along the boundary of the region in the

case of the manifold being smooth of finite type 2 where it has slope of ±1.

Lemma 3.2.4. eitLu0 ∈ L∞(Q) uniformly for t ∈ [0, 1] iff eitLu0 ∈ L∞(Q ∩ ∂Ω)

uniformly for t ∈ [0, 1], where Q is some open neighborhood of where the boundary has

slope ±1, if ∂Ω has contact of order two at these points.

In fact, it is possible to make a reduction to the boundary for a positive definite metric,

and this can be copied over to the non-positive definite case when the boundary does not

have slope ±1.

Lemma 3.2.5. Let φ(y) be a phase function. Then

(3.2.20)

∫
[−δ,δ]

y

y2
eiφ(y)/tdy

lies in L∞ uniformly for all 0 < δ < 1 iff

(3.2.21)

∫
[−δ,δ]

y

y2 + ε2
eiφ(y)/tdy

lies in L∞ uniformly for all 0 < δ < 1 for positive definite phase functions, for ε < 1/4.

Proof: Note that

y

y2 + ε2
− 1

y
=

ε2

y(y2 + ε2)

On the interval [−ε/3, ε/3],

ε2

y(y2 + ε2)
∼ 1

y
.
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This integral can be handled by (3.2.20). On the other hand,

∫ ∞

ε/3

ε2

x(x2 + ε2)
dx =

∫ ∞

1/3

1

x(x2 + 1)
dx.

So the other piece has uniformly bounded integral also.

This permits a reduction to the boundary for the positive definite phase function. Take

x0 = 0, and the boundary of the form f(y) = a0 + a1x
2 + ....

(3.2.22)

eit∆u0(x) ∼
∫ δ

−δ

y

y2 + f(y)2
eiφ(y)/tdy

φ(y) = y2 + a2
0 + 2a0y

2 + ...

Define the vector field that is normal to the boundary at every point x ∈ ∂Ω. After

a change of variables, for small a0, uniform boundedness of eit∆χΩ is linked to uniform

boundedness along ∂Ω �.

On the other hand, a rotation of the coordinate system does influence the (1,1) phase

function. In this case the phase function is rotated to

(3.2.23) φ(y) = αy2 + 2βyf(y)− αf(y)2.

If a0 = 0 the phase function is of the form αy2 + .... The phase function can be rewritten

(3.2.24) φ(y) = α(y − g(a0))2 + ...,

where ∂g
∂a0
|0 = β

α
. In other words, take the flow along the boundary defined by the vector

field (β, α). This mapping is 1-1 near the boundary, except when α is close to zero. So
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take |α| ≥ ε > 0. In this case it is possible to reduce to the boundary along these flows.

This takes care of the L∞ bounds near the boundary, away from where it has slope ±1.

The other part was already dealt with via the foliation. The next lemma will be needed

later.

Theorem 3.2.6. Let u0 = χB(0;1) where B(0; 1) ⊂ R3 and let

L =
∂2

∂x2
1

+
∂2

∂x2
2

− ∂2

∂x2
3

.

Let x0 ∈ S1 lie some distance away from where the caustic intersects the boundary. Then

eitLu0

is uniformly bounded on this part of the boundary.

Proof: Near the point x0 the surface integral is of the form

t−1/2

∫
|r|≤1

y1 ± y2

y2
1 + y2

2

ei(y
2
1+ay2

2)/tdy1dy2,

where |a| ≥ ε > 0. Rewrite the phase function in polar coordinates.

r2

2
(1− a) cos(2θ) +

r2

2
(1 + a)

Make a change of variables r 7→ rt1/2

t−1/2

∫ 2π

0

∫ 1

t1/2
eir

2((1−a) cos(2θ)+(1+a))/2tdrdθ =

∫ 2π

0

∫ t−1/2

1

eir
2((1−a) cos(2θ)+(1+a))/2drdθ

when a is close to one, (1−a) cos(2θ)+(1+a) will be bounded below, and thus the integral

is O(1). Otherwise take the dθ integral. Integrate in the cone where cos(2θ) = ±1. Since
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a is bounded away from zero, (1−a) cos(2θ)+(1+a) is bounded away from zero, and the

integral in that cone is O(1). Outside the cone, a stationary phase integral introduces r2

in the denominator. But this is integrable on [1,∞) and the integral is O(1) �.

Remark: When the operator is not positive definite it is possible to have local blowup

for a characteristic function of a manifold with corners. Consider

(3.2.25) L =
∂2

∂x2
1

− ∂2

∂x2
2

.

Now make a rotation of coordinates so that the kernel is of the form

(3.2.26) K(x, y) =
C

t
e−i(x1−y1)(x2−y2)/t,

(3.2.27) u0(y) = η(Ry1)η(Ry2)χ[0,1](y1)χ[0,1](y2),

where η ≡ 1 on |x| < 1/2, η ≡ 0 for |x| > 1, and R is a large number, χ[0,1] is the

characteristic function of [0,1].

∫ 1

0

∫ 1

0

e−ixy/tdydx =

∫ 1

0

1

x
[e−ix/t − 1]dx =

∫ 1/t

0

1

x
[e−ix − 1]dx ∼ ln(t)

∫ 1

0

(1− χ(Rx))
1

x
dx = O(R)

∫ 1

0

(1− χ(Rx))
1

x
e−ix/tdx = O(R)
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∫ 1

0

(1− χ(Rx))
1

x

∫ 1

0

(1− χ(Ry))e−ixy/tdydx = O(R)

(3.2.28) eitLu0(0) ∼ ln(t),

which is not uniformly bounded in L∞. When integrating by parts with a positive definite

phase function, the boundary integral is something of the form

(3.2.29)

∫ δ̃

−δ

ε

ε2 + x2
eiφ(x)/tdx.

On the other hand for the phase function of signature (1,1) the boundary integral will

be of the form

(3.2.30)

∫ δ̃

−δ

aε+ bx

ε2 + x2
eiφ(x)/tdx,

which is not uniformly bounded for an arbitrary δ > 0, δ̃ > 0.

3.3. Caustics

Suppose Ω is a compact, smoothly bounded region in Rn. Recall the formula in Corollary

[3.2.2] for eitLχΩ. Since ∂Ω is compact, ψ(x, y) has a maximum and a minimum. ∂Ω is

n - 1 dimensional so by stationary phase,

t−n/2+1

∫
∂Ω

(f(x, y)(η(y)f(x, y))eiψ(x,y)/tdσ(y) ≥ O(t1/2).
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f(x, y) =
a1(y1 − x1) + ...+ an(yn − xn)

a2
1(y1 − x1)2 + ...+ a2

n(yn − xn)2
.

From [29], the points where SRf has convergence worse than O(R−1) are given by the

caustics of the flow

cos(t
√
−∆)χΩ.

Meanwhile, the points where pointwise Fourier inversion is weaker than O(R−1) are points

where the convergence of eit∆χΩ is weaker than O(t1/2).

Definition 3.3.1. Guided by this, those points where the convergence of eitLχΩ is

worse than O(t1/2) will be called the caustics of eitLχΩ.

Example: In Rn,

(3.3.1) eit∆χB(0;1) = 1 +O(t(2−n)/2).

For the wave equation, when ∂Ω ⊂ Rn is smooth, then in some collar neighborhood of

the region,

(3.3.2) Φ : [0, 1]× ∂Ω→ Rn

is a 1-1 mapping onto the collar neighborhood. Then the caustics must lie outside some

collar neighborhood of ∂Ω. This is not true when L has mixed signature. Choose a

point x0 /∈ ∂Ω. Let η ∈ C∞0 , η ≡ 1 in a neighborhood of x0, such that supp(η) does not

intersect ∂Ω.
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(3.3.3) eit∆(ηu0)(x) = u0(x) +O(t∞).

Recall the operator

(3.3.4) L =
t

i

(y1 − x1) ∂
∂y1

+ (y2 − x2) ∂
∂y2

(y1 − x1)2 + (y2 − x2)2
.

The denominator is only zero when (y1, y2) = (x1, x2).

(3.3.5)

1

t

∫
ei|x−y|

2/tu0(y)dy =

∫
L(ei|x−y|

2/t)χΩ(y)dy =

∫
ei|x−y|

2/tLt(χΩ(y))dy

=

∫
∂Ω

ei|x−y|
2/t −

∫
Ω

ei|x−y|
2/tf̃(y),

f̃(y1, y2) =
∂

∂y1

(
(y1 − x1)

(y1 − x1)2 + (y2 − x2)2
) +

∂

∂y2

(
(y2 − x2)

(y1 − x1)2 + (y2 − x2)2
),

∫
Ω

Lei|x−y|2/tf̃(y)dy =

∫
Ω

ei|x−y|
2/tLt(f̃(y))dy = O(t).

The formation of the caustics also depends on the boundary integral. The level sets of

|x− y|2 are circles centered at x.

Lemma 3.3.2. If a circle |y − x|2 = c is tangent to ∂Ω of order n at a point y ∈ ∂Ω,

with no higher order of tangency anywhere on ∂Ω, the convergence is O(t1/(n+1)).

Proof: Make a change of coordinates so that x is the origin. Near y, the boundary can

be expressed in polar coordinates, r = c+ f(θ), θ ∈ [θ̃ − ε, θ̃ + ε], dk

dθk
f(θ̃) = 0 for k ≤ n.

∫ θ̃+ε

θ̃−ε
ei(c+f(θ))/tdθ ∼

∫ θ̃+ε

θ̃−ε
ei(c+c1θ

n)/tdθ ∼ t1/(n+1).
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The analysis in R2 for a metric of signature (1,1) also utilizes a regularizing operator,

which yields (3.2.2). However, in the (1,1) case, the caustic may intersect the boundary.

The level sets of the phase function

(3.3.6) (x1 − y1)2 − (x2 − y2)2

are hyperbolas.

As in the case of the positive definite Schrödinger equation, the level sets of the phase

function determine the order of the caustic. For an indefinite signature Schrödinger

equation the level sets are the hyperbolas centered at x0 = (x1, x2). If (x1, x2) is the

center of a hyperbola that is tangent to the boundary to order n − 1, the pointwise

convergence at (x1, x2) is O(t1/n). So when Ω has a smooth boundary, the caustic can

be calculated by travelling along the boundary. Travel along the boundary according to

the curve γ(t). At each point γ(t), determine the hyperbolas that are tangent to ∂Ω to

at least second order. The centers of these hyperbolas will be caustics. Then continue

on to the next point. Thus travelling along the boundary traces out a caustic.

When the tangent line to ∂Ω has slope -1 or +1, the tangent hyperbola is the hyperbola

(y1 − x1)2 − (y2 − x2)2 = 0. This is the only hyperbola that is tangent to the boundary.

Now for the other points. First take T (t) 6= (0, 1). Make a change of variables, t = y1−x1

and z = y2 − x2. Define a curve α(t) = (t, z(t)).
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(3.3.7)

α(t) = (t, z(t)),

α′(t) = (1,
dz

dt
),

α′′(t) = (0,
d2z

dt2
),

κ =
z′′

|α′|3
.

What hyperbola does this represent?

2− 2(z′)2 − 2zz′′ = 0,

z =
1− (z′)2

z′′
=

2− csc2(θ)

z′′
=

2− csc2(θ)

κ|α′|3
.

The hyperbola with second order tangency to ∂Ω at x0 has origin

(3.3.8) x0 −
2− |α′|2

κ|α′|3
(
dy

dx
, 1).

Let R define the reflection over the line y = x. Parameterize ∂Ω as a unit speed curve in

R2. As one travels along ∂Ω, it sweeps out an equation for the caustic. Let γ(t) denote

the curve ∂Ω.

|α′(t)| = 1

| sin(θ)|
.

When T (t) = (cos(θ), sin(θ)).
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(3.3.9)

γ(t)− (
2− |α′|2

κ|α′|3
)R(α′(t)) =

γ(t)− (
2− csc2(θ)

κ csc2(θ)
)RT (t) =

γ(t)− 2 sin2(θ)− 1

κ
RT (t),

R(0, 1) = (1, 0) = − ~N,

R(0,−1) = (−1, 0) = − ~N.

Therefore, (3.3.10) is valid for any T(t). This proves the theorem.

Theorem 3.3.3. Let γ(t) be a closed, C∞ curve with a unit speed parameterization.

The caustic is the continuous curve swept out by

(3.3.10) γ(t) +
2 sin2(θ)− 1

κ
R(T (t)).

Remark: Observe that the caustic intersects γ(t) iff sin2(θ) = 1
2
. This agrees with the

previous analysis on B(0;1).

Remark: If Ω is not convex, part of the caustic could lie inside Ω.

Remark: The convergence along this caustic is at best O(t1/3). When sin2(θ) 6= 0, a

unique hyperbola has been found that is tangent to ∂Ω at x0 of at least second order.

Checking whether higher order tangencies exist will give the exact order of convergence.
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When sin2(θ) = 1
2
, the only hyperbolas of slope -1 or +1 are the straight lines y = x

and y = −x. These hyperbolas have second order tangency to ∂Ω at x0 iff d2y
dx2 = 0, and

similarly for higher order tangency.

Remark: The caustic is tangent to the region at x0 iff a line of slope ±1 is tangent to Ω

at x0. As the order of tangency with a line of slope ±1 increases, the order of tangency

of the caustic with Ω increases.

Remark: If Ω has third order tangency with a line of slope ±1 at a point, then one

could choose any other point x on that line as the center of the hyperbola. In this case

the line will also be added in to the caustic.

Remark: When −a2 < 0 < a1, if a2(y2 − x2)2 = a1(y1 − x1)2 lies tangent to ∂Ω at

(x1, x2), then the caustic intersect (x1, x2). These hyperbolas are the lines

(3.3.11) (y2 − x2) = ±a2

a1

(y1 − x1).

Corollary 3.3.4. If ∂Ω is a smooth closed curve, there exist at least four points

where a caustic intersects ∂Ω.

3.4. Value of the Gradient

As has already been shown, the Pinsky phenomenon for eitLχB(0;1) when L has sig-

nature (2,1), is merely oscillatory. In particular, ‖eitLχΩ‖L∞t,x(R×Rn) ≤ C. Therefore, it

is possible to apply a modification of the method of [27] which requires computing the

gradient of eitLχB(0;1).
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Where Ω is a closed region in Rn, with C∞ boundary ∂Ω it is possible to compute the

value of ∇eitLχΩ quite explicitly.

