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ABSTRACT 
 

Lauren Parker Huff: Impact of subcellular localization on oncogenic functions of the 
RhoGEF Ect2 and on its Rho GTPase targets  

(Under the direction of Adrienne D. Cox) 
 

Rho GTPases are molecular switches that canonically signal from the plasma 

membrane or endomembranes to control a wide variety of cellular processes.  Their 

activation is tightly regulated spatiotemporally via regulatory proteins and post-translational 

modifications.  Here, I summarize the recently appreciated consequences of GTPase C-

terminal phosphorylation on their localization, effector utilization and biological functions.  I 

also describe in detail the use of recruitment assays for monitoring the subcellular locations 

of GTPase activity.  Misregulation of Rho GTPases is associated with many types of cancer.  

For example, Rho Guanine nucleotide exchange factors (GEFs), which stimulate exchange of 

GDP for GTP to turn GTPases “on,” are frequently found overexpressed in tumors and often 

are necessary for cellular transformation.  Here I report validation of a RhoGEF inhibitor 

with a dose-dependent selectivity for Rho GTPase signaling and anti-transformation activity.  

I have focused primarily on the RhoGEF Ect2 and its role in ovarian tumors, where it is 

chromosomally amplified and its mRNA is overexpressed.  I observed that Ect2 protein is 

highly expressed and predominantly nuclear, and that nuclear but not cytoplasmic Ect2 

increases with advanced ovarian disease.  Knockdown of Ect2 decreased anchorage-

independent (but not anchorage-dependent) growth of ovarian cancer cell lines.  Restoration 

of Ect2 expression rescued the anchorage-independent growth defect, which required both 

the DH catalytic domain and the nuclear localization sequences (NLS) of Ect2.  This 
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suggested a novel mechanism whereby Ect2 could drive transformation in ovarian cancer 

cells by acting as a RhoGEF within the nucleus.  Interestingly, Ect2 had an intrinsically 

distinct GTPase specificity profile in the nucleus versus the cytoplasm.  Nuclear Ect2 bound 

preferentially to Rac1, while cytoplasmic Ect2 bound to RhoA but not Rac.  Consistent with 

nuclear activation of endogenous Rac, Ect2 overexpression recruited Rac effectors to the 

nucleus, a process that required a functional Ect2 catalytic domain.  Further, expression of 

active nuclear Rac1 rescued the defect in transformed growth caused by Ect2 knockdown.  

My work suggests a novel mechanism of Ect2-driven transformation, identifies subcellular 

localization as a regulator of GEF specificity, and implicates activation of nuclear Rac1 in 

cellular transformation.   
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CHAPTER 1: INTRODUCTION  

 

THE RAS SUPERFAMILY OF SMALL GTPASES 

Definition/structure/function/regulation 

 The Ras superfamily is a diverse family of >150 small GTPases that can be further 

categorized into 5 subfamilies: Ras, Rho, Arf, Ran, and Rab (1).  Each member contains a 

catalytic G domain, composed of 2 well-conserved loop regions termed switch I and switch 

II, and a C-terminal hypervariable region (2).  By definition, a Ras superfamily GTPase is a 

monomeric protein that binds to and hydrolyzes guanine nucleotides.  However, GTPases are 

poor hydrolases and can stably interact with either GDP or GTP (1).  This allows GTPases to 

function as molecular switches within the cell (Fig.1.1).  GTPases are considered “off” while 

GDP-bound, because they bind with low affinity to downstream effectors in this state.  

Exchange of GDP for GTP causes a conformational change in switch I and switch II, turning 

the GTPase “on” and allowing switch I to interact more strongly with downstream effectors.  

Guanine nucleotide exchange factors (GEFs) promote release of guanine nucleotides from 

GTPases.  Since cellular GTP is 10x more abundant than GDP this enhances binding of GTP 

to activate the GTPase (2).  In contrast, GTPase activating proteins (GAPs) enhance the 

intrinsic hydrolase activity of the GTPase, causing it to become GDP-bound and “off.” 
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Summary of subfamilies 

 Members of the Ras superfamily are categorized into 5 subfamilies based on their 

structure and function (1).  Rabs and Arfs are regulators of vesicular transport (3, 4).  The 

Ran family is comprised of a single human GTPase, Ran (1), that shuttles cargo in and out of 

the nucleus (5).  Ras and Rho family GTPases are the focus of this dissertation.  GTPases 

within these families act as signaling nodes within the cell.  A large array of signaling 

cascades converges on activation of these GTPases, which are then responsible for diverse 

consequences including regulation of gene expression, the cell cycle, cell polarity, and cell 

survival (1, 2).   Thus it is not surprising that both Ras and Rho family GTPases play critical 

roles in cellular transformation and tumorigenesis (summarized below).  Rho GTPases are 

also particularly well known for their regulation of the actin cytoskeleton to drive changes in 

cellular morphology and migration (6-8). 

 

Subcellular localization and its regulation by prenylation + a second signal 

 In addition to being in the GTP-bound "on" state, small GTPases must be properly 

localized within the cell to promote signal transduction (2).  The founding members of the 

Ras superfamily (H-Ras and K-Ras) are predominantly (>90% of total protein) localized to 

the plasma membrane (9, 10) and many Ras superfamily proteins are associated with 

membranes (plasma or internal) as well (1).  For Ras and Rho family GTPases, this 

membrane localization requires both prenylation of the GTPase and a second signal in the C-

terminal membrane targeting domain.  Ras and Rho family GTPases typically terminate in a 

CAAX (C=cysteine, A=aliphatic amino acid, X=any amino acid) motif, which is recognized 

by either farnesyltransferase (FTase) or geranylgeranyltransferase-I (GGTase-I) (11).  FTase 
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attaches a farnesyl isoprenoid group whereas GGTase-I attaches a geranylgeranyl isoprenoid 

group to the cysteine of the CAAX box.  FTase generally acts on small GTPases terminating 

in a serine, threonine, alanine, or glutamine, whereas GGTase-I shows preference for 

GTPases terminating in a leucine (12).  For most small GTPases, addition of either moiety is 

sufficient to drive downstream signaling (13-15), however the two isoprenoids have opposing 

downstream consequences when attached to RhoB (16). 

Prenylation (isoprenoid modification) of the GTPase targets it for further processing, 

by Rce1 (Ras and a-factor converting enzyme-1) and Icmt (isoprenylcysteine carboxyl 

methyltransferase), to cleave the terminal AAX from the GTPase and carboxylmethylate the 

prenylated cysteine.  The modified GTPase is capable of interacting with the plasma 

membrane, such that the attached lipid moiety is inserted into the hydrophobic core of the 

membrane.  However, this plasma membrane association occurs only when a second 

membrane targeting signal is present (9).  The signal is found in the C-terminal hypervariable 

region of the GTPase and consists either of a sequence of basic amino acids (polybasic 

region, PBR) that form electrostatic interactions with the plasma membrane, or of the 

addition of a palmitate fatty acid to a palmitoylatable cysteine residue (9).  Phosphorylation 

of Ras and Rho family GTPases within their hypervariable region allows for regulation of 

GTPase subcellular localization and function with additional spatio-temporal precision 

(reviewed in Chapter 2). 

 Rab and Arf GTPases are also membrane-bound because of post-translational 

modifications.  Geranylgeranyltransferase-II (GGTase-II) recognizes di-cysteine motifs in 

the C-terminus of Rab proteins and adds a geranylgeranyl group to each cysteine, likely 

through independent reactions (17).  N-myristoyltransferase is responsible for addition of a 
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myristate fatty acid to the N-terminus of many Arf proteins (18).  Ran is not lipidated nor 

membrane-bound (1). 

 

Roles for GTPase prenylation beyond regulation of localization 

The role of prenylation in GTPase signaling cascades is frequently studied using 

“SAAX mutants”, referring to GTPases in which the prenylated cysteine of the CAAX box 

has been mutated to a serine and thus cannot be prenylated.  Since prenylation is required for 

membrane association, SAAX mutants are not membrane-bound.  As would be expected due 

to their mislocalization (9, 19), SAAX mutants are impaired in most GTPase functions (9, 13, 

14, 16, 20) (although there are reports of Rho family SAAX mutants retaining some ability to 

regulate certain transcriptional events (14, 16, 20)).  Yet the requirement for prenylation vs. 

the requirement for proper subcellular localization of a GTPase should be considered 

distinctly. 

 This is evident when one considers that prenylation of the GTPase is required for full 

Ras-driven cellular transformation, yet ablation of the second signal impairs but does not 

ablate its transforming capabilities (9).  Since both prenylation and a second signal are 

required for Ras to localize to the plasma membrane, there must be some functions of Ras 

that are prenylation dependent, but not dependent on proper plasma membrane localization 

(second signal independent).   

 Prenylation promotes certain protein:protein interactions with lipid-binding partners 

that recognize and bind to the isoprenoid moiety.  For example, PRA1 (21) and PDEδ (22) 

bind to many Ras superfamily GTPases in a prenylation-dependent manner; RhoGDIs 

(described below) bind optimally to prenylated versus unprenylated Rho GTPases (23); and 
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galectins interact with Ras proteins in a farnesyl-dependent manner (24, 25).  Binding of a 

prenyl group to a Rho GTPase destabilizes the GTPase and targets it for degradation (26).  

This is likely true for other Ras family GTPases as well (27).  Therefore unless the prenyl 

group is inserted within a membrane or another protein, then the GTPase will be unstable.  

Thus these lipid binding proteins have been proposed to act as chaperones (27).  

 

RHO FAMILY GTPASES 

Definition/family 

 The Rho family of small GTPases is defined by the presence of an extra alpha helix 

within the G domain, composed of approximately 15 amino acids and termed the “Rho insert” 

(28, 29).  The family includes 20 small GTPases that can be further clustered based on 

structural and functional similarity: RhoA-related (RhoA, RhoB, RhoC); Rac1-related 

(Rac1/1b, Rac2, Rac3); Cdc42-related (Cdc42/G25K, TC10, TCL, Chp/Wrch-2, Wrch-1); 

Rnd subfamily (Rnd1, Rnd2, Rnd3/RhoE); RhoBTB subfamily (RhoBTB-1, RhoBTB-2, 

RhoBTB-3); and other (RhoD, Rif, TTF/RhoH) (28).  Among these GTPases, the canonical 

members RhoA, Rac1, and Cdc42 are the best studied. 

 

Function- cytoskeleton/morphology regulation 

 In the 1990s Alan Hall and colleagues discovered that microinjection of RhoA into 

fibroblasts induced stress fiber formation (30), while Rac1 expression caused formation of 

membrane ruffles (31).  It soon followed that injection of Cdc42 induced filopodia formation 
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(32).  Since then it has been determined that all Rho GTPases, with the exception of RhoH 

and RhoBTB1-3, regulate the actin cytoskeleton and cell morphology (28).   

These effects on morphology were not only observed via microinjection of Rho 

proteins.  Lysophosphatidic acid (LPA) activates RhoA (33) and bradykinin (BDK) activates 

Cdc42 (32) through G protein-coupled receptor (GPCR) signaling, whereas platelet-derived 

growth factor (PDGF) stimulates Rac1 (31) activity through activation of receptor tyrosine 

kinases (34) to drive the same phenotypes.  RhoA, Rac1, and Cdc42 control the actin 

cytoskeleton through a variety of signaling cascades.  In addition to regulating the above 

described structures, these GTPases also regulate focal adhesion formation/turnover; cell:cell 

contacts, cell contraction, microtubule assembly, and cell polarity (35).  Some of the primary 

RhoA, Rac1, and Cdc42 signaling pathways controlling these functions are summarized in 

Figure 1.2.  As shown, these three small GTPases converge on many of the same molecules 

to either amplify or attenuate the action of other GTPases. 

 Additionally, activation of a given GTPase can have opposing effects on cellular 

structure, depending on the downstream effector pathway that is activated.  For example, 

RhoA signaling to mDia enhances adherens junction stability, whereas RhoA signaling to 

ROCK causes disassembly of adherens junctions (36).  RhoA binds with higher affinity to 

mDia than ROCK (Kd 6nM and 130nM respectively), therefore when there are low levels of 

RhoA activity within the cell, then RhoA will predominantly activate mDia and enhance 

adherens junction stability.  However when there are high levels of RhoA activity, the effects 

of ROCK will also be observed and adherens junctions will disassemble (37).  Thus the cell 

must very precisely control the activation of Rho GTPases (see below).  This characteristic of 

Rho GTPases makes them difficult to study, since inhibition and activation experiments 
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sometimes result in the same end phenotype (38).  Therefore common experimental 

manipulations, e.g., rescue of knockdown, can be technically challenging and require precise 

levels of expression. 

 

Function- transcription 

 The function of Rho GTPases is not limited to regulation of cell morphology.  Rho 

GTPases signal to an assortment of effectors.  Some of the best-studied pathways for RhoA, 

Rac1, and Cdc42 are diagrammed in Figure 1.2.  As shown, many of these pathways control 

regulation of gene transcription.   For example, most Rho GTPases regulate the transcription 

factor SRF (serum response factor).  When Rho GTPases cause globular actin (G-actin) to 

polymerize into filamentous actin (F-actin) this releases MAL from its sequestration with G-

actin.  MAL is then free to translocate to the nucleus, where it acts as a co-activator of SRF 

and helps drive transcription (39).  RhoA, Rac1, and Cdc42 also all regulate the transcription 

factor NF-κB (40).  Overexpression of any of these three GTPases results in phosphorylation 

of the inhibitory subunit (IκBα), targeting this subunit for degradation and allowing 

translocation of active dimers to the nucleus where they can regulate transcription (40).  

Similarly, multiple Rho GTPases regulate the phosphorylation of cytoplasmic STAT3 and 

STAT5a at key residues, thereby allowing for their dimerization, nuclear entry, and 

transcriptional activity (41).   

 In addition to activating relevant signaling cascades, Rac1 directly binds these STATs, 

in a GTP-dependent manner (42, 43).  Through this binding, Rac1 is thought to chaperone 

STATs from the cytoplasm into the nucleus (43).  A similar chaperoning mechanism has 
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been proposed for Rac1 and β-catenin, in which Rac1 enables β-catenin to regulate 

transcription via translocation to the nucleus (44). 

Because of these roles of Rho proteins in transcription, luciferase reporter assays are 

commonly used as markers for Rho GTPase activation.  In these assays, a promoter regulated 

by the transcription factor of interest (e.g., the serum response element, SRE, from the 

promoter of a gene such as c-fos can be used for SRF) is engineered to control luciferase 

expression (45).  Therefore, a quick spectroscopy readout can be used to determine 

transcription factor activity, which correlates with Rho GTPase activity.  The transcription 

factors regulated by Rho GTPases control the expression of a variety of genes, but most of 

them regulate cyclin D1 expression (41).  Therefore, the cyclin D1 promoter is also 

commonly engineered to promote luciferase expression, and luminescence then correlates 

with activation of the cyclin D1 promoter and subsequent cyclin D1 expression (46). 

 

Requirement for unusually precise regulation 

 The described signaling pathways are essential for most cell functions.  Combined 

actions of Rho GTPases regulate cell migration, cell cycle progression, cytokinesis, apoptosis, 

cell polarity, and cell adhesion (47).  Since many Rho GTPase pathways converge, and 

activation of a given GTPase can result in opposing outcomes (see above), proper completion 

of these functions requires precise spatial and temporal control of Rho GTPases.  For 

example, in migration a coordinated influx of RhoA followed by Cdc42 and finally Rac1 

activation within 2 mm of the leading edge produces a protrusion (48).  Further coordination 

of Rho GTPases central to the cell and at its tail are also required for forward progression 

during cell migration (7).  Similarly, during cytokinesis RhoA must become activated in a 
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narrow region to initiate cleavage furrow formation, but too broad a region of RhoA activity 

prevents furrow formation (49).  It is therefore not surprising that Rho GTPase activation is 

very precisely controlled. Even a strong stimulus results in only about 5% of a specific Rho 

GTPase becoming activated (50, 51).  This indicates that even very minor populations of 

active Rho GTPases can be functionally important.  

 Even though Rho GTPases must be GTP-bound to interact with downstream effectors, 

it has been suggested that they are not on/off switches like Ras GTPases.  While turning a 

Ras GTPase “on” is sufficient to drive downstream functions, Rho GTPases (such as Rac1) 

may require continuous cycling to perform their cellular duties (see section on mutants 

below).  This idea has been described as the “GTPase flux model” (52). 

 

RhoGDIs (an extra level of regulation) 

 In addition to GEFs and GAPs, Rho GTPases are regulated by Rho guanine 

nucleotide dissociation inhibitors (RhoGDIs, Fig. 1.3).  There are 3 types of mammalian 

RhoGDIs (α,β,γ, each with distinct specificity and expression profiles), that bind to the C-

terminal prenyl group of Rho family members and to the GTPase itself (53-55).  There is 

some debate over the affinity of GDIs for GDP-bound vs. GTP-bound GTPases.  It seems 

that GDIs can interact with GTPases bound to either nucleotide, but interact with higher 

affinity to inactive GTPases (23).  Once the bound GDIs inhibit nucleotide dissociation and 

GTP hydrolysis (55).  They can also strip Rho GTPases from membranes and sequester them 

in the cytosol, where the Rho GTPases are unable to interact with their downstream effectors.  

Thus until recently, GDIs were considered simply as negative regulators of GTPase 
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activation.  However, emerging evidence suggests that RhoGDIs are also essential for protein 

stability of prenylated Rho family GTPases (56). 

Prenylation of Rho GTPases targets them for degradation through interactions with 

Hsp90 and the proteasome (26).  However, expression of RhoGDI1 inhibits this degradation, 

presumably by binding to the prenyl moiety, preventing misfolding, and shielding the 

GTPase from its proteasome fate (26).  This interaction of RhoGDI with Rho GTPases is 

essential for Rho GTPases to function, since prenylation is both irreversible and a necessary 

step in targeting Rho GTPases to the plasma membrane.  Phosphorylation of both Rho 

GTPases and RhoGDIs controls their interaction (see Chapter 2).  Thus kinase/phosphatase-

induced release of GTP-bound GTPases from GDIs may be used by the cell to create a bolus 

of Rho GTPase activity (11). 

The sum of the molar quantities of RhoA, Rac1, and Cdc42 within a cell is 

approximately equal to the moles of RhoGDIα (57).  The competition of Rho GTPases for 

limited binding to RhoGDIs determines which GTPases are protected from degradation (27) 

and again emphasizes the very precisely controlled functions of Rho GTPases.  The 

phenotypic consequences of experimental overexpression of Rho GTPases within a cell are 

not only due to signaling from the exogenous GTPase but also due to degradation and loss of 

signaling from other Rho GTPases that are outcompeted for GDI binding. 

There are GDIs specific to the Rab subfamily of GTPases as well, but Ras, Arf, and 

Ran subfamilies do not have classical GDIs to exhibit this extra level of regulation (58).  This 

likely explains certain differences in subcellular localization between Ras and Rho family 

GTPases.  Despite similar C-terminal targeting sequences, Ras GTPases are rarely observed 

away from membranes, whereas Rho GTPases are expressed more diffusely throughout the 
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cell ((19), see Table 3.1).  This is likely due to GDI sequestration of prenylated Rho (but not 

Ras) GTPases in the cytoplasm.  Still, it has been proposed that galectins and/or PDEδ may 

act similarly to GDIs for Ras family GTPases (22, 58, 59). 

 

Nuclear GTPases, an emerging field 

 Consistent with their role in cytoskeletal rearrangement, Rho GTPases have been 

extensively studied for their functions within the cytoplasm and at membranes.  Although the 

vast majority of Rho proteins are found at these locations (57), the existence of a minor pool 

of nuclear Rho GTPases is beginning to be appreciated as well.  As described above, minor 

populations of Rho GTPases can have important functional consequences.  

RhoA (60, 61), Rac1 (62-64), and Cdc42 (65) have all been observed within the cell 

nucleus, and other Rho GTPases (e.g. RhoC, TCL, Rnd1, etc…) contain nuclear localization 

signals (NLSs) in the polybasic region of their hypervariable domains (9, 64).  NLSs for Rho 

GTPases might seem unnecessary, since these small GTPases are generally less than 40 kDa 

(29) and therefore are small enough to passively diffuse through nuclear pores (66).  

However, prenylation inhibits nuclear entry (62, 67).  Thus, it has been proposed that 

prenylated Rho GTPases must conceal their prenyl groups within a protein complex to gain 

nuclear entry (62).  Since the resulting protein complexes are larger than the size limit for 

passive diffusion, the NLSs are then required to interact with importin molecules for active 

nuclear transport of the GTPases (66).  Indeed endogenous nuclear Rac1 (62) and RhoA (68) 

are prenylated, and a functional NLS is required for Rac1 to shuttle the scaffolding protein, 

SmgGDS, into the nucleus (63).  Still, RhoA does not contain a known NLS (64), but a 
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portion of RhoA is observed in the nucleus (granted, at a lower fraction than Rac1) (62).  It is 

currently unclear how RhoA transits to the nucleus. 

Rac1 activity has been observed in the nucleus in response to bacterial infection by 

Yersinia pseudotuberculosis (67).  The bacterial protein YopT acts as a cysteine protease and 

cleaves off the CAAX box of Rac1, de-prenylating Rac1 and allowing for its nuclear import, 

where it remains active (67).  While the function of nuclear Rac1 activity was not explored 

experimentally, the authors suggested that it may regulate transcription.  Indeed, experiments 

in the Bapat lab suggest that active nuclear (but not cytoplasmic) Rac1 positively regulates 

Wnt/β-catenin driven transcription in colon cancer cells (44).  Active Rac1 enhances nuclear 

accumulation of β-catenin (44) and also interacts with Wnt-responsive promoters (69).  In 

another system, a constitutively active (Q61L) SAAX mutant of Rac1 was artificially 

overexpressed in the nucleus of cells (62).  This resulted in an increased mitotic index, but 

did not increase membrane ruffling (62).  The mechanism through which active nuclear Rac1 

enhances mitosis is unknown.  However, the Rac1(Q61L/SAAX) mutant can activate NF-κB 

transcription to inhibit UV-induced apoptosis (70). It was proposed that Rac1 must be both 

nuclear and GTP-bound to drive NF-κB transcription, and that Rac1 activation of PAK1 

causes nuclear accumulation of the NF-κB p65 protein (70).  However these experiments 

focused on the function of Rac1 SAAX and prenylated nuclear Rac1 was not examined.  

Less is known about the nuclear activity of other Rho GTPases.  RhoA activation in 

the nucleus has been observed in response to irradiation (60) or to loss of CCM1 (61), yet the 

signaling and functional consequences of nuclear RhoA activity have not been explored.  

Cdc42 binds to and is essential for proper localization and function of CENP-A, a histone H3 

variant that defines centromere loci and is key for kinectochore attachment (65).  Knockdown 
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of either a GEF or a GAP that act on Cdc42 similarly impaired CENP-A function, thereby 

making the role of Cdc42 at this location hard to decipher (65). 

While it is likely that unique signaling pathways exist within the nucleus, many 

downstream effectors of Rho GTPases have also been observed there.  In the signaling 

cascades diagrammed in Figure 1.2, proteins that have been observed within the nucleus are 

highlighted in yellow.  As shown, nuclear actin is thought to drive chromatin remodeling and 

to interact with RNA polymerase to regulate transcription (71).  In fact, many signaling 

molecules downstream of Rho GTPases (such as PAK1, ROCKII, paxillin, and cofilin) have 

been described to regulate transcription when present in the nucleus (71-75).  For example, 

the Rho effector ROCKII binds to and phosphorylates p300 acetyltransferase when in the 

nucleus (74).  This enhances the ability of p300 to acetylate histones and drive transcription 

(74).  Thus Rho GTPase activation in the nucleus, like its activation in the cytoplasm, may 

regulate transcription.  Consistent with this, there are reports of Rho GTPase SAAX mutants 

(found to varying degrees in the nucleus) retaining some ability to activate certain 

transcriptional events (14, 16, 20).   

Regulators of Rho GTPases have also been observed in the nucleus.  The Rho GEFs 

Ect2 (76) and Net1 (77) are predominantly nuclear, and LARG (78), Vav3 (79), 

ARHGEF6/alpha-PIX (80), and Tiam1 (69) have also been detected there.  Negative 

regulators MgcRacGAP (81), DLC1 (82, 83) and RacGAP1 (84) have been found in the 

nucleus as well.  Because the stoichiometry of proteins within the nucleus and cytoplasm are 

distinct, even cascades involving the same signaling molecules may differ greatly between 

the two compartments. 

 



14 

RHOGEFS 

Families of RhoGEFs 

 Within the Ras superfamily of GTPases, each subfamily has its own specific 

regulators (58).  There are 3 varieties of RhoGEFs, able to catalyze nucleotide exchange on 

Rho GTPases: Dbl family RhoGEFs, DOCK-related RhoGEFs, and SWAP70/SLAT (85).  

The majority of RhoGEFs belong to the Dbl family and these will be the focus here.  There 

are also 11 DOCK-related RhoGEFs, each of which activate either Rac1 or Cdc42.  The 

DOCK family Rho GEFs contain 2 well-conserved regions, Dock-homology region-1 and -2 

(DHR1 and DHR2), that are composed of a C2 (lipid-binding) domain and an armadillo array 

(protein-binding) domain (85).  Some DOCK-related RhoGEFs require binding of the 

scaffolding protein ELMO to gain catalytic activity (86).  SWAP70 and SLAT are outliers.  

They do not show homology with either Dbl or DOCK RhoGEFs, yet still catalyze 

nucleotide exchange on Rho GTPases (85, 87, 88). 

 

Dbl family domains- DH 

 Dbl family RhoGEFs are characterized by the presence of a Dbl-homology (DH) 

catalytic domain that is responsible for enhancing nucleotide exchange (85).  Although there 

is low sequence conservation among DH domains, their overall structure is well-conserved 

and is composed of helices that fold together to form a chaise longue shape (85).  The DH 

domain interacts with switch I and switch II of the GTPase to disorganize the nucleotide 

binding pocket in the G domain of the GTPase.  This releases both the nucleotide and its 

binding co-factor Mg2+, and allows for GTP binding/activation of the GTPase (85). 
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Dbl family domains- PH 

 With the exception of Tuba, all Dbl-family RhoGEFs contain a pleckstrin homology 

(PH) domain located adjacent to and C-terminal of the DH domain (85).  The PH domain is 

found in many signaling molecules, and interacts with lipid products of phosphatidylinositol-

3-kinase (89).  It is widely thought that PH domains aid in association of proteins with 

membranes via binding to phospholipids (89).  However, many RhoGEF PH domains have 

low affinity for phospholipids and some RhoGEFs localize to plasma membranes despite 

mutations in their PH domains to prevent phospholipid binding (90, 91).  Therefore the 

plasma membrane association of these GEFs/PH domains may not be due to phospholipid 

binding, but instead due to binding with other proteins.  In fact, GTP-bound (but not GDP-

bound) RhoA has recently been shown to bind to the PH domains of many RhoGEFs (such as 

Lbc, LARG, and GEF-H1) (92).  When active RhoA is membrane-bound, it enhances the 

GEF activity of these RhoGEFs in a positive feedback loop, presumably through allowing the 

PH domain to bind to membranes such that the GEF can activate other inactive RhoA 

proteins (92).  Alternatively, PH domain interactions with proteins can target them to other 

specific subcellular localizations where they activate Rho GTPases.  For example, the PH 

domain of Trio is thought to direct Trio to actin structures via binding of filamin (93).  

In vitro, GEFs containing functional DH and PH domains are frequently more 

efficient at catalyzing nucleotide exchange than those with an impaired PH domain (90, 94-

96).  Some PH domains directly interact with the GTPase to promote this exchange (95, 97), 

while for other PH domains the effect may be allosteric (as no interactions can be observed 

with crystallography (98)). 
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Whether there is a single global function of the RhoGEF PH domain is unclear.  It 

likely varies among RhoGEFs, as the relative orientation of DH and PH domains differs 

greatly among them (85). 

 

Dbl family domains- other 

 Beyond the DH/PH domains, RhoGEFs are an extremely variable class of proteins, 

containing many different protein:protein interaction and other domains (Fig. 1.4) (85).  This 

diversity allows cells to respond to numerous different signaling inputs by activating a 

variety of Rho GTPases. 

 

Specificity vs. promiscuity 

There are 70 distinct Dbl-family RhoGEFs to regulate the 20 identified Rho family 

GTPases (99).  Some of these Dbl-family GEFs act solely on a single GTPase: however, 

many have multiple substrates (Fig. 1.5) (85).  Examination of crystal structures of 

GEF/GTPase interactions has allowed identification of key residues that regulate the 

specificity of the exchange reaction.  For example, a single amino acid change in Rac1 to the 

corresponding Cdc42 residue (W56F) allows the Cdc42-specific GEF ITSN-1 to catalyze 

exchange on the mutated Rac1, and prevents binding of Rac1-specific GEF Tiam1 to the 

mutated Rac1 (100).  Similarly, mutation of a couple of residues in the RhoA- and Cdc42-

specific GEF Dbs allows for selective activation of each GTPase (101).   

 



17 

Regulation 

 For many RhoGEFs, the N-terminus is autoinhibitory, and therefore artificial 

truncation of the GEF activates it (85).  In cellulo this autoinhibition is overcome either by 

post-translational modification or by protein binding.  For example, Vav is N-terminally 

phosphorylated by Src family members.  This phosphorylation causes the N-terminus to 

become unstructured, causing it to release the DH domain and activate Vav (102).  Tiam1 is 

opened/activated by Ras binding to the RBD in its N-terminus (103).  Similarly, APC binds 

the N-terminus of ASEF (104) and Gα13 binds the N-terminus of p115 Rho GEF (105) to 

activate these RhoGEFs. 

 

Subcellular localization 

 In general, RhoGEFs are thought to localize similarly to RasGEFs (106).  The 

prototype of GEF localization is the RasGEF Son of Sevenless (SOS).  SOS is localized 

diffusely throughout the cytoplasm, until phosphorylation of receptor tyrosine kinases creates 

a docking site for the adaptor protein Grb2 (growth factor receptor-bound protein).  Grb2 

localization to the plasma membrane recruits SOS there, and SOS then activates Ras family 

GTPases (107).  Indeed the RhoGEF Vav also translocates to the plasma membrane upon 

activation (108), and PDGF stimulation recruits the Rac1-specific GEF Tiam1 to membranes 

(109). 

Yet, this model does not explain all the intricacies of RhoGEF subcellular localization.  

For example, the RhoA GEF, GEF-H1, is held in an inactive state while interacting with 

microtubules.  Depolymerization of microtubules allows release of GEF-H1 and subsequent 

RhoA activation (110).  Additionally, there are 2 RhoGEFs, Ect2 (76) and Net1 (77), that are 
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predominantly localized to the nucleus of interphase cells.  It was originally thought that 

these RhoGEFs were simply sequestered from their Rho GTPase substrates when in the 

nucleus, (77, 111, 112).  However, it has now been shown that Net1 can activate RhoA when 

in the nucleus (68).  In Chapter 4 of this dissertation I discuss a nuclear role for Ect2.  

 

ECT2 

Domains 

 Ect2 is a Dbl family RhoGEF, containing both DH and PH domains.  A diagram of 

the structure of Ect2 is shown in Fig. 1.6.  While the DH domain of Ect2 alone is capable of 

inducing nucleotide exchange, this activity is enhanced by the presence of its PH domain 

both in vitro and in cellulo (94).  Uniquely among RhoGEFs, Ect2 also contains two N-

terminal BRCT domains.  BRCT domains have been identified in 23 proteins, most of which 

are involved in DNA damage repair (113).  BRCT domains are commonly found in pairs and 

bind to phospho-serines (114).  The BRCT domains of Ect2 bind to its DH domain and 

autoinhibit its GEF catalytic activity (111, 115).  Located between the BRCT domains and 

DH/PH domains of Ect2 are two nuclear localization signals (NLSs), which are unusual 

among RhoGEFs. 

Although no other domains have been characterized in Ect2, the region C-terminal of 

the DH/PH domain is functionally significant.  It is a required addition to the DH/PH domain, 

in order for Ect2 to activate Rac1 and Cdc42, and for optimal activation of RhoA (94).  The 

C-terminus is also required for Ect2 to increase cyclin D1 transcription (46).  Interestingly, 

32% of the C-terminus is either a serine or threonine, suggesting the possibility of numerous 

phosphorylation sites.  Also, a third functional NLS signal has been described in this region 
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(111, 116) as well as putative degrons, which are motifs that allow APC binding and 

polyubiquitination to target Ect2 for degradation (116).  

 

Expression 

 Initial northern blot analysis revealed that Ect2 is most highly expressed in the testis 

and also in the kidney, liver, and spleen of adult mice.  Ect2 transcript was not detected in 

lung tissue or in postmitotic (brain, heart, skeletal muscle) tissue of these same animals (117).  

However, in mouse embryos and tumor cells Ect2 mRNA was more ubiquitously expressed 

(45).  It was therefore hypothesized that Ect2 expression is elevated during cell division.  

Indeed, after serum starving cells such that >90% were in GO/G1, Ect2 expression at both 

the mRNA and protein level was increased upon serum stimulation in conjunction with cells 

re-entering the cell cycle (45).  And heightened Ect2 expression has been correlated with 

S/G2/M phase in a regenerating liver mouse model (118) and by double thymidine block 

(116).  Yet others have not observed dramatic changes in Ect2 expression with the cell cycle 

and instead showed phosphorylation of Ect2 upon entry into G2/M (described further below) 

(76).  Thus, the rules governing the expression patterns of Ect2 are somewhat unclear. 

 

Subcellular localization 

 As beautifully captured by Tatsumoto and colleagues, the subcellular localization of 

Ect2 changes throughout the cell cycle (76).  During interphase, Ect2 is one of two RhoGEFs 

that localizes predominantly to the nucleus, the other being Net1.  Approximately 1-2 

minutes before the nuclear envelope breaks down and mitosis is initiated, Ect2 spreads into 

the cytoplasm (119).  During metaphase, Ect2 highlights the mitotic spindle (76).  As 
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anaphase and teleophase progress, Ect2 is concentrated at the central spindle (120)/cleavage 

furrow (76), and in some cells it is also found at the cell cortex (121).  Prior to abscission of 

the two cells, Ect2 is observed at the midbody (76, 122).  It translocates to the nucleus as 

interphase begins again (76). 

 Within the nucleus, Ect2 has been described as nucleolar (119).  I have observed this, 

but have also observed nucleolar exclusion in some circumstances (LPH, unpublished).  

Additionally Ect2 has been observed at cell:cell contacts (123), and specifically at the zonula 

adherens (124). 

 

Specificity/GEF activity 

 The GTPase specificity of Ect2 has been context-dependent at best and controversial 

at worst.  In the original Ect2 paper (117), the homology of Ect2 to other RhoGEFs was 

noted.  However, Ect2 isolated from insect cells did not catalyze nucleotide exchange on 

purified RhoA, Rac1, or Cdc42 (117).  Since then, it has been shown that full-length Ect2 

immunoprecipitated from COS cells (monkey kidney fibroblasts) is capable of activating 

purified RhoA, Rac1, and Cdc42 (76).  In cellulo, cell type and context-specific differences 

have led to a wide array of specificity profiles for Ect2 (111, 121, 123, 125-128).  Table 1.1 

summarizes the published specificity of Ect2 towards RhoA, Rac1, and Cdc42.  Ect2 is 

known to bind other GTPases as well, with particularly high affinity for RhoC (117, 129).  

And expression of truncated Ect2 in COS cells causes activation of RhoB, RhoC, and Rac2 

(111). 

 The GEF activity of Ect2 is thought to be autoinhibited by its BRCT domains 

because: 1) the BRCT domains bind the DH domain (111, 115); 2) expression of BRCT-
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mutated or N-terminally truncated Ect2 drives more dramatic phenotypes than full-length 

Ect2 (111, 117, 118); and 3) the N-terminus of Ect2 alone acts as a dominant-negative (76, 

118, 125).  Therefore Ect2 must be activated before it can enhance nucleotide exchange, 

which may explain some of the conflicting reports about the GEF activity of Ect2. 

The mechanism of Ect2 activation remains unclear, but may be achieved by 

phosphorylation ((76), see Chapter 6.1).  As mentioned above, the C-terminus of Ect2 also 

regulates its GEF activity, through an unidentified mechanism.  It is required for Ect2 to 

activate Rac1 and Cdc42 and to optimally activate RhoA (94).  Thus, further work is required 

to understand the signals for Ect2 activation and what drives its specificity. 

