
 
 
 
 
 

A CHEMICAL BIOLOGY APPROACH TO DISCOVER THE BIOLOGICAL 
TARGETS OF THE ANTIEPILEPTIC DRUG LACOSAMIDE 

 
 
 
 
 

Pierre Philippe Morieux 
 
 
 
 
 
A dissertation submitted to the faculty of the University of North Carolina at Chapel 
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 
Pharmaceutical Sciences at the Eshelman School of Pharmacy (Division of 
Medicinal Chemistry and Natural Products) 
 
 
 
 
 

Chapel Hill 
2010 

 
 
 
 
 

Approved by: 
 
  
Pr. Harold Kohn 
  
Pr. Rihe Liu 
  
Pr. Qisheng Zhang 
  
Pr. Stephen Frye 
 
Pr. Robert Rosenberg  



 ii

 
 
 
 
 

ABSTRACT 
 

PIERRE PHILIPPE MORIEUX: A Chemical Biology Approach to Discover the 
Biological Targets of the Antiepileptic Drug Lacosamide 

(Under the direction of Harold Kohn) 
 
 

Lacosamide (Vimpat®) is a potent antiepileptic drug that received market 

approval for the adjunctive treatment of partial-onset seizures in adults in Europe 

and the United States. The pharmacological studies document that lacosamide has 

a unique profile of activity that differentiates it from existing antiepileptic agents. 

Based on these findings, we hypothesized that lacosamide binds to different 

proteins, with low-to-modest affinity. This research project aims to identify the 

lacosamide biological targets that modulate function and toxicity. We propose a 

novel target identification approach where an affinity bait (AB) and a chemical 

reporter (CR) group are strategically placed within the lacosamide framework. These 

compounds are termed lacosamide AB&CR agents. The AB moiety leads to 

permanent capture of the binding protein while the bioorthogonal CR unit is used for 

either detection or isolation of the complex upon reaction with a probe. The 

understanding of lacosamide’s mechanism(s) of action will help increase our 

understanding of epileptic disorders, and permit the rational development of new 

clinical agents.  

In the first part of our study, we explored the structure-activity relationship 

(SAR) for the 3-oxy site in lacosamide. We showed that incorporation of non-bulky, 
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hydrophobic groups at this site provided lacosamide derivatives with excellent 

activities in animal seizure models. This information was used to design and 

stereospecifically synthesize a series of lacosamide AB&CR agents where either the 

AB or the CR group was installed at the 3-oxy site. Most lacosamide AB&CR agents 

were evaluated for anticonvulsant activity in animal models.  

In the second part of our study, the lacosamide AB&CR agents were utilized 

to interrogate the rat brain soluble and membrane-bound proteome for potential 

binding partners of lacosamide. We used several subcellular fractionation methods 

to deconvolute the rat brain proteome. Within each subcellular fraction, different 

protein purification methods were employed to partition the lysate and aid the 

identification process. Several potential proteins were selectively targeted by the 

lacosamide AB&CR agents. Further analysis did not confirm that these proteins 

were directly linked to lacosamide function. These studies documented the strengths 

and limitations of the AB&CR strategy for receptor identification and are discussed. 
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PREFACE 

“You do what you are” 

 

I look at the work in my dissertation and see a reflection of myself. Who am I? 

A scientist passionate about what he does. A person who does not settle for 

mediocre and goes the extra step. An apprentice eager to learn, understand, and 

share new information. A human being who wants to help people not as lucky as he 

is. What am I? A hybrid, a reaction mixture, an alloy, a blend of different cultures, 

backgrounds, and trainings. What do I like to do? Synthesize compounds with a 

purpose. Design, craft and tailor molecular tools. As a reference to metalworkers, I 

like to look at myself like a carbonsmith.  

 

 I was born in December 1982 in Washington, D.C., from a French father, 

Christian Morieux, and a Japanese mother, Sumiko Morieux (née Ouchi), making 

me French/Japanese by blood, and French/American by citizenship. I speak French, 

English, fairly decent German, I can write, read, and speak Japanese at a more 

basic level, and these days I am trying to learn some Spanish. I am the youngest of 

three, with one sister, Christine, and one brother, Pascal. I always like to point out a 

unique feature of my family, which is that the five of us were each born in a different 

country, France and Japan for my parents, Beirut, Lebanon for my sister, and 

Algiers, Algeria for my brother. The origin of this diversity lies with my father’s former 
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jobs as a French diplomat. Thanks to him, I have had the chance to be exposed to 

many different cultures and to grow in an open-minded familial environment. I am 

also the only scientist in my family. My father was a French teacher before being a 

diplomat, my mother was a journalist in Japan, and my brother and sister both went 

through a business/economy curriculum.  

After my birth in the U.S., my family came back to live in France in 1985 for 

several years, and then moved to Rabat, Morocco, in 1989, where I spent 3 years 

going at a French elementary school. I learnt to read, speak and write Arabic as a 

child, but I unfortunately lost everything within years as we came back to France. 

After a couple more years in Paris, my father was nominated in 1995 as a cultural 

counselor at the French Embassy in Tokyo, Japan. We stayed there for 5 years, my 

high school years, where I attended the Lycée Franco-Japonais de Tokyo (LFJT), 

the French school in Tokyo. There, I met a person who played a very important role 

in my life, Michel Schiano, my physics and chemistry teacher. Michel had a 

passionate way to teach his classes and always tried to get his students exposed to 

more than the chemistry program requirements. He’s the person who got me hooked 

on chemistry. He worked hard to have students from the French school in Tokyo 

participate in the French Chemistry National Olympiads. His efforts paid out and he 

made the LFJT the first French school in a foreign country to take part in the French 

National Chemistry Olympiads. Training under his supervision, I participated in the 

16th Olympiads in 2000 where I ranked 10th, well beyond our expectations. Michel 

also taught us to look outside of science and got me interested in theater. He 

directed small theater plays with students, in which I was enrolled two consecutive 
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years. I then obtained my Baccalauréat in science in 2000, and me and my parents 

moved back to Paris.  

The year following my return was not as bright. The next logical thing for me 

to do was to start my higher education in the classes préparatoires, the French 

traditional way to enter famous graduate schools Ecoles d’Ingénieurs. With 

chemistry on my mind, I set myself the goal to enter the Ecole Nationale Supérieure 

de Chimie de Paris (ENSCP), one of the most prestigious Ecole d’Ingénieurs in 

chemistry in France. However, the classe préparatoire work schedule proved to be 

as tough as advertised. With over 12 h of abstract mathematics, 10 h of physics, and 

only 2 h of chemistry per week, it did not take me long to start failing classes. Well 

before the end of the 1st year I knew I would not pass and looked for a reorientation. 

I joined the Institut Universitaire de Technologie of Orsay (IUT d’Orsay) in 2001, and 

followed a two-year training program as a chemistry technician. All the classes had a 

more practical aspect which was cruelly missing in the classes préparatoires. In this 

much more favorable, hands-on environment, I performed much better and learnt a 

lot, theoretically and practically, and I also continued playing theater. As part of my 

training, I completed my first internship as a chemistry technician in 2003 at BASF in 

Ludwigshafen am Rhein, Germany, for over a month. Ranking first of my class, I 

was able to apply for a parallel admission in the ENSCP where I was accepted in the 

fall of 2003 (class of 2006).  

 In the beginning of my second year, in the fall of 2004, a seminar was given 

by an English teacher at the Ecole Nationale Supérieure de Chimie de Rennes, 

Pierre Briend, a friend of Harold Kohn, who advertised for a Ph.D. exchange 
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program with the University of North Carolina at Chapel Hill. At this point in my 

studies, I was orienting myself towards research and organic synthesis, and decided 

to take advantage of this offer. I applied to the Division of Medicinal Chemistry and 

Natural Products and was accepted in 2005. I finished my second year at the 

ENSCP with a summer internship at Glaxosmithkline Stevenage’s Medecines 

Research Center in Stevenage, U.K. There I worked, indirectly, for one of my future 

Ph.D. committee members, Dr. Stephen Frye. Within the four days following the end 

of my internship in Stevenage, in August 2005, I hopped back to Paris, grabbed my 

luggage and took off for Chapel Hill.  

 Exposed almost exclusively to chemistry in my training in France, I decided to 

learn something different and conducted my first laboratory rotation with Dr. Rihe 

Liu, learning basic biology techniques. I then moved on to work with Dr. Alexander 

Tropsha where I learnt more about computational chemistry and QSAR. In the 

summer of 2006, I joined Dr. Harold Kohn’s laboratory and started working on my 

Ph.D. research project to identify the biological targets of lacosamide. Within the first 

year, Hal encouraged me to apply for a competitive NIH NRSA F31 fellowship, which 

he helped me obtain. I started working on the organic synthesis of molecular 

derivatives of lacosamide and later decided to learn how to use them myself in a 

biological environment. Several years down the road, and despite the fact that we 

did not find what we were looking for, I am more than happy with the overall result. 

With all this acquired knowledge I know have the ability to understand and speak 

both the language of chemistry and the language of biology. In the future I intend to 

perfect and take full advantage of this set of skills. 
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 All these years as a graduate student, I have sadly witnessed some of my 

peers and even faculty members openly disregard, or look down on scientific fields 

other than their own. Biologists and pharmacologists looking at organic or 

computational chemistry with disdain. Organic chemists sneering at biology. I wish 

that my work serves as an invitation to other scientists, to reach out of their own field 

and learn about new areas of research. I believe it is a great approach to tackle the 

tough challenges we face as health scientists. It may, of course, feel scary to go to 

new, unknown places, but in my own experience it sure is a lot of fun! 
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                          CHAPTER 1 

 

NEUROBIOLOGY OF EPILEPTIC DISORDERS 

 
 

1.1. Basic neurobiology 

1.1.1. Anatomy of neurons  

Neurons are nerve cells found in the central nervous system (CNS) and the 

peripheral nervous system (PNS).1 They are responsible for processing and 

transmitting sensory information.2 Their discovery in the late part of the 19th century 

was made possible by the pioneering work of two scientists, Camillo Golgi3 and 

Santiago Ramón y Cajal,4,5 who shared the 1906 Nobel Prize for Physiology or 

Medicine.6 A normal human brain contains approximately 100 billion neurons,7 and 

the numerous types of stimuli we perceive come, in part, from the diversity of 

receptors and proteins localized within the brain.1,2  

Like other cells, neurons are polarized by an electrochemical gradient 

generated by the differences between intracellular and extracellular ionic 

concentrations.1,2 However, only a select set of cells (e.g., neurons) have the ability 

to electrically respond to a change in membrane potential. When the cell depolarizes 

and the potential reaches a certain threshold, it fires an electrical signal termed 

action potential (AP). In most cases, APs lead to neurotransmitter release from the 

presynaptic neuron, and the reception of the chemical signal is converted into 
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another electrical signal (excitatory or inhibitory) by the postsynaptic cell.1,2 Neurons’ 

morphologies and functions are intimately linked,8 and they typically contain the 

following elements (Figure 1). 

 

 

Figure 1. General morphology of a neuron (art by Mariana Ruiz Villareal) 
 

• Dendrites, which are branched processes extending from the neuron, are designed 

to receive stimuli. 

• The perikaryon or soma, core of the neuron, which contains the nuclear structure 

and organelles. 

• The axon, a cellular wire-like projection towards other cells, acts as a transmitter of 

electrical information. 
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• Synapses, located at the end of the axon, are neuronal structures divided in three 

compartments: the presynaptic button, the synaptic cleft, and a post-synaptic 

density. 

Upon reception of the AP, the depolarization of the presynaptic terminal 

releases vesicles filled with neurotransmitters into the synaptic cleft.9 These 

neurochemicals, small molecules or peptides, interact with their cognate receptor to 

propagate or modulate signal transduction.9 

 

1.1.2. Glial cells are crucial constituents of the brain 

In a human brain, neurons represent approximately 10% of the brain tissue.10 

The remaining 90% are accounted for by non-neuronal cells called glia (greek for 

“glue”).10 Glial cells are present in both the CNS (astrocytes, oligodendrocytes, 

microglia) and the PNS (Schwann cells) where they play various roles.1,2,11-14 Unlike 

neurons, glial cells are capable of undergoing mitosis and unable to generate action 

potentials.10 They are also characterized by a lack of axon. One of their most basic 

roles is to provide a physical and energetic support to neurons and other brain cells. 

1,2,10 Once thought of only fulfilling these “passive” tasks, glial cells in general have 

recently been shown to play crucial roles in neuronal signaling pathways.11,13,14 In 

addition, overactivation of some types of glial cells is implicated in some neurological 

conditions.  

Astrocytes are a type of cell indispensable to a neuron.12,14 Briefly presented, 

their role ranges from tuning blood flow to different regions of the brain, clearing the 

synaptic cleft of excess neurotransmitter for recycling, to supplying neuronal cells 



 

 4

with nutrients and oxygen.12,14 Microglia is the immune cell of the brain that is 

responsible for removing dead cells through phagocytosis.10 Finally, 

oligodendrocytes and Schwann cells are a type of glia that forms a sheath of myelin, 

a lipid-rich membrane, which wraps around certain axons.1,10,13 This electrical 

insulation increases the conduction speed of APs. Axonal regions exposed to the 

external milieu between two segments of myelin are called nodes of Ranvier. In 

these areas, the axonal membrane generally expresses high levels of ion channels 

that are essential for APs propagation.1,2  

 

1.1.3. Neurons are polarized by differences in intr acellular and extracellular 
ionic concentrations 
 
Elaborate protein machinery allows neurons to maintain a membrane 

potential. In mammalian neuronal cells, the typical resting state membrane potential 

is approximately -70 mV and the intracellular part of the neuron is, therefore, more 

negatively charged. The concentration of K+ ions is greater inside the cell while 

concentrations of Na+, Ca2+, and Cl- are higher outside the cell (Figure 2). Highly 

selective membrane-spanning receptors called ion channels allow one specific type 

of ion to cross the membrane. For example, when a K+-specific channel opens, K+ 

ions tend to flow down the outwardly directed concentration gradient. As more and 

more positively charged ions leave the cell, the intracellular negative charge 

increases and creates an inwardly directed voltage gradient. This electrical force 

tends to attract K+ ions inside the cell or slow the exiting ones. When the 

thermodynamic and electric forces cancel each other, the membrane is at its 



 

 5

equilibrium potential (EK for potassium ions is equal to -102 mV), a value unique to 

each ionic species. 

[K+]int = 135 mM [K+]ext = 3 mM

[Na+]ext = 150 mM
[Na+]int = 18 mM

[Cl -]ext = 120 mM
[Cl-]int = 7 mM

[Ca2+]int = 100 nM [Ca2+]ext = 1.2 mM

Intr acellular
Extr acellular

 

Figure 2. Typical intracellular and extracellular ionic concentrations for a mammalian neuron. 
 

In addition to ion channels, a variety of ion pumps allow to maintain the 

unequal ionic distribution across the lipid bilayer. One of these, the Na+/K+-ATPase, 

maintains the Na+ and K+ gradients across the cell membrane by extruding three 

sodium ions and transporting two potassium ions inside the cell. 

 

1.1.4. Mechanism of generation and propagation of a ction potentials 

Different events are involved in the generation of an AP (Figure 3). First the 

membrane is at its resting potential (approx. -70 mV) (1) until a stimulus triggers the 
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opening of a small fraction of closed Na+ channels on the membrane. Due to the 

concentration gradient, Na+ ions start entering the cell leading to a membrane 

depolarization (2). If the initial depolarization reaches a threshold of approximately -

55 mV, an AP is generated. If the threshold value is not met, no AP is produced. 

Upon reaching the threshold, a greater fraction of Na+ channels open, leading to a 

rapid influx of Na+ ions, which locally depolarizes the cell. 

 

0
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Figure 3.  Schematic representation of the different phases occurring during the generation of an AP. 
 

The membrane potential rapidly moves towards the equilibrium potential of 

Na+ ions (ENa = +56 mV) (3). Before ENa can be reached, the membrane 

depolarization causes Na+ channels to go into their inactive state (4), while nearby 

K+ channels open and lead to an efflux of K+ ions. As K+ ions flow out, the 

membrane potential moves towards EK (5). Before -102 mV can be reached, most 

K+ channels go into their inactive state. During this refractory period (6), no AP can 
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occur. The initial membrane potential is then restored by action of specific K+ 

channels.15 After the resting concentrations are reached, another action potential 

may be fired. The AP generated travels unidirectionally down the axon by 

successive openings and closings of adjacent Na+ channels expressed along the 

axonal membrane in a process termed “saltatory conduction”  (Scheme 1).  

 

Scheme 1.  Simplified representation of the propagation of an action potential along the axon. Na+ 
channels are represented in blue, the green signs indicate localized changes in membrane potential. 
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As its intracellular environment becomes more depolarized, Na+ channel 1 opens 

and leads to a local influx of sodium ions (top drawing). This localized increase in 

Na+ causes a membrane depolarization in the surroundings of Na+ channel 2, 

causing it to open, while 1 goes into its inactivated state (Scheme 1, middle 

drawing). Open 2 leads to Na+ influx and membrane depolarization near to 3, and its 

subsequent opening. As the AP travels down the axon towards the synapse, 1 goes 

from its inactivated to its closed state to allow transmission of another AP (Scheme 

1, bottom drawing). This mechanism illustrates the physiological relevance of the 

refractory period, as it allows an AP to propagate in only one direction.  

 

1.2. Epilepsy(ies): a multifaceted neurological dis order 

1.2.1. A burden for people and economy  

Epilepsy, also known as seizure disorder, is a chronic neurological condition 

that affects all populations16 and is characterized by recurrent unprovoked epileptic 

seizures.17-19 Such seizures are defined as discrete events resulting from 

simultaneous neuronal firing leading to an abnormal cellular behavior.17,20 This 

disorder adversely affects the quality of life of approximately 50 million people 

worldwide,21 that include 2 million people in the U.S. of which there are 340,000 

children.22-24 The U.S. annual cost of epilepsy is estimated at $15.5 billion in both 

medical costs and lost or reduced earnings and productivity.25 Epilepsy is an 

extremely broad term that encompasses a large number of different seizure 

types.20,26 While genetic mutations have been associated with some forms of 

epilepsy,27 the etiology of epileptic seizures often remains unknown.21,25 
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1.2.2. Brief classification of epileptic seizures 

Epileptic seizures can be classified according to the nature of the patient’s 

electroencephalogram (EEG), brain scans, both of which are related to the seizure 

phenotype, and the level of consciousness of the patient.20,26 So far over 40 different 

types of epilepsy have been reported.28 Seizures confined to one region of one brain 

hemisphere are termed partial or focal, as opposed to generalized seizures that 

affect both hemispheres. The adjectives “complex” and “simple” respectively 

designate seizures that occur with and without loss of consciousness and “ictal” is 

the adjective that refers to a seizure.20 Seizures can also evolve, for example from 

simple partial to complex generalized seizures and may or may not be convulsive.  

Tonic-clonic, or grand mal seizures are the most common generalized 

seizures and they are typically (and misconceptually) associated with the word 

“epilepsy” itself.26,29 They are characterized by a tonic phase, where the person 

violently arches in a strained position, followed by a clonic phase, during which the 

person experiences repetitive and uncontrolled jerks that may lead to injuries.26,30 

Absence, or petit mal seizures are a type of generalized seizures 

characterized by a person’s sudden interruption of activity, accompanied by a blank 

stare. This attack may or may not be accompanied with mild clonic, tonic or atonic 

components.26,31 Atonic seizures are characterized by a sudden loss of muscle tone 

that may lead the person to abruptly fall on the ground, sometimes resulting in 

severe injury.26  
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Finally, status epilepticus (SE) is a potentially life-threatening condition where 

a generalized seizure, convulsive or non-convulsive, lasts for an extended period of 

time.32-34 The precise duration after which a seizing person is considered to have SE 

is not clearly defined and ranges from 10 to 30 min during which the individual is 

unconscious.33,35 Studies have shown that prolonged SE may lead to severe 

neuronal damage in epileptic patients.36,37  

 

1.2.3. Small molecules to treat epilepsy: the need for antiepileptic drugs with 
new mechanisms of action  
 
Epileptic seizures are typically treated with one or more antiepileptic drugs 

(AEDs). There are ~40 available AEDs on the market and they are classified into 

three categories: traditional, recent, and emerging.38-41 Most traditional and recent 

anticonvulsants have been associated with well-defined pharmacological profiles. In 

many cases, they interact with either voltage-gated sodium channels,42 calcium 

channels,43 or with the benzodiazepine-binding site of the GABAA receptor.44-46 

Despite the availability of drugs, approximately one third of the patients diagnosed 

with epilepsy are refractory to treatment47-50 and almost 40% of treated patients 

experience adverse side effects with current medications.51 Current research on 

antiepileptic agents is hindered by the relatively few biological targets identified for 

epileptic seizures and by the need to conduct labor intensive animal behavioral tests 

for compound screening. 

To respond to this health problem, the National Institute of Neurological 

Disorders and Stroke (NINDS) in 1975 created the Epilepsy Branch and the Epilepsy 
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Advisory Committee to expedite the development of more efficacious antiepileptic 

agents.52 The Anticonvulsant Screening Program (ASP) is a division of the NINDS 

that allows research institutions to test small molecules in a variety of animal or in 

vitro pharmacological tests at no cost.28 The requirement is the preparation of the 

compound on a 500–1000 mg scale which will be tested in mice and rats against a 

variety of seizure models.  

 

1.2.4. Animal models used in the pharmacological ev aluation of AEDs 

Many animal models have been advanced to study epileptic syndromes.53 

Here, we briefly review the main pharmacological tests used at the ASP to identify 

new anticonvulsant molecules. The qualitative and quantitative assessments of a 

molecule are conducted at different time points ranging from 15 min to 4 h after 

administration. The anticonvulsant and toxicological profiles of compounds are 

mainly determined by intraperitoneal (ip) or peroral (po) administration to rodents. 

The dosage may range from 1 to 300 mg of compounds per kg of body weight, with 

several animals tested at each dosage. The dose at which half of the animals are 

protected is termed effective dose (50%) or ED50. Similarly, the median toxic dose 

(50%) or TD50 is the dosage at which half of the animals display neurological 

impairment. The ratio of the TD50 over the ED50 is called the protective index (PI). 
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1.2.4.1. Maximal electroshock seizure test 

The maximal electroshock seizure (MES) test consists in applying an 

electrical current to the animal via corneal electrodes and represents a model for 

generalized tonic-clonic seizures.54 The electrical signal (60 Hz current, delivered for 

0.2 sec) has a high frequency/short duration nature which elicits maximal seizures 

generally lasting no more than 30 sec.55 A brief initial tonic flexion, and prolonged 

tonic extension period, followed by terminal clonus are characteristic of MES 

seizures.55 Protection is defined as a failure of the animal to extend hindlimbs to an 

angle with the trunk greater than 90°. 56  

 

1.2.4.2. 6 Hertz test 

The 6 Hz test is analogous to the MES test except for the nature of the 

electrical signal applied. A low frequency/long duration signal (6 Hz current, 

delivered for 3 sec, 32 or 44 mA intensity) triggers a different type of seizures in the 

animal that are representative of complex partial seizures.57,58 Characteristics of 6 

Hz-induced seizures are the immobility of the animal, accompanied by forelimb 

clonus, vibrissae (whiskers) twitching, and Straub-tail (elevated tail).59 The absence 

of these signs upon electrical stimulation is defined as seizure protection.  

 

1.2.4.3. Pentylenetetrazole administration 

The subcutaneous pentylenetetrazole (scPTZ) test measures the ability of a 

compound to raise the seizure threshold produced by a chemoconvulsant (PTZ, 
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Scheme 5).60 At a dose specific to the rodent model, PTZ induces clonic seizures 

and the test is considered a model for absence seizures.52 A compound is 

considered protective if it abolishes the spasms triggered by the PTZ 

administration.52 It is pharmacologically different from either the intravenous (iv)PTZ 

or the ipPTZ tests. In the iv route, the animal will start experiencing a series of 

myoclonic jerks (rapid contraction and relaxation of muscles) in a time-dependent 

manner.61 These jerks will worsen and ultimately lead to loss of righting and clonic 

seizure. In the ip route, defined, subconvulsive doses of PTZ are administered at 

given time intervals. A gradual, reproducible response can then be observed, with 

initial jerks and full-blown seizure each starting after a specific number of 

injections.62 In these tests, a molecule is considered protective if it can elevate the 

threshold PTZ dose necessary for convulsions and delay (iv) or increase the number 

of injections (ip) necessary for the onset of seizure.61,62 Molecules with efficacy in the 

scPTZ test may have no effect in the ipPTZ or ivPTZ tests and vice-versa.63 

 

1.2.4.4. Pilocarpine administration 

In the lithium pilocarpine-induced status epilepticus (SE) model, animals are 

treated ip with a solution of LiCl 20 h prior to ip injection of pilocarpine (PILO), which 

results in the development of SE within 30 min after administration of PILO.64 When 

administered alone, PILO induces secondarily generalized seizures that evolve into 

SE.65 A variety of chemoconvulsants such as kainic acid,66 picrotoxin,67 and 

bicuculline67 can be used to induce SE (Figure 4). After the SE period (8–24 h), 

animals will develop spontaneous recurrent seizures over a long-term period (up to 2 
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months).65 These seizures are representative of complex partial seizures observed 

in humans.20 Protection is defined by the suppression of recurring seizures. 

 

 

Figure 4. Chemical structures of various chemoconvulsants used in animal testing. 
Pentylenetetrazole, bicuculline and picrotoxin are GABA receptor antagonists. Kainic acid is a 
glutamate receptor agonist. 

 

1.2.4.5. Audiogenic seizure animal models 

The Frings mouse model is a model of generalized reflex epilepsy in which 

the seizure is triggered by a loud noise.68 The epileptic phenotype is caused by a 

mutation in the mass1 gene (monogenic audiogenic seizure susceptibility 1) which 

causes a premature termination of the membrane protein “very large G-protein 

coupled receptor 1” (VLGR1 or MASS1, 6300 amino acid residues).69,70 The 

characteristic response of Frings mice to an intense stimulus (100 dB, 20 s) is wild 

running, followed by a loss of righting reflex that occurs with forelimb and hindlimb 

tonic extension.52  Seizure protection is defined as the ability of a molecule to 

prevent tonic hindlimb extension.52 The DBA/2 (dilute brown non-agouti) mouse is 

another genetic model used for audiogenic seizures.71  
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1.2.4.6. Electrical kindling models 

The rapid hippocampal kindling test is a model representative of focal 

seizures.52,72 The term kindling refers to repetitive, infrequent stimulations that 

sensitize a specific region of the brain, progressively leading to a fully kindled 

state.72 Once this stage is reached, stimulations that initially did not elicit a reaction 

will consistently trigger an enhanced response.72 In the rat hippocampal kindling 

model, electrodes are surgically implanted in the hippocampus and kindled seizures 

are produced by a 10 s train of 1 ms biphasic 200 µA pulses (50 Hz) delivered every 

30 min for 6 h on alternating days for a total of 60 stimulations (5 stimulus days).52 

Behavioral seizures are scored according to the Racine scale,73 that ranges from 1 

(whiskers twitching) to 5 (forelimb clonus, rearing and falling). Another brain region 

commonly used for the kindling procedure is the amygdala.74 Compounds evaluated 

in this model are dosed based on their activity in other seizure tests. A molecule can 

be tested for its ability to stop kindled seizures (anticonvulsant activity), or its ability 

to delay the acquisition of the kindled state (antiepileptogenic effect).52 

 

1.2.4.7. Neurological toxicity evaluation 

The rotarod test is a measure of neurological toxicity, where a mouse is 

placed on a rotating rod (6 rpm).75 Control mice have the ability to maintain 

themselves on the rod for an extended period of time.75 Neurological impairment is 

defined as the inability of the mouse to remain on the rod for 1 min in three 

successive trials.52 In rats, the behavioral toxicity of the compound is assessed. The 

positional stance test consists in lowering one hind leg over the edge of a table. A 
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neurologically impaired rat will fail to lift its leg back to a normal position.52 The gait 

and stance tests consists in observing symptoms of impairment in the animal, such 

as zigzag gait, abnormal posture, and lack of exploratory behavior or catalepsy.52 

 

1.3. Pharmacology of traditional and recent AEDs 

1.3.1. Ion channels are primary pharmacological tar gets to prevent seizures 

Ion channels belong to a superfamily of transmembrane proteins that regulate 

intracellular and extracellular concentrations of cations and anions essential for 

triggering action potentials that propagate information or elicit biological responses. 

1,2 This superfamily of receptors can further be divided into two main classes, the 

Voltage-Gated Ion Channels (VGIC) and the Ligand-Gated Ion Channels (LGIC).1,2 

VGICs respond to changes in the membrane potential, while LGICs respond to 

binding of an endogenous neurotransmitter or an exogenous molecule. Ion channels 

play a crucial role in electrophysiological events pertaining to epilepsy and it is 

therefore not surprising that they are targeted by numerous AEDs.76-78 

 

1.3.1.1. Voltage-gated sodium channels 

Voltage-gated sodium channels (VGSCs) are large Na+-specific ion channels 

that respond to changes in membrane potential. They are composed of one α 

subunit (~260 kDa) consisting of 4 domains (I–IV) that form a central pore, each 

containing 6 membrane-spanning α helical segments (S1–S6) (Figure 5), with 

intracellular N- and C-termini.76 The S4 segment of each domain contains one 
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positively charged amino acid every three residues.79 These residues control the 

channel gating and respond to depolarization by moving across the membrane and 

initiating the activation of the receptor.80 The ionic selectivity of the channel is 

determined by repetitive amino acid motifs in the membrane-reentrant loop between 

S5 and S6 of each domain, and a mutation of three residues in the S5S6 loop of 

each domain is enough to turn the Na+ channel into a Ca2+ channel.81  

 

Figure 5. Schematic representation of a voltage-gated Na+ channel α-subunit 
 

Native VGSCs are associated with one or more β1, β2, or β3 subunits (~30 

kDa) that can influence the gating properties of the channel, the kinetics of channel 

activation, as well as protein interactions with cell adhesion molecules.82-84 In 

humans, 9 different types of voltage-gated Na+ channels exist and they are 

designated Nav1.1–Nav1.9.80 Among these, Nav1.1–Nav1.3 and Nav1.6 are the main 

VGSCs found in the CNS.80 Mutations in Scn1A, Scn2A and Scn1B, the genes that 

respectively code for the α subunits of Nav1.1 and Nav1.2, and the β1 subunit, are 

associated with severe forms of infant epilepsy.85-87,27  

As described earlier, VGSCs can adopt different conformations depending on 

their state. When firing an AP, the channel goes from the closed (resting) state to the 
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open (activated) state to the inactivated state. Two distinct inactivation pathways 

exist, fast and slow, from which the Na+ channel can recover. The fast inactivation 

pathway happens within a few milliseconds of channel opening, and involves a 

“hinged lid” mechanism.76 The short intracellular region between domains III and IV 

physically obstructs the pore by docking a conserved hydrophobic peptide sequence 

isoleucine, phenylalanine, methionine, threonine (IFMT) into domain IV S6 segment 

(Scheme 2).88 Recovery from the fast inactivated state depends on the membrane 

potential and time. This mechanism is responsible for the refractory period allowing 

APs to propagate in only one direction (Scheme 1). 

 

Scheme 2. Schematic representation of the fast inactivation hinged lid mechanism of VGSCs. 
 

 

 

The VGSC slow inactivation pathway is a biological process independent of 

the fast inactivation.89 Although its precise mechanism is subject to controversy, it is 

likely to involve a rearrangement of the pore, as well as specific domains of the 

channel.89-92 The “slow” terminology refers to the prolonged time required for the 

channel to recover from its inactivated state, ranging from hundreds of milliseconds 

to a second.76 This pathway is a cellular mechanism that only takes place under 
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conditions that may be relevant to an epileptic seizure such as high frequency 

depolarizations, or under sustained membrane depolarization (membrane potential 

at -60 or -55 mV). This type of inactivation acts as a protective way to lessen 

excessive neuronal excitability.76 

 

1.3.1.2. Voltage-gated calcium channels 

Voltage-gated Ca2+ channels (VGCCs), also termed voltage-dependent 

calcium channels (VDCCs) are transmembrane receptors that mediate calcium influx 

into the cell. Ten different types of VGCCs exist, Cav1.1–1.4, Cav2.1–2.3, and 

Cav3.1–3.3, that are comprised of four to five subunits, the largest and most 

important of which is the α1 subunit (190–250 kDa).93 Analogous to the VGSCs α 

subunit, the VGCC α1 subunit is made of four domains (I–IV) each containing 6 α-

helical membrane-spanning segments (S1–S6) where the S4 segment senses 

changes in membrane potential. Ion selectivity is controlled by the loop between S5 

and S6 segments of domains I, III and IV.93 VGCCs additionally possess an 

intracellular β subunit, as well as a disulfide-linked transmembrane δ subunit, and an 

extracellular α2 subunit that forms a α2δ complex, and less frequently an intracellular 

γ subunit.94 The pharmacological and electrophysiological properties of the Ca2+ 

channel are primarily determined by the different types of α1 subunits whereas β, α2δ 

and γ subunits serve as modulators.94 The alphabetical designation of VGCCs 

comes from the distinct types of currents they elicit and their sensitivity to 

established channel blockers: L-type for “long-lasting” (Cav1.1–Cav1.4), N-type for 
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“neural” (Cav2.2), P/Q-type for “Purkinje neuron”95 (Cav2.1), R-type for “resistant to 

the other blockers” (Cav2.3), and T-type for “transient” (Cav3.1–Cav3.3).93  

The VGCC-mediated influx of Ca2+ ions has several consequences. 

Electrophysiologically, the increase of intracellular calcium leads to a depolarization 

of the neuron (ECa = +120 mV).1 Pharmacologically, Ca2+ is an important second 

messenger signaling molecule that can start a cascade of cellular downstream 

events ranging from activation of protein kinase C (PKC), calmodulin (CaM) and 

Ca2+-dependent proteases to triggering the transcription of pro-apoptotic factors.96-

101  

 

1.3.2. Targeting synaptic transmission helps contro l neuronal excitability 

1.3.2.1. GABA A receptors 

H2N

O

OH

GABA  

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the 

CNS. GABA receptors are a family of homo- or heteromeric transmembrane 

receptors that elicit their biological responses upon binding of GABA.102 GABAA 

receptors (GABAARs) are ligand-gated ion channels, or ionotropic receptors, while 

GABAB receptors (GABABRs) are G-protein coupled receptors (GPCRs), or 

metabotropic receptors. GABAC receptors (GABACRs) have recently been 

reclassified by the International Union for basic and clinical Pharmacology (IUPHAR) 
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as the ρ subfamily of GABAAR based of their closely related sequence, structure and 

function.103 That reclassification is, however, subject to controversy.104  

There are 19 types of subunits, α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3, that 

can assemble into a pentameric GABAARs forming a central pore (Figure 6).105 Each 

subunit possesses 4 transmembrane segments, with extracellular N- and C-termini. 

The extracellular N-terminal peptide chain contains a disulfide bridge that is 

characteristic of the so-called Cys-loop superfamily of receptors, to which other 

pentameric LGICs belong.106  

 

Figure 6.  Simplified representation of a GABAAR structure 
 
GABAARs containing ρ subunits (or GABACRs) are primarily located in the 

retina.103 The differences in subunit composition translate into different GABAARs 

pharmacological and electrophysiological properties and reports indicate that 

receptors comprised of subunits α1β2γ2 (Figure 6) are the most abundant in the 

brain.102 The binding site for GABA is located between an α and a β subunit, and up 

to two GABA molecules can, therefore, bind to the receptor.107 Genetic forms of 
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juvenile epilepsies have been linked to mutations in the GABAARs α1 and γ2 

subunits.108,109 

GABAergic neurons are equipped with a machinery of enzymes and 

transporters that play an essential role in GABA-mediated signaling. GABA itself is 

biosynthetically derived from the excitatory amino acid L-glutamate through action of 

the glutamic acid decarboxylase enzyme (GAD).110 GABA transporters (GAT) are 

present on the presynaptic membrane as well as on the membrane of astrocytes 

located near the synaptic cleft.11,111-113 These transporters are responsible for 

excess GABA uptake into the glial cell or the presynaptic density, where GABA 

transaminase (GABA-T) further processes GABA into succinic semialdehyde.114  

The biological effects of GABA are primarily mediated by GABAARs, which 

are GABA-activated chloride channels that are primarily localized on the post-

synaptic membrane.77 The higher extracellular concentration of Cl- ions leads to an 

inward flux upon channel opening. The electrophysiological basis of GABA-mediated 

inhibition can be explained by the equilibrium potential for chloride ions (ECl = -75 

mV) which is slightly more negative than the average resting membrane potential (-

70 mV). An influx of negatively charged chloride ions leads to a hyperpolarization of 

the post-synaptic neuron, thus reducing its probability of firing an AP.1 It is important 

to note that the inhibitory effect of GABA is due to the average ECl in mature 

neurons. Changes in the intra- and extracellular concentrations of chloride ions can 

lead to an ECl value less negative than the resting membrane potential, thus 

rendering GABA excitatory.115 Such conditions have been reported to occur in 
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developing cultured neurons,116,117 as well as in the brain of patients suffering from 

temporal lobe epilepsy (TLE).118,119  

 

1.3.2.2. Glutamate receptors 

L-Glutamate is the main CNS excitatory neurotransmitter and acts at a variety 

of biological receptors. Mirroring the GABAARs and GABABRs, two different classes 

of glutamate receptors exist: the ionotropic glutamate receptors (iGluRs) that are 

LGICs permeable to several ionic species, and the metabotropic glutamate 

receptors (mGluRs) that are GPCRs.120,121 While a recent investigation pointed out 

the potential anticonvulsant effects of mGluRs subtype-specific agonists and 

antagonists,121 we will principally review the pharmacology of the ionotropic class. 
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Figure 7. Chemical structures of cognate ligands of ionotropic glutamate receptors 
 

iGluRs are divided into three major families, the α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptors (AMPARs), the kainate (KA) receptors 

(KARs) and the N-methyl-D-aspartate (NMDA) receptors (NMDARs) named after 

their selective small-molecule agonists (Figure 7).122 Another less studied class 

called δ receptors are classified as orphan iGluRs.123 
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All classes of receptors have a similar heteromeric protein structure, 

comprised of four subunits forming the central pore.120 Four different types of 

subunits exist for AMPARs (GluA1–GluA4), five types for KARs (GluK1–GluK5), 

seven for NMDARs (GluN1, GluN2A–D, GluN3A, GluN3B) and two for δ receptors 

(GluD1, GluD2).106 The subunit nomenclature used above has recently been 

introduced (as of January 2009) by the nomenclature committee of IUPHAR (NC-

IUPHAR) in order to bring a consistent nomenclature of LGICs.106 iGluRs generally 

assemble into dimers of dimers: NMDARs comprise two sets of one mandatory 

GluN1 (former NR1) and one GluN2 or GluN3 (former NR2 and NR3) subunits,124 

and AMPARs contain a dimer of two GluA subunits that most often contains a 

GluA2.125 The composition of the receptors varies with different brain regions and 

determines their electrophysiological and pharmacological properties.124,125 

 

Figure 8.  General topology of an ionotropic glutamate receptor subunit. 
 

The subunits possess the same topology among AMPA, KA, and NMDA 

receptors: they are made of three transmembrane domains (M1, M3, M4) and one 

re-entrant membrane loop facing the intracellular side (M2), with extracellular N-
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terminus and intracellular C-terminus (Figure 8).122 The amino acid composition of 

the M2 loop determines the ion selectivity of the channel.126,127  

While AMPA and kainate receptors are only permeable to Na+, NMDA 

receptors are primarily permeable to Ca2+.125 In addition, the activation of NMDA 

receptors is unique in that it can occur through a ligand-gated mechanism involving 

glutamate and either glycine or D-serine, as well as through a voltage-dependent 

mechanism that can be modulated by Mg2+ ions.124 The glutamate binding site is 

located on a GluN2 subunit, while either glycine or D-serine bind to a GluN1 subunit. 

L-Glutamate and glutamate receptors mediate an important pathological 

process called excitotoxicity.128 Excess glutamate may give rise to overactivation of 

iGluRs, such as NMDARs, leading to an increase of intracellular Ca2+. In large 

excess, calcium cannot be adequately buffered and activates Ca2+-dependent 

proteases.129 In addition, excess Ca2+ may trigger swelling of mitochondria and 

release of proapoptotic molecules, leading to programmed death of the post-

synaptic neuron.130 Prolonged NMDARs overactivation and bioenergetic failure may 

ultimately drive the dying neuron to release excess glutamate towards other 

neurons, starting a neurodegenerative chain reaction.131  

 

1.3.3. Pharmacology of traditional AEDs 

In this section we briefly discuss leading marketed drugs with antiepileptic 

activity. AEDs that were identified as potential therapeutic agents in the early 1930s 

to the early 1970s are termed traditional. Despite their early year of discovery, 

traditional AEDs are still used for the treatment of epileptic seizures. As is the case 
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for many of these therapeutic agents, the complete mechanism of action of 

traditional AEDs still remains unknown.  

 

1.3.3.1. Phenytoin  

HN NH

O

O

Phenytoin (PHT)

5

1

 

5,5-Diphenylhydantoin (phenytoin, PHT, Dilantin®) is an AED that was 

introduced in 1938 after its anticonvulsant effects were observed on electrically 

shocked laboratory animals.132 It remains clinically used for the treatment of partial 

and tonic-clonic seizures but is ineffective in the treatment of absence seizures.55 

This pharmacological profile correlates with the high potency of the compound in the 

MES test, and its lack of activity in the scPTZ test.55 Investigation of the structure 

activity relationship (SAR) of PHT analogs showed that the presence of the 

unmodified hydantoin ring (in red) was necessary for activity.133 Replacing the 5-

phenyl groups by alkyl groups leads to compounds with sedative effects, of which 

PHT is devoid.134  

The primary mechanism of action of phenytoin has been established as the 

stabilization of the fast inactivated state of VGSCs, by binding to the intracellular part 

of the Na+ channel (Scheme 7).76,135 Indeed, in vitro studies showed PHT cannot 

prevent an initial action potential but blocks firing of a second one.76 This blockade 

only affects epileptiform APs termed sustained high-frequency repetitive firing of 
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neurons (SRF),136 without impairing spontaneous low frequency APs.137,78 

Importantly, the PHT block of VGSCs is highly voltage-dependent, with a 12-fold 

greater inhibitory effect at depolarized membrane potentials (IC50 = 10 µM at -60 

mV) than at hyperpolarized potentials (IC50 = 120 µM at -85 mV).138 

 

1.3.3.2. Carbamazepine 

N

NH2O

Carbamazepine
(CBZ)  

5H-Dibenzo[b,f]azepine-5-carboxamide (carbamazepine, CBZ, Tegretol®) is 

an iminostilbene derivative (iminostilbene in red) with mood-stabilizing and 

anticonvulsant properties that was introduced as an AED in the 1970’s.139 Despite a 

lack of structural similarity, CBZ has an animal pharmacological profile closely 

related to that of PHT, being very potent in the MES test while having very limited 

efficacy in the scPTZ test.55 Like phenytoin, this profile correlates with the use of 

CBZ for the treatment of tonic-clonic and partial seizures but not absence 

seizures.136  

Based on their similar pharmacological profiles, it is not surprising that CBZ 

exerts its action through the fast inactivation of VGSCs.135 Like phenytoin, 

carbamazepine is able to block SRF in vitro in a voltage-dependent fashion.140,141 

The main difference between PHT and CBZ resides in their binding kinetics with the 

VGSCs, with CBZ binding 5 times faster than PHT, but with 3-fold less affinity.142 
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This difference may account for the different therapeutic responses observed among 

subgroups of patients.76,142 CBZ was also shown to have a weak inhibitory effect in 

vitro on NMDARs-mediated Ca2+ influx.143 This effect was, however, highly 

potentiated in the presence of high extracellular K+ concentration (50 mM KCl), a 

physiological concentration pertinent to epileptic seizures.143 

 

1.3.3.3. Ethosuximide 
H
N OO

Ethosuximide
(ESM)  

(R,S)-3-Ethyl-3-methyl-pyrrolidine-2,5-dione (ethosuximide, ESM, Zarontin®) 

is a member of the succinimide (succinimide core in red) family of 

anticonvulsants.136 It was introduced in 1960 as an antiepileptic drug for the 

treatment of absence seizures in humans, and is ineffective against generalized 

tonic-clonic seizures. This profile correlates with the drug’s animal pharmacology, 

ESM being able to prevent scPTZ- but not MES-induced seizures.55 

The accepted mechanism of action responsible for suppressing absence 

seizures is the blockade of T-type calcium currents,144,145 although different 

biological mechanisms are potentially implicated in the generation of absence 

seizures.146 Unambiguous data concerning ESM reduction of Ca2+ currents was only 

recently published using cloned human T-type calcium channels, showing that T-

type VGCCs block by ethosuximide is both voltage- and state-dependent.147 ESM 

has a greater inhibitory effect on VGCCs at a depolarized membrane potential (IC50 
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~2.5 mM at -75 mV, Cav3.1) than at a hyperpolarized potential (IC50 ~18 mM at -100 

mV, Cav3.1),147 a phenomenon reminiscent of the actions of PHT and CBZ on 

VGSCs.   

