
QUANTITATIVE METHODS FOR EVALUATING ASSOCIATION BETWEEN 
MULTIPLE RARE GENETIC VARIANTS AND COMPLEX HUMAN TRAITS 

 
 
 
 
 

Andrea E. Byrnes 
 
 
 
 
 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Biostatistics in the Gillings School of Global Public Health. 
 
 
 
 
 

Chapel Hill 
2013 

 
 
 
 
 

Approved by: 
 

Ethan M. Lange 
 
Yun Li 

 
Patrick F. Sullivan 

 
Wei Sun 
 
Michael C. Wu 

 



 ii 
 

 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2013 
Andrea E. Byrnes 

ALL RIGHTS RESERVED



 iii 
 

ABSTRACT 

Andrea E. Byrnes: Quantitative Methods for Evaluating Association between Multiple 
Rare Genetic Variants and Complex Human Traits 

(Under the direction of Yun Li) 

First, we propose two methods for aggregation of rare variants in data from 

Genome-wide Association Studies (GWAS), a weighted haplotype-based approach and 

an imputation-based approach, to test for the effect of rare variants with GWAS data. 

Both methods can incorporate external sequencing data when available. Our methods 

clearly show enhanced statistical power over existing methods for a wide range of 

population-attributable risk, percentage of disease-contributing rare variants, and 

proportion of rare alleles working in different directions. We thus demonstrate that the 

evaluation of rare variants with GWAS data is possible, particularly when public 

sequencing data are incorporated. 

Second, we present a systematic evaluation of multiple weighting schemes 

through a series of simulations intended to mimic large sequencing studies of a 

quantitative trait. We evaluate existing phenotype-independent and phenotype-dependent 

methods, as well as weights estimated by penalized regression. We find that the 

difference in power between phenotype-dependent schemes is negligible when high-

quality functional annotations are available. When functional annotations are unavailable 

or incomplete, all methods lose power; however, the variable selection methods 

outperform the others at a cost of increased computational time. In the absence of highly  
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accurate annotation, we recommend variable selection methods (which can be viewed as 

“statistical annotation”) on top of regions implicated by a phenotype-independent 

weighting scheme. 

Finally, we propose a method to apply the Sequence Kernel Association Test 

(SKAT), a similarity-based approach for rare variant association, to data from admixed 

populations by first estimating local ancestry for each variant. In simulations, we find that 

when the true causal alleles are causal only from only one ancestral population, our 

proposed approaches show a marked improvement in power over the original SKAT 

method. In real data, our results support the previously reported European-specific 

association and illustrate the increased statistical power of the proposed methods to find 

such associations. 
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CHAPTER 1: MOTIVATION AND BIOLOGICAL JUSTIFICATION 

In this document, we will discuss statistical methods for assessing association 

between sets of rare genetic sequence variations and complex human traits. This section 

provides an overview of the biological problems we are interested in and the some of the 

statistical strategies employed in an attempt to solve them. 

To begin, DNA is a double-stranded molecule consistent of four nucleic acid 

components: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). DNA is found in 

the nucleus of the vast majority of plant and animal cells and has been compared to a 

blueprint for the organism in which it is found. Humans have 22 autosomes, in addition 

to the sex chromosomes X and Y and mitochondrial DNA, accounting for over 5 billion 

base pairs in total. We will consider primarily autosomal DNA, for which each individual 

possesses two copies, one inherited maternally and the other paternally. Over 99% of the 

DNA sequence is the same across humans (Ohno, 1972), however there are a large 

number of ways in which human DNA sequence can differ from one another in a single 

region including microsatellites, copy number variations (CNVs), insertions, deletions, 

inversions and single nucleotide polymorphisms (SNPs). Any one of these can be called a 

genetic variant, meaning that it contains a sequence of nucleic acids that is different from 

the consensus sequence or from what is most common. 

A single nucleotide polymorphism is one such genetic variant that occupies only 

one base pair. As previously stated, much of the genome is shared across humans, 

however some of these variants, SNPs included, are quite common with variant or minor 
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allele frequency (abbreviated MAF) near 0.5. Because of this, a great deal of genetic 

variation can be measured by a relatively small subset of these SNPs. In the 

1990’smicroarray technologies from companies like Affymetrix and Illumina began to 

capitalize on these common SNPs in the form of genome-wide SNP platforms. Today 

these technologies can accurately assess up as many as 1 million pre-selected SNPs [e.g. 

the Affy Axiom or Illumina 1M], however these technologies are limited in that they 

cannot discover new variants. Though rare variants outnumber common ones (1000 

Genomes Consortium et al., 2010; Mathieson & McVean, 2012), rare variants are seldom 

included in GWAS panels since they contain little information in relatively small sample 

sizes. This stands to reason since a marker that is not polymorphic or barely polymorphic 

in a sample provides little or no statistical power to detect association between the single 

SNP and the outcome of interest.  

GWAS studies yielded promising genetic loci in association with many complex 

human traits such as coronary artery disease, diabetes, bipolar disorder, rheumatoid 

arthritis, obesity and height (Frayling et al., 2007; Weedon et al., 2008; WTCCC, 2007), 

but ultimately could not explain the extent to which these traits appear to be inherited. 

This phenomenon came to be known as “missing heritability” (Maher, 2008; Manolio et 

al., 2009). Some investigators proposed that the apparent missing heritability was due to 

rare or even private mutations and that association testing for these types of variants was 

not possible without whole sequence data on thousands of individuals, if at all. These 

authors advocated abandoning large scale GWAS for complex traits (Goldstein, 2011). 

Others argued that the missing heritability could also be due to several relatively common 

variants of modest effect size and that current GWAS sample sizes were not large enough 
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to elucidate these associations. (Sullivan, 2012) The GWAS study design remains 

popular, partially due to the emergence of genome imputation for variants not typed. 

Though rare variants are not typed by the GWAS chips themselves, imputation methods 

use information from an outside panel such as HapMap or 1000 Genomes to predict the 

genotypes of markers not in the GWAS panel, including some rare variants, via Markov 

Chain Monte Carlo (Y. Li, Willer, Ding, Scheet, & Abecasis, 2010; Y. Li, Willer, Sanna, 

& Abecasis, 2009; Marchini & Howie, 2010). 

From 2009 to the present, “next generation” sequencing technologies have 

brought the cost of whole exome and whole genome sequencing down to hundreds of 

dollars per sample. These rapid advances in technology allowed investigators to collect 

larger samples (hundreds or thousands of individuals) that evaluate every base of the 

genome (or exome), which was previously unimaginable due to cost. Investigators can 

now evaluate thousands of known rare variants and discover previously unknown 

variants with these technologies. However, for rare variants, evaluating each variant 

independently as in GWAS analysis requires a sample size far greater than even these 

studies can provide. Further if, a variant is unique to one individual, or “private,” no 

study design will discover this causal relationship if each variant is evaluated one at a 

time. Because of this, the idea of combining information from multiple variants across a 

genomic region, gene or pathway became increasingly popular. 

Previously, we have discussed the MAF as a fixed quantity; however, data from 

Hapmap (International Hapmap Consortium, 2005) and 1000 Genomes (1000 Genomes 

Consortium et al., 2010) demonstrate that MAF can vary greatly across populations. In 

fact, the existence of a particular variant can be population-specific. When dealing with 
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data from a single ancestral population, this does not change the conclusions greatly; 

however, when two or more populations are present in the study sample these differences 

can quickly lead to incorrect results. In particular, populations in which more than one 

ancestral population’s genetic contribution is present in most or all of the individuals, e.g. 

African American or Hispanic populations, can be especially complicated. Such 

populations are known as admixed populations and many methods have emerged to 

adjust for the complexity they bring to genetic studies. 

This compilation of projects attempts to survey and compare the methodology of 

several existing methods for the aggregation of rare variants across a genomic region 

(e.g. gene, exon, pathway). We also aim to improve upon some of these methods and 

adapt them for use in admixed populations. The next section deals with the history rare-

variant collapsing methods and their evolution from simple counting methods, to more 

complex systems of weighting that utilize phenotype information, and finally, to 

similarity-based methods which use more complex statistical techniques to assess 

genomic similarity between individuals and their trait of interest. 

The third chapter proposes two methods, a weighted haplotype-based approach 

and an imputation-based approach, to test for the effect of rare variants with GWAS data. 

Both methods can incorporate external sequencing data when available. We evaluated our 

methods and compared them with methods proposed in the sequencing setting through 

extensive simulations. Our methods clearly show enhanced statistical power over existing 

methods for a wide range of population-attributable risk, percentage of disease-

contributing rare variants, and proportion of rare alleles working in different directions. 

We also applied our methods to the IFIH1 region for the type 1 diabetes GWAS data 
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collected by the Wellcome Trust Case-Control Consortium. Our methods yield p-values 

on the order of 10-3, whereas the most significant p-value from the existing methods is 

greater than 0.17. Therefore, we demonstrate that the evaluation of rare variants with 

GWAS data is possible, particularly when public sequencing data are incorporated. This 

work was published in the American Journal of Human Genetics in 2010 (Y. Li, Byrnes, 

& Li, 2010). 

The forth chapter presents a systematic evaluation of multiple weighting schemes 

through a series of simulations intended to mimic large sequencing studies of a 

quantitative trait. We evaluate existing phenotype- independent and phenotype-dependent 

methods, as well as weights estimated by penalized regression approaches including 

Lasso (Tibshirani, 1996), Elastic Net (Zou & Hastie, 2005), and SCAD(Xie & Huang, 

2009). We find that the difference in power between phenotype-dependent schemes is 

negligible when high-quality functional annotations are available. When functional 

annotations are unavailable or incomplete, all methods suffer from power loss; however, 

the variable selection methods outperform the others at the cost of increased 

computational time. Therefore, in the absence of good annotation, we recommend 

variable selection methods (which can be viewed as “statistical annotation”) on top of 

regions implicated by a phenotype-independent weighting scheme. Further, once a region 

is implicated, variable selection can help to identify potential causal single nucleotide 

polymorphisms for biological validation. These findings are supported by an analysis of a 

high coverage targeted sequencing study of 1,898 individuals. 

The final section proposes a combination method to apply the SKAT similarity-

based approach (Wu et al., 2011) to data from admixed populations by first estimating 
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local ancestry for each variant using Hapmix (Price et al., 2009) and MaCH-Admix (Liu, 

Li, Wang, & Li, 2013). We find that when the true causal alleles come only from the less 

common ancestral population, this approach shows a marked improvement in power over 

the original SKAT method alone. When the true causal alleles come only from the more 

prevalent ancestral population, however, the SKAT approach alone seems adequate to 

capture the association signal. This work is not yet complete, but we outline the proposed 

next steps in the final part of this section, which include more simulation replicates and 

the application to a real data set. 
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CHAPTER 2: LITERATURE REVIEW 

 This section presents a partial review of many of the papers previously published 

on the topic of collapsing information across rare variants. It is by no means complete 

since the number of these papers is quite large; however, it is an attempt to show the 

development of several methods used to attack this problem. Mathematical notation 

between the works discussed here is also quite diverse, so n the description of many of 

these works, some of the mathematical notations (variable names, etc.) has been altered 

slightly to keep the notation as consistent as possible throughout this document. 

2.1 Early Methods 

Before the advent of high-throughput genomic sequencing, it had been 

hypothesized that collections or combinations of rare variants could be responsible for 

some of the heritability in human complex traits. When GWAS and other studies turned 

up promising candidate genes, many researchers invested in re-sequencing and other 

molecular experiments in order to learn more about these candidates. The first methods 

for association of rare genomic variants arose from the need to analyze these data. 

Well before the rise of “next generation” genome sequencing technologies, 

(Cohen et al., 2004) demonstrated that rare alleles could indeed have a measureable effect 

on human traits. Cohen et. al. sampled 128 individuals from the top and bottom five 

percent of the HDL cholesterol distribution in the Dallas Heart Study. All subjects were 

sequenced for three candidate genes, ABCA1, APOA1 and LCAT. Non-synonymous 

mutations (that is, variation that effects the resulting protein) were considerably more 
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common in the low HDL group as compared to the high HDL group, most notably in 

ABCA1, (p<0.0001). The investigators reported that one in six individuals with low HDL 

had a rare mutation in ABCA1 or APOA1 and went on to replicate these findings in a 

Canadian sample, thus making a strong case for the involvement of rare sequence 

variants in complex disease. These investigators did not develop a novel statistical 

method for assessing the combined effects of rare variants on the genome-wide scale, but 

they did demonstrate the potential impact of considering associations with combinations 

of rare variants. Note also that the rare variants were found primarily in the low HDL 

group, suggesting that these variants exhibit a protective effect. It had been previously 

suggested that genetic variants can, in most cases, be assumed to have null or deleterious 

effect. Variants of protective effect were (and are still) considered the exception, rather 

than the rule. However, the results of this study show the importance of detecting 

association between genetic variants and human phenotypes in either direction. 

