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ABSTRACT 

 
Anna Elizabeth Dow: Cotrimoxazole Prophylaxis in HIV-Infected Pregnant Women and 

their Infants: 
Associations with Parasitemia, Common Illnesses and Birth Outcomes 

(Under the direction of Annelies Van Rie, MD, PhD) 
 

Cotrimoxazole prophylactic treatment (CPT) is recommended by the World Health 

Organization for prevention of opportunistic infections in adults and children. CPT is also 

recommended for HIV-exposed infants while they remain at risk of HIV acquisition through 

breastfeeding. The benefits of CPT have been well established in adults and HIV-infected 

children but limited information exists among HIV-infected pregnant women and HIV-

exposed, uninfected infants, including whether CPT offers protection against malaria. Using 

data from a longitudinal study of prevention of mother-to-child transmission of HIV, we 

examined the effect of CPT, initiated at six weeks of age, on adverse health outcomes during 

the first 36 weeks of life in HIV-exposed uninfected infants, and the effect of CPT in HIV-

infected pregnant women on birth outcomes, incident malaria during pregnancy, and CD4 

cell count at 24 weeks postpartum.  

Among HIV-exposed, uninfected infants, CPT was associated with fewer cases of incident 

malaria during the first 10 weeks of CPT exposure (hazard ratio (HR) 0.35, 95% confidence 

interval (CI): 0.21, 0.57), but not during the remaining 20 weeks of CPT use (HR 0.93, 95% 

CI: 0.67, 1.29). CPT did not offer protection against other serious illness, moderate or severe 

anemia, or underweight. Among HIV-infected pregnant women, CPT was not associated 
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with a protective effect against malaria after adjustment for confounding (adjusted HR 0.66, 

95% CI: 0.28, 1.52), when compared to women receiving intermittent preventive treatment 

during pregnancy with sulfadoxine-pyrimethamine. CPT was not associated with a protective 

effect in analyses of low birth weight or preterm birth. CPT was associated with a lower CD4 

cell count at 24 weeks postpartum, among women receiving antiretrovirals (-77.6 cells/µL, 

95% CI: -125.2, -30.1) and among women not receiving antiretrovirals (-33.7 cells/ µL, 95% 

CI: -8.8, -58.6). 

CPT appears to offer limited protection against malaria among HIV-exposed, uninfected 

infants. Compared to intermittent preventive treatment administered during the first two 

years of the study, CPT did not offer greater protection against malaria in HIV-infected 

pregnant women, or against low birth weight or preterm birth. CPT was associated with a 

lower CD4 cell count at 24 weeks compared to women not receiving CPT.  



v 
 

 
For the people living with and affected by HIV. 
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CHAPTER ONE: SPECIFIC AIMS 

 

The World Health Organization (WHO) guidelines recommend daily cotrimoxazole 

prophylactic treatment (CPT) for HIV-infected pregnant and non-pregnant adults with CD4 

cell count <350 cells/µL or WHO stage III or IV, HIV-infected children, and HIV-exposed 

infants from 6 weeks of age until cessation of risk of HIV transmission and exclusion of HIV 

infection.1 These guidelines are based on results of randomized controlled trials and non-

experimental studies that demonstrated decreased incidence of severe events, hospitalizations 

and mortality in HIV-infected non-pregnant adults and children.2-6  

Despite the fact that the WHO recommends CPT for HIV-exposed infants, data to 

justify treatment of this population are limited. There is some evidence that CPT may reduce 

the risk of lower respiratory tract infections7 and pneumococcal colonization rates8 in HIV-

exposed children <18 months. Data on CPT in pregnant women are also scarce, though some 

evidence suggests that in addition to protecting the woman against opportunistic infections, 

CPT may reduce risk of poor birth outcomes. A study in Zambia found reduced odds of 

preterm birth (odds ratio (OR) 0.49, 95% confidence interval (CI): 0.24, 0.98) and a decrease 

in neonatal mortality from 9% to 0% (p=0.01) after CPT was introduced for women with 

CD4 cell counts less than 200 cells/µL. It is not known if the same benefits would be seen in 

women with higher CD4 cell counts.9 

CPT in HIV-infected adults has also been associated with reductions in incidence of 

malaria,2, 4, 10 and there is evidence of a similar effect in HIV-infected children.  Findings 
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from a study of the effects of CPT and insecticide-treated bednets (ITNs) on HIV-infected 

children 1-11 years of age found the use of ITNs was associated with a 43% reduction in 

malaria incidence (rate ratio (RR) 0.57, 95% CI: 0.46, 0.71), and the combination of CPT and 

ITNs was associated with a 97% reduction in malaria incidence (RR 0.03, 95% CI: 0.01, 

0.10).11 A study of older HIV-uninfected children 5-15 years of age found CPT greatly 

reduced episodes of clinical malaria (RR 0.005, 95% CI: 0.00, 0.04).12 Even though children 

under five are at greater risk of malaria compared to older children, there are no data on the 

effectiveness of CPT in reducing malaria incidence in young, HIV-exposed, uninfected 

children.  

The Breastfeeding, Antiretrovirals and Nutrition (BAN) study provides an excellent 

opportunity to study the effectiveness of CPT in pregnant women with higher CD4 cell 

counts (> 200 cells/µL) and HIV-exposed, uninfected children. Although BAN began 

enrolling HIV-infected women and their infants in 2004, CPT was only provided from June 

2006 onwards to women with CD4 cell counts <500 cells/µL and to HIV-exposed, 

uninfected children (from six weeks to 36 weeks of age).  

Using the BAN data, we examined the effect of CPT in two populations. We 

determined the effects of CPT during the first 36 weeks of life in HIV-exposed, uninfected 

infants on the incidence of malaria, anemia, and hospitalization or death. We also examined 

the impact of CPT on women with CD4 cell counts <500 cells/µL, both during and after 

pregnancy. These analyses broadened our understanding of the effect of CPT on incidence of 

malaria and other health outcomes in HIV-infected pregnant women and their infants, which 

will allow for more informed decision making regarding future CPT guidelines and 

programs.  
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Specific Aim 1: Effects of CPT in HIV-exposed, uninfected children  

Aim 1a. To evaluate time to first episode of malaria parasitemia (dichotomous blood 

smear positive) by CPT exposure status (no CPT vs. CPT from 6 weeks of age) in the 

first 36 weeks of life. 

Aim 1b. To evaluate time to first hospitalization or death, moderate or severe anemia, 

or malnutrition by CPT exposure status (no CPT vs. CPT from 6 weeks of age) in the 

first 36 weeks of life. 

Rationale: Although the WHO recommends CPT for all HIV-exposed children until 

cessation of breastfeeding and exclusion of HIV infection, there are minimal data available 

on the effect of CPT on incidence of poor health outcomes, including malaria, in this age 

range. While CPT has been shown to decrease morbidity and mortality in HIV-infected older 

children and adults, it is not known if these benefits will be seen in these HIV-exposed, 

uninfected children less than one year of age, or whether protection through maternal 

antibodies will decrease the impact of CPT in this population. A better understanding of 

whether the benefits of CPT seen in other populations apply to HIV-exposed, uninfected 

children less than 1 year of age is important in a setting where breastfeeding is the main form 

of infant feeding, and prevention of mother to child transmission (PMTCT) programs and 

CPT are becoming increasingly available.   

Specific Aim 2: Effects of CPT in HIV-infected women, during and after pregnancy 

Aim 2a. To evaluate variation in time to malaria parasitemia, severe illness or death 

and moderate or severe anemia by CPT exposure status in HIV-infected women (with 

baseline CD4 cell counts of 200 to <500 cells/µL) during and after pregnancy.  
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Aim 2b. To evaluate the impact of CPT in pregnant women with CD4 cell counts of 

200 to <500 cells/µL on occurrence of preterm birth and low birth weight. 

Aim 2c. To evaluate the impact of CPT in women with baseline CD4 cell counts of 

200 to <500 cells/µL on CD4 change from pregnancy to 24 weeks post-partum. 

Rationale: The WHO recommends that CPT be given to HIV-infected pregnant women if 

they meet the adult criteria for treatment. Intermittent Preventive Therapy during pregnancy 

(IPTp), which is usually given to women during pregnancy to prevent malaria regardless of 

HIV status, is not given in cases where CPT is given, yet the ability of CPT to prevent 

malaria, as well as other adverse health and birth outcomes, has not been well studied in 

pregnant women. The BAN data provides an opportunity to compare the incidence of these 

health outcomes as well as pregnancy outcomes in women exposed and unexposed to CPT.  

 



 
CHAPTER TWO: BACKGROUND AND SIGNIFICANCE 

 

The HIV epidemic in women and children 

In 2008 approximately 280,000 children died from AIDS and 430,000 children <15 

years of age were newly infected with HIV, bringing the total estimate of children living with 

HIV to 2.1 million, 90% of whom live in sub-Saharan Africa.13 In Malawi the estimated 

prevalence of HIV is 11.9%, and in 2007 there were approximately 91,000 children living 

with HIV/AIDS (Table 2.1).14 More than 90% of new infections in children are transmitted 

during pregnancy, birth or breastfeeding. Comprehensive approaches to prevention of mother 

to child transmission in the developed world including antiretroviral treatment for pregnant 

women, elective cesarean section, and formula feeding have decreased mother to child 

transmission (MTCT) of HIV to < 2%. Although these measures are not currently feasible in 

the developing world, the use of low cost alternatives such as single dose nevirapine has 

decreased MTCT by 50%.15  Prevention of mother to child transmission (PMTCT) programs 

providing antenatal HIV testing and counseling to pregnant women have helped to identify 

women in need of these interventions. Access to PMTCT interventions is increasing; in 2009, 

53% of pregnant women living with HIV in low and middle-income countries received 

antiretrovirals to reduce the risk of HIV transmission to their infants, including antiretroviral 

therapy for their own health, compared with only 15% in 2005.16 HIV will continue to be a 

major problem in young children until more effective interventions are universally accessible 

to HIV-infected pregnant women.  
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Association of HIV with birth and infant outcomes 

HIV-infected pregnant women are at risk for the opportunistic infections experienced 

by the general HIV-infected adult population, as well as an increased risk of several perinatal 

outcomes, beyond vertical transmission of HIV, such as stillbirth and preterm birth.17 

Pregnancy in HIV-infected women has also been associated with adverse maternal outcomes 

including death and disease progression, although most of these findings were not 

statistically significant.18, 19 Despite the increase in PMTCT programs available to pregnant 

women, approximately half of pregnant women identified as HIV-infected during antenatal 

care visits were assessed to determine whether they were eligible to receive ART for their 

own health.16 In addition to the direct benefits of treatment to the health of the mother, better 

maternal health status is associated with better birth outcomes and infant health. A review of 

the literature on the effect of maternal HIV infection on perinatal outcomes found a 

significant increase in spontaneous abortion, still birth, infant mortality, intrauterine growth 

retardation, low birth weight and preterm delivery for HIV-infected women.17 In both HIV-

infected and HIV-exposed, uninfected children maternal death and low maternal CD4 have 

been identified as risk factors for child mortality in the first two years of life.20-22 In 

summary, timely access to treatment for mothers also directly benefits the child, by enabling 

her to provide more comprehensive care for her infant.  

The bimodal clinical course of HIV infection allows some infected children to survive 

early childhood without intervention,23-25 however, the rapid disease progression seen in 

other children necessitates early identification of infection in order to take advantage of the 

limited window for effective treatment.  Without access to treatment, approximately one third 

of infants will die before one year of age, and half will die by their second birthday.22 
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Perinatally infected children are at particular risk of death between two and six months of 

age.20 Early identification of HIV-infected infants followed by antiretroviral treatment 

initiated at 6-12 weeks has been shown to reduce infant mortality by 76% and HIV 

progression by 75%.26 

Despite the high rates or morbidity and mortality in HIV-infected infants and the 

established benefits of treatment, the vast majority of children are not receiving treatment. 

Although the number of children <15 years of age receiving antiretroviral treatment 

increased from 75,000 in 2005 to approximately 356,400 in 2009, only a fraction of children 

in need of treatment are receiving it.16 Updated WHO guidelines issued in 2010 recommend 

immediate initiation of antiretroviral therapy for all infants diagnosed with HIV under two 

years of age.27  

 

HIV testing in infants 

A major obstacle preventing timely access to early treatment for HIV-infected 

children is the difficulty of accurately diagnosing HIV infection in infants. Maternal 

antibodies may be detectable in an infant’s bloodstream until 18 months of age, causing 

commonly-used HIV antibody tests to be unreliable in this population. While an antibody test 

can be useful to determine exposure in the case of unknown status of the mother, a more 

advanced testing method, such as PCR, is required to diagnose an HIV-infected infant 

accurately. Unfortunately, this type of testing requires equipment and technology which is 

not yet available in some of the resource-poor settings where it is most acutely needed. In 

2009 in low and middle income countries, only 6% of HIV-exposed children were tested 

before the age of 2 months.16 In 2008, HIV DNA PCR testing of infants using dried blood 
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spots were being used in more than 30 low- and middle-income countries, allowing for 

expanded early infant diagnosis programs.28 

 

Early infant testing is an important first step, but recurrent testing of HIV-exposed 

children is necessary to diagnosis HIV infection in a timely manner in the context of 

breastfeeding. A meta-analysis of MTCT through breastfeeding estimated a 4% risk of 

MTCT from 4 weeks to 6 months, a 9% risk from 4 weeks to 12 months, and 16% risk from 

4 weeks to 18 months,29 while another meta-analysis found an overall cumulative probability 

of transmission from 4 weeks to 18 months of 9.3%.30 A study of HIV-exposed children in 

Zimbabwe found that among children who tested negative at 6 weeks and subsequently 

tested positive before 2 years of age, 19% died by 1 year of age, and 33% died by 730 days. 

Duration of survival following infection was shorter for infants infected before, compared 

with after, 6 months.20 These mortality rates in postnatally infected infants underscore the 

need for recurrent testing throughout the extended HIV transmission risk period caused by 

breastfeeding, in order to reach infected children with ART before they fall seriously ill or 

die. Unfortunately, testing is often not repeated, or performed at all, until 18 months, a 

common testing time point and the earliest time at which antibody tests are generally 

considered accurate. 

Until repeat testing measures are in place for all HIV-exposed infants, it is especially 

important to ensure that steps are being taken to link children at risk of infection to the health 

care system on a regular basis. This enables health care workers to identify HIV infection 

symptomatically as early as possible, at which point suspicion of infection can be confirmed 

if PCR testing is available. As in all HIV-infected patients, prevention of opportunistic 
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infections is important.  Due to the difficulty of identifying infant infections and the 

importance of preventing opportunistic infections in this susceptible population, 

cotrimoxazole prophylaxis is routinely recommended by the WHO for all exposed infants. 

This approach ensures that infected infants who may not be diagnosed in a timely manner 

still have some level of protection against the opportunistic infections which can quickly lead 

to severe morbidity and mortality.  

 

Challenges among HIV-exposed, uninfected children  

The major concern for HIV-exposed, uninfected children is the risk of acquiring HIV 

infection, but there are many other threats to the well being of these children. The literature 

on morbidity in HIV-exposed, uninfected infants is limited, partly due to combined 

observations of infants who are HIV-exposed but uninfected with infants who are HIV-

infected. A large study of morbidity among exposed, uninfected children in the first six 

months of life in Latin America and the Caribbean has provided insight into the burden of 

infectious disease morbidity in this population. Approximately 60% of infants studied 

experienced infectious disease morbidity in the first 6 months of life with an overall 

incidence rate of 4.5 infections per 100 child-weeks of observation (95% CI: 4.1, 4.7). 

Overall 17.5% of the 462 infants were hospitalized at least once with an infection. Infections 

commonly leading to hospitalization included lower respiratory tract infections (108 

infections, 44 hospitalized (41%, 95% CI: 31.5, 50.6)), and systemic infections (34 

infections, 16 hospitalized (47% 95% CI: 30.2, 64.6)).  The most common infections were 

skin and mucous membrane infections, lower and upper respiratory tract infections, systemic 

infections and gastrointestinal infections. Although this study did not include control 
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children, these data provide an overall picture of the infectious disease burden experienced in 

this exposed, uninfected population.31 Commonly reported symptoms and morbidities in 

other studies of HIV-exposed, uninfected children include fever, skin disease, cough, 

conjunctivitis, chronic diarrhea, lymphadenopathy, respiratory infections and failure to 

thrive.12, 25 Reports of pneumonia in HIV-exposed, uninfected infants caused by 

Pneumocystis jiroveci,32 usually considered an opportunistic pathogen of HIV infection, and 

higher rates of treatment failure for hospitalized cases of pneumonia compared with 

unexposed infants have also been noted.33 

Mortality of HIV-exposed, uninfected children has also been examined. A review of 7 

MTCT studies in Africa found that 4.9% of exposed, uninfected infants died by one year of 

age, and 7.6% died by 2 years of age.22 Estimates varied by geographic region. In a cohort 

study of exposed, uninfected children in Zambia the estimated risk of mortality was 4.6% 

(95% CI: 2.8, 6.3) in the first 4 months of life.21 Comparisons of mortality in exposed, 

uninfected children with unexposed children are most useful in understanding the increased 

risks due to HIV exposure. Although some of the earlier studies did not detect a significant 

difference in morbidity and mortality between these two groups,25, 34 more recent evidence 

has demonstrated increased risks for exposed, uninfected children. A study of exposed and 

unexposed infants in Zimbabwe found that although morality in uninfected children was 

much lower than in infected children, exposed, uninfected infants were still 3.9 (95% CI: 

3.15, 4.78) and 2.0 (95% CI: 1.2, 3.5) times as likely to die in the first and second years of 

life, respectively, when compared with unexposed children. The two-year mortality in 

exposed, uninfected children was 9.2%, compared to 2.9% in the unexposed children.20 

Similarly increased mortality in exposed, uninfected children has been reported elsewhere.35, 
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36 Recognized risk factors for infant mortality in exposed, uninfected children include 

maternal death,20-22 maternal CD4 less than 200 cells/µL20, 22 or less than 350 cells/µL,21 low 

maternal hemoglobin20, 21 and low birth weight.20, 37 Common causes of death and 

hospitalization in studies of exposed, uninfected children include respiratory infections,20, 21, 

25, 34 sepsis,21 diarrea,20 and malnutrition.20, 34 

 

There are several hypotheses to explain why HIV-exposed, uninfected children may 

have increased morbidity and mortality compared to HIV-unexposed children. There is 

evidence that passive immunity in exposed, uninfected infants may be deficient due to 

reduced transplacental transfer of IgG antibodies to common infections,38, 39 and that HIV 

infection in the mother may interfere with development of the infant’s immune system while 

in utero.40, 41 HIV-exposed children may also be at greater risk of morbidity and mortality 

due to their living conditions and the makeup of the household. Often both parents of an 

exposed child are HIV infected, and the close contact with immunodeficient household 

members who are colonized with diverse pathogens can put infants at risk of acquiring 

infections to which unexposed children are less likely to be exposed (e.g., tuberculosis (TB) 

and Pneumocystis jiroveci.31, 42-44   

 

Overlap of HIV and malaria epidemics 

The geographical overlap of malaria and HIV is of concern especially for pregnant 

women and children. Malaria is the primary cause of death in children under 5 years of age in 

the developing world. In 2006, there were approximately 247 million episodes of malaria and 
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approximately 863,000 deaths due to malaria, 89% of which were in Africa, and 85% of 

which were in children less than five years old (Table 2.2).45  

 

Malaria in children 

Children less than five years of age generally experience the highest burden of 

malaria, and are especially vulnerable to infection during the first two years of life. The 

burden of disease is greater in younger children in endemic areas due to the exposure-related 

manner in which immunity is required. The peak age of infection is inversely related to the 

intensity of malaria transmission, such that infants are more affected in high transmission 

areas.46 Infants have some protection through maternal antibodies resulting in decreased risk 

of infection in the first few months of life. Duration of protection from maternal antibodies 

may be greater in areas of decreased transmission intensity.47 Infections are more common 

after the first two or three months of life, with increasing incidence in the remainder of 

infancy. Malaria infections generally reach a peak within the first one or two years of life2, 29, 

46, 48-53 especially in areas of high transmission.54, 55  

Although malaria infection in early infancy may be asymptomatic and rapidly 

cleared,56 there is evidence later in infancy of an increased risk of severe infection,49, 51, 52, 55 

severe malarial anemia,52, 54 hospitalization,48 and death,52, 54 compared to older children and 

adults. A study of patients hospitalized with severe malaria in Tanzania found that the odds 

of severe malarial anemia (hemoglobin <5 g/dL) were greater in children 0-1 years of age 

than in older children (OR compared to children 2-4 years of age: 0.83, 95% CI: 0.72, 0.96; 

OR compared to children 5-15 years of age: 0.44, 95% CI: 0.27, 0.73). Respiratory distress 

among patients admitted to the hospital with severe malaria was also greater among infants 
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than children 2-4 years of age.54 The case fatality rate was higher among children 0-1, 

compared with children 2-4 years of age (0-1 year: referent; 2-4 years: AOR 0.28, 95% CI: 

0.18, 0.41). Infants younger than 6 months of age were also at greatest risk of death in a 

study of hospitalized patients with malaria in Kenya.52 Although the relative risk of poor 

outcomes may be dependent on transmission intensity and other factors, the malaria-related 

health risks for infants and young children are considerable in any setting.  