  

Role in cytokinesis/mitosis 

 The best-studied function of Ect2 is its role in cytokinesis of normal cells.  

Cytokinesis is the last step in cell division, during which a single cell that has replicated its 

genetic material physically divides into two daughter cells (130).  Manipulation of Ect2 

levels/activity (via knockout (131)/knockdown (120) or overexpression of constitutively 

active (118) or dominant-negative (76) Ect2) causes cells to become multinucleated, 

indicating an inability to complete this process.  Thus, fully functional Ect2 is required for 

proper cytokinesis of many cells.  

 Cytokinesis can be divided into 4 stages: identification of the division site, cleavage 

furrow ingression, midbody formation, and abscission (49).  It is initiated during anaphase.  

As chromosomes are pulled apart, interpolar microtubulues bundle together to form the 

central spindle and help define the site of cell division.  A cleavage furrow/contractile ring is 

formed over this site, which is where the cell constricts.  The contracted contractile ring, 
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which acts as a narrow bridge between the two newly distinct cells, is called the midbody.  

Abscission occurs when the plasma membrane is severed on either side of the midbody, 

allowing the two cells to separate (130).  As detailed below, Ect2 regulates both cleavage 

furrow formation and abscission. 

 Centralspindlin is a complex of the proteins MgcRacGAP and MKLP1, that is 

localized to the central spindle.  MgcRacGAP is phosphorylated on serine 157 by Plk1 (132, 

133).  This phosphorylation creates a docking site for the BRCT domains of Ect2 and recruits 

Ect2 to the central spindle (120, 132, 133).  In addition to properly localizing Ect2, the 

binding of the BRCT domains of Ect2 to MgcRacGAP also prevents autoinhibition of Ect2, 

holding it in an active conformation (120).  Recruitment of Ect2 to the central spindle allows 

for activation of RhoA in a narrow area of the cell cortex above the central spindle, which 

becomes the cleavage furrow (120).  This activation of RhoA leads to activation of myosin-II 

and actin polymerization, causing cleavage furrow ingression and proper execution of 

cytokinesis (120). 

 The onset of cytokinesis is tightly regulated by phosphorylation.  Ect2 is 

phosphorylated during metaphase at T341, likely by Cdk1, but is dephosphorylated during 

anaphase (120).  This phosphorylation inhibits the ability of Ect2 to bind MgcRacGAP and 

therefore prevents cleavage furrow formation from occurring too early during metaphase 

(120).  Additionally, during pro-metaphase, Ect2 is phosphorylated by Cdk1 at residue T412 

(134).  This phosphorylation event increases the affinity of Plk1 toward Ect2 (134).  Taken 

with the above information, it is possible that, when the Ect2/Plk-1 complex comes in contact 

with centralspindlin, Plk-1 phosphorylates MgcRacGAP, creating the described binding site 
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for the BRCT domains of Ect2, and restricting Ect2 to the central spindle where it activates 

RhoA. 

 As described above, Ect2 localizes to the midbody in anaphase and early telophase 

(76, 122).  However, for abscission of the two daughter cells to proceed, Ect2 must be 

released from the midbody (122).  Ect2 competes with FIP3 (Rab11 family interacting 

protein) for binding to MgcRacGAP.  Since their binding is mutually exclusive and FIP3 is 

required for abscission, only upon release of Ect2 from MgcRacGAP is abscission able to 

proceed (135).  Therefore Ect2 localization to the midbody acts as checkpoint for the final 

step in cytokinesis.  Plk-4 is required for proper localization of Ect2 to the midbody (136), 

thus it is likely that dephosphorylation of sites phosphorylated by Plk-4 allow release of Ect2 

from the midbody. 

 Ect2 has also been implicated in the initiation of mitosis, independent of 

MgcRacGAP.  One to two minutes prior to nuclear envelope breakdown, Ect2 is released 

from the nucleus into the cytoplasm.  This release causes activation of RhoA at the cell 

cortex and results in cell rounding (one of the earliest steps in mitosis) (119). 

 In summary, phosphorylation and protein:protein interactions determine the 

localization and activation of Ect2 throughout the cell cycle.  Ect2 then regulates the 

localization and activation of RhoA to drive both cytokinesis and mitosis.  Ect2 also inhibits 

abscission of the two daughter cells, until the cell is ready to conclude cytokinesis.  Some 

tumor cells have been described to undergo Ect2-independent cytokinesis (121, 137, 138).  

Despite this Ect2 has functional significance in the cellular transformation of these tumor 

cells (137, 138).  Ect2 must have other functions in addition to its well-documented role in 

cytokinesis.  This will be the focus of the rest of this section. 



24 

Oncogene- identification 

 Ect2 was originally identified in a screen for oncogenes performed by Dr. Toru Miki 

and colleagues (117).  NIH 3T3 mouse fibroblast cells were transfected with a cDNA library 

isolated from mouse keratinocytes.  The transfectants were then screened for focus formation, 

which represents a loss of contact-inhibition and therefore transformed growth (117).  The 

cDNAs capable of creating foci were extracted from cells and identified using a technique 

they previously developed (139).  In this way, Miki and colleagues identified genes from 

normal epithelial cells that were sufficient to drive transformation. 

 The original isolate of Ect2, Epithelial cell transforming sequence #2, coded for an N-

terminally truncated version of the protein (117).  Careful sequence analysis reveals that it 

lacked both BRCT domains and the first NLS sequence (Fig. 1.7).  Therefore, it was not 

autoinhibited, and represented a constitutively active form of Ect2.   

 It is less clear whether the truncated active mutant was, like full-length Ect2, 

predominantly nuclear during interphase.  Mutation of the NLSs individually in full-length 

Ect2 has been reported to drive Ect2 to the cytoplasm similar to mutation of both NLSs (111, 

116), however the extent of nuclear exclusion/cytoplasmic enhancement of N-terminally 

truncated Ect2 lacking only the first NLS is unclear (111).  Dr. Danielle R. Cook has 

observed differences in strength between the two NLSs.  Mutation of NLS-1 caused a more 

dramatic shift to the cytoplasm than mutation of NLS-2 (Dr. Danielle R. Cook, personal 

communication).  Regardless of its localization, the original isolate of Ect2 was extremely 

transforming.  Cells expressing this N-terminally truncated form of Ect2 grew anchorage-

independently, and 100% of mice injected subcutaneously with NIH 3T3 cells expressing it 



25 

formed tumors within 6 weeks, whereas cells not expressing Ect2 did not create tumors in 

mice (117).  Thus, a constitutively active form Ect2 is capable of acting as potent oncogene. 

 

Oncogene- domains required for fibroblast transformation 

 Numerous truncation mutants of the original Ect2 isolate were analyzed for their 

ability to transform NIH3T3 fibroblasts ((117), Fig. 1.7).  As would be expected if the GEF 

activity of Ect2 were required for this phenotype, inclusion of the autoinhibitory BRCT 

domains or omission of the catalytic DH domain prevented the ability of Ect2 to transform 

these cells (117).  This suggested that the GEF activity of Ect2 was indeed required, which 

was later confirmed with a point mutation in the DH domain that ablated its catalytic activity  

(111). 

 Consistent with its necessity for optimal nucleotide exchange (94), the PH domain is 

also required for Ect2 to transform fibroblasts (111).  Surprisingly, tryptophan 752, a residue 

that is conserved across all RhoGEF PH domains and is usually necessary for optimal GEF 

function, is not required for Ect2-driven fibroblast transformation (94).  

 Multiple labs have determined that a DH/PH/C truncation mutant of Ect2 (activated 

by removal of the N-terminal BRCT domains, see domain structure in Fig. 1.6) is sufficient 

to drive cellular transformation in fibroblasts, but upon further removal of the C-terminus, 

the isolated DH/PH domains cannot recapitulate the phenotype (46, 94, 111).  One may 

expect that this requirement for the C-terminus would provide clues regarding which 

GTPases Ect2 acts through to regulate transformation, because the C-terminus is required for 

activation of Rac1 and Cdc42 (94).  However, the C-terminus also enhances Ect2-mediated 
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nucleotide exchange on RhoA.  Therefore it is still unclear which GTPases Ect2 acts through 

to drive transformation. 

 It has been proposed that, in addition to activating its GEF activity, Ect2 must also be 

cytoplasmically mislocalized to drive transformation of fibroblasts (111).  Indeed, Saito et al. 

showed that removal of NLS function (via point mutation or truncation) from Ect2 enhanced 

the ability of cells expressing it to grow free of contact inhibition (111).  Yet, the original 

Ect2 paper, also from Miki and colleagues, shows that Ect2 with both NLSs, 1 NLS, or 0 

NLSs are all transforming ((117), Fig. 1.7), These results suggest that Ect2 may be able to 

drive transformation from either the nucleus or the cytoplasm, or that all of these mutants 

shuttle between compartments. 

 A functional analysis of the domains of Ect2 utilized by tumor cells for transformed 

growth has not been performed.  Since normal fibroblasts require Ect2 to regulate 

cytokinesis/mitosis (131) but some tumor cells may not (121, 137), Ect2 could cause 

transformation of fibroblasts via enhanced cytokinesis/mitosis, but this may not be relevant 

for tumor cells.  Therefore, it is possible that the domains of Ect2 required for transformed 

growth in tumor cells is different from those sufficient to transform fibroblasts. 

 

Oncogene- expression in tumor cells 

No truncation/activation mutants of Ect2 have been described in human cancers.  

However, COSMIC (Catalogue of somatic mutations in cancer (140)) currently shows 

approximately 30 missense mutations in Ect2, one of which may attenuate its degradation 

(116).  Interestingly, functional degrons and nuclear localization of Ect2 is required for 

ubiquitin-mediated Ect2 degradation (116).  Additionally, Ect2 is overexpressed at the 
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mRNA level in a variety of tumor types, including lung (137), pancreatic (141, 142), 

recurrent liver (143), advanced kidney (144), oral (145), esophageal (146), brain (138, 147, 

148), head & neck (149), cervical (149), and ovarian tumors (45, 150, 151).  In some tumor 

types this is due to chromosomal amplification.  ECT2 is located on chromosome 3q26.1-

3q26.2 (152).  This region is frequently amplified in tumors of the: lung (153), pancreas 

(142), esophagus (154), head & neck (155), cervix (156), and ovaries (151, 157).  In fact, 

3q26 is the most common amplicon in ovarian tumors (158). 

Although protein expression of Ect2 in ovarian tumors had not been investigated, 

Ect2 was known to be overexpressed at the protein level in lung (137, 146), oral (145), 

esophageal (146), and brain (138, 147, 148) tumors.  In Chapter 4 I describe my analyses of 

Ect2 expression in ovarian tumors and cell lines. 

 

Oncogene- multiple transforming functions 

 High expression of Ect2 in lung (146), esophageal (146), and brain (138, 148) tumors 

is correlated with poor patient outcome.  Additionally, chromosomal amplification/mRNA 

expression of Ect2 in pancreatic ductal adenocarcinoma (PDAC) cell lines correlated with 

dependence on Ect2 for cell viability (142).  Indeed, Ect2 has many functions related to 

cellular transformation that may explain these correlations (see below).  Interestingly, many 

of these functions appear to be distinct from the role of Ect2 in cytokinesis (121, 137, 138). 

Knockdown of Ect2 prior to subcutaneous injection of non-small cell lung cancer 

(NSCLC) cells (137) or intracranial injection of astrocytoma cells (138) attenuates growth of 

these tumors in mice.  The tumors initiated from Ect2 knockdown cells in NSCLC showed 

lower levels of Brd-U staining, but no difference in TUNEL staining (137); and astrocytoma 
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tumors with Ect2 knocked down did not show increased multinucleation (138).  These results 

suggest that the phenotype of decreased tumor growth is due to decreased proliferation but 

not increased apoptosis or cytokinesis defects.  The decreased growth rate could also be seen 

in soft agar colony formation assays of NSCLC cells (137) but Ect2 knockdown did not 

affect proliferation on plastic of either NSCLC or astrocytoma cells (137, 138).  Therefore 

the role of Ect2 in both of these cell types appears to be related to proliferation during 

anchorage-independent but not anchorage-dependent growth.   

However, there have been conflicting reports about the role of Ect2 in tumor cell 

proliferation.  Hirata and colleagues also found that Ect2 knockdown decreases soft agar 

growth of NSCLC cells and esophageal squamous cell carcinoma (ESCC) cells.  Yet, in their 

experiments a general proliferation defect was observed, as NSCLC and ESCC cells with 

Ect2 knocked down became trapped in G1 phase of the cell cycle (146).  Similarly 

knockdown of Ect2 in oral squamous cell carcinoma cells caused growth arrest in G1 (145), 

and there are reports in glioblastoma (GBM) cells of Ect2 knockdown causing decreased 

growth (147, 148) and increased multinucleation (147).  Thus it is clear that Ect2 is required 

for anchorage-independent growth of tumor cells, however, it is less clear if this function is 

distinct from its role in mitosis/cytokinesis (described above) in all cell types. 

A general proliferation defect was observed repeatedly when siRNA was utilized for 

Ect2 knockdown (146-148), whereas when shRNA was used the defect was specific to 

anchorage-independent growth (121, 137, 138).  Thus, one may speculate that all cells 

require Ect2 for cytokinesis/mitosis, but upon stable knockdown a population of cells is able 

to evolve and compensate for loss of Ect2, whereas with transient knockdown the population 

has less selection pressure and time to evolve.  Still, a comparison of multinucleation after 
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stable knockdown of Ect2 in tumor vs. normal cells (137) (and also in two types of tumor 

cells (121)) shows that cell types vary in their dependence on Ect2 for cytokinesis/mitosis.  A 

much lower percentage of A549 and H1703 (NSCLC) cells showed multinucleation upon 

stable knockdown of Ect2 when compared directly with MDCK (canine kidney) cells (137). 

As described above, overexpression of Ect2 in NIH 3T3 cells can induce soft agar 

colony formation (117).  Together with the data from the previously described knockdown 

experiments, these results show that Ect2 can be both necessary and sufficient for anchorage-

independent growth.  Overexpression of activated Ect2 can also induce focus formation (46, 

94, 111, 117), indicating that Ect2 is also sufficient to allow cells to bypass contact-inhibition 

and continue to grow.  In summary, Ect2 is responsible for multiple aspects of transformed 

growth. 

 Beyond regulation of tumor cell growth, Ect2 also regulates migration and invasion.  

Intracranial injection of astrocytoma cells expressing endogenous Ect2 created tumors with 

more invasive borders, compared to the rare and discrete tumors formed when Ect2 

knockdown cells were injected (138).  And knockdown of Ect2 has been shown to decrease 

tumor cell invasion using both Matrigel invasion assays (137, 148) and organotypic brain 

slice invasion assays (147, 159).  Similarly, overexpression of Ect2 is sufficient to increase 

invasion through Matrigel of non-transformed cells (146).  With regard to migration the story 

is a little more complicated.  Knockdown of Ect2 has been described to decrease the rate of 

migration (147).  Conversely, overexpression of full length Ect2 can speed migration of some 

brain tumor and chicken fibroblast cells (138, 159), but also ectopic expression of truncated 

constitutively active Ect2 decreases the rate of migration of human fibrosarcoma cells (121).  

Given how tightly regulated Rho GTPases are and that different levels of activation of a 
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given GTPase can lead to opposite phenotypes (discussed above), perhaps these seemingly 

contradictory results should not be surprising. 

 There are two major types of single cell migration: amoeboid and mesenchymal, both 

of which require precise activation of Rho family GTPases (160).  Mesenchymal migration 

consists of a leading edge ruffling, extending forward, and adhering to a matrix, followed by 

the cell contracting to bring the rest of the cell forward and finally releasing its adhesions to a 

previous location (160).  Amoeboid migration requires much less adhesion and is powered by 

cycles of cellular expansion and contraction (160).  During amoeboid migration through a 

matrix the cell rounds into a ball, squeezing and blebbing its way through a matrix (37).  In 

contrast, during mesenchymal migration within a matrix, tumor cells typically degrade the 

matrix to create a tunnel through which they migrate (160).  Tumor cells utilize different 

forms of motion based on cell-type and the properties of the surrounding extracellular matrix 

(37).  Amoeboid migration is significantly faster than mesenchymal migration (160).  It has 

been proposed that overexpression of Ect2 can speed cell migration by transforming the 

preferred cellular migration pattern from mesenchymal to amoeboid (138).  Alternatively, for 

cells consistently moving in a mesenchymal fashion, Ect2 overexpression can slow migration 

by increasing focal adhesions and preventing forward motion (121).  Still, some level of Ect2 

activation appears to be required for proper membrane ruffling and optimal mesenchymal 

migration (159). 

The cell-type differences described indicate that further examination of the role of 

Ect2 in tumor cells is required and may vary with tumor type. 
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Oncogene- focus on Rac-driven transformation 

Although the importance of the DH domain/GEF activity of Ect2 in tumor cells has 

not been examined, the function of Ect2 in tumor cells has been correlated with its ability to 

activate Rac1.  In NSCLC, decreased anchorage-independent growth that results from Ect2 

knockdown can be rescued by expression of constitutively active Rac1 (137).  While this 

experiment does not prove that Ect2 acts through Rac1 to drive transformation, it shows that 

activated Rac1 is sufficient to drive transformation in these cells.  Further correlative data 

indicates that knockdown of Ect2 attenuates Rac1 activity (137, 138).  And a T327 (T328 in 

reference, see Fig. 1.6 legend) phospho-deficient mutant of Ect2 that cannot rescue Rac1 

activity also does not rescue anchorage-independent growth.  In contrast, WT and T327 

phospho-mimetic Ect2 rescue both Rac1 activity and anchorage-independent growth in 

NSCLC cells (161).  Therefore it has been hypothesized that Ect2 drives NSCLC cellular 

transformation through activation of Rac1 (137).   

Additional correlative data suggests that Rac1 activation may be a key function of 

Ect2 for driving cellular transformation.  As described above, overexpression of Ect2 

DH/PH/C transforms fibroblasts, while Ect2 DH/PH does not (46, 94, 111).   While the C-

terminus enhances nucleotide exchange on RhoA, Rac1, and Cdc42, fibroblasts expressing 

the DH/PH mutant have a morphology reminiscent of cells expressing active RhoA (94), 

whereas fibroblasts expressing DH/PH/C (46, 94) have a morphology suggestive of active 

Rac1.  Therefore one could speculate that Rac1 is dominating the GTPase signaling in these 

cells and may be driving transformation as well. 

 



32 

Oncogene- cytoplasmic mislocalization hypothesis 

 Based on work in NIH 3T3 mouse fibroblasts (described above), the current model of 

Ect2 oncogenic function requires mislocalization of Ect2 from the nucleus to the cytoplasm 

in order to activate Rho GTPases and drive cellular transformation (111).  Consistent with 

this idea Ect2 has been observed in the cytoplasm of a variety of tumor cells.  

Immunohistochemistry (IHC) has been used to stain normal lung and NSCLC tumors for 

Ect2.  In normal lung epithelia Ect2 was observed in the nucleus, whereas in tumor epithelia 

it appeared to be nuclear excluded with high cytoplasmic expression (137).  Although 

initially convincing, the primary tumor subcellular localization did not match that of NSCLC 

cell lines, where examination via immunofluorescence showed intense nuclear staining of 

Ect2, with low cytoplasmic signal (137).  Additionally, when I tried to validate the specificity 

of the Santa Cruz antibody used, many non-specific bands appeared upon immunoblot and 

the immunofluorescence signal did not decrease upon Ect2 knockdown (Chapter 4 and data 

not shown).  Therefore while the antibody (from the lot I tested) is sufficient for use by 

immunoblot where proteins can be separated by apparent molecular weight, it should not be 

used for immunofluorescence and likely not for immunohistochemistry.  Examination of 

Ect2 expression in NSCLC by another group, utilizing a non-commercial antibody, indicated 

that both nuclear and cytoplasmic staining of Ect2 increased with tumor progression (146).  

This is consistent with other tissue types that have been examined (oral, esophageal, brain).  

Indeed, in normal tissue that has been stained, Ect2 is either expressed at low levels in the 

nucleus (137, 138, 146), low levels in the cytoplasm (147), or at undetectable levels (145, 

146), and upon tumor progression Ect2 strongly stains the nucleus and also faintly highlights 

the cytoplasm (138, 145-147).  Clearly Ect2 is not mislocalized in all tumor types.  For 
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example, the initial characterization of Ect2 subcellular localization was performed in HeLa 

cells, which were derived from a cervical tumor (162), and in these cells Ect2 is 

predominantly nuclear during interphase (76). 

Nuclear Ect2 has been assumed to be in an autoinhibited state, and sequestered from 

Rho GTPases (111).  Consistent with this idea the majority of Rho GTPases are localized in 

the cytoplasm (47).  However, pools of multiple Rho GTPases have also been observed in the 

nucleus (described above).  Additionally, not all nuclear Ect2 is in an autoinhibited state, 

since, at least in HEK293T cells, a portion of nuclear Ect2 can interact with nucleotide-free 

RhoA (68).  Therefore, the previous model requires revising (Fig. 1.8). 

 Also, the mechanism behind cytoplasmic mislocalization of Ect2 in tumor cells 

remains unclear.  Exogenous Ect2 localizes to both the nucleus and cytoplasm of astrocyte 

progenitor cells, astrocytes, and astrocytomas, but only to the nucleus of some non-

astrocytoma cell lines (138).  Thus it has been hypothesized that overexpression alone is not 

sufficient to induce cytoplasmic mislocalization of Ect2, but instead that cytoplasmic 

mislocalization is regulated in some way (138).  The Fields lab proposed that this regulation 

is conferred by PKCi phosphorylation of Ect2 on residue T327, and that the negatively 

charged phosphate opposes the adjacent basic NLSs to enhance cytoplasmic localization of 

Ect2 (137, 161).  However, it is unclear if/how phosphorylation of Ect2 regulates its 

subcellular localization (See Chapter 6.1). 

 



34 

RAS AND RHO GTPASES IN CANCER 

Identification 

 The study of Ras superfamily GTPases began in the 1960s when 2 viruses capable of 

inducing tumors in mice were identified (163, 164).  These viruses contained genes from 

rodent cells that drove cellular transformation, which were later identified as the GDP/GTP 

binding proteins that we today call H-Ras (Harvey-Rat sarcoma) and K-Ras (Kirsten-Rat 

sarcoma) (2).  Thus it is not surprising that misregulation of Ras and Rho GTPases drives 

tumor formation and many aspects of the transformed phenotype (2, 47). 

 

Mutants- observed in tumors and used as tools 

 Ras family GTPases are frequently mutated in tumor cells (165).  Alterations in 

residues G12, G13, and Q61 account for 97-99% of all observed Ras mutations in cancer (2).  

A variety of amino acids replace the WT residues in tumors (2), which is not surprising, 

because many amino acid substitutions result in the same phenotype.  For example, mutation 

of G12 to any residue other than proline is sufficient to drive cellular transformation (166).  

Mutation of G12, G13, or Q61 creates a constitutively active GTPase by further impairing its 

intrinsically low ability to hydrolyze GTP and by conferring GAP insensitivity (167).   

Frequency of mutation differs between isoforms and GTPases.  K-Ras is mutated in 

22% of tumors, while N- and H-Ras mutations are less common (8% and 3% respectively) 

(165).  For a long time, Rho GTPases were considered distinct from their Ras counterparts by 

not being mutated in human tumors.  Instead, Rho GTPases, RhoGEFs, and Rho downstream 

effectors were observed overexpressed in tumors, while GAPs were downregulated (47).  It 

was suggested that this was due to the tighter regulation and GDP/GTP cycling required for 
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optimal Rho GTPase activity (52).  However, recent deep sequencing studies have allowed 

the identification of Rac mutations in melanoma tumor cells and a variety of tumor cell lines 

(168-170).  In fact, Rac1(P29S) is the third most common mutation in sun-exposed 

melanomas (168, 169).  This mutation is located in the switch I region of GTPase and 

activates Rac (168-170).  The mechanism by which P29S activates Rac1 is distinct from the 

activation of Ras by the mutations described above.  P29S causes rapid nucleotide 

dissociation from Rac1 (170, 171) (hence, it is referred to as a "fast-cycling" mutant), which 

results in a GTPase that is frequently GTP-bound due to the higher prevalence of cellular 

GTP compared to GDP.  Additionally, mutation of this residue may destabilize the GDP-

bound conformation of Rac1 (169).  The P29S mutation promotes proliferation (168); has an 

anti-apoptotic effect (170); is sufficient to drive anchorage-independent and tumor growth 

(170); enhances membrane ruffling (171); and increases speed of migration (168) of cells 

expressing mutant Rac1.  Interestingly, Rac1(P29S) did not cause a dramatic increase in 

multinucleation whereas expression of an artificial Q61L Rac1 mutant did (171), suggesting 

that a fast cycling mutant allows progression through cytokinesis that is disrupted by a 

GTPase-deficient Rac1.  N92I and C157Y mutations of Rac have also been observed in 

cancer cell lines, are fast cycling, and can drive anchorage-independent and tumor growth 

(170).  These recent advances suggest that more Rho GTPase mutations may await discovery. 

In addition to the mutations observed in tumor cells, other Ras and Rho GTPase 

mutations are frequently utilized to better understand cellular signaling.  Rho family GTPases 

are mutated at residues homologous to Ras G12 and Q61 to create constitutively active 

GTPases.  Additionally, fast-cycling mutants of Ras (172) and Rho family (173) GTPases are 

sometimes utilized as mimics of chronically on GTPase activity.  For example, mutations 
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homologous to Ras(F28L) cause rapid nucleotide dissociation from GTPases without 

affecting GTP hydrolysis (172, 173).  Although the engineered fast-cycling mutants result in 

the same effect that is now understood for the Rac1(P29S) mutation identified in melanomas, 

the structures of the two fast-cycling proteins are distinct (171). 

In a screen for engineered Ras mutations that inhibit its activity, Ras(S17N) (174) and 

Ras(G15A) (175) were found.  These mutants act as dominant-negatives.  They have a low 

affinity for downstream effectors or nucleotides, but bind to GEFs with higher affinity than 

WT GTPases (176).  Therefore expression of these mutants outcompetes endogenous Ras for 

GEFs and prevents activation of endogenous Ras (176).  The G15A mutation creates the 

strongest interaction between Ras and GEFs, which has been described as irreversible (176).  

Yet, G15A is not stable in cells, so the less dramatic mutant, S17N, is commonly used as a 

dominant-negative in cellulo (176).  Experiments utilizing these dominant-negative mutants 

must be interpreted with caution, especially for Rho GTPases which have very promiscuous 

GEFs (85).  Since these mutants bind the GEF to prevent further activation of GTPases, 

expression of a dominant-negative GTPase (e.g. Rac(S17N)) will likely inhibit signaling to 

other GTPases as well (e.g. RhoA and Cdc42 GEF-dependent activation) (176). 

Effector domain mutants have also been constructed, which show specificity to 

various Ras signaling cascades (2).  For example, Ras Y40C signals to PI3K but not Raf or 

Ral-GDS (177), whereas Ras T35S signals to Raf and Ras E37G signals to Ral-GDS more 

specifically (177, 178).  Yet as more signaling cascades are identified downstream of Ras the 

specificity of these mutants requires further testing.   
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Rho GTPases and GEFs are necessary and sufficient to drive many tumor phenotypes 

 The first associations of Rho GTPases/RhoGEFs with cellular transformation utilized 

many of the mutants described above.  Expression of dominant-negative mutants of Rac1, 

Cdc42, or RhoA inhibit Ras-driven cellular transformation (179-182).  These studies have 

since been confirmed with GEF knockout studies in vivo.  For example, knockout of the 

Rac1 GEF Tiam1 dramatically reduced the number of tumors formed in a Ras-induced skin 

tumor model (183).  Yet, the tumors that did form in Tiam1 knockout mice were more 

malignant than their Tiam1-expressing counterparts, suggesting that Tiam1 plays multiple 

roles throughout tumor initiation and progression (183).  The role of RhoGEFs in tumors has 

since been expanded beyond Ras-driven oncogenesis.  In some tumor-derived cell lines, 

knockdown of RhoGEFs such as Ect2 (137), Vav1 (184), and Trio (185) reduces tumor 

growth. 

 It was also observed early-on that overexpression of Rac1(G12V) is sufficient to 

induce focus formation (180) and RhoA(G14V) enhances Raf-driven focus formation (179).  

Now we know that fast-cycling mutants of Rho GTPases are more likely than these GTP-

locked mutants to be observed in tumor cells (186), and that fast-cycling mutants of Rac1 

drive cell proliferation, anchorage-independent growth, tumor growth, and inhibit apoptosis 

(168, 170).  Similarly, activated RhoGEFs such as Ect2 (117), LARG (when overexpressed 

with active Raf) (187), Vav (188), Dbl (189), and a variety of others (190), are sufficient to 

induce these phenotypes in fibroblasts.  In fact, expression of activated Rho GEFs is 

frequently more transforming than active Rho GTPases (46).  

 Because of their function in regulating the cytoskeleton and adhesion (discussed 

above), Rho GTPases are frequently studied for their role in tumor cell migration/invasion 
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and tumor metastasis.  For example, RhoC expression is elevated in cells derived from 

pulmonary metastasis compared to initiating tumor cells (191) and knockout of RhoC 

dramatically reduces tumor metastasis (but not primary tumor formation) in a mouse model 

(192).  To enhance migration/invasion/metastasis, Rho GTPases directly regulate cell 

movement (7), cell adhesion (193), and cell polarity (194).  Rho GTPases can also activate 

expression/secretion of matrix metalloproteinases (MMPs) to degrade the ECM and allow 

cell movement through it (195).  This is true not only for epithelial cells, but also for 

endothelial cells allowing for angiogenesis and vascularization of tumors (196, 197).  It was 

recently shown that mice with the RhoGEF Asef knocked out have dramatically reduced 

ability to vascularize tumors (198). 

 Only a few of the many examples of Rho GTPase misregulation in cancer have been 

described above.  As shown from this sampling, Rho GTPases regulate a variety of tumor 

cell functions, including tumor initiation, tumor growth/progression, tumor 

invasion/metastasis, and angiogenesis (47, 186). 

 

How Rho GTPases drive cancer 

Hanahan and Weinberg have famously summarized the “hallmarks” of cancer cells as 

sustaining proliferative signaling, evading growth suppressors, avoiding immune destruction, 

enabling replicative immortality, tumor-promoting inflammation, activating invasion and 

metastasis, inducing angiogenesis, genome instability and mutation, resisting cell death, and 

deregulating cellular energetics (199).  Ras and Rho family GTPases are involved in many of 

these processes, through a variety of signaling cascades (37, 200-202).  Figure 1.2 highlights 
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in orange some effectors of Rho family GTPases that are key regulators of one or more of 

these functions.   

Prenylation of Rho GTPases is thought to be required for them to drive cellular 

transformation, yet unprenylated GTPases have still been reported to regulate transcription 

(14, 16, 20).  Therefore, the role of GTPases in gene transcription has been uncoupled from 

its role in cellular transformation under at least some conditions.  This was confirmed with 

multiple RhoA and Rac1 mutants capable of inducing SRF-transcription but not cellular 

transformation (203, 204).  Still, Rho GTPases regulate the transcription of many genes, so 

some may be more relevant for cellular transformation.  Westwick and colleagues observed 

that the transforming potential of RhoGEFs in NIH 3T3 mouse fibroblasts correlates with 

their ability to drive cyclin D1 expression, but does not correlate with their ability to regulate 

transcription factors SRF and c-Jun (46).  In the same study, the ability of a panel of 

RhoGEFs to activate p38 and JNK also did not correlate with their ability to transform 

fibroblasts (46).  This is not surprising, because it seems that there is not a single common 

mechanism through which all Rho GTPases drive cellular transformation, but instead cell-

type and context differences decide the implications of a given signal.  Some examples are 

given below.  

Rac effector domain mutants have been used to determine that neither PAK nor JNK 

binding to Rac1 is required for Rac1 to induce cellular transformation in fibroblasts (204).  

This is surprising given the myriad of oncogenic pathways that PAKs regulate ((205) and Fig 

1.2).  A more recent study on skin tumors suggests that PAK activation of MEK (and the 

subsequent activation of ERK) mediates the ability of Rac1 to drive transformation (206).  



40 

Therefore, it is likely that in some cell types Rac acts through PAK for this phenotype, while 

in others it does not. 

Many have suggested that Rac1 drives cell survival and cellular transformation via 

signaling to ERK, Akt, and NF-κB, whereas Rac1 activation of p38 and JNK inhibits 

transformation by promoting apoptosis (reviewed in (202)).  ERK is a family of kinases that, 

upon phosphorylation, translocates into the nucleus to regulate a variety of mitogenic 

transcription factors (207).  Rac1 has been described to activate ERK by converging in a 

variety of ways on the EGFRSOSRasRAFMEKERK pathway (206).  A direct 

interaction between Rac1 and ERK has been described (208).  However, most mechanisms 

are through PAK.  Rac1 activation of PAK has been shown to promote phosphorylation of 

both RAF (209) and MEK (206) to ultimately activate ERK.  Similarly, PAK1 can bind to 

Akt and act as a scaffold for PDK1 to phosphorylate and activate Akt (210).  Akt is a 

serine/threonine kinase that phosphorylates a variety of substrates to regulate cell survival, 

metabolism, angiogenesis, etc. (211).  It is most commonly activated when PDK 

phosphorylates it after PI3K production of PIP3 recruits both kinases to the plasma 

membrane (211).  Rac1 can directly bind to PI3K to regulate Akt signaling as well (212).   

Cdc42 also activates PAKs (205) and directly binds PI3K (212); therefore similar 

signaling pathways to those for Rac1 have been described to explain its role in cellular 

transformation (201).  Additionally, activated Cdc42 binds the ubiquitin ligase Cbl and 

prevents EGFR degradation.  Therefore, sustained Cdc42 activity leads to sustained EGFR 

signaling, ERK activation, and transformation (213).  Yet, as with Rac1, Cdc42 can also 

initiate apoptosis via activation of JNK (214). 
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 As shown in Figure 1.2, RhoA signals to a variety of downstream effectors, including 

ROCK, mDia, and rhotekin (215).  Effector domain mutants revealed a correlation between 

ROCK binding and the ability of RhoA mutants to transform cells (in conjunction with Raf) 

(203).  Also, inhibition of ROCK minimizes Dbl-, Net1-, and RhoA-induced anchorage-

independent growth (216).  This indicates that signaling to ROCK is a key pathway by which 

RhoA drives cellular transformation.  This is not surprising, because ROCK phosphorylates 

important downstream substrates that are involved in cellular transformation signaling (as 

shown in Fig. 1.2).  Still, activated ROCK is not as transforming as active RhoA, suggesting 

that RhoA works through other pathways as well (216).  It has been proposed that the actin 

polymerization functions of RhoA can help drive transformation (37).  For example, data 

suggest that RhoA activation of mDia to enhance stress fiber formation could allow for 

proper localization of the oncogene Src kinase to drive transformation. (37). 

 

Ovarian cancer overview 

 Projected to kill over 14 thousand women in the United States in 2013, ovarian cancer 

is the deadliest of gynecological cancers and the fifth leading cause of cancer-related deaths 

of American women (217).  When diagnosed while the tumor is confined to the ovaries, 

ovarian cancer has a 5-year survival rate of 92% (217).  However, this drops to 27% if the 

disease is diagnosed after it has spread to distant lymph nodes or organs (217).  

Unfortunately, most ovarian tumors (61%) are discovered after distant metastasis has 

occurred (217).  Therefore either better biomarkers of ovarian cancer that allow for earlier 

detection or better treatment for late stage tumors are essential to fight this disease. 
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A comparison of somatic copy number alterations between serous ovarian tumors and 

GBM tumors (218), highlights the fact that ovarian tumors are extremely heterogeneous.  

Therefore specific advances in treatment will likely be effective only in a subset of ovarian 

malignancies.  Epithelial tumors account for 90% of ovarian cancers (219), and are further 

divided into four common subtypes, based on the gynecological tissue each tumor resembles 

pathologically:  serous (fallopian tubes); endometrioid (endometrium); mucinous 

(endocervix); and clear cell (vagina) (219).  Molecularly, ovarian cancer can be stratified into 

two types.  Type I ovarian cancer is characterized by mutations in K-Ras, B-Raf, PI3K, or 

PTEN.  Type II ovarian cancers generally have inactivating mutations in the tumor 

suppressor p53 (219).  In addition to these mutations, ovarian tumors also show 

chromosomal instability.  One of the most frequent genomic amplifications in ovarian cancer 

is 3q26, which includes the genetic locus for ECT2 (151, 218). 