 

1.3.3.4. Valproic acid 

O- Na+

O
Sodium Valproate

(VPA)  

2-Propylvaleric acid (valproic acid, VPA, Depakene®) sodium salt is a 

branched fatty acid whose antiepileptic properties were fortuitously discovered in 

1962, at which time it was used as a vehicle to evaluate new AEDs in animal 

models.148 As positive results were obtained with any drug candidate at any dosage, 

the testing of valproate itself led to confirmation of its protective effects against 

seizures.149 First marketed in 1967, it is still commonly used nowadays and has 

protective effects similar to ESM against absence seizures, and to CBZ and PHT 

against both tonic-clonic and partial seizures. Moreover, it is active in a variety of 

refractory epileptic disorders.150 To date, VPA has one of the widest spectra of 

antiepileptic activity.150 

The exact mechanism(s) of action of VPA is still subject to debate. VPA 

prevents MES-induced seizures with an efficacy comparable to PHT and CBZ, 

correlating with its use against generalized tonic-clonic and partial seizures.55 Some 

studies indicate that valproate is able to reduce SRF in rat hippocampal cultured 

neurons,151 probably through action on VGSCs. However, these results vary greatly 
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with preparation from different brain regions.152,153 VPA does not seem to interact 

with the PHT binding site of VGSCs.154 Similar to ESM, VPA’s interaction with T-type 

VGCCs has been studied to explain its absence seizure protective effect.155 T-

Currents blockade by VPA proved to be specific to the type of neuron used for the in 

vitro culture.156 In addition to its suggested interactions with VGICs, VPA has been 

shown to interact with GABA synthetic and degradative enzymes,150 without directly 

interacting with GABAARs.157 Paralleling its effects on VGSCs and VGCCs, VPA 

displayed a brain regional specificity in its activating properties of glutamic acid 

decarboxylase (GAD).157 In ex vivo and in vitro experiments, the valproate-induced 

increase in GAD activity matched the increase in GABA levels and its anticonvulsant 

effect.158,159,157  

 

1.3.3.5. Benzodiazepines 

N

N

F

Cl

N

Midazolam

N

N

Cl

Me
O

Diazepam

H

 

Diazepam (Valium®) belongs to the family of benzodiazepines (BZDs, 

benzodiazepine core in red), a class of drugs useful for treating a variety of 

neurological conditions, ranging from anxiety, agitation, insomnia, muscle spasms to 

seizures.160 In 1963, diazepam, the second marketed BZD, was prescribed for its 

antidepressant properties. The anticonvulsant properties of BZDs were discovered 
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early in animal models. They are very potent in both the MES and scPTZ tests, but 

exhibit a pronounced neurotoxicity and short duration of action.55 Benzodiazepines 

are unfortunately rendered useless for a chronic treatment of epilepsy due to the 

rapid onset of tolerance.161 However, as an acute treatment, rectal administration of 

diazepam remains today the first-line emergency treatment against status 

epilepticus,162 along with the more recent buccal formulation of midazolam163 

(Versed®).  

The pharmacology of BZDs has been extensively studied, and have been 

shown to interact as positive allosteric modulators of GABAARs.102,103,105,164,165 BZDs 

bind with at the interface of α and γ subunits and enhance hyperpolarizing chloride 

currents by increasing the frequency of channel opening.166 This sole mechanism of 

action, however, can not explain all the pharmacological properties of 

benzodiazepines.167 BZDs have been demonstrated to have an inhibitory effect on 

Ca2+ uptake through action on VGCCs,168 and were shown in vitro to act on VGSCs 

by reducing SRF, which may correlate with the protective effects of the drug in 

animal seizure tests.169  

 

1.3.3.6. Summary 

Except for the family of benzodiazepines, most traditional AEDs mainly target 

VGICs. The prototypical drugs PHT, CBZ, VPA, ESM have proven to be invaluable 

tools for our understanding of biochemical mechanisms underlying epilepsy. Early 

research has led to the paradigm that blockades of Na+ currents and transient Ca2+ 

currents, respectively, translate into protection against tonic-clonic and absence 
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seizures. The two respective animal models corresponding to these seizures are the 

MES and the scPTZ tests. In view of more recent studies, it has also become clearer 

that the neurotransmitter modulation through LGICs may account for part of the 

anticonvulsant properties of these AEDs.  

 

1.3.4. Pharmacology of recent AEDs 

One of the driving forces that led to the development of new AEDs was their 

undesirable side effects associated with long-term treatments.170-172 The class of 

recent AEDs (mid-1970’s to mid-1990’s) has provided new chemical entities with 

diverse pharmacological profiles and mechanisms of actions. The compounds 

discussed in the following section are not exhaustive, but rather serve as an 

illustration of the variety of new mechanisms of action relevant to the treatment of 

epilepsy.  

 

1.3.4.1. Lamotrigine 

N

N
N

H2N NH2

Cl

Cl

Lamotrigine (LTG)

N

N

N

N

HO NH2

HN

O

N
H

O

OH

OHO

Folic acid (vitamin B9)  

6-(2,3-Dichlorophenyl)-1,2,4-triazine-3,5-diamine (lamotrigine, LTG, 

Lamictal®) is an AED introduced in 1995 for the treatment of partial and generalized 
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tonic-clonic seizures. LTG was rationally designed based on the observation that 

folate derivatives possess proconvulsant activity in animals.173,174 LTG, however, is 

only a weak folate antagonist, a property that has not been linked to its antiepileptic 

effects.175 In animal models, the pharmacological profile of LTG was similar to that of 

PHT and CBZ.176  

LTG blocked voltage-gated Na+ channels by stabilizing the fast inactivated 

state of the channel.177 In early studies, LTG was suggested to act at the slow 

inactivation pathway of VGSCs.178 However, this pathway could not be distinguished 

from an alternative mechanism where the binding kinetics of LTG to the channel 

were slow.76,179 In animal cultured neurons, lamotrigine demonstrated the ability to 

reduce SRF in a state- and voltage-dependent manner similar to that of PHT and 

CBZ.180,181,177 Interestingly, evidence supports that LTG, although very different in 

structure from PHT and CBZ, binds, if not at the same fast-inactivation site, to a 

closely related receptor site.182  

 

1.3.4.2. Topiramate 

O

O

OO

O

O
SO2NH2

Topiramate (TPM)  

2,3:4,5-Bis-O-(1-methylethylidene)-β-D-fructopyranose sulfamate (topiramate, 

TPM, Topamax®) is a recent AED with unusual structural features. The sulfamate 

derivative of D-fructose (in red) is used to treat simple and complex partial 
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seizures.183 Originally synthesized in 1979 as a potential antidiabetic inhibitor of 

fructose 1,6-bisphosphatase, TPM was also tested the same year for anticonvulsant 

activity in mice where it displayed excellent anticonvulsant activity.184,185 Following 

the same trend as its predecessors PHT, CBZ, and LTG, TPM displayed a marked 

protection in the MES test, and little effect in the scPTZ test.186 A distinct feature of 

TPM was its extended duration of action (up to 16 h).186   

In vitro experiments on neuronal cultures have identified three different 

potential mechanisms to explain the anticonvulsant activity of TPM. Similar to PHT, 

TPM reduced VGSC-dependent SRF (IC50 <100 µM) in rat hippocampal neurons.187 

In addition, TPM showed selective blockade of KARs (IC50 <5 µM) but not 

NMDARs,188 and potentiated GABAAR-mediated chloride currents (~150% increase 

in GABA-evoked Cl- currents at 10 µM) by binding to a site distinct from the BZD 

site.189  

 

1.3.4.3. Felbamate 

O

O

NH2O

NH2

O

Felbamate (FBM)  

2-Phenylpropane-1,3-diol dicarbamate (felbamate, FBM, Felbatol®) is a broad 

spectrum AED that was approved in 1993 for the treatment of partial and 

generalized seizures in adults and Lennox-Gastaut Syndrome (LGS) in children. At 
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non-toxic doses, FBM proved effective against both MES- and scPTZ- induced 

seizures in mice and rats.190  

Like TPM, FBM possesses several distinct mechanisms of action that may 

account for its broad range of activities. In mice and rat cultured neurons it reduced 

VGSC-dependent SRF (IC50 = 28 µM, rat striatal neurons),191,192 and inhibited cloned 

human and rat VGSCs by stabilizing the fast-inactivated state of the channel.193 At 

physiological concentrations (10–100 µM), it was shown to potentiate GABA-elicited 

currents through action on GABAARs, in ways that differed with the neuronal in vitro 

preparations (e.g., mouse cortical neurons, rat hippocampal neurons).194,195 In 

addition, FBM was shown to function as an antagonist on NMDA-evoked excitatory 

currents, albeit at high concentrations (IC50 ~2 mM).195 Knowing that administered 

anticonvulsant doses of FBM led to whole brain peak levels of 0.6 to 0.8 mM in 

rats,196 it is likely that a modest inhibition of NMDARs may have occurred.  

 

1.3.4.4. Tiagabine 

N OH

O

S

S

Tiagabine (TGB)  

(R)-1-[4,4-Bis(3-methylthiophen-2-yl)but-3-enyl] piperidine-3-carboxylic acid 

(tiagabine, TGB, Gabitril®), is an antiepileptic drug advanced in the mid-1990’s  for 

the treatment of partial seizures.197 TGB is another example of rationally designed 

molecule, based on the observation that nipecotic acid (in red) has inhibitory 



 

 36 

properties on the GABA reuptake system.198 Tiagabine is a more lipophilic analog of 

nipecotic acid with protective effects against scPTZ-induced, audiogenic, and 

amygdala kindled seizures, and moderate efficacy in the MES test.197   

Unlike other traditional or recent AEDs, the mechanism of action of TGB is 

well-defined. Tiagabine has a potent inhibitory activity on GABA reuptake in glial 

(IC50 = 182 nM) and neuronal (IC50 = 446 nM) cultured cells, thereby prolonging the 

effects of GABA on its post synaptic cognate receptors.199 The difference between 

the two IC50 values may be explained by different cellular levels of GAT-1, the GABA 

transporter selectively targeted by TGB.200 Tiagabine was found to have little to no 

effect on a variety of neurotransmitter transporters, GPCRs, GABARs, Na+ or Ca2+ 

VGICs.201,197  

 

1.3.4.5. Summary 
 
Recent AEDs are characterized by diversified, sometimes unusual, scaffolds 

compared with to traditional antiepileptics. An interesting feature of this class of 

drugs is the growing importance of rational design in the conception of the molecule. 

The rationally targeted pathway, however, turned out in some cases to be 

completely unrelated to the anticonvulsant properties of the molecule. AEDs such as 

TPM and FBM are unique in that they target both inhibitory and excitatory 

neurotransmitter receptors. TGB, in addition to modulating VGSCs, is the first 

antiepileptic rationally designed to effectively target one protein.  
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1.4. The emergence of new anticonvulsant entities a nd biological targets 

1.4.1. What is new in antiepileptic drug developmen t  

The field of AEDs development is constantly evolving. The first decade of this 

millennium has seen the emergence of new therapeutic molecules acting on novel 

biological pathways. Following is a select list of such anticonvulsant molecules either 

marketed for the treatment of epilepsy or that are currently undergoing clinical trials. 

 

1.4.1.1. Levetiracetam 

N
NH2

O

O

Levetiracetam
(LVT)

N
NH2

O

O

Brivaracetam
(BVT)  

(S)-2-(2-Oxopyrrolidin-1-yl)butanamide  (Levetiracetam, LVT, Keppra®) is a 

recently approved AED (1999) for the treatment of partial onset seizures in humans 

and is structurally related to racetams, a class of pyrrolidine (in red) CNS-targeting 

agents.202 LVT is unique in that it was not identified as active in the traditional MES 

and scPTZ animal models.202,203 Instead, LVT proved very potent in the 6 Hz test 

and is one of the reasons why this pharmacological test was reintroduced as an 

important anticonvulsant screening method.57 Levetiracetam has been proposed to 

have antiepileptogenic properties, in addition to its antiepileptic effects.204 Such a 

profile may be linked to LVT’s ability to prevent the acquisition of kindled seizures in 
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animals.205 There are, however, some conflicting results about these properties of 

levetiracetam.206 

LVT is also unique with respect to its mechanism of action. LVT has been 

shown to interact with the Synaptic Vesicle 2A (SV2A) protein, a macromolecule 

involved in the synaptic vesicle fusion process.207-209 A correlation between 

interaction of SV2A and efficacy against partial and generalized seizures has been 

established.210 Indeed, a tighter interaction with SV2A has been advanced as the 

primary mechanism of action of brivaracetam (BVT),211 the second-generation 

analog of LVT currently undergoing Phase III clinical trials. Unlike its predecessor, 

BVT also appears to act on VGSCs, which may account for some of its 

anticonvulsant activity.212  

 

1.4.1.2. Retigabine 

N
H

H
N

NH2

O

O

F

Retigabine (RGB)  

Ethyl N-[2-amino-4-[(4-fluorophenyl)methylamino]phenyl]carbamate 

(Retigabine, RGB, D-23129) is a new anticonvulsant currently undergoing phase III 

clinical trials for the treatment of refractory partial-onset seizures.212 RGB has 

demonstrated efficacy in many animal seizure tests like the MES and 6 Hz tests, in 

addition to several chemoconvulsant-induced seizure tests such as scPTZ and 
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picrotoxin.213 Furthermore, it prevents sound-induced seizures in the Frings and 

DBA/2 mice models.214  

 The novel mechanism of action of RGB is the activation of Kv7.2–Kv7.5, a 

primarily neuronal subfamily of voltage-gated potassium channels (VGKCs).215,216,207 

Like VGCCs, these K+ channels are characterized, in part, by the type of current 

they elicit.217 Retigabine activates (1–10 µM) VGKC-mediated M-currents that are 

hyperpolarizing, with slow activation and deactivation kinetics.218,219 RGB’s effect is 

prevented by known, subtype-specific, VGKC blockers.219  

 

1.4.1.3. 2-Deoxy- D-glucose 

O
HO

HO OH

OH

2-Deoxy- D-glucose
(2DG)

O
HO

HO OH

OH

D-glucose

OH

H

H

 

2-Deoxy-D-glucose (2DG) is a rather simple molecule with very promising 

anticonvulsant properties and is expected to undergo phase I clinical trial evaluation 

for the treatment of epilepsy in 2010.212 Closely related to glucose, 2DG is taken up 

into cells by glucose transporters, but lacking the 2-hydroxyl group, the molecule 

cannot be metabolized and therefore act as an inhibitor of glycolysis.220 

The ketogenic diet is a nutritional approach to the treatment of refractory 

epilepsy that consists in switching to a high-fat, low-carbohydrate food intake.221 As 

a state of high energy demand, seizures rely on energetic pathways to “exist”.222 By 

switching from glucose to fat as the primary source of fuel, this diet is efficient at 

preventing epileptic seizures in patients.222 These beneficial results can, however, 
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rapidly be lost by a small ingestion of excess carbohydrate.223 Based on this 

observation, it was hypothesized that a glycolysis inhibitor may have protective 

effects against seizures and indeed, 2DG was found to have antiepileptic and 

antiepileptogenic effects in a variety of animal seizure models.224 

 

1.4.2. Challenges for treating epilepsy 

Most of the AEDs highlighted in this introductory chapter, from traditional 

drugs to recently discovered entities, have been presented in a favorable light, with 

their therapeutic mechanism of action as the focus. However, not mentioned are the 

sometimes life-threatening side-effects of some AEDs. As with most CNS-targeting 

agents, treatment with antiepileptics is often accompanied with a diverse set of side-

effects, that can range from mild (drowsiness, nausea, sedation),225 to severe (liver 

failure, aplastic anemia, teratogenicity).226 Mostly for traditional and some recent 

AEDs, drug-drug interactions are numerous and multi-drug therapy, a standard 

practice in the treatment of epilepsy, requires caution by the practitioner.227 In 

addition, antiepileptics are either classified by the Food and Drug Administration 

(FDA) as Schedule V substances because of an associated increased risk of 

suicidal thoughts, or as Schedule IV for AEDs with strong sedative effects 

(barbiturates and some benzodiazepines).  

To tackle the problem of toxic side-effects often arising from a metabolite of 

the drug, one of the endeavors of AED research has been the development of 

prodrugs or metabolically stable analogs of already marketed molecules. This effort 

is exemplified by the modification of the traditional AED carbamazepine to the 
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second and third generation derivatives, oxcarbazepine and eslicarbazepine, 

respectively.228,229 While these AEDs provide patients with safer treatment 

alternatives, they do not constitute a major breakthrough for the elucidation of new 

biological mechanisms underlying epilepsy. 

 

1.4.3. Future hopes 

Fortunately, change in AED development is likely to occur as scientists 

examine epilepsy in a new light. Although far from complete, our knowledge and 

understanding of epileptic disorders have greatly expanded since the early days of 

AED development. Importantly, researchers now realize the necessity to tackle the 

problem of epilepsy differently. Most marketed antiepileptics work as a prophylactic 

treatment, meaning preventing the symptoms rather than curing them. Research 

focus has begun to slowly shift towards the development of “disease-modifying” 

molecules and their related biology.  

One interesting observation that began in the late 1980’s, was the emergence 

of the word ”antiepileptogenic” in epilepsy-related literature abstracts, a term that 

has gained greater prominence in the literature with each increasing year (Pubmed 

search). Antiepileptogenesis is a concept that designates the prevention or slowing 

of biological processes that eventually lead to an epileptic state. Recurring seizures 

have been shown to induce neuronal growth through a mechanism called mossy 

fiber sprouting.230,231 The abnormal neural connections resulting from this process 

are thought to be essential for the initial development of seizures.232 A better 

understanding of key macromolecules involved in neurogenesis will provide us with 
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new opportunities to help people with epilepsy. In addition, we can expect advances 

in seizure control using “disease”-representative models such as the kindled animal 

models, rather than tests that use healthy animals (e.g., MES, scPTZ, 6 Hz tests).  

 

1.4.4. Functionalized Amino Acids (FAAs) are potent anticonvulsants with a 
broad spectrum of activity and a unique mechanism o f action 

 

1.4.4.1. Lacosamide 

O

N
H

H
N

O

O

Lacosamide
(R)-LCM, (R)-1  

(R)-N-Benzyl 2-acetamido-3-methoxypropionamide (lacosamide, (R)-LCM, 

Vimpat®, (R)-1) is a functionalized amino acid (FAA) derived from D-serine that 

gained marketing approval for the treatment of partial-onset seizures in Europe 

(2008) and in the United States (2009).203,233 FAAs were originally identified as 

potent anticonvulsant entities in the mid-1980s. Interestingly, the derivatives with the 

natural amino acid configuration displayed 10–20 fold less anticonvulsant activity.234-

241 (R)-LCM was extensively evaluated at the NINDS ASP and displayed excellent 

protection in the MES test, the Frings mouse model, the hippocampal kindled rat 

model and the 6 Hz test.242 Compared with other standard AEDs, such as CBZ, PHT 

and LTG, the pharmacological profile of (R)-LCM was unique, leading to the 

speculation that (R)-LCM’s mechanism of action was different from existing anti-

epileptic agents.233,243,244  
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(R)-LCM function has been extensively studied using electrophysiology. Early 

studies showed that lacosamide had no effect on VGSCs (fast inactivation), VGCCs 

and VGKCs.245,246 Radioligand displacement binding assays with (R)-LCM were 

conducted against a panel of GPCRs and LGICs, including GABA, adrenergic, 

dopamine, serotonin and muscarinic acetylcholine receptors.233 (R)-LCM did not 

show any specific binding to these receptors at concentrations up to 10 µM. 

Because of its structural similarity to the unnatural amino acid D-serine, it was 

suggested that (R)-LCM might exert its action via the glycine binding site of 

NMDARs. However, binding studies showed no effect of (R)-LCM on this receptor at 

therapeutically relevant concentrations.233  

 

1.4.4.2. Rationale and hypothesis to search and ide ntify the biological targets 
of (R)-LCM 

 

With little known about the mechanism of action of (R)-LCM, we initiated a 

chemical biology study to identify binding partners of (R)-LCM, by screening the rat 

brain proteome. Our rationale for this approach was based on the several 

observations. First, (R)-LCM and its FAA derivatives displayed very potent 

anticonvulsant activity in the rat. Second, AEDs, like many CNS agents, tend to have 

multiple targets for which they have a modest binding affinity. This phenomenon may 

be accounted for, in part, by their lower molecular weight and, in most cases, their 

relatively simple structures. The diminished structural size and complexity of most 

AEDs likely lessens the extent of protein-drug interactions (e.g., hydrogen bonds, 

hydrophobic, dipole-dipole, van der Waals) that foster binding. The average 
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molecular weight of the structurally diverse AEDs presented in this introductory 

chapter is ~220 g.mol-1 and (R)-LCM itself is 250 g.mol-1. Third, the established or 

likely targets for anticonvulsant molecules are either soluble or membrane-bound 

proteins.  

Shortly after the start of our investigation, (R)-LCM was reported to exert its 

function by enhancing the slow inactivation of VGSCs,135,243 and by modulating the 

Collapsin Response Mediator Protein 2 (CRMP-2).247 These target sites/pathways 

were novel for anticonvulsants and supported earlier assertions that (R)-LCM 

functioned via mechanisms different from existing antiepileptic agents. In light of the 

complex nature of AED function, we asked if there were additional (R)-LCM targets. 



2.     

 

 

                                                CHAPTER 2 

 

                  ORGANIC SYNTHESIS OF LACOSAMIDE DERIVATIVES 

 

2.1. Selecting the chemical parts to build molecula r tools 

2.1.1. Current methods for drug target identificati on 
 

Many approaches exist for elucidating drug function.248-259 Microarrays, RNA 

interference (RNAi) and forward chemical genetics are three recent strategies. The 

first of these allows identification of genes or proteins whose expression profile is 

modified in the presence of the drug.260 The second approach uses small RNAs to 

partially or completely silence or knock-down specific genes, and, therefore, 

proteins.261 Though useful in rational drug discovery strategies, these methods do 

not identify the target’s binding region for drug function. Forward chemical genetics 

is an attractive chemical biology approach that employs small molecules to elucidate 

biological pathways and protein targets by eliciting a certain phenotype.250-255 Again, 

this method doesn’t allow the identification of the target itself.  

The most common approach for drug target identification is an affinity-based 

strategy where modified small molecules are immobilized on a matrix, and then 

incubated with purified proteins. Although protein targets have been successfully 

identified by this approach262,263 the method does have limitations. The most 
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significant of these is that the structure of the ligand has been optimized. 

Subsequent introduction of a chemical bulky group (i.e., biotin) often results in the 

disruption of key binding interactions, and with it, a loss of the drug’s affinity for its 

target.  

 

2.1.2. The use of small chemical groups for selecti ve protein modification 
 

Medicinal chemists and biochemists have traditionally appended reactive 

chemical groups on organic molecules to covalently label or inactivate 

macromolecules.264-274 We term these small reactive moieties Affinity Bait  (AB) 

groups. More recently the concept of bioorthogonal chemistry was advanced as a 

powerful approach to study or identify protein targets.275-282 Alkynes and azides are 

two small, bioorthogonal groups: they are inert under biological conditions, yet 

quickly react with each other under CuI-catalyzed conditions (“Click 

Chemistry”).283,284 The alkyne and azide groups have been termed Chemical 

Reporter  (CR) groups.  

Our approach to target protein identification is based on the incorporation of 

both AB and CR groups on a low molecular weight compound. In this study, we 

focus on the mode of action of the novel AED lacosamide ((R)-1, LCM). Thus, we 

term these bi-functional derivatives as LCM AB&CR agents 2 (Scheme 3). Upon 

binding with the receptor (3), the AB group first creates a covalent linkage between 

the target protein and lacosamide (4, 5). The CR group then reacts with a 

bioorthogonal Probe (P, 6) containing a fluorophore or a biotin moiety to permit 
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complex 7’s detection or purification, respectively. The following section provides a 

rationale for the choice of AB and CR groups used in our chemical biology study. 

 

Scheme 3. Proposed strategy to identify the target proteins of (R)-LCM with AB&CR agents. The 
AB&CR analog 2 covalently modified receptor 3. The covalent receptor/AB&CR complex 5 is then 
selectively tagged using a bioorthogonal Probe 6 for detection or purification (7). 

 

 

2.1.2.1. Electrophilic groups 
 

One common application of the AB methodology is the development of 

selective enzyme inhibitors.285-287 Typically, an electrophilic moiety is appended on 

the small molecule, peptide or peptidomimetic. The covalent bond formed between 

the active residue and the ligand leads to irreversible inhibition of the enzyme. 

Cravatt and coworkers have used an AB&CR methodology, Activity-Based Protein 

Profiling (ABPP), to characterize the reactivity profile of various AB groups within 

different classes of enzymes.275,283,288 Interestingly, the nature of the electrophilic 

groups can be modulated to target a specific class of protease. For example 
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epoxide-containing peptides derivatives are commonly used to inactivate cysteine 

proteases,269,274 while chloromethylketone groups are more prone to react with 

serine proteases.289 

Almost any electrophile can, in principle, be used for protein modification. 

However, successful implementation of this approach requires the AB to display the 

adequate balance between chemical selectivity and reactivity. Employing very potent 

electrophilic moieties will inevitably lead to high levels of non-specific labeling.290 

Covalent protein modification through small reactive groups is widely used in 

protein biology. Among the commonly utilized groups are the aromatic 

isothiocyanate,291 the maleimide,292 and the succinimidyl ester.293 These 

electrophiles can react in a non-specific fashion since their adduction only requires 

an accessible lysine (isothiocyanate and succinimidyl ester) or cysteine (maleimide) 

residue. Fluorescein isothiocyanate (FITC),291,294 and biotin succinimidyl esters,293 

are two examples of widely used low-molecular weight, non-specific protein 

modifiers.295 Nonetheless, researchers have demonstrated that electrophilic groups 

can selectively target non-catalytic amino acid residues.290,296,297  

 

2.1.2.1.1.  Isothiocyanate 
 

The aromatic isothiocyanate (NCS) may be considered a general amine-

reactive chemical moiety with respect to proteins.294 However, many studies 

document its utility as a selective, irreversible protein modifier. Indeed, brain G-

protein coupled receptors (GPCRs) such as the δ-opioid,264 cannabinoid,265 N-

methyl-D-aspartate (NMDA),298 and α2-adrenergic receptors,266 have been labeled in 
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vitro, and under certain conditions in vivo, by synthetic NCS-derivatives of their 

cognate ligand. Thus, this moiety can potentially be used as an AB group (8) for 

selective protein modification through a lysine residue within a binding pocket 

(Scheme 4). 

Scheme 4.  The NCS group reacts with a lysine residue to form a covalent thiourea linkage. 
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2.1.2.1.2.  Aldehyde 
 

Carbonyl compounds without an adjacent halomethyl group can also 

selectively label proteins.299 Researchers have used aldehyde-containing small 

molecules to react with protein lysine residues (Scheme 5).300  

 

Scheme 5. The aldehyde groups 10 and 13 react with an amine to give imine intermediates 11 and 
14. The transient species is then reduced to form a covalent amine bond using a hydride source. 
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The transient imine (11, 14) formed between the protein and the aldehyde 

(10, 13) is reduced to a covalent amine bond using a hydride source. For instance, 

this approach led to the identification of the binding site of the antibiotic bicyclomycin 

with the Escherichia coli (E. coli) rho transcription terminator protein.296,301,302 The 

aldehyde AB group can, therefore, be utilized to trap a small molecule/protein 

complex with the AB&CR methodology.  

 

2.1.2.1.3.  Epoxides 
 

Epoxides are versatile electrophilic groups.303-307 One of the driving forces of 

the reaction with electron-rich atoms is the release of the epoxide ring strain upon 

nucleophilic attack.307 In addition to their use as cysteine protease irreversible 

inhibitors,274,308,309 epoxide substrates (16, 19) have been shown to react with the ε-

amino group of lysines,310 the carboxyl group of aspartates311 and glutamates312, 

and with the imidazole ring of histidines290 to give the corresponding ring-opened 

adducts (Scheme 6).  

 

Scheme 6. Epoxides undergo ring-opening with a variety of nucleophilic amino acids. 
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In a recent chemical biology study, Sames and coworkers examined at a 

panel of diverse electrophiles to construct a chemical probe to specifically target 

carbonic anhydrase 2 (CA2). Interestingly, the epoxide group was the only AB 

moiety that specifically targeted CA2.290  

 

2.1.2.2. Photoreactive groups 
 

A requirement for electrophilic AB groups is the need for a nearby protein 

nucleophilic moiety in the binding pocket. To overcome this limitation we included in 

our study several light-activated AB groups (photoAB ). These reactive species can, 

upon binding to an active site, undergo less restrictive C–H bond insertion reactions 

to covalently label macromolecules.313 

PhotoAB groups have been extensively used in protein modification 

studies.314-316 Photophores become activated upon irradiation at a specific 

wavelength. Light triggers the formation of a reactive intermediate capable of 

undergoing carbon-hydrogen bond insertion or nucleophilic attack. A major 

advantage of this class of AB agents is their lack of reactivity under non-irradiative 

conditions. Photolabeling experiments may, however, suffer from the reactivity 

profile of some photoAB moieties, their low labeling efficiency, as well as the use of 

protein-damaging wavelengths.313 Many studies have relied on the use of these 

light-activated groups for in vitro or ex vivo experiments.263,268,316-320 Aromatic azides, 

diazirines and benzophenones are commonly used photoAB units for biological 

studies.  
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2.1.2.2.1.  Aromatic azide 
 

Aromatic azides are among the most widely used photoAB groups for protein 

labeling.321,317,322,323,296 They can be readily obtained from the corresponding 

aromatic amine and nitro groups.324,325 Irradiation of the Ar-N3 group (22) at an 

energetic wavelength (254–360 nm) generates a short-lived (few nanoseconds)326 

singlet nitrene (23) that reacts with adjacent amino acids (24) (Scheme 7).  

 

Scheme 7.  Irradiation of 22 leads to the singlet nitrene 23. The nitrene undergoes C-H bond insertion 
to give 24 or rearranges to the seven-membered ketinimine azepine electrophile 25. The triplet 
nitrene is not shown 
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Two side reactions decrease the aryl azide photolabeling yield. The first one 

is the conversion of the singlet to the ground state triplet nitrene, a species with less 

value for photoaffinity labeling.321 The second side reaction is the formation of a 

long-lived (few milliseconds327) reactive intermediate didehydroazepine 25.313,326,327 

The ketenimine moiety in 25 reacts as an AB electrophile, and thus may lead to a  

less specific protein labeling through accessible nucleophilic residues.313 The 

relative instability of aromatic azides to common reducing agents is also a problem. 
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Indeed, aryl azides are readily converted to the corresponding aniline upon exposure 

to dithiothreitol (DTT) and β-mercaptoethanol (BME).317,328 

 

2.1.2.2.2.  Diazirines 
 

Diazirines were introduced more than 30 years ago as photoaffinity agents.314 

Upon irradiation (360 nm), they rearrange into diazo derivatives and/or carbenes 

(Scheme 8). Further excitation (312 nm) of the diazo intermediate leads to higher 

levels of the latter species.313 The more pronounced carbene character of diazirines, 

as well as their stability to reducing, acidic and basic conditions267,329 makes these 

reagents useful for protein modification studies.  

 

Scheme 8. Irradiation of the diazirine moiety (27, 30) generates the corresponding carbene (28, 31) 
which undergoes nucleophilic attack or C-H bond insertion (31, 32). Only the carbene intermediate is 
shown. 
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Two different types of diazirines are generally employed for photolabeling. 

The trifluoromethylaromatic diazirine (27) is the most common in biochemical 

studies.318,330-334 At biologically relevant concentrations (1–1000 µM), Hatanaka and 

coworkers showed that irradiating this photoAB in buffered aqueous solution at 365 
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nm (10 min) and 312 nm (1 min) led to full conversion of the diazirine into its 

corresponding carbene 28.335 Used to a lesser extent is the alkyl diazirine 

photophore 30.268,336,337 The alkyl substituents flanking the diazirine moiety render 

the resulting carbene 31 less stable than its trifluoromethylaromatic counterpart, 

thereby reducing the efficiency of the irradiation step.313  

Synthetic accessibility is one drawback of this photoAB moiety. While the 

alkyl diazirine is obtained in few steps,338,339 the trifluoromethyldiazirine requires up 

to 10 synthetic transformations.333,340,341 The reactive nature of carbenes is also a 

limitation. Indeed, a tight interaction is required for the short-lived intermediate to 

efficiently modify macromolecules.  

 

2.1.2.2.3.  Benzophenone 

The benzophenone is another established photoAB for protein labeling 

(Scheme 9).315,318,342,319,320,343-345 Unlike aryl azides and diazirines and their 

respective nitrene and carbene intermediates, the benzophenone undergoes protein 

C–H bond insertion via a radical pathway.346 An important feature of this mechanism 

is that irradiation generates an excited, reactive intermediate (34) that returns to its 

ground state in the absence of a C–H bond substrate.346  This non-destructive 

equilibrium between the ground and excited state,347 as well as the required correct 

orientation of the C•–O• diradical 34 with respect to the C–H bond342 make the 

benzophenone a highly selective photoAB for biological studies.313,346,347 
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Scheme 9. Excitation of the C=O bond in 33 reversibly leads to an excited diradical 34 that 
undergoes C-H bond insertion reaction (35, 36). 
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2.1.3. Bioorthogonal groups and click chemistry 

1,3-Dipolar cycloadditions have found utility for the construction of a wide 

variety of heterocycles.348 A copper-catalyzed version of these reactions, the 1,3 

alkyne-azide cycloaddition (Scheme 10), has been extensively used in the field of 

chemical biology and polymer science over the past decade.268,276,278,345,349-354  

Upon prolonged heating, alkynes and azides are known to form a mixture of 

1,4- and 1,5-substituted triazoles.355 However, under metal-catalyzed conditions, the 

reaction proceeds rapidly. Cu(I)-catalysis gives exclusively the 1,4-regioisomer (39), 

and Ru(II)-catalyzed conditions provide the 1,5-regioisomer (40).356 Upon discovery 

of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), Sharpless advanced the 

term of “Click Chemistry” as a concept to designate any organic reaction where 

reacting partners combine to give a single product and where the process is reliable, 

quantitative, selective, fast, clean, inexpensive, and environmentally friendly.357 The 

CuAAC is the prototypical “Click Chemistry” reaction and is now commonly referred 

to by that name.278,349-351 



 

 56 

Scheme 10. Terminal alkynes and azides lead to different triazole regioisomers under different 
conditions 
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Along with others, Cravatt and coworkers pioneered the use of this 

transformation in in vitro biological studies and employed CuAAC to identify the 

target proteins for several small molecules.275,345,354,358-360 However, this reaction 

cannot be extended to cells or living organisms due to the cytotoxicity of Cu(I) and 

Cu(II) species.361 To circumvent this problem other types of copper-free click 

chemistry reagents have been advanced.  

 

Scheme 11. Staudinger ligation reaction. The phosphorus atom reacts in 41 with an azide (38) to 
form an iminophosphorane intermediate that attacks  the Me ester and forms an amide linkage and 
the phosphine oxide (42) upon hydrolysis 
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Bertozzi and coworkers have shown that both the Staudinger ligation 

(Scheme 11) and the strain-promoted azide-alkyne cycloaddition (Scheme 12) are 
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both suitable reactions to perform “Click Chemistry” in a biological milieu.280-282,362-364 

Despite their excellent biocompatibility, both the phosphine and the first generation 

cyclooctyne suffered from slow kinetics. Recently, progress has been made in the 

development of more reactive cyclooctyne species.352,365,366 Some of these copper-

free click reactions have been used to observe biological events in cells and living 

organisms.349,352  

 

Scheme 12. Two examples of strain-promoted cyclooctyne addition reactions. The strained ring as 
well as the electronic effects of neighboring groups improve the kinetics of the reaction. Only one of 
the two triazole regioisomers is drawn. 
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2.2. Structure-activity relationship of FAAs 

2.2.1. FAAs 

The potent anticonvulsant activity of FAAs (47) was discovered by the Kohn 

laboratory in 1985 and led to a focused SAR study.234,367,241,368,237,369,238,370 More 

than 250 FAAs were prepared and then evaluated at the NINDS ASP and the Eli 

Lilly Laboratories. Compounds were tested for seizure protection in the MES and 

scPTZ tests and neurogical toxicity in the rotarod test (mice) and behavioral test 

(rats). 

 

Scheme 13.  Structure of FAAs. Different modification sites studied for the SAR of lacosamide are 
shown. 
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The SAR study of 47 focused on three different sites (a, b and c, Scheme 13). 

The optimal substituent for site a was the acetyl group (R1 = C(O)CH3). For site c, 

the requirements were also stringent. Excellent anticonvulsant activity was obtained 

for an unsubstituted benzyl group (e.g., R3 = CH2Ph). Accordingly, most of the SAR 

study focused on modifications at site b. The Kohn laboratory showed that several 

compounds containing small aliphatic groups and heteroaromatic groups (i.e., 

pyridyl, furanyl, oxazolyl) positioned at C(2) displayed significant anticonvulsant 

activity in the MES seizure test. When a heteroatom was introduced one atom 

removed from C(2), the seizure protection was comparable with or exceeded that of 
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phenytoin,234,367,241,239 the prototypical antiepileptic agent in the MES-seizure 

model.371 The highest anticonvulsant activities were obtained with oxygen as the 

heteroatom. The SAR study led to the discovery of lacosamide (R2 = CH2OCH3). 

Most important, the SAR study demonstrated that one structural feature was 

recurrent: the anticonvulsant activity resided in the (R)-enantiomer (D-configuration) 

of the FAAs. 

The initial SAR of FAAs concluded with lacosamide’s invention. Efforts to 

explore the impact of the methoxy unit replacement in (R)-LCM were hampered by 

the unavailability of efficient synthetic pathways to the enantiomerically pure 

derivatives. At the start of our investigation, little was known about the structural 

tolerance at this site in lacosamide. The Kohn group reported the activities of the 

racemic O-ethyl (R,S)-48 and O-allyl (R,S)-49 analogs.234 Both compounds exhibited 

significant activities but were 2–8-fold less active then (R,S)-1 in mice (MES ED50 = 

8.3 mg.kg-1 (0.5 h)).234 Recently, a lacosamide analog was prepared where the 

OCH3 moiety was replaced by a OCHF2
 (50).372 This fluorinated derivative displayed 

excellent protection and prolonged duration of action (rat, po) in the MES test (ED50 

= 3.0 mg.kg-1 (0.5 h), 4.2 mg.kg-1 (4 h)) when compared with (R)-LCM (ED50 = 1.8 

mg.kg-1 (0.5 h), 8.3 mg.kg-1 (4 h)) under the same test conditions.372 
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2.2.2. Synthetic approaches to side chain modificat ion 

2.2.2.1. Functionalization using O-alkylation 

At the beginning of our studies two synthetic routes were available to 

synthesize enantiomerically pure LCM and LCM analogs. The shortest pathway 

(Scheme 14, route 1 ) to the AED started with commercial L- or D-serine (51). 

Acetylation with Ac2O in acetic acid led to the N-acetylserine derivative 52 that 

directly reacted with benzylamine. Benzylamide 53 was then methylated with MeI 

under basic conditions to provide lacosamide enantiopure derivatives 55. The need 

for the complete removal of excess AcOH prior to the amide coupling step was a 

major limitation of this pathway. Any acetic acid not removed resulted in the side-

formation of N-acetylbenzylamide (54). 

 

Scheme 14. Synthetic pathway to enantiomerically pure O-alkoxysubstituted derivatives of 
lacosamide: route 1  
 

 

 The second pathway (Scheme 15, route 2 ) was analogous to route 1  except 

a protection/deprotection step was introduced. Enantiopure N-Cbz-serine (56) was 

either purchased or prepared from serine and Cbz-Cl. After amide coupling and 

methylation, the Cbz group was removed under catalytic hydrogenation conditions 
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and the free amine 59 acetylated with acetyl chloride or acetic anhydride. The 

enhanced solubility of N-protected serine derivatives in organic solvents made route 

2 more practical than route 1  despite the increased number of steps. Nonetheless, a 

drawback to both pathways was the cost of Ag2O (5 equiv required for the 

Williamson ether synthesis step). More important, only a narrow range of 

substituents could be installed at the 3-hydroxy site under alkylating conditions. 

Reaction yields rapidly dropped as the O-methyl group in LCM was increased to 

ethyl or allyl. Thus, routes 1  and 2 were only useful to prepare either LCM AB or CR 

derivatives where the AB or CR moiety was introduced at the N-benzylamide 

position. 

 

Scheme 15. Synthetic pathway to enantiomerically pure O-alkoxysubstituted derivatives of 
lacosamide: route 2 
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2.2.2.2. Functionalization using aziridine ring-openi ng, a general approach to 

LCM O-substituted derivatives 

2.2.2.2.1.  Synthesis via N-Trt aziridine carboxylate esters 

N-Substituted aziridines carboxylate esters (60, R1= Ac, Cbz) are valuable 

intermediates in the synthesis of amino acid derivatives.373-381 Under Lewis acid-

catalyzed conditions, alcohols can add to the strained ring and produce an O-

substituted serine analog 61 with the same C(2) stereochemistry as its precursor.379 
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Scheme 16. Synthetic pathway to enantiomerically pure O-alkoxysubstituted derivatives of 
lacosamide: route 3 
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This methodology provided a third pathway (Scheme 16, route 3 ) for the 

preparation of LCM analogs and the desired AB&CR agents. L or D-Serine methyl 
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ester hydrochloride (62) was purchased or prepared from serine and HCl in 

MeOH.382 The serine Me ester hydrochloride was successively N-tritylated, O-

mesylated, and heated to reflux under basic conditions to form N-Trt-

aziridinecarboxylate methyl ester (65, X = Me) (Scheme 17).375,383 The trityl group 

was removed using TFA (Scheme 17) and the free aziridine 66a acetylated with 

acetyl chloride to yield 68a (Scheme 16). Ring-opening of 68a with a variety of 

alcohols in the presence of BF3•Et2O gave 69a.378 The O-substituted N-acetyl serine 

esters (69a, and 69a,b) were hydrolyzed with LiOH and coupled to benzylamine to 

provide LCM derivatives 55.384 The AB&CR agents were synthesized by coupling 70 

with various substituted benzylamines. Depending on the nature of the N-

benzylamide substituent, up to 3 additional steps were necessary to obtain the 

desired AB&CR compound. 

 

Scheme 17. Different synthetic pathways used to access enantiomerically pure aziridine ester 
carboxylates 
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Despite the generality of this approach, two aspects in reaction Scheme 16 

hindered our efficient synthesis of the lacosamide agents necessary for animal 

testing. The first was the generation of large quantities of 68. The literature 

sequence379,380,383 was time-consuming (4–5 d), labor intensive and the use of the 

Trt group as shown in Scheme 17 required its removal prior to N-acetylation, 

resulting in only moderate yields of 68a (~40%). The second experimental roadblock 

involved the ring-opening of 68a with select alcohols and the subsequent ester 

hydrolysis step. We found that the nature of the alcohol influenced the yield of the 

nucleophilic opening reaction. With 2-azidoethanol (71, 3–10 equiv), the reaction 

proceeded in a 30–40% yield while with 3-buten-1-ol (72, 3–5 equiv) it reached 65–

70% yield. Furthermore, for water-soluble derivatives of 70, we obtained poor to 

moderate recovery after ester hydrolysis and work-up. 
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2.2.2.2.2.  Synthesis using dialkoxyphosphoranes de rivatives 
  

Little could be done to resolve the second roadblock. Efforts to enhance the 

ring-opening step by increasing the number of equivalents of alcohol did not improve 

the yields of 69. We addressed the first issue by employing a more efficient way to 

access 68. Evans and coworkers demonstrated the versatility of 

dialkoxytriphenylphosphoranes (PPh3(OR)2) as cyclodehydration reagents to form 

heterocyclic systems.385-389 Using an improved method,387 we prepared 
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diethoxytriphenylphosphorane (PPh3(OCH2CH3)2, DTPP) from PPh3, Br2, and NaOEt 

(Scheme 18). Using serine methyl ester 67 and DTPP (1.2 equiv), we obtained 

aziridine 66a,b as a mixture of methyl/ethyl esters. The reaction proceeded in 24 h, 

provided good yields (50–70%) of 66a,b after bulb-to-bulb distillation, and was used 

to prepare up to 20 g of 68a,b in a single experiment. We found that the reaction 

only proceeded if serine methyl ester 67 was first isolated as the free amine.381 

Acetylation of 66a,b with acetic anhydride and catalytic DMAP afforded pure 68a,b 

upon work-up. The remainder of the synthesis proceeded as previously described 

(Scheme 16). 

 

Scheme 18. Synthetic route to dialkoxytriphenylphosphoranes DTPP and DTPP-F6 

 

Ph P
Ph

Ph

Br2

CH2Cl2:THF (1:1)
-78 °C

Ph P
Ph

Ph

Br Br Na+ CH3CH2O-

CF3CH2OH, NEt3

PPh3(OCH2CH3)2

PPh3(OCH2CF3)2

DTPP
74

DTPP-F6

75

CH2Cl2:THF
(1:1), -78 °C to rt

(30-40%)

CH2Cl2:Et2O
(1:1), -78 °C to rt

(70-85%)

Ph P
Ph

Ph

Br2

CH2Cl2:Et2O (1:1)
-78 °C

Ph P
Ph

Ph

Br Br

73

73  

Although useful, DTPP proved to be a tedious reagent to prepare on large 

scale. The procedure required an initial centrifugation step (8000 rpm, 10 min) to 

remove finely divided NaBr, and 3–4 evaporation/filtration steps to remove PPh3(O), 

a by-product of the reaction.387 Accordingly, we prepared the hexafluoro derivative of 

DTPP, PPh3(OCH2CF3)2, DTPP-F6,
390 by replacing NaOEt with a mixture of NEt3 

and CF3CH2OH (Scheme 18).391 Phosphorane formation proceeded faster and 

required only filtration and evaporation to yield the pure compound.391 Unfortunately, 
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DTPP-F6 provided a decreased yield of 66 (25–30%) after bulb-to-bulb transfer 

compared with DTPP (40–70%). 

 We examined a more convergent synthesis of the desired O-substituted LCM 

analogs (Scheme 19, route 4 ). Derivative (R)-55 was obtained by catalytic 

hydrogenation of (R)-57 and reaction with either DTPP or DTPP-F6 to give aziridine 

N-benzylcarboxamide (R)-77. Following acetylation, the N-acetylaziridine 

benzylamide (R)-78 was ring-opened with several alcohols (phenol, phenethyl 

alcohol and 3-butyn-1-ol) to yield the corresponding derivative of (R)-LCM. 

Paralleling the formation of 68-a,b, greater yields of (R)-77 were obtained with DTPP 

(50–60%) compared with DTPP-F6 (30–35%) (Scheme 19, route 4 ). 

  

Scheme 19. Synthetic pathway to O-alkoxysubstituted derivatives of (R)-LCM: route 4 

  

Several factors, however, made this synthetic route inconvenient. First, the 

low volatility of the aziridine benzylamide (R)-77 prevented its bulb-to-bulb 

distillation, thus requiring its purification using silica gel flash chromatography. 

Second, 2-oxazoline 79 was generated as a by-product in the final step, presumably 
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through the rearrangement the N-acetylaziridine ring under Lewis-acid catalyzed 

conditions.392 Interestingly, this rearrangement was not observed when using the N-

acetylaziridine carboxylate ester (Scheme 16, route 3 ). Compound 79 was not 

readily separated from the final product and complicated the purification of (R)-55 by 

flash column chromatography. The pure LCM derivatives were only obtained by 

recrystallization and we were not able to purify 2-oxazoline 79. Compound 79 was 

tentatively identified by the characteristic 13C resonance for the oxazoline CH3 group 

(δ 13–14 ppm)393 and by HRMS. 