 

Malaria in HIV-exposed, uninfected children  

Data on malaria in HIV-exposed, uninfected children are generally presented in 

conjunction with data on HIV-infected children, and there is often misclassification of 

person-time due to infrequent HIV testing. In addition, studies often present data on HIV-

exposed, uninfected children together with data on HIV-unexposed children (presented as 

collapsed HIV-uninfected). For these reasons, there is minimal data in the literature 

describing the malaria experience of HIV-exposed, uninfected children. A study of HIV-

exposed and unexposed infants in Uganda found that HIV-infected children had less malaria 

than HIV-exposed, uninfected children, while exposed-uninfected children and controls had 

similar rates of malaria and hospitalization due to malaria. Due to the timing of testing in this 

study, the person-time labeled as HIV-infected would also have included uninfected person 

time. This study did not find an association between occurrence of febrile illness and HIV 

status.57 Another early study with probable misclassification of exposure due to timing of 

testing found no difference in the incidence or severity of malaria infection by HIV-exposure 

and infection status in children 5-9 months of age.58  
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Some studies more accurately distinguish between HIV-infected and exposed person 

time through more frequent testing.  In HIV-exposed, uninfected infants in Kenya, malaria 

parasitemia was protective against infant mortality, though the association did not reach 

significance (HR 0.35, 95% CI: 0.10, 1.21). Among HIV-exposed, uninfected infants who 

died, infants who had had at least one episode of malaria parasitemia had a trend towards 

longer mean survival than infants who had not had an episode of malaria, but this difference 

was not statistically significant (263 days vs. 160 days, p=0.08). A similar trend was seen in 

HIV-infected infants, with an episode of malaria suggesting a protective effect against 

postneonatal infant mortality. Suggested explanations for this association in HIV-infected 

children include decreased morbidity associated with the SP used to treat malaria, benefits of 

a shift toward Th1-type immune response, and activation of chemokines due to malaria 

infection which can compete for HIV entry receptor CCR5, thereby slowing progression of 

HIV infection.37 

Due to the association of both HIV and malaria with anemia in children,59 it is 

important to consider anemia when examining HIV and malaria in this population. A study in 

Kenya of children younger than 2 years of age presenting at a hospital with acute 

Plasmodium falciparum found that relative to HIV-unexposed children, HIV-exposed 

children and HIV-infected children had lower hemoglobin concentrations, however, 

parasitemia and high density parasitemia were equivalent between the three groups.  

Multivariate analysis of this data demonstrated an increased risk of severe malarial anemia 

compared with control children for both HIV-exposed (OR 2.17, 95% CI: 1.25, 3.78) and 

HIV-infected (OR 8.71, 95% CI: 3.37, 22.51) children.60 Anemia (Hb < 8 g/dL) was also 

found to be a statistically significant risk factor for postneonatal mortality in HIV-exposed, 
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uninfected infants (HR 5.03, 95% CI: 1.97, 12.81) in another study of HIV and malaria in 

Kenya.37 Although the relationships between malaria, HIV-exposure and anemia are not 

clear, there is some evidence of a different relationship in HIV-exposed, uninfected children 

compared with both infected and unexposed children. 

  

HIV and malaria co-infection pregnant women  

HIV-infected adults have been found to have a significantly higher risk of parasitemia 

and clinical malaria compared with HIV-negative patients. The risk of clinical malaria 

increases with lower CD4 counts and more advanced stages of HIV infection.61, 62 In areas of 

unstable transmission, HIV has been shown to increase the risk of severe or complicated 

malaria in adults,63 and a study of the prevalence of severe malaria in HIV-infected and 

uninfected patients in South Africa found severe malaria was significantly more frequent in 

the HIV-infected group. The increased prevalence of severe malaria in the HIV-infected 

group was due to the increased frequency seen in patients who were considered non-immune 

to malaria, defined as born and residing in an area without stable malaria transmission.62 

Malaria has been shown to lead to a temporary decrease in CD4 in both HIV-infected and 

uninfected individuals which can be reversed through adequate treatment of the malarial 

infection.64 Malaria is also associated with an increased plasma viral load in HIV-infected 

patients, although antimalarial treatment can help decrease viral load in some patients.65, 66 

Slower hematological recovery has been demonstrated in HIV-infected adults, 67 and there is 

evidence of an increased risk of malaria treatment failure for HIV-infected patients with low 

CD4 cell counts.68, 69 
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A review of the literature on co-infection with HIV and malaria in pregnant women 

presenting pooled data for several studies determined that HIV-infected women experienced 

more peripheral and placental malaria (summary relative risk: 1.58, 95% CI: 1.47, 1.71 and 

1.66, 95% CI: 1.48, 1.87, respectively) compared with HIV-uninfected women. The risk of 

anemia is another point of concern in a setting where HIV and malaria are both present; 

dually-infected women are at greater risk of moderate-to-severe anemia (Hb < 8 g/dL) than 

those with single infections, and there is some evidence of a synergistic effect of dual 

infections on anemia.70 Dual infection also increases the risk of poor birth outcomes 

including low birth weight and prematurity, especially in multigravidae.71-73 Another point of 

concern for HIV-infected women is the decreased effectiveness of the WHO recommended, 

two-dose sulfadoxine-pyrimethamine intermittent preventive treatment given during 

pregnancy as part of a malaria prevention strategy.74, 75  

Cotrimoxazole prophylaxis for prevention of opportunistic infections 

Cotrimoxazole preventive therapy (CPT) has been identified as a valuable tool in 

addressing the increased morbidity and mortality associated with infections seen in HIV-

infected adults and children. Cotrimoxazole, a broad-spectrum antimicrobial, is a fixed-dose 

combination of sulfamethoxazole and trimethoprim which targets aerobic gram-positive and 

gram-negative organisms, fungi and protozoa. Available both as a syrup and in solid 

formulations, cotrimoxazole is inexpensive, widely available and has been provided as part 

of standard care for prevention of PCP and toxoplasmosis for over fifteen years. 

Recommendations for CPT based on clinical status or CD4 cell count are shown in Table 2.3. 

The WHO recommends flexibility in CD4 cutoffs, suggesting a lower cutoff of 200 in some 
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situations, and suggests universal CPT in settings of high prevalence of HIV and limited 

health infrastructure.76  

The benefits of CPT in adults are well established. The WHO CPT recommendations 

are based on the benefits of prophylaxis observed in HIV-infected patients with and without 

TB and across varying CD4 levels. CPT reduces mortality up to 46% in HIV-infected 

individuals not on ART in sub-Saharan Africa.5, 6, 42, 77 Randomized controlled trials of CPT 

in HIV-infected adults in sub-Saharan Africa have found reductions in risk of 

hospitalizations,6 adverse events such as bacterial pneumonia, acute unexplained fever,2 and 

diarrhea4 as well as reduced risk of mortality.2, 6, 78 Similar reductions in mortality have also 

been observed in cohort studies among HIV-infected adults,5, 42, 79 as well as adults co-

infected with tuberculosis.80-83 A prospective cohort study of implementation of daily CPT in 

HIV-infected individuals in Uganda also found a decreased annual rate of decline in CD4 cell 

count (77 vs. 203 cells/µL, p<0.001), and a decreased annual rate of increase in VL (0.08 vs. 

0.90 log10, p=0.01) during the period of CPT.10 

 

In addition to the direct benefits of CPT for the patient, CPT has been associated with 

benefits for household members of individuals receiving CPT. A prospective cohort study of 

CPT in HIV-infected adults in Uganda and their household members found mortality among 

HIV-negative household members under the age of 10 years was lowered 63% during the 

CPT period compared to beforehand (HR 0.37, 95% CI: 0.14, 0.95). The incidence of 

malaria, diarrhea and hospitalizations in household members was also significantly lower in 

the CPT period compared with the pre-CPT period.42  
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The benefits of CPT have also been shown in HIV-infected and uninfected children. 

The single randomized controlled trial in children was conducted in Zambia and included 

HIV-infected children 1-14 years of age. Children in the CPT had a lower risk of death (HR 

0.57, 95% CI: 0.43, 0.77) an effect seen across all age groups and all baseline CD4 counts, 

which was attributed to decreased risk of respiratory infections, a finding supported by lower 

rates of antibiotic prescribing in the CPT group.77 A trend towards lower hospital admission 

rates for serious bacterial infections as well as malnutrition was also seen, though this did not 

reach statistical significance.84 After trial closure children previously on placebo were offered 

CPT, and follow-up of children found continued benefits of treatment in the CPT group, and 

decreased mortality and hospitalization rates in the group transferred from placebo to CPT. 

Mortality and hospital admission rates decreased further (approximately 6-fold and 3-fold, 

respectively) following availability of ART.85  CPT has also been found to reduce the rate of 

nasopharyngeal pneumococcal colonization by 7%, although there was an increase in risk of 

colonization with cotrimoxazole-resistant pneumococci within six weeks of starting 

prophylaxis (RR 3.2, 95% CI: 1.3, 7.8).8 Trials in adults and children have shown 

cotrimoxazole to be safe, and serious adverse reactions have been rare.2, 77 A study of CPT in 

healthy children in Mali found decreased rates of gastrointestinal illness in the treatment 

group (rate ratio 0.68, 95% CI 0.47, 0.99), but no difference in rates of respiratory illness 

between treatment groups.12 

Benefits of CPT have also been established in infants, though data is limited. A 

prospective cohort study of CPT in HIV-exposed infants found significantly lower incidence 

of lower respiratory tract infections (OR 0.18, 95% CI: 0.04, 0.77) in HIV-infected children, 

although the finding was not significant in HIV-exposed, uninfected children (OR 0.52, 95% 
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CI: 0.26, 1.05). This study also detected a non-significant increased risk of diarrhea among 

children receiving CPT in both HIV-infected infants and HIV-exposed, uninfected infants.7 

Analysis of two consecutive MTCT trials (Ditrame and Ditrame-Plus), one of which included 

CPT, found the 18-month risk of a severe event, defined as death or hospitalization >1 day, 

was lower in the trial offering CPT, although the difference was not statistically significant 

(HR 0.55, 95% CI: 0.3-1.1).86 A study of CPT use in HIV-infected children less than two 

years of age hospitalized with pneumonia found children using CPT had a significantly 

reduced risk of PCP, compared with children not taking CPT (risk ratio 0.11, 95% CI: 0.02, 

0.82).87 A retrospective cohort study of HIV-infected infants in the U.S. found a relative risk 

of PCP among infants not receiving prophylaxis, relative to those receiving it, of 4.4 (95% 

CI: 1.2, 17), adjusted for CD4 percentage.88 A comparison of thrice weekly or daily CPT in 

HIV-infected children (mean age 23 months) found that daily CPT offered greater protection 

against invasive bacterial disease and hospitalization, but similar protection against 

mortality.89 In summary, there do appear to be benefits of CPT in infants, but few studies 

were designed and powered to examine the risks and benefits of CPT, and further research is 

needed to supplement what is currently known. 

Despite WHO recommendations for CPT use in pregnant women, implementation has 

been slow, in part due to concerns over potential teratogenicity90, 91 and risk of low birth 

weight due to the impact of CPT on folate metabolism. A recent review of the safety of CPT 

in HIV-infected pregnant women concluded that given the substantial benefits of CPT, it is 

safe to follow WHO recommendations based on the current literature. Very little research has 

been done in this population regarding CPT risks and benefits. In HIV-infected women in 

Zambia with a low CD4 cell count (<200 cells/µL), the implementation of CPT as a routine 
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component of antenatal care was associated with a decrease in adverse birth outcomes. The 

percentage of preterm births (≤34 weeks of gestation) was lower (OR 0.49, 95% CI: 0.24, 

0.98) after CPT was introduced compared with beforehand, and there was a significant 

decrease in neonatal mortality from 9% in the pre-CPT period, to 0% in the post-CPT period 

(p=0.01). There was also a trend towards increased birth weight, although it did not reach 

significance. Nonsignificant trends towards reduced maternal mortality and hospital 

admissions were also seen in the post- versus pre-CPT periods. Suggested mechanisms of 

reduced preterm births include CPT-related decreases in bacterial and parasitic infections 

which may cause preterm birth, including urinary tract infections, toxoplasmosis, malaria, 

and pneumonia.9  

SP given as intermittent preventive treatment during pregnancy (IPTp) is 

contraindicated when an HIV-infected woman is receiving CPT, however, the effectiveness 

of CPT in preventing malaria in this population is not known. Due to the consequences of 

malaria infection during pregnancy for both the mother and infant, it is important to fully 

understand whether forsaking IPTp for CPT is appropriate in all situations or if other 

considerations, such as malaria transmission intensity, should be taken into consideration 

before a decision is made.  

 

The role of CPT in the context of HIV 

The decreased mortality seen in patients, both adults and children, taking CPT shows 

the impact CPT can have on HIV-infected individuals. In HIV-exposed infants, CPT may 

play an especially important role in protecting health during the extended risk period while 

breastfeeding is ongoing, during which time they may not be tested for HIV. The 
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complications of HIV testing in HIV-exposed infants, combined with the continued risk of 

transmission through breastfeeding, often results in late diagnosis after the infant’s health is 

already severely affected. CPT for these HIV-exposed infants may help to reduce the 

incidence of opportunistic infections during this high risk period. Additionally, the process of 

providing CPT may be a valuable tool for linking HIV-exposed children with the health 

system on a regular basis. This provides the opportunity for closer monitoring of the infant’s 

health, as well as access to HIV testing and treatment when available. Despite the WHO 

recommendations for CPT in HIV-exposed infants, in Eastern and Southern Africa only 18% 

of infants in need of cotrimoxazole received it in 2009, an increase from 9% in 2008.92  

Although access to ART is increasing for HIV-infected adults and children 

worldwide, the majority of HIV-infected patients in need of treatment does not have access 

to ART and is at risk of opportunistic infections. The enormous benefits of ART in infants 

has been demonstrated in South Africa through the CHER study, which found early infant 

testing and treatment decreased early infant mortality by 76%, and HIV progression by 

75%.26 Similar reductions were observed in Europe.93 While access to ART for children <15 

years of age increased to almost 200,000 children in 2007, the majority of children in need 

currently are not receiving treatment.28 Until ART is available to HIV-infected children, CPT 

may help to reduce some of the morbidity and mortality experienced by this population.  

 

CPT and malaria 

One of the unintended benefits of CPT is the impact on malaria incidence. A cohort 

study of HIV-infected adults in Uganda found the incidence dropped from 50.8 to 9.0 

episodes of malaria/100 person-years after introduction of CPT (adjusted IRR 0.24, 95% CI: 
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0.15, 0.38). The introduction of ART in combination with CPT further decreased incidence 

of malaria to 3.5 episodes per 100 person-years (adjusted IRR 0.08 (compared with baseline), 

95% CI: 0.04, 0.17).10 Benefits were also seen for HIV-uninfected family members of 

patients receiving CPT; HIV-uninfected household members living with patients taking CPT 

had a lower incidence of malaria (IRR 0.64, 95% CI: 0.50, 0.83).94 In HIV-infected adults in 

a randomized controlled trial in Cote d’Ivoire, a decreased incidence of malaria was seen 

among patients with at least one severe adverse event (hazard ratio 0.16, 95% CI: 0.04, 

0.73).2 Among HIV-infected adults in Uganda with CD4>200 cells/µL receiving 

antiretroviral treatment, patients randomized to discontinue CPT had a higher rate of malaria 

(RR 28, 95% CI: 6, 105) compared with patients randomized to continue CPT.4 A cohort 

study of CPT in HIV-infected adults in Uganda also found decreased incidence of malaria 

after introduction of CPT (IRR 0.31, 95% CI: 0.13, 0.72).79  

Limited data have shown benefits of CPT on incidence of malaria in children. A 

prospective cohort study compared the impact of insecticide-treated bednets and CPT on the 

incidence of malaria between a cohort of HIV-infected children and a community-based 

cohort of healthy children. Although the incidence in children using CPT alone was lower 

than in the community-based cohort that had no intervention, the effect was not statistically 

significant (IRR 0.61, 95% CI: 0.25, 1.51). Use of insecticide-treated nets, however, did lead 

to a significantly lower incidence of malaria (IRR 0.57, 95% CI: 0.46, 0.71), and the 

combination of ITNs and CPT lead to a dramatically lower incidence of malaria (IRR 0.03, 

95% CI: 0.01, 0.10), compared with the community-based cohort with no intervention.11 A 

randomized study of CPT in healthy children 5-15 years of age in Mali investigated the 

impact of CPT on sulfadoxine-pyrimethamine treatment for malaria. There was only a single 
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episode of clinical malaria in the treatment group during 1890 person-weeks of follow-up, 

compared to 72 episodes in the control group during 681 person-weeks of follow-up (RR 

0.005, 95% CI: 0.00, 0.04).12 A study comparing data from two cohort studies in Uganda, 

found that compared to HIV-uninfected children who were not receiving CPT, CPT in HIV-

infected children (mean age of 7.4 and 6.0 years, respectively) was associated with a 

protective efficacy of 80% (95% CI: 72, 85). The protective effect was similar in children 

receiving and not receiving ART.95  In an RCT of younger children, HIV-exposed infants 

who continued CPT after cessation of breastfeeding and exclusion of HIV infection until 2 

years of age had a 38% reduction in malaria incidence compared with infants who stopped 

CPT after cessation of breastfeeding. All infants in that study were also given insecticide-

treated bed nets (ITNs).96   

 

Antimicrobial resistance concerns and CPT   

Although we do not have data on resistance in this study, it is still important to weigh 

concerns regarding antimicrobial resistance among bacteria and plasmodia as cotrimoxazole 

use expands.97, 98 The increasingly widespread presence of drug-resistant malaria underscores 

the importance of carefully monitoring, in new and innovative ways, prophylactic and 

therapeutic treatments for malaria and their impact on resistance. A few studies have 

examined the association between CPT and antimicrobial resistance. A five-month study of 

household members of HIV-infected patients on CPT regimens did not detect a change in the 

proportion of cotrimoxazole-resistant diarrheal pathogens before and during CPT.42 This 

study also collected blood specimens each time an episode of P. falciparum was diagnosed 

and tested them for the presence of mutations known to mediate resistance to SP 
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(dihydrofolate reductase (dhfr) Asn-108, Ile-51, and Arg-59, and dihydropteroate synthase 

(dhps) Gly-437 and Glu-540). The proportions of samples in the exposed (HIV-infected 

household member on CPT) and unexposed (HIV-infected household member not taking 

CPT) households containing double, triple and quintuple mutants was similar. Malaria 

incidence of household members living with an HIV-infected patient taking CPT was lower 

than incidence in household with a CPT unexposed HIV-infected member (IRR 0.64, 95% 

CI: 0.50, 0.83), and there were fewer malaria episodes due to parasites containing the 

dhfr/dhps quintuple mutation.94 A study of CPT in HIV-infected adults with CD4 <350 

cells/µL in Kenya also found that CPT prevented malaria and reduced incidence of 

antifolate-resistant P. falciparum in the HIV-infected individuals, but also resulted in 

relatively higher prevalence of non-susceptible pneumococcus and commensal E. coli 

resistance.99 

CPT in HIV-exposed and unexposed Zambian children was demonstrated to reduce 

pneumococcal colonization by approximately 7% while increasing the risk of colonization 

with cotrimoxazole-resistant pneumococci within six weeks of starting prophylaxis, but 

authors concluded that their findings still support current WHO recommendations.8 Studies 

in children and adults have not found evidence of CPT interference with the efficacy of SP in 

treatment of malaria.12, 79 Although increasing antimicrobial resistance should be monitored, 

current data do not support refraining from CPT due to resistance concerns.  