As the interest in rare variation grew, so too did the interest in capturing their 

associations statistically. An approach similar to that described above was formalized by 

(Morgenthaler & Thilly, 2007). In their manuscript, the authors emphasized the 

importance of limiting these tests to promising genes and adjusting for many important 

biological variables such as the number of genes and variants expected to be truly 

involved in the etiology of the trait. In this work, Morgenthaller and Thilly focused 

primarily on case-control studies and they suggested using the rare variant count among 

cases compared that of controls to conduct a T-test for association between the rare 

variant “burden” and the disease of interest. They named this method cohort allelic sum 
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test (CAST). Note that this test only compares counts of rare alleles, and so information 

must be pooled across individuals and across markers. 

In 2008, Li and Leal proposed the Combined Multivariate and Collapsing (CMC) 

method to collapse across variants across genomic regions, functional groups, MAF 

categories or other groupings (B. Li & Leal, 2008).  These authors advocated first 

splitting the M markers into k groups (for example, by MAF bin) and then using a 

collapsing method in which, for each individual i, in the set of variants under study, Li 

and Leal suggested computing Xi as follows, 

Xi =
1,
0,

rare variants present
rare variants absent

⎧
⎨
⎪

⎩⎪
 

so that any individual with rare variants present was given weight 1 and all others have 

weight 0. This reduced the dimension of the multivariate test from M to k, making a 

multivariate test feasible where it may not otherwise be. Unlike the approach of 

(Morgenthaler & Thilly, 2007), Li and Leal collapsed information across markers, within 

individual, for each group k. The authors reported good results for situations in which one 

or more rare variants in the same group were truly deleterious. 

 In the same year, (M. Li, Wang, Grant, Hakonarson, & Li, 2009) proposed a 

method to use the information contained in outside data sets (e.g. HapMap) to better 

assess association between traits and genotypes called ATOM. Genotype imputation had 

also been helpful in gaining information about un-typed markers in GWAS studies (Y. 

Li, Willer, et al., 2010; Y. Li et al., 2009); however, unlike the imputation study design, 

ATOM did not require that each un-typed variant be explicitly imputed. ATOM aimed to 

assign weights in markers based on the amount of association they have with the trait 
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locus, which was assumed to be un-typed. It did so by capitalizing on the correlation or 

linkage disequilibrium (LD) structure of the region. Suppose that the external data set has 

Me markers and Me > M. For each pairwise combination of variants in the original data 

set, j ∈{1,2,...,M} , and each marker in the external data set l ∈{1,2,...,Me} , the weight 

wj
l  is computed, 

wj
l =

Δ j
l

q j (1− qj )
, 

where qj is the minor allele frequency at variant j from the reference data and Δ j
l  is the 

linkage disequilibrium (LD) coefficient for markers l and j. Then, for each of the markers 

in the external data set, l ∈{1,2,...,Me}  the authors computed the score, 

Sil =
1
m

wj
l xij

j=1

M

∑  

so each individual had Me scores. Then the authors performed principal component 

analysis (PCA) on these scores, thus reducing the dimension of the problem significantly. 

The principal components were then tested for association with the trait by conventional 

regression methods without permutation. ATOM performed well compared to other 

previous methods in terms of power and also performed well when compared to simple 

haplotype approaches not discussed here. 

In 2009, Madsen and Browning similarly hypothesized that rarer variants were 

more likely to have deleterious effects and that a higher burden of rare variants should 

likewise be more harmful than one lone rare variant. With this motivation, they proposed 

a simpler method that does not rely on an external dataset called the Weighted Sum (WS) 

method for case-control data. (Madsen & Browning, 2009) These investigators used the 
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estimated minor allele frequency (MAF) of marker j among controls, denoted qj, where, 

qj =
xij

i=1

Ncontrol

∑ +1

Ncontrol + 2
 to construct weights, ŵ j = Ntotalqj (1− qj )  

so that, the rarer the allele, the 

smaller the quantity ŵ j . Madsen and Browning then computed the genetic scores for 

each individual, denoted Si =
xij
ŵ jj=1

M

∑ . Thus, the largest components of this weighted sum 

came from the variants rarest among controls. This stands to reason since deleterious 

alleles may confer a selective disadvantage and therefore be less common in the 

population than neutral or beneficial ones. Madsen and Browning performed a Wilcoxon 

Rank Sum test on the collection of Si’s to assess significance. The many simulations 

presented in the Madsen and Browning manuscript show the Weighted Sum (WS) 

method distantly outperforming CAST, CMC and single variant tests in terms of power to 

detect rare variant association in a number of situations. They also demonstrated their 

methods’ improved power by applying it to the ENCODE data. 

In the following year, Price et. al. proposed a similar method to allow for an 

unknown threshold on MAF, denoted T, below which variants may be substantially more 

indicative of a functional variant (Price et al., 2010). As motivation for the idea, Price, et. 

al. first constructed a weighted sum with a fixed threshold, T, and constructed genetic 

scores, Si = ξ j (2− xij )yi
j=1

M

∑  where ξ j = I(qj < T )  and yi is the outcome of interest. The 

authors evaluated both T=0.01 and 0.05. Price et. al. then generalized this approach to 

their Variable Threshold (VT) method by constructing a Z-scores, Z(T), for a range or T 
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values. The Z-score Z(t) is constructed,Z(t) = ξ j
T (2− xij )(yi − y )

i=1

N

∑
j=1

M

∑ , where y = 1
N

yi
i=1

N

∑  

is the mean of the outcomes yi. The value of T that maximizes Z(t) in each case was then 

chosen as the threshold. Because of this step, the Wilcoxon Rank Sum test was no longer 

valid and statistical significance needed to be assessed by permutation. The authors found 

their VT approach had greater power than WS and fixed-threshold methods in 

simulations for both dichotomous and continuous outcomes. (Price et al., 2010) also 

applied their VT method to Polyphen-filtered data (Ramensky, Bork, & Sunyaev, 2002) 

and found a greater improvement in power with the addition of good bioinformatics data. 

Also in 2010, a manuscript in Genetic Epidemiology (Morris & Zeggini, 2010) 

presented a simple experiment demonstrating the importance of the choice of weighting 

scheme for these types of approaches and the potential for falsely significant results due 

to non-causal rare variants. The authors tested two scoring methods, which they call 

RVT1 and RVT2. RVT1 constructed weights for predefined genomic regions according 

to the proportion of rare variant sites at which an individual i had 1 or 2 copies of the 

minor allele, thus fitting the following model. 

yi =α +λ
I(xij > 0)I(qj < T )

j=1

M

∑

I(0 < qj < T )
j=1

M

∑
+γZi +εi , where εi ~ N(0,σ

2 ) , Zi is a vector of covariates 

and T is the threshold for determining the definition of “rare” in this case. Morris and 

Zeggini’s other model, named RTV2, assigned weights out of an indicator function, 

which took value 1 when any rare variant sites contained one or more copies of the minor 

allele in individual i and 0 otherwise. 
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yi =α +λI I(qj < T )xij
j=1

M

∑ > 0
"

#
$$

%

&
''+γZi +εi , where εi ~ N(0,σ

2 )  and Zi and T are as before. 

The authors found that the weighting scheme based on the proportion of rare variant sites 

(RVT1) with one or more minor alleles had equal or greater power to the method that 

only considers whether rare variants are present or not. Morris and Zeggini demonstrated 

that this power difference was most pronounced when the number of non-causal rare 

mutations increases. Since RVT1 gave larger weight to individuals with a larger burden 

of rare variants, these same individuals were more likely to carry one or more rare 

deleterious variants. 

2.2 Using the outcome to inform choice of weights 

Though diverse, the early methods for rare variant association demonstrated the 

importance of combining the data in an intelligent way, rather than simply searching for 

the presence or count of rare variants. Many of these methods were devised for 

application to GWAS data and GWAS data after imputation using an outside reference 

panel, as described in the previous section. The advent and refinement of “Next 

Generation” sequencing technology only made such methods more appealing and, in a 

relatively short period of time, a plethora of new methods arose, many of them attempted 

to directly estimate a weight for each marker by explicitly using the outcome 

measurements. In this section, we will outline several such previously proposed methods 

for binary and continuous outcomes. 

 To start, (Han & Pan, 2010) described a method to use the information from 

individual markers via marginal logistic regression coefficient estimates for case-control 
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data. Han and Pan suggested first fitting a series of univariate regression models of the 

form, 

logit Pr(Yi =1) = β0 + xijβ j  

where Yi is the case or control status of individual i, and xij is the genotype for individual i 

at locus j as before. From each such model, the estimated coefficient, β j , and a p-value, 

pj, were used to estimate the weight for each marker. First, the genotype data was recoded 

such that, 

xij
* =

xij,

2 − xij,

if β j ≥ 0 and pj <α0

if β j < 0 and pj <α0

⎧
⎨
⎪

⎩⎪
, 

where α0  is a predetermined p-value threshold, so that the coefficient, 

β̂c =
xij
*2 β j

j=1

M

∑
i=1

N

∑

xij
*

j=1

k

∑
⎛

⎝⎜
⎞

⎠⎟

2

i=1

N

∑
 

from the model, logit Pr(Yi =1) = β0 + xijβc
j=1

M

∑ , which assumes (probably incorrectly) that 

all variants with causal effect had the same odds ratio. The authors tested the hypothesis 

H0 : βc = 0  with the usual score test. Despite the questionable assumption of a constant 

odds ratio for all causal variants, this method performed well in comparison to previous 

methods in terms of power and type I error. Also note that, because the data were used to 

estimate the weight each variant received in the analysis, analytical p-values could not be 

evaluated here. Instead, the authors advocated a permutation approach in which the Yi are 

shuffled randomly to attain a correct p-value. 
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In 2011, Zhang et. al proposed a similar method that also used the results of single 

marker tests in to inform the choice of weights for each marker (Zhang, Irvin, Arnett, 

Province, & Borecki, 2011). Assume single marker tests via linear (for continuous 

outcomes) or logistic (for binary outcomes) have already been conducted and for each 

marker, we have an estimate of the coefficient for marker j, bj and the standard error of 

that estimate, sbj. The investigators proposed fitting the model, 

Yi =α + β wjxij
j=1

M

∑ + ε i  

where xij in the number of minor alleles at locus j for individual i and wj is the weight 

assigned to marker j determined by, 

wj = 2{p(t ≤ t j )− 0.5},  with t j =
bj
sbj

. 

where the distribution of t is determined empirically from all of the single marker tests 

conducted. The probability p(t ≤ t j )  is a left tail p-value, and so the test was named the p-

value weighted sum test (PWST). In order to assess significance, the authors simply 

tested the hypothesis, H0 : β = 0 . PWST was also shown to perform well compared to 

phenotype-independent approaches. 

In 2011, Lin and Tang rigorously showed that the optimal unbiased weight for 

each variant was proportional to the true coefficient β j  in the limit. (Lin & Tang, 2011) 

Since the coefficient could be estimated from the data, it seemed sensible to set , 

where β̂ j  is the appropriate estimate of the coefficient β j . However, the authors pointed 

out two problems with this approach. First, using these weights, their test statistic T 

would not be asymptotically normal and, second, the values of β̂ j  were relatively 

ξ j = β̂ j



 16 
 

unstable considering that the variants in question are rare and the sample size was finite. 

The authors instead proposed a compromise in which they fit the model, 

Yi =αi0 +αi + β j xij +εi
j=1

M

∑ , where εi ~
iid
N(0,σ 2 )  is assumed and construct weights

, where delta is a known constant. Then the genetic score was constructed, as 

in previous methods, Si = ξ j xij
j=1

M

∑ , and evaluated with a score statistic. The authors 

named this method EREC (Estimated Regression Coefficients) and found it performed 

well is simulations and on real data, though some of the similarity approaches (discussed 

in the next sub-section) produced smaller p-values when applied to real data. The EREC 

method cannot be applied in cases where M>N and is not intended to account for variant 

effects in different directions. 

In the same year, a Bayesian method that used the data to directly estimate the 

weights of the individual markers, in addition to assessing to significance of the 

association between genotypes and trait (as in EREC), was proposed by (Yi & Zhi, 

2011). Since this method was intended for use on case-control data, the investigators 

ultimately aim to fit the logistic model, logit Pr(Yi =1) = β0 + xijβ j
j=1

M

∑ , which they 

rewrote as logit Pr(Yi =1) = β0 + β xijα j
j=1

M

∑ . They then rephrased the problem, first 

estimating the α j, j ∈{1,2,...,M} , and then testing, H0 : β = 0 . Yi and Zhi offer a 

different solution to the problem of instability for the estimates of the individual weights 

ξ j = β̂ j +δ
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from (Lin & Tang, 2011) by putting priors on the parameters α j  and β . The authors 

proposed an informative prior on the α j ,  

α j ~ N(µ j,τ j
2 ),  τ j

2 ~ Inv − χ 2 (1, sα
2 )  

where sα
2  was chosen to be a small value such as 0.5. Yi and Zhi point outed that the 

choice of the Student-t priors on α j  are designed to better deal with disparate effects. 

