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ABSTRACT

YU ZHANG: INDEX POLICIES FOR PATIENT SCHEDULING AND ATM
REPLENISHMENT

(Under the direction of Vidyadhar Kulkarni)

Markov Decision Processes (MDP) are one of the most commonly used stochastic mod-

els to solve sequential decision making problems. The optimal solution to many real-world

problems cannot be achieved due to the curse of dimensionality. It is common to use a heuris-

tic policy called the index policy, which is obtained by applying one-step policy improvement

to a simple initial policy. The index policy performs close to the optimal policy and is eas-

ily implementable, which makes it attractive to use in practice. In this dissertation, we first

introduce the background information on MDP and index policies in Chapter 1. We then

study their applications in two problems: the appointment scheduling problem with patient

preferences, and the automated teller machine (ATM) replenishment problem.

In Chapter 2, we build an MDP model to design appointment scheduling policies in the

presence of patient preferences. We model the patient preferences by assuming that each

patient has a set of appointment days that are equally acceptable to the patient. We consider

a service provider which receives the appointment-booking requests and makes an appoint-

ment decision one at a time. The objective is to minimize the long-run average cost while

responding to the patients’ booking requests based on their preferences. We propose the

index policy and show it performs close to the optimal policy in the two-day horizon and

outperforms other benchmarks in the multi-day horizon.
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In Chapter 3, we build an MDP model to design ATM replenishment schedules, while

balancing the cost of replenishments and the cost of stock-outs. We propose a method to

establish a relationship between the service level and the cost of a stock-out. We also assume

that the replenishment cost is a sub-modular function of the set of ATMs that are replenished

together. We derive the index policy, prove it has the same structural properties as the optimal

policy, and show it performs close to the optimal policy when there are two or three ATMs.

When there are a large number of ATMs, we show the index policy outperforms a benchmark

policy through a simulation study and a real-world data-set.
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CHAPTER 1: Markov Decision Processes and Index Policies: Background

In this doctoral dissertation, we plan to use Markov Decision Processes and index policies

to model and analyze two real-world problems. In this chapter, we collect the background

information on Markov Decision Processes (MDP) and the index policies.

MDP is a tool to study sequential decision making problem. (Puterman, 2014) is an

excellent reference on this subject. An MDP has five elements: decision epochs, a state space,

an action space, transition probabilities and costs. A decision epoch is the point of time when

a decision is made. Let Xn be the system state at the decision epoch n. Suppose Xn ∈ S

for all n ≥ 0. We call S a state space. Let An be the action taken at the decision epoch n.

Suppose An ∈ A for all n ≥ 0. We call A an action space. The process {(Xn, An), n ≥ 0}

is called an MDP if

P(Xn+1 = j|Xn = i, An = a,Xn−1, ..., X1, X0, An−1, ..., A1, A0) = pij(a),

for all n ≥ 0, i, j ∈ S, a ∈ A . We call pij(a) transition probabilities. Let c(i, a) be the

expected cost incurred if action a is chosen in state i at any time n ≥ 0.

A policy is a description of actions taken at each decision epoch. Let π : S → A be a

policy. We choose action π(i) whenever the system is in state i under policy π. Such policies

are called stationary deterministic Markovian (SDM) policies. For a given SDM policy π,



define (assuming the limit exists)

gπ(i) = lim
N→∞

1

N + 1
Eπ

[
N∑
n=0

c(Xn, An)

∣∣∣∣∣X0 = i

]
.

We call gπ(i) the long-run average cost of following the policy π. Let

g∗(i) = inf
π
gπ(i), ∀i ∈ S.

If there is a policy π∗ that achieves this infimum, it is called the average-cost optimal policy.

Thus an optimal policy (if it exists) satisfies

gπ
∗
(i) = g∗(i), ∀i ∈ S.

Now we discuss when such an optimal policy exists and how to compute it. Define

vn+1(i) = min
a∈A
{c(i, a) +

∑
j∈S

pij(a)vn(j)}, (1.1)

for all i ∈ S and n ≥ 0, where v0(i) = 0 all i ∈ S. We can interpret vn(i) as the optimal total

expected cost incurred over the n days starting from state i. It is known (see (Tijms, 2003))

that vn(i) is asymptotically linear in n with slope g and intercept h(i). We can write

vn(i) = ng + h(i) + o(n), (1.2)

where o(n)
n
→ 0 as n → ∞. The slope g is the optimal long-run average cost. The intercept
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h(·) is called the bias function. It is known (see (Tijms, 2003)) that g and h(·) satisfy the

Bellman equation

h(i) + g = min
a∈A
{c(i, a) +

∑
j∈S

pij(a)h(j)}, (1.3)

It is also known (see (Tijms, 2003)) that if Equation (1.3) has a solution, then we can use it

to compute the optimal decision as follows. Define

a(i) = arg min
a∈A
{c(i, a) +

∑
j∈S

pij(a)h(j)}, ∀i ∈ S. (1.4)

The standard theory of dynamic programming shows that the Markovian policy that chooses

action a(i) in state i is optimal. It is known (see (Tijms, 2003)) that Equation (1.3) has a

solution if the MDP is unichain, that is, for each stationary policy the associated Markov

chain has no two disjoint closed sets. This fact is formally stated in the next theorem.

Theorem 1. If an MDP is unichain, then Equation 1.3 has a solution.

If Equation 1.3 has a solution, we can solve it by the iterative method in Equation (1.1).

We restate Theorem 6.6.1 of (Tijms, 2003) in the theorem below, which allows us to use the

recursion in Equation (1.1) to compute g and h(·).

Theorem 2. For any state i, we have

h(i)− h(0) = lim
n→∞

[vn(i)− vn(0)], (1.5)

3



and

g = lim
n→∞

vn(i)

n
. (1.6)

Furthermore,

min
i∈S
{vn(i)− vn−1(i)} ≤ g ≤ max

i∈S
{vn(i)− vn−1(i)} (1.7)

However, solving the optimality equation is intractable when the state space and action

space are large. Hence, we develop heuristic policies which perform well. One such policy

is called the index policy, which we define below.

Suppose the MDP is unichain. Let π be a given initial policy. Then there exists a solution

gπ and a bias function hπ that satisfy

hπ(i) + gπ = min
a∈A
{c(i, a) +

∑
j∈S

pij(a)hπ(j)}.

Now consider a policy π̂ that chooses the action â in state i, where

â ∈ arg min
a
{r(i, a) +

∑
j∈S

pij(a)hπ(j)}.

The next theorem shows the importance of this construction.

4



Theorem 3.

gπ̂ ≤ gπ.

and if gπ̂ = gπ, then π̂ is the average-cost optimal policy.

Suppose we can construct a function f : S ×A → R such that

arg min
a
f(i, a) ⊂ arg min

a
{r(i, a) +

∑
j∈S

pij(a)hπ(j)}.

The function f is called an index function and the policy π̂ is called an index policy using the

index function f . It has been observed that the index policy π̂ provides a tractable heuristic

policy, especially if the initial policy π is chosen wisely.

We apply this methodology to two special problems in this dissertation. The rest of this

dissertation is organized as follows. Chapter 2 describes the application of index policies in

the appointment scheduling problem with patient preferences. Chapter 3 studies the appli-

cation of index policies in the automated teller machine (ATM) replenishment problem. In

each chapter we first formulate the problem as an MDP. Then we show the structural proper-

ties of the average-cost optimal policy. We derive an index policy and numerically study its

performance.
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CHAPTER 2: Appointment Scheduling with Patient Preference

2.1 Introduction

In recent years, more and more hospitals and clinics have started utilizing information

technology, in particular the electronic medical record systems. This not only enables clinical

staff (physicians, nurses, lab technicians and pharmacists) to provide high-quality service,

but also allows the communication between patients and clinical staff to become increasingly

smooth and seamless. The online appointment scheduling system is one of the manifestations

of this recent development. For instance, ambulatory care patients are able to select their

preferred appointment date, time and provider through eClinicalWorks Patient Portal, if their

clinics have the appropriate software deployed. Another example is ZocDoc, which allows

patients to register with an email address and helps them find doctors and book appointments

through their website.

Despite the advanced technology, the patient preference has received limited attention in

practice. Often the patients are not provided with many options when it comes to making

appointments; see (Feldman et al., 2014). Many patients might prefer seeing the doctor as

soon as possible while some other patients may like a later date due to their job constraints

or the fact that the physician they usually see is not available at an earlier date. Taking their

preferences into consideration and attempting to meet their needs will improve the service

quality and the satisfaction of the patients; see (Feldman et al., 2014).



Clearly, one can meet the patients’ preferences if enough resources are available to satisfy

it. In practice this would mean overbooked schedules for the service providers and increased

cost of service. Thus there is a trade-off between the level of patient satisfaction and the

monetary cost to the service provider. We can measure the utility or dis-utility of the schedule

by a cost function. We explain this in detail in Section 2.3.

The goal of the scheduling policy is to find this optimal trade-off between the level at

which patients’ preferences are satisfied and the cost of doing so. For example, one can aim

to minimize the cost subject to the constraint that all patients’ preferences must be satisfied.

This leads to our base model described in Section 2.3. It is also possible to reduce the cost

further if we allow the rejection of patients, which leads to an extension of the base model

studied in Section 2.7.

We construct a model that helps clinics assign patients in the appointment schedule, tak-

ing both patients’ preferences and the clinic’s goals into consideration. We model the patient

preferences by assuming that each patient has a set of appointment days that are equally ac-

ceptable to her. We consider a service provider which receives the appointment-booking re-

quests one at a time and makes an appointment decision, while taking the currently scheduled

appointments into account. In the base model, the patient is always given an appointment on

one of the days of her choice. In the extended model of Section 2.7, the service provider may

decide to reject the appointment request (and forgo any revenue from that patient). We also

consider the possibility that patients who are scheduled to see a doctor may not actually show

up for their appointments (that is, they are no-shows). Every patient that shows up produces

a revenue for the clinic. The clinic typically overbooks the number of appointments to handle

7



the no-shows. However, this implies that the clinic will frequently incur overtime costs, since

the clinic is obligated to see all patients who arrive for their appointments on any given day.

The objective is to minimize the long-run average cost by responding to the patients’ booking

requests based on their preferences.

We first analyze the problem using dynamic programming techniques. We identify the

best policy that can be achieved theoretically and characterize the structure of the optimal

policy. Since it is hard to implement the optimal policy, we consider several heuristic policies.

Specifically, we introduce the shortest-queue policy, the randomized policy and also propose

an index policy. We further show by numerical study that the index policy performs most

closely to the optimal policy and is easy to implement.

The main contribution is in the novel model of patient preferences and that the appoint-

ment decisions are made after each arrival. A distinguishing feature of this model is that

we can establish the unichain nature of the Markov decision process (MDP) and prove the

existence of the average cost optimal policy.

The rest of Chapter 2 is organized as follows: we briefly review the related literature

in Section 2.2. Details of the base model are described and assumptions are listed in Sec-

tion 2.3. In Section 2.4 we study the optimal policy that minimizes the long-run average cost,

and present the structure of the optimal policy. Section 2.5 introduces several heuristic po-

lices, including our proposed index policy. The numerical study of these policies is given in

Section 2.6. Section 2.7 describes the extension of the base model to incorporate the rejection

option. We also briefly discuss how the heuristic policies of Section 2.5 can be modified to

take into account the rejection option. Section 2.8 studies an appointment scheduling prob-

8



lem with a more-than-two-day horizon and general arrival processes. Finally, we conclude

this chapter in Section 2.9.

2.2 Literature Review

This work belongs to a research area of clinical appointment scheduling problems in

primary care setting. The literature in this area is quite extensive. We refer the reader to

(Cayirli and Veral, 2003) and (Gupta and Denton, 2008), which provide excellent surveys of

this area.

(Wang and Gupta, 2011) mention that most clinics use a two-step process to build the

appointment scheduling system: “clinic profile setup” and “appointment booking”. The for-

mer deals with the problem of dividing the physician’s working time into appointment slots

while the latter takes care of assigning the available slots to meet the requests from incoming

patients. Many papers in this area are related to one of the two steps. Our work falls into the

category of analyzing the problems arising in the second step.

An important aspect of appointment scheduling is the phenomenon of patient no-shows.

(Green and Savin, 2008) and (Liu et al., 2010) report that the no-show rate depends on the

length between the time a patient requests an appointment and the time she sees the physician.

To deal with the effect of no-shows, a clinic might adopt the practice of overbooking. In this

sense, (LaGanga and Lawrence, 2012) develop an effective, near-optimal solution procedure

to solve this overbooking problem.

Many papers in the literature model and solve the appointment scheduling problem using

a queueing theoretic approach. (Hassin and Mendel, 2008) determine the time intervals be-
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tween the scheduled arrival times to minimize the patients’ waiting cost and the physicians’

availability cost. The authors incorporate no-shows and exponential service times in their

model. (Kaandorp and Koole, 2007) choose the number of patients scheduled in each inter-

val to minimize the weighted sum of patients’ waiting time, doctor’s idle time, and doctor’s

overtime. The authors develop a local search algorithm to search for the optimal schedule,

assuming exponential service times. (Kuiper et al., 2015) determine the appointment times to

minimize the quadratic loss function of patients’ waiting time and physicians’ idle time. The

authors extend the distribution of service time to a more general form and propose compu-

tationally feasible approaches. (Zacharias and Pinedo, 2014) design the paradigms to assign

the patients to the fixed appointment slots. The authors consider overbooking to counter the

no-show effect and minimize the expected weighted sum of the patients’ waiting times and

the physician’s idle time and overtime.

In the revenue management literature, there is a significant stream of articles regarding

applying discrete choice models to analyze the consumer behavior, see for example (Talluri

and Van Ryzin, 2004) for a detailed discussion. As far as we know, work on including

the patient preferences in the appointment scheduling problem is limited and often involves

stochastic dynamic programming; see (Balasubramanian et al., 2014; Gupta and Wang, 2008;

Wang and Gupta, 2011; Feldman et al., 2014). (Balasubramanian et al., 2014) assume that

the same-day patient accepts being assigned to the earliest available slot for a physician once

the physician has been decided. (Gupta and Wang, 2008) consider that the patients have

preferences over the slots instead of dates. They model the preferences via a discrete choice

model, assuming that each patient has a preferred slot and the patient leaves if that slot is
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unavailable. Their assumption on the cost structure (the expected net profit is concave in the

number of schedule appointments) is similar to ours. However, it is hard to obtain the patients

choice probabilities for the clinics, because the front desk has no mechanism to collect such

information. Furthermore, it is rare for the clinics to reveal the available slots to the patients.

(Wang and Gupta, 2011) assume that all appointment requests are known at the beginning of

a day and a clinic then decides upon the appointment schedule for the day, taking into account

the random number of walkin patients. Our work explicitly allows multi-day appointments.

(Feldman et al., 2014) model the patients preferences over the appointment dates using a

discrete choice model. They assume that the clinic makes several appointment dates available

for the patients to choose from. Our work differs from theirs in that we consider the patients

revealing their preferences when they request the appointment.

2.3 Base Model

In this section, we propose our base model: patients arrive one at a time and request

an appointment at a clinic. The clinic accepts appointment requests for the next two days,

which is our scheduling horizon. There are no appointments given on the same day. The

clinic’s appointment book contains the number of scheduled appointments on the next two

days (tomorrow and the day after tomorrow). We model the patient preference over the next

two days as follows. Each patient has a set A ⊂ {1, 2} of the days that are acceptable to her.

We call such a patient type-A patient. When she arrives to request an appointment, the clinic

gives her an appointment t days into future for some t ∈ A . On day n there are three types

of patients: a type-1 patient only requesting an appointment on day n + 1; a type-2 patient

11



only requesting an appointment on day n + 2; a type-12 patient requesting an appointment

on either day n + 1 or day n + 2. We denote the probability that an arriving patient belongs

to each category by p1, p2 and p12, where p1 + p2 + p12 = 1.

We observe the current system state (i, j), where i is the number of scheduled appoint-

ments on day n + 1 and j is the number of scheduled appointments on day n + 2. We then

decide which day to schedule her appointment and update the system state accordingly. The

arriving, observing, deciding and updating all happen instantaneously in that order.

Let An be the number of requests that arrive on day n. We assume the distribution of

An is modified Geometric with parameter 1 − α (where α ∈ (0, 1)), that is, P(An = k) =

αk(1 − α) where k = 0, 1, 2, .... These are common assumptions in the previous literature;

see (Zonderland et al., 2015). Throughout this chapter, we say a random variable having such

a probability mass function follows a G(α) distribution with expectation τ = α
1−α (τ requests

arrive during each day on average). Because of the memoryless property of this distribution,

the probability that an additional request arrives is α and with probability 1 − α, there is no

additional request coming in and day n is finished. The next day starts and this process of

scheduling incoming appointment requests continues.

Let Xk be the state of the system just before the kth event for k ≥ 1. (An event can be

an arrival or a change of day.) The state is given by a pair of non-negative integers (i, j),

where i is the number of appointments already scheduled for tomorrow and j is the number

of appointments already scheduled for the day after tomorrow. Suppose Xk = (i, j), and

the kth event is an arrival. With probability p1, p2 or p12, this arrival is a type-1, type-2 or

type-12 patient. A decision Dk has to be made about accepting, rejecting, and scheduling the
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appointment for this arrival, and it will result in a change of state of the system from Xk to

Xk+1. If the kth event is a change of day, then the current day is finished and the cost c(i) is

incurred, since i patients are scheduled for the next day. In this case the decision Dk is to do

nothing. At the beginning of the next day, the system state changes to (j, 0). This shows that

{(Xk, Dk), k ≥ 1} is an MDP with the state space S = {(i, j) : i ≥ 0, j ≥ 0}.

A policy specifies a rule for selecting the decision Dk (k ≥ 1). We say the policy is

stationary Markovian if Dk depends only on Xk and not on k. A stationary Markovian policy

assigns the type-12 patient on day n to day n + 1 with probability φ(i, j) and to day n + 2

with probability 1 − φ(i, j), in state (i, j). Let Π denote the class of stationary Markovian

policies, where each policy π ∈ Π can be captured by the function φ : S → [0, 1].

We now discuss the system dynamics after each event. Consider an arrival event. If the

arrival is of type-1, the decision is to give her an appointment on the next day, then the state

changes to (i+ 1, j). If the arrival is of type-2, the decision is to give her an appointment on

the day after next, then the state changes to (i, j + 1). If the arrival is of type-12, she can be

assigned to either the next day, with state changing to (i + 1, j) or the day after next, with

state changing to (i, j + 1). If the event is a change-of-day event, a cost c(i) is incurred and

the system state changes to (j, 0). From the dynamics above, we get the optimality equation

given below:

h(i, j) + g =α[p12 min{h(i+ 1, j), h(i, j + 1)}+ p1h(i+ 1, j)

+ p2h(i, j + 1)] + (1− α)[c(i) + h(j, 0)]. (2.1)
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Suppose there is a solution to Equation (2.1). Then g is the optimal long run average cost

and h(·, ·) is the bias under the optimal policy. The policy π that chooses the action that

minimizes the right hand side of Equation (2.1) provides the optimal decision for the arrival

of type-12 patient.

We describe an iterative method to solve Equation (2.1). Set v0(i, j) = 0 for all (i, j) and,

for k ≥ 1,

vk(i, j) = α[p12 min{vk−1(i+ 1, j), vk−1(i, j + 1)}+ p1vk−1(i+ 1, j)

+ p2vk−1(i, j + 1)] + (1− α)[c(i) + vk−1(j, 0)]. (2.2)

Note that one can interpret vk(i, j) as the total expected cost incurred over the first k events.

For a finite state space MDP, the existence of a solution in Equation (2.1) and the conver-

gence of the value iteration method in Equation (2.2) has been well studied. However, for a

countable state space MDP with unbounded cost (the category our MDP falls into), the results

are limited. We use the Theorem 2.10 of (Blok and Spieksma, 2015) to show that Equation

(2.1) has a solution and the value iteration method in Equation (2.2) can be used to compute

it. The V -uniform geometric recurrence condition in Theorem 2.10 has been introduced and

proved in (Dekker and Hordijk, 1992) and (Dekker et al., 1994). Both (Dekker et al., 1994)

and (Spieksma, 1990) have shown this condition is equivalent with the V -uniform geometric

ergodicity. We restate Theorem 2.10 of (Blok and Spieksma, 2015) below for a general MDP

with a countable state space S, the transition probability P π
x,y from state x to state y under

policy π, and the cost function c(·). We omit the continuity assumptions since they are au-
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tomatically satisfied in our setting. We use the unichain assumption, that is, each stationary

Markovian policy the associated Markov chain with a single closed sets; see (Tijms, 2003).

Theorem 4. Suppose an MDP satisfies the following conditions.

(a) There exists a function V : S → [1,∞), a finite set M ⊂ S and a constant β < 1 such

that, for all π ∈ Π

∑
y/∈M

P π
x,yV (y) ≤ βV (x), ∀x ∈ S. (2.3)

(b) The cost c(·) satisfies

sup
x∈S

|c(x)|
V (x)

<∞.

(c) The MDP is unichain.

(d) The MDP is aperiodic.

Then, there exists a solution pair (g, h) to Equation (2.1), and h(·, ·) is given by

h(i, j)− h(0, 0) = lim
k→∞

[vk(i, j)− vk(0, 0)].

We show that the conditions of Theorem 4 are satisfied by our MDP.

Theorem 5. Suppose a, b, and M satisfy

1 < a < b <
1

α
,
(a
b

)M
<

1− αb
1− α

. (2.4)
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Let M = {(i, j) : 0 ≤ i + j ≤ M} ⊂ S be the finite set and define V (i, j) = aibj . Further-

more, suppose c(i) is bounded by a polynomial in i. Then all the conditions in Theorem 4 are

satisfied.

Proof. (a) It suffices to find a constant β < 1 which satisfies Equation (2.3) for all π ∈ Π.

Consider the policy π that assigns the type-12 patient arriving on day n to day n + 1 with

probability φ(i, j) and to day n + 2 with probability 1 − φ(i, j). Given the current state

x = (i, j), the next state y is given by

y =



(i+ 1, j), w.p. α(p1 + p12φ(i, j));

(i, j + 1), w.p. α(p2 + p12(1− φ(i, j)));

(j, 0), w.p. 1− α.

(i) For state (i, j) where j ≤ M, i + j ≤ M − 1, any β ∈ (0, 1) makes Equation (2.3) hold

since the left-hand side is 0.

(ii) For state (i, j) where j ≤M, i+ j ≥M , we need to find β < 1 such that

α(p1 + p12φ(i, j))V (i+ 1, j) + α(p2 + p12(1− φ(i, j)))V (i, j + 1) ≤ βV (i, j)

holds. Using V (i, j) = aibj we get

α(p1 + p12φ(i, j))ai+1bj + α(p2 + p12(1− φ(i, j)))aibj+1 ≤ βaibj,
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which reduces to

α(p1 + p12φ(i, j))a+ α(p2 + p12(1− φ(i, j)))b ≤ β.

Since a < b, we have

α(p1 + p12φ(i, j))a+ α(p2 + p12(1− φ(i, j)))b ≤ αb,

so that we choose β = αb. Since b < 1
α

, we see that β < 1.

(iii) For state (i, j) where j > M , we need to find β < 1 such that

α(p1 + p12φ(i, j))V (i+ 1, j) + α(p2 + p12(1− φ(i, j)))V (i, j + 1) + (1− α)V (j, 0)

≤ βV (i, j).

Using V (i, j) = aibj we get

α(p1 + p12φ(i, j))ai+1bj + α(p2 + p12(1− φ(i, j)))aibj+1 + (1− α)ajb0 ≤ βaibj.

This reduces to

α(p1 + p12φ(i, j))a+ α(p2 + p12(1− φ(i, j)))b+ (1− α)
aj

aibj
≤ β.
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Since a < b, it suffices to choose β < 1 such that

αb+ (1− α)
aj

aibj
≤ β.

Since 1 < a < b, we get

aj

aibj
<
aj

bj
<
(a
b

)M
.

We choose

β = αb+ (1− α)
(a
b

)M
. (2.5)

We know β < 1 since

(a
b

)M
<

1− αb
1− α

.

The β in Equation (2.5) satisfies Equation (2.3). This proves part (a) of Theorem 4.

(b) Since c(i) is bounded by a polynomial of i, we have

sup
(i,j)∈S

|c(i)|
aibj

<∞.