Assign a smooth normal vector −→n x at each point x ∈ ∂M of unit length one.

(3.4.1)
∂

∂xi
eitLu0 = Ct−n/2

∫
∂Ω

(−→e i · −→n x)e
iψ(x,y)/tdσ(y),

(3.4.2) ψ(x, y) = (x1 − y1)2 + ...+ (xp − yp)2 − (xq − yq)2 − ...− (xn − yn)2,

for

(3.4.3) L =
∂2

∂x2
1

+ ...+
∂2

∂x2
p

− ∂2

∂x2
p+1

− ...− ∂2

∂x2
n

.

Consider the case u0 = χB(0;1) for B(0; 1) ⊂ R2 and L has signature (1,1), in polar

coordinates (R,ϕ),

Recall the shape of the caustic. There is O(t1/3) convergence of eitLχΩ along this region,

and O(t1/4) convergence at the cusp points. Split the analysis into two separate pieces.

eitLχΩ will be evaluated both near the cusp point, and also along the fold set of the

caustic.

(3.4.4)

∂

∂x1

eitLu0(R,ϕ) =
C

t

∫ π

−π
cos(θ)ei(cos(2θ)−2R cos(θ+ϕ)+R2 cos(2ϕ))/tdθ,

∂

∂x2

eitLu0(R,ϕ) =
C

t

∫ π

−π
sin(θ)ei(cos(2θ)−2R cos(θ+ϕ)+R2 cos(2ϕ))/tdθ.
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The caustic has four cusp points, (2,0), (0,2), (-2,0), (0, -2). The convergence is weaker

at these cusp points then along the fold set of the caustic. Without loss of generality

take the point (2,0) and consider the analysis in a neighborhood of this point.

Theorem 3.4.1. Let χ ∈ C∞0 and χ ≡ 1 in a neighborhood of the point (2,0).

(3.4.5) t1/2χ∇eitLχΩ ∈ L4−ε(R2).

Proof: Take a foliation of the region near the cusp point. Let a ∈ (−∞,∞). The region

(R \ 0)×R

can be foliated by the curves

(3.4.6)

(−x, ax3/2)

(x, ax3/2),

∂

∂x1

eitLu0(x) =

∫ π

−π
cos(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ

=

∫ π/8

−π/8
cos(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ

+

∫ 9π/8

7π/8

cos(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ +O(t1/2),

since the phase function does not have any double roots outside of [−π/8, π/8]∪[7π/8, 9π/8] =

A. In this region A approximate the boundary of the circle with a parabola. Choose a

point (x, f(x)).

93



∫ π/8

−π/8
cos(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ

=

∫ ∞

−∞
ei((1−2x+x2−f(x)2)+y4/4−xy2+2f(x)y)/tdy +O(t1/2).

Define a function.

(3.4.7) G(a, t) =
1

t

∫ ∞

−∞
ei(y

4/4−y2+ay)/tdy.

1

t

∫ ∞

−∞
ei(y

4/4−xy2+2ax3/2y)/tdy =

√
x

t

∫ ∞

−∞
eix

2(y4/4−y2+2ay)/tdy

(Now let 1
τ

= x2

t
.)

=
x−3/2

τ

∫ ∞

−∞
ei(y

4/4−y2+2ay)/τdy = x−3/2G(a, τ).

For most values of a the derivative

y3 − 2y + 2a

will not have any double roots. In this case G(a, τ) = O(τ−1/2).

x−3/2G(a, τ) = O(x−1/2t−1/2).

There is a double root when

(3.4.8)

y3 − 2y − a = 0,

3y2 − 2 = 0.

94



When a = ±4
3
(2

3
)1/2 the phase function has a double root at y = ±

√
2
3
. Call 4

3
(2

3
)1/2 = α.

x−3/2G(α, τ) = x−3/2O(τ−2/3) = O(x−1/6t−2/3).

So ∇eitLu0 is large when a is close to α. The points (−x, αx3/2) are a good approximation

of the caustic.

Remark: When x > 0 the second derivative is 3y2 + 2 ≥ 2.

As a changes, the z such that ϕ′(z) = 0 will also change. Call this value z̃(a).

(3z̃2 − 2)
∂z̃

∂a
= 1.

Let

r(z) = (3z̃2 − 2),

∂r

∂a
= 6z(a) · 1

3z̃(a)2 − 2
= 6z̃(a) · 1

r(z̃(a))
.

For small perturbations of a, z will stay in the interval, [
√

1
3
, 1]. The change of r can be

approximated by an ordinary differential equation. The solution to

(3.4.9)

dr

da
=
c

r
,

r(α) = 0,

is of the form
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(3.4.10) r(a)2 = 2ca− 2cα.

Notice there are two roots that bifurcate as a moves away from α. These roots do not

exist when a < α. Now by stationary phase techniques,

∫ ∞

−∞
eir

2/tdr = O(t1/2).

Therefore for any p < 4,

(3.4.11) t1/2χ∇eitLu0 ∈ Lp(Rn),

(

∫ 3

1

∫ 1

−1

|∇eitLu0(x, y)|pdxdy)1/p

≤ t−1/2(

∫ 2

−2

∫ 2

−2

x3/2|x−1/2|α− a|−1/4|pdadx)1/p

+t−1/2(

∫
|a|>2

∫ |a|−3/2

−|a|−3/2

x3/2|x|−p/2|α− a|−p/4dxda)1/p.

This integral converges. The derivative in the x2 direction is much simpler.

∂

∂x2

eitLu0(x) =
1

t

∫ π

−π
sin(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ

=
1

t

∫ π/8

−π/8
sin(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ

+
1

t

∫ 9π/8

7π/8

sin(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ +O(t−1/2)
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1

t

∫ π/8

−π/8
sin(θ)ei(cos(2θ)−2R cos(θ)+R2 cos(2ϕ))/tdθ

=
1

t

∫ ∞

−∞
yei((1−2x+x2−f(x)2)+y4/4−xy2+2f(x)y)/tdy +O(t−1/2).

Define the function

(3.4.12) H(a, t) =
1

t

∫ ∞

−∞
yei(y

4/4−y2+ay)/tdy.

1

t

∫ ∞

−∞
yei(y

4/4−xy2+2ax3/2y)/tdy =
x3/2

t

∫ ∞

−∞
eix

2(y4/4−y2+2ay)/tdy

(Now let 1
τ

= x2

t
.)

=
x−1/2

τ

∫ ∞

−∞
ei(y

4/4−y2+2ay)/τdy = x−1/2G(a, τ).

This completes the proof �.

Metric of Signature (2,1): For a metric of signature (2,1), χB(0;1), a weaker result

holds. In the (1,1) signature case, there were caustic points at (2, 0), (0, 2), (0,−2), and

(−2, 0). If (−2, 0) is renamed the origin, the circle near (−1, 0) has the form (1 + y2

2
, y).

In signature (2, 1), the cusp will form at the points where |yp| = 2, |yq| = 0 and |yp| = 0,

|yq| = 2. Without loss of generality, suppose x0 has the coordinates (x, 0, f(x)) and let

(−2, 0, 0) be the origin.

|(x, 0)− (1 +
y2

2
)(cos θ, sin θ)|2 = x2 + (1 +

y2

2
)2 − 2x(1 +

y2

2
) cos θ,
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∇eitLu0(x) =
1

t3/2

∫ 1

−1

ei(x
2+(1+ y2

2
)2−(y−f(x))2)/t

∫ 2π

0

e−2ix(1+ y2

2
) cos θ/tdθdy +O(t−1/2).

Then apply stationary phase.

t−1/2

∫ 2π

0

e−2ix(1+y2/2) cos θ/tdθ = c1x
−1/2(1 +

y2

2
)−1/2e−2ix(1+y2/2)/t

+c2x
−1/2(1 +

y2

2
)−1/2e2ix(1+y2/2)/t +O(t1/2).

The O(t−1/2) term is fine to integrate over a bounded region.

t−1

∫ 1

−1

ei(x
2+(1+ y2

2
)2−(y−f(x))2)/te±2ix(1+ y2

2
)dy = t−1

∫ 1

−1

ei((x±(1+ y2

2
))2−(y−f(x))2)/tdy.

These integrals are the integrals in the case (1,1). The Lp integral is

≤ Ct−1/2(

∫ 2

−2

∫ 2

−2

x5/2|x−1|α− a|−1/4|pdadx)1/p

+Ct−1/2(

∫
|a|>2

∫ |a|−3/2

−|a|−3/2

x5/2|x|−p|α− a|−p/4dxda)1/p

(3.4.13) t1/2‖χ∇eitLu0‖p <∞,

for p < 7/2.

Fold: Next, evaluate the derivative along the fold part of the caustic, the part away from

the cusps. First, a lemma is needed.
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Lemma 3.4.2. Suppose (R,ϕ) lies along the caustic, away from the cusp points. For

the θ such that ϕ(θ) = cos(2θ)− 2R cos(θ + ϕ) +R2 cos(2ϕ) has a double root,

(3.4.14)

| sin(2θ)| ≥ ε

| sin(θ + ϕ)| ≥ ε

where ε > 0 depends on the size of the forbidden neighborhood around the cusp points.

Proof: For such a double root,

2 sin(2θ) = 2R sin(θ + ϕ),

4 cos(2θ) = 2R cos(θ + ϕ),

16 sin2(2θ) + 16 cos2(2θ) = 16 = 12R2 sin2(θ + ϕ) + 4R2.

The points on the caustic outside the forbidden regions are given by (R,ϕ) where R ≤

2− δ. Thus

sin(θ + ϕ)2 ≥ δ′ > 0.

Convert to rectangular coordinates. Let (x, y) be a point near the caustic. Without loss

of generality suppose that y > 0.

(3.4.15)

∂

∂x1

eitLu0(x, y) =
C

t

∫ 1

−1

ei((z−x)2−(y−
√

1−z2)2)/t z

(1− z2)1/2
dz

+
C

t

∫ 1

−1

ei((z−x)2−(y+
√

1−z2)2)/t z

(1− z2)1/2
dz,
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d2

dy2
(z − x)2 − (y +

√
1− z2)2 = 4 +

y

(1− z2)3/2
≥ 4.

Also, a root near z2 = 1 corresponds to a root near θ = 0 or θ = π, which is excluded by

Lemma [3.4.2]. The second term is O(t−1/2) uniformly. So the analysis depends on the

first term. Next, define the ε-sets.

Definition 3.4.3. The ε-sets are varieties in R2 where there exists z0 ∈ [−1, 1] such

that

(3.4.16)

ϕ′(z0) = 0,

ϕ′′(z0) = ε.

The caustic corresponds to the ε = 0 set.

Lemma 3.4.4. The ε-sets are given by the equation (x,y) such that

x = ±(1− (
2y

4− ε
)2/3)1/2(4− (4− ε)( 2y

4− ε
)2/3).

Proof: Fix y.

ϕ′′(z) = 4− 2y(1− z2)3/2 = ε.

This gives an equation for |z|. Plug this into

ϕ′(z) = 4z − 2x+
2yz√
1− z2

= 0,

which gives the appropriate equation for x �.

For ε small, since
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∂

∂ε
[(1− (

2y

4− ε
)2/3)1/2(4− (4− ε)( 2y

4− ε
)2/3)]|ε=0 = 0,

∂2

∂ε2
[(1− (

2y

4− ε
)2/3)1/2(4− (4− ε)( 2y

4− ε
)2/3)]|ε=0 = C,

for small ε there is a Taylor expansion

[(1−(
2y

4− ε
)2/3)1/2(4−(4−ε)( 2y

4− ε
)2/3)] = [(1−(

2y

4
)2/3)1/2(4−4(

2y

4
)2/3)]+C(y)ε2+O(ε3),

∫ 7/4

1/4

[(1−(
2y

4− ε
)2/3)1/2(4−(4−ε)( 2y

4− ε
)2/3)]− [(1−(

2y

4
)2/3)1/2(4−4(

2y

4
)2/3)]dy = O(ε2),

t1/2‖ ∂

∂x1

eitLu0‖4−δ ≤
∫ 1

−1

ε2(
C√
ε
)4−δdε <∞,

(3.4.17)

∂

∂x2

eitLu0(x, y) =
C

t

∫ 1

−1

ei((z−x)2−(y−
√

1−z2)2)/tdz

+
C

t

∫ 1

−1

ei((z−x)2−(y+
√

1−z2)2)/tdz,

so by the same analysis,

t1/2‖ ∂

∂x1

eitLu0‖4−δ <∞.

Now take the same reduction in R3 with signature (2,1). Due to rotational symmetry let

x = (x1, 0, x2). Let S(0;1) denote the sphere of radius one centered at zero.
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t−3/2

∫
S(0;1)

eiψ(x,y)/tdy

= t−3/2

∫ π/2

−π/2
|x1|ei(|x1|2+cos2(θ)−(|x2|−sin2(θ))2)/t

∫ 2π

0

e−2i|x1|| cos θ| cos(ϕ)/tdϕdθ

= c1t
−1

∫ π/2

−π/2
|x1|1/2| cos(θ)|−1/2ei((x1−cos(θ))2−(x2−sin(θ))2)/tdθ

+c2t
−1

∫ π/2

−π/2
|x1|1/2| cos(θ)|−1/2ei((x1+cos(θ))2−(x2−sin(θ))2)/tdθ +O(t−1/2),

thus reducing to the (1,1) signature metric. Let η be a smooth cutoff, η(x) ≡ 1 for

|x| ≤ 2, and η ≡ 0 for |x| > 3.

(3.4.18) t1/2(η − χ)∇eitLu0 ∈ L4−ε(R3).

Lemma 3.4.5. Away from the caustics,

(3.4.19) |∇eitLχB(0;1)| . t−1/2

and for |x| > 10,

(3.4.20) |∇eitLχB(0;1)| . t−1/2|x|−1

Proof: For a point x away from the caustic sets,

t−3/2

∫
|y|=1

ei|xp−yp|
2/t−(xq−yq)2/tdσ(y) . t−1/2,
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since all the stationary points have Hessians that are bounded below. Now for |x| large,

say, |x| > 10,

t−3/2

∫
|y|=1

ei|xp−yp|
2/t−(xq−yq)2/tdσ(y),

The Hessians of the stationary points are ∼ |x− y| ∼ |x|, which proves (3.4.20) �.