Even with these known genetic errors, no targeted chemotherapeutics are used in the 

clinic.  The standard of care for advanced stage ovarian cancer is debulking surgery followed 

by a combination of conventional platinum- and taxane- based chemotherapeutics (220, 221).  

Many ovarian tumors are initially responsive to this treatment; however, recurrence usually 

leads to fatality.  Targeted chemotherapeutics that show specificity to tumor cells and allow a 

higher concentration of drug to be tolerated may be the key to killing more resistant tumor 

cells and preventing recurrence. 

 

Rho GTPases in ovarian cancer 

 As with many tumor types, Rho GTPases have been implicated in ovarian tumor 

signaling.  RhoA and RhoC mRNAs are more highly expressed in advanced ovarian tumors 
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compared to benign cysts and early stage tumors, and also in metastases compared to primary 

tumors (222).  Both GTPases appear to function in ovarian tumor cell motility.  Knockdown 

of RhoC decreases tumor cell invasion and migration (223).  Similarly, inhibition of RhoA 

decreases Matrigel invasion in cellulo (222) and peritoneal dissemination in a mouse model 

(224).  Overexpression of RhoA increased peritoneal dissemination, but did not affect 

proliferation of ovarian tumor cells (224).  The role of RhoA in ovarian cancer cell invasion 

and metastasis may be through activation of p160ROCK.  This downstream effector of RhoA 

(225) is necessary for optimal ovarian cancer cell migration and invasion in cellulo, and its 

expression is sufficient to enhance both phenotypes (226). 

 Although neither Rac1 nor Cdc42 has been reported to be upregulated in ovarian 

cancer cells, upstream and downstream effectors of these GTPases are important in ovarian 

tumor cells.  For example, PAKs are major downstream effectors of Rac1 and Cdc42 (205).  

PAK1 (227) and PAK4 (228) mRNA and protein are expressed more highly in ovarian tumor 

cells compared to cysts.  Further, activated phospho-PAK1 (T212), phospho-PAK2 (S20), 

and phospho-PAK4 (S474) are found significantly more often in ovarian tumor cells when 

compared to benign lesions (227, 228).  These expression data match patient outcome.  

Higher levels of either total or phosphorylated PAK1 (227) or PAK4 (228) correlate with 

poorer patient survival.  Interestingly, the phosphorylated form of both of these kinases is 

seen predominantly in the nucleus, whereas total protein is mostly cytoplasmic (227, 228).  

Knockdown of PAK1, PAK2, or PAK4 in ovarian cancer cell lines decreases migration and 

invasion whereas overexpression of constitutively active PAKs has the opposite effect (227, 

228).  PAK4 also enhances ovarian cancer cell proliferation (via increasing expression of 

cyclin D1), but PAK1 and PAK2 do not regulate proliferation of these cells (227, 228). 
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 Regulators of Rho GTPases that have also been implicated in ovarian tumor signaling 

include the RhoGEF DOCK180 (229) and the RhoGAPs IQGAP (230) and DLC-1-3 (231, 

232).  As mentioned above, Ect2 has been shown to be both amplified and upregulated at the 

mRNA level in ovarian cancer cells (45, 150, 151).  Yet the protein level expression and the 

role of Ect2 in this disease had not been previously investigated (see Chapter 4). 
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Figure 1.1.  GTPases activity is regulated by GEFs and GAPs.  GTPases act as molecular 
switches within the cell.  They are “on” and able to interact with downstream effectors while 
GTP bound and “off” while GDP bound.  Guanine nucleotide exchange factors (GEFs) 
catalyze the release of bound nucleotide enabling GTP to bind to and activate the GTPase.  
GTPase activating proteins (GAPs) enhance the intrinsic ability of the GTPase to hydrolyze 
GTP and turn the GTPase “off.” 
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Figure 1.3.  RhoGDI strip GTPases from the plasma membrane and sequester GTPases 
from effectors.  In addition to GEFs and GAPs, Rho GTPases are regulated by Rho guanine 
nucleotide dissociation inhibitors (RhoGDI).  RhoGDIs bind to the C-terminal prenyl group 
of Rho family members and to the GTPase itself.  GDIs strip Rho GTPases from membranes 
and sequester them in the cytosol, where the Rho GTPases are unable to interact with their 
downstream effectors. Additionally, GDIs inhibit nucleotide dissociation and GTP hydrolysis. 
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Figure 1.4.  Dbl family RhoGEFs contain a Dbl homology (DH), a pleckstrin homology 
(PH), and a variety of other domains.  The variability in additional domains allows cells to 
respond to a variety of signaling inputs by activating Rho GTPases.  Ribbon diagrams of 
some example Dbl family RhoGEFs are shown.  Here I have focused on Rho GEFs that have 
been observed in the nucleus.  See the list of abbreviations and symbols for further details. 
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Figure 1.6.  Domain structure of Ect2. SMART (simple modular architecture research tool) 
was used to define the domains of the Homo sapiens Ect2 sequence (GenBank accession 
number AY376439). See list of abbreviations and symbols for full domain names.  Amino 
acid (a.a.) numbers and nuclear localization signals (NLS) are shown.  Regions of homology 
with each Ect2 shRNA are indicated with red lines.  Some Ect2 papers utilize an alternative 
sequence for Ect2, with an additional glutamic acid at residue 45.  Thus occasionally, the 
numbering described in referenced papers will be one a.a. higher than the numbering used 
within this dissertation.   
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CHAPTER 2: PRENYLATION AND PHOSPHORYLATION OF RHO FAMILY 

GTPASES1 

 

OVERVIEW 

Canonical small GTPases of the Ras, Rho and Rab families are modified in their C-

terminal membrane targeting domains by farnesyl or geranylgeranyl isoprenoid groups, and 

these prenyl lipid modifications are strictly required for their correct subcellular localization 

and biological functions.   Some of these proteins are also modified by nearby acylation with 

palmitate(s) that dynamically regulate their membrane binding and activities and permit more 

precise spatiotemporal control of their functions.  In recent years it has become appreciated 

that additional posttranslational modifications such as phosphorylation may be a common 

mechanism for further dynamic modulation of these permanently prenylated proteins.  In this 

chapter, we discuss the current state of knowledge regarding the C-terminal sites of 

phosphorylation of prenylated small GTPases, the kinases involved, and the consequences of 

these phosphorylation events for GTPase activation, subcellular localization, effector 

utilization and biological functions. 

 

 

                                                        
1This chapter is reprinted from The Enzymes, Vol 30, Protein Prenylation part B (11), with 
permission from Elsevier.  I wrote the section on Rho family GTPases.  Heather B. Hodges-
Loaiza wrote the section on Ras family GTPases and the introductory sections.  We worked 
together on the conclusions and figures.  Adrienne D. Cox edited all sections of this chapter. 
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INTRODUCTION 

 The Ras superfamily of small GTPases encompasses the Ras, Rho, Rab, Arf and Ran 

subfamilies, whose diverse cellular functions include regulation of cellular metabolism, 

proliferation, differentiation and survival, cytoskeletal organization and motility, and 

vesicular trafficking (1, 2).  Not surprisingly, their precise and correct regulation is critical to 

maintain cellular homeostasis and proper functioning, whereas perturbation can lead to 

pathophysiological states.  These proteins function as GDP-/GTP-regulated molecular 

switches to transduce cellular signals through multiple signaling cascades.  Each subfamily 

includes highly related isoforms in which the primary regions of difference occur not in their 

ordered GTP-binding regions but in their highly flexible C-terminal membrane targeting 

regions, which are thus designated as the hypervariable regions (HVRs) or hypervariable 

domains (HVDs).  HVD sequence differences between isoforms are highly conserved at the 

protein level throughout evolution, supporting the importance of these regions for protein 

function. 

Spatiotemporal control of small GTPase signaling is conferred by a variety of 

posttranslational modifications of the HVD sequences that dictate targeting to specific 

subcellular compartments (e.g., plasma membrane [PM] versus Golgi), or to regions within 

those compartments (e.g., PM lipid rafts or non-raft PM regions).  These posttranslational 

modifications are currently known to include prenylation, acylation, carboxymethylation, 

ubiquitination, SUMOylation and phosphorylation.  Here, we focus on phosphorylation of 

the C-terminal HVDs of prenylated small GTPases.  The most common consequence of such 

phosphorylation is translocation from the plasma membrane to the cytosol and 

endomembranes, where the translocated GTPases then interact with different pools of 
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regulators and effectors, resulting in distinct biological outcomes for the phosphorylated and 

unphosphorylated forms.  

 

SMALL GTPASE PRENYLATION 

 Prenylation modifies eukaryotic proteins from a diverse spectrum of families, 

employing branched, unsaturated lipid groups that are biosynthesized from the mevalonate 

metabolic pathway, which provides the minimal five-carbon isoprene subunit of prenyl 

groups.  Among the Ras superfamily, farnesyl or geranylgeranyl moieties are attached to the 

C-terminal “CAAX” motifs of most members of the Ras and Rho branches, where C is 

invariantly a cysteine, A is generally an aliphatic amino acid, and X = a variable amino acid, 

usually M, Q, S, T or A for farnesyl and L or I for geranylgeranyl (12).  The farnesyl moiety 

is a 15-carbon isoprenyl chain that exists as the precursor lipid substrate farnesyl diphosphate 

(FPP) prior to its transfer to the target protein substrate by the enzyme farnesyl transferase 

(FTase).  FTase transfers FPP to the sulfhydryl side chain of the cysteine within the C-

terminal CAAX motif, forming a stable thioether bond.  Modification of small GTPases by a 

geranylgeranyl moiety, from the 20-carbon geranylgeranyl diphosphate, requires the 

enzymatic activity of either geranylgeranyl transferase I (GGTase I) or geranylgeranyl 

transferase II (GGTase II).  The latter enzyme specifically modifies members of the Rab 

subfamily of small GTPases, which terminate in CC, CXC, CCXX or CCXXX motifs and 

which all bind to a critical accessory protein, REP (Rab escort protein).  The Rab:REP 

complex is then recognized by GGTase II for prenylation.  In contrast, Arf family GTPases 

are not prenylated, but instead are stably acylated by the fatty acid myristate on N-terminal 

glycine residues, whereas the Ran GTPase is not modified by any lipid. 
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Newly prenylated C-terminal CAAX motifs then signal for further modifications by 

post-prenylation processing enzymes; these modifications do not take place in the absence of 

prenylation.  Ras converting enzyme 1 (Rce1) performs the first of two post-prenylation 

modifications of the CAAX motif itself.  Rce1 is an endoplasmic reticulum (ER)-integral 

membrane metalloprotease that recognizes C-terminal farnesylated or geranylgeranylated 

CAAX motifs and subsequently hydrolyzes the three -AAX amino acids from the prenylated 

CAAX motif.  The newly exposed C-terminal prenylcysteine is then recognized as a 

substrate for esterification on its α-carboxyl group by the enzyme isoprenylcysteine carboxyl 

methyltransferase (Icmt), which transfers a methoxy functional group from the methyl donor 

S-adenosyl-L-methionine (SAM) to afford water and S-adenosyl-L-homocysteine as 

byproducts.  The protein product of the three CAAX-signaled modifications of prenylation, 

proteolysis and carboxylmethylation includes a C-terminus with increased hydrophobicity 

and the appropriate biological attributes to be recognized by additional cellular machinery 

necessary for proper subcellular localization and functionality.   

Prenylation has long been described as an obligate modification for membrane 

binding of the small GTPases so modified, as either structural mutation of the prenylated 

cysteines or pharmacological inhibition of the prenylation enzymes results in cytosolic 

proteins.  However, prenylation is insufficient to support full biological activity.  Because the 

diversity of small GTPase functionality requires very precise spatiotemporal control, multiple 

levels of regulation are required to confer such precision.  CAAX-signaled processing alone 

is sufficient to promote weak membrane binding but is insufficient to promote either strong 

binding or binding to specific membranes.   To accomplish this, both a “second signal” for 

membrane binding - which can be either a stretch of polybasic residues (PBR; lysines and/or 
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arginines) or acylation by one or more palmitates (9, 235) - and additional contextual 

sequence information (236) are necessary.  Related small GTPase isoforms frequently 

contain either a PBR or a palmitoylation site, suggesting that it is important to maintain the 

diversity of functional consequences conferred by each type of second signal.  Finally, since 

both the prenyl lipid and the PBR are permanent, there is strong rationale for additional 

posttranslational modifications that can confer more dynamic modulation.  

 

C-TERMINAL PHOSPHORYLATION OF PRENYLATED RAS FAMILY SMALL 

GTPASES 

Phosphorylation is becoming more widely recognized as another major 

posttranslational modification that influences the localization and function of prenylated 

small GTPases, by modulating the affinity of their C-terminal HVDs for specific biological 

membranes and for specific protein:protein interactions.  These phosphorylation events are 

performed by an assortment of kinases and can be both cell type- and cell context-dependent.  

The contributions of C-terminal phosphorylation to the Ras branch of small GTPases include 

direct effects on protein-protein interactions, as is the case for K-Ras4B phosphorylation 

inhibiting calmodulin or galectin-3 binding, as well as indirect effects such as the allosteric 

changes caused by phosphorylation that perturb distal effector binding to Rap1.   
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K-Ras4b phosphorylation by PKC-alpha alters its protein:protein interactions with 

calmodulin and galectin-3, and translocates it from the PM, converting it to a death-inducing 

protein 

Ras proteins normally play critical roles in transduction of extracellular signals to 

intracellular signaling to regulate gene expression and cellular proliferation and survival, and 

the genes that encode them are particularly known as the most frequently mutated oncogenes 

in human cancers (2, 237).  Therefore there is particular interest in understanding the 

mechanisms that regulate Ras activity, which can so easily go awry with dire consequences.  

Although there are four Ras isoforms (H-Ras, N-Ras, and the alternatively spliced K-Ras4A 

and K-Ras4B), all of which are farnesylated, only K-Ras4B is also C-terminally 

phosphorylated. K-Ras4B was the first small GTPase in which this type of phosphorylation 

was reported, although it was not until many years later that the cellular consequences of this 

modification would be discovered.  In 1987, Ballester, Furth and Rosen demonstrated (238), 

through metabolic labeling and immunoprecipitation studies of NIH 3T3 mouse fibroblasts, 

as well as in vitro phosphorylation assays, that K-Ras4B became phosphorylated in response 

to short-term stimulation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate 

(PMA), also known as 12-O-tetradecanoylphorbol-13-acetate (TPA).  They concluded that 

K-Ras4B is a direct substrate of PKC and that the likely site of phosphorylation was serine 

181.  This residue is just upstream of the farnesylated CAAX motif in the HVD, but the 

existence of neither farnesylation nor CAAX motifs in small GTPases was known at the time. 

In 2006, Philips and colleagues confirmed not only that transient stimulation of PKCalpha 

activity resulted in rapid phosphorylation of a subset of K-Ras4B on serine 181, but also that 

this phosphorylation induced a rapid translocation of phosphorylated K-Ras4B from the 
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plasma membrane (PM) to internal membranes and increased interaction with Bcl-XL (239).  

Translocation of K-Ras4B also resulted in cell death, a process that our laboratory then 

observed to be mimicked by the K-Ras4B phosphomimetic mutant S181E, and that tumor 

xenograft growth could be modulated by bryostatin-1, an activator of PKC, only when S181 

was intact (239).  These results collectively indicated the critical role played by 

phosphorylation of the HVD for both localization and biological activity of this important 

Ras small GTPase, and led to hopes, as yet unrealized, that this process could one day be 

exploited as a tractable avenue for managing the activity of oncogenic K-Ras4B.  

Interestingly, members of the Faller laboratory demonstrated that chronic PMA 

treatment of mouse fibroblasts that depletes PKC activation caused a K-Ras-dependent 

apoptotic mechanism (240) that was not well suppressed by the apoptotic inhibitor Z-

VADfmk (241).  Thus, any deregulation of PKC activity, whether stimulation or suppression, 

may alter K-Ras control of cell survival in a context-dependent manner, either directly or 

indirectly, further highlighting the complexity of interfering in Ras function in a controllable 

way. 

The Agell laboratory has explored the relationship between PKC-mediated 

phosphorylation of K-Ras at S181 and binding of the second messenger calmodulin (CaM) to 

this residue, and the consequences of these interactions for K-Ras localization and activity.  

They demonstrated that CaM interacts with GTP-bound K-Ras, but not with H-Ras or N-Ras 

(242), and, consistent with this selectivity, that the farnesyl group, polybasic residues and 

S181 of K-Ras are all required for this interaction (243).  Phosphorylation of S181 and CaM 

binding are mutually exclusive, as a phosphomimetic mutant S181D cannot bind to CaM 

(244). PMA-mediated transient stimulation of PKC in NIH 3T3 cells resulted in increased 
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levels of K-Ras-GTP, but only if CaM was inhibited (244).  Finally, an S181D 

phosphomimetic mutation but not a phosphodeficient S181A mutation in wild-type K-Ras 

was able to support proliferation when expressed in otherwise "Ras-less" fibroblasts (245).  

These findings, together with their previous studies that showed PM colocalization of CaM 

with K-Ras, as well as a PM localization of S181 phosphorylated K-Ras (243), led them to 

propose that this CaM / K-Ras S181 phosphorylation interplay provides a mechanism for 

regulating K-Ras localization into discrete PM microdomains in concert with the known 

mechanisms of K-Ras localization to specific nanoclusters, as described below. 

In 2008, Plowman, Hancock and colleagues utilized the S181E phosphomimetic 

mutant of K-Ras4B to determine the effects of phosphorylation at this residue on K-Ras 

nanocluster assembly and function (246).  Activated K-Ras-GTP organizes into functional 

nanoclusters on the inner leaflet of the plasma membrane, forming PM “hot spots” that 

support the transduction of high fidelity signals through intracellular signaling cascades (247, 

248).   K-Ras nanocluster organization, which is distinct from that of H-Ras or N-Ras, is 

dependent on both cellular context, including PM lipid content and actin cytoskeleton 

organization, and on K-Ras sequences (25, 247-250).  Galectin-3 (Gal3), a predominantly 

cytosolic protein, is recruited to the PM upon K-Ras activation to facilitate K-Ras-GTP 

nanocluster formation through interactions with the G-domain and with the farnesyl group of 

K-Ras (25).  The Gal3 hydrophobic binding pocket is also a Ras prenyl-binding pocket, and 

the recognition of K-Ras-GTP by Gal3 is structurally similar to that of RhoGDIs with Rho 

GTPases, in which the GTP-dependent conformational change of the GTPase within the 

switch I and switch II regions allows for direct interaction of the binding partner within the 

G-domain.  Phosphorylation of K-Ras(G12V) at S181 inhibited nanocluster formation, but 
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surprisingly had no effect on the scaffolding ability of Gal3 in organizing the nanoclusters, 

indicating that Gal3 and the polybasic domain make distinct contributions to the formation of 

K-Ras-GTP nanoclusters.   

 

Rap1 phosphorylation by PKA translocates it from membranes and may induce allosteric 

conformational changes to alter interactions with downstream effectors 

 The Rap (Ras proximate) proteins, Rap1a and Rap1b, and Rap2a/b/c, belong to the 

Ras subfamily of small GTPases, sharing ~50% sequence similarity with Ras (251). Rap 

proteins function primarily in cell adhesion and migration, and polarity (252, 253). Rap1a 

(CAAX = CLLL) is 95% identical to Rap1b (CAAX = CQLL), with the differences found 

largely in the C-terminal HVD and in a few N-terminal residues (254). These 

geranylgeranylated proteins are phosphorylated by cyclic AMP (cAMP)-dependent protein 

kinase (PKA) at serine 180 in Rap1a (254, 255) and serine 179 in Rap1b (255-258).  None of 

the 3 isoforms of Rap2 have been shown to be phosphorylated, although Rap2a and Rap2b 

both carry potentially phosphorylatable serine residues proximal to the CAAX motif.  Early 

in vitro kinetic studies found that Rap1 C-terminal phosphorylation is neither dependent on 

nor affects its nucleotide binding status, rate of hydrolysis, or interaction with a negative 

regulatory RapGAP (255, 259).  Soon after, however, it was reported that Rap1b C-terminal 

phosphorylation enhances its ability to bind to and be stimulated by a noncanonical GEF, 

SmgGDS (260, 261), which supports a possible role for phosphorylation in modulating Rap1 

activation.  Therefore, stimulation of Rap1 by SmgGDS involves both prenylation (262) and 

phosphorylation, in which the latter modification decreases the affinity of the Rap1 polybasic 

domain for anionic membrane lipids, thereby allowing for release from the membrane and 



63 

subsequent interaction with the cytosolic GDS as a complex (263, 264).  Here, 

phosphorylation and prenylation may work together to enhance GTPase activation. 

Rap1 proteins are found predominantly at perinuclear compartments including the 

Golgi apparatus and late endosomes (264), whereas the primary activation site is at the 

plasma membrane (265).  In fractionation studies of human platelets, phosphorylation has 

been reported to induce Rap1b translocation from membrane to cytosolic compartments 

(257), consistent with its cytosolic association with SmgGDS and may suggest a potential 

influence of C-terminal phosphorylation on Rap1 effector engagement.   Indeed, 

phosphorylation by PKA has been reported to modulate Rap1 association with binding 

partners such as cytochrome b558 (266) and Raf-1 (267).  An additional domain in Rap1a, 

spanning residues 85-89, has been shown to be necessary for its perinuclear localization, and 

may therefore regulate Rap1 localization and function in concert with C-terminal 

modifications (268). 

In 2002, it was found that Rap1b activation and C-terminal phosphorylation are 

synergistic in promoting cAMP-mediated entry into G1/S phase (269).  Based on these 

findings, the authors proposed that C-terminal phosphorylation acts as a molecular switch to 

mediate Rap1 effector interactions.  Recent biophysical experiments and computational 

modeling may now mechanistically explain the interplay between phosphorylation and 

activation status of Rap1b (270).  Specifically, hydrogen/deuterium mass spectrometry 

experiments revealed that, upon phosphorylation of Ser-179, a domain around the 

phosphorylation site and also the regions containing the two switch loops have an increased 

surface exposure, supporting allosteric effects of Rap1b C-terminal phosphorylation on its 

effector domain.  According to this model, the Rap1b polybasic domain dynamically 
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interacts with the negative environment of Glu-45 and Asp-47 in a β2-β3 turn, such that 

phosphorylation of Ser-179 within the polybasic domain presents a repulsive charge that 

perturbs this dynamic interaction and allows for an increase in β2-β3 turn flexibility, which 

can be transduced to the switch I and switch II regions.  The authors proposed that C-

terminal Rap1 phosphorylation behaves as an additional regulatory switch in parallel with its 

regulation by nucleotide binding, and furthermore that this newly proposed regulatory switch 

acts by allosterically discriminating between different conformational states of Rap1.  This 

proposed mechanism by which C-terminal phosphorylation influences conformational 

dynamics and protein interactions within distal effector domains of GTPases supports the 

idea that this type of modification may have both indirect and direct effects on regulation of 

effector interaction.  First, it may alter subcellular localization, thereby indirectly modulating 

regulator and effector availability, and second, it may have direct consequences to effector 

domain interactions with selected effector targets that were otherwise thought to be either 

“on” or “off” depending on whether the protein was GTP- or GDP-bound, respectively.   

 

RalA and RalB are differentially phosphorylated 

 The Ras like proteins RalA and RalB share 55% sequence similarity with Ras (271). 

They are both geranylgeranylated, although artificially farnesylated forms can substitute 

functionally (272, 273).  RalA (CAAX = CCIL) and RalB (CAAX = CCLL) are 

approximately 85% identical, with their peptide sequences varying mostly within the C-

terminal HVD (271). Activation of Ral GTPases by RalGEFs, key effectors of Ras function, 

link them to Ras signaling (274).  RalA and RalB contribute to and/or regulate a diversity of 

cellular functions including vesicular trafficking and exocytosis (275, 276), cellular 
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morphology and motility (277-280), cell survival and oncogenesis (281-286). Ral proteins 

are localized to both the plasma membrane and endomembranes, though the two isoforms 

have both overlapping and distinct subcellular localizations depending on their 

phosphorylation, activation status, and cellular context (285, 287, 288).  

In 2005, Huang and colleagues reported that an expression screening search strategy 

for Aurora-A kinase-selective substrates identified RalA but not RalB as a target of Aurora-

A-mediated phosphorylation (289).  The basis for this isoform selectivity of the closely 

related Ral proteins was determined to be that a phosphorylatable serine, S194, was present 

within an RKSL motif found in the C-terminus of RalA but not RalB.   These authors further 

demonstrated that phosphorylation of RalA at S194 promoted collagen I-induced cell 

motility and anchorage-independent growth of Aurora-A-expressing stable clones of MDCK 

cells, and that phosphorylation of S194 promoted RalA activation.  Recently, a collaborative 

effort among three laboratories including the groups of Counter, Der and Cox demonstrated 

that phosphorylation of RalA at S194 induces both activation and translocation of RalA from 

the PM to endomembranes, with subsequent translocation and activation of the RhoGAP 

activity of the Ral effector RalBP1 (Ral binding protein-1/RLIP-76) (285).  That the S194 

residue is required for full transforming activity mediated by either Aurora-A or RalGEFs 

and in pancreatic cancer cell lines (285) is again consistent with C-terminal phosphorylation 

providing a strong functional complement to the nearby permanent prenyl modification of 

geranylgeranylation. 

Interestingly, the RalA S194 residue also exists within a protein kinase A (PKA) 

consensus sequence and can be phosphorylated by PKA in vitro (33, 288), consistent with 
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links between PKA and RalA activation (290, 291).  Thus, Aurora-A and PKA may compete 

to phosphorylate this site, depending on cellular context. 

A study by Hahn and colleagues showed that S183 shares with S194 a common 

phosphatase, the tumor suppressor protein phosphatase 2A (PP2A Abeta).  Phosphorylation 

of RalA at S183 was also shown to regulate RalA activation and function in anchorage-

independent growth of HEK cells (292); however, the kinase responsible was not identified.   

Not surprisingly, given their distinct HVDs, the RalA phosphorylation sites are not 

conserved in the RalB isoform.  Instead, Theodorescu and colleagues found that, in contrast 

to RalA, RalB is C-terminally phosphorylated by protein kinase C (PKC), on S198 (288).  

Like RalA, phosphorylation of RalB induced its translocation from the PM to perinuclear 

regions.  Furthermore, PKC-mediated phosphorylation of S198 supported anchorage-

independent growth and cell motility of bladder cancer cell lines in vitro, and tumor growth 

and lung cancer cell line metastasis in vivo.  Given the distinct isoform- and cell context-

dependent roles of Ral proteins in disease, it will be of great interest to determine what rules 

dictate whether S198 phosphorylation is an activating or an inactivating event. 

 

C-TERMINAL PHOSPHORYLATION OF PRENYLATED RHO FAMILY SMALL 

GTPASES 

RhoA phosphorylation is complex and regulates its protein:protein interactions, activation, 

and effector binding 

The role of phosphorylation in concert with prenylation to regulate Rho GTPase 

activity has been best characterized for the RhoA isoform, a geranylgeranylated small 

GTPase (CAAX = CLVL) best known for induction of stress fibers (33).  In vitro kinase 
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assays and in vivo pharmacologic studies have shown that cAMP- and cGMP-dependent 

protein kinases (PKA and PKG, respectively), and Ste20-related kinase (SLK) are all capable 

of phosphorylating RhoA (293-298) at serine 188 in the C-terminal HVD (293, 294, 296, 297, 

299). Although this phosphorylation site is only two amino acids upstream of cysteine 190 

where RhoA is geranylgeranylated, the prenylation status of RhoA does not affect the ability 

of PKA to phosphorylate RhoA in vitro (293, 297).  However, if RhoGDI is already bound to 

the prenyl group, then phosphorylation of RhoA is inhibited, presumably because of steric 

hindrance (297).   Many studies have shown that phosphorylation of RhoA at S188 increases 

the binding affinity between RhoA and RhoGDI (294, 295, 297, 300, 301). This 

phosphorylation event has also been correlated with a variety of cellular phenotypes, all of 

which are consistent with increased RhoGDI binding. 

For example, Rolli-Derkinderen, Pacaud and colleagues observed increased 

interaction between RhoGDI and phosphorylated RhoA in co-immunoprecipitation 

experiments (300).  Further, PKG-phosphorylated and phosphomimetic RhoA S188E 

proteins were ubiquitinated to a lesser extent and were more stable than nonphosphorylated 

or phosphodeficient RhoA (300). They hypothesized that RhoGDI binding inhibits GTPase 

degradation, and that phosphorylation of RhoA controlled this interaction.   

Consistent with the earlier findings of Hohl and colleagues (302), who determined 

that depletion of isoprenoid synthesis by depletion of the obligate precursor mevalonate 

decreased degradation of existing RhoA proteins, Pacaud and colleagues also found (300) 

that a non-prenylated mutant (C190A) of RhoA had a much longer half-life than prenylated 

RhoA.  
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Boulter, Burridge and colleagues found additional evidence to support the former 

notion while investigating the role of RhoGDI1.  They noticed that knockdown of RhoGDI1 

caused a significant decrease in protein but not mRNA levels of the Rho family members 

RhoA, Rac1, and Cdc42 (26). Further investigation revealed that the prenylated but not 

nonprenylated GTPases interact with Hsp90 and proteasome members. Using prenylation-

free mutants (SAAX) and prenylation inhibitors (GGTIs) they showed that inhibition of Rho 

family GTPase (RhoA, Rac1, and Cdc42) geranylgeranylation increases protein levels of 

these Rho family GTPases (26), and concluded that prenylation of Rho GTPases targeted 

them for degradation.  However, expression of RhoGDI1 could inhibit this degradation, 

presumably by binding to the prenyl moiety, preventing misfolding, and shielding the 

GTPase from its proteasome fate.   

Phosphorylation of RhoA at S188 increases the amount of cytosolic or “free” RhoA 

and decreases membrane bound RhoA (295, 297, 300, 301, 303).  Bertoglio and colleagues 

showed that this membrane extraction occurred only in the presence of RhoGDI (297).  The 

effect of nucleotide (GDP vs. GTP) on GDI/GTPase interactions may depend on ionic 

conditions within a cell or in vitro system (295).  However, it is generally thought that GDP-

RhoA binds RhoGDI with higher affinity than GTP-RhoA (297, 304).  PKA does not show 

preference for GTP- or GDP-bound RhoA and phosphorylates each equally (295).  However, 

upon phosphorylation of RhoA, the binding affinity of GTP-RhoA for GDI is more strikingly 

increased than that of GDP-RhoA for GDI (297).  This led Lang et al. to hypothesize that 

when active GTP-RhoA bound to the plasma membrane is phosphorylated by PKA, RhoGDI 

can then interact with RhoA as it couldn’t previously, and extract it from the plasma 

membrane into the cytosol.  Forget et al. have since shown that under certain ionic conditions 
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phosphorylation of GDP-RhoA can greatly enhance binding of GDP-RhoA to GDI as well 

(295). 

As would be expected of a stimulus that extracts active RhoA from the plasma 

membrane, phosphorylation of RhoA also attenuates its downstream signaling.  For example, 

activation of PKA and PKG impairs the ability of RhoA to induce stress fiber formation, a 

key biological activity of this canonical small GTPase (293, 297, 298, 305).  Forskolin, 

which activates adenylate cyclase to increase production of cAMP and activate PKA, causes 

a marked decrease in the stress fibers induced by overexpression of constitutively active 

RhoA (G14V), but not if RhoA is nonphosphorylatable (G14V, S188A) (293, 294).  These 

results suggest that phosphorylation of S188 is essential for these kinases to inhibit RhoA 

signaling to stress fiber formation, and that blocking the phosphorylation step impairs the 

ability of Rho to regulate this key downstream function.  Expression of S188 

phosphodeficient (S188A) and phosphomimetic (S188E) mutants in a variety of cell types 

confirms that this is the case in several RhoA-driven biological endpoints.  For example, 

phosphodeficient RhoA S188A is more effective at preventing neurite outgrowth (299), 

slowing cell spreading (294) and inducing cell rounding (306) than RhoA that can be 

phosphorylated.  Similarly, in mouse aorta rings, inhibition of RhoA causes smooth muscle 

relaxation, resulting in vasodilatation (296).  This smooth muscle relaxation is mediated by 

SLK, presumably through its phosphorylation and inhibition of RhoA (296).  Interestingly, 

PKG-mediated inhibition of SRF expression acts downstream of Rho phosphorylation (307), 

suggesting that PKG regulates RhoA function at multiple levels. 

The interaction between RhoA and its key effector Rho-associated kinase (ROK or 

ROCK) is decreased upon RhoA phosphorylation, as shown by pulldown assays (299), and 
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RhoA phosphorylation is also inversely correlated with signaling to its downstream effector 

phospholipase D (PLD) (303, 308).  However, not all effects of RhoA phosphorylation can 

be attributed to increased binding to RhoGDI leading to decreased signaling. RhoA 

expressed in bacteria (i.e. nonprenylated) and phosphorylated in vitro bound less efficiently 

to its downstream effector ROK in vitro than did nonphosphorylated RhoA (293).  Since this 

was done without any RhoGDI present, there must be something intrinsic about RhoA 

phosphorylation that affects RhoA interactions with at least some of its downstream effectors.  

Also, RhoA phosphorylation does not affect its interaction with other effectors such as 

Rhotekin, mDia-1 or PKN, as examined by pulldown assays in neuronal PC12 cells (299).  It 

is currently unclear where this specificity arises.  It is clear, however, that RhoA 

phosphorylation does NOT affect the ability of RhoA to bind nucleotides or its intrinsic GAP 

activity (297).  Nor does phosphorylation of RhoA affect the ability of positive regulatory 

GEFs, negative regulatory GAPs, or GGTase I prenyltransferase to act on RhoA in vitro 

(294). 

In summary, PKA and PKG agonists stimulate these kinases to phosphorylate RhoA 

on S188.  This phosphorylation event triggers increased RhoGDI binding to RhoA, extracting 

RhoA from the plasma membrane and relocating it to the cytosol where it is sequestered 

from downstream effectors.  Yet, phosphorylated RhoA is also protected from degradation, 

and is likely in a GTP-bound state.  Thus phosphorylated RhoA constitutes a pool of RhoA 

primed and ready for signaling upon release by RhoGDI.  This release would presumably be 

triggered by a phosphatase or GDI displacement factor (GDF) that has yet to be identified for 

Rho family GDIs.  Alternatively, phosphorylation of Rho GDI itself has been shown to 
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trigger release of Rho family GTPases (55).  Additionally, phosphorylation of RhoA seems 

to intrinsically regulate downstream effector binding, by a currently unknown mechanism. 

 

RhoB phosphorylation inhibits its function 

 Although RhoA and RhoB utilize a partially overlapping set of effectors, including 

Rhotekin and mDia1/2, and are both capable of inducing stress fibers, many of their 

functions differ greatly (28, 309).  This is most apparent from the fact that RhoA is an 

oncogene and RhoB is generally thought of as a tumor suppressor (28).  RhoB is expressed 

much more transiently than RhoA and is found at membranes (PM and endosomes) even at 

resting state, while RhoA is generally cytoplasmic and GDI-bound in resting cells and 

translocates to the plasma membrane upon stimulation (310).  The amino acid sequence of 

RhoB is approximately 85% identical to that of RhoA, but their strikingly different 

localization and function can be attributed to their distinct C-terminal hypervariable domains. 

RhoA is targeted to membranes by geranylgeranylation and a series of basic residues in its C-

terminus, whereas RhoB (CAAX = CCKVL) can be farnesylated or geranylated, and is 

palmitoylated (28).  