(c) We have, for any policy π, P (Xk+1 = (j, 0)|Xk = (i, j)) = 1 − α, P (Xk+2 =

(0, 0)|Xk+1 = (j, 0)) = 1− α. The system can go from any state (i, j) to state (0, 0) in two

steps with a positive probability, regardless of the policy followed. Therefore {(Xk, Dk), k ≥
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1} satisfies the unichain assumption.

(d) The state (0, 0) is aperiodic, because P(Xk+1 = (0, 0)|Xk = (0, 0)) = 1 − α. The

MDP is aperiodic since it satisfies the unichain assumption.

Remark: A triplet (a, b,M) satisfying Equation (2.4) is given by:

(a, b,M) =

(
1 +

1

3

(
1

α
− 1

)
, 1 +

2

3

(
1

α
− 1

)
,

⌈
log (1− α)− log (1− αb)

log b− log a

⌉
+ 1

)
.

Theorem 5 enables us to use the recursions in Equation (2.2) to compute the optimal

average cost g and the bias h(·, ·), which can be used to derive the optimal policy. Note that

g is the long-run average cost per event, so that the long-run average cost per day is given by

g
1−α .

Let dt(i, j) be the optimal decision when a type-t (t = 1, 2, 12) patient arrives on day n

and sees the system in state (i, j). We write dt(i, j) = 1 if the decision is to assign the patient

to day n + 1, dt(i, j) = 2 if the decision is to assign the patient to day n + 2. Since we

must assign type-1 and type-2 patient to their desired day, d1(i, j) = 1 and d2(i, j) = 2. The

standard theory of dynamic programming (see (Tijms, 2003)) shows that the optimal policy

for type-12 patients can be computed from the bias h(·, ·) as follows:

d12(i, j) =


1, if h(i+ 1, j) ≤ h(i, j + 1)

2, if h(i+ 1, j) > h(i, j + 1).

(2.6)
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2.4 Structural Properties of Optimal Policy

In this section, we study the structural properties of the optimal policy in the base model

and then use numerical computations to illustrate them. Theorem 6 below gives the structural

properties of the bias h(·, ·) of Equation (2.1). We use the event-based dynamic programming

(DP) techniques of (Koole, 2007) to prove the following structural properties.

Let f : S → R, then we define:

Convexity:


f(i, j) + f(i+ 2, j) ≥ 2f(i+ 1, j), ∀(i, j) ∈ S;

f(i, j) + f(i, j + 2) ≥ 2f(i, j + 1), ∀(i, j) ∈ S.

Super: f(i, j) + f(i+ 1, j + 1) ≥ f(i+ 1, j) + f(i, j + 1), ∀(i, j) ∈ S.

SuperC:


f(i+ 2, j) + f(i, j + 1) ≥ f(i+ 1, j) + f(i+ 1, j + 1), ∀(i, j) ∈ S;

f(i+ 1, j) + f(i, j + 2) ≥ f(i, j + 1) + f(i+ 1, j + 1), ∀(i, j) ∈ S.

Next, we define some useful operators

T12f(i, j) = min{f(i+ 1, j), f(i, j + 1)}.

T1f(i, j) = f(i+ 1, j).

T2f(i, j) = f(i, j + 1).

Tp(f12, f1, f2)(i, j) = p12f12(i, j) + p1f1(i, j) + p2f2(i, j).

Tα(f1, f2)(i, j) = αf1(i, j) + (1− α)f2(i, j).

Tcf(i, j) = c(i) + f(j, 0).
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so that Equation (2.2) can be written as

vk+1 = Tα(Tp(T12vk, T1vk, T2vk), Tcvk), (2.7)

with v0(i, j) = 0, for all (i, j) ∈ S. We adopt the notations from (Koole, 1998): T :

P1, ..., Pk → P1 means for operator T , if f has the properties P1, ..., Pk then Tf has the

property P1.

Lemma 1. The operators T1, T2, Tp, Tα satisfy:

(a) Convexity → Convexity;

(b) Super → Super;

(c) SuperC → SuperC.

Proof. For operators T1 and T2, the result is trivial. For operators Tp and Tα, the results follow

from the fact that Convexity, Super, SuperC are closed under convex combination.

Lemma 2. Assume c(·) is convex. Then the operators T12 and Tc satisfy:

(a) Convexity, Super, SuperC → Convexity;

(b) Convexity, Super, SuperC → Super;

(c) Convexity, Super, SuperC → SuperC.

Proof. The operator T12 coincides with the TR(I) in (Koole, 1998), which yields the results.

For the operator Tc, the Convexity of Tcf follows from the Convexity of f . The Super of
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Tcf is trivially satisfied. For SuperC of Tcf , we have

Tcf(i+ 2, j) + Tcf(i, j + 1) = c(i+ 2) + f(j, 0) + c(i) + f(j + 1, 0)

≥ c(i+ 1) + f(j, 0) + c(i+ 1) + f(j + 1, 0)

= Tcf(i+ 1, j) + Tcf(i+ 1, j + 1).

Similarly,

Tcf(i+ 1, j) + Tcf(i, j + 2) = c(i+ 1) + f(j, 0) + c(i) + f(j + 2, 0)

≥ c(i) + f(j + 1, 0) + c(i+ 1) + f(j + 1, 0)

= Tcf(i, j + 1) + Tcf(i+ 1, j + 1).

This yields the SuperC of Tcf .

Theorem 6. Assume c(·) is convex. The bias h(·, ·) satisfying Equation (2.1) has the follow-

ing properties: Convexity, Super, SuperC.

Proof. By Lemma 1 and 2, the induction hypothesis leads to the fact that the functions vk

in Equation (2.7) satisfy these properties. By Theorems 4 and 5, the bias h(·, ·) has these

properties.

The next corollary gives the structure of the optimal decision d12.

Corollary 1. d12(i, j) = 1⇒ d12(i, j+1) = 1, d12(i, j) = 2⇒ d12(i+1, j) = 2, ∀(i, j) ∈

S.
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Proof. The SuperC of h(·, ·) gives rise to the fact that h(i+1, j)−h(i, j+1) increases with

i for any fixed j, and h(i+ 1, j)− h(i, j + 1) decreases with j for any fixed i. We have

h(i+ 1, j) ≤ h(i, j + 1)⇒ h(i+ 1, j + 1) ≤ h(i, j + 2),

h(i+ 1, j) > h(i, j + 1)⇒ h(i+ 2, j) > h(i+ 1, j + 1).

Combining this with the definition of d12(i, j) in Equation (2.6) we have the results.

Theorem 6 and Corollary 1 yield the following structure of the optimal policy.

Theorem 7. Assume c(·) is convex. There exists a critical number j∗(i) for each i such that

d12(i, j) =


1, if j ≥ j∗(i);

2, if j < j∗(i).

Furthermore, there exists a critical number i∗(j) for each j such that

d12(i, j) =


1, if i < i∗(j);

2, if i ≥ i∗(j).

2.4.1 Numerical Illustration

We now present a numerical illustration of the optimal policies under a specific c(·) func-

tion. Suppose a patient shows up for her appointment with probability p, and is a no-show

with probability 1 − p. We also assume that the clinic collects revenue r from each patient
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served. There is no penalty for no-show patients. The fixed cost of the clinic is K, for serv-

ing up to m0 patients. When serving more than m0 patients, the variable cost of each patient

served is co > r, say overtime or overstaffing cost. The net cost F (y) when there are y

patients who actually get served by the clinic during one day is

F (y) = K − ry + co max{y −m0, 0}. (2.8)

The net cost incurred on a day with x scheduled appointments is given by c(x) = E[F (Bin(x, p))],

where Bin(x, p) is a Binomial random variable with parameters x and p, representing the

number of patients who actually show up for their appointments. One can show that c(·) is a

convex function, which takes its minimum atm ≥ m0. For example, if we choose parameters

K = 440, r = 40, co = 50,m0 = 11, p = 0.8, the c(·) function is minimized at m = 15,

which is depicted in Figure 2.1. We choose α = 15
16

, so that the expected number of patients

arriving each day is 15, which is also the value of x at which c(x) is minimized.

Next we discuss how to compute vk(i, j) in the value iteration method. First we truncate

the entire state space [0,∞) × [0,∞) to [0, T ] × [0, T ] in numerical calculations. The cal-

culations of vk+1(i, T ) and vk+1(T, j) involve vk(i, T + 1) and vk(T + 1, j), which are not

computed in the numerical program. Therefore, we use the following approximations

vk+1(i, T + 1) ≈ vk(i, T ) + [vk(i, T )− vk(i, T − 1)], 0 ≤ i ≤ T.

vk+1(T + 1, j) ≈ vk(T, j) + [vk(T, j)− vk(T − 1, j)], 0 ≤ j ≤ T.
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Figure 2.1: The cost function c(x) = E[F (Bin(x, p))] with F as defined in Equation (2.8).

Here, we use the Taylor’s approximation v(x + 1) ≈ v(x) + v′(x) and use v′(x) ≈ v(x) −

v(x− 1) to approximate the derivative. This approximation exploits the convexity of vk(i, j)

for fixed i or j; see (Ha, 1997) for a similar use of this approximation. We use the recursion in

Equation (2.2) to calculate the long-run average cost under the optimal policy. From (Tijms,
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2003), we know that

min
i,j
{vk(i, j)− vk−1(i, j)} ≤ g ≤ max

i,j
{vk(i, j)− vk−1(i, j)},

so we use a stopping criterion

max
i,j
{vk(i, j)− vk−1(i, j)} −min

i,j
{vk(i, j)− vk−1(i, j)} ≤ ε,

where we set ε to 0.01. We observed that the relative error is less than 0.1% of the optimal

value when the algorithm stops, using T = 120 throughout our numerical study. Note that

given the expected number of appointment requests on each day is 15, the probability that

there are more than 120 scheduled patients is less than 0.0005.

Figure 2.2 displays the optimal decision for a type-12 patient in each state under the

parameters α = 15
16
, p1 = 0.1, p2 = 0.1, p12 = 0.8. Figure 2.2 clearly shows a switching-

curve pattern, and in Table 2.1 the corresponding values of j∗(i) and i∗(j) are given up to 15

appointments.

Remark: In theory it is possible that i∗(j) and j∗(i) are equal to zero or infinity. However,

over all our experiments we have observed that only j∗(i) attained zero.

Table 2.1: j∗(i) and i∗(j) with parameters α = 15
16 , p1 = 0.1, p2 = 0.1, p12 = 0.8.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j∗(i) 0 0 0 0 0 0 0 0 0 0 0 0 5 11 13 14

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i∗(j) 12 12 12 12 12 13 13 13 13 13 13 14 14 15 16 16
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Figure 2.2: The optimal policy for type-12 patients.

2.5 Heuristic Policies

In general the optimal policy is intractable to implement, since its structure (given by

the switching curve i∗(j)) is not available in an analytical form. Therefore we study three

intuitive policies, which are described by the decision to be taken when a type-12 patient

arrives.
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2.5.1 Shortest-Queue Policy (SQ)

Under the shortest-queue (SQ) policy we assign a type-12 patient to the “shortest” queue,

i.e., we assign her on the day with the fewest scheduled appointments. The appointment

decision dSQ(i, j) by the SQ policy in state (i, j) is given by

dSQ12 (i, j) =


1, if i < j;

2, if i > j.

When the numbers of scheduled appointments are equal on both days, we assign the patient

to either day with probability 0.5.

The shortest-queue policy is equivalent to a myopic policy, under which the decisions are

made ignoring cost incurred in the future. Under the myopic policy, the decision to give a

type-12 patient arriving on day n and seeing the state (i, j) an appointment on day n + 1

incurs the cost c(i+1)+c(j) while assigning her on day n+2 incurs the cost c(i)+c(j+1).

The convexity of the cost function c(·) implies the equivalence of the myopic policy and

the shortest-queue policy. In mathematical terms, c(i + 1) + c(j) < c(i) + c(j + 1) ⇔

c(i+ 1)− c(i) < c(j + 1)− c(j)⇔ i < j.

2.5.2 Randomized Policy (RP)

The randomized policy (RP) assigns a type-12 patient arriving on day n in state (i, j)

to day n + 1 with probability θ and to day n + 2 with probability 1 − θ. The appointment
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decision dRP (i, j) by the RP in state (i, j) is given by

dRP12 (i, j) =


1, with probability θ;

2, with probability 1− θ.

Let ρt (t = 1, 2) be the fractions of incoming patients that get assigned to day n + t under

RP. We see that

ρ1 = p1 + θp12, ρ2 = p2 + (1− θ)p12. (2.9)

We say that θ ∈ [0, 1] balances the number of appointments on each day if ρ1 and ρ2 solve

the optimization problem below:

min (ρ1 − 0.5)2 + (ρ2 − 0.5)2

s.t. p1 ≤ ρ1 ≤ p1 + p12,

p2 ≤ ρ2 ≤ p2 + p12,

ρ1 + ρ2 = 1.

The constraints in the optimization problem ensure that there is a balancing θ ∈ [0, 1] that will

achieve the optimal ρ1 and ρ2 produced by the above optimization problem. Proposition 1

gives the choice of this θ.
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Proposition 1. The following θ balances the number of appointments on each day.

θ =



0, if p1 ≥ 0.5;

1, if p2 ≥ 0.5;

0.5−p1
p12

, otherwise.

(2.10)

Proof. This optimization problem is equivalent to:

min (ρ1 − 0.5)2

s.t. p1 ≤ ρ1 ≤ p1 + p12,

which has the solution

ρ1 =



p1, if p1 ≥ 0.5;

1− p2, if p2 ≥ 0.5;

0.5, otherwise.

This is equivalent to the θ given in Equation (2.10).

2.5.3 Index Policy

Now we develop a heuristic policy, called the index policy (IP), under which the decision

made depends on the indices that are functions of the system state and the known parameters.

Specifically we compute two index functions I1(·) and I2(·) and define the decision dIP12 (i, j)

30



as follows:

dIP12 (i, j) =


1, if I1(i) ≤ I2(j);

2, if I1(i) > I2(j).

(2.11)

Structurally it is the same as that of the optimal policy and this is the reason why we ex-

pect that the index policy performs well. We will derive explicit expressions for the index

functions I1 and I2 which makes the implementation of this policy tractable.

We apply the one-step policy improvement algorithm to derive these indices. Consider a

policy πt (t = 1, 2) that assigns a type-12 patient arriving on day n to day n+ t but switches

to the randomized policy from the next patient on.

Let γ denote the randomized policy. Its bias hγ satisfies

hγ(i, j) + gγ = αp12[θhγ(i+ 1, j) + (1− θ)hγ(i, j + 1)] + αp1hγ(i+ 1, j)

+ αp2hγ(i, j + 1) + (1− α)[c(i) + hγ(j, 0)],

where gγ is the long-run average cost under policy γ starting from state (i, j). If we perform

a one-step improvement of the randomized policy, we see that in state (i, j) the improved

policy assigns the patient to day n + 1 if hγ(i + 1, j) ≤ hγ(i, j + 1) and to day n + 2

otherwise. We show that hγ(i+ 1, j)−hγ(i, j) is independent of j and hγ(i, j+ 1)−hγ(i, j)

is independent of i, so we are able to define the indices as I1(i) = hγ(i+ 1, j)− hγ(i, j) and

I2(j) = hγ(i, j+ 1)−hγ(i, j). Although hγ(·, ·) is hard to obtain, we see that its differences,

namely I1(i) and I2(j), are easier to compute.
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Suppose the state of the system is (i, j) and the policy γ is followed. For simplicity,

we use An to denote the number of remaining patients who arrive on day n. We know An

remains a G(α) random variable due to the memoryless property. Of these An patients,

the randomized policy assigns An,i to day n + i. By the end of day n, the system state

is (i + An,1, j + An,2). At the beginning of day n + 1, cost c(i + B1) is incurred where

B1 = An,1 and the system state is updated to (j +An,2, 0). Following a similar argument, by

the end of the day n+ 1, the system state becomes (j +An,2 +An+1,1, An+1,2). Then, at the

beginning of day n+ 2, we incur cost c(j +B2), where B2 = An,2 +An+1,1, and the system

state changes to (An+1,2, 0). Therefore the bias hγ(i, j) of following policy γ starting from

state (i, j), satisfies the equation

hγ(i, j) = E[c(i+B1)] + E[c(j +B2)] + E[hγ(An+1,2, 0)].

This implies that the effect of the initial state (i, j) disappears from the third day on. The

index functions are given as:

I1(i) = hγ(i+ 1, j)− hγ(i, j) = E[c(i+ 1 +B1)− c(i+B1)], i ≥ 0;

I2(j) = hγ(i, j + 1)− hγ(i, j) = E[c(j + 1 +B2)− c(j +B2)], j ≥ 0.

Remark: Because the distributions of B1, B2 do not depend on i, j, the convexity of c(·)

implies that I1(i) and I2(j) are increasing functions in i, j. The decisions under the index
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policy, namely dIP12 (i, j), in Equation (2.11) can be written as

dIP12 (i, j) =


1, if i ≤ I−11 (I2(j));

2, if i > I−11 (I2(j)).

The next theorem gives the distributions of An,1, An,2 and B1, B2.

Theorem 8. Let An be a G(α) random variable, and suppose each arriving patient is as-

signed to day n + i with probability ρi. Let αi = αρi
1−α(1−ρi) . Then An,i is a G(αi) random

variable. Furthermore

P(B1 = k) = αk1(1− α1), P(B2 = k) =
αk+1
1 − αk+1

2

α1 − α2

(1− α1)(1− α2).

Proof. Let {Yn, n ≥ 1} be i.i.d. Bernoulli(ρ) random variables and X ∼ G(α), then

Z =
X∑
n=1

Yn ∼ G
(

αρ

1− α(1− ρ)

)
.

We know An ∼ G(α). For each patient, the probability that she is scheduled on day n + i

is ρi. Applying the result above, we know the number of patients who are scheduled on day

n+ i follows the distribution G(·), i.e.,

An,i ∼ G

(
αρi

1− α(1− ρi)

)
, i = 1, 2.

Because B1 = An,1, B2 = An,2 + An+1,1 and An,2 and An+1,1 are independent, the theorem
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follows.

Using the above distributions of An,1, An,2 and B1, B2, we compute the indices. First, we

write the function F of Equation (2.8) in the following form

F (y) =


r1y + b1, if y < m0;

r2y + b2, if y ≥ m0,

where r1 = −r, b1 = K, r2 = co− r, b2 = K − com0. Second, the cost incurred at the begin-

ning of a day is c(x) = E[F (Bin(x, p))] where x is the number of scheduled appointments

on that day and p is the show-up probability. The main result follows.

Theorem 9. Let p, r1, r2 be as given above, ρi and αi be as those in Theorem 8 and βi =

αip
1−αi(1−p) , for i = 1, 2. The indices are given by

I1(i) = r1p+ p(r2 − r1)P(Bin(i+B1, p) ≥ m0), i ≥ 0;

I2(j) = r1p+ p(r2 − r1)P(Bin(j +B2, p) ≥ m0), j ≥ 0,

where P(Bin(i+B1, p) ≥ m0) =


βm0
1 ( 1

α1
)i, if i ≤ m0,

∑m0

l=0

(
i
l

)
pl(1− p)i−l · βm0−l

1 +
∑i

l=m0+1

(
i
l

)
pl(1− p)i−l, if i > m0,

34



and for j ≤ m0,

P(Bin(j +B2, p) ≥ m0) =
pm0

α1 − α2

[
(1− α2)α

m0+1−j
1

(1− α1 + α1p)m0
− (1− α1)α

m0+1−j
2

(1− α2 + α2p)m0

]

and for j > m0,

P(Bin(j +B2, p) ≥ m0) =

m0∑
l=0

(
j

l

)
pl(1− p)j−l (1− α1)(1− α2)

p(α1 − α2)

[
βm0−l+1
1

1− β1
− βm0−l+1

2

1− β2

]

+

j∑
l=m0+1

(
j

l

)
pl(1− p)j−l.

Proof. In order to calculate the indices, we first use a “sample-path” technique to compute

E[c(x+ 1)− c(x)] = E[F (Bin(x+ 1, p)]− E[F (Bin(x, p)]

= E[F (Bin(x, p) + Bernoulli(p))− F (Bin(x, p))]

= pE[F (Bin(x, p) + 1)− F (Bin(x, p))]

= r1pP(Bin(x, p) < m0) + r2pP(Bin(x, p) ≥ m0)

= r1p(1− P(Bin(x, p) ≥ m0)) + r2pP(Bin(x, p) ≥ m0)

= r1p+ p(r2 − r1)P(Bin(x, p) ≥ m0).

Therefore the indices are

I1(i) = E[c(i+ 1 +B1)− c(i+B1)] = r1p+ p(r2 − r1)P(Bin(i+B1, p) ≥ m0);

I2(j) = E[c(j + 1 +B2)− c(j +B2)] = r1p+ p(r2 − r1)P(Bin(j +B2, p) ≥ m0).
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The computation of P(Bin(i+B1, p) ≥ m0) and P(Bin(j+B2, p) ≥ m0) is straightforward.

2.6 Numerical Study

In this section, we compare the performances of the heuristic policies with that of the

optimal policy under the long-run average cost criterion. Before we do so, we discuss two

metrics.

The most commonly used metric in the literature to compare policies is the percentage

improvement in the cost of the optimal policy OP over the given heuristic policy HP, as

defined by:

gapHP =
LRACHP − LRACOP

LRACOP
× 100%,

where LRACOP denotes the long-run average cost incurred under the optimal policy and

LRACHP denotes the long-run average cost incurred under the heuristic policy. The smaller

the gap, the better the performance of the heuristic policy. Notice that the gap is scale-

invariant, but not shift-invariant. That is to say, if we multiply the cost function c by a

positive constant, the gap remains unchanged. But if we add a constant to the cost function c

in our model, the gap changes. This is undesirable, especially when the cost consists of both

the fixed cost and the variable cost, since this metric is not robust to changes in the fixed cost.

In order to circumvent this problem, we introduce a metric that is both scale-invariant and

shift-invariant.
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Suppose the clinic currently uses the shortest-queue policy that results in LRACSQ and the

cost of the optimal policy is LRACOP. Clearly LRACOP ≤ LRACSQ. We propose a heuristic

policy HP in place of SQ and the cost of HP is given by LRACHP. Then the relative efficiency

η of HP over SQ is defined by:

η(HP, SQ) =
LRACSQ − LRACHP

LRACSQ − LRACOP
× 100%.

This metric tells us what fraction of the gap LRACSQ − LRACOP is captured by the policy

HP. The higher the relative efficiency, the better is the policy HP. The maximum relative

efficiency is 100%, but it can be negative if HP is worse than SQ. It is clear that relative

efficiency is both scale-invariant and shift-invariant.

In our numerical study, we vary p1 and p2 in parameter space P where P = {(p1, p2):

p1, p2 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, p1 + p2 ≤ 1}. Note that p12 can be computed by p12 =

1 − p1 − p2, but we do not show it explicitly in any table throughout this section. Table 2.2

displays the values of ρ1 defined in Equation (2.9) for given p1 and p2, to be used in the

calculations under the index policy and the randomized policy. We use the same parameters

as in Section 2.4.1.

Table 2.3 exhibits how the four different policies perform as p1 and p2 vary. Each cell

contains four numbers, where the first number shows the LRAC under the optimal policy

(OP), the second indicates the difference between the LRAC under the index policy (IP)

and OP, the third gives the difference between the LRAC under the shortest-queue policy

(SQ) and IP, the fourth displays the difference between the LRAC under the randomized
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Table 2.2: The values of ρ1 given p1 and p2.

ρ1 p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1

p2 = 0 0.5 0.5 0.5 0.6 0.8 1
p2 = 0.2 0.5 0.5 0.5 0.6 0.8
p2 = 0.4 0.5 0.5 0.5 0.6
p2 = 0.6 0.4 0.4 0.4
p2 = 0.8 0.2 0.2
p2 = 1 0

policy (RP) and SQ. The zeros in anti-diagonal cells show that the LRAC under four different

policies are the same. This is because there are no type-12 patients in these cases.