The prior parameter µ j  could be manipulated according to the prior knowledge about the 

variant j, and though the authors did not do this, they suggested using frequency 

distribution or functional credibility to determine the value of µ j . Because of the rarity 

of the alleles in question, the variance of xijα j
j=1

M

∑  could be quite low and so, the estimate 

of β  could also become unstable, the authors suggested a weakly informative prior on β  

β ~ N(0,τ β
2 ),  τ β

2 ~ Inv − χ 2 (1, 2.52 )  

which was meant to keep the β  parameter in a reasonable range. This Bayesian linear 

model was fitted using Markov Chain Monte Carlo and showed good results for type I 

error and power far surpassing any of the phenotype-independent methods discussed in 

the previous sub-section. This gain in power was particularly noticeable when the effects 

of the causal variants acted in opposite directions. This method was not, however, 

compared to any other phenotype-dependent methods previously discussed. 

2.3 Similarity-based approaches: why weight?  

Simultaneously with many of the methods discussed above, many statistical 

geneticists and biostatisticians began to question if weighting each individual marker was 

necessary at all. While having weights for individual markers may be helpful in 
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determining the disease etiology in some cases, simply implicating a gene or molecular 

target can also be helpful to biological and pharmaceutical researchers. The above 

methods directly estimate a weight for each marker, but the following methods are aimed 

at implicating a genomic region by collapsing sets of markers that tend to be shared 

across two individuals when the outcomes are also similar. 

One of the first of such methods was proposed well before the popularization of 

“next generation” sequencing techniques by (Schaid, McDonnell, Hebbring, 

Cunningham, & Thibodeau, 2005). Schaid and colleagues suggested using a U-statistic of 

the form, 

Uglobal =
K(xi, xi ' )

i<i '
∑

N
2

⎛
⎝⎜

⎞
⎠⎟

= wj

K(xij, xi ' j )
i<i '
∑

N
2

⎛
⎝⎜

⎞
⎠⎟

j=1

M

∑ = wjU j
j=1

M

∑  

where K(xi, xi ' )  is a symmetric kernel function that compares the genotype of individual i 

to that of individual i’. Specifically, it is the weighted sum of the variant- 

specific kernels, 

Uj =
K(xij, xi ' j )

i<i '
∑

N
2

⎛
⎝⎜

⎞
⎠⎟

. 

The authors suggested two kernels with which to quantify the similarity of individual i 

and i’ at locus j: first the “allele-match” kernel, which was a simple count of the number 

of alleles at locus j that match between individuals i and i’. Second, the “linear dosage” 

kernel added the number of the minor alleles at locus j together for individuals i and i’. A 

normalized version of these U-statistics were compared to several simpler methods, such 

as simply taking the maximum signal from the region and the conventional multivariate 
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T-test with good results for power and type I error under most conditions, particularly 

when the number of risk loci rose above 5. 

(Neale et al., 2011) also suggest a method to test for any association between a set 

of genotypes and phenotype rather than individually estimating weights for each marker. 

For motivation, the authors used the example of set of M coins that could be either fair or 

biased. Each coin could land as either a case or a control and, if the coin was fair, it 

would land case and control with equal probability. If the coin was biased (i.e. if the 

marker is associated with the trait in either direction), they expected the coin to land 

preferentially as a case or as a control. Thus, the Cα tests for the presence of biased coins 

over the M markers, rather than a test for single biased coin. The Cα  test statistic 

compares the variance of each observed count with the expected variance and then sums 

over all variants. 

T = [(xcase, j − xtotal, j p0 )
2 − xtotal, j p0 (1− p0 )]

j=1

M

∑  

where p0 is the expected number of times the minor allele is expected to turn up in the 

cases, given the number of total copies of the minor allele in the sample and assuming 

that the jth marker is like a fair coin, that is p0 =
xtotal, j
2

 for xtotal, j ≥ 2 . The obvious 

problem with this setup was singleton counts, since they contain no variance information. 

The authors suggested binning all of the singleton counts into one category and 

proceeding as if they were all from one marker. The quantity T was then normalized and 

compared to a one-tailed normal distribution. The Cα  test performed well in terms of 

power when compared to simple burden tests like that of (B. Li & Leal, 2008; Madsen & 

Browning, 2009), however the asymptotic properties of the proposed statistic had heavier 
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tails that expected, particularly when the sample size is small. Further, this test assumed 

independence between all variants and for all these reasons, the authors suggested using 

permutations to assess significance particularly in the presence of LD or when sample 

size is small. 

Later in 2011, Wu and Lee et. al. suggested a more general test with an arbitrary 

weight matrix also using kernel methodology to compare the genomes of all N samples 

called SKAT (Wu et al., 2011). As with many of the methods considered above, SKAT 

aimed to fit a model of the form, Yi = µ + βX  that may or may not also have covariates 

included in the µ  component. They proposed a statistic Q of the form,  

Q = (Y − µ̂)'K(Y − µ̂) ,  where K = XWX '  

in which X is the N ×M  matrix of minor allele counts, as before and W is a matrix of 

weights that can be specified by the users. Wu, Lee and colleagues explored several 

kernels to incorporate information from various data types to provide a more powerful 

test. The matrix K was constructed to measure the pairwise genotypic similarity between 

every two individuals in the sample. The matrix W quantifies the degree of importance 

each variant. In the absence of a user derived weight matrix, the SKAT authors 

recommend using a matrix K such that K(xi, xi ' ) = wjxij xi ' j
j=1

M

∑  when no interactions 

between variants are present (linear kernel) and K(xi, xi ' ) = 1+ wjxij xi ' j
j=1

M

∑
⎛

⎝⎜
⎞

⎠⎟

2

 for when 

there are interactions between variants (quadratic kernel). They suggested choosing the 

weights according to wj = Beta(qj,1, 25)  where qj is the MAF of variant j, as before. The 

SKAT authors saw power that was much improved compared to the burden tests and 
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advocate this method over the Cα  test because it can easily account for covariates and 

interactions between variants. 

Interestingly, the SKAT authors noticed a drop in power when the true situation 

(unknown in the case of a real study) was similar to that in which the Madsen & 

Browning method (Madsen & Browning, 2009) is ideal. That is, situations where the trait 

was influenced, not by a particular subset of rare genetic variants, but by the number of 

deleterious, rare “hits” observed in the region. In 2011, Lee and colleagues proposed 

SKAT-O to optimize the test, even if this was the case (Lee et al., 2012).  SKAT-O 

performed both the SKAT test and the burden test and produces a weighted sum of the 

two. In situations where the SKAT statistic would be most powerful, SKAT-O lost very 

little power in comparison to SKAT; however, SKAT-O demonstrated a marked 

improvement over the original SKAT approach when the true association was a series of 

very low frequency hits. 
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CHAPTER 3: WHAIT 

3.1 Introduction 

In this chapter, we propose two methods to search for the aggregated effect of rare 

variants with GWAS data. Our approaches do not rely on the availability of external 

sequencing data, but they can incorporate such information when available. Moreover, 

our methods make no assumption on the direction of association of rare alleles with 

disease risk. We applied our methods, along with existing methods proposed in the 

sequencing context, to simulated data sets. Our methods demonstrated better performance 

across a wide range of scenarios with an average power improvement of 8.6% (31.6%) in 

the absence (presence) of external sequencing data. We also applied our methods to the 

Wellcome Trust Case-Control Consortium (WTCCC) type 1 diabetes (T1D) GWAS data 

set in the IFIH1 gene region, where both common and multiple rare variants have been 

found to influence the risk of T1D (Barrett et al., 2009; Nejentsev, Walker, Riches, 

Egholm, & Todd, 2009; Smyth et al., 2006). 

3.2 Methods 

3.2.1 Weighted haplotype score test 

Our first test is a weighted haplotype test. Assume a sample of N diploid 

individuals is collected, among which Ncs are affected cases and Nct are unaffected 

controls. Let m denote the number of genotyped markers in a region of interest. Further 

denote haplotypes of the N individuals by H = (H1, H2, ..., Hi, ..., HN)t, where  
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Hi = {Hi,1, Hi,2} are the two haplotypes carried by the ith individual, consisting of the m 

markers in the region. For each individual i, we define a weighted haplotype score  

as follows: 

WHSi = WHij
j=1

2

∑ , 

in which the sum is taken over the two haplotypes of individual i. Wh stands for the 

weight of haplotype h and is defined as 

Wh = I(h∈C) ⋅(−1)
I (h∈P) ⋅Sh , 

in which C is the set of disease-contributing haplotypes including both risk and protective 

haplotypes, P is the set of disease-protective haplotypes (note that P is a subset of C), and 

Sh is a score assigned to haplotype h. Following the weighting scheme proposed by 

Madsen and Browning (Madsen & Browning, 2009) for SNPs, we define Sh as 

Sh = Nct ⋅ fct,h ⋅(1− fct,h ) , 

in which fct,h denotes the adjusted frequency of haplotype h among controls and is defined 

as  

fct,h =
Cct,h +1
2(Nct +1)

, 

in which Cct,h is the number of haplotype h among controls. The rationale of using such a 

score is that a rare variant (most likely untyped in GWAS) is more likely to be tagged by 

a rare haplotype than by a common haplotype, and thus rare haplotypes should receive 

more weight in the analysis. To define the sets of the disease-contributing and disease-

protective haplotypes, we first split the data into a testing set and a training set and then 

compared the haplotype frequencies between cases and controls in the training set 
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according to the formula below: 

h∈C
h∈P

if
if

fcs,h
tr − fct,h

tr > µ
fct,h
tr (1− fct,h

tr )
2Nct

tr ,

fcs,h
tr − fct,h

tr < −µ fct
tr (1− fct

tr )
2Nct

tr ,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

   (Equation 1) 

with tr standing for “training set.” Here, µ  is a constant that is determined by a pre-

specified type I error rate. For example, µ = 1.28 (1.64) corresponds to a type I error of 

0.2 (0.1). Following (Zhu, Feng, Li, Lu, & Elston, 2010) we set µ = 1.28 and randomly 

selected 30% of the samples for training in the analysis. 

We note that by explicitly modeling the two sets of haplotypes as described 

above, we do not need to make assumptions about the direction of association between 

rare alleles and disease risk. Weighted haplotype scores are calculated in the testing set 

after identifying the two sets of haplotypes with the training set. To assess whether the 

rare variants are significantly associated with the disease, we can perform a standard 

Wilcoxon (Wilcoxon, 1945) test on the weighted haplotype scores and assess the 

significance of the test by permutations. For each permuted data set, the training set and 

the testing set will be obtained in a similar fashion as the original data set. Because 

typical GWAS data consist of genotypes rather than haplotypes, we need to infer 

haplotypes from unphased genotypes. This step can be done via standard phasing 

methods, including PHASE, fastPHASE, MaCH, and Beagle (Browning, 2006; Y. Li et 

al., 2009; Scheet & Stephens, 2006; Stephens & Scheet, 2005). We used MaCH, which 

allows the incorporation of external genotyping, haplotyping, or sequencing data. Our 

weighted haplotype approach can be applied to haplotypes consisting of GWAS markers 
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alone or to haplotypes including additional markers via incorporation of external 

reference data. 

3.2.2 Weighted dosage score test 

 Our second test is a weighted imputation dosage test. Following the notations 

defined above, we assume that there are a total of M markers genotyped or sequenced 

after the incorporation of one or more external data sets, e.g. the International HapMap 

Project (Frazer et al., 2007; International Hapmap Consortium, 2005) or the 1000 

Genomes Project (Kaiser, 2008). We have previously described a hidden Markov model-

based method that imputes untyped markers in study samples by exploiting external data 

as reference, which was implemented in software MaCH and has become standard in 

GWAS analysis (de Bakker et al., 2008).  Let D = (D1, D2, ..., Di, ..., DN)t denote the 

dosage matrices across M markers for the N study subjects, in which Di = (Di,1, Di,2, ..., 

Di,j, ..., Di,M) denotes the dosages of the ith individual. Here Dij is the dosage for the ith 

individual at marker j, which is defined as the expected number of the rare allele at 

marker j. Now we define the weighted dosage score for each individual i as 

WDSi = I( j ∈MC ) ⋅(−1)
I ( j∈MP ) ⋅Di, j

j=1

M

∑ , 

in which the summation is taken over all M markers with genotype dosage scores. Here 

MC is the set of markers with the rare allele that contributes to disease risk, and MP is the 

set of markers with the rare allele that decreases disease risk. We define these two sets by 

examining frequency difference between cases and controls, similar to Equation 1, for the 

weighted haplotype test. After obtaining the scores, the standard Wilcoxon test is applied 

to test for association with the disease, and its significance is assessed via permutation. 