 Like RhoA, RhoB is also phosphorylated within its hypervariable domain (311).  In 

2008, Pradines and colleagues showed that CK1 is capable of phosphorylating RhoB in vitro 

and in cellulo at serine 185 (311).  This phosphorylation was independent of the nucleotide 

bound to RhoB, because both constitutively active (G14V) and wild type RhoB were 

phosphorylated to similar extents (311).  It is currently unknown how this phosphorylation 

relates to RhoB prenylation and/or palmitoylation, localization, and stability.  However, 

prevention of RhoB phosphorylation with CK1 inhibitors or a phosphomimetic mutant 
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(S185A) caused greater stress fiber formation, enhanced EGFR internalization, and increased 

binding to Rhotekin-RBD (311).  All of these phenotypes indicate that, as in RhoA, the 

hypervariable domain phosphorylation of RhoB inhibits RhoB function.  The mechanism of 

this inhibition remains to be explored.  While it is tempting to speculate that phosphorylation 

of RhoB increases its affinity for GDI in a mechanism similar to RhoA, there are other 

variables to take into account with RhoB.  First, palmitoylation has been described to inhibit 

RhoGDI binding (57).  Thus, depalmitoylation in addition to phosphorylation may be 

required to observe enhanced GDI binding.  Reports on interactions between RhoB and GDI 

are conflicting (55), and it may be that the differing results were attained based on conditions 

suitable for palmitoylation/phosphorylation or not. 

 

RhoG – phosphorylated in vitro only? 

 RhoG (CAAX = CILL) has the highest sequence similarity to Rac1 (72%) and Cdc42 

(62%) and also shares activators, effectors, and biological functions with these proteins (312).  

Unlike Rac1, RhoG may be phosphorylated in its hypervariable domain. PKA was capable of 

phosphorylating RhoG, but not RhoG S187A, in vitro (294).  However, it is unknown if this 

phosphorylation event occurs in cells, or, if so, what are the functional consequences. 

 

RhoE/Rnd3 – phosphorylated everywhere? 

Rnd3 (also known as RhoE or Rho6) terminates in a CTVM motif and is therefore 

farnesylated rather than geranylgeranylated like canonical Rho GTPases (313).  It is also 

atypical in that it does not have the conventional residues at positions 12, 59 and 61 that 

regulate GTP/GDP cycling, and as such it lacks intrinsic GTPase activity and is 
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constitutively active (313).  Therefore other mechanisms of regulating its activity/signaling 

must be employed.  It has been suggested that this control occurs through phosphorylation.  

Rnd3/RhoE can be phosphorylated by both ROCKI and PKCα (314, 315).  Mass 

spectrometry analysis of 32P labeled RhoE, revealed that Rnd3/RhoE is phosphorylated in 

both its extreme N- and C- termini (315).  Mutation of all seven serine/threonine residues in 

these regions (S7, 11, 210, 218, 222, 240; T214) prevented in vitro phosphorylation by 

ROCK1, but if any one was left intact it was still phosphorylated (315), suggesting that any 

of these residues can be phosphorylated by ROCK1.  Of particular interest is S240, which 

has very similar positioning to S188 in RhoA, in that it is immediately adjacent to the 

cysteine (C241) on which the GTPase is prenylated.  Ridley and colleagues hypothesized that 

phosphorylation at this site inhibits insertion of the farnesyl group into membranes (316), as 

has been hypothesized for RhoA phosphorylation (317).  However, further investigation by 

our laboratory revealed that many of the functional roles of this phosphorylation are 

independent of S240 (314).  Interestingly, we also noted that a Cys to Ser (SAAX) mutant, 

that cannot be prenylated, does not show a mobility shift upon activation of PKCα (314).  

One possible explanation for this is that phosphorylation requires that Rnd3/RhoE be 

prenylated, perhaps to direct it to the plasma membrane where it can interact with PKCα. 

Phosphorylation of Rnd3/RhoE induces its internalization from the plasma membrane 

to internal membranes and the cytosol.  Phosphorylation of RhoE also increased protein 

stability of the GTPase (314, 315).  Thus, one may think that, like RhoA, Rnd3/RhoE 

phosphorylation increases its binding to GDI.  RhoGDI binding normally attenuates GTPase 

downstream signaling, however, there are currently conflicting reports as to how RhoE 

phosphorylation affects downstream signaling. Rnd3/RhoE inhibits RhoA-ROCK signaling, 
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stress fiber formation and Ras-induced transformation (318).  Despite the report that 

phosphorylation of RhoE does not alter downstream effector binding with ROCKI or p190-

RhoGAP in pulldown assays (315), in cellulo S11 phosphorylation was necessary for 

increased stress fiber disassembly and inhibition of Ras-induced transformation, which are 

mediated by RhoE (315).  Therefore the requirement for phosphorylation for RhoE activity in 

this study was presumably based on altered localization and not a change in intrinsic ability 

to bind effectors.  Results in our laboratory suggest that phosphorylated RhoE is actually 

inactive, and that RhoE phosphorylation promotes greater stress fiber formation and 

phosphorylation of MYPT1 (which are normally inhibited by Rnd3/RhoE) (314).  Some of 

the biological assays were carried out with an “all A” mutant in which S-7, 11, 220, 222, 240 

and T-214 were all mutated to alanines, while others focused only on S11.  It is therefore 

conceivable that phosphorylation of S11 alone activates Rnd3/RhoE, while phosphorylation 

of multiple residues has a combined inhibitory effect, or may be a cell context-dependent 

issue (HeLa versus NIH 3T3 cells).  This question will require further experimentation to 

resolve. 

 

Wrch-1/RhoU phosphorylation – an unusual palmitate / tyrosine pair 

 Wrch-1/RhoU is an atypical Rho family GTPase of the Cdc42 branch (57% sequence 

identity to Cdc42) but with additional N- and C-terminal extensions (319).  Wrch-1 

terminates in a CCFV motif, which upon first inspection appears to be a permanently 

prenylated CAAX motif but is not; rather, it specifies reversible palmitoylation of the second 

cysteine (CXX motif) (320). This palmitoylation step is necessary for membrane localization 

of Wrch-1, thereby serving a function similar to prenylation of other small GTPases.  Since 
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Wrch-1 is not prenylated, it does not interact with RhoGDI.  However, we have shown that 

phosphorylation of Wrch-1 within its HVD near the lipidated cysteine does drive changes in 

both protein localization and function (321, 322). This indicates that hypervariable domain 

phosphorylation has both prenylation-dependent and -independent effects on Rho family 

activity. 

 Unlike other phosphorylated Ras and Rho small GTPases identified to date, Wrch-1 

is phosphorylated not on a serine or threonine but on a tyrosine residue, at position 254, two 

amino acids upstream of the palmitoylation site (321).   The tyrosine kinase Src is essential 

for this modification.  Few other small GTPases possess tyrosines in their HVDs at all, and, 

of those that do (K-Ras4A, N-Ras, Rap2A/B/C, Rheb2, RhoB, RhoBTB3) none is in such 

proximity to a lipidation site.  Whether any of these tyrosines is phosphorylated has not been 

determined.  Thus, Wrch-1 may be regulated uniquely.    

As in these other GTPases, phosphorylation induces internalization of Wrch-1 from 

the plasma membrane to internal membranes (321), which negatively regulates its activity.  

Consistent with this, stimulation of Wrch-1 phosphorylation decreases its binding to and 

activation of its effectors PAK and Pyk-2, and phosphomimetic Wrch-1 (Y254E) displays 

decreased binding to GTP as shown by pulldown assays compared with wild type and 

phosphodeficient Wrch-1 (Y254F). Phosphodeficient Wrch-1 (Y254F) can recruit its 

downstream effector PAK to the plasma membrane, whereas phosphomimetic Wrch-1 

(Y254E) cannot do the same to endosomes (321).  However, if Wrch-1 is mutated to be 

GAP-insensitive (i.e., Q107L), then even phosphomimetic Wrch-1 (Y254E, Q107L) can 

recruit PAK to endosomes (321).  This implies that there is an unidentified GAP that turns 

off Wrch-1 at endosomes. 
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TC10/RhoQ – a target for phosphorylation by CDK-5 

 TC10/RhoQ is also a member of the Cdc42 branch of the Rho family.  The two 

proteins share many downstream effectors and both induce filopodia formation, yet their 

posttranslational modifications are distinct (28).  Cdc42 is directed to endomembranes by a 

combination of geranygeranylation of the cysteine in its CAAX motif (CVLL) and an 

upstream polybasic sequence.  TC10 is more complicated:  it can be farnesylated or 

geranylgeranylated (CAAX = CCLIT), and both contains a polybasic domain and also 

becomes palmitoylated (C209 and/or C206).  TC10 is best known for regulating GLUT4 

transport in response to insulin stimulation.  Under these conditions, TC10 can be 

phosphorylated by CDK-5 (323) on threonine 197, which is just upstream of the polybasic 

region of TC10 but is farther from the CAAX motif cysteine (C210) than other known 

phosphorylation sites described in this chapter.  Still, this phosphorylation event has a 

dramatic effect on the localization and function of TC10. 

 TC10 normally congregates specifically at lipid rafts within the plasma membrane, 

whereas phosphodeficient TC10 (T197A) does not (323).  This suggests that phosphorylation 

of TC10 positively regulates its association with lipid rafts.  Using pulldown assays to 

measure TC10 activation, Mori and colleagues observed a lower basal level of activation 

with the phosphodeficient mutant (T197A) and a higher level with the phosphomimetic 

mutant (T197D) than wild type TC10.  Insulin could stimulate activation of both the wild 

type and phosphodeficient mutant TC10, but the phosphomimetic mutant appeared to already 

be maximally activated.  Also, the phosphodeficient mutant always showed lower levels of 

GTP binding than the corresponding wild type TC10 (323).  These data all suggest that 

phosphorylation of TC10 is necessary for proper localization and activation, and biological 
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assays confirmed this (323).  It is still unknown how phosphorylation triggers association of 

TC10 with lipid rafts and its subsequent activation.   

 

Cdc42 – phosphorylated elsewhere, to regulate GDI binding 

 Cdc42, canonically known for its induction of filopodia, is a substrate for GGTase I, 

with the major Cdc42 isoform terminating in CVLL (1).  While there is a putative PKA 

phosphorylation site three amino acids upstream of this geranygeranylated CAAX motif, 

whether this site is phosphorylated in vivo is less clear (317).  Béliveau and colleagues 

showed phosphorylation of Cdc42 by PKA in vitro using autoradiography (295).  Further, in 

vitro stimulation with PKA enhanced Cdc42 binding to GDI and removal of Cdc42 from 

isolated rat membranes (295). These observations implied that Cdc42 and RhoA might be 

regulated similarly by C-terminal PKA phosphorylation of the small GTPase.  However, they 

did not test whether PKA directly phosphorylated Cdc42 in cells. 

Arguing against this possibility, phosphorylation of Cdc42 by PKA was not observed 

in NIH 3T3 or HeLa cells, respectively (294, 305) under conditions where RhoA was 

robustly phosphorylated.  And while PKA could phosphorylate Cdc42 in vitro (324), it was 

minimal compared to RhoA phosphorylation.  Further, although stimulation of PKA, for 

example with 8-Br-cAMP, or transient expression of the catalytic subunit of PKA caused 

Cdc42 activation in both CHO-K1 and COS-7 cells (324), phosphorylation of Cdc42 was not 

observed under these conditions.  Together, these results suggest that PKA phosphorylation 

does not occur directly on Cdc42 itself, but rather on its upstream regulator(s), either to 

activate a GEF or to impair interactions with RhoGDI.  
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 Cdc42 is less controversially phosphorylated on tyrosine 64 by Src (325).  This 

internal phosphorylation event enhances binding of Cdc42 with GDI (325).  Since GDIs bind 

Rho GTPases both at the GTPase switch regions and the C-terminus/attached prenyl group 

(53), it is logical that phosphorylation on both of these residues would affect GDI binding.  

Interestingly, Y64 is in the switch II region and is conserved in most Rho family members, 

including all those discussed in this review.  It would be interesting to determine if 

phosphorylation of this conserved residue affects GDI binding of other GTPases as well. 

 

Rac1 – also phosphorylated elsewhere 

 Rac1, best known for its ability to induce lamellipodia formation and as an activator 

of NADPH oxidase, terminates in CLLL and, like all canonical Rho GTPases, is 

geranylgeranylated.  It also possesses a polybasic region in its HVD, but lacks any serine, 

threonine, or tyrosine residues in that region and thus cannot be phosphorylated there.  Rac1 

is phosphorylated by Akt on serine 71, a modification that inhibits GTP binding in vitro and 

in vivo (326).  Unlike the typical C-terminal phosphorylation, S71 phosphorylation status has 

not been correlated with changes in localization, and appears instead to regulate intrinsic 

capabilities of the GTPase. 

 

C-TERMNAL PHOSPHORYLATION OF PRENYLATED RAB FAMILY SMALL 

GTPASES 

Rab4 is a monomeric small GTPase of the Rab family that is associated during 

interphase with early endosomes and that plays a key role in endocytosis of such 

physiologically important molecules as GLUT4, integrins and angiotensin (327).  Like other 
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Rab proteins, Rab4 is geranylgeranylated (CXC = CGC) by GGTase II (328).  Unlike other 

Rabs, Rab4 is the only Rab protein to our knowledge that has been reported to be 

phosphorylated near the prenyl group, the latter of which is absolutely required for its 

function.  Rab4 is a target of the mitotic kinase Cdc2, which phosphorylates it on S196 

during mitosis (329), causing it to bind to the peptidyl-prolyl isomerase Pin-1 (330), become 

disassociated from endosomes and to accumulate in the cytosol (331).  In that location, the 

phosphorylated Rab4 can no longer continue to promote endocytotic trafficking as it does 

during interphase, thereby allowing proper apportioning of vesicular structures and their 

contents to the daughter cells that form as cells divide.  Which properties of Rab4 that make 

it apparently unique with regard to this particular combination of posttranslational 

modifications on Rab GTPases remain to be determined. 

 

CONCLUSIONS 

Prenylation of the membrane targeting sequences of small GTPases is necessary to 

anchor them to specific subcellular compartments and subdomains, where they can then 

interact with specific subsets of their upstream regulators and downstream effectors to elicit 

their distinct biological functions in response to particular environmental and contextual cues.  

However, prenylation is both irreversible and insufficient to promote correct membrane 

binding, and at least some prenylated small GTPases are unstable and targeted for 

degradation unless additionally modified.  Thus, other more dynamic modifications are 

necessary for precise spatiotemporal control of GTPase localization and function.  In this 

chapter, we have focused on the continually emerging role of C-terminal phosphorylation in 

GTPase regulation.  
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Phosphorylation of prenylated proteins has multiple consequences, the most 

prominent of which is to translocate them from the plasma membrane to a variety of internal 

membranes, where they are typically downregulated and/or altered in their biological 

functions.  Downregulation of activity can occur by enhanced protein:protein interactions 

with cytosolic chaperones, such as RhoA with RhoGDI, to both increase cytosolic 

localization and decrease GTP-binding, or by enhanced protein:protein interactions with 

membrane-bound negative regulators restricted to specific compartments, such as Wrch-

1/RhoU with an endosomally localized GAP.  C-terminal phosphorylation can also fine-tune 

small GTPase localization, such as the phosphorylation of TC10/RhoQ that does not extract 

TC10 from the plasma membrane but rather directs it specifically to lipid rafts within that 

membrane compartment.  Alterations in function can be as simple (but necessary) as an 

on/off switch, such as that seen with phosphorylated Rab4 no longer driving endocytosis 

during mitosis, or as dramatic as the conversion of K-Ras4B from a growth-promoting to a 

death-inducing protein.  Finally, given that phosphomimetic and/or phosphodeficient mutants 

interfere with their function, it is likely that at least some of these C-terminally 

phosphorylated and prenylated small GTPases will turn out to require cycling of their 

phosphorylation / dephosphorylation states, just as they do cycling of their GDP-/GTP-bound 

states.  Thus, hypervariable domain phosphorylation of the Ras superfamily of small 

GTPases, in conjunction with nearby prenylation, provides additional and critical regulatory 

elements to their subcellular localization and functions, whose precise mechanisms are still 

being unraveled.  It will be interesting to explore how phosphorylation of specific residues is 

spatiotemporally coordinated with other dynamic posttranslational modifications at the same 

or adjacent sites. 
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CHAPTER 3: SUBCELLULAR LOCALIZATION OF RAS AND RHO GTPASE 

ACTIVITIES AS DETERMINED BY EFFECTOR RECRUITMENT ASSAYS2 

 

OVERVIEW 

Ras and Rho family GTPases control a wide variety of cellular processes, and the 

signaling downstream of these GTPases is influenced by their subcellular localization when 

activated.  Since only a minority of total cellular GTPases is active, observation of the total 

subcellular distribution of GTPases does not reveal where active GTPases are localized.  In 

this chapter, we describe the use of effector recruitment assays to monitor the subcellular 

localization of active Ras and Rho family GTPases. The recruitment assay relies on 

preferential binding of downstream effectors to active GTPases versus inactive GTPases.  

Tagging the GTPase binding domain of a downstream effector with a fluorescent protein 

produces a probe that is recruited to compartments where GTPases are active.  We describe 

an example of a recruitment assay using the GBD of PAK1 to monitor Rac1 activity and 

explain how the assay can be expanded to determine the subcellular localization of activation 

of other GTPases. 

 

                                                        
2Reproduced with permission, from a chapter of the same title, in Methods in Molecular 
Biology, Ras Signaling, edited by Lorenza Trabalzini and Saverio Francesco Retta, and 
published by Springer.  The author list is as follows: Huff LP, DeCristo MJ, and Cox AD.  I 
wrote the chapter, collected the data for the tables, and generated the figure.  Molly J. 
DeCristo helped with data collection for the tables and edited the chapter.  Adrienne D. Cox 
edited the chapter. 
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INTRODUCTION 

 The Ras and Rho families of small GTPases are comprised of 55 family members that 

act as cellular signaling nodes (2).  Numerous extracellular signals converge on these 

GTPases, which then regulate diverse downstream signaling cascades.  The subcellular 

localization of GTPase activation strongly influences its specific outcomes.  For example, 

when K-Ras4B is active at the plasma membrane, it signals for cell survival, but when it is 

active at internal membranes such as endoplasmic reticulum and mitochondria, it signals for 

cell death (239).  However, the predominant subcellular localization of a GTPase does not 

necessarily correlate with where that GTPase is active (332) (see Table 3.1).  A given 

stimulus may lead to activation of less than 10% or as much as 40% of the available cellular 

Ras (333) or Rho (50, 51).  Therefore, typical observation of GTPase distribution (via 

immunofluorescence or fractionation) primarily detects the inactive pools of that GTPase, 

and alternative techniques must be utilized to determine where a GTPase is active.  In this 

chapter we describe the use of effector recruitment assays to monitor the subcellular 

localization of active Ras and Rho family small GTPases. 

 Ras and Rho family GTPases are active when GTP-bound and inactive when GDP-

bound.  Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP to 

activate GTPases, and GTPase activating proteins (GAPs) catalyze GTP hydrolysis to 

inactivate GTPases.  Effector molecules that transmit GTPase signals downstream 

preferentially bind to active, GTP-bound GTPases.  For example, Raf-1, a key downstream 

effector of Ras, has a 1,000-10,000 fold higher affinity for Ras-GTP than for Ras-GDP (334, 

335).  Each GTPase signals to an array of disparate downstream effectors, each of which 

contains a GTPase binding domain (GBD) that is responsible for this preferential interaction 
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with the active GTPase.  For instance, Ras downstream effectors contain Ras binding 

domains (RBD) or Ras association domains (RA), and downstream effectors of Rac, a Rho 

family GTPase, contain either p21 binding domains (PBD) or Cdc42 and Rac interactive 

binding (CRIB) domains. Many of these domains show little sequence identity, but they have 

a common structure and can be identified via databases such as SMART (the online Simple 

Modular Architecture Research Tool [http://smart.embl-heidelberg.de/]).  Other downstream 

effectors (and GBDs) have only been identified empirically.  For example, residues 292-362 

of POSH have been shown to preferentially bind to Rac-GTP, so this is considered the PBD 

even though it shows little similarity to that of other downstream effectors of Rac (336).  

Notably, each downstream effector shows varying degrees of specificity among GTPases 

(Table 3.2).  POSH is thought to be specific to Rac1 and does not bind other Rho GTPases 

tested (336), whereas mDia2 is a downstream effector for many Rho GTPases (RhoA, RhoB, 

RhoC, RhoD, RhoF, Rac1, Cdc42) (337-339).  

 In an effector recruitment assay, the GBD of a downstream effector is tagged with a 

fluorescent molecule such as GFP.  This fluorescent probe is recruited to locations where 

there are active GTPases that the GBD binds.  Thus, one can monitor changes in the 

subcellular localization of active GTPases due to different stimuli and also determine if 

specific subcellular pools of a GTPase are active or inactive.  This method is similar to the 

commonly used biochemical pulldowns for active GTPases, in which GBD sequences are 

expressed in bacteria, bound to solid support such as Sepharose or agarose beads, and used to 

retrieve active GTPases from cellular lysates (340, 341).  Both assays rely on the preferential 

binding of GBD to active GTPases over inactive GTPases.  Table 3.2 compares the use of 

probes in each assay.  In pulldown assays, GBD specificity for GTPases is less important, 
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because the pulldown is followed by immunoblotting with an antibody specific for the 

desired GTPase.  However, in localization recruitment assays, identification of the GTPase 

which is responsible for recruitment of the GBD is much more heavily dependent on probe 

choice and experimental design (see Notes 2, 4, 5). 

 Other assays have been created to observe changes in the subcellular localization of 

active GTPases, including FRET-based biosensors (332, 342) and fractionation followed by 

GBD pulldowns (343).  Each assay has advantages and disadvantages.  Although FRET-

based biosensors can be highly sensitive and are GTPase-specific, their use requires 

amenable cell conditions, sophisticated microscopy and time-intensive imaging and 

processing.  These considerations limit the number of cells that can be observed in a single 

assay, and thereby limit throughput of an overall population.  In addition, FRET-based 

biosensors generally require exogenous expression of the GTPase, whereas recruitment 

assays can often be used to monitor changes in endogenous GTPase activation (265, 344, 

345).  Like recruitment assays, fractionation-pulldown assays can measure changes in 

endogenous GTPase activation and do not require as specific a probe as recruitment assays, 

but they are also technically challenging.  Additionally, hydrolysis of GTP into GDP during 

the hours it takes to fractionate the cells can lower the signal-to-noise ratio.  Finally, 

recruitment assays yield better spatiotemporal resolution than fractionation-pulldowns, as 

recruitment assays can be used to observe more transient GTPase activation and to observe 

active pools of GTPases in microdomains within the cell that may be difficult to isolate by a 

biochemical fractionation protocol.  Recruitment assays also have disadvantages, however.  

Negative results can be related to a variety of factors (see Notes 5 & 6) and therefore can be 

hard to interpret, and certain GTPases are easier to monitor with available probes than others 
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(see Note 5 & Table 3.2).  Additionally, quantification of this assay can be challenging (see 

Note 17).  However, many of these issues can be attenuated with proper experimental setup, 

as described in the Notes section. 

 In the Methods section of this chapter, we describe a method whereby a fluorescent 

GBD probe is used to reveal the subcellular localization of an active Ras or Rho small 

GTPase.  We illustrate this method with an example in which a GFP-PAK1-PBD probe 

shows the location of active Rac1 (Fig. 3.1). In this example, an exogenously expressed Rac1 

mutant contains two mutations, one to make it constitutively active (Q61L), and an additional 

mutation (C189S) at a residue that has been previously described to cause nuclear 

accumulation of Rac1 (62).  PAK1 is a key effector of Rac1 (346).  In resting cells, GFP-

PAK1-PBD is not localized to specific subcellular compartments but is distributed diffusely 

throughout the nucleus and cytoplasm (Fig. 3.1).  In contrast, in cells expressing the 

constitutively active, nuclearly localized Rac1 mutant, GFP-PAK1-PBD highlights the 

nucleus.  Images of these two groups of cells are shown as a striking example of GBD 

recruitment by the presence of an active GTPase, in this case, to the cell nucleus.  In the 

Notes section and Table 3.2 we describe variations on this technique that enable it to be used 

to observe the location of active forms of other Ras and Rho family small GTPases, both 

exogenous and endogenous.  We have previously utilized this method to examine the 

subcellular localization of active Wrch-1 (321) and Ras (347-349), and recently used it to 

determine spatially regulated activation of Rho family GTPases by the RhoGEF Ect2 (see 

Chapter 4). 
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MATERIALS 

(Listed in order of use.  Indicated manufacturers are examples and can be substituted unless 

otherwise stated.) 

Plating and transfecting cells 

1. Coverslips (Fisherbrand, microscope cover glass 12 mm circles, 0.13-0.17 mm thick) 

2. 70% ethanol 

3. Tissue culture hood, equipped with a vacuum flask and attached aspirator 

4. Pasteur pipets, autoclaved for sterility 

5. Dulbecco’s phosphate buffered saline (DPBS 1x with calcium chloride and 

magnesium chloride, GIBCO/Invitrogen) 

6. 10 cm tissue culture plates and 12-well plates (Corning, sterile polystyrene dishes) 

7. Fine-tip tweezers 

8. Fibronectin (Fisher):  reconstitute in DPBS to a concentration of 2.5 µg/ml, and filter-

sterilize using a 0.2 micron filter.  This solution can be stored at 4°C for many months. 

9. RPMI-1640 cell culture medium (GIBCO, RPMI-1640 1x with L-glutamine) or other 

culture medium appropriate for cells of interest 

10. Fetal bovine serum (FBS, Sigma):  mix 1 volume of FBS with 9 volumes of RPMI-

1640 to produce complete RPMI growth media 

11. Tissue culture incubator: set to 37°C and 5% CO2, or appropriate conditions for cells 

of interest 

12. Trypsin (0.05% trypsin with EDTA, GIBCO) 
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13. Expression plasmids for proteins of interest, including the fluorescent GBD probe 

(here we used pEGFP-C1-PAK1-PBD, a.a. 75-118 [see Table 3.2]; pCGN-HA empty 

vector control and pCGN-HA-Rac1-Q61L-C189S) 

14. Polystyrene 5 ml round bottom tubes (BD-Falcon) 

15. Transfection reagent (TransIT-LTI, Mirus) 

 

Fixing and staining cells 

1. 10x phosphate buffered saline solution (PBS: 1370 mM NaCl, 100 mM Na2HPO4, 18 

mM KH2PO4, 27 mM KCl in ddH2O, pH to 7.4); mix 9 volumes of distilled water 

with 1 volume of 10x PBS for 1x working solution 

2. Paraformaldehyde (PFA, Electron Microscopy Services, 20% EM grade PFA 

solution): dilute to working solution of 4% PFA using 1 volume of 10x PBS, 2 

volumes 20% PFA, 7 volumes ddH2O 

3. Triton-X-100 (Triton-X-100 for molecular biology, Sigma) 

4. Parafilm M or similar wrap (Sigma) 

5. Anti-HA antibody (Covance, HA.11 monoclonal antibody clone 16B12 mouse; this is 

the best validated antibody available for this purpose, and we highly encourage its 

use); other secondary antibodies may be appropriate depending on the epitope-tag or 

primary antibody used to detect the GTPase of interest 

6. Alexa Fluor® 594 or similar fluorescent anti-mouse antibody that works well in 

contrast to green GFP color (Alexa Fluor® 594 donkey anti-mouse IgG H+L, 

Invitrogen) 

7. Double distilled H2O (ddH20) 
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8. Lab wipes (Kimwipes, Kimtech Science) 

9. Mounting medium with DNA stain such as 4',6-diamidino-2-phenylindole, DAPI 

(Vectashield mounting medium for fluorescence with DAPI, Vector Laboratories) 

 

Imaging and data analysis 

1. Fluorescent confocal microscope, equipped with appropriate filters for the secondary 

antibodies used, and with a camera (we use a Zeiss LSM710 Spectral Confocal Laser 

Scanning Microscope, fitted with Plan-Apo 40x, 1.3 NA and 63x, 1.4 NA oil 

objectives, using Zen software, see Note 19). 

2. Push-button manual cell counter (Veeder-Root) 

 

METHODS 

Plating and transfecting cells 

Perform in a tissue culture hood, using sterile technique. 

1. Place coverslips in a 10 cm plate. 

2. Sterilize the coverslips by covering them completely with 70% ethanol.  

3. Aspirate the ethanol off the coverslips and rinse them twice in sterile DPBS, leaving 

any excess DPBS after the second rinse for ease of isolating single coverslips. 

4. Place a single coverslip in each well of a 12-well plate. 

5. Cover each coverslip with 1 ml of 2.5 µg/ml sterile fibronectin (see Note 1) and 

incubate at room temperature for 20 minutes. 
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6. Remove the fibronectin from each well in a sterile manner and store it at 4°C for 

future use. 

7. Aspirate residual fibronectin from the well and from under the coverslip by prodding 

the edges of the coverslip with a pasteur pipet attached to an aspirator, until the 

coverslip sticks to the bottom of the well and does not move when prodded further 

with the aspirator. 

8. Add 1 ml RPMI complete growth medium to each well and place the 12-well plate in 

the incubator to equilibrate. 

9. Remove a 75% confluent 10 cm plate of cells (those used in the example, Fig. 3.1, are 

OVCAR8 ovarian cancer cells, but numerous cell types are appropriate; see Note 2) 

from the incubator. 

10. Aspirate the growth medium and rinse the cells 1x in DPBS to remove excess 

medium.   

11. Add 1 ml trypsin and return the plate to the incubator to speed cell detachment. 

12. Once the cells have detached, resuspend them in 7 ml of RPMI complete growth 

medium and add 250 µl of the cell suspension to each well of the prepared 12-well 

plate containing fibronectin-coated coverslips (see Note 3).  

13. Allow cells to adhere overnight. 

14. Transfect 1 well of cells with both 1 µg pCGN (see Note 4) and 1 µg pEGFP-C1-

PAK1-PBD (see Note 5), and transfect another well of cells with 1 µg pCGN Rac1-

Q61L-C189S and 1 µg pEGFP-C1-PAK1-PBD (see Note 6). 

a. Mix the DNA for each well with 100 µl serum-free RPMI in a polystyrene 

tube. 
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b. In a separate tube, combine 12 µl of TransIT-LTI and 200 µl serum-free 

RPMI. 

c. Incubate both mixtures for 15 minutes at room temperature. 

d. Add 100 µl of TransIt mixture to each tube of DNA. 

e. Incubate for 45 minutes at room temperature. 

f. Add each DNA/TransIt mixture to the appropriate well of cells, dropwise. 

 

Fixing and staining cells 

15. 24 hours after transfection, remove the growth medium from the cells by aspiration, 

and rinse twice with PBS (see Note 7). After this step, minimize exposure of cells to 

light, to prevent photobleaching (see Note 8). 

16. Remove the PBS by aspiration, then fix the cells by adding 4% PFA to each well and 

incubating for 30 minutes at room temperature (see Note 9).  [Pause point:  cells can 

remain in PFA overnight at 4°C, shielded from light.] 

17. Rinse the cells 5x with PBS. 

18. Permeabilize the cells by incubating them in 0.2% Triton X-100 (diluted in PBS) for 

5 minutes (see Note 10). 

19. Rinse the cells 5x with PBS to remove Triton X-100 (see Note 11). 

20. Incubate the coverslips in anti-HA antibody at a dilution of 1:500 for 1 hour at room 

temperature (see Note 12). 

21. Rinse the cells 5x in PBS to remove excess primary antibody. 

22. Incubate the coverslips in Alexa Fluor 594 anti-mouse antibody at a dilution of 1:500 

for 2 hours at room temperature (see Note 13). 
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23. Rinse the cells 5x in PBS to remove excess secondary antibody. 

24. Soak the coverslips in ddH20 for 5 minutes (see Note 14). 

25. Remove excess water from the coverslip by holding it perpendicular to a lab wipe, 

touching it gently to the wipe, and dabbing off excess water.  Do not touch the cell-

containing surface. 

26. Mount each coverslip on a slide by applying 10 µl of Vectashield with DAPI to a 

slide and placing the coverslip cell-side down on the Vectashield (see Notes 15 & 16).  

[Pause point: mounted coverslips can be stored for weeks to months at 4°C, shielded 

from light.] 

 

Imaging and data analysis 

27. Quantify localization of GFP-PAK1-PBD under each condition (see Note 17): 

a. On an appropriately equipped fluorescent microscope, use a red filter to 

visualize the Alexa Fluor® 594 (excitation maximum, 594 nm / emission 

maximum, 618 nm) and thereby identify cells expressing the HA-tagged Rac1 

protein. 

b. Switch to the green filter to visualize GFP (excitation maximum, 488 nm / 

emission maximum, 509 nm) and thereby observe where GFP-PAK1-PBD is 

localized. 

c. Expression patterns can be divided into categories, such as:  diffuse nuclear 

and cytoplasmic localization (probe is evenly distributed between the two 

compartments), nuclear-highlighted (probe is greater than 2x brighter in the 

nucleus than the cytoplasm), nuclear-excluded (probe in the nucleus is greater 
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than 2x dimmer than probe in cytoplasm), and other (plasma membrane 

highlighted/endomembrane highlighted/etc…).  Classify each red (HA-Rac1-

expressing) cell into the appropriate category based on localization of GFP-

PAK1-PBD, and count it towards the given category using a push-button cell 

counter. 

d. Repeat steps a-c for 100 cells per condition.  Since vector-only cells do not 

visibly express the HA tag, skip step a for this condition.  

e. The percentage of cells with the GFP-PAK1-PBD probe in each category can 

be compared between conditions.  

28. Repeat the assay a minimum of 3 times (see Note 18). 

29. Take images of representative cells (this may require use of a different, camera-

equipped microscope; see Note 19).  Recruitment of the probe can be shown using 

overlaid images of the probe and GTPase (see Note 20).  Overlay with DAPI can 

confirm where the recruitment is relative to the nucleus. 

 

NOTES 

1. It is easier to visualize subcellular compartments in cells that are well-spread.  Rho 

family GTPases regulate the actin cytoskleleton, cell adhesion, and cell spreading 

(350). Therefore, overexpression of GBDs downstream of Rho GTPases can result in 

undesired cell rounding and decreased cell adhesion.  This can be minimized by 

coating the coverslips with fibronectin and also by thorough assay optimization (see 

Notes 6 & 7).  If fibronectin causes unintended signaling consequences, alternatives 
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to increase cell adhesion include coating coverslips with 0.1% fish gelatin or treating 

them with poly-L-lysine. 

2. There are many factors to consider when choosing the appropriate cells for an 

effector recruitment assay. 

a. Spread, adherent cells with easily visible organelles will allow for better 

identification of subcellular compartments than rounded or suspended 

cells. 

b. Cell choice can be used to help maximize probe specificity while 

monitoring endogenous GTPase activation (see Note 5).  For example, 

POSH-PBD is a good probe for endogenous Rac1 activation because it 

does not bind to other Rho GTPases such as RhoA and Cdc42.  While it 

has not been determined if POSH is a downstream effector for Rac2 in 

addition to Rac1, it likely is, given that the effector binding loops of Rac1 

and Rac2 are identical (351).  Therefore, changes in POSH-PBD 

localization could be due to activation of either Rac1 or Rac2.  However, 

Rac2 is expressed largely in hematopoietic cells and some tumor cells.  If 

it is desirable to maximize probe specificity for Rac1, POSH-PBD can be 

used in cell types that do not express Rac2. 

c. To increase the signal-to-noise ratio, it is best to use cells with low basal 

levels of GTPase activation when observing the effect of overexpressed 

GTPases. 

d. There are numerous examples of cell-type differences in GTPase 

activation (352); thus, cells of relevance to the topic of study must be used.  
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Effector recruitment assays have also been successfully utilized to monitor 

GTPase activation in model organisms, such as Xenopus (345, 353). 

3. Given an approximately 24-hour doubling time, it is optimal that cells are ~40% 

confluent on the day after plating so they will still be in logarithmic growth phase 

when they are fixed.  However, this can vary with cell lines and doubling times.  

Additionally, low density on the day of transfection can lead to low transfection 

efficiency.  If this occurs, multiple coverslips may be needed for each condition in 

order to acquire enough cells to count. 

4. In the example illustrated here, vector-only was used as a negative control and the 

Rac1 mutant served as a proof-of-principle that PAK1-PBD could be recruited to the 

nucleus by expression of active, nuclearly localized Rac1. Other comparisons could 

include constitutively active Rac1(Q61L) that recruits PAK1-PBD or POSH-PBD to 

the plasma membrane; dominant-negative mutants of Rac1 that fail to bind any 

effectors; effector domain mutants of Rac1 or non-Rac HA-tagged small GTPases, 

both of which fail to bind PAK or POSH.  Assays for endogenous GTPase activation 

require more rigorous controls.  For example, to confirm that recruitment in response 

to a given stimulus is due to activation of a specific GTPase, knockdown of the 

GTPase should impair recruitment.  To examine whether expression of a GEF causes 

probe recruitment due to GTPase activation, use of a GEF mutant with impaired GEF 

activity should be used to determine if recruitment is then reduced.  Additionally, 

controls for potential contributions of other structural or functional elements of the 

regulator, such as scaffolding functions, should also be included. 
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5. Probe selection greatly impacts the performance of recruitment assays and the 

conclusions regarding specificity that can be drawn from them.  As mentioned 

previously, some GBDs are very specific while others are more promiscuous among 

GTPases.  The specificity of the GBD probe aids in the determination of which 

GTPases are activated by a given stimulus in the observed location.  A less specific 

probe may be desirable at first to explore the activation of multiple GTPases at once.  

