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Randomization inference with general interference
and censoring
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Abstract

Interference occurs between individuals when the treatment (or exposure) of one

individual affects the outcome of another individual. Previous work on causal

inference methods in the presence of interference has focused on the setting where

it is a priori assumed that there is “partial interference,” in the sense that

individuals can be partitioned into groups wherein there is no interference between

individuals in different groups. Bowers et al. (2012, Political Anal, 21, 97–124) and
Bowers et al. (2016, Political Anal, 24, 395–403) consider randomization‐based
inferential methods that allow for more general interference structures in the

context of randomized experiments. In this paper, extensions of Bowers et al. that

allow for failure time outcomes subject to right censoring are proposed. Permitting

right‐censored outcomes is challenging because standard randomization‐based
tests of the null hypothesis of no treatment effect assume that whether an

individual is censored does not depend on treatment. The proposed extension of

Bowers et al. to allow for censoring entails adapting the method of Wang et al.

(2010, Biostatistics, 11, 676–692) for two‐sample survival comparisons in the

presence of unequal censoring. The methods are examined via simulation studies

and utilized to assess the effects of cholera vaccination in an individually

randomized trial of 73 000 children and women in Matlab, Bangladesh.
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1 | INTRODUCTION

Interference arises when an individual’s potential out-
comes depend on the treatment status of others.
Assuming interference is absent when assessing the
causal effect of a treatment on an outcome may be
scientifically implausible in certain settings. For example,
in the study of infectious diseases, whether one
individual receives a vaccine may affect whether another
individual becomes infected or develops the disease.
Motivated by infectious diseases and other settings where

individuals interact, many existing causal inference
methods have been extended to allow for interference,
see Halloran and Hudgens (2016) for a recent review.

Some previous work on causal inference methods in the
presence of interference has assumed a priori that there is
partial interference (Sobel, 2006), that is, individuals can be
partitioned into groups wherein there is no interference
between individuals in different groups. In this paper,
we consider the more general setting where interference
between any two individuals may be assumed. Recent
approaches that allow for the presence of general interference
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when evaluating treatment effects include Bowers et al.
(2012; 2016), Sussman and Airoldi (2017), and Athey et al.
(2018) among others. In randomized experiments where the
treatment assignment mechanism is known, Bowers et al.
(2012) (henceforth BFP) described how to carry out
randomization‐based (ie, permutation or design‐based)
inference on parameters in causal models, which allow for
general interference. For an assumed causal model, a
randomization‐based approach entails constructing confi-
dence sets for the causal parameters by inverting a set of
hypothesis tests. An appealing aspect of randomization‐
based inference (Rosenbaum, 2002, chapter 2) is that no
assumption of random sampling from some hypothetical
superpopulation is invoked. Another benefit is that
the resulting 100(1 – α)% confidence sets are exact,
that is, the probability the true causal parameters are
contained in a confidence set is at least the nominal level
1 – α. Moreover, in settings where possible interference is a
priori assumed to have a specified network structure,
it is unreasonable to assume that individual outcomes are
independent, such that standard frequentist approaches are
not justified; in contrast, randomization‐based methods that
allow for possible general interference readily apply.

In this article, we propose extensions of Bowers et al.
to the setting where the response of interest is a failure
time, and only the censoring time is observed for a subset
of individuals due to right censoring. In general, when
there is right censoring, randomization‐based inference
on the failure times is exact only when treatment does
not affect the censoring times. The proposal to permit
right‐censored observations thus entails adapting the
method of Wang et al. (2010) for two‐sample survival
comparisons in the presence of unequal censoring. The
remainder of this article is as follows. In Section 2,
notation is introduced, causal models are defined, and
the randomization inferential procedure by Bowers et al.
when there is no censoring is reviewed. In Section 3, the
proposed extension allowing for right‐censored outcomes
is presented, and simulation study results are shown
demonstrating the method approximately preserves the
nominal size over a range of settings. In Section 4, the
methods are utilized to assess the effects of cholera
vaccination in an individually randomized trial of
n= 73 000 women and children in Matlab, Bangladesh.
A brief discussion is provided in Section 5.

2 | GENERAL INTERFERENCE
AND CAUSAL MODELS

2.1 | General interference

Consider a finite population of n individuals randomly
assigned to either treatment or control. For each

individual i n= 1, …, , let Z = 1i if individual i is assigned
treatment and Z = 0i otherwise. The vector comprising
all treatment assignments is denoted as Z ZZ = ( , …, )n1 .
The uppercase Z denotes the random variable corre-
sponding to treatment assignment and the lowercase z
denotes the possible realizations of Z. Let y z( )i denote the
potential outcome for individual i that would be observed
for treatment assignment z; the observed outcome is
denoted by Y y Z= ( )i i . Let y yy z z z( ) = ( ( ), …, ( ))n1 denote
the vector of potential outcomes. The potential outcomes
y z( ) and ∈z {0, 1}n are considered fixed features of the
finite population of n individuals.