 

2.2.3. Structure activity relationship of the LCM 3 -oxy-substituent 

Large quantities of 68 were available using the DTPP-mediated aziridine 

synthesis. Using this new route we were able to explore the lacosamide SAR for the 

side chain oxy-substituent to identify potential structural constraints that would 

accompany either AB or CR placement at this site. We used different classes of 

alcohols to ring-open 68, and in some instances 78, and tested the new analogs of 

(R)-LCM at the NINDS ASP for anticonvulsant activity and neurotoxicity.381 

 

2.2.3.1. Choice of compounds 
 

With little knowledge of the structural tolerance at this site we designed, 

synthesized, and tested a series of O-substituted derivatives for anticonvulsant 

activity. We probed for several potential protein/drug interactions. We examined the 

effect of steric size by replacing the LCM methoxy unit ((R)-1) by progressively 
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larger alkoxy groups ((R)-48, (R)-80–(R)-82) (Table 1). We introduced unsaturated 

aliphatic and aromatic systems ((R,S)-49, (R)-83–(R)-88, (R)-90, (R)-91, (R)-98)  to 

look for potential hydrophobic, π-π, and cationic-π interactions.394 Within this set, we 

varied the length of the methylene spacer between several of these groups and the 

3-oxy site in (R)-55. Not to limit ourselves to strictly lipophilic interactions, we 

prepared derivatives containing a polar side chain ((R)-96, (R)-99, (R)-100). These 

compounds could accept and/or donate a hydrogen bond(s) to a suitable amino acid 

residue within the putative drug binding pocket(s). Finally, we evaluated LCM oxy-

substituted analogs that contained either an AB ((R)-92–(R)-95) or a CR group ((R)-

84, (R)-97). In those cases where little or no anticonvulsant activity was observed for 

the AB agent, we prepared the corresponding isostere to see if metabolic factors, or 

structural and electrophysical constraints contributed to the loss of activity.395-400 
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Table 1. The Structure Activity Relationship of O-Substituted (R)-Lacosamide Derivatives   

 

 Mice (ip) b  Rat (po) c 

No.  R   mp 
(°C)   MES,d ED50  6 Hz, ED50

e  Tox, f TD50  PI g  MES,d ED50 Tox, h TD50 PI g 

           

1i CH3 142–143 
4.5 [0.5]  

(3.7 – 5.5)  27 [0.25]  
(26 – 28) 6.0  

3.9 [0.5]  
(2.6 – 6.2) >500 >128 

           

1-d3 CD3 142–143      
5.2 [0.5]  

(4.3 – 5.7) ~200 ~38 

           

48 CH2CH3 129–130 
7.9 [0.25]  
(5.3 – 10)  44 [0.25]  

(37 – 54) 5.6  
5.6 [0.25]  
(2.5 – 16) >500 >89 

           

80 CH(CH3)2 151–153 
23 [0.25]  
(20 – 26) 

23 [0.25]  
(16 – 28) 

77 [0.25]  
(66 – 96) 3.3  

8.6 [0.25]  
(6.9 – 13) >500 >58 

           

81 C(CH3)3 126–127 30-100 [0.5]  ~300 [0.5]      

           

82 C6H11 134–135 100-300 [0.5]  ~300 [0.5]   ~30 [0.25] >30   

           

83 C6H5 169–170 100-300 [0.5]  >600 [0.5]      

           

49i CH2CH=CH2 (R,S) 76–77 30–100  30–100      

           

84j CH2C≡CH 149 16 [0.25]  
(13 – 19) 

29 [0.5]  
(21 – 40) 

59 [0.25]  
(55 – 66)   7.9 [0.5]  

(4.7 – 11) >500 >63 

           

85k  CH2C≡CCH3 149–151 30-100 [0.5]  30-100 [0.5]      

           

86  CH2C6H11 143–144 100-300 [0.5]  ~300 [0.5]      
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87  CH2C6H5 145–146 64 [0.25]  
(56 – 76)  200 [0.25]  

(160 – 300) 
3.2  >30 >30  

           

88  CH2CH2CH=CH2 103–104 30-100 [0.5]  ~100 [0.5]   17 [0.5]  
(13 – 21) 

>500 >29 

           

89  
 

97–99 46 [0.25]  
(42 – 50)  85 [0.25]  

(69 – 105) 
1.9  >30 >30  

           

90 CH2CH2C≡CH 111–113 30–100 [0.5]  30–100 [0.5]      

           

91 CH2CH2C6H5 90–92 100-300 [0.5]  100-300 [0.5]   >30  >30  

           

92l 
 

 30-100 [0.5]  100-300 [0.5]   44 [1]  
(28–65) 

>500 >11 

           

93 CH2CH2C(O)H 120–121 >300 [0.5]  >300 [0.5]   >100   

           

94 
 

104–110 >300 [0.5]  >300 [0.5]      

           

95j CH2CH2NCS  >300 [0.5]  100-300 [0.5]   <30 [4] >30 [4]  

           

96 CH2CH2NHC(O)CH3 166–168 >300 [0.5]  >300 [0.5]   >30 >30  

           

97 CH2CH2N3 111–113 
100-300  

[0.5] 
44 [0.25] 
(32 – 65)    

>40 [0.25] (po) 
5.7 [0.25] (ip)  

(3.6 – 8.4) 

78 [0.25] (ip)  
(72 – 83) >13 

           

98 
 

127–129 >300 [0.5] >100  >300 [0.5]      

           

99 CH2CH2OCH3 109–110 30-100 [0.5]  ~300 [0.5]      

           

100 (CH2CH2O)2CH3 48–52 >300 [0.5] >100  >300 [0.5]   >30 >50  

           

 phenytoin m  9.5 [2] 
(8.1–10)  66 [2] 

(53–72) 6.9  30 [4]  
(22–39) 

n > 100 
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 phenobarbital  m  22 [1] 
(15 – 23) 

 69 [0.5] 
(63 – 73) 

3.2  9.1 [0.5]   
(7.6 – 12) 

61 [0.5]  
(44 – 96) 

6.7 

           

 valproate m  270 [0.25] 
(250 – 340) 

 430 [0.25] 
(370 – 450) 

1.6  490 [0.5]  
(350 – 730) 

280 [0.5]  
(190 – 350) 

0.6 
a All compounds tested corresponded to the (R)-enantiomer except 49. The compounds were tested through the auspices of the NINDS ASP. b The compounds 
were administered intraperitoneally. ED50 and TD50 values are in milligrams per kilogram. c The compounds were administred orally unless otherwise indicated. 
ED50 and TD50 values are in mg/kg. d MES = maximal electroshock seizure test. e The 6 Hz test was carried out at 32 mA. f TD50 value determined from the rotorod 
test. g PI = protective index (TD50/ED50). 

h Tox = behavioral toxicity. i Ref.1. j Ref.23. k Work of Dr. Ki Duk Park. l Work of Dr. Christophe Salomé. m Porter, R. J.; 
Cereghino, J J.; Gladding, G. D.; Hessie, B. J.: Kupferberg, H. J.; Scoville, B.; White, B. G.; Cleveland Clin. Q. 1984, 51, 293-305. n No ataxia observed up to 3000 
mg/kg. 
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2.2.3.2. Pharmacological results 

Compounds (R)-1, (R)-48, (R,S)-49, (R)-80–(R)-100 were tested for 

anticonvulsant activity at the NINDS ASP using the procedures described by Stables 

and Kupferberg.401  The pharmacological data from the MES401,402 and 6 Hz57 tests 

are summarized in Table 1 along with clinical AEDs phenytoin,403 valproate,403 and 

phenobarbital.403 All compounds were administered intraperitoneally (ip) to mice and 

orally (po) to rats unless otherwise indicated. The table lists the values that were 

determined to be protective in blocking hind limb extension induced in the MES 

seizure model from the rodent identification studies. For compounds that showed 

significant activity, we report the effective dose (50%) (ED50) values obtained in 

quantitative screening evaluations.  Also provided are the median doses for 

neurological impairment (50%) (TD50) in mice, using the rotorod test,75 and the 

behavioral toxicity effects observed in rats. TD50 values were determined for those 

compounds exhibiting significant activity in the MES test. The protective index (PI = 

TD50/ED50) for these analogs are also listed. Select compounds were evaluated in 

the psychomotor 6 Hz (32 mA) seizure models (mice, ip).57 When the derivatives 

were evaluated in the scPTZ seizure model401 none provided protection at 300 

mg/kg doses at the times (0.5 and 4 h) tested (data not shown). The absence of 

seizure protection in this assay is a hallmark of FAA activity.234,367,241,368,237,369,238,370 

 In total, 23 new O-substituted LCM analogs were prepared and evaluated for 

anticonvulsant activity at the NINDS ASP. We observed a steady increase in activity 

in mice (ip, [0.25–0.5 h]) as the substituent steric size decreased from cyclohexyl 

((R)-82, ED50 = 100–300 mg.kg-1), phenyl ((R)-83, ED50 = 100–300 mg.kg-1), and 
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tert-butyl ((R)-81, ED50 = 30–100 mg.kg-1), to isopropyl ((R)-80, ED50 = 23 mg.kg-1), 

to ethyl ((R)-48, ED50 = 7.9 mg.kg-1) and to methyl ((R)-1, ED50 = 4.5 mg.kg-1), 

indicating that non-bulky 3-oxy substituted groups in (R)-55 analogs provided the 

highest anticonvulsant activity.381 Interestingly, we observed a similar increase in 

activity as the size of the 3-oxy substituent decreased when the compounds were 

administered orally to rats, but the range of activities was narrower. For example, the 

O-cyclohexyl derivative (R)-82 exhibited an ED50 of ~30 mg/kg while O-isopropyl 

(R)-80 (ED50 = 5.6 mg/kg), O-ethyl (R)-48 (ED50 = 5.2 mg/kg), and O-methyl (R)-1 

(ED50 = 3.9 mg/kg) all displayed excellent seizure protection. (R)-48 and (R)-80 

showed no behavioral neurotoxicity in the rat at the highest dose (500 mg/kg) tested, 

leading to high PI values for both compounds ((R)-48: PI >89; (R)-80: PI >58). When 

we inserted a methylene group between the cyclohexyl group and 3-oxy site in (R)-

82 (ED50 = 100–300 mg/kg) to give (R)-86 (ED50 = 100–300 mg/kg), we observed no 

improvement in anticonvulsant activity in mice (ip). 

Next, we examined the effect of incorporating an unsaturated unit at the 3-oxy 

site in (R)-55. When the O-phenoxy (R)-83 derivative was evaluated, we observed 

minimal protection in the MES test in mice (ip) (ED50 = 100–300 mg/kg).381 

Correspondingly, in mice we found pronounced anticonvulsant activity for other 

derivatives that contained an unsaturated 3-oxy substituent. The O-allyl234 ((R,S)-49, 

ED50 = 30–100 mg/kg), O-propargyl ((R)-84, ED50 = 16 mg/kg),384 and O-but-2-ynyl 

((R)-85, ED50 = 30–100 mg/kg) (R)-1 analogs all provided pronounced seizure 

protection. When the O-propargyl ((R)-84, ED50 = 7.9 mg/kg) and the O-but-2-ynyl 

((R)-85, ED50 = 6.4 mg/kg) (R)-55 derivatives were tested in the rat (po) we 
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observed excellent seizure protection, which was comparable with phenytoin (ED50 = 

6.9 mg/kg),403 and no behavioral neurological toxicity at 500 mg/kg. Significantly, the 

propargyl unit was shown to be a superior CR unit in bioorthogonal Cu(I)-mediated 

cycloaddition reactions.384,276 Our finding that (R)-84 and (R)-85 exhibited excellent 

activity in the MES seizure model indicated that this CR unit in (R)-1 AB&CR agents 

would not likely impact the unit’s binding to its cognate receptor(s). Inserting a 

methylene group between the C(3)-oxy site and the phenyl group in O-phenoxy (R)-

83 (ED50 = 100-300 mg/kg) to give the O-benzyl derivative (R)-87 (ED50 = 64 mg/kg) 

led to improved seizure protection in mice (ip). These collective findings suggest that 

beneficial protein interactions with the 3-oxy π-system in (R)-55 existed at the drug 

binding site(s) responsible for MES-induced seizure protection.  This interaction with 

the 3-oxy site in (R)-55 analogs may offset adverse steric effects introduced when a 

larger, unsaturated group was included at this position. 

 We next explored the effect of adding a second methylene unit between the 

unsaturated unit and the (R)-55 3-oxy site to determine if the location of the 

unsaturated site affected anticonvulsant activity. When we added the second 

methylene group to O-propargyl (R)-84 (ED50 = 16 mg/kg) and O-benzyl (R)-87 

(ED50 = 64 mg/kg) to give O-3-butynyl (R)-90 (ED50 = 30–100 mg/kg) and O-2-

phenylethyl (R)-91 (ED50 = 100–300 mg/kg) (R)-55 derivatives, we saw a decrease 

in anticonvulsant activity in mice (ip). Like the O-phenylethyl derivative (R)-91 (ED50 

= 100-300 mg/kg), the O-triazolylethyl (R)-98 compound (ED50 = >300 mg/kg) did 

not display activity at the doses tested. Nonetheless, when tested orally in rats, the 

O-3-butynyl (R)-90 (ED50 = <30 mg/kg) provided appreciable seizure protection. 
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These results indicated that the site of unsaturation at the 3-oxy site in (R)-55 may 

be important for anticonvulsant activity. We observed one exception to this pattern, 

the O-allyl ((R,S)-49, ED50 = 30–100 mg/kg) and the O-3-butenyl ((R)-88, ED50 = 30–

100 mg/kg) (R)-55 derivatives showed similar anticonvulsant activity in mice (ip). 

Like O-3-butynyl (R)-90, the activity of the O-3-butenyl (R)-88 derivative improved 

from mice (ip) (ED50 = 30–100 mg/kg) to rat (po) (ED50 = 17 mg/kg). 

 The effect of polar substituents at the C(2) site in (R)-55 was assessed by 

incorporating either an ethylenoxy or an acetamidoethoxy unit two methylene units 

removed from the 3-oxy site. When we attached one ethylenoxy group to give 

methyl ether (R)-99, we observed noticeable seizure protection (ED50 = 30–100 

mg/kg). Adding a second ethylenoxy spacer to (R)-99 to give (R)-100 produced no 

detectable activity under the test conditions (ED50 = >300 mg/kg). Similarly, the 

acetamidoethyl analog (R)-96 (ED50 = >300 mg/kg) was inactive at the doses tested. 

The limited data do not allow us to speculate on the factors responsible for the loss 

of anticonvulsant activity of (R)-96, (R)-99, and (R)-100, and our findings indicated 

that introducing polar substituents at the 3-oxy site in (R)-55 did not improve seizure 

protection. 

 We tested (R)-55 derivatives, (R)-93–(R)-95, that contained AB groups at 

their 3-oxy sites. The electrophilic groups aldehyde (R)-93 (ED50 = >300 mg/kg) and 

epoxide (R)-94 (ED50 = >300 mg/kg) exhibited no anticonvulsant activity and no 

neurological toxicity at the doses tested. The lack of neurotoxicity may suggest that 

the compounds did not cross the blood brain barrier.  The aliphatic isothiocyanate 

(R)-95 was inactive in mice (ED50 = >300 mg/kg), active in rats (ED50 = <30 mg/kg), 
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but neurologically toxic (TD50 = 30–100 mg/kg, mice (ip); TD50 >30 mg/kg, rat (po)). 

We suspect that several of these AB groups may have metabolized under the test 

conditions. Indeed, aldehydes and epoxides are known substrates for a variety of 

enzymes (e.g., aldehyde reductases, epoxide hydrolases).395-400 Since we planned 

to use these AB groups for in vitro experiments where metabolism would less likely 

be an issue, we evaluated, where possible, the corresponding AB isostere to 

determine if the steric size of the AB group precluded their use. We were gratified to 

find that the O-but-3-enyl isostere (R)-88 (ED50 = 30–100 mg/kg, mice (ip); ED50 = 17 

mg/kg, rat (po)) for aldehyde (R)-93 and the O-cyclopropyl isostere (R)-89 (ED50 = 

46 mg/kg. mice (ip)) for epoxide (R)-94 displayed pronounced-to-excellent 

anticonvulsant activity. Thus, we have not attributed the absence of activity for 

aldehyde (R)-93 and epoxide (R)-94 to steric factors. Similar to the O-cyclopropyl 

(R)-89, the photolabile methyldiazirine AB derivative (R)-92 exhibited pronounced 

animal protection in the MES seizure test (ED50 = 30–100 mg/kg, mice (ip); ED50 = 

44 mg/kg, rat (po)). 

 Of all the O-substituted LCM analogs prepared, the CR O-azidoethyl (R)-97 

was the most intringuing. Its anticonvulsant activity was dependent on the animal, 

the seizure test, and the route of administration. While (R)-97 displayed poor MES 

seizure protection in mice (ip) (ED50 = 100–300 mg.kg-1), it proved potent in the 6 Hz 

test when administered to mice by the same route of administration (ED50 = 44 

mg.kg-1, 32 mA stimulation). Furthermore, we observed that (R)-97 exhibited 

exceptional activity in the MES test in the rat when administered ip (ED50 = 5.7 
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mg.kg-1), but that activity dropped with oral administration (MES ED50 >40 mg.kg-1).  

The TD50 for (R)-97 was 78 mg.kg-1 (rat, po), providing a PI greater than 13. 

 

2.2.3.3. Discussion 

The composite SAR documented the stringent structural requirements for the 

3-oxy site in (R)-55.  In mice (ip), the O-substituent that afforded the best activity 

was methyl ((R)-1, ED50 = 4.5 mg.kg-1). Replacing the O-methyl group with ethyl 

((R)-48, ED50 = 7.9 mg/kg), isopropyl ((R)-80, ED50 = 23 mg/kg), tert-butyl ((R)-81, 

ED50 = 30-100 mg/kg), and cyclohexyl ((R)-82, ED50 = 100-300 mg/kg) led to a 

steady drop in anticonvulsant activity in the MES seizure test. The difference in 

activity for (R)-1, (R)-48 and (R)-80 diminished in the rat (po) model where the MES 

ED50 values were below 10 mg/kg. We concluded that including bulky alkyl 

substituents at the 3-oxy site in (R)-55 adversely affected seizure protection in the 

MES seizure test.  

Inserting one methylene (CH2) group between the oxygen and the cyclohexyl 

ring in (R)-82 (ED50 = 100-300 mg/kg) to give (R)-85 (ED50 = 100–300 mg/kg) did not 

improve activity in mice (ip). However, we observed a significant increase in potency 

in mice going from O-phenyl (R)-83 (ED50 = 100–300 mg/kg) to O-benzyl (R)-87 

(ED50 = 64 mg/kg). Pronounced-to-excellent activity was also observed for the O-

allyl (R,S)-49 (ED50 = 30–100 mg/kg) and the O-propargyl (R)-84 (ED50 = 16 mg/kg) 

compounds. Inclusion of an ethylene (CH2CH2) spacer between the oxygen and the 

phenyl groups to provide (R)-91 (ED50 = 100–300 mg/kg) led to a loss of activity, 

compared with (R)-87 that contained a methylene spacer. A similar activity loss in 
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mice was observed going from the O-propargyl compound (R)-84 (ED50 = 16 mg/kg) 

to the O-3-butynyl derivative (R)-90 (ED50 = 30-100 mg/kg). When several of these 

compounds were tested in the rat (po), we observed improved anticonvulsant activity 

(i.e., (R)-84, (R)-88, (R)-90). The pronounced-to-excellent activity in the O-benzyl 

(R)-87 (ED50 = 64 mg/kg), O-propargyl (R)-84 (ED50 = 16 mg/kg), O-but-2-ynyl (R)-

85 (ED50 = 30–100 mg/kg), and racemic O-allyl (R,S)-49 (ED50 = 30–100 mg/kg) 

derivatives suggested that a favorable interaction with the 3-oxy π system in (R)-55 

at the target site(s) may foster binding, provided the group was not large and the 

unsaturated system was  correctly positioned at the 3-oxy site.  

 Compounds (R)-96, (R)-99, and (R)-100 were prepared to to help us 

determine if potential hydrogen bonding interactions at the 3-oxy site in (R)-55 would 

affect anticonvulsant activity. Methyl ether (R)-99 contained one ethylenoxy unit at 

the 3-oxy site and showed significant activity (ED50 = 30–100 mg/kg). Adding a 

second ethylenoxy unit to give (R)-100 (ED50 = >300 mg/kg) led to a loss of 

anticonvulsant activity. Replacement of the ethylenoxy moiety in (R)-99 with an 

acetamidoethoxy group provided (R)-96 (ED50 = >300 mg/kg), which was inactive in 

the MES seizure test. When (R)-99 was compared with two non-polar analogs, (R)-

88 (ED50 = 30–100 mg/kg) and (R)-90 (ED50 = 30–100 mg/kg), we found that it 

displayed similar anticonvulsant activity. We concluded that introducing additional 

oxygen and nitrogen substituents at the (R)-55 3-oxy site did not improve activity. 

Several factors may be responsible for these whole animal pharmacological findings, 

such as (R)-55 biodistribution in the brain, metabolism, and drug binding. Our data 

do not allow us to distinguish these factors but do provide valuable information for 
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the installation of both AB and CR units in the (R)-1 framework and future drug 

design efforts. 

 As part of our (R)-55 3-oxy SAR study, we prepared several (R)-55 AB agents 

((R)-92–(R)-95) and (R)-55 CR agents ((R)-84, (R)-97). The alkyne (R)-84 and azide 

(R)-97 CR compounds displayed excellent anticonvulsant activity (ED50 = <10 

mg/kg) in the rat upon po and ip administration, respectively. These findings 

supported the use of these CR units in (R)-1 proteomic target searches.  

Correspondingly, of the four (R)-55 AB agents we prepared, only the diazirinyl (R)-

92 showed anticonvulsant activity, modest in mice at ED50 = 30–100 mg/kg and in 

rat at ED50 = 44 mg/kg. The three other (R)-55 AB agents, (R)-93–(R)-95 displayed 

no anticonvulsant activity in mice (ip) at the highest dose tested (300 mg/kg). When 

(R)-95 was tested in the rat (po), we observed activity at 30 mg/kg. To test whether 

the structural size of the AB units in aldehyde (R)-93 and epoxide (R)-94 was 

responsible for anticonvulsant activity loss in the MES seizure model, we prepared 

the isosteres (R)-88 and (R)-89, respectively. When (R)-88 (ED50 = 30-100 mg/kg) 

and (R)-89 (ED50 = 46 mg/kg) were evaluated in the MES seizure model in mice, we 

observed appreciable seizure protection for both compounds, suggesting that other 

factors, such as metabolism or drug biodistribution in the CNS, were responsible for 

the inactivity of these (R)-55 AB agents in animals. 

 Finally, we asked whether the methyl-d3 analog of (R)-1, (R)-1-d3, would 

display enhanced anticonvulsant activity over (R)-1. Recently, pharmaceutical 

companies have prepared deuterated versions (“heavy drugs”) of marketed 

medicinal agents.404 The greater strength of C–D bonds compared with C–H bonds 
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is predicted to confer increased metabolic stability for the deuterated version of the 

drug.404 Significantly, the major metabolite for (R)-1 in humans is the desmethyl 

analog (R)-53.405 The metabolic conversion of (R)-1 to (R)-53 has not been 

attributed to a specific metabolic enzyme.406 Nonetheless, (R)-53 accounts for ~30% 

of the (R)-1 excreted in human urine,203 and it exhibits little anticonvulsant activity 

(ED50 = 100–300 mg/kg).234 Accordingly, we reasoned that replacing the 3-oxy 

methyl group in (R)-1 with the perdeuterated methyl unit to give (R)-1-d3 might 

reduce metabolic processes and thus lead to increased bioavailability of the AED. 

We prepared (R)-1-d3 using a method we reported for (R)-148 and substituting CD3I 

for CH3I. The deuterated derivative (R)-1-d3 (ED50 = 5.2 mg/kg) showed an 

anticonvulsant activity in the rat (po) comparable with (R)-1 (ED50 = 3.9 mg/kg), 

without exceeding it, and exhibited greater neurological toxicity ((R)-1-d3, TD50 = 

~200 mg/kg; (R)-1, TD50 = >500 mg/kg). 
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2.2.4. Experimental Section 

 

General Methods 

Melting points were determined in open capillary tubes using a Thomas-Hoover 

melting point apparatus and are uncorrected. Infrared spectra (IR) were run on an 

ATI Mattson Genesis FT-IR spectrometer. Absorption values are expressed in 

wavenumbers (cm−1). Optical rotations were obtained on a Jasco P-1030 polarimeter 

at the sodium D line (589 nm) using a 1 dm path length cell and are given in units of 

deg cm3 g−1 dm−1. NMR spectra were obtained at 300 MHz (1H) and 75 MHz (13C) 

using TMS as an internal standard. Chemical shifts ( ) are reported in parts per 

million (ppm) from tetramethylsilane. Low-resolution mass spectra were obtained 

with a BioToF-II-Bruker Daltonics spectrometer by Drs Matt Crowe and S. Habibi at 

the University of North Carolina Department of Chemistry. The high-resolution mass 

spectrum was performed on a Bruker Apex-Q 12 Telsa FTICR spectrometer by Drs 

Matt Crowe and S. Habibi. Microanalyses were performed by Atlantic Microlab, Inc. 

(Norcross, GA). Reactions were monitored by analytical thin-layer chromatography 

(TLC) plates (Aldrich, Cat # Z12272-6) and analyzed with 254 nm light. The reaction 

mixtures were purified by flash column chromatography using silica gel (Dynamic 

Adsorbents Inc., Cat #02826-25). All chemicals and solvents were reagent grade 

and used as obtained from commercial sources without further purification. THF was 

distilled from blue sodium benzophenone ketyl. Yields reported are for purified 

products and were not optimized. All compounds were checked by TLC, 1H and 13C 
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NMR, MS, and elemental analyses. The TLC, NMR and the analytical data 

confirmed the purity of the products was 95%. 

 
 

2.2.4.1. Synthetic procedures 

2.2.4.1.1.  General procedure for the aziridine ring -opening with alcohols. 
Method A 

 
To a cooled CH2Cl2 solution (ice bath) of 68a,b or 78 ([C]  0.5–1 M) and the 

appropriate alcohol (1−5 equiv) was added BF3•Et2O (1 equiv) dropwise while 

stirring. After addition, the mixture was warmed to room temperature and stirred (30 

min), and then an equal volume of saturated aqueous NaHCO3 was added. The 

reaction was vigorously stirred (15 min) and the organic layer separated. The 

aqueous layer was extracted with CH2Cl2 until no additional product could be 

detected (TLC analysis). All the organic layers were then combined, dried (Na2SO4), 

and concentrated in vacuo to yield a residue that was either or used directly for the 

next step, purified by flash column chromatography, or recrystallized from EtOAc 

and hexanes. 

 

2.2.4.1.2.  General procedure for the ester hydroly sis of N-acetylserine esters 
with LiOH. Method B 

 
To a THF solution of serine methyl ester (2 volumes, [C] 0.1 M) was added 

an aqueous solution (1 volume) of LiOH (1 equiv). The homogeneous solution was 

stirred at room temperature (60 min), after which time Et2O (2 volumes) was added. 

The aqueous layer was recovered, and washed with Et2O. The remaining aqueous 



 

 83 

layer was acidified (pH 1) by the dropwise addition of aqueous concentrated HCl, 

saturated with NaCl, and extracted with EtOAc until no further product was detected 

(TLC analysis). The combined organic layers were combined, dried (Na2SO4), and 

evaporated to an oily residue that was used directly for the next step or recrystallized 

from EtOAc and hexanes to provide an analytical sample. 

 

2.2.4.1.3.  General procedure for the MAC reaction.  Method C 
 
To a cooled THF solution (−78 °C, dry ice/acetone bat h) of acid ([C] 0.1 M) 

were successively added NMM (1.0 equiv), stirred for 2 min, IBCF (1.0 equiv), stirred 

for 15 min, and then the desired benzylamine (1.0 equiv). Upon addition the reaction 

mixture was allowed to warm to room temperature and further stirred (2 h). The salts 

were filtered and rinsed with THF, and the filtrate was concentrated in vacuo. The 

residue obtained was purified by flash chromatography, followed by recrystallization 

from EtOAc and hexanes when necessary. 

 

2.2.4.1.4.  General procedure for the DMTMM couplin g reaction. Method D 
 
To a THF solution of acid ([C] 0.1 M) at room temperature was added the 

desired benzylamine (1.2 equiv). The solution was stirred (5−10 min) until the 

benzylammonium carboxylate precipitated. With stirring, DMTMM (1.2 equiv) was 

added all at once, and the resulting suspension was stirred at room temperature 

(3−12 h). In those cases where a salt did not precipitate, DMTMM was added after 

15 min to the solution. The salts were removed by filtration and washed with THF, 
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and the solvent was removed in vacuo. The residue obtained was purified by flash 

column chromatography to afford the benzylamide, and then recrystallized from 

EtOAc and hexanes. 

 

2.2.4.1.5.  General procedure for the Swern oxidati on reaction. Method E 
 
To a cooled solution (dry ice/acetone bath) of oxalyl chloride (1.3 equiv) in 

anhydrous CH2Cl2 ([C] ~0.5 M) was added dropwise a CH2Cl2 solution of DMSO (2.6 

equiv) ([C] ~0.5 M). After stirring at -78 °C (15 mi n) a solution of alcohol (1.0 equiv) 

in CH2Cl2 or a mixture of CH2Cl2 and DMSO ([C] ~0.5 M) was added dropwise at -78 

°C and the reaction was stirred at -78 °C (1 h). DIEA (5 equiv) was then added 

dropwise, stirred (20 min), warmed to room temperature and then stirred (30 min). 

Minimal amounts of aqueous 10% citric acid solution were added to the solution until 

the pH of the aqueous layer remained acidic (pH ~3). The CH2Cl2 layer was 

separated and the aqueous layer extracted with CH2Cl2 (~6 to 7 volumes) until no 

more UV visible product was detected (TLC analysis) in the organic layer. The 

combined organic layers were washed with brine (1 volume), dried (Na2SO4), and 

evaporated to give an oily residue. Recrystallization from EtOAc and hexanes 

afforded the pure aldehyde. 

 

2.2.4.1.6.  General procedure for the Corey-Chaykov sky epoxidation. Method F 
 
Trimethylsulfoxonium iodide (1.2 equiv.) and NaH (60% dispersion in mineral 

oil, 1.2 equiv.) were suspended in DMSO or DMF ([C] ~0.1 M) and stirred under N2 
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(1 h) until a clear solution was obtained (solution A ). The aromatic aldehyde (1.0 

equiv) was added at once as a solid and the reaction was stirred at room 

temperature (12 h). Brine was added (10 volumes) and the aqueous layer was 

extracted with CH2Cl2 until no additional product was detected in the aqueous layer. 

The combined organic layers were dried (Na2SO4), evaporated, and the residue was 

purified by flash chromatography and recrystallized from EtOAc and hexanes. 

 

2.2.4.1.7.  General procedure for the Williamson et her synthesis. Method G 
 
A CH3CN solution of alcohol ([C] ~0.05–0.5 M), Ag2O (5 equiv) and MeI (10 

equiv) was stirred at room temperature (2–3 d). The reaction was filtered through 

Celite®, and the solvent was evaporated in vacuo. The residue was purified by silica 

gel chromatography or used directly for the next step. 

 

2.2.4.1.8.  General procedure for the Pd-catalyzed h ydrogenation reaction. 
Method H 

 
A MeOH suspension of the starting material ([C] ~0.01–0.2 M) and 10% Pd/C 

(10% w/w) was vigorously stirred under an atmosphere of H2 (balloon) at room 

temperature (16 h). The mixture was filtered through a bed of Celite®. The bed was 

washed with MeOH and CH2Cl2, the washings were collected and evaporated in 

vacuo. The amine was used without further purification. 

 



 

 86 

2.2.4.1.9.  General procedure for the aromatic alde hyde deprotection. Method I 
 

To a THF solution of the protected aldehyde ([C] ~0.1–0.5 M, 2 volumes) was 

added 1 volume of aqueous 0.1 M HCl. The reaction was stirred at room 

temperature (15 h) and the THF was removed in vacuo. The remaining aqueous 

layer was extracted with CH2Cl2 until no compound was detectable (TLC analysis). 

The combined organic layers were washed with brine (1 volume), dried (Na2SO4) 

and evaporated to yield the aldehyde that was purified either by silica gel 

chromatography or recrystallized from EtOAc and hexanes. 

 

2.2.4.1.10.  General Procedure for the m-CPBA epoxidation. Method J 
 

A CH2Cl2 ([C] ~0.1 M) solution of m-CPBA (1.0–1.2 equiv) was stirred in the 

presence of anhydrous Na2SO4 at room temperature (5 min). The starting material 

was then added at once as a solid (1.0 equiv) and the reaction was allowed to 

proceed at room temperature (15 h). The Na2SO4 was filtered, the solvent removed 

under vacuum, and the residue purified by silica gel chromatography. 

 

2.2.4.2. Synthesis of N-acetylaziridine carboxylate esters and carboxamides  

Methyl (2 R)-1-Tritylaziridine-2-carboxylate  ((R)-65).383 D-Serine methyl ester 

hydrochloride (25.0 g, 161 mmol) was suspended in CH2Cl2 (200 mL) and cooled to 

0 °C. While stirring, Et 3N (44.8 mL, 322 mmol) was added, followed by the 

portionwise addition of trityl chloride (44.8 g, 161 mmol). The reaction was stirred at 
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0 °C (24 h), filtered and the filtrate was successively washed with a 10% aqueous 

citric acid solution (200 mL) and brine (200 mL), dried (Na2SO4), and evaporated to 

yield 55.1 g of a white foam. The foam was dissolved in CH2Cl2 (400 mL), cooled (0 

°C) and Et 3N (32 mL, 207 mmol) was added followed by the dropwise addition of 

mesyl chloride (13.2 mL, 167.6 mmol). The reaction was maintained at 0 °C (40 

min), filtered, and the filtrate was washed with a 10% aqueous citric acid solution 

(400 mL), and brine (400 mL), dried (Na2SO4), and evaporated to give 65.0 g of a 

pale yellow foam. The foam was dissolved in 1,2-dimethoxyethane (110 mL) and 

Et3N (44.8 mL, 322 mmol) was added. The solution was heated to reflux (24 h), 

cooled to room temperature and washed with 10% aqueous citric acid (2 x 250 mL), 

saturated aqueous sodium bicarbonate (2 x 250 mL), and brine (2 x 250 mL), dried 

(Na2SO4), and evaporated. The crude residue was recrystallized from EtOH to yield 

32.2 g (58%) of (R)-65 as a white solid. Pure (R)-65 could also be obtained by SiO2 

chromatography (1/3 hexanes/CHCl3): mp 124–126 °C (lit. 383 mp 123–125°C); 

[αδ]25
D +91.2° ( c 1.0, EtOAc); Rf = 0.52 (1/3 hexanes/CHCl3); 

1H NMR (CDCl3) δ 1.41 

(dd, J = 1.8, 7.0 Hz, NCHH’CH), 1.89 (dd, J = 3.0, 7.0 Hz, CHC(O)OCH3), 2.55 (dd, 

J = 1.8, 3.0 Hz, NCHH’CH), 3.75 (s, C(O)OCH3); 
13C NMR (CDCl3) δ 28.7 

(NCH2CH), 31.8 (CHC(O)OCH3), 52.2 (C(O)OCH3), 74.5 (NCPh3), 127.1, 127.8, 

129.4, 143.7 (3 C6H5), 172.0 (C(O)OCH3). 

 

Methyl (2 S)-1-Tritylaziridine-2-carboxylate (( S)-65).383 Following the preceding 

procedure, L-serine methyl ester hydrochloride (25.0 g, 161 mmol), Et3N (44.8 mL, 

322 mmol), trityl chloride (44.8 g, 161 mmol) in CH2Cl2 (200 mL), followed by Et3N 
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(32 mL, 207 mmol), mesyl chloride (13.2 mL, 167.6 mmol) in CH2Cl2 (400 mL), and 

Et3N (44.8 mL, 322 mmol) in 1,2-dimethoxyethane (110 mL) gave 30.8 g (56%) of 

(S)-65 as a white solid upon work-up and recrystallization from EtOH: mp 124–126 

°C (lit. 383 mp = 123–125 °C); [ α]25
D -90.9° ( c 1.0, EtAc); Rf = 0.52 (1/3 

hexanes/CHCl3); 
1H NMR (CDCl3) δ 1.41 (dd, J = 1.8, 7.0 Hz, NCHH’CH), 1.89 (dd, 

J = 3.0, 7.0 Hz, CHC(O)OCH3), 2.55 (dd, J = 1.8, 3.0 Hz, NCHH’CH), 3.75 (s, 

C(O)OCH3); 
13C NMR (CDCl3) δ 28.7 (NCH2CH), 31.8 (CHC(O)OCH3), 52.2 

(C(O)OCH3), 74.5 (NCPh3), 127.1, 127.8, 129.4, 143.7 (3 C6H5), 172.0 (C(O)OCH3). 

 

(R)-Methyl 1-Acetylaziridine-2-carboxylate (( R)-68).407  Compound (R)-65 (26.0 g, 

75.8 mmol) was dissolved in CHCl3:MeOH (1:1) (200 mL) and cooled (ice bath). 

While stirring, TFA (87 mL) was added dropwise and the reaction was stirred at 0 °C 

(2 h). Solvents were removed in vacuo and the solid residue was dissolved in 

CH2Cl2 (150 mL), cooled (0 °C) and then Et 3N (44.2 mL, 303 mmol) followed by 

acetyl chloride (5.88 mL, 83.4 mmol) were added dropwise. The reaction was stirred 

(2 h), filtered, and the filtrate was successively washed with 10% aqueous citric acid 

(150 mL), saturated aqueous sodium bicarbonate (150 mL), and brine (150 mL). The 

organic layer was dried (Na2SO4) and evaporated. The solid residue was purified 

using silica gel chromatography (1/4 to 1/1 EtOAc/hexanes) to give 3.60 g (33%) of 

(R)-68 as a colorless residue: [α]25
D +81.7° ( c 1.3, CHCl3); Rf = 0.41 (1/2 

EtOAc/hexanes); 1H NMR (CDCl3) δ 2.15 (s, CH3C(O)), 2.49 (dd, J = 1.8, 7.0 Hz, 

NCHH’CH), 2.56 (dd, J = 3.0, 7.0 Hz, CHC(O)OCH3), 3.14 (dd, J = 1.8,  3.0 Hz, 

NCHH’CH), 3.78 (s, C(O)OCH3); 
13C NMR (CDCl3) δ 23.8 (CH3C(O)), 31.0 
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(NCH2CH), 34.5 (CHC(O)OCH3), 53.0 (C(O)OCH3), 169.0 (CH3C(O)), 180.6 

(C(O)OCH3).  

 

(S)-Methyl 1-Acetylaziridine-2-carboxylate (( S)-68).407 Using the preceding 

procedure, (S)-65 (17.4 g, 50.7 mmol) in CHCl3:MeOH (1:1) (150 mL) was reacted 

with TFA (58 mL) at 0 °C (2 h). The solvents were rem oved and the residue was 

dissolved in CH2Cl2 (100 mL) and reacted with Et3N (28.3 mL, 202.8 mmol) and 

acetyl chloride (3.96 mL, 55.8 mmol). Purification by SiO2 flash chromatography (1/4 

to 1/1 EtOAc/hexanes) afforded 2.50 g (34%) of (S)-68 as a colorless residue: [α]25
D 

-81.7° ( c 1.3, CHCl3); Rf = 0.41 (1/2 EtOAc/hexanes); 1H NMR (CDCl3) δ 2.15 (s, 

CH3C(O)), 2.49 (dd, J = 1.8, 7.0 Hz, NCHH’CH), 2.56 (dd, J = 3.0, 7.0 Hz, 

CHC(O)OCH3), 3.14 (dd, J = 1.8, 3.0 Hz, NCHH’CH), 3.78 (s, C(O)OCH3); 
13C NMR 

(CDCl3) δ 23.9 (CH3C(O)), 31.1 (NCH2CH), 34.6 (CHC(O)OCH3), 53.1 (C(O)OCH3), 

169.1 (CH3C(O)), 180.7 (C(O)OCH3). 

 

Serine Methyl Ester Free Amine (67). 381 L or D-Serine methyl ester hydrochloride 

(62, 1 equiv) was suspended in CH2Cl2 ([C] ~1 M) and Et3N (1.5 equiv) was added. 

After stirring at room temperature (1 h), the salts were filtered and briefly rinsed with 

EtOAc, and an equal volume of EtOAc was then added. The mixture was stirred at 0 

°C (10 min), the solids filtered, and the solvent redu ced in vacuo to one third in 

volume. The remaining reaction mixture was stirred at 0 °C (10 min), filtered, and the 

solvent removed. CH3CN was then used to azeotropically remove excess Et3N until 
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it could not be detected. Free amine 67 (80–90% yield) was immediately used in the 

next step. 

 

(R)-Methyl N-Acetylaziridine-carboxylate (( R)-68a) and (R)-Ethyl N-

Acetylaziridine-carboxylate (( R)-68b). To a solution of (R)-67 (41.3 g, 347 mmol) 

in CH3CN (500 mL) was added DTPP (86% by wt, 142.0 g, 346 mmol). The solution 

was stirred at room temperature (24 h). The solvent was removed in vacuo, the 

residue dissolved in minimal amount of CH2Cl2 (250 mL), and extracted with 

aqueous 0.1 M H2SO4 until the pH of the aqueous phase remained acidic (3 x 150 

mL). The combined aqueous layers were washed with EtOAc (3 x 200 mL), basified 

(pH ~10) with solid Na2CO3, saturated with solid NaCl until the solution became 

cloudy, and extracted with EtOAc (6 x 200 mL). The combined organic layers were 

dried (Na2SO4) and evaporated to give a crude yellow liquid. Bulb-to-bulb distillation 

of the liquid at 80 °C under vacuum (6 mm Hg) yielde d an approximately 9:1 molar 

mixture of (R)-66a and (R)-66b as a colorless liquid (24.60 g, 69%). The mixture was 

directly dissolved in CH2Cl2 (500 mL) and Et3N (33.4 mL, 239 mmol) and DMAP 

(1.46 g, 12 mmol) were successively added. While stirring at room temperature 

(water bath), Ac2O (22.6 mL, 239 mmol) was added dropwise (15 min) and the 

reaction was allowed to proceed at room temperature (45 min). The solution was 

successively washed with 10% aqueous citric acid (500 mL) and brine (500 mL), 

dried (Na2SO4), and the solvents were removed in vacuo to yield an approximately 

9:1 molar mixture of a colorless residue (32.80 g, 94%) that did not require further 

purification: Rf = 0.38 ((R)-68a), 0.39 ((R)-68b) (2:1 hexanes/EtOAc). Spectral data 
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for (R)-68a (~90% mol. based on 1H NMR integrations): 1H NMR (CDCl3) δ 2.16 (s, 

CH3C(O)), 2.49 (dd, J = 1.8, 7.0 Hz, NCHH’CH), 2.58 (dd, J = 1.8, 3.0 Hz, 

NCHH’CH), 3.15 (dd, J = 3.0, 7.0 Hz, CHC(O)OCH3), 3.80 (s, C(O)OCH3); 
13C NMR 

(CDCl3) δ 23.8 (CH3C(O)), 31.0 (NCH2CH), 34.5 (CHC(O)OCH3), 52.9 (C(O)OCH3), 

168.9 (CH3C(O)), 180.6 (C(O)OCH3); (R)-68a was not detected by HRMS. Spectral 

data for (R)-68b (~10% mol. on 1H NMR integrations): 1H NMR (CDCl3) δ 1.31 (t, J = 

6.9 Hz, C(O)OCH2CH3), 4.24 (q, J = 6.9 Hz, C(O)OCHH’CH3), 4.25 (q, J = 6.9 Hz, 

C(O)OCHH’CH3), the remaining signals were not detected and are believed to 

overlap with the 1H signals for (R)-68a; 13C NMR (CDCl3) no 13C signals were 

detected for (R)-68b; Mr (+ESI) 180.0631 [M+Na]+ (calcd for C7H11NO3Na+ 

180.0637). 

 

(R)-N-Benzyl 2 -N-(Benzyloxycarbonyl)amino-3-hydroxypropionamide (( R)-

57).235 Using Method C, Cbz-D-serine ((R)-56) (5.10 g, 21.3 mmol), NMM (2.3 mL, 

21.3 mmol), IBCF (2.8 mL, 21.3 mmol), and benzylamine (2.3 mL, 21.3 mmol) gave 

(R)-57 (5.33 g, 76%) as a white solid: mp 147–149 °C (lit. 235 mp 147–149 °C); [ α]25
D 

+4.5° ( c 1.0, MeOH) (lit.235 [α]25
D +4.6° ( c 2.0, MeOH)); 1H NMR (DMSO-d6) δ 3.58 

(d, J = 5.7 Hz, CH2), 4.04–4.11 (m, CHCH2), 4.27 (d, J = 6.0 Hz, CH2N), 4.90–4.95 

(m, CH2OH), 5.02 (s, CH2O), 7.20–7.38 (m, 10 ArH, OC(O)NH), 8.32–8.37 (m, 

C(O)NHCH2Ph). 

 

(R)-N-Benzyl 2-Amino-3-hydroxypropionamide (( R)-76).235 Using Method H, 

compound (R)-57 (3.00 g, 9.14 mmol) and 10% Pd/C (300 mg) in MeOH (50 mL) 
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gave (R)-76 (1.75 g, 98%) as a white solid: mp 89–91 °C (lit. 235 mp 88–90 °C); [ α]25
D 

-3.0° ( c 1.0; MeOH) (lit.235 [α]25
D -3.2° ( c 0.9; MeOH));  Rf  = 0.15 (1/9 MeOH/CHCl3); 

1H NMR (DMSO-d6) δ 3.31–3.36 (m, CHCH2OH), 3.40–3.60 (m, CHCH2OH), 4.29 (d, 

J = 6.0 Hz, C(O)NHCH2Ph), 4.78–4.98 (br s, CH2OH), 7.20–7.32 (m, C6H5), 8.34–

8.48 (br t, C(O)NHCH2Ph); 13C NMR (CDCl3) δ 41.9 (NHCH2Ph), 56.6 (CHCH2O), 

63.7 (CHCH2OH), 126.7, 127.1, 128.2, 139.4 (C6H5), 172.4 (C(O)NHCH2). 