As one can see from Table 2.3, the ranking LRACOP ≤ LRACIP ≤ LRACSQ ≤ LRACRP

is true under all sets of parameters and the index policy performs close to the optimal policy in

terms of the long-run average cost. Theoretically, the index policy is known to perform better

than the randomized policy given the fact that we apply the policy improvement algorithm

on the randomized policy to come up with the index policy. But we cannot show that the

index policy performs better than the shortest-queue policy analytically. The LRAC under

the optimal policy increases with p1 (p2) for any fixed p2 (p1). Intuitively, the higher cost is

due to the fact that the system becomes less flexible while the proportion of type-12 patients,

p12 = 1−p1−p2 gets smaller. We also note that, for any fixed p12, the system achieves lower

cost when the number of type-1 arrivals is around the same as the number of type-2 arrivals.

For example, the optimal LRAC in case p1 = 0.8, p2 = 0, p12 = 0.2 is 173.460, whereas the

optimal LRAC in case p1 = 0.6, p2 = 0.2, p12 = 0.2 is 154.212. Apparently it is better for

the system to see a more balanced arrivals between type-1 and type-2 patients.

One can also see that LRACIP − LRACOP decreases with p1 (p2) for any fixed p2 (p1). A
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Table 2.3: Long-run average cost under four different policies.

LRACOP p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
LRACIP − LRACOP

LRACSQ − LRACIP

LRACRP − LRACSQ

p2 = 0 125.012 130.535 139.110 152.203 173.460 208.751
4.740 2.893 0.592 0.006 0.001 0

12.696 12.418 10.196 4.586 0.627 0
14.126 10.728 6.675 1.632 0.218 0

p2 = 0.2 128.622 134.030 142.070 154.212 174.306
3.105 1.740 0.271 0.003 0

11.488 10.817 8.175 2.980 0
13.359 9.987 6.058 1.232 0

p2 = 0.4 133.644 139.141 146.910 158.427
1.707 0.828 0.086 0
9.995 8.690 5.281 0

11.228 7.914 4.297 0

p2 = 0.6 143.158 149.583 158.424
0.441 0.105 0
9.068 6.042 0
5.757 2.694 0

p2 = 0.8 165.539 174.296
0.046 0
6.667 0
2.043 0

p2 = 1 208.740
0
0
0
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reasonable explanation for this phenomenon is that a large part of the system is not under our

control when the proportion of type 12 patients is low. This trend also holds for LRACSQ −

LRACIP and LRACRP−LRACSQ. Table 2.4 displays the relative efficiency of IP over SQ and

Table 2.4: Relative efficiencies assuming that on average 15 patients arrive per day.

η(IP,SQ) p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8
η(IP,RP)

p2 = 0 72.81% 81.10% 94.51% 99.88% 99.89%
84.98% 88.89% 96.61% 99.91% 99.92%

p2 = 0.2 78.72% 86.15% 96.79% 99.89%
88.89% 92.28% 98.13% 99.92%

p2 = 0.4 85.41% 91.30% 98.40%
92.56% 95.25% 99.11%

p2 = 0.6 95.36% 98.28%
97.11% 98.81%

p2 = 0.8 99.31%
99.47%

the relative efficiency of IP over RP under different sets of parameters. Each cell contains

two lines, the first being the relative efficiency of IP over SQ while the second being the

relative efficiency of IP over RP. Note that when p1 + p2 = 1, no relative efficiency is defined

because p12 = 0 leads to the situation that all four policies give rise to the same LRAC. We

can see from Table 2.4, the relative efficiency of IP over SQ is over 72% in all cases. The

relative efficiency of IP over RP is over 84% in all cases. In all cases we have the relationship

eff(IP,SQ) ≤ eff(IP,RP). In Table 2.4, we also observe that both eff(IP,SQ) and eff(IP,RP)

increase with p1 (p2) for any fixed p2 (p1). Under an environment where we have more type-

12 patients, the scheduling is more likely out of our control and the relative efficiency of the

index policy over another policy is lower.
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2.7 Extension of the Base Model: Rejection is Allowed

In this section we study an extension of the base model, where the patient’s request for

an appointment can be rejected without incurring any cost except for the lost revenue.

2.7.1 Optimality Equation

Consider three cases of an arrival event when the system state is (i, j). If the arrival is of

type-1, the decision is to give her an appointment on the next day or reject her, then the state

changes to (i+1, j) or stays in (i, j), respectively. If the arrival is of type-2, the decision is to

give her an appointment on the day after next or reject her, then the state changes to (i, j+ 1)

or stays in (i, j), respectively. If the arrival is of type-12, she can be assigned to the next day

with state changing to (i+ 1, j), or the day after next with state changing to (i, j + 1), or she

can be rejected with state staying in (i, j).

Using the dynamics above, the optimality equation can be written as:

h(i, j) + g = α[p12 min{h(i+ 1, j), h(i, j + 1), h(i, j)}+ p1 min{h(i+ 1, j), h(i, j)}

+ p2 min{h(i, j + 1), h(i, j)}] + (1− α)[c(i) + h(j, 0)]. (2.12)

Suppose there is a solution (h, g) to Equation (2.12). Then g is the optimal average cost and

the h(·, ·) is the bias.
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The value iteration method to solve Equation (2.12) is given by:

vk(i, j) = α[p12 min{vk−1(i+ 1, j), vk−1(i, j + 1), vk−1(i, j)}

+ p1 min{vk−1(i+ 1, j), vk−1(i, j)}+ p2 min{vk−1(i, j + 1), vk−1(i, j)}]

+ (1− α)[c(i) + vk−1(j, 0)], (2.13)

where we set v0(i, j) = 0 for all (i, j) ∈ S.

The existence of a solution to Equation (2.12) and the convergence of the value iteration

algorithm follows along similar lines as in Theorem 5. We write dt(i, j) = 1 if the decision

is to assign the patient to day n+ 1, dt(i, j) = 2 if the decision is to assign the patient to day

n+ 2, and dt(i, j) = 3 if the decision is reject the patient. The optimal decisions are given as

below.

• For a type-1 patient,

d1(i, j) =


1, if h(i+ 1, j) ≤ h(i, j);

3, if h(i+ 1, j) > h(i, j).

(2.14)

• For a type-2 patient,

d2(i, j) =


2, if h(i, j + 1) ≤ h(i, j);

3, if h(i, j + 1) > h(i, j).

(2.15)
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• For a type-12 patient,

d12(i, j) =



1, if h(i+ 1, j) ≤ min{h(i, j + 1), h(i, j)};

2, if h(i, j + 1) ≤ min{h(i+ 1, j), h(i, j)};

3, if h(i, j) ≤ min{h(i+ 1, j), h(i, j + 1)}.

(2.16)

2.7.2 Structural Properties

In this section, we study the structural properties of the optimal policy. We start with a

fundamental assumption.

Assumption A. The function c(·) is convex and achieves its minimum at a positive integer

m.

Using the parameter m we partition the state space S = {(i, j) : i ≥ 0, j ≥ 0} into four

regions: S0, S1, S2, S3, as shown in Figure 2.3. In mathematical terms, the four regions are

defined as follows:

S0 = {(i, j): 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1};

S1 = {(i, j): 0 ≤ i ≤ m− 1, j ≥ m};

S2 = {(i, j): i ≥ m, 0 ≤ j ≤ m− 1};

S3 = {(i, j): i ≥ m, j ≥ m}.
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Figure 2.3: The regions classified based on the system states.
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Next we study the properties of the bias h(·, ·). Consider a function f : S → R with the

properties

Inc(1) in S2 ∪ S3: f(i+ 1, j) ≥ f(i, j), ∀(i, j) ∈ S2 ∪ S3;

Dec(1) in S0 ∪ S1: f(i+ 1, j) ≤ f(i, j), ∀(i, j) ∈ S0 ∪ S1;

Inc(2) in S1 ∪ S3: f(i, j + 1) ≥ f(i, j), ∀(i, j) ∈ S1 ∪ S3;

Dec(2) in S0 ∪ S2: f(i, j + 1) ≤ f(i, j), ∀(i, j) ∈ S0 ∪ S2;

and

Convexity in S0:


f(i, j) + f(i+ 2, j) ≥ 2f(i+ 1, j), ∀(i+ 1, j) ∈ S0;

f(i, j) + f(i, j + 2) ≥ 2f(i, j + 1), ∀(i, j + 1) ∈ S0;

Super in S0: f(i, j) + f(i+ 1, j + 1) ≥ f(i+ 1, j) + f(i, j + 1), ∀(i, j) ∈ S0;

and SuperC in S0:


f(i+ 2, j) + f(i, j + 1) ≥ f(i+ 1, j) + f(i+ 1, j + 1), ∀(i+ 1, j) ∈ S0;

f(i+ 1, j) + f(i, j + 2) ≥ f(i, j + 1) + f(i+ 1, j + 1), ∀(i, j + 1) ∈ S0.
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We now redefine some operators as below.

T12f(i, j) = min{f(i+ 1, j), f(i, j + 1), f(i, j)},

T1f(i, j) = min{f(i+ 1, j), f(i, j)},

T2f(i, j) = min{f(i, j + 1), f(i, j)}.

Then vk in Equation (2.13) can be rewritten as:

vk+1(i, j) = Tα(Tp(T12vk, T1vk, T2vk), Tcvk)(i, j),

with v0(i, j) = 0 for all (i, j) ∈ S. The operators Tp, Tα, Tc are defined in Section 2.4.

The following lemmas show the relevant properties of the operators.

Lemma 3. The operator T12 satisfies:

(a) Inc(1) in S2 ∪ S3 → Inc(1) in S2 ∪ S3

(b) Inc(1) in S2 ∪ S3, Dec(1) in S0 ∪ S1, Inc(2) in S1 ∪ S3, Dec(2) in S0 ∪ S2 → Dec(1) in

S0 ∪ S1

(c) Inc(2) in S1 ∪ S3 → Inc(2) in S1 ∪ S3

(d) Inc(1) in S2 ∪ S3, Dec(1) in S0 ∪ S1, Inc(2) in S1 ∪ S3, Dec(2) in S0 ∪ S2 → Dec(2) in

S0 ∪ S2

(e) Inc(1) in S2 ∪ S3, Dec(1) in S0 ∪ S1, Inc(2) in S1 ∪ S3, Dec(2) in S0 ∪ S2, Convexity,

Super, SuperC in S0 → Convexity in S0

(f) Inc(1) in S2 ∪ S3, Dec(1) in S0 ∪ S1, Inc(2) in S1 ∪ S3, Dec(2) in S0 ∪ S2, Convexity,
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Super, SuperC in S0 → Super in S0

(g) Inc(1) in S2 ∪ S3, Dec(1) in S0 ∪ S1, Inc(2) in S1 ∪ S3, Dec(2) in S0 ∪ S2, Convexity,

Super, SuperC in S0 → SuperC in S0.

Proof. (a). The result follows since the monotonicity is closed under the minimum operator.

(b). We need to show T12f(i + 1, j) ≤ T12f(i, j) for 0 ≤ i ≤ m − 1, j ≥ 0. We consider

three cases:

Case (b)(1): 0 ≤ i ≤ m−2, j ≥ 0. The result follows since the monotonicity is closed under

the minimum operator.

Case (b)(2): i = m− 1, 0 ≤ j ≤ m− 1. We need to show T12f(m, j) ≤ T12f(m− 1, j). We

have

Dec(2) in S0 ∪ S2 ⇒ f(m, j + 1) ≤ f(m, j);

Inc(1) in S2 ∪ S3 ⇒ f(m, j) ≤ f(m+ 1, j).

Hence

T12f(m, j) = min{f(m+ 1, j), f(m, j + 1), f(m, j)} = f(m, j + 1).

Similary, we have

Dec(1) in S0 ∪ S1 ⇒ f(m, j) ≤ f(m− 1, j);

Dec(2) in S0 ∪ S2 ⇒ f(m− 1, j + 1) ≤ f(m− 1, j).
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Hence

T12f(m− 1, j) = min{f(m, j), f(m− 1, j + 1), f(m− 1, j)}

= min{f(m, j), f(m− 1, j + 1)}.

We know f(m, j + 1) ≤ f(m, j) by Dec(2) in S0 ∪ S2 and f(m, j + 1) ≤ f(m− 1, j + 1)

by Dec(1) in S0 ∪ S1. Therefore

T12f(m, j) = f(m, j + 1) ≤ min{f(m, j), f(m− 1, j + 1)} = T12f(m− 1, j).

Case (b)(3): i = m− 1, j ≥ m. We need to show T12f(m, j) ≤ T12f(m− 1, j). We have

Inc(1) in S2 ∪ S3 ⇒ f(m, j) ≤ f(m+ 1, j);

Inc(2) in S1 ∪ S3 ⇒ f(m, j) ≤ f(m, j + 1).

Hence

T12f(m, j) = min{f(m+ 1, j), f(m, j + 1), f(m, j)} = f(m, j).

We have

Dec(1) in S0 ∪ S1 ⇒ f(m, j) ≤ f(m− 1, j);

Inc(2) in S1 ∪ S3 ⇒ f(m− 1, j) ≤ f(m− 1, j + 1).
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Therefore

T12f(m− 1, j) = min{f(m, j), f(m− 1, j + 1), f(m− 1, j)} = f(m, j).

The result follows.

(c). The result follows since the monotonicity is closed under the minimum operator.

(d). We need to show T12f(i, j + 1) ≤ T12f(i, j) for i ≥ 0, 0 ≤ j ≤ m − 1. We consider

three cases:

Case (d)(1): i ≥ 0, 0 ≤ j ≤ m−2. The result follows since the monotonicity is closed under

the minimum operator.

Case (d)(2): 0 ≤ i ≤ m− 1, j = m− 1. We need to show T12f(i,m) ≤ T12f(i,m− 1). We

have

Dec(1) in S0 ∪ S1 ⇒ f(i+ 1,m) ≤ f(i,m);

Inc(2) in S1 ∪ S3 ⇒ f(i,m) ≤ f(i,m+ 1).

Hence

T12f(i,m) = min{f(i+ 1,m), f(i,m+ 1), f(i,m)} = f(i+ 1,m).
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Similarly, we have

Dec(1) in S0 ∪ S1 ⇒ f(i+ 1,m− 1) ≤ f(i,m− 1);

Dec(2) in S0 ∪ S2 ⇒ f(i,m) ≤ f(i,m− 1).

Therefore

T12f(i,m− 1) = min{f(i+ 1,m− 1), f(i,m), f(i,m− 1)}

= min{f(i+ 1,m− 1), f(i,m)}

We know f(i+ 1,m) ≤ f(i+ 1,m− 1) by Dec(2) in S0 ∪S2 and f(i+ 1,m) ≤ f(i,m) by

Dec(1) in S0 ∪ S1.

T12f(i,m) = f(i+ 1,m) ≤ min{f(i+ 1,m− 1), f(i,m)} = T12f(i,m− 1).

Case (d)(3): i ≥ m, j = m− 1. We need to show T12f(i,m) ≤ T12f(i,m− 1). We have

Inc(1) in S2 ∪ S3 ⇒ f(i,m) ≤ f(i+ 1,m);

Inc(2) in S1 ∪ S3 ⇒ f(i,m) ≤ f(i,m+ 1).

Hence

T12f(i,m) = min{f(i+ 1,m), f(i,m+ 1), f(i,m)} = f(i,m).
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Similarly, we have

Dec(2) in S0 ∪ S2 ⇒ f(i,m) ≤ f(i,m− 1);

Inc(1) in S2 ∪ S3 ⇒ f(i,m− 1) ≤ f(i+ 1,m− 1).

Therefore

T12f(i,m− 1) = min{f(i+ 1,m− 1), f(i,m), f(i,m− 1)} = f(i,m).

The result follows.

(e). We show that T12f(i, j) + T12f(i + 2, j) ≥ 2T12f(i + 1, j) for 0 ≤ i ≤ m − 2, 0 ≤

j ≤ m− 1 and skip the proof that T12f(i, j) + T12f(i, j + 2) ≥ 2T12f(i, j + 1) for 0 ≤ i ≤

m− 1, 0 ≤ j ≤ m− 2 since it is similar. We consider four cases:

Case (e)(1) i ≤ m− 3, j ≤ m− 1. We know

T12f(i, j) = min{f(i+ 1, j), f(i, j + 1), f(i, j)} = min{f(i+ 1, j), f(i, j + 1)}.

The T12 here coincides with the TR(I) in (Koole, 1998). The result follows.

Case (e)(2) i ≤ m− 3, j = m. We show

T12f(i,m) + T12f(i+ 2,m) ≥ 2T12f(i+ 1,m),
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where we know

T12f(i,m) = f(i+ 1,m);

T12f(i+ 2,m) = f(i+ 3,m);

T12f(i+ 1,m) = f(i+ 2,m).

The result follows from the Convexity of f .

Case (e)(3) i = m− 2, j ≤ m− 1. We show

T12f(m− 2, j) + T12f(m, j) ≥ 2T12f(m− 1, j),

where we know

T12f(m− 2, j) = min{f(m− 1, j), f(m− 2, j + 1)};

T12f(m− 1, j) = min{f(m, j), f(m− 1, j + 1)};

T12f(m, j) = f(m, j + 1).

We consider two cases:

Case (e)(3)(i): f(m− 1, j) ≥ f(m− 2, j + 1). Then T12f(m− 2, j) = f(m− 2, j + 1). By

the property SuperC of f , we know

f(m, j)− f(m− 1, j + 1) ≥ f(m− 1, j)− f(m− 2, j + 1) ≥ 0.
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Hence T12f(m− 1, j) = f(m− 1, j + 1). By the Convexity of f , we have

T12f(m− 2, j) + T12f(m, j) =f(m− 2, j + 1) + f(m, j + 1)

≥2f(m− 1, j + 1) = 2T12f(m− 1, j).

Case (e)(3)(ii): f(m− 1, j) < f(m− 2, j + 1). Then T12f(m− 2, j) = f(m− 1, j). By the

Super of f , we have

T12f(m− 2, j) + T12f(m, j) = f(m− 1, j) + f(m, j + 1)

≥ f(m, j) + f(m− 1, j + 1)

≥ 2 min{f(m, j), f(m− 1, j + 1)}

= 2T12f(m− 1, j).

Case (e)(4) i = m− 2, j = m. We show

T12f(m− 2,m) + T12f(m,m) ≥ 2T12f(m− 1,m),

where we know

T12f(m− 2,m) = f(m− 1,m);

T12f(m− 1,m) = f(m,m);

T12f(m,m) = f(m,m).
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The result follows from f(m− 1,m) ≥ f(m,m) by Dec(1) in S0 ∪ S1.

(f). We show that T12f(i, j) + T12f(i + 1, j + 1) ≥ T12f(i + 1, j) + T12f(i, j + 1) for

0 ≤ i, j ≤ m− 1. We consider four cases:

Case (f)(1) i ≤ m − 2, j ≤ m − 2. We know T12f(i, j) = min{f(i + 1, j), f(i, j + 1)}

coincides with the TR(I) in (Koole, 1998). The result follows.

Case (f)(2) i = m− 1, j ≤ m− 2. We show

T12f(m− 1, j) + T12f(m, j + 1) ≥ T12f(m, j) + T12f(m− 1, j + 1),

where we know

T12f(m− 1, j) = min{f(m, j), f(m− 1, j + 1)};

T12f(m, j + 1) = f(m, j + 2);

T12f(m, j) = f(m, j + 1);

T12f(m− 1, j + 1) = min{f(m, j + 1), f(m− 1, j + 2)}.

We consider two cases:

Case (f)(2)(i): f(m, j) ≥ f(m− 1, j + 1). Then T12f(m− 1, j) = f(m− 1, j + 1). By the
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Super of f , we know

T12f(m− 1, j) + T12f(m, j + 1) = f(m− 1, j + 1) + f(m, j + 2)

≥ f(m, j + 1) + f(m− 1, j + 2) (by Super)

≥ f(m, j + 1) + min{f(m, j + 1), f(m− 1, j + 2)}

= T12f(m, j) + T12f(m− 1, j + 1).

Case (f)(2)(ii): f(m, j) < f(m− 1, j+ 1). Then T12f(m− 1, j) = f(m, j). By the SuperC

of f , we know

f(m, j + 1)− f(m− 1, j + 2) ≤ f(m, j)− f(m− 1, j + 1) < 0.

Hence T12f(m− 1, j + 1) = f(m, j + 1). By the Convexity of f , we have

T12f(m− 1, j) + T12f(m, j + 1) =f(m, j) + f(m, j + 2)

≥f(m, j + 1) + f(m, j + 1)

=T12f(m, j) + T12f(m− 1, j + 1).

Case (f)(3) i ≤ m− 2, j = m− 1. We show

T12f(i,m− 1) + T12f(i+ 1,m) ≥ T12f(i+ 1,m− 1) + T12f(i,m),
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where we know

T12f(i,m− 1) = min{f(i+ 1,m− 1), f(i,m)};

T12f(i+ 1,m) = f(i+ 2,m);

T12f(i+ 1,m− 1) = min{f(i+ 2,m− 1), f(i+ 1,m)};

T12f(i,m) = f(i+ 1,m).

We know

T12f(i,m− 1) + T12f(i+ 1,m)

= min{f(i+ 1,m− 1), f(i,m)}+ f(i+ 2,m)

= min{f(i+ 1,m− 1) + f(i+ 2,m), f(i,m) + f(i+ 2,m)}

≥min{f(i+ 1,m− 1) + f(i+ 2,m), 2f(i+ 1,m)} (by Convexity)

≥min{f(i+ 2,m− 1) + f(i+ 1,m), 2f(i+ 1,m)} (by Super)

= min{f(i+ 2,m− 1), f(i+ 1,m)}+ f(i+ 1,m)

=T12f(i+ 1,m− 1) + T12f(i,m).

Case (f)(4) i = m− 1, j = m− 1. We show

T12f(m− 1,m− 1) + T12f(m,m) ≥ T12f(m,m− 1) + T12f(m− 1,m),
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where we know

T12f(m− 1,m− 1) = min{f(m,m− 1), f(m− 1,m)};

T12f(m,m) = f(m,m);

T12f(m,m− 1) = f(m,m);

T12f(m− 1,m) = f(m,m).

We know

T12f(m− 1,m− 1) + T12f(m,m) = min{f(m,m− 1), f(m− 1,m)}+ f(m,m)

≥ f(m,m) + f(m,m) (by Dec(1) and Dec(2))

= T12f(m,m− 1) + T12f(m− 1,m).

(g). We show that T12f(i + 2, j) + T12f(i, j + 1) ≥ T12f(i + 1, j) + T12f(i + 1, j + 1) for

0 ≤ i ≤ m − 2, 0 ≤ j ≤ m − 1. We skip the proof of T12f(i + 1, j) + T12f(i, j + 2) ≥

T12f(i, j + 1) + T12f(i + 1, j + 1) for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 2. We consider four

cases:

Case (g)(1) i ≤ m − 3, j ≤ m − 2. We know T12f(i, j) = min{f(i + 1, j), f(i, j + 1)}

coincides with the TR(I) in (Koole, 1998). The result follows.

Case (g)(2) i = m− 2, j ≤ m− 2. We show

T12f(m, j) + T12f(m− 2, j + 1) ≥ T12f(m− 1, j) + T12f(m− 1, j + 1),

57



where we know

T12f(m, j) = f(m, j + 1);

T12f(m− 2, j + 1) = min{f(m− 1, j + 1), f(m− 2, j + 2)};

T12f(m− 1, j) = min{f(m, j), f(m− 1, j + 1)};

T12f(m− 1, j + 1) = min{f(m, j + 1), f(m− 1, j + 2)}.

We consider two cases:

Case (g)(2)(i): f(m−1, j+1) < f(m−2, j+2). Then T12f(m−2, j+1) = f(m−1, j+1).

We have

T12f(m, j) + T12f(m− 2, j + 1)

=f(m, j + 1) + f(m− 1, j + 1)

≥min{f(m, j + 1), f(m− 1, j + 2)}+ min{f(m, j), f(m− 1, j + 1)}

=T12f(m− 1, j + 1) + T12f(m− 1, j).

Case (g)(2)(ii): f(m−1, j+1) ≥ f(m−2, j+2). Then T12f(m−2, j+1) = f(m−2, j+2).

We have

SuperC ⇒ f(m, j + 1)− f(m− 1, j + 2) ≥ f(m− 1, j + 1)− f(m− 2, j + 2) ≥ 0

⇒ T12f(m− 1, j + 1) = f(m− 1, j + 2),
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and

SuperC ⇒ f(m, j)− f(m− 1, j + 1) ≥ f(m, j + 1)− f(m− 1, j + 2) ≥ 0

⇒ T12f(m− 1, j) = f(m− 1, j + 1).