Define the n n× interference matrix  with i j( , ) entry
Aij for ∈i j n, {1, …, } as follows. Let A = 0ij for i j= . For
≠i j let A = 0ij if it is assumed a priori that individual j

does not interfere with individual i; otherwise let A = 1ij .
Note that A = 0ij implies it is assumed a priori y z( )i does
not depend on zj, whereas A = 1ij merely indicates the
possibility that individual j may interfere with individual
i, and does not necessarily imply y z( )i depends on zj.
Indeed, one of our primary inferential goals is to
determine whether such possible interference is present.
The definition of  encodes the assumption that any
spillover effects on individual i may emanate only from
individuals j where A = 1ij , and not from those where
A = 0ij . The exact relationship between y z( )i and z is
specified using a causal model described in the next
section. Let the interference set (ie, neighbors) for
individual i be the set of individuals ∈ ⧹j n i{1, …, }
where A = 1ij . Denote the ith row of  by the vector Ai,
and the size of the interference set by the scalar

∑A A=i j
n

ij=1 . Under partial interference, individuals
can be partitioned into groups or clusters wherein there
is no interference between groups, in which case  can
be expressed as a block‐diagonal matrix with each block
corresponding to a group. Under general interference,
each individual is allowed to have their own possibly
unique interference set, so that there is no restriction on
the structure of . Here and throughout  is assumed
known and invariant to treatment.

2.2 | Causal models

A (counterfactual) causal model expresses the potential
outcomes y z( )i as a parametric deterministic func-
tion of any treatment z. Following Bowers et al., we
consider a class of causal models that entails the compo-
sition of two functions. In particular, assume

∣y h y θz 0 z( ) = { ( ) ( ; , )}i i  for user‐specified functions h
and , with y 0( )i denoting the potential outcome under the
uniformity trial (Rosenbaum, 2007) where no one receives
treatment. The function θz( ; , ) takes as its arguments
the treatment vector z, causal parameter θ, and interference
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matrix . The dependence of (z; θ, ) on i is left implicit 
notationally as it is implied under the specified causal
model. For notational simplicity, we write  = (z; θ),
with the dependence on  implicit. The specification of  
determines how an individual’s potential outcomes differ
across different treatments z and different values of the 
parameter θ, and includes, but is not limited to, how direct
and spillover effects propagate. The link function h is a one‐
to‐one function mapping yi 0( ) to yi z( ) for a specified  ; in 
particular, the uniformity trial potential outcomes can be
determined from the observed data under a specified causal
model by y h Y θ0 Z( ) = { | ( ; )}i i

−1 , where h−1 is the inverse
of h a b( | ).

In practice, prior beliefs or background knowledge
may be used to inform the choice of and h.
We consider two specific causal models, defined in (1)
and (2) below, and assume h a b a b( | ) = exp( ), although
the proposed methods are general and apply to other
forms of and h. Denote the number and proportion of
individual i’s neighbors assigned to treatment by
T A Z=i i

T and ∕G T A=i i i respectively; here A = 0i
implies T G= = 0i i . Note that Ti and Gi depend on Z,
but this dependence is suppressed for notational conve-
nience. Let

δ τ δZ τGZ( ; , ) = + ,i iadd (1)

δ τ δ Z δ
τ T

Z( ; , ) = + log[1 + (1 − ){exp(− ) − 1}
× exp(− )].

i

i

BFP
2 (2)

Under both causal models, the effect of treatment Z on
the outcome for individual i takes the form of a bivariate
treatment: Zi is the (individual) treatment received, and
Gi (or Ti) is the proportion (or number) of individuals in
the interference set treated. The parameters δ and τ
measure the extent to which the potential outcomes
increase or decrease, relative to y 0( )i , due to Zi andGi (or
Ti). Causal model (2) was proposed by BFP and restricts
interference to those who did not receive treatment, with
the direct (or individual) effect parametrized to be larger
in magnitude than the spillover (or peer) effect. As both
Gi and Ti depend only on the total number in the
interference set treated, a peer effect homogeneity
assumption is implied by these two causal models;
Hudgens and Halloran (2008) refer to the assumption as
stratified interference. Causal models allowing for inter-
ference that does not occur via the summary Ti can also
be utilized within this framework. For example, we
might posit δZ τZ= +i Mi where M A= argmaxi j A j: =1ij

denotes the neighbor of individual i having the biggest
interference set. See Ogburn et al. (2017) and Sussman
and Airoldi (2017) for other causal models that allow for
interference. The next section describes how to carry out

randomization inference for the parameter θ δ τ= ( , )
under a specified .

2.3 | Randomization inference

For a specified causal model , the uniformity trial potential
outcomes under a null hypothesis H θ θ: =0 0 can be
determined from the observed data by y Y0( ) = expi i

θZ{− ( ; )}0 . In a randomized experiment where individuals
are assigned treatment with equal probability, the uniformity
trial outcomes should be similarly distributed between
treatment (Z = 1) and control (Z = 0) groups (Rosenbaum,
2002) if H0 is true and is correctly specified. Therefore the
null hypothesis H0 can be tested using a test statistic

θZ( ; )0 that compares the uniformity outcomes between
treated and untreated individuals. For example, BFP used the
two‐sample Kolmogorov‐Smirnov (KS) test statistic to
compare the empirical distributions of the uniformity
outcomes in the treatment and control groups. Bowers
et al. (2016) proposed a multiple linear regression model of
the uniformity outcomes on Z and T , using the resulting
sum of squares of residuals as a test statistic.