 

(R)-N-Benzyl 1-Acetylaziridine-2-carboxamide (( R)-78). Compound (R)-76 (1.75 

g, 9.1 mmol) was suspended in CH3CN (20 mL) and while stirring DTPP (90% by wt, 

3.60 g, 10.01 mmol) was added all at once. The solution became clear within 

minutes and was then stirred at room temperature (3 h). The solvent was removed in 

vacuo, and the residue was partitioned between aqueous 0.1 M H2SO4 (20 mL) and 

toluene (20 mL). The toluene layer was extracted with aqueous 0.1 M H2SO4 (20 

mL). The combined aqueous layers were washed with toluene and basified (pH ~10) 

by addition of solid K2CO3, saturated with NaCl, and then extracted with EtOAc (3 x 

40 mL). The combined EtOAc layers were dried (Na2SO4), and concentrated to yield 

1.47 g (92%) of aziridine (R)-77 as a crude yellow oil. Crude (R)-77 was dissolved in 

CH2Cl2 (80 mL), cooled to 0 °C, and Et 3N (1.71 mL, 10.28 mmol) added. While 

stirring, AcCl (581 µL, 8.18 mmol) in CH2Cl2 (6 mL) was added dropwise. The 

reaction was stirred at 0 °C (1 h), and successively washe d with aqueous 10% citric 

acid (100 mL) and brine (100 mL). The organic layer was dried (Na2SO4) and 

evaporated. The residue was purified using flash chromatography (CH2Cl2/EtOAc 

1:1) and further recrystallized from EtOAc and hexanes to yield 1.12 g of (R)-78 
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(62% for two steps): mp 82–84°C (lit. 384 mp 82–83 °C); [ α]25
D -106.6° ( c 1.6; CHCl3);  

Rf  = 0.44 (1/1 CH2Cl2/EtOAc); IR (nujol) 3230, 1660, 1558, 1459, 1390, 1154, 1092 

cm-1; 1H NMR (CDCl3) δ 2.17 (s, CH3C(O)N), 2.37 (dd, J = 0.9, 3.0 Hz, NCHH’CH), 

2.56 (dd, J = 0.9, 6.3 Hz, NCHH’CH), 3.08 (dd, J = 3.0, 6.3 Hz, NCHH’CH)   4.38–

4.50 (m, C(O)NHCH2Ph), 6.46–6.62 (m, C(O)NHCH2Ph), 7.20–7.40 (m, C6H5); 
13C 

NMR (CDCl3) δ 23.7 (CH3C(O)), 31.2 (NCH2CH), 36.4 (NCH2CH), 43.4 (NHCH2Ph), 

127.7, 127.8, 128.9, 137.8 (C6H5), 167.3 (C(O)NHCH2), 181.5 (CH3C(O)N); Mr 

(+ESI) 219.1129 [M+H]+ (calcd for C12H14N2O2H
+ 219.1134). Anal. Calcd for 

C12H14N2O2: C, 66.04; H, 6.47; N, 12.84. Found: C, 66.06; H, 6.43; N, 12.73. 

 

Alternate Procedure for ( R)-N-Benzyl 1-Acetylaziridine-2-carboxamide (( R)-78). 

PPh3 (100 g, 377 mmol) was dissolved in CH2Cl2 (400 mL), cooled at -78 °C (dry 

ice/acetone) under N2 and Br2 (19.3 mL, 380 mmol) was added quickly with a 

syringe. After stirring at -78 °C (10 min), a solution  of CF3CH2OH (54.2 mL, 754 

mmol) and Et3N (105 mL, 754 mmol) in Et2O (300 mL) was added dropwise (15 

min). Upon addition, the reaction was allowed to stir and slowly warm up to room 

temperature (1 h), then quickly filtered using oven-dried glassware, and the solvents 

were removed in vacuo at room temperature to give DTPP-F6 (138 g, 300 mmol, 

79%) as a pale beige solid. DTPP-F6 was directly added to a suspension of (R)-76 

(36.6 g, 189 mmol) in CH3CN (500 mL) and the reaction was stirred at room 

temperature (15 h). The solvent was removed under vacuum and the solid residue 

was partitioned between EtOAc (500 mL) and aqueous 0.5 M H2SO4 (50 mL). The 

aqueous layer was recovered and washed with EtOAc (3 x 200 mL), basified using 
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solid Na2CO3 (pH ~10), saturated with NaCl, and extracted with CH2Cl2 (5 x 200 

mL). The EtOAc and CH2Cl2 layers were separately washed with brine (200 mL), 

combined, dried (Na2SO4), and concentrated. The residue was purified using flash 

chromatography (5/95 MeOH CH2Cl2) to give 9.70 g of a crude yellow oil (Rf = 0.43, 

5/95 MeOH/CH2Cl2) that was dissolved in CH2Cl2 (500 mL). While stirring, Et3N (7.7 

mL, 55.0 mmol), DMAP (300 mg, 2.5 mmol) and Ac2O (5.2 mL, 55.0 mmol) were 

successively added and the reaction was stirred at room temperature (1 h). The 

reaction was then washed with aqueous 0.1 M H2SO4 (300 mL), brine (200 mL), 

dried (Na2SO4), and the solvents were removed under vacuum. The residue was 

purified using flash chromatography (EtOAc/CH2Cl2 1/1 to 4/1) to yield (R)-78 as a 

white solid (5.70 g, 15% overall yield for 2 steps): mp 82–84 °C (lit. 384 mp 82–83 °C); 

[α]25
D -106.0° ( c 1.3, CHCl3);  Rf = 0.44 (1/1 EtOAc/CH2Cl2); 

1H NMR (CDCl3) δ 2.18 

(s, CH3C(O)), 2.37 (d, J = 3.3 Hz, CHH’(N)CH), 2.58 (d, J = 7.6 Hz, CHH’(N)CH), 

3.09 (dd, J = 3.3, 7.6 Hz, CH2(N)CH), 4.38–4.54 (m, NHCH2C6H5), 6.42–6.54 (m, 

NHCH2C6H5), 7.20–7.40 (m, CH2C6H5); 
13C NMR (CDCl3) δ 23.6 (CH3C(O)), 31.4 

(CH2(N)CH), 36.4 (CH2(N)CH), 43.4 (NHCH2Ph), 127.8, 128.9, 137.6 (C6H5), 167.2 

(C(O)NHCH2), 181.3 (CH3C(O)N), the remaining carbon signal was not detected and 

is believed to overlap with nearby peaks. 
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2.2.4.3. Synthesis of O-Substituted N-Acetylserine Esters  
 

 

R = Compound number 
(a, X = Me, b, X = Et) 

Me 101 
Et 102 

i-Pr 103 
t-Bu 104 

C6H11 105 
Ph 106 

CH2C6H11 107 
CH2CH2CH=CH2 108 

 
109 

CH2CH2OBn 110 
CH2CH2CH2OBn 111 

CH2CH2N3 112 
CH2CH2OCH3 113 

(CH2CH2O)2CH3 114 
 

 

(R)-Methyl 2-Acetamido-3-methoxypropionate (( R)-101a) and (R)-Ethyl 2-

Acetamido-3-methoxypropionate (( R)-101b). Using Method A, a ~9:1 mixture of 

(R)-68a and (R)-68b  (5.46 g, 40.6 mmol) and BF3•Et2O (5.1 mL, 40.6 mmol) in 

MeOH (50 mL) gave 3.95 g (56%) of (R)-101a and (R)-101b as a pale yellow 

residue that turned to a white solid upon concentration under high vacuum: Rf = 0.40 

((R)-101a), 0.42 ((R)-101b) (5/95 hexanes/EtOAc); IR (CH2Cl2 film) 3300, 3062, 
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2996, 2940, 1743, 1656, 1547, 1444, 1380, 1214, 1119 cm-1. Spectral data for (R)-

101a (approximately 90 mol percent based on 1H NMR integrations): 1H NMR 

(CDCl3) δ 2.06 (s, CH3C(O)NH), 3.34 (s, OCH3), 3.61 (dd, J = 4.0, 9.3 Hz, 

CHCHH’OCH3), 3.77 (s, C(O)OCH3), 3.81 (dd, J = 4.0, 9.3 Hz, CHCHH’OCH3), 4.75 

(app dt, J = 4.0, 7.8 Hz,  CHCH2OCH3), 6.74 (br d, J = 7.8 Hz, CH3C(O)NH); 13C 

NMR (CDCl3) δ 22.9 (CH3C(O)), 52.4 (CHCH2OCH3 or C(O)OCH3), 52.5 (C(O)OCH3 

or CHCH2OCH3), 59.1 (CH2OCH3), 72.2 (CHCH2OCH3), 170.1, 170.8 (CH3C(O)NH, 

C(O)OCH3); Mr (+ESI) 198.0740 [M+Na]+ (calcd for C7H13NO4Na+ 198.0742). 

Spectral data for (R)-101b (approximately 10 mol percent based on 1H NMR 

integrations): 1H NMR (CDCl3) δ 1.29 (t, J = 7.2 Hz, C(O)OCH2CH3) 1.99 (s, 

CH3C(O)NH), 3.44 (s, OCH3), 3.92 (dd, J = 4.0, 9.3 Hz, CHCHH’OCH3), 4.19–4.28 

(m, C(O)OCH2CH3),  6.40–6.50 (br d, CH3C(O)NH), the remaining signals were not 

detected and are believed to overlap with (R)-101a signals; 13C NMR signals were 

not detected for (R)-101b; Mr (+ESI) 212.0896 [M+Na]+ (calcd for C8H15NO4Na+ 

212.0899).  

 

(S)-Methyl 2-Acetamido-3-(methoxy)propionate (( S)-101a) and (S)-Ethyl 2-

Acetamido-3-(methoxy)propionate (( S)-101b). Using Method A, a ~9:1 mixture of 

(S)-68a and (S)-68b (1.50 g, 10 mmol) and BF3•Et2O (1.3 mL, 10 mmol) in MeOH 

(20 mL) gave upon work-up a mixture of (S)-101a and (S)-101b (1.43 g, 80%) as a 

pale yellow solid that was used without further purification: Rf = 0.40 ((S)-101a), 0.42 

((S)-101b) (5/95 hexanes/EtOAc); IR (neat) 3287, 3064, 2977, 2877, 1746, 1662, 

1542, 1442, 1375, 1296, 1212 cm 1. Spectral data for (S)-101a (~90% based on 1H 
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NMR integrations): 1H NMR (CDCl3) δ 2.06 (s, CH3C(O)), 3.35 (s, CH2OCH3), 3.61 

(dd, J = 3.0, 9.0 Hz, CHH’OCH3), 3.78 (s, C(O)OCH3), 3.81 (dd, J = 3.0, 9.0 Hz, 

CHH’OCH3), 4.73 (app. dt, J = 3.0, 7.2 Hz, CHCH2O), 6.30–6.40 (br d, NHCHCH2O); 

13C NMR (CDCl3) δ 23.3 (CH3C(O)), 52.8 (CHOCH2 or C(O)OCH3), 59.5 (CH2OCH3), 

72.5 (CHCH2OCH3), 170.1, 171.0 (CH3C(O), CHC(O)OCH3), the remaining signal 

was not detected and is believed to overlap with nearby peaks; Mr (+ESI) 198.0741 

[M+Na]+ (calcd for C7H13NO4Na+ 198.0742). 

Spectral data for (S)-101b (~10% based on 1H NMR integrations): 1H 

NMR(CDCl3) δ 1.28 (t, J = 7.2 Hz, OCH2CH3), 3.45 (s, CH2OCH3), 4.19–4.28 (m, 

OCH2CH3), the remaining signals were not detected and are believed to overlap with 

nearby signals or are too small to be detected; 13C NMR signals were not detected 

for (S)-14b; Mr (+ESI) 212.0897 [M+Na]+ (calcd for C8H15NO4Na+ 212.0899). 

 

(R)-Methyl 2-Acetamido-3-ethoxypropionate (( R)-102a) and (R)-Ethyl 2-

Acetamido-3-ethoxypropionate (( R)-102b). Using Method A, a ~9:1 mixture of (R)-

68a and (R)-68b (1.88 g, 13.0 mmol) and BF3•Et2O (1.63 mL, 13.0 mmol) in EtOH 

(25 mL) gave 1.34 g (54%) of (R)-102a and (R)-102b as a pale yellow oil: Rf = 0.43 

((R)-102a), 0.45 ((R)-102b) (5/95 hexanes/EtOAc); IR (neat) 3287, 3064, 2977, 

2876, 1745, 1661, 1542, 1442, 1375, 1212, 1119 cm-1. Spectral data for (R)-102a 

(approximately 90 mol percent based on 1H NMR integrations): 1H NMR (CDCl3) δ 

1.16 (t, J = 7.2 Hz, CH2OCH2CH3), 2.06 (s, CH3C(O)NH), 3.50 (q, J = 7.2 Hz, 

CH2OCHH’CH3), 3.51 (q, J = 7.2 Hz, CH2OCHH’CH3), 3.65 (dd, J = 4.0, 8.7 Hz, 

CHCHH’OCH2CH3), 3.76 (s, C(O)OCH3), 3.84 (dd, J = 4.0, 8.7 Hz, 
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CHCHH’OCH2CH3), 4.75 (app dt, J = 4.0, 7.5 Hz,  CHCH2OCH2CH3), 6.54 (br d, J = 

7.5 Hz, CH3C(O)NH); 13C NMR (CDCl3) δ 15.0 (OCH2CH3), 23.3 (CH3C(O)), 52.7 

(CHCH2OCH3 or C(O)OCH3), 52.8 (C(O)OCH3 or CHCH2OCH2H3), 67.1 

(CHCH2OCH2CH3), 70.2 (CHCH2OCH2CH3), 170.1, 171.1 (CH3C(O)NH, 

C(O)OCH3); Mr (+ESI) 212.0897 [M+Na]+ (calcd for C8H15NO4Na+ 212.0899). 

Spectral data for (R)-102b (approximately 10 mol percent based on 1H NMR 

integrations): 1H NMR (CDCl3) δ 1.24 (t, J = 7.2 Hz, CH2OCH2CH3 or 

C(O)OCH2CH3), 1.29 (t, J = 7.2 Hz, C(O)OCH2CH3 or CH2OCH2CH3), 1.99 (s, 

CH3C(O)NH), 3.96–4.04 (m, CH2OCHH’CH3), 4.19–4.30 (m, C(O)OCH2CH3), 6.10–

6.22 (br d, J = 6.8 Hz,  CH3C(O)NH), the remaining signals were not detected and 

are believed to overlap with (R)-102a signals; 13C NMR signals were not detected for 

(R)-102b; Mr (+ESI) 226.1054 [M+Na]+ (calcd for C9H17NO4Na+ 226.1055). 

 

(R)-Methyl 2-Acetamido-3-isopropoxypropionate (( R)-103a) and (R)-Ethyl 2-

Acetamido-3-isopropoxypropionate (( R)-103b). Using Method A, a ~9:1 mixture 

of (R)-68a and (R)-68b (3.40 g, 23.5 mmol) and BF3•Et2O (2.95 mL, 23.5 mmol) in i-

PrOH (30 mL) gave 2.98 g (62%) of (R)-103a and (R)-103b as a pale yellow oil: Rf = 

0.46 ((R)-103a), 0.48 ((R)-103b) (5/95 hexanes/EtOAc); IR (neat) 3295, 3062, 2972, 

2877, 1748, 1663, 1538, 1442, 1375, 1212, 1147 cm-1. Spectral data for (R)-103a 

(approximately 90 mol percent based on 1H NMR integrations): 1H NMR (CDCl3) δ 

1.10 (d, J = 6.0 Hz, CH2OCHCH3(C’H3)), 1.12 (d, J = 6.0 Hz, CH2OCHCH3(C’H3)), 

2.06 (s, CH3C(O)NH), 3.55 (hept, J = 6.0 Hz, CH2OCH(CH3)2), 3.64 (dd, J = 3.7, 9.3 

Hz, CHCHH’OCH(CH3)2), 3.76 (s, C(O)OCH3), 3.84 (dd, J = 3.7, 9.3 Hz, 
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CHCHH’OCH(CH3)2), 4.72 (app dt, J = 3.7, 7.2 Hz,  CHCH2OCH(CH3)2), 6.41 (br d, 

J = 7.2 Hz, CH3C(O)NH); 13C NMR (CDCl3) δ 21.5 (OCHCH3(C’H3)), 21.6 

(OCHCH3(C’H3)), 22.9 (CH3C(O)), 52.1 (CHCH2OCH(CH3)2 or C(O)OCH3), 52.6 

(C(O)OCH3 or CHCH2OCH(CH3)2), 67.5 (CHCH2OCH(CH3)2), 70.2 

(CHCH2OCH(CH3)2), 169.6, 170.4 (CH3C(O)NH, C(O)OCH3); Mr (+ESI) 226.1054 

[M+Na]+ (calcd for C9H17NO4Na+ 226.1055). 

Spectral data for (R)-103b (approximately 10% mol based on integrations): 1H 

NMR (CDCl3) δ 1.16 (d, J = 6.0 Hz, CH2OCHCH3(C’H3)), 1.21 (d, J = 6.0 Hz, 

CH2OCHCH3(C’H3)), 1.28 (t, J = 6.0 Hz, C(O)OCH2CH3), 1.99 (s, CH3C(O)NH), 

4.06–4.12 (m, CHCHH’OCH(CH3)2), 4.18-4.26 (m, C(O)OCH2CH3), 5.95-6.10 (br m,  

CH3C(O)NH), the remaining signals were not detected and are believed to overlap 

with (R)-103a signals; 13C NMR signals were not detected for (R)-103b; Mr (+ESI) 

240.1211 [M+Na]+ (calcd for C10H19NO4Na+ 240.1212). 

 

(R)-Methyl 2-Acetamido-3- tert -butoxypropionate (( R)-104a) and (R)-Ethyl 2-

Acetamido-3- tert -butoxypropionate (( R)-104b). Using Method A, a mixture of ~9:1 

(R)-68a and (R)-68b (3.50 g, 24.2 mmol) and BF3•Et2O (3.05 mL, 24.2 mmol) in t-

BuOH (30 mL) gave 2.75 g (52%) of (R)-104a and (R)-104b as a pale yellow oil: Rf = 

0.52 ((R)-104a), 0.54 ((R)-104b) (5/95 hexanes/EtOAc); IR (neat) 3298, 3062, 2974, 

1749, 1663, 1537, 1370, 1204, 1098 cm-1. Spectral data for (R)-104a (approximately 

95 mol percent based on 1H NMR integrations): 1H NMR (CDCl3) δ 1.14 (s, 

CH2OC(CH3)3), 2.06 (s, CH3C(O)NH), 3.56 (dd, J = 3.0, 9.0 Hz, CHCHH’OC(CH3)3), 

3.76 (s, C(O)OCH3), 3.81 (dd, J = 3.0, 9.0 Hz, CHCHH’OC(CH3)3), 4.72 (app dt, J = 
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3.0, 7.2 Hz, CHCH2OC(CH3)3), 6.41 (br d, J = 7.2 Hz, CH3C(O)NH); 13C NMR 

(CDCl3) δ 22.9 (CH3C(O)), 27.7 (OC(CH3)3), 52.1 (CHCH2OC(CH3)3 or C(O)OCH3), 

53.3 (C(O)OCH3 or CHCH2OCH(CH3)2), 62.4 (CHCH2OC(CH3)3), 73.8 

(CHCH2OC(CH3)3), 170.3, 171.5 (CH3C(O)NH, C(O)OCH3); Mr (+ESI) 240.1211 

[M+Na]+ (calcd for C10H19NO4Na+ 240.1212).  

Spectral data for (R)-104b (approximately 5% mol based on integrations): 1H 

NMR (CDCl3) δ 1.21 (s, CH2OC(CH3)3), 1.99 (s, CH3C(O)NH), 4.18–4.24 (m, 

C(O)OCH2CH3), 5.95–6.15 (m, CH3C(O)NH), the remaining signals were not 

detected and are believed to overlap with (R)-104a signals or are  too small to be 

detected; 13C NMR signals were not detected for (R)-104b; Mr (+ESI) 254.1368 

[M+Na]+ (calcd for C11H21NO4Na+ 254.1368). 

 

(R)-Methyl 2-Acetamido-3-(cyclohexyloxy)propionate (( R)-105a) and (R)-Ethyl 

2-Acetamido-3-(cyclohexyloxy)propionate (( R)-105b). Using Method A, a ~1:1 

mixture of (R)-68a and (R)-68b (2.70 g, 18.0 mmol), cyclohexanol (6.0 mL, 57 mmol) 

and BF3•Et2O (2.3 mL, 18.3 mmol) in CH2Cl2 (20 mL) gave a ~1:1 mixture of (R)-

105a and (R)-105b (2.18 g, 48%) as a yellow oil after work-up and purification by 

flash chromatography (1/1 EtOAc/hexanes to EtOAc): Rf = 0.49 ((R)-105a), 0.51 

((R)-105b) (5/95 hexanes/EtOAc); IR (neat) 3308, 3061, 2926, 2861, 1747, 1662, 

1537, 1447, 1372, 1206, 1106 cm 1; 1H NMR (CDCl3) δ 1.18–1.35, 1.42–1.58, 1.62–

1.86 (m, OCH(CH2CH2)2CH2, (R)-105a,b), 1.28 (t, J = 6.9 Hz, OCH2CH3, (R)-105b), 

2.06 (s, CH3C(O), (R)-105a,b), 3.18–3.26 (m, OCH(CH2CH2)2CH2, (R)-105a,b), 3.66 

(dd, J = 3.0, 9.0 Hz, CHH’OCH(CH2CH2)2CH2, (R)-105a,b), 3.76 (s, C(O)OCH3, (R)-
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105a), 3.88 (dd, J = 3.0, 9.0 Hz, CHH’OCH(CH2CH2)2CH2, (R)-105a,b), 4.15–4.28 

(m, C(O)OCH2CH3, (R)-105b), 4.66–4.78 (m, CHCH2O, (R)-105a,b), 6.30–6.40 (br 

d, CH3C(O)NH, (R)-105a,b); 13C NMR (CDCl3) δ 14.3 (C(O)OCH2CH3, (R)-105b), 

23.4, 23.9, 24.0, 25.9 (CH3C(O), OCH(CH2CH2)2CH2, (R)-105a,b), 31.9, 32.1 

(OCH(CH2CH2)2CH2, (R)-105a,b), 52.7, 52.9, 53.0 (CHCH2OCH2, (R)-105a,b, 

C(O)OCH3, (R)-105a), 61.7 (C(O)OCH2CH3, (R)-105b), 67.8, 67.9 

(CH2OCH(CH2CH2)2CH2, (R)-105a,b), 78.1 (OCH(CH2CH2)2CH2, (R)-105a,b), 170.1, 

170.7, 171.2 (CH3C(O)NH, C(O)OCH3, (R)-105a,b), the remaining resonances were 

not detected and are believed to overlap with nearby signals; Mr (R)-105a (+ESI) 

266.1368 [M+Na]+ (calcd for C12H21NO4Na+ 266.1362), (R)-105b (+ESI) 280.1525 

[M+Na]+ (calcd for C13H23NO4Na+ 280.1524).  

 

(R)-Methyl 2-Acetamido-3-phenoxypropionate (( R)-106a) and (R)-Ethyl 2-

Acetamido-3-phenoxypropionate (( R)-106b). Using Method A, a ~3:7 mixture of 

(R)-68a and (R)-68b (2.00 g, 13.1 mmol), phenol (3.95 g, 42.0 mmol) and BF3•Et2O 

(1.6 mL, 13.1 mmol) in CH2Cl2 (20 mL) gave 1.4 g (43%) of (R)-106a and (R)-106b 

as a pale yellow residue:  Rf = 0.50 ((R)-106a), 0.52 ((R)-106b) (5/95 

hexanes/EtOAc); IR (neat) 3067, 2984, 1743, 1660, 1596, 1541, 1498, 1379, 1296, 

1238, 1159 cm-1; Spectral data for (R)-106a (approximately 30 mol percent based on 

1H NMR integrations): 1H NMR (CDCl3) δ 2.06 (s, CH3C(O)NH),  3.76 (s, 

C(O)OCH3), 4.20–4.23 (m, CHCHH’OPh), 4.36–4.43 (m, CHCHH’OPh), 4.68–5.06 

(m, CHCH2OPh), 6.52 (br d, J = 7.2 Hz, CH3C(O)NH), 6.84–6.90 (m, 2 ArH (o)), 

6.95–7.00 (m, ArH (p)), 7.24–7.32 (m, 2 ArH (m)); 13C NMR (CDCl3) δ 23.1 



 

 102 

(CH3C(O)), 52.4 (CHCH2OPh or C(O)OCH3), 53.0 (C(O)OCH3 or CHCH2OPh), 68.1 

(CHCH2OPh), 114.8, 121.7, 129.7, 158.4 (CH2OPh), 170.0, 170.1, 170.5 

(CH3C(O)NH, C(O)OCH3), additional peaks are believed to be part of (R)-106b but 

cannot be precisely attributed; Mr (+ESI) 268.0895 [M+Na]+ (calcd for C12H15NO4Na+ 

260.0899). 

Spectral data for (R)-106b (approximately 70 mol percent based on 1H NMR 

integrations): 1H NMR (CDCl3) δ 1.25 (t, J = 7.2 Hz, C(O)OCH2CH3), 2.06 (s, 

CH3C(O)NH), 4.20–4.23 (m, CHCHH’OPh), 4.24 (q, J = 7.2 Hz,  C(O)OCH2CH3), 

4.36–4.43 (m, CHCHH’OPh), 4.68–5.06 (m, CHCH2OPh), 6.52 (br d, J = 7.2 Hz, 

CH3C(O)NH), 6.84–6.90 (m, 2 ArH (o)), 6.95–7.00 (m, ArH (p)), 7.24–7.32 (m, 2 ArH 

(m)); 13C NMR (CDCl3) δ 14.3 (CH2CH3), 23.1 (CH3C(O)), 52.5 (CHCH2OPh), 68.2 

(CHCH2OPh), 114.8, 121.7, 129.7, 158.4 (CH2OPh), 170.0, 170.1, 170.5 

(CH3C(O)NH, C(O)OCH3), additional peaks are believed to be part of (R)-106a but 

cannot be precisely attributed; Mr (+ESI) 274.1052 [M+Na]+ (calcd for C13H17NO4Na+ 

274.1055). 

 

(R)-Methyl 2-Acetamido-3-(cyclohexylmethoxy)propionat e ((R)-107a) and (R)-

Ethyl 2-Acetamido-3-(cyclohexylmethoxy)propionate ( (R)-107b). Using Method 

A, a ~1:4 mixture of (R)-68a and (R)-68b (3.50 g, 22.7 mmol), cyclohexylmethanol 

(6.0 mL, 57 mmol) and BF3•Et2O (2.3 mL, 18.3 mmol) in CH2Cl2 (20 mL) gave a ~1:4 

mixture of (R)-107a and (R)-107b (2.32 g, 38%) as a yellow oil after work-up and 

purification by flash chromatography (1/1 EtOAc/hexanes to EtOAc): Rf = 0.60 ((R)-

107a), 0.62 ((R)-107b) (EtOAc); IR (neat) 3438, 3062, 2930, 2858, 1745, 1662, 
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1537, 1452, 1374, 1206, 1121 cm 1; 1H NMR (CDCl3) δ 0.80–0.95, 1.05–1.38, 1.48–

1.80 (m, CH2CH(CH2CH2)2CH2, (R)-107a,b), 1.28 (t, J = 6.9 Hz, OCH2CH3, (R)-

107b), 2.06 (s, CH3C(O), (R)-107a,b), 3.12–3.30 (m, OCH2CH(CH2CH2)2CH2, (R)-

107a,b), 3.66 (dd, J = 3.0, 9.6 Hz, CHH’OCH2CH(CH2CH2)2CH2, (R)-107a,b), 3.76 

(s, C(O)OCH3, (R)-107a), 3.88 (dd, J = 3.0, 9.0 Hz, CHH’OCH2CH(CH2CH2)2CH2, 

(R)-107a,b), 4.22 (q, J = 6.9 Hz, C(O)OCH2CH3, (R)-107b), 4.68–4.78 (m, CHCH2O, 

(R)-107a,b), 6.28–6.40 (br d, CH3C(O)NH, (R)-107a,b); 13C NMR (CDCl3) δ 14.4 

(C(O)OCH2CH3, (R)-107b), 23.4, 26.0, 26.7 (CH3C(O), OCH2CH(CH2CH2)2CH2, (R)-

107a,b), 30.0, 30.1 (OCH2CH(CH2CH2)2CH2, (R)-107a,b), 37.9 

(OCH2CH(CH2CH2)2CH2, (R)-107a,b), 52.7, 53.0 (C(O)OCH3, (R)-107a, 

CHCH2OCH2, (R)-107a,b), 61.8 (C(O)OCH2CH3, (R)-107b), 67.8, 67.9 

(CH2OCH2CH(CH2CH2)2CH2), (R)-107a,b), 77.5 (OCH2CH(CH2CH2)2CH2, (R)-

107a,b), 170.0, 170.6 (CH3C(O)NH, C(O)OCH3, (R)-107a,b), the remaining 

resonances for (R)-107a were not detected and are believed to overlap with nearby 

signals or to be too small to be detected; Mr (R)-107a (+ESI) 280.1525 [M+Na]+ 

(calcd for C13H23NO4Na+ 280.1524), (R)-107b (+ESI) 294.1682 [M+Na]+ (calcd for 

C14H25NO4Na+ 294.1681). 

 

(R)-Methyl 2-Acetamido-3-(but-3-enyloxy)propionate (( R)-108a) and (R)-Ethyl 2-

Acetamido-3-(but-3-enyloxy)propionate (( R)-108b). Using Method A, a ~3:7 

mixture of (R)-68a and (R)-68b (3.00 g, 20 mmol), 3-buten-1-ol (3.4 mL, 40 mmol) 

and BF3•Et2O (2.5 mL, 20 mmol) in CH2Cl2 (40 mL) gave a mixture of (R)-108a and 

(R)-108b (3.50 g, 77%) as a pale yellow oil that was used without further purification: 
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Rf = 0.48 ((R)-108a), 0.50 ((R)-108b) (5/95 hexanes/EtOAc); IR (neat) 3302, 3074, 

2982, 2935, 2872, 1744, 1663, 1539, 1443, 1374, 1207 cm 1; 1H NMR (CDCl3) δ 

2.05 (s, CH3C(O), (R)-108a,b), 2.24–2.35 (OCH2CH2CH=CH2, (R)-108a,b), 3.40–

3.58 (m, OCH2CH2CH=CH2, (R)-108a,b), 3.62–3.70 (m, CHH’OCH2CH2, (R)-

108a,b), 3.76 (s, C(O)OCH3, (R)-108a), 3.72–3.80 (m, CHH’OCH2CH2, (R)-108a,b), 

4.15–4.28 (m, OCH2CH3, (R)-108b), 4.58–4.68 (m, CHCH2O, (R)-108a,b), 5.00–

5.25 (m, CH2CH=CH2, (R)-108a,b), 5.69–5.85 (m, CH2CH=CH2, (R)-108a,b), 6.50–

6.61 (br d, NHCHCH2O, (R)-108a,b); 13C NMR (CDCl3) δ 14.1 (OCH2CH3, (R)-108b), 

23.3 (CH3C(O), (R)-108a,b), 33.7, 33.8 (CH2CH2CH=CH2, (R)-108a,b), 52.5, 52.6, 

52.7 (C(O)OCH3, (R)-108a, CHOCH2, (R)-108a,b), 61.5 (OCH2CH3, (R)-108b), 70.3, 

70.4, 70.6, 70.7 (CHCH2OCH2, (R)-108a,b), 116.5 (CH2CH2CH=CH2, (R)-108a,b), 

134.9 (CH2CH2CH=CH2, (R)-108a,b), 170.0, 170.4, 171.1 (CH3C(O), CHC(O)O, (R)-

108a,b), the remaining signal was not detected and is believed to overlap with 

nearby peaks. Mr (R)-108a (+ESI) 254.0794 [M+K]+ (calcd for C10H17NO4K
+ 

254.0795), (R)-108b (+ESI) 252.1211 [M+Na]+ (calcd for C11H19NO4Na+ 252.1212). 

 

(S)-Methyl 2-Acetamido-3-(but-3-enyloxy)propionate (( S)-108a) and (S)-Ethyl 2-

Acetamido-3-(but-3-enyloxy)propionate (( S)-108b). Using Method A, a ~9:1 

mixture of (S)-68a and (S)-68b (1.50 g, 10 mmol), 3-buten-1-ol (1.3 mL, 17 mmol) 

and BF3•Et2O (1.3 mL, 23 mmol) in CH2Cl2 (20 mL) gave a mixture of (S)-108a and 

(S)-108b (550 mg, 25%) as a pale yellow oil after purification by flash 

chromatography (5/95 hexanes/EtOAc): Rf = 0.48 ((S)-108a), 0.50 ((S)-108b) (5/95 

hexanes/EtOAc); IR (neat) 3300, 3071, 2944, 2870, 1747, 1662, 1537, 1441, 1372, 
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1211 cm 1. Spectral data for (S)-108a (~90% based on 1H NMR integrations): 1H 

NMR (CDCl3) δ 2.05 (s, CH3C(O)), 2.24–2.35 (m, OCH2CH2CH=CH2), 3.42–3.56 (m, 

OCH2CH2CH=CH2), 3.62–3.70 (m, CHH’OCH2CH2), 3.76 (s, C(O)OCH3), 3.72–3.80 

(m, CHH’OCH2CH2), 4.68–4.73 (m, CHCH2O), 5.00–5.12 (m, CH2CH=CH2), 5.69–

5.85 (m, CH2CH=CH2), 6.30–6.45 (br d, NHCHCH2O); 13C NMR (CDCl3) δ 23.3 

(CH3C(O)), 33.9 (CH2CH2CH=CH2), 52.7 (C(O)OCH3 or CHOCH2), 52.8 (CHOCH2 

or C(O)OCH3), 70.4, 70.8 (CHCH2OCH2), 116.7 (CH2CH2CH=CH2), 135.0 

(CH2CH2CH=CH2), 170.0, 171.0 (CH3C(O), CHC(O)OCH3); Mr no signal was 

detected for (S)-108a.  

Spectral data for (S)-108b (~10% based on 1H NMR integrations): 1H NMR 

(CDCl3) δ 1.23–1.35 (m, OCH2CH3), 4.18–4.25 (m, OCH2CH3), the remaining signals 

were not detected and are believed to overlap with nearby signals or are too small to 

be detected; 13C NMR signals were not detected for (S)-108b; Mr no signal was 

detected for (S)-108b. 

 

(R)-Methyl 2-Acetamido-3-(2-cyclopropylethoxy)propion ate ((R)-109a) and (R)-

Ethyl 2-Acetamido-3-(2-cyclopropylethoxy)propionate  ((R)-109b). Using Method 

A, a ~1:1 mixture of (R)-68a and (R)-68b (2.75 g, 18.3 mmol), 2-cyclopropylethanol 

(2.2 mL, 22 mmol) and BF3•Et2O (2.3 mL, 18.3 mmol) in CH2Cl2 (40 mL) gave a ~1:1 

mixture of (R)-109a and (R)-109b (1.61 g, 37%) as a yellow oil after work-up and 

purification by flash chromatography (1/1 EtOAc/hexanes to EtOAc): Rf = 0.48 ((R)-

109a), 0.50 ((R)-109b) (5/95 hexanes/EtOAc); IR (neat) 3264, 3071, 2995, 2926, 

2869, 1744, 1662, 1537, 1442, 1373, 1210, 1119 cm 1; 1H NMR (CDCl3) δ 0.01–0.08 
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(m, CH(CHH’CHH’), (R)-109a,b), 0.38–0.46 (m, CH(CHH’CHH’), (R)-109a,b), 0.60–

0.68 (m, CH(CH2CH2), (R)-109a,b), 1.28 (t, J = 6.9 Hz, OCH2CH3, (R)-109b), 1.38–

1.45 (m, CH2CH(CH2CH2), (R)-109a,b), 2.06 (s, CH3C(O), (R)-109a,b), 3.40–3.58 

(m, OCH2CH2CH, (R)-109a,b), 3.54–3.60 (m, CHH’OCH2CH2, (R)-109a,b), 3.76 (s, 

C(O)OCH3, (R)-109a), 3.82–3.90 (m, CHH’OCH2CH2, (R)-109a,b), 4.30–4.52 (m, 

C(O)OCH2CH3, (R)-109b), 4.70–4.78 (m, CHCH2O, (R)-109a,b), 6.30–6.40 (br d, 

CH3C(O)NH, (R)-109a,b); 13C NMR (CDCl3) δ 4.3 (CH(CH2CH2), (R)-109a,b), 7.9 

(CH(CH2CH2), (R)-109a,b), 14.3 (C(O)OCH2CH3, (R)-109b), 23.1 (CH3C(O), (R)-

109a,b), 34.5, 34.6 (CH2CH(CH2CH2), (R)-109a,b), 52.7, 52.9, 53.0 (CHCH2OCH2, 

(R)-109a,b, C(O)OCH3, (R)-109a), 61.7 (C(O)OCH2CH3, (R)-109b), 70.6, 70.7, 71.9 

(CH2OCH2CH2, (R)-109a,b), 170.1, 170.6, 171.1 (CH3C(O)NH, C(O)OCH3, (R)-

109a,b), the remaining resonances were not detected and are believed to overlap 

with nearby signals; Mr (R)-109a (+ESI) 252.1212 [M+Na]+ (calcd for C11H19NO4Na+ 

252.1209), (R)-109b (+ESI) 266.1368 [M+Na]+ (calcd for C12H21NO4Na+ 266.1368). 

 

(S)-Methyl 2-Acetamido-3-(2-(benzyloxy)ethoxy)propion ate ((S)-110). Using 

Method A compound (S)-68a (600 mg, 4.20 mmol), 2-benzyloxyethanol (775 µL, 

5.45 mmol) and BF3•Et2O (527 µL, 4.20 mmol) in CH2Cl2 (20 mL) gave 600 mg 

(48%) of (S)-110 as a pale yellow residue after purification by flash chromatography 

(5/95, cyclohexane/EtOAc): [α]25
D +33.1° ( c 1.0, CHCl3);  Rf = 0.43 (5/95 

cyclohexane/EtOAc); IR (neat) 3286, 2869, 1744, 1663, 1537, 1446, 1369, 1207; 

1111 cm-1; 1H NMR (CDCl3) δ 1.97 (s, CH3C(O)NH), 3.58–3.68 (m, OCH2CH2OBn), 

3.71 (dd, J = 3.3, 8.7 Hz, CHCHH’OCH2), 3.75 (s, OCH3), 3.99 (dd, J = 3.3, 8.7 Hz, 



 

 107 

CHCHH’OCH2), 4.55 (s, CH2CH2OCH2Ph), 4.74 (app. dt, J = 6.0, 8.7 Hz, CHCH2O), 

6.50 (br d, J = 6.0 Hz, NHCHCH2O), 7.26–7.40 (m, C6H5); 
13C NMR (CDCl3) δ 23.0 

(CH3C(O)), 52.5 (CHCH2O or OCH3), 52.8 (OCH3 or CHCH2O), 69.4, 71.0 

(OCH2CH2O), 71.1 (CHCH2O), 73.2 (OCH2Ph), 127.6, 127.7, 128.4, 138.0 (C6H5), 

170.0, 170.8 (CHC(O)NH and C(O)OCH3); Mr (+ESI) 318.1310 [M+Na]+ (calcd for 

C15H21NO5Na+ 318.1317). Anal. Calcd for C15H21NO5•0.2H2O: C, 60.27; H, 7.22; N, 

4.69. Found: C, 60.14; H, 7.21; N, 4.65.  

 

(R)-Methyl 2-Acetamido-3-(3-(benzyloxy)propoxy)propio nate ((R)-111a) and 

(R)-Ethyl 2-Acetamido-3-(3-(benzyloxy)propoxy)propion ate ((R)-111b). Using 

Method A,  a ~3:2 mixture of (R)-68a and (R)-68b (4.26 g, 28.4 mmol), 3-

benzyloxypropan-1-ol (12 mL, 75.5 mmol), and BF3•Et2O (3.57 mL, 28.4 mmol) in 

CH2Cl2 (200 mL) gave 4.30 g (48%) of a mixture of (R)-111a and (R)-111b as a pale 

yellow oil after purification by flash column chromatography (1/9 hexanes/EtOAc): Rf 

= 0.53 ((R)-111a) and 0.55 ((R)-111b) (5/95 hexanes/EtOAc); IR (neat) 3306, 3063, 

3033, 2941, 2869, 1744, 1665, 1535, 1449, 1372, 1210, 1109 cm-1; 1H NMR 

(CDCl3) δ 1.25 (t, J = 6.9 Hz, OCH2CH3, (R)-111b), 1.84 (quint, J = 6.3 Hz, 

OCH2CH2CH2O, (R)-111a,b), 1.98 (s, CH3C(O), (R)-111a,b), 3.48–3.58 (m, 

OCH2CH2CH2O, (R)-111a,b), 3.60–3.66 (m,  CHH’OCH2CH2CH2, (R)-111a,b), 3.71 

(s, C(O)OCH3, (R)-111a), 3.86 (dd, J = 3.0, 9.6 Hz,  CHH’OCH2CH2CH2, (R)-

111a,b), 4.18 (q, J = 6.9 Hz, C(O)OCH2CH3, (R)-111b), 4.48 (s, OCH2Ph, (R)-

111a,b), 4.68–4.74 (m, CHCH2O, (R)-111a,b), 6.45–6.56 (m, CH3C(O)NH, (R)-

111a,b), 7.24–7.38 (m, C6H5, (R)-111a,b); 13C NMR (CDCl3) δ 14.1 (C(O)OCH2CH3, 
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(R)-111b), 23.0, 23.1 (CH3C(O), (R)-111a,b), 29.7, 29.8 (OCH2CH2CH2O, (R)-

111a,b), 52.4, 52.7, 52.8 (CHCH2OCH2, (R)-111a,b, C(O)OCH3, (R)-111a), 61.5 

(C(O)OCH2, (R)-111b), 67.0, 68.5 (OCH2CH2CH2O, (R)-111a,b), 70.4, 70.5 

(CHCH2OCH2CH2CH2, (R)-111a,b), 73.0 (OCH2Ph, (R)-111a,b), 127.6, 128.4, 138.4 

(C6H5, (R)-111a,b), 170.0, 170.3, 170.9 (CHC(O)O, CH3C(O)NH, (R)-111a,b), the 

remaining aromatic signal and additional signals corresponding to each ester were 

not detected and are believed to overlap with nearby signals; Mr (R)-111a (+ESI) 

332.1467 [M+Na]+ (calcd for C16H23NO5Na+ 332.1474), (R)-111b (+ESI) 346.1624 

[M+Na]+ (calcd for C17H25NO5Na+ 346.1630). 

 

(S)-Methyl 2-Acetamido-3-(3-(benzyloxy)propoxy)propio nate ((S)-111a). Using 

Method A, (S)-68a (1.00 g, 7.0 mmol), 3-benzyloxypropan-1-ol (1.44 mL, 9.11 

mmol), and BF3•Et2O (878 µL, 7.0 mmol) in CH2Cl2 (3.5 mL) gave 816 mg (37%) of 

(S)-111a as a pale yellow oil after two purifications by flash column chromatography 

(5/95 hexanes/EtOAc) and (5/95 MeOH/CHCl3): [α]25
D +32.9° ( c 0.5, CHCl3); Rf = 

0.53 (5/95 hexanes/EtOAc); IR (neat) 3294, 3032, 2931, 2867, 1746, 1665, 1535, 

1445, 1371, 1212, 1109 cm-1; 1H NMR (CDCl3) δ 1.85 (quint, J = 6.3 Hz, 

OCH2CH2CH2O), 2.00 (s, CH3C(O)), 3.48–3.59 (m, OCH2CH2CH2O), 3.63 (dd, J = 

3.0, 9.6 Hz, CHH’OCH2CH2CH2), 3.73 (s, C(O)OCH3), 3.86 (dd, J = 3.0, 9.6 Hz, 

CHH’OCH2CH2CH2), 4.50 (s, OCH2Ph), 4.73 (app dt, J = 3.0, 7.8 Hz, CHCH2O), 

6.33 (d, J = 7.8 Hz, CH3C(O)NH), 7.24–7.38 (m, C6H5); 
13C NMR (CDCl3) δ 23.3 

(CH3C(O)), 29.9 (OCH2CH2CH2O), 52.7 (CHCH2OCH2 or C(O)OCH3), 52.9 

(C(O)OCH3 or CHCH2OCH2), 67.2, 68.8 (OCH2CH2CH2O), 70.7 
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(CHCH2OCH2CH2CH2), 73.2 (OCH2Ph), 127.7, 127.8, 128.6, 138.6 (C6H5), 170.1, 

171.1 (CHC(O)OCH3, CH3C(O)NH); Mr (+ESI) 332.1469 [M+Na]+ (calcd for 

C15H21NO5Na+ 332.1474). Anal. Calcd for C16H23NO5•0.2H2O: C, 61.40; H, 7.54; N, 

4.48. Found: C, 61.38; H, 7.47; N, 4.48. 

 

(R)-Methyl 2-Acetamido-3-(2-azidoethoxy)propionate (( R)-112). Using Method A, 

(R)-68a (2.35 g, 16.4 mmol), 2-azidoethanol (4.5 mL, 65.6 mmol) and BF3•Et2O (1 

mL, 8.2 mmol) in CH2Cl2 (30 mL) gave 1.56 g (41%) of (R)-112 after purification; 

[α]25
D +49.1° ( c 1.0; EtOAc);  Rf = 0.47 (EtOAc); IR (neat) 3302, 2948, 2107, 1746, 

1668, 1534, 1443 cm-1; 1H NMR (CDCl3) δ 2.06 (s, CH3C(O)NH), 3.23–3.42 (m, 

CH2N3), 3.31–3.64 (m, OCH2CH2N3, CHCHH’OCH2), 3.78 (s, OCH3), 3.96 (dd, J = 

3.0, 9.1 Hz, CHCHH’O), 4.76–4.81 (m, CHCH2O), 6.30–6.41 (br d, CH3C(O)NH); 13C 

NMR (CDCl3) δ 23.2 (CH3C(O)), 50.0 (OCH2CH2N3), 52.6 (OCH3 or CHCH2O), 52.8 

(CHCH2O or OCH3), 70.9 (CHCH2O or OCH2CH2N3), 71.1 (OCH2CH2N3 or 

CHCH2O), 170.1 (CH3C(O)NH or C(O)OCH3), 170.6 (C(O)OCH3 or CH3C(O)NH); Mr 

(+ESI) 253.0906 [M+Na]+ (calcd for C8H14N4O4Na+ 253.0913). No satisfactory 

elemental analysis was obtained. 