 

Unanswered questions 

The benefits of CPT in HIV-infected adults have been well established. Benefits in 

prevention of some opportunistic infections in HIV-exposed and infected children have also 
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been seen, but further research on infants, including the impact on malaria, is still needed. As 

access to PMTCT interventions increases, the number of HIV-exposed, uninfected children 

will increase further. Therefore, the impact of CPT – a widely available, effective, safe, 

inexpensive therapy -- in this at-risk population may be especially important. Clearer data on 

the impact of CPT in HIV-infected pregnant women is also lacking. A more comprehensive 

understanding of the benefits of CPT on the health of HIV-infected mothers and their HIV-

exposed, uninfected infants could guide future policy decisions regarding CPT and its role in 

protecting the health of these vulnerable populations. 
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Table 2.1. UNAIDS HIV/AIDS estimates for Malawi, 200714 

Adults and 
children 

 
Women 15+ 

 
Children 0-14 

Adult 
prevalence 

AIDS deaths in 
adults and children 

930,000 
(860,000-
1,000,000) 

490,000 
(450,000-
530,000) 

91,000 
(81,000-
100,000) 

11.9% 
(11.0-12.9) 

68,000 
(59,000-77,000) 
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Table 2.2. WHO malaria estimates for Malawi, 200845 
 
 Estimate 
Malaria cases  
   All ages 4,986,779 
   <5 years 2,473,208 
Malaria Deaths  
   All ages 7,748 
   <5 years 4,546 
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Table 2.3. WHO recommendations for CPT76 
 
HIV-infected adults, 
pregnant women, and 
children 5 years and 
older 

 
HIV-infected 
children less 
than 1 year 

 
HIV-infected 
children 1-4 years 
of age 

 
 
 
HIV-exposed infants  

Patients with WHO 
stage 2-4, if CD4 
testing not available 
 
If CD4 testing 
available, patients with 
CD4<350 cells/µL OR 
WHO stage 3 or 4, 
irrespective of CD4 

CPT is indicated 
regardless of CD4 
or clinical status 

WHO stage 2, 3 or 
4 regardless of 
CD4, or any 
patient with 
CD4<25% 

CPT is universally 
indicated, starting at 4-
6 weeks, maintained 
until cessation of risk 
of transmission and 
exclusion of HIV 
infection 

 
 



 
CHAPTER THREE: METHODS 

 
We conducted secondary analyses using data from the Breastfeeding, Antiretrovirals 

and Nutrition (BAN) study. The BAN study was a randomized, controlled trial (RCT) which 

took place in four clinics in Lilongwe, Malawi between 2004 and 2009, designed to evaluate 

the following: 1) the benefit and safety of antiretroviral prophylaxis given either to the 

infants or to their mothers to prevent HIV transmission during breastfeeding, 2) the benefit of 

nutritional supplementation given to the women during breastfeeding to prevent maternal 

depletion, and 3) the feasibility of exclusive breastfeeding followed by early, rapid 

breastfeeding cessation. 

 

DATA SOURCES 

Study setting 

The BAN study was based at Bwaila hospital in Lilongwe, Malawi. Malawi has a 

population of approximately 13.5 million. The BAN study was linked with a PMTCT 

program run by the UNC Project. The UNC Project-Malawi is a research, care and training 

facility located in the capital city of Lilongwe, established by UNC and the Malawi Ministry 

of Health in 1999. The mission of the UNC Project is to identify innovative, culturally 

acceptable and relatively inexpensive means of reducing the risk of HIV/STI and infectious 

disease transmission through research, and to strengthen the local research capacity through 

training and technology transfers.  
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Study background 

The decision of whether to breastfeed is a complicated one for HIV-infected mothers, 

due to the risk of HIV transmission to the child. Breastfeeding can also lead to maternal 

nutritional depletion if the mother is not on an adequate diet to support her metabolic 

needs.100-103 The benefits of breastfeeding for the infant are substantial and include fewer 

gastrointestinal and lower respiratory tract infections, and a decreased risk of developing 

otitis media as well as other diseases, particularly in the first six months of life.104-106 

Alternatives to breastfeeding are complicated in resource poor settings without clean water, 

and where the cost of formula is prohibitive.  

Identification of ways to make breastfeeding safer for mothers and infants in the 

context of HIV has become a global health priority.  In order to address the first two 

objectives of the BAN study, two interventions were assessed in a factorial design: 1) a 3-

arm postnatal antiretroviral intervention with either additional antiretrovirals (beyond 

enhanced standard perinatal prophylaxis) given to the mother or infant, or nothing in addition 

to an enhanced standard perinatal prophylaxis, and 2) a 2-arm maternal nutritional 

intervention to promote maternal health with a food supplement given to half the mothers.  

 

Recruitment and Enrollment 

Recruitment for BAN took place through the PMTCT program run by the UNC 

Project in Lilongwe, where HIV seroprevalence in pregnant women is approximately 13%. 

This program offers HIV counseling and testing to all pregnant women as well as enhanced 

antenatal care and single-dose nevirapine to all HIV-infected women in labor and to their 

infants shortly after delivery. HIV testing is conducted using two simultaneous rapid tests, 
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Abbott Determine HIV-1/2 and Uni-Gold HIV (Trinity Biotech plc, Bray, Eire). Women 

identified as HIV-infected were informed of the option to participate in BAN, and if the 

woman was willing to participate and intended to breastfeed she signed a consent form. 

Primary eligibility criteria included: 1) ≤30 weeks gestation, 2) at least 18 years of age (or 14 

years of age if married), 3) hemoglobin >7 g/dL, 4) CD4 count ≥200 cells/µL (increased to 

≥250 during the study) , 5) no prior antiretroviral medication use, 6) normal liver function 

tests (<2.5 upper limit of normal), 7) no serious complications of pregnancy, and 8) not 

previously enrolled in BAN. Women were asked to complete 2 antenatal study visits and to 

deliver at Bwaila hospital, where BAN research activities are conducted. If a woman 

delivered elsewhere she was eligible as long as the mother and infant arrived at Bwaila for 

evaluation within 36 hours of birth. Antenatally women received screening for syphilis and 

anemia as well as iron and folate, mosquito nets (from March 2007) and tetanus toxoid.  If 

the infant was ≥2000 grams, had no congenital malformations and there were no maternal 

conditions that precluded start of study drug, then mother-infant pairs were randomized to 

one of the six treatment arms. Infants found to be perinatally HIV-infected at birth or two 

weeks of life, and their mothers, were disenrolled from the study and referred for treatment. 

Infants who tested positive later in the study were discontinued from the treatment arm, but 

were encouraged to continue reporting for regular study visits.  

 

BAN services  

In addition to the full medical care provided by the UNC Project, all of the women 

and infants also received certain other benefits.  All participants received a 2-kg bag of maize 

each week, and all mothers received iron and folate antenatally as well as mosquito nets and 
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tetanus toxoid. Pregnant women were also given sulfadoxine-pyrimethamine malaria 

prophylaxis at the beginning of the second and third trimesters, if they were enrolled early 

enough. All mothers received single dose nevirapine peripartum plus twice a day zidovudine 

(ZDV) 300mg and lamivudine (3TC) 150 mg during labor and for 7 days postpartum. Infants 

received nevirapine 2 mg/kg after delivery and also begin ZDV (12 mg) plus 3TC (6 mg) 

twice daily for 7 days. Post partum women received a single vitamin A supplement and 

counseling on exclusive breastfeeding and rapid early cessation between 24 and 28 weeks 

postpartum. To minimize the risks of malnutrition following early breastfeeding cessation, a 

locally produced ready-to-use therapeutic food (RUTF) commonly used in Malawi was 

provided by the study. The RUTF is made from full-cream powdered milk, peanut butter, 

sugar, oil and fortified with micronutrients. Infants received all routine vaccinations 

including BCG, polio, diphtheria, pertussis, tetanus, Haemophilus influenza, hepatitis B, and 

measles. 

 

Visit schedule 

There were 17 scheduled study visits: 2 antepartum screening visits, an enrollment 

visit soon after delivery, and postpartum visits at 1, 2, 4, 6, 8, 12, 18, 21, 24, 28, 32, 36, 42, 

and 48 weeks postpartum. Randomization was conducted during the enrollment visit which 

was usually during the delivery hospitalization unless the woman delivered elsewhere. 

Women who registered for the study early in their pregnancy may have had additional study 

visits antenatally at 28, 32, and 36 weeks’ estimated gestational age. Women were also 

encouraged to come for a visit postnatally whenever they needed additional medical care. 

Data for unscheduled visits was systematically collected.  
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Details of nutritional and antiretroviral interventions 

The nutritional supplement which half of the mothers were randomized to receive was 

a high-energy, high-protein, micronutrient-fortified food supplement which was supplied for 

28 weeks after delivery, or until reported breastfeeding cessation, whichever came first. This 

supplement provided the daily energy required to support exclusive breastfeeding and 100% 

of the recommended dietary allowance for all micronutrients except vitamin A. The 

supplement was also given to women who experienced excessive weight loss, defined as 5% 

or more of body weight, between visits beginning 4 weeks after delivery or a body mass 

index that fell below 17, after examination by a clinician. 

The randomization of patients after delivery to one of the 6 treatment conditions was 

done using a permutated block method in order to ensure a balanced allocation. Mothers and 

infants randomized to the antiretroviral arms were supplied with study drugs for 28 weeks 

after delivery or until reported cessation of breastfeeding, if earlier. Infants assigned to the 

ARV arm received daily nevirapine (NVP), with doses ranging from 6 mg to 26 mg, 

increasing as the infant ages to 28 weeks. Mothers randomized to the ARV arm received 

combination therapy with three drugs. At the beginning of the study, the regimen used 

included 300 mg zidovudine (ZDV), 150 mg lamivudine (3TC) taken orally every 12 hours 

for 28 weeks as well as NVP 200 mg once daily for 14 days and then 200 mg every 12 hours. 

Based on FDA recommendations, on January 31, 2005 the regimen was changed to 

ZDV/3TC and nelfinavir (NFV). On February 6, 2006 lopinavir/ritonavir replaced nelfinavir. 

Mothers who developed toxicity to NVP were continued on Combivir and switched to NFV 

initially. Mothers who developed toxicity to the ZDV component of Combivir were switched 

to stavudine (D4T) and 3TC. As of 27 March 2008, the arms of the study with no 
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antiretrovirals closed due to DSMB recommendation, and mother-infant pairs were 

randomized to the remaining arms.  

 

Visit procedures and data collection 

At the second screening visit, the following data was collected from the mother: 

demographics, current pregnancy and previous childbearing history, past medical history, 

concomitant medications, anthropometrics and vital signs, physical exam, current symptoms 

and dietary information. Mother’s anthropometrics and vital signs, illness and hospitalization 

since last visit and current symptoms were collected at all follow up visits. Nutritional 

supplement and ARV adherence information was collected on a regular basis when 

applicable, dietary information was collected several times throughout follow-up and the 

concomitant medication log was updated as needed. Details of the delivery and the delivery 

outcome were collected at the delivery visit.  

 

For infants an initial physical evaluation was performed at delivery, and again at 2, 6, 

12, 18, 24, 28, 36 and 48 weeks. Anthropometrics, vital signs, oral exam, illness and 

hospitalization since last visit, and current symptoms were collected at all follow-up visits. 

Feeding questionnaires and dietary recall questionnaires about the infant were also 

administered to the mother on a regular basis over the course of follow-up.  

 

Laboratory procedures and data collection  

Laboratory analysis was conducted for the mother as follows: 

• Full blood count: screening, labor and delivery, 2, 6, 12, 18, 24, 28 and 48 weeks  
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• Alanine aminotransferase (ALT): screening, labor and delivery, 2, 4, 6, 12, 18, 24, 28, 

36, and 48 weeks 

• Lipase, blood urea nitrogen (BUN), creatinine, and albumin: Screening, labor and 

delivery, 12, 24, and 48 weeks 

• CD4 and CD8 counts: Screening, 24 and 48 weeks 

• Urinalysis: screening 

 

Laboratory analysis was conducted for the infant as follows: 

• Full blood count and ALT: labor and delivery, 2, 6, 12, 18, 24, 28, 36 and 48 weeks 

• Creatinine: labor and delivery 

• Roche Amplicor HIV-1 DNA assay: labor and delivery, 2, 12, 28 and 48 weeks 

 

Discontinuation of study participation 

Patients were inactivated if HIV infection was detected at birth or at two weeks of 

age.  If infection was diagnosed at a later time point, patients were encouraged to continue 

with regularly scheduled study visits, but were discontinued from the intervention and 

referred for treatment.  Following a positive result on a Roche Amplicor HIV-1 DNA assay, 

dried blood spots stored from previous visits were tested to determine the first visit at which 

the patient was shown to be HIV-infected. Patients were also discontinued when they were 

lost to follow-up 
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Cotrimoxazole prophylaxis and malaria prophylaxis and treatment 

CPT was not initially administered by the BAN study to participating mothers and 

infants. In mid-June 2006, BAN introduced cotrimoxazole as prophylaxis against 

opportunistic infections in accordance with the Malawi Ministry of Health and Population 

Guidelines. CPT was administered as follows: 

1. All women participating in BAN study after the 12th week of pregnancy with a CD4 

count less than 500 cells/µL, regardless of symptoms, should receive life-long 

prophylaxis. CD4 counts were performed at screening, 24 weeks and 48 weeks 

postpartum, and CPT could be started following a result of a CD4 <500 cells/ µL at 

any of those three time points. The dose was one tablet of single-strength (480 mg) 

cotrimoxazole twice daily. 

2. All infants participating in the BAN Study, beginning at 6 weeks of age.  Those 

infants found to be HIV-uninfected at 28 weeks continued the prophylaxis until age 

36 weeks, while those found to be HIV-infected at any point in the study received 

life-long prophylaxis. Infants who failed to wean by 28 weeks continued CPT until 

weaning occurs and HIV infection is ruled out. The dose was a ½ tablet of single-

strength (480 mg) cotrimoxazole once daily. 

 

The implementation of CPT led to some changes in other study procedures. The routine 

second and third trimester doses of SP given to pregnant women were omitted in study 

patients on CPT in accordance with WHO recommendations. Also due to the similarities 

between cotrimoxazole and sulfadoxine-pyrimethamine (SP), SP was not recommended for 

use as first-line treatment for malaria in patients taking CPT. However, SP use was continued 
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until Malawi malaria treatment guidelines changed in 2007 to first line Artemether-

Lumefantrine (quinine in the first trimester of pregnancy); second-line therapy was 

Amodiaquin-Artesunate and IVI Quinine for severe malaria.   

 

BAN enrollment 

The study’s target sample size was 2418 mother-infant pairs. Enrollment of pregnant 

women began in April of 2004. Enrollment was slow initially but improved after community 

outreach activities, and reached the target rate of 15 enrollees per week in February of 2006. 

As of July 2006, around the time CPT was introduced, 883 mother/infant pairs had received 

treatment assignment, and 192 mother-infant pairs had completed the full 48 week follow-up 

period. As of 1 March 2009, 2,373 mother-infant pairs had received treatment assignment 

and 1,348 had completed the full 48 weeks of follow-up.  

 

Adverse event reporting in BAN 

Adverse events were identified through one of 4 means: 1) a participant presented for 

a routine visit and reported symptoms or had signs on physical exam, 2) a participant 

presented for an unscheduled visit and reported symptoms or had signs on physical exam, 3) 

a participant had an abnormal laboratory result, or 4) a participant reported an illness or 

hospitalization since her last study visit. 

After the study nurse took a history from the participant, any illness or abnormality led to 

referral of the participant to the clinician for follow-up. The clinician identified the event and 

evaluated the event clinically, then managed the care of the participant. An SAE was defined 

as any experience that was fatal or life-threatening, required in-patient hospitalization, 
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resulted in persistent or significant disability or incapacity, was a congenital anomaly or brain 

defect or cancer. If the event was considered an SAE the clinician completed a Serious 

Adverse Event form.  

 

Malaria  

Blood smears were performed when there was clinical suspicion of malaria. Infants 

with a positive malaria blood smear were treated with SP regardless of symptoms and 

parasite density.  

Note: all BAN study description is taken from the BAN study protocol, van der Horst 

et al.,107 and personal communication with Yusuf Ahmed and Michael Hudgens.  

 

 

METHODS 

 

Specific Aim 1 Methods - Effects of CPT in HIV-exposed, uninfected children 

Aim 1a. To evaluate time to first episode of malaria parasitemia (dichotomous blood 

smear positive) by CPT exposure status (no CPT vs. CPT from 6 weeks of age) in the 

first 36 weeks of life. 

Aim 1b. To evaluate time to first severe illness or death, moderate or severe anemia, 

or malnutrition by CPT exposure status (no CPT vs. CPT from 6 weeks of age) in the 

first 36 weeks of life. 
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Specific Aim 1 measurements and variables  

 

Outcomes 

Malaria  

Positive malaria smear: malaria smears were done when there was clinical suspicion 

of malaria. The lab results were recorded in a running log with the patient’s ID number, date 

of smear, and outcome classified as one of the following: negative, one plus, two plus, three 

plus or four plus. For purposes of this analysis. the results were dichotomized into negative 

or positive (one plus, two plus, three plus and four plus combined). 

 

Severe illness or death 

SAEs were reported systematically and include the participant’s ID number, type of 

event, date of visit, date of SAE onset, severity grade, action taken and outcome. All 

hospitalizations and deaths were considered to be SAEs and were included in this dataset.  

 

Anemia 

Grade 3 or 4 anemia (Table 3.1) based on routine laboratory testing was be 

considered an outcome of interest due to the association between malaria and anemia and the 

benefits of CPT on hemoglobin seen in the literature. 
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Underweight 

Weight for age z score < -2. Underweight was classified based on weight-for-age z 

scores calculated using the 2005 WHO Child Growth Standards. An infant was considered 

undernourished if the weight-for-age z score was less than -2 after 6 weeks of age.108 

 

Cotrimoxazole prophylaxis (CPT) (Main exposure) 

Exposure to CPT was based on a time-point at which CPT was introduced into the 

BAN study. CPT was introduced on 13 June 2006. In order to allow for the lag time it may 

have taken for CPT to reach all study participants, data from June 13th to August 15th was 

not included in these analyses. In order to minimize misclassification and simplify analysis 

we only included children who were either never exposed to CPT or exposed from 6 weeks 

onwards (fully unexposed vs. fully exposed). Under the guidelines and based on this date cut-

point, the following infant observations were be considered exposed/unexposed (Table 3.2). 