However, this can also be complicated and lead to false negative results if two 

GTPases have opposing effects on the same probe, and eventually a more specific 

probe will likely be the most useful.  Table 3.2 lists previously described probes and 

their GTPase specificity; however, none of the probes have been tested for specificity 

among all GTPases.  Therefore, other methods (see Notes 2 and 4) to confirm 

specificity should also be used.  Additionally, as new discoveries about which 

residues define the GTPase specificity of a GBD are made, designer probes can be 

made with a desired specificity.  For example, based on current knowledge, PAK1-

PBD can be mutated to interact specifically with Cdc42 instead of Rac (354). 

Additionally, the ability of a probe to localize to a given location must be 

considered.  For example, if a probe is too large (GFP adds an additional 27 kDa) 

then it may not be able to enter the nucleus, even if there are active GTPases present.  

Ideally, under basal conditions, effective probes will be expressed diffusely 

throughout the cytoplasm and nucleus prior to GTPase manipulation.  If this is not the 

case, then performing proof-of-principle experiments with constitutively activated 

GTPases targeted to specific subcellular regions (such as the one described here with 
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Rac in the nucleus) can be used to determine if a given probe is capable of interacting 

with active GTPases in a specific location. 

6. The amounts of GBD probe and GTPase ectopically expressed will likely require 

optimization based on the probe and based on the cell type.  As mentioned above, 

Rho GTPases regulate the cytoskeleton, and overexpression of GBD probes derived 

from their downstream effectors (or the GTPases themselves) can have undesired 

consequences (350, 355).  Therefore, using the lowest amount of probe that can be 

easily observed is advantageous. We recommend testing multiple concentrations of 

each probe and GTPase to determine the best concentration for cell health, 

transfection efficiency, and low probe expression. 

Stoichiometry is very important in these assays. We caution that a lack of 

observed recruitment may be due to stoichiometry problems causing a false negative 

result. If an expected effect is not seen with endogenous GTPases, one should also 

attempt the experiment with overexpression of the GTPase of interest.  This caution is 

exemplified with Raf1-RBD, which can detect changes in exogenous but not 

endogenous Ras localization, presumably due to relatively low levels of endogenous 

Ras (335, 349). 

7. As with amount of probe added, timing must also be optimized.  Upon expression of 

the GBD for long periods of time, some cells will change in morphology and may 

require fixation prior to 24 hours to preserve cell health.  Alternatively, some cells are 

slower to transcribe the probe and will require more time before optimal probe 

expression is observed.  Since the probes are fluorescently labeled and suitable for 

live cell imaging (e.g., GFP), the preliminary assay used to optimize DNA 
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concentrations for transfection (see Note 6) can be observed at multiple time points 

(12, 24, 36, 48, 60, 72 hours) to determine optimal timing. 

8. To minimize photobleaching, cells expressing the fluorescent probe should be kept in 

the dark.  A cardboard box can be wrapped with aluminum foil and then used to cover 

the coverslips between steps during the fixation and staining process.  After mounting 

the coverslips on slides, the slides should be kept in a dark box at 4°C prior to 

counting and imaging. 

9. The assay can also be performed with a fluorescently labeled GTPase (or regulator) 

or in response to stimulation.  In this case, one can perform the assay with live cells 

and fixation is not necessary.  However, fixation is useful to avoid phototoxicity and 

to establish more clearly defined time points.  

10. All other time points related to fixing and staining can be estimated.  However, it is 

important that incubation with Triton-X-100 is monitored more closely.  Leaving 

detergent on the cells for too long can cause cellular degradation.  

11. Some primary antibodies require blocking at this step to prevent non-specific binding.  

Consult the immunofluorescence staining instructions provided by the manufacturer.   

12. To conserve antibody, tape a piece of Parafilm to a lab bench so that it is taut and free 

of wrinkles.  Use a pipet to dispense 40 µl of diluted antibody onto the parafilm for 

each coverslip.  Place the coverslips with the cell-side down onto the antibody 

droplets for incubation.  For later rinsing steps, return coverslips to the 12-well plate 

with the cell-side of the coverslip facing up.   

13. In the described assay, the PAK1-PBD probe was tagged with EGFP (excitation 

maximum, 488 nm/emission maximum, 509 nm), which pairs well with Alexa 
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Fluor® 594 (excitation maximum, 594 nm/emission maximum, 618 nm) because 

their excitation and emission spectra do not overlap.  Other fluorescent probes can be 

paired, but it is very important that their spectra do not overlap.  Otherwise, the 

observed “recruitment” might be an artifact of bleed-through of the fluorescence of 

one probe into the wavelength of the other probe.  To rule out bleed-through, it is 

important to use both channels to image cells expressing only the probe and cells 

staining only for the GTPase, and confirm that the other channel is blank in each 

scenario. 

14. Rinsing with water helps remove residual salt (in the PBS) from the coverslip.  Areas 

on the coverslip with salt crystals cannot be viewed under the microscope.  

15. In this assay, mounting medium containing DAPI was used.  DAPI stains nucleic 

acids and acts as a nuclear marker.  The assay can be expanded to look at recruitment 

to various other subcellular locations by utilizing different markers and stains.  For 

example: galactosyl transferase (GalT) marks the Golgi (335); transferrin marks 

endosomes (321); and MitoTracker® Red stains mitochondria (239).  Many antibody 

suppliers provide useful lists of their antibodies that are specific to distinct subcellular 

compartments.  

16. It is important to avoid bubbles in the mounting medium, since this will obstruct 

viewing of the cells.  Be sure that bubbles are not released while pipetting the 

mounting medium onto the slide.  Bubbles can also be generated from mounting the 

coverslip too quickly.  Holding the coverslip at a 45 degree angle to the slide, place 

an edge of the coverslip onto the mounting medium and slowly lower the coverslip 

towards the slide.   
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17. In the described assay, it is impossible to count the cells blindly (i.e., vector-only cells 

are not red as are Rac1-expressing cells); however, whenever possible, images should 

be counted blind. 

Quantitation can also be done by analysis using image-processing applications 

such as ImageJ (available free as public domain software from the US National 

Institutes of Health [http://rsbweb.nih.gov/ij/] and other download sites).  Each cell 

that expresses both Rac and the probe can be imaged, and ImageJ can then be used to 

quantify the pixel intensity in the area of interest (e.g., the nucleus) and another area 

in the cell (e.g., the cytoplasm).  An arbitrary threshold can be set (e.g., for nuclear 

recruitment, a ratio of greater than 2:1 for nuclear:cytoplasmic intensity) and cells can 

be assigned to categories using this quantitative approach.  If using this method, it is 

very important that the images are taken in the linear range of the microscope so that 

none of the pixel intensities are saturated (this can be controlled by exposure time and 

gain on the microscope).  Also, it is important that it is the ratios that are compared 

and not the raw pixel intensities in a given area.  The raw pixel intensity is a measure 

of how much GBD is being expressed, while the ratio signifies the distribution of the 

GBD among different locations.  A change in the distribution (ratio) of the GBD 

among conditions is what is of interest in recruitment assays.  This quantitative 

method of analysis may limit the number of cells that can be analyzed, in which case 

it will not give as accurate a representation of the population as a whole.  The more 

cells counted (using any method) the better, because typically cell populations are 

heterogeneous, with a range of distributions of the GBD probe due to differences in 

the activation state of a variety of pathways within a given cell.  The key task of data 
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analysis is to examine a heterogeneous population of cells and determine if, in a given 

condition, certain subpopulations become more highly represented. 

18. Recruitment assay results are regulated by a variety of factors that cannot always be 

adequately controlled, including serum freshness, cell density, cell passage number, 

etc.  This can cause results to vary significantly upon repetition.  Therefore, it is not 

uncommon to require repetition of the assay 5-8 times before obtaining statistically 

significant results with a low standard deviation.   

19. Imaging cells on a confocal microscope allows imaging of a narrow slice in the z-

plane.  Overlap observed with a confocal microscope therefore represents co-

localization in -x, -y, & -z planes within a cell, whereas overlap observed with an epi-

fluorescent microscope represents co-localization only in the -x and -y planes.  If a 

confocal microscope is unavailable, an epi-fluorescent microscope with the capability 

of visualizing the chosen fluorophores can still be used for less precise observations 

of recruitment. 

20. Recruited GBD probes should overlay well with activated GTPases.  But, using 

recruitment assays to visualize endogenous activation of a GTPase by a regulator will 

likely result in an imperfect overlay between the probe and the regulator, since the 

regulator may activate the GTPase in this location and then be released from its close 

proximity. 
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CHAPTER 4: THE ROLE OF ECT2 NUCLEAR RHOGEF ACTIVITY IN OVARIAN 

CANCER CELL TRANSFORMATION3 

OVERVIEW 

 Ect2, a Rho guanine nucleotide exchange factor (RhoGEF), is atypical among 

RhoGEFs in its predominantly nuclear localization in interphase cells.  One current model 

suggests that Ect2 mislocalization drives cellular transformation by promoting aberrant 

activation of cytoplasmic Rho family GTPase substrates.  However, in ovarian cancers, 

where Ect2 is both amplified and overexpressed at the mRNA level, we observed that the 

protein is highly expressed and predominantly nuclear, and that nuclear but not cytoplasmic 

                                                        
3This chapter has been accepted for publication in Genes & Cancer and will be published by 
SAGE.  The author list is as follows: Huff LP, DeCristo MJ, Trembath D, Kuan P, Yim M, 
Liu J, Cook DR, Miller CR, Der CJ, Cox AD.  I wrote the chapter, and the work described 
was performed by me except for the aspects indicated below.  All authors participated in 
editing the manuscript.  Molly J. DeCristo performed some of the soft agar assays averaged 
in Figure 4.3, and contributed greatly through discussions about Ect2 and Rho GTPase 
function in ovarian cancer cells that enhanced my experimental approaches.  Dimitri 
Trembath scored the ovarian TMA for Ect2 expression in the nucleus and cytoplasm, and 
taught me about pathology during the process.  Pei Fen Kuan performed all the statistics 
related to the TMA and growth curves, and taught me how to perform the correct statistics 
for the other data.  Margaret Yim performed some of the soft agar assays averaged in Figure 
4.3.  Jinsong Liu provided the ovarian TMA.  Danielle R. Cook performed site-directed 
mutagenesis to generate NLS-mutant and GEF-deficient (DH-mutant) Ect2 constructs, which 
I then cloned into the expression vectors used here.  C. Ryan Miller wrote the IRB covering 
this work and supervised the immunohistochemical staining of the TMA.  Channing J. Der 
and Adrienne D. Cox initiated this project.  Channing J. Der also initiated a collaboration 
with Millipore to generate a novel Ect2 antibody that I characterized and demonstrated to be 
suitable for immunofluorescence and immunohistochemistry.  Adrienne D. Cox oversaw the 
project.  She also edited this chapter down from twice its initial length and rendered it 
suitable for journal submission. 
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Ect2 increases with advanced disease.  Knockdown of Ect2 in ovarian cancer cell lines 

impaired their anchorage-independent growth without affecting their growth on plastic.  

Restoration of Ect2 expression rescued the anchorage-independent growth defect, but not if 

either the DH catalytic domain or the nuclear localization sequences (NLS) of Ect2 were 

mutated.  These results suggested a novel mechanism whereby Ect2 could drive 

transformation in ovarian cancer cells by acting as a RhoGEF specifically within the nucleus.  

Interestingly, Ect2 had an intrinsically distinct GTPase specificity profile in the nucleus 

versus the cytoplasm.  Nuclear Ect2 bound preferentially to Rac1, while cytoplasmic Ect2 

bound to RhoA but not Rac.  Consistent with nuclear activation of endogenous Rac, Ect2 

overexpression was sufficient to recruit Rac effectors to the nucleus, a process that required a 

functional Ect2 catalytic domain.  Further, expression of active nuclearly targeted Rac1 

rescued the defect in transformed growth caused by Ect2 knockdown.  Our work suggests a 

novel mechanism of Ect2-driven transformation, identifies subcellular localization as a 

regulator of GEF specificity, and implicates activation of nuclear Rac1 in cellular 

transformation. 

 

INTRODUCTION 

 Rho family GTPases are molecular switches that act as signaling nodes to integrate 

extracellular signals and propagate intracellular signals.  They control many normal cellular 

processes, including actomyosin remodeling, cell polarity, gene expression, and cell cycle 

progression (338, 404).  The best-studied members of this family are RhoA, Rac1, and Cdc42.  

These Rho GTPases are frequently overexpressed or dysregulated in tumors (47, 186, 405).  
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Aberrant Rho GTPase activity regulates transformation, invasion, metastasis, and 

angiogenesis (47, 186, 405). 

 GDP-bound Rho proteins are in the off-state, whereas GTP-bound proteins are in the 

on-state, in which they bind to their effector targets and transmit downstream signals.  

Guanine nucleotide exchange factors (GEFs) catalyze release of guanine nucleotides from 

GTPases, thereby enhancing binding of the more abundant cellular GTP (85).  While some 

GEFs activate only specific GTPases, others are more promiscuous. 

Ect2 (epithelial cell transforming sequence 2) is a Rho family GEF capable of 

activating RhoA, Rac1, and Cdc42 in vitro (76), but in cellulo it is more selective, in a 

context-dependent manner (111, 121, 123, 125, 126, 138, 159). Atypically for RhoGEFs, 

Ect2 contains two nuclear localization signals (NLSs), and has a prominent nuclear 

localization in interphase cells (76).  In contrast, Rho proteins are found outside the nucleus 

(47). It has been proposed that Ect2 is autoinhibited and sequestered from Rho GTPases in 

the nucleus of normal interphase cells, but becomes mislocalized to the cytoplasm in tumor 

cells, where its autoinhibition is lost, and where it then activates Rho family GTPases to 

drive transformation (111, 137). However, the subcellular localization of Ect2/Rho GTPases 

interactions has never been directly investigated in tumor cells. 

 Here we utilized ovarian tumor cells to further examine the role of Ect2 in 

transformation.  Aberrant Rho GTPase activity has been implicated in this tumor type (223, 

224, 229, 230).  Ect2 is located on chromosome 3q26.1-26.2 (152), a common amplicon in 

ovarian tumors (151, 157); indeed, ovarian cancer has the second highest frequency of Ect2 

amplification among human cancers to date (149).  Ect2 is also overexpressed at the mRNA 

level (45, 151, 218).  However, the protein expression of Ect2 and its functional 
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consequences have not been studied in ovarian tumors.  We examined a patient tissue 

microarray (TMA) and observed that Ect2 protein was strongly expressed predominantly in 

the nucleus of ovarian cancer cells.  We have identified a requirement for Ect2 in ovarian 

cancer cell transformation, and a novel mechanism whereby Ect2 can activate Rac1 and can 

drive ovarian tumor cell transformation from within the nucleus. 

 

RESULTS 

Nuclear localization of Ect2 correlates with advanced disease in human serous epithelial 

ovarian cancers 

 Protein expression and subcellular distribution of Ect2 in ovarian cancers has not 

been evaluated previously.  We evaluated these properties in a previously validated ovarian 

TMA (406-409) containing approximately 400 full-faced cores from ovarian tumors and non-

matched normal ovarian cysts.  We optimized the immunohistochemical protocol such that 

<5% of OVCAR8 cells with Ect2 knockdown stained positive for Ect2, using an Ect2 

antibody that we had previously validated for specificity by immunoblot analysis 

(Supplementary Information (SI) Figs. 4.1A & B). Nuclear and cytoplasmic Ect2 expression 

were scored independently for each core.  Unexpectedly, we found that higher scores for 

nuclear expression correlated with more advanced serous epithelial tumors (p=0.0001516, 

Fig. 4.1A), whereas those for cytoplasmic expression correlated with less advanced tumors 

(p=0.0007163, Fig. 4.1B).  Indeed, in serous cysts Ect2 was expressed at low levels in the 

cytoplasm but undetectable in the nucleus, whereas for most cells in advanced tumors, Ect2 

was concentrated in nuclei (Fig. 4.1C).  These results suggested that nuclear rather than 
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cytoplasmic localization of Ect2 may be important for its oncogenic functions in this tumor 

type. 

 

Ect2 is expressed predominantly in the nucleus of ovarian cancer cell lines 

 We turned to cell lines to study the localization and function of Ect2 in ovarian tumor 

cells directly.  Ect2 was easily detected by immunoblotting in all of our panel of 8 ovarian 

cancer cell lines (Fig. 4.2A).  To assess its subcellular localization, we performed 

immunofluorescence, staining for endogenous Ect2, co-staining for DAPI as a nuclear 

marker, and imaging the cells using confocal microscopy.  Specificity of the Ect2 antibody 

immunofluorescence signal was confirmed using Ect2 knockdown cells (SI Fig. 4.1C).  We 

observed a direct overlay of the vast majority of the Ect2 and DAPI signals in all cell lines 

examined (Fig. 4.2B and data not shown), indicating that Ect2 is predominantly nuclear, and 

supporting our observation from the TMA that nuclear Ect2 may be more relevant than 

cytoplasmic Ect2 for ovarian cancer cells. 

 

Ect2 is required for transformed growth of ovarian cancer cell lines 

Anchorage-independent growth is a hallmark of the transformed phenotype and is 

classically measured by soft agar colony formation (410). To determine the requirement for 

Ect2, we stably knocked down Ect2 using two independent shRNAs in cell lines that grow 

vigorously in an anchorage-independent manner.  Both shRNAs robustly decreased 

expression of Ect2 in all cell lines, with Ect2 shRNA#3 showing more complete knockdown 

than shRNA#2 (98% and 84%, respectively, in OVCAR8 cells) (Fig. 4.3A).  We then 

compared anchorage-independent growth of cells expressing non-targeted (NT) shRNA or 
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Ect2 shRNA.  Knockdown of Ect2 decreased soft agar colony formation of multiple cell lines, 

with the most striking effects seen in OVCAR8 cells (Fig. 4.3B, *p<0.05). Thus, Ect2 is 

necessary for anchorage-independent growth of multiple ovarian cancer cell lines.  We 

selected OVCAR8 for further study. 

MTT proliferation assays revealed no significant differences between NT and Ect2 

knockdown ovarian cancer cells (Fig. 4.3C). This indicates that the observed Ect2 

dependence of anchorage-independent growth was not due simply to a general proliferation 

defect.  And although Ect2 is known to play a critical role in cytokinesis of normal cells 

through activation of RhoA (49, 125), its role in some tumor cells is less clear (121, 137).  

Here, the level of multinucleated cells remained low upon knockdown of Ect2 (SI Figs. 4.2 & 

4.4), indicating that these ovarian tumor cells can still undergo cytokinesis efficiently when 

Ect2 is depleted. 

 

RhoGEF activity is required for Ect2-mediated transformed growth 

 Ect2 is a RhoGEF with other functional domains (85) that may also play a role in its 

ability to drive transformed growth.  To determine if the GEF activity itself is required, we 

first generated an shRNA-resistant, putatively GEF-deficient Ect2 mutant.  Residues E428 

and N608 in the catalytic Dbl homology (DH) domain of Ect2 are conserved among 

RhoGEFs, interact with the switch I and switch II regions of Rho GTPases respectively, and 

are important for nucleotide exchange (85).  We mutated these residues to alanines (E428A, 

N608A).  Both wild type (WT) and the DH-mutant Ect2 were tagged with the HA epitope so 

they could be monitored separately from endogenous Ect2.  The localization of the DH-

mutant was indistinguishable from WT (SI Fig. 4.3).  Using standard pulldown assays for 
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active Rho GTPases, we then observed in 293T cells that these mutations decreased by 90% 

the ability of Ect2 to activate RhoA, and completely ablated Rac1 activation (Fig. 4.4A), 

validating that this Ect2 mutant is GEF-deficient on these substrates.  Interestingly, these 

mutations did not prevent Ect2-induced activation of Cdc42, indicating that this activation is 

not dependent on these catalytic residues, and is likely indirect. 

We next assessed whether GEF-deficient Ect2 could rescue anchorage-independent 

growth. Ect2 expression was rescued in OVCAR8 Ect2 knockdown cells using either WT or 

GEF-deficient Ect2 (Fig. 4.4B).  As expected, WT Ect2 rescued soft agar colony numbers to 

levels similar to those seen in cells without Ect2 knockdown, whereas the GEF-deficient 

mutant only partially rescued the phenotype (Fig. 4.4C). Thus, the RhoGEF activity of Ect2 

is required to support full anchorage-independent growth in OVCAR8 cells.   

We then sought to determine which Rho GTPases are activated by Ect2 in these cells.  

We compared the levels of active RhoA, Rac, and Cdc42 in whole cell lysates with or 

without Ect2 knockdown, utilizing standard Rhotekin-RBD (for RhoA) and PAK-RBD (for 

Rac and Cdc42) pulldown assays.  Upon Ect2 knockdown, RhoA activity decreased by about 

a third (*p<0.05, Fig. 4.4D).  We also saw a clear but more variable decrease in active Rac, 

despite the continued presence of multiple other RhoGEFs capable of activating these 

GTPases.  Cdc42 activity remained constant (data not shown), consistent with the lack of 

effect of Ect2 GEF deficiency on Cdc42-GTP levels.  These results indicate that Ect2 GEF 

activity is required for full RhoA and Rac activation in OVCAR8 cells at steady state and 

that other GEFs cannot fully compensate for loss of Ect2. 
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Predominantly nuclear localization is required for Ect2-mediated transformed growth 

In ovarian cancer cells, Ect2 is a predominantly nuclear RhoGEF.  Although RhoA 

and Rac1 are predominantly cytosolic proteins (47), both have been observed to lesser 

extents in the nucleus (61-64, 68). Loss of Ect2 GEF activity impaired ovarian cancer cell 

transformed growth, and also impaired full RhoA and Rac activation.  Collectively, these 

findings suggest that Ect2 could activate nuclear rather than cytoplasmic pools of RhoA and 

Rac to drive transformation.  If so, depleting Ect2 selectively from the nucleus should impair 

anchorage-independent growth. 

To address this possibility, we mutated the arginines in both NLSs of the shRNA-

resistant Ect2 to alanines (R348,349,350,370,372A). We first evaluated subcellular 

localization using immunofluorescence and confocal microscopy.  Co-staining for the HA-

epitope tag and DAPI confirmed that the NLS-mutant had a greatly decreased nuclear 

localization and greatly enriched cytoplasmic localization compared to WT Ect2 (Fig. 4.5A).  

To quantitate the subcellular distribution of NLS-mutant Ect2, we then fractionated the cells 

and performed immunoblotting analyses.  The results (Fig. 4.5B) demonstrated that only 

about 10% of the NLS-mutant was still localized to the nuclear fraction.  The NLS-mutant 

was well-expressed and well-tolerated, such that cells lines stably expressing NLS-mutant 

Ect2 were easily generated (SI Fig. 4.4A), without apparent effects on cell cycle distribution 

(SI Fig. 4.4D) or multinucleation (SI Figs. 4.4B & C).   

Despite higher levels of expression than WT Ect2 (Fig. 4.5C), the NLS-mutant was 

not capable of rescuing the anchorage-independent growth defect of Ect2 knockdown cells 

(Fig. 4.5D).  Interestingly, its overexpression alone in cells retaining endogenous Ect2 was 

sufficient to lead to decreased anchorage-independent growth.  This suggests that simply 
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localizing Ect2 to the cytoplasm in the presence of nuclear Ect2 is not sufficient to drive 

transformation in these ovarian cancer cells, but rather may have the opposite effect, 

consistent with our TMA findings in which higher levels of cytoplasmic Ect2 were found 

preferentially in the less-advanced lesions. 

 

Some nuclear Ect2 is present in an active conformation that has enhanced specificity for 

Rac1 

 It has been proposed that nuclear Ect2 is autoinhibited (111, 115), whereas our results 

suggest at least a portion is active.  To test this directly, we fractionated OVCAR8 cells and 

performed a pulldown assay (343, 411) for active Ect2 using a constitutively nucleotide-free 

form of RhoA(17A), which binds with high affinity to the active form of RhoGEFs (411).  

Using tubulin as a cytoplasmic marker and PARP as a nuclear marker, we confirmed 

effective fractionation (Fig. 4.6A, left).  Immunoblotting of endogenous Ect2 demonstrated 

that, while the vast majority was observably nuclear (NUC), some Ect2 was detectable in the 

non-nuclear fraction (CYT).  This is unlikely to be due to nuclear contamination of the CYT 

fraction because PARP was not detectable there.  In both fractions, Ect2 bound with notably 

higher affinity to GST-RhoA(17A) compared to the GST-only control (Fig. 4.6A, right), 

revealing that some active Ect2 is present in both compartments. 

 The ability of a GEF to interact with nucleotide-free mutant GTPases is dependent on 

both the concentration of active GEF (343) and the specificity of the GEF for the GTPase 

(411-413).  To determine the ability of Ect2 to interact with other Rho GTPases within each 

subcellular compartment, we extended these results with GST-RhoA(17A), GST-Rac1(15A) 

and GST-Cdc42(15A).   Equal amounts of GST-Rho proteins were added in excess to each 
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Ect2-containing lysate (Fig. 4.6B Coomassie), so the relative amounts of endogenous RhoA 

and Rac in each cellular compartment were irrelevant and could not contribute to any 

observed differences in Ect2 interactions.  Additionally, to avoid complications from the 

vastly different amounts of Ect2 present in the nuclear versus non-nuclear compartments, 

here we pulled down Ect2 from lysates containing equal amounts of total Ect2 rather than 

equal amounts of total protein.  

 Unexpectedly, the Rho GTPase interactions of Ect2 in the nucleus were different 

from those in the cytoplasm (Fig. 4.6B).  In the nucleus, Ect2 interacted with both Rac1(15A) 

and RhoA(17A), with a distinct preference for Rac1 despite equal exposure to both.  In the 

cytoplasm, Ect2 interacted almost exclusively with RhoA.  The minimal levels of Ect2 pulled 

down with Cdc42(15A) from either compartment are consistent with our proposal that 

activation of Cdc42 via Ect2 is indirect in these cells.  Using densitometry to quantify the 

amount of Ect2 from each compartment that was pulled down by Rac versus Rho, we 

calculated that the ratio of Ect2 pulled down by Rac to that of Ect2 pulled down by Rho was 

1.7 in the nucleus but only 0.4 in the non-nuclear compartment (Fig. 4.6C).  Because equal 

amounts of ectopic Rac and Rho were available for Ect2 binding in each case, these different 

ratios suggest the possibility of an intrinsic conformational difference between nuclear and 

cytoplasmic Ect2. 

We detected both endogenous Rac and endogenous Rho in the nucleus (Fig. 4.6D), 

but with unequal distribution:  a greater proportion of Rac was distributed to the nucleus 

(16%) than was Rho (6%) (Fig. 4.6E).  Thus, intrinsic differences detected by the pulldowns 

using ectopic nucleotide-free GTPases are likely to be amplified by the relative availability 

of endogenous Rac and Rho in each compartment during cellular signaling.  
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Ect2 activates endogenous Rac in the nucleus and endogenous RhoA in the cytoplasm 

To determine if Ect2 is capable of activating endogenous Rac and/or Rho in the 

nucleus, we first performed standard Rho binding domain (RBD) recruitment assays (321, 

348, 349, 414, 415). We used POSH, a downstream effector specific to Rac (336), to detect 

active Rac-GTP.  Under basal conditions, GFP-POSH-RBD was expressed diffusely 

throughout the cytoplasm and nucleus, but was recruited to the nucleus in the presence of 

exogenous WT Ect2 (Fig. 4.7A; quantified in Fig. 4.7C).  Nucleolar exclusion of GFP-

POSH-RBD was evident by confocal microscopy (Fig. 4.7A); thus, GFP-POSH-RBD was 

recruited into the nucleus and not onto the nuclear envelope.  Recruitment was dependent on 

both GEF activity and nuclear localization of Ect2, because the GEF-deficient and the NLS-

mutant each failed to recapitulate the effects of WT Ect2.  Consistent with these results, 

GFP-PAK1-RBD (205) was also recruited to the nucleus by Ect2, in a GEF- and NLS-

dependent manner (SI Figs. 4.5A & B).  These results indicate that WT Ect2 activates 

endogenous Rac1, and the site of activation is primarily in the nucleus.   

Notably, the cytoplasmically localized NLS-mutant did not activate Rac as measured 

either by recruitment assay (Fig. 4.7A, SI Fig. 4.5A) or by pulldown assay (Fig. 4.4A).  In 

contrast, we observed that the cytoplasmically localized NLS-mutant Ect2 strongly increased 

RhoA-GTP levels (50.5 fold, Fig. 4.4A). These results indicate that Ect2 activity in the 

cytoplasm preferentially results in activation of Rho.  However, GFP-Rhotekin-RBD, a 

surrogate for RhoA activity (416) was not recruited either to the cytoplasm or to the nucleus 

(Fig. 4.7B, quantified in Fig. 4.7C).  One reason for this may be that any shift of the smaller 

pool of nuclear GFP-Rhotekin-RBD into the cytoplasm may not be detectable in the larger 

pool of cytoplasmic Rhotekin-RBD.  Therefore, to determine if the elevated RhoA-GTP that 
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we detected by pulldown led to a biological consequence in the cytoplasm, we performed 

phalloidin staining to examine the actin cytoskeleton of OVCAR8 cells exogenously 

expressing WT or mutant Ect2.  The canonical cytoskeletal consequence of RhoA activity is 

the formation of stress fibers (33), and indeed we found that only the cytoplasmically 

localized NLS-mutant Ect2 significantly enhanced stress fiber formation, whereas the 

nuclearly localized WT and GEF-deficient Ect2 did not (Figs. 4.7D & E).  These results 

indicate that cytoplasmically localized Ect2 can functionally activate RhoA.  In contrast, and 

consistent with its inability to activate Rac (Fig. 4.4A), NLS-mutant Ect2 did not increase 

membrane ruffling, a canonical consequence of Rac activity (31) (Figs. 4.7D & E).  WT Ect2 

also did not enhance membrane ruffling, consistent with a previous report that 

overexpression of a nuclearly localized, constitutively active Rac1 mutant enhanced cell 

proliferation without inducing membrane ruffles (62).  Collectively, our results indicate that 

Ect2 preferentially activates Rac1 in the nucleus and RhoA in the cytoplasm.  The larger pool 

of cytoplasmic Rho family GTPases (Fig. 4.6E) may explain why we observed more striking 

changes in RhoA activation compared to Rac activation upon Ect2 overexpression (Fig. 

4.4A) and knockdown (Fig. 4.4D) in whole cell lysate.   

 

Nuclear Rac1 activity is sufficient to rescue defects in Ect2-mediated transformed growth 

Since we have demonstrated that both nuclear localization and GEF activity are 

required for Ect2-mediated transformed growth in ovarian cancer cell lines and that Ect2 

preferentially activates Rac1 in the nucleus, our results suggest that Ect2 activation of nuclear 

Rac may be an important contributor to its transforming ability.   
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We first attempted to determine directly whether Rac1 is necessary for Ect2-driven 

anchorage-independent growth by asking whether Rac1 knockdown impaired colony 

formation in soft agar.  However, it was impossible to generate cells lacking Rac1, as 

transfection with any of four independent Rac1-targeted siRNAs (Dharmacon/Thermo 

Scientific, Pittsburgh, PA) induced widespread cell death (data not shown), leaving us with 

insufficient Rac1-knockdown cells for analysis and indicating that Rac1 is an essential 

protein for viability of these cells.  Although it is likely that the non-nuclear functions of 

Rac1 were critical, we were unable to selectively knock down only nuclear Rac1. 

Another approach to testing our model is to determine whether nuclear Rac1 can overcome 

the defect in transformed growth conferred by loss of Ect2 expression.  To test this, we 

generated HA-tagged activated Rac1 mutants that were preferentially localized in the nucleus 

(Fig. 4.8A).  We used mutants of Rac1 that were activated independently of Ect2 by either 

the traditional GTP-locked G12V mutation (31) or by the fast-cycling F28L mutation (173).  

Prenylation of Rac1 is required for its plasma membrane association (47) and impairs its 

nuclear import.  Non-prenylated Rac1 localizes strongly to the nucleus when GFP-tagged (13, 

62).  However, we determined that an additional N-terminal NLS was required to concentrate 

unprenylated HA-tagged Rac1 in the nucleus.  Therefore, to preferentially localize the 

activated Rac1 mutants to the nucleus, we both mutated the Rac1 prenylated cysteine to 

serine (C189S, “SAAX” mutation) and added the classical NLS from SV40T antigen (417) to 

the N-terminus to generate "NLS-Rac1-SAAX" mutants.  When expressed stably in cells 

with Ect2 knocked down (Fig. 4.8B), each of these nuclearly concentrated, active mutants of 

Rac1 was able to rescue anchorage-independent growth to the same extent as re-expression 
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of WT Ect2 (Fig. 4.8C).  These results support our model that Ect2 activation of Rac1 in the 

nucleus is a key component of its transforming function. 

 

DISCUSSION 

Despite the largely nuclear localization of the RhoGEF Ect2 in interphase cells (76, 

124, 137, 138, 145), previous studies have focused on its actions at non-nuclear locations.  

For example, the most prominent role for Ect2 in normal cells is its requirement during 

cytokinesis, when the nucleus is not intact and Ect2 activates RhoA at the cleavage furrow 

and midbody (45, 76, 121, 125, 131).  But the function of Ect2 in cytokinesis of normal cells 

can be uncoupled from its role in promoting transformed growth of tumor cells (121, 137, 

161), leaving the mechanisms whereby it promotes transformation less well understood. One 

model suggests that Ect2 must be cytoplasmically mislocalized to drive transformation (111, 

137).  In contrast, our study indicates a prominent role for a nuclear pool of Ect2 in the 

transformed phenotype of ovarian cancer cells.  Further, we have identified a requirement for 

Ect2 to act as a RhoGEF within the nucleus to promote growth transformation in ovarian 

cancer cells. 

In both ovarian cancer patient tumor tissues and established cell lines, we found that 

Ect2 protein was expressed robustly, consistent with its published genomic amplification and 

mRNA overexpression in ovarian tumors (45, 151, 218).  Ect2 was predominantly localized 

to the nucleus, particularly in advanced disease.  Interestingly, we did not observe significant 

Ect2 localization to the cytoplasm in advanced tumors; instead, benign ovarian cysts had the 

most prominent cytoplasmic staining.  Although Ect2 was reported to be strongly 

mislocalized from the nucleus to the cytoplasm in non-small cell lung cancers (NSCLC) 
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compared to normal lung (137), our observations of increased nuclear expression in ovarian 

cancers are more consistent with other reports where inspection of the data shows that Ect2 

increases globally upon tumor progression, with extensive increases in nuclear expression 

and less dramatic increases in cytoplasmic Ect2 (138, 145-147).  We show here that both 

Ect2 nuclear localization and its RhoGEF activity are required for Ect2-driven anchorage-

independent growth of ovarian cancer cells, suggesting that Ect2 acts as a GEF from within 

the nucleus to drive transformation.  Indeed, our observations that cytoplasmic Ect2 

localization was inversely correlated with advanced disease, and that a cytoplasmically 

localized Ect2 NLS-mutant reduced anchorage-independent growth, indicate that 

mislocalization of Ect2 to the cytoplasm does not drive ovarian transformation but rather 

might oppose the effect of nuclear Ect2.  That this NLS-mutant Ect2 was able to act as a GEF 

to increase RhoA-GTP and promote stress fiber formation, suggest the intriguing possibility 

that Ect2 activation of RhoA in the cytoplasm might even counteract its actions in the 

nucleus.   