 

(S)-Methyl 2-Acetamido-3-(2-azidoethoxy)propionate (( S)-112). Using Method A, 

(S)-68a (3.30 g, 23 mmol), 2-azidoethanol (6.3 mL, 92 mmol), and BF3•Et2O (1.4 mL, 

11.5 mmol) in CH2Cl2 (115 mL) gave 1.67 g (31%) of (S)-112 as a colorless residue 

after purification by silica gel chromatography (EtOAc): [α]25
D -48.0° ( c 1.0; EtOAc);  

Rf = 0.47 (EtOAc); IR (neat) 3302, 2948, 2107, 1746, 1667, 1534, 1443 cm-1; 1H 
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NMR (CDCl3) δ 2.06 (s, CH3C(O)NH), 3.23–3.42 (m, CH2N3), 3.31–3.64 (m, 

OCH2CH2N3, CHCHH’OCH2), 3.78 (s, OCH3), 3.96 (dd, J = 3.0, 9.1 Hz, CHCHH’O), 

4.76–4.81 (m, CHCH2O), 6.30–6.41 (br d, CH3C(O)NH); 13C NMR (CDCl3) δ 23.3 

(CH3C(O)), 50.1 (OCH2CH2N3), 52.7 (OCH3 or CHCH2O), 52.9 (CHCH2O or OCH3), 

71.0 (CHCH2O or OCH2CH2N3), 71.2 (OCH2CH2N3 or CHCH2O), 170.2, 170.7 

(CH3C(O)NH and C(O)OCH3); Mr (+ESI) 253.0906 [M+Na]+ (calcd for C8H14N4O4Na+ 

253.0913). No satisfactory elemental analysis was obtained. 

 

(R)-Methyl 2-Acetamido-3-(2-methoxyethoxy)propionate ((R)-113a) and (R)-

Ethyl 2-Acetamido-3-(2-methoxyethoxy)propionate (( R)-113b). Using Method A, 

a ~5:95 mixture of (R)-68a and (R)-68b (3.50 g, 23 mmol), ethylene glycol 

monomethyl ether (3.6 mL, 46 mmol) and BF3•Et2O (2.9 mL, 23 mmol) in CH2Cl2 (40 

mL) gave upon work-up a ~5:95 mixture of (R)-113a and (R)-113b (4.24 g, 80%) as 

a pale yellow oil that did not require further purification: Rf = 0.41 ((R)-113a), 0.43 

((R)-113b) (EtOAc); IR (neat) 3303, 3061, 2930, 1743, 1668, 1535, 1451, 1374, 

1204, 1113 cm 1. Spectral data for (R)-113a: 1H and 13C NMR signals for (R)-113a 

were not detected and are believed to overlap with nearby signals or are too small to 

be detected; Mr (+ESI) 258.0744 [M+K]+ (calcd for C9H17NO5K
+ 258.0744). 

Spectral data for (R)-113b (~95% based on 1H NMR integrations): 1H NMR 

(CDCl3) δ 1.29 (t, J = 7.2 Hz, OCH2CH3), 2.05 (s, CH3C(O)), 3.37 (s, CH2OCH3), 

3.49–3.53 (m, CH2OCH2CH2OCH3 or CH2OCH2CH2OCH3), 3.59–3.64 (m, 

CH2OCH2CH2OCH3 or CH2OCH2CH2OCH3), 3.73 (dd, J = 3.0, 9.0 Hz, 

CHH’OCH2CH2), 3.94 (dd, J = 3.0, 9.0 Hz, CHH’OCH2CH2), 4.22 (d, J = 7.2 Hz, 
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OCH2CH3), 4.52 (app. dt, J = 3.0, 7.2 Hz, CHCH2O), 6.48–6.60 (br d, NHCHCH2O); 

13C NMR (CDCl3) δ 14.3 (OCH2CH3), 23.3 (CH3C(O)), 53.0 (CHC(O)OCH2), 59.1 

(CH2OCH3), 61.7 (C(O)OCH2CH3), 71.1, 71.3, 71.9 (CHCH2OCH2CH2OCH3), 170.1, 

170.5 (CH3C(O), CHC(O)OCH2); Mr (+ESI) 272.0901 [M+K]+ (calcd for C10H19NO5K
+ 

272.0900). 

 

(R)-Methyl 2-Acetamido-3-(2-(2-methoxyethoxy)ethoxy)p ropionate (( R)-114a) 

and (R)-Ethyl 2-Acetamido-3-(2-(2-methoxyethoxy)ethoxy)pr opionate (( R)-

114b). Using Method A, a ~1:1 mixture of (R)-68a and (R)-68b  (4.5 g, 30.0 mmol), 

diethyleneglycol monomethyl ether (11.3 g, 94.5 mmol) and BF3•Et2O (3.8 mL, 30.0 

mmol) in CH2Cl2 (30 mL) gave 2.84 g (35%) of (R)-114a and (R)-114b as a colorless 

viscous oil: Rf = 0.31 ((R)-114a), 0.33 ((R)-114b) (EtOAc); IR (neat) 3300, 3063, 

2940, 2940, 1744, 1659, 1553, 1446, 1216, 1120 cm-1. Spectral data for (R)-114a 

(approximately 50 mol percent based on 1H NMR integrations): 1H NMR (CDCl3) δ 

2.06 (s, CH3C(O)NH), 3.39 (s, CH2CH2OCH3), 3.52–3.58 (m, CH2CH2OCH3), 3.60–

3.64 (m, OCH2CH2OCH2), 3.68–3.74 (m, CHCHH’OCH2), 3.76 (s, C(O)OCH3), 3.94 

(app. t, J = 4.2, CHCHH’OCH2), 4.68–4.76 (m, CHCH2OCH2), 6.52–6.70 (m, 

CH3C(O)NH); 13C NMR (CDCl3) δ 23.1 (CH3C(O)), 52.6 (CHCH2OCH2 or 

C(O)OCH3), 52.9, 53.0 (C(O)OCH3 or CHCH2OCH3, (R)-114a, CHCH2OCH3, (R)-

114b)), 59.2 (CH2CH2OCH3), 70.5, 70.6, 71.1, 71.2, 71.3 

(OCH2CH2OCH2CH2OCH3), 170.1, 170.4, 170.9 (CH3C(O)NH, C(O)OCH3), 

additional peaks were observed and are believed to be part of (R)-114b but cannot 
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be precisely attributed; Compound 114a was only detected by HRMS as the acid. Mr 

(+ESI) found 272.1107 [M+Na]+ (calcd for C10H19NO6Na+ 272.1110). 

Spectral data for (R)-114b (approximately 50 mol percent based on 1H NMR 

integrations): 1H NMR (CDCl3) δ 1.28 (t, J = 7.2 Hz, C(O)OCH2CH3), 2.06 (s, 

CH3C(O)NH), 3.39 (s, CH2CH2OCH3), 3.52–3.58 (m, CH2CH2OCH3), 3.60–3.64 (m, 

OCH2CH2OCH2), 3.68–3.74 (m, CHCHH’OCH2), 3.97 (app. t, J = 4.2, 

CHCHH’OCH2), 4.22 (t, J = 7.2 Hz, C(O)OCH2CH3), 4.68–4.76 (m, CHCH2OCH2), 

6.52–6.70 (m, CH3C(O)NH); 13C NMR (CDCl3) δ 14.3 (C(O)OCH2CH3), 23.1 

(CH3C(O)), 52.6 (CHCH2OCH2), 52.9, 53.0 (C(O)OCH3 or CHCH2OCH3, (R)-114a, 

CHCH2OCH3 (R)-114b), 70.5, 70.6, 71.1, 71.2, 71.3 (OCH2CH2OCH2CH2OCH3), 

170.1, 170.4, 170.9 (CH3C(O)NH, C(O)OCH3), additional peaks were observed and 

are believed to be part of (R)-114a but cannot be precisely attributed; Mr (+ESI) 

found 300.1421 [M+Na]+ (calcd for C12H23NO6Na+ 300.1423). 
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2.2.4.4. Synthesis of O-Substituted N-Acetylserine Derivatives.  
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Scheme 20.  Synthesis of acid 123 to prepare the side chain aldehyde AB group 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
(R)-2-Acetamido-3-methoxypropionic Acid (( R)-115). Using Method B, a mixture 

of (R)-101a and (R)-101b (3.79 g, 21.5 mmol) in THF (210 mL) and LiOH (515 mg, 

21.5 mmol) in H2O (100 mL) gave 1.31 g (38%) of (R)-115 as a white solid after 

R = Compound number 
Me 115 
Et 116 

i-Pr 117 
t-Bu 118 
Ph 119 

CH2CH2CH=CH2 120 
CH2CH2OBn 121 

CH2CH2CH2OBn 122 
CH2CH2CH2OH 123 

CH2CH2N3 124 
(CH2CH2O)2CH3 125 
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work-up and recrystallization from EtOAc: mp 108–109°C ; [α]25
D -20.9° ( c 0.7, 

MeOH) (lit.235 [α]25
D -16.9° ( c 1.2; MeOH) for a partially racemized sample (~4:1, 

(R):(S)));  Rf = 0–0.1 (EtOAc); IR (nujol) 3352, 3100–2200, 1746, 1631, 1549, 1459, 

1375 cm-1; 1H NMR (DMSO-d6) δ 1.86 (s, CH3C(O)), 3.25 (s, CH2OCH3), 3.49 (dd, J 

= 3.9, 10.0 Hz, CHH’OCH3), 3.63 (dd, J = 6.0, 10.0 Hz CHH’OCH3), 4.36–4.45 (m, 

CHCH2O), 8.20 (d, J = 7.2 Hz, CH3C(O)NH), 12.7 (s, CO2H); 13C NMR (DMSO-d6) δ 

22.3 (CH3C(O)), 52.1 (CHCH2OCH3), 58.3 (OCH3), 71.8 (CHCH2OCH3), 169.4, 

171.7 (CHCO2H, CH3C(O)NH). Mr (+ESI) 184.0582 [M+Na]+ (calcd for C6H11NO4Na+ 

184.0586). Anal. Calcd for C6H11NO4: C, 44.72; H, 6.88; N, 8.69. Found: C, 44.75; 

H, 6.82; N, 8.77. 

 

(S)-2-Acetamido-3-(methoxy)propionic Acid (( S)-115). Using Method B, a ~9:1 

mixture of (S)-101a and (S)-101b (1.43 g, 8 mmol) in THF (60 mL) and LiOH (192 

mg, 8 mmol) in H2O (30 mL) gave (S)-115 (470 mg, 37%) upon work-up as a yellow 

oil that was  recrystallized from EtOAc: mp 107–109°C; [α]25
D +20.7° ( c 0.5; MeOH); 

Rf  = 0–0.10 (EtOAc); IR (nujol) 3351, 3300–2200 (br), 1746, 1631, 1549, 1459, 1375 

cm 1; 1H NMR (CD3OD) δ 2.01 (s, CH3C(O)), 3.35 (s, CH2OCH3), 3.61 (dd, J = 3.3, 

9.3 Hz, CHH’OCH3), 3.81 (dd, J = 4.8, 9.3 Hz, CHH’OCH3), 4.54–4.62 (m, 

CHCH2O); 13C NMR (CD3OD) δ 22.5 (CH3C(O)), 54.2 (CHOCH2), 59.4 (CH2OCH3), 

73.2 (CHCH2OCH3), 173.3, 173.5 (CH3C(O), CHC(O)OH); Mr (+ESI) 184.0584 

[M+Na]+ (calcd for C6H11NO4Na+ 184.0586). Anal. Calcd for C6H11NO4: C, 44.72; H, 

6.88; N, 8.69. Found: C, 44.47; H, 6.92; N, 8.46. 
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(R)-2-Acetamido-3-ethoxypropionic Acid (( R)-116). Using Method B, a mixture of 

(R)-102a and (R)-102b (2.48 g, 13.0 mmol) in THF (130 mL) and LiOH (312 mg, 

13.0 mmol) in H2O (65 mL) gave 1.57 g (69%) of (R)-116 as a white solid after work-

up and recrystallization from EtOAc: mp 149–151°C; [ α]25
D -31.5° ( c 0.7, MeOH); Rf 

= 0–0.15 (5/95 hexanes/EtOAc); IR (nujol) 3355, 3300–2100 (br), 1951, 1747, 1630, 

1545, 1457, 1374, 1204, 1107 cm-1; 1H NMR (DMSO-d6) δ 1.09 (t, J = 6.9 Hz, 

OCH2CH3), 1.86 (s, CH3C(O)), 3.39–3.49 (m, CH2OCH2CH3), 3.53 (dd, J = 4.2, 10.0 

Hz, CHH’OCH2CH3), 3.63 (dd, J = 6.0, 10.0 Hz, CHH’OCH2CH3), 4.36–4.42 (m, 

CHCH2O), 8.15 (d, J = 7.2 Hz, CH3C(O)NH), the carboxylic acid proton could not be 

detected; 13C NMR (DMSO-d6) δ 14.9 (OCH2CH3), 22.3 (CH3C(O)), 52.4 

(CHCH2OCH3), 65.8 (OCH2CH3), 69.6 (CHCH2OCH2CH3), 169.4, 171.7 (CHCO2H, 

CH3C(O)NH); Mr (+ESI) 214.0480 [M+K]+ (calcd for C7H13NO4K
+ 214.0482). Anal. 

Calcd for C7H13NO4: C, 47.99; H, 7.48; N, 8.00. Found: C, 48.21; H, 7.56; N, 7.95. 

 

(R)-2-Acetamido-3-isopropoxypropionic Acid (( R)-117). Using Method B, a 

mixture of (R)-103a and (R)-103b (2.47 g, 12.0 mmol) in THF (120 mL) and LiOH 

(288 mg, 12.0 mmol) in H2O (60 mL) gave 2.15 g (95%) of (R)-117 as a white solid 

after work-up. Recrystallization from EtOAc and hexanes afforded an analytical 

sample: mp 128–130°C; [ α]25
D -36.5° ( c 0.6, MeOH); Rf = 0.05–0.18 (5/95 

hexanes/EtOAc); IR (nujol) 3366, 3300–2100 (br), 1751, 1636, 1548, 1457, 1376, 

1328 cm-1; 1H NMR (DMSO-d6) δ 1.06 (d, J = 6.0 Hz, OCHCH3(C’H3)), 1.07 (d, J = 

6.0 Hz, OCHCH3(C’H3), 1.87 (s, CH3C(O)), 3.49–3.50 (m, CHH’OCH(CH3)2), 3.64 

(dd, J = 5.7, 9.9 Hz, CHH’OCH(CH3)2), 4.33–4.40 (m, CHCH2O), 8.10 (d, J = 7.2 Hz, 
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CH3C(O)NH), 12.70 (CO2H); 13C NMR (DMSO-d6) δ 21.8 (OCHCH3(C’H3)), 21.9 

(OCHCH3(C’H3), 22.4 (s, CH3C(O)), 52.6 (CHCH2OCH(CH3)2), 67.4 

(CH2OCH(CH3)2), 71.3 (CH2OCH(CH3)2), 169.4, 171.8 (CH3C(O)NH, CO2H); Mr 

(+ESI) 212.0897 [M+Na]+ (calcd for C8H15NO4Na+ 212.0899). Anal. Calcd for 

C8H15NO4: C, 50.78; H, 7.99; N, 7.40. Found: C, 50.87; H, 8.02; N, 7.34. 

 

(R)-2-Acetamido-3- tert -butoxypropionic Acid (( R)-118). Using Method B, a 

mixture of (R)-104a and (R)-104b (2.17 g, 9.90 mmol) in THF (100 mL) and LiOH 

(237 mg, 9.90 mmol) in H2O (50 mL) gave 1.10 g (55%) of (R)-118 as a white solid 

after work-up. Recrystallization from EtOAc and hexanes afforded an analytical 

sample: mp 154–156°C; [ α]25
D -46.7° ( c 0.8, MeOH); Rf  = 0.48 (5/95 

hexanes/EtOAc); IR (nujol) 3370, 3300–2100 (br), 1875,  1708, 1613, 1542, 1459, 

1371, 1229, 1103 cm-1; 1H NMR (DMSO-d6) δ 1.11 (s, OC(CH3)3), 1.87 (s, CH3C(O)), 

3.47 (dd, J = 4.2, 9.3 Hz, CHH’OC(CH3)3), 3.60 (dd, J = 5.1, 9.3 Hz, 

CHH’OC(CH3)3), 4.30–4.38 (m, CHCH2O), 8.01 (d, J = 7.2 Hz, CH3C(O)NH), 12.60 

(CO2H); 13C NMR (DMSO-d6) δ 22.4 (s, CH3C(O)), 27.2 (OC(CH3)3), 52.8 

(CHCH2OC(CH3)3), 61.7 (CH2OC(CH3)3), 72.8 (CHCH2OC(CH3)3), 169.4, 171.9 

(CH3C(O)NH, CO2H); Mr (+ESI) 242.0794 [M+K]+ (calcd for C9H17NO4K
+ 242.0795). 

Anal. Calcd for C9H17NO4: C, 53.19; H, 8.43; N, 6.89; Found: C, 53.04; H, 8.49; N, 

6.84. 

 

(R)-2-Acetamido-3-phenoxypropionic Acid (( R)-119). Using Method B, a ~3:7 

mixture of (R)-106a and (R)-106b (1.4 g, 5.7 mmol), LiOH (142 mg, 5.9 mmol) in 
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THF:H2O (80 mL) gave 950 mg (74%) of (R)-119 after recrystallization from EtOAc 

and hexanes: mp 168–170°C; [ α]25
D -91.2° ( c 0.5, MeOH);  Rf = 0–0.15 (1/9 

MeOH/CHCl3); IR (nujol) 3362, 2300–2800 (br), 1950, 1746, 1607, 1551, 1461 cm-1; 

1H NMR (DMSO-d6) δ 1.90 (s, CH3C(O)), 4.13 (dd, J = 3.9, 9.6 Hz, CHH’OPh), 4.37 

(dd J = 5.1, 9.6 Hz, CHH’OPh), 4.60–4.68 (m, CHCH2O), 6.88–6.98 (m, 3 ArH), 

7.24–7.32 (m, 2 ArH), 8.42 (d, J = 7.5 Hz, NHCHCH2), 12.50–13.00 (m, C(O)OH); 

13C NMR (DMSO-d6) δ 22.3 (CH3C(O)), 51.8 (CHCH2OPh), 67.6 (CH2OPh), 114.6, 

121.0, 129.8, 158.1 (CH2OPh), 169.5, 171.3 (CH3C(O)NH, CHC(O)OH); Mr (+ESI) 

246.0739 [M+Na]+ (calcd for C11H13NO4Na+ 246.0742). Anal. Calcd for 

C11H13NO4•0.25 H2O: C, 58.02; H, 5.98; N, 6.15. Found: C, 58.00; H, 5.98; N, 5.91. 

 

(R)-2-Acetamido-3-(but-3-enyloxy)propionic Acid (( R)-120). Using Method B, a 

~3:7 mixture of (R)-108a and (R)-108b (3.28 g, 14.6 mmol) in THF (145 mL) and 

LiOH (350 mg, 14.6 mmol) in H2O (70 mL) gave (R)-120 (1.90 g, 65%) as a yellow 

oil that was used without further purification: [α]25
D -21.9° ( c 0.9; MeOH); Rf  = 0.10 

(15/85 MeOH/CH2Cl2); IR (neat) 3300–2100 (br), 1957, 1735, 1635, 1544, 1432, 

1376, 1228, 1118 cm 1; 1H NMR (CDCl3) δ 2.09 (s, CH3C(O)), 2.25–2.37 (m, 

OCH2CH2CH=CH2), 3.46–3.51 (m, OCH2CH2CH=CH2), 3.69 (dd, J = 4.0, 9.0 Hz, 

CHH’OCH2), 3.93 (dd, J = 4.0, 9.0 Hz, CHH’OCH2), 4.73 (app dt, J = 4.0, 7.7 Hz, 

CHCH2O), 5.00–5.22 (m, CH2CH=CH2), 5.70–5.85 (m, CH2CH=CH2), 6.22 (d, J = 

7.7 Hz, NHCHCH2O), 9.80–10.00 (br s, C(O)OH); 13C NMR (CDCl3) δ 23.1 

(CH3C(O)), 33.9 (CH2CH2CH=CH2), 52.9 (CHOCH2), 70.0, 70.9 (CHCH2OCH2), 

117.0 (CH2CH2CH=CH2), 134.9 (CH2CH2CH=CH2), 171.5, 173.4 (CH3C(O), 
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CHC(O)OH); Mr (+ESI) 224.0897 [M+Na]+ (calcd for C9H15NO4Na+ 224.0899). Anal. 

Calcd for C9H15NO4•0.30H2O: C, 52.32; H, 7.61; N, 6.78; Found: C, 52.11; H, 7.37; 

N, 6.77. 

 

(S)-2-Acetamido-3-(but-3-enyloxy)propionic Acid (( S)-120). Using Method B, a 

~9:1 mixture of (S)-108a and (S)-108b (550 mg, 2.5 mmol) in THF (25 mL) and LiOH 

(61 mg, 2.5 mmol) in H2O (12 mL) gave (S)-120 (260 mg, 51%) as a yellow oil that 

was used without further purification: [α]25
D +22.2° ( c 0.5; MeOH); Rf  = 0.10 (15/85 

MeOH/CH2Cl2); IR (neat) 3300–2200 (br), 1953, 1735, 1636, 1547, 1432, 1376, 

1227, 1118 cm 1; 1H NMR (CDCl3) δ 2.01 (s, CH3C(O)), 2.28–2.36 (m, 

OCH2CH2CH=CH2), 3.49–3.52 (m, OCH2CH2CH=CH2), 3.68 (dd, J = 4.0, 9.0 Hz, 

CHH’OCH2), 3.93 (dd, J = 4.0, 9.0 Hz, CHH’OCH2), 4.73 (app dt, J = 4.0, 7.7 Hz, 

CHCH2O), 5.00–5.25 (m, CH2CH=CH2), 5.70–5.85 (m, CH2CH=CH2), 6.52 (d, J = 

7.7 Hz, NHCHCH2O), 9.10–9.60 (br s, C(O)OH); 13C NMR (CDCl3) δ 23.2 

(CH3C(O)), 33.9 (CH2CH2CH=CH2), 52.8 (CHOCH2), 69.9, 70.9 (CHCH2OCH2), 

117.0 (CH2CH2CH=CH2), 134.9 (CH2CH2CH=CH2), 171.3, 173.5 (CH3C(O), 

CHC(O)OH); Mr (+ESI) 224.0901 [M+Na]+ (calcd for C9H15NO4Na+ 224.0899). Anal. 

Calcd for C9H15NO4•0.30H2O: C, 52.32; H, 7.61; N, 6.78; Found: C, 52.08; H, 7.47; 

N, 6.88. 

 

(S)-2-Acetamido-3-(2-(benzyloxy)ethoxy)propionic Acid  ((S)-121). Using Method 

B, (S)-110a (460 mg, 1.56 mmol) in THF (15 mL) and LiOH (37 mg, 1.56 mmol) in 

H2O (7 mL) gave 386 mg (87%) of (S)-121 as a colorless residue that was used 
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directly in the next step: [α]25
D +16.3° ( c 1.0, CHCl3);  Rf = 0.05 (5/95 

cyclohexane/EtOAc); IR (neat) 3400–2600 (br), 3322, 1736, 1631, 1541, 1449, 

1372, 1214; 1121 cm-1; 1H NMR (CDCl3) δ 1.97 (s, CH3C(O)NH), 3.58–3.80 (m, 

OCH2CH2OBn, CHCHH’OCH2), 3.95–4.04 (m, CHCHH’OCH2), 4.54 (s, OCH2Ph), 

4.68–4.75 (m, CHCH2OCH2), 6.80 (d, J = 6.1 Hz, NHCHCH2O), 7.22–7.40 (m, 

C6H5), 8.30–8.70 (br s, C(O)OH); 13C NMR (CDCl3) δ 23.0 (CH3C(O)), 52.9 

(CHCH2O), 69.4, 70.7, 71.0 (OCH2CH2O and CHCH2O), 73.2 (OCH2Ph), 128.0, 

128.6, 137.7 (C6H5), 171.3, 172.5 (CH3C(O)NH and C(O)OH), the remaining 

aromatic resonance was not detected and is believed to overlap with nearby signals; 

Mr (+ESI) 304.1157 [M+Na]+ (calcd for C14H19NO5Na+ 304.1161). 

 

(R)-2-Acetamido-3-(3-(benzyloxy)propoxy)propionic Aci d ((R)-122). Using 

Method B, a ~1:1 mixture of (R)-111a and (R)-111b (4.30 g, 13.6 mmol) in THF (150 

mL) and LiOH (325 mg, 13.6 mmol) in H2O (70 mL) gave 3.63 g (90%) of (R)-122 as 

a viscous yellow oil that was used directly in the next step: [α]25
D -17.7° ( c 1.0, 

MeOH); Rf = 0.53 (1/9 MeOH/CHCl3); IR (neat) 3500–2200 (br), 1959, 1735, 1630, 

1540, 1449, 1373, 1213, 1107 cm-1; 1H NMR (CDCl3) δ 1.85 (quint, J = 6.0 Hz, 

OCH2CH2CH2O), 2.00 (s, CH3C(O)), 3.54 (t, J = 6.0 Hz, OCH2CH2CH2OBn or 

OCH2CH2CH2OBn), 3.57 (t, J = 6.0 Hz, OCH2CH2CH2OBn or OCH2CH2CH2OBn), 

3.64 (dd, J = 3.9, 9.7 Hz, CHH’OCH2CH2CH2), 3.86 (dd, J = 3.3, 9.7 Hz, 

CHH’OCH2CH2CH2), 4.49 (s, OCH2Ph), 4.65–4.75 (m, CHCH2O), 6.59 (d, J = 7.5 

Hz, CH3C(O)NH), 7.24–7.38 (m, C6H5), 9.10–9.50 (m, C(O)OH); 13C NMR (CDCl3) δ 

23.1 (CH3C(O)), 29.7 (OCH2CH2CH2O), 52.9 (CHCH2OCH2), 67.2, 68.9 
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(OCH2CH2CH2O), 70.2 (CHCH2OCH2CH2CH2), 73.1 (OCH2Ph), 127.9, 128.0, 128.6, 

138.4 (C6H5), 171.3, 173.1 (CHC(O)OH, CH3C(O)NH); Mr (+ESI) 296.1492 [M+H]+ 

(calcd for C15H21NO5H
+ 296.1498). Anal. Calcd for C15H21NO5•0.25H2O: C, 60.09; H, 

7.23; N, 4.67. Found: C, 59.93; H, 7.28; N, 4.67. 

 

(S)-2-Acetamido-3-(3-(benzyloxy)propoxy)propionic Aci d ((S)-122). Using 

Method B, a ~9:1 mixture of (S)-111a and (S)-111b (8.30 g, 26.8 mmol) in THF (250 

mL) and LiOH (643 mg, 26.8 mmol) in H2O (125 mL) gave 5.78 g (73%) of (S)-122 

as a viscous yellow oil that was used without further purification: [α]25
D +17.4° ( c 1.0, 

MeOH); Rf = 0.53 (1/9 MeOH/CHCl3); IR (nujol) 3500–2200 (br), 1962, 1735, 1637, 

1545, 1449, 1373, 1216, 1111 cm-1; 1H NMR (DMSO-d6) δ 1.76 (quint, J = 6.9 Hz, 

OCH2CH2CH2O), 1.87 (s, CH3C(O)), 3.38–3.52 (m, OCH2CH2CH2O), 3.55 (dd, J = 

4.2, 13.8 Hz, CHH’OCH2CH2CH2), 3.86 (dd, J = 5.8, 13.8 Hz, CHH’OCH2CH2CH2), 

4.38–4.44 (m, OCH2Ph, CHCH2O), 7.24–7.38 (m, C6H5), 8.17 (d, J = 8.1 Hz, 

CH3C(O)NH), the carboxylic acid proton was not detected; 13C NMR (DMSO-d6) δ 

22.3 (CH3C(O)), 29.4 (OCH2CH2CH2O), 52.4 (CHCH2OCH2), 66.6, 67.7 

(OCH2CH2CH2O), 70.0 (CHCH2OCH2CH2CH2), 71.9 (OCH2Ph), 127.3, 127.4, 128.3, 

138.7 (C6H5), 169.4, 171.8 (CHC(O)OH, CH3C(O)NH); Mr (+ESI) 318.1318 [M+Na]+ 

(calcd for C15H21NO5Na+ 318.1317). Anal. Calcd for C15H21NO5: C, 61.00; H, 7.17; N, 

4.74. Found: C, 60.75; H, 7.26; N, 4.86. 

 

(R)-2-Acetamido-3-(3-hydroxypropoxy)propionic Acid (( R)-123). Using Method 

H, compound (R)-122 (1.80 g, 6.1 mmol) and 10% Pd/C (150 mg) in MeOH (20 mL) 
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gave 1.14 g (91%) of (R)-123 as a pale yellow viscous oil that did not require further 

purification: [α]25
D -18.2° ( c 1.0, MeOH); Rf = 0.23 (1/4 MeOH/CHCl3); IR (neat) 

3500–2200 (br), 1958, 1734, 1655, 1547, 1427, 1377, 1232, 1127 cm-1; 1H NMR 

(DMSO-d6) δ 1.62 (quint, J = 6.3 Hz, OCH2CH2CH2O), 1.86 (s, CH3C(O)), 3.36–3.50 

(m, OCH2CH2CH2O), 3.53 (dd, J = 4.2, 9.9 Hz, CHH’OCH2CH2CH2), 3.64 (dd, J = 

5.4, 9.9 Hz, CHH’OCH2CH2CH2), 4.34–4.44 (m, CHCH2O), 8.13 (d, J = 8.4 Hz, 

CH3C(O)NH), the carboxylic acid proton was not detected; 13C NMR (DMSO-d6) δ 

22.3 (CH3C(O)), 32.4 (OCH2CH2CH2O), 52.4 (CHCH2OCH2), 57.7 

(OCH2CH2CH2OH), 67.7 (CHCH2OCH2CH2CH2), 70.0 (CHCH2OCH2CH2CH2), 

169.3, 171.7 (CHC(O)OH, CH3C(O)NH); Mr (+ESI) 228.0842 [M+Na]+ (calcd for 

C8H15NO5Na+ 228.0848). Anal. Calcd for C8H15NO5•0.15H2O: C, 46.62; H, 7.42; N, 

6.74. Found: C, 46.26; H, 7.42; N, 6.55. 

 

(S)-2-Acetamido-3-(3-hydroxypropoxy)propionic Acid (( S)-123). Using Method 

H, compound (S)-122 (4.78 g, 16.2 mmol), 10% Pd/C (400 mg) in MeOH (50 mL) 

gave (S)-123 as a pale yellow viscous oil that was used directly for next step: [α]25
D 

+17.8° ( c 1.2, MeOH); Rf = 0.23 (1/4 MeOH/CHCl3); IR (neat) 3500–2200 (br), 1956, 

1735, 1654, 1547, 1455, 1376, 1229, 1120 cm-1; 1H NMR (DMSO-d6) δ 1.62 (quint, J 

= 6.6 Hz, OCH2CH2CH2O), 1.87 (s, CH3C(O)), 3.34–3.50 (m, OCH2CH2CH2O), 3.55 

(dd, J = 3.9, 9.9 Hz, CHH’OCH2CH2CH2), 3.64 (dd, J = 5.7, 9.9 Hz, 

CHH’OCH2CH2CH2), 4.34–4.44 (m, CHCH2O), 8.12 (d, J = 8.1 Hz, CH3C(O)NH), the 

carboxylic acid proton was not detected; 13C NMR (DMSO-d6) δ 22.3 (CH3C(O)), 

32.4 (OCH2CH2CH2O), 52.3 (CHCH2OCH2), 57.7 (OCH2CH2CH2OH), 67.8 
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(CHCH2OCH2CH2CH2), 69.9 (CHCH2OCH2CH2CH2), 169.3, 171.7 (CHC(O)OH, 

CH3C(O)NH); Mr (+ESI) 228.0845 [M+Na]+ (calcd for C8H15NO5Na+ 228.0848). Anal. 

Calcd for C8H15NO5: C, 46.82; H, 7.37; N, 6.83. Found: C, 46.52; H, 7.42; N, 6.73. 

 

 (R)-2-Acetamido-3-(2-azidoethoxy)propionic Acid (( R)-124). Using Method B, 

(R)-112a (1.56 g, 6.78 mmol) in THF (40 mL) and LiOH (195 mg, 8.14 mmol) in H2O 

(20 mL) gave 750 mg (51%) of (R)-124 as a white solid upon work-up: mp 99–100 

°C; [ α]25
D -12.6° ( c 1.8; MeOH);  Rf = 0.21 (1/9 MeOH/CHCl3); IR (nujol) 3356, 2119, 

1735, 1625, 1547, 1457, 1267, 1232 cm-1; 1H NMR (CDCl3) δ 2.07 (s, CH3C(O)NH), 

3.23–3.42 (m, CH2N3), 3.60–3.80 (m, OCH2CH2N3, CHCH’HOCH2), 4.01 (dd, J = 

3.0, 9.1 Hz, CHCH’HO), 4.76–4.80 (m, CHCH2O), 6.00–7.00 (m, CO2H), 6.48 (d, J = 

7.5 Hz, CH3C(O)NH); 13C NMR (DMSO-d6) δ 22.3 (CH3C(O)), 49.9 (OCH2CH2N3), 

52.2 (CHCH2O), 69.4 (CHCH2O or OCH2CH2N3), 70.1 (OCH2CH2N3 or CHCH2O), 

169.4, 171.5  (CH3C(O)NH, C(O)OH); Mr (+ESI) 239.0750 [M+Na]+ (calcd for 

C7H12N4O4Na+ 239.0756). Anal. Calcd for C7H12N4O4•0.07EtOAc: C, 39.30; H, 5.69; 

N, 25.23. Found: C, 39.30; H, 5.73; N, 25.33. 

 

(S)-2-Acetamido-3-(2-azidoethoxy)propionic Acid (( S)-124). Using Method B, 

compound (S)-112a (1.67 g, 7.26 mmol) in THF (40 mL), and LiOH (209 mg, 8.71 

mmol) in H2O (20 mL) gave a white solid upon work-up and evaporation: mp 99–100 

°C; [ α]25
D +12.4° ( c 1.3; MeOH);  Rf = 0.21 (1/9 MeOH/CHCl3); IR (nujol) 3356, 2119, 

1735, 1624, 1547, 1458, 1267, 1233 cm-1; 1H NMR (DMSO-d6) δ 1.86 (s, 

CH3C(O)NH), 3.30–3.45 (m, CH2N3), 3.50–3.78 (m, OCH2CH2N3, CHCHH’OCH2, 
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CHCH’HO), 4.39–4.48 (m, CHCH2O), 8.13 (d, J = 8.1 Hz, CH3C(O)NH); 13C NMR 

(DMSO-d6) δ 22.3 (CH3C(O)), 49.9 (OCH2CH2N3), 52.2 (CHCH2O), 69.4 (CHCH2O 

or OCH2CH2N3), 70.1 (OCH2CH2N3 or CHCH2O), 169.4, 171.5 (CH3C(O)NH, 

C(O)OH); Mr (+ESI) 239.0750 [M+Na]+ (calcd for C7H12N4O4Na+ 239.0756). Anal. 

Calcd for C7H12N4O4•0.07EtOAc: C, 39.30; H, 5.69; N, 25.23. Found: C, 39.28; H, 

5.71; N, 25.37. 

 

(R)-2-Acetamido-3-(2-(2-methoxyethoxy)ethoxy)propioni c Acid (( R)-125). Using 

Method B, a ~1:1 mixture of (R)-114a and (R)-114b (3.85 g, 14.2 mmol), LiOH (376 

mg, 15.6 mmol) in THF:H2O (160 mL) gave 2.44 g (68%) of (R)-125 as a colorless 

viscous oil after work-up: [α]25
D -38.5° ( c 1.2, CHCl3); Rf = 0–0.11 (1/9 MeOH/CHCl3); 

IR (neat) 3500-2500 (br),  1974, 1731, 1654, 1547, 1103 cm-1; 1H NMR (CDCl3) δ 

2.08 (s, CH3C(O)), 3.40 (s, OCH3), 3.54–3.70 (m, OCH2CH2OCH2CH2OCH3), 3.75 

(dd, J = 3.3, 9.7 Hz, CHH’OCH2), 3.98 (dd J = 3.3, 9.7 Hz, CHH’OCH2), 4.68–4.78 

(m, CHCH2O), 6.98 (d, J = 7.8 Hz, C(O)NHCH), 9.10–9.50 (m, C(O)OH); 13C NMR 

(CDCl3) δ 22.9 (CH3C(O)), 53.0 (CHCH2OCH2CH2), 59.0 (OCH3),  70.3, 70.4, 70.7, 

70.8, 72.1 (CH2OCH2CH2OCH2CH2O), 171.4, 172.3 (C(O)OH, CH3C(O)NH); Mr 

(+ESI) 272.1107 [M+Na]+ (calcd for C18H20N2O3Na+ 272.1110). Anal. Calcd for 

C10H9NO6•0.33H2O: C, 46.50; H, 7.81; N, 5.42. Found: C, 46.34; H, 7.74; N, 5.46. 
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2.2.4.5. Synthesis of O-substituted derivatives of lacosamide  
 

 
 

R = Compound number 

Me 1 
Et 48 

i-Pr 80 
t-Bu 81 

C6H11 82 
Ph 83 

CH2C6H11 86 
CH2Ph 87 

CH2CH2CH=CH2 88 

 
89 

CH2CH2C≡CH 90 
CH2CH2Ph 91 

CH2CH2OBn 126 
CH2CH2OH 127 

CH2CH2CH2OH 129 
CH2CH2C(O)H 93 

 
94 

CH2CH2NHC(O)CH3 96 
CH2CH2N3 97 

 
98 

CH2CH2OCH3 99 
(CH2CH2O)2CH3 100 

CD3 1-d3 
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Scheme 21.  Different reactions used to obtain 55 derivatives after the amide coupling step (route 3 ).  
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Scheme 22.  Synthesis of the deuterated analog of (R)-lacosamide (R)-1-d3 (route 1 ) 
 

 

 

(R)-N-Benzyl 2-Acetamido-3-methoxypropionamide (( R)-1). Using Method D, (R)-

115 (100 mg, 0.62 mmol), benzylamine (81 µL, 0.74 mmol), and DMTMM (205 mg, 

0.74 mmol) in anhydrous THF (10 mL) gave 95 mg (61%) of (R)-1 after flash column 

chromatography (1/9 MeOH/CHCl3) and recrystallization from EtOAc: mp 142–143 

°C (lit. 235 mp 142–143°C); [ α]25
D +16.1° ( c 0.9, MeOH) (lit.235 [α]25

D +16.0° ( c 1.0; 

MeOH));  Rf = 0.47 (1/9 MeOH/CHCl3); 
1H NMR (CDCl3) δ 2.03 (s, CH3C(O)),  3.37 

(s, CH2OCH3), 3.46 (dd, J = 7.2, 8.4 Hz, CHH’OCH3), 3.79 (dd J = 4.2, 8.4 Hz, 

CHH’OCH3), 4.40–4.52 (m, NHCH2C6H5), 4.52–4.60 (m, CHCH2O), 6.40–6.60 (br m, 

CH3C(O)NH), 6.78–6.92 (br m,  C(O)NHCH2Ph), 7.18–7.38 (m, NHCH2C6H5), 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-1 gave only one 

signal for the acetyl methyl protons and the methoxy protons, addition of excess (R)-

(-)-mandelic acid to a CDCl3 solution of (S)-1 and (R)-1 (1:2 ratio) gave two signals 

for the acetyl methyl protons (δ 2.023 (S) and 2.010 (R) (∆ppm = 0.013)), and two 

signals for the methoxy protons (δ 3.311 (S) and 3.350 (R) (∆ppm = 0.039)); 13C 

NMR (CDCl3) δ 23.4 (CH3C(O)), 43.7 (NHCH2Ph), 52.6 (CHCH2OCH3), 59.3 

(CH2OCH3), 71.9 (CH2OCH3), 127.6, 127.7, 138.1 (NHCH2C6H5), 170.2, 170.5 

(CHC(O)NH, CH3C(O)NH), the remaining aromatic resonance was not detected and 

is believed to overlap with nearby signals 
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(R)-N-Benzyl 2-Acetamido-3-ethoxypropionamide (( R)-48). Using Method D, (R)-

116 (1.34 g, 7.7 mmol), benzylamine (1.00 mL, 9.2 mmol), and DMTMM (2.54 g, 9.2 

mmol) in anhydrous THF (80 mL) gave 1.11 g (46%) of (R)-48 as a white solid after 

flash column chromatography (8/92 MeOH/CHCl3) and 2 recrystallizations from 

EtOAc: mp 129–130°C; [ α]25
D -34.1° ( c 0.6, CHCl3);  Rf = 0.35 (5/95 MeOH/CHCl3); 

IR (nujol) 3283, 1634, 1555,  1456, 1375, 1114 cm-1; 1H NMR (CDCl3) δ 1.15 (t, J = 

7.2 Hz, OCH2CH3), 2.04 (s, CH3C(O)),  3.44 (dd, J = 8.4, 9.3 Hz, CHH’OCH2CH3), 

3.48–3.62 (m, OCH2CH3), 3.85 (dd J = 4.2, 9.3 Hz, CHH’OCH2CH3), 4.40–4.58 (m, 

CHCH2OCH2, NHCH2C6H5), 6.40–6.50 (br d, CH3C(O)NH), 6.78–6.90 (br t, 

C(O)NHCH2Ph), 7.22–7.38 (m, NHCH2C6H5), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-48 gave only one signal for the acetyl methyl protons 

(δ 2.017); 13C NMR (CDCl3) δ 15.1 (OCH2CH3), 23.3 (CH3C(O)), 43.6 (NHCH2Ph), 

52.7 (CHCH2OCH2CH3), 67.0 (CHCH2OCH2CH3), 69.9 (CHCH2OCH2CH3), 127.6, 

127.7, 128.7, 138.1 (NHCH2C6H5), 170.3, 170.5 (CHC(O)NH, CH3C(O)NH); Mr 

(+ESI) 287.1374 [M+Na]+ (calcd for C14H20N2O3Na+ 287.1372). Anal. Calcd for 

C14H20N2O3: C, 63.62; H, 7.63; N, 10.60. Found: C, 63.62; H, 7.56; N, 10.47. 

 

(R)-N-Benzyl 2-Acetamido-3-isopropoxypropionamide (( R)-80). Using Method D, 

(R)-117 (1.90 g, 10.0 mmol), benzylamine (1.31 mL, 12.0 mmol), and DMTMM (3.32 

g, 12.0 mmol) in anhydrous THF (100 mL) gave 2.01 g (72%) of (R)-80 as a white 

solid after flash column chromatography (5/95 MeOH/CHCl3) and recrystallization 

from EtOAc: mp 151–153°C; [ α]25
D -23.4° ( c 0.5, CHCl3);  Rf = 0.37 (5/95 
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MeOH/CHCl3); IR (nujol) 3280, 3098, 1642, 1555,  1458, 1377, 1298, 1258, 1147 

cm-1; 1H NMR (CDCl3) δ 1.09 (d, J = 6.0 Hz, OCHCH3(C’H3)), 1.13 (d, J = 6.0 Hz, 

OCHCH3(C’H3)), 2.04 (s, CH3C(O)), 3.40 (app t, J = 8.7 Hz, CHH’OCH(CH3)2), 3.63 

(hept, J = 6.0 Hz, OCH(CH3)2), 3.84 (dd J = 3.9, 8.7 Hz, CHH’OCH(CH3)2), 4.38–

4.57 (m, CHCH2OCH, NHCH2C6H5), 6.42–6.50 (br d, CH3C(O)NH), 6.82–6.94 (br t, 

C(O)NHCH2Ph), 7.24–7.38 (m, NHCH2C6H5), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-80 gave only one signal for the acetyl methyl protons 

(δ 2.014); 13C NMR (CDCl3) δ 22.0 (OCHCH3(C’H3)), 22.2 (OCHCH3(C’H3)), 23.4 

(CH3C(O)), 43.7 (NHCH2Ph), 52.9 (CHCH2OCH(CH3)2), 67.5 (CH2OCH(CH3)2), 72.7 

(CH2OCH(CH3)2), 127.7, 128.8, 138.1 (NHCH2C6H5), 170.5 (CHC(O)NH or 

CH3C(O)NH), the remaining aromatic and C(O) peaks were not detected and are 

believed to overlap with nearby signals; Mr (+ESI) 301.1530 [M+Na]+ (calcd for 

C15H22N2O3Na+ 301.1528). Anal. Calcd for C15H22N2O3: C, 64.73; H, 7.97; N, 10.06. 

Found: C, 64.56; H, 8.00; N, 10.12. 

 

(R)-N-Benzyl 2-Acetamido-3- tert -butoxypropionamide (( R)-81). Using Method D, 

(R)-118 (1.10 g, 5.4 mmol), benzylamine (0.71 mL, 6.5 mmol), and DMTMM (1.80 g, 

6.5 mmol) in anhydrous THF (50 mL) gave 730 mg (46%) of (R)-81 as a white solid 

after flash column chromatography (5/95 MeOH/CHCl3) and recrystallization from 

EtOAc: mp 126–127°C; [ α]25
D -22.9° ( c 0.9, CHCl3);  Rf  = 0.39 (5/95 MeOH/CHCl3); 

IR (nujol) 3280, 3091, 1641, 1550,  1459, 1372, 1246, 1194, 1090 cm-1; 1H NMR 

(CDCl3) δ 1.14 (s, OC(CH3)3), 2.04 (s, CH3C(O)), 3.40 (app t, J = 8.5 Hz, 

CHH’OC(CH3)3), 3.84 (dd J = 4.2, 8.5 Hz, CHH’OC(CH3)3), 4.38–4.57 (m, 
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CHCH2OC, NHCH2C6H5), 6.40–6.50 (br d, CH3C(O)NH), 6.80–6.92 (br t, 

C(O)NHCH2Ph), 7.23–7.40 (m, NHCH2C6H5), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-81 gave only one signal for the acetyl methyl protons 

(δ 2.009) and the t-Bu methyl protons (δ 1.112); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 

27.6 (OC(CH3)3), 43.8 (NHCH2Ph), 53.2 (CHCH2OC(CH3)3), 61.7 (CH2OC(CH3)3), 

74.5 (CH2OC(CH3)3), 127.7, 127.8, 128.8, 138.1 (NHCH2C6H5), 170.3, 170.5 

(CHC(O)NH, CH3C(O)NH); Mr (+ESI) 315.1687 [M+Na]+ (calcd for C16H24N2O3Na+ 

315.1685). Anal. Calcd for C16H24N2O3: C, 65.73; H, 8.27; N, 9.58. Found: C, 65.64; 

H, 8.08; N, 9.57. 