We have

T12f(m, j) + T12f(m− 2, j + 1)

=f(m, j + 1) + f(m− 2, j + 2)

≥f(m− 1, j + 2) + f(m− 1, j + 1) (by SuperC)

=T12f(m− 1, j + 1) + T12f(m− 1, j).

Case (g)(3) i ≤ m− 3, j = m− 1. We show

T12f(i+ 2,m− 1) + T12f(i,m) ≥ T12f(i+ 1,m− 1) + T12f(i+ 1,m),

where we know

T12f(i+ 2,m− 1) = min{f(i+ 3,m− 1), f(i+ 2,m)};

T12f(i,m) = f(i+ 1,m);

T12f(i+ 1,m− 1) = min{f(i+ 2,m− 1), f(i+ 1,m)};

T12f(i+ 1,m) = f(i+ 2,m).
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We consider two cases:

Case (g)(3)(i): f(i+ 3,m− 1) < f(i+ 2,m). Then T12f(i+ 2,m− 1) = f(i+ 3,m− 1).

We have

SuperC ⇒ f(i+ 2,m− 1)− f(i+ 1,m) ≤ f(i+ 3,m− 1)− f(i+ 2,m) < 0

⇒ T12f(i+ 1,m− 1) = f(i+ 2,m− 1).

Hence

T12f(i+ 2,m− 1) + T12f(i,m)

=f(i+ 3,m− 1) + f(i+ 1,m)

≥f(i+ 2,m− 1) + f(i+ 2,m) (by SuperC)

=T12f(i+ 1,m− 1) + T12f(i+ 1,m).

Case (g)(3)(ii): f(i+ 3,m− 1) ≥ f(i+ 2,m). Then T12f(i+ 2,m− 1) = f(i+ 2,m). We

have

T12f(i+ 2,m− 1) + T12f(i,m) = f(i+ 2,m) + f(i+ 1,m)

≥ f(i+ 2,m) + min{f(i+ 2,m− 1), f(i+ 1,m)}

= T12f(i+ 1,m) + T12f(i+ 1,m− 1).
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Case (g)(4) i = m− 2, j = m− 1. We show

T12f(m,m− 1) + T12f(m− 2,m) ≥ T12f(m− 1,m− 1) + T12f(m− 1,m),

where we know

T12f(m,m− 1) = f(m,m);

T12f(m− 2,m) = f(m− 1,m);

T12f(m− 1,m− 1) = min{f(m,m− 1), f(m− 1,m)};

T12f(m− 1,m) = f(m,m).

Hence

T12f(m,m− 1) + T12f(m− 2,m)

=f(m,m) + f(m− 1,m)

≥f(m,m) + min{f(m,m− 1), f(m− 1,m)}

=T12f(m− 1,m) + T12f(m− 1,m− 1).

Lemma 4. The operators T1, T2 satisfy (a) to (g) in Lemma 3.

Proof. Due to the symmetry, we show the proof for operator T1 and skip the proof for oper-
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ator T2. Given the properties f has, we know

T1f(i, j) = min{f(i+ 1, j), f(i, j)} =


f(i+ 1, j), ∀(i, j) ∈ S0 ∪ S1,

f(i, j), ∀(i, j) ∈ S2 ∪ S3.

We prove (f) and skip the rest due to the similarity. We show that T1f(i, j)+T1f(i+1, j+1) ≥

T1f(i+ 1, j) + T1f(i, j + 1) for any 0 ≤ i, j ≤ m− 1. We consider four cases:

Case (f)(1): 0 ≤ i ≤ m− 2, 0 ≤ j ≤ m− 2. We have

T1f(i, j) + T1f(i+ 1, j + 1) = f(i+ 1, j) + f(i+ 2, j + 1)

≥ f(i+ 2, j) + f(i+ 1, j + 1) (by Super)

= T1f(i+ 1, j) + T1f(i, j + 1).

Case (f)(2): i = m− 1, 0 ≤ j ≤ m− 2. We need to show T1f(m− 1, j) + T1f(m, j + 1) ≥

T1f(m, j) + T1f(m− 1, j + 1). We have

T1f(m− 1, j) + T1f(m, j + 1) = f(m, j) + f(m, j + 1)

= T1f(m, j) + T1f(m− 1, j + 1)

Case (f)(3): 0 ≤ i ≤ m− 2, j = m− 1. We need to show T1f(i,m− 1) + T1f(i+ 1,m) ≥
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T1f(i+ 1,m− 1) + T1f(i,m). We have

T1f(i,m− 1) + T1f(i+ 1,m) = f(i+ 1,m− 1) + f(i+ 2,m)

≥ f(i+ 2,m− 1) + f(i+ 1,m) (by Super)

= T1f(i+ 1,m− 1) + T1f(i,m).

Case (f)(4): i = m − 1, j = m − 1. We need to show T1f(m − 1,m − 1) + T1f(m,m) ≥

T1f(m,m− 1) + T1f(m− 1,m). This follows because

T1f(m− 1,m− 1) + T1f(m,m)

=f(m,m− 1) + f(m,m)

=T1f(m,m− 1) + T1f(m− 1,m).

Lemma 5. The operators Tp, Tα satisfy:

(a) Inc(1) in S2 ∪ S3 → Inc(1) in S2 ∪ S3

(b) Dec(1) in S0 ∪ S1 → Dec(1) in S0 ∪ S1

(c) Inc(2) in S1 ∪ S3 → Inc(2) in S1 ∪ S3

(d) Dec(2) in S0 ∪ S2 → Dec(2) in S0 ∪ S2

(e) Convexity in S0 → Convexity in S0

(f) Super in S0 → Super in S0

(g) SuperC in S0 → SuperC in S0.
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Proof. Given the definition of Tp and Tα, the conditions (a) to (g) follow, since the properties

are closed under convex combination.

Lemma 6. Under the Assumption A. The operator Tc satisfies:

(a) Inc(1) in S2 ∪ S3 → Inc(1) in S2 ∪ S3

(b) Dec(1) in S0 ∪ S1 → Dec(1) in S0 ∪ S1

(c) Inc(1) in S2 ∪ S3 → Inc(2) in S1 ∪ S3

(d) Dec(1) in S0 ∪ S1 → Dec(2) in S0 ∪ S2

(e) Convexity, Super, SuperC in S0 → Convexity in S0

(f) Convexity, Super, SuperC in S0 → Super in S0

(g) Convexity, Super, SuperC in S0 → SuperC in S0.

Proof. We know Tcf(i, j) = c(i) + f(j, 0) and c(x) is a convex function which achieves

its minimum at x = m, hence (a) and (b) follow. For (c), if f is Inc(1) in S2 ∪ S3, then

f(i + 1, j) ≥ f(i, j),∀i ≥ m, j ≥ 0. For any j ≥ m, we have Tcf(i, j + 1) = c(i) +

f(j + 1, 0) ≥ c(i) + f(j, 0) = Tcf(i, j). Hence Tcf is Inc(2) in S1 ∪ S3. For (d), if f is

Dec(1) in S0 ∪ S1, then f(i + 1, j) ≤ f(i, j),∀i ≤ m − 1, j ≥ 0. For any j ≤ m − 1,

we have Tcf(i, j + 1) = c(i) + f(j + 1, 0) ≤ c(i) + f(j, 0) = Tcf(i, j). Hence Tcf is

Dec(2) in S0 ∪S2. For (e), the convexity of Tcf follows directly from the convexity of f . (f)
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is trivially shown given the definition of the operator Tc. For (g), we have

Tcf(i+ 2, j) + Tcf(i, j + 1) = c(i+ 2) + f(j, 0) + c(i) + f(j + 1, 0)

≥ c(i+ 1) + f(j, 0) + c(i+ 1) + f(j + 1, 0)

= Tcf(i+ 1, j) + Tcf(i+ 1, j + 1),

and

Tcf(i+ 1, j) + Tcf(i, j + 2) = c(i+ 1) + f(j, 0) + c(i) + f(j + 2, 0)

≥ c(i) + f(j + 1, 0) + c(i+ 1) + f(j + 1, 0)

= Tcf(i, j + 1) + Tcf(i+ 1, j + 1).

Next we prove the properties of the bias h(·, ·).

Theorem 10. Under Assumption A, the bias h(·, ·) satisfies properties Inc(1) in S2 ∪ S3,

Dec(1) in S0 ∪ S1, Inc(2) in S1 ∪ S3, Dec(2) in S0 ∪ S2 and Convexity, Super, SuperC

in S0.

Proof. By the lemmas above, the induction hypothesis gives rise to the fact that the functions

vk satisfy these properties. By Theorems 4 and 5, the bias h(·, ·) has these properties.

A direct implication of Theorem 10 is given in Corollary 2, which gives the characteristics

of the optimal decisions in the optimal policy.
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Corollary 2. The optimal decisions are given as follows.

• For a type-1 patient, we have

d1(i, j) =


1, if i ≤ m− 1.

3, if i ≥ m.

• For a type-2 patient, we have

d2(i, j) =


2, if j ≤ m− 1.

3, if j ≥ m.

• For a type-12 patient, we have

d12(i, j) =


d, if (i, j) ∈ Sd, where d = 1, 2, 3.

1 or 2, if (i, j) ∈ S0.

and for (i, j) ∈ S0,

d12(i, j) = 1⇒ d12(i, j + 1) = 1, d12(i, j) = 2⇒ d12(i+ 1, j) = 2.

Proof. Follows directly from Theorem 10 and equations (2.14) to (2.16).

Theorem 10 and Corollary 2 yield the following structure of the optimal policy.
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Theorem 11. Under Assumption A, for 0 ≤ i ≤ m − 1, there exists a critical number

j∗(i) ≤ m and for 0 ≤ j ≤ m− 1 there exists a critical number i∗(j) ≤ m such that

d12(i, j) =



1, if i ≤ m− 1, j ≥ j∗(i)

2, if i ≥ i∗(j), j ≤ m− 1

3, if i ≥ m, j ≥ m.

2.7.3 Numerical Illustration

We now conduct a numerical study to illustrate the structural properties of the optimal

policy. We use the same parameters as in Section 2.4.1. The only difference is that rejection

is available here. Figure 2.4 displays the optimal decision for a type-12 patient in each state.

We do not display the optimal decisions for type-1 or type-2 patient because the policy is

explicitly given by Corollary 2. Figure 2.4 indicates that it is optimal to stop scheduling a

patient on any day once the number of scheduled appointments on that day reaches m.

2.7.4 Heuristic Policies

In this section we briefly discuss how the heuristic policies proposed in Section 2.5 can

be applied to the extension of the base model. If the state (i, j) is in region S1 ∪ S2 ∪ S3, we

know the optimal decisions from Corollary 2. We implement these optimal decisions. If the

state (i, j) is in region S0, then we follow the heuristic policies proposed in Section 2.5, but

only to do the calculations for states (i, j) in region S0. The numerical performance of these
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Figure 2.4: The optimal policy for type-12 patients when the rejection option is available.

policies is similar to the one reported in Section 2.6, so we chose to omit these results.

2.8 Extension of the Base Model: Multi-day Scheduling

We now generalize the base model to more-than-two-day scheduling horizon. As one can

imagine, the number of types of patients increases exponentially with the length of scheduling

horizon. It becomes much harder to compute the optimal policy in this generalized case due
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to the large state space. However, we expect the index policy to outperform the shortest-queue

policy. We also relax the assumption that the number of arrivals in a day is Geometrically

distributed. We consider both Poisson distribution and Negative Binomial distribution as the

potential candidates for the arrival process.

In this section, we first present the general framework for appointment scheduling prob-

lem with the more-than-two-day horizon and Geometric arrivals. We use a simple case,

three-day appointment scheduling horizon with three types of patients, to illustrate that the

index policy outperforms the shortest-queue policy. We then generalize the arrival processes

from Geometric distribution to Poisson distribution and Negative Binomial distribution. We

show that our index policy is quite robust and performs well even if the Geometric arrival as-

sumption is violated. We conclude this section by proposing two variants of the index policy

for benchmarking.

2.8.1 General Framework and A Simple Case

Consider the appointment scheduling problem with T -day horizon. We have K ≤ 2T

types of patients who arrive on day n, where type-k patient prefers days in the set Ak for

k = 1, 2, ..., K. We know Ak ⊂ {1, 2, ..., T} for k = 1, 2, ..., K. We assume that the

number of arrivals on each day follows a Geometric distribution, same as in Section 2.3.

With probability pk, the arrival belongs to type-k for k = 1, 2, ..., K. We have
∑K

k=1 pk = 1.

Let x = (x1, ..., xT ) denote the system state just before an event on day n, where xt denotes

the number of appointments scheduled on day n+ t for t = 1, ..., T . If the event is an arrival

(this occurs with probability α), the decision must be made such that the arrival is scheduled
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on the day i ∈ Ak and the system state transits to x + ei. If the event is a change-of-day

(this occurs with probability 1 − α), the system state will transit to y = (x2, ..., xT , 0). By

the standard theory of the dynamic programming, the optimality equation is given by:

h(x) + g = α

K∑
k=1

pk min
i∈Ak

{h(x+ ei)}+ (1− α)[c(x1) + h(y)]

where x = (x1, x2, ..., xT ) and y = (x2, ..., xT , 0). Here g is the optimal long run average

cost and h(·, ·) is the bias under the optimal policy.

To develop the index policy, we start from a randomized policy γ. The policy γ assigns

type-k patient to day n + j with probability θkj where k = 1, 2, ..., K and j ∈ Ak. We have∑
j∈Ak

θkj = 1 and θkj = 0 for j /∈ Ak. We use An to denote the number of patients arriving

on day n. Among those patients, we assign An,t patients on day n + t. From the proof of

Theorem 8, we know

An,t ∼ G

(
αρt

1− α(1− ρt)

)
, t = 1, ..., T (2.17)

where

ρt =
K∑
k=1

pkθkt.

A natural question is how to choose θkj . We will revisit this question later.

Suppose at any time on day n, the system state is (x1, ..., xT ). Then by the end of day n,
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we know the system state is

(x1 + An,1, x2 + An,2, x3 + An,3, ..., xT + An,T ).

At the beginning of day n+1, we incur the cost of c(x1 +An,1) and the system state becomes

(x2 + An,2, x3 + An,3, ..., xT + An,T , 0).

By the end of day n+ 1, the system state is

(x2 + An,2 + An+1,1, x3 + An,3 + An+1,2, ..., xT + An,T + An+1,T−1, An+1,T ).

At the beginning of day n + 2, we incur the cost of c(x2 + An,2 + An+1,1) and the system

state becomes

(x3 + An,3 + An+1,2, ..., xT + An,T + An+1,T−1, An+1,T , 0).

Similarly, at the beginning of day n+T , we incur the cost of c(xT +An,T +An+1,T−1 + · · ·+

An+T−1,1) and the system state becomes

(An+1,T + · · ·+ An+T−1,2, ..., An+T−1,T , 0).
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Therefore we can write

hγ(x) =E[c(x1 + An,1)] + E[c(x2 + An,2 + An+1,1)] + · · ·

+ E[c(xT + An,T + An+1,T−1 + · · ·+ An+T−1,1)]

+ hγ(An+1,T + · · ·+ An+T−1,2, ..., An+T−1,T , 0).

Hence the index for day k is

Ik(xk) =E[c(xk + 1 + An,k + An+1,k−1 + · · ·+ An+k−1,1)]

− E[c(xk + An,k + An+1,k−1 + · · ·+ An+k−1,1)]

Since An,k has same distribution for all n, so we write

Bk = An,k + An,k−1 + · · ·+ An,1.

Thus

Ik(xk) = E[c(xk + 1 +Bk)]− E[c(xk +Bk)].

This general framework works for all T and K. Next we use an example to study the

performance of the index policy numerically.

We consider a three-day appointment scheduling problem. There are three types of pa-

tients: a type-1 patient requests an appointment on day 1, 2, or 3; a type-2 patient requests an
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appointment on day 2 or 3; a type-3 patient requests an appointment on day 3. That is to say,

A1 = {1, 2, 3},A2 = {2, 3},A3 = {3}. In this setting, the index function under the general

framework reduces to

Ik(xk) = E[c(xk + 1 +Bk)]− E[c(xk +Bk)], k = 1, 2, 3

whereB1 = An,1, B2 = An,1+An,2, B3 = An,1+An,2+An,3 = An. We know the distribution

An,t from Equation (2.17). To implement the index policy, we need to know the values of

ρ1, ρ2, ρ3 to compute the distribution of Bk’s. We use the same method to find these values

as in Section 2.5.2. That is, ρ1, ρ2, ρ3 are the solutions to the optimization problem

min (ρ1 −
1

3
)2 + (ρ2 −

1

3
)2 + (ρ3 −

1

3
)2

s.t. 0 ≤ ρ1 ≤ p1,

0 ≤ ρ2 ≤ p1 + p2,

p3 ≤ ρ3 ≤ 1,

ρ1 + ρ2 + ρ3 = 1.

We solve this quadratic program to obtain the values of ρ1, ρ2, ρ3 given the inputs p1, p2, p3.

Table 2.5 includes that the values of ρ1, ρ2 under different p1, p2. Note that p3 = 1− p1 − p2

and ρ3 = 1− ρ1− ρ2. Hence the values of p3 and ρ3 are known given the values of p1, p2 and

ρ1, ρ2.

We now propose a measure to quantify the performance of the index policy compared to
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(ρ1, ρ2) p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 (0, 0) (0.1, 0.1) (0.2, 0.2) (0.3, 0.3) (1

3
, 1
3
) (1

3
, 1
3
)

p2 = 0.2 (0, 0.2) (0.2, 0.2) (0.3, 0.3) (1
3
, 1
3
) (1

3
, 1
3
)

p2 = 0.4 (0, 0.4) (0.2, 0.4) (1
3
, 1
3
) (1

3
, 1
3
)

p2 = 0.6 (0, 0.5) (0.2, 0.4) (1
3
, 1
3
)

p2 = 0.8 (0, 0.5) (0.2, 0.4)
p2 = 1 (0, 0.5)

Table 2.5: The values of ρ1, ρ2 under different p1, p2.

the shortest-queue policy. Since the optimal policy is numerically intractable in the general

framework, the metrics proposed in 2.6, i.e., gapHP and η(HP, SQ), are no longer well-

defined. We introduce a new metric imp(IP, SP). In mathematical terms,

imp(IP, SP) =
LRACSP − LRACIP

LRACSP

.

This metric can be interpreted as the percentage improvement achieved in using the index

policy (IP) instead of the shortest-queue policy (SP). For example, if the long-run average

cost under SP is 100 while the long-run average cost under IP is 95, then using IP instead of

SP achieves the improvement of 5%.

Since it is numerically prohibitive to compute the long-run average cost under both IP

and SP, we use simulation to compare their performances. We describe the design of the

simulation study below. We use the cost function introduced in Section 2.4.1. The expected

number of arrivals per day, τ , is 15, same as where the cost function is minimized. Both

IP and SP are operated under the same demand stream. We run 200 replications and each

replication consists of 1000 days. At the end of each replication, we calculate the LRACIP,

LRACSP, and imp(IP, SP). We then compute the mean and the standard deviation of the
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imp(IP, SP) from 100 replications. We use the formula “mean±2×standard deviation” to

obtain the 95% confidence interval (CI) of imp(IP, SP). The results are included in Table

2.6.

95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 5.1± 0.9 8.9± 1.4 11.0± 2.0 12.5± 2.0 14.1± 2.1

p2 = 0.2 3.4± 0.7 7.8± 1.2 10.2± 1.6 11.9± 2.1 13.5± 2.0
p2 = 0.4 5.1± 0.9 9.2± 1.3 10.8± 1.8 12.8± 2.2
p2 = 0.6 6.0± 1.0 10.1± 1.8 11.4± 1.9
p2 = 0.8 7.3± 1.2 10.8± 1.8
p2 = 1 8.2± 1.2

Table 2.6: The 95% CI of imp(IP,SP) (in percentage) when τ = 15.

As we can see from Table 2.6, the cost improvement increases with p1 (decreases with p3)

for any fixed p2 and increases with p2 (decreases with p3) for any fixed p1. Note p1 (p3) is the

proportion of the type-1 (type-3) patient, the most (least) flexible type. Hence, we conclude

that the cost improvement of using IP over SP is higher when the system faces a more flexible

demand.

We now consider the situation where the expected number of arrivals per day is not the

same as where the cost function c(·) is minimized. Table 2.7 and 2.8 include the 95% CI of

imp(IP, SP) when τ is 20 and 10 respectively. As we can see from both tables, the index

policy performs better than the shortest-queue policy. However, the cost improvement when

the clinic is overstaffed (τ = 10) is not as high as the situation when the clinic is understaffed

(τ = 20).
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95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 5.6± 1.0 9.1± 1.3 11.4± 1.8 12.7± 2.0 14.1± 2.2

p2 = 0.2 3.5± 0.7 8.0± 1.4 10.4± 1.7 12.2± 2.1 13.7± 2.2
p2 = 0.4 5.5± 0.8 9.4± 1.4 10.9± 1.8 12.9± 2.0
p2 = 0.6 6.7± 1.0 10.5± 1.7 11.9± 1.9
p2 = 0.8 8.1± 1.2 11.3± 1.8
p2 = 1 9.1± 1.3

Table 2.7: The 95% CI of imp(IP,SP) (in percentage) when τ = 20.

95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 2.7± 0.6 4.4± 0.9 5.0± 1.2 5.1± 1.4 5.5± 1.4

p2 = 0.2 2.1± 0.4 4.1± 0.9 4.5± 1.0 4.9± 1.2 5.4± 1.5
p2 = 0.4 3.0± 0.6 4.4± 0.9 4.5± 1.1 5.1± 1.3
p2 = 0.6 3.1± 0.7 4.6± 1.2 4.8± 1.2
p2 = 0.8 3.6± 0.8 4.9± 1.9
p2 = 1 4.0± 0.9

Table 2.8: The 95% CI of imp(IP,SP) (in percentage) when τ = 10.

2.8.2 Three-Day Appointment Scheduling

One of the underlying assumption of this general framework is the number of arrivals

per day follows a Geometric distribution. We now investigate the case where the number of

arrivals per day is a random variable with a different distribution. That is to say, the arrival

process is perturbed from our assumption. Instead of building a new model to address this

problem, the question we would like to answer is whether the index policy still outperforms

the shortest-queue policy. (Later in this section we will modify the index policy to incorporate

the perturbation of the arrival process). That is to say, is the index policy a robust policy,

which means that it is resilient to the violation of the arrival process assumption?

We consider the Poisson distribution with parameter λ (the mean is λ) and Negative

Binomial distribution with parameters r and p (the mean is r · 1−p
p

). If r = 3, p = 1
6

then the

the expected number of arrivals per day is 15. Note that the Negative Binomial distribution is
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reduced to the Geometric distribution when r = 1 and is reduced to the Poisson distribution

when r =∞. Hence it can be regarded as the one between two extremes.

We include the simulation results for Negative Binomial distribution in Table 2.9 and the

results for Poisson distribution in Table 2.10. Note that our observation of “more flexibility

leads to higher improvement” still holds when the distribution is Negative Binomial, but it

does not hold for Poisson distribution. Comparing the results in Tables 2.9 and 2.10 with

those of Table 2.6, we conclude that the cost improvement under Negative Binomial and

Poisson distribution are both higher than the cost improvement under the Geometric distri-

bution.

95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 11.1± 1.6 16.5± 2.0 18.0± 2.1 18.5± 2.3 18.9± 2.1

p2 = 0.2 7.3± 1.1 14.9± 1.8 17.1± 2.2 18.0± 2.2 18.9± 2.3
p2 = 0.4 10.8± 1.6 15.8± 2.1 17.2± 2.0 18.4± 2.2
p2 = 0.6 11.3± 1.3 16.5± 2.2 17.5± 2.2
p2 = 0.8 12.4± 1.4 17.0± 2.0
p2 = 1 13.0± 1.5

Table 2.9: The 95% CI of imp(IP, SP) (in percentage) for Negative Binomial.

95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 17.4± 1.9 16.8± 1.8 14.3± 1.9 12.4± 1.9 11.3± 1.9

p2 = 0.2 11.7± 1.6 16.7± 1.8 14.4± 1.9 12.8± 1.9 11.7± 2.0
p2 = 0.4 13.9± 1.7 13.6± 2.1 12.9± 1.9 12.0± 1.8
p2 = 0.6 12.6± 1.5 12.3± 1.8 12.3± 1.9
p2 = 0.8 11.7± 1.4 11.7± 1.9
p2 = 1 11.0± 1.4

Table 2.10: The 95% CI of imp(IP, SP) (in percentage) for Poisson.