In NSCLC cell lines, transformed growth can be driven by Ect2-induced activation of 

Rac1 (137). Rac1 activation was proposed to occur in the cytoplasm, although this was not 

tested directly (137, 161).  Since the BRCT domains of Ect2 can autoinhibit its activity (111, 

112, 115), nuclear Ect2 was proposed to be autoinhibited and sequestered from Rho GTPases 

(111).  Here, we found that active Ect2 was present in the nucleus.  There has been almost no 

prior investigation of the subcellular distribution of active Ect2, but one study did identify 

active Ect2 in the nucleus of HEK293 cells (68).   

While Rho GTPases are described as cytoplasmic proteins (47), this is not the entire 

story.  In particular, Rac1 (62-64) and, to a lesser extent, RhoA (61, 68) and Cdc42 (65) have 
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all been detected within the nucleus.  We were able to detect both endogenous Rac and some 

endogenous RhoA in the nucleus of OVCAR8 cells; therefore, both are available in the 

nucleus as substrates for Ect2 RhoGEF activity.  Our work also provides further evidence for 

nuclear activation of Rho GTPases.  Although early reports simply described 

nucleocytoplasmic shuttling (63, 64), there are recent reports that RhoA can be activated 

from within the nucleus in some contexts (61, 68). 

We observed that Ect2 preferentially activates Rac in the nucleus.  We also identified 

at least two likely contributors to this finding:  1) the presence of more Rac than RhoA in the 

nuclear compartment, and 2) an intrinsic substrate specificity, such that nuclear Ect2 

preferentially binds to Rac1 whereas cytoplasmic Ect2 preferentially binds to RhoA.  

Consistent with the latter, the NLS-mutant, which is defective for nuclear localization and is 

distributed well into the cytoplasm, robustly activated RhoA but not Rac. 

Modulation of intrinsic substrate specificity may be complex.  Phosphorylation is 

required to optimally activate Rac both in vitro (76) and in cells (134).  We have observed 

that bacterially expressed, i.e., unphosphorylated, full-length Ect2 can activate RhoA but not 

Rac1 in vitro (131).  It is tempting to speculate that nuclear Ect2 is appropriately 

phosphorylated; however, despite repeated attempts we have not observed mobility 

differences between nuclear and cytoplasmic Ect2 (as observed previously for 

phosphorylated versus unphosphorylated Ect2 (76, 125)).  Alternatively, as-yet-undefined 

protein-protein interactions that occur in the nucleus may promote interaction with Rac, 

perhaps involving the Ect2 C-terminus, which is required to activate Rac in cells (94).  

Similarly, cytoplasmic scaffolding may promote RhoA but not Rac activation.  Protein-

protein interactions have been speculated to explain reports of varying Ect2 specificity 
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throughout cytokinesis/mitosis (234).  Regardless of the mechanism, to our knowledge, this 

study is the first to demonstrate altered specificity of a RhoGEF based on its subcellular 

localization. 

Our work is also the first to show that active Rac1 is capable of driving 

transformation when concentrated in the nucleus (and excluded from the plasma membrane).  

The precise function of nuclear Rac in these cells is unknown.  Forced expression of a 

constitutively active but unprenylated Rac1 mutant in the nucleus of NIH3T3 cells 

accelerated cell cycle progression (62).  However, this mutant did not induce lamellipodia 

formation, a primary function of cytoplasmic Rac1 (62), suggesting that nuclear and 

cytoplasmic functions of active Rac may be distinct.  Similarly, although overexpression of 

Ect2 was capable of recruiting the RBD of Rac effectors to the nucleus, we did not observe 

an increase in lamellipodia or membrane ruffling upon expression of Ect2.  Still, negative 

regulators (81, 84) and downstream signaling molecules (72, 227, 228, 418, 419) of Rac can 

be detected in the nucleus, suggesting that some cytoplasmic signaling pathways could 

remain intact there, albeit with distinct stoichiometry.  Some Rac effectors directly regulate 

transcription from the nucleus (72, 418, 419), but we did not observe Ect2-mediated 

alterations in transcriptional activation (data not shown). The speckled pattern of Ect2 

localization in the nucleus suggests that Ect2 localizes to distinct subnuclear structures.  

Nuclear speckles regulate mRNA splicing (420), and Ect2 interacts with the SNRNP200 

gene product, a component of the spliceosome (114), so it is possible that Ect2 signaling to 

Rac plays a role in this process.   

In conclusion, here we identified Ect2 as necessary for cellular transformation in 

ovarian tumor cells.  We also identified a novel mechanism through which Ect2 can drive 
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cellular transformation by acting as a GEF from within the nucleus, in a manner distinct from 

its actions in the cytoplasm. We showed that Ect2 preferentially activates Rac in the nucleus 

of ovarian cancer cells and RhoA in the cytoplasm.  In addition to Ect2, the RhoGEFs Net1, 

LARG and Vav3 have also been identified in the nucleus (78, 421, 422). It would be 

interesting to determine if subcellular localization also alters the specificity of these and other 

RhoGEFs.  Our results suggest that nuclear Rac1 activity is biologically relevant for 

transformed growth, and implicate activation of nuclear Rac as a mediator of Ect2-driven 

transformation.  In the future it may become possible to selectively ablate Ect2-activated 

nuclear Rac.  If so, this would allow more rigorous testing of a requirement for nuclear Rac 

activity in Ect2-driven ovarian cancer cell transformation.  As physiologically relevant 

substrates of nuclear Ect2 and Rac1 are identified, it will also be interesting to uncover their 

roles in transformation. 

 

MATERIALS AND METHODS 

Molecular constructs and transfections 

Short hairpin RNA (shRNA) against human Ect2, non-targeted (NT) shRNA, and 

shRNA-insensitive full length Ect2, were generously provided by Alan Fields (Mayo Clinic, 

FL) (137). Quikchange II site-directed mutagenesis kit (Stratagene, Santa Clara, CA, USA) 

was used to create NLS- and DH-mutant Ect2 from shRNA-insensitive full length Ect2 

(primers, SI Table 4.1).  NLS-Rac1-SAAX mutants were generated using PCR (primers, SI 

Table 4.1) to amplify Rac1(F28L) (131) and Rac1(G12V) (gift of Peter Hordijk, Sanquin).  

All Ect2 and Rac1 expression constructs were cloned into pFugW-HA-blasticidin (gift of 

Jeran Stratford, UNC-CH).  Viral psPAX2 (packaging) and pMDG.2 (envelope) vectors were 



 

130 

from Addgene.  pGEX-2T and RBD constructs (321, 345, 423) were gifts from Keith 

Burridge (UNC-CH).  Transfections were performed using TransIT-LTI (Mirus, Madison, 

WI, USA) according to the manufacturer’s instructions. 

 

Cell culture, lentiviral infection, and generation of stable transfectants 

Human ovarian epithelial cancer cell lines were grown in RPMI-1640 with 10% fetal 

bovine serum (FBS, Sigma, St. Louis, MO, USA).  293T cells were grown in DMEM-H + 

10% FBS.  Lentiviruses were generated as described (424), except virus was collected 24 and 

48 h post transfection.  Lentivirus-infected cells (424) were selected in puromycin (1 µg/ml, 

Cellgro, Manassas, VA, USA) or blasticidin (10 µg/ml, Invitrogen, Grand Island, NY, USA).   

 

Flow cytometry 

 Flow cytometry was performed exactly as we have described previously (131). 

 

Immunoblotting, immunofluorescence, phalloidin staining and microscopy 

 Immunoblotting was performed from RIPA cell lysates by our standard methods 

(321).  For immunofluorescence and phalloidin staining, cells were plated on fibronectin, 

fixed in paraformaldehyde, exposed to antibodies or to Alexa Fluor568-conjugated phalloidin 

(Invitrogen), and confocal microscopy imaging performed as we have done previously (321, 

322).  A Nikon (Melville, NY, USA) Eclipse TS100 microscope was used to image cells and 

colonies in bright field. 

 



 

131 

Ovarian tumor tissue microarray (TMA) immunohistochemistry 

A previously validated TMA (406-409), containing formalin-fixed, paraffin-

embedded primary epithelial ovarian carcinomas or benign cysts, was stained for Ect2 by the 

UNC-Translational Pathology Laboratory Core.  We used a standard method of scoring the 

TMA (409), except each core was scored separately for nuclear and cytoplasmic staining.  

Each compartment was scored separately on a scale of 0-100 for percent cyst or tumor cells 

stained, and on a scale of 0-3 for average intensity of staining, where 0 was no staining and 3 

was maximal staining.  The score for each compartment was the product of percent cells 

staining in the nucleus/cytoplasm multiplied by the average intensity of nuclear/cytoplasic 

staining for each core.   

Previously collected patient data (406-409) allowed us to classify the serous tumors 

by degree of malignancy (cysts, serous borderline tumors-SBT, serous low grade tumors, and 

serous high grade tumors).  A Kruskal-Wallis test was performed to compare both nuclear 

and cytoplasmic scores among these groups; p<0.05 was considered significant.  IRB 

approval was through UNC-CH IRB 08-0242. 

 

Anchorage-dependent and -independent growth assays. 

 Soft agar assays to assess anchorage-independent growth were performed and 

counted as we have described (321).  A two-tailed Student’s t-test assuming unequal variance 

was performed on colony counts.  The p-values were adjusted for multiple tests using the 

Bonferroni correction, and p<0.05 was considered significant.  Standard MTT proliferation 

assays were performed (425).  Cells were normalized to the average value for day 0 and 

growth curves were generated from the average of all experiments. Slopes of the log-
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transformed growth curves were compared using likelihood ratio tests to determine statistical 

significance and a Bonferroni corrected p-value <0.05 was considered significant. 

 

Cell fractionation 

 Cell fractionation into nuclear and postnuclear compartments was performed by 

hypotonic swelling, Dounce homogenization, centrifugation through 28.5% iodixanol 

(Sigma), and sonication as described in detail previously (343). 

 

Pulldown and recruitment assays for active Ect2 and Rho GTPases 

Active Ect2 was assessed by incubating fractionated cell lysates with nucleotide-free 

Rho GTPases isolated from bacteria and bound to agarose beads, resolved on SDS-PAGE 

and immunoblotted for Ect2 (343, 411).  Prior to performing pulldowns, fractions were 

subjected to Bradford analysis for total protein content.  For some experiments (Fig. 4.6A), 

equal amounts of total protein were added to the beads.  Alternatively (Fig. 4.6B), loading of 

fractionated cell lysates was normalized for equal expression of Ect2.  This was done by 

comparing the distribution of Ect2 in nuclear versus cytosolic fractions using densitometry of 

western blots of the fractionated lysates, which showed that, loading 2.6x more of the 

cytosolic fraction resulted in approximately equal loading of Ect2 from each fraction.  

Loading of Ect2 was examined by western blot following each of these assays.  Beads were 

blocked in 5% BSA for 30 min to minimize non-specific binding of Ect2 to GST. Equal 

loading of the beads was confirmed by SDS-PAGE and Coomassie blue staining. 

To determine levels of active, GTP-bound RhoA, Rac, and Cdc42, pulldowns using 

GST-Rhotekin-RBD or -PAK-PBD, respectively (423), were performed from whole cell 
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lysates. Densitometry on immunoblots was performed using ImageJ and normalized as 

described in the Results section. 

Recruitment assays (321, 348, 349, 414, 415) using GFP-tagged RBDs for Rhotekin, 

POSH and PAK were utilized to monitor changes in the subcellular distribution of active 

endogenous Rho GTPases. Fixed cells expressing HA-Ect2 in each specific location (vector: 

diffuse; WT and DH-mutant: nucleus; NLS-mutant: cytoplasm) that co-expressed GFP-RBD 

were scored for GFP-RBD localization based on the following categories: nuclear-excluded, 

plasma membrane-highlighted, diffuse nuclear and cytoplasmic localization, nuclear-

highlighted.  The average percentage of cells nuclear-highlighted out of total cells counted is 

shown.  Statistical significance was determined as described for the soft agar assays. 
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TABLES AND FIGURES 

 
Figure 4.1.  Nuclear localization of Ect2 correlates with advanced disease in human 
serous epithelial ovarian cancers.  Ect2 subcellular localization was analyzed by 
immunohistochemistry (IHC) using a well-validated (406-409) ovarian tissue microarray 
(TMA).  Tumor cores were stained with Ect2 antibody (1: 350, Millipore, Billerica, MA, 
USA) and scored for percentage cells stained as well as intensity of staining in each location.  
Separate nuclear scores and cytoplasmic scores were calculated as described in Materials & 
Methods, and binned according to disease severity.  Quantification of Ect2 localization 
showed (A) significantly greater nuclear expression (p=0.0001516) and (B) significantly 
lower cytoplasmic expression (p=0.0007163) in advanced disease. SBT, serous borderline 
tumor.  Box and whisker plots include horizontal lines corresponding to median, first and 
third quartiles (hinges), and extreme points excluding outliers (whiskers).  C. Representative 
images of a benign serous cyst, a serous borderline tumor, a low grade and a high grade 
serous epithelial tumor stained for Ect2 illustrate increased nuclear staining upon disease 
progression.  Scale bars represent 10 microns. 
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Figure 4.2.  Ect2 is expressed predominantly in the nucleus of ovarian cancer cell lines.  
A. Ect2 is highly expressed in ovarian cancer cell lines.  Cell lysates from a panel of 8 human 
ovarian cancer cell lines were probed by immunoblotting with the anti-Ect2 antibody (1: 1 
000, n=4).  Equal amounts of cell lysate were loaded onto the gel; tubulin (1: 1 000 clone 
DM1A Sigma-Aldrich) served as a loading control.  B. Ect2 is predominantly nuclear in 
established ovarian cancer cell lines.  Cells were stained with anti-Ect2 antibody (1: 1 000) 
and the subcellular distribution of endogenous Ect2 was visualized by confocal 
immunofluorescence microscopy to detect the Alexafluor 594-coupled secondary antibody.  
Nuclei were stained with DAPI.  Predominantly nuclear staining was seen across cell lines 
(images representative of n≥4).  Scale bars represent 10 microns. 
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Figure 4.3.  Ect2 is required for transformed growth of ovarian cancer cell lines.  Our 
ovarian cancer cell lines that grow robustly in an anchorage-independent manner were 
evaluated for the importance of Ect2 in transformed growth.  Cells were infected with 
lentiviruses expressing one of two independent shRNAs directed against Ect2, or non-
targeted (NT) shRNA.  Infected cells were selected in puromycin and colonies were pooled 
for further use.  A. Ect2 knockdown using two independent shRNAs was confirmed by 
immunoblotting.  Equal amounts of cell lysate were loaded onto the gel; actin (1: 30 000, 
clone AC-74 Sigma-Aldrich) served as a loading control (n≥3).  Percent knockdown shown 
is based on densitometry performed on each Ect2 blot and normalized to actin.  B. Ect2 
knockdown impairs anchorage-independent growth.  Cells with or without Ect2 knockdown 
were grown in soft agar, and colonies were counted after two to five weeks (n≥3).  Statistical 
significance was evaluated using Student's t-tests, with the Bonferonni correction (*p<0.05); 
error bars represent standard error (SEM).   
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C. Reduced anchorage-independent growth is not primarily due to a general proliferation 
defect.  Cell growth in monolayer culture was not statistically different whether Ect2 was 
(Ect2 shRNA#2, #3) or was not (NT shRNA) knocked down, as determined by MTT assay 
over 4 days (shown: OVCAR8 cells).  Error bars represent SEM (n=3). 
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Figure 4.4.  RhoGEF activity is required for Ect2-mediated transformed growth.  A. A 
catalytic DH-domain mutant (E428A/N608A) of Ect2 is impaired in RhoGEF activity on 
RhoA and Rac1 but not Cdc42.  Ectopic expression of HA-tagged wild type (WT) but not 
mutant Ect2 increased active RhoA-GTP or Rac1-GTP in whole cell lysates, as shown by 
pulldown assays using the Rho binding domain (RBD) of effectors that selectively bind the 
active, GTP-bound form of each GTPase (293T cells; anti-HA, 1: 1 000 clone 3F10 Roche, 
Indianapolis, IN, USA; anti-RhoA, 1: 1 000 clone 67B9 Cell Signaling, Danvers, MA, USA; 
anti-Rac1, 1: 1 000 clone 23A8 Millipore; anti-Cdc42, 1: 500 clone B-8 Santa Cruz, Dallas, 
Texas, USA).  In the same assay, overexpression of Ect2 with mutated nuclear localization 
signals (NLS) caused a dramatic increase in RhoA activity, but not Rac activity.  Ect2 
activation of Cdc42 was unaffected by either DH or NLS mutations.  Percent activation is 
shown based on densitometry performed on each active GTPase blot and normalized to total 
GTPase (representative of n≥3).   
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B. Re-expression of WT or the GEF-deficient DH-mutant Ect2 in knockdown cells restores 
Ect2 levels to similar degrees.  The shRNA-resistant mutants indicated above were stably 
expressed in the Ect2 knockdown OVCAR8 cells and immunoblotted with anti-HA antibody 
for ectopic Ect2 and with anti-Ect2 antibody for endogenous + ectopic Ect2. Tubulin served 
as a loading control.  C. Re-expression of WT but not GEF-deficient Ect2 rescues anchorage-
independent growth. Error bars represent SEM. The baseline of colony counts was 
considered to be those seen in cells where Ect2 was not knocked down (NT) and expression 
was "rescued" with vector-only (VO).  Colony counts statistically significant from this 
baseline are marked with an asterisk * (p<0.05, with Bonferroni correction).  The ability of 
ectopic Ect2 to rescue Ect2 knockdown was evaluated by comparison to cells expressing 
Ect2 shRNA#3 and "rescued" with vector-only (^, p<0.05, with Bonferroni correction; n=5).   
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D.  Ect2 knockdown results in decreased levels of active RhoA and Rac in whole cell lysate.  
Standard pulldown assays were performed using the Rho binding domain (RBD) of effectors 
that selectively bind the active, GTP-bound form of RhoA (Rhotekin-RBD) and Rac (PAK-
RBD).  Upper panel, representative pulldown; lower panel, average of all assays (n≥4).  Error 
bars represent SEM and * represents p<0.05, based on a paired t-test in which values were 
log-transformed for normality. 
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Figure 4.5.  Predominantly nuclear localization is required for Ect2-mediated 
transformed growth.  A.  Disruption of the nuclear localization signals (NLSs) of Ect2 
impairs its nuclear localization compared to WT Ect2. Localization of an Ect2 NLS-mutant 
(R348,349,350,370,372A) in which both NLSs have been disrupted was determined by 
confocal immunofluorescence microscopy, probing for HA-tagged Ect2 (red, 1: 500 clone 
16B12 Covance, Princeton, NJ, USA) and the nuclear marker DAPI (blue), n=3. Scale bars 
represent 10 microns.  B. NLS-mutant Ect2 is localized predominantly in the cytoplasm.  The 
shift in localization of Ect2 upon NLS mutation was confirmed by fractionating cells 
expressing either NLS-mutant or WT Ect2, and blotting for HA-tagged Ect2 (1: 1 000 
Covance).  Purity of each fraction was confirmed via immunoblot using anti-histone H3 
antibody (1: 12 000 Ab1791 AbCam, Cambridge, MA, USA) as a nuclear marker and tubulin 
as a cytoplasmic marker, with equal amounts of the nuclear and cytoplasmic fractions loaded 
onto the gel.  Average percentage of Ect2 in the nucleus was calculated from densitometry 
values.  Whereas 72.3% of WT Ect2 was observed in the nucleus, only 10.4% of NLS-
mutant Ect2 was nuclear (n=2).  
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C. NLS-mutant Ect2 restored Ect2 expression in knockdown cells to a higher degree than WT.  
The shRNA-resistant mutants indicated above were stably expressed in Ect2-knockdown 
OVCAR8 cells.  Cell lysates were immunoblotted as in Fig. 4.4B except that actin served as 
a loading control.  D. Ect2 NLS-mutant failed to rescue colony formation in soft agar. WT 
but not NLS-mutant Ect2 rescued the impairment of soft agar colony formation caused by 
Ect2 knockdown (n=5).  Error bars represent SEM.  Statistically significant differences are 
marked with * and ^ as in Fig. 4.4C.   
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Figure 4.6.  Some nuclear Ect2 is present in an active conformation that has enhanced 
specificity for Rac.   A.  At least some nuclear Ect2 is present in an active conformation.  
OVCAR8 cells were fractionated into nuclear (NUC) and non-nuclear (CYT) compartments. 
Purity of each fraction was confirmed via immunoblot using PARP (1: 2 000 clone C2-10 
BD Bioscience, San Jose, CA, USA) as a nuclear marker and tubulin as a cytoplasmic marker, 
with equal amounts of the nuclear and cytoplasmic fractions loaded onto the gel.  As 
expected, Ect2 was predominantly nuclear (left panel). Pulldowns (right panel) were then 
performed on equal concentrations of each fraction.  GST-RhoA(17A) pulled down active 
Ect2 from each location.  GST alone served as a control for nonspecific binding (n=5).  B. 
Ect2 preferentially interacts with Rac1 in the nucleus, and with RhoA in the cytoplasm. As 
above, cells were fractionated, but here the pulldowns were performed on fractions 
distributed for equal expression of Ect2 as described in Materials and Methods (confirmed by 
immunoblot, left panel).  Pulldown analyses using GST alone, GST-RhoA(17A), GST-
Rac1(15A) or GST-Cdc42(15A) were performed on each fraction to determine the GTPase 
specificity of Ect2 within each fraction (right panel, n=8).  Equal bead loading was confirmed 
by SDS-PAGE and Coomassie staining.   
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C. The ratio of Ect2 pulled down by Rac to Ect2 pulled down by Rho in the nucleus is greater 
than the same ratio in the cytoplasm.  The amount of Ect2 pulled down by nucleotide-free 
Rac1 or RhoA in each subcellular compartment (as shown in Figure 4.6B) was quantified by 
densitometry, and the ratio of the amount of Ect2 pulled down by Rac1 to the amount pulled 
down by RhoA in the nuclear (NUC) or non-nuclear compartments (CYT) is shown. This 
ratio switches from >1 in the NUC to <1 in the CYT, indicating that Ect2 associates 
preferentially with Rac1 in the nucleus and with RhoA in the cytoplasm. The graph shows 
the average of all experiments (n=8), and error bars represent SEM.  D. Endogenous Rac and 
RhoA are present in the nucleus of OVCAR8 cells. Cells were fractionated and 
immunoblotted for RhoA and Rac1.  To allow for detection of the less abundant nuclear 
GTPases, 6.5x more protein was loaded from the NUC compartment, while still retaining the 
purity of each compartment.  E. A higher proportion of total Rac is nuclear, compared to 
RhoA.  Densitometry was performed on the immunoblot shown in Figure 4.6D and the 
percentage of nuclear protein was calculated as: (nuclear intensity) / (nuclear intensity + 6.5x 
cytoplasmic intensity) to account for the unequal loading of each compartment. 
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Figure 4.7.  Ect2 recruits downstream effectors of Rac to the nucleus and initiates 
canonical RhoA signaling in the cytoplasm.  To determine if Ect2 was capable of 
activating endogenous Rho GTPases in the nucleus, we examined GFP-RBD recruitment 
in OVCAR8 cells expressing empty vector versus exogenous HA-tagged WT, 
GEF-deficient or NLS-mutant Ect2.  Confocal immunofluorescence microscopy was used 
to image cells expressing both HA-Ect2 (red) and each GFP-RBD (green); nuclei were 
stained using DAPI (blue).  A. Ect2 recruits POSH-RBD to the nucleus in a 
GEF-dependent manner.  POSH is a Rac-specific effector, and recruitment of POSH-RBD 
reveals endogenous Rac activation in the nucleus (n=7, with an average of 40 
cells/condition in each replicate). Scale bars represent 10 microns.
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B. Ect2 does not recruit Rhotekin-RBD to the nucleus.  Rhotekin is a Rho-specific effector 
which was not detectably recruited (n=6, with an average of 30 cells/condition in each 
replicate); see Results section. Scale bars represent 10 microns.
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C. Ect2 recruitment of POSH to the nucleus is robust and statistically significant. 
Quantification of GFP-RBD localization was performed for each condition, as described in 
Materials and Methods.  The percent of cells with nuclear-highlighted expression of the GFP-
RBD is shown (*p<0.05 difference from vector with Bonferonni correction; error bars 
represent SEM).   
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D. NLS-mutant Ect2 enhances stress fiber formation but not membrane ruffling.  
Extra-nuclear Rho GTPase signaling was investigated by examining the actin 
cytoskeleton.  Canonical RhoA signal transduction induces stress fiber formation, whereas 
Rac1 drives membrane ruffling.  We compared organization of the actin cytoskeleton in 
OVCAR8 cells expressing empty vector versus exogenous HA-tagged WT, GEF-deficient 
or NLS-mutant Ect2.  Confocal immunofluorescence microscopy was used to image cells 
expressing HA-Ect2 (green, Covance); actin was stained using Alexa Fluor 
568-conjugated phalloidin (red, Invitrogen), and nuclei were stained using DAPI (blue).
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E. Cells expressing each construct as shown in panel D were quantified for presence or 
absence of stress fibers or membrane ruffles (n=3, with an average of 35 cells/condition in 
each replicate). Statistical significance was evaluated using Student's t-test, with the 
Bonferonni correction (*p<0.05); error bars represent standard error (SEM). 
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Figure 4.8.  Nuclear Rac1 activity is sufficient to rescue defects in Ect2-mediated 
transformed growth.  A. Rac1 is targeted to the nucleus upon disruption of its CAAX box 
and addition of an NLS.  The localization of Ect2, NLS-Rac1-G12V-SAAX, and NLS-Rac1-
F28L-SAAX was detected by confocal immunofluorescence microscopy, probing for HA-
tagged Rac1 or Ect2 (green, Covance) and the nuclear marker DAPI (blue), n=3. Scale bars 
represent 10 microns.  
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B. Stable expression of nuclearly targeted Rac1 mutants in Ect2 knockdown OVCAR8 cells.  
Lysate was immunoblotted with anti-HA (Covance) for ectopic Rac1 and Ect2 or with anti-
Ect2 for endogenous + ectopic Ect2.  Actin served as a loading control.  C. Rac1 mutant 
expression rescued the defect in anchorage-independent growth caused by Ect2 knockdown.  
Both constitutively active and fast-cycling nuclearly localized Rac1 mutants were able to 
rescue the defect in soft agar colony formation caused by Ect2 knockdown, to the same 
extent as re-expression of WT Ect2 (n=3).  Representative images (4x magnification) of 
colonies are shown.  Scale bars represent 100 microns.  Error bars represent SEM.  
Statistically significant differences are marked with * and ^ as in Fig. 4.4C.   
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Supplemental Table 4.1.  Primer sequences used to generate NLS-mutant Ect2, GEF-
deficient Ect2, and NLS-Rac1-SAAX.  A.  The Quikchange II site-directed mutagenesis kit 
(Stratagene) was used to create NLS-mutant and GEF-deficient (DH-mutant) Ect2 from 
shRNA-insensitive full length Ect2, using the following primers. 
 
Domain Mutation Primer sequence 
NLS R348A, 

R349A, 
R350A 

5’CTAACAGCAATCGCAAAGCAGCTGCTTTAAAAGAAA
CACTTG3’, 
5’CAAGTGTTTCTTTTAAAGCAGCTGCTTTGCGATTGCT
GTTAG3’ 

NLS R370A, 
R372A 

5’CACCATTTCCACCCGCTAAGGCCCCATCAGCTGAG3’, 
5’CTCAGCTGATGGGGCCTTAGCGGGTGGAAATGGTG3’ 

DH E428A 5’GTGGCAAGTTGCAAAAGCGCTTTATCAAACTGAAAG
3’, 
5’CTTTCAGTTTGATAAAGCGCTTTTGCAACTTGCCAC3’ 

DH N608A 5’GTAATGACGCATATTGCTGAGGATAAGAG3’, 
5’CTCTTATCCTCAGCAATATGCGTCATTAC3’ 

 
 
B.  PCR was used to add the NLS of SV40T antigen to the N-terminus of Rac1(G12V) or 
Rac1(F28L) and to mutate their C-terminal CAAX sequence to SAAX (C189S).  The mutant 
versions of Rac1 were then cloned into pFugW-HA-blasticidin. 
 
Addition/ 
Mutation 

Primer sequence 

SV40T 
antigen NLS 

5’GCGGGATCCCCCAAGAAGAAGAGGAAGGTGATGCAGGCCAT
CAAGTGTGTG3’  

C189S 5’CGCGGATCCTCTAGATTACAACAGCAGGGATTTTCTCTT3’ 
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Supplemental Figure 4.1.  Specificity of Ect2 antibody in immunoblot, 
immunohistochemistry, and immunofluorescence analyses  A. Specific recognition of 
Ect2 by immunoblot analysis.  To validate the specificity of commercially available Ect2 
antibodies, we first performed immunoblot analyses using lysate from OVCAR8 cells stably 
expressing either non-targeted (NT) or Ect2 shRNA.  Each cell lysate was loaded into 
multiple lanes of the same gel, separated by standard molecular weight markers.  Following 
protein separation by SDS-PAGE and transfer to PVDF-membrane, the membrane was then 
cut within the ladder and incubated with anti-Ect2 antibodies from either Millipore (1: 1 000, 
07-1364) or Santa Cruz (1: 1 000, sc-1005).  To assure equal exposure times, the membranes 
were then re-aligned at the ladder prior to development as a single unit.  Equal loading was 
confirmed by stripping and re-probing the membrane halves for actin. The Millipore 
antibody was then selected for subsequent analyses.   
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B.  Specific recognition of Ect2 by immunohistochemistry (IHC).  Validation and 
optimization of the Millipore antibody for use in IHC was performed using formalin-fixed, 
paraffin-embedded human ovarian cancer cell lines (shown: OVCAR8) in which Ect2 was 
knocked down stably.  Conditions were determined such that staining was easily visible in 
NT shRNA cells, but in less than 5% of cells expressing Ect2 shRNA, as shown here.  IHC 
was performed by the UNC-Translational Pathology Laboratory Core using Leica’s (Buffalo 
Grove, IL, USA) Bond IHC Autostainer and detected with Leica’s Bond Polymer Refine 
Detection kit.  The optimal conditions determined for use on the TMA cores were a 1: 350 
dilution of Ect2 antibody (Millipore) for 4 h, followed by heat-induced citrate base (pH6) 
antigen retrieval for 30 min.  Nuclei were co-stained with haematoxylin.  C.  Specific 
recognition of Ect2 by immunofluorescence.  Immunofluorescence was performed by 
staining the above-described cells, fixed in 4% paraformaldehyde, with the Millipore 
antibody at a dilution of 1: 1 000, then detected by secondary anti-rabbit antibody coupled to 
Alexa Fluor 594. 
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Supplemental Figure 4.2.  OVCAR8 cells can undergo efficient cytokinesis upon Ect2 
knockdown.  A. Ect2 knockdown is nearly complete in cell lines utilized for soft agar assays.  
Equal amounts of cell lysate were loaded onto the gel and immunoblotted with anti-Ect2; 
actin served as a loading control.  B.  The vast majority of cells have single nuclei regardless 
of their Ect2 status.  Bright-field images of the cells whose lysates are shown in panel A were 
taken at 10x magnification; scale bars represent 20 microns.   
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C. Cell nuclei were quantitated and cells were binned according to whether they displayed 
single, double, or >2 nuclei.  The percentages of cells in each category are shown; error bars 
represent SEM (n=7, with >100 cells/condition in each replicate).  D. Ect2 knockdown does 
not alter the number of nuclei in suspended cells.  Flow cytometric analysis of OVCAR8 
cells suspended in culture medium overnight did not reveal any increase in >4n DNA content 
upon Ect2 knockdown.  Mod fit curves of cellular DNA content and cell cycle distribution 
for each condition are shown.  The average percentage of cells in GO/G1 (2n) phase, S phase, 
or G2/M (4n) phase for each condition is shown, and “+/-” indicate SEM (n=4, 10 000 
events/condition in each replicate). 
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Supplemental Figure 4.3.  GEF-deficient (DH-mutant, E428A/N608A) Ect2 localizes to 
the nucleus in a manner indistinguishable from that of WT Ect2.  To confirm that the 
point mutations E428A and N608A rendering Ect2 GEF-deficient for RhoA and Rac did not 
have unintended consequences on Ect2 subcellular localization, we performed confocal 
immunofluorescence microscopy to detect the ectopic HA-tagged Ect2.  Co-staining for the 
nuclear marker DAPI showed that both WT and GEF-deficient Ect2 localized predominantly 
in the nucleus (OVCAR8, n=3).  Scale bars represent 10 microns. 
 

HA-Ect2 DAPI Overlay

Vector

WT

DH-

mutant



 

158 

 
 

Supplemental Figure 4.4.  Expression of NLS-mutant Ect2 does not affect cytokinesis of 
OVCAR8 cells.  A. The NLS-mutant was highly expressed in OVCAR8 cells.  Equal amounts 
of lysate from cells expressing NLS-mutant Ect2 in the presence of endogenous Ect2 (- Ect2 
shRNA) or not (+ Ect2 shRNA) were loaded onto the gel; actin served as a loading control.  
B. Expression of NLS-mutant Ect2 did not alter the frequency of cellular multinucleation. 
Brightfield images of cells were taken at 10x.  Scale bars represent 20 microns.  P
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C. Overexpression of NLS-mutant Ect2 does not increase the percentage of multinucleated 
cells. To confirm that high expression of the NLS-mutant did not have unintended effects on 
cytokinesis, cells were binned according to display of single, double, or >2 nuclei (n=3, >100 
cells/condition in each replicate).  Percentages of each are shown; error bars represent SEM.  
D. No changes in cellular DNA content / cell cycle were observed upon overexpression of 
NLS-mutant Ect2.  Mod fit curves from flow cytometry performed on the above-described 
cells are shown, with the average percentage of cells in GO/G1 (2n) phase, S phase, or G2/M 
(4n) phase shown for each stable cell line; “+/-” indicate SEM (n=3, 10 000 events/condition 
in each replicate).   
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Supplemental Figure 4.5.  Ect2 activates Rac in the nucleus:  Ect2 recruits PAK-RBD 
to the nucleus in a GEF-dependent manner.  GFP-RBD recruitment assays were 
performed as in Fig. 4.7, but here using GFP-PAK1-RBD instead of GFP-POSH-RBD.  
PAK1 is downstream of both Rac and Cdc42 and multiple other Rho GTPases; its RBD 
was used to corroborate the Rac1 effector recruitment seen with the Rac-specific 
POSH-RBD in Fig. 4.7.  Here, PAK-RBD was also recruited to the nucleus upon Ect2 
overexpression, in a GEF- and NLS-dependent manner.  These results are consistent with 
Ect2 activation of Rac in the nucleus.  Since numerous GTPases in addition to those 
regulated by Ect2 can also regulate the localization of PAK-RBD, PAK-RBD recruitment 
is less apparent than for POSH-RBD.  Representative images (A) and quantitation of the 
percentage of cells with GFP-PAK-RBD highlighting the nucleus in each condition (B) are 
shown (n=9, average of 35 cells/condition in each replicate); error bars represent SEM.
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Representative images (A) and quantitation of the percentage of cells with GFP-PAK-RBD 
highlighting the nucleus in each condition (B) are shown (n=9, average of 35 cells/condition 
in each replicate); error bars represent SEM. 
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CHAPTER 5: RHOGEF INHIBITORS: IDENTIFYING THE GTPASE 

SELECTIVITY OF POTENTIAL MOLECULARLY TARGETED THERAPEUTICS4 

OVERVIEW 

 Rho family GTPases (especially RhoA, Rac1, and Cdc42) are well-validated as 

potential cancer drug targets.  They act as molecular switches within the cell, “on” while 

GTP-bound and “off” while GDP-bound, to regulate a variety of signaling pathways that 

drive tumorigenesis, invasion, and metastasis when misregulated.  Unfortunately these 

GTPases are currently considered “un-druggable”.  Thus, research has begun to focus on 

upstream activators and downstream kinase effectors of Rho GTPases.  Their upstream 

activators, Rho guanine nucleotide exchange factors (RhoGEFs), are frequently even more 

transforming than GTPases.  Importantly, they are often aberrantly upregulated in human 

cancers and thereby drive excess Rho activity.  Inhibitors of RhoGEFs have been designed; 

however, they have not been effective at therapeutic doses.  Canonical RhoGEFs share a 

common catalytic DH/PH domain that promotes nucleotide exchange to enhance GTPase 

activation.  We screened a library of 20,000 small molecules in vitro for their ability to 

inhibit DH/PH-enhanced nucleotide exchange on RhoA.  We validated the in vitro specificity 

of hits for RhoA, Rac1, and Cdc42 GEF-induced exchange, using additional nucleotide 

                                                        
4I wrote this chapter to summarize my studies of a novel series of putative RhoGEF 
inhibitors.  We plan to submit it for publication when combined with the screening and in 
vitro work performed in the laboratories of Drs. Saïd M. Sebti (Moffitt) and John Sondek 
(UNC-Chapel Hill).  The graphs shown are averages of many experiments performed by 
Kelly A. Gewain, Cercina Onesto (laboratory of Channing J. Der, UNC-CH), and myself. 
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exchange assays, and selected 3 putative RhoGEF inhibitors to examine in cellulo.  RhoGEFs 

induce distinct, GTPase-specific cytoskeletal structures.  Therefore by quantifying 

cytoskeletal responses to our compounds we determined the in cellulo specificity of each 

inhibitor towards GEFs that activate the three major classes of Rho family GTPases.  