3.5. Local Well-posedness for a metric of signature (2,1)

Let u0 = χB(0;1) in R3 with

L =
∂2

∂x2
1

+
∂2

∂x2
2

− ∂2

∂x2
3

.

Since eitLu0 is uniformly bounded in L∞, this suggests the possibility of using the iteration

scheme found in [T]. However, there is an additional obstacle. In [T] to iterate in L∞the

Sobolev embedding theorem

Hσ,p ⊂ L∞

when pσ > n was used. The dispersive estimates in the Duhamel term require (t −

s)3(1/p−1/2) to be integrable, forcing 1/2−1/p < 1/3, and p < 6. However, a characteristic

function lies in H1/2−ε,2, which falls just short of the Sobolev embedding needed. So a

smoothing estimate is needed.

Theorem 3.5.1. Let F ∈ C∞, F : R2 → R2, F (0) = F ′(0) = 0 be the nonlinearity.

Then the equation
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(3.5.1)

iut + Lu = F (u),

u(0) = u0 = χB(0;1)

is locally well-posed on some time interval [0, T0).

Proof: Start with the function space

(3.5.2) X = {w(t, x) : ‖w(t, ·)‖H1,2 ≤ Ct1/2, sup
t∈[0,T ]

‖w(t, ·)‖∞ ≤ C},

(3.5.3) Φ(w(t, x)) =

∫ t

0

ei(t−s)LF (eisLu0 + w(s, x))ds,

for a sufficiently small T, Φ : X → X. For now, assume three estimates. First,

(3.5.4) sup
[0,T ]

‖eitLu0‖∞ ≤ C <∞.

Let χ be a smooth cutoff with compact support and make the decomposition u1 = χu

and u2 = (1− χ)u. The other estimates to arrange for the present are

(3.5.5)

∇eitLu0 = u1(t, x) + u2(t, x)

‖u1(t, x)‖L7/2−ε ≤ Ct−1/2, ‖u2(t, x)‖L3+∩L∞ ≤ Ct−1/2,

(3.5.6) sup
[0,T ]

‖
∫ t

0

ei(t−s)LF (eisLu0)ds‖∞ ≤ C.
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(3.5.4) has already been proved via the Gibbs phenomenon. (3.5.5) and (3.5.6) will be

proved later.

‖
∫ t

0

ei(t−s)LF (eisLu0 + w(s, x))ds‖∞

≤ C + ‖
∫ t

0

ei(t−s)L[F (eisLu0 + w(s, x))− F (eisLu0)]ds‖∞,

F (eisLu0 + w(s, x))− F (eisLu0) = w(s, x)

∫ 1

0

F ′(eisLu0 + τw(s, x))dτ

= w(s, x)G(eisLu0, w(s, x)).

Now apply the Sobolev embedding theorem H1,3+ ⊂ L∞.

‖
∫ t

0

ei(t−s)L[F (eisLu0 + w(s, x))− F (eisLu0)]ds‖Ḣ1,3+ ≤

‖
∫ t

0

ei(t−s)Lw(s, x)∇G(eisLu0, w(s, x))ds‖3+

+‖
∫ t

0

ei(t−s)L(∇w(s, x))G(eisLu0, w(s, x))ds‖3+

∇
∫ 1

0

F ′(eisLu0 + τw(s, x))dτ =

∫ 1

0

F ′′(eisLu0 + τw(s, x))(∇eisLu0 + τ∇w(s, x))dτ.

eisLu0 + τw(s, x) uniformly bounded implies

F ′′(eisLu0 + τw(s, x)) ∈ L∞,
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∇w(s, x) ∈ L2,

‖∇eisLu0‖L7/2−ε+L3+∩L∞ ≤ Cs−1/2.

By the Sobolev embedding theorem, ‖w(s, x)‖3− ≤ Cs1/2. This gives the estimate.

‖w(s, x)∇G(eisLu0, w(s, x))‖3/2− ≤ C.

Similarly, ∇w(s, x) ∈ L2 and G(eisLu0, w(s, x)) ∈ L2 ∩ L∞, so

‖(∇w(s, x))G(eisLu0, w(s, x))‖3/2− ≤ C.

Combine these results with the dispersive estimates

(3.5.7)

‖
∫ t

0

ei(t−s)L[F (eisLu0 + w(s, x))− F (eisLu0)]ds‖Ḣ1,3+

≤
∫ t

0

1

(t− s)3(1/2−1/3+)
C ′ds ≤ C ′t1/2−,

taking T sufficiently small proves the L∞ bounds.

Now for the Ḣ1,2 bounds. ∇w ∈ L2 and G(eisLu0, w(s, x)) ∈ L∞, so

∇w(s, x)G(eisLu0, w(s, x)) ∈ L2.

On the other hand, ∇
∫ 1

0
F ′(eisLu0 + τw(s, x))dτ ∈ L2 + s−1/2L7/2−ε + s−1/2L∞. The L2

term and s−1/2L∞ terms are fine since w(s, x) ∈ s1/2L2∩L∞. By the Sobolev embedding

w(s, x) ∈ s1/2L6(R3) ∩ s1/2L2(R3). Combine the estimates
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(3.5.8) ‖
∫ t

0

ei(t−s)L[F (eisLu0 + w(s, x))− F (eisLu0)]ds‖Ḣ1,2 ≤
∫ t

0

C ′ds ≤ C ′t,

which satisfies the Ḣ1,2 estimate.

Finally, since F ′(0) = 0 and F ∈ C∞, G(eisLu0, w(s, x)) ∈ L2∩L∞, w(s, x)G(eisLu0, w(s, x)) ∈

L1 ∩ L2,

(3.5.9)

‖
∫ t

0

ei(t−s)Lw(s, x)G(eisLu0, w(s, x))ds‖2 ≤
∫ t

0

Cs1/2 = C ′t3/2

‖
∫ t

0

ei(t−s)Lw(s, x)G(eisLu0, w(s, x))ds‖3+ ≤
∫ t

0

C ′
s1/2

(t− s)1/2+
ds = C ′t1−,

which proves Φ : X → X for t ∈ [0, T ], T sufficiently small.

A similar argument proves that Φ is a contraction. Define the function.

(3.5.10)

G(eisLu0+w1(s, x), w2(s, x)− w1(s, x)) =

(w2(s, x)− w1(s, x))

∫ 1

0

F ′(eisLu0 + w1(s, x) + τ(w2(s, x)− w1(s, x))dτ.

Define the norm

(3.5.11)

‖w1(t, x)− w2(t, x)‖Y = ‖w1(t, x)− w2(t, x)‖∞ + sup
t∈[0,T ]

t−1/2‖w1(t, x)− w2(t, x)‖H1,2 .

Let ‖w1 −w2‖Y = A. Then plugging in to (3.5.8) - (3.5.11) gives a contraction, possibly

after shrinking T.
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‖∇[(w1(s, x)− w2(s, x))G(eisLu0 + w1(s, x), w2(s, x)− w1(s, x))]‖3/2− ≤ AC,

‖∇(w1(s, x)− w2(s, x))G(eisLu0 + w1(s, x), w2(s, x)− w1(s, x))‖2 ≤ AC,

‖(w1(s, x)− w2(s, x))G(eisLu0 + w1(s, x), w2(s, x)− w1(s, x))‖3/2− ≤ AC,

‖(w1(s, x)− w2(s, x))G(eisLu0 + w1(s, x), w2(s, x)− w1(s, x))‖2 ≤ ACs1/2,

t−1/2

∫ t

0

ACds ≤ ACt1/2,

t−1/2

∫ t

0

ACs1/2ds ≤ ACt,

∫ t

0

1

(t− s)1/2+
ACds ≤ ACt1/2−.

This gives a contraction for t ∈ [0, T0], T0 sufficiently small �.

The proof will be complete once the estimates (3.5.5) and (3.5.6) are established. By

the previous section if η is the cutoff η ≡ 1 on B(0;3) and η = 0 for |x| > 4, then

∇ηeitLu0 ∈ L7/2−ε(R3).

108



eitLu0 = t−3/2

∫
B(0;1)

eiψ(x,y)/tdy.

By a rotation of coordinates let x2 = 0. Then x = (R cosϕ, 0, R sinϕ).

∫
S1

eiψ(x,y)/tdσ(y)

=

∫ π/2

−π/2
cos(φ)ei sin(φ)2/t

∫ 2π

0

ei(cos(φ)2 cos(2θ)−2R cos(φ) cos(θ+ϕ)+R2 cos(2ϕ))/tdϕdθ.

When R > 3, the inner phase function has no double roots. Moreover,

∂

∂θ
(sin(φ)2 cos(2θ)− 2R| sin(φ)| cos(θ + ϕ)) = −2 cos(φ)2 sin(2θ) + 2R cos(φ) sin(θ + ϕ)

∂2

∂θ2
(sin(φ)2 cos(2θ)− 2R| sin(φ)| cos(θ + ϕ))

= −4 cos(φ)2 cos(2θ) + 2R cos(φ) cos(θ + ϕ) = O(R).

For R large, sin(θ + ϕ) must be close to zero at a stationary point, so cos(θ + ϕ) will be

close to one.

∫ 2π

0

ei(cos(φ)2 cos(2θ)−2R cos(φ) cos(θ+ϕ)+R2 cos(2ϕ))/tdϕdθ

= t1/2R−1/2 cos(φ)−1/2eiχ(θ̃)/t + tO(R−1).

θ̃ is a stationary point of the phase function

χ(θ) = cos(φ)2 cos(2θ)− 2R cos(φ) cos(θ + ϕ) +R2 cos(2ϕ).
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∫ π/2

−π/2
tO(R−1) = tO(R−1).

So concentrate on the first term

R−1/2t1/2
∫ π/2

−π/2
cos(φ)1/2ei sin

2(φ)/tei(cos
2(φ) cos(2θ̃)−2R cos(φ) cos(θ̃+ϕ)+R2 cos(2ϕ))/tdφ.

Since cos(θ̃ + ϕ) is close to one,

∂

∂φ
[sin2(φ) + (cos2(φ) cos(2θ̃)− 2R cos(φ) cos(θ̃ + ϕ) +R2 cos(2ϕ))] = 0

iff sin(φ) is close to zero. But in that case

∂2

∂φ2
[sin2(φ) + (cos2(φ) cos(2θ̃)− 2R cos(φ) cos(θ̃ + ϕ) +R2 cos(2ϕ))] ≈ R,

which proves

= t1/2R−1/2

∫ π/2

−π/2
cos(φ)1/2eiχ(θ̃)/t = tO(R−1).

Thus outside B(0; 3) the pointwise convergence of eitLu0 is O( t
1/2

|x|2 ). The pointwise con-

vergence of eitL∇u0 is O( 1
|x|t1/2 ). Thus (3.5.5) is proved.

Lemma 3.5.2.

(3.5.12) ∇eitLu0 ∈ L7/2−ε + L∞ ∩ L3+.

There is one final piece to prove.
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Lemma 3.5.3.

(3.5.13)

∫ t

0

ei(t−s)LF (eisLu0)ds ∈ L∞.

Proof: Use the fact that eisLu0 ∈ C∞ ∩H1/2−ε,2 for any s > 0. Let x0 be a point in R3.

Suppose that χ is a smooth cutoff function, χ ≡ 1 on B(0; 7) ∪ B(x0; 7), and χ ≡ 0 on

(R3 \B(0; 8)) ∩ (R3 \B(x0, 8).

Make a change of coordinates so that x0 = 0, and then regularize the integral

1

(t− s)3/2

∫
ei(y

2
1+y2

2−y2
3)/(t−s)F (eisLu0)(y)dy

=
i

(t− s)1/2

∫
F (eisLu0)(y)

2(y1
∂
∂y1

+ y2
∂
∂y2
− y3

∂
∂y3

)

y2
1 + y2

2 + y2
3

ei(y
2
1+y2

2−y2
3)/(t−s)dy

=
2i

(t− s)1/2

∫
∂

∂y1

(
y1F (eisLu0)(y)χ(y)

y2
1 + y2

2 + y2
3

)ei(y
2
1+y2

2−y2
3)/(t−s)dy

+
2i

(t− s)1/2

∫
∂

∂y2

(
y2F (eisLu0)(y)χ(y)

y2
1 + y2

2 + y2
3

)ei(y
2
1+y2

2−y2
3)/(t−s)dy

− 2i

(t− s)1/2

∫
∂

∂y3

(
y3F (eisLu0)(y)χ(y)

y2
1 + y2

2 + y2
3

)ei(y
2
1+y2

2−y2
3)/(t−s)dy

+
2i

(t− s)1/2

∫
∂

∂y1

(
y1F (eisLu0)(y)(1− χ(y))

y2
1 + y2

2 + y2
3

)ei(y
2
1+y2

2−y2
3)/(t−s)dy

+
2i

(t− s)1/2

∫
∂

∂y2

(
y2F (eisLu0)(y)(1− χ(y))

y2
1 + y2

2 + y2
3

)ei(y
2
1+y2

2−y2
3)/(t−s)dy
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− 2i

(t− s)1/2

∫
∂

∂y3

(
y3F (eisLu0)(y)(1− χ(y))

y2
1 + y2

2 + y2
3

)ei(y
2
1+y2

2−y2
3)/(t−s)dy,

by the product rule, the estimates on ∇F (eisLu0), that χ has compact support, and 1
|y|2

is integrable in R3. F (eisLu0) ∈ L∞ and 1
|y|2 ∈ L

3/2− locally, so

F (eisLu0)χ(y)
∂

∂yi
(
yi
|y|2

) ∈ L1.

If the derivative hits F (eisLu0) apply the chain rule and the fact that F ′(eisLu0) ∈ L∞,

to get

‖χ(y)F ′(eisLu0)
∂

∂yi
eisLu0‖L4−ε ≤ Cs−1/2.

On the other hand, 1
|y| ∈ L

3−(supp(χ)), so by Holder’s inequality,

‖χ(y)
yi
|y|2

F ′(eisLu0)
∂

∂yi
eisLu0‖L1 ≤ Cs−1/2.

Finally, ∇χ ∈ L∞ and is compactly supported on the support of χ, F (eisLu0) ∈ L∞ and

1
|y| ∈ L

3−(supp(χ)) so

(3.5.14)
∂

∂yi
(
yi
|y|2

F (eisLu0)(y)χ(y)) ∈ s−1/2L1

1

(t− s)1/2

∫
∂

∂yi
(
yiF (eisLu0)(y)χ(y)

y2
1 + y2

2 + y2
3

)dy ≤ C

(t− s)1/2s1/2
.