A sample of cotrimoxazole prescription files were examined which supported this 

classification method.  

 

Covariables 

Covariables considered in the analyses are listed in Table 3.3.  

 

Censoring  

Infants who test positive for HIV were censored at the last visit at which they tested 

negative (including on stored DBS). Because visits are never more than 6 weeks apart, we 

feel this was adequate to minimize misclassification of HIV-infected person-time. Censoring 
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also resulted from inactivation of study participation due to infant death (except for Specific 

Aim 1b), maternal death, or loss to follow-up.  

 

Specific Aim 1 Analysis 

Descriptive analysis (for all Specific Aims) 

We first conducted descriptive analyses including calculation of medians, standard 

deviations, and frequencies of exposures, outcomes and covariates. We compared categorical 

proportions using chi-square test or Fisher’s exact test and continuous variables using the 

Wilcoxon rank-sum test.109  

 

General Modeling Approach 

The variation in time to first or only episode of the outcomes of interest by CPT 

exposure status was examined in separate analyses using proportional hazards regression to 

model the hazard rate, based on the number of events per interval of time. While comparable 

to incidence rates, hazard rates are conditional on survival in the immediately-preceding time 

interval.  The proportional hazards model is: 

hx(t)=h0(t)·eβx 

where X is a vector of explanatory variables (X1, X2,…Xk), h0(t) is the “baseline” hazard 

when X=0, and hx(t) is the hazard at X=x. When X1 is a binary predictor variable, the 

interpretation of eβ1 is the hazard ratio comparing those with X1=1 to those with X1=0 

(referent) at all times t, adjusted for all other predictor variables in the model (X2, X3,…,Xn). 

This hazard ratio is assumed to be constant across time, or in other words, the hazards are 
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“proportional”. This assumption can be relaxed through inclusion of product-interaction 

terms between time and individual exposures or covariables in the model 110.  

Analysis began with a bivariate model containing only CPT and the outcome of 

interest. The proportional hazard assumption was examined graphically using log(-log(S(t))) 

curves and by adding interactions with time to the model (Cox test of the proportional 

hazards assumption). If the assumption was violated, it was relaxed by fitting interactions 

with categorical or continuous time.111  Goodness of fit was assessed using deviance 

residuals and influence statistics. The log-rank test was used to compare the CPT-exposed 

and unexposed groups.  

Effect measure modifiers 

Identification of effect measure modifiers was performed by considering the 

exposure-outcome relationship at each level of a third variable (the potential effect measure 

modifier) by including a product interaction term between the exposure and the potential 

effect measure modifier.112 This was only examined for variables for which stratified 

estimates would be meaningful, qualitatively. We ran a simple Cox model containing CPT 

exposure status, the outcome of interest, the potential effect measure modifier, and an 

interaction term between the CPT exposure status and the potential effect measure modifier. 

A p-value for the interaction term lower than α=0.10 was be taken as evidence of substantial 

heterogeneity in the stratum-specific measures of effect.113 Covariables found to be important 

effect measure modifiers were included in the starting multivariable model through an 

interaction term with CPT exposure status. Variables suspected, a priori, to be effect measure 

modifiers include randomization to antiretrovirals and gender.  
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Confounders 

Confounding was not likely to be a major issue due to the ‘natural experiment’ 

scenario regarding the exposure. The bivariate distributions of potential confounders, 

identified through the literature, with the exposure of CPT and the various outcomes of 

interest were examined to determine the level of association. Potential confounders are listed 

in Table 3.4. Covariates that were not found to be effect measure modifiers and that led to a 

change in the HR by more than 10% ln|(HRunadjusted/HRadjusted)| were considered 

confounders.114  

 

Multivariable associations 

A backward elimination modeling strategy was used to assess the joint effects of 

covariates. The ‘fully adjusted model’ contained the main exposure (CPT), potential 

confounders and effect measure modifiers with the appropriate interaction terms. We first 

assessed effect measure modification by examining the likelihood ratio test with and without 

the selected interaction term. Following assessment for effect measure modification, potential 

confounders were removed from the model in order of p-value magnitude if the estimated 

HR for CPT changed by more than 10% from the previous model (which contained the 

dropped variable).115 For effect measure modifiers, a 10% change in estimate at any level of 

a given effect measure modifier was considered sufficient evidence to retain the confounder.  
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Specific Aim 2 Methods – Effect of CPT in HIV-infected pregnant women 

Aim 2a. To evaluate variation in time to malaria parasitemia, SAEs and moderate or 

severe anemia by CPT exposure status in HIV-infected women (with baseline CD4 

200 to <500 cells/µL) during and after pregnancy.  

Aim 2b. To evaluate the impact of CPT in pregnant women with CD4 200 to <500 

cells/µL on occurrence of preterm birth, low birth weight, neonatal mortality and 

stillbirth. 

Aim 2c. To evaluate the impact of CPT in women with baseline CD4 of 250 to <500 

cells/µL on CD4 change from pregnancy to 24 and 48 weeks post-partum. 

Specific Aim 2 measurements and variables 

Study population 

Analysis for Specific Aim 2a, 2b and 2c included all women who had a CD4 count 

200 to <500 cells/µL at baseline.   Women who never had a CD4<500 were used to estimate 

seasonal/yearly variation in incidence of malaria and other outcomes through survival 

analysis. If the incidence of malaria by year was significantly different in these women, this 

was taken into consideration as a confounder in the primary analysis.  

 

 

Measurements 

Outcomes  

Malaria 
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Positive malaria smear: malaria smears were done when there was clinical suspicion 

of malaria. The lab results were recorded in a running log with the patient’s ID number, date 

of smear, and outcome classified as one of the following: negative, one plus, two plus, three 

plus or four plus. The results were dichotomized into negative or positive (one plus, two plus, 

three plus and four plus combined). 

 

Severe illness or death 

SAEs were reported systematically and included the participant’s ID number, type of 

event, date of visit, date of SAE onset, severity grade, action taken and outcome. All 

hospitalizations and deaths were considered to be SAEs and are included in this dataset.  

 

Anemia 

Grade 3 or 4 anemia based on routine laboratory testing was considered as an 

outcome of interest due to the association between malaria and anemia and the documented 

benefits of CPT on hemoglobin. 

 

CD4 count 

 CD4 count as a continuous variable measured in cells/µL at 24 weeks 

 

Poor birth outcomes 

Preterm birth defined as birth at ≤37 weeks (=1) or after 37 weeks of gestational age, 

low birth weight defined as birth weight <2500g (=1) or ≥2500g (=0).  
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Main exposure: Cotrimoxazole prophylaxis (CPT) 

Exposure to CPT was based on the time-point at which CPT was introduced into the 

BAN study. CPT was introduced starting on June 13, 2006. In order to allow for the lag time 

it may have taken for CPT to reach all study participants, data from June 13th to August 15th 

was not included in this analysis. Under the guidelines and based on this cut-point, the 

following observations were considered exposed/unexposed: 

 

 

Specific Aim 2 analysis 

Specific Aim 2a 

Analysis of first or only episode of malaria parasitemia, death, hospitalization and 

severe anemia was be performed as described for Specific Aim 1, using proportional hazards 

regression.  

 

Specific Aim 2b 

General modeling approach 

For analysis of the association between CPT in pregnancy and low birth weight the 

multivariate log binomial regression was be used to obtain risk ratios while accounting for 

important interactions and controlling for important confounders. The equation for the log 

binomial model can be expressed as: 

 

ln(P(D|X)) = α + β1X1 +  β2X2 + β3X3 
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where D is the outcome of interest, X is the exposure of interest, and X2…X3 are confounders. 

The interpretation of eβ1 for the log binomial model is the risk ratio comparing those with 

X1=1 to those with X1=0 (referent), all other covariates being equal.116, 117  CPT exposure, the 

outcome of interest, potential confounders, effect measure modifiers along with the 

appropriate interaction terms was entered into the model. Effect measure modification was 

assessed by examining Wald p-values or the likelihood ratio test for the model with and 

without the selected interaction term. A backwards elimination process was used beginning 

with the potential confounder with the highest p-value to determine which covariates result in 

greater than a 10% change in estimate and should be retained in the model as confounders. A 

separate model was built for each of the outcomes of interest (low birth weight, preterm 

birth, and neonatal mortality), unless the frequency of these outcomes is not sufficient, in 

which case a combined category capturing all three poor birth outcomes may be used. If there 

were problems with model convergence, other model specifications such as logistic 

regression were explored. Goodness of fit of the model was assessed through the Hosmer-

Lemeshow decile of risk test.116 

For analysis of the association between CPT during pregnancy and preterm birth 

multivariate logistic regression was used following the same procedures as outlined for log 

binomial regression. Effect estimates of the logistic model can be interpreted as the odds 

ratio (OR) comparing the odds of giving birth to a low birth weight infant among women 

exposed to CPT to the odds of giving birth to a low birth weight infant among women 

unexposed to CPT.  
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Confounders 

As with Aim 1 analyses, confounding was not a major issue due to the ‘natural 

experiment’ scenario regarding the exposure. Suspected confounders of the exposure-

outcome relationships were identified through the existing literature. Bivariate distributions 

of these confounders with the exposure of CPT and the various outcomes of interest were 

examined to determine the level of association.  

 

Effect measure modifiers 

Interactions between CPT and all covariates were assessed through likelihood ratio 

tests for models containing the exposure, covariate and exposure*covariate term vs. a model 

containing only the exposure and covariate.  

 

Specific Aim 2c 

Examining the effect of CPT on CD4 count from baseline to 24 weeks after giving 

birth was performed by constructing separate linear regression model, stratified by ART 

exposure (randomization status). The linear regression model takes the form E(Yi)=β0 + 

β1(X1), where E(Y1) is the expected response at level i of predictor variable X1, β0 is the 

intercept parameter, or mean when X=0, and β1 is the slope of the regression line. Crude and 

adjusted mean difference in CD4 counts were calculated along with 95% confidence 

intervals. Confounders were identified by constructing models with CPT (exposure), CD4 

count (outcome) and each covariate and corresponding interaction term. Effect measure 

modification was assessed by examining the partial F test for the model with and without the 
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selected interaction terms.118 Confounding was then examined by removing covariates from 

the model in order of p-value magnitude if the β for CPT changes by more than 10%.  

 

Sensitivity analysis among ineligible for CPT  

Women who had a CD4 cell count of at least 500 cells/µL at screening were not 

eligible for CPT until at least 24 weeks postpartum, at which point they were eligible if their 

CD4 cell count fell below 500. We used data from this pseudo “control” group to assess 

unmeasured confounding, i.e. whether there were changes in the frequency of incident 

malaria in the study population between the time periods before and after implementation of 

CPT (before June 2006 and after August 2006). This is most important for outcomes such as 

malaria, which are known to fluctuate over time. Incidence of birth outcomes and changes in 

CD4 cell count are less likely to fluctuate over the time span of the BAN study.  In order to 

assess whether there were changes in the outcome associated with the time period of 

participation, we assigned a time-defined exposure which coincided with the roll-out of CPT. 

Women with a CD4 cell count of at least 500 cells/µL who had their second prenatal study 

visit after August 15th, 2006 were considered to be the “exposed” group, as they were 

exposed to the later time period. Women who gave birth before June 13th, 2006 were 

considered “unexposed”, as they were unexposed to the later time period. Unadjusted and 

adjusted HRs for the association between the time-defined exposure and malaria in 

pregnancy were calculated as described above. In order to quantify the changes in the 

frequency of malaria between the time periods before and after implementation of CPT (i.e. 

April 2004 to June 2006 versus August 2006 to September 2009), we calculated unadjusted 

and adjusted HRs. This model included both the original study population and the “control” 
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population. The three variables included in this model were exposure to CPT, time period (as 

previously defined), and CD4 cell count less than 500 cells/µL.  
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Table 3.1 Severity of anemia classification 

PARAMETER 

Hemoglobin 

GRADE 1 
MILD 

GRADE 2 
MODERATE 

GRADE 3 
SEVERE 

GRADE 4 
POTENTIALLY

LIFE-
THREATENING 

Adult and 
Pediatric  
≥ 57 days  
(HIV 
NEGATIVE 
ONLY)  

10.0 – 10.9 g/dL 
1.55 – 1.69 
mmol/L 
OR 
Any decrease  
2.5 – 3.4 g/dL 
0.39 – 0.53 
mmol/L 

9.0 – 9.9 g/dL 
1.40 – 1.54 
mmol/L 
OR 
Any decrease  
3.5 – 4.4 g/dL 
0.54 – 0.68 
mmol/L 

7.0 – 8.9 g/dL 
1.09 – 1.39 
mmol/L 
OR 
Any decrease  
≥ 4.5 g/dL 
≥ 0.69 mmol/L 

< 7.0 g/dL 
< 1.09 mmol/L 
 

Infant∗†, 36 – 56 
days 
(HIV POSITIVE 
OR 
NEGATIVE) 

8.5 – 9.4 g/dL 
1.32 – 1.46 
mmol/L 

7.0 –  8.4 g/dL 
1.09 – 1.31 
mmol/L 

6.0 – 6.9 g/dL 
0.93 – 1.08 
mmol/L 

< 6.00 g/dL 
< 0.93 mmol/L 
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Table 3.2 Classification of CPT exposure status for infants aged 6 – 36 weeks 
 
CPT unexposed  CPT exposed 
• All relevant person-weeks of data 

collected before June 13, 2006 
• If collected after August 15, 2006: 

o All relevant person-weeks of data 
from all infants who had their 6 week 
visit after August 15, 2006 
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Table 3.3 Classification of CPT exposure status for women 
 
CPT unexposed CPT exposed 
• FOR AIM 2A and 2B: All 

women/person-time during pregnancy for 
women who gave birth before June 13, 
2006 

• FOR AIM 2C: Women who had their 24 
week visit before June 13, 2006  

• FOR AIM ALL AIMS: All 
women/person time who had their second 
prenatal visit after August 15, 2006: 
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Table 3.4 Covariates considered in the analyses, by Specific Aim (combined list for both 

Specific Aims) 

Covariate Definitions and Levels 1A 1B 2A 2B 2C 
Infant sex Dichotomous: male (=1) vs. female (=0) X X    
Low birthweight Birthweight < 2500 grams (dichotomous) X X    
Infant anemia Categorical variable: mild, moderate, severe 

or life threatening (Table 3.3) 
X X    

Maternal age Age in years, continuous, and as 
dichotomous variable (<26 vs. ≥26 years) 

X X X X X 

Maternal CD4 Explored as dichotomous variable using 
<350, ≥ 350 and <500, ≥500 

X X X X X 

Maternal marital 
status 

Dichotomous variable: married vs. other X X X X X 

Maternal education Dichotomous variable: primary education or 
less vs. greater than primary education 

X X X X X 

Maternal Past 
Medical Condition 

Dichotomous: Answers Yes (1) to having 
had any of the conditions listed or answers 
No (0) (conditions include TB, hepatitis, 
heart disease, kidney disease, asthma and 
STIs) 

X X X X X 

Rainy season Dichotomous (Aim 2B and 2C) or time 
varying (Aim 1A, 1B, 2A) variable 
representing the rainy season; November 1-
March 31* 

X X X X X 

Nutritional 
randomization 

Dichotomous variable: nutritional 
supplement (=1), no supplement (=0) 

X X X  x 

Maternal ARV 
randomization 

Dichotomous variable: maternal 
antiretroviral arm or not. Note: potential 
effect measure modifier. 

X X X  X 

Infant ARV 
randomization 

Dichotomous variable: infant antiretroviral 
arm or not. Note: potential effect measure 
modifier 

     

First pregnancy Dichotomous variable representing first 
pregnancy or greater than first pregnancy 

X X X X X 
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Figure 3.1. The 2-by-3 factorial design and sample size for the BAN study 
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CHAPTER FOUR: The effect of cotrimoxazole prophylaxis on adverse health 

outcomes in HIV-exposed, uninfected infants 
 

ABSTRACT 

BACKGROUND: World Health Organization guidelines recommend cotrimoxazole 

prophylactic treatment (CPT) for all HIV-exposed infants until cessation of breastfeeding and 

exclusion of HIV infection. There are limited data regarding the effects of CPT in this 

population, with existing data primarily among HIV-infected infants.  We examined the 

effect of CPT, initiated at 6 weeks of age, on adverse health outcomes in this population 

during the first 36 weeks of life using data from a longitudinal study of prevention of mother-

to-child transmission of HIV. CPT was initiated after the first 2 years of enrollment. 

METHODS: We assigned CPT exposure based on the date of initiation of CPT in the study, 

assigning an exposed status to infants who participated in the study after the CPT program 

was started. We estimated unadjusted and adjusted hazard ratios (HRs) for the effect of CPT 

status on time to incident malaria, severe illness or death, anemia and underweight.  Infants 

were censored by acquisition of HIV to focus exclusively on HIV-exposed, uninfected 

infants. 

RESULTS: The HR for the effect of CPT on incident malaria was 0.35 (95% confidence 

interval (CI): 0.21, 0.57) during the first 10 weeks of CPT exposure, and 0.93 (95% CI: 0.67, 

1.29) for the remaining 20 weeks. CPT was not associated with the other outcomes 

examined.  
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CONCLUSION: CPT offered temporary protection against malaria in HIV-exposed, 

uninfected infants, but not against severe illness or death, anemia or underweight.  

 

INTRODUCTION 

In 2007 approximately 2.1 million children were living with HIV/AIDS.13 More than 

90% of new infections in children are transmitted during pregnancy, birth or breastfeeding. 

The use of low-cost interventions such as single-dose nevirapine can decrease the risk of 

mother-to-child transmission of HIV by 50%.15 Increasing access to interventions to prevent 

mother-to-child transmission of HIV over the past decade has resulted in a growing number 

of infants who are HIV-exposed but remain HIV-uninfected; it is now estimated that up to 

18% of all infants in sub-Saharan Africa are HIV-exposed and uninfected.119 These infants 

face an ongoing risk of HIV acquisition through breastfeeding, and are also in close contact 

with immunodeficient household members who are colonized with diverse pathogens, which 

puts them at an increased risk of acquiring other infections.42-44  Maternal HIV infection can 

negatively impact transfer of maternal antibodies,38, 39 and may impact the development of 

the immune system of HIV-exposed infants in utero.40, 41 All of these factors threaten the 

health of HIV-exposed children, leading to increased morbidity and mortality compared with 

HIV-unexposed children.20, 35, 36  

The World Health Organization (WHO) recommends daily cotrimoxazole 

prophylactic treatment (CPT) for HIV-exposed infants from 6 weeks of age until cessation of 

breastfeeding and exclusion of HIV infection.1 Due to the difficulty and cost of HIV 

diagnosis and testing in HIV-exposed infants, HIV is often not diagnosed until the child 

becomes symptomatic, therefore, the WHO CPT guideline serves to protect infants with 
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undiagnosed HIV infections from opportunistic infections.  Cotrimoxazole, a broad-spectrum 

antimicrobial which targets aerobic gram-positive and gram-negative organisms, fungi and 

protozoa, is widely available and has been provided as part of standard care for prevention of 

pneumocystis carinii pneumonia and toxoplasmosis for more than 15 years in developed 

countries. The WHO recommendation for infants is based on results of randomized 

controlled trials (RCTs) and non-experimental studies that demonstrated decreased incidence 

of severe events, hospitalizations and mortality in HIV-infected adults and children.2-6  

Limited data are available to demonstrate the beneficial effects of CPT in HIV-exposed, 

uninfected infants, although there is some evidence that CPT reduces the risk of lower 

respiratory tract infections7 and pneumococcal colonization rates8 in HIV-exposed children 

less than 18 months of age.  