Consistent with its in vitro selectivity, our lead compound, RPM811, specifically inhibited 

the cytoskeletal effects of RhoA at doses as low as 1 µM and also Rac1 signaling at 10 µM.  

To determine its efficacy against cellular transformation, we performed assays to measure 

anchorage-independent growth and observed an inhibition of transformed growth upon 

treatment with RPM811.  Thus, we report here evidence of a RhoGEF inhibitor with anti-

transformation activity and a dose-dependent selectivity for Rho GTPase signaling. 

 

INTRODUCTION 

 The role of Rho GTPases in tumor cell transformation and invasion/metastasis has 

been well established and frequently reviewed (47, 186, 426).  In brief, Rho GTPases are 

often overexpressed, misregulated, and (as recently discovered (168-170)) mutated in a 

variety of tumor types.  Since Rho GTPases control a plethora of critical cellular functions, 

including cytoskeletal rearrangement, the cell cycle, gene expression, and cell polarity, this 

altered activity drives many tumor phenotypes.  Thus, inhibition of these GTPases has been 

proposed as a mechanism of targeted chemotherapy (427).  Yet GTPases have been 

considered “undruggable” due to their globular protein structure that lacks sufficient pockets 

for high-affinity binding to small molecules (428).  Additionally, GTPases bind GTP with 

extremely high (picomolar) affinity that cannot be easily outcompeted by a drug (2).   
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 Therefore, efforts to inhibit Rho GTPase activity have focused on upstream and 

downstream signaling molecules.  Rho GTPases act as molecular switches within the cell.  

They are active and able to interact with downstream effectors while GTP-bound, and 

inactive while GDP-bound.  This cycle is regulated by two types of proteins: GTPase 

activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs).  GTPases have 

low intrinsic GTPase activity, so GAPs catalyze their ability to hydrolyze GTP and inactivate 

the GTPase.  GEFs activate the GTPase by enhancing release of bound nucleotide and 

allowing for the more prevalent cellular guanine nucleotide, GTP, to bind to the GTPase.   

 RhoGEFs are particularly attractive cancer drug targets for a variety of reasons.  First, 

RhoGEFs themselves act as potent oncogenes (99).  Many RhoGEFs were first identified in 

screens for proteins capable of inducing cellular transformation (190), and since then active 

RhoGEFs have even proven more transforming than active Rho GTPases when 

overexpressed in fibroblasts (46).  Secondly, inhibition of RhoGEFs allows for more targeted 

control of cell signaling when compared to Rho GTPases.  Currently 20 Rho GTPases have 

been identified, whereas approximately 80 RhoGEFs have been found to activate these 

GTPases (28, 85).  GTPases control a wide variety of cellular functions, and inhibition of 

RhoGEFs allows for inhibition of GTPase activation due to specific stimuli.  Finally, 

RhoGEFs are potentially more “druggable”, since a few inhibitors directed towards specific 

RhoGEF activity have been identified (429-432).  Still, no current inhibitor is effective at 

therapeutic doses. We set out to remedy this situation. 

 The largest family of RhoGEFs is the Dbl family.  All Dbl family RhoGEFs contain a 

Dbl homology (DH) domain followed by a pleckstrin homology (PH) domain.  The DH 

domain is the catalytic domain, which binds the GTPase to shift its conformation and induce 
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release of the nucleotide and its binding co-factor magnesium.  Although this domain has low 

sequence identity across Dbl family RhoGEFs, its structure is well-conserved.  The function 

of the RhoGEF PH domain varies from enabling proper localization to acting as an allosteric 

modulator of the DH domain (85).  The crystal structure of the DH/PH domain of many 

RhoGEFs has been solved (95, 97, 433).  Interestingly, the orientation of the DH and PH 

domains of LARG (RhoA GEF) and distantly related RhoGEFs Trio-N (RhoG/Rac GEF) and 

Dbs (Cdc42/Rho/Rac GEF) are very similar.  It is likely that direct contact of the PH domain 

with the GTPase helps to promote nucleotide exchange by these GEFs (95). 

LARG (leukemia-associated RhoGEF) was originally identified in acute myeloid 

leukemia cells as a fusion partner of MLL (mixed lineage leukemia).  In these fusions it was 

expressed as an N-terminally truncated mutant that retained functional DH/PH domains (434) 

but lacked autoinhibitory domains.  Overexpression of a distinct C-terminally truncated 

mutant of LARG (435), or full-length LARG in combination with activated Raf-1 (187) is 

sufficient to transform fibroblasts.  LARG signaling is required for head and neck cancer cell 

growth/migration (436), prostate cancer cell migration/invasion (437), breast cancer cell 

invasion (438), and has been implicated in colorectal cancer cell migration and invasion 

(439).  Additionally, G protein-coupled receptor (GPCR) signaling through Rho GTPases is 

known to cause cellular transformation, and LARG is a regulator of G-protein signaling 

(RGS) domain-containing RhoGEF that is driven by GPCR signaling to activate RhoA (440-

442).  Although there has been one report of LARG functioning as a tumor suppressor in 

breast and colorectal tumors (443), most data suggest that an inhibitor of LARG signaling 

would be clinically beneficial in tumor treatment in the appropriate context. 
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 We screened a library of 20,000 small molecules for their ability to inhibit activation 

of RhoA induced by the DH/PH domain of LARG.  From this initial screen 6 compounds 

were identified for further study in vitro and then 3 were studied in cellulo.  RPM811 was 

identified as the most potent inhibitor.  It showed significant effects on RhoA-driven cell 

morphology at a dose as low as 1 µM, the lowest effective dose that has been described in 

cellulo for potential RhoGEF inhibitors.  RPM811 was also effective at inhibiting cellular 

transformation at 10 µM, suggesting that it may be a good prototype for future 

chemotherapeutics. 

 

RESULTS 

Screen and hits 

The screen was performed in the lab of Dr. Saïd M. Sebti and will be further described prior 

to manuscript submission.  In brief… To identify RhoGEF inhibitors, we utilized 

fluorescently labeled GTPγS to monitor GTP binding to purified RhoA in the presence of the 

DH/PH domain of LARG.  We screened the ChemDiv library of 20,000 compounds for their 

ability to decrease fluorescent-GTPγS bound to Rho, as previously described with a smaller 

library (444).  Six compounds were chosen for further study. 

 

In vitro selectivity 

The in vitro work was performed in the lab of Dr. John Sondek and will be further described 

prior to manuscript submission.  In brief… RhoA, Rac1, and Cdc42 are the best studied Rho 

family GTPases.  We chose three GEFs (LARG, Trio, and Dbs respectively) to represent 
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each of these signaling pathways in vitro, and performed radioactive exchange assays in the 

presence of drug.  Each of the 6 compounds was able to inhibit GEF-induced nucleotide 

exchange on RhoA and Rac1 to varying degrees in vitro.  Three compounds (RPM8111, 

RPM1052, RPM598b) were chosen for further study.  These compounds showed selectivity 

towards inhibition of exchange from RhoA, yet still weakly inhibited exchange from Rac1.  

RPM811 had the most dramatic effect on RhoA nucleotide exchange, followed by RPM1052.  

RPM598b only weakly inhibited nucleotide exchange on RhoA in vitro.   

 

RPM compounds dose-dependently inhibit Rho GTPase signaling in cellulo   

The described in vitro assays demonstrate that each identified compound is capable of 

inhibiting nucleotide exchange from purified, unprenylated RhoA or Rac1 in the presence of 

truncated GEFs.  While useful for initial characterization of the compounds, these assays do 

not address the ability of each drug to inhibit full-length protein and to regulate Rho GTPases 

signaling in a cellular context.  To determine the efficacy and selectivity of the lead 

compounds in cellulo, we examined their effects on the actin cytoskeleton. 

Each of the major Rho family GTPases controls distinct cellular morphologies.  

Microinjection of constitutively active RhoA into fibroblasts induces stress fiber formation 

(30), whereas Rac1 causes membrane ruffles (31), and overexpression of Cdc42 increases 

filopodia formation (32).  To activate each pathway through upstream GEFs, we treated NIH 

3T3 cells with lysophosphatidic acid (LPA), platelet-derived growth factor (PDGF), or 

bradykinin (BDK).  Compared to vehicle-treated cells, the fraction of cells with stress fibers, 

lamellipodia, or filopodia increased approximately 2-fold in cells stimulated with LPA, 

PDGF, or bradykinin, respectively (Fig. 5.1A).  This confirmed that the anticipated signaling 
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cascades were activated, as previously published (31-33).   

To determine the effect of the inhibitors on stimulated Rho GTPase signaling, we 

scored cells stimulated with LPA, PDGF, or BDK for presence or absence of stress fibers, 

membrane ruffles, or filopodia respectively, after treatment with increasing concentrations of 

RPM compound (0, 0.3, 1, 3, 10, 30 µM).  Each RPM compound had a dose-dependent effect 

on stimulus-induced stress fibers and lamellipodia, but did not affect BDK-induced filopodia 

formation (Fig. 5.1B).  This indicates that these compounds inhibit RhoA and Rac1 signaling, 

but do not affect Cdc42 signaling in cellulo.  All three compounds have similarly shaped 

dose response curves with respect to inhibition of stress fiber formation (Fig. 5.1B), 

indicating that they have similar potencies for inhibiting RhoA signaling.  However, as can 

be seen from the difference in amplitude (Fig. 5.1B) and in accordance with the in vitro 

assays (data not shown), RPM811 and RPM1052 are more efficacious than RPM598b at 

inhibiting stress fiber formation.  At submaximal doses, RPM811 is slightly more efficacious 

at inhibiting stress fibers than RPM1052 (Fig. 5.1B), and RPM811 is much more efficacious 

than RPM1052 at inhibiting lamellipodia (Fig. 5.1B).  At a dose as low as 1 µM, RPM811 

reduced the fraction of LPA-stimulated cells displaying stress fibers by a statistically 

significant margin (p<0.05), and when used at 10 µM RPM811 also significantly reduced 

PDGF-induced membrane ruffles (Fig. 5.1C & D).  Still, treatment with 10 µM of RPM811 

was not as effective at inhibiting Rac1 signaling as 5 µM of RPM947 (also referred to as 

EHT-1864), which was used as a positive control for inhibition of Rac1 signaling (445).  

RPM1052 was effective at inhibiting LPA-induced RhoA signaling when used at 10 µM; 

however, at the doses tested it did not significantly inhibit PDGF-induced Rac1 signaling 

(Fig. 5.1C & D).  No toxicity was apparent upon addition of any of the compounds.  
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In addition to observing the effect of the RPM compounds on stimulated Rho GTPase 

activity, we also examined their effect on basal Rho GTPase signaling.  Starved and un-

stimulated cells were exposed to the same titration of RPM compounds (0, 0.3, 1, 3, 10, 30 

µM) and scored for presence or absence of stress fibers, membrane ruffles, and filopodia.  As 

expected, due to a lower signal-to-noise ratio in the absence of external stimuli, the effects of 

the compounds on basal signaling was less dramatic, and RPM1052 and RPM598b displayed 

minimal effects on the basal cytoskeleton (data not shown).  However, RPM811 strikingly 

decreased stress fibers and membrane ruffles in unstimulated cells (Fig. 5.1E & data not 

shown), indicating again that RPM811 is the strongest inhibitor of RhoA and Rac1 signaling 

in our panel.  Unexpectedly, RPM811 also dose-dependently increased filopodia formation 

(Fig. 5.1E).  This suggests that the compound may enhance basal signaling to Cdc42.  The 

effect was not observed in cells stimulated with BDK (Fig. 5.1B), indicating that it can be 

masked by a strong stimulus of Cdc42 activity. 

 

RPM811 inhibits anchorage-independent growth of colorectal adenocarcinoma cells   

 The ultimate goal of the performed drug screen was to identify compounds that could 

be used in treatment of tumor cells via inhibition of Rho GTPase signaling.  We identified 

RPM811 as our lead compound for inhibiting RhoA and Rac1 activity both in vitro and in 

cellulo.  To determine if RPM8111 may be useful as an inhibitor of cellular transformation 

we evaluated the ability of tumor cells to grow anchorage-independently when treated with 

RPM811.  Although non-transformed epithelial cells require adhesion to a surface prior to 

proliferation, many transformed tumor cells lack this checkpoint and proliferate even while 

suspended (410).  Thus, soft agar assays are used to measure anchorage-independent growth 
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of tumor cells, and have been described as “the best in vitro correlate to in vivo growth 

potential” (446). 

Colon tumors overexpress both RhoA and Rac1, and these GTPases regulate many 

aspects of cellular transformation (426).  Therefore we utilized LS174T colon 

adenocarcinoma cells to perform soft agar assays.  We compared anchorage-independent 

growth of these cells in the presence of DMSO vehicle, 1 µM, or 10 µM of RPM811.  

Although no effect was seen with 1 µM of RPM811, 10 µM of RPM811 significantly 

(*p<10-7) inhibited anchorage-independent growth (Fig. 5.2).  Thus at concentrations that 

attenuate both RhoA and Rac1 signaling, RPM811 inhibits cellular transformation. 

 

DISCUSSION 

 Rho GTPases have been well validated as signaling molecules essential for tumor cell 

proliferation, invasion, and metastasis (47, 186, 426).  Yet, attempts to inhibit their signaling 

have been largely unsuccessful due to their high affinity for GTP (not easily outcompeted) 

and globular structure (not easily bound) (2, 428).  In 2004, the first Rho GTPase inhibitor, 

NSC23766, was identified.  NSC23766 binds to Rac1 and inhibits its activation by Tiam1 or 

Trio (429).  In the decade since then, only 5 other inhibitors have been identified that are 

capable of preventing Rho GTPase activation or Rho GEF activity (428, 430-432, 447).  

While most of these inhibitors bind to the GTPase or GEF with high affinity (nM Kd), to 

inhibit cellular activities they must be used at much higher doses.  Our lead compound, 

RPM811, significantly reduced LPA-induced stress fibers at a dose as low as 1 µM, which is 

the most potent inhibition in cellulo of Rho signaling described to date. 
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Additionally, we have shown that RPM811 attenuates anchorage-independent growth 

of tumor cells.  The only other Rho inhibitor previously examined in this assay is NSC23766 

(429), which was used at a dose 2.5x higher than RPM811 to attenuate tumor cell growth.  

Rhosin (Rho activity specific inhibitor) (428) and Y16 (an inhibitor of LARG) (432) have 

also both recently been utilized to inhibit mammary sphere formation of breast cancer cells.  

Our experiments serve as further proof-of-principle that Rho GEFs are good cancer drug 

targets for some tumors.  Interestingly, RPM811 was effective only at doses that inhibited 

both RhoA and Rac1 signaling.  This indicates that, in these cells, inhibiting RhoA activity is 

not sufficient to attenuate anchorage-independent growth, and also suggests that, analogously 

to the recent emphasis on "multi-kinase" inhibitors, the less selective RhoGEF inhibitors may 

be more desirable for tumor treatment.  The utility of inhibiting multiple Rho GTPases is 

consistent with previous studies.  For example, when RhoA-specific siRNA and dominant-

negative RhoA (inhibitory to multiple Rho GTPases) were each utilized in a variety of 

transformation assays, the less selective dominant-negative appeared to be slightly more 

effective at inhibiting anchorage-independent growth and significantly more effective at 

inhibiting migration/invasion (448).  It has been previously proposed that RhoA is required 

for tumor initiation whereas RhoC is required for tumor metastasis (192).  Certainly there are 

a variety of Rho family GTPases associated with numerous functions within tumor cells (47, 

186, 426), and it is likely that by inhibiting multiple Rho GTPases we could simultaneously 

attenuate both tumorigenesis and metastasis/invasion.  

Still, the relative lack of specificity of our lead inhibitor is perhaps surprising given 

the design of the screen used to identify it.  In the screen, the isolated DH/PH domain of 

LARG and purified, unprenylated RhoA were used.  However, in vitro the compound can 
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also inhibit the activation of purified Rac1 by the DH/PH domain of Trio, as well as Rac1-

driven functions in cellulo.  This suggests that the compound binds to a similar region of 

RhoA and Rac1 or a similar region of the two DH/PH domains.  Sequence divergence is 

great among DH domains, but their structures are very similar (85).  Therefore it is possible 

that the compound binds to a conserved fold within the DH domain.  Although DH/PH 

conformation differs greatly among RhoGEFs (95), and inclusion of the PH domain 

theoretically generated a more selective screen, the DH/PH domain of LARG and Trio have 

been described as two of the “most similar” RhoGEFs with respect to the positioning of their 

DH/PH domains (85).  Thus it is likely that, while RPM811 can block LARG and Trio 

activation of Rho GTPases, it cannot inhibit signaling from many other RhoGEFs.  Indeed, 

BDK-induced filopodia were not affected by RPM811, suggesting that RPM811 does not 

inhibit Cdc42 activation by RhoGEFs. 

Interestingly, RPM811 actually increased filopodia formation in starved cells, 

indicating that it can have some effect on Cdc42 signaling, possibly by loss of negative 

feedback.  However, since it is masked by BDK stimulation, the activation is minor 

compared to that of stimulus induced Cdc42 activation, and is likely indirect.  As recently 

reviewed by Guilluy et al. (449), signaling through a Rho GTPase frequently regulates the 

activity of other Rho GTPases.  Thus, it is likely that inhibition of RhoA or Rac1 allows for 

signaling to Cdc42 that is normally inhibited by these other GTPases.  Alternatively, multiple 

other Rho GTPases regulate filopodia formation (including RhoF, TC10, TCL, Wrch-1, and 

Chp (338)).  If RPM811 directly or indirectly activates one of these GTPases, the effect 

could be observed in un-stimulated cells.  Similarly, the effects on stress fibers and 

membrane ruffles may be due to inhibition of a variety of Rho GTPases.  However, all 
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effects may well be  due ultimately to direct inhibition of RhoA and Rac1 signaling, given 

that RPM811 inhibits nucleotide exchange on these GTPases in vitro. 

It is interesting to compare the effects of RPM811 in stimulated and un-stimulated 

conditions.  As would be expected, due to the larger signal-to-noise ratio, RPM811 inhibited 

stress fiber formation and membrane ruffles of stimulated cells more dramatically than un-

stimulated cells.  In other words, RPM811 had a larger effect on RhoA and Rac1 signaling in 

stimulated cells.  In contrast, RPM811 had a larger effect on Cdc42 signaling in un-

stimulated cells.  Since tumor cells overexpress both RhoGEFs and Rho GTPases (47, 186, 

426), it is tempting to speculate that their signaling would be more similar to the stimulated 

cells, whereas non-tumor cells would basally be in an un-stimulated state.  Therefore it is 

possible that at certain doses RPM811 could selectively inhibit misregulated Rho GTPase 

signaling in tumor cells, while having little effect on normal cells.  Indeed, even if normal 

Rho GTPase signaling is slightly attenuated, the model of oncogene addiction (450) suggests 

that their inhibition in tumor cells may be more detrimental than in normal cells.  It is also 

promising that no toxicity was apparent in NIH 3T3 fibroblasts when exposed to 30 µM of 

each RPM compound.  However, assays for cell death should be performed. 

In summary, we have identified an inhibitor of Rho GTPase signaling that is capable 

of attenuating certain aspects of tumor cell transformation.  Although RPM811 is the most 

potent in cellulo single Rho GTPase inhibitor currently described, continued modification to 

increase its potency will enhance its clinical relevance.  Additionally, since Rho GTPase 

activating mutants have recently been identified in human tumors (168-170), it will be 

important to determine if RPM811 is capable of inhibiting mutant Rho GTPase signaling in 

addition to GEF-activated signaling.   
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MATERIALS AND METHODS 

Cell culture 

NIH 3T3 mouse fibroblasts were grown in DMEM-H (GIBCO/Invitrogen) 

supplemented with 10% calf serum (GCS, GIBCO).  LS174T human colon adenocarcinoma 

cells were grown in RPMI-1640 medium (GIBCO/Invitrogen) supplemented with 10% fetal 

bovine serum (FBS, Sigma).  All media contained 1% penicillin-streptomycin and cells were 

maintained at 37°C and 5% CO2. 

 

Actin cytoskeleton assays 

 The effect of each RPM compound on cell morphology was determined similarly to 

previously described protocols (445, 451).  Briefly, NIH 3T3 cells were seeded onto glass 

coverslips (Fisherbrand) at a density of 40,000 cells/well in a 12-well plate (Corning).  The 

following day, cells were serum-starved for 16 h in media containing 0.5% serum.  During 

the final 4 hours of starvation, cells were treated with RPM811, RPM1052, or RPM598b at 

the concentrations of: 0, 0.3, 1, 3, 10, and 30 µM in DMSO.  15 minutes prior to fixation, 

cells were treated with LPA (40 ng/ml, Sigma-Aldrich), PDGF (5 ng/ml, Sigma-Aldrich), or 

BDK (100 ng/ml, Sigma-Aldrich) to stimulate formation of stress fibers, membrane ruffles, 

or filopodia, respectively.  Cells were rinsed repeatedly in DPBS (GIBCO) prior to fixation 

and between each of the subsequent steps.  Cells were fixed by application of 

paraformaldehyde (3.7%, Electron Microscopy Services) for 20 min.  The cells were then 

permeabilized with 0.2% Triton X-100 (Sigma-Aldrich) for 5 min, and incubated with 

phalloidin-conjugated Alexa fluor 594 (1:40 dilution, Invitrogen) for 30 min.  Coverslips 

were rinsed with ddH20 prior to mounting on slides using Prolong Gold anti-fade mounting 
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medium (Invitrogen).  Images of cells were taken using a LeicaSP2-AOBS confocal 

microscope with a 63x oil lens. 

 For each condition, 100 cells were scored (per repeat).  Un-stimulated cells were 

scored for presence or absence of stress fibers, membrane ruffles, and filopodia.  LPA-

stimulated, PDGF-stimulated, and BDK-stimulated cells were scored for their respective 

structures.  Dose-response curves were generated by normalizing the fraction of cells with 

each morphology to its corresponding non-drug treated control and averaging the repeats.  

The intermediate doses of 1 µM and 10 µM were chosen to compare the effect of RPM 

compounds to vehicle.  Two-tailed Student’s t-tests assuming unequal variance were used to 

determine statistical significance.  Differences were considered significant when p<0.05.  

Results are the compilation of assays completed by at least two independent reviewers. 

 

Anchorage-independent growth assays 

 Soft agar assays were performed similarly to our previous publications (321, 425).  In 

short, cells were suspended in agar and plated in 6-well plates (Corning).  The bottom agar (2 

ml) consisted of 0.6% agar (BD Biosciences), 1X RPMI, 10% fetal bovine serum, and 1% 

penicillin-streptomycin.  The top agar (1 ml) consisted of the bottom agar diluted to 0.4% 

agar with a single-cell suspension of 5,000 LS174T cells/well.  RPM811 was added to both 

the top and bottom agar for a final concentration of 0, 1, or 10 µM.  After approximately 2-3 

weeks viable colonies were stained with 500 µl of 2 mg/ml 3-(4-5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT, Sigma-Aldrich).  The number of colonies was quantified 

using ImageJ software.  The quantified colonies were normalized to vehicle-treated.  A two-
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tailed Student’s t-test assuming unequal variance was performed on these values to determine 

if the observed effects were statistically significant.  p< 0.05 was considered significant. 
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FIGURES 

 
Figure 5.1.  RPM compounds dose-dependently inhibit Rho GTPase signaling in cellulo.  
To determine the efficacy and selectivity of RPM compounds in cellulo, serum starved NIH 
3T3 cells were treated with lysophosphatidic acid (LPA), platelet-derived growth factor 
(PDGF), or bradykinin (BDK) to stimulate RhoA, Rac1, or Cdc42 activity, respectively.  
Cells were then fixed and their actin structures were visualized using phalloidin-conjugated 
Alexa Fluor 594.  These cells were quantified for presence or absence of stress fibers, 
membrane ruffles, and filopodia (described in Materials and Methods).  All error bars 
represent standard error of the mean (SEM) and Student’s t-test was used to calculate-values.  
A. As expected, LPA induced stress fibers, PDGF increased membrane ruffling, and BDK 
caused filopodia formation.  The percentage of LPA-stimulated (stim) cells with stress fibers, 
PDGF-stimulated cells with membrane ruffles, and BDK-stimulated cells with filopodia is 
graphed and compared to vehicle (unstim) treated cells (n=16-19). ***p<10-8  
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Prior to stimulation cells were treated for 4 h with a range of doses of RPM compounds (0, 
0.3, 1, 3, 10, 30 µM).  B. RPM811 and RPM1052 dramatically reduced LPA-induced stress 
fiber formation and PDGF-induced membrane ruffling.  Separate dose-response curves are 
shown for LPA-induced stress fibers, PDGF-induced membrane ruffles, and BDK-induced 
filopodia.  Dose-response curves were generated by normalizing the percentage of cells with 
a given stimulated morphology post-drug treatment to its corresponding stimulated, vehicle-
treated control.  The effect of RPM811, RPM1052, and RPM598b on each morphology is 
shown (n=3-6).   
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C.  RPM811 inhibition of LPA-induced stress fibers is observed at doses as low as 1 µM, and 
RPM811 and RPM1052 both inhibit stimulated Rho GTPases at 10 µM.  Representative 
images of stimulated (LPA, PDGF, or BDK) and un-stimulated cells treated with 0, 1 and 10 
µM of each RPM compound are shown.  Images show the actin cytoskeleton as stained with 
phalloidin-conjugated Alexa Fluor 594.  Cells were imaged via confocal microscopy.  The 
scale bars represent 50 microns. 
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D. RPM811 and RPM1052 effects are statistically significant.  The average percentage of 
LPA-, PDGF-, or BDK- stimulated cells with the expected morphology is graphed separately 
for treatment with 1 or 10 µM of RPM compounds, to show graphically the conditions 
imaged above (n=3-6).  *RPM947 (also referred to as EHT-1864) was used at 5 µM as a 
positive control for inhibition of PDGF-induced membrane ruffling. **p<0.05. 
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E.  RPM811 reduces stress fibers and enhances filopodia formation of non-stimulated cells in 
a dose-dependent manner.  As with stimulated cells, non-stimulated cells were also subjected 
to the panel of RPM compounds at a range of doses.  The effect of RPM811 on basal stress 
fibers and filopodia is shown.   
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Figure 5.2.  RPM811 inhibits anchorage-independent growth of colorectal 
adenocarcinoma cells.  To determine the effect of RPM811 on anchorage-independent 
growth of tumor cells, soft agar assays were performed on LS174T cells in presence of 0, 1, 
or 10 µM of RPM811.  Colonies of metabolically active cells were stained with MTT, 
scanned, and counted using ImageJ.  A representative scan is shown (A), and the average of 
all assays is graphed (B, n=4 in triplicate).  Student’s t-test was used to calculate statistical 
significance, **p<10-7.  Error bars represent SEM. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 
 

CONCLUSIONS 

 My graduate work has focused on the RhoGEF Ect2 and its role in ovarian cancer 

cells.  I have determined that Ect2 is an important regulator of ovarian cancer cell 

transformation, as it is in other tumor types (137, 138, 145-148, 159).  More importantly, my 

work has also uncovered a novel mechanism by which Ect2 can drive cancer cell 

transformation, that does not require cytoplasmic mislocalization as previously thought (111, 

137).  I have shown that Ect2 can act as a GEF from within the nucleus, and that this activity 

is required for transformation.  Further, I found that nuclearly localized, active mutants of 

Rac1 can rescue the defects in anchorage-independent growth caused by Ect2 knockdown.  

While others have described the existence of a pool of nuclear Rac1 (63, 64, 67) and its role 

in mitosis (62) and transcription (44, 69, 70), my work now also implicates nuclear Rac1 

(and possibly other nuclear Rho family GTPases) in cellular transformation.  I have also 

uncovered a change in Ect2 specificity between the nucleus and cytoplasm that is the first 

description of an intrinsic difference in GEF specificity depending on the subcellular 

compartment to which it is localized. 

 My work on Ect2 suggests that utilizing kinase inhibitors to prevent cytoplasmic 

mislocalization of Ect2 is not a tractable anti-cancer therapy for the treatment of ovarian 

cancer.  Instead, RhoGEF inhibitors themselves may be more useful, although the extent of 

RhoGEF “druggability” is currently unclear (452).  As part of a collaboration to identify 
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novel RhoGEF inhibitors, I validated lead compounds for specificity towards distinct Rho 

GTPase pathways and their ability to inhibit transformed cell growth.  Further modifications 

will be necessary to create an inhibitor that is useful at clinically relevant doses. 

 Additionally, I described in detail the use of effector recruitment assays to monitor 

the localization of GTPase activity, an important technique that I used to visualize where 

within the cell Ect2 activates endogenous Rac1.  Finally, I reviewed the literature on C-

terminal phosphorylation as an alternative regulator of Rho GTPase localization and activity.  

Still there are many questions remaining with regard to the effects of subcellular localization 

on Rho GTPases and their regulators.  I focus on questions about Ect2 and Rac1 activity 

below. 

 

FUTURE DIRECTION 1 – HOW ARE LOCALIZATION AND SPECIFICITY OF ECT2 

REGULATED? 

 As described in Chapter 4, I have observed that the specificity of Ect2 changes with 

its subcellular localization.  Nuclear Ect2 is capable of activating both Rac1 and RhoA, while 

cytoplasmic Ect2 is more specific to RhoA.  This is likely due to intrinsic differences 

between the pools of Ect2 present in the nucleus and in the cytoplasm, as it is apparent using 

bacterially expressed, nucleotide-free GTPases to pull down the Ect2 capable of acting on 

each GTPase in each compartment.  The ratio of GTPases available in each compartment 

may further amplify the effect in cellulo.  What regulates this correlation between specificity 

and localization is unknown.  Below I speculate on how these properties are determined. 
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1.1 Does phosphorylation regulate the specificity of Ect2? 

When the GEF activity of Ect2 was first identified in vitro, Tatsumoto and colleagues 

showed that VHR phosphatase treatment of Ect2 inhibited Ect2-induced nucleotide exchange 

on Rac1(76).  They then proposed that Ect2 must be phosphorylated to catalyze nucleotide 

exchange (76).  While this was assumed to be the case not only for Rac1 but also for RhoA 

and Cdc42, only Rac1 was tested experimentally, and the specific phosphorylation site(s) 

were not determined.  Since then phosphodeficient mutants of Ect2 have been used to 

demonstrate that T327 and T814 are required for Ect2 to optimally activate Rac1 (134, 161).  

And Dr. Kent Rossman has observed that bacterially expressed, i.e., unphosphorylated, full 

length Ect2 can activate RhoA but not Rac1 in vitro (Dr. Kent Rossman, personal 

communication).  Based on these results, the simplest hypothesis is that phosphorylation of 

Ect2 is required for activation of Rac1 but not RhoA, and therefore phosphorylation of Ect2 

drives the specificity of Ect2 towards Rac1 versus RhoA.  Yet, Ect2 T412 (which is 

phosphorylated by Cdk-1, see Introduction) has been shown to be necessary for optimal 

activation of RhoA by Ect2 (134).  And it has been proposed, although not convincingly 

proven, that phosphorylation of Ect2 at T341 releases autoinhibition of Ect2, allowing it to 

activate Rho GTPases (115).  Based on this literature, it appears that there are many 

phosphorylation sites that can regulate the ability of Ect2 to catalyze nucleotide exchange.  In 

light of my work, it is possible that there are also multiple states of Ect2 activation, perhaps 

conformations in which Ect2 is most active on Rho and others in which it preferentially 

activates Rac.  Therefore we should consider the role of phosphorylation in determining the 

specificity of Ect2. 
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The studies described above examined the role of phosphorylation of certain Ect2 

residues on activation of individual GTPases; each was very focused on a single GTPase and 

did not examine if/how Ect2 phosphorylation may regulate specificity.  To determine if the 

Ect2 that activates Rac1 is differentially phosphorylated from the Ect2 that activates RhoA, I 

used bacterially expressed nucleotide-free GTPases to pulldown Ect2 capable of activating 

each of these GTPases.  The nucleotide-free GTPases interact strongly with GEFs capable of 

activating them (411-413), and I have previously observed that nuclear Ect2 is pulled down 

by nucleotide-free Rac and Rho, while cytoplasmic Ect2 is pulled down only by nucleotide-

free Rho (Chapter 4).  Although mobility shifts have been previously described for Ect2 

phosphorylation changes during the cell cycle (76, 125).  I did not observe any mobility 

differences between Ect2 pulled down by Rac when compared to Ect2 pulled down by Rho 

using standard SDS-PAGE techniques.   

Addition of Zn2+-phos-tag to acrylamide gels can “capture” the highly negatively 

charged phosphorylated proteins, slow their migration through gels, and create more 

dramatic mobility shifts upon phosphorylation (453).  Running the nucleotide-free pulldown 

samples on these modified gels, I was able to observe differences in mobility between Ect2 

pulled down by RhoA vs. Ect2 pulled down by Rac1 (Fig. 6.1A).  Since phos-tag alters 

apparent molecular weight, it is especially important to confirm specificity of the antibody.  

Performing the pulldowns in cells with Ect2 knocked down, I confirmed that the observed 

bands were in fact Ect2, because their signal decreased upon knockdown while the loading 

control, tubulin, remained constant (Fig. 6.1B).  This suggests that there are intrinsic 

differences between the Ect2 pools interacting with each GTPase. 
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Unfortunately, I was unable to observe consistent, reproducible banding patterns for 

Ect2 pulled down by Rho versus Rac.  It is known that Ect2 is phosphorylated during the cell 

cycle (76, 125), and I may see more consistent results if I synchronized the cells prior to 

performing the pulldown.  However, if the differences observed were due to phosphorylation 

events, then calf intestinal phosphatase (CIP) treatment of the pulldowns should reduce the 

ratio of high mobility (highly phosphorylated protein) bands to low mobility (less 

phosphorylated protein) bands.  Although CIP treatment did reduce staining by pan-phospho-

threonine, it did not reduce levels of high mobility Ect2 bands (data not shown).  Therefore 

these high mobility bands may represent another post-translational modification to Ect2, or 

represent phosphorylation events that are resistant to CIP treatment based on protein structure.  

To identify specific residues that are differentially modified (phosphorylated or otherwise) 

when Ect2 is interacting with RhoA compared to Rac1 in an unbiased manner, I could 

perform the nucleotide-free pulldowns, isolate Ect2 using immunoprecipitation, and use mass 

spectrometry to compare the modifications on Ect2 pulled down by each GTPase. 

The methods described above can be used to identify correlations.  However, to 

determine if phosphorylation of Ect2 is differentially required for activation of RhoA vs. 

Rac1, I compared whole cell lysates subject to phosphatase (CIP) treatment or phosphatase 

inhibition (HALT, phosphatase inhibitor cocktail) for 1 hour prior to performing the 

nucleotide-free pulldowns.  Phosphatase treatment reduced the amount of Ect2 pulled down 

by RhoA(17A), while not dramatically affecting the amount of Ect2 pulled down by 

Rac1(15A) (Fig. 6.2).  This suggests that phosphorylation is required for interaction with 

RhoA, but not Rac1, and thus may help to drive differential specificity of Ect2.   
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These conclusions about the possible role of phosphorylation on Ect2 specificity for 

Rho versus Rac are in contrast to my original hypothesis (described above), that was based 

on multiple studies in which phosphorylation was required for Ect2 to optimally activate Rac 

(76, 134, 161).  In the conditions used in Fig. 6.2, Rac pulled down only low levels of Ect2.  