We now investigate the root cause of the observations found in Tables 2.9 and 2.10. Figure

2.5 displays the probability density functions of Geometric distribution with parameter α =

15
16

, the Poisson distribution with parameter λ = 15 and the Negative Binomial distribution
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with parameters r = 3, p = 1
6
. Note that they all have mean 15, where the cost function

is minimized. However, Poisson distribution has more density around 15, compared to the

other two. If there are around 15 arrivals on most days, then the long-run average cost

is supposed to be lower. This intuition is quantified in Table 2.11, which displays 95%

confidence interval of the long-run average cost under three different arrival processes when

p1 = 0.4, p2 = 0.4, p3 = 0.2.

0 5 10 15 20 25 30 35 40 45 50
0
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Probability density function

Negative Binomial
Poisson
Geometric

Figure 2.5: The comparison among probability density functions

As we can see Table 2.11, the probability of a Poisson random variable with mean 15

being between 10 and 20 is 0.84, much higher than that of Negative Binomial (0.44) and Ge-

ometric (0.27). This leads the fact that the magnitude of the long-run average cost under both
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P (10 ≤ X ≤ 20) LRACIP LRACSP

Geometric 0.27 103.3± 10.4 115.9± 10.3
Negative Binomial 0.44 58.7± 5.7 70.8± 6.2

Poisson 0.84 29.6± 1.4 34.1± 1.9

Table 2.11: The 95% CI for long-run average when p1 = 0.4, p2 = 0.4, p3 = 0.2.

IP and SP vary under the different distributions. This results in the differences in the cost im-

provement of using IP over SP under the various distributions. For example, under the Pois-

son distribution, LRACIP = 29.6 and LRACSP = 34.1, which give imp(IP, SP) = 13.2%

while under the Geometric distribution, LRACIP = 103.3 and LRACSP = 115.9, which give

imp(IP, SP) = 10.9%. These can explain why the magnitudes of cost improvements are

higher in the Negative Binomial and Poisson cases.

To incorporate the perturbation of the arrival process into the index policy, we design a

new policy called Poisson index policy. The computations of indices under the Poisson index

policy are the same as those of the index policy, except that An,t follows the distribution of

Poisson(ρtλ). (This is due to the Bernoulli splitting of Poisson distribution.) Hence, it is

easy to implement the Poisson index policy (PIP). We use imp(PIP, SP) to denote the cost

improvement of using Poisson index policy instead of the shortest-queue policy. Table 2.12

includes the 95% confidence interval of imp(PIP, SP) when the number of arrivals per day

has a Poisson(15) distribution.

Comparing Table 2.12 with Table 2.10, we found that imp(PIP, SP) is in general lower

than imp(IP, SP), even when the number of arrivals per day has a Poisson distribution. This

implies that our index policy is quite robust and performs very well.

However, it still remains unclear to us why the trend “more flexibility leads to higher
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95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 12.6± 2.2 11.6± 2.2 9.3± 2.0 8.8± 1.9 7.5± 1.9

p2 = 0.2 3.5± 2.2 12.3± 2.5 9.2± 1.9 9.0± 2.1 7.9± 1.9
p2 = 0.4 8.6± 2.4 5.9± 2.7 8.5± 2.1 8.1± 1.9
p2 = 0.6 8.0± 1.8 4.9± 2.2 7.4± 2.1
p2 = 0.8 6.8± 1.9 4.4± 2.5
p2 = 1 6.2± 1.8

Table 2.12: The 95% CI of imp(PIP,SP) (in percentage) for Poisson(15) arrivals.

improvement” is missing when the number of arrivals per day has a Poisson distribution. We

suspect that it is related to the fact that the expected number of arrivals, τ , is the same as where

the cost function c(·) is minimized. Hence we further investigate this issue by considering the

situations where τ is not 15. Table 2.13 and 2.14 include the 95% CI of imp(PIP, SP) when

the number of arrivals per day has a Poisson(20) and Poisson(10) distribution respectively.

95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 2.5± 0.8 1.6± 0.6 1.3± 0.5 1.0± 0.4 1.0± 0.4

p2 = 0.2 1.1± 1.1 1.9± 0.7 1.3± 0.6 1.0± 0.4 1.0± 0.4
p2 = 0.4 1.9± 0.8 0.9± 0.7 0.9± 0.5 1.0± 0.4
p2 = 0.6 1.7± 0.7 0.8± 0.6 0.9± 0.5
p2 = 0.8 1.5± 0.6 0.8± 0.5
p2 = 1 1.3± 0.6

Table 2.13: The 95% CI of imp(PIP,SP) (in percentage) for Poisson(20) arrivals.

95% CI p1 = 0 p1 = 0.2 p1 = 0.4 p1 = 0.6 p1 = 0.8 p1 = 1
p2 = 0 0± 0 2.1± 0.6 1.7± 0.5 0.9± 0.4 0.7± 0.3 0.6± 0.3

p2 = 0.2 0.9± 0.5 1.7± 0.5 1.0± 0.4 0.7± 0.3 0.6± 0.3
p2 = 0.4 1.2± 0.5 0.8± 0.4 0.7± 0.3 0.6± 0.3
p2 = 0.6 1.0± 0.4 0.6± 0.3 0.6± 0.3
p2 = 0.8 0.8± 0.3 0.5± 0.3
p2 = 1 0.6± 0.3

Table 2.14: The 95% CI of imp(PIP,SP) (in percentage) for Poisson(10) arrivals.

As we can see from Tables 2.13 and 2.14, the Poisson index policy still outperforms the

shortest-queue policy. However, the magnitude of cost improvement is much lower, com-
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pared to what we see in Table 2.12. We consider this is due to the fact that Poisson distribu-

tion has a large density condensed around its mean. We also see that the cost improvement is

higher when the system is understaffed (τ = 20) than overstaffed case (τ = 10). This is con-

sistent with what we have seen in Section 2.8.1. Note that “more flexibility leads to higher

improvement” is still missing from both tables. By now, we have shown that this observation

is due to neither the index policy with Poisson arrivals nor the inconsistency between arrivals

and staffing (τ 6= 15). Hence the best guess is due to the magnitude of long-run average cost

under Poisson arrivals observed in Table 2.11.

Based on the observations in this section, we conclude that the index policy is a robust

policy and performs quite well even if the number of arrivals per day does not have a Geomet-

ric distribution. In next section, we propose two variants of the index policy as benchmarks,

to further validate the fact that our index policy is a good heuristic in general.

2.8.3 Two Variants of Index Policy

We now propose two variants of the index policy. These two variants deviate from the

index policy only at the values of ρ’s used to compute the indices. In the original form of

the index policy, ρ’s are computed by solving a quadratic programming to strike a balance

among each day. We present two other ways to choose the values of ρ’s, which result in two

variants of the index policies.

The first variant is called “index policy - first day” (IPFD). We choose ρk = pk for

k = 1, 2, 3. This index policy is improved based upon the randomized policy where all

patients are given the first day in their preferred set, i.e., type-k patient arriving on day n is
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assigned an appointment on day n + k. The second variant is called “index policy - evenly

assigned” (IPEA). We choose ρ1 = 1
3
p1, ρ2 = 1

3
p1 + 1

2
p2, ρ3 = 1

3
p1 + 1

2
p2 + p3. This index

policy is improved based upon the randomized policy where the patients are evenly assigned

to each day in their preferred set. For example, 1
3

of type-1 patients are assigned on day 1, 2,

and 3 respectively.

We now implement these two variants of the index policy. The implementation is the

same as before, except how the values of ρ’s are chosen. Figure 2.6 displays the long-run

average cost under IP, IPFD, IPEA, and SP across 200 replications when p1 = 0.1, p2 =

0.8, p3 = 0.1 and the number of arrivals per day has a Geometrical distribution with mean

15.

Figure 2.6: The comparisons among IP, IPFD, IPEA, and SP.

As we can see from Figure 2.6, the long-run average cost under SP is highest in all

sample paths. IP, IPFD, and IPEA all outperform SP by a significant portion. We can also
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see that both IP and IPEA outperform IPFD. However, it is hard to see which of IP and IPEA

performs better by simply eyeballing. Hence, we conduct the simulation study under more

sets of parameters. Table 2.15 includes the 95% confidence interval of the difference between

long-run average costs under IPFD and IP, i.e., LRACIPFD − LRACIP, and the difference

between long-run average costs under IP and IPEA, i.e., LRACIP − LRACIPEA. The results

are from 200 replications when the number of arrivals per day has a Geometrical distribution

with mean 15.

LRACIPFD − LRACIP LRACIP − LRACIPEA

p1 = 0.1, p2 = 0.8 6.4± 1.2 0.9± 0.4
p1 = 0.2, p2 = 0.1 0.3± 0.2 0.1± 0.2
p1 = 0.2, p2 = 0.6 2.0± 0.5 1.0± 0.5
p1 = 0.3, p2 = 0 1.6± 0.5 −0.2± 0.2
p1 = 0.3, p2 = 0.4 0.2± 0.2 1.0± 0.5
p1 = 0.4, p2 = 0.4 1.1± 0.4 1.3± 0.5
p1 = 0.5, p2 = 0 4.4± 0.9 −0.7± 0.3
p1 = 0.5, p2 = 0.4 3.0± 0.7 1.5± 0.5
p1 = 0.6, p2 = 0.2 4.4± 0.9 0.6± 0.4
p1 = 0.7, p2 = 0 7.6± 1.4 −0.6± 0.4
p1 = 0.8, p2 = 0.1 10.4± 1.4 0.4± 0.3

Table 2.15: Comparisons among IP, IPFD, IPEA when τ = 15.

As one can see from Figure 2.6, IP performs better than IPFD in all cases while one of

IPEA and IP performs better than the other in various cases. Hence we conclude that both IP

and IPEA outperform IPFD and IP has a similar performance as IPEA. Tables 2.16 and 2.17

display the similar results as Table 2.15 with τ being 10 and 20 respectively. We observe that

the conclusion still holds in both tables.

We further study the robustness of the two variants. We consider the case where the

number of arrivals per day has a Poisson distribution. We implement the two variants and
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LRACIPFD − LRACIP LRACIP − LRACIPEA

p1 = 0.1, p2 = 0.8 4.1± 0.9 0.6± 0.3
p1 = 0.2, p2 = 0.1 0.1± 0.2 0.1± 0.2
p1 = 0.2, p2 = 0.6 1.4± 0.4 0.7± 0.5
p1 = 0.3, p2 = 0 0.7± 0.4 −0.1± 0.2
p1 = 0.3, p2 = 0.4 0.1± 0.2 0.7± 0.4
p1 = 0.4, p2 = 0.4 0.5± 0.3 1.0± 0.6
p1 = 0.5, p2 = 0 2.3± 0.7 −0.2± 0.2
p1 = 0.5, p2 = 0.4 1.6± 0.6 1.1± 0.6
p1 = 0.6, p2 = 0.2 3.1± 0.8 0.6± 0.4
p1 = 0.7, p2 = 0 4.5± 1.2 −0.1± 0.3
p1 = 0.8, p2 = 0.1 5.9± 1.4 0.5± 0.3

Table 2.16: Comparisons among IP, IPFD, IPEA when τ = 10.

LRACIPFD − LRACIP LRACIP − LRACIPEA

p1 = 0.1, p2 = 0.8 6.4± 1.1 0.8± 0.3
p1 = 0.2, p2 = 0.1 0.4± 0.2 0.1± 0.2
p1 = 0.2, p2 = 0.6 2.1± 0.5 0.8± 0.4
p1 = 0.3, p2 = 0 2.0± 0.5 −0.4± 0.3
p1 = 0.3, p2 = 0.4 0.1± 0.2 0.9± 0.4
p1 = 0.4, p2 = 0.4 0.8± 0.4 1.2± 0.5
p1 = 0.5, p2 = 0 4.7± 0.9 −0.8± 0.4
p1 = 0.5, p2 = 0.4 2.9± 0.7 1.3± 0.5
p1 = 0.6, p2 = 0.2 3.5± 0.8 0.6± 0.3
p1 = 0.7, p2 = 0 7.3± 1.3 −0.6± 0.4
p1 = 0.8, p2 = 0.1 9.2± 1.6 0.5± 0.3

Table 2.17: Comparisons among IP, IPFD, IPEA when τ = 20.

the index policy under this arrival process. Table 2.18 includes the results for Poisson(15)

distribution. As we can see from Table 2.18, IP and IPEA still outperform IPFD. However,

the magnitude of the performance differences is lower than what we have seen in Table 2.15.

We also consider the cases when the system is overstaffed (τ = 10) or understaffed

(τ = 20). Table 2.19 and 2.20 include the results for Poisson(10) and Poisson(20) distribution

respectively.

From Tables 2.19 and 2.20, we observe that the performance differences among IP, IPEA
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LRACIPFD − LRACIP LRACIP − LRACIPEA

p1 = 0.1, p2 = 0.8 1.6± 0.4 0.6± 0.2
p1 = 0.2, p2 = 0.1 0.1± 0.2 0.6± 0.3
p1 = 0.2, p2 = 0.6 0.7± 0.3 1.3± 0.3
p1 = 0.3, p2 = 0 0.7± 0.3 0.4± 0.2
p1 = 0.3, p2 = 0.4 0.1± 0.1 1.2± 0.3
p1 = 0.4, p2 = 0.4 0.7± 0.2 0.8± 0.2
p1 = 0.5, p2 = 0 1.9± 0.4 −0.3± 0.2
p1 = 0.5, p2 = 0.4 0.9± 0.2 0.6± 0.2
p1 = 0.6, p2 = 0.2 1.5± 0.3 0.3± 0.1
p1 = 0.7, p2 = 0 2.4± 0.5 −0.2± 0.1
p1 = 0.8, p2 = 0.1 2.2± 0.5 0.3± 0.1

Table 2.18: Comparisons among IP, IPFD, IPEA for Poisson(15).

LRACIPFD − LRACIP LRACIP − LRACIPEA

p1 = 0.1, p2 = 0.8 0.8± 0.3 −0.1± 0.1
p1 = 0.2, p2 = 0.1 −0.1± 0.1 −0.2± 0.1
p1 = 0.2, p2 = 0.6 0.5± 0.2 −0.3± 0.2
p1 = 0.3, p2 = 0 −0.1± 0.2 −0.1± 0.1
p1 = 0.3, p2 = 0.4 0± 0.1 −0.2± 0.1
p1 = 0.4, p2 = 0.4 0.2± 0.1 −0.3± 0.1
p1 = 0.5, p2 = 0 0.2± 0.2 −0.2± 0.1
p1 = 0.5, p2 = 0.4 0.4± 0.1 −0.01± 0.1
p1 = 0.6, p2 = 0.2 0.6± 0.2 −0.04± 0.1
p1 = 0.7, p2 = 0 0.7± 0.2 −0.1± 0.1
p1 = 0.8, p2 = 0.1 0.6± 0.2 0.1± 0.1

Table 2.19: Comparisons among IP, IPFD, IPEA for Poisson(10).

and IPFD are very small. This is consistent with our finding in Section 2.8.2, since the

Poisson distribution has much density condensed around its mean and the magnitude of the

long-run average cost is much lower. Note that IP, IPEA, IPFD all outperform SP in afore-

mentioned cases. However, we did not include the results to save some space.

Based on our observations above, we conclude that the index policy is a good heuristic

policy. IP not only outperforms SP, but also outperforms IPFD. IP has a similar performance

compared to IPEA, since both policies have its own advantages in different cases.

85



LRACIPFD − LRACIP LRACIP − LRACIPEA

p1 = 0.1, p2 = 0.8 0.2± 0.1 0.04± 0.05
p1 = 0.2, p2 = 0.1 0.1± 0.1 0.08± 0.06
p1 = 0.2, p2 = 0.6 0.1± 0.1 0.05± 0.06
p1 = 0.3, p2 = 0 0.1± 0.1 0.02± 0.05
p1 = 0.3, p2 = 0.4 0± 0 0.04± 0.05
p1 = 0.4, p2 = 0.4 0.1± 0 0.04± 0.05
p1 = 0.5, p2 = 0 0.3± 0.1 0.003± 0.04
p1 = 0.5, p2 = 0.4 0.1± 0.1 0.04± 0.05
p1 = 0.6, p2 = 0.2 0.2± 0.1 −0.01± 0.03
p1 = 0.7, p2 = 0 0.4± 0.1 −0.05± 0.05
p1 = 0.8, p2 = 0.1 0.3± 0.1 0.01± 0.03

Table 2.20: Comparisons among IP, IPFD, IPEA for Poisson(20).

2.9 Conclusions

In this chapter, we have developed a novel way of modeling patient preferences via the

set of days that the patient is indifferent to. We developed a dynamic appointment scheduling

system to help clinics respond to the patients’ requests by assigning the appointments in a

cost-effective way.

We used MDPs to obtain optimal policies that minimize the long-run average cost. We

presented analytical results about the structure of the optimal policy. We showed interesting

structural properties of the optimal policies. Since the optimal policy is hard to implement,

we proposed a heuristic policy, namely, the index policy. The numerical results indicate that

the index policy performs very close to the optimal policy and provides significant improve-

ment over the other heuristic policies. We extended the results from the base model to the

case where the rejection is available. We also extended the results to a general framework

and used a simple case to study the generalizations of arrival processes.
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CHAPTER 3: Automated Teller Machines Replenishment Policies

3.1 Introduction

Automated teller machines (ATMs) can potentially save costs (including labor and cap-

ital) for banks and improve customer service. Replenishing the ATMs costs money, so the

banks would like to do it as infrequently as possible. However, customer satisfaction is di-

rectly dependent on finding ATMs with cash. This will increase by replenishing the ATMs

more frequently. Thus the banks need to strike a balance between these two competing fac-

tors to decide upon an intelligent replenishment policy.

With the recent advances in technology, the banks are able to know the cash inventory at

all ATMs in real time. With the help of sophisticated statistical analysis, the banks can fore-

cast the cash demands accurately. The banks can exploit such information to make decisions

on which ATMs to replenish. There are two major ways the banks handle the replenishment

options. Under option one, they outsource the replenishment operations to an outside ven-

dor, while under option two, they own the ATMs and perform the replenishment operations

in house. We discuss these two cases below.

• Outsourcing operations: Under this scenario, the banks have a replenishment contract

with a vendor. The outsourcing contract usually includes a certain amount of fee for

each replenishment (variable cost) and the regular annual contract allowance (fixed

cost, which may be zero). In this situation, the replenishment cost function is additive,



that is, the cost of replenishing k ATMs is linear in k.

• In-house operations: Under this scenario, the banks manage the cash replenishment

operations themselves. Here we distinguish between on-site ATMs (that is, ATMs that

are in a bank building) and off-site ATMs (that is, ATMs that are in shoppings, train and

bus stations, etc). We concentrate on the off-site ATMs. In this case, it is more cost-

effective to replenish multiple ATMs simultaneously, due to the economies of scale.

This typically makes the replenishment cost a submodular function of the set of ATMs

that are replenished.

In reality, some customers may deposit cash into ATMs but we ignore deposits in this

model. Right before each time period starts, the banks observe the current cash inventory

level at each ATM. (In this model, we use the day as the time period.) If there is no cash

in a certain ATM, then the stock-out cost is incurred. This stock-out cost can be explained

as either an estimate of good will loss or the emergency replenishment cost. The replenish-

ments of ATMs occur instantaneously. This is because the data we have show that customer

cash withdrawals are negligible during 2-4AM each day. Therefore, we can assume the re-

plenishment happens during this time interval. We begin with the assumption that the cash

withdrawals at each ATM are independent and identically distributed, and independent of

the demands at other ATMs. (However, we allow the demand distributions to depend on the

ATM.) This may not actually be true in practice, but the assumption is useful in developing

tractable policies. Also, as we shall see in Section 3.9, the tractable policies do quite well in

the presence of real world data, which may have auto- and cross-correlated demands. We do
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not model the cash withdrawal of each customer explicitly. Instead, we assume the cumula-

tive cash withdrawals during a day have a given probability distribution which is estimated

based on the historical data. Although, for mathematical tractability, our model assumes that

the amounts of cash withdrawals during each day at each ATM are independent and identi-

cally distributed, the actual index policy we propose does not need this assumption.

We address two issues related to the replenishment operations below. The first issue is

how the replenishment operation is completed. Each ATM has a sealed cartridge of cash.

The trucks with full sealed cartridges of cash stop at each ATM and the operators replace

the sealed cartridge in ATM (which is now partially or fully empty of cash) with the sealed

cartridge full of cash. If there is leftover cash in the cartridges, it will be transported to the

central location and processed there. This process ensures that the operators have no contact

with the cash for the security reasons.

The second issue is the banks’ ability to provide enough cash and put them into the sealed

cartridges for future use. For example, the banks might need to replenish 20 ATMs on one

day but they have only 10 full cartridges available. We do not consider this second factor in

the main model but discuss it in the last section. Here we assume that enough full cartridges

are available to replenish as many ATMs as needed.

We build a Markov Decision Processes (MDP) model to construct the replenishment

schedules, taking all the factors mentioned above into account. We consider two costs: the

replenishment costs and the stock-out costs. The replenishment costs are typically easy to

estimate, but stock-out costs are harder to do so. The stock-out costs will induce a certain

replenishment policy, which induces a certain stock-out frequency, which is an indicator of
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the service level. Hence, we can control the service level by choosing appropriate stock-out

costs. The MDP model is designed to help the bank decide which ATMs to replenish at the

beginning of each day. The objective is to minimize the long-run average stock-out costs plus

replenishment costs for the banks.

Our work makes several contributions. The first contribution is the construction of an

MDP model to study the replenishment scheduling of ATMs. To the best of our knowledge,

this is the first MDP model in the literature on ATMs replenishment. The second contri-

bution is to apply the greedy algorithm to choose the heuristic policy. Many MDP models

in previous literature have large state spaces which make the optimal solution analytically

intractable. Our MDP has a large state space, as well as a large action space (the power

set of the set of ATMs). This makes our problems distinct from the previous MDP models.

Finally, although we regard the ATM replenishment problem as the business context here,

the methodology and approaches developed here can be easily applied to broader business

settings, such as businesses owning and operating vending machines.

The rest of Chapter 3 is organized as follows. The related literature is reviewed in Section

3.2. We describe the MDP model in detail in Section 3.3. The simplest case, a single-ATM

problem, is reviewed in Section 3.4. A multi-ATM problem with additive replenishment

cost is fully solved in Section 3.5. We then show the structural properties of the optimal

policy (with a general cost function) in Section 3.6, propose the index policy in Section 3.7,

and report numerical experiments in Section 3.8 to show that the index policy performs well

with respect to the optimal policy when it can be computed, and with respect to another

benchmark policy when the optimal policy is hard to compute. The statistical analysis and
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the performance of the index policy on a real-world dataset are presented in Section 3.9.

Finally, we conclude this work and list several future directions in Section 3.10.

3.2 Literature Review

The replenishment of a single product has been well studied in the classical inventory

control literature, dating back to the Economic Order Quantity (EOQ) model proposed in

(Harris, 1990). (Arrow et al., 1951) and (Clark and Scarf, 1960) studied the optimal order

quantity in a single-echelon case and a multi-echelon case respectively. (Scarf, 1959) and

(Iglehart, 1963) have shown the optimality of the (s, S) policy under the total discounted

cost criterion in a finite-horizon case and an infinite-horizon case respectively. (Veinott Jr

and Wagner, 1965) have shown the optimality of the same policy under the average-cost

criterion. We refer the reader to (Porteus, 1990) for a review on stochastic inventory control

literature.