We compared our proposed methods with the following three methods proposed in the 
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sequencing context. (1) Weighted SNP Test (denoted by WS) (Madsen & Browning, 

2009) is a weighted- sum method in which rare alleles are aggregated and weighted 

according to a function of minor allele frequency among controls. Despite the fact that 

the method was proposed as a test for ‘‘rare mutations,’’ it indeed sums over all markers 

by giving smaller weight to alleles with higher frequency. Although an omnibus regional-

based test that evaluates both common and rare variants is some- times desired, here we 

are interested in a regional-based test for rare variants only, assuming that common 

variants have been thoroughly evaluated by large-scale GWAS. Because of this, we 

compared our methods with both the originally proposed test (denoted by WSall) and a 

modified version of it (denoted by WSrare), in which only markers with minor allele 

frequency (MAF) < 5% are included. (2) (Zhu et al., 2010) proposed a haplotype 

grouping method (denoted by HG) that counts the number of rare risky haplotypes for 

each individual and uses a Fisher’s exact test for testing. (3) We also applied the rare 

variant collapsing method (denoted by RVC) proposed by (B. Li & Leal, 2008) which 

groups each individual into one of two groups: carrying any rare allele or not. Together 

with case-control status, a 2× 2 table is generated, and a standard test for contingency 

table (e.g., chi-square test for independence) is applied. Table 3.1 lists the above-

described tests and their abbreviations. 
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Table 3.1. Abbreviation and description of tests applied 
Test Abbreviation Description 
WDS Weighed dosage test on genotyped plus imputed SNPs with 

external sequencing data 
WHS Weighted haplotype test on genotyped plus imputed SNPs with 

external sequencing data 
WHG Weighted haplotype test on genotyped SNPs only 
HG Haplotype grouping test orioised by Zhu et. al. 
WSall Original weighted SNP test aggregating evidence over all 

(regardless of MAF) SNPs proposed by Madsen and Browning 
WSrare Modified weighted SNP test aggregating evidence over rare 

(MAF<5%) SNPs only 
RVC Rare variant collapsing method proposed by Li and Leal 
 

3.2.3 Simulation Setup 

We simulated 10,000 chromosomes for a series of 100 1 Mb regions with a 

coalescent model that mimics linkage disequilibrium (LD) in real data, accounts for 

variations in local recombination rates, and models population history, consistent with the 

HapMap CEU (CEPH people from Utah, USA) samples (Schaffner, Foo, & Gabriel, 

2005). We then took a random subset of 1000 simulated chromosomes (i.e., 500 

individuals) to serve as the external reference, mimicking the targeting sample size for 

the 1000 Genomes Project. To generate a set of GWAS markers in each region, we first 

randomly picked 120 chromosomes, mimicking Phase II HapMap CEU data. We then 

ascertained and thinned polymorphic sites to match marker density and allele frequency 

spectrum of their real-data counterparts. Based on LD measures calculated with the 120 

chromosomes, we selected a set of 100 SNPs for each region that included 90 tagSNPs 

tagging the largest number of SNPs and 10 additional SNPs picked at random among the 

remaining SNPs. The final set of retained SNPs (GWAS markers in the region) captured 

~78% of the common variants (MAF > 5%) at a conventional r2 cutoff of 0.8, similar to 

the real-data performance of the Illumina HumanHap300 BeadChip SNP genotyping 
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platform. 

Within each simulated 1Mbregion, we picked an ~50 kb region as the causal 

region in which we assume only rare variants (variants with population MAF between 

0.1% and 5%) contribute to the disease risk. We randomly selected d% of the rare 

variants in the causal region to be causal, i.e., to influence disease risk. Among these rare 

variants, we further assume that r% of them increase disease risk, whereas the remaining 

(100 – r)% decrease disease risk. To ensure that each variant only has a small 

contribution to the overall disease risk, we followed a model similar to that proposed by 

(Madsen & Browning, 2009). Specifically, the contribution of each causal variant j to the 

overall genotype relative risk (GRR) is defined as: 

GRRj =
PAR

(1− PAR) ⋅MAFj
+1

⎛

⎝⎜
⎞

⎠⎟

(−1)I (ξ j=1)

, 

in which PAR is the population attributable risk and ξ j =1  indicates that the rare allele of 

marker j decreases disease risk. Following (Madsen & Browning, 2009), we used the 

same marginal PAR for each causal variant, which intrinsically assumes that alleles with 

lower frequency have higher GRR than alleles with higher frequency. In our 50 kb core 

region, there are ~500 SNPs with MAF < 5%. To generate the chromosomes for an 

individual, we randomly selected two chromosomes {H1, H2} from the remaining 9000 

chromosomes that were not selected as external reference. The disease status of the 

individual was assigned according to 

P(affected | {H1,H2}) = f0 × GRRj
I (Hk , j=aj )

j=l

mc

∏
k=1

2

∏ , 

in which f0 is the baseline penetrance and was fixed at 10% in our simulations (1% and 
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5% were also evaluated and resulted in similar patterns but with slight power loss), mc is 

the number of causal SNPs, and aj is the rare allele of SNP j. Sampling was repeated until 

the desired number of cases and controls was reached. In our simulations, d took values 

from 10% to 50% by an increment of 10%. Among the disease risk influencing loci, we 

set the value of r, the percentage of rare alleles increasing disease risk, at 5%, 20%, 50%, 

80%, and 100%, respectively. 

For each of the 100 regions, two independent data sets with 1000 cases and 1000 

controls were simulated with the model described above. In addition, five independent 

null data sets of the same sample size were simulated, assuming no genetic effect by 

randomly sampling 4000 chromosomes (i.e., 2000 individuals) from the pool of 9000 

chromosomes. Average power was estimated based on the 100 regions, which represent a 

wide range of LD patterns. To account for local LD differences, we permuted each of the 

null sets 200 times to obtain region-specific empirical significant threshold. For the 

weighted haplotype analysis, we considered two versions: WHG, which uses haplotypes 

consisting of GWAS SNPs only, and WHS, which uses haplotypes encompassing both 

genotyped and imputed SNPs. For both the weighted haplotype tests and the weighted 

dosage test, untyped SNPs with Rsq (estimated imputation quality) < 0.3 were discarded 

from subsequent analysis (Y. Li et al., 2009). In all analyses, we used haplotypes 

reconstructed from the unphased genotypes and imputed genotypes for markers that are 

not included on the GWAS chip. Our methods (WHG, WHS, and WDS), together with 

WSall, WSrare, HG, and RVC, were applied to the 1000 null data sets within each region to 

determine the region-specific empirical significance threshold, ensuring the correct type I 

error rate of 0.05 for all tests. 
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3.3 Results 

Figure 3.1 shows the empirical power of our methods relative to the other four 

methods proposed in the sequencing context as a function of r, the proportion of rare 

alleles increasing disease risk, which ranges from 5% to 100%. We fixed PAR at 0.5% 

and d (percent of disease-influencing rare variants) at 50%. Although the synergy 

assumption is more reasonable for rarer alleles than for common alleles because rarer 

alleles tend to disrupt gene function, our knowledge regarding the direction of rarer 

alleles is still limited. Therefore, methods robust to such an assumption are desirable. 

Although all methods have decreased power when rare alleles work in different 

directions, our methods performed better by explicitly modeling the direction of 

association. For example, compared with the haplotype grouping (HG) method, the 

advantage of our weighted haplotype method (WHG, on GWAS SNPs only without the 

aid of external sequencing data) manifests more when a larger proportion of the rare 

alleles is protective: power gain is 9.1% when all of the rare alleles at disease- 

contributing loci increase disease risk, and the power gain increases to 20.7% when only 

5% of the rare alleles increase disease risk. 

Our proposed tests increase power through two different mechanisms: by using 

haplotypes to better capture information for rare variants (mostly untyped in GWAS) and 

by using external sequencing data to impute rare variants. Let us consider the first 

mechanism by examining tests on GWAS data alone, namely WHG, HG, WSall, WSrare, 

and RVC. At GWAS level, haplotype-based methods clearly manifest their advantages. 

Among the five methods, the two haplotype-based methods (WHG and HG) rank as the 

best two across the five scenarios presented in Figure 1. Note that WSall and WSrare can be 
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viewed as special cases of WDS, where the dosages only take values 0, 1, or 2 at directly 

genotyped markers. Therefore, at the GWAS level, haplotype-based methods are 

preferred over single-marker dosage-based tests. This is because causal rare variants are 

better captured by haplotypes constructed from GWAS SNPs than by those SNPs 

themselves. Between the two haplotype-based methods, our weighted haplotype method 

(WHG) increases power by an average of 13.2% over HG by weighting individual 

haplotypes (instead of lumping them together into groups) and by explicitly modeling the 

direction of association. 

Next we consider the second mechanism by looking at tests that incorporate 

external sequencing data, namely WHS and WDS. Both are more powerful than WHG, 

the best test based on GWAS data alone. The average power gain of WHS and WDS over 

WHG is 3.8% and 22.0%, respectively. At this pseudo-sequencing level (i.e., study 

subjects imputed with SNPs of sequencing density), a single-marker dosage-based test is 

more powerful than haplotype-based methods. This is not surprising because, at the 

pseudo-sequencing level, causal rare variants are better captured by their imputed 

counterpart than by haplotypes. The same applies to data at the sequencing level (i.e., 

when study subjects are directly sequenced). Of course, if there are genuine haplotype 

effects, we anticipate that WHS will perform better. To quantify the extent of better 

performance, we need more empirical data on the distribution of genuine haplotype 

effects, which is beyond the scope of this paper. Currently, we have little evidence even 

to convincingly conclude the presence of genuine haplotype effects. Therefore, with the 

presence of external sequencing data and under the assumption that single variants,

cumulatively, contribute to disease risk, we recommend WDS over WHS.
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Figure 3.1. Comparison of Power by r: Percent of Rare Alleles in the Causal Region 
that Increase Disease Risk Power of all tests was assessed at the 5% level by using 
empirical significance threshold determined by 1000 null data sets per region. 50% of the 
rare alleles in the causal region were assumed to contribute to disease risk (i.e., d fixed at 
50%), and the PAR of each contributing SNP was fixed at 0.5%. 
 

Figure 3.2 shows the power of different tests under situations with varying PAR 

and varying percentage of disease-contributing rare variants. We fixed the value of d 

(percentage of rare alleles influencing disease risk) at 100%. The value of r (percent of 

causal alleles increasing disease risk) was fixed at 50% for Figure 3.2a, and the per SNP 

PAR was fixed at 0.5% for Figure 3.2b. Although the power decreases with decreasing 

PAR or decreasing percentage of disease-contributing variants for all methods, our WHG 

and WHS are comparable, if not slightly better, than other alternatives, and our WDS is 

more powerful than the other methods by utilizing sequencing information from external 

data and explicitly modeling the SNP-level dosages. 

We note that tests on rare GWAS SNPs only (WSrare and RVC) are less powerful 

in general, because at GWAS marker density, a typical gene region may contain few, if 

any, directly genotyped rare variants. In our simulations, 64 out of the 100 regions have 

no rare variants within the ~50 kb core causal regions. These tests, proposed in the 
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sequencing context, are thus not suitable for analyzing GWAS data. 

Figure 3.2. Comparison of Power by PAR and d: In figure 3.2a, power of all tests was 
assessed at the 5% level by using empirical significance threshold determined by 1000 
null data sets per region. 50% of the rare alleles in the causal region were assumed to 
contribute to disease risk (i.e., d fixed at 50%), and all contributing rare alleles were 
assumed to increase disease risk (i.e., r fixed at 100%). In figure 3.2b, power of all tests 
was assessed at the 5% level by using empirical significance threshold determined by 
1000 null data sets per region. All rare alleles in the causal region were assumed to 
increase disease risk, and the PAR of each contributing SNP was fixed at 0.5%. 
a.      b. 

     

Encouraged by results from simulations, we applied our methods to real data. 