Therefore, it is possible that in these conditions Ect2 is already dephosphorylated on residues 

required for optimal Rac activation and thus no further decrease could be observed upon CIP 

treatment.  Additionally, the buffers used for the CIP/HALT treatment may not be optimal 

for pulldown of Ect2 by Rac.   

 To further explore how phosphorylation of Ect2 regulates its specificity, 

phosphomimetic and phosphodeficient mutants of Ect2 can be utilized. As mentioned above 

T327, T341, T412, and T814 are all residues of Ect2 that have been previously implicated in 

regulating its activity (115, 134, 161) and which should be examined for their potential role 

in substrate specificity.  In addition, I can perform mass spectrometry to uncover other sites. 

 

1.2 Does the C-terminus regulate the specificity of Ect2? 

The C-terminus of Ect2 (a.a. 775-882) does not contain any known functional 

domains.  Still, it is required, in addition to the catalytic DH/PH domain of Ect2, for 

activation of Rac1 and Cdc42 and for optimal activation of RhoA by Ect2 (94).  This makes 

the C-terminus of Ect2 of interest as an uncharacterized regulator of Ect2 specificity.  Solski 

et al. (94) utilized a truncated form of Ect2, lacking the N-terminus, when they observed that 

GEF activity was optimal in the presence of the C-terminus.  It would be interesting to 

determine if the C-terminus of Ect2 is similarly required for optimal GEF activity using full 

length Ect2, and to determine if there is a hierarchy of GTPase dependency on the C-
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terminus.  This could be determined by ectopically expressing HA-tagged full length Ect2 or 

HA-tagged Ect2 with a truncated C-terminus, performing nucleotide-free GTPase pulldowns 

for Ect2, and blotting for HA.  Comparing the Rac:Rho ratio of Ect2 pulled down with and 

without the C-terminus should help define the relative GTPase dependency on the C-

terminus.  When Solski et al. attempted this in 2004 they were unable to pulldown Ect2 with 

Rac(15A) (independent of the C-terminus) (94).  Since full length Ect2 is pulled down by 

nucleotide-free Rac in our system whereas they used N-terminally truncated Ect2, there is 

likely a difference in specificity between full length and N-terminally truncated Ect2.  

Additionally, rhotekin and PAK pulldowns for Rho and Rac activation upon overexpression 

of full length versus truncated Ect2 provide another method to answer the question. 

The C-terminus has also been implicated in GTPase activation because it is required 

for Ect2 to increase cyclin D1 transcription (46), and it is necessary for cellular 

transformation (46, 94, 111).  In each of these papers, "the C-terminus" is defined slightly 

differently.  Collectively, it appears that somewhere between a.a. 775-831 of human Ect2 is 

required for transformation.  It would be interesting to further truncate the C-terminus of 

Ect2 and determine a smaller region that is required for GEF activity.  It is possible that 

certain regions of the C-terminus are required for Rac activity, while other areas allow for 

optimal Rho activity. 

Interestingly, 32% of the C-terminus is a serine or threonine, while no tyrosines are 

present.  ELM (454) lists 4 known phosphorylation sites in this area and nearly all C-terminal 

serine and threonines are predicted as possible phosphorylation sites by NetPhos (455), 

suggesting that at least some of the phosphorylation events described above may occur in the 

C-terminus to regulate specificity. 
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1.3 How is Ect2 specificity regulated? 

There are many predictions in the literature as to how phosphorylation of Ect2 

regulates its activation.  It is likely that at least some of these same mechanisms are utilized 

to control its specificity for individual GTPases.  As one mechanism, phosphorylation of 

Ect2 is proposed to regulate Ect2 via creating binding sites for other proteins.  For example, 

Cdk1 phosphorylation of Ect2 at T412 creates a binding site for Plk1, which is required for 

Ect2 activation of RhoA (134).  In another example, phosphorylation of Ect2 at T341 inhibits 

binding to MgcRacGAP (120).  Since MgcRacGAP catalyzes GTP hydrolysis and thus 

directly counters Ect2 activity on Rac, binding between MgcRacGAP and Ect2 should cause 

an apparent increase in specificity for RhoA over Rac.  While this would not affect 

nucleotide-free GTPase mutants and thus cannot explain the observed intrinsic differences in 

Ect2 specificity, in cellulo this binding could have a large effect on GTPase specificity.  To 

determine if other proteins are necessary for phosphorylation-driven Ect2 specificity, in vitro 

exchange assays on RhoA and Rac1 can be performed.  These assays would use bacterially 

isolated Ect2 that contains a phosphomimetic mutation at the residue of interest.  The ability 

of Ect2 to activate RhoA and Rac1 should be compared when Ect2 is exposed to cellular 

lyate or exposed to lysis buffer.  If differences are observed, then it is likely due to other 

eukaryotic proteins interacting with Ect2 to drive activity.  Phosphodeficient Ect2 can be 

used in the assay instead to determine if interactions with these other proteins are due to 

phosphorylation.  

Phosphorylation may also control GTPase specificity by regulating the localization of 

Ect2.  For example, dephosphorylation of T341 within Ect2 and subsequent MgcRacGAP 
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binding may allow for Ect2 co-localization with RhoA near the central spindle during 

anaphase (120).  

 

1.4 What determines the localization of Ect2? 

As described in Chapter 1, Ect2 has been observed at many subcellular locations.  I 

have observed both nuclear and cytoplasmic Ect2 in ovarian tumor cells, but it is unclear 

what mechanisms control the nuclear vs. cytoplasmic localization of Ect2.   

It is possible that the same residues that drive specificity also regulate localization of 

Ect2.  It has been proposed that phosphorylation of Ect2 T327 (T328 in reference, see Fig. 

1.2 legend) by PKCi is necessary for Ect2 to activate Rac1 and also to drive Ect2 from the 

nucleus into the cytoplasm of non-small cell lung cancer (NSCLC) cells (137, 161).  It is 

clear that PKCi regulates phosphorylation of Ect2 at residue T327 and that this 

phosphorylation is required for optimal activation of Rac (161), yet the localization data is 

lacking.  The most striking localization data shows a decrease in cytoplasmic Ect2 upon 

PKCi knockdown via immunofluorescence (137).  However, my validation experiments 

showed that the antibody used in this work (Santa Cruz) was not specific to Ect2 (Chapters 1 

& 4).  Data on the same phenomenon obtained via fractionation was also not convincing 

(137).  Using a well-validated Ect2 phospho-T327 antibody they were able to show higher 

amounts of phospho-T327 Ect2 in the cytoplasm compared to the nucleus.  However, total 

Ect2 was also much higher in the cytoplasmic vs. nuclear fraction, and the total Ect2 signal 

was over-exposed, such that a proper comparison could not be determined regarding 

percentage of Ect2 that is phosphorylated at T327 in each compartment (161).  Thus it is 

unclear if residue T327 regulates the subcellular localization of Ect2 via phosphorylation.  To 



 

192 

examine the importance of this residue towards subcellular localization myself, I created 

GFP-tagged phospho-mimetic (T327D) and phospho-deficient (T327A) mutants of Ect2 at 

this residue.  I expressed them in OVCAR8 cells, and used WT Ect2 as a control for 

predominantly nuclear localization, and DH/PH/C Ect2 (lacking the NLSs) as a control for 

predominantly cytoplasmic localization.  I fixed the cells, blinded myself to the mutant 

expressed, and counted the number of cells in the following categories of Ect2 localization: 

plasma membrane-highlighted, nuclear-excluded, nucleus/cytoplasm equal, and nuclear-

highlighted.  I determined the fraction of cells with cytoplasmic Ect2 as the sum of all 

categories except nuclear-highlighted, divided by the total number of cells counted.  As 

expected, in 97% of cells expressing DH/PH/C Ect2, fluorescence was cytoplasmic, whereas 

this was only true for 30% of WT Ect2-expressing cells (Fig. 6.3).  Surprisingly, T327D was 

also mostly confined to the nucleus, with only 38% of cells expressing it showing 

cytoplasmic Ect2, and instead T327A was more highly expressed in the cytoplasm (71% of 

cells showing cytoplasmic Ect2) (Fig. 6.3).  These results were confirmed by two other 

independent and blinded reviewers (Molly J. DeCristo and Tim Rose).  This suggests that 

WT Ect2 is basally phosphorylated at T327 in OVCAR8 cells and that phosphorylation of 

this residue is required for proper nuclear localization.  It would be interesting to attempt this 

assay in NSCLC cells, and to immunoblot OVCAR8 fractions with the Ect2 phospho-T327 

antibody generated by the Fields lab, to determine if the observed differences are cell- or 

tumor type-dependent, or assay-dependent. 

Another region of Ect2 that may drive specificity and also regulate localization of 

Ect2 is the C-terminus.  As discussed above, the C-terminus of Ect2 is known to be important 

for optimal GTPase activation.  While much of the C-terminus is a possible phosphorylation 
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site (32% of the C-terminus is a serine or threonine), another 20% of the C-terminus is 

composed of basic amino acids.  Basic (positively charged) amino acids are commonly 

utilized in the cell to regulate localization relevant for Ect2, for example in NLSs (66) and for 

plasma membrane association (9).  Therefore, I hypothesize that the positively charged 

residues in the C-terminus of Ect2 help assign its subcellular localization, while 

phosphorylation events negate the positive charges and allow finer and more dynamic 

regulation. 

Saito et al. described an NLS in the C-terminus of Ect2, and expression of just their 

GFP-tagged C-terminus (a.a. 753-882) was nuclearly localized (111).  Yet, the described 

experiment could have been hindered by the fact that GFP is larger than the C-terminus of 

Ect2 and also concentrates in the nucleus (456).  Instead, other evidence suggests that the C-

terminus is actually responsible for nuclear exclusion.  In a study by Solski et al., localization 

of the HA-tagged DH/PH and DH/PH/C domains of Ect2 was visualized by 

immunofluorescence (94).  These images show Ect2 DH/PH highlighting the nucleus while 

also being expressed diffusely in the cytoplasm, whereas Ect2 DH/PH/C is visible mostly in 

the cytoplasm and plasma membrane.  These constructs were truncated, beginning at residue 

415, and thus lack both central NLSs.  Truncations of Ect2 have not been identified in tumors, 

thus for a more accurate understanding of how the C-terminus regulates Ect2 in tumors, I 

propose examining the localization of full length Ect2 and comparing that to C-terminally 

truncated Ect2.  I have previously observed that neither N-terminal HA- nor N-terminal Myc-

tags alter the subcellular localization of WT Ect2 when compared to endogenous Ect2 (data 

not shown).  Therefore, either of these tags can be used to label the protein for 

immunofluorescence. 
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1.5 A comprehensive model of specificity and localization of Ect2  

The precise mechanism(s) that regulate the correlation I observed between Rac/Rho 

specificity and subcellular localization remains to be determined.  As diagrammed in Figure 

6.4, I envision three options for how they may be related: 1) a single mechanism regulates 

both the localization and specificity of Ect2; 2) Ect2 localization to one cellular compartment 

allows for other modifications affecting its specificity; 3) changes in Ect2 specificity drive its 

change in localization.  To differentiate between scenarios 1 and 2, I could mutate NLS 

sequences to drive Ect2 to the cytoplasm and additionally create phosphomimetic or 

phosphodeficient mutations on the same construct.  If a residue is important for specificity 

while in the cytoplasm (for example) then the phosphomimetic NLS mutant should drive 

activation of that GTPase when in the cytoplasm, whereas phosphodeficient NLS mutant will 

not.  But if another residue is important for specificity and this residue drives only 

localization, then both phosphomimetic and phosphodeficient NLS mutants will have the 

same effect on active GTPase levels. 

Combined the data from Future direction 1 would allow me to uncover the players 

that regulate Ect2 subcellular localization/specificity, and how they do so.  Since I have 

shown that Ect2 is required for ovarian cancer cell transformation through its activation of 

GTPases in the nucleus (Chapter 4), this information could be valuable to help target Ect2 for 

treatment of ovarian tumors.  Although RhoGEF inhibitors (430-432, 457) and compounds 

that bind GTPases to prevent GEF interactions (428, 429) have been identified, none have 

been proven potent enough for clinical use.  Thus, understanding the regulation of Ect2 may 

produce more tractable drug targets.  For example, there are a variety of kinase inhibitors that 

are approved for clinical use (458), which may be effective in preventing Ect2 from entering 
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the nucleus and/or activating Rac (or any other GTPases required for ovarian cancer 

transformation). 

 

FUTURE DIRECTION 2 – HOW DOES NUCLEAR ECT2 RHOGEF ACTIVITY DRIVE 

TRANSFORMATION?  

 As described in Chapter 4, I have observed that both GEF activity and nuclear 

localization of Ect2 are required for optimal Ect2-driven anchorage-independent growth in 

ovarian cancer cells.  This suggests that Ect2 activates GTPases from within the nucleus to 

drive transformation.  I speculate on how this occurs in the following section. 

 

2.1 Is nuclear Rac activity required for Ect2-driven transformation? 

In Chapter 4 I show multiple lines of data that suggest that Ect2 preferentially 

activates Rac (over RhoA and Cdc42) while in the nucleus.  Therefore, I hypothesized that 

the observed nuclear GEF-dependent effect on transformation is mediated through Rac.  This 

is consistent with previous studies that have noted correlations between Ect2-driven cellular 

transformation and Rac1 activation (see Chapter 1).  However, it is still unknown if nuclear 

Rac1 activity is required for Ect2-driven cellular transformation.  To determine this, I would 

first have to determine which residues are required for Ect2 to specifically activate Rac1 (see 

Chapter 6.1), create a version of Ect2 that is deficient at activating Rac only, and then 

determine if it is capable of rescuing the defect in anchorage-independent growth caused by 

Ect2 knockdown.  Since the residues that confer substrate specificity for Ect2 are currently 

unknown, and indeed the substrate specificity remains controversial, this process will not be 

straightforward.  Beyond phosphorylation sites at various locations throughout Ect2 (Chapter 
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6.1), there are also amino acids in the DH domain that are likely necessary for conferring its 

specificity.  Although, the crystal structure of Ect2 has not been solved, analysis of the 

crystal structures of other RhoGEFs in complex with GTPases suggests that isoleucine 1187 

of Tiam1 is key for its ability to activate Rac1 (459).  This isoleucine is conserved among 

Rac GEFs, but is more variable among RhoA and Cdc42 specific GEFs (459).  Using the 

ClustalW alignment tool, I have determined that an I562L mutant of Ect2 may no longer be 

able to activate Rac1, yet still able to activate RhoA.  However, this remains to be tested. 

 

2.2 Does Ect2 regulate mRNA splicing? 

The speckled pattern of Ect2 localization in the nucleus suggests that Ect2 localizes to 

distinct subnuclear structures.  Nuclear speckles and paraspeckles have a similar appearance 

to that of Ect2 (460).  Nuclear speckles are best-known for storing, assembling, and 

modifying mRNA splicing factors (420).  Paraspeckles are primarily known for retaining 

edited mRNA in the nucleus (420), but also contain proteins involved in splicing (461, 462).  

Using mass spectrometry, Ect2 has been identified as a binding partner of the protein 

encoded for by SNRNP200 (114), U5 SnRNA component of the spliceosome, so it is 

possible that Ect2 regulates splicing. 

To further examine this, I can determine if Ect2 localizes in nuclear speckles or 

paraspeckles, by looking for co-localization with SRSF1, SRSF2, Malat1 (nuclear speckles 

componenets) or PSP1, p54nrb, Neat1 (paraspeckle components).  I can also confirm the 

interaction of Ect2 with U5 by performing co-immunoprecipitations.  If Ect2 is confirmed to 

localize to nuclear speckles and/or to interact with U5 then I should proceed to determine if 

Ect2 has a role in splicing. 
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To examine a role for Ect2 in splicing in an unbiased manner (since the genes that 

Ect2 may regulate are unknown) I can utilize a splice junction microarray.  These arrays 

allow identification of relative amounts of different splice variants for a variety of genes 

(463).  Alternatively, I could use RT-PCR to amplify genes and their splice variants (464) or 

utilize different splice reporters (464, 465).  I could then compare splicing profiles in cells 

with Ect2 expressed vs. knocked down, or Ect2 expressed in the nucleus vs. the cytoplasm.  

These would help me determine if Ect2 is general regulator of splicing or is specific to a 

subset of genes, and could inform further studies on the process. 

 

FUTURE DIRECTION 3 – HOW AND WHY DOES COMPARTMENTALIZATION OF 

ECT2 AFFECT PATIENT PROGNOSIS?  

 As described in Chapter 4, we used IHC to stain for Ect2 in an ovarian tissue 

microarray (TMA), and generated both a nuclear and cytoplasmic Ect2 score for each core, 

based on the intensity of staining and percentage of cells staining in each compartment.  We 

observed that nuclear score increased with increasing tumor malignancy whereas cytoplasmic 

score decreased (Fig. 4.1).  This suggested that nuclear, but not cytoplasmic, Ect2 may be an 

important driver of ovarian tumors.  Not described in Chapter 4, we also generated Kaplan-

Meier plots to look for potential correlations between nuclear or cytoplasmic score and 

patient survival.  Although we observed trends suggesting that a high cytoplasmic score 

correlated with good patient outcome (Fig. 6.5A), whereas a high nuclear score correlated 

with poor patient outcome (Fig. 6.5B), neither of these trends was significant. 

 To more fully describe Ect2 distribution in the tumor cores, while scoring the TMA 

we also binned the tumors into the following categories:  0) no staining; 1) only nuclear 
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staining; 2) only cytoplasmic staining; 3) both stain, but in different cells; 4) both stain in the 

same cells; 5) cells with nuclear staining also stain in the cytoplasm, but not vice versa; 6) 

cells with cytoplasmic staining also stain in the nucleus, but not vice versa; 7) independent 

staining with approximately half the cells staining in only one compartment and half the cells 

staining in both.  We then compared patient survival between these groups using a Kaplan-

Meier curve, but since many of these categories contained only a few tumor cores, there was 

insufficient data to reach statistical significance (data not shown).  Still, the trends suggested 

that there may be a difference in patient survival when Ect2 is restricted to one compartment 

or expressed in both compartments.  The above categories were further simplified to define 

two groups of nuclear/cytoplasmic overlap: compartmentalized/restricted expression 

(subcategories 1,2,3 above) and non-compartmentalized/unrestricted expression 

(subcatebories 4,5,6,7 above).  Interestingly, these categories did display statistically 

significant differences in patient survival (p=0.0314, Fig. 6.6A).  Patients whose tumor cores 

displayed Ect2 expression in both the nucleus and the cytoplasm survived longer than 

patients whose tumor cores displayed Ect2 expression restricted to one subcellular 

compartment.  This observation was even more robust when focusing solely on serous 

tumors (p=0.0268, Fig. 6.6B).   

 We found the described correlation surprising.  Since the restricted and unrestricted 

categories were defined because of observed trends with this TMA, our data represented a 

training set.  It would be interesting to apply the same definitions of nuclear/cytoplasmic 

overlap to a new set of TMA data and determine if the same correlation is observed 

(validation set).  If this observation is validated, many questions arise as to why restriction of 

Ect2 to a subcellular compartment results in poor prognosis.  These are discussed below. 
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3.1 Does Ect2 need to be able to shuttle between the nucleus and cytoplasm to prevent 

transformation? 

Ect2 has been previously predicted to shuttle between the nucleus and cytoplasm 

(137), and this shuttling has been observed in cells prior to nuclear envelope breakdown 

during mitosis (119).  Since restriction of Ect2 to either the nucleus or the cytoplasm is 

linked to poor prognosis, possibly Ect2 needs to shuttle between the nucleus and the 

cytoplasm to prevent tumor growth, angiogenesis, or tumor metastasis.  

 

3.2 Does Ect2 regulate opposing functions in the nucleus and the cytoplasm? 

The correlation shown in Figure 6.6 suggests that the role of Ect2 in the nucleus and 

the role of Ect2 in the cytoplasm are detrimental to patient outcome, yet combined they 

somehow oppose their separate detrimental effects.  In support of this, I have observed that 

nuclear expression of Ect2 is required for anchorage-independent growth; however, 

expression of Ect2 in the cytoplasm (NLS-mutant Ect2) can reduce anchorage-independent 

growth of cells expressing endogenous (mostly nuclear) Ect2 (Fig. 4.5). 

The role of nuclear Ect2 in anchorage-independent growth is GEF-dependent (Fig. 

4.4).  To determine if the antagonizing role of Ect2 in the cytoplasm is GEF-dependent as 

well, I could perform soft agar assays on cells expressing endogenous Ect2 and also a mutant 

Ect2 that combines the NLS- and DH-mutations.   

Anchorage-independent growth is tightly correlated with in vivo tumor growth (410) 

and as such may be related to patient survival.  I have also observed that Ect2 regulates both 

directed and random migration of ovarian cancer cells (Fig. 6.7), which are key functions 

related to tumor metastasis (466) and especially important in ovarian cancer, which tends to 
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disseminate locally but widely within the peritoneum.  Although the effect of Ect2 

knockdown on migration was consistent between assay types, the results were very cell line-

dependent for reasons not currently understood.  Determining the required localization and 

function of Ect2 to regulate migration, using the NLS mutant and GEF-deficient mutant, may 

shed light on why restriction to either location results in poor patient outcome. 

Still, if Ect2 drives migration (and by extension possibly invasion/metastasis) from 

the cytoplasm, it is unclear why high cytoplasmic score correlates with decreased tumor 

malignancy (Chapter 4) and trends with good patient outcome (Fig. 6.5).  As observed by the 

cell line dependence on Ect2 for migration, it may be that in certain genetic backgrounds 

cytoplasmic Ect2 can have a negative effect, but in most it does not. 

 

FUTURE DIRECTION 4 – OTHER QUESTIONS RAISED 

 Numerous other questions are raised by my experiments.  Some are described below. 

 

4.1 Is activation of Rac1 by Ect2 direct? 

It has been previously suggested that Ect2 activation of Rac1 is indirect:  the result of 

Ect2 activation of Cdc42 then leading to activation of the RacGEF Trio (159).  I have shown 

that Ect2 activates Rac in a GEF-dependent manner in the nucleus, whereas activation of 

Cdc42 was GEF-independent (Fig. 4.4).  Further, Ect2 did not bind to nucleotide-free Cdc42 

(Fig. 4.6), Therefore, I hypothesize that Ect2 directly activates Rac1.  If my hypothesis is 

correct, DH-mutant Ect2 will be unable to interact with nucleotide-free Rac1. 
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4.2 Does Rac1 nucleotide binding affect its localization? 

As described in Chapter 4, creating a mutant of Rac1 that was predominantly nuclear 

required both abolishing prenylation of Rac1 (SAAX mutation) and adding a nuclear 

localization signal (+NLS).  In the process of determining this, Dr. James Fiordalisi and I 

created G12V and F28L mutants of HA-tagged Rac1 with only a SAAX mutation, only an 

additional NLS, or with neither modification.  Interestingly, the single SAAX mutation or the 

additional NLS caused a more dramatic shift towards nuclear accumulation in the F28L 

background than the G12V background (Figs. 6.8A & B).  This implies that the fast-cycling 

mutant of Rac1 more freely enters the nucleus than constitutively active Rac1, and that 

nucleotide binding may affect the localization of Rac1. 

One possible explanation for the enhanced nuclear entry of the F28L mutant is that it 

has an enhanced ability to bind and release a chaperone at appropriate times for nuclear entry 

compared to Rac1(G12V).  Prenylation of Rac1 is irreversible, and although prenylation 

inhibits nuclear entry of Rac1, endogenous nuclear Rac1 has been determined to be 

prenylated (62).  Therefore Rac1 nuclear entry likely requires a chaperone protein to cover 

the geranylgeranyl group on Rac1.  Conversely, the G12V mutant may exhibit poorer nuclear 

entry if it permanently binds to an extranuclear effector (or other protein) and thus not be 

available for entry into the nucleus.  For example, it has previously been shown that 

RhoGDIs inhibit nuclear entry of RhoA (68).  It is debated as to whether the nucleotide state 

of a GTPase affects RhoGDI binding (see Chapter 1).  However, if GTP-bound Rac1 binds 

more strongly to RhoGDI than fast-cycling Rac1, this may explain why NLS-Rac1(G12V) 

shows less nuclear accumulation than NLS-Rac1(F28L).  Still, neither SAAX mutant 

interacts with RhoGDI, because GDIs bind prenyl groups, which SAAX mutants lack.  
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Therefore RhoGDI binding cannot be the full explanation, and likely Rac1 effector proteins 

are involved as well.  A more trivial explanation related to protein:protein interactions is 

based on stoichiometry.  The F28L mutants were more highly expressed compared to G12V 

mutants (Fig. 6.8C).  Therefore, there may be more Rac1(F28L) to freely move into the 

nucleus, while Rac1(G12V) is sequestered away from the nucleus by effectors.  Alternatively, 

fast-cycling and constitutively active Rac1 may be modified differently.  A recent study 

found that palmitoylation of Rac1 at C178 is required for nuclear entry of prenylated Rac1.  

It also suggested that this palmitoylation enhances GTP-loading, but did not investigate the 

role of GTP- vs. GDP-binding on palmitoylation (467). 

 

4.3 How does Rac1 localization correlate with Rac1 activity and cellular transformation? 

 Localization of the Rac mutants described above (Chapter 6.4.2) was determined by 

expressing each of the Rac mutants in OVCAR8 cells with Ect2 knocked down, selecting for 

stably expressing cells, and staining for the HA epitope tag on the mutants.  During 

generation of the stable transfectants I noticed that many of the Rac-expressing cells showed 

enhanced ruffling, as is common upon Rac1 activation (see Chapter 1).  However, most 

strikingly, NLS-Rac1(G12V) expression caused a large number of cells to become filled with 

vacuolar structures (Fig. 6.9).  A milder but similar phenotype was observed with NLS-

Rac1(F28L) as well.  This type of vesicle formation has been described previously upon 

Rac1 activation in fibroblasts, and is thought to result from macropinocytosis (31).  It is 

interesting that addition of an NLS to Rac1(G12V) enhanced this phenotype in OVCAR8 

cells, especially since in basal conditions the localization of NLS-Rac1(G12V) and 

Rac1(G12V) are indistinguishable (Figs. 6.8A & B).  Perhaps, synchronizing the cells prior 
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to staining would reveal differences in the localization of Rac1(G12V) +/- the NLS and 

enhance our understanding of this phenotype.   

 To better understand the role of Rac1 subcellular localization on Rac1 activity, I also 

generated HA-tagged Rac1(G12V) with the K-Ras tail.  The GFP-tagged version of this Rac1 

mutant is excluded from the nucleus (62).  Transient expression suggested that the HA-

tagged mutant is similarly localized; however, this could not be confirmed in the same 

conditions as the cells described above, because all of the cells died during selection (data not 

shown).  The observed lethality suggests that active Rac1 must be able to cycle into the 

nucleus for cell viability.  The cycling into the nucleus could be to turn on nuclear signaling, 

or to attenuate signaling at the membrane, since Rac1 signaling has been previously 

associated with apoptosis (202).  Alternatively, adding the K-tail to Rac1 may cause Rac1 to 

outcompete K-Ras in microdomains, where K-Ras signaling is required for cell viability.  To 

rule out this more trivial explanation, I would exclude Rac1 from the nucleus by another 

mechanism (e.g. by mutation of its NLSs) and determine if a similar lethality is observed, 

and/or determine if knockdown of K-Ras causes cell death in this cell type. 

 To further examine the role of Rac1 subcellular localization on transformation, I 

performed soft agar assays with the above-described cells.  NLS-Rac1(G12V) with the NLS 

from Ect2 was used, since the high number of vesicles slowed cell growth upon expression of 

NLS (SV40T antigen)-Rac1(G12V).  Additionally, Rac1(G12V) K-tail could not be used, 

because the cells died during selection.  All trends described below were also true with 

Rac1(F28L) (data not shown), but the rescues were not as robust with F28L, suggesting that 

constitutively active Rac1 is more effective at driving transformation than fast-cycling Rac1.  

As expected, Rac1(G12V) partially rescued anchorage-independent growth and Rac1(G12V) 



 

204 

SAAX did not (Fig. 6.10).  This is consistent with our previous understanding of the role of 

Rac1 and prenylation on cellular transformation (13).  Additionally, Rac1(G12V)+NLS 

rescued anchorage-independent growth, which was not surprising because it appeared to 

localize the same as Rac1(G12V) (Figs. 6.8A & B).  Consistent with our hypothesis that Ect2 

activates Rac1 in the nucleus to drive transformation, the nuclearly localized NLS-

Rac1(G12V) SAAX mutant also rescued anchorage-independent growth (Chapter 4).  

However, it was still surprising that there was such a dramatic difference between the ability 

of the SAAX mutant and SAAX+NLS mutant to rescue.  The SAAX mutant alone stains 

strongly in the nucleus, like the SAAX+NLS mutant (Figs. 6.8A & B).  The main difference 

caused by the additional NLS, is that there is less cytoplasmic Rac1 accompanying the 

nuclear Rac1.  This suggests that cytoplasmic Rac1 activity may have contradictory effects to 

its nuclear activity (similar to Chapter 6.3.2).  Alternatively, the SAAX+NLS mutant may 

cycle in and out of the nucleus differently from the SAAX mutant and this could drive the 

dramatic differences in their ability to rescue transformation (similar to Chapter 6.3.1).  It 

would be interesting to examine the subcellular localization of both mutants more precisely 

(for example: throughout the cell cycle and in more detailed microdomains) to help 

determine exactly where Rac1 activity is required to drive transformation. 
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FIGURES 

 
Figure 6.1.  Ect2 that interacts with RhoA has a different mobility than Ect2 that 
interacts with Rac1.  To examine the mechanism of Ect2 substrate specificity, Ect2 that 
interacts with either RhoA or Rac1 was isolated by performing GST-RhoA(17A) and GST-
Rac1(15A) pulldowns from whole cell lysates.  To enhance any mobility differences between 
isolated Ect2 that could be caused by phosphorylation of Ect2, pulldown products were 
separated on an acrylamide gel containing Zn2+-phos-tag.  A.  Upon immunoblotting for Ect2, 
differences in mobility between Ect2 pulled down by nucleotide-free RhoA vs. Rac1 could be 
observed.  Differences in mobility between Ect2 pulled down by RhoA vs. Rac1 were 
observed repeatedly, however, the banding patterns differed upon repetition (n=3).  GST was 
used as a negative control.  To confirm specificity of the signal, pulldowns were also 
performed on cells with Ect2 knocked down.  B. Ect2 knockdown was confirmed by western 
blot.  Tubulin served as a loading control.   
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Figure 6.2.  Phosphorylation events regulate the interaction of Ect2 and nucleotide-free 
RhoA, but not Rac1.  To determine if phosphorylation of Ect2 is differentially required for 
activation of RhoA vs. Rac1, lysates were treated with phosphatase (+ CIP) or phosphatase 
inhibitior (-- CIP, HALT phosphatase inhibitor cocktail) for 1 hour prior to performing the 
nucleotide-free pulldowns.  A.  The amount of Ect2 pulled down by RhoA(17A) was 
decreased by CIP treatment, yet, the amount of Ect2 pulled down by Rac1(15A) did not differ 
dramatically between conditions (n=3).  GST was used as a negative control.  Equal loading 
of the pulldown (+/-- CIP) was confirmed by blotting the whole cell lysate loaded for each.  
B. Effectiveness of phosphatase treatment was confirmed by immunoblotting the whole cell 
lysates with a pan-phospho-threonine antibody.  Phosphatase treatment reduced the staining 
observed with this antibody, confirming effective phosphatase treatment.  Tubulin served as 
loading control.  
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Figure 6.3.  Abolition of the potential phosphorylation site T327 in Ect2 enhances its 
cytoplasmic localization.  A.  To determine if phosphorylation of Ect2 at T327 regulates the 
localization of Ect2, GFP-tagged phospho-mimetic (T327D) and phospho-deficient (T327A) 
mutants of Ect2 were expressed in OVCAR8 cells.  Representative confocal images are 
shown.  Scale bars represent 10 microns.  B.  Three independent reviewers, expressed these 
constructs in OVCAR8 cells, fixed the cells, and while blinded to the identity of the construct 
expressed binned cells into the following categories of GFP-Ect2 localization: plasma 
membrane highlighted, nuclear excluded, nucleus/cytoplasm equal, nuclear highlighted.  The 
percentage of cells with cytoplasmic Ect2 was determined as the sum of all categories except 
“nuclear highlighted”, divided by the total number of cells counted.  WT Ect2 (expressed in 
serum starved cells) and DH/PH/C Ect2 served as controls for nuclear and cytoplasmic 
localization respectively.  As shown in the bar graph, phosphomimetic (T327D) Ect2 
localized similarly to WT Ect2, while phosphodeficient (T327A) Ect2 was more highly 
expressed in the cytoplasm (n>3).  Error bars represent SEM.  Significance was determined 
using Bonferroni corrected Student’s t-tests, *p<0.05, NS=not significant.    
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Figure 6.5.  High cytoplasmic Ect2 expression trends with positive patient outcome, 
whereas high nuclear Ect2 expression trends with poor patient outcome.  As described in 
Chapter 4, hundreds of ovarian tumors were stained for Ect2 and given both nuclear and 
cytoplasmic scores for Ect2 expression.  A. To determine if there was a relationship between 
cytoplasmic score and patient survival, scores were binned into 3 categories of expression 
(none (0), low (1-10), and high (>10)) and a Kaplan-Meier plot was derived.  There was no 
significant difference between the categories; however, high cytoplasmic score trended with 
positive patient outcome.  B. To determine if there was a relationship between nuclear score 
and patient survival, scores were binned into 3 categories of expression (none (0), low (1-15), 
and high (>15)) and a Kaplan-Meier plot was derived.  There was no significant difference 
between the categories, however, high nuclear score trended with poor patient outcome.  
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Figure 6.6.  Restriction of Ect2 to the nucleus or cytoplasm correlates with poor patient 
outcome.  To further describe the expression of Ect2 in ovarian tumors, while scoring the 
TMA the tumors were binned into the following categories: 0) no staining; 1) only nuclear 
staining; 2) only cytoplasmic staining; 3) both stain, but in different cells; 4) both stain in the 
same cells; 5) cells with nuclear staining also stain in the cytoplasm, but not vice versa; 6) 
cells with cytoplasmic staining also stain in the nucleus, but not vice versa; 7) independent 
staining with approximately half the cells staining in only one compartment and half the cells 
staining in both.  The above categories were further simplified to define two groups of 
nuclear/cytoplasmic overlap: compartmentalized/restricted expression (subcategories 1,2,3 
above) and non-compartmentalized/unrestricted expression (subcatebories 4,5,6,7 above).  A. 
Patients whose tumors had “restricted” expression had a worse outcome than those with 
“unrestricted” expression (p=0.0314).  B. This correlation was even more apparent upon 
confining analysis to serous tumor cores (p=0.0268).   
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B.  The localization of Rac1 in the cell population was quantified by counting cells with the 
following subcellular localization patterns: nuclear (nuc) excluded, plasma membrane (PM) 
+nuc excluded, PM+diffuse, diffuse, diffuse with visible nuc, nuc highlighted+PM, nuc 
highlighted.  The fraction of cells in each location is shown in the bar graph (n>3, with 
approximately 100 cells counted per condition per n).  Interestingly, the SAAX mutation or 
the addition of an NLS caused a more dramatic shift towards nuclear accumulation in the 
F28L background than the G12V background.  C.  Relative expression levels of each mutant 
was determined by immunoblot.  HA-Rac1(G12V) and HA-Rac1(F28L) are shown in both 
blots to allow relative comparisons across blots.  Actin served as a loading control. 
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Figure 6.10.  Expression of active Rac1 mutants rescues the defect in anchorage-
independent growth caused by Ect2 knockdown, except when Rac1 contains a SAAX 
mutation and no NLS.  To further examine the role of Rac1 subcellular localization on 
transformation, the cells described above were used for soft agar assays.  Cells expressing 
non-targeted (NT) shRNA and vector (VO) were used as controls for anchorage-independent 
growth and cells expressing Ect2 shRNA and VO were used as controls for inhibited cell 
growth.  NLS-Rac1(G12V) with the NLS from Ect2 was used, since the high number of 
vesicles (Fig. 6.9) correlated with slowed cell growth upon expression of NLS (SV40T 
antigen)-Rac1(G12V).  Cells were grown in agar for approximately 2.5 weeks and then 
counted for colony formation.  The fraction of cells forming colonies, normalized to NT+VO 
is shown.  Error bars represent SEM. 
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