The replenishment of multiple products at a single location is related to the joint replen-

ishment problem (JRP) literature. JRP also includes the problems of single-product replen-

ishment at multiple locations. We refer the reader to the review on the literature prior to 1989

in (Goyal and Satir, 1989) and the review on the literature between 1989 and 2005 in (Khouja

and Goyal, 2008). The (s, c, S) policy, often called coordinated control policy, was originally

proposed in (Balintfy, 1964), with S being the order-up-to level, c being can-order level, and

s being must-order level. An order is placed when the inventory position of any item is below

the must-order level. The fulfillment of order raises the inventory position of this item to the

order-up-to level. When an order is placed, any other item with an inventory position below
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the can-order level is also included in the order. Note that the (s, S) policy in a multi-item

setting can be regarded as a special case of the (s, c, S) policy, with the can-order level being

the same as the must-order level. Although (Ignall, 1969) showed that (s, c, S) policy is not

necessarily optimal, such policies have been studied extensively in the JRP literature when

the demand is random. The literature on JRP has mostly focused on the problems arising

in a single-location-multiple-product setting, where the ordering cost consists of two parts:

the major ordering cost associated with each order and the minor ordering cost associated

with each product or part. Hence the ordering cost is an affine function of the number of

products or parts, e.g. see (Federgruen et al., 1984). (Federgruen et al., 1984) explicitly

took the service level constraint into consideration, set the required service level and solved

the problem using the Lagrangian Multiplier method. They considered the following cost

structure: a major setup cost incurred by any replenishment and a minor setup cost when

including a particular item in the replenishment. They searched for a (s, c, S) policy to con-

trol the multi-location inventory systems for coordinated deliveries. Our model differs in the

following way: we consider which ATMs to replenish as the decision variable and model the

cost structure as a submodular function.

Most of the literature on JRP considers the ordering cost and inventory holding cost,

without taking the transportation cost into account explicitly. Although the ordering cost re-

flects the transportation cost indirectly, most of JRP literature ignores the routing problem.

There is a stream of literature which began in 1980s, called the inventory routing problems

(IRP), which considers both inventory cost and distribution(transportation) cost. Many IRP

arise from a relatively new business model called vendor managed inventory (VMI) where
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the supplier reviews the clients’ inventory levels and replenishes the inventories for them,

minimizing the distribution and inventory costs throughout the supply chain. We refer the

reader to (Federgruen and Simchi-Levi, 1995) and (Cordeau et al., 2007) for the reviews on

IRP. (Federgruen and Zipkin, 1984), one of the pioneering papers in the IRP literature, is

the first to propose an integrated inventory management and transportation planning model.

They consider inventory cost, shortage cost due to random demand, as well as transportation

cost. They extend the standard vehicle routing problems (VRP) and solve the problem using

an algorithm derived from generalized Bender’s decomposition. Their model considers only

one time period and hence solves a “myopic version of the problem”, whereas our model

minimizes the long-run average cost. (Burns et al., 1985) is the first paper to combine inven-

tory cost with the transportation cost as a function of traveling salesman tour. Their model

considers shipment size as the decision variable and shows that the optimal shipment size is a

full truck while the distribution strategy is to dispatch trucks which deliver items to more than

one customer per load. Their model assumes the demand is a known constant and uses the in-

formation on the spatial density of the retailers. Our model differs in the following ways: we

consider which ATMs to replenish as the decision variable, take the demand uncertainty into

consideration, and use the exact locations of the retailers. (Herer and Roundy, 1997) assumed

that the ordering cost consists of two parts: the first part is a submodular function of the set

of retailers placing orders, and the second part is a linear function of the traveling salesman

tour length. They focused on the systems where the delivery costs are significant, such as the

grocery store chain, and the delivery of the gasoline to service stations. They assumed the

demand occurs at the retailers at a constant known rate, considered when to deliver products
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from the central warehouse to retailers and when to replenish the inventories at the central

warehouse as the decision variables, and solved the problem by computing the power-of-two

reorder intervals (the reorder interval is a positive or negative integer power-of-two times the

base planning period). Our model differs in the following ways: we estimate the probability

distribution of the demand, consider which ATMs to replenish as the decision variable, and

leverage such information and MDP to design the heuristic policy. We also use submodular

function in our cost model.

3.3 Model Description

Let N = {1, 2, ..., n} denote a set of ATMs. Let Mi be the capacity of ATM i ∈ N , that

is, ATM i can hold at most Mi amount of cash at any time. Let D(i)
k be the size of cash with-

drawal that occurs at ATM i on day k. We assume that {D(i)
k , k = 1, 2, · · · } is a sequence of

iid non-negative random variables with a known common complementary cumulative distri-

bution given by

f (i)(y) = P(D
(i)
k ≥ y), ∀y ≥ 0.

We use D(i) to denote a generic random size of daily cash withdrawal at ATM i.

We model the cost structure as follows. If A is the set of ATMs to be replenished, then

the bank incurs a replenishment cost r(A). We consider two different cases: (1) the re-

plenishment cost function r(A) is additive and (2) the replenishment cost function r(A) is

submodular. In case (1), the replenishment cost is a simple sum of replenishment costs in-

curred at all ATMs to be replenished. That is to say, if the replenishment cost of ATM i is ri,
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then

r(A) =
∑
i∈A

ri.

This situation occurs when the bank has a contract with third-party vendor who replenishes

the ATMs for the bank and charges the bank a fixed fee for each replenishment. This is a

“pay-per-replenishment” contract with ri = r for all i ∈ N . In case (2), the replenishment

cost function is a submodular function, that is, it satisfies the following inequality:

r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) ∀A,B ⊆ N.

One can show that this is equivalent to (see (Herer, 1999)):

r(A ∪ {i, j}) + r(A) ≤ r(A ∪ {j}) + r(A ∪ {i}) ∀A ⊆ N, i, j /∈ A. (3.1)

This definition has an implication of economies of scale: it costs less to add ATM j to the

replenishment set A ∪ {i} than to add ATM j to the replenishment set A.

To construct the MDP, we describe the sequence of events as follows. Let Xk be the state

of the system before a potential replenishment happens on the kth day (k ≥ 1). The state

is given by a vector of non-negative integers Xk = (X
(1)
k , X

(2)
k , ..., X

(n)
k ), where X(i)

k is the

cash inventory level of ATM i (for i = 1, 2, ..., n) just before the replenishment epoch on day

k. The state space is denoted by

S = {x = (x(1), x(2), ..., x(n)) : 0 ≤ x(i) ≤Mi}.

95



The stock-out cost is incurred based on the current cash inventory level. The total stock-out

cost is equal to the sum of the stock-out costs incurred at each ATM. We use c(x) to denote

the total stock-out cost when the system state is x = (x(1), x(2), ..., x(n)). We assume that it

costs ci if ATM i is without cash at the replenishment epoch. Thus

c(x) =
n∑
i=1

ci · 1{x(i)=0}. (3.2)

The stock-out cost ci is an intangible measure and hard to estimate. Intuitively, higher stock-

out cost induces higher service level. We explain how to estimate the stock-out cost given

the required service level in Section 3.4.

A decision Ak is the subset of the ATMs that will be replenished at decision epoch k.

This decision has to be made before the kth day starts, incurring the replenishment cost

r(Ak). During the kth day, the cash withdrawals are denoted by Dk = (D
(1)
k , D

(2)
k , ..., D

(n)
k ),

where D(i)
k is the amount of cash withdrawals from ATM i during day k, for i = 1, 2, ..., n.

These will result in a change of state of the system from Xk to Xk+1 = y(Xk, Ak), where

X
(i)
k+1 = y(i)(Xk, Ak) =


(Mi −D(i)

k )+, if i ∈ Ak,

(X
(i)
k −D

(i)
k )+, if i /∈ Ak,

We see that the independence assumption on the demands implies that {(Xk, Ak), k ≥ 1}

is an MDP. The objective is to minimize the long-run average cost per day. For a given
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stationary Markovian policy π, define (assuming the limit exists)

gπ(x) = lim
k→∞

1

k
Eπ

[
k∑
j=1

r(Aj) + c(Xj)

∣∣∣∣∣X1 = x

]
.

We call gπ(x) the long-run average cost of following the policy π. Let

g∗(x) = inf
π
gπ(x), ∀x ∈ S.

If there is a policy π∗ that achieves this infimum, it is called the average-cost optimal policy.

Thus an optimal policy (if it exists) satisfies

gπ
∗
(x) = g∗(x), x ∈ S.

We next discuss when such an optimal policy exists and how to compute it. Define v0(x) = 0

for all x and, for k ≥ 1,

vk+1(x) =c(x) + min
A⊆N
{r(A) + E[vk(y(x,A))]}, (3.3)

where x = (x(1), x(2), ..., x(n)) ∈ S, y(x,A) = (y(1)(x,A), y(2)(x,A), ..., y(n)(x,A)) ∈ S.

Note that one can interpret vk(x) as the optimal total expected cost incurred over the k days

starting from state x. It is well known (see (Tijms, 2003)) that vk(x) is asymptotically linear
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in k with slope g and intercept h(x). More precisely, we can write

vk(x) = kg + h(x) + o(k)

where o(k) is any function such that o(k)
k
→ 0 as k →∞. The slope g is the optimal long-run

average cost and the intercept h(·) is called the bias function. It is also known (see (Tijms,

2003)) that g and h(·) satisfy the following Bellman equation

h(x) + g = c(x) + min
A⊆N
{r(A) + E[h(y(x,A))]}, ∀x ∈ S. (3.4)

We also know (see (Tijms, 2003)) that if Equation (3.4) has a solution, then it can be used to

compute the optimal policy as follows. Define

A(x) = arg min
A⊆N
{c(x) + r(A) + E[h(y(x,A))]}, ∀x ∈ S. (3.5)

The standard theory of dynamic programming (see (Tijms, 2003)) shows that the Markovian

policy that replenishes the set A(x) of ATMs in state x is optimal. (Tijms, 2003) also shows

that Equation (3.4) has a solution if the MDP is unichain, that is, for each stationary policy

the associated Markov chain has no two disjoint closed sets. Thus if we can show that our

MDP is unichain, then we have a method of computing the optimal policy. This is done in

the following theorem.
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Theorem 12. Suppose

f
(i)
k (Mi) > 0, ∀i = 1, 2, ..., n. (3.6)

Then the Markov decision process {(Xk, Ak), k ≥ 1} is unichain and aperiodic.

Proof. We have, for any policy π,

P
(
Xk+1 = (0, 0, ..., 0)|Xk = (X

(1)
k , X

(2)
k , ..., X

(n)
k )
)

≥
n∏
i=1

P(D
(i)
k ≥Mi) =

n∏
i=1

f
(i)
k (Mi) > 0.

Hence the system can go from any state (x
(1)
k , x

(2)
k , ..., x

(n)
k ) to state (0, 0, ..., 0) in one step

with a positive probability, regardless of the policy followed. Also, state (0, 0, ..., 0) is aperi-

odic because

P(Xk+1 = (0, 0, ..., 0)|Xk = (0, 0, ..., 0))

≥
n∏
i=1

P(D
(i)
k ≥Mi) =

n∏
i=1

f
(i)
k (Mi) > 0.

Therefore {(Xk, Ak), k ≥ 1} satisfies the unichain assumption.

The assumption in Equation (3.6) says that there is a positive probability that all the

cash in an ATM can be withdrawn in one day. This is a sufficient condition, and can easily

be relaxed. However, this assumption is easily met in practice, and hence we do not ex-

plore weaker sufficient conditions. We shall assume Equation (3.6) holds. Then the MDP is
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unichain, and hence Equation (3.4) has a solution. We solve the Equation (3.4) by the itera-

tive method in Equation (3.3). The following theorem is an application of Theorem 6.6.1 in

(Tijms, 2003). Let 0 = (0, 0, ..., 0) be the state where all ATM cash levels are zero.

Theorem 13. For any state x, we have

h(x)− h(0) = lim
k→∞

[vk(x)− vk(0)], ∀x ∈ S, (3.7)

and

g = lim
k→∞

vk(x)

k
, ∀x ∈ S. (3.8)

Furthermore,

min
x
{vk(x)− vk−1(x)} ≤ g ≤ max

x
{vk(x)− vk−1(x)}. (3.9)

Proof. Use the Theorem 6.6.1 in (Tijms, 2003).

Theorem 13 allows us to use the recursion in Equation (3.3) to compute h(x) and g, and

then use Equation (3.5) to derive the optimal policy.

3.4 Single-ATM Problem

In this section we consider the special case n = 1, that is, a single-ATM problem. Let M

be the capacity, c be the stock-out cost, r be the replenishment cost, and D be the stationary
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demand for this ATM. In this case, Equation (3.4) can be written as:

h(x) + g = c · 1{x=0} + min{r + E[h((M −D)+)],E[h((x−D)+)]}, (3.10)

where x is a scalar, representing the ATM cash level. This case has been studied in great detail

in the literature starting with the seminal paper (Scarf, 1959), which showed that an (s, S)

policy minimizes the finite-horizon expected total discounted cost. This was later extended

to the infinite-horizon case by (Iglehart, 1963) considering a periodic review inventory model

with ordering cost, shortage cost, and holding cost. (Veinott Jr and Wagner, 1965) proved

the optimality of the (s, S) policy under the average-cost criterion. The single-ATM case is

in fact a special case of (Iglehart, 1963) with a fixed quantity S = M , no holding cost, the

replenishment cost r taking place of the ordering cost, and the stock-out cost c taking place

of the shortage cost. Hence we see that the long-run average cost is minimized by an (s,M)

policy for some s.

We now give the following notation. Suppose Dk is the demand at this ATM during day

k. Assume that {Dk, k ≥ 1} is a sequence of independent and identically distributed random

variables with

f(y) = P(Dk ≥ y), ∀y ≥ 0.

Let {Λ(t), t ≥ 0} be a renewal process generated by {Dk, k ≥ 0}, and let {B(t), t ≥ 0} be

the remaining life process in this renewal process; see (Kulkarni, 2009). The next theorem

gives an expression for κ(s), the long-run average cost of such a policy.
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Theorem 14. The long-run average cost under the (s,M) policy is given by:

κ(s) =
r + cP(B(M − s) ≥ s)

1 + E[Λ(M − s)]
. (3.11)

Proof. Let Wk be the cash inventory instantly after the replenishment happens on day k.

Suppose W0 = M . Then under the (s,M) policy, we get

Wk+1 =


Wk −Dk, if Wk −Dk ≥ s,

M, if Wk −Dk < s.

Let Tk be the time of the kth replacement. Hence {Wk, k ≥ 1} is a regenerative process with

regeneration points {Tk, k ≥ 1}. We call (0, T1] as the first cycle, starting with W0 = M .

Then the expected cycle length is E(T1) = 1 + E[Λ(M − s)]. We incur a replenishment

cost of r at the end of the cycle. We incur a stock-out cost of c if the cash inventory at the

end of the cycle is less than or equal to zero, that is, if the remaining life at M − s in the

{Λ(t), t ≥ 0} process is s or more. Hence the expected cost over the first cycle is given by

r + cP(B(M − s) ≥ s). From the theory of Renewed Reward Process (e.g., see Theorem

8.38 in (Kulkarni, 2009)), we have

κ(s) =
r + cP(B(M − s) ≥ s)

1 + E[Λ(M − s)]
.

We can compute P(B(M − s) ≥ s) and E[Λ(M − s)] by using the renewal argument;
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see (Kulkarni, 2009). Let s∗ be the s that minimizes κ(s) of Equation (3.11). In general r is

easy to estimate, but c is not. We now discuss how this model can be used to pick the “right”

c.

Let ρ(s) be the service level, which is defined as the fraction of the days when the ATM is

not empty. The following theorem gives the explicit expression of service level in this model.

Theorem 15. The long-run average service level under the (s,M) policy is given by:

ρ(s) = 1− P(B(M − s) ≥ s)

1 + E[Λ(M − s)]
. (3.12)

Proof. We follow the same notations in the proof Theorem 14. During the first cycle (0, T1],

the stock-out occurs with P(B(M−s) ≥ s) and does not occur with probability 1−P(B(M−

s) ≥ s). From the theory of Regenerative Process (e.g., see Theorem 8.39 in (Kulkarni,

2009)) the expected number of stock-out is

lim
n→∞

P(Wn ≤ 0) =
P(B(M − s) ≥ s)

1 + E[Λ(M − s)]
.

Hence by the definition of the service level, we complete the proof.

Note that the service level for a single ATM is bounded above by 1 − P(D ≥ M) =

P(D < M) where D denotes the daily cash demand. This is because, even if the replen-

ishment occurs every day, the fraction of stock-out occurring in the long-run is P(D ≥ M).

Hence the service level must be less than or equal to P(D < M). For a given c, let s∗(c) be

the replenishment point which minimizes the κ(s) of Equation (3.11). It can be shown that
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ρ(s∗(c)) is an increasing function of c. Thus one can choose a sufficiently large c to achieve

any service level ρ(s∗(c)) (less than P(D < M)).

For example, Figure 3.1 displays the service level ρ(s∗(c)) as a function of stock-out c,

given the parameters r = 60, Poisson(25) demands, and ATM capacity M = 50. We take

the smallest c such that the service level is above 0.95 as the “reasonable” c, so c = 140.
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Single-ATM case under (s,M) policy: 6=25

Figure 3.1: Relationship between service level and stock-out cost

3.5 Additive-Replenishment-Cost Problem

In this section we analyze the case where the replenishment cost is additive, i.e.,

r(A) =
∑
i∈A

ri.

104



It was mentioned in Section 3.1 that this cost function arises when the bank outsources the

replenishment operations. Let Mi be the capacity, ri be the replenishment cost, ci be the

stock-out cost, and D(i) be the stationary demand for ATM i. Let hi(x(i)) and gi be solutions

to Equation (3.10), rewritten here with the superscript i added to denote ATM i,

hi(x
(i)) + gi = ci · 1{x(i)=0} + min{ri + E[hi((Mi −D(i))+)],E[hi((x

(i) −D(i))+)]}.

(3.13)

The optimal replenishment level s(i), computed by minimizing the long-run average cost

κi(s), satisfies

gi = κi(s
(i)).

Theorem 16. Define

h(x) =
n∑
i=1

h(i)(x(i)), g =
n∑
i=1

gi.

Then h(x) and g satisfy Equation (3.4).

Proof. We solve Equations (3.13) by the following recursion, ∀i ∈ N ,

v
(i)
k+1(x

(i)) =ci · 1{x(i)=0}

+ min{ri + E[v
(i)
k ((Mi −D(i))+)],E[v

(i)
k ((x(i) −D(i))+)]}.

105



For any non-negative quantities U1, V1, U2, V2, ..., Un, Vn, we know

min{U1, V1}+ min{U2, V2}+ · · ·+ min{Un, Vn} = min
A⊆N

{∑
i∈A

Ui +
∑
i/∈A

Vi

}
. (3.14)

We sum all the Equations in (3.13) and use Equation (3.14) to get:

n∑
i=1

v
(i)
k+1(x

(i))

=
n∑
i=1

ci · 1{x(i)=0} + min
A⊆N
{

n∑
i=1

ri +
∑
i∈A

E[v
(i)
k ((Mi −D(i))+)]

+
∑
i/∈A

E[v
(i)
k ((x(i) −D(i))+)]}

=c(x) + min
A⊆N
{r(A) + E[

∑
i∈A

v
(i)
k ((Mi −D(i))+)] +

∑
i/∈A

v
(i)
k ((x(i) −D(i))+)}

=c(x) + min
A⊆N
{r(A) + E[

n∑
i=1

v
(i)
k (y(i)(x,A))]}.

This is equivalent to Equation (3.3) if we define

vk(x) =
n∑
i=1

v
(i)
k (x(i)).

Theorem 16 demonstrates that, in the additive-replenishment-cost case the n-ATM prob-

lem can be solved by solving n single-ATM problems separately and obtaining the optimal

replenishment level s(i) for ATM i (i = 1, 2, ..., n). We can calculate s(i) by methods men-
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tioned in Section 3.4. The optimal decision in the state of x is characterized by:

A(x) = {i ∈ N : x(i) < s(i)}.

Let s = (s(1), ..., s(n)) and M = (M1, ...,Mn). We call such a policy an (s,M) policy.

Theorem 16 implies that an (s,M) policy is optimal for some s. Thus the problem of optimal

replenishment is easy if the bank is outsourcing its replenishment operations.

3.6 Structural Properties of Optimal Policy

In this section, we study the structural properties of the optimal policy for an ATM re-

plenishment problem with a general replenishment cost function r(A).

Assumption A: We assume that c(x) satisfies

z ≥ x⇒ c(z) ≤ c(x). (3.15)

This assumption says the stock-out cost is lower when there is more cash in any ATM. This

is a reasonable assumption in reality. The stock-out cost in Equation (3.2) satisfies Equation

(3.15). We first establish the monotonicity of h(·) function of Equation (3.4) in the next

theorem.

Theorem 17. Under the Assumption A, we have:

z ≥ x⇒ h(z) ≤ h(x), ∀x, z ∈ S.
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Proof. Let e(i) = (0, ..., 0, 1, 0, ..., 0), where the ith component of this vector is 1 and all other

components are 0. Since we can write z = (z(1), ..., z(n)) = (x(1) + ε1e
(1), ..., x(n) + εne

(n)),

where εi = z(i) − x(i) ≥ 0, it suffices to show that

h(x) ≥ h(x+ εe(i)), ∀ε ≥ 0, i ∈ N, x ∈ S.

We first show

vk(x) ≥ vk(x+ εe(i)), ∀k ≥ 1, ε ≥ 0, i ∈ N, x ∈ S

by mathematical induction.

Step 1: The basic step. We know v0(x) = 0. Hence we have

v1(x) = c(x) + min
A⊆N
{r(A) + 0} = c(x) + 0 = c(x),

v1(x+ εe(i)) = c(x+ εe(i)) + min
A⊆N
{r(A) + 0} = c(x+ εe(i)) + 0 = c(x+ εe(i)).

Hence v1(x) ≥ v1(x+ εe(i)) holds given that c(x) ≥ c(x+ εe(i)).

Step 2: The inductive step. We now assume that vk(x) ≥ vk(x + εe(i)) for all ε ≥ 0, i ∈
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N, x ∈ S and show that vk+1(x) ≥ vk+1(x+ εe(i)) for all ε ≥ 0, i ∈ N, x ∈ S. We have

vk+1(x) = c(x) + min
A⊆N
{r(A) + E[vk(y(x,A))]},

and

vk+1(x+ εe(i)) = c(x+ εe(i)) + min
A⊆N
{r(A) + E[vk(y(x+ εe(i), A))]}.

We now compare r(A) + E[vk(y(x,A))] and r(A) + E[vk(y(x+ εe(i), A))], for any fixed set

A ⊆ N . We know vk(x) ≥ vk(x + εe(i)) by the induction hypothesis. By the definition of

y(x,A), we know y(i)(x,A) ≤ y(i)(x+ εe(i), A) and y(j)(x,A) = y(j)(x+ εe(i), A), ∀j 6= i.

Hence we have

E[vk(y(x,A))] ≥ E[vk(y(x+ εe(i), A))], ∀A ⊆ N.

This fact leads to

min
A⊆N
{r(A) + E[vk(y(x,A))]} ≥ min

A⊆N
{r(A) + E[vk(y(x+ εe(i), A))]}.

We know c(x) ≥ c(x+ εe(i)) from the Assumption A. Hence, we have

vk+1(x) ≥ vk+1(x+ εe(i)).
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By induction, we have

vk(x) ≥ vk(x+ εe(i)), ∀k ≥ 1, ε ≥ 0, i ∈ N, x ∈ S.

Hence, from Theorem 13, we have

h(x)− h(0) = lim
k→∞

[vk(x)− vk(0)]

≥ lim
k→∞

[vk(x+ εe(i))− vk(0)]

= h(x+ εe(i))− h(0).

The result h(x) ≥ h(x+ εe(i)), ∀ε ≥ 0, i ∈ N, x ∈ S follows since h(·) function inherits the

structural properties of vk(·) function.

Remark: This theorem has an intuitive interpretation as follows. The bank starting from

higher cash inventory in any ATM incurs less cost over the first k days, for all k.

Recall the definition of the optimal replenishment set A(x) in state x as in Equation (3.5).

We show A(x) has the following property.

Theorem 18. Under the Assumption A, A(x) satisfies:

i ∈ A(x+ εe(i))⇒ i ∈ A(x), ∀ε ≥ 0, x ∈ S.
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Proof. Note that i ∈ A(x+ εe(i)) gives

min
A∈{B⊆N :i∈B}

{r(A) + Eh(y(x+ εe(i), A))} ≤ min
A∈{B⊆N :i/∈B}

{r(A) + Eh(y(x+ εe(i), A))}.

By the definition of y(x,A), we know y(i)(x,A) ≤ y(i)(x+εe(i), A) and y(j)(x,A) = y(j)(x+

εe(i), A), ∀j 6= i. By Theorem 17 we know h(x) is a decreasing function in each component

x(i) of the vector x, so h(y(x+ εe(i), A)) ≤ h(y(x,A)). Hence we have

min
A∈{B⊆N :i/∈B}

{r(A) + Eh(y(x+ εe(i), A))} ≤ min
A∈{B⊆N :i/∈B}

{r(A) + Eh(y(x,A))}.