For a chosen test statistic θZ( ; )0 , the plausibility of
H0 can be assessed by evaluating the frequency of obtaining
a value at least as “extreme” (from H0) as the observed
value, over hypothetical reassignments of Z under H0. Here
and throughout a completely randomized experiment is
assumed, where the number assigned to treatment, denoted
by ∑m Z= i

n
i=1 , is fixed by design. The sample space of all

hypothetical reassignments Z is the set of vectors of
length n containing m 1’s and n m− 0’s, and is
denoted by ∈ ∑z i n z mzΩ = { : {0, 1}, = 1, …, , = }i i

n
i=1 .

Each reassignment occurs with probability |Ω|−1, so that a
two‐sided p value may be defined as θpv( ) = |Ω|0

−1

∑ ⩾∈ I θ θz Z{ ( ; ) ( ; )}z Ω 0 0 , where, without loss of
generality, it is assumed that the larger values of θZ( ; )0
suggest stronger evidence against H0, and I B{ } = 1 if B is
true and 0 otherwise. When it is not computationally
feasible to enumerate Ω exactly, an approximation of Ω
based on random draws of z fromΩ may be used to yield
an approximate p value, denoted by θpv ( )0 .

Confidence sets can be constructed by test inversion.
The subset of θ0 values where θpv( )0 , or θpv ( )0 , is
greater than or equal to α forms a 100(1 – α)% exact
confidence set for θ. Confidence sets for individual
parameters in θ can be obtained readily from a
confidence set for θ. For example, a 100(1 – α)%
confidence set for δ is given by all values of δ0 such that
there exists some value of τ0 where (δ τ,0 0) is in
the 100(1 – α)% confidence set for δ τ( , ).

It is important to note that each hypothesis test assesses
the compatibility of the observed data with the assumed
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causal model and assumed parameter values θ0
specified by under the null. Rejection of the hypothesis
only indicates that either or θ0 is implausible. In some
circumstances, all feasible parameter values for an
assumed causal model may be rejected, leading to an
empty confidence set. This indicates that all possible
parameter values are implausible, implying that the
assumed causal model provides a poor fit to the data.

3 | RIGHT ‐CENSORED FAILURE
TIME OUTCOMES

Now suppose each individual’s outcome is a (positive)
failure time, subject to right censoring if the individual is
not followed long enough for failure to be observed. For
i n= 1, …, , let ̃Yi and Ci denote the failure time and the
censoring time, respectively. The failure time ̃Yi is observed
only if ̃ ⩽Y Ci i, so that the observed data are

̃Y Y C= min{ , }i i i and the failure indicator ̃ ⩽D I Y C= { }i i i .
The outcomes being right‐censored causes two complica-
tions for the randomization inference approach described in
Section 2. First, the test statistic employed needs to account
for right censoring; some possible statistics are discussed in
Section 3.1. Second, the null hypothesis H θ θ: =0 0 for a
specified causal model is no longer sharp in the sense
that not all uniformity trial potential outcomes can be
determined from the observed data under H0. To see this,
define y Y θ0 Z( ) = exp{− ( ; )}i i 0 , which can be deter-
mined from the observed data as in the previous section.
Let ̃ ̃y Y θ0 Z( ) = exp{− ( ; )}i i 0 denote the uniformity trial
potential failure time for individual i under H0. For
individuals who are not censored, ̃Y Y=i i implies

̃y y0 0( ) = ( )i i , that is, the uniformity trial potential failure
time can be determined exactly under H0 if D = 1i . But for
individuals who are censored, ̃Yi is unobserved, so that ̃y 0( )i
is unknown under H0. Nonetheless, it is known for these
individuals that ̃Y Y<i i ; multiplying both sides of this
inequality by θZexp{− ( ; )}0 , it follows that ̃y y0 0( ) < ( )i i .
Thus the observed censoring times provide some informa-
tion about the unknown failure times ̃y 0( )i for right‐
censored individuals. In particular, y 0( )i serves as a lower
bound for ̃y 0( )i under H0. Because the null hypothesis is no
longer sharp, the randomization testing approach in Section
2.3 in the absence of censoring requires modification; the
proposed approach is described in Section 3.2.

3.1 | Test statistics that accommodate
right censoring

The test statistics considered in Section 2.3 require
modification to accommodate right censoring. Instead
of the KS statistic, the log‐rank (LogR) statistic may be

used to compare the right‐censored uniformity failure
times in the treatment and control groups. An analog of
the multiple linear regression model is the parametric
accelerated failure time (AFT) model where the log‐
transformed failure times are linear functions of the
predictors. In the following, we consider a log‐normal
AFT model of the uniformity failure times given by

̃ βy σϵ0 qlog ( ) = +i i i, where Z G Z G Aq = (1, , , , )i i i i i i and
the errors ϵi are independent and normally distributed
with mean zero and variance one. (For the BFP causal
model, Gi may be replaced by Ti.) Following the
likelihood ratio principle for testing, a likelihood ratio
permutation test is expected to be the most powerful test
against certain alternatives (see Lehmann and Romano,
2005, chapter 5.9 for an example in the setting where
there is no interference and no censoring). Let