Multiple common and rare variants in IFIH1, a cytoplasmic helicase that mediates 

induction of interferon response to viral RNA, have been established to influence risk of 

T1D. In particular, variants disrupting IFIH1 function have been suggested to confer 

protection from T1D (Nejentsev et al., 2009). We took the WTCCC T1D data to search 

for rare variants associated with T1D susceptibility. In the WTCCC GWAS data set, 10 

SNPs were found in the IFIH1 region, with four being monomorphic in both the T1D set 

and the two control sets (NBS and 58C), leaving six SNPs for analysis. These six SNPs 

and their allele frequencies among cases and controls are tabulated in Table 3.2. We 

applied our methods, along with the others, to this data set. Because the common SNP 

rs1990760 (MAF > 30%) in IFIH1 has been found to influence T1D risk (Barrett et al., 
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2009; Smyth et al., 2006), we restricted our analysis to SNPs or haplotypes with 

frequency < 5% to rule out signals due to LD with rs1990760. Our goal is to assess 

whether there is any residual association with T1D because of rare variants, which have 

been ignored in the previous GWAS analysis. We used the March 2010 release of 60 

CEU individuals from the 1000 Genomes Project as reference for imputation. We used 

SNPs in the ~50 kb IFIH1 gene region plus 2 Mb flanking on each side for phasing and 

imputation. Again, we discarded imputed SNPs with Rsq < 0.3. For the haplotype 

grouping method, the original test failed in this data set because rare alleles in IFIH1 are 

associated with decreased risk of T1D. P-values based on 100,000 permutations are 

shown in Table 3.3. The p values from our methods are in the order of 10-3, whereas the 

most significant p value from existing methods is >0.17. This example clearly 

demonstrates the importance of using appropriate methods when searching for the effect 

of rare variants with GWAS data. 

Table 3.2. Allele frequencies of six polymorphic SNPs in IFIH1 
SNP 58C NBS T1D 
rs3747517 27.66% 26.31% 24.16% 
rs41463049 1.12% 1.06% 1.02% 
rs6432714 1.18% 1.06% 1.02% 
rs13023380 48.88% 47.46% 45.24% 
rs7559193 0.17% 0.10% 0.00% 
rs12479125 1.18% 1.06% 1.02% 

 

Table 3.3. Permutation p-values based on 10,000 permutations, for the association of 
rare variants in IFIH1 with T1D risk in WTCCC data set 

Test p-value 
WDS 0.00431 
WHS 0.00738 
WHG 0.00746 
HG 1.000 
WSrare 0.329 
RVC 0.179 
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3.4 Discussion 

In summary, we have proposed two tests to assess the impact of multiple rare 

variants on disease risk. We show through simulations and a real-data example that by 

maximally extracting information from GWAS data, as well as the incorporation of 

publicly available sequencing data, our methods provide an intermediate solution for the 

analysis of rare variants before study-specific sequencing data become available. Our 

results suggest that at the GWAS level, haplotype-based methods are more powerful, but 

at the pseudo-sequencing level (i.e., GWAS data imputed with publicly available 

sequencing data), a test based on weighted sum of single-marker dosages is more 

powerful. 

By assuming that we know the 50 kb causal region a priori, we may have 

overestimated the power in the simulations. We thus repeated the experiment by 

extending the test region to 100 kb (25 kb flanking region on either side of the core 

region) and to 200 kb (75 kb flanking on either side) to mimic the lack of knowledge on 

the lengths of regulatory regions flanking a gene or an exon. We found that the power 

difference is within 2%. In most situations, power was slightly lower, but in a few 

situations, power was slightly higher, because some variants in the non-causal flanking 

region happen to tag the causal variants better because of LD. These results are not 

surprising, because our methods can eliminate irrelevant SNPs or haplotypes by 

comparing frequency differences between cases and controls in the training data set. 

The analysis of rare variants with GWAS data is challenging because of several reasons. 

First, SNPs picked by the commonly used GWAS genotyping platforms have poor 

coverage for rare variants in general. Second, we have no catalog of rare variants in our 
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genome, and our knowledge regarding their impact on phenotypic variations is still 

limited. Third, traditional association tests are suitable for the analysis of common 

variants but are generally underpowered for the analysis of rare variants. By utilizing LD 

information and incorporating publicly available sequencing data, we show that hunting 

for rare variants with GWAS data is possible. 

Our methods are proposed for GWAS data, which are still the most commonly 

available type of data for gene mapping studies. In both our simulations and the real data 

analysis of T1D with gene IFIH1, we only have GWAS data on the study subjects. We 

compared our methods with alternatives proposed for sequencing data and demonstrated 

that methods that are specifically targeted for the analysis of rare variants in GWAS 

settings such as ours perform much better than methods that are developed for 

sequencing data. We note that our targeted ‘‘rare’’ variants (MAF 0.1%–5%) differ from 

those in methods developed in the sequencing context (including extremely rare variants 

with MAF < 0.5% or 0.1%). For extremely rare variants (MAF < 0.5%), our methods are 

expected to have low power because of low phasing and imputation quality with GWAS 

data. Although our methods are proposed for GWAS data, they can be applied directly to 

sequence data or to partially sequenced data in which selected individuals under study are 

sequenced. Therefore, our methods provide a useful alternative but are not meant to 

replace existing methods, given fundamental differences in their targeted data type 

(GWAS versus sequencing) and targeted MAF range. Because the performance of our 

weighted imputation dosage test depends critically on the imputation quality of rare 

variants (MAF < 5%), we decided to evaluate the quality in real data from the FUSION 

project (Scott et al., 2013) by masking and imputing all rare variants in a subset of 
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individuals with constructed haplotypes encompassing both common and rare variants 

from an independent set of FUSION individuals (of varying sizes) as reference. We 

found that imputation quality for rare variants improves when the sample size in the 

reference panel increases. For example, the accuracy among the heterozygotes (r2) 

increases from 83.4% (74.3%) to 97.0% (92.9%) when the number of reference 

haplotypes increases from 60 to 1000. 

Our methods and others evaluated in this study were developed for the analysis of 

rare variants, but we have found that inclusion of common variants can increase the 

power (data not shown). This is demonstrated by the superior performance of WSall (test 

that includes all variants) over WSrare (test that only includes rare variants), even though 

only rare variants that contribute to disease risk were included in our simulations. This is 

not entirely surprising, because common variants or haplotypes can carry some 

information of untyped rare variants. One major issue of including common variants in 

testing is misclassification, that is, inclusion of variants that do not contribute to disease 

risk. However, by searching for frequency difference in a training set, our methods can 

alleviate this misclassification issue. In general, we recommend testing common variants 

first, for instance, via standard single-marker test. If there is no evidence of association 

with common variants, we then search the entire MAF space for the effect of rare 

variants. When common variants are found to be associated (such as in the IFIH1 

example), we should restrict our attention to rare variants or haplotypes only to alleviate 

the residual effects of common variants. 

Both of our tests assess the effect of multiple variants in aggregate in a predefined 

genomic region, typically a known gene annotated by RefSeq or other gene annotations. 
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For real-life GWAS data, we recommend performing the tests for all known genes if no 

prior knowledge exists or for a list of one or more candidate genes in the presence of such 

knowledge. We note that the weighted dosage-based test is more flexible than the 

haplotype-based test in that it can be used to test for an arbitrary set of SNPs (for 

example, non-synonymous rare SNPs in a pathway), which may involve SNPs on 

different chromosomes. 

One issue with the haplotype-based test is that the haplotypes are not known but 

instead are inferred with uncertainty. Fortunately, most phasing methods, including 

PHASE and MaCH, can estimate the probabilities of possible haplotype configurations 

for each individual in addition to providing the best-guess haplotypes. With these 

estimates, we can easily model the phasing uncertainty into our weighted haplotype test 

by allowing possible haplotype configurations of each individual to contribute to the 

haplotype frequency estimates, as well as to the weighted haplotype score, according to 

their estimated probabilities. An alternative approach is to perform multiple imputation 

on 5–10 imputed data sets (Little & Rubin, 2010). Note that each imputed data set has to 

be drawn from a different posterior distribution to ensure proper multiple imputation. 

This can be achieved either by imputing from different reference sets (for example, from 

bootstrap samples of the HapMap or 1000 Genomes reference set) or by drawing from 

different iteration in a full Bayesian framework in which the model parameters are also 

up- dated in each iteration. Neither approach had noticeable impact on the IFIH1 real 

data set, but further work is warranted. 

Both of our proposed tests can be extended to analyze quantitative traits and to 

accommodate covariates. Both of our tests, in a nutshell, derive one ‘‘genetic score’’ for 
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each individual and assess the association between the genetic score and phenotype of 

interest. The genetic score is a weighted sum of contributing SNP dosages or haplotypes. 

Although the weights are defined for dichotomous trait in this work, we can easily extend 

the work to quantitative traits by first estimating the weights, for the very simple 

example, via regression, then deriving the genetic score accordingly, and finally 

performing the association testing. In the above general setting, covariates can be 

conveniently incorporated. 
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CHAPTER 4: FUNCTIONAL AND STATISTICAL ANNOTATION 

4.1 Introduction 

In this chapter, we present an evaluation of multiple weighting schemes through a 

series of simulations. We evaluate several existing phenotype-independent (Cohen et al., 

2004; Madsen and Browning, 2009; Morgenthaler and Thilly, 2007) and -dependent 

weighting schemes (Wu et al., 2011; Xu et al., 2012), as well as weighting schemes 

determined by linear regression, penalized regression and variable selection methods, 

including Lasso (Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005) and SCAD (Xie 

and Huang, 2009).  We conduct simulations under a variety of scenarios with different 

numbers of true causal variants, mixtures of direction of effect and availability of 

functional information, mimicking sequencing studies of a quantitative trait. We then 

apply each of these methods to a set of high coverage targeted sequencing data (Nelson et 

al., 2012) of 1898 individuals from the CoLaus population-based cohort (Firmann et al., 

2008). 

4.2 Methods 

4.2.1 Statistical Methods 

Over the last few years, numerous sensible weighting schemes have been 

proposed.  In most of these methods a genomic region or variant set is assigned a 

weighted sum over the variants meant to describe the burden of potentially influential 

variants carried by each individual. We call this weighted sum Si. Further, we assume 
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there are N individuals under study, indexed by i, and for each individual we have M 

variants in the region or variant set, indexed by j. 

First, we examine three approaches that are independent of the observed 

phenotype. The first of these is a simple indicator of whether or not rare variants (minor 

allele frequency, MAF < 0.01) are present in the region (Cohen et al., 2004). That is, 

  

where xij is the number of minor alleles observed for individual i at variant j. 

 is the estimated MAF of variant j in the data with pseudo counts and Q is 

the MAF threshold. In this work, we consider Q=0.05. 

Second, we examine a count approach which assigns a higher score to individuals 

carrying a larger number of rare alleles (Morgenthaler and Thilly, 2007); 

Si = I(q̂ j <Q)xij
j=1

M

∑ . 

with xij being the count of rare alleles for individual i at variant j and being the 

estimated MAF, as defined above. 

We also consider the approach proposed by Madsen and Browning (Madsen and 

Browning, 2009) where the weight for variant j is a function of the minor allele frequency 

(MAF): 
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with xij and  as above. In the original Madsen and Browning framework for case-

control studies, MAFs are estimated using controls only. However, in this paper, the 

outcome of interest is quantitative and we estimate MAF using the entire sample, which 

makes the method phenotype-independent in this context. 

We also consider phenotype-dependent regression-based methods. First, we 

examine the performance of marginal regression coefficients. That is, we fit the simple 

linear regression model  for each variant j separately and independently and 

then take the fitted values  to be our weights. 

, where , the MLE of  for the model above. 

Though imperfect, this weighting scheme allows investigators to test for associations 

with multiple rare variants in cases where N < M and begin to follow up on individual 

variants that may potentially be of interest. 

Second, we consider weights from ordinary multiple regression, modeling all of 

the M variants simultaneously. That is, we fit the model , where the (i, j)th 

element of the matrix , the minor allele count for individual i at variant j. We then 

take Si to be as above, with the fitted values from this multiple regression,  (Lin 

and Tang, 2011; Xu et al., 2012). 

We also consider weights from several variable selection methods. Such methods 

are appealing since we expect the majority of rare variants not to influence the 

quantitative trait of interest. Use of penalized regression is therefore expected to reduce 

the number of non-zero weights. Similar strategies were recently proposed in the context 

of rare variant association testing (Turkmen & Lin 2012; Zhou, 2010). In penalized 
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regression, we solve for the  which best fit the data, subject to some constraint(s) or 

penalty. That is, instead of minimizing the sum of squared error, , we 

aim to minimize the sum of squared errors and an additional penalty term, 

. In general, the greater the number of parameters included in 

the model, the greater the penalty. A number of penalty functions have been proposed 

and extensively studied in the recent statistical literature (Heckman & Ramsay 2000; 

Hesterberg et al., 2008; Kyung et al., 2010; Wu & Lange 2008). Of these, we chose three: 

the Lasso which imposes a linear penalty (Tibshirani 1996), Elastic Net (EN) which 

imposes a quadratic penalty (Zou and Hastie 2005) and SCAD which is designed to 

penalize smaller coefficients more heavily than larger coefficients (Xie & Huang 2009).  