Now for the integral on 1− χ(y).

Outside B(0;7), eisLu0 ∼ s1/2r−2, where r is the distance from ∂Ω to the point. Since

F ′(0) = 0 and F ∈ C∞,
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| ∂
∂yi

F (eisLu0)| = |F ′(eisLu0)
∂

∂yi
(eisLu0)| ≤ C

s1/2

r2

1

s1/2r
=
C

r3

⇒ | yi
|y|2
∇F (eisLu0)(1− χ(y))| ∈ L1,

1

|y|2
∈ L2(R3 \B(0; 7)),

1

(t− s)1/2

∫
∂

∂yi
(
yiF (eisLu0)(y)(1− χ(y))

y2
1 + y2

2 + y2
3

)dy ≤ C

(t− s)1/2
.

Since ∫ t

0

C

(t− s)1/2s1/2
+

C

(t− s)1/2
ds ≤ C ′,

the proof is complete �.
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CHAPTER 4

Strichartz Estimates, power-type nonlinearities



4.1. Strichartz Estimates

Define the space of functions, LptL
q
x.

(4.1.1) ‖f(t, x)‖LptLqx(R×Rn) = [

∫
R

{
∫

Rn

|f(t, x)|qdx}p/qdt]1/p.

Definition 4.1.1. (p,q) is an admissible pair for n if p > 2, q > 2, and

(4.1.2)
2

q
= n(

1

2
− 1

p
).

For such admissible pairs (p,q).

(4.1.3) ‖eit∆φ‖LptLqx(R×Rn) ≤ C(n, p, q)‖f‖L2(Rn).

This estimate is proved in [2], [24]. This estimate is also proved in [23] for any family

of operators U(t) where

(4.1.4)

‖U(t)(U(s))∗g‖L∞(Rn) . |t− s|−n/2‖g‖L1(Rn)

‖U(t)(U(s))∗g‖L2(Rn) . ‖g‖L2(Rn)

The operator eitL,

(4.1.5) L =
∂2

∂x2
1

− ∂2

∂x2
2

,

also satisfies the dispersive estimates in (4.1.4). The kernel of the operator is
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(4.1.6) K ′(x, y) =
1

4πt
e−i

(x1−y1)2

4t ei
(x2−y2)2

4t .

Remark: For an operator of signature (p, q) take the decomposition Rn = Rp ⊕ Rq,

xp is the projection onto Rp and xq is the projection onto Rq, and make a similar

decomposition for y = (yp, yq). The kernel is

(4.1.7) K ′′(x, y) =
eiπ(p−q)/4

(4πt)n/2
e−i

|xp−yp|2

4t ei
|xq−yq |2

4t .

For the convenience of the reader, the non-endpoint Strichartz estimates will be proved.

An identical proof can be found in [23].

Theorem 4.1.2. Suppose (p, q) are admissible pairs. Then

(4.1.8) ‖
∫

R

e−isLF (s, ·)ds‖2 ≤ C(n, q, p)‖F‖
Lq
′
t L

p′
x (R×Rn)

.

Proof:

(4.1.9) ‖
∫

R

ei(t−s)LF (s, ·)ds‖LqtLpx(R×Rn) ≤ ‖
∫

R

‖ei(t−s)LF (s, ·)‖Lpx(Rn)ds‖Lqt (R)

≤ C(n, p)‖
∫

R

‖F (s, ·)‖
Lp
′
x (Rd)

1

|t− s|n(1/2−1/p)
ds‖Lqt (R).

Since (p, q) is an admissible pair, n(1
2
− 1

p
) = 2

q
. Thus
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(4.1.10) (4.1.9) ≤ C(n, q)‖
∫
‖F (s, ·)‖

Lp
′
x (Rn)

1

|t− s|2/q
ds‖Lqt (R).

Now apply the Hardy - Littlewood - Sobolev theorem

Theorem 4.1.3.

(4.1.11) ‖f ∗ 1

|x|α
‖Lqx(Rm) ≤ C(p, r,m)‖f‖Lpx(Rm)

for 1 < p < q <∞, 0 < α < m, and 1
p

= 1
q

+ m−α
m

.

Proof: See [13].

Apply the theorem to (4.1.10) when m = 1, 1
q

+ (1− 2
q
) = 1− 1

q
= 1

q′
.

(4.1.12) (4.1.9) ≤ C(m, p, q)‖F‖
Lq
′
t L

p′
x

Now choose f(t,x) such that ‖f‖
Lq
′
t L

p′
x (R×Rn)

= 1. Let F (s) = f(s, ·).

‖
∫

R

e−isLF (s, ·)ds‖2
2 =

∫
R

∫
R

〈e−isLF (s, ·), e−itLF (t, ·)〉dsdt

(4.1.13) =

∫
R

∫
R

〈ei(t−s)LF (s, ·), F (t, ·)〉dsdt ≤ ‖
∫

R

ei(t−s)LF (s, ·)ds‖LqtLpx‖F (t, ·)‖
Lq
′
t L

p′
x
.

By (4.1.12),

(4.1.14) ‖
∫

R

ei(t−s)LF (s, ·)ds‖LqtLpx(R×Rn) ≤ C(n, p, q)‖F‖
Lq
′
t L

p′
x (R×Rn)

,
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(4.1.15) ‖
∫
e−isLF (s, ·)ds‖2

L2(Rn) ≤ C(n, p, q)‖F‖2

Lq
′
t L

p′
x (R×Rn)

.

The proof is complete �.

Now apply a duality argument. Take G(t, x) ∈ Lq
′

t L
p′
x .

∫
R

〈eitLu0, G(t, x)〉dt = 〈u0,

∫
R

e−itLG(t, x)dt〉 ≤ ‖u0‖2‖
∫

R

e−itLG(t, x)dt‖2

By Theorem [4.1.2]

‖
∫

R

e−itLG(t, ·)dt‖2 ≤ C(n, p, q)‖G‖
Lq
′
t L

p
x
,

This proves the estimate,

(4.1.16) ‖eit∆u0‖LptLqx(R×Rn) ≤ C‖u0‖L2(Rn).

Remark: For the Hardy - Littlewood - Sobolev theorem, 0 < α < n. This requires

2
q
> 0, so q <∞, and 2

q
< 1, so q > 2.

Remark: The same estimates also hold for et∆/(a+ib), where a > 0.

4.2. Local Well-posedness for L2 critical

It will first be necessary to prove a local well-posedness result in L2. This proof can be

found in [24], the original proof is given by [31].
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Theorem 4.2.1. Suppose there is the equation

(4.2.1)

iut + ∆u = |u|4/du,

u(0, x) = u0(x) ∈ L2.

This equation is locally wellposed on some [0, T ], for T (u0).

Proof: Define the Strichartz space. Let I be some interval. Recall that (p, q) is an

admissible pair if 2
p

+ n
q

= n
2
. Set

(4.2.2) ‖u(t, x)‖S0(I×Rn) = sup
(p,q)

‖u(t, x)‖LptLqx(I×Rn).

By the dominated convergence theorem, given u0, for I sufficiently small

(4.2.3) ‖eit∆u0‖S0(I×Rn) < ε.

Let N0(I ×Rn) be the dual Strichartz space to S0(I ×Rn).

(4.2.4) ‖u‖N0(I×Rn) ≤ ‖u‖Lp′t Lq′x (I×Rn)
,

where p′, q′ are the dual exponents of p and q.

Suppose u(t, x) solves Duhamel’s formula,

(4.2.5) u(t, x) = eit∆u0 +

∫ t

0

ei(t−s)∆F (s)ds.
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(4.2.6) ‖u(t, x)‖S0(I×Rn) ≤ C‖u0‖L2(Rn) + C‖F‖N0(I×Rn),

F (s) = |uj−1(s)|4/duj−1(s),

‖|uj−1(s)|4/nuj−1‖L2
tL

2n/(n+2)
x

≤ ‖uj−1‖L2
tL

2n/(n−2)
x (I×Rn)

‖|uj−1|4/n‖L∞t Ln/2x (I×Rn)

≤ C‖uj−1‖1+4/n

S0 ,

so for ‖uj−1‖S0(I×Rn) ≤ ε for ε sufficiently small, the Duhamel map,

(4.2.7) Φ(uj(s)) = eit∆u0 +

∫ t

0

ei(t−s)∆|uj−1(s)|4/nuj−1(s)ds,

satisfies

(4.2.8)

Φ : X → X,

X = {u : ‖u‖S0(I×Rn) ≤ 2ε}.

Moreover, the map is a contraction.

‖uj − uj−1‖S0 ≤ C‖uj − uj−1‖S0(I×Rn)‖|uj|4/d + |uj−1|4/d‖S0(I×Rn)

≤ Cε4/d‖uj − uj−1‖S0(I×Rn).

Thus the map is a contraction for ε sufficiently small.
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Take u1(t, x) = eit∆u0. As δ → 0,

(4.2.9) ‖eit∆u0‖S0([t,t+δ)×Rn) → 0,

so for δ sufficiently small, ‖eit∆u0‖S0([t,t+δ)×Rn) ≤ ε. This gives local well-posedness �.

Remark: The δ depends on the profile of the initial data, not just the L2 norm.

Remark: If u0 ∈ Hs(Rn) for some s > 0 then I = [0, T ], T (‖u0‖Hs) > 0, where T

depends only on the size of ‖u0‖Hs(Rn).

Lemma 4.2.2. If u0 ∈ Ḣρ(Rn) for some 0 ≤ ρ < n
2
, n ≥ 3, then

(4.2.10)

iut + ∆u = |u|αu,

u(0, x) = u0(x),

α =
4

n− 2ρ
,

has a solution for some interval [0, T ], where T (u0) > 0.

Proof: By the Sobolev embedding theorem, when 1
p

= 1
2
− ρ

n
and ρ < n

2
,

‖eit∆u0‖L∞t Lpx ≤ C‖u0‖Ḣρ(Rn).

Consider three cases separately. Let α = 4
n−2ρ

. For any u0, (4.2.8) and the domi-

nated convergence theorem implies that for any ε > 0 there is an interval I such that

‖|∇|ρeit∆u0‖L2
tL

2n/(n−2)
x (I×Rn)

≤ ε.

Case 1, α ≥ 1 and ρ < n
2
− 1:
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‖|∇|ρ|u|αu‖L1
tL

2
x
≤ C‖u‖L2

tL
q
x
‖|∇|ρu‖L2

tL
q
x
‖|u|α−1‖L∞t Lrx ,

when 1
q

= 1
2
− ρ+1

n
, 1
p

= 1
2
− 1

n
, 1
r

= 1
2
− ρ

n
.

‖|u|α−1‖L∞t Lrx(I×Rn) ≤ ‖|∇|ρu‖α−1
L∞t L

2
x(I×Rn),

by the Sobolev embedding theorem. So iterate in the space

(4.2.11) {u : ‖u‖L∞t Ḣρ(I×Rn) < 2‖u0‖Ḣρ(Rn) = A, ‖u‖
L2
tL

2n/(n−2)
x (I×Rn)

< 2ε}.

Define a sequence with v0 ≡ 0, and

(4.2.12) vn(t) = eit∆u0 +

∫ t

0

ei(t−s)∆|vn−1(s)|αvn−1(s)ds.

This sequence has the estimates

‖vn(t)‖
L2
tL

2n/(n−2)
x (I×Rn)

≤ ‖eit∆u0‖L2
tL

2n/(n−2)
x (I×Rn)

+ (2ε)2Aα−1,

‖vn(t)‖L∞t Ḣρ(I×Rn) ≤ ‖e
it∆u0‖L∞t Ḣρ(I×Rn) + (2ε)2Aα−1.

So for ε sufficiently small the iteration stays in (4.2.8). A contraction is obtained by a

similar method.

Case 2, α < 1:

‖|∇||u|αu‖
Lp
′
t L

q′
x (I×Rn)

≤ ‖|∇|ρu‖
L2
tL

2n/(n−2)
x (I×Rn)

‖u‖α
L

2/α
t L

r/α
x (I×Rn)

,
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where 1
p′

= 1
2
+ 2

α
and 1

q′
= 1

2
+ 1

n
− α

n
. (p′, q′) are again the dual exponents to an admissible

pair, and 1
r

= 1
2
− 1

n
− ρ

n
. Once again apply the Duhamel estimates

‖vn(t)‖
L2
tL

2n/(n−2)
x (I×Rn)

≤ ‖eit∆u0‖L2
tL

2n/(n−2)
x (I×Rn)

+ (2ε)α+1Aα−1,

‖vn(t)‖L∞t Ḣρ(I×Rn) ≤ ‖e
it∆u0‖L∞t Ḣρ(I×Rn) + (2ε)α+1Aα−1.

There is also local existence for ε sufficiently small.

Case 3, ρ ≥ n
2
− 1:

‖|∇|ρ|u|αu‖
L2
tL

2n/(n+2)
x (I×Rn)

≤ C‖u‖L∞t Ḣρ(I×Rn)‖u‖
α
L2α
t Lqx(I×Rn),

where 1
q

= 1
2
− 1

nα
. Again apply the Duhamel estimates �.

Lemma 4.2.3. There exists a T (‖u0‖Hρ+ε(Rn)) > 0 such that (??) has a local solution

for [0, T ].

Proof: By the Sobolev embedding theorem,

(4.2.13) ‖|∇|ρeit∆u0‖L2
tL

2n/(n−2)
x ([0,T ]×Rn)

≤ T δ(ε,n)‖|∇|ρeit∆u0‖LptLqx([0,T ]×Rn),

for some admissible pair (p, q) with 1
q

= n−2
2n

+ ε
n
. Then Holder’s inequality and the

Sobolev embedding theorem imply (4.2.13). Another linear estimate will be needed later

in the paper.
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Lemma 4.2.4. For u radial,

(4.2.14) ‖|x|(n−1)/2u‖L∞(Rn) . ‖u‖H1/2+ε,2(Rn).

Proof: By stationary phase,

∫
|ξ|≥1/|x|

eix·ξf̂(|ξ|)dξ,

= C1

∫ ∞

1/|x|

r(n−1)/2

|x|(n−1)/2
f̂(r)eir|x|dr + C2

∫ ∞

1/|x|

r(n−1)/2

|x|(n−1)/2
f̂(r)e−ir|x|dr

+ Lower order terms

Since |ξ|1/2+ε|ξ|(n−1)/2f̂(|ξ|) ∈ L2(R), the integral converges.