D DD = ( , …, )n1 denote the vector of failure indicators,
and denote the log‐likelihood by

∑ ∕ ̃βl σ θ D ϕ ϵ σy

D ϵ

Z D 0( , ; , , ) = [ log{ ( ) ( ( ))}

+ (1 − )log{1 − Φ( )}],
i

n

i i i

i i

0
=1

(3)

where ̃ ∕βϵ y σ0 q= {log ( ) − }i i i , and ϕ and Φ are the
standard normal density and distribution functions,
respectively; see, for example, equation (6.25) of Collett
(2003). Let β̂ and σ̂ denote the maximum likelihood
estimates (MLEs), and let ̃β and ̃σ denote the MLEs for
the “intercept‐only” model, that is, under the restriction
β = (1, 0, 0, 0, 0)T . Then the log‐likelihood difference is

̃ ̃β βθ l σ θ l σ θZ D Z D Z DLRaft( , ; ) = ( , ; ˆ, ˆ , ) − ( , ; , , )0 0 0 . In
practice, βl σ θZ D( , ; ˆ, ˆ , )0 can be used in place of

θZ DLRaft( , ; )0 since ̃ ̃βl σ θZ D( , ; , , )0 is constant with
respect to Z for a fixed value θ0. Note the AFT model
should only be considered as a “working model,” used
solely to generate a test statistic for a hypothesis testing
procedure. Under the randomization‐based framework,
valid inference does not rely on this working model being
correctly specified. Rather, βl σ θZ D( , ; ˆ, ˆ , )0 can simply be
viewed as a mathematical (scalar) summary of
y 0 D Z{ ( ), , } that is compared against other treatment
assignments for assessing the plausibility of H θ θ: =0 0.

3.2 | Correcting for right‐censored
uniformity trial failure times

The randomization‐based inferential procedures de-
scribed in Section 2.3 do not necessarily yield tests that
preserve the nominal size in the presence of right
censoring, even if the test statistics considered in Section
3.1 are utilized. Randomization tests of no treatment
effect on the failure times in the presence of censoring
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generally only preserve the nominal size when treatment
does not affect the censoring times. To see this, consider
for a moment the setting where there is no interference
between individuals, so that each individual has two
potential failure time outcomes ̃y (0)i and ̃y (1)i , and two
potential censoring times c (0)i and c (1)i . Let ̃ ̃Y y Z= ( )i i i
and C c Z= ( )i i i , and define Yi and Di as above. Consider
testing the null hypothesis of no individual‐level treat-
ment effect, that is, ̃ ̃H y y: (0) = (1)i i0 for i n= 1, …, , using
some test statistic which is a function of Y D Z{ , , } where

Y YY = ( , …, )n1 is the vector of observed outcomes. If we
assume c c(0) = (1)i i , then under the null, both Yi and Di
will be the same regardless of treatment, allowing exact
determination of the test statistic’s sampling distribution
by enumeration over all possible reassignments in Ω.

However, when inverting a randomization test to
construct a confidence set, null hypotheses correspond-
ing to nonzero treatment effects on the failure times must
also be tested. For such null hypotheses, the standard
randomization testing approach described in Section 2.3
cannot be used to determine a test statistic’s sampling
distribution under the null, because in general, an
individual’s censoring indicator Di will not be fixed over
all possible reassignments ∈z Ω, even if treatment has
no effect on the censoring times. To see this, returning to
the setting where there is interference consider the causal
model add and suppose Z = 1i and D = 0i , that is,
individual i is assigned treatment and is censored at time
Yi with failure time ̃Y Y>i i . Further assume treatment has
no effect on the censoring times, so that the potential
censoring time for individual i equals Yi for all treatments
∈z Ω. Now consider testing H θ θ: =0 0 where

̃ ∕δ Y Y> log ( )i i0 and τ = 00 . Then for treatment reassign-
ment ∈z′ Ω where z = 0′i it follows that
̃ ̃ ̃y y Y δ Yz 0( ′) = ( ) = exp(− ) <i i i i0 , that is, individual i

would not be censored for treatment z′. Thus, as will
be demonstrated empirically in Section 3.3 below, a
randomization test that holds the set of censored
individuals fixed over treatment reassignments will not
in general control the type I error. Instead, we propose
the following randomization‐based inferential procedure
that allows the set of censored individuals to vary over
reassignments.

The procedure entails adapting the IPZ permutation test
by Wang et al. (2010). An outline of the procedure is as
follows. First, y 0( ) is determined under H0 using the
specified causal model and a test statistic from Section
3.1 is evaluated at y 0 D Z{ ( ), , }. Second, the sampling
distribution of the test statistic under H0 over hypothetical
treatment reassignments is approximated by: (a) imputing
the unknown uniformity trial failure times for censored
individuals according to the assumed causal model
under H0 and (b) nonparametrically imputing censoring

times using treatment group‐specific Kaplan‐Meier (KM)
estimators of the censoring time distributions. No causal
model is assumed for the censoring times.