By the definition of y(x,A), we know

y(i)(x+ εe(i), A) = (Mi −D(i))+ = y(i)(x,A), ∀i ∈ A.

Hence we have

min
A∈{B⊆N :i∈B}

{r(A) + Eh(y(x+ εe(i), A))} = min
A∈{B⊆N :i∈B}

{r(A) + Eh(y(x,A))}.

This yields that

min
A∈{B⊆N :i∈B}

{r(A) + Eh(y(x,A))} ≤ min
A∈{B⊆N :i/∈B}

{r(A) + Eh(y(x,A))} ⇒ i ∈ A(x).
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Remark: Intuitively, if it is optimal for the bank to replenish the ATM i with a certain

amount of cash in it, then it is optimal for the bank to replenish this ATM when there is

less cash in it, assuming that the cash inventory level at all other ATMs stay the same. This

immediately raises a question: what can we say about the optimal replenishment set if the

cash inventory levels in multiple ATMs change simultaneously? We give an interesting result

about it next.

Recall A(x) is the optimal replenishment set in the state of x. Define

Z(x) = {(z(1), z(2), ..., z(n)) ∈ S : z(i) ≤ x(i), ∀i ∈ A(x) and z(j) = x(j), ∀j /∈ A(x)}.

Theorem 19.

z ∈ Z(x)⇒ A(x) ⊆ A(z), ∀x ∈ S.

Proof. Fix an x ∈ S, suppose that

A(x) = {i1, i2, ..., ik}.

Any z ∈ Z(x) can be written as

z = x− εi1e(i1) − εi2e(i2) − ...− εike(ik),

where εi1 , εi2 , ..., εik are such that 0 ≤ εit ≤ x(it) for any t = 1, 2, ..., k. By Theorem 18, we
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know

i ∈ A(x)⇒ i ∈ A(x− εie(i)), for any εi such that 0 ≤ εi ≤ x(i).

We have

A(x) ⊆ A(x− εi1e(i1))

⊆ A(x− εi1e(i1) − εi2e(i2))

⊆ · · ·

⊆ A(x− εi1e(i1) − εi2e(i2) − ...− εike(ik)) = A(z),

Remark: This theorem has an intuitive interpretation as follows. The optimal replen-

ishment set gets larger while there is less amount of cash in the ATMs within the optimal

replenishment set and same amount of cash in the ATMs outside the optimal replenishment

set.

We now use numerical programs to verify the structural properties of the optimal policy

in the two-ATM case. We use ri to denote the replenishment cost at ATM i (i = 1, 2) and

r12 to denote the cost of replenishing both ATMs. We use ci to denote the stock-out costs

at ATM i (i = 1, 2). We assume the stationary demand at ATM i follows a Poisson(λi)

distribution. We use the following values of the parameters: M1 = M2 = 50, r1 = r2 =

60, r12 = 100, λ1 = λ2 = 20, c1 = c2 = 76. (This is a symmetric submodular case.) Figure
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3.2 displays the optimal decision in each state.
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Figure 3.2: The state-dependent decisions under the optimal policy

Figure 3.2 illustrates that the conditions z(j) = x(j), ∀j /∈ A(x) in the definition of set

Z(x,A) are critical. Any relaxation of these conditions can make the statement in Theorem

19 invalid. For example, we see from Figure 3.2 that

A(22, 45) = {1}, A(20, 45) = {1}, A(20, 35) = ∅.
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Figure 3.3: The decisions on ATM 1

Hence we see A(22, 45) ⊆ A(20, 45), but A(22, 45) * A(20, 35). Therefore, we see that

decreasing the cash inventory level at ATM 2, which is not in the optimal replenishment set

A(22, 45) = {1}, changes the decision about ATM 1.

To visualize the structural pattern better, we plot the decisions made on ATM 1 and 2

in Figures 3.3 and 3.4 respectively. These figures also illustrate Theorem 17. For example,

the optimal replenishment set include ATM 1 when the cash inventory in ATM 1 is lower

115



Cash inventory at ATM 1, i
0 5 10 15 20 25 30 35 40 45 50

C
as

h
in

ve
n
to

ry
at

A
T
M

2,
j

0

5

10

15

20

25

30

35

40

45

50

61=62=20, r1=r2=60, r12=100, c1=c2=76

{2}; A(x)
Otherwise

Figure 3.4: The decisions on ATM 2

than a certain threshold, as shown in Figure 3.3. We observe a similar pattern in Figure 3.4:

the optimal replenishment set include ATM 2 when the cash inventory in ATM 2 is lower

than a certain threshold. Those thresholds are functions of system parameters and the cash

inventory in the other ATM.
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3.7 Heuristic Policies

In this section, we focus on the realistic case where there are more than two ATMs. In

general the optimal policies are impractical to compute due to the curse of dimensionality

and combinatorially large number of decisions; and even harder to implement since they are

not known in an analytical form. Hence we study two heuristic policies in this section. We

focus on the case where the replenishment cost is non-additive, since the problem can be

reduced to multiple single-ATM problems otherwise.

3.7.1 (s,M) Policy (SP)

As we have seen from Section 3.5, the (s,M) policy is optimal in the additive-replenishment-

cost problem for some s. When the replenishment cost is not additive, the (s,M) policy is

no longer optimal. However, it is a potentially easy-to-implement policy. We calculate the

replenishment point s(i) for ATM i by minimizing the corresponding long-run average cost

of operating ATM i only, where we use r({i}) as the replenishment cost for ATM i. The

(s,M) policy replenishes all ATMs where the cash inventory level is below the correspond-

ing replenishment point. In mathematical terms, ASP (x) (where “SP” is short for “(s,M)

policy”), the replenishment set in state x under this policy is given by:

ASP (x) = {i ∈ N : x(i) < s(i)}.
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It is easy to see that ASP (x) satisfies Theorems 18. Now define

ZSP (x) = {(z(1), z(2), ..., z(n)) ∈ S : z(i) ≤ x(i),

∀i ∈ ASP (x) and z(j) = x(j), ∀j /∈ ASP (x)}.

Then we have

Theorem 20.

z ∈ ZSP (x)⇒ ASP (x) ⊆ ASP (z), ∀x ∈ S.

Proof. The proof is similar to the proof of Theorem 19. Hence we skip the proof.

In other words, SP satisfies Theorem 19 and thus has the same structural properties as the

optimal policy. We also know that, in the additive cost case, it is easy to find the s for which

SP is in fact optimal. This is a strong argument in favor of considering it as a heuristic policy

to consider.

3.7.2 Index Policy (IP)

We now develop an index policy parameterized by a scalar p ∈ [0, 1]. We begin with a

randomized policy, which replenishes all ATMs with probability p or takes no action with

probability 1 − p, every day. In mathematical terms, ARP (x) (where “RP” is short for “ran-
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domized policy”), the replenishment set in state x under this policy is given by

ARP (x) =


N, with probability p

∅, with probability 1− p.

Clearly this is a state independent policy. We later elaborate on the choice of p in detail (see

the later Equation 3.24).

The index policy is derived by applying one iteration of the policy improvement algorithm

(see (Tijms, 2003)) to this randomized policy. We need the quantities in Lemma 7 below to

find the index policy. Recall that D(i)
k is the amount of cash withdrawals that occur at ATM

i on day k. We use D(i) to denote the generic random amount of daily cash withdrawals at

ATM i.

Lemma 7. Let w(i)(x(i)) denote the total stock-out cost of ATM i until the next replenishment

starting from state x(i) under the randomized policy. Write q = 1− p. Then

E[w(i)((x(i) −D(i))+)] = ciφ
(i)(x(i)), E[w(i)((Mi −D(i))+)] = ciφ

(i)(M),

where

φ(i)(x(i)) =
+∞∑
k=1

qk−1 · P(D
(i)
1 + · · ·+D

(i)
k ≥ x(i)). (3.16)

Proof. We use two different methods to calculate w(i)(x(i)). The first method follows from

the standard theory of dynamic programming. The stock-out cost incurred right before the
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beginning of today is ciδ(x(i)). With probability p, the replenishment happens today and

hence there is no more cost to be included in w(i)(x(i)). With probability q, the replenishment

does not happen today. The state right before the beginning of tomorrow is (x(i)−D(i))+, so

the stock-out cost from then on until the first replenishment happens is E[w(i)((x(i)−D(i))+)].

Thus

w(i)(x(i)) = ciδ(x
(i)) + qE[w(i)((x(i) −D(i))+)], (3.17)

where

δ(x(i)) =


1, x(i) ≤ 0,

0, x(i) > 0.

We now calculate w(i)(x(i)) in an alternative way. For any given k ≥ 0, with probability qkp,

the replenishment happens k days later, the total stock-out cost until this replenishment is

ciδ(x
(i)) + ciEδ((x

(i) −D(i)
1 )+) + · · ·+ ciEδ((x

(i) −D(i)
1 − · · · −D

(i)
k )+). Hence we know

w(i)(x(i)) =
+∞∑
k=0

qkp

[
ciδ(x

(i)) +
k∑

m=1

ciEδ

(
x(i) −

m∑
l=1

D
(i)
l

)+]

= ciδ(x
(i)) +

+∞∑
k=1

qkp ·

(
k∑

m=1

ciP(D
(i)
1 + · · ·+D

(i)
k ≥ x(i))

)
.

We can rearrange this to get

w(i)(x(i)) = ciδ(x
(i)) + ciqφ

(i)(x(i)). (3.18)
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Now we connect the two methods with each other. From Equations (3.17) and (3.18), we get

E[w(i)((x(i) −D(i))+)] = ciφ
(i)(x(i)). (3.19)

Setting x(i) to be Mi, we get

E[w(i)((Mi −D(i))+)] = ciφ
(i)(Mi). (3.20)

We now apply one iteration of policy improvement algorithm to the randomized policy

to derive an improved policy. Let x = (x(1), ..., x(n)) and define vRP (x) to be the total cost

(stock-out cost and replenishment cost) incurred until the next replenishment starting from

state x, under the randomized policy. For a given A ⊆ N , we use πA to denote the policy

which replenishes the set A of ATMs today and follows the randomized policy RP starting

from tomorrow. Let vπA(x) be the total cost (stock-out cost and replenishment cost) incurred

until the next replenishment occurs starting from state x, under the policy πA. We then

compute the quantity

vπA(x)− vRP (x), ∀A ⊆ N, x ∈ S.

This difference can be regarded as the relative cost incurred until the next replenishment

when we choose A as our action today, instead of using randomized policy. This leads to an

improved policy (which we call an index policy) as follows. At the beginning of each day,
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given the system state x, we replenish the ATMs in the set AIP (x) (“IP” is short for index

policy), where

AIP (x) = arg min
A⊆N
{vπA(x)− vRP (x)}. (3.21)

We show how to determine AIP (x) in Theorem 21.

Theorem 21. Let

I(A, x) = r(A) +
∑
i∈A

ci(φ
(i)(Mi)− φ(i)(x(i))). (3.22)

The AIP (x) in Equation (3.21) is given by:

AIP (x) = arg min
A⊆N

I(A, x). (3.23)

Proof. We first compute vπA(x). Given the state x, the stock-out cost is incurred and ATMs

in the set A are replenished today with the replenishment cost r(A) under policy πA. For an

ATM i ∈ A, the cash inventory at the beginning of tomorrow is (Mi −D(i))+. For an ATM

i /∈ A, the cash inventory at the beginning of tomorrow is (x(i) −D(i))+. Hence we have

vπA(x) =
n∑
i=1

ciδ(x
(i)) + r(A) +

∑
i∈A

E[w(i)((Mi −D(i))+)] +
∑
i/∈A

E[w(i)((x(i) −D(i))+)].

We now compute vRP (x). Given the state x, the stock-out cost is incurred. With probability

p, all ATMs are replenished and with probability q = 1 − p none of them is replenished.
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Hence we have

vRP (x) =
n∑
i=1

ciδ(x
(i)) + p

(
r(N) +

∑
i∈N

E[w(i)((Mi −D(i))+)]

)

+ q

(∑
i∈N

E[w(i)((x(i) −D(i))+)]

)
.

By Lemma 7 and after some algebra we know

vπA(x)− vRP (x) =r(A)− pr(N) +
∑
i∈A

ci[φ
(i)(Mi)− φ(i)(x(i))]

− p
∑
i∈N

ci[φ
(i)(Mi)− φ(i)(x(i))]

The only part of the right hand side above that involves A is

I(A, x) = r(A) +
∑
i∈A

ci(φ
(i)(Mi)− φ(i)(x(i))).

The function I(A, x) is called the index of the set A in state x. The index policy chooses

to replenish the ATMs in that set A in state x that has the lowest index. Hence we call this

the index policy. It is known from the theory of MDPs that the performance of IP is superior

to that of the RP.

The long-run average cost under the index policy is a function of p. To get the value of

p which gives the lowest cost under the index policy, we can calculate the long-run average

cost under the index policy by evaluating the values of p between 0 and 1 and then picking
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the p that yields the least cost. In the n-ATM problem for a large n, this method becomes

intractable due to the computational load. Hence we develop a heuristic method of choosing

p.

To define the choice of p formally, we introduce the following notation:

N+ = {i ∈ N : ci > r({i})}

N− = {i ∈ N : ci ≤ r({i})}.

We choose

p =


1, if |N+| ≥ |N−|

0, if |N+| < |N−|.

(3.24)

The above choice of p for the randomized policy is intuitively appealing: if there are more

ATMs whose stock-out costs are larger than their stand-alone replenishment costs as com-

pared to the ATMs whose stand-alone replenishment costs dominates the stock-out costs, we

replenish all of them every day (that is, we choose p = 1); otherwise we choose never to

replenish any ATMs. As we shall see, the index policy derived from improving this random-

ized policy seems to work very well. From now on we assume that the p is chosen according

to Equation (3.24) when we use the index policy. Note that φ(i)(x(i)) in Equation (3.16)
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becomes

φ(i)(x(i)) =


f (i)(x(i)), if p = 1

∑+∞
k=1 P(D

(i)
1 + · · ·+D

(i)
k ≥ x(i)), if p = 0.

The index I(A, x) can now be derived using this φ(i)(x(i)) in Equation (3.22).

Note that the minimization in Equation (3.23) is over all subsets of N . This is a combi-

natorially intractable problem in general. However, when the objective function in Equation

(3.22) is submodular, a greedy algorithm can provide an efficient solution. The submodular

structure of the objective function in a combinatorial optimization problem has been ex-

ploited by previous researchers to develop algorithms that can solve this problem efficiently.

(Grötschel et al., 1981) proposed the first polynomial-time algorithm to minimize a submod-

ular function, based on the ellipsoid method and the greedy algorithm. (Nemhauser et al.,

1978) proved the celebrated result that the greedy algorithm gives a (1 − 1
e
)-approximation

for the optimal solution to maximizing a monotone submodular function subject to the car-

dinality constraint.

Recall the definition of a submodular function in Equation (3.1). The next theorem states

one sufficient condition under which the objective function in our case, namely I(A, x) in

Equation (3.22), is submodular.

Theorem 22. If r(A) is a submodular function, then I(A, x) in Equation (3.22), is a sub-

modular function of A, for all x ∈ S.

125



Proof. It suffices to show that

I(A ∪ {i, j}, x)− I(A ∪ {i}, x) ≤ I(A ∪ {j}, x)− I(A, x), ∀A.

Using Equation (3.22), it suffices to show that

r(A ∪ {i, j})− r(A ∪ {i}) ≤ r(A ∪ {j})− r(A), ∀A.

This holds since r(A) is a submodular function, which completes the proof.

Assuming that I(A, x) is submodular, we propose a greedy algorithm to compute the

solution AIP (x) = arg minA⊆N I(A, x). Given the current state x, the system parameters

r(A), ci, and the demand distributions, we can calculate I(A, x) by Equation (3.22) for any

A ⊆ N . Note that I(∅, x) = 0 for any state x, so we can initialize the algorithm by set-

ting A = ∅ and a temporary quantity Itemp = 0. We now calculate the index, denoted by

I(A ∪ {e}, x), for all e /∈ A. We compute e∗ such that I(A ∪ {e∗}, x) is the smallest among

all I(A ∪ {e}, x) for each e /∈ A. Then we compare I(A ∪ {e∗}, x) with the temporary

quantity Itemp. If the temporary quantity is no larger than I(A ∪ {e∗}, x), then it is less cost-

effective to add any more elements to the set A. So we stop the algorithm. Otherwise, it is

more cost-effective to add one more element, i.e. e∗, to the set A. Then we update the set A

toA∗, set the value of Itemp to be I(A∪{e∗}, x), and repeat the above process. This procedure

is formalized in Figure 3.5. Note that this greedy algorithm reduces the complexity of the

problem in Equation (3.23) from O(2n) to O(n2).
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Figure 3.5: The greedy algorithm to find replenishment set A∗

It is not so obvious that the Index Policy also has the same structural properties as the

optimal policy. Hence we state that as the next two theorems, and include their formal proof

in the online supplement. Let AIP (x) be the replenishment set obtained by using the above

greedy algorithm in state x ∈ S.

Theorem 23. AIP (x) satisfies Theorem 18.

Proof. Define x̂ = x+ εe(i). Define

AIP (x̂) = {â1, ..., âk, ..., }

AIP (x) = {a1, ..., ak, ..., }

where ak is the element added to the set AIP (x) in the step k of the greedy algorithm and âk
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is the counterpart of ak when the system state is x̂. We know

I(A, x) = r(A) +
∑
i∈A

ci(φ
(i)(Mi)− φ(i)(x(i))).

By this definition, we have

I(A, x̂) = I(A, x+ e(i))


≥ I(A, x), if i ∈ A

= I(A, x), if i /∈ A

We now show i ∈ AIP (x) by considering two cases:

Case 1: If â1 = i, then we know

I({i}, x̂) ≤ I({j}, x̂), ∀j 6= i

Because

I({i}, x) ≤ I({i}, x̂), I({j}, x̂) = I({j}, x),

we have

I({i}, x) ≤ I({j}, x), ∀j 6= i

Hence we have a1 = i and i ∈ AIP (x).
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Case 2: If â1 = l 6= i, then

I({l}, x̂) ≤ I({j}, x̂), ∀j ∈ N

For j 6= i, we know

I({l}, x) = I({l}, x̂) ≤ I({j}, x̂) = I({j}, x).

For j = i, we have

I({l}, x̂) ≤ I({i}, x̂)

We know

I({l}, x̂) = I({l}, x), I({i}, x) ≤ I({i}, x̂)

Hence, we can not compare I({l}, x) and I({i}, x). So a1 = l = â1 or a1 = i. If a1 = i,

then we are done. Otherwise, a1 = â1. Because i ∈ AIP (x̂) and â1 6= i, we must have âk = i

for some k ≥ 2. Define

Âk = {â1, ..., âk},

Ak = {a1, ..., ak}.
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We have

I(Âk−1 ∪ {i}, x̂) ≤ I(Âk−1 ∪ {j}, x̂), ∀j ∈ N \ Âk−1 and j 6= i

and

I(Âk−1 ∪ {i}, x̂) ≤ I(Âk−1, x̂).

If i ∈ Ak−1, then we are done. Otherwise, i /∈ Ak−1 and we have a1 = â1, ..., ak−1 = âk−1

by following the logic above. Hence Ak−1 = Âk−1 and we know

I(Ak−1 ∪ {i}, x) ≤ I(Âk−1 ∪ {i}, x̂), I(Âk−1 ∪ {j}, x̂) = I(Ak−1 ∪ {j}, x).

Hence,

I(Ak−1 ∪ {i}, x) ≤ I(Ak−1 ∪ {j}, x), ∀j ∈ N \ Âk−1 and j 6= i.

Therefore ak = i and i ∈ AIP (x).

Now define

ZIP (x) = {(z(1), z(2), ..., z(n)) ∈ S : z(i) ≤ x(i),

∀i ∈ AIP (x) and z(j) = x(j), ∀j /∈ AIP (x)}.
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Then we have

Theorem 24.

z ∈ ZIP (x)⇒ AIP (x) ⊆ AIP (z), ∀x ∈ S.

Proof. The proof is similar to the proof of Theorem 19. Hence we skip the proof.

In other words, IP satisfies Theorem 19 and thus has the same structural properties as the

optimal policy. As in the SP case, this provides a strong justification to consider IP as another

heuristic policy. Although both SP and IP have the same structural properties as the optimal

policy, we show by numerical experiments that, in the submodular cost case, IP performs

closer to the optimal policy compared to the SP. In the additive case, the performance of IP

is close to that of SP, which we know is optimal.

3.8 Numerical Experiments

In this section, we compare the performance of the index policy (IP) and the (s,M) policy

(SP) with that of the optimal policy (OP). We treat two cases separately: (1) the additive-

cost case and (2) the submodular-cost case. In the additive-cost case, we know that SP is

optimal and hence we compare IP with SP. For the submodular-cost case, we can compute

the performance of OP, IP and SP numerically in two- and three-ATM cases. When there

are four or more ATMs, computing the performance of OP, IP and SP, is computationally

prohibitive due to the curse of dimensionality. Hence, for more than three ATMs we use

simulation to compare IP to SP, but not to OP.
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We have found that the total demand and demand heterogeneity within the ATMs have

major impact on the performance of IP and SP compared to OP. Hence we introduce two

measures to quantify the demand heterogeneity: the Gini coefficient, and the Coefficient of

Variation (CoV).

Gini coefficient is a commonly used measure to quantify the wealth inequality. We can

employ it to measure the heterogeneity of the demands. The Gini coefficient is defined as

follows. We arrange the demand means λ1, ..., λn in a non-decreasing order and the ordered

quantities are denoted by λ(1) < ... < λ(n). The Gini coefficient is then given by:

Gini =
n+ 1

n
− 2

n
·
∑n

i=1(n+ 1− i)λ(i)∑n
i=1 λ(i)

. (3.25)

Gini coefficient is lower when the distribution of demand is more uniform. For example, if all

the demand means are the same then the Gini coefficient is 0. The maximum Gini coefficient

among n numbers is n−1
n

and occurs when λ(1) = · · · = λ(n−1) = 0 and λ(n) > 0.

To compute the CoV, we treat (λ1, · · · , λn) as data, and compute its sample mean and

sample standard deviation, and then compute CoV as the ratio (Sample Standard Devia-

tion)/(Sample Mean). In the following, we fix the mean demand, vary the heterogeneity, and

study its effects on the performance of various policies.

3.8.1 Comparison of IP, SP and OP in Two- and Three-ATM Case

We now compare the performance of IP and SP with that of OP in the two- and three-

ATM case. We use M1 = M2 = 50 in the two-ATM case and M1 = M2 = M3 = 30
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in the three-ATM case. It takes about 30 seconds to run each case in the two-ATM setting,

while it takes about 30 minutes each to run the three-ATM cases. (If we used M = 50 in the

three-ATM case, it would take several hours for each case.) The daily cash demand follows

the distribution of Poisson(λi) at ATM i (for i = 1, · · · , n). The notation (λ1, · · · , λn) is

used to represent that ATM i has Poisson(λi) demand (for i = 1, · · · , n). For example, in the

two-ATM case, (20, 25) means that ATM 1 has a Poisson demand with mean 20 and ATM 2

has a Poisson demand with mean 25.

We introduce two replenishment cost functions that are used through all the numerical

studies. In general, the commonly used replenishment cost function in the joint replenish-

ment or inventory routing literature is a fixed cost per order plus a common ordering cost.

Thus, this replenishment cost function has the affine form. Specifically, we use the replen-

ishment cost function:

raffine(A) =


30|A|+ 300, if A 6= ∅

0, if A = ∅.

The second replenishment cost function makes use of the known results about the length

of the optimal traveling salesman tours. It has been shown, in Beardwood-Halton-Hammersley

Theorem (see Theorem 2.4.1 in (Steele, 1997)), that the length of the optimal traveling sales-

man tours among n points which are uniformly distributed in the square of length 1 is asymp-

totically O(
√
n). Hence we use a square root form for the second replenishment cost func-
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tion. Specifically, we use the replenishment cost function:

rsqrt(A) = 60
√
|A|.

Note that both replenishment cost functions are submodular.