∫
|ξ|≤ 1

|x|

|ξ|(n−1)f̂(ξ)dξ ≤ |x|(n/2−1−ε)‖f‖H1/2+ε(Rn).

This proves the lemma �.

4.3. Global well-posedness of the Schrödinger equation

For the defocusing nonlinear Schrödinger equation, it is possible to prove global well-

posedness for initial data u0 ∈ H1. This can be found in [38].

Theorem 4.3.1. The de-focusing Schödinger equation

(4.3.1)

iut + ∆u = |u|σu,

u(0, x) = u0(x) ∈ H1(Rn),

is globally well-posed for σ < 4
n−2

.
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Proof: The length of the interval where the solution to Lemma [4.2.2] is controlled by

‖u0‖H1(Rn). Therefore, global well-posedness can only fail if the H1 norm of u(t) explodes

to infinity sufficiently rapidly. This cannot happen, due to the following calculation.

∂t〈∇u,∇u〉 = −〈ut,∆u〉 − 〈∆u, ut〉

= −〈ut, |u|σu− iut〉 − 〈|u|σu− iut, ut〉.

= −1

2
∂t

∫
|u|σ+2dx

Therefore there is conservation of the energy

(4.3.2) E(u)(t) = ‖u‖Ḣ1 +
1

2
‖u‖σ+2

σ+2.

The Sobolev embedding theorem gives H1(Rn) ⊂ Lσ+2 for σ ≤ 4
n−2

, n ≥ 3. There is also

conservation of mass.

(4.3.3) M(u)(t) = ‖u(t, ·)‖2
L2(Rn)

d

dt

∫
|u(t, x)|2dx =

∫
(i∆u)ūdx−

∫
(i|u|αu)ūdx−

∫
(i∆ū)udx+

∫
u(i|u|αū)dx = 0.

Therefore mass is conserved as well. �
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4.4. Some Remarks about previous results of local and global well-posedness

In a recent paper [27], local existence for n = 1, 2, u0 = χB(0;1) was proved.

Theorem 4.4.1. There exists a T∗ > 0 such that

(4.4.1) iut + ∆u = F (u)

has a solution in the function space

(4.4.2) ‖u‖X = sup
0≤t≤T∗

{‖u(t, ·)‖Hσ,2(Rn) + ‖u(t, ·)‖L∞(Rn)}

when u0 = χB(0;1), where the nonlinearity F : C→ C obeys F (0) = 0 and DF (0) = 0.

The proof relies heavily on the uniform bound ‖eit∆u0‖L∞(R2) ≤ C. This crucial fact is

not true for higher dimensions due to the focusing phenomenon. When n = 1

(4.4.3) eit∆u0(x)→ u0(x)

pointwise as t → 0. When n = 2 there is pointwise convergence everywhere except the

center of B(0; 1), at the origin the convergence has the form

(4.4.4) eit∆u0(0) = 1 + Ce−iα/t + o(1)

For some constant C, and α ∈ R, α 6= 0. In higher dimensions for small t the Pinsky

phenomenon for small t is of the form
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(4.4.5) |eit∆u0(0)| ∼ t−(n−2)/2

So instead it is necessary to restrict the type of nonlinearities F to power-type nonlinear-

ities that are Ḣ1 - subcritical.

Some of these local solutions can be extended to global solutions. Progress of extending

the results of the previous section began with [1], where the equation

iut + ∆u = |u|2u,

was proved to have a global solution in R2 for u0 ∈ Hs(R2), s > 3/5. These results lead

[20], [18], [19], and [32] to prove to extend global well-posedness results in H1(Rn) for

a Ḣ1 subcritical equation (usually L2 critical or Ḣ1/2 critical in R3) for s < 1. This was

accomplished by solving the equation

(4.4.6) iIut + I∆u = I(|u|αu),

where

(4.4.7) If = m(|ξ|)f̂(ξ),

and m(|ξ|) decays like |ξ|s−1 for large |ξ|. Then Iu0 ∈ H1, and for certain values of s

depending on α and n, ‖Iu(t)‖Ḣ1 is bounded by some function of time for all t.

127



The I - method relies heavily on scaling. ‖Iu0‖Ḣ1(Rn) ∼ N1−s‖u0‖Hs(Rn). This is rescaled

so that ‖Iu0‖Ḣ1(Rn) ∼ 1. If N =∞,

d

dt
E(INu(t)) = 0.

This would suggest that taking N large would lead to a small change in energy, with

E(INu0) ∼ 1. Using bilinear estimates and careful harmonic analysis, estimates like

d

dt
E(INu(t)) ∼ N−c,

for some c > 0 on the interval of local well-posedness. Then, for s sufficiently close to

1, the method can be iterated many times, and eventually the interval [0, T ] is covered

for any T > 0. More recently, in [11] the results have been extended using a Morawetz

estimate.

Here a different approach is used. Recall that for the local solution of

(4.4.8)

iut + Lu = F (u),

u(0) = χB(0;1)

in R3, the solution was of the form eitLu0 + w(t, x), where w(t, x) ∈ H1(R3). In other

words the Duhamel term is smoother than u0. For certain initial data, the linear term

eit∆u0 can be treated as a perturbation of the solution of

(4.4.9)

ivt + ∆v = |v|αv,

v(T, ·) = w(T, ·),

proving in fact the solution is of the form eit∆u0 +w(t, x), w(t, x) ∈ H1(Rn) for all time.
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This method can be generalized. There are three principal advantages to this method.

1. The method can extend certain supercritical local existence results.

2. The method does not rely on rescaling, and therefore can be extended to combined

power-type nonlinearities.

3. The method also proves an estimate of the form

‖u(t, ·)− eit∆u0‖Hσ,2(Rn) ≤ C <∞,

for a higher order regularity σ > 0, u0 /∈ Hσ(Rn). The disadvantage of the method is it

requires some additional structure on u0.

4.5. Supercritical Local Existence

Let Ω be a compact, smoothly bounded region in Rn. By [27], when n = 1, 2, the

equation

(4.5.1)

iut + ∆u = |u|2ku,

u(0, x) = χΩ,

has a local solution on [0, T ] for some T (Ω) > 0, for any k. When n = 2, this means

(4.5.1) has a local solution as long as the exponent is Ḣρ - critical for ρ < 1, despite the

fact that χΩ ∈ H1/2−(Rn). In higher dimensions, if (4.5.1) is Ḣ1 - subcritical, then the

solution exists locally.

Theorem 4.5.1. The initial value problem
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(4.5.2)

iut + ∆u = |u|αu,

u0 = χB(0;1),

has a local solution as long as α < 4
n−2

.

Combining the estimate (4.6.16) with eit∆u0 ∈ L∞t L2
x([0,∞)×Rn) proves

(4.5.3) eit∆u0 ∈ L∞t Lpx([0,∞)×Rn),

as long as 2 ≤ p < 2n
n−2

. This is in fact true for u0 = χΩ where Ω is any compact set with

smooth boundary. Set p = 2 + α,

p < 2 +
4

n− 2
=

2n− 4

n− 2
+

4

n− 2
=

2n

n− 2
.

Define the Duhamel operator

(4.5.4) Φ(u(t)) = eit∆u0 +

∫ t

0

ei(t−s)∆u(s)ds

Then

(4.5.5) ‖Φu(t)‖p ≤ ‖eit∆u0‖p +

∫ t

0

1

(t− s)n(1/2−1/p)
‖u(s)‖1+α

p ds,

1

2 + α
= 1− 1 + α

2 + α
,
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(4.5.6) ‖|u(s)|αu(s)‖Lp′ (Rn) = ‖u‖1+α
Lp(Rn),

1

2
− 1

p
<

1

2
− n− 2

2n
=

1

n
.

Thus the Duhamel term is integrable, and

(4.5.7) Φ : L∞t L
p
x → L∞t L

p
x

(4.5.8) ‖Φu(t)‖L∞t Lpx([0,T ]×Rn) ≤ ‖eit∆u0‖L∞t Lpx(R×Rn) + T ε‖u‖1+α
L∞t L

p
x
.

Suppose ‖eit∆u0‖L∞t Lpx(R×Rn) ≤ C. For T sufficiently small

(4.5.9) ‖Φ(u(t))‖L∞t Lpx([0,T ]×Rn) ≤ 2C,

‖Φ(u(t))− Φ(v(t))‖L∞t Lpx([0,T ]×Rn) =

‖
∫ t

0

ei(t−s)∆[|u(s)|αu(s)− |v(s)|αv(s)]ds‖L∞t Lpx([0,T ]×Rn)

≤ ‖u− v‖L∞t Lpx([0,T ]×Rn)(2C)α
∫ T

0

1

(t− s)1/2−1/p
dt

≤ ‖u− v‖L∞t Lpx([0,T ]×Rn)(2C)αT ε.

When T is sufficiently small there is a contraction �.
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Remark: These carry over for any u0 = χΩ, Ω a compact subset of Rn for smooth

boundary.

4.6. A Local Result in R3

Theorem 4.6.1. The nonlinear Schrodinger equation for u : R3 → C,

(4.6.1) iut + ∆u = |u|2u,

has a local solution when u(0) = χB(0;1) of the form

(4.6.2) eit∆u0 + w(t, x),

where w(t, x) ∈ L∞t H1
x([0, T∗]×R3).

Proof: eit∆u0 can be calculated explicitly.

eit∆u0(x) =
C

t3/2

∫ 1

0

r2ei(r
2+|x|2)/4t

∫ π/2

−π/2
e−2i|x|r sin(θ)/4t cos(θ)dθdr

= Ct−3/2

∫ 1

0

r2ei(r
2+|x|2)/4t

∫ 1

−1

e−2i|x|ru/4tdudr

= Ct−1/2

∫ 1

0

r

|x|
[ei(r−|x|)

2/4t − ei(r+|x|)2/4t]dr

Now make a stationary phase estimate.

Ct−1/2

∫ 1

0

ei(r±|x|)
2/4tdr = C

∫ (1±|x|)t−1/2

±|x|t−1/2

eir
2

dr = O(1).
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For large |x|, say |x| > 10,

t−1/2

∫ 1

0

ei(r±|x|)
2/4tdr =

∫ 1

0

2t1/2

i(r ± |x|)
d

dr
ei(r±|x|)

2/4tdr

=
2t1/2

i(r ± |x|)
ei(r±|x|)

2/4t|10 +
2t1/2

i

∫ 1

0

1

(r ± |x|)2
ei(r±|x|)

2/4tdr = O(
t1/2

|x|
).

Also, by a change of variables,

Ct−1/2

∫ 1

0

(r − |x|)
|x|

ei(r−|x|)
2/4tdr ≤ O(

t1/2

|x|
),

Ct−1/2

∫ 1

0

(r + |x|)
|x|

ei(r+|x|)
2/4tdr ≤ O(

t1/2

|x|
).

Since the radial derivative of χB(0;1) is a Dirac measure supported on |x| = 1,

d

dr
eit∆χB(0;1) = Ct−3/2ei|x|

2/4t

∫ 1

−1

e−2i|x|u/4tdu = Ct−1/2|x|−1ei|x|
2/4t[e−2i|x|/4t − e2i|x|/4t].

More generally,

|∇eit∆χΩ| . |x|−1t−1/2.

Next, set up a Duhamel iteration. Let w0(t, x) = 0 and

(4.6.3) wn(t, x) =

∫ t

0

ei(t−s)∆|eis∆u0 + wn−1(s, x)|2(eis∆u0 + wn−1(s, x))ds.

If w(t, x) is a fixed point in L∞t H
1
x([0, T ] × Rn) then eit∆u0 + w(t, x) is a solution of

(4.6.1). The Strichartz estimates give
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(4.6.4)

‖wn(t, x)‖S1([0,T ]×R3) =

‖
∫ t

0

ei(t−s)∆|eis∆u0 + wn−1(s, x)|2(eis∆u0 + wn−1(s, x))ds‖S1([0,T ]×R3)

. ‖|∇(eis∆u0 + wn−1(s, x))||eis∆u0 + wn−1(s, x)|2‖
Lp
′
s L

q′
x ([0,T ]×R3)

+‖|(eis∆u0 + wn−1(s, x))||eis∆u0 + wn−1(s, x)|2‖
Lp
′
s L

q′
x ([0,T ]×R3)

,

where p′, q′ are some the duals of an admissible pair (p, q) (The pair in the first case does

not have to be the same as the pair in the second case). The first term is more difficult

to estimate, so that is the one that will be estimated here by a sum of six terms. In the

ensuing calculations the admissible pair (p, q) may change from term to term.

‖|∇(eis∆u0 + wn−1(s, x))||eis∆u0 + wn−1(s, x)|2‖
Lp
′
s L

q′
x ([0,T ]×R3)

.

‖|∇eis∆u0||eis∆u0|2‖Lp′t Lq′x ([0,T ]×R3)

+‖|∇eis∆u0||eis∆u0||wn−1(s, x)|‖
Lp
′
t L

q′
x ([0,T ]×R3)

+‖|∇eis∆u0||wn−1(s, x)|2‖
Lp
′
t L

q′
x ([0,T ]×R3)

+‖|eis∆u0|2|∇wn−1(s, x)|‖
Lp
′
t L

q′
x ([0,T ]×R3)
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+‖|eis∆u0||wn−1(s, x)||∇wn−1(s, x)‖
Lp
′
t L

q′
x ([0,T ]×R3)

+||wn−1(s, x)|2|∇wn−1(s, x)‖
Lp
′
t L

q′
x ([0,T ]×R3)

.

If (p, q) is an admissible pair, and (p′, q′) are the dual exponents,

2

p′
= 2− 3(

1

q′
− 1

2
).

Let χ be a C∞ cutoff,

(4.6.5) χ =


1, |x| ≤ 2;

0, |x| > 3.

Term 1:

|eis∆u0|2(∇eis∆u0)| ∼ s−1/2|x|−2

‖χ(x)eis∆u0|2(∇eis∆u0)‖
Lp
′
s L

q′
x ([0,T ]×R3)

<∞,

provided q′ < 3/2. If (p, q) is an admissible pair and q′ = 3
2
− ε then

1

p′
= 1− 3(

1

3− 2ε
− 1

4
),

so p′ = 3/4− δ(ε).