The specific procedure is as follows. For a single
observed dataset Y D Z{ , , }, the following steps are carried
out to test H δ τ δ τ: ( , ) = ( , )0 0 0 :

1. Determine the possibly right‐censored uniformity trial
potential failure times under H0, for example, under
the causal model add, y Y δ Z τ G0( ) = exp{−( + )}i i i i0 0 .
Calculate the observed value of the chosen test
statistic, for example, the log‐rank statistic, using
y 0 D Z{ ( ), , }.
(a) Compute the KM estimator of the distribution

function of the uniformity failure times under H0
using y 0 D{ ( ), }. Denote the estimator by ⋅F̂ ( )0 .

(b) For z = 0, 1, among individuals with treatment
Z z=i , compute the group‐specific KM estimator
of the censoring time distribution, using the
observed times Yi and censoring indicators

D1 − i. Denote the estimators by ⋅S zˆ ( | ).
2. Randomly sample a new treatment assignment

∈z Ω.
3. If D = 1i , set ̃y y0 0( ) = ( )*i i , where ̃y y0 0( ) = ( )i i is the

observed uniformity failure time under H0. Otherwise if
D = 0i , since ̃y 0( )i is unknown, sample a failure time

from a truncated distribution with lower bound y 0( )i as

follows. Randomly draw ∼u F y 0Uniform[ ˆ ( ( )), 1]i0 . If

⩽ ̃u F y 0ˆ ( ( ))0 max , where ̃ ̃y y0 0( ) = max ( )i D imax : =1i is the
maximum observed uniformity failure time, set the

failure time as ̃y F u0( ) = ˆ ( )*i 0
−1

; otherwise set

̃ ̃y y0 0( ) = ( )*i max . (The * symbol distinguishes the
imputed failure times from the unknown failure times
̃y 0( )i for those with D = 0i .) Determine the potential

failure times under treatment z using the assumed
causal model and the null parameter values, for
example, ̃ ̃y y δ z τ gz 0( ) = ( )exp( + )*i i i i0 0 , where gi is

the realization of Gi under treatment z.
4. Sample a censoring time under treatment assignment

z, denoted by c z( )i , from ⋅S zˆ ( | )i as follows. Randomly
draw ∼v Uniform(0, 1). LetY Y= maxi Z z imax : =i i be the
maximum observed time among individuals with
treatment Z z=i i. If Ymax is a censoring time, then the
KM estimator of the censoring time distribution

evaluated at Ymax is S Y zˆ ( | ) = 1imax . Hence set the

censoring time to be c S v zz( ) = ˆ ( | )i i
−1 . Otherwise,

if Ymax is a failure time so that S Y zˆ ( | ) < 1imax ,

set the censoring time to be c S v zz( ) = ˆ ( | )i i
−1 if

⩽v S Y zˆ ( | )imax and let c Yz( ) =i max otherwise. Hence
⩽c Yz( )i max so that any imputed potential failure

time longer than Ymax will be censored at Ymax .
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5. Determine the potential outcomes under treatment z
as ̃y y cz z z( ) = min{ ( ), ( )}i i i and the failure indicators

as d z( ) = 1i if ̃ ⩽y cz z( ) ( )i i or 0 otherwise.
6. Determine the uniformity outcomes under treatment

z using the same causal model as in step 1, for

example, y y δ z τ g0 z( ) = ( )exp{−( + )}i i i i
†

0 0 . (The †
symbol denotes the uniformity outcomes determined
using y z( )i , which differ from the uniformity out-
comes determined using Yi in step 1.) Compute the

chosen test statistic using y 0 d z z{ ( ), ( ), }† , where

y yy 0 0 0( ) = ( ( ), …, ( ))n
†

1
† † and d dd z z z( ) = ( ( ), …, ( ))n1

are vectors of length n.
7. The sampling distribution of the chosen test

statistic can be obtained by repeating steps 2 to 6.
The p value for testing H0 can be determined by
comparing the resulting sampling distribution with
the observed value of the chosen test statistic from
step 1.

3.3 | Empirical evaluation of proposed
tests

In this section, the ability of the proposed procedure to
better control the type I error in the presence of right
censoring is assessed empirically. A simulation study is
conducted as follows. The total number of individuals n is
set to 128, with exactly m individuals assigned to
treatment as in a completely randomized experiment.
For each individual i, the interference set Ai is generated
once as follows: (a) randomly draw the interference set
size as ∼A Poisson(16)i ; (b) sample without replacement
Ai values of ∈ ⧹j n i{1, …, } and set A = 1ij for the
sampled values of j; and then (c) set the remaining values
of Aij to 0.

Step 0 Sample the uniformity failure times as
̃y μ σ0log ( )~ ( , )i

2 , where μ σ( , ) = (4.5, 0.25 )2 2 .

Step 1 Randomly draw an observed treatment assign-
ment Z from Ω. Determine the failure time for
individual i with observed treatment (Z G,i i) by
̃ ̃Y y δ Z τ G0= ( )exp( + )i i i i

† † for δ τ( , ) = (0.7, 2.8)† † .