 

(R)-N-Benzyl 2-Acetamido-3-(2-cyclohexyloxy)propionamide  ((R)-82). Using 

Method B, a ~1:1 mixture of (R)-105a and (R)-105b (2.10 g, 8.4 mmol) in THF (80 

mL) and LiOH (202 mg, 8.4 mmol) in H2O (40 mL) gave upon work-up the 

corresponding acid (1.62 g, 7.1 mmol, 84%) as a yellow viscous oil (Mr (+ESI) 

252.1212 [M+Na]+ (calcd for C11H19NO4Na+ 252.1204)) that was directly dissolved in 

THF (70 mL). Using Method D, addition of benzylamine (930 µL, 8.5 mmol) and 

DMTMM (2.4 g, 8.5 mmol) gave (R)-82 as a white solid (1.17 g, 65%) after 

purification by flash chromatography (1:2 hexanes/EtOAc to 1/9 MeOH/CH2Cl2) 

followed by recrystallization from EtOAc and hexanes: mp 134–135 °C; [ α]25
D -33.5° 

(c 1.2; CHCl3); Rf = 0.52 (EtOAc); IR (nujol) 3282, 2857, 1641, 1561, 1456, 1375, 

1303, 1256 cm 1; 1H NMR (CDCl3) δ 1.10–1.34, 1.42–1.88 (m, OCH(CH2CH2)2CH2), 

2.03 (s, CH3C(O)), 3.24–3.36 (m, OCH(CH2CH2)2CH2), 3.43 (app. t, J = 9.0 Hz, 

CHH’OCH2CH), 3.86 (dd, J = 3.6, 9.0 Hz, CHH’OCH2CH), 4.38–4.56 (m, NHCH2Ph, 
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CHCH2O), 6.48–6.58 (br d, CH3C(O)NH), 6.92–7.02 (br t, NHCH2Ph), 7.22–7.38 (m, 

C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-82 gave 

only one signal for the acetyl protons (δ 2.006); 13C NMR (CDCl3) δ 23.4, 23.9, 25.8 

(CH3C(O), OCH(CH2CH2)2CH2), 32.0, 32.2 (OCH(CH2CH2)2CH2), 43.8 (NHCH2Ph), 

52.9 (CHCH2OCH), 67.3 (CH2OCH(CH2CH2)2CH2), 78.4 (OCH(CH2CH2)2CH2), 

127.7, 127.8, 128.9, 138.1 (C6H5), 170.4 (CH3C(O)NH, C(O)NHCH2), the remaining 

resonance was not detected and is believed to overlap with a nearby signal; Mr 

(+ESI) 341.3 [M+Na]+ (calcd for C18H26N2O3Na+ 341.3). Anal. Calcd for C18H26N2O3: 

C, 67.90; H, 8.23; N, 8.80. Found: C, 67.86; H, 8.12; N, 8.74. 

 

(R)-N-Benzyl 2-Acetamido-3-phenoxypropionamide ( R)-83. Using Method A, (R)-

78 (2.66 g, 12.1 mmol), phenol (5.70 g, 60.6 mmol), and BF3•Et2O (1.52 mL, 12.1 

mmol) in CH2Cl2 (50 mL) gave a crude residue that was recrystallized (3 x) from 

EtOAc and hexanes to give (R)-83 (340 mg, 8%) as a white solid. The mother 

liquors from the recrystallization were concentrated and then purified using flash 

chromatography (5/95 MeOH/CHCl3). The obtained solid was recrystallized from 

EtOAc and hexanes to yield an additional 100 mg (3%) of (R)-83 (total yield: 440 

mg, 11%): mp 169–170°C; [ α]25
D -18.0° ( c 0.4, MeOH);  Rf = 0.52 (5/95 

MeOH/CHCl3); IR (nujol) 3288, 3073, 1687, 1551, 1458, 1375 cm-1; 1H NMR 

(CDCl3) δ 2.03 (s, CH3C(O)), 4.05 (dd, J = 7.5, 9.6 Hz, CHH’OCH3), 4.37 (dd J = 4.2, 

9.6 Hz, CHH’OCH3), 4.40–4.56 (m, NHCH2C6H5), 4.78–4.86 (m, CHCH2O), 6.66 (d, 

J = 6.0 Hz, CH3C(O)NH), 6.87 (d, J = 7.8 Hz, 3 ArH) 6.98 (t, J = 7.8 Hz, 2 ArH), 

7.16–7.35 (m, CH2C6H5 and NHCH2C6H5), addition of excess (R)-(-)-mandelic acid 
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to a CDCl3 solution of (R)-83 gave only one signal for the acetyl protons (δ 1.985); 

13C NMR (CDCl3) δ 23.4 (CH3C(O)), 43.9 (NH2CH2C6H4), 52.6 (CHCH2OPh), 67.4 

(CH2OPh), 114.8, 121.9, 127.7, 127.8, 128.9, 129.8, 137.8, 157.9 (2 C6H5), 169.5, 

170.6 (CHC(O)NH, CH3C(O)); Mr (+ESI) 335.1366 [M+Na]+ (calcd for 

C18H20N2O3Na+ 335.1372). Anal. Calcd for C18H20N2O3: C, 69.21; H, 6.45; N, 8.97; 

Found: C, 69.29; H, 6.52; N, 9.05.  

 

(R)-N-Benzyl 2-Acetamido-3-phenoxypropionamide (( R)-83) (Alternate 

procedure).  Using Method D, acid (R)-119 (376 mg, 1.68 mmol), benzylamine (219 

µL, 2.02 mmol), and DMTMM (557 mg, 2.02 mmol) in THF (20 mL) gave a (R)-83 as 

a white solid (305 mg, 58%) after purification by flash chromatography (5/95 

MeOH/CHCl3) and further recrystallization from EtOAc: mp 169–170 °C; [ α]25
D -18.2° 

(c 1.0, MeOH);  Rf = 0.52 (5/95 MeOH/CHCl3); 
1H NMR (CDCl3) δ 2.06 (s, CH3C(O)), 

4.03 (dd, J = 7.5, 9.6 Hz, CHH’OCH3), 4.42 (dd J = 4.2, 9.6 Hz, CHH’OCH3), 4.36–

4.56 (m, NHCH2C6H5), 4.78–4.84 (m, CHCH2O), 6.53 (d, J = 6.0 Hz, CH3C(O)NH), 

6.61–6.71 (br t, C(O)NHCH2Ph), 6.90 (d, J = 7.8 Hz, OC6H5), 7.00 (t, J = 7.8 Hz, 

OC6H5), 7.20–7.32 (m, CH2C6H5), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (R)-83 gave only one signal for the acetyl peak protons (δ 2.002). 

 

(R)-N-Benzyl 2-Acetamido-3-(2-cyclohexylmethoxy)propiona mide (( R)-86). 

Using Method B, a ~1:4 mixture of (R)-107a and (R)-107b (2.32 g, 8.6 mmol) in THF 

(85 mL) and LiOH (207 mg, 8.6 mmol) in H2O (40 mL) gave upon work-up the 

corresponding acid (1.88 g, 7.7 mmol, 90%) as a yellow viscous that was directly 
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dissolved in THF (75 mL). Using Method D, addition of benzylamine (1.0 mL, 9.2 

mmol) and DMTMM (2.54 g, 9.2 mmol) gave (R)-86 as a white solid (1.50 g, 59%) 

after purification by flash chromatography (1/2 hexanes/EtOAc to 1/9 MeOH/CH2Cl2) 

followed by recrystallization from EtOAc and hexanes: mp 143–144 °C; [ α]25
D +6.7° 

(c 1.6; MeOH); Rf  = 0.39 (5/95 MeOH/CH2Cl2); IR (nujol) 3280, 3092, 2861, 1641, 

1550, 1459, 1372, 1301, 1247 cm 1; 1H NMR (CDCl3) δ 0.74–0.90, 1.00–1.26, 1.40–

1.72 (m, OCH2CH(CH2CH2)2CH2), 2.02 (s, CH3C(O)), 3.16–3.32 (m, 

OCH2CH(CH2CH2)2CH2), 3.42 (app. t, J = 9.0 Hz, CHH’OCH2CH), 3.79 (dd, J = 3.6, 

9.0 Hz, CHH’OCH2), 4.38–4.50 (m, NHCH2Ph), 4.51–4.60 (m, CHCH2O), 6.53 (d, J 

= 6.3 Hz, CH3C(O)NH), 6.88–7.00 (br t, NHCH2Ph), 7.22–7.38 (m, C6H5), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-86 gave only one signal for 

the acetyl protons (δ 2.008); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 25.9, 26.6, 

OCH2CH(CH2CH2)2CH2), 30.0, 30.1 (OCH2CH(CH2CH2)2CH2), 38.0 

(OCH2CH(CH2CH2)2CH2), 43.9 (NHCH2Ph), 52.5 (CHCH2OCH2), 70.2 

(CH2OCH2CH(CH2CH2)2CH2), 77.5 (OCH2CH(CH2CH2)2CH2), 127.7, 127.8, 128.9, 

138.0 (C6H5), 170.3, 170.4 (CH3C(O)NH, C(O)NHCH2); Mr (+ESI) 355.1998 [M+Na]+ 

(calcd for C19H28N2O3Na+ 355.1997). Anal. Calcd for C19H28N2O3: C, 68.65; H, 8.49; 

N, 8.43. Found: C, 68.52; H, 8.43; N, 8.38. 

 

(R)-N-Benzyl 2-Acetamido-3-(benzyloxy)propionamide ( R)-87. To a stirred 

suspension of O-benzyl-D-serine (Astatech Inc.) (1.00 g, 5.13 mmol) in a 9:1 

THF:H2O mixture (50 mL) was added Ac2O (1.45 mL, 15.3 mmol) at room 

temperature.  The reaction became clear within 30 min and was further stirred at 
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room temperature (3 h). The solvents were removed in vacuo to yield a viscous clear 

residue (1.22 g, 5.13 mmol, quant.) that was directly dissolved in THF (60 mL). 

Using Method D, benzylamine (670 µL, 6.2 mmol) and DMTMM (1.71 g, 6.2 mmol) 

gave (R)-87 as a white solid (1.55 g, 93% for 2 steps) upon purification by flash 

chromatography (EtOAc to 1/9 MeOH/CH2Cl2): mp 145–146 °C; [ α]25
D -28.7° ( c 0.7; 

CHCl3); Rf = 0.49 (EtOAc); IR (nujol) 3291, 2862, 1635, 1547, 1457, 1375, 1310, 

1248 cm 1; 1H NMR (CDCl3) δ 2.01 (s, CH3C(O)), 3.51 (dd, J = 7.8, 9.0 Hz, 

CHH’OCH2Ph), 3.90 (dd, J = 4.2, 9.0 Hz, CHH’OCH2Ph), 4.38–4.64 (m, NHCH2Ph, 

OCH2Ph, CHCH2O), 6.40–6.52 (br d, CH3C(O)NH), 6.72–6.84 (br t, NHCH2Ph), 

7.18–7.38 (m, 2 C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution 

of (R)-87 gave only one signal for the acetyl protons (δ 1.996); 13C NMR (CDCl3) δ 

23.4 (CH3C(O)), 43.9 (NHCH2Ph), 52.5 (CHCH2OCH2), 69.6, 73.8 (CH2OCH2Ph), 

127.7, 127.8, 128.1, 128.2, 128.6, 128.9, 137.4, 137.9 (2 C6H5), 170.1, 170.4 

(CH3C(O)NH, C(O)NHCH2); Mr (+ESI) 349.2 [M+Na]+ (calcd for C19H22N2O3Na+ 

349.2). Anal. Calcd for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 70.30; H, 

6.86; N, 8.64. 

 

(R)-N-Benzyl 2-Acetamido-3-(but-3-enyloxy)propionamide ( (R)-88). Using the 

Method D, (R)-120 (1.32 g, 6.57 mmol), benzylamine (860 µL, 7.88 mmol), and 

DMTMM (2.18 g, 7.88 mmol) gave (R)-88 (1.30 g, 67%) as a white solid after 

purification by flash chromatography (EtOAc) and further recrystallization from 

EtOAc and hexanes: mp 103–104 °C; [ α]25
D +51.3° ( c 0.6; MeOH); Rf = 0.37 (5/95 

MeOH/CH2Cl2); IR (nujol) 3291, 3099, 1637, 1554, 1456, 1375, 1117 cm 1; 1H NMR 
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(CDCl3) δ 2.03 (s, CH3C(O)), 2.22–2.36 (m, CH2CH2CH=CH2), 3.40–3.62 (m, 

CH2OCH2CH2, CHH’OCH2CH2), 3.85 (dd, J = 4.2, 9.0 Hz, CHH’OCH2CH2), 4.45 (d, 

J = 7.2 Hz, NHCH2Ph), 4.48–4.57 (m, CHCH2O), 4.92–5.06 (m, CH2CH=CH2), 5.62–

5.74 (m, CH2CH=CH2), 6.42–6.56 (m, NHCHCH2O), 6.84–6.96 (br t, NHCH2Ph), 

7.20–7.36 (m, C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of 

(R)-88 gave only one signal for the acetyl protons (δ 2.011 ppm), addition of excess 

(R)-(-)-mandelic acid to a CDCl3 solution of (S)-88 and (R)-88 in a ~1:2 ratio gave 

two signals with a relative ~1:2 intensity for the acetyl protons (δ 2.027 ppm (S)-88, δ 

2.014 ppm (R)-88, (∆ppm = 0.013)); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 34.2 

(CH2CH2CH=CH2), 43.8 (NHCH2Ph), 52.5 (CHC(O)NH), 69.9, 70.6 (CHCH2OCH2), 

117.0 (CH2CH2CH=CH2), 127.7, 128.9, 135.3, 138.1 (C6H5, CH2CH2CH=CH2), 

170.2, 170.4 (CH3C(O), CHC(O)NH), the remaining peak was not detected and is 

believed to overlap with nearby signals; Mr (+ESI) 313.1528 [M+Na]+ (calcd for 

C16H22N2O3Na+ 313.1528). Anal. Calcd for C16H22N2O3: C, 66.18; H, 7.64; N, 9.65. 

Found: C, 65.98; H, 7.55; N, 9.68. 

 

(S)-N-Benzyl 2-Acetamido-3-(but-3-enyloxy)propionamide ( (S)-88). Using 

Method D, (S)-120 (164 mg, 0.87 µmol), benzylamine (113 µL, 1.04 mmol), and 

DMTMM (287 mg, 1.04 mmol) in THF (10 mL) gave (S)-88 (150 mg, 60%) as a white 

solid after purification by flash chromatography (EtOAc) and further recrystallization 

from EtOAc and hexanes: mp 103–104 °C; [ α]25
D -50.9° ( c 0.6; MeOH); Rf = 0.37 

(5/95 MeOH/CH2Cl2); IR (nujol) 3298, 3093, 2861, 1637, 1553, 1455, 1375, 1117 

cm 1; 1H NMR (CDCl3) δ 2.02 (s, CH3C(O)), 2.22–2.36 (m, CH2CH2CH=CH2), 3.40–
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3.62 (m, CH2OCH2CH2, CHH’OCH2CH2), 3.84 (dd, J = 4.2, 9.0 Hz, CHH’OCH2CH2), 

4.45 (d, J = 7.2 Hz, NHCH2Ph), 4.48–4.57 (m, CHCH2O), 4.92–5.06 (m, 

CH2CH=CH2), 5.62–5.74 (m, CH2CH=CH2), 6.48–6.60 (m, NHCHCH2O), 6.88–7.00 

(br t, NHCH2Ph), 7.20–7.36 (m, C6H5), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (S)-88 gave only one signal for the acetyl protons (δ 2.026 ppm), 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-88 and (R)-88 in a 

~1:2 ratio gave two signals with a relative ~1:2 intensity for the acetyl protons (δ 

2.027 ppm (S)-88, δ 2.014 ppm (R)-88, (∆ppm = 0.013)); 13C NMR (CDCl3) δ 23.2 

(CH3C(O)), 34.1 (CH2CH2CH=CH2), 43.7 (NHCH2Ph), 52.5 (CHC(O)NH), 69.9, 70.6 

(CHCH2OCH2), 117.0 (CH2CH2CH=CH2), 127.6, 127.7, 128.8, 134.9, 138.3 (C6H5, 

CH2CH2CH=CH2), 170.2, 170.4 (CH3C(O), CHC(O)NH); Mr (+ESI) 313.1530 

[M+Na]+ (calcd for C16H22N2O3Na+ 313.1528). Anal. Calcd for C16H22N2O3: C, 66.18; 

H, 7.64; N, 9.65. Found: C, 66.27; H, 7.51; N, 9.51. 

 

(R)-N-Benzyl 2-Acetamido-3-(2-cyclopropylethoxy)propiona mide (( R)-89). Using 

Method B, a ~1:1 mixture of (R)-109a and (R)-109b (1.60 g, 6.6 mmol) in THF (60 

mL) and LiOH (158 mg, 6.6 mmol) in H2O (30 mL) gave upon work-up the 

corresponding acid (1.27 g, 5.9 mmol, 90%) as a yellow oil (Mr (+ESI) 238.1056 

[M+Na]+ (calcd for C10H17NO4Na+ 238.1054)) that was directly dissolved in THF (60 

mL). Using Method D, addition of benzylamine (740 µL, 7.13 mmol) and DMTMM 

(2.0 g, 7.13 mmol) gave (R)-89 as a white solid (1.17 g, 65%) after purification by 

flash chromatography (1:2 hexanes/EtOAc to 1/9 MeOH/CH2Cl2) followed by 

recrystallization from EtOAc and hexanes: mp 97–99 °C; [α]25
D -32.1° ( c 1.5; 
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MeOH); Rf = 0.52 (EtOAc); IR (nujol) 3292, 2859, 1640, 1549, 1457, 1376, 1303, 

1249 cm 1; 1H NMR (CDCl3) δ -0.08–0.01 (m, CH(CHH’CHH’)), 0.30–0.38 (m, 

CH(CHH’CHH’)), 0.50–0.64 (m, CH(CH2CH2)), 1.32–1.48 (m, CH2CH(CH2CH2), 2.02 

(s, CH3C(O)), 3.40–3.62 (m, OCH2CH2CH(CH2CH2), CHH’OCH2CH2), 3.84 (dd, J = 

3.9, 9.0 Hz, CHH’OCH2CH2), 4.38–4.58 (m, NHCH2Ph, CHCH2O), 6.48–6.58 (br d, 

CH3C(O)NH), 6.90–7.00 (br t, NHCH2Ph), 7.20–7.36 (m, C6H5), addition of excess 

(R)-(-)-mandelic acid to a CDCl3 solution of (R)-89 gave only one signal for the acetyl 

protons (δ 2.011); 13C NMR (CDCl3) δ 4.3, 4.4 (CH(CH2CH2)), 8.0 (CH(CH2CH2)), 

23.4 (CH3C(O)), 34.7 (CH2CH(CH2CH2)), 43.8 (NHCH2Ph), 52.5 (CHCH2OCH2), 

70.1, 71.8 (CH2OCH2CH2), 127.7, 128.9, 138.0 (C6H5), 170.3, 170.4 (CH3C(O)NH, 

C(O)NHCH2), the remaining resonance was not detected and is believed to overlap 

with nearby signals; Mr (+ESI) 327.2 [M+Na]+ (calcd for C17H24N2O3Na+ 327.2). Anal. 

Calcd for C17H24N2O3: C, 67.08; H, 7.95; N, 9.20. Found: C, 67.06; H, 7.94; N, 9.27. 

 

(R)-N-Benzyl 2-Acetamido-3-(but-3-ynyloxy)propionamide ( (R)-90). Using 

Method A, compound (R)-78 (1.14 g, 5.22 mmol), homopropargyl alcohol (2.0 mL, 

26.1 mmol), and BF3•Et2O (500 µL, 3.97 mmol) in CH2Cl2 (30 mL) gave (R)-90 as a 

white solid (450 mg, 30%) upon work-up, purification by flash chromatography (2/1 

EtOAc/CH2Cl2), and subsequent recrystallization from EtOAc and hexanes: mp 120–

122 °C; [ α]25
D -49.1° ( c 0.8, CHCl3);  Rf = 0.38 (2/1 EtOAc/CH2Cl2); IR (CHCl3 film) 

3088, 2932, 2867, 1746, 1640, 1548, 1449, 1377, 1303, 1243 cm 1; 1H NMR 

(CDCl3) δ 1.80 (t, J = 2.7 Hz, CH2C≡CH), 2.04 (s, CH3C(O)), 2.38–2.46 (m, 

OCH2CH2), 3.46–3.74 (m,  CHH’OCH2CH2C≡CH), 3.90 (dd, J = 3.9, 9.0 Hz, 
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CHH’OCH2CH2C≡CH), 4.38–4.58 (m, NHCH2C6H5, CHCH2O), 6.48–6.56 (m, 

NHCHCH2O), 6.92–7.06 (m, NHCH2Ph), 7.20–7.38 (m, NHCH2C6H5), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-90 gave only one signal for 

the acetyl protons (δ 2.006); 13C NMR (CDCl3) δ 20.0 (CH2C≡CH), 23.4 (CH3C(O)), 

43.8 (NH2CH2Ph), 52.4 (CHCH2OCH2), 69.3, 69.8, 70.0 (CH2OCH2CH2C≡CH), 81.6 

(CH2C≡CH), 127.7, 127.8, 128.9, 138.1 (C6H5), 170.1, 170.4 (CHC(O)NH, CH3C(O)); 

Mr (+ESI) 421.1 [M+Cs]+ (calcd for C16H20N2O3Cs+ 421.1). Anal. Calcd for 

C16H20N2O3: C, 66.65; H, 6.99; N, 9.72. Found: C, 66.38; H, 6.90; N, 9.65. 

 

(R)-N-Benzyl 2-Acetamido-3-phenethoxypropionamide (( R)-91). Using Method A, 

compound (R)-78 (2.0 g, 9.2 mmol), phenethyl alcohol (6.0 mL, 49.2 mmol), and 

BF3•Et2O (1.0 mL, 8.0 mmol) in CH2Cl2 (30 mL) gave (R)-91 as a white solid (392 

mg, 10%) upon work-up and purification by flash chromatography (2/1 

EtOAc/CH2Cl2) and recrystallization from EtOAc and hexanes: mp 90–92 °C; [ α]25
D -

29.2° ( c 0.5, CHCl3);  Rf = 0.44 (3/1 EtOAc/CH2Cl2); IR (nujol) 3285, 3124, 1639, 

1547, 1457, 1375, 1303, 1118 cm 1; 1H NMR (CDCl3) δ 1.97 (s, CH3C(O)), 2.84 (d, J 

= 6.3 Hz, OCH2CH2Ph), 3.40 (app d, J = 8.1 Hz, CHH’OCH2CH2Ph), 3.62–3.92 

(m,CHH’OCH2CH2Ph), 4.20–4.38 (m, NHCH2C6H5), 4.40–4.50 (m, CHCH2O), 6.32–

6.40 (m, NHCHCH2O), 6.50–6.62 (m, NHCH2Ph), 7.12–7.38 (m, CH2CH2C6H5, 

NHCH2C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-91 

gave only one signal for the acetyl protons (δ 1.988); 13C NMR (CDCl3) δ 23.4 

(CH3C(O)), 36.2 (CH2CH2Ph), 43.6 (NH2CH2Ph), 52.4 (CHCH2OCH2), 70.0, 72.1 

(CH2OCH2CH2), 126.6, 127.5, 127.6, 128.7, 128.8, 129.0, 138.2, 139.0 (2 C6H5), 
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170.2, 170.4 (CHC(O)NH, CH3C(O)); Mr (+ESI) 363.2 [M+Na]+ (calcd for 

C20H24N2O3Na+ 363.2). Anal. Calcd C20H24N2O3: C, 70.56; H, 7.11; N, 8.23. Found: 

C, 70.40; H, 7.08; N, 8.15. 

 

(S)-N-Benzyl 2-Acetamido-3-(2-(benzyloxy)ethoxy)propiona mide (( S)-126). 

Using Method D, acid (S)-121 (386 mg, 1.37 mmol), benzylamine (165 µL, 1.51 

mmol) and DMTMM (418 mg, 1.51 mmol) in THF (14 mL) gave 365 mg (72%) of (S)-

126 as a white solid after purification by silica gel flash chromatography (5/95, 

MeOH/CHCl3): mp 86–88 °C, [ α]25
D +30.0° ( c 1.0, CHCl3);  Rf = 0.56 (5/95 

MeOH/CHCl3); IR (nujol) 3284, 1637, 1560 cm 1; 1H NMR (DMSO-d6) δ 1.86 (s, 

CH3C(O)NH), 3.52–3.62 (m, OCH2CH2OBn, CHCH2OCH2), 4.20–4.38 (m, 

NHCH2Ph), 4.46–4.54 (m, OCH2Ph, CHCH2OCH2), 7.19–7.40 (m, 2 C6H5), 8.08 (d, J 

= 8.1 Hz, NHCHCH2O), 8.51 (t, J = 6.0 Hz, NHCH2Ph); 13C NMR (DMSO-d6) δ 22.5 

(CH3C(O)), 42.0 (NHCH2Ph), 52.8 (CHCH2O), 68.9, 69.8, 70.7 (OCH2CH2O, 

CHCH2O), 72.0 (OCH2Ph), 126.6, 126.9, 127.3, 127.4, 128.1, 128.2, 138.4, 139.2 (2 

C6H5), 169.3, 169.7 (CH3C(O)NH and C(O)OH); Mr (+ESI) 393.1807 [M+Na]+ (calcd 

for C21H26N2O4Na+ 393.1790). Anal. Calcd for C21H26N2O4•0.1H2O: C, 67.76; H, 

7.09; N, 7.53. Found: C, 67.57; H, 7.08; N, 7.90. 

 

(S)-N-Benzyl 2-Acetamido-3-(2-hydroxyethoxy)propionamide  ((S)-127). Using 

Method H, (S)-126 (347 mg, 0.94 mmol), and 5% Pd/C (100 mg) in MeOH (12 mL) 

gave a residue that was purified using SiO2 flash chromatography (5/95 

MeOH/CHCl3) to yield (S)-127 as a colorless residue that slowly turned into a white 
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solid (193 mg, 73%): mp 100–102 °C, [ α]25
D -15.9° ( c 0.2; MeOH);  Rf = 0.28 (5/95 

MeOH/CHCl3); IR (neat) 3400–3000 (br), 2928, 1650, 1542, 1456, 1373 cm 1; 1H 

NMR (CDCl3) δ 1.98 (s, CH3C(O)NH), 3.20 (br s, CH2OH), 3.52–3.78 (m, 

OCH2CH2OH, CHCHH’OCH2), 3.82–3.88 (CHCHH’OCH2), 4.38–4.50 (m, 

NHCH2Ph), 4.60–4.68 (m, CHCH2OCH2), 6.84 (d, J = 7.2 Hz, NHCHCH2O), 7.21–

7.40 (m, C6H5,  NHCH2Ph); 13C NMR (CDCl3) δ 22.5 (CH3C(O)), 42.0 (NHCH2Ph), 

52.9 (CHCH2O), 61.7 (CH2OH), 70.4 (OCH2CH2), 72.8 (CHCH2O), 127.7, 128.9, 

138.1 (C6H5), 170.3 (CH3C(O)NH or C(O)OH), 170.9 (C(O)OH or CH3C(O)NH), the 

remaining aromatic resonance was not detected and is believed to overlap with 

nearby peaks; Mr (+ESI) 303.1314 [M+Na]+ (calcd for C14H20N2O4Na+ 303.1321). 

Anal. Calcd for C14H20N2O4•0.25H2O: C, 59.04; H, 7.25; N, 9.84. Found: C, 58.80; H, 

7.40; N, 9.99. 

 

(3S)-N-Benzyl 4-Acetyl-5-hydroxymorpholine-3-carboxamide (S)-128. Using 

Method E, (COCl)2 (63 µL, 732 µmol) in CH2Cl2 (1 mL), DMSO (105 µL, 1.46 mmol) 

in CH2Cl2 (1 mL) and (S)-127 (189 mg, 665 µmol) in CH2Cl2 (10 mL) followed by 

DIEA (580 µL, 3.325 mmol) gave after work-up a residue that was purified using 

flash chromatography (6/94 MeOH/CHCl3) to yield 53 mg (28%) of (S)-128 a white 

solid : mp 146–148 °C, [ α]25
D -18.8° ( c 0.9; MeOH);  Rf = 0.26 (5/95 MeOH/CHCl3); 

IR (CH2Cl2 film) 3400–3000 (br), 3283, 3102, 1646, 1575, 1460, 1403, 1133, 1056 

cm 1; 1H NMR (DMSO-d6) δ 2.17 (s, CH3C(O)N), 3.53 (dd, J = 2.1, 12.0 Hz,  

CH(OH)CH2OCHH’), 3.65 (dd, J = 4.3, 12.3 Hz CH(OH)CHH’), 3.80 (d, J = 12.0 Hz,  

CH(OH)CHH’), 4.07 (d, J = 12.3 Hz, CH(OH)CH2OCHH’), 4.34 (app. d, J = 6.0 Hz, 
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NHCH2Ph), 4.69 (d, J = 4.3 Hz, CHCH2OCH2), 5.14 (br d, J = 8.1 Hz, 

NCH(OH)CH2O), 7.00 (d, J = 8.1 Hz, NCH(OH)CH2O), 7.20–7.36 (m, C6H5), 8.98 (t, 

J = 6.0 Hz, NHCH2Ph); 13C NMR (DMSO-d6) δ 20.4 (CH3C(O)), 42.5 (NHCH2Ph), 

53.1 (CHCH2O), 68.1 (CHCH2OCH2), 71.7 (OCH2CH(OH)N), 73.2 (OCH2CH(OH)N), 

126.9, 127.0, 128.4, 138.5 (C6H5), 172.1 (CH3C(O)N or C(O)NHCH2), 172.5 (C(O) 

NHCH2 or CH3C(O)N); Mr (+ESI) 301.1157 [M+Na]+ (calcd for C14H18N2O4Na+ 

301.1164). Anal. Calcd for C14H18N2O4: C, 60.42; H, 6.52; N, 10.07. Found: C, 

60.12; H, 6.55; N, 9.81. 

 

(R)-N-Benzyl 2-Acetamido-3-(3-hydroxypropoxy)propionamid e ((R)-129). Using 

Method D, acid (R)-123 (1.07 g, 5.22 mmol), benzylamine (0.68 mL, 6.26 mmol), 

and DMTMM (1.73 g, 6.26 mmol) in anhydrous THF (50 mL) gave 1.34 g (87%) of 

(R)-129 as a white solid after flash column chromatography (8/92 MeOH/CHCl3): mp 

90–92 °C; [ α]25
D +8.0° ( c 1.0, MeOH); Rf = 0.38 (8/92 MeOH/CHCl3); IR (CH2Cl2 film) 

3313, 3059, 2932, 2876, 1660, 1532, 1454, 1374, 1266, 1118 cm-1; 1H NMR 

(CDCl3) δ 1.76 (quint, J = 6.0 Hz, OCH2CH2CH2O), 1.98 (s, CH3C(O)), 3.56 (dd, J = 

6.6, 9.3 Hz, CHH’OCH2CH2CH2), 3.58–3.68 (m, OCH2CH2CH2O), 3.78 (dd, J = 3.9, 

9.3 Hz, CHH’OCH2CH2CH2), 4.36–4.52 (m,  NHCH2Ph), 4.60–4.65 (m, CHCH2O), 

6.76 (d, J = 7.2 Hz, CH3C(O)NH), 7.20–7.38 (m, C6H5, C(O)NHCH2); 
13C NMR 

(CDCl3) δ 23.1 (CH3C(O)), 32.1 (OCH2CH2CH2O), 43.6 (NHCH2Ph), 52.7 

(CHCH2OCH2), 60.3 (OCH2CH2CH2OH), 69.3 (CHCH2OCH2CH2CH2), 70.6 

(CHCH2OCH2CH2CH2), 127.5, 127.7, 128.8, 138.1 (C6H5), 170.3, 170.9 

(CHC(O)NH, CH3C(O)NH); Mr (+ESI) 317.1477 [M+Na]+ (calcd for C15H22N2O4Na+ 
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317.1477). Anal. Calcd for C15H22N2O4•0.15H2O: C, 60.65; H, 7.57; N, 9.43. Found: 

C, 60.40; H, 7.56; N, 9.67. 

 

(S)-N-Benzyl 2-Acetamido-3-(3-hydroxypropoxy)propionamid e ((S)-129). Using 

Method D, acid (S)-123 (1.52 g, 7.41 mmol), benzylamine (0.97 mL, 8.9 mmol), and 

DMTMM (2.46 g, 8.9 mmol) in anhydrous THF (75 mL) gave 1.51 g (69%) of (S)-129 

as a white solid after flash column chromatography (8/92 MeOH/CHCl3). The solid 

contained an unidentified impurity (~20 mol percent based on 1H NMR integrations) 

that co-eluted using different solvent systems and could not be removed by 

recrystallization: mp 87–90 °C; [ α]25
D -7.5° ( c 1.0, MeOH); Rf  = 0.38 (8/92 

MeOH/CHCl3); IR (nujol) 3300–2600 (br), 3278, 1638, 1553, 1458, 1375, 1306, 

1245, 1123 cm-1; 1H NMR (CDCl3) δ 1.75 (quint, J = 5.7 Hz, OCH2CH2CH2O), 1.98 

(s, CH3C(O)), 2.44-2.60 (br s, CH2OH), 3.53 (dd, J = 6.9, 9.6 Hz, 

CHH’OCH2CH2CH2), 3.36–3.50 (m, OCH2CH2CH2O), 3.80 (dd, J = 4.2, 9.6 Hz, 

CHH’OCH2CH2CH2), 4.35–4.51 (m,  NHCH2Ph), 4.58–4.66 (m, CHCH2O), 6.74 (d, J 

= 6.9 Hz, CH3C(O)NH), 7.20–7.40 (m, C6H5, C(O)NHCH2); 
13C NMR (CDCl3) δ 23.3 

(CH3C(O)), 32.1 (OCH2CH2CH2O), 43.7 (NHCH2Ph), 52.7 (CHCH2OCH2), 60.6 

(OCH2CH2CH2OH), 69.5 (CHCH2OCH2CH2CH2), 70.6 (CHCH2OCH2CH2CH2), 

127.7, 127.8, 128.8, 138.0 (C6H5), 170.2, 170.7 (CHC(O)NH, CH3C(O)NH); Mr 

(+ESI) 317.1478 [M+Na]+ (calcd for C15H22N2O4Na+ 317.1477).  

 

(R)-N-Benzyl 2-Acetamido-3-(3-oxopropoxy)propionamide (( R)-93). Using 

Method E, alcohol (R)-129 (1.20 g, 4.08 mmol) in CH2Cl2 (12 mL), (COCl)2 (432 µL, 
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4.92 mmol) in CH2Cl2 (12 mL),  DMSO (720 µL, 9.84 mmol) in CH2Cl2 (24 mL), and 

DIEA (3.55 mL, 14.4 mmol) gave 506 mg (39%) of (R)-93 as white needles after 

recrystallization from EtOAc: mp 120–121 °C; [ α]25
D -22.1° ( c 0.9, CHCl3); Rf = 0.34 

(5/95 MeOH/CHCl3); IR (CH2Cl2 film) 3306, 3057, 1724, 1662, 1523, 1374, 1266, 

1119 cm-1; 1H NMR (CDCl3) δ 2.04 (s, CH3C(O)), 2.60–2.80 (m, CH2C(O)H), 3.48 

(dd, J = 7.5, 9.3 Hz, CHCHH’OCH2CH2), 3.70–3.78 (m,  CH2OCHH’CH2C(O)H), 

3.80–3.87 (m,  CH2OCHH’CH2C(O)H), 3.90 (dd, J = 3.6, 9.3 Hz, 

CHCHH’OCH2CH2), 4.46 (d, J = 6.0 Hz,  NHCH2Ph), 4.51–4.58 (m, CHCH2O), 6.61 

(d, J = 6.3 Hz, CH3C(O)NH), 6.85–7.04 (br t, C(O)NHCH2), 7.22–7.38 (m,  C6H5), 

9.71 (t, J = 1.4 Hz, C(O)H), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (R)-93 gave only one signal for the acetyl methyl protons and the 

aldehyde proton, addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-

93 and (R)-93 (1:3 ratio) gave two signals for the acetyl methyl protons (δ 2.032 (S) 

and 2.018 (R) (∆ppm = 0.014)), and two signals for the aldehyde protons (δ 9.658 

(S) and 9.680 (R) (∆ppm = 0.022)); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 43.8, 43.9 

(OCH2CH2C(O)H, NHCH2Ph), 52.4 (CHCH2OCH2), 64.5 (OCH2CH2C(O)H), 70.4 

(CHCH2OCH2CH2C(O)H), 127.6, 127.7, 128.8, 138.3 (C6H5), 170.0, 170.6 

(CHC(O)NH, CH3C(O)NH), 200.9 (C(O)H); Mr (+ESI) 315.1323 [M+Na]+ (calcd for 

C15H20N2O4Na+ 315.1321). Anal. Calcd for C15H20N2O4: C, 61.63; H, 6.90; N, 9.58. 

Found: C, 61.34; H, 6.94; N, 9.42. 

 

(S)-N-Benzyl 2-Acetamido-3-(3-oxopropoxy)propionamide (( S)-93). Using 

Method E, compound (S)-129 (1.50 g, 5.10 mmol) in CH2Cl2 (10 mL), (COCl)2 (580 
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µL, 6.63 mmol) in CH2Cl2 (20 mL), DMSO (941 µL, 6.63 mmol) in CH2Cl2 (10 mL), 

and DIEA (4.44 mL, 25.5 mmol) gave 757 mg (49%) of (S)-93 as white needles after 

recrystallization from EtOAc: mp 120–121 °C; [ α]25
D +22.0° ( c 1.0, CHCl3); Rf = 0.34 

(5/95 MeOH/CHCl3); IR (CHCl3 film) 3306, 3057, 2984, 2922, 2875, 1724, 1662, 

1523, 1373, 1265, 1119 cm-1; 1H NMR (CDCl3) δ 2.02 (s, CH3C(O)), 2.60–2.80 (m, 

CH2C(O)H), 3.49 (dd, J = 7.2, 9.6 Hz, CHCHH’OCH2CH2), 3.69–3.78 (m,  

CH2OCHH’CH2C(O)H), 3.78–3.85 (m,  CH2OCHH’CH2C(O)H), 3.88 (dd, J = 3.9, 9.6 

Hz, CHCHH’OCH2CH2), 4.45 (d, J = 5.7 Hz,  NHCH2Ph), 4.56 (app dt, J = 3.9, 7.2 

Hz,  CHCH2O), 6.68 (d, J = 7.2 Hz, CH3C(O)NH), 6.90–7.21 (br t, C(O)NHCH2), 

7.20–7.38 (m,  C6H5), 9.70 (t, J = 1.4 Hz, C(O)H), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (S)-93 gave only one signal for the acetyl methyl protons 

and the aldehyde proton, addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-93 and (R)-93 (~1:3 ratio) gave two signals for the acetyl methyl 

protons (δ 2.032 (S) and 2.018 (R) (∆ppm = 0.014)), and two signals for the 

aldehyde protons (δ 9.658 (S) and 9.680 (R) (∆ppm = 0.022)); 13C NMR (CDCl3) δ 

23.3 (CH3C(O)), 43.7, 43.8  (OCH2CH2C(O)H, NHCH2Ph), 52.4 (CHCH2OCH2), 64.5 

(OCH2CH2C(O)H), 70.4 (CHCH2OCH2CH2C(O)H), 127.6, 127.7, 128.8, 138.2 

(C6H5), 170.0, 170.6 (CHC(O)NH, CH3C(O)NH), 200.9 (C(O)H); Mr (+ESI) 315.1325 

[M+Na]+ (calcd for C15H20N2O4Na+ 315.1321). Anal. Calcd for C15H20N2O4: C, 61.63; 

H, 6.90; N, 9.58. Found: C, 61.71; H, 7.01; N, 9.52. 

 

(2R)-N-Benzyl 2-Acetamido-3-(2-(oxiran-2-yl)ethoxy)propio namide (( R)-94) 

(mixture of diastereomers). Using Method J, (R)-88 (320 mg, 1.10 mmol), Na2SO4 
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(50 mg) and mCPBA (77% wt, 420 mg, 1.88 mmol) in CH2Cl2 (3 mL) gave (R)-94 

(265 mg, 72%) as a ~1:1 mixture of diastereoisomers after purification by flash 

chromatography (15/85 acetone/EtOAc): mp 104–110 °C; [ α]25
D -29.6° ( c 0.3; 

CHCl3); Rf = 0.31 (15/85 acetone/EtOAc); IR (nujol) 3292, 1637, 1545, 1457, 1376, 

1127 cm 1; 1H NMR (CDCl3) δ 1.52–1.64 (m, CH2CHH’CH(O)CH2), 1.86–2.00 (m, 

CH2CHH’CH(O)CH2), 2.03, 2.04 (s, CH3C(O)), 2.41–2.46 (m, CH2CH2CH(O)CHH’), 

2.66–2.71 (m, CH2CH2CH(O)CHH’), 2.82–2.96 (m, CH2CH2CH(O)CH2), 3.44–3.52 

(m, CHH’OCH2CH2), 3.54–3.76 (m, CH2OCH2CH2), 3.84–3.93 (m, CHH’OCH2CH2), 

4.39–4.52 (m, NHCH2Ph), 4.50–4.58 (m, CHCH2O), 6.56–6.68 (m, NHCHCH2O), 

6.88–6.98, 6.99–7.08 (m, NHCH2Ph), 7.22–7.36 (m, C6H5), addition of excess (R)-(-

)-mandelic acid to a CDCl3 solution of (R)-94 gave only one set of signals for the 

acetyl protons (δ 2.015 and 2.022 ppm), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (S)-94 and (R)-94 in a ~1:3 ratio gave two sets of signals with a 

relative ~1:3 intensity for the acetyl protons (δ 2.028 and 2.022 ppm (S)-94, δ 2.015 

and 2.008 ppm (R)-94); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 32.4, 32.6 

(CH2CH2CH(O)CH2), 43.8 (NHCH2Ph), 46.7 (CH2CH2CH(O)CH2), 50.3, 50.4, 52.6, 

52.7 (CHC(O)NH, CH2CH2CH(O)CH2), 68.5, 68.8, 69.9, 70.1 (CHCH2OCH2), 127.6, 

127.7, 128.8, 128.9, 138.2, 138.3 (C6H5), 170.2, 170.6 (CH3C(O), CHC(O)NH), the 

remaining peaks were not detected and are believed to overlap with nearby signals; 

Mr (+ESI) 329.1478 [M+Na]+ (calcd for C16H22N2O4Na+ 329.1477). Anal. Calcd for 

C16H22N2O4: C, 62.73; H, 7.24; N, 9.14. Found: C, 62.92; H, 7.37; N, 9.07. 
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(2S)-N-Benzyl 2-Acetamido-3-(2-(oxiran-2-yl)ethoxy)propio namide (( S)-94) 

(mixture of diastereomers). Using Method J, (S)-88 (100 mg, 0.35 mmol), Na2SO4 

(25 mg) and mCPBA (77% wt, 131 mg, 0.59 mmol) in CH2Cl2 (3 mL) yielded (S)-94 

(76 mg, 72%) as a ~1:1 mixture of diastereoisomers: mp 104–109 °C; [ α]25
D +31.3° 

(c 1.4; CHCl3); Rf = 0.31 (15/85 acetone/EtOAc); IR (nujol) 3281, 3062, 1638, 1547, 

1457, 1376, 1127 cm 1; 1H NMR (CDCl3) δ 1.52–1.64 (m, CH2CHH’CH(O)CH2), 

1.84–1.96 (m, CH2CHH’CH(O)CH2), 2.00, 2.01 (s, CH3C(O)), 2.40–2.46 (m, 

CH2CH2CH(O)CHH’), 2.65–2.71 (m, CH2CH2CH(O)CHH’), 2.82–2.96 (m, 

CH2CH2CH(O)CH2), 3.44–3.52 (m, CHH’OCH2CH2), 3.54–3.72 (m, CH2OCH2CH2), 

3.81–3.90 (m, CHH’OCH2CH2), 4.36–4.52 (m, NHCH2Ph), 4.53–4.61 (m, CHCH2O), 

6.70–6.80 (m, NHCHCH2O), 7.04–7.11, 7.12–7.21 (2 br t, NHCH2Ph), 7.22–7.36 (m, 

C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-94 gave 

only one set of signals for the acetyl protons (δ 2.026 and 2.031 ppm), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-94 and (R)-94 in a ~1:3 ratio 

gave two sets of signals with a relative ~1:3 intensity for the acetyl protons (δ 2.028 

and 2.022 ppm (S)-94, δ 2.015 and 2.008 ppm (R)-94); 13C NMR (CDCl3) δ 23.3 

(CH3C(O)), 32.4, 32.6 (CH2CH2CH(O)CH2), 43.7 (NHCH2Ph), 46.7 

(CH2CH2CH(O)CH2), 50.3, 50.4, 52.6, 52.7 (CHC(O)NH, CH2CH2CH(O)CH2), 68.4, 

68.7, 70.0, 70.2 (CHCH2OCH2), 127.5, 127.6, 127.7, 128.7, 128.8, 138.3 (C6H5), 

170.2, 170.5 (CH3C(O), CHC(O)NH), the remaining peaks were not detected and 

are believed to overlap with nearby signals; Mr (+ESI) 329.1479 [M+Na]+ (calcd for 

C16H22N2O4Na+ 329.1477). Anal. Calcd for C16H22N2O4: C, 62.73; H, 7.24; N, 9.14. 

Found: C, 62.94; H, 7.34; N, 9.12. 
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(R)-N-Benzyl 2-Acetamido-3-(2-acetamidoethoxy)propionami de ((R)-96). Using 

Method H, (R)-97 (1.14 g, 3.7 mmol) and 10% Pd/C (100 mg) in MeOH (25 mL) 

gave upon filtration and evaporation a residue that was dissolved in CH2Cl2 (50 mL). 