‖χ(x)|eis∆u0|2(∇eis∆u0)‖
Lp
′
s L

q′
x ([0,T ]×R3)

≤ C(ε)

∫ T

0

(t−1/2)4/3+δ′ = C(ε)T 1/3−δ′′ .
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On |x| > 2,

(1− χ)eit∆u0 ∈ L2 ∩ L∞,

‖(1− χ(x))|eis∆u0|2(∇eis∆u0)‖L1
sL

2
x([0,T ]×R3) ≤ CT 1/2.

Term 2: In this term use the Sobolev embedding H1(R3) ⊂ L6(Rn).

‖χ(x)|eis∆u0||wn−1(s, x)|(∇eis∆u0)‖
Lp
′
s L

q′
x ([0,T ]×R3)

≤ C(ε)‖wn−1‖S1([0,T ]×Rn)

∫ T

0

(t−1/2)4/3+δ′ = C(ε)‖wn−1‖S1([0,T ]×Rn)T
1/3−δ′′ ,

‖(1− χ(x))|eis∆u0||wn−1(s, x)|(∇eis∆u0)‖L1
sL

2
x([0,T ]×R3) ≤ CT 1/2‖wn−1‖S1([0,T ]×Rn).

Term 3:

‖χ(x)|eis∆u0||wn−1(s, x)|2‖
Lp
′
s L

q′
x ([0,T ]×R3)

≤ C(ε)‖wn−1‖2
S1([0,T ]×R3)

∫ T

0

(t−1/2)4/3+δ′ = C(ε)‖wn−1‖2
S1([0,T ]×R3)T

1/3−δ′′ ,

‖(1− χ(x))|eis∆u0||wn−1(s, x)|2‖L1
sL

2
x([0,T ]×R3) ≤ CT 1/2‖wn−1‖2

S1([0,T ]×R3).

Term 4:

‖χ(x)|∇wn−1(s, x)||eis∆u0|2‖L1+
s L2−

x ([0,T ]×R3) ≤ C‖wn−1‖S1([0,T ]×R3)T
1/2−δ′′ .

Since |x|−1/2 does not quite live in L6(B(0; 1)), set q′ = 2 − ε and then set 1
p′

= 1 −

3( 1
2−2ε
− 1

2
).
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‖(1− χ(x))|∇wn−1(s, x)||eis∆u0|2‖L1
xL

2
x([0,T ]×R3) ≤ CT‖wn−1‖S1([0,T ]×R3).

Term 5:

‖χ(x)|∇wn−1(s, x)||eis∆u0||wn−1(s, x)|‖L1+
s L2−

x ([0,T ]×R3) ≤ C‖wn−1‖2
S1([0,T ]×R3)T

1/2−δ′′

‖(1− χ(x))|∇wn−1(s, x)||eis∆u0|2‖L1
xL

2
x([0,T ]×R3) ≤ CT 3/4‖wn−1‖2

S1([0,T ]×R3).

Term 6:

‖|∇wn−1(s, x)||wn−1(s, x)|2‖L1
sL

2
x([0,T ]×R3) ≤ CT 1/2‖wn−1‖3

S1([0,T ]×R3).

Adding all this together gives the estimate,

(4.6.6)

‖wn(t, x)‖S1([0,T ]×R3) .

T 1/3−δ′′ + T 1/3−δ′′‖wn−1‖2
S1([0,T ]×R3) + T 1/2‖wn−1‖3

S1([0,T ]×R3),

so if ‖w1‖S1([0,T ]×R3) ≤ CT 1/3−δ′′ , ‖wn‖S1([0,T ]×R3) will stay ≤ 2CT 1/3−δ′′ for T sufficiently

small for all n.

Contraction: Using the same calculations suppose there are two sequences starting with

w0 and w̃0,
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(4.6.7)

‖wn(t, x)− w̃n(t, x)‖S1([0,T ]×R3)

≤ CT 1/3−δ′′(1 + ‖wn−1(t, x) + w̃n−1(t, x)‖2
S1([0,T ]×R3))×

‖wn−1(t, x)− w̃n−1(t, x)‖S1([0,T ]×R3)

which gives a contraction for T sufficiently small. This proves the existence of a solution

of the form (4.6.2) �.

The Gibbs Phenomenon:

eit∆χB(0;1) = Ct−3/2ei|x|
2/4t

∫ 1

0

r2eir
2/4t

∫ 1

−1

e−i|x|ru/2tdudr,

= Ct−1/2 1

|x|

∫ 1

0

r[ei(r−|x|)
2/4t − ei(r+|x|)2/4t]dr,

= Ct−1/2 1

|x|

∫ 1

0

rei(r−|x|)
2/4tdr +O(t1/2),

= Ct−1/2

∫ 1

0

ei(r−|x|)
2/4tdr +

Ct−1/2

|x|

∫ 1

0

(r − |x|)ei(r−|x|)2/4tdr +O(t1/2),

= Ct−1/2

∫ 1

0

ei(r−|x|)
2/4tdr +O(t1/2).

So the Gibbs phenomenon near the edges is the same as the Gibbs phenomenon in R for

χ[−1,1]. Let

(4.6.8) χ =


0, |x| ≤ 1

2
;

1, |x| > 3/4.,

(4.6.9) ‖χ(x)u(x)‖L∞x ≤ C‖u‖H1 ,
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when u is a radial function. This gives a uniform estimate for the Gibbs phenomenon

near the boundary.

(4.6.10) lim
t→0
‖χ(x)w(t, x)‖L∞x = 0

So the Gibbs phenomenon near the boundary for the solution to (4.6.1) is controlled by

the Gibbs phenomenon for eit∆χB(0;1). More generally,

Lemma 4.6.2.

(4.6.11) iut + ∆u = |u|αu

has a local solution of the form eit∆u0 + w(t, x) on some time interval [0, T], T > 0,

where

(4.6.12) ‖w(t, x)‖S1([0,T ]×R3) ≤ C(δ)T 1− 2
5−α−δ,

where C(δ)↗∞ as δ → 0 for 2 ≤ α < 3.

Thus for |x| > 1/2, let uα(t) be the solution to (4.6.11) with initial condition u0 = χB(0;1),

(4.6.13) |u(t, x)− u0(x)| = |eit∆u0(x)− u0(x)|+O(t1−
2

5−α−δ).

The decay of the last term is uniform with respect to x.
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Remark: The calculations of eit∆u0 can be carried over to u0 = χΩ, where Ω ⊂ R3 is

a compact region with smooth boundary. If the function is no longer radial, then we do

not have the Sobolev embedding H1(R3) ⊂ L∞(|x| > 1/2), however.

Higher Dimensions: Now consider u0 = χB(0;1) for higher dimensions. As the dimen-

sions increase the Pinsky phenomenon becomes worse and worse.

d

dr
eit∆u0 = t−n/2ei|x|

2/4t

∫ 1

−1

e−2i|x|u/4t(1− u2)(n−3)/2du,

(4.6.14) |∇eit∆u0| . t−1/2|x|−(n−1)/2.

Placing the remainder term in L∞t H
1
x([0, T∗]×Rn) would require

(4.6.15) eit∆u0 ∈ L∞t L
2nα

3
+

x ([0, T∗]×Rn),

for some T∗ > 0. This is severely restricted in higher dimensions due to the blowup near

|x| = 0. When |x| is large eit∆u0 ∈ L2 ∩ L∞(|x| > 1). By stationary phase calculations,

for |x| close to 0 the solution has the form

t−n/2
∫ 1

0

rn−1ei(|x|
2+r2)/t

∫ π/2

−π/2
e−i|x|r sin(θ)/t cos(θ)n−2dθdr

= t−n/2
∫ 1

0

rn−1ei(|x|
2+r2)/t

∫ 1

−1

e−i|x|ru/t(1− u2)(n−3)/2dudr

∼ t−1/2

∫ 1

0

r(n−1)/2 1

|x|(n−1)/2
ei(|x|±r)

2/tdr + ...
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t−1/2

∫ 1

0

(r(n−1)/2 ± |x|(n−1)/2)

|x|(n−1)/2
ei(|x|±r)

2/tdr ≤ O(
t1/2

|x|(n−1)/2
)

t−1/2

∫ 1

0

ei(|x|±r)
2/tdr ≤ O(1),

so when t < |x| we have |eit∆u0| . |x|−(n−2)/2. When |x| < t using the Pinsky estimate

we also have |eit∆u0| . t−(n−2)/2 ≤ |x|−(n−2)/2.

Therefore, close to 0,

(4.6.16) |eit∆u0(x)| . |x|−(n−2)/2.

This gives a fairly strong restriction on how large α can be. (4.6.15) is satisfied for

α < 3
n−2

. Once n ≥ 8, α will in fact be L2 - subcritical.

Remark: This calculation can be carried over to a more general nonlinearity of the form

(4.6.17)

g(|u|2)u,

0 <g(x) < sup(C2|x|
3

2(n−2)
−δ, C1|x|1/2n+ε),

0 <g′(x) < sup(C2|x|
3

2(n−2)
−δ−1, C1|x|1/2n+ε−1),

for ε, δ > 0.

4.7. Global Continuation

From [18], if u0 ∈ Hs(R3), s > 4/5, the solution to (4.6.1) is global. It is conjectured

that if u0 ∈ H1/2+(R3), (4.6.1) is globally well-posed. If the solution is of the form
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eit∆χB(0;1) +w(t, x), ‖w(t, x)‖H1
x(Rn) ≤ C(t) on [0,∞), then a global solution exists. The

solution to (4.6.1) has conserved mass.

Lemma 4.7.1. If u(t) solves (4.6.17), the L2 norm is conserved.

(4.7.1) ‖u(t, ·)‖L2(Rn) = ‖u(0, ·)‖L2(Rn).

Proof:

d

dt
<〈u, u〉 = 2<〈ut, u〉

= 2<〈i∆u, u〉 − 2<〈ig(|u|2)u, u〉 = 0

Theorem 4.7.2. The partial differential equation

(4.7.2) iut + ∆u = |u|αu

has a global solution 2
n
< α < 3

n−2
, α ≤ 2. The solution is of the form

(4.7.3) eit∆u0 + w(t, x),

where w(t, x) ∈ L∞t H1
x([0, T ]×Rn).

Proof: The theorem has already been proved for the time interval [0, T ]. Moreover,

u(T, x) is of the form

(4.7.4) eiT∆u0 + w(T, x),
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where ‖w(T, x)‖H1(Rn) ≤ C. The solution will be continued past T, and a Gronwall-type

inequality will give and estimate on ‖w(t, x)‖H1
x(Rn). If u is a solution to (4.7.2) then

u = v + w, where v and w solve the system of equations

(4.7.5)

ivt + ∆v = 0,

iw̃t + ∆w̃ = |u|αu,

v(T ) = eiT∆u0;w(T, x) = w(T, x).

In order to prove w(t, x) ∈ L∞t H
1
x([0,∞) × Rn), it suffices to obtain a bound on the

energy

(4.7.6) E(w(t)) =

∫
|∇w|2dx+

2

α + 2

∫
|u|α+2dx.

d

dt
<〈∇w̃,∇w̃〉 = −2<〈w̃t,∆w̃〉

= −2<〈w̃t, |u|2u〉 − <〈w̃t, iw̃t〉 = −2<〈(ut − vt), |u|2u〉

= − 1

2 + α

d

dt
|u|2+αdx+ 2〈vt, |u|αu〉.

2<
∫
vt|u|αūdx = 2<

∫
i∆v|u|αūdx = −2i

∫
∇v∇(|u|αū)dx.

(4.7.7)
d

dt
E(u(t)) ≤ C

∫
|∇v||∇u||u|αdx.
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Consider two cases separately.

Term 1:

Case 1: Assume 1 ≤ α ≤ 2.

∫
|∇v||∇w||u|αdx ≤ ‖∇v‖L∞(Rn)‖∇w‖L2(Rn)‖|u|α‖L2(Rn),

‖|u|α‖L2(Rn) ≤ ‖u‖αL2α(Rn).

Let θ = 2−α
α2 ,.

∫
|u|2αdx ≤ ‖u‖2θα

2 ‖u‖
2α(1−θ)
2+α

when α ≤ 2, 2α(1− θ) ≤ 2 + α.

(4.7.8) ‖u‖α2α ≤ E(w(t))γ(α),

where γ(α) = 2α(1−θ)
2(2+α)

≤ 1
2
.

Case 2: Assume 1
n
< α ≤ 1. From previous calculations

‖∇v‖L2n/(n−1)+ε(Rn) ≤ C1(ε)t−1/2 + C2t
−n/2

Interpolate this with

‖∇v‖L∞(Rn) ≤ C2t
−n/2.
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‖|u|α‖L2/α(Rn) ≤ ‖u‖
1/α
2 .

As α→ 1
n
, ε→ 0 and C1(ε)→∞.

Remark: When α > 2
n

make the estimate

‖∇v‖L2n/(n−1)+ε(Rn) ≤ C3(ε)t−1−ε + C4t
−n/2.

Term 2:

(4.7.9)

∫
|∇v|2|u|αdx ≤ ‖u‖αL2(Rn)‖∇v‖2

Lp(Rn).

In this case take 1
p

= 1
2
− α

4
. When α > 2

n
, |x|−(n−1)/2 ⊂ Lp({x ∈ Rn : |x| > 1}).

(4.7.10) ‖u‖αL2(Rn)‖∇v‖2
Lp(Rn) ≤ C(ε)t−1−δ,

where δ → 0 as α→ 2
n
.

Now apply Gronwall’s inequality.

(4.7.11)
d

dt
E(w(t)) ≤ C1t

−1−δ + C2t
−1−εE(w(t))ρ(α)

Since ρ(α) ≤ 1 and E(w(T )) <∞, E(w(t)) <∞ on [T,∞) �.
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4.8. More general continuation

Suppose the local solution to (4.5.1) is defined on [0, 2T∗],

u(t, x) ∈ L∞t Lpx([0, 2T∗]×Rn).

The solution on [0, 2T∗] is of the form

(4.8.1) eit∆Ω + w1(t, x).

When 2
n
< α < 3

n−2
, w1(t, x) ∈ L∞t H

1
x([0, T∗] × Rn), which was then extended to a

global solution. However, this still leaves open the possibility of global existence for

3
n−2
≤ α < 4

n−2
. Although w1(t, x) may not lie in H1

x(Rn), w1(t, x) ∈ L∞t Hs
x([0, T∗]×Rn)

for some s > 1/2. Continuing, the solution on [T∗,
3T∗
2

] will look like

(4.8.2) eit∆u0 + ei(t−T∗)∆w1(T, x) + w2(t, x).