For Lasso and SCAD, only one tuning parameter, λ, is required. We used the R 

packages lars (Efron, Hastie, Johnstone, & Tibshirani, 2004) and ncvreg (Breheny  

Huang 2011) with default parameter values, which is to choose the optimal λ among a 

grid of 100 possible values equally spaced on the log-scale. For Elastic Net, there are two 

tuning parameters, one for the linear component and one for the quadratic component. 

The linear term, λ1, is chosen in the same way as the λ parameter for the Lasso and 

SCAD methods, discussed above.  The quadratic parameter, λ2, was set to 1 in all 

simulations and for the real data. We used the R package elasticnet to fit the EN models 

(Zou & Hastie, 2005). After model fitting, we then use estimated coefficients from each 

of these variable selection methods as weights. The number of non-zero coefficients 

included is upper-bounded by 100 for each of these schemes throughout this work. 

β̂ 's

(Y −βX)'(Y −βX)

(Y −βX)'(Y −βX)+P(λ,β)
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Under each weighting scheme examined, we determine the significance of a 

genomic region using a score test of the following form:  where 

 in which N is the number of individuals under study, and Yi  is the  

quantitative trait value for the ith individual. Si is the genetic score for the ith individual, a 

weighted sum across multiple variants. Specifically, xij is the number of minor alleles 

observed for individual i at variant j where xij are not normalized. M is the number of 

variants in the region under study (discovered through sequencing in our context) and ξj 

is the weight of variant j under one of the above weighting schemes. The analytical 

distribution for this statistic is not generally known in this context, so significance must 

be assessed empirically by permutation. 

Additionally, we apply the similarity-based method SKAT (Wu et al., 2011) to 

each of our simulated data sets and the real data set for comparison. We use weights 

based on the default Beta distribution implemented in the SKAT package, version 0.79.  

We will comment in the Discussion section on the conceptual differences between the 

weighting schemes we consider in this work and the SKAT methodology. 

4.2.2 Simulation Setup 

We simulate 45,000 chromosomes for a series of 100 50Kb regions with a 

coalescent model [Schaffner et al. 2005] that mimics linkage disequilibrium (LD) in real 

data, accounts for variations in local recombination rates and models population history 

consistent with the CEU samples. We then randomly select 2,000 simulated 

chromosomes (forming 1,000 diploid individuals) to mimic a large sequencing study. For 

each region, we simulate one single pool of 45,000 chromosomes instead of multiple 
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pools of 2,000 chromosomes so that the causal variants in each region can be determined 

by population MAFs (MAFs calculated using the entire population of 45,000 

chromosomes) and thus retained across replicates from the same region.  We assume only 

rare variants (0.001< population MAF <0.05) influence the value of the quantitative trait 

and we randomly select m variants that truly influence the quantitative trait value. For 

each variant, we independently assign the direction of influence according to r, the 

probability that a causal variant will increase the trait value. Following (Wu et al., 2011), 

we then simulate quantitative traits under the null model: 

   (Null model) 

where E1i, E2i and εi  are independent with E1i ~ Bernoulli(0.5) to mimic a binary 

covariate, E2i ~ Normal(0,1) to mimic a continuous covariate, and εi ~ Normal(0,1). We 

also simulate quantitative traits under an alternative model:   

    (Alternative Model)
 

where βj = rj |k × F(MAFj)| and rj = 1 with probability r and rj = –1 with probability (1-

r). E1i, E2i and εi are as before, j indexes the truly causal variants and  is the number of 

minor alleles individual i has at causal variant j. The link function F takes one of the 

following forms: 

, , , 

where N is the number of individuals sequenced. We call the first link function log, the 

second logit, and the third Madsen-Browning (MB). In addition, we also consider 

Frandom(q), a random value chosen from the exponential(1) distribution, independent of q 
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and multiplied by k. The constant k is a scaling factor to control the magnitude of the 

change in quantitative trait due to truly causal genetic variants. In our simulations k is set 

to 0.2, which keeps the heritability h2, between 0.1% and 2.5%. Complex human 

quantitative traits are thought to have heritability estimates in this range (Manolio et al., 

2009). In the Results section, we report the results for the logit link function; results for 

all four link functions are given in the Appendix A. 

To assess significance in each simulated setting, score test statistic from each 

weighting scheme is compared to the empirical distribution of the test statistic obtained 

under the null simulations. We assess the significance of each test at the α=0.01 level 

using the empirical null distribution, which we approximate using 100,000 data sets 

simulated under the null hypothesis of no variant contributing to the quantitative trait. 

For each of the 100 regions we simulate, we randomly select 100 samples of 

2,000 chromosomes (forming 1,000 diploid individuals). We then assign quantitative trait 

values under the null model specified above. Using these 100 × 100=10,000 data sets 

simulated under the null hypothesis, we obtain the empirical null distribution of the test 

statistics for each method. 

We also simulate data under several null hypotheses. For each choice of r, m and 

F(.), we select 2,000 chromosomes from the population of 45,000 chromosomes again via 

simple random sampling. Again, we randomly pair these chromosomes to form diploid 

individuals and replicate 100 times for each region. For each replicate, we randomly 

select m rare variants to be causal. Each causal variant is assigned a direction in which to 

exert its effect (positive with probability r and negative with probability 1 – r).  
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In order to evaluate the effects functional annotation, we must also simulate these 

annotations. In each simulated data set, we annotate variants as “functional” or “non-

functional”. We assume that we have a reasonably good bioinformatics tool such that a 

true causal variant has 90% probability to be annotated as “functional”. Even a perfect 

bioinformatics tool can only predict functionality, not causality or association with a 

particular trait of interest. Because of this, we annotate an additional random number of 

W non-causal variants as “functional”.  Kryukov and colleagues (Kryukov et al., 2009) 

have estimated that approximately one third of de novo missense mutations (that would 

be predicted as functional by a sensible bioinformatics tool) have no effect on phenotypic 

traits. We therefore used 1/3 as the lower bound for the fraction of non-causal variants 

annotated and simulated , rounded to the nearest integer. We evaluate the 

performance of each of these weighting schemes both using all variants without the help 

of the bioinformatics tool, and using only the “functional” variants annotated. Under the 

null distribution, W variants are selected at random. 

In order to simulate GWAS data sets, we use the same choice of causal variants in 

each region as in the simulated sequencing data. Consequently, the direction of 

association and true effect size of each of these are unchanged. In order to simulate 

GWAS SNPs, we select 1000 chromosomes from the total 45,000 to mimic the 1000 

Genomes (Abecasis et al., 2012) sample. The simulated 1000 Genomes sample is used to 

define LD, based on which GWAS SNPs are selected. For each region, we choose 75 

GWAS SNPs consisting of the first 70 tagSNPs (SNPs with the highest number of LD 

buddies where an LD buddy is a SNP with which the r2 >0.8) and 5 SNPs at random from 

W ~ N(25, 5)
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the remaining set of SNPs, mimicking the Illumina Omni5 or Affymetrix Axiom high-

density SNP genotyping platforms. 

4.3 Results 

4.3.1 Results with Simulated Sequencing Data Sets 

First, we compare these methods discussed previously in the absence of a 

bioinformatics tool. Throughout our simulations, we observe several consistent patterns. 

First, when we apply these methods in the absence of a Bioinformatics tool (thus, all 

variants are included in analysis), variable selection schemes (most noticeably Lasso and 

EN) outperform other methods, including SKAT, in nearly all situations (notable 

exceptions are discussed below). For example, under the simulated setting of 10 causal 

variants, among which we expect to five increase quantitative trait value, the power is 

80.0% and 83.7% for Lasso and EN, and is 0.4%, 7.3%, 7.6%, 43.2%, 25.3%, 60.5%, 

41.3%, and 46.6% for Indicator, Count, Madsen-Browning, Marginal Regression, 

Multiple Regression, SCAD, SKAT (all variants), and SKAT (rare variants only) 

respectively (Figure 4.1a). Under the simulated setting of 50 causal variants among which 

40 are expected to increase quantitative trait value, power is 100% for both Lasso and EN, 

and is 0.03%, 0.19%, 0.07%, 99.63%, 100%, 100%, 96.9%, and 98.5% for Indicator, 

Count, Madsen-Browning, Marginal Regression, Multiple Regression, SCAD, SKAT (all 

variants), and SKAT (rare variants only) respectively (Figure 4.1b). 

 
In the presence of a good bioinformatics tool (as introduced in the Methods 

section) the power increases for each of the methods previously discussed. Most notably, 

the phenotype-independent methods show a substantial gain in power once the 

bioinformatics tool is applied. For example, under the simulated setting of 10 causal 
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variants, among which five are expected to increase the quantitative trait value, the power 

is 99.83% and 99.80% for Lasso and EN, and is 23.91%, 17.15%, %, 18.85%, 97.87%, 

99.73%, 99.76%, 98.49%, and 98.34% for Indicator, Count, Madsen-Browning, Marginal 

Regression, Multiple Regression, SCAD, SKAT (all variants), and SKAT (rare variants 

only) respectively (Figure 4.2a). Under the simulated setting of 50 causal variants, among 

which 40 increase quantitative trait value, power is 100% for both Lasso and EN, and is 

99.38%, 98.89%, 96.51%, 100%, 100%, 100%, 100%, and 100% for Indicator, Count, 

Madsen-Browning, Marginal Regression, Multiple Regression, SCAD, SKAT (all 

variants), and SKAT (rare variants only) respectively (Figure 4.2b). Although power 

increases for all methods, the relative performance of the methods changes little from that 

under the absence of a bioinformatics tool.  

Figure 4.1: Power Comparison in the Absence of a Bioinformatics Tool. Figure 4.1 
shows the power (Y-axis) of the different methods across a wide spectrum of m (the 
number of true causal variants) and r (the proportion of variants that contribute to our 
quantitative trait in a positive direction) in the absence of a bioinformatics tool. In Figure 
4.1a, we fix m at 10 and show power comparisons across the entire spectrum of r (X-
axis). Figure 4.1b shows how power changes as a function of m (X-axis) with r fixed at 
0.8. Here we use the logit link function. 
a.              b. 
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Figure 4.2: Power Comparison in the Presence of the Good Bioinformatics Tool. 
Figure 4.2 shows the power (Y-axis) of the different methods across a wide spectrum of 
m (the number of true causal variants) and r (the proportion of variants that contribute to 
our quantitative trait in a positive direction) in the presence of the good bioinformatics 
tool described in the Method section. Like in Figure 4.1a, we fix m at 10 and show power 
comparisons across the entire spectrum of r (X-axis) in Figure 4.2a. Similarly, Figure 
4.2b how power of the methods changes as a function of m (X-axis) with r fixed at 0.8. 
Again the logit link function is used. 
     a.       b. 

  
 

As the number of true causal variants (m) increases, so does power for all 

methods. This is to be expected since adding more causal variants increases the signal-to-

noise ratio. When the number of true causal variants is very small, none of the methods 

have adequate power. Interestingly, it is in these situations where m is very small that 

SKAT manifests its advantage over other methods examined. As r gets smaller (that is, 

the probability that a causal variant will contribute positively to the quantitative trait 

values gets smaller), the power of the phenotype-independent methods decreases. For 

example, the phenotype-independent methods have close to 0 power when r=0.05; while 

the phenotype-dependent methods are relatively unaffected by changing values of r 

(Figure 4.1a and Figure 4.2a). We also observe a slight dip in power in all of the 

phenotype-dependent schemes when r=0.5 and no bioinformatics information is used 

(Figure 4.1a), which is to be expected since the signals from different directions are 
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canceling one another. Similar trends are seen in all simulations with all four link 

functions (shown supplementary figures 1 and 2). 

4.3.2 Weight Estimation & Identification for Individual Variants 

Table 4.1 shows the correlation between the true and estimated values of the 

weights for each method under the simulation settings in which the number of truly 

causal variants, m, is 10 and the proportion of variants contributing in the positive 

direction, r, is 80%. Of note, the correlation between true and estimated weights increases 

for all methods with the addition of bioinformatics filtering. The Elastic Net and Lasso 

yield the highest correlations between estimated and true weights, both in situations 

where we restrict to variants that are likely to be functional (Pearson correlations of 0.285 

and 0.355), and when we do not (Pearson correlations of 0.744 and 778).  