CPT in HIV-infected adults and children has also been associated with reductions in 

incidence of malaria.2, 4, 10-12 Even though malaria is the primary cause of death in African 

children under 5 years of age,120 there are no data on the effectiveness of CPT in reducing 

malaria incidence in HIV-exposed, uninfected children infants.  

In the present analyses we examine the effect of CPT on adverse health outcomes 

(malaria; severe illness due to diarrhea, malaria, meningitis, pneumonia and serious febrile 

illnesses; anemia; and underweight) in HIV-exposed, uninfected children during the first 36 

weeks of life. A better understanding of the effect of CPT on incidence of poor health 

outcomes in HIV-exposed, uninfected infants will add evidence to the limited existing data 

on a widely recommended regimen in this extremely vulnerable population in high risk 

settings.   
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METHODS 

Study design and population 

All children included in these analyses were enrolled in the Breastfeeding, 

Antiretrovirals and Nutrition (BAN) RCT which took place at four clinics in Lilongwe, 

Malawi between 2004 and 2009.107  BAN’s primary findings, that the use of either a maternal 

antiretroviral regimen or infant nevirapine for 28 weeks was effective in reducing HIV 

transmission during breastfeeding, have been reported elsewhere.121  HAART-naïve, 

pregnant, HIV-infected women at least 18 years of age (at least 14 years of age if married) 

and 30 weeks’ gestation or less were eligible for enrollment if they had hemoglobin levels 

over 7 g/dL, CD4 cell count of at least 250 cells/µL (≥200 cells/µL before July 24, 2006), 

normal liver function tests (more than 2.5 upper limit of normal), and no serious pregnancy 

complications. 

All mothers participating in the BAN study were offered single-dose oral nevirapine 

during labor and zidovudine and lamivudine as a single tablet (Combivir®) every 12 hours 

from the onset of labor to seven days after giving birth.  Newborn infants received single 

dose oral nevirapine within 72 hours of birth followed by twice-daily zidovudine (2mg/kg) 

and lamivudine (4mg/kg) for 7 days. All women were counseled to exclusively breastfeed 

followed by rapid weaning between 24 and 28 weeks after birth. 

Mother-infant pairs were randomized within one week of birth only if they met 

secondary eligibility criteria: infant birth weight of at least 2000 g, no signs of congenital 

malformations, no infant or maternal condition that would preclude the use of a study drug, 

mother’s acceptance of the 7-day maternal and infant perinatal antiretroviral regimen, and 
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enrollment within 36 hours after delivery. If mother-infant pairs met all eligibility criteria, 

they were randomized to a two-group maternal nutritional intervention and separately to a 

three-group antiretroviral intervention consisting of drugs given to the mother (maternal-

regimen group), infant (infant-regimen group), or neither (control group). If they did not 

meet the secondary eligibility criteria, they were referred for care and did not continue 

participating in the study. Women in the maternal-regimen group received a triple-drug 

antiretroviral regimen, and infants in the infant-regimen group received a daily dose of 

nevirapine that increased according to age. The interventions for both mothers and infants 

began after delivery and were continued until the cessation of breastfeeding but no longer 

than 28 weeks. Infants found to be perinatally HIV-infected at birth or in the first two weeks 

of life were disenrolled from the BAN study and referred for care. Infants who tested positive 

for HIV later than 2 weeks of life, which was the primary endpoint of the BAN study, were 

discontinued from the intervention but not disenrolled from the study, and were encouraged 

to continue to attend regular study visits. 

Mother-infant pairs were seen for visits at delivery and at 1, 2, 4, 6, 8, 12, 18, 21, 24, 

28, 32, 36, 42 and 48 weeks postpartum. Data capturing anthropometrics, vital signs, 

illnesses and hospitalizations since the last visit, current symptoms, and physical exam 

findings were collected at all follow-up visits. Blood was collected at 2, 4, 6, 12, 18, 24, 28, 

36 and 48 week visits. Participants were advised to return to the clinic between visits to 

receive treatment if the woman or child was ill. Blood smears were performed when there 

was clinical suspicion of malaria. Infants with a positive malaria blood smear were treated 

with sulfadoxine-pyrimethamine. 
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In accordance with the Malawi Ministry of Health and Population Guidelines and 

WHO guidelines on cotrimoxazole prophylaxis,1 CPT was initiated in the BAN study for 

eligible women and infants in 2006. Although CPT has been used in high-income countries 

for prevention of opportunistic infections for many years, WHO and UNAIDS had not 

published guidelines for resource-limited settings until 2006, and CPT was rarely used in 

these settings before release of the guidelines which gave technical and operational 

recommendations in the context of scaling up HIV care in resource-limited settings. Starting 

on 13 June 2006, CPT (240 mg once daily) was provided to all infants in the BAN study 

beginning at 6 weeks of age.  Infants who stopped breastfeeding by 28 weeks of age and 

were also HIV-uninfected at 28 weeks continued CPT until age 36 weeks. Infants who did 

not wean by 28 weeks continued CPT until weaning occurred and HIV infection was ruled 

out. CPT for children who were HIV-infected was intended to be life-long, and was provided 

for the duration of participation by the BAN study. CPT was also initiated at this time for 

mothers who had a CD4 cell count less than 500 cells/µL, as measured during pregnancy or 

at 24 weeks post partum. 

For the purposes of these analyses, we excluded infants who did not present for a visit 

between 6-8 weeks of age and who did not have at least one follow-up visit after that time. 

Infants diagnosed with HIV at or before the 6 week visit were never included in the analyses. 

Ethical review 

The BAN study’s protocol was approved by the Malawi National Health Science 

Research Committee and the institutional review boards at the University of North Carolina 

at Chapel Hill and the U.S. Centers for Disease Control and Prevention. This secondary 



62 
 

analysis of the BAN study data was reviewed and approved by the institutional review board 

of the University of North Carolina at Chapel Hill. 

Statistical Analysis 

All statistical analyses were performed using SAS (version 9.2, SAS Institute, Cary, 

NC).  

Descriptive analyses included calculation of medians, standard deviations, and 

frequencies of exposures, outcomes and covariables. Categorical proportions were compared 

using chi-square test and continuous variables were assessed using the Wilcoxon rank-sum 

test.109 

We estimated unadjusted and adjusted hazard ratios (HRs) and 95% confidence 

intervals (CIs) for the effect of CPT status on time to (1) first infection with malaria, (2) first 

severe illness or death, (3) anemia, or (4) underweight. For each of these four outcomes, we 

began with separate bivariate models containing only CPT and the outcome of interest. 

Multivariable models were then constructed which included covariables associated with CPT 

or the outcome of interest. We examined the proportional hazard assumption graphically 

using log-log plots and by adding interactions with time to the model.122 If the assumption 

was violated, it was relaxed by fitting interactions with categorical or continuous time.111 We 

explored rainy season, antiretroviral regimen, age and first pregnancy as modifiers of the 

association between CPT and the outcomes of interest. We evaluated these variables as 

possible effect measure modifiers by comparing the magnitude and precision of the main 

association within each level of each possible modifying covariable, and made qualitative 

assessments about the value of presenting stratified estimates.  In order to identify effect 

measure modifiers we considered the exposure-outcome relationship at each level of a third 
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variable (the potential effect measure modifier) by including a product interaction term 

between the exposure and the potential effect measure modifier.112 We ran a simple Cox 

model containing CPT exposure status, the outcome of interest, the potential effect measure 

modifier, and an interaction term between the CPT exposure status and the potential effect 

measure modifier. A p-value for the interaction term lower than α=0.10 was taken as 

evidence of substantial heterogeneity in the stratum-specific measures of effect.113 

Covariables found to be important effect measure modifiers were included in the starting 

multivariable model through an interaction term with CPT exposure status.  To construct 

final models, we used a manual, backward elimination, change-in-estimate strategy.  

Potential confounders were removed from the preliminary full model in order of p-value 

magnitude (covariables with the highest p-values were removed first). If the CPT-outcome 

association changed by less than 10% overall or in any stratum of an interacting variable, a 

given covariable was not retained. 115  

For time-to-event analyses, children who tested positive for HIV were censored at the 

last visit at which they tested negative. Infants were also censored at death, maternal death, or 

loss to follow-up. 

Definitions 

Because the CPT guidelines were initiated 2 years into the BAN study, this created a 

unique opportunity for analysis similar to a natural experiment, with one CPT-unexposed 

period and one CPT-exposed period. While this was not a randomized treatment, the only 

factor dictating whether an infant received treatment was the time period during which the 

infant participated in the study. Therefore, for the purpose of this analysis, exposure to CPT 

was based on the 2006 time-point at which standardized CPT was implemented in the BAN 
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study. To minimize misclassification of CPT, inclusion in our analysis was restricted 

according to three criteria. First, in order to account for any lag time between the decision to 

administer CPT and the routine implementation of this practice, person-time from infants 

presenting for a visit between 6-8 weeks of age between 13 June 2006 (the date the first 

infant was started on CPT) and 15 August 2006 was not included in these analyses. Second, 

infants were only included if they presented between 6-8 weeks of age, to ensure that all 

infants were started on CPT within a 2 week age window. Finally, to avoid mixed exposure, 

analyses only included children who were either never exposed to CPT (fully unexposed, age 

36 weeks by June 13, 2006), or children who were exposed to CPT from 6-8 weeks of age 

onward (fully exposed, age 6 weeks on or after August 15, 2006).  

HIV infection was established using the Amplicor 1.5 DNA polymerase chain 

reaction (PCR) assay (Roche Molecular Systems). Positive specimens were confirmed by 

testing a specimen obtained at the next visit. If an infant was lost to follow-up or died before 

a confirmatory test was obtained, then a second specimen from the same day was tested at 

the reference laboratory at the University of North Carolina at Chapel Hill.    

Malaria was defined as the first episode of malaria after 6 weeks of age and was 

diagnosed as a positive direct blood smear in a child presenting with symptoms of malaria. 

We excluded children who had a malaria diagnosis before 6 weeks of age. Severe illness was 

defined as any event of diarrhea, malaria, meningitis, pneumonia, or serious febrile illness, 

after 6 weeks of age that was fatal or life-threatening, required in-patient hospitalization, or 

resulted in persistent or significant disability or incapacity. Anemia was defined as a 

hemoglobin level below 7g/dl from 6 weeks to 8 weeks of age, or below 9 g/dl after 8 weeks 

of age, corresponding to grade 3 or higher anemia according to toxicity tables from the 
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Division of AIDS at the National Institute of Allergy and Infectious Diseases, as revised in 

March 2006. Malnutrition was classified based on weight-for-age z scores calculated using 

the 2005 WHO Child Growth Standards. An infant was considered undernourished if the 

weight-for-age z score was less than -2 after 6 weeks of age.108   

Rainy season, defined as November through March and analyzed as a time-varying 

covariable, was evaluated both as an effect measure modifier and a confounder in the 

analysis for each outcome. 

 

RESULTS 

Baseline characteristics 

After excluding 387 infants with mixed CPT exposure, and 19 infants who were 

diagnosed with HIV at or before the 6 week visit, 1522 mother-infant pairs were eligible for 

analysis (Table 4.1). Mothers of infants exposed to CPT were slightly older (26 vs. 25 years) 

and more likely to be married (92.6 vs. 89.1%). Mothers of CPT-exposed infants had a non-

significantly higher CD4 cell count (441.0 vs. 431.0 cells/µL).  

 
Effect of CPT on time to adverse health outcomes 

Thirty-four infants had malaria before 6 weeks of age and were not included in the 

time to event analysis examining the association between CPT and incident malaria. We 

observed 311 cases of infant malaria prior to 36 weeks of age (and prior to censoring due to 

HIV infection, death or loss to follow-up) (Table 4.2) (Figure 4.1). Seventy occurred in CPT-

unexposed children and 241 in CPT-exposed children. The unadjusted HR for the effect of 

CPT exposure on time to incident malaria was 0.71 (95% CI: 0.55, 0.93) (Table 4.3). As 

evidenced by the log-log plot and the statistical significance of a continuous interaction term 
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with time in the multivariable model, the effect of CPT appeared to change over time, and 

therefore,  a categorical time interaction term at 70 days after initiation of CPT, 

corresponding to 16 weeks of age, was included in the model. This time-stratified analysis 

yielded an HR of 0.35 (95% CI: 0.21, 0.57) for the effect of CPT on incident malaria from 6 

to 16 weeks of age, and an HR of 0.94 (95% CI: 0.68, 1.30) from >16 weeks to 36 weeks of 

age. Additional covariables did not meet the a priori criteria set for inclusion in the final 

model and thus our final model included only CPT, a categorical interaction term at 70 days 

after initiation of CPT, and malaria (Table 4.3). 

 We observed 169 severe illnesses or deaths among eligible infants: 34 in CPT-

unexposed and 135 in CPT-exposed infants (Table 4.2) (Figure 4.1). Pneumonia was the 

most common (33.1% of all events) followed by diarrhea (27.2%). The unadjusted HR for 

the effect of CPT exposure on time to severe illness was 0.92 (95% CI: 0.63, 1.34) (Table 

4.3). None of the covariables considered met our criteria for effect measure modification or 

confounding for this outcome.  

 Anemia was documented in 49 CPT-unexposed infants and 166 CPT-exposed infants 

(Table 4.2) (Figure 4.1). The unadjusted HR for the effect of CPT exposure on time to 

anemia was 0.78 (95% CI: 0.58, 1.05) (Table 4.3). No covariable met our criteria for 

inclusion in the final model. 

Underweight occurred in 51 CPT-unexposed and 213 CPT-exposed infants (Table 

4.2) (Figure 4.1). The HR for the effect of CPT exposure on time to underweight was 0.97 

(95% CI: 0.72, 1.32). With adjustment for baseline weight (at 6 weeks of age), the direction 

of the association was reversed (adjusted HR 1.15, 95% CI: 0.83, 1.59) (Table 4.3) but 
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continued to be weak and not statistically significant. No other covariable met our criteria for 

inclusion in the final model.  

 

DISCUSSION 

Despite global recommendations for CPT for all HIV-exposed infants until cessation 

of breastfeeding and exclusion of HIV infection, little is known about the effect of CPT in 

HIV-exposed, uninfected infants. Our results contribute to the scant literature on CPT in 

HIV-exposed, uninfected infants. We assessed the effect of CPT from 6 to 36 weeks of age 

on adverse health outcomes in HIV-exposed, uninfected infants. We found that CPT may 

provide temporary protection against malaria in infancy but not against anemia, underweight 

and severe illness or death.  

CPT protects against malaria in HIV-infected and HIV-uninfected adults,4, 10, 79 and 

older HIV-uninfected children (age 5-15 years of age).12 CPT also reduces the incidence of 

malaria in HIV-exposed, uninfected infants after cessation of breastfeeding to 2 years. In one 

RCT, HIV-exposed infants who continued CPT after cessation of breastfeeding and 

exclusion of HIV infection until 2 years of age had a 38% reduction in malaria incidence 

compared with infants who stopped CPT after cessation of breastfeeding. All infants in that 

study were also given insecticide-treated bed nets (ITNs).96  Our findings extend and clarify 

the time period during which CPT may be effective: we found that CPT was associated with 

a 65% reduction in time to malaria between 6 and 16 weeks of age, but we did not observe a 

protective effect after 16 weeks of age.  

The effect of CPT in infants, particularly during the first months of life, may be 

complex.  Malaria is more commonly seen after the first 2 or 3 months of life, with 

increasing incidence in the remainder of infancy generally reaching a peak within the first 
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two years,2, 46, 48-53 especially in areas of high transmission.54, 55  Lower incidence in the first 

months of life is generally attributed to the protective effect of maternal antibodies.47 

Maternal HIV infection has been demonstrated to negatively impact the transfer of some 

maternal antibodies,38, 39 and is also believed to impact the development of the immune 

system in utero.40, 41 These factors may cause HIV-exposed infants to be more susceptible to 

malaria and other infections during the first few months of life, when passive immunity 

usually provide protection, and when the infant’s immune system is still developing. CPT 

may help protect these children during this time period. Alternatively, there may be a 

synergistic interaction between CPT and existing maternal antibodies during the first few 

months of life, resulting in additional protection against malaria for the infant. This effect 

may fade as the infant’s maternally acquired antibodies against malaria wane.  

CPT was not significantly associated with grade 3 or 4 anemia, though we observed a 

protective trend in these Malawian infants. Observed associations between CPT and anemia 

in the literature are mixed. Protection against anemia was observed in healthy children (5-15 

years old) receiving CPT, where CPT was also found to be highly protective against malaria, 

potentially contributing to the decrease in anemia.12 In HIV-infected adults with a CD4 cell 

count of at least 500 cells, CPT had no effect on hemoglobin.123 If CPT does protect against 

anemia, it is possible that this effect would be weaker in breastfeeding infants, who are born 

with iron stores that are generally sufficient for the first 4-6 months of life.124 These infants 

also receive iron through breastmilk, particularly in the first few months when iron in 

breastmilk is most bioavailable.125  

In our analyses CPT did not protect against severe illness or death. In contrast, other 

studies have reported that CPT in HIV-infected children protects against death and 
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respiratory infections and is associated with somewhat lower admission rates for bacterial 

infection.77 In some analyses CPT also protects against respiratory infections in HIV-infected 

infants.7, 88 In older healthy children (age 5-15 years), CPT decreased rates of gastrointestinal 

illness, but did not protect against respiratory illnesses.12 Similar trends have been observed 

in HIV-exposed infants. In contrast to those benefits, a trend towards an increased risk of 

diarrhea in HIV-infected and HIV-exposed, uninfected infants has also been observed, but 

this association did not reach statistical significance.7 We did not observe an effect of CPT on 

severe illness and death, but due to the small number of events, we were unable to assess 

associations between CPT and specific infections. Breastfeeding, particularly in the first 6 

months, is associated with protection against infectious disease in infants,126 therefore, it is 

possible that CPT would offer more protection when provided to infants who breastfeed for 

longer time periods, or in the context of mixed feeding.  Benefits of CPT may also be more 

apparent when assessing mild instead of severe infections.  

CPT also did not appear to be associated with underweight, even after adjustment for 

weight at 6 weeks of age. Because of the exclusive breastfeeding recommendations of the 

parent BAN study, our analysis population may exhibit less variation in nutritional outcomes 

than what is observed outside of a clinical trial setting. In addition, following cessation of 

breastfeeding mothers were counseled to feed infants a lipid-based nutrient supplement 

(LNS). This energy-dense, micronutrient-fortified supplement, provided for free until 12 

months of age, was designed to fulfill infant micronutrient requirements and replace the 

energy and protein that would have been provided by breastmilk.107 This type of supplement 

and support to ensure sufficient nutritional intake is unusual in resource-poor settings, and 

clearly affects the generalizability of our findings on CPT and malnutrition. 
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Our analyses have important limitations which are similar to other observational 

studies. First, exposure status was based on presumed exposure using the 2006 date that CPT 

was initiated as a general guideline for classifying all infants, rather than using pharmacy and 

adherence records. A review of a random sample of patient pharmacy records showed good 

adherence to the CPT guidelines (data not shown). It is possible some children classified as 

exposed, may, in fact, have not taken cotrimoxazole, which could bias our results. If this is 

the case, our observed estimates are likely weaker than the true estimates of the effect of CPT 

on the outcomes of interest.  Second, unmeasured changes in the general population over the 

5 year period of observation from 2004-2009 may have coincided with the roll-out of CPT 

(mid-2006). Temporal changes in disease incidence occurring during the study period cannot 

be separated from the effects of CPT. For example, starting in March of 2007, ITNs were 

distributed to 3500 HIV-infected pregnant women in Lilongwe, including some of the 

women participating in the BAN study. Ownership and use of ITNs was not monitored by 

BAN, and thus we could not adjust for it in our analysis.  If malaria decreased due to the use 

of ITNs or other factors, the protective effect in the first 16 weeks of life suggested by our 

analysis may be an artifact of ITN use or other changes in disease incidence unrelated to 

CPT. CPT in HIV-infected adults has been shown to offer some health benefits to other 

household members,42 therefore, it is also possible that the simultaneous initiation of CPT in 

BAN mothers with a CD4 cell count less than 500 cells/µL could have contributed to the 

protective effect against malaria demonstrated in our analyses. 