The values of δ τ( , )† † are chosen so that for
G > 0.25i , the magnitude of the spillover effect is
greater than the direct effect, that is, τ G δ>i† †.
The censoring times are then drawn from
distributions that depend on treatment. First the

dropout times C̃i are randomly drawn from a log‐
normal distribution C μ τ G ωlog ˜ ~ ( + , )i i

† 2 ,

where ω =2 1 − 0.252. The administrative censor-
ing time is defined as C μ σ τ= exp( + 2 + )′i † . If

Z = 1i , set the censoring time to C C C= min{ , ˜ }′i i i ;

otherwise, assume there is no dropout and
C kC= ′i i for some specified proportion k. Deter-
mine the observed outcomes Yi and failure
indictors Di as defined above.

Step 2 Under H δ τ: ( , ) = (0.7, 2.8)0 0 0 , determine
y Y δ Z τ G0( ) = exp{−( + )}i i i i0 0 . For the dataset
y 0 D Z{ ( ), , }, carry out the LogR and LRaft tests,
either holding D fixed over reassignments, or
using the proposed method in Section 3.2. The p
values δ τpv ( , )0 0 are calculated with = 10 000.

Step 0 was carried out once, then steps 1 and 2 repeated
2000 times each for k m= 1, = 124.

The empirical cumulative distribution functions
(ECDFs) of the LogR and LRaft p values holding D
fixed over reassignments are plotted in the left panel
of Figure 1. Neither test controlled the nominal type I
error rate in general, with both ECDFs above the
diagonal indicating inflated rejection rates of H0 above
the nominal size. While the empirical type I error rate
of the LogR test was below the nominal rate at certain
significance levels, this is not guaranteed to be the
case in general.

FIGURE 1 Empirical cumulative
distributions of p values for the different
test procedures described in Section 3.2.
For the procedure corresponding to the
left panel, the failure indicators Di are

held fixed over reassignments. In contrast,
the proposed method corresponding to
the right panel allows for the set of
censored individuals to vary over
reassignments [This figure appears in
color in the electronic version of this
article, and any mention of color refers to
that version]
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The empirical results using the proposed method in
Section 3.2 are shown in the right panel of Figure 1. The
LogR and LRaft tests both had type I error rates that
approximately equal the nominal size for all significance
levels α, with both ECDFs lying approximately on the
diagonal. Similar results for other values of k and m are
shown in Figures S1 and S2. The proposed method was
further evaluated using a different (symmetric) inter-
ference structure that was generated as a linear
preferential attachment network following Jagadeesan
et al. (2017). Settings where the uniformity failure times
were correlated between individuals and were correlated
with censoring times were also considered. The details of
these studies (32 different simulation settings) are given
in Supporting Information Appendix A. The results,
displayed in Figures S1 to S8, demonstrate that the
proposed method controlled the type I error at approxi-
mately the nominal level over a variety of scenarios.

Additional simulation studies were conducted to
compare the power of the LRaft and LogR tests. The
details of these studies are described in Supporting
Information Appendix B. The results displayed in Figure 2
correspond to testing the null hypotheses H δ τ: ( , ) =0 0 0
(0.6, 2.8) (left panel) and H δ τ: ( , ) = (0.7, 3.2)0 0 0 (right
panel) when the true data generating parameter values were
δ τ( , ) = (0.7, 2.8). Power using the LRaft and LogR tests
was similar for δ τ( , ) = (0.6, 2.8)0 0 , whereas for
δ τ( , ) = (0.7, 3.2)0 0 the LRaft test was more powerful with
LogR having power approximately equal to the nominal
significance level. The observed lack of power of LogR to
detect spillover effects different from that posited under
the null aligns with intuition since this statistic only
compares (censored) uniformity trial outcomes between
treated and untreated individuals, with no attempt to
account for the proportion (or number) of treated
neighbors. The results for other assumed values of
δ τ( , )0 0 , as well as empirical coverage of the LRaft and

LogR 95% confidence sets, are provided in Supporting
Information Appendix B.

In summary, the results from these simulation studies
indicate that the randomization test procedure in Section
3.2 controls the type I error (empirically) over a range of
settings, and the LRaft test tends to be as or more
powerful than the LogR test. Moreover, the LogR test can
lack power to detect spillover effects and thus is not
recommended in practice when assuming the additive
causal model.

4 | APPLICATION TO
RANDOMIZED TRIAL OF
CHOLERA VACCINE

In this section, the methods described above are utilized
to assess the effects of cholera vaccination in a placebo‐
controlled individually randomized trial in Matlab,
Bangladesh (Ali et al., 2005). In prior analyses of these
data, Ali et al. (2005) found a negative association
between an individual’s risk of cholera infection and
the proportion of individuals vaccinated in the area
surrounding an individual’s residence, suggesting possi-
ble interference. Similarly, analysis by Emch et al. (2009)
found that the risk of cholera was inversely related with
vaccine coverage in environmental networks that were
connected via shared ponds. Likewise, Root et al. (2011)
concluded that the risk of cholera among placebo
recipients was inversely associated with level of vaccine
coverage in their social networks. Motivated by these
association analyses, Perez‐Heydrich et al. (2014) used
inverse probability weighted estimators to provide
evidence of a significant indirect (spillover) effect of
cholera vaccination. However, Perez‐Heydrich et al.
assumed partial interference based on a spatial clustering
of individuals into groups and did not account for right