When using variable selection schemes, we have the opportunity to identify 

individual causal variants within the region or variant set under study. Figure 4.3 

illustrates the accuracy with which the causal variant(s) can be identified by each 

weighting scheme. Note that the causal variant(s) are not always 100% identified, but in 

many cases, the causal variant, or a variant in high LD (r2 > 0.8), have estimated non-zero 

weights. For example, if we fix m=10, r=0.8 and the logit link function, without 

considering LD buddies, we need to consider the top 696 (109 and 12) variants in order 

to detect 90% (60%, 30%) of the causal variants using EN (Figure 4.3a); taking LD 

buddies into consideration, the numbers decrease to 378 (14 and 4) (Figure 4.3b). When 

we also consider functional information we consider fewer variants and narrow the field 

to include a higher proportion of truly causal variants. In this case, we need to consider 

the top 408 (16 and 4) variants in order to detect 90% (60%, 30%) of the causal variants 
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(Figure 4.3c) without considering LD buddies; with LD buddies taken into consideration, 

the numbers decrease to 374 (13 and 3) (Figure 4.3d). 

Figure 4.3: How Far Down the Ranked List are the Truly Causal Variants when All 
Variants are Included? Figure 4.3a shows the number of variants that must be 
considered (Y-axis) in order to catch the top 10%, 20% … 100% of truly causal variants 
(X-axis) in simulation when all variants are considered. We assume that the variants are 
ranked in order of significance. These plots aggregate true and estimated weights from all 
10,000 replicates of the experiment and once again, we fix r at 0.8, m at 10 and use the 
logit link function. Figure 4.3b. takes LD buddies (variants with r2 > 0.8 with causal 
variant) into consideration. Figure 4.3c. restricts the results from 4.3a. to functional 
variants only using a good bioinformatics tool. Figure 4.3d. is restricted to functional 
variants only and takes LD buddies into account. 
a.      b. 

    

c.         d. 
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Table 4.1: Average Pearson Correlation of True and Estimated Weights (m=10 and 
r=0.8) 

Method All markers Limited to functional markers 
Indicator - - 
Count 0.0126 0.2386 
Madsen-Browning 0.0591 0.1225 
Marginal Regression 0.1588 0.6490 
Multiple Regression 0.0883 0.6537 
Lasso 0.2852 0.7436 
EN 0.3555 0.7787 
SCAD 0.2301 0.7344 
SKAT (all) - - 
SKAT (rare only) - - 

 
 
4.3.3 Results with Simulated GWAS Data Sets 

Studies that sequence a portion or the entirety of the genome are becoming increasingly 

common, but still much more GWAS data exist than sequencing data. Imputation has 

been shown to accurately predict genotypes at untyped variants from GWAS data in a 

variety of circumstances [Auer et al., 2012; de Bakker et al., 2008; Li et al., 2010a; Li et 

al., 2009b; Liu et al., 2012; Marchini and Howie, 2010]. Using our simulated GWAS data 

and simulated reference, we observe that variable selection can improve power for 

GWAS data as well. However, the power is consistently lower than that under the 

sequencing setting due to the imperfect rescue of information through imputation 

(comparing Figure 4.1 with Figure 4.4). In our simulations, the imputation accuracy is 

99.66% for all variants and 99.98% for rare variants, but most of the inaccuracies are due 

to missed rare variants. In fact, among variants with MAF < 0.001 nearly all inaccuracies 

are due failure to identify the minor allele. Specifically, the squared Pearson correlation 

between the imputed genotypes (continuous, ranging from 0 to 2) and the true underlying 

genotypes (coded as 0, 1 and 2) is only 0.2397 for variants with MAF < 0.001. 
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Supplementary Figure 3 shows the relative power of these weighting schemes over a 

range of r (Figure 4.4a) and m (Figure 4.4b). 

Figure 4.4: Power Comparison for simulated GWAS data under imputation. Figure 
4.4 shows the power achieved in simulated GWAS data (Y-axis) of the different methods 
across a wide spectrum of m (the number of true causal variants) and r (the proportion of 
variants that contribute to our quantitative trait in a positive direction) in the absence of a 
bioinformatics tool. In Figure 4.4a, we fix m at 10 and show power comparisons across 
the entire spectrum of r (X-axis). Supplementary Figure 4.4b shows how power changes 
as a function of m (X-axis) with r fixed at 0.8. Here we use the logit link function. 
a.          b. 

  

 
4.3.4 Results with Real Data Set 

Of the over 6,000 individuals in the CoLaus cohort [Firmann et al., 2008], 1,898 

had recorded total cholesterol and targeted sequence data in 202 drug target genes 

[Nelson et al., 2012].  Sequencing was done at moderately high coverage (with median 

coverage 27X) and genotype calls were obtained using SOAP-SNP [Li et al., 2009a]. 

Sporadic missing genotypes were imputed with MaCH [Li et al., 2010b]. One gene 

previously known to be associated with total cholesterol in these data is used as a positive 

control. We test each of the 172 autosomal genes with and without removing non-

functional variants using ANNOVAR [Wang et al., 2010]. For each method, we estimate 

weights in association with total cholesterol and, for the methods that accommodate 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

po
w
er

SCAD
EN
Lasso
SKAT (rare)
SKAT
Multiple Regression
Marginal Regression
Madsen-Browning
Count
Indicator

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m1

po
w
er

SCAD
EN
Lasso
SKAT (rare)
SKAT
Multiple Regression
Marginal Regression
Madsen-Browning
Count
Indicator



 55 
 

covariates, we adjust for age, age2, sex and the first five principal components. For the 

phenotype-independent methods, no covariate adjustment is performed and significance 

is assessed by permutation of the Yi’s. For methods allowing covariates (marginal and 

multiple regression, Lasso, EN and SCAD), permutation of outcomes alone is not 

appropriate. For these methods, we fit a regression model, Yi ~ Zi, where Z is the matrix 

of covariates and then obtain residuals, . The ’s are then randomly permuted to 

obtain a set of ’s, the permuted residuals. For each permutation, we fit the model 

 in order to re-estimate the weights ξj and scores Si as in [Davidson and Hinkley, 

1997]. We do 10,000 such permutations and, from these, obtain a null distribution of 

statistics with which to assess significance. Since SKAT produces analytical p-values 

shown to preserve type I error [Wu et al., 2011], we use the SKAT analytical p-values 

without permutation. 

When all variants regardless of bioinformatics prediction are included, the 

variable selection methods Lasso and EN yield the smallest p-values compared to other 

methods for the previously implicated gene. However, the previously implicated gene is 

not the most significant among the 172 genes tested. Using ANNOVAR annotations 

[Wang et al., 2010], we restrict to non-synonymous variants in coding regions of the 

genome only. When considering only these functional variants, most weighting schemes 

identify the correct gene with highly significant p-values (Table 4.2 and Figure 4.5). 

 
 
 
 
 
 
 
 

εi εi

ε *i

ε *i ~ Xi
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Table 4.2: Permuted p-values on positive control gene in the real data set 
Method All variants (491) Limited to functional variants (13) 
Indicator 0.208 0.00057 
Count 0.068 0.00017 
Madsen-Browning 0.090 0.00041 
Marginal Regression 0.166 0.00420 
Multiple Regression 0.136 0.00395 
Lasso 0.017 0.00053 
EN 0.008 0.00059 
SCAD 0.111 0.00078 
SKAT (all) 0.329 0.00142 
SKAT (rare only) 0.348 0.00142 

 
 
Figure 4.5: QQ-Plots for p-values in real data. Figure 4.5 shows observed (Y-axis) vs. 
expected (X-axis) –log10(p) values for 172 genes in real data. These p-values are 
computed from the Elastic Net weighting scheme and 10,000 permutations. The gene 
previously implicated in total cholesterol is shown with a green star, all other genes are 
represented by black circles. 
a.           b. 

   
4.4 Discussion 

In summary, through extensive simulation studies with varying number, model, 

and direction of causal variant(s) contributing to a quantitative trait, we find that 

functional annotations derived from good set of bioinformatics tools can substantially 

boost power for rare variant association testing. In the absence of good bioinformatics 

tools, “statistical” annotation based on phenotype-dependent weighting of the variants, 

particularly through variable selection based methods to both select potentially 
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causal/associated variants and estimate their effect sizes, manifests advantages. This 

observation holds for both sequencing-based studies or studies based on a combination of 

genotyping, sequencing, and imputation. We find additional supporting evidence from 

application to a real sequencing-based data set. 

The price one has to pay for adopting phenotype-dependent methods is the 

necessity of permutation, which can be easily performed through permuting of residuals 

for the analysis of quantitative traits (Davidson and Hinkley 1997; Lin 2005) or using the 

BiasedUrn method (Epstein et al., 2012) recently proposed for binary traits. This, in turn, 

increases computational costs. Therefore, we recommend primarily using phenotype-

dependent weighting for refining the level of significance. That is, we recommend 

applying phenotype-dependent weighting only to genomic regions or variant sets that 

have strong evidence of association (but not necessarily reaching genome-wide 

significance) from methods that do not require permutation (for example, SKAT (Wu et 

al., 2011)). 

We note that testing over a region by aggregating information across variants is a 

different task from estimating effect sizes of individual variant (as measured by the 

variant weights in our work). Perfection in the latter (that is, being able to estimate 

weights for each individual variants accurately) leads to perfection in the former (that is, 

maximal testing power over the region harboring those variants), but not vice versa. 

Based on our simulations where we know the true contribution (effect size) of each 

individual variant, we find that individual effect sizes cannot be well estimated (Pearson 

correlation between true and estimated effect sizes < 0.5 even for the best variable 

selection based methods). However, these methods can still increase power of region or 
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variant set association analysis without accurate estimation of individual variant effect 

sizes. In addition, these methods are able to identify the vast majority of the causal 

variants, particularly when LD buddies are considered.  

In this chapter, we mainly consider aggregation of information at the genotype 

level (where we first obtain a regional genotype score via a weighted sum of genotype 

scores for individual variants and then assess the association between the regional 

genotype score and the phenotype of interest), which underlies the largest number of rare 

variant association methods published. In contrast, there are methods that aggregate 

information at the effect size level (for example, SKAT (Wu et al., 2011) where the final 

regional score test statistic is a weighted sum of the test statistics for individual variants) 

or at the p-value level, for example in (Cheung et al., 2012). Our comparisons with 

SKAT suggest that the same conclusions apply to aggregation methods at levels other 

than genotype. 

Lastly, although one could potentially argue that the phenotype-dependent 

methods require an undesirable computing-power trade-off in the presence of good 

bioinformatics tools, in practice, we rarely (if ever) get perfect bioinformatics tools. In 

addition, even perfect bioinformatics tools can only predict functionality but NOT 

causality or association with particular phenotypic trait(s) of interest. Therefore, we view 

that the application of “statistical annotation” through phenotype-dependent weighting, 

particularly using variable selection based methods, to top regions or variant sets 

implicated by computationally efficient phenotype-independent methods, is valuable. 
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CHAPTER 5: SKAT-ADMIX 

5.1 Introduction 

Allele frequencies can differ greatly between populations. This phenomenon is 

called population stratification and, if not properly controlled for, population stratification 

can lead to either false positive or false negative findings. (Choudhry et al., 2006; 

Freedman et al., 2004) A plethora of methods for adjusting for population stratification 

among common variants have been proposed (Epstein, Allen, & Satten, 2007; M. Li, 

Reilly, Rader, & Wang, 2010; Montana & Pritchard, 2004; Price et al., 2006); however, 

(Mathieson & McVean, 2012) show significant evidence that rare variants show stronger 

population stratification than common variants. Further, (Mathieson & McVean, 2012) 

also demonstrate that current methods do not adequately account for population 

stratification among rare variants.  

When dealing with genetic data from an admixed population (that is, a population 

composed of two or more distinct ancestral populations, e.g. African American or 

Hispanic populations), adjusting for population stratification is is especially crucial. In 

admixed populations, information from more than one ancestral population in contained 

within a single individual. Earlier this year, Mao et. al. developed an approach based on 

the WHaIT method discussed in chapter 3 (Y. Li, Byrnes, et al., 2010) to account take 

admixture into account when assessing association between a phenotype and a genomic 

region (Mao, Li, Liu, Lange, & Li, 2013). Mao et. al. combine WHaIT with the Hapmix 

approach for estimating “local ancestry,” that is, the ancestry for each individual at each 
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variant locus. This process results in a SKAT statistic and p-value for each ancestral 

population. If desired, the SKAT statistics can be combined using a process similar to 

that used in MetaSKAT (Ionita-Laza, Lee, Makarov, Buxbaum, & Lin, 2013) and SKAT-

O (Lee et al., 2012) 

5.2 Methods 

5.2.1 Splitting SKAT 

Consider	  a	  genomic	  region	  with	  M	  variants	  typed	  on	  N	  individuals.	  The	  N×M	  

genotype	  matrix	  can	  be	  denoted	  X	  with	  (i,j)th	  element	  xij,	  the	  number	  of	  minor	  alleles	  

at	  locus	  j	  in	  individual	  i.	  However,	  in	  an	  admixed	  population	  of	  P	  ancestral	  

populations, ,	  where	  Xl	  has	  elements	  xlij,	  the	  number	  of	  minor	  alleles	  from	  

ancestral	  population	  l.	  Throughout	  this	  chapter,	  we	  will	  consider	  only	  two-‐way	  

admixture	  in	  African	  Americans,	  so	  we	  will	  consider	   ,	  where	  XA	  is	  the	  

minor	  allele	  count	  matrix	  for	  alleles	  of	  African	  origin	  and	  XE	  for	  the	  alleles	  of	  

European	  origin.	  