Using the smoothing properties of the Duhamel integral, w2(t, x) lies in an even higher

order Sobolev space, and so forth. After a finite number of iterations, wn(t, x) ∈

L∞t H
1([2n−1

2n
T∗, T∗) × Rn). Thus by induction, the solution on [2n−1

2n
T∗, T∗) can be ex-

pressed in the form

(4.8.3) eit∆u(0) + ei(t−T∗/2)∆u(
T∗
2

) + ...+ ei(t−
2n−1

2n
T∗)∆u(

2n − 1

2n
T∗) + w(t),

where w(t) ∈ H1(Rn) and the linear solutions have “nice” asymptotics.
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Now to make this rigorous. There is a sequence un(s) that converges to a solution in

L∞t L
p
x([0, 2T∗ − δ] ×Rn) for any δ > 0. What happens to the derivative? Since ∇χΩ is

an L1 measure,

(4.8.4) |∇eit∆χΩ| . t−n/2.

When Ω = B(0; 1),

(4.8.5) |∇eit∆χΩ| . t−1/2|x|−(n−1)/2.

This is also true for any Ω with smooth boundary. By interpolation,

(4.8.6) |∇eit∆χΩ(x)| ∈ t−1+εLp({|x| ≤ 2}) + t−1/2Lp({|x| ≥ 2}).

Define a function space

(4.8.7) ‖u(t)‖X([0,T ]×Rn) = sup
[0,T ]

‖t1−ε∇u(t)‖p.

|∇un(t)| ≤ |∇eit∆u0|+ |∇
∫ t

0

ei(t−s)∆|un−1(s)|αun−1(s)ds|,

‖∇un(t)‖X ≤ ‖eit∆u0‖X + t1−ε
∫ t

0

1

(t− s)1−ε‖u(s)‖αp‖∇un−1(s)‖X
1

s1−εds

≤ ‖eit∆u0‖X + 2C ′T ε‖un−1(s)‖X .
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If ‖eit∆u0‖X ≤ C, then for T sufficiently small,

(4.8.8) ‖un−1(t)‖X ≤ 2C ⇒ ‖un(t)‖X ≤ 2C.

Now look at the free evolution of the solution u(T ), where T is the time length where

there is a local solution and ‖u(t)‖X ≤ 2C.

(4.8.9)

‖∇ei(t−T )∆u(T )‖p ≤ ‖∇eit∆u0‖p +

∫ T

0

1

(t− s)1−ε‖u(s)‖αp‖∇u(s)‖pds

≤ ‖∇eit∆u0‖p +
1

(t− T )1−2ε
2C ′ ≤ C1 +

1

(t− T )1−2ε
2C ′.

Continue the iteration. Although the solution will only be defined on [T, 3T
2

], notice that

the regularity of the solution is improved slightly. ‖∇ei(t−T )∆u(T )‖p ∼ 1
1

t−T
1−2ε . This

process can be terminated after a finite number of iterations.

Lemma 4.8.1. Suppose the solution on some [0, T ) is of the form

(4.8.10) u(t) = eit∆u0 +

∫ t

0

ei(t−s)∆|u(s)|αu(s)ds,

where ‖u(t)‖L∞t Lpx([0,T )×Rn) <∞ and ‖∇u(t)‖Lpx(Rn) . t−1/2+ε. Then

(4.8.11) u(t) = eit∆u0 + w(t),

where w(t) ∈ L∞t H1([0, T∗)×Rn). Recall p = 2 + α.

Proof: First,
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‖∇u‖L2
tL

p
x([0,T∗)×Rn) .

∫ T∗

0

t−1+2εdt < T 2ε
∗ C(ε).

The conservation of the L2 norm is well known, so

‖|∇u||u|α‖L2
tL

q
x([0,T∗)×Rn) < C(ε)T 2ε

∗ ,

for some q < p′. On the other hand, since u ∈ L∞t Lp([0, T∗)×Rn),

‖|∇u||u|α‖L2
tL

r
x([0,T∗)×Rn) < C(ε)T 2ε

∗ ,

for 1
r

= 1+α
2+α

= 1
2

+ α/2
2+α

< 1
2

+ 2/(n−2)
2+4/(n−2)

= 1
2

+ 1
n
. So by interpolation,

(4.8.12) ‖|∇u||u|α‖
L2
tL

2n/(n+2)
x ([0,T∗)×Rn)

< C(ε)T 2ε
∗ .

(4.8.13) ‖ei(t−s)∆|u(s)|αu(s)ds‖Ṡ1([0,T ]×Rn) . ‖|∇u||u|
α‖

L2
tL

2n/(n+2)
x ([0,T ]×Rn)

,

so by Strichartz estimates we are done �.

Eventually the solution on some interval [2n−1−1
2n−2 T∗,

2n−1
2n−1 T∗) will be of the form

(4.8.14) u(t) = eit∆u0 + ei(t−T )∆u(T ) + ...+ ei(t−
(2k−1)T

2k−1 )∆u(
T (2k − 1)

2k−1
) + w(t),

where w(T∗) ∈ H1
x(Rn). Then set up a system of equations as before,
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(4.8.15)

ivt + ∆v = 0,

iw̃t + ∆w̃ = |v + w̃|α(v + w̃),

v(t0) = eit0∆u0 + ...+ ei(t0−
(2k−1)T

2k−1 )∆u(
T (2k − 1)

2k−1
),

w̃(t0) = w(t0),

t0 = T∗.

d

dt
(‖∇w‖2

2 +
2

2 + α
‖v + w‖2+α

2+α) . 〈|∇v|, |v + w|α(|∇v|+ |∇w|)〉,

so define the energy E(w).

(4.8.16) E(w) = ‖∇w‖2
2 +

2

2 + α
‖v + w‖2+α

2+α.

Again, estimate the terms separately.

Term 1:

(4.8.17)∫
|∇v(x, t)|2|v(x, t) + w(x, t)|αdx ≤ ‖∇v(x, ·)‖2

L2+α(Rn)‖v(x, t) + w(x, t)‖αL2+α(Rn),

(4.8.18) ‖∇v(x, t)‖L2+α(Rn) . [t− (2k − 1)T

2k−1
]−1/2−ε′ ,

(4.8.19) ‖v(t, x) + w(t, x)‖αL2+α(Rn) ≤ E(w(t))α/2,
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so this term does not cause any problems.

Term 2:

(4.8.20)

∫
|∇v(x, t)||∇w(x, t)||v(x, t) + w(x, t)|αdx ≤

‖∇v(·, t)‖Lp(Rn)‖∇w(·, t)‖L2(Rn)‖v(·, t) + w(·, t)‖αL2+α(Rn),

where p = 2−α
2(2+α)

. To obtain such a p it is necessary to restrict 1 ≤ α ≤ 2.

‖∇v(·, t)‖Lr ≤
n∑
i=0

∫ 2i+1−1

2i
T

2i−1

2i−1 T

1

(t− s)n(1/2−1/r)
‖u(·, s)‖αL2(Rn)‖∇u(·, s)‖L2+α(Rn)ds

+‖eit∆u0‖Lr(Rn),

where 1
r

= 1− α
2
− 1

2+α
= 1− 2α+α2+2

2(2+α)
= 2−α2

4+2α
. 2− α2 < 2− α when α ≥ 1.

Thus (4.7.2) has a global solution when 1 ≤ α ≤ 2, where 2
n
< α < 4

n−2
.

Remark: This is a somewhat unsatisfying result, since what about 2
n
< α < 1? When

u0 = χB(0;1), the fact that u0 is a radial function will localize the problem to the origin

and extend the results further. This will be explored in the next section.

A digression to the heat equation: This method can also be applied to a Schrödinger

equation that has a damping term. Consider,

(4.8.21) (a+ ib)ut = ∆u,
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where a ≥ 0 and |a+ ib| = 1. The solution is the Fourier multiplier

(4.8.22) et∆/(a+ib)u0 = F−1(e−t|ξ|
2/(a+ib)û0(ξ)).

(4.8.23) u(x, t) =

∫
K(x, y, t)u0(y)dy,

(4.8.24) K(x, y, t) =
(−a− ib)n/2

(4πt)n/2
e(a+ib)

|x−y|2
4t .

This operator obeys the operator bounds

(4.8.25)

et∆(a−ib) : tn/2L1 → L∞,

et∆(a−ib) : L2 → L2.

Therefore it obeys the same Strichartz estimates as the Schrodinger equation.

Now consider the nonlinear equation with power-type nonlinearity.

(4.8.26) (a+ ib)ut + ∆u = |u|αu,

with |a + ib| = 1, is Ḣρ(Rn) - critical for α = 4
n−2ρ

. When u0 ∈ Hρ+ε(Rn) for α = 4
n−2ρ

there exists T (‖u0‖Hρ+ε(Rn) > 0 such that a solution to (4.8.26) exists on [0, T ).

Theorem 4.8.2. When a < 0, (4.8.26) has a global solution u(t), and

(4.8.27) ‖u(t)‖Hρ+ε(Rn) ≤ F (t, ‖u0‖Hρ+ε(Rn), a).
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Proof: Apply the same expansion method as was used for the Schrodinger equation

(a = 0). For some uniform constant C,

(4.8.28) aσ/2tσ/2|ξ|σe−at|ξ|2 ≤ C(σ).

Thus the Strichartz estimates hold

(4.8.29)

‖∇ρ+εe−t∆/(a+ib)u0‖L2
tL

2n/(n−2)
x

. C‖u0‖Ḣρ+ε ,

‖∇ρ+ε+δe−t∆/(a+ib)u0‖2 . |a|−δ/2t−δ/2‖u0‖Ḣρ+ε .

Meanwhile by the Sobolev embedding

(4.8.30) ‖|e−t∆/(a+ib)u0|4/(n−2ρ)‖L∞t Lqx . ‖u0‖Hρ+ε ,

where 1
q

= 4
2n
− 4ε

n(n−2ρ)
. Let 1

p
= 2n

n−2
+ 4ε

n(n−2ρ)
. If

(4.8.31) ‖∇σe−t∆/(a+ib)u0‖LqtLpx . ‖u0‖Ḣρ+ε

for 1
q

= 1
2
− 2ε

n−2ρ
, then the Duhamel term lies in Hσ(Rn). By interpolation,

(4.8.32) ‖∇ρ+ε+δe−t∆/(a+ib)u0‖LqtLpx . ‖u0‖Ḣρ+ε

for some δ(ε) > 0, δ ≥ cε for some c > 0. Expressing the solution in Duhamel’s equation

(4.8.33) u(t) = e−t∆/(a+ib)u0 +

∫ t

0

e−(t−s)∆/(a+ib)|u(s)|αu(s)ds.
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The second term will be smoothed, belonging toHρ+ε+δ(Rn) for some δ > cε. But the first

term also belongs to Hρ+ε+δ(Rn) by (4.8.29) on [T/2, T ). Thus u(T/2) ∈ Hρ+ε+δ(Rn).

We can iterate this procedure, obtaining a smoother and smoother solution after each

step. Eventually, the solution will lie in H1(Rn), at which point we can use the conser-

vation of H1 norm �.

Theorem 4.8.3. The energy does not increase

(4.8.34) E(u(t)) = 〈∇u,∇u〉+
2

2 + α

∫
|u|α+2dx.

Proof:

d

dt

∫
|∇u|2dx = −〈ut,∆u〉 = −

∫
ut|u|αūdx−

∫
a|ut|2dx,

so

(4.8.35)
d

dt
[E(u(t))] ≤ 0.

So once the solution u(T ′) ∈ H1(Rn), the solution can be continued to a global solution.

4.9. Proof of Theorem [1.1.15]:

For the reader’s convenience, (1.1.30) will be rewritten here.

(4.9.1)

iut + ∆u = ±|u|
4

n−2ρu,

u(0, x) = u0(x),
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For radial data in high dimensions, the linear operator eit∆u0 has solutions which are

asymptotically very nice, and can be treated very effectively in the same manner as was

used to prove Theorem [1.1.14].

Lemma 4.9.1. Let u0 be a radial function.

(4.9.2) |∇eit∆u0(x)| ≤ t−3/2(|x|−(n−1)/2 + |x|−(n−3)/2)(‖u0‖L2(Rn) + ‖u0‖L1(Rn)),

(4.9.3) |∇eit∆u0(x)| ≤ (t−n/2 + t−n/2+1)|x|−1(‖u0‖L2(Rn) + ‖u0‖L1(Rn)),

(4.9.4) |eit∆u0(x)| ≤ t−n/2(‖u0‖L1(Rn)).

Proof: (4.9.4) is just the dispersive estimate.

∂

∂xi

1

tn/2

∫
Rn

ei|x−y|
2/4tf(y) =

1

2itn/2+1

∫
Rn

(xi − yi)ei|x−y|
2/4tf(y)dy.

It suffices to bound two terms with stationary phase calculations. The first term is

t−n/2−1|x|
∫ ∞

0

f(r)rn−1eir
2/4t

∫
Sn−1
r

e−2ix·ξ/4tdσr(ξ)dr

∼ C1t
−3/2|x|−(n−3)/2

∫ ∞

0

f(r)r(n−1)/2ei(r+|x|)
2/4tdr

+C2t
−3/2|x|−(n−3)/2

∫ ∞

0

f(r)r(n−1)/2ei(r−|x|)
2/4tdr.
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|t−3/2|x|−(n−3)/2

∫ 1

0

f(r)r(n−1)/2ei(r±|x|)
2/4t| ≤ Ct−3/2|x|−(n−3)/2‖f‖L2(Rn).

|t−3/2|x|−(n−3)/2

∫ ∞

1

f(r)r(n−1)/2ei(r±|x|)
2/4t| ≤ Ct−3/2|x|−(n−3)/2‖f‖L1(Rn).

Also, for the estimate for (4.9.3),

|t−n/2−1|x|
∫ ∞

0

f(r)rn−1eir
2/4t

∫
Sn−1
r

e−2ix·ξ/4tdσr(ξ)dr|

≤ t−n/2+1|x|−1

∫ ∞

0

f(r)rn−3dr ≤ t−n/2|x|−1

∫ 1

0

f(r)rn−3dr + t−n/2+1|x|−1

∫ ∞

1

f(r)rn−3dr

≤ t−n/2(‖f‖L(n−1)/(n−3)(Rn) + ‖f‖L1(Rn)).