Et3N (570 µL, 4.1 mmol), DMAP (1 mg, catalytic), and Ac2O (390 µL, 4.1 mmol) were 

then successively added and the reaction was stirred at room temperature (30 min), 

filtered, and the solvents were removed under vacuum. The crude residue was 

purified by flash chromatography (1/9 MeOH/CH2Cl2) to give an oily residue that was 

dissolved in warm THF (25 mL). The white solid that precipitated upon cooling was 

filtered to give (R)-96 (490 mg, 40% overall yield for two steps): mp 166–168 °C; 

[α]25
D +11.7° ( c 0.6, MeOH);  Rf = 0.30 (5/95 MeOH/CH2Cl2); IR (nujol) 3494, 3089, 

3288, 2861, 1637, 1554, 1456, 1372, 1290 cm 1; 1H NMR (DMSO-d6) δ 1.79, 1.88 (s, 

2 CH3C(O)), 3.10–3.24 (m, OCH2CH2NHAc), 3.36–3.46 (m, OCH2CH2NHAc), 3.52–

3.64 (m, CHCH2OCH2), 4.29 (d, J = 7.0 Hz, NHCH2C6H5), 4.42–4.52 (m, CHCH2O), 

7.20–7.36 (m, CH2C6H5), 7.80–7.88 (m, NHCH2Ph or NHCH2CH2), 8.07 (d, J = 7.0 

Hz, NHCHCH2), 8.50 (t, J = 6.0 Hz, NHCH2CH2 or NHCH2Ph); 13C NMR (DMSO-d6) 

δ 22.6 (2 CH3C(O)), 38.3 (CH2CH2NHAc), 42.0 (NH2CH2Ph), 52.7 (CHCH2OCH2), 

69.1, 70.3 (CH2OCH2CH2), 126.6, 126.9, 128.2, 139.3 (C6H5), 169.3, 169.4, 169.7 

(CHC(O)NH, 2 CH3C(O)), the remaining signal was not detected and is believed to 

overlap with nearby peaks; Mr (+ESI) 344.2 [M+Na]+ (calcd for C16H23N3O4Na+ 

344.2). Anal. Calcd for C16H23N3O4: C, 59.80; H, 7.21; N, 13.08. Found: C, 59.63; H, 

7.16; N, 12.94. 
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(R)-N-Benzyl 2-Acetamido-3-(2-azidoethoxy)propionamide (( R)-97). Using 

Method D, (R)-124 (950 mg, 4.4 mmol), benzylamine (622 µL, 5.7 mmol), and 

DMTMM (1.58 g, 5.7 mmol) in THF (50 mL) gave 715 mg (53%) of (R)-97 as a white 

solid after SiO2 chromatography column (4/96 MeOH/CHCl3) followed by 

recrystallization from EtOAc: mp 111–113 °C; [ α]25
D +12.0° ( c 1.0; MeOH);  Rf = 0.51 

(5/95 MeOH/CHCl3); IR (nujol) 3139, 2107, 1635, 1547 cm 1; 1H NMR (CDCl3) δ 1.98 

(s, CH3C(O)NH), 3.32–3.43 (m, OCH2CH2N3), 3.50–3.56 (m, CHCHH’OCH2), 3.58–

3.75 (m, OCH2CH2N3), 3.88–3.96 (m, CHCHH’OCH2), 4.39–4.51 (m, NHCH2Ph), 

4.52–4.58 (m, CHCH2OCH2), 6.55–6.65 (br d, NHCHCH2O), 6.76–6.86 (m, 

NHCH2Ph), 7.21–7.35 (C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (R)-97 gave only one signal for the acetyl protons, addition of excess (R)-

(-)-mandelic acid to a CDCl3 solution of (S)-97 and (R)-97 (1:2 ratio) gave two 

signals for the acetyl protons (δ 2.006 (S) and 1.993 (R) (∆ppm = 0.013)); 13C NMR 

(CDCl3) δ 23.4 (CH3C(O)), 43.9 (NHCH2Ph), 50.9 (CH2N3), 52.7 (CHCH2O), 70.3 

(OCH2CH2N3 or CHCH2O), 70.4 (CHCH2O or OCH2CH2N3), 127.7, 128.9, 138.0 

(C6H5), 169.8, 170.9 (CH3C(O)NH and C(O)NHCH2), the remaining aromatic 

resonance was not detected and is believed to overlap with nearby signals; Mr 

(+ESI) 328.1380 [M+Na]+ (calcd for C14H19N5O3Na+ 328.1386). Anal. Calcd for 

C14H19N5O3: C, 55.07; H, 6.27; N, 22.94. Found: C, 54.85; H, 6.27; N, 22.94. 

 

(S)-N-Benzyl 2-Acetamido-3-(2-azidoethoxy)propionamide (( S)-97). Using 

Method D, acid (S)-124 (1.08 g, 5 mmol), benzylamine (600 µL, 5.5 mmol) and 

DMTMM (1.52 g, 5.5 mmol) in THF (50 mL) gave 854 mg (56%) of (S)-97 as a white 



 

 148 

solid after silica gel chromatography (4/96 MeOH/CHCl3) followed by recrystallization 

from EtOAc and hexanes: mp 111–113 °C; [ α]25
D -12.1° ( c 1.0; MeOH);  Rf  = 0.51 

(5/95 MeOH/CHCl3); IR (nujol) 3139, 2107, 1635, 1547 cm 1; 1H NMR (CDCl3) δ 1.98 

(s, CH3C(O)NH), 3.32–3.43 (m, OCH2CH2N3), 3.50–3.56 (m, CHCHH’OCH2), 3.58–

3.75 (m, OCH2CH2N3), 3.88–3.96 (m, CHCHH’OCH2), 4.39–4.51 (m, NHCH2Ph), 

4.52–4.58 (m, CHCH2OCH2), 6.42–6.52 (br d, NHCHCH2O), 6.74–6.84 (br t, 

NHCH2Ph), 7.21–7.35 (C6H5), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-97 gave only one signal for the acetyl protons, addition of excess (R)-

(-)-mandelic acid to a CDCl3 solution of (S)-97 and (R)-97 (1:2 ratio) gave two 

signals for the acetyl protons (δ 2.006 (S) and 1.993 (R) (∆ppm = 0.013)); 13C NMR 

(CDCl3) δ 23.4 (CH3C(O)), 43.9 (NHCH2Ph), 50.9 (CH2N3), 52.7 (CHCH2O), 70.3 

(OCH2CH2N3 or CHCH2O), 70.4 (CHCH2O or OCH2CH2N3), 127.7, 128.9, 138.0 

(C6H5), 169.8, 170.9 (CH3C(O)NH and C(O)NHCH2), the remaining aromatic 

resonance was not detected and is believed to overlap with nearby signals; Mr 

(+ESI) 328.1380 [M+Na]+ (calcd for C14H19N5O3Na+ 328.1386). Anal. Calcd for 

C14H19N5O3: C, 55.07; H, 6.27; N, 22.94. Found: C, 55.16; H, 6.28; N, 22.91. 

 

(R)-N-Benzyl 2-Acetamido-3-(2-(4-(methoxymethyl)-1 H-1,2,3-triazol-1-

yl)ethoxy)propionamide (( R)-98). Compound (R)-97 (400 mg, 1.3 mmol) was 

dissolved in a THF:H2O (1:1, 50 mL) and while stirring, methyl propargyl ether (1.0 

mL, 11.8 mmol), sodium ascorbate (25 mg, 0.13 mmol), and CuSO4 (3 mg, 0.01 

mmol) were successively added. The reaction was stirred at room temperature (24 

h), and saturated aqueous NaHCO3 (100 mL) was added. The aqueous layer was 
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extracted with CH2Cl2 (2 x 100 mL), the combined organic layers were washed with 

brine (100 mL) and filtered over a Celite® bed. Removal of solvents in vacuo gave an 

off-white solid that was purified by flash chromatography (1/9 MeOH/CH2Cl2) to yield 

(R)-98 (470 mg, 96%) as a crystalline solid: mp 127–129 °C; [ α]25
D +1.8° ( c 0.34; 

MeOH); Rf = 0.49 (1/9 MeOH/CH2Cl2); IR (nujol) 3296, 2861, 1641, 1545, 1457, 

1377, 1143, 1095 cm 1; 1H NMR (CDCl3) δ 2.00 (s, CH3C(O)), 3.38 (s, CH2OCH3), 

3.50 (dd, J = 6.5, 9.6 Hz, CHH’OCH2CH2), 3.76–3.85 (m, OCH2CH2N(N)CH), 3.92 

(dd, J = 4.2, 9.6 Hz, CHH’OCH2CH2), 4.34–4.51 (m, NHCH2Ph, OCH2CH2N(N)CH, 

CH2OCH3), 6.63 (d, J = 6.6 Hz, NHCHC(O)), 7.00–7.10 (br t, NHCH2Ph), 7.18–7.35 

(m, C6H5), 7.52 (s, NCHC(N)), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (R)-98 gave only one signal for the acetyl protons (δ 1.995); 13C NMR 

(CDCl3) δ 23.2 (CH3C(O)), 43.7 (NHCH2Ph), 50.0 (CH2N(N)CH), 52.9 (CHC(O)NH), 

58.6 (CH2OCH3), 66.0 (OCH2CH2N), 69.4, 70.5 (CHCH2OCH2, CH2OCH3), 123.8 

(NCHC(N)), 127.6, 127.7, 128.8, 138.3 (C6H5), 145.3 (NCHC(N)), 169.7, 170.8 

(CH3C(O), CHC(O)NH); Mr (+ESI) 398.1806 [M+Na]+ (calcd for C18H25N5O4Na+ 

398.1804). Anal. Calcd for C18H25N5O4: C, 57.59; H, 6.71; N, 18.65. Found: C, 

57.34; H, 6.72; N, 18.49. 

 

(R)-N-Benzyl 2-Acetamido-3-(2-methoxyethoxy)propionamide  ((R)-99). Using 

Method B, a ~5:95 mixture of (R)-113a and (R)-113b (4.00 g, 17.4 mmol) in THF 

(170 mL) and LiOH (415 mg, 17.3 mmol) in H2O (80 mL) gave 1.10 g (31%, 5.36 

mmol) of a crude viscous yellow oil upon work-up (Mr (+ESI) 228.0848 [M+Na]+ 

(calcd for C8H15NO5Na+ 228.0848)). Using Method D, the oil was directly dissolved 
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in THF (60 mL) and then benzylamine (732 µL, 6.7 mmol) followed by DMTMM (1.90 

g, 6.7 mmol) were added. Purification by flash chromatography (1/9 hexanes/EtOAc 

to 1/9 MeOH/CH2Cl2) followed by recrystallization from EtOAc and hexanes afforded 

(R)-99 (750 mg, 45%) as a white solid: mp 109–110 °C; [ α]25
D +10.3° ( c 0.5; MeOH); 

Rf = 0.43 (1/9 MeOH/CH2Cl2); IR (CH2Cl2 film) 3427, 3306, 3058, 2998, 1741, 1664, 

1528, 1454, 1372, 1267, 1206, 1107, 1028 cm 1; 1H NMR (CDCl3) δ 2.02 (s, 

CH3C(O)), 3.18 (s, CH2OCH3), 3.43–3.53 (m, CHH’OCH2, OCH2CH2OCH3 or 

OCH2CH2OCH3), 3.62–3.78 (m, OCH2CH2OCH3 or OCH2CH2OCH3), 3.85 (dd, J = 

4.2, 9.6 Hz, CHH’OCH2CH2), 4.37–4.51 (m, NHCH2Ph), 4.52–4.58 (m, CHCH2O), 

6.65 (d, J = 6.6 Hz, NHCHC(O)), 7.21–7.38 (m, NHCH2C6H5, C6H5), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-99 gave only one signal for 

the acetyl protons (δ 1.997); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 43.8 (NHCH2Ph), 

51.9 (CHC(O)NH), 58.8 (CH2CH2OCH3), 69.4, 70.5 (CHCH2OCH2, CH2OCH3), 

127.6, 127.7, 128.8, 138.2 (C6H5), 170.2, 170.4 (CH3C(O), CHC(O)NH), the 

remaining signal was not detected and is believed to overlap with nearby peaks; Mr 

(+ESI) 317.1478 [M+Na]+ (calcd for C15H22N2O4Na+ 317.1477). Anal. Calcd for 

C15H22N2O4: C, 61.21; H, 7.53; N, 9.52; Found: C, 61.38; H, 7.36; N, 9.44. 

 

(R)-N-Benzyl 2-Acetamido-3-(2-(2-methoxyethoxy)ethoxy)pr opionamide (( R)-

100). Using Method D, (R)-125 (1.67 g, 6.70 mmol), benzylamine (876 µL, 8.04 

mmol) and DMTMM (2.22 g, 8.04 mmol) in THF (70 mL) gave a residue that was 

purified twice by flash chromatography (5/95 MeOH/CHCl3) to yield (R)-100 (1.20 g, 

53%) as a yellow oil that progressively turned to an amorphous solid after 3 d under 
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vacuum: mp 48–52 °C; [ α]25
D +7.7° ( c 1.2, MeOH); Rf = 0.51 (5/95 MeOH/CHCl3); IR 

(neat) 3313, 3072, 2921, 2358, 2245, 1657, 1538, 1103 cm-1; 1H NMR (CDCl3) δ 

2.02 (s, CH3C(O)), 3.26 (s, OCH3), 3.39–3.80 (m, CHH’OCH2CH2OCH2CH2OCH3), 

4.05 (dd, J = 3.9 Hz, 9.9 Hz, CHH’OCH2CH2O), 4.48 (d, J = 6.0 Hz, NHCH2C6H5), 

4.54–4.62 (m, CHCH2O), 6.77 (d, J = 6.0 Hz, NHCH2C6H5), 7.20–7.39 (m, C6H5), 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-100 gave only one 

signal for the acetyl peak protons (δ 1.998); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 

43.7 (NH2CH2C6H4), 52.5 (CHCH2OCH2CH2), 59.0 (OCH3), 70.4, 70.5, 70.6, 71.9 

(OCH2CH2OCH2CH2O), 127.5, 127.7, 128.8, 137.8 (C6H5), 170.3, 170.4 

(CHC(O)NH, CH3C(O)), the remaining methylene signal was not detected and is 

believed to overlap with nearby signals; Mr (+ESI) 361.1743 [M+Na]+ (calcd for 

C17H26N2O5Na+ 361.1739). Anal. Calcd for C17H26N2O5•0.33 H2O: C, 58.77; H, 7.83; 

N, 8.06. Found: C, 58.59; H, 7.88; N, 8.10. 

 

(R)-N-Benzyl 2- N-(Benzyloxycarbonyl)amino-3-(methoxy- d3)propionamide (( R)-

130). Using Method G, compound (R)-57 (1.40 g, 4.4 mmol), Ag2O (5.00 g, 21.5 

mmol) and CD3I (2.7 mL, 43.5 mmol) in CH3CN (40 mL) gave (R)-130 as a white 

solid (1.50 g, 96%) upon purification by flash silica gel chromatography (2/98 

MeOH/CH2Cl2): mp 130–131 °C; [ α]25
D -25.2° ( c 0.6, CHCl3);  Rf = 0.52 (3/97 

MeOH/CH2Cl2); IR (CHCl3 film) 3021, 1719, 1675, 1501, 1326, 1217, 1131, 1073 

cm 1; 1H NMR (CDCl3) δ 3.48 (dd, J = 6.3, 9.0 Hz, CHH’OCD3), 3.84 (dd, J = 3.9, 9.0 

Hz, CHH’OCD3), 4.30–4.40 (CHCH2O), 4.46 (d, J = 5.7 Hz, NHCH2C6H5), 5.10 (s, 

PhCH2OC(O)), 5.64–5.78 (m, NHCHCH2O), 6.70–6.80 (m, NHCH2Ph), 7.20–7.38 
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(m, 2 C6H5); 
13C NMR (CDCl3) δ 43.8 (NH2CH2Ph), 54.6 (CHCH2OCH2), 57.8–59.0 

(m, OCD3), 67.4 (PhCH2OC(O)), 72.1 (CH2OCD3), 127.7, 128.3, 128.4, 128.6, 128.8, 

128.9, 136.3, 138.1 (2 C6H5), 156.3 (OC(O)NH), 170.1 (CHC(O)NH); Mr (+ESI) 

[M+Na]+ 368.2 (calcd for C19H19D3N2O4Na+ 368.2). Anal. Calcd for C19H19D3N2O3: C, 

66.07; H, 6.41; N, 8.11. Found: C, 66.05; H, 6.39; N, 8.04. 

 

(R)-N-Benzyl 2-Acetamido-3-(methoxy- d3)propionamide (( R)-1-d3). Using Method 

H, (R)-130 (1.5 g, 4.25 mmol) and 10% Pd/C (200 mg) in MeOH (50 mL) gave after 

evaporation an oily residue that was directly dissolved in CH2Cl2 (50 mL). While 

stirring Et3N (590 µL, 4.25 mmol), DMAP (25 mg, 212 µmol) and Ac2O (400 µL, 4.25 

mmol) were successively added and the reaction was stirred at room temperature (1 

h). The organic layer was washed with aqueous 0.1 M H2SO4 (20 mL). The aqueous 

layer was extracted with CH2Cl2 (4 x 20 mL). The organic layers were combined, 

washed with brine (50 mL), dried (Na2SO4), and the solvents were removed under 

vacuum. The obtained solid was recrystallized from EtOAc and hexanes to give (R)-

1-d3 as a white solid (888 mg, 82% over 2 steps): mp 142–143 °C; [ α]25
D +16.0° ( c 

0.7, MeOH);  Rf = 0.31 (5/95 MeOH/CH2Cl2); IR (nujol) 3300, 3064, 2859, 1635, 

1549, 1457,  1376, 1313, 1230, 1132 cm 1; 1H NMR (CDCl3) δ 1.97 (s, CH3C(O)), 

3.47 (dd, J = 6.6, 9.0 Hz, CHH’OCD3), 3.84 (dd, J = 4.0, 9.0 Hz, CHH’OCD3), 4.34–

4.52 (m, NHCH2C6H5), 4.62 (dt, J = 4.0, 6.6 Hz,  CHCH2O), 6.72 (d, J = 7.0 Hz, 

NHCHCH2O), 7.05–7.16 (m, NHCH2Ph), 7.20–7.38 (m, C6H5), addition of excess 

(R)-(-)-mandelic acid to a CDCl3 solution of (R)-1-d3 gave only one signal for the 

acetyl protons (δ 2.011); 13C NMR (CDCl3) δ 23.0 (CH3C(O)), 43.4 (NH2CH2Ph), 52.5 
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(CHCH2OCD3), 58.1 (app quint, J = 21.6 Hz, OCD3), 71.8 (CH2OCD3), 127.4, 128.6, 

137.9 (C6H5), 170.0, 170.3 (CH3C(O), CHC(O)NH), the remaining signal was not 

detected and is believed to overlap with nearby peaks; Mr (+ESI) 276.1 [M+Na]+ 

(calcd for C13H15D3N2O3Na+ 276.1). Anal. Calcd for C13H15D3N2O3: C, 61.64; H, 7.16; 

N, 11.06. Found: C, 61.60; H, 7.10; N, 10.99. 
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2.3. Synthesis of a molecular toolkit for use in ch emical biology studies 

2.3.1. Synthetic strategies to different AB, CR and  AB&CR derivatives 

To allow efficient synthesis of AB, CR and AB&CR derivatives we constructed 

a series of functionalized benzylamines (134, 137, 141, 144, 146, Scheme 23) using 

protection/deprotection strategies. Upon removal of the protecting group, the 

benzylamine was either stored in a cold, dry environment under Ar or directly 

coupled with select enantiomerically pure acids.  

 

Scheme 23. Synthetic routes to para-substituted benzylamines used in the synthesis of AB, CR and 
AB&CR agents 
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Commercially available 4-aminobenzylamine (131) was protected using di-

tert-butyl dicarbonate to give 132, and then the aniline moiety was converted to the 

azide using tert-butyl nitrite and trimethylsilylazide in a Sandmeyer-type reaction.325 

Deprotecting the Boc group with HCl yielded 4-azidobenzylammonium hydrochloride 

(134). To introduce the aromatic aldehyde and aromatic epoxide AB groups, 

commercial 4-cyanobenzaldehyde (135) was condensed with ethylene glycol and 

catalytic pTSA to protect the aldehyde moiety, and the cyano group was reduced 

with LiAlH4 in THF to afford benzylamine 137.408 The aldehyde was deprotected 

after the amide coupling step.409 The alkynyl benzylamine 141 was prepared from 

Boc-protected benzylamine 138 that was coupled with trimethylsilyl acetylene using 

a Sonogashira reaction (work of Dr. Christophe Salomé). The TMS protecting group 

in 139 was removed with tetrabutylammonium fluoride, and the Boc group 

deprotected with trifluoroacetic acid to yield benzylamine 141 as the trifluoroacetate 

salt. Benzylamine 141 degraded over time in a dry, refrigerated environment and 

was only stable for prolonged times (-20 °C, up to 6 m onths) as the Boc and TMS 

protected intermediate 139. Finally, the benzylamine containing the 

trifluoromethyldiazirine was synthesized in 10 steps using the following sequence of 

reactions (work of Dr. Christophe Salomé): commercial 4-bromobenzyl alcohol (142) 

was protected with a tert-butyldimethylsilyl group. The O-TBDMS intermediate was 

reacted with n-BuLi and diethylamide trifluoroacetate to give the trifluoromethylaryl 

ketone. The ketone was condensed with hydroxylamine and the resulting oxime 

tosylated with pTsCl. Treatment with liquid ammonia generated the desired photoAB 

moiety (143). The TBDMS group was then removed by fluoridolysis and the hydroxyl 
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group converted to the iodo derivative under Mitsunobu conditions. Nucleophilic 

substitution with sodium azide followed by Staudinger reduction and treatment with 

HCl gave benzylammonium hydrochloride 144. Finally, the 4-

aminomethylbenzophenone was prepared by reacting commercial 4-

bromomethylbenzophenone (145) with sodium azide and reducing the benzyl azide 

under Staudinger conditions to yield benzylamine 146 (work of Dr. Christophe 

Salomé). 

 

2.3.1.1. Introduction of aldehyde AB groups  

We initiated our study with compound 151, that bore an C(O)H AB group at 

the N-benzylamide para position. The synthesis proceeded via route 1  shown in 

Scheme 14.408 N-Cbz-protected L- or D- serine (56) was coupled with 137 using the 

DMTMM method to give 147.234,236 The side chain hydroxyl group was alkylated 

using MeI and Ag2O,234,236 the Cbz-protecting group removed by hydrogenolysis 

(10% Pd/C), and the amine then acetylated using acetyl chloride.234,236 Finally, 

removal of the dioxolanyl protecting group under aqueous acidic conditions409 

yielded enantiomerically pure compounds (R)-151 and (S)-151 (Scheme 24).  
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Scheme 24. Synthesis of the lacosamide AB derivative 151 (route 1 ). 

  

To introduce the aldehyde on the C(2) side chain we first ring-opened (S)-68a 

with commercial 2-benzyloxyethanol (Scheme 25). The ester was hydrolyzed, 

coupled with benzylamine and the O-benzyl protecting group was removed under 

hydrogenation conditions to give alcohol (S)-127. To our surprise, Swern oxidation 

(oxalyl chloride, DMSO, then DIEA)410 of (S)-127 gave the six-membered cyclized 

hemiaminal isomer 128 with no trace of the expected product.  

 

Scheme 25. First attempt to synthesize the side chain aldehyde AB group (route 3 ). 
 

 

Accordingly, we increased by one the length of the carbon chain to 

entropically disfavor ring cyclization (6-membered vs. 7-membered rings).411 Ring-

opening of 68a,b with commercial 3-benzyloxypropanol, followed by ester 

hydrolysis, removal of the benzyl protecting group, and coupling of the acid with the 
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desired benzylamine gave 152 (Scheme 26). Swern oxidation of the side chain 

hydroxyl group yielded the desired enantiomerically pure aldehyde 153. 

 

Scheme 26. Synthesis of the side chain aldehyde AB group (route 3 ) 
 

 

 

2.3.1.2. Introduction of isothiocyanate AB groups  
 

Using route 3 , we prepared the desired O-susbtituted N-acetylserine 

benzylamide derivative 155 containing an isothiocyanate moiety at the N-

benzylamide para position from acid 70. After amide coupling with 4-

aminobenzylamine, the aniline was reacted with diimidazolylthionocarbonate (DITC) 

to form the aromatic isothiocyanate AB&CR analog 155 (Scheme 27).  

 

Scheme 27. Synthesis of aromatic isothiocyanate AB&CR derivatives (route 3 ) 
 

 

To introduce the NCS group on the C(2) side chain, 68a was ring-opened with 

2-azidoethanol under BF3•Et2O-catalyzed conditions, hydrolyzed, coupled with the 
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desired benzylamine and reacted with polymer-supported triphenylphosphine (Fluka, 

cat. # 93094). Reaction of the obtained amine with di-(2-pyridyl) thionocarbonate 

(DPT) gave the alkyl isothiocyanate derivative 157 (Scheme 28, work of Dr. 

Christophe Salomé).  

 

Scheme 28. Synthesis of the side chain isothiocyanate AB&CR (route 3 ) 

 

 

2.3.1.3. Introduction of epoxide AB groups  
 

With aryl aldehyde 158 in hand, we used the conjugate base of 

trimethylsulfoxonium iodide (Corey-Chaykovsky reagent) to form the corresponding 

epoxides 159 in one step (Scheme 29).412  

 

Scheme 29. Synthesis of aromatic epoxide AB&CR agents (route 3 ) 

 

 

To introduce the epoxide on the C(2) side chain, we ring opened 68-a,b with 

commercial 3-buten-1-ol. Saponification of the esters gave enantiopure acid 120. 
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Subsequent coupling with the required benzylamine and epoxidation with meta-

chloroperbenzoic acid (mCPBA) gave the diastereomeric epoxide 160 with the 

desired C(2) configuration (Scheme 30).413 

 
Scheme 30. Synthesis of the side chain epoxide AB&CR agents (route 3 ) 

 

 

2.3.1.4. Introduction of azide CR groups 

Benzylammonium hydrochloride 134 was coupled with various carboxylic 

acids to introduce the azide CR/photoAB on the phenyl ring (162, Scheme 31, 

bottom). To introduce the azide on the C(2) side chain, we prepared 2-azidoethanol 

(71) from 2-chloroethanol (161) and NaN3
414 (Scheme 31, top) and used the 

established sequence to form the FAA 156 (see Scheme 28).  

 

Scheme 31. Synthesis of 2-azidoethanol (top) and AB&CR agents bearing an aromatic azide 
(bottom) (route 3 ) 
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2.3.1.5. Introduction of alkyne CR groups  

The alkyne CR was introduced on the lacosamide C(2) side-chain by ring-

opening 68a,b with propargyl alcohol and following route 3  to benzylamide 164 

(Scheme 32, top). For the CR agents bearing the para-substituted alkyne, carboxylic 

acid 70 was treated with benzylamine 141 using an amide coupling reaction 

(Scheme 32, bottom). 

 
Scheme 32. Synthesis of the alkyne-containing AB&CR agents (route 3 ) 
 

 

 

2.3.1.6. Introduction of diazirine and benzophenone p hotoAB groups ( work of 
Dr. Christophe Salomé ) 

 
The trifluoromethylaromatic diazirine was introduced by coupling acid 163 

with benzylamine 144. For the C(2) side chain alkyl diazirine, 4-hydroxybutan-2-one 

(166) was condensed with hydroxylamine and the resulting oxime successively 

tosylated and reacted with liquid ammonia and iodine (Scheme 33, top). 

Methyldiazirinyl alcohol 167 was then reacted with 68 to give 168 after ester 

hydrolysis and amide coupling. The esters were hydrolyzed and coupled with 
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benzylamine 150 to provide the desired AB&CR derivative. Finally, 4-

aminomethylbenzophenone 146 was coupled with acid 163 to provide AB&CR agent 

170 (Scheme 33, bottom). 

 

Scheme 33. Synthesis of 2-(3-methyl-3H-diazirin-3-yl)ethanol and the corresponding AB&CR agent 
(top), and photoAB&CR agents bearing an aromatic diazirine or benzophenone (bottom) (route 3 ) 

 

 

2.3.1.7. Summary 

A comprehensive list of all the AB&CR agents synthesized and used for 

chemical biology studies is given in Figure 9. All molecules were prepared 

stereoisomerically pure at the C(2) following the previously described synthetic 

schemes. Compounds 172 and 181 were synthesized by Dr Ki Duk Park, and 

compounds 168, 169, 170, and 177 were synthesized by Dr Christophe Salomé.  
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Figure 9.  Structures of the different AB&CR agents synthesized for chemical biology studies. 
 

2.3.2. Biotin and fluorescent alkyne and azide Probe s  

Two sets of Probes were constructed for chemical biology studies. The first 

set contained a biotin unit appended to the CR group. This set of Probes was used 

for isolating putative target proteins from the rat brain lysate. The biotinylated 

proteins were captured using Streptavidin beads, washed, eluted, resolved on SDS 

PAGE gel and analyzed by mass spectrometry. Although ideal for purifying 
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drug/protein complexes,415,258,416 biotin/streptavidin-based purification is a time-

consuming process.  Therefore, we prepared the corresponding set of Probes 

containing a tetramethylrhodamine fluorophore (TAMRA). Incorporation of the 

TAMRA moiety readily permitted protein detection by in-gel fluorescence.  

For both Probes we chose to include a polyethyleneglycol (PEG) spacer for 

two reasons. The first one was to improve the water solubility of the molecule and 

the second to minimize adverse protein (i.e. Streptavidin)/Probe interactions. To 

synthesize these, we first constructed the polyethylene glycol (PEG) moieties 

(Scheme 34). Commercial tetraethylene glycol (182) was reacted with MsCl (2 

equiv) to form the di-mesylate intermediate 183, and then treated with NaN3 (2 

equiv) to form diazido tetraethyleneglycol 184.417 Amine 185 was obtained by a 

mono-reduction of diazide 184 using a Staudinger reaction in a biphasic solvent 

system.417 The PEG moiety of the alkyne Probe was constructed in a similar fashion. 

Tetraethylene glycol was reacted with NaH and propargyl bromide (1 equiv).418,419 

The hydroxyl group was mesylated, displaced with NaN3, and reduced under 

Staudinger conditions to yield amine 189.  

 

Scheme 34. Synthetic pathway to azide and alkyne-containing PEG linkers 
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Biotin Probe 193 was prepared by linking commercial D-biotin (190) with 185 

using an amide coupling reaction (DMTMM) to yield biotin-PEG-N3 Probe 191. The 

azide was reduced with PPh3 and H2O and the resulting amine 192 was coupled 

(DMTMM) with 4-pentynoic acid to yield biotin-PEG-alkyne Probe 193 (Scheme 35). 

Both amines 185 and 189 were readily coupled with 5,6-

carboxytetramethylrhodamine to give fluorescent Probes TAMRA-PEG-N3 196 and 

TAMRA-PEG-alkyne 195, respectively (Scheme 36).  

 
Scheme 35. Synthesis of PEG-containing D-biotin Probes 

 

Scheme 36. Synthetis of PEG-containing TAMRA fluorescent Probes 
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2.3.3. Experimental Section 

2.3.3.1. Synthesis of para -substituted benzylamines  

Tert -butyl 4-Azidobenzylcarbamate (133). 324 To a cooled (ice bath) THF solution 

(40 mL) of 4-aminobenzylamine (1.00 g, 8.2 mmol) was slowly added a solution of 

Boc2O (1.8 g, 8.2 mmol) in THF (10 mL). The reaction was stirred at room 

temperature (15 h) and the THF was evaporated to give 132 as a pale yellow solid 

(1.86 g, quant.) that was directly dissolved in CH3CN (25 mL) and cooled (ice bath). 

While stirring, t-BuONO (1.5 mL, 12.6 mmol) and TMSN3 (132 µL, 1 mmol) were 

added and the reaction was vigorously stirred at 0 °C u ntil bubbling was observed 

(10–20 min). More TMSN3 (1.2 mL, 9 mmol) was then added dropwise at 0 °C and  

the reaction stirred at room temperature (14 h). The solvent was evaporated and the 

residue purified by flash chromatography (CH2Cl2) to give 133 as an orange oil (1.33 

g, 65%) that slowly turned to yellow crystals: mp 58–60 °C; Rf = 0.33 (CH2Cl2); 
1H 

NMR (CDCl3) δ 1.45 (s, C(CH3)3), 4.24–4.28 (m, NHCH2C6H4), 4.90–5.10 (m, 

NHCH2C6H4), 6.96 (d, J = 8.4 Hz, 2 ArH), 7.25 (d, J = 8.4 Hz, 2 ArH); 13C NMR 

(CDCl3) δ 28.5 (C(CH3)3), 44.2 (NHCH2C6H4), 79.7 (C(CH3)3), 119.3, 129.0, 136.0, 

139.1 (C6H4), 156.0 (OC(O)NH).  

 

4-Azidobenzylammonium Hydrochloride (134).  Compound 133 (7.17 g, 28.9 

mmol) was dissolved in a 4 M HCl dioxane solution (25 mL, 100 mmol). The reaction 

was stirred at room temperature (12 h) and the resulting salt was filtered, and rinsed 

with Et2O to give hydrochloride 134 (5.23 g, 98%) as a light beige solid: mp 80–82 

°C; Rf = 0–0.1 (1/9 MeOH/CH2Cl2); 
1H NMR (DMSO-d6) δ 3.99 (d, J = 5.1 Hz, 
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CH2C6H4), 7.14–7.18, 7.54–7.58 (m, CH2C6H4), 8.25–8.80 (m, NH3
+); 13C NMR 

(DMSO-d6) δ  41.5 (CH2C6H4), 119.2, 130.9, 131.0, 139.5 (C6H4); 134 was not 

detected by mass spectrometry. Anal. Calcd for C7H9N4Cl: C, 45.54; H, 4.91; N, 

30.35; Cl, 19.20. Found: C, 45.78; H, 5.02; N, 30.18; Cl, 19.37. 

 

4-(1,3-Dioxolan-2-yl)benzonitrile  (136).408 To a toluene solution (150 mL) of (4-

cyano)benzaldehyde (135, 15.00 g, 108.8 mmol) was added ethylene glycol (23.9 

mL, 435.1 mmol) and pTSA (21 mg, 0.11 mmol). The reaction solution was heated 

to reflux with a Dean-Stark apparatus until H2O ceased forming (15 h), and then 

cooled to room temperature. The reaction washed with aqueous saturated NaHCO3 

(150 mL) and brine (150 mL). The organic layer was concentrated in vacuo to give a 

pale yellow residue that was recrystallized from Et2O and hexanes to yield 17.20 g of 

135 (90%) as white flakes: mp 44–45 °C (lit. 408 mp = 39–40 °C); Rf = 0.55 (CHCl3); 

1H NMR (CDCl3) δ 4.02–4.14 (m, OCH2CH2O), 5.84 (s, OCHO), 7.58 (d, J = 9.0 Hz, 

2 ArH), 7.66 (d, J = 9.0 Hz, 2 ArH); 13C NMR (CDCl3) δ  65.6 (OCH2CH2O), 102.6 

(OCHO), 113.0 (ArC), 118.7 (C≡N), 127.3 (2 ArC), 132.4 (2 ArC), 143.3 (ArC).  

 

(4-(1,3-Dioxolan-2-yl)phenyl)methanamine (137). 408 A THF solution (60 mL) of 

136 (23.12 g, 132 mmol) was added dropwise to a stirred THF solution of 1.0 M 

LiAlH4 (400 mL, 400 mmol) at 0 °C. The reaction solution wa s stirred at 0 °C (15 

min) and progressively turned yellow. It was further stirred at room temperature (15 

h) and the excess LiAlH4 was quenched by cooling the reaction (0 °C) and 

successively adding H2O (12 mL), 15% aqueous NaOH (6 mL), and H2O (12 mL) 
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dropwise. The mixture was stirred at room temperature (2 h) and filtered. The solid 

residue was rinsed CH2Cl2 and the combined organic layers were evaporated to give 

21.80 g (92%) of 137 as a slightly yellow residue that did not require further 

purification: Rf = 0.20–0.44 (5/95 MeOH/CHCl3); 
1H NMR (CDCl3) δ 1.43 (s, NH2), 

3.85 (s, CH2NH2), 3.96–4.16 (m, OCH2CH2O), 5.79 (s, OC(H)O), 7.31 (d, J = 8.1 Hz, 

2 ArH), 7.43 (d, J = 8.1 Hz, 2 ArH); 13C NMR (CDCl3) δ  46.4 (NH2CH2C6H4), 65.6 

(OCH2CH2O), 103.7 (OC(H)O), 126.8, 127.3, 136.5, 144.6 (C6H4).  

 

tert -Butyl 4-(Ethynyl)benzylcarbamate (140). 420 To a THF solution (130 mL) of 

compound 139 (4.10 g, 13.5 mmol) was added TBAF (1 M in THF, 28 mL, 28 mmol) 

in one portion and the reaction was stirred at room temperature (4 h). CH2Cl2 (150 

mL) and 10% aqueous citric acid (100 mL) were added. The aqueous layer was 

extracted with CH2Cl2 (2 x 50 mL). All of the CH2Cl2 layers were washed with brine 

(200 mL), dried (Na2SO4), and evaporated to dryness. The dark brown residue 

obtained was purified by flash chromatography (15/85 EtOAc/hexanes) to yield 140 

as a pale orange solid (2.70 g, 85%): mp 82–83 °C (li t.420 mp 82 °C); Rf = 0.47 

(15/85 acetone/EtOAc); 1H NMR (CDCl3) δ 1.46 (s, (CH3)3COC(O)NH), 3.06 (s, 

ArC≡CH), 4.31 (d, J = 6.0 Hz, C(O)NHCH2), 4.80–4.92 (m, C(O)NHCH2), 7.23 (d, J = 

9.1 Hz, 2 ArH), 7.45 (d, J = 9.1 Hz, 2 ArH); 13C NMR (CDCl3) δ  28.6 ((CH3)3C(O)), 

44.6 (C(O)NHCH2), 77.4 (ArC≡CH), 79.9 ((CH3)3CO), 83.6 (ArC≡CH), 121.2, 127.5, 

132.6, 140.0 (C6H4), 156.0 (OC(O)NH). 
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4-(Ethynyl)benzylamine (141). 420 Compound 140 (1.20 g, 5.2 mmol) was dissolved 

in CH2Cl2 (50 mL) and TFA (10 mL) was added. The dark brown solution was stirred 

at room temperature (1 h), after which time it was concentrated in vacuo. Saturated 

aqueous NaHCO3 (100 mL) was added to the residue, and the emulsion was 

vigorously stirred until no more gas evolved. CH2Cl2 (50 mL) was added and the 

organic layer was separated. The aqueous layer was further extracted with CH2Cl2 

(3 x 50 mL). All the organic layers were combined, washed with brine (100 mL), 

dried (Na2SO4), and evaporated to yield amine 140 as a dark brown oil (510 mg, 

75%) that was used immediately in the next step. 

 

Dimethoxytriazine N-Methylmorpholinium Hydrochloride (DMTMM). 421 

Chlorodimethoxytriazine (CDMT) (25.00 g, 142 mmol) was suspended in THF (1 L) 

and while stirring NMM (17.3 mL, 157 mmol) was added. The suspension was 

stirred at room temperature (3 h) and filtered. The white solid was rinsed with THF 

and dried to yield 32.50 g (83%) of DMTMM that required no further purification: mp 

121–123 °C (lit. 421 mp 116–117 °C); 1H NMR (CD3OD) δ 3.54 (s, N+CH3), 3.78–3.95, 

4.02–4.10 , 4.51–4.58 (N+(CH2CH2)2O), 4.17 (s, 2 OCH3); 
13C NMR (CDCl3) δ  56.6 

(N+CH3), 57.7 (N+(CH2CH2)2O), 61.5 (2 OCH3), 63.4 ((N+(CH2CH2)2O), 172.1, 175.6 

(2 COCH3). 
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2.3.3.2. Synthesis of lacosamide AB derivatives  

Scheme 37.  Synthesis of the AB derivative 197 bearing the epoxide at the benzylamide para 
position. 

 
 
(R)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2- N-(Benzyloxycarbonyl)amino-3-

hydroxypropionamide (( R)-147). Using Method D, Cbz-D-serine (6.18 g, 25.85 

mmol), 137 (5.09 g, 28.44 mmol) and DMTMM (7.86 g, 28.44 mmol) in THF (400 

mL) gave 5.56 g (54%) of (R)-147 as a white solid after recrystallization of the crude 

material from CHCl3. Purification of the mother liquors by silica gel chromatography 

(6/93.5/0.5 MeOH/CHCl3/NEt3) yielded an additional 1.86 g (18%) (total yield: 7.42 g, 

72%): mp 129–131 °C; [ α]25
D +2.9° ( c 1.0, MeOH);  Rf = 0.37 (5/95 MeOH/CHCl3); IR 

(nujol) 3288, 1689, 1642, 1540, 1459 cm-1; 1H NMR (DMSO-d6) δ 3.53–3.59 (m, 

CHCH2O), 3.88–4.13 (m, OCH2CH2O, CHCH2O), 4.30 (d, J = 5.7 Hz, NHCH2C6H4), 

4.90 (t, J = 5.4 Hz, CH2OH), 5.04 (s, C6H5CH2O), 5.69 (s, OC(H)O), 7.19–7.42 (m, 

C6H5, C6H4), 8.44 (t, J = 5.7 Hz, NHCH2C6H4), the carbamate NH was not detected; 

13C NMR (DMSO-d6) δ  41.9 (NHCH2C6H4), 57.4 (CHCH2OH), 61.7 (C6H5CH2O), 

64.8 (OCH2CH2O), 65.5 (CHCH2OH), 102.7 (OC(H)O), 126.2, 126.8, 127.7, 127.8, 

128.3, 136.5, 137.0, 140.4, (C6H5, C6H4) 155.9 (OC(O)NH), 170.2 (CHC(O)NH); Mr 

(+ESI) 423.1531 [M+Na]+ (calcd for C21H24N2O6Na+ 423.1532). Anal. Calcd for 

C21H24N2O6: C, 62.99; H, 6.04; N, 7.00. Found: C, 63.00; H, 6.03; N, 6.97. 
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(S)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2- N-(Benzyloxycarbonyl)amino-3-

hydroxypropionamide (( S)-147). Using Method D and following the preceding 

procedure, benzylamine 137 (5.09 g, 28.44 mmol), Cbz-L-serine (6.18 g, 25.85 

mmol) and DMTMM (7.86 g, 28.44 mmol) in THF (500 mL) gave 5.66 g (55%) of (S)-

147 after recrystallization from CHCl3 and an additional 1.78 g (17%) after 

purification of mother liquors (total yield: 7.44 g, 72%): mp 129–131°C; [ α]25
D -2.9° ( c 

1.0, MeOH);  Rf = 0.37 (5/95 MeOH/CHCl3); IR (nujol) 3288, 1689, 1642, 1540, 1459 

cm-1; 1H NMR (DMSO-d6) δ 3.53–3.59 (m, CHCH2O), 3.88–4.13 (m, OCH2CH2O, 

CHCH2O), 4.30 (d, J = 5.7 Hz, NHCH2C6H4), 4.82–4.97 (br s, CH2OH). 5.04 (s, 

C6H5CH2O), 5.69 (s, OC(H)O), 7.19–7.42 (m, C6H5, C6H4), 8.44 (t, J = 5.7 Hz, 

NHCH2C6H4), the carbamate NH could not be detected; 13C NMR (CD3OD) δ  44.0 

(NHCH2C6H4), 58.9 (CHCH2OH), 63.4 (C6H5CH2O), 66.4 (OCH2CH2O), 68.0 

(CHCH2OH), 104.9 (OC(H)O), 128.0, 128.4, 129.1, 129.2, 129.6, 138.2, 138.5, 

141.0 (C6H5), 158.6 (OC(O)NH), 173.2 (CHC(O)NH); Mr (+ESI) 423.1525 [M+Na]+ 

(calcd for C21H24N2O6Na+ 423.1532). Anal. Calcd for C21H24N2O6: C, 62.99; H, 6.04; 

N, 7.00. Found: C, 62.86; H, 6.05; N, 7.06. 

 

(R)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2- N-(Benzyloxycarbonyl)amino-3-

methoxypropionamide (( R)-148). Using Method G, (R)-147 (5.56 g 13.9 mmol), 

Ag2O (16.19 g, 69.5 mmol) and MeI (8.66 mL, 139 mmol) gave a pale yellow residue 

after filtration and evaporation. Et2O (50 mL) was added to the residue and (R)-148 

(3.95 g, 69%) was recovered as a white solid after filtration: mp 118–119°C; [ α]25
D 

+1.5° ( c 1.0, MeOH);  Rf = 0.57 (5/95 MeOH/CHCl3); IR (nujol) 3298, 1690, 1645, 
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1542 cm-1; 1H NMR (CDCl3) δ 3.34 (s, CH2OCH3), 3.47 (dd, J = 6.6, 9.3 Hz, 

CHH’OCH3), 3.82 (dd J = 3.8, 9.3 Hz, CHH’OCH3), 4.01–4.15 (m, OCH2CH2O), 

4.08–4.18 (br m, CHCH’H), 4.45 (d, J = 5.7 Hz, NHCH2C6H4), 5.10 (s, C6H5CH2O), 

5.73 (br d, J = 5.7 Hz, OC(O)NH), 5.78 (s, OC(H)O), 6.61–6.74 (m, NHCH2C6H4), 

7.26 (d, J = 7.8 Hz, 2 ArH), 7.31–7.39 (m, C6H5), 7.42 (d, J = 7.8 Hz, 2 ArH); 13C 

NMR (CDCl3) δ  43.4 (NH2CH2C6H4), 54.5 (CHCH2O), 59.3 (CH2OCH3), 65.5 

(OCH2CH2O), 67.4 (C6H5CH2O), 72.2 (CH2OCH3), 103.6 (OC(H)O), 127.0, 127.7, 

128.3, 128.4, 128.7, 136.2, 137.4, 139.1 (C6H5, C6H4), 156.3 (OC(O)NH), 170.0 

(CHC(O)NH); Mr (+ESI) 437.1687 [M+Na]+ (calcd for C22H26N2O6Na+ 437.1689). 

Anal. Calcd for C22H26N2O6•0.25H2O: C, 63.07; H, 6.38; N, 6.69. Found: C, 63.18; H, 

6.38; N, 6.70. 