Using	  a	  variety	  of	  previously	  proposed	  ancestry	  estimation	  methods,	  we	  

estimate	  the	  minor	  allele	  counts	  from	  each	  parent	  population	  at	  each	  locus	  for	  each	  

individual.	  Where,	  in	  truth,	  the	  elements	  of	  XA	  and	  XE	  are	  0,	  1	  or	  2,	  Hapmix	  outputs	  a	  

probability	  for	  each	  possible	  combination	  of	  ancestry.	  In	  order	  to	  estimate	  the	  

minor	  allele	  counts	  from	  each	  parent	  population	  l,	  we	  consider,	  

=	  P[exactly	  one	  minor	  allele	  from	  population	  l]	  +	  2P[two	  minor	  alleles	  from	  population	  l]	  

which	  is	  continuous	  in	  [0,2].	  	  Note	  that	  for	  these	  preliminary	  findings,	  no	  threshold	  

X = Xl
l=1

P

∑

X = XA + XE

x̂lij
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on	  the	  probability	  has	  been	  imposed.	  We	  then	  use	  the	  estimated	  matrices	   	  and	  

as	  input	  for	  SKAT	  (Wu	  et	  al.,	  2011),	  rather	  than	  the	  genotype	  matrix.	  

5.2.2 Ancestry Estimation 

The first method examined to estimate local ancestry, “diploid Hapmix,” directly 

estimates the probability of each possible genotype and local ancestry from the genotype 

data using a panel of reference haplotypes from each ancestral population by Hapmix. 

(Price, et. al. 2009) Second, we restrict the diploid Hapmix probabilities to include only 

those that are compatible with the input genotypes. This strategy is motivated by the 

tendency of Hapmix to occasionally miss rare variants because they are indistinguishable 

from sequencing errors. Next, we add a phasing step prior to local ancestry estimation. 

We use MaCH (Y. Li, Willer, et al., 2010) to infer phase information, using an external 

reference haplotype panel. After phasing is complete, we use Hapmix (this time in 

Haploid mode) to estimate the local ancestry of each locus. For comparison, we also use 

MaCH-Admix (Liu et al., 2013) to estimate local ancestry of each locus for the phased 

data only. 

5.2.3 Simulation Setup 

In order to completely evaluate our simulation, we must simulate African 

American chromosomes for which the ancestral population is known for each locus. To 

accomplish this, we first simulate 3000 European and 3000 African chromosomes using 

COSI (Schaffner et al., 2005). Of these, 1000 from each group are set aside to serve as a 

reference panel for the ancestral populations. The remaining chromosomes are used to 

construct simulated 2000 African American chromosomes in concordance with the 

population history of African Americans. First, we construct 425 African American 

X̂Aij

X̂Eij
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chromosomes containing “switchpoints,” that is cross overs between African and 

European ancestry chromosomes. 425 chromosomes from each ancestry group are 

combined at a randomly determined locus in the region. The crossover map, provided by 

COSI, provides weights for these random assignments and the ancestry of the “first” 

chromosome segment is also determined at random. The remaining 1575 African 

American population chromosomes are pulled from the pool of unused chromosomes so 

far, 1408 African and 167 European. These rates of “switchpoint” occurrence and 

proportion European Ancestry are consistent with the findings presented in (Wegmann et 

al., 2011) and (Parra et al., 1998). These 2000 African American chromosomes are 

randomly paired to form 1000 diploid individuals. 100 replicates of this process were 

preformed. 

Causal variants are chosen from rare variants (MAF<0.05) within one ancestral 

population, either African or European. Though some variants are rare in one ancestral 

population, and not in the other, we consider a variant to be rare, and thus eligible for 

being causal, if it is rare in the population in question. We choose m such variants from 

each ancestral population; values of m considered are 1, 2, 3, 4, 5, 10, 20, 30, 40 and 50. 

Each variant can also contribute to the quantitative trait of interest in the positive or 

negative direction. The probability that a given causal variant contributes in the positive 

direction is denoted by r; values of r considered are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9 and 1.0. 

Let the true weight,wj = k × log
qj
1− qj

⎛

⎝⎜
⎞

⎠⎟
 where qj is the MAF of causal marker j. 

Let the set of causal markers be denoted MC and the population from which the causal 



 63 
 

variants come be denoted k. So, we simulate quantitative trait under the alternative for 

individual i to be, QTi = 0.5E1 + 0.5E2 + wjxlik
j∈MC
∑ , where  E1 ~ Bernoulli(0.5) and  

E2 ~ Normal(0,1). Where E1 and E2 are independent of one another and across 

individuals. Similarly, for the null simulations used to assess type I error, we simulate 

QTi = 0.5E1 + 0.5E2  as in (Wu et al., 2011). 

5.2.4 Real Data 

We also apply these methods, along with the original SKAT, to the African 

American samples from the HeartGO data, part of the Exome Sequencing Project, in the 

APOB gene and 1kb flanking region, which has been previously shown to have a 

population-specific association to LDL cholesterol levels. (Mao et al., 2013) We use 

1000 Genomes reference panels (1000 Genomes Consortium et al., 2010) for European 

(758 samples) and African (492 samples) populations for ancestry estimation. We adjust 

for the covariates, age, sex, BMI, smoking status, and the first 10 principal components. 

There are 7075 samples with valid LDL cholesterol and covariate information and 895 

polymorphic SNPs. 

5.3 Results 

5.3.1 Type I Error 

First, we examine type I error for this method in simulation using the 100 

simulated replicates, with 100 null simulations per replicate, resulting in 10,000 data sets. 

We find that type I error is conserved for both European and African causal alleles as 

illustrated in Table 5.1. 
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Table 5.1: Type I Error rates of separate SKAT tests for all methods. 

 
5.3.2 Power 

We compare power of this ancestry-specific analysis compared to the original 

SKAT approach. We find that the power to detect causal alleles of European origin is 

greatly improved compared to the original SKAT method (Figure 5.1), however, when 

the causal alleles are of African origin, the methods are more comparable. It appears that 

the causal African alleles produce signal enough that they can be picked up by the SKAT 

approach without adjusting the data for ancestry (Figure 5.2). The complete results for 

these experiments are shown in Appendix B, figures 1 through 4. 

  

 
 
 
Test For 

SKAT Diploid 
Hapmix + 

SKAT 

Diploid Hapmix + 
Genotype 
Adjustment + 
SKAT 

MaCH 
Phasing + 
Hapmix + 
SKAT 

MaCH 
Phasing + 
MaCH-
Admix + 
SKAT 

European 
Causal 
Alleles 

 
 
0.0491 

 

 
0.0469 

 
0.0384 

 
0.0466 

 
0.0562 

African 
Causal 
Alleles 

 
0.0495 

 
0.0500 

 
0.0447 

 
0.0538 
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Figure 5.1: Power for European causal variants. Figure 5.1a shows power (Y-axis) for 
SKAT Admix and the proposed methods over the number of causal variants m (X-axis) 
when r is fixed at 0.8 and all of the causal variants are of European origin. Figure 5.1b 
similarly shows power (Y-axis) over the proportion of variants contributing in the 
positive direction r (X-axis) for 10 causal variants. For the proposed methods, α=0.025 to 
adjust for multiple comparisons and for SKAT α=0.05. 
a.      b.   

   
 
Figure 5.2: Power for African causal variants. Figure 5.2a shows power (Y-axis) for 
SKAT and the proposed methods over the number of causal variants m (X-axis) when the 
proportion of causal variants that contribute in the positive direction, r, is fixed at 0.8 and 
all of the causal variants are of African origin. Figure 5.2b similarly shows power (Y-
axis) over the proportion of variants contributing in the positive direction r (X-axis) for 
10 causal variants. For the proposed methods, α=0.025 to adjust for multiple comparisons 
and for SKAT α=0.05. 
a.      b.        
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5.3.3 Real Data 
 
 The APOB gene has been previously implicated in LDL-cholesterol levels in 

African Americans (Mao et al., 2013) and the effect is suspected of being European-

specific. (Mao et al., 2013) Here, we implement each of the proposed strategies in the 

APOB gene and 10kb flanking region to 7,075 of the African American samples in the 

HeartGO data for association with LDL cholesterol. The HeartGO data are whole exome 

data with >10x coverage exome-wide. We adjust for sex, age, BMI, smoking status and 

the first 10 principal components. P-values for each of the proposed methods are shown 

in Table 5.2. 

Table 5.2: P-values for individual SKAT tests for APOB in African Americans in 
association with LDL-cholesterol. 

 

5.4 Discussion 

 The results presented above demonstrate that the power of SKAT to detect 

ancestral population-specific associations is greatly improved by first directly estimating 

local ancestry and running SKAT, either separately or in combination. Type I error is 

well preserved in the individual tests and in the proposed combined test. The real data 

example of LDL-cholesterol supports these findings and was able to significantly 

replicate the findings of (Mao et al., 2013) for a European ancestry-specific effect of rare 

 
 
 
 
Test For 

 
 

SKAT 

 
Diploid 

Hapmix + 
SKAT 

Diploid Hapmix 
+ Genotype 

Adjustment + 
SKAT 

MaCH 
Phasing + 
Hapmix + 

SKAT 

MaCH 
Phasing + 
MaCH-
Admix + 
SKAT 

European 
Causal 
Alleles 

 
 
 

0.0818 

 
2.61 x 10-8 

 
1.40 x 10-8 

 
2.31 x 10-8 

 
8.23 x 10-9 

African 
Causal 
Alleles 

 
0.311 

 
0.300 

 
0.327 

 
0.331 
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variants in the gene APOB. As we might expect, association with rare variants from the 

European population is more difficult than association with rare variants from the African 

population since the majority of the samples have primarily African ancestral alleles. 

Further, when the true causal variants are from the European population, haplotyping and 

using MaCH-Admix to estimate ancestry also improves power a great deal by providing 

more accurate ancestry estimation. The observed gain in power comes at a computational 

cost, since we must use MaCH to haplotype the genotype data and then run MaCH-

Admix to estimate ancestry, which takes approximately two times the computational time 

as running Hapmix. Looking forward, combining the processes of phasing and ancestry 

estimation may improve computational time and allow for the implementation of MaCH-

Admix in this context on a larger scale. 
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CHAPTER 6: CONCLUDING REMARKS 

 This document presents several novel methods for aggregation of rare variants 

within a genomic region and makes reference to many more. While each method is 

intended for a specific study design and involves a variety of statistical and 

computational tools, the central goal remains the same: to maximize and aggregate signal 

from truly associated rare variants and to minimize noise from sequence variation that 

does not contribute to the trait of interest. We have demonstrated that various statistical 

methodology can be used to aggregate across rare variants to improve power to detect 

associations while maintaining acceptable type I error rates. In GWAS data, we found 

that adding information from external sequencing data via imputation can improve power 

to detect associations between human traits and rare variants not typed by GWAS, 

particularly when we restrict the variants considered to those which are likely to have an 

effect and when we adjust the sign. In sequence data, we found that directly estimating 

the contribution of each variant greatly improves power over existing methods, however 

the estimation of this contribution is not generally accurate at the marker level and is 

comparatively quite computationally intensive. Similarly, we adapted the SKAT 

approach for admixed populations and found that the most computationally intensive 

methods of estimating ancestry perform best and consequently lead to the highest power, 

however these methods are also the most computationally intensive. 

In general, the proposed methods which control for more confounders and 

estimate genetic effects most directly have the most statistical power to detect 
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associations. However, while more computationally intensive methods tend to perform 

better, they generally come at a computational cost. As molecular technologies become 

more accurate and less cost-prohibitive, many investigators are aiming to run tests like 

these on many regions on the genome. For this reason, the balance between 

computational price and method performance must be considered for these methods in 

order to ensure that they get used and serve their intended purpose.  
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APPENDIX A: SUPPLEMENTARY FIGURES FROM CHAPTER 4 

Figure A.1: Complete power results for all link functions and all values of m 
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Figure A.2: Complete power results for all linking functions and all values of r. 
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APPENDIX B: SUPPLEMENTARY FIGURES FROM CHAPTER 5 
 

Figure B.1: Complete power results for African causal alleles over all values of m. 
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Figure B.2: Complete power results for African causal alleles over all values of r. 
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Figure B.3: Complete power results for European causal alleles over all values of m. 
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Figure B.4: Complete power results for European causal alleles over all values of r. 
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