As noted earlier, suboptimal adherence likely occurred in our study as we did not 

monitor adherence. Suboptimal adherence would also occur outside of a study setting. Our 
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study may thus approximate the “normal” conditions of varied adherence observed in routine 

roll-out of CPT, which strengthens the generalizability of our findings.  

The primary rationale for CPT in HIV-exposed infants is to reduce the morbidity and 

mortality of opportunistic infections in HIV-infected infants in whom the HIV infection 

status has not yet been determined. Following current WHO guidelines, it is no longer ethical 

to conduct an RCT examining the effect of CPT in HIV-exposed, uninfected infants, thus 

observational studies such as this one provide valuable insight into the effects of CPT in 

HIV-exposed, uninfected infants. Our findings indicate that CPT in this population may be 

limited to a temporary protection against malaria in the first 16 weeks of life, without a 

meaningful effect on anemia, malnutrition, or severe illness or death. Continued monitoring 

of CPT and its effects in this population of HIV-exposed infants, including adverse effects 

and cotrimoxazole resistance, will help to inform future guidelines as interventions in the 

prevention and treatment of HIV continue to develop. Given the limited protection offered by 

CPT in HIV-exposed, uninfected infants, when more accurate infant testing for HIV becomes 

widely available and the incidence of acquisition of HIV is reduced, an in depth assessment 

of the CPT guidelines may be necessary in order to ensure that CPT is the best use of 

extremely limited resources available to address the multitude of factors threatening the 

health of this vulnerable population.  
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Table 4.1. Baseline Characteristics of 1522 Infants and their Mothers 

 
 
 
Characteristic 

CPT-
unexposed*

(N = 283) 

CPT-
exposed* 

(N = 1239) 

Total 
population 
(N=1522) 

 
Missing 

 
P value† 

Infants 
Gender (male) % 53.6 50.2 50.9 N=6 0.32 
Low birth weight  
(< 2500 g) (%) 

5.7 5.9 5.9 N=9 0.91 

Infant ARV arm (%) 33.9 38.6 37.7  0.14 
 
Mothers 

     

Age (yr)  

   Median 
   Interquartile range 

 
25.0  

22.0-29.0 

 
26.0  

23.0-30.0 

 
26.0  

23.0-29.0 

 
 

 
0.02 

CD4 at baseline (cells/µL)† 

   Median 
   Interquartile range 

 
431.0 

328.0-576.0 

 
441.0 

332.0-577.0 

 
439.0 

332.0-576.0 

  
0.31 

Maternal education (>primary) 34.3 35.5 35.3 N=2 0.69 
Married (%) 89.1 92.6 91.9  0.05 
Mother’s first pregnancy (%) 12.7 11.2 11.5  0.48 
Nutritional supplement arm (%) 50.9 49.9 50.1  0.76 
Maternal ARV arm (%) 32.2 37.0 36.1  0.13 
* Infants were considered CPT-unexposed if > 36 weeks of age by June 13, 2006; infants 

were considered CPT-exposed if they reached 6 weeks of age on or after August 15, 2006 
† P-values based on Wilcoxon rank-sum test for continuous variables and chi-square test for 

binary variables, comparing CPT-exposed and CPT-unexposed groups 
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Table 4.2. Frequency of Outcomes of Interest from 6 to 36 Weeks of Age in CPT-Exposed 

and Unexposed Infants. 

Outcome CPT-unexposed 
infants* (N=283) 

CPT-exposed 
infants* (N=1239) 

Total 
(N=1522) 

Malaria 70 (24.7%)  241 (19.5%) 311 (20.4%) 
Anemia 49 (17.3%) 166 (13.4%) 215 (14.1%) 
Severe illness or  
death 
   Diarrhea 
   Malaria 
   Meningitis 
   Pneumonia 
   Febrile illness 
   Vomiting 
   Death 

34 (12.0%) 
 

11 (3.9%) 
10 (3.5%) 
1 (0.4%) 
5 (1.8%) 
6 (2.1%) 
0 (0.0%) 
1 (0.4%) 

135 (10.9%) 
 

35 (2.8%) 
14 (1.1%) 
9 (0.7%) 
51 (4.1%) 
22 (1.8%) 
2 (0.2%) 
2 (0.2%) 

169 (11.1%) 
 

46 (3.0%) 
24 (1.6%) 
10 (0.7%) 
56 (3.7%) 
28 (1.8%) 
2 (0.1%) 
3 (0.2%) 

Underweight (weight 
for age < -2) 

51 (18.0%) 213 (17.1%) 264 (17.3%) 

* Infants were considered CPT-unexposed if > 36 weeks of age by June 13, 2006; infants 
were considered CPT-exposed if they reached 6 weeks of age on or after August 15, 2006 
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Table 4.3. Hazard Ratios for Exposure to Cotrimoxazole Prophylactic Treatment 

Administered from 6 to 36 Weeks of Age on Adverse Health Outcomes from 6 to 36 Weeks 

of Age. 

 Unadjusted  
Hazard Ratio  
(95% CI) 

Adjusted  
Hazard Ratio 
 (95% CI) 

Malaria  
 

0.71 (0.55, 0.93) 0.35 (0.21, 0.57) from 6 weeks to 16 
weeks of age 
 
0.94 (0.68, 1.30) from > 16 weeks to 
36 weeks of age 
 

Severe illness or death   0.92 (0.63, 1.34) 0.92 (0.63, 1.34) 
 

Anemia (grade 3 or 4)  
 

0.78 (0.58, 1.05) 0.78 (0.58, 1.05) 
 

Underweight 
 (Weight for age < -2)  

0.97 (0.72, 1.32) 1.15 (0.83, 1.59) 
 Adjusted for baseline weight 
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Figure 4.1 – Kaplan-Meier curves illustrating the probability of (A) Malaria, (B) severe 

illness or death, (C) moderate or severe anemia, and (D) weight-for-age z score <-2.  Red 

represents infants exposed to CPT, black represents infants unexposed to CPT. 

 
A) Malaria 

 
 
B) Severe illness 
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C)   Anemia 

 

D)  Underweight (weight for age z score < -2) 

 



 
CHAPTER FIVE: Effect of Cotrimoxazole Prophylactic Treatment on Malaria, 

Birth Outcomes and CD4 cell count in HIV-infected Pregnant Women 
 

ABSTRACT 

BACKGROUND: HIV-infected pregnant women receive cotrimoxazole prophylactic 

treatment per the guidelines established by the World Health Organization for HIV-infected 

adults. However, there are limited data regarding the effects of CPT in pregnant women, 

including how CPT protects against malaria compared to the standard malaria prophylaxis of 

intermittent preventive treatment with sulfadoxine-pyrimethamine, which is contraindicated 

in women receiving CPT. We examined the effect of CPT in HIV-infected pregnant women 

with a CD4 count between 200 and 500 cells/µL, on adverse maternal and infant outcomes.  

METHODS: Using data from a large prevention of mother-to-child transmission study, we 

assigned CPT exposure based on the date of initiation of CPT in the study, assigning an 

exposed status to mothers who participated in the study after the CPT program was started. 

We examined unadjusted and adjusted hazard ratios, odds ratios and risk ratios for the effect 

of CPT status on time to infection with malaria, low birth weight and preterm birth, 

respectively. We used linear regression to assess the effect of CPT on CD4 cell count at 24 

weeks post-partum. 

RESULTS: After adjustment for changes in disease incidence over time, CPT had no effect 

on time to malaria (adjusted Hazard Ratio: 0.66, 95% Confidence Interval (CI), 0.28, 1.52). 
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CPT was not associated with preterm birth or low birth weight. CPT was associated with a 

lower CD4 cell count at 24 weeks postpartum in women not receiving antiretrovirals (-77.6 

cells/µL, 95% CI: -125.2, -30.1) and women receiving antiretrovirals (-33.7 cells/µL, 95% 

CI: -58.6, -8.8), compared to women not receiving CPT. 

CONCLUSIONS: Compared to intermittent preventive treatment with sulfadoxine-

pyrimethamine, CPT does not appear to provide additional protection against malaria in 

HIV-infected pregnant women, nor does it offer protection against preterm birth or low birth 

weight. Women receiving CPT had a lower CD4 cell count at 24 weeks post-partum 

compared to women not receiving CPT, regardless of antiretroviral treatment status. 

 

INTRODUCTION 

Cotrimoxazole prophylaxis has been shown to reduce morbidity and mortality in HIV 

–infected adults and children.2-6  The World Health Organization (WHO) guidelines 

recommend daily cotrimoxazole prophylactic treatment (CPT) for HIV-infected adults and 

HIV-infected pregnant women with CD4 cell count less than 350 cells/µL or WHO clinical 

stage III or IV.1 In settings with high prevalence of HIV and limited healthcare infrastructure, 

the WHO suggests consideration of broader access to CPT, including universal access for 

anyone with confirmed HIV infection.1 The guidelines are based on results of randomized 

controlled trials (RCTs) and non-experimental studies that demonstrated decreased incidence 

of severe events, hospitalizations and mortality in HIV infected adults and children.  Data on 

CPT in HIV-infected pregnant women are scarce, though there is some evidence suggesting 

that CPT may reduce the risk of poor birth outcomes in addition to reducing morbidity and 
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mortality due to opportunistic infections.  This data came from an observational study in 

Zambia which found that compared to historic controls, CPT provision to women with a CD4 

cell count less than 200 cells/µL resulted in reduced odds of preterm birth and a decrease in 

neonatal mortality.9 It is not known if the same benefits would be seen in women with higher 

CD4 cell counts. 

CPT in HIV-infected adults has also been associated with a reduction in malaria 

incidence.2, 4, 10 HIV-infected pregnant women in particular would benefit from reduced risk 

of malaria, as these women experience more peripheral and placental malaria compared with 

HIV-uninfected pregnant women.70  Dual infection with HIV and malaria in pregnant women 

is particularly concerning due to the associated increase in the risk of poor birth outcomes, 

including low birth weight and prematurity, especially in multigravidae.71-73  Due to 

similarities between cotrimoxazole and sulfadoxine-pyrimethamine (SP),  SP-based 

Intermittent Preventive Therapy during pregnancy (SP-IPTp) for malaria, which is usually 

given to women during pregnancy regardless of HIV status, is not given in cases where CPT 

is given.1 However, the ability of CPT to prevent malaria has not been well studied in 

pregnant women.  

In the present analyses we examined the effect of CPT initiated during pregnancy in 

women with a CD4 cell count between 200 and 500 cells/µL on adverse maternal and infant 

outcomes, and on CD4 cell count at 24 weeks postpartum. These analyses on CPT will add 

evidence to the limited knowledge on this component of HIV care which is widely used in 

highly vulnerable populations. 
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METHODS 

Study design and population 

All women included in this analysis were enrolled in the Breastfeeding, 

Antiretrovirals and Nutrition (BAN) RCT which took place at 4 clinics in Lilongwe, Malawi 

between 2004 and 2009.107  BAN’s primary findings, that the use of either a maternal 

antiretroviral regimen or infant nevirapine for 28 weeks was effective in reducing HIV 

transmission during breastfeeding, have been reported elsewhere.121  HAART-naïve, 

pregnant, HIV-infected women at least 18 years of age (at least 14 years of age if married) 

and at least 30 weeks’ gestation were eligible for enrollment if they had hemoglobin levels 

over 7 g/dL, CD4 count of at least 250 cells/µL (≥200 cells/µL before July 24, 2006), normal 

liver function tests (more than 2.5 upper limit of normal), and no serious pregnancy 

complications. Depending on the estimated gestational age at screening, women were asked 

to return for follow-up prenatal care at approximately 28, 32 and 36 weeks’ gestation. 

All mothers participating in the BAN study were offered single-dose oral nevirapine 

during labor and zidovudine and lamivudine as a single tablet (Combivir®) every 12 hours 

from the onset of labor to 7 days after giving birth.  Newborn infants received single dose 

oral nevirapine within 72 hours of birth followed by twice-daily zidovudine (2mg/kg) and 

lamivudine (4mg/kg) for seven days. All women were counseled to exclusively breastfeed 

followed by rapid weaning between 24 and 28 weeks after birth. 

Mother-infant pairs were randomized within one week of birth if they met secondary 

eligibility criteria: infant birth weight of at least 2000 g, no signs of congenital 

malformations, no infant or maternal condition that would preclude the use of a study drug, 
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mother’s acceptance of the 7-day maternal and infant perinatal antiretroviral regimen, and 

enrollment within 36 hours after delivery. If mother-infant pairs met these criteria, they were 

randomized to a two-group maternal nutritional intervention and separately to a three-group 

antiretroviral intervention consisting of drugs given to the mother (maternal-regimen group), 

infant (infant-regimen group), or neither (control group). Women in the maternal-regimen 

group received a triple-drug antiretroviral regimen which initially consisted of Combivir® 

and nevirapine. Nevirapine was replaced after the first 39 women were randomized with 

nelfinavir, which was later replaced with lopinavir/ritonavir. Infants in the infant-regimen 

group received a daily dose of nevirapine that increased according to age. The interventions 

for both mothers and infants began after delivery and were continued until the cessation of 

breastfeeding but no longer than 28 weeks. Infants found to be perinatally HIV-infected at 

birth or in the first two weeks of life were disenrolled from the BAN study and referred for 

care. Infants who tested positive for HIV later than two weeks of life, which was the primary 

endpoint of the BAN study, were discontinued from the intervention but not disenrolled from 

the study, and were encouraged to continue to attend regular study visits. 

Mother-infant pairs were seen for visits at delivery and at 1, 2, 4, 6, 8, 12, 18, 21, 24, 

28, 32, 36, 42 and 48 weeks postpartum. Data capturing anthropometrics, vital signs, 

illnesses and hospitalizations since the last visit, current symptoms, and physical exam 

findings were collected at all follow-up visits. Blood was collected at 2, 4, 6, 12, 18, 24, 28, 

36 and 48 week visits. Patients were advised to return to the clinic between visits to receive 

treatment if the woman or child was ill. Blood smears were performed when there was 

clinical suspicion of malaria.  
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In accordance with the Malawi Ministry of Health and Population Guidelines and 

WHO guidelines on cotrimoxazole prophylaxis,1 CPT was initiated in the BAN study for 

eligible women and infants in 2006. Although CPT has been used in high-income countries 

for prevention of opportunistic infections for many years, WHO and UNAIDS had not 

published guidelines for resource-limited settings until 2006, and CPT was rarely used in 

these settings before release of the guidelines which gave technical and operational 

recommendations in the context of scaling up HIV care in resource-limited settings. Starting 

on 13 June 2006, CPT (480 mg twice daily) was provided after the 12th week of pregnancy to 

all participating women with a CD4 cell count less than 500 cells/µL, regardless of 

symptoms. CD4 cell counts were performed at screening, 24 weeks and 48 weeks 

postpartum. CPT could be started based on a CD4 cell count less than 500 cells/µL at any of 

those time points. The routine second and third trimester doses of SP given to pregnant 

women were omitted in women receiving CPT in accordance with WHO recommendations.1 

Due to similarities between cotrimoxazole and SP, SP was not recommended for use as first 

line treatment for malaria in women taking CPT, however, SP as treatment for malaria was 

continued until the Malawian Department of Health malaria guidelines changed in 2007 to 

first line Artemether-Lumefantrine (quinine in first trimester of pregnancy), second line 

Amodiaquin-Artesunate, and IV Quinine for severe malaria. Once initiated, CPT was 

intended to be life-long, and was provided for the duration of participation by the BAN 

study. 

Ethical review 

The BAN study’s protocol was approved by the Malawi National Health Science 

Research Committee and the institutional review boards at the University of North Carolina 
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at Chapel Hill and the U.S. Centers for Disease Control and Prevention. This secondary 

analysis of the BAN study data was reviewed and approved by the institutional review board 

of the University of North Carolina at Chapel Hill.  

Statistical Analysis 

All statistical analyses were performed using SAS (version 9.2, SAS Institute, Cary, 

NC). 

Descriptive analyses included calculation of medians, standard deviations, and 

frequencies of exposures, outcomes and covariates. Categorical proportions were compared 

using chi-square test and continuous variables were assessed using the Wilcoxon rank-sum 

test.109 

We estimated unadjusted and adjusted hazard ratios (HRs) and 95% confidence 

intervals (CIs) for the effect of CPT status on time to malaria infection. Because SP-IPTp 

was given to women before CPT was introduced, this analysis amounted to a comparison 

between the two regimens. We began with a bivariate model containing only CPT and the 

outcome of interest. We then constructed multivariable models to include covariates 

associated with CPT or the outcome of interest. The proportional hazard assumption was 

examined graphically using log-log plots and by adding interactions with time to the model. 

If the assumption was violated, it was relaxed by fitting interactions with categorical or 

continuous time.111 The log-rank test was used to compare the CPT-exposed and unexposed 

groups.122  

We explored rainy season, age and first pregnancy as modifiers of the association 

between CPT and the outcomes of interest. We evaluated these variables as possible effect 
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measure modifiers by comparing the magnitude and precision of the main association within 

each level of each possible modifying covariable, and made qualitative assessments about the 

value of presenting stratified estimates.  In order to identify effect measure modifiers we 

considered the exposure-outcome relationship at each level of a third variable (the potential 

effect measure modifier) by including a product interaction term between the exposure and 

the potential effect measure modifier.112 We ran a simple Cox model containing CPT 

exposure status, the outcome of interest, the potential effect measure modifier, and an 

interaction term between the CPT exposure status and the potential effect measure modifier. 

A p-value for the interaction term lower than α=0.10 was taken as evidence of substantial 

heterogeneity in the stratum-specific measures of effect.113 Covariables found to be important 

effect measure modifiers were included in the starting multivariable model through an 

interaction term with CPT exposure status. To construct final models, we used a manual, 

backward elimination, change-in-estimate strategy.  Following assessment for effect measure 

modification, potential confounders were removed from the preliminary full model in order 

of p-value magnitude (covariates with the highest p-values were removed first). If the CPT-

outcome association changed by less than 10% overall or in any stratum of an interacting 

variable, a given covariate was not retained.115  

To assess the association between CPT during pregnancy and low birth weight we 

estimated odds ratios (ORs) and 95% confidence intervals (95% CIs) using multivariate 

logistic regression. CPT exposure, the outcome of interest, potential confounders and effect 

measure modifiers along with the appropriate interaction terms were entered into the model. 

Effect measure modification was assessed by examining Wald p-values or the likelihood 

ratio test for the model with and without the selected interaction term. A manual backward 
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elimination process was used beginning with the potential confounder with the highest p-

value to determine which covariates resulted in greater than a 10% change in estimate and 

should be retained in the model as confounders.  

For analysis of the association between CPT during pregnancy and preterm birth 

multivariate log binomial regression was used, due to higher frequency of the outcome 

(23.6%),117 following the same procedures as outlined for logistic regression.  