FIGURE 2 Empirical cumulative
distributions of p values from a simulation
study described in Supporting
Information Appendix B using the
proposed method in Section 3.2. The true
parameter values used to generate the
data were δ τ( , ) = (0.7, 2.8). The left panel
corresponds to testing the null
H δ τ: ( , ) = (0.6, 2.8)0 0 0 , and the right

panel corresponds to testing the null
H δ τ: ( , ) = (0.7, 3.2)0 0 0 [This figure

appears in color in the electronic version
of this article, and any mention of color
refers to that version]
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censoring. Misspecification of the interference structure
and failure to account for right censoring may bias
results. The analysis below considers other possible
interference structures and allows for right censoring.

All children aged 2 to 15 years and females over 15
years in the Matlab research site of the International
Centre for Diarrheal Disease Research, Bangladesh, were
individually assigned randomly to one of three possible
treatments: B subunit killed whole‐cell oral cholera
vaccine; killed whole‐cell‐only oral cholera vaccine; or
Escherichia coli K12 placebo. Recipients of either vaccine
were grouped together for analysis as the vaccines were
identical in cellular composition and similar in protective
efficacy in previous analyses. Denote Z = 0 for those
assigned to placebo, and Z = 1 for those assigned to
either vaccine. Individuals were only included in the
analysis if they had completely ingested an initial dose
and had completely or almost completely ingested at least
one additional dose. There were a total of n = 72 965
individuals in the randomized trial subpopulation for
analysis, with m = 48 660 assigned to vaccine and
n m− = 24 305 to placebo. The primary outcome for
analysis was the (failure) time in days from the 14th day
after the vaccination regimen was completed (end of the
immunogenic window; Clemens et al., 1988), until a
patient was diagnosed with cholera following presenta-
tion for treatment of diarrhea. Failure times for many
trial participants were right‐censored either due to
outmigration from the field trial area or death prior to
the end of the study, or administrative censoring at the
end of the study on 1 June 1986.

4.1 | Interference specifications

The vaccine trial is analyzed using one of three different
specifications of interference in turn. Person‐to‐person
transmission of cholera often takes place within the same
bari, that is, geographically clustered households of
patrilineally related individuals. Therefore, for all three
specifications, an individual’s interference set includes all
other individuals residing in the same bari. In other
words, all individuals i j, residing in the same bari have
A = 1ij . There are 6423 geographically discrete baris with
each individual residing in exactly one bari. Three
different specifications are posited regarding how an
individual’s interference set may also include individuals
in different baris.

The first specification follows the same approach in
Perez‐Heydrich et al. (2014). Baris are partitioned into
“neighborhoods” according to a single linkage agglom-
erative clustering method. No interference is assumed
between individuals in different neighborhoods and no
additional assumptions are imposed regarding the

interference structure. That is, partial interference is
assumed under this specification. The average number of
individuals in each interference set is 419 with an
interquartile range (IQR) of 120 to 631.

Ali et al. (2005) found an association between the
cholera risk for a placebo recipient and the vaccine
coverage among individuals living within a 500m radius
of the placebo recipient. Following Ali et al., the second
specification of the individual interference sets assumes
an individual’s potential outcomes may possibly depend
on those living in a different bari within a 500m radius of
the bari s/he resided in. This specification does not
assume partial interference. The average number of
individuals in each interference set under this specifica-
tion is 499 (IQR 339‐626). Baris in the same neighbor-
hood under the first specification may be more than
500m apart, for example, in sparsely populated regions;
conversely, baris in different (possibly adjacent) neigh-
borhoods may be less than 500m apart. Hence, A = 1ij
under either specification does not imply that A = 1ij
under the other specification.

The previous two specifications assume a local
interference structure based on geographical location of
individuals’ households. Following Root et al. (2011), the
third interference structure is defined according to a
kinship‐based social network between baris. The Matlab
Demographic Surveillance System recorded the exact
dates and bari of residence over time for each individual.
An individual who migrated between two baris, primarily
due to kinship relationships such as marriage, created a
nondirectional social tie between the baris. The average
number of individuals in each interference set under this
specification is 162 (IQR 70‐225). Submatrices of the
interference matrices for 500 selected participants under
each of the three specifications (“neighborhood,”
“500m,” and “social”) are depicted in Figure 3. The
interference matrices for all n = 72 965 participants are
shown in Figure S11.