The values of stock-out cost estimates used in the two-ATM case (where the capacity of

each ATM is 50) and three-ATM case (where the capacity of each ATM is 30) are given in

Tables 3.1 and 3.2 respectively. Let caffine and csqrt be the stock-out cost estimate under the

replenishment cost function raffine(A) and rsqrt(A) respectively. They are chosen to ensure a

service level of at least 99% for each ATM using the method of Section 3.4. We use them in

Equation (3.2). Tables 3.1 and 3.2 also imply that we use p = 1 in the index policy.

λ caffine csqrt

10 392 72
12.5 552 101
15 755 138

17.5 702 128
20 1794 327

22.5 2544 463
25 2305 420

27.5 1177 214
30 627 114

32.5 478 87
35 512 93

Table 3.1: Stock-out costs: M = 50

We use the value iteration algorithm to compute the long-run average cost g and Equation

(3.9) as the stopping criterion. Our algorithm stops when the absolute error is less than

ε = 0.01. We have observed that the relative error is less than 0.01% of the optimal value

when the algorithm stops. We use LRACOP, LRACIP, and LRACSP to denote the long-run
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λ caffine csqrt

6 565 103
9 1183 215
10 1231 224
12 2282 415
14 2554 465
15 1726 314
16 1734 316
18 957 174

Table 3.2: Stock-out costs: M = 30

average cost under OP, IP and SP respectively. We define

GapIP =
LRACIP − LRACOP

LRACOP
, GapSP =

LRACSP − LRACOP

LRACOP
.

We include the results in Tables 3.3 and 3.4 for the case of the affine r(·). (We do not

give the results for the square root r(·) because they are qualitatively similar to the affine

case.) In both tables, the first column gives the vector of demand means. The next three

columns display the mean of total demands faced by all ATMs λsum (which is the sum of

demand means at all ATMs), the Gini coefficient, and the Coefficient of Variation. The next

three columns present the long-run average cost g under OP, IP, and SP respectively. The

last two columns give the gap between IP and OP and the gap between SP and OP. In all

scenarios, IP performs close to OP (the gap is less than 5%) and better than SP. Note that IP

performs closer to OP when the system faces a higher demand. We think this is the result of

the fact that all the policies replenish more frequently when the demand is high, and hence

there is less divergence among them. Also, at lower total demand, the performance of both

the heuristic policies improves as the heterogeneity increases. At higher total demand, the
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performance of IP and SP is close to that of OP, but the effects of heterogeneity are less

pronounced.

Demand λsum Gini CoV LRACOP LRACIP LRACSP GapIP GapSP

(20, 20) 40 0 0 249.8 261.0 308.7 4.5% 23.6%
(22.5, 17.5) 40 0.06 0.18 292.4 302.7 326.8 3.5% 11.8%

(25, 15) 40 0.13 0.35 332.9 334.0 343.9 0.3% 3.3%
(27.5, 12.5) 40 0.19 0.53 337.2 338.0 342.3 0.2% 1.5%

(30, 10) 40 0.25 0.71 336.7 337.2 339.9 0.1% 1.0%
(22.5, 22.5) 45 0 0 340.8 341.2 374.1 0.13% 9.8%

(25, 20) 45 0.06 0.16 345.2 345.7 362.7 0.14% 5.1%
(27.5, 17.5) 45 0.11 0.31 343.7 344.0 351.0 0.06% 2.1%

(30, 15) 45 0.17 0.47 343.0 343.4 349.7 0.12% 2.0%
(32.5, 12.5) 45 0.22 0.63 341.8 342.4 345.2 0.18% 1.0%

(35, 10) 45 0.28 0.79 343.2 343.5 345.2 0.10% 0.6%
(25, 25) 50 0 0 359.3 359.3 378.6 0.00% 5.4%

(27.5, 22.5) 50 0.05 0.14 358.2 358.2 380.1 0.00% 6.1%
(30, 20) 50 0.10 0.28 352.8 352.9 365.4 0.03% 3.6%

(32.5, 17.5) 50 0.15 0.42 347.5 347.6 352.5 0.04% 1.4%
(35, 15) 50 0.20 0.57 349.1 349.4 354.0 0.10% 1.4%

Table 3.3: Comparisons among OP, IP, and SP in 2-ATM affine-r(A) case

Demand λsum Gini CoV LRACOP LRACIP LRACSP GapIP GapSP

(12, 12, 12) 36 0 0 353.67 359.72 409.38 1.71% 15.8%
(9, 12, 15) 36 0.11 0.25 367.78 368.95 398.79 0.32% 8.4%
(6, 12, 18) 36 0.22 0.50 371.22 372.02 389.84 0.22% 5.0%
(14, 14, 14) 42 0 0 390.29 390.29 432.58 0.00% 10.8%
(12, 14, 16) 42 0.06 0.14 389.05 389.05 423.16 0.00% 8.8%
(10, 14, 18) 42 0.13 0.29 384.37 384.37 407.14 0.00% 5.9%

Table 3.4: Comparisons among OP, IP, and SP in 3-ATM affine-r(A) case

3.8.2 Comparison of OP and IP in Additive-Cost Multi-ATM Case

Note that OP is analytically intractable due to the curse of dimensionality and combina-

torially large number of decisions, when there are more than three ATMs. However, there

is one special case when the optimal policy is known in the multi-ATM setup: the additive-
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replenishment-cost case, when the optimal policy is of (s,M) type, as shown in Section 3.4.

Although the performance of the OP can be computed numerically, it is not easy to compute

the performance of IP in the muti-ATM additive-cost case. Hence, we design a simulation

study below to compare the performance of OP and IP for the multi-ATM case when the

replenishment cost is additive under the following parameters. This also helps us compare

the performance of IP and OP on a sample-path basis.

There are n = 30 ATMs, so N is {1, 2, ..., 29, 30}, each with capacity M = 50. The cost

for replenishment is 60, same for all ATMs. The stock-out costs are computed to guarantee

the 99% of service level (the actual values of stock-out costs are included in the column csqrt

of Table 3.1). The daily cash demand follows the distribution of Poisson(λi) at ATM i. The

vector of demand means (n1×λ1, n2×λ2, ..., nk×λk) is used to represent the case where nj

ATMs have Poisson(λj) demands for j = 1, 2, ..., k. For example, (12×20, 18×25) indicates

that 12 ATMs have a demand with mean 20 and 18 ATMs have a demand with mean 25.

We now explain the design of the simulation study. We use the common random num-

bers (CRN) technique to compare two stochastic systems. The CRN is a variance reduction

technique, which works well when the performance outputs from two systems are positively

correlated. We generate the daily random demands for all days in each of the R = 100

replications, with each replication simulating the system for T = 2000 days. We implement

both OP and IP under the same demand stream. The long-run average cost is calculated by

the sum of replenishment costs and stock-out costs in all days and all ATMs divided by the

number of ATM-days (that is, 30*2000).

Table 3.5 displays the vector of demand means, the λsum, the Gini coefficient and the
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Coefficient of Variation in the first four columns. The fifth column gives the mean of GapIP

from 100 replications. The last two columns give the mean of LRACOP and LRACIP from

100 replications respectively. As one can see from Table 3.5, the gap between IP and OP is

less than 5% in all cases. IP performs closer to OP when the system faces a higher demand

on average. For a fixed total demand the performance gap between IP and OP increases with

the Gini coefficient. On the surface, this appears to be opposite of what we observed in the

two and three ATM case. However, if we compare the IP with SP in those cases, the result is

consistent. We shall see further results in the next subsection.

Demand λsum Gini CoV GapIP LRACOP LRACIP

(4× 15, 24× 20, 2× 30) 600 0.06 0.16 1.35% 1095.8 1110.6
(9× 15, 18× 20, 3× 35) 600 0.12 0.28 2.07% 1062.8 1084.8
(15× 15, 10× 20, 5× 35) 600 0.17 0.36 2.76% 1041.5 1070.2
(10× 10, 10× 20, 10× 30) 600 0.22 0.42 2.61% 1110.2 1139.2
(10× 10, 10× 15, 10× 35) 600 0.28 0.55 4.11% 1004.5 1045.8

(15× 20, 15× 25) 675 0.06 0.11 0.38% 1407.2 1412.5
(3× 15, 19× 20, 6× 30, 2× 35) 675 0.12 0.25 0.97% 1248.9 1261.0
(8× 15, 13× 20, 4× 30, 5× 35) 675 0.17 0.32 1.44% 1216.5 1234.1
(2× 10, 15× 15, 5× 30, 8× 35) 675 0.22 0.43 2.48% 1186.0 1215.4

(15× 10, 15× 35) 675 0.28 0.57 3.32% 1135.4 1173.1
(30× 25) 750 0 0 0.02% 1717.9 1718.1

(5× 20, 20× 25, 5× 30) 750 0.06 0.12 0.15% 1626.2 1628.6
(14× 20, 7× 25, 4× 30, 5× 35) 750 0.12 0.23 0.37% 1455.5 1460.9
(9× 15, 4× 20, 12× 30, 5× 35) 750 0.17 0.32 1.17% 1389.3 1405.5
(4× 10, 9× 15, 4× 30, 13× 35) 750 0.22 0.42 1.90% 1311.8 1336.8

Table 3.5: Cost improvement versus Gini coefficient in 30-ATM additive-r(A) case

3.8.3 Comparison of IP and SP in Submodular-Cost Multi-ATM Case

We now conduct a simulation study to compare the performance of IP and SP in the

multi-ATM case when the replenishment cost is submodular, and not additive. Note that OP
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is analytically and numerically intractable in this case.

We use the same simulation design as in Section 3.8.2. We compute the long-run aver-

age cost as well as system-wide fraction of stock-out days per ATM per day. The system-

wide fraction of stock-out days is calculated by the sum of stock-out-days experienced by

all the ATMs divided by the total number of ATM-days. Let LRACIP
k and FSODIP

k be the

long-run average cost and the system-wide fraction of stock-out days under IP in replication

k = 1, 2, ..., R respectively. Let LRACSP
k and FSODSP

k be the long-run average cost and

the system-wide fraction of stock-out days under SP in replication k = 1, 2, ..., R respec-

tively. The performance improvement (from using IP over SP) in the long-run average cost

in replication k is calculated by:

LRACimprov
k =

LRACSP
k − LRACIP

k

LRACSP
k

× 100%

For example, suppose LRACSP
k = 100 and LRACIP

k = 95 in one replication. Then we say

there is 5% cost improvement by implementing the index policy instead of (s,M) policy.

This cost improvement is positive if the long-run average cost under SP is larger than that

of IP, which happens if IP performs better. We then compute the mean of these R numbers.

Similarly, the performance improvement in the system-wide fraction of stock-out days in

replication k is calculated by:

FSODimprov
k =

FSODSP
k − FSODIP

k

FSODSP
k

× 100%.

Figure 3.6 displays the comparison between the long-run average costs under the two
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policies in each of the 100 replications when there are 30 ATMs with the demand means

(5 × 10, 5 × 15, 5 × 20, 5 × 25, 5 × 30, 5 × 35) in the affine-r(A) case. We observe that IP

yields a lower cost compared to SP in every replication. Figure 3.7 displays the comparison

between the system-wide fraction of stock-out days under two policies for each of the 100

replications. Note that the highest fraction of system-wide stock-out days is less than 1%,

which is obtained from our required service level of 99%. However, the ATMs face much

lower fraction of stock-out days by operating IP instead of SP. As we can see from these

figures, IP performs better than SP in every replication. We have observed the same pattern in

other parameter settings. We also observe the higher variance of both performance measures

among different replications under SP, compared to those under IP.

Table 3.6 demonstrates the performance improvements corresponding to the assumed

demand distributions under the affine replenishment cost function. The first four columns

characterize the vector of demand means, the λsum, the Gini coefficient, and the Coefficient

of Variation. The last two columns report the mean of LRACimprov from 100 simulation runs

under the affine and square root replenishment cost respectively. As we can see from Table

3.6, the cost improvement mean decreases as the Gini coefficient increases, while the total

demand is kept the same. Also, the gap between the performance of IP over that of SP is

larger when the total demand is smaller. Both thses observations are consistent with those

in Table 3.5. This pattern is observed under both affine and square root replenishment cost

functions.

From all these experiments we conclude that the IP is a very useful policy to follow in

general. A natural question is: how well will such a policy work in a real life situation
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Figure 3.6: Long-run average cost

where the mathematical assumptions of the MDP model may not be completely satisfied?

We consider precisely this question in the next section.

3.9 Real-world Applications

In this section we investigate whether the performance improvements observed in the

numerical experiments hold in the real-world data. We have the historical data on the amounts

of daily cash demands at each of the 139 ATMs belonging to a bank for a period of 20 months.
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In this section, we first conduct preliminary statistical analysis on the daily cash demands.

We then explain different ways to estimate the demand distribution parameters needed for

the models of Section 3.3. We finally implement the IP and SP based on the estimated

distribution and the cost structures and compare their performances numerically using the

real streams of demand data.
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LRACimprov

Vector of Demand Means λsum Gini CoV Affine Square root
(4× 15, 24× 20, 2× 30) 600 0.06 0.16 21.57% 13.20%
(9× 15, 18× 20, 3× 35) 600 0.12 0.28 18.77% 11.15%
(15× 15, 10× 20, 5× 35) 600 0.17 0.36 15.56% 9.02%
(10× 10, 10× 20, 10× 30) 600 0.22 0.42 14.71% 8.63%
(10× 10, 10× 15, 10× 35) 600 0.28 0.55 6.61% 3.29%

(15× 20, 15× 25) 675 0.06 0.11 21.85% 14.71%
(3× 15, 19× 20, 6× 30, 2× 35) 675 0.12 0.25 18.06% 11.66%
(8× 15, 13× 20, 4× 30, 5× 35) 675 0.17 0.32 15.38% 9.68%
(2× 10, 15× 15, 5× 30, 8× 35) 675 0.22 0.43 8.84% 5.38%

(15× 10, 15× 35) 675 0.28 0.57 2.58% 1.05%
(30× 25) 750 0 0 20.60% 14.67%

(5× 20, 20× 25, 5× 30) 750 0.06 0.12 19.29% 13.43%
(14× 20, 7× 25, 4× 30, 5× 35) 750 0.12 0.23 16.87% 11.41%
(9× 15, 4× 20, 12× 30, 5× 35) 750 0.17 0.32 11.15% 7.22%
(4× 10, 9× 15, 4× 30, 13× 35) 750 0.22 0.42 5.95% 3.65%

Table 3.6: Cost improvement versus Gini coefficient in 30-ATM case

3.9.1 Statistical Analysis

In this section, we conduct the statistical analysis of the historical daily cash demands.

We first look at the daily cash demand over 20 months (From January 2010 to August 2011)

for one ATM. We then observe evidence on the lack of seasonality of the daily cash demand.

Finally we see that Gamma distribution is a good distribution fit for the daily cash demand.

Figure 3.8 displays the scaled daily cash demands versus the date. We do not observe a

particular trend from Figure 3.8. We also use Dickey-Fuller test of a unit root in a time series

to test whether the stochastic process is stationary. Consistent with our visual observation,

the null hypothesis that there is a unit root (which means the stochastic process has a periodic

component) can be rejected at a significance level of 0.001.

We have used autocorrelation function (ACF) and partial autocorrelation function (PACF)
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Figure 3.8: Demand vs Date

of the demand processes and found no seasonal effect. The lack of seasonality can also be

observed from Figure 3.9. Each curve in Figure 3.9 represents one week. There are seven

data points in each curve and each of them is the cash demand on that particular day of the

week.

Since there is no specific weekly pattern, we conclude that the daily cash demand follows

a certain distribution. Figure 3.10 displays the histogram and the fitted Gamma distribution.

The shape of the histogram is close to the Gamma density distribution curve. We choose

Gamma distribution due to the non-negativity of cash withdrawals and the right skewness

observed in Figure 3.10. Several goodness-of-fit tests for Gamma distribution (Kolmogorov-

Smirnov, Cramer-von Mises, and Anderson-Darling) are significant at 0.001 level. We de-
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Figure 3.9: Demand vs Day of Week

scribe how to estimate the parameters of Gamma distribution in the next section.

We comment on the dependencies of the cash demands below. Note that the dataset

indicates that the ATMs are not co-located within the same bank. Hence, no strong correlation

is expected and observed from the data. (As one can imagine, the correlation between two

ATMs within the same bank branch over 20 months is expected to be very high.) In our

model, we assume that the demand for cash at one ATM is independent from the cash demand

at another ATM. Intuitively, customers usually withdraw cash from the nearest and the most

convenient one and they rarely go to another ATM 10 blocks away, unless it is empty. From

the data, we do observe weak correlation between the demands of each ATM. However, we

do not account for this factor in our model.
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Figure 3.10: Demand Distribution

3.9.2 Parameter Estimation

We approximate the distribution of the daily demand by a Gamma(α, β) distribution.

(The parameters are ATM-dependent.) To implement the IP and SP, we need the explicit

form of the probability density function of the daily demand. Gamma density with shape

parameter α and scale parameter β is given by

f(x|α, β) =
1

βαΓ(α)
xα−1e−x/β.

Its mean µ is αβ and the standard deviation σ is
√
αβ2. Suppose that we know the
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historical cash withdrawals D1, D2, ..., Dk on day 1, 2, ..., k at the beginning of day k + 1.

We want to fit a Gamma distribution to these data. We now describe three different ways of

parameter estimations in the Gamma distribution.

Maximum Likelihood Estimators

The Maximum Likelihood Estimator (MLE) of mean and standard deviation are given by

µ̂MLE =

∑k
i=1Di

k
,

σ̂MLE =

√∑k
i=1(Di − µ̂MLE)2

k − 1
.

Then we see the MLE of α and β are given by

α̂MLE =
µ̂2
MLE

σ̂2
MLE

, β̂MLE =
σ̂2
MLE

µ̂MLE

.

Kernel Smoothing Estimators

The second estimator is borrowed from the kernel smoothing method in the non-parametric

statistical models. The kernel smoothing estimator (KSE) is given by

µ̂KSE =
k∑
i=1

ciDi
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where the weights c1, c2, ..., ck satisfy

ci = Cφ

(
3(k − i)

k

)
, C =

1∑k
i=1 φ

(
3(k−i)
k

)
and φ(·) is the standard normal density. We calculate the second moment estimator similarly

and compute the estimator of standard deviation by

σ̂KSE =

√√√√ k∑
i=1

ciD2
i − µ̂2

KSE.

Then the KSE of α and β are given by

α̂KSE =
µ̂2
KSE

σ̂2
KSE

, β̂KSE =
σ̂2
KSE

µ̂KSE

.

ARMA Estimators

In addition to MLE and kernel smoothing estimators, we also use the Autoregressive

Moving Average (ARMA) method to estimate the mean and standard deviation. We fit an

ARMA(1,1) to {D1, ..., Dk} and use this time series (TS) to predict the mean µ̂TS and stan-

dard deviation σ̂TS of Dk+1. We then compute the shape and scale estimators by

α̂TS =
µ̂2
TS

σ̂2
TS

, β̂TS =
σ̂2
TS

µ̂TS

.
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3.9.3 Numerical Study

We now conduct a numerical study to compare the performance of the IP and SP using

the real-world dataset. Before doing so, we describe how and why we scale and discretize the

daily cash demand. A common type of ATM has 4 cassettes and each cassette has 20 packets.

Each packet contains 100 bills. Hence the ATM can contain at most 4×20×100 = 8000 bills.

In different geographical regions, people use different currencies and the most commonly

used denomination varies currency by currency. For example, in the United States, ATMs

usually use 20-dollar bills. Our dataset comes from the region where the most commonly

used denomination is 50. Hence the capacity of each ATM is 400, 000 in the local currency.

We divide the ATM’s capacity and the daily cash demand by 5,000 and take the ceiling of

these numbers to obtain the scaled capacity and scaled cash demand. We use the scaled

numbers to conduct the statistical analysis and the numerical study. The reason of the scaling

is to make the computation of the index more efficient.

The dataset has 592 days of daily cash withdrawals data from 139 ATMs. At the begin-

ning of day k (k ≥ 57), we estimate the daily demand distribution of Dk based on the cash

withdrawal data {Dn−56, ..., Dn−1} (8 weeks of data). We start from day 57 and implement

the index policy and the (s,M) policy respectively. We use the demand data stream from

the actual dataset as the demand for each day. The distance from the central vault to each

ATM is also available. However, computing the optimal length of the traveling salesman

problem (TSP) is an extremely hard problem. We refer the reader to (Applegate et al., 2011)

for a monograph on TSP. It has been shown that the optimal length of the traveling salesman

problem is not a submodular function; see (Herer, 1999). Let T (S) denote the TSP optimal
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tour length for any subset of nodes S and let K(S) be a submodular function. (Herer, 1999)

has shown that there does not exist a constant c > 1 (independent of the graph) such that

T (S) ≤ K(S) ≤ cT (S) for all S. However, (Herer, 1999) proposed several heuristics to

approximate the TSP optimal tour length by a submodular function and shows that the ap-

proximation error grows slowly with the number of nodes visited. We incorporate one of the

approximations into our model. Mathematically, if we use d1, d2, ..., dn to denote the distance

from the central vault to ATM 1, 2, ..., n, then the replenishment cost for these ATMs is

2

[√
nπ

2
+

3π

2

]
· max
i=1,2,...,n

{di}.

The stock-out costs are computed based on the distribution parameters obtained from the first

56 days using the replenishment cost and the service level requirement 98%. The stock-out

costs are computed once and kept fixed. We now implement the index policy and the (s,M)

policy using the three methods of parameter estimations discussed in Section 3.9.2. The

results are included in Table 3.7.

Average Cost Service Level
Parameter Estimation Index Policy (s,M) policy Index Policy (s,M) policy

MLE 1144.4 1816.3 99.8% 98.6%
Kernel Smoothing 1143.8 1843.7 99.8% 98.5%

ARMA(1,1) 1149.0 1792.6 99.8% 98.8%

Table 3.7: Performance comparison on the real-world dataset

As one can see from Table 3.7, the three estimation methods lead to similar results. The

IP achieves a cost reduction of 35%∼40% over the SP while maintaining a better service

level.
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3.9.4 Recommendations

With the analysis presented above, we recommend that the bank should use the Maximum

Likelihood Estimators to compute the parameter estimates for the demand distribution, since

the MLE method is the simplest and it yields a relatively same result compared to the other

two methods. Given the explicit form of the demand distribution, the bank can then compute

the stock-out costs based on the replenishment costs and the demand distribution. Finally,

the bank should implement our index policy to replenish the cash in the ATMs accordingly.

3.10 Summary and Future Work

We developed a model to design the ATMs replenishment schedule for the banks. The re-

plenishment scheduling system presented the decisions on which ATMs to replenish dynami-

cally, by taking into account the cash inventory levels of all ATMs, the demand distributions,

the replenishment costs and the service level requirements. We constructed an MDP model

and exploited the dynamic programming techniques to derive several structural properties

of the optimal policy. We established the connections between the stock-out costs and the

service level requirements. We proposed an index policy for the submodular-replenishment-

cost case. We have shown by numerical study that the index policy performs close to the

optimal policy in the two- and three-ATM submodular-cost cases as well as the mulit-ATM

additive cost case. We illustrated by simulation that the IP outperforms the SP. We analyzed

the real-world dataset of 139 ATMs with 20-month historical data on daily cash withdrawals.

We showed by a numerical study that the index policy can reduce the cost by 35% ∼ 40%

with an improved service level.
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There are several directions in which our current work can be extended. First, our analysis

has assumed that the bank can replenish as many ATMs as the index policy recommends.

However, in practice, there may be an upper bound on the number of replenishments possible.

As mentioned in Section 3.1, this could be because the bank has to sort the available cash and

fill the ATM cartridges. If b, the maximal number of ATMs that can be replenished is known,

the index policy can be easily modified to incorporate this information. One can simply stop

the algorithm in Figure 3.5 in Section 3.7.2 as soon as |A| = b. In the (s,M) policy one may

need to rank the replenishment-eligible ATMs by a given criterion (say the level of cash left),

and then replenish the top b of them. However, in reality the value of b may depend on the

replenishment policy, especially when we take the cash left in the ATMs into consideration.

This is a much more involved scenario and needs further research.

Another extension is to consider a different service quality indicator. In this work, we

only consider the number of days when a stock-out occurs. We may use the amount of

time when the ATM is empty as the service quality indicator in the future. Finally, we can

generalize the current work to the situation where a replenishment can occur in the middle of

the day and it takes a positive time (lead time) between the decision making and the actual

replenishment. However, this generalization guarantees to be hard since the lost demand

during the lead time requires further consideration.
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