The effect of CPT on change in CD4 cell count at 24 weeks postpartum was assessed 

by constructing separate linear regression models, stratified by maternal antiretroviral 

regimen status (randomization status). Crude and adjusted CD4 cell counts at 24 weeks were 

calculated along with 95% confidence intervals. Effect measure modification was assessed 

by examining the partial F test for the model with and without the selected interaction 

terms.118 As with the other analyses, a manual backward elimination process was used to 

finalize the model.  

Definitions 

Because the CPT guidelines were initiated 2 years into the BAN study, this created a 

unique opportunity for analysis similar to a natural experiment, with one CPT-unexposed 

period and one CPT-exposed period. While this was not a randomized treatment, the only 

factor dictating whether a woman received treatment was the time period during which she 

participated in the study. Therefore, for the purpose of this analysis, exposure to CPT was 

based on the 2006 time-point at which standardized CPT was implemented in the BAN 

study. To minimize misclassification of CPT, inclusion in our analysis was restricted 

according to 2 criteria. First, in order to account for any lag time between the decision to 

administer CPT and the routine implementation of this practice, person-time from women 
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presenting for their second prenatal visit (median time of 12.7 weeks before delivery) 

between 13 June 2006 (the date the first mother was started on CPT) and 15 August 2005 

was not included in these analyses. Second, analyses only included women who were either 

never exposed to CPT (women who gave birth before 13 June 2006, or for the CD4 outcome, 

women who had their 24 week visit before 13 June 2006), or women who were exposed from 

their second prenatal visit onwards (fully exposed, second prenatal visit after 15 August 

2006).  

Malaria was defined as the first episode of malaria after the second prenatal visit, 

based on the finding of parasites on a blood smear performed when there was clinical 

suspicion of malaria. Because of the short time period of observation, we excluded women 

who had a diagnosis of malaria at or before the time of CPT initiation. Preterm birth was 

defined as birth before 37 weeks of gestation, based on the date of the last reported menstrual 

period. Low birth weight was defined as a birth weight less than 2500 grams. 

Sensitivity analysis among women ineligible for CPT  

Women who had a CD4 cell count of at least 500 cells/µL at screening were not 

eligible for CPT until at least 24 weeks postpartum, at which point they were eligible if their 

CD4 cell count fell below 500. We used data from this pseudo “control” group to assess 

unmeasured confounding, i.e. whether there were changes in the frequency of incident 

malaria in the study population between the time periods before and after implementation of 

CPT (before June 2006 and after August 2006). This is most important for outcomes such as 

malaria, which are known to fluctuate over time. Incidence of birth outcomes and changes in 

CD4 cell count are less likely to fluctuate over the time span of the BAN study.  In order to 



87 
 

assess whether there were changes in the outcome associated with the time period of 

participation, we assigned a time-defined exposure which coincided with the roll-out of CPT. 

Women with a CD4 cell count of at least 500 cells/µL who had their second prenatal study 

visit after 15 August 2006 were considered to be the “exposed” group, as they were exposed 

to the later time period. Women who gave birth before 13 June 2006 were considered 

“unexposed”, as they were unexposed to the later time period. Unadjusted and adjusted HRs 

for the association between the time-defined exposure and malaria in pregnancy were 

calculated as described above. In order to quantify the changes in the frequency of malaria 

between the time periods before and after implementation of CPT (i.e. April 2004 to June 

2006 versus August 2006 to September 2009), we calculated unadjusted and adjusted HRs. 

This model included both the original study population and the “control” population. The 

three variables included in this model were exposure to CPT, time period (as previously 

defined), and CD4 cell count less than 500 cells/µL.  

RESULTS 

After excluding 850 women with a CD4 greater than 500 at screening, and 197 

women with mixed CPT exposure, 1236 mother-infant pairs were eligible for analysis (Table 

5.1). Median CD4 cell count at the screening visit was slightly lower in CPT-unexposed 

women. This difference was statistically significant but unlikely to be clinically relevant. 

There were 91 low birth weight infants, 36.3% were born to CPT-unexposed mothers 

and 62.6% were born to mothers who were CPT-exposed. Median birth weight among these 

infants was 2300 grams (interquartile range: 2140, 2400). The unadjusted OR for the effect 

of CPT vs SP-IPTp on giving birth to a low birth weight infant was 1.08 (95% CI: 0.70, 
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1.69). None of the covariates explored met the criteria for inclusion in the final model as an 

effect measure modifier or confounder.  

Date of last menstrual period was available for 624 (50.5%) of the women considered 

in this analysis, due to a change in the data collected in the BAN study. Women who did not 

have this information available were less likely to have completed more than primary school 

level of education (p=0.002) and were more likely to give birth to a low birth weight infant 

(p=0.02). Among the women included in this analysis, 147 women had a preterm birth, 

40.1% of these women were unexposed to CPT and 59.9% were exposed to CPT. The RR for 

the effect of CPT exposure on preterm birth was 1.00 (95% CI: 0.75, 1.34) (Table 5.3). None 

of the covariates explored met the criteria for inclusion in the final model as an effect 

measure modifier or confounder.  

Linear analysis of CD4 cell count at 24 weeks postpartum was performed using two 

separate models; one for women randomized according to BAN Study procedures to the 

maternal antiretroviral arm, and one for the women randomized to either the infant 

antiretroviral regimen group or the control group. CD4 cell count at screening (conducted at 

a median time of 14.3 weeks (interquartile range: 9.7, 18.6) before delivery) was included in 

both linear models. Among the 810 eligible women, the median time between the two CD4 

measurements was 38.4 weeks (interquartile range, 34.0, 42.7). There were 514 women 

eligible for analysis who did not receive the maternal antiretroviral regimen, of whom 358 

were CPT-exposed and 156 were CPT-unexposed, and 296 who did receive the antiretroviral 

regimen, of which 225 were CPT-exposed and 71 were CPT-unexposed (Figure 5.2). The 

mean CD4 cell counts at 24 weeks were higher than mean CD4 cell counts at screening for 

all groups, as is expected due to the physiological hemodilution that occurs during 
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pregnancy.127, 128 Overall, CPT appeared to be associated with lower CD4 cell counts at 24 

weeks post-partum. Among women not receiving the antiretroviral regimen, CD4 cell count 

at 24 weeks postpartum was 33.7 cells/µL (95% CI: 8.8. 58.6) lower among those who 

received CPT, compared to women who did not receive CPT, after adjustment for CD4 cell 

count at screening. Similarly, among women who received the antiretroviral regimen, CD4 

cell count at 24 weeks postpartum was 77.6 cells/µL (95% CI: 30.1, 125.2) lower among 

those who received CPT, compared to women who did not receive CPT, adjusted for CD4 

cell count at screening. CD4 cell count at screening was the only covariate that met the 

criteria for inclusion as a confounder or effect modifier in either of the final models.  

Among the pregnant women included in the analysis, 54 women were diagnosed with 

malaria during the time period between the second prenatal study visit (at which time CPT 

was started if eligible; visit occurred at a mean of 12.7 weeks before delivery) and delivery 

(Table 5.2) (Figure 5.1). Of these 54 women, 61% were in the CPT-unexposed group and 

38.9% were in the CPT-exposed group. The unadjusted HR for the effect of CPT vs SP-IPTp  

on incident malaria was 0.35 (95% CI: 0.20, 0.60). None of the covariates explored met the 

criteria for inclusion in the final model as an effect measure modifier or a confounder.  

 

Sensitivity analyses among women ineligible for CPT 

There were 700 pregnant women with a CD4 cell count of at least 500 cells/µL who 

comprised the population for the sensitivity analysis to assess the effect of potential 

unmeasured confounders of the association between malaria and CPT.  

First, we developed a model to assess the association between malaria and 

participation during the later time period, as described earlier. Among the 700 women with 
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CD4 cell count of at least 500 cells/µL, 38 women were diagnosed with malaria during 

pregnancy: 55.3% were diagnosed during the earlier time period (between April 2004 and 

June 2006) and 44.7% were diagnosed during the later time period (between August 2006 

and September 2009). The unadjusted HR for the association between malaria and time 

period of participation was 0.51 (95% CI: 0.27, 0.97). None of the covariates explored met 

the criteria for inclusion in the final model, indicating the likelihood of unmeasured 

confounding.  

Next, we developed a model including both women with a CD4 cell count of at least 

500 cells/µL (the sensitivity analysis population described above) and women with a CD4 

cell count less than 500 cells/µL (our original study population) in order to quantify the effect 

of CPT on malaria during pregnancy, adjusted for time period of participation. The HR for 

the association between participation in the later time period and malaria, adjusted for CPT, 

was 0.52 (95% CI 0.27, 0.98). The HR for the effect of CPT on malaria, adjusted for time 

period of participation was 0.66 (95% CI: 0.28, 1.52).  

 

DISCUSSION 

HIV-infected women receive CPT for prevention of opportunistic infections 

following the WHO guidelines for HIV-infected adults. Although there are unique health 

concerns and considerations for HIV-infected pregnant women, little is known about the 

effects of CPT in this specific population. We assessed the effect of CPT, initiated during 

pregnancy, on malaria, low birth weight, preterm birth and CD4 cell count at 24 weeks 

postpartum. Among HIV-infected women with CD4 cell counts between 200 and 500 

cells/µL, we observed no meaningful effect of CPT on birth outcomes or malaria, after 
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adjustment for time period of participation. In addition, we observed that exposure to CPT, 

independent of maternal antiretroviral regimen status, may limit the rebound usually seen in 

CD4 cell count during the postpartum period, as measured at 24 weeks postpartum. 

The WHO CPT recommendations for HIV-infected adults are based on the benefits of 

prophylaxis, including reduced hospitalizations, morbidity and mortality in HIV-infected 

patients across varying CD4 levels.2, 4-6, 42, 77-79 CPT also offers protection against malaria in 

both HIV-infected and uninfected adults and children.4, 10, 12, 79 In our population of pregnant 

women in Lilongwe, Malawi, CPT started at a median of 12.7 weeks before birth appeared to 

protect against malaria during pregnancy. However, after consideration of overall trends in 

malaria incidence during the study, it appears the observed effect of CPT may in fact be due 

to an overall decrease in malaria during the later part of the study (and thus be unrelated to 

CPT). Our ability to assess the effect of time period through inclusion of both study women 

(women with CD4 cell count below 500 cells/µL) and “control” women (who had higher 

CD4 cell counts and were therefore never eligible for CPT), was an important strength of our 

analysis. This sensitivity analysis allowed us to address confounding that was unmeasured in 

our primary study population, a major limitation in most observational studies. The analysis 

demonstrated that, despite our initial findings from traditional analyses, CPT did not in fact 

meaningfully affect malaria incidence. Of course, we also made multiple assumptions when 

conducting this sensitivity analysis and thus the findings must be interpreted cautiously. For 

example, the model assumes the effect of time period is the same regardless of CD4 cell 

count, that the effect of CPT is the same across time periods, and that the effect of time 

period is the same across CPT groups.  
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Another important consideration when interpreting our results is the replacement of 

the SP prophylaxis with CPT. Due to similarities in action between cotrimoxazole and SP, 

the WHO recommends that women receiving CPT should not concurrently receive SP-IPTp. 

Therefore, the routine second and third trimester doses of SP given to pregnant women in the 

BAN study were omitted in study patients who received CPT. Comparison of women who 

received CPT after August 2006 to women in the BAN study before that time equates to a 

comparison of SP-IPTp and CPT. Through manual comparison of the HRs for our study 

population and the “control” population, and through examination of the model including 

both populations, it appears there may be a trend towards a protective effect of CPT (hence, a 

benefit of CPT vs. SP IPT), however, this effect did not reach significance in our analysis.  

In our analysis CPT was not associated with an effect on preterm birth or low birth 

weight.  Women in whom we could not assess preterm birth status, due to missing LMP, 

were more likely to have a low birth weight infant, however, since there was no difference in 

distribution of exposure by between women missing and not missing LMP, it is unlikely that 

our results are substantially biased by the missing data. In HIV-infected women in Zambia 

with a CD4 cell count less than 200 cells/µL, CPT was associated with a decrease in risk of 

birth at or before 34 weeks of gestation (OR 0.49, 95% CI 0.24, 0.98) and a trend towards 

increased birth weight, though this association did not reach significance.9 The authors of the 

Zambian study suggest a CPT-related decrease in bacterial and parasitic infections as a 

mechanism for the reduction in preterm birth, a mechanism which may be less likely to 

impact birth outcomes in women in our study, who had higher CD4 cell counts. A large RCT 

of antibiotics in HIV-infected and uninfected pregnant women in Africa found that a short 

course of erythromycin and metronidazole given at 24 weeks of gestation and metronidazole 
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and ampicillin given during labor did not reduce the rate of preterm birth or increase birth 

weight, despite reducing the rate of vaginal infections.129 The authors suggest that the failure 

of this regimen to reduce the rate of histologic chorioamnionitis may explain why the 

antibiotics failed to reduce preterm birth. Additional data on infections during pregnancy in 

HIV-infected women across a range of CD4 cell counts may be necessary to elucidate the 

relationship between CPT and birth outcomes.   

Regardless of ART and CPT status, there was an increase in median CD4 cell count 

at 24 weeks postpartum compared with CD4 cell count in pregnancy in our study population. 

While CD4 cell counts usually decline over time in HIV-infected patients, in pregnant 

women CD4 cell count increases in the months after giving birth, following a decline during 

pregnancy from physiological hemodilution.127, 128 Through separate analyses by maternal 

antiretroviral regimen status, we found CPT was associated with a lower CD4 cell count at 

24 weeks postpartum. The effect of CPT on CD4 cell counts in pregnant women has not been 

well studied. Results in HIV-infected adults have been mixed. The annual mean rate of 

decline of CD4 cell count was lower during CPT than before CPT (77 versus 203, p<0.001) 

in a cohort of HIV-infected patients with a range of CD4 cell counts at baseline in Uganda.3 

In another study of HIV-infected patients in Uganda, CPT was only associated with an effect 

on CD4 cell count among patients with an initial CD4 cell count of at least 500 cells/µL, in 

whom CPT was associated with a mean decrease of 22.3 cells/µL (95% CI: 3.7, 42.0).123  

Our analysis provides much needed data on the effects of CPT in HIV-infected 

pregnant women with CD4 cell counts of 200 to 500 cells/µL. Although these results expand 

our understanding CPT in this population, several limitations should be noted. Data on 

potential confounders which were unmeasured for the analysis of malaria, including use of 
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insecticide-treated nets (ITNs), would enhance our analysis. ITNs were provided to some 

women in the BAN study for a period of time beginning in 2007, however, the number 

provided is not known and there are no data on use of these ITNs by the women included in 

the analysis. The lack of a true control group should also be noted. Although we used women 

with a CD4 cell count of at least 500 cells/µL to assess temporal changes in malaria, these 

women differ immunologically from our study population, and therefore, changes in disease 

incidence in these “control” women may not be a true representation of changes in disease 

incidence in our study population. While incidence of the other outcomes is more stable, 

there may also have been unmeasured changes in these which were unrelated to CPT and 

could confound our results.  

We found that CPT in HIV-infected pregnant women with CD4 cell counts between 

200 and 500 cells/µL does not affect malaria incidence during pregnancy (as compared to 

SP-IPTp), preterm birth, or low birth weight. CPT may reduce the increase in CD4 cell count 

seen 24 weeks after birth, however, the duration and any clinical implications of this 

reduction in CD4 increase was not assessed by this study. Assessment of a control group of 

women with a CD4 cell count less than 350 cells/µL is not ethically feasible due to WHO 

guidelines for CPT, however, an RCT may be able to fully address the effects of CPT in 

women with CD4 cell counts above 350 cells/µL, and could be used to enhance our 

understanding of the effect of CPT in pregnancy on CD4 in the context of varying access to 

antiretrovirals.  Due to the consequences of malaria infection during pregnancy for both the 

woman and the fetus,70-73 it is important to fully understand whether forsaking SP-IPTp for 

CPT is appropriate in all settings.  RCTs in women with higher CD4 cell counts should also 

address remaining questions about the comparative effectiveness of CPT versus SP-IPTp 
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across varying CD4 cell counts and malaria transmission intensities. HIV-infected pregnant 

women face a vast array of health threats, and it is important to consider all of these threats 

when integrating new regimens into routine care and treatment. Additional data about CPT in 

pregnant women is necessary to enhance our understanding of the effects of CPT beyond its 

primary effect on opportunistic infections, in order to develop the most beneficial and 

comprehensive prophylactic treatment for this highly vulnerable population. 
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Table 5.1. Baseline characteristics of 1236 pregnant women by CPT exposure status 

 
 
 
Characteristic 

CPT-
unexposed*

(N = 468) 

CPT-
exposed* 
(N = 768) 

Total 
population 
(N=1236) 

 
P value† 

     
Age (yr)  

   Median 
   Interquartile range 

 
25  

(22-29) 

 
26 

(23-30) 

 
26 

(23-30) 

 
0.40 

CD4 at screening (cells/µL) 

   Median 
   Interquartile range 

 
350  

(276-421) 

 
362  

(303-429) 

 
357  

(295-427) 

 
<0.01 

Maternal education (% 
>primary) ‡ 

38.5 35.3 36.5 0.26 

Married (%) 91.7 92.5 92.2 0.62 
Mother’s first pregnancy (%) 12.4 12.4 12.4 0.99 
* Women were considered CPT-unexposed if they gave birth before 13 June 2006; women 

were considered CPT-exposed if they had their second prenatal visit after 15 August 2006 
† P-values based on Wilcoxon rank-sum test for continuous variables and chi-square test for 

binary variables, comparing CPT-exposed and CPT-unexposed groups 
‡ Level of education was missing for one mother 
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Table 5.2. Frequency of Outcomes of Interest and Effect Estimates in CPT-Exposed and 

CPT-Unexposed Pregnant Women 

 
Outcome CPT-unexposed 

women*  
CPT-exposed 

women*  
Total Effect Estimate† 

(95% CI) 
Malaria during 
pregnancy 

7.2%  
(33/457) 

2.8%  
(21/751) 

4.5%  
(54/1208) 

HR: 0.35 
(0.20, 0.60) 

 
Preterm Birth 
 

 
23.5%  

(59/251) 
 

 
23.6%  

(88/373) 
 

 
23.6% 

(147/624) 
 

 
OR: 1.08 

(0.70, 1.69) 

Low birth weight‡ 7.1% 
 (33/467) 

7.6%  
(58/762) 

7.4%  
(91/1229) 

RR: 1.02  
(0.76, 1.36) 

     
Note: totals for each outcome differ based on data available which met inclusion criteria for 

the individual outcomes of interest 
* Women were considered CPT-unexposed if they gave birth before June 13, 2006; women 

were considered CPT-exposed if they had their second visit after August 15, 2006 
† Effect estimates are unadjusted as no confounders or effect measure modifiers met criteria 

for inclusion in final models 
‡ Data were missing for 7 infants 
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Figure 5.1. Kaplan-Meier curves illustrating the probability of malaria in HIV-infected 

pregnant women before and during cotrimoxazole prophylaxis periods for (A) the women 

with a CD4 less than 500 cells/µL at screening (study population), log rank p<0.0001 and 

(B) women who had a CD4 of at least 500 cells/µL at screening (“controls”), log rank 

p=0.0353. Red represents women exposed to CPT, black represents women unexposed to 

CPT. 