The second term is

t−n/2−1

∫ ∞

0

f(r)rneir
2/4t

∫
Sn−1
r

e−2ix·ξ/4tdσr(ξ)dr,

≤ t−3/2|x|−(n−1)/2

∫ ∞

0

f(r)r(n+1)/2dr.

∫ 1

0

f(r)r(n+1)/2dr ≤ C‖f‖L2(n−1)/(n+1)(Rn).

∫ ∞

1

f(r)r(n+1)/2dr ≤ C‖f‖L1(Rn)

Also for (4.9.3),
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t−n/2−1

∫ ∞

0

f(r)rneir
2/4t

∫
Sn−1
r

e−2ix·ξ/4tdσr(ξ)dr

≤ Ct−n/2|x|−1

∫ |x|

0

f(r)rn−1 ≤ Ct−n/2‖f‖L1(Rn).

This proves (4.9.2) and (4.9.3) �.

Now to prove Theorem [1.1.15].

Theorem 4.9.2. (1.1.30) has a global solution for u0 radial,

(4.9.5) u0 ∈ Hρ+ε,2(Rn) ∩H1/2+ε,2(Rn) ∩H1/2+ε,1(Rn).

The idea of this proof is to obtain an expansion of the local solution into a sum of the

form (4.8.14). Then, once the solution is on [τ, T ] is of the form

ei(t−τ)∆u(τ, x) + w(t, x),

where w(t, x) ∈ L∞t H1
x([τ, T ] ×Rn), the solution to (1.1.30) with initial data w(T, x) +

ei(T−τ)∆u(τ, x) can be treated as a perturbation of the solution with initial data w(T, x).

Let α = 4
n−2ρ

. When n ≥ 6 and 0 < ρ < 1, which forces α ≤ 1.

Define a set Xρ,n and let α = 4
n−2ρ

.

(4.9.6)

Xρ,n = {σ : (1.1.30) exists globally, u0 = u1 + u2;u1 ∈ Hσ,2(Rn),

u1 radial , u1 ∈ H1/2+ε,1(Rn);u2 ∈ H1,2(Rn)}.
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Theorem 4.9.3.

(4.9.7) (1/2, 1] ∩ (ρ, 1] ⊂ Xρ,n,

for any 0 < ρ < 1.

Theorem [4.9.3] implies Theorem [1.1.15].

Method of Proof: For any ρ < 1, the conservation of the energy

(4.9.8) E(u(t)) = ‖∇u(t)‖2
L2(Rn) +

2

2 + α
‖u(t)‖2+α

L2+α(Rn)

ensures that Xρ,n is a nonempty set for every ρ < 1, n. So (1/2, 1]∩ (ρ, 1] ⊂ Xρ,n will be

proved by induction on σ. First prove a simpler result.

Lemma 4.9.4. Let u0 = u1 + u2, where u1 ∈ H1,2(Rn) and u2 ∈ Hρ+ε,2(Rn) has

asymptotics of the form

(4.9.9) |eit∆u2(x)| ≤ C(1 + t)−n/2,

(4.9.10)

|∇eit∆u2(x)| ≤ C(1 + t)−1(|x|−(n−2)/2),

|∇eit∆u2(x)| ≤ C(1 + t)−n/2−1.

Then the solution exists globally and is of the form

(4.9.11) eit∆u2 + u(t, x),
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(4.9.12) u(t, x) ∈ C0
tH

1,2
x (Rn) ∩ L∞t H1,2

x (Rn).

Proof: For u0 = u1+u2, where ‖u1‖H1,2
x (Rn) ≤ C, then (1.1.30) exists locally on some time

interval [0, T) for T (C) > 0. Using Duhamel’s principle define a sequence of functions,

v0 = eis∆u1,

(4.9.13) vn =

∫ t

0

ei(t−s)∆|eis∆u2 + vn−1(s)|α(eis∆u2 + vn−1(s))ds.

Use the Strichartz estimate

‖vn‖S1([0,T ]×Rn) ≤ C‖F (s)‖N1([0,T ]×Rn),

F (s) = |eis∆u2 + vn−1(s)|α(eis∆u2 + vn−1(s)),

‖F (s)‖N1([0,T ]×Rn) ≤ ‖∇F (s)‖
L2
tL

2n/(n−2)
x ([0,T ]×Rn)

+ ‖F (s)‖
L2
tL

2n/(n−2)
x ([0,T ]×Rn)

.

From the asymptotic estimates.

‖∇eit∆u2‖L∞t L2n/(n−2)+
x (Rn)

≤ C,

‖∇vn−1(t, x)‖
L2
tL

2n/(n−2)
x

≤ ‖vn−1(t, x)‖S1 ,

‖|eit∆u2 + vn−1(t, x)|α‖L∞t L2
x
≤ C + ‖vn−1‖αS1 .
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This gives the estimate

‖∇F (s)‖N1([0,T ]×Rn) ≤ CT δ‖vn−1‖1+α
S1([0,T ]×Rn) + T δ‖vn−1‖S1([0,T ]×Rn)

+T δ‖vn−1‖αS1([0,T ]) + CT 1/2,

for some T > 0, δ > 0. This map is a bounded map for T sufficiently small, since

‖v0‖S1 <∞. Let

G(s) = |eis∆u2 + vn(s)|α(eis∆u2 + vn(s))− |eis∆u2 + vn−1(s)|α(eis∆u2 + vn−1(s)),

|G(s)| ≤ C(|eis∆u2 + vn(s)|α + |eis∆u2 + vn−1(s)|α)(|vn(s)− vn−1(s)|),

‖∇G(s)‖N1([0,T ]×Rn)

≤ CT δ‖vn−1‖αS1([0,T ]×Rn)‖vn − vn−1‖S1([0,T ]×Rn) + T δ‖vn − vn−1‖S1([0,T ]×Rn).

This yields a contraction, and local well-posedness is established, and the solution is of

the form eit∆u2 + u1(t, x) with u1 ∈ H1,2(Rn) �.

Theorem 4.9.5. Let u0 = u1 + u2 + u3, where u3 ∈ H1,2(Rn), u1 ∈ Hσ,2(Rn),

u2 ∈ Hρ+,2(Rn) and u1, u2 obey the asymptotic estimates

(4.9.14)

|∇eit∆u1| ≤ ‖u1‖Hσ,2(Rn)t
−n/2−1,

|∇eit∆u1| ≤ ‖u1‖Hσ,2(Rn)t
−1+ε|x|−(n−2)/2−ε,
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(4.9.15)

|eit∆u2(x)| ≤ C(1 + t)−n/2,

|∇eit∆u2(x)| ≤ C(1 + t)−1|x|−(n−2)/2,

|∇eit∆u2(x)| ≤ C(1 + t)−n/2.

Then there exists T (‖u1‖Hσ,2 , C, ‖u3‖H1,2(Rn)) > 0 such that (1.1.30) has a local solution

of the form

(4.9.16) u(x, t) = eit∆u0 + g(x, t),

where g(x, t) ∈ Hσ+2ε/n(Rn) with bounded norm on [0, T], where σ− ρ > ε, σ− 1/2 > ε.

Furthermore, g(x,t) has a decomposition,

(4.9.17) g(x, t) = v1(x, t) + v3(x, t),

where v3 has bounded H1,2(Rn) norm and

(4.9.18) v1(x, t) =

∫ t

0

ei(t−s)∆χ · |u(x, s)|αu(x, s)ds.

Here χ ∈ C∞0 (Rn) is a radial cutoff function, χ ≡ 1 on B(0;1) and χ(y) ≡ 0 for |y| > 2.

v1 obeys (4.9.14)-type estimates on [T,∞).

Proof: As before take the Duhamel expansion,

(4.9.19) gn(t) =

∫ t

0

ei(t−s)∆|eis∆u0 + gn−1(s)|α(eis∆u0 + gn−1(s))ds,
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F (s) = |eis∆u0 + gn−1(s)|α(eis∆u0 + gn−1(s)).

By the Sobolev embedding theorem

(4.9.20) |eis∆u0|α ∈ L
n
2
· n−2ρ
n−2ρ−8ε (Rn) ∩ Ln/2−(Rn).

Now take the local smoothing estimate found in [RV] and interpolate with the Strichartz

estimate

(4.9.21)

‖eit∆u0‖L2
tL

2n/(n−2)
x (R×Rn)

≤ C‖u0‖2,

‖∇1/2χeit∆u0‖L2
tL

2
x(R×Rn) ≤ C‖u0‖2,

(4.9.22) ‖∇2ε/nχeit∆u0‖L2
tL

p
x(R×Rn) ≤ C‖u0‖2,

where 1
p

= n−2
2n

+ 4ε
n2 .

By the asymptotic estimates (4.9.15)

∇eit∆u2 ∈ L
2n
n−2

+(Rn) ∩ L∞(Rn),

and by the Strichartz estimates

∇eit∆u3 ∈ L2
tL

2n/(n−2)
x (R×Rn).

Finally use the estimate on u1.
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(4.9.23) |∇(1− χ)eit∆u1| ≤ Ct−3/2|x|−(n−3)/2{‖u1‖L1(Rn) + ‖u1‖L2(Rn)}.

Interpolate this with the trivial estimate.

(4.9.24) ‖(1− χ)eit∆u1‖L2(Rn) ≤ ‖u1‖L2(Rn),

(4.9.25) ‖∇1/3−(1− χ)eit∆u1‖L2
tL

3−
x ([0,T ]×Rn) ≤ CT 0+,

(4.9.26) ‖∇σ+2ε/neit∆u0‖L2
tL

p
x
≤ C‖u1‖Hσ,2 + C,

where 1
p

= n−2
2n

+ 4ε
n2 . This gives the Strichartz estimate.

‖∇σ+4ε/n|eit∆u0 + gn−1(t)|α(eit∆u0 + gn−1(t))‖
L2−
t L

2n/(n+2)+
x ([0,T ]×Rn)

≤ ‖u(t)‖αSρ([0,T ])(C + ‖gn−1‖S1([0,T ]))T
δ,

for some δ > 0. Taking T small enough gives a bounded mapping. A contraction can

also be obtained.

Then for the solution at t = T , eiT∆(u1 + u2) will become the new u2, since there is a

uniform bound on the free evolution of u1 when T ≥ τ > 0. Also one can put eiT∆u3 for

the new u3 without problem. Thus, all that remains is to split g(x, t) in the proper way.

Let v0 = w0 = 0.
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(4.9.27) vn(t) =

∫ t

0

ei(t−s)∆χ·|eis∆u0+vn−1(s)+wn−1(s)|α(eis∆u0+vn−1(s)+wn−1(s))ds,

(4.9.28)

wn(t) =

∫ t

0

ei(t−s)∆(1− χ) · |eis∆u0 + vn−1(s) + wn−1(s)|α(eis∆u0 + vn−1(s) + wn−1(s))ds.

Since σ > ρ, the solution has an appropriate Sσ bound. For now assume the following

estimates.

(4.9.29)

|∇eit∆u0(x)| ≤ |x|−(n−3)/2t−3/2‖u0‖1,

|∇eit∆u0(x)| ≤ |x|−(n−1)/2t−1/2‖∇u0‖1.

Thus by interpolation,

(4.9.30) |∇eit∆u0(x)| ≤ |x|−(n−2)/2−εt−1+ε‖u0‖H1/2+ε,1 .

This implies,

|
∫ t

0

ei(t−s)∆∇χ|u(s)|αu(s)(x)ds| ≤
∫ t

0

‖u(s)‖1+α
H1/2+ε,2(t− s)−1+ε|x|−(n−2)/2−εds

≤ ‖u0‖1+α
H1/2+ε,2t

ε|x|−(n−2)/2−ε.

This gives the estimates
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‖|u(t)|α‖
L∞t L

n/2−
x (R×Rn)

≤ C‖u(t)‖αS0 ,

‖∇(1− χ)eis∆(u1 + u3)‖
L1
tL

2n/(n−4)
x (R×Rn)

≤ CT ε‖u1‖H1/2+ε,2(Rn) + C ′T,

‖∇eit∆u2‖L2
tL

2n/(n−2)
x ([0,T ]×Rn)

≤ C‖u2‖H1,2(Rn).

Now apply the Strichartz estimates to the other term.

‖wn(t)‖Ṡ1 ≤ ‖∇(1− χ)|eis∆u0 + vn(s) + wn(s)|α(eis∆u0 + vn(s) + wn(s))‖N0

≤ T δ
′‖u(t)‖αSρ+ε(R×Rn)(C

′T ε + CT + C‖u2‖H1,2(Rn) + C‖u0‖1+α
H1/2+ε,2T

ε+1 + T δ‖wn−1‖S1).

Set T sufficiently small, this map keeps the Ṡ1 norm bounded. Finally,

eiT∆

∫ t

0

ei(t−s)∆χ|u(s)|αu(s)ds

obeys the appropriate bounds, by (4.9.1) �.

After some point the solution will almost be in the form of Lemma [4.9.4], with initial

data u1 ∈ H1,2(Rn) and

(4.9.31) ‖∇eit∆u2‖Ln−ε(Rn) ≤ C(1 + t)−n/2,
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(4.9.32) ‖∇eit∆u2‖L2n/(n−2)−(Rn) ≤ C(1 + t)−1+ε,

(4.9.33) E(w(t)) ≤ C

∫
(|∇v|+ |∇w|)|∇v||v + w|αdx,

(4.9.34)

∫
|∇v|2|v + w|αdx ≤ ‖∇v‖2

p‖v + w‖α2 ≤

C(‖u0‖H1/2+,1(Rn) + ‖u0‖Hσ+,1(Rn))(1 + t)−β,

where 1
p

= 1
2
− α

4
< 1

2
− 1

n
, and β > 1.

(4.9.35)

∫
|∇v||∇w||v + w|αdx ≤ ‖∇v‖q‖∇w‖2‖v + w‖α2

≤ C(‖u0‖H1/2+,1(Rn) + ‖u0‖Hσ+,1(Rn))(1 + t)−γ.

In this case 1
q

= 1
2
− α

2
< 1

2
− 2

n
. In this case γ > 1 also. Thus by Gronwall’s inequality

E(w(t)) is finite. This completes the proof of Theorem [4.9.3] �.
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