The study population also included 44 887 indivi-
duals who did not participate in the randomized trial,
and thus had zero probability of receiving either cholera
vaccine. However, most of these individuals also resided
in the same baris as those who took part in the trial:
5661 baris contained a mixture of participants and
nonparticipants, with a median participation rate of 71%
within a bari. Since the three specified interference sets
are defined based on baris, the definition of Gi is
expanded to include nontrial participants as follows. Let
Bi be the total number in the study population,
regardless of trial participation, who may possibly
interfere with person i, so that ⩾ ⩾B A Ti i i. Denote
the proportion of Bi who receive treatment asG*i , that is,

∕G T B=*i i i.
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4.2 | Results

For each specified interference matrix, confidence sets for
(δ τ, ) were constructed under the causal model
Y y δZ τG0= ( )exp( + )*i i i i by conducting hypothesis tests
over a discrete grid of values of δ τ( , )0 0 . It was not
computationally feasible to enumerate Ω exactly with

≈( ) 1072 965
48 660

20 162 possible reassignments, so p values
were calculated with = 4000 random draws from Ω.
The LRaft 95% confidence sets are plotted in Figure 4,
with the contours indicating (δ τ,0 0) values yielding the
same p values. The boundaries of the 95% confidence set
are demarcated by the contour lines that indicate p values
at least as large as .05.

There is evidence that vaccination has an effect on the
risk of cholera as the 95% confidence sets exclude
δ τ( , ) = (0, 0) under all three interference specifications.
Point estimates of the joint treatment effects, correspond-
ing to values of (δ τ,0 0) with the largest p value, are
positive, suggesting the effect of the vaccine in reducing
the risk of cholera is a combination of protective direct

and spillover effects. The direct effect estimates are
similar across the three interference specifications,
whereas the spillover effect estimate is somewhat higher
for the social interference specification. For the 500m
interference structure, the estimated treatment effect is
δ τ( ˆ, ˆ) = (0.7, 4.0). We offer two interpretations of δ τ( ˆ, ˆ)
under the additive causal model. First, the average time
until cholera diagnosis had everyone not received vaccine
(ie, the uniformity trial) is estimated to be

≈exp(0.7 + 4.0) = exp(4.7) 110 times faster than if
everyone had received vaccine (eg, the “blanket cover-
age” trial). Second, the estimated risk of cholera
incidence at 365 days under the uniformity trial would
be approximately 2.30% compared to 0.06% under the
blanket coverage trial, corresponding to a 98% reduction.
The individual parameter estimates also have a straight-
forward interpretation. For example, holding the propor-
tion of neighbors treated fixed, ≈δexp( ˆ) = exp(0.7) 2 is
the estimated ratio of survival times when an individual
receives treatment versus control. Similarly, holding
individual treatment fixed ≈τexp(ˆ) = exp(4.0) 55 is the

FIGURE 3 Submatrices of the interference matrices for 500 selected participants in the randomized cholera vaccine trial, based on
neighborhood (left), 500 m (center), and social (right) interference specifications

FIGURE 4 LRaft 95% confidence sets for (δ τ, ) under the additive model add, and each specified interference matrix (neighborhood,
500m, or social) for the cholera data. The contours indicate values of (δ τ,0 0) yielding the same p values, with darker hues indicating larger p

values. The boundaries of the 95% confidence set are demarcated by the contour lines that indicate p values of at least .05. The point estimate
(δ τˆ, ˆ) corresponding to the highest p value under each interference structure is indicated by x [This figure appears in color in the electronic
version of this article, and any mention of color refers to that version]
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estimated ratio of survival times when all neighbors are
treated compared to no neighbors being treated.

The BFP model was considered unrealistic a priori for
this example because there was no plausible scientific
rationale for limiting the spillover effect to those who do
not receive the vaccine, and to be strictly smaller in
magnitude than the direct effect. Nonetheless, for
completeness, inference was carried out for parameters
under an assumed BFP model. No p values were above .05,
suggesting that the BFP model is a poor fit to the data.

5 | DISCUSSION

In this paper, we proposed randomization‐based methods for
assessing the effect of treatment on right‐censored outcomes
in the presence of general interference. There are several
avenues of possible future related research. The adapted IPZ
procedure as implemented only allows for unequal censoring
based on Z . A proportional hazards model may be used in
place of the group‐specific KM estimators to allow for
censoring to differ based on Z and G. Building on the
empirical results in this paper, future research could examine
theoretical properties of the proposed procedures, for
example, determine conditions under which type I error
rate control is guaranteed. Joint parametric causal models for
both the failure times and censoring times in the presence of
general interference might also be considered. Since
inference is contingent on the choice of interference structure
assumed, possible extensions include developing sensitivity
analysis methods for assessing robustness to interference
structure misspecification. Alternatively, extensions of ran-
domization‐based inference approaches that do not require a
parametric causal model, such as Sävje et al. (2017), to the
setting where outcomes are censored could be considered.
Methods such as Jagadeesan et al. (2017) and Athey et al.
(2018) that use restricted randomizations to improve
statistical power and computational speed might also be
considered. While illustrated in this paper using data from an
individually randomized trial, the proposed methods can be
employed in cluster‐randomized trials. Finally, although this
paper has focused on two specific causal models, the
proposed methods are general and easily extended to other
causal models.
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SUPPORTING INFORMATION

Web Appendices A and B and Web Figures 1–11
referenced in Sections 3.3 and 4.1 are available with this

paper at the Biometrics website on Wiley Online Library.
The R code used to implement the proposed methods and
to carry out the simulation studies in Section 3.3 and in
Web Appendices A and B are available at the following
web address: https://github.com/wwloh/General‐Inter-
ference‐Censoring.
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