A  B 
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Figure 5.2. Mean CD4 cell count during pregnancy and mean change in CD4 cell count from 

screening to 24 weeks postpartum in HIV-infected women 

 

 
 

 



 
CHAPTER SIX: DISCUSSION 

 
Scarce resources and an inadequate healthcare infrastructure contribute to the 

suboptimal care of the large HIV-infected population in sub-Saharan Africa (SSA). Further 

exacerbating the situation, poverty and a host of other infectious diseases, including TB and 

malaria, threaten the health of this vulnerable population. In settings of high HIV prevalence, 

these factors combine with a compromised immune system, creating an extremely precarious 

situation which often results in preventable loss of life. For these reasons, low-cost 

prophylactic measures and treatments are particularly important. Cotrimoxazole, long-used in 

developed countries as part of a treatment plan to protect against opportunistic infections, has 

proven to be a useful tool in protecting HIV-infected patients against opportunistic infections 

in resource-poor settings.  The WHO guidelines for cotrimoxazole prophylactic treatment 

(CPT) are based on data from observational studies and clinical trials in HIV-infected adults 

and children. Data to guide CPT in two particularly vulnerable populations, HIV-infected 

pregnant women, and the infants born to these women, are scarce.  A clear understanding of 

the risks and benefits of any health intervention is always valuable, but this is especially true 

in a setting where there are so many health issues to consider, when limited resources require 

careful prioritization of therapies, and where widespread resistance can easily derail efficacy 

of treatment plans for entire populations.  In these dissertation analyses, we explored the 

effect of CPT on health outcomes in HIV-infected pregnant women and their HIV-exposed 

infants.  
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Summary of findings 

In our first specific aim we explored the effect of CPT administered from 6 to 36 

weeks of age on adverse health outcomes in HIV-exposed, uninfected infants, in whom CPT 

is a precautionary measure in case of undiagnosed mother-to-child transmission (MTCT) of 

HIV. CPT provided temporary protection against malaria in infancy, but did not protect 

against anemia, underweight and severe illness or death in our population. Protection against 

malaria was only seen for a 10-week period following the start of CPT at 6 weeks of age. We 

were limited by small numbers in our analyses of severe illnesses, and were unable to 

examine illnesses separately. Additionally, unmeasured confounding by insecticide-treated 

net (ITN) use and temporal changes in disease incidence could not be adjusted for in our 

analyses.  

In our second aim we assessed the effect of CPT initiated during pregnancy in HIV-

infected women with a CD4 cell count between 200 and 500 cells/µL on malaria, birth 

outcomes and CD4 cell count at 24 weeks. After adjustment for time period (temporal 

changes in disease incidence), CPT did not offer protection against malaria during pregnancy 

as compared to intermittent preventive treatment during pregnancy with sulfadoxine-

pyrimethamine (SP-IPTp). CPT also did not offer protection against low birth weight or 

preterm birth. In analyses of CD4 cell count at 24 weeks postpartum, CPT was associated 

with a lower CD4 cell count, compared to CPT-unexposed women, regardless of 

antiretroviral treatment regimen, even after adjustment for CD4 at baseline (measured during 

pregnancy).   
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Interpretation 

In HIV-exposed infants, we found some benefit of CPT for the prevention of malaria, 

and no increased risks of the other poor health outcomes explored. CPT in this population is 

a unique intervention: this preventative measure is primarily given to protect the minority of 

infants who acquire HIV infection. The majority of infants, those who do not acquire HIV, 

still represent a highly vulnerable population and have been shown to be at increased risk of 

infant mortality compared to HIV-unexposed infants.20, 22, 35 CPT has been shown to be a 

relatively safe prophylactic therapy, and our findings in a population of HIV-exposed infants 

reinforce those previous findings. The benefit in prevention of malaria, while short-lived, is 

still noteworthy in a setting where malaria results in significant loss of life in children 

younger than 5 years of age.120 The protection against malaria that we observed is not as 

straightforward as the effect seen in both HIV-infected and uninfected adults and children.10-

12  The only published analyses comparable to ours found a protective effect of CPT among 

somewhat older children in the period following cessation of breastfeeding.96 The short term 

protection we observed is likely due to a combination of factors including presence and 

strength of maternal antibodies, and the age-related manner in which immunity against 

malaria is acquired.  

The lack of effect against anemia may be due to the age range of our study, and the 

exclusive breastfeeding strategy which was in place for these mother-infant pairs.  

Additionally, the food supplement given to infants upon weaning was designed to prevent 

malnutrition and likely provided additional protection for these infants against grade 3 or 4 

anemia. CPT did not protect against severe illness or death in these HIV-exposed infants. The 
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primary indication for CPT is prevention of opportunistic infections, which often lead to 

severe illness or death in HIV-infected individuals. Among HIV-uninfected infants, who 

have stronger immune systems, the benefit of CPT to prevent infections is less plausible, 

particularly in a setting of regular interaction with a healthcare facility (through BAN), where 

infections and illness were likely diagnosed and treated before they led to hospitalization or 

death.  

 In our analyses of HIV-infected pregnant women, we found no protection of 

CPT against malaria in pregnancy as compared to SP-IPTp, which was in place during the 

earlier time period before CPT was implemented. This result is not unexpected, given the 

established effectiveness of SP-IPTp in pregnant women, although SP-IPTp has been shown 

to be less effective in HIV-infected pregnant women compared to women who do not have 

HIV.74, 75 Our efforts to control for unmeasured confounding led us to conclude that the 

protective effect of CPT against malaria observed in our unadjusted findings was in fact due 

to confounding by time period and the changes in malaria incidence over the five-year period 

of the study.  

We saw no protective effect of CPT against low birth weight or preterm birth (birth 

before 37 weeks’ gestation), as opposed to a study which found that CPT provided protection 

against preterm birth (before 34 weeks’ gestation).9 The different definition of preterm birth 

between ours and the previous study, and the fact that the previous study was among women 

with lower CD4 cell counts compared to ours, could explain the different results regarding 

effect of CPT. Immunocompromised women may be at greater risk of infections associated 

with poor birth outcomes, which may be prevented by CPT. A recent study of antibiotics 

during pregnancy found no benefits of antibiotics with regard to birth outcomes,129 which is 
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more in line with our findings. We did not examine specific causes of preterm birth or low 

birth weight, therefore, we cannot assess whether the effectiveness of CPT in preventing poor 

birth outcomes would vary depending on the specific causes responsible for poor birth 

outcomes.  

The effect of CPT on CD4 cell count at 24 weeks postpartum is not what we had 

expected to find, and is somewhat harder to interpret. The hemodilution which takes place in 

pregnancy means that CD4 cell count is less stable in the pregnancy and the postpartum 

period than it usually is in HIV-infected adults.127, 128  The lower CD4 cell count in women 

receiving CPT is not what was expected based on the literature in HIV-infected adults, in 

whom CPT has been associated with an increase in CD4 or no effect.3, 123  The mechanism of 

this effect is not currently clear, and further research is needed to explore this in depth.  

 

Public Health Significance 

The HIV epidemic in SSA has been, and continues to be, a huge challenge in the face 

of efforts to improve the health of an already vulnerable population. Particularly high-risk 

populations include HIV-infected pregnant women and their infants, who are at risk of 

acquisition of mother-to-child transmission of HIV. Low-cost, uncomplicated interventions 

are desperately needed to protect these populations against a host of factors that threaten their 

wellbeing. While better HIV prevention programs and more accessible HIV treatment 

programs are the strategies that are likely to lead to global control of the HIV epidemic, small 

steps to limit morbidity and mortality are valuable during the slow process of establishment 

and expansion of these more comprehensive programs. Cotrimoxazole prophylactic treatment 

is a prime example of a low-cost, logistically feasible intervention that can protect HIV-
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infected individuals from preventable illnesses that exacerbate their health problems. While 

CPT is a valuable tool in the fight against HIV, the effects of this prophylactic treatment have 

not been well examined in all populations covered by the WHO guidelines. 

 HIV-exposed children receive CPT in case they become HIV-infected. 

Therefore, the primary indication of CPT, prevention of opportunistic infections, does not 

apply to these children, because the majority will not acquire HIV. Because this population is 

still at risk of poor health outcomes compared to HIV unexposed children, it is important to 

understand the effect of a CPT intervention applied to this population. Our finding that CPT 

provides some protection against malaria in this population is noteworthy, given the threat 

that malaria poses to children younger than 5 years of age. Protection against malaria is 

valuable, however, age-related patterns of malaria immunity vary widely by malaria 

transmission intensity, and CPT may have a varying impact based on the malaria context in 

which it is used. Key issues to monitor in decisions about CPT in this population are the 

effectiveness of local prevention of mother-to-child HIV transmission (MTCT) programs, 

access to and frequency of infant HIV testing, and cotrimoxazole resistance.  If MTCT falls 

to levels seen in developed countries, and if HIV-exposed infants can be tested for HIV on a 

regular basis such that their infections are diagnosed and treated early, then funding currently 

used for CPT for all HIV-exposed infants may be better suited for other health interventions 

needed for this vulnerable population. Additionally, if CPT resistance becomes more 

widespread, minimizing the benefits of CPT and rendering it less useful for treatment as well 

as prophylaxis, CPT guidelines will need to be revised. In the meantime, it appears that CPT 

may offer some benefits for HIV-exposed infants who are receiving it, though these benefits 

are not as strong as those seen in the true target population - HIV-infected infants.  
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 HIV-infected pregnant women receive CPT under the general guidelines for 

HIV-infected adults. It appears that withholding SP-IPTp in the context of CPT does not 

substantially impact malaria in HIV-infected pregnant women with a CD4 cell count between 

200 and 500 cells/µL, however, the effect of CPT on malaria may vary by intensity of 

malaria transmission. The inability of CPT to protect against poor birth outcomes among 

women with a CD4 cell count between 200 and 500 cells/ µL means that interventions to 

improve birth outcomes in this population are still needed. The implications of finding that 

women receiving CPT had lower CD4 cell counts at 24 weeks postpartum are difficult to 

understand without further examination of the clinical consequences. The hemodilution 

which occurs during pregnancy complicates our understanding of the effect of CPT on CD4 

cell counts. Since opportunistic infections are most common in individuals with lower CD4 

cell counts, this decrease in CD4 cell count should be explored to determine what the clinical 

implications are, and to make sure that the decrease in CD4 does not negate the benefits of 

CPT.  

 We found limited benefits of CPT in our analyses. CPT is a relatively cheap 

and easy prophylactic intervention, but it is still a financial burden and an added strain on the 

already-overextended healthcare system of many countries in SSA. Therefore, analyses 

demonstrating the limits of the benefits of CPT are as important as those demonstrating the 

depth of the benefits. This is particularly true when the true targets of an intervention, in this 

case HIV-infected infants and HIV-infected adults with lower CD4 cell counts, represent 

only a fraction of the population receiving the intervention. When assessing the CPT 

guidelines, it is important to consider the costs in terms of time spent by health care workers 

to assess and distribute cotrimoxazole, as well as the actual costs of the medication, 
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particularly if the benefits of CPT are not overwhelming, or if these benefits could be 

achieved through other simple interventions. For example, if ITNs could provide similar 

protection against malaria among infants, or if SP-IPTp could offer similar protection against 

malaria among pregnant women, and if these interventions place less of a burden on the 

patients and the healthcare system, they may be more appropriate, particularly in areas of 

lower malaria transmission intensity. We did not observe benefits of CPT for the other 

outcomes assessed, which may be due to our study population being healthier than some of 

the populations where the benefits of CPT has previously been established. In settings where 

CPT is being broadly distributed, it will continue to be important to assess the larger picture 

of the role and importance of CPT, and to prioritize its use appropriately in the context of 

other health interventions.  

 

Future Research 

This dissertation substantially increases our knowledge on the effects of CPT in HIV-

infected pregnant women and HIV-exposed, uninfected infants; however, the results also 

raise questions which need to be addressed in future studies. Unanswered questions about 

CPT in infants include the effect of CPT on health outcomes in the context of mixed feeding 

regimens, as well as examination of the effect of CPT for longer than the 36 weeks assessed 

in the current analyses. Because breastfeeding duration in much of SSA is longer than in our 

study, and because duration of CPT is dependent on duration of breastfeeding, more data are 

needed on health outcomes after longer periods of CPT and as the child ages and 

susceptibility to various pathogens changes. Also, because breastfeeding offers protection 

against some infectious pathogens,126 the effect of CPT may differ among infants who are 



108 
 

receiving mixed feeding, where they may be more susceptible to a variety of infections due 

to reduced acquisition of maternal antibodies through breastmilk and increased exposure to 

pathogens through consumption of potentially contaminated food and water.  It would be 

valuable to assess whether CPT protects against specific infections which lead to 

hospitalization, such as diarrhea and pneumonia, which we were unable to do due to limited 

sample size, and for which there are limited published data available. Also, CPT may protect 

against milder illnesses which require treatment or a clinic visit but not hospitalization. The 

BAN study collected data on milder illnesses but these were not available for the current 

analyses.  

Although an RCT of CPT in HIV-exposed infants is not ethical under current WHO 

guidelines, several interesting research questions can still be addressed. One such question is 

disease incidence, particularly incidence of malaria, in HIV-exposed, uninfected children 

after CPT is stopped. It is possible that there will be a rebound effect after CPT is stopped in 

these children, particularly due to the age-related acquisition of immunity associated with 

malaria. This effect may vary depending on the duration of treatment. Additionally, 

comparison of disease incidence in CPT-exposed, HIV-exposed, uninfected infants and CPT-

unexposed, HIV-unexposed infants could provide a better understanding of the benefits of 

CPT for this population. Depending on available data, it may be possible to adjust for 

differences between the HIV-exposed and HIV-unexposed infants in order to quantify the 

effects of CPT.  

One ongoing study of CPT is the PROMISE (Promoting Maternal-Infant Health 

Everywhere) study, a large, multinational PMTCT clinical trial which began in January, 

2010. The CPT component of this study involves randomization of HIV-exposed, uninfected, 
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weaned infants under one year of age to either continue receiving CPT or to receive a 

placebo through age 18 months. The objective is to determine whether continuing CPT in 

this population from the time of cessation of breastfeeding through 18 months decreases their 

risk of illness and death without causing side effects or generating bacterial resistance to 

cotrimoxazole.130 While this study will not provide information on the benefits provided 

during breastfeeding when CPT is recommended by the WHO, information on the effects of 

CPT on illnesses after cessation of breastfeeding and on cotrimoxazole resistance in this 

population will be valuable and will shed light on the overall benefits of this prophylactic 

measure in uninfected infants and young children. 

 

Regarding the effects of CPT on malaria in HIV-infected pregnant women, the 

primary need is for data across a range of malaria transmission intensities and among women 

with a range of CD4 cell counts, in order to assess whether forsaking SP-IPTp for CPT is 

beneficial across all levels of CD4 and malaria transmission intensity. There are 

opportunities to compare various health and birth outcomes in HIV-infected women by CPT 

status due to the flexibility of the WHO guidelines regarding the recommended CD4 values 

for initiation of CPT.1 This allows for RCTs of the effects of CPT in women with higher CD4 

counts in order to assess the value of CPT in these women.  Given the increasing access to 

ART, it is also important to assess whether the value of CPT changes once women are 

receiving more comprehensive treatment for HIV. 
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Conclusion 

CPT has proven to be an important prophylactic measure in the HIV-infected 

population. This intervention is particularly valuable as access to more comprehensive care is 

lacking across much of SSA.  This dissertation adds to the limited literature on CPT in HIV-

exposed, uninfected infants, and demonstrates limited benefits of CPT through protection 

against malaria.  CPT also appears to be an adequate substitute for SP- IPTp in HIV-infected 

pregnant women. The analyses described are valuable in order to clarify the impact of this 

intervention in these highly vulnerable populations, where resources are extremely limited 

and where it is crucial to have a comprehensive understanding of any intervention used to 

protect against the multitude of health threats plaguing the region bearing the brunt of the 

HIV epidemic.  
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APPENDIX A. Aim 1B Using a Broader Definition of Anemia 

A broader definition of anemia was used to explore whether CPT had an effect on 

time to anemia when including milder anemia. For this analysis, anemia was defined as a 

hemoglobin level below 10g/dl after six weeks of age, corresponding to grade 2 or higher 

anemia according to toxicity tables from the Division of AIDS at the National Institute of 

Allergy and Infectious Diseases (NIAID), as revised in March 2006. 

Anemia was seen in 170 CPT-unexposed patients and 659 CPT-exposed patients 

(Table 2). The unadjusted HR for anemia was 0.85 (95% CI, 0.72, 1.01). The effect of CPT 

appeared to change over time, based on the log-log plot and the statistical significance of a 

continuous interaction term entered into the model, assessed through comparison of 

likelihood ratio test comparing a model with and without the interaction term. A categorical 

interaction term was fit to the model corresponding to 20 weeks of treatment (at 26 weeks of 

age). Inclusion of this time interaction resulted in an HR in the time period up to 20 weeks or 

0.94 (95% CI, 0.77, 1.15), and an HR from 20 weeks to 36 weeks of 0.64 (95% CI, 0.46, 

0.88). The covariates examined did not meet the criteria for inclusion in the final model. 

The timing of this protection coincides with the time when women were counseled to 

rapidly wean their infants from breastfeeding. Infants are born with iron stores which are 

generally sufficient for the first 4-6 months of life,124 and while iron is bioavailable in 

breastmilk, it decreases over time.125 Following cessation of breastfeeding infants can be 

susceptible to anemia if they are not ingesting foods with sufficient iron content.131-133  It is 

unknown if the observed association is causal, and, if causal, through which mechanism CPT 

could protect HIV- exposed, uninfected non breastfeeding infants from anemia.  
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APPENDIX B.  Additional analyses for Aim 2 

Additional analyses were performed to assess malaria not only during pregnancy but 

through the entire follow-up period. We also examined anemia and first hospitalization and 

death in these women.  

The baseline time for analysis of malaria was the second visit during pregnancy, at 

which point, following June 2006, CPT was started in women who met CPT initiation criteria 

based on CD4 at the screening visit. The baseline time for anemia was two weeks 

postpartum. This time point was chosen because following the blood collection at the 

screening visit, blood was not routinely drawn until birth. Due to the gynecological issues 

which can cause anemia at that timepoint, which we did not feel were likely to be affected by 

CPT, we chose to begin analysis of anemia at the two weeks after the mother gave birth. 

Baseline time for SAEs was birth, since this is when serious adverse events were routinely 

monitored. 

 There were 56 women diagnosed with malaria in the CPT-unexposed group, and 150 

in the CPT-exposed group. The HR for the effect of CPT on malaria was 0.57 (95% CI 0.42, 

0.77). None of the covariates explored met the criteria for inclusion in the final model as an 

effect measure modifier or confounder. As was done with the analysis of malaria during 

pregnancy, a sensitivity analysis including women with a CD4 cell count greater than 500 

was performed. The HR for the effect of CPT on malaria, adjusted for period of participation, 

was 0.91 (95% CI, 0.55, 1.50).  

 Analysis of anemia after birth was performed based on the 9 anemia events among 

CPT-unexposed women and 23 events among CPT-exposed women. The unadjusted HR for 

the effect of CPT on incident anemia after birth was 0.63 (95% CI, 0.29, 1.37). None of the 
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covariates explored met the criteria for inclusion in the final model as an effect measure 

modifier or confounder. 

 There were 75 hospitalizations or deaths eligible for inclusion in the analyses among 

women. Of these, 17 were among CPT-unexposed women, 58 were among CPT exposed 

women. The unadjusted HR for the effect of CPT on severe illness was 0.86 (95% CI, 0.49, 

1.49). None of the covariates explored med the criteria for inclusion in the final model as an 

effect measure modifier or confounder.  

 The analyses of malaria produced very similar results to those seen when focusing on 

the period of pregnancy. The sensitivity analyses led us to the conclusion that after 

adjustment for period of participation, CPT did not offer a protective effect against incident 

malaria.  

 CPT also was not associated with a protective effect against moderate or severe 

anemia after birth, or against severe illness over the time period examined in these analyses.  
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