 

(S)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2- N-(Benzyloxycarbonyl)amino-3-

methoxypropionamide (( S)-148). Using Method G and following the preceding 

procedure, (S)-147 (5.66 g, 14.2 mmol), Ag2O (16.54 g, 71.0 mmol) and MeI (8.84 

mL, 142.0 mmol) in CH3CN (100 mL) gave 3.91 g (67%) of (S)-148 as a white 

powder after precipitation of the residue with Et2O (150 mL): mp 118–119°C; [ α]25
D -

1.5° ( c 1.0, MeOH);  Rf = 0.57 (5/95 MeOH/CHCl3); IR (film) 3424, 3055, 2986, 1723, 

1678 cm-1; 1H NMR (CDCl3) δ 3.36 (s, CH2OCH3), 3.47 (dd, J = 6.6, 9.3 Hz, 

CHH’OCH3), 3.87 (dd J = 3.8, 9.3 Hz, CHH’OCH3), 4.01–4.15 (m, OCH2CH2O), 

4.28–4.38 (m, CHCH’H), 4.48 (d, J = 5.7 Hz, NHCH2C6H4), 5.12 (s, C6H5CH2O), 

5.61–5.70 (m, OC(O)NH), 5.80 (s, OCHO), 6.61–6.74 (m, NHCH2C6H4), 7.22–7.48 

(m, C6H5, C6H4), 8.44 (t, J = 5.7 Hz, NHCH2C6H4); 
13C NMR (CDCl3) δ  43.5 
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(NH2CH2C6H4), 54.5 (CHCH2OCH3), 59.3 (CH2OCH3), 65.5 (OCH2CH2O), 67.5 

(C6H5CH2O), 72.2 (CH2OCH3), 103.7 (OC(H)O), 127.1, 127.7, 128.4, 128.5, 128.8, 

136.2, 137.5, 139.1 (C6H5, C6H4), 156.3 (OC(O)NH), 170.1 (CHC(O)NH); Mr (+ESI) 

437.1681 [M+Na]+ (calcd for C22H26N2O6Na+ 437.1689). Anal. Calcd for 

C22H26N2O6•0.25H2O: C, 63.07; H, 6.38; N, 6.69. Found: C, 63.09; H, 6.37; N, 6.64. 

 

(R)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2-Acetamido-3-methox ypropionamide (( R)-

150). Using Method H, (R)-148 (3.75 g, 9.1 mmol), and 10% Pd/C (700 mg) in 

MeOH (50 mL) gave 2.54 g (100%) of a yellow oily residue that was directly 

dissolved in THF (100 mL). After cooling (ice bath), Et3N (1.26 mL, 9.07 mmol) and 

AcCl (0.644 mL, 9.07 mmol) were successively added. The reaction was stirred at 

room temperature (1 h) filtered and evaporated. Recrystallization of the residue from 

EtOAc and hexanes gave 1.67 g (57%) of (R)-150 as a pale beige solid: mp 138–

139°C; [ α]25
D +13.0° ( c 1.0, MeOH);  Rf = 0.39 (5/95 MeOH/CHCl3); IR (nujol) 3281, 

3090, 1638, 1546, 1458 cm-1; 1H NMR (CDCl3) δ 1.97 (s, CH3C(O)), 3.35 (s, 

CH2OCH3), 3.45 (dd, J = 6.9, 9.0 Hz, CHH’OCH3), 3.73 (dd J = 4.2, 9.0 Hz, 

CHH’OCH3), 4.01–4.15 (m, OCH2CH2O), 4.20–4.55 (m, NHCH2C6H4), 4.60 (app. dt, 

J = 4.2, 6.9 Hz, CHCH2O), 5.80 (s, OC(H)O), 6.76 (d, J = 6.9 Hz, CH3C(O)NH), 7.14 

(t, J = 5.7 Hz, NHCH2C6H4), 7.25 (d, J = 7.8 Hz, 2 ArH), 7.42 (d, J = 7.8 Hz, 2 ArH), 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-150 gave only one 

signal for the acetyl methyl protons and the methoxy protons, addition of excess (R)-

(-)-mandelic acid to a CDCl3 solution of (S)-150 and (R)-150 (~1:2 ratio) gave two 

signals for the acetyl methyl protons (δ 2.021 (S) and 2.008 (R) (∆ppm = 0.013) and 



 

 174 

two signals for the methoxy protons (δ 3.317 (S) and 3.351 (R) (∆ppm = 0.034)) in a 

~1:2 ratio; 13C NMR (CDCl3) δ 23.2 (CH3C(O)), 43.3 (NH2CH2C6H4), 52.7 (CHCH2O), 

59.2 (CH2OCH3), 65.4 (OCH2CH2O), 72.0 (CH2OCH3), 103.6 (OC(H)O), 126.9, 

127.6, 137.2, 139.2 (C6H4), 170.2 (CHC(O)NH or CH3C(O)), 170.6 (CH3C(O) or 

CHC(O)NH): Mr (+ESI) 345.1424 [M+Na]+ (calcd for C16H22N2O5Na+ 345.1426). 

Anal. Calcd for C16H22N2O5: C, 59.61; H, 6.88; N, 8.69. Found: C, 59.51; H, 6.90; N, 

8.58. 

 

(S)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2-Acetamido-3-methox ypropionamide (( S)-

150). Using Method H and following the preceding procedure compound (S)-148 

(3.81 g, 9.2 mmol), 10% Pd/C (700 mg) in MeOH (50 mL) and Et3N (1.28 mL, 9.18 

mmol) and AcCl (650 µL, 9.18 mmol) in THF (100 mL) gave 1.70 g (57%) of (S)-150 

as a light brown solid after recrystallization from EtOAc and hexanes: mp 138–139 

°C; [ α]25
D -13.0° ( c 1.0, MeOH);  Rf = 0.39 (5/95 MeOH/CHCl3); IR (nujol) 3281, 

3084, 1638, 1546, 1458 cm-1; 1H NMR (CDCl3) δ 2.03 (s, CH3C(O)), 3.38 (s, 

CH2OCH3), 3.43 (dd, J = 7.5, 9.0 Hz, CHH’OCH3), 3.80 (dd J = 3.7, 9.0 Hz, 

CHH’OCH3), 4.01–4.15 (m, OCH2CH2O), 4.40–4.50 (m, NHCH2C6H4), 4.54 (app. dt, 

J = 3.7, 7.5 Hz, CHCH2), 5.80 (s, OC(H)O), 6.45 (d, J = 6.6 Hz, CH3C(O)NH), 6.78–

6.82 (m, N(H)CH2C6H4), 7.27 (d, J = 7.8 Hz, 2 ArH), 7.45 (d, J = 7.8 Hz, 2 ArH), 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-150 gave only one 

signal for the the acetyl peak protons and the methoxy protons, addition of excess 

(R)-(-)-mandelic acid to a CDCl3 solution of (S)-150 and (R)-150 (~1:2 ratio) gave 

two signals for the acetyl methyl protons (δ 2.021 (S) and 2.008 (R) (∆ppm = 0.013) 
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and two signals for the methoxy protons (δ 3.317 (S) and 3.351 (R) (∆ppm = 0.034)) 

in a ~1:2 ratio; 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 43.5 (NH2CH2C6H4), 52.6 

(CHCH2O), 59.3 (CH2OCH3), 65.5 (OCH2CH2O), 71.8 (CH2OCH3), 103.7 (OC(H)O), 

127.0, 127.7, 137.5, 139.1 (C6H4), 170.2, 170.5 (CHC(O)NH, CH3C(O)); Mr (+ESI) 

345.1421 [M+Na]+ (calcd for C16H22N2O5Na+ 345.1426). Anal. Calcd for C16H22N2O5: 

C, 59.61; H, 6.88; N, 8.69. Found: C, 59.50; H, 6.90; N, 8.56. 

 

(R)-N-(4-Formylbenzyl) 2-Acetamido-3-methoxypropionamide  ((R)-151). Using 

Method I, compound (R)-150 (1.62 g, 5.03 mmol) and aqueous HCl in a THF:H2O 

solution (2:1, 30 mL) gave 930 mg (66%) of (R)-151 after work-up and 

recrystallization from EtOAc and hexanes. Mother liquors were purified by silica gel 

flash chromatography (MeOH/CHCl3 5/95) and yielded another 336 mg (24%) of the 

desired product (total yield: 1.27 g (90%)): mp 132–133°C; [ α]25
D -10.4° ( c 1.0, 

CHCl3);  Rf = 0.40 (5/95 MeOH/CHCl3); IR (nujol) 3288, 3073, 1687, 1637, 1551, 

1458, 1375 cm-1; 1H NMR (CDCl3) δ 2.04 (s, CH3C(O)), 3.40 (s, CH2OCH3), 3.46 

(dd, J = 7.5 Hz, 9.6 Hz, CHH’OCH3), 3.83 (dd J = 4.2 Hz, 9.6 Hz, CHH’OCH3), 4.48–

4.64 (m, NHCH2C6H4, CHCH2), 6.45 (d, J = 6.6 Hz, CH3C(O)NH), 6.99–7.15 (m, 

NHCH2C6H4), 7.42 (d, J = 8.1 Hz, 2 ArH), 7.85 (d, J = 8.1 Hz, 2 ArH), 9.99 (s, 

C(O)H), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-151 gave 

only one signal for the the acetyl peak protons and the methoxy protons, addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-151 and (R)-151 (~1:2 ratio) 

gave two signals for the acetyl methyl protons (δ 2.037 (S) and 2.023 (R) (∆ppm = 

0.014) in a ~1:2 ratio, and two signals for the methoxy protons (δ 3.317 (S) and 



 

 176 

3.351 (R) (∆ppm = 0.034)) in a ~1:2 ratio; 13C NMR (CDCl3) δ  23.4 (CH3C(O)), 43.4 

(NH2CH2C6H4), 52.7 (CHCH2O), 59.4 (CH2OCH3), 71.7 (CH2OCH3), 128.0, 130.3, 

135.9, 145.2 (C6H4), 170.5, 170.6 (CHC(O)NH, CH3C(O)), 192.0 (C(O)H); Mr (+ESI) 

301.1161 [M+Na]+ (calcd for C14H18N2O4Na+ 301.1164). Anal. Calcd for C14H18N2O4: 

C, 60.42; H, 6.52; N, 10.07. Found: C, 60.13; H, 6.49; N, 9.91. 

 

(R)-N-(4-Formylbenzyl) 2-Acetamido-3-methoxypropionamide  ((R)-151) 

(alternate procedure). Using Method D, (R)-115 (500 mg, 3.1 mmol), 137 (668 mg, 

3.7 mmol) and DMTMM (1.030 g, 3.7 mmol) gave a pale yellow residue after 

filtration and evaporation. Using Method I, the crude benzylamide and aqueous HCl 

in a THF:H2O solution (2:1, 30 mL) gave (R)-151 (633 mg, 73%) as a white solid 

after work-up and silica gel chromatography: mp 131–133°C; [ α]25
D -10.3° ( c 1.0, 

CHCl3);  Rf = 0.40 (5/95 MeOH/CHCl3); 
1H NMR (CDCl3) δ 2.02 (s, CH3C(O)), 3.38 

(s, CH2OCH3), 3.48 (app t, J = 9.0 Hz, CHH’OCH3), 3.75 (dd J = 4.6, 9.0 Hz, 

CHH’OCH3), 4.45–4.70 (m, NHCH2C6H4, CHCH2O), 6.24–6.40 (m, CH3C(O)NH), 

6.78–6.95 (m, NHCH2C6H4), 7.42 (d, J = 8.3 Hz, 2 ArH), 7.82 (d, J = 8.3 Hz, 2 ArH), 

9.92 (s, C(O)H); 13C NMR (CDCl3) δ 23.3 (CH3C(O)), 43.3 (NH2CH2C6H4), 52.8 

(CHCH2OCH3), 59.3 (CH2OCH3), 71.8 (CH2OCH3), 127.9, 130.3, 135.7, 145.2 

(C6H4), 170.4, 170.5 (CHC(O)NH, CH3C(O)), 192.1 (C(O)H).  

 

(S)-N-(4-Formylbenzyl) 2-Acetamido-3-methoxypropionamide  ((S)-151). Using 

Method I, compound (S)-150 (1.65 g, 5.12 mmol) and aqueous HCl in THF:H2O (2:1, 

30 mL) gave 1.17 g of (S)-151 as a white solid after recrystallization (EtOAc) and 
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silica gel chromatography (5/95 MeOH/CHCl3): mp 132–133°C; [ α]25
D +10.4° ( c 1.0, 

CHCl3);  Rf = 0.40 (5/95 MeOH/CHCl3); IR (nujol) 3288, 1687, 1642, 1549, 1458, 

1375 cm-1; 1H NMR (CDCl3) δ 1.96 (s, CH3C(O)), 3.36 (s, CH2OCH3), 3.53 (dd, J = 

6.0, 9.3 Hz, CHH’OCH3), 3.75 (dd J = 5.1, 9.3 Hz, CHH’OCH3), 4.38–4.58 (m, 

NHCH2C6H4), 4.71 (app. dt, J = 5.1, 6.0 Hz, CHCH2O), 7.03 (d, J = 7.8 Hz, 

NHCH2C6H4), 7.38 (d, J = 8.4 Hz, 2 ArH), 7.68 (t, J = 5.4 Hz, CH3C(O)NH), 7.77 (d, J 

= 8.4 Hz, 2 ArH), 9.93 (s, C(O)H), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (S)-151 gave only one signal for the methoxy protons and the 

acetyl peak protons, addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of 

(S)-151 and (R)-151 (~1:2 ratio) gave two signals for the acetyl methyl protons (δ 

2.037 (S) and 2.023 (R) (∆ppm = 0.014), in a ~1:2 ratio and two signals for the 

methoxy protons (δ 3.346 (S) and 3.377 (R) (∆ppm = 0.031)) in a ~1:2 ratio; 13C 

NMR (CDCl3) δ  23.0 (CH3C(O)), 43.1 (NH2CH2C6H4), 52.8 (CHCH2O), 59.1 

(CH2OCH3), 72.0 (CH2OCH3), 127.7, 130.0, 135.5, 145.3 (C6H4), 170.5, 170.7 

(CHC(O)NH, CH3C(O)), 192.0 (C(O)H); Mr (+ESI) 301.1158 [M+Na]+ (calcd for 

C14H18N2O4Na+ 301.1164). Anal. Calcd for C14H18N2O4: C, 60.42; H, 6.52; N, 10.07. 

Found: C, 60.40; H, 6.57; N, 9.90. 

 

(S)-N-(4-Formylbenzyl) 2-Acetamido-3-methoxypropionamide  ((S)-151) 

(Alternate Procedure). Using Method D, (S)-115 (200 mg, 1.24 mmol), 137 (267 

mg, 1.49 mmol), and DMTMM (412 mg, 1.49 mmol) in THF (12 mL), followed by 

aqueous HCl in THF:H2O (2:1, 20 mL) gave (S)-151 (160 mg, 46%) as a white solid 

after work-up, purification by silica gel chromatography and recrystallization from 
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EtOAc: mp 132–133 °C; [ α]25
D +10.2° ( c 1.0, CHCl3);  Rf = 0.40 (5/95 MeOH/CHCl3); 

1H NMR (CDCl3) δ 2.02 (s, CH3C(O)), 3.38 (s, CH2OCH3), 3.48 (app t, J = 9.0 Hz, 

CHH’OCH3), 3.75 (dd J = 4.6, 9.0 Hz, CHH’OCH3), 4.45–4.62 (m, NHCH2C6H4), 

4.60–4.68 (m, CHCH2O), 6.62 (d, J = 8.1 Hz, CH3C(O)NH), 7.15–7.25 (br t, 

NHCH2C6H4), 7.42 (d, J = 8.1 Hz, 2 ArH), 7.82 (d, J = 8.4 Hz, 2 ArH), 9.96 (s, 

C(O)H); 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.3 (NH2CH2C6H4), 52.8 

(CHCH2OCH3), 59.3 (CH2OCH3), 71.9 (CH2OCH3), 127.9, 130.3, 135.7, 145.2 

(C6H4), 170.5, 170.6 (CHC(O)NH, CH3C(O)), 192.0 (C(O)H).  

 

(2R)-N-(4-(Oxiran-2-yl)benzyl) 2-Acetamido-3-methoxypropi onamide (( R)-197)  

(mixture of diastereomers). Using Method F, (R)-151 (720 mg, 2.57 mmol) and 

solution A (DMSO, 30.0 mL, [C]= 0.1 M, 3 mmol) gave (R)-197 (312 mg, 42%) as a 

white solid after work-up and purification by flash chromatography (15/85 

acetone/EtOAc): mp 131–138 °C; [ α]25
D -19.0° ( c 0.6; CHCl3); Rf  = 0.36 (5/95 

MeOH/CH2Cl2); IR (nujol) 3279, 1636, 1547, 1458, 1376, 1130 cm 1; 1H NMR 

(CDCl3) δ 2.01 (s, CH3C(O)), 2.77 (dd, J = 2.4, 5.6 Hz, CH(O)CHH’), 3.14 (dd, J = 

4.2, 5.6 Hz, CH(O)CHH’), 3.37 (s, CH2OCH3), 3.40–3.62 (dd, J = 7.4, 9.0 Hz, 

CHH’OCH3), 3.76 (dd, J = 4.2, 9.0 Hz, CHH’OCH3), 3.84 (dd, J = 2.4, 4.2 Hz, 

CH(O)CH2), 4.38–4.52 (m, NHCH2C6H4), 4.53–4.62 (m, CHCH2O), 6.52 (d, J = 7.0 

Hz, NHCHCH2O), 6.86–6.92 (m, NHCH2C6H4), 7.24 (s, C6H4), addition of excess 

(R)-(-)-mandelic acid to a CDCl3 solution of (R)-197 gave only one signal for the 

acetyl protons (δ 2.008 ppm) and one signal for the methoxy protons (δ 3.356 ppm), 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-197 and (R)-197 
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in a ~1:2 ratio gave two signals with a relative ~1:2 intensity for both the acetyl 

protons (δ 2.027 ppm (S)-197, δ 2.011 ppm (R)-197, (∆ppm = 0.016)) and the 

methoxy protons (δ 3.331 ppm (S)-197, δ 3.357 ppm (R)-197, (∆ppm = 0.026)); 13C 

NMR (CDCl3) δ  23.4 (CH3C(O)), 43.4 (NHCH2C6H4),  51.4, 52.3, 52.6 (CHC(O)NH, 

CH(O)CH2), 59.3 (CH2OCH3), 71.9 (CHCH2OCH3), 126.0, 127.8, 137.1, 138.2 

(C6H4), 170.2, 170.5 (CH3C(O), CHC(O)NH); Mr (+ESI) 315.1323 [M+Na]+ (calcd for 

C15H19N2O4Na+ 315.1321). Anal. Calcd for C15H19N2O4: C, 61.63; H, 6.90; N, 9.58; 

Found: C, 61.53; H, 6.85; N, 9.44. 

 

(2S)-N-(4-(Oxiran-2-yl)benzyl) 2-Acetamido-3-methoxypropi onamide (( S)-197) 

(mixture of diastereomers). Using Method F, compound (S)-151 (160 mg, 0.58 

mmol) and solution A (DMSO, 6.9 mL, [C] = 0.1 M, 0.69 mmol) gave (S)-197 (60 mg, 

36%) as a white solid after work-up and purification by flash chromatography (15/85 

acetone/EtOAc): mp 130–139 °C; [ α]25
D +17.7° ( c 1.4; CHCl3); Rf = 0.36 (5/95 

MeOH/CH2Cl2); IR (nujol) 3281, 1636, 1547, 1458, 1376, 1130 cm 1; 1H NMR 

(CDCl3) δ 2.00 (s, CH3C(O)), 2.77 (dd, J = 2.4, 5.6 Hz, CH(O)CHH’), 3.14 (dd, J = 

4.2, 5.6 Hz, CH(O)CHH’), 3.36 (s, CH2OCH3), 3.45 (dd, J = 7.4, 9.0 Hz, CHH’OCH3), 

3.76 (dd, J = 4.2, 9.0 Hz, CHH’OCH3), 3.84 (dd, J = 2.4, 4.2 Hz, CH(O)CH2), 4.34–

4.52 (m, NHCH2C6H4), 4.53–4.64 (m, CHCH2O), 6.58–6.68 (br d, NHCHCH2O), 

6.98–7.08 (m, NHCH2C6H4), 7.23 (s, C6H4), addition of excess (R)-(-)-mandelic acid 

to a CDCl3 solution of (S)-197 gave only one signal for the acetyl protons (δ 2.030 

ppm) and one signal for the methoxy protons (δ 3.328 ppm), addition of excess (R)-

(-)-mandelic acid to a CDCl3 solution of (S)-197 and (R)-197 in a ~1:2 ratio gave two 
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signals with a relative ~1:2 intensity for the acetyl protons (δ 2.027 ppm (S)-197, δ 

2.011 ppm (R)-197, (∆ppm = 0.016)) and the methoxy protons (δ 3.331 ppm (S)-197, 

δ 3.357 ppm (R)-197, (∆ppm = 0.026)); 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.7 

(NHCH2C6H4),  51.3, 52.3, 52.7 (CHC(O)NH, CH(O)CH2), 59.2 (CH2OCH3), 72.0 

(CHCH2OCH3), 126.0, 127.7, 137.0, 138.2 (C6H4), 170.2, 170.6 (CH3C(O), 

CHC(O)NH); Mr (+ESI) 315.1322 [M+Na]+ (calcd for C15H19N2O4Na+ 315.1321). 

Anal. Calcd for C15H19N2O4: C, 61.63; H, 6.90; N, 9.58. Found: C, 61.81; H, 7.01; N, 

9.47. 
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2.3.3.3. Synthesis of lacosamide AB&CR derivatives 

2.3.3.3.1. Derivatives bearing the CR group on the C(2) side chain 

Scheme 38.  Structure of the different intermediates and chemical reactions used in the synthesis of 
AB&CR agents 171, 173, 174, 175 and 176.  
 

 
 
 
(R)-N-(4-Aminobenzyl) 2-Acetamido-3-(2-azidoethoxy)propio namide (( R)-198). 

Using Method D, acid (R)-124 (2.25 g, 10.4 mmol), 4-aminobenzylamine (1.52 g, 

12.5 mmol) and DMTMM (3.46 g, 12.5 mmol) in THF (200 mL) gave 1.40 g (42%) of 

a dark brown residue that was normally directly used in the next step. 

Recrystallization from CHCl3 and hexanes yielded a white solid that rapidly turned 
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brown when exposed to light or air: mp 98–99 °C; [ α]25
D +12.8° ( c 0.5; MeOH);  Rf = 

0.36 (5/95 MeOH/CHCl3); IR (nujol) 3314, 3205, 2107, 1628, 1522, 1457, 1374, 

1285 cm-1; 1H NMR (DMSO-d6) δ 1.85 (s, CH3C(O)NH), 3.30–3.40 (m, CH2N3), 

3.52–3.64 (m, OCH2CH2N3, CHCH2OCH2), 4.08 (d, J = 6.0 Hz, C(O)NHCH2Ph), 

4.44–4.56 (m, CHCH2O), 4.95 (s, C6H4NH2), 6.48 (d, J = 8.7 Hz, 2 ArH), 6.88 (d, J = 

8.7 Hz, 2 ArH), 8.02 (d, J = 8.4 Hz, CH3C(O)NH), 8.29 (t, J = 6.0 Hz, 

C(O)NHCH2Ph); 13C NMR (DMSO-d6) δ  22.5 (CH3C(O)), 41.8 (NHCH2Ph), 49.8 

(CH2N3), 52.4 (CHCH2O), 69.1 (OCH2CH2N3 or CHCH2O), 70.4 (CHCH2O or 

OCH2CH2N3), 113.5, 125.9, 128.0, 147.4 (C6H4), 169.8, 169.2 (CH3C(O)NH, 

C(O)NHCH2); Mr (+ESI) 321.1671 [M+H]+ (calcd for C14H20N6O3H
+ 321.1675). Efforts 

to obtain satisfactory elemental analyses were unsuccessful. 

 

(R)-N-(4-Isothiocyanatobenzyl) 2-Acetamido-3-(2-azidoetho xy)propionamide 

((R)-171). Compound (R)-198 (715 mg, 2.23 mmol) was dissolved in CH3CN (40 mL) 

and DITC (90%, 510 mg, 2.57 mmol) was added all at once. The reaction solution 

was stirred at room temperature (1 h), the solvent was removed in vacuo, and the 

residue was purified using flash chromatography (5/95 MeOH/CHCl3) and then 

recrystallized from EtOAc to yield 502 mg (62%) of an off-white solid: mp 142–143 

°C; [ α]25
D -28.6° ( c 0.8; CHCl3);  Rf = 0.45 (1/9 acetone/EtOAc); IR (nujol) 3276, 

2181, 2114, 1631, 1547, 1459, 1374, 1285 cm-1; 1H NMR (CDCl3) δ 2.05 (s, 

CH3C(O)NH), 3.30–3.50 (m, CH2N3), 3.55 (dd, J = 7.5, 9.3 Hz, CHCHH’OCH2), 

3.62–3.80 (m, OCH2CH2N3), 3.95 (dd, J = 4.0, 9.3 Hz, CHCHH’OCH2), 4.46 (d, J = 

6.0 Hz, C(O)NHCH2Ph), 4.54–4.60 (m, CHCH2O), 6.45 (br d, J = 6.2 Hz, 
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CH3C(O)NH), 6.84–6.92 (br t, C(O)NHCH2Ph), 7.18–7.22 (m, 2 ArH), 7.23–7.29 (m, 

2 ArH), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-171 gave 

only one signal for the acetyl protons (δ 2.019), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (S)-171 and (R)-171 (~1:2 ratio) gave two signals for the 

acetyl methyl protons (δ 2.033 (S) and 2.020 (R) (∆ppm = 0.013)) in a ~1:2 ratio; 13C 

NMR (CDCl3) δ  23.2 (CH3C(O)), 41.0 (NHCH2Ph), 50.7 (CH2N3), 52.4 (CHCH2O), 

70.0 (OCH2CH2N3 or CHCH2O), 70.3 (CHCH2O or OCH2CH2N3), 125.9, 128.6, 130.5 

(3 ArC), 135.6 (NCS), 137.4 (1 ArC), 169.8, 169.2 (CH3C(O)NH, C(O)NHCH2); Mr 

(+ESI) 363.1236 [M+H]+ (calcd for C15H18N6O3SH+ 363.1239). Anal. Calcd for 

C15H18N6O3S: C, 49.71; H, 5.01; N, 23.19; S, 8.85. Found: C, 49.55; H, 4.91; N, 

23.13; S, 8.63. 

 

(S)-N-(4-Isothiocyanatobenzyl) 2-Acetamido-3-(2-azidoetho xy)propionamide 

((S)-171). Using Method D, acid (S)-124 (1.61 g, 7.52 mmol), 4-aminobenzylamine 

(1.02 mL, 9.03 mmol), and DMTMM (2.50 g, 9.03 mmol) in anhydrous THF (200 mL) 

gave after evaporation a brown residue to which EtOAc (100 mL) was added. After 

stirring (5 min) the insoluble materials were filtered, and rinsed with EtOAc. The 

filtrate was concentrated to yield a dark orange oily residue (2.38 g (crude)) (Mr 

(+ESI) 343.1496 [M+H]+ (calcd for C14H20N6O3Na+ 343.1495)). The residue was 

dissolved in CH3CN (20 mL) and DITC (90%, 1.58 g, 7.90 mmol) was added at once. 

After stirring at room temperature (3 h), the reaction was concentrated in vacuo and 

the crude material was purified by flash column chromatography (5/95 MeOH/CHCl3) 

and then recrystallized from EtOAc and hexanes to yield 706 mg (26% overall yield) 



 

 184 

of (S)-171 as an off-white solid: mp 142–143 °C; [ α]25
D +28.5° ( c 1.0; CHCl3);  Rf = 

0.45 (1/9 acetone/EtOAc); IR (nujol) 3280, 2177, 2108, 1637, 1548, 1452, 1374, 

1293 cm-1; 1H NMR (CDCl3) δ 2.01 (s, CH3C(O)NH), 3.28–3.48 (m, CH2N3), 3.55 

(dd, J = 7.2, 9.3 Hz, CHCHH’OCH2), 3.62–3.78 (m, OCH2CH2N3), 3.91 (dd, J = 4.0, 

9.3 Hz, CHCHH’OCH2), 4.43 (d, J = 6.0 Hz, C(O)NHCH2Ph), 4.56–4.62 (m, 

CHCH2O), 6.56 (br d, J = 6.2 Hz, CH3C(O)NH), 6.84–6.92 (br t, J = 6.0 Hz, 

C(O)NHCH2Ph), 7.14–7.20 (m, 2 ArH), 7.22–7.28 (m, 2 ArH), addition of excess (R)-

(-)-mandelic acid to a CDCl3 solution of (S)-171 gave only one signal for the acetyl 

protons (δ 2.032), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-

171 and (R)-171 (~1:2 ratio) gave two signals for the acetyl methyl protons (δ 2.033 

(S) and 2.020 (R) (∆ppm = 0.013)) in a ~1:2 ratio; 13C NMR (CDCl3) δ  23.3 

(CH3C(O)), 43.2 (NHCH2Ph), 50.9 (CH2N3), 52.7 (CHCH2O), 70.3 (OCH2CH2N3 or 

CHCH2O), 70.4 (CHCH2O or OCH2CH2N3), 126.1, 128.8, 130.6 (3 ArC), 135.8 

(NCS), 137.6 (1 ArC), 170.0, 170.7 (CH3C(O)NH, C(O)NHCH2); Mr (+ESI) 363.1241 

[M+H]+ (calcd for C15H18N6O3SH+ 363.1239). Anal. Calcd for C15H18N6O3S: C, 49.71; 

H, 5.01; N, 23.19; S, 8.85. Found: C, 49.86; H, 5.07; N, 23.10; S, 8.75. 

 

(R)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2-Acetamido-3-(2-

azidoethoxy)propionamide (( R)-199). Using Method D, acid (R)-124 (400 mg, 1.87 

mmol), benzylamine 137 (402 mg, 2.24 mmol), and DMTMM (620 mg, 2.24 mmol) in 

anhydrous THF (20 mL) gave 628 mg (89%) of (R)-199 as a white solid after flash 

column chromatography (10/89.5/0.5 MeOH/CHCl3/NEt3). An analytical sample was 

obtained by recrystallization from EtOAc and hexanes: mp 112–113 °C; [ α]25
D -23.9° 



 

 185 

(c 0.9; CHCl3);  Rf = 0.47 (10/89.5/0.5 MeOH/CHCl3/NEt3); IR (nujol) 3288, 3071, 

2134, 1634, 1544, 1457, 1382, 1305, 1236, 1126 cm-1; 1H NMR (CDCl3) δ 2.02 (s, 

CH3C(O)NH), 3.24–3.46 (m, CH2N3), 3.55 (dd, J = 7.2, 9.3 Hz, CHCHH’OCH2), 

3.60–3.74 (m, OCH2CH2N3), 3.91 (dd, J = 4.0, 9.3 Hz, CHCHH’OCH2), 4.00–4.16 

(m, OCH2CH2O), 4.40–4.54 (m, C(O)NHCH2Ph), 4.56–4.62 (m, CHCH2O), 5.79 (s, 

OCH(O)), 6.51 (d, J = 6.9 Hz, CH3C(O)NH), 6.81–6.87 (br t, C(O)NHCH2Ar), 7.28 (d, 

J = 8.1 Hz, 2 ArH), 7.44 (d, J = 8.1 Hz, 2 ArH), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-199 gave only one signal for the acetyl protons, 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-199 and (R)-199 

(~1:2 ratio) gave two signals for the acetyl methyl protons (δ 2.028 (S) and 2.018 (R) 

(∆ppm = 0.010)) in a ~1:2 ratio; 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.6 

(NHCH2Ph), 50.8 (CH2N3), 52.7 (CHCH2O), 65.5 (OCH2CH2O), 70.3 (OCH2CH2N3 or 

CHCH2O), 70.4 (CHCH2O or OCH2CH2N3), 103.6 (OCH(O)), 127.0, 127.7, 137.5, 

139.1 (C6H4), 169.8, 170.6 (CH3C(O)NH, C(O)NHCH2); Mr (+ESI) 400.1601 [M+Na]+ 

(calcd for C17H23N5O5Na+ 400.1597). Anal. Calcd for C17H23N5O5: 54.10; H, 6.14; N, 

18.56. Found: C, 54.30; H, 6.09; N, 18.36. 

 

(S)-N-(4-(1,3-Dioxolan-2-yl)benzyl) 2-Acetamido-3-(2-

azidoethoxy)propionamide (( S)-199). Using Method D, acid (S)-124 (400 mg, 1.87 

mmol), benzylamine 137 (402 mg, 2.24 mmol), and DMTMM (620 mg, 2.24 mmol) in 

anhydrous THF (20 mL) gave 518 mg (73%) of (S)-199 as a white solid after flash 

column chromatography (10/89.5/0.5 MeOH/CHCl3/NEt3). An analytical sample was 

obtained by recrystallization from EtOAc and hexanes: mp 112–113 °C; [ α]25
D +23.9° 
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(c 1.2; CHCl3);  Rf = 0.47 (10/89.5/0.5 MeOH/CHCl3/NEt3); IR (nujol) 3281, 3078, 

2133, 1634, 1544, 1457, 1380, 1307, 1236, 1126 cm-1; 1H NMR (CDCl3) δ 2.01 (s, 

CH3C(O)NH), 3.24–3.44 (m, CH2N3), 3.55 (dd, J = 7.2, 9.0 Hz, CHCHH’OCH2), 

3.60–3.76 (m, OCH2CH2N3), 3.91 (dd, J = 4.0, 9.0 Hz, CHCHH’OCH2), 4.00–4.18 

(m, OCH2CH2O), 4.40–4.54 (m, C(O)NHCH2Ph), 4.54–4.60 (m, CHCH2O), 5.79 (s, 

OCH(O)), 6.51 (d, J = 6.6 Hz, CH3C(O)NH), 6.84–6.94 (br t, C(O)NHCH2Ar), 7.28 (d, 

J = 8.1 Hz, 2 ArH), 7.44 (d, J = 8.1 Hz, 2 ArH), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (S)-199 gave only one signal for the acetyl protons, 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-199 and (R)-199 

(~1:2 ratio) gave two signals for the acetyl methyl protons (δ 2.028 (S) and 2.018 (R) 

(∆ppm = 0.010)) in a ~1:2 ratio; 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.5 

(NHCH2Ph), 50.8 (CH2N3), 52.6 (CHCH2O), 65.5 (OCH2CH2O), 70.3 (OCH2CH2N3 or 

CHCH2O), 70.4 (CHCH2O or OCH2CH2N3), 103.6 (OCH(O)), 127.0, 127.7, 137.5, 

139.1 (C6H4), 169.8, 170.6 (CH3C(O)NH, C(O)NHCH2); Mr (+ESI) 400.1600 [M+Na]+ 

(calcd for C17H23N5O5Na+ 400.1597). Anal. Calcd for C17H23N5O5: 54.10; H, 6.14; N, 

18.56. Found: C, 54.35; H, 6.20; N, 18.54. 

 

(R)-N-(4-Formylbenzyl) 2-Acetamido-3-(2-azidoethoxy)propi onamide (( R)-173). 

Using Method I, (R)-199 (280 mg, 0.74 mmol) and aqueous HCl in a THF:H2O 

solution (2:1, 15 mL) gave 141 mg (57%) of (R)-173 after work-up and 

recrystallization from EtOAc: mp 107–109 °C; [ α]25
D -21.3° ( c 1.1; CHCl3);  Rf = 0.45 

(5/95 MeOH/CHCl3); IR (nujol) 3277, 3080, 2860, 2106, 1699, 1638, 1550, 1456, 

1378, 1304, 1131 cm-1; 1H NMR (CDCl3) δ 2.06 (s, CH3C(O)NH), 3.30–3.38 (m, 
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CH2N3), 3.59 (dd, J = 7.2, 9.0 Hz, CHCHH’OCH2), 3.64–3.82 (m, OCH2CH2N3), 3.97 

(dd, J = 4.0, 9.0 Hz, CHCHH’OCH2), 4.52–4.64 (m, C(O)NHCH2Ph, CHCH2O), 6.40–

6.50 (br d, CH3C(O)NH), 6.90–7.00 (br t, C(O)NHCH2Ph), 7.43 (d, J = 8.1 Hz, 2 

ArH), 7.85 (d, J = 8.1 Hz, 2 ArH), 10.01 (s, ArC(O)H), addition of excess (R)-(-)-

mandelic acid to a CDCl3 solution of (R)-173 gave only one signal for the acetyl 

protons, addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-173 and 

(R)-173 (~2:1 ratio) gave two signals for the acetyl methyl protons (δ 2.043 (S) and 

2.032 (R) (∆ppm = 0.011)) in a ~2:1 ratio; 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.4 

(NHCH2Ph), 50.8 (CH2N3), 52.7 (CHCH2O), 70.3 (OCH2CH2N3 or CHCH2O), 70.5 

(CHCH2O or OCH2CH2N3), 128.0, 130.3, 135.8, 145.1 (C6H4), 170.2, 170.7 

(CH3C(O)NH, C(O)NHCH2), 192.0 (ArC(O)H); Mr (+ESI) 356.1341 [M+Na]+ (calcd for 

C15H19N5O4Na+ 356.1335). Anal. Calcd for C15H19N5O4: C, 54.05; H, 5.75; N, 21.01. 

Found: C, 54.30; H, 5.74; N, 20.73. 

 

(S)-N-(4-Formylbenzyl) 2-Acetamido-3-(2-azidoethoxy)propi onamide (( S)-173). 

Using Method I,  (S)-199 (256 mg, 0.68 mmol) and aqueous HCl in a THF:H2O 

solution (2:1, 15 mL) yielded 110 mg (48%) of (S)-173 after work-up and 

recrystallization from EtOAc: mp 107–109 °C; [ α]25
D +21.3° ( c 1.8; CHCl3);  Rf = 0.45 

(5/95 MeOH/CHCl3); IR (nujol) 3273, 3082, 2860, 2106, 1699, 1639, 1550, 1455, 

1377, 1303, 1221 cm-1; 1H NMR (CDCl3) δ 2.03 (s, CH3C(O)NH), 3.28–3.44 (m, 

CH2N3), 3.60 (dd, J = 6.9, 9.0 Hz, CHCHH’OCH2), 3.62–3.80 (m, OCH2CH2N3), 3.92 

(dd, J = 4.0, 9.0 Hz, CHCHH’OCH2), 4.50–4.58 (m, C(O)NHCH2Ar), 4.60–4.68 (m, 

CHCH2O), 6.57 (d, J = 6.9 Hz, CH3C(O)NH), 7.10–7.20 (br t, C(O)NHCH2Ph), 7.43 
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(d, J = 8.1 Hz, 2 ArH), 7.83 (d, J = 8.1 Hz, 2 ArH), 9.98 (s, ArC(O)H), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-173 gave only one signal for 

the acetyl protons, addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of 

(S)-173 and (R)-173 (~2:1 ratio) gave two signals for the acetyl methyl protons (δ 

2.043 (S) and 2.032 (R) (∆ppm = 0.011)) in a ~2:1 ratio; 13C NMR (CDCl3) δ  23.3 

(CH3C(O)), 43.4 (NHCH2Ph), 50.8 (CH2N3), 52.7 (CHCH2O), 70.3 (OCH2CH2N3 or 

CHCH2O), 70.5 (CHCH2O or OCH2CH2N3), 128.0, 130.3, 135.8, 145.1 (C6H4), 170.2, 

170.7 (CH3C(O)NH, C(O)NHCH2), 192.0 (ArC(O)H); Mr (+ESI) 356.1338 [M+Na]+ 

(calcd for C15H19N5O4Na+ 356.1335). Anal. Calcd for C15H19N5O4: C, 54.05; H, 5.75; 

N, 21.01. Found: C, 54.45; H, 5.81; N, 20.66. 

 

(2R)-N-(4-(Oxiran-2-yl)benzyl) 2-Acetamido-3-(2-azidoethox y)propionamide 

((R)-175) (mixture of diastereomers). Using Method F, solution A (DMF, 7.5 mL, 

[C]= 0.2 M, 1.5 mmol) and (R)-173 (410 mg, 1.23 mmol) gave (R)-175 (80 mg, 19%) 

as a white solid after purification by flash chromatography (15/85 acetone/EtOAc): 

mp 91–98°C; [ α]25
D -24.6° ( c 0.4; CHCl3); Rf = 0.38 (1/9 acetone/EtOAc); IR (CHCl3 

film) 3288, 3107, 2924, 2867, 2104, 1638, 1541, 1448, 1378, 1124 cm 1; 1H NMR 

(CDCl3) δ 1.99 (s, CH3C(O)), 2.76 (dd, J = 2.4, 5.6 Hz, CH(O)CHH’), 3.13 (dd, J = 

4.0, 5.6 Hz, CH(O)CHH’), 3.24–3.44 (m, OCH2CH2N3), 3.52–3.68 (m, OCH2CH2N3, 

CHH’OCH2), 3.83 (dd, J = 2.4, 4.0 Hz, CH(O)CHH’), 3.88 (dd, J = 4.5, 9.2 Hz, 

CHH’OCH2), 4.43 (d, J = 7.2 Hz, NHCH2C6H4), 4.58–4.64 (m, CHCH2O), 6.65 (d, J = 

7.2 Hz, NHCHCH2O), 7.10–7.18 (br t, NHCH2C6H4), 7.23 (s, C6H4), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (R)-175 gave only one signal for 
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the acetyl protons (δ 2.024 ppm), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-175 and (R)-175 in a ~1:5 ratio gave two signals with a relative ~1:5 

intensity for the acetyl protons (δ 2.030 ppm (S)-175, δ 2.020 ppm (R)-175, (∆ppm = 

0.010)), at 300 MHz, we were not able to detect individual peaks for the two 

diastereomers; 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.5 (NHCH2C6H4), 50.8, 51.3, 

52.3, 52.6 (CHC(O)NH, CH(O)CH2, CH2N3), 70.3, 70.4 (CH2OCH2CH2N3), 126.0, 

127.9, 137.1, 138.1 (C6H4), 169.9, 170.6 (CH3C(O), CHC(O)NH), at 75 MHz, we 

were not able to detect individual peaks for the two diastereomers; Mr (+ESI) 

370.1491 [M+Na]+ (calcd for C16H21N5O4Na+ 370.1491). Anal. Calcd for C16H21N5O4: 

55.32; H, 6.09; N, 20.16. Found: C, 55.36; H, 6.16; N, 20.00. 

 

(2S)-N-(4-(Oxiran-2-yl)benzyl) 2-Acetamido-3-(2-azidoethox y)propionamide 

((S)-175) (mixture of diastereomers). Using Method F, solution A (DMF, 7.5 mL, 

[C]= 0.2 M, 1.5 mmol) and (S)-173 (334 mg, 1.00 mmol) gave (S)-175 (71 mg, 20%) 

as a white solid after purification by flash chromatography (15/85 acetone/EtOAc): 

mp 92–98°C; [ α]25
D +25.5° ( c 1.0; CHCl3); Rf = 0.38 (1/9 acetone/EtOAc); IR (CHCl3 

film) 3311, 3061, 2928, 2874, 2105, 1652, 1530, 1445, 1375, 1121 cm 1; 1H NMR 

(CDCl3) δ 1.99 (s, CH3C(O)), 2.76 (dd, J = 2.4, 5.6 Hz, CH(O)CHH’), 3.12 (dd, J = 

4.0, 5.6 Hz, CH(O)CHH’), 3.22–3.44 (m, OCH2CH2N3), 3.52–3.64 (m, 

CHH’OCH2CH2N3), 3.82 (dd, J = 2.4, 4.0 Hz, CH(O)CHH’), 3.84 (dd, J = 4.5, 9.2 Hz, 

CHH’OCH2CH2N3), 4.42 (d, J = 7.2 Hz, NHCH2C6H4), 4.58–4.64 (m, CHCH2O), 6.71 

(d, J = 7.2 Hz, NHCHCH2O), 7.10–7.18 (br t, NHCH2C6H4), 7.23 (s, C6H4), addition 

of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-175 gave only one signal 
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for the acetyl protons (δ 2.030 ppm), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (S)-175 and (R)-175 in a ~1:5 ratio gave two signals with a relative 

~1:5 intensity for the acetyl protons (δ 2.030 ppm (S)-175, δ 2.020 ppm (R)-175, 

(∆ppm = 0.010)), at 300 MHz, we were not able to detect individual peaks for the two 

diastereomers; 13C NMR (CDCl3) δ  23.2 (CH3C(O)), 43.4 (NHCH2C6H4), 50.7, 51.3, 

52.2, 52.6 (CHC(O)NH, CH(O)CH2 CH2N3), 70.3, 70.4 (CH2OCH2CH2N3), 125.9, 

127.8, 137.0, 138.1 (C6H4), 169.9, 170.6 (CH3C(O), CHC(O)NH), at 75 MHz, we 

were not able to detect individual peaks for the two diastereomers; Mr (+ESI) 

370.1491 [M+Na]+ (calcd for C16H21N5O4Na+ 370.1491). Anal. Calcd for C16H21N5O4: 

55.32; H, 6.09; N, 20.16. Found: C, 55.63; H, 6.23; N, 19.98. 

 

(R)-N-(4-Formylbenzyl) 2-Acetamido-3-(prop-2-ynyloxy)pro pionamide (( R)-174). 

(initially prepared by Dr. Ki-Duk Park) Using Method D, acid (R)-163 (480 mg, 2.6 

mmol), amine 137 (550 mg, 3.12 mmol) and DMTMM (862 mg, 3.12 mmol) in THF 

(30 mL) gave a crude yellow residue upon work-up. Using Method I, direct hydrolysis 

of the residue with HCl in a THF:H2O solution (2:1, 20 mL) gave (R)-174 as a white 

solid (382 mg, 49%, two steps) upon work-up and purification by flash 

chromatography: mp 142–144 °C; [ α]25
D -9.3° ( c 0.3, CHCl3);  Rf = 0.51 (1/9 

MeOH/CH2Cl2); 
1H NMR (CDCl3) δ 2.04 (s, CH3C(O)), 2.48 (t, J = 2.4 Hz, 

CH2C≡CH), 3.67 (dd, J = 7.2, 9.0 Hz, CHH’OCH2), 3.95 (dd J = 4.2, 9.0 Hz, 

CHH’OCH2), 4.12–4.28 (m, OCH2C≡CH), 4.47–4.68 (m, NHCH2C6H4, CHCH2O), 

6.42 (d, J = 6.4 Hz, CH3C(O)NH), 6.90–7.00 (m, NHCH2C6H4), 7.43 (d, J = 8.3 Hz, 2 

ArH), 7.84 (d, J = 8.3 Hz, 2 ArH), 10.00 (s, C(O)H), addition of excess (R)-(-)-
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mandelic acid to a CDCl3 solution of (R)-174 gave only one signal for the acetyl 

protons (δ 2.029) and the propargyl proton (δ 2.610), addition of excess (R)-(-)-

mandelic acid to a CDCl3 solution of (S)-174 and (R)-174 in a ~2:1 ratio gave two  

signals with a relative ~2:1 intensity for the acetyl protons (δ 2.040 (S)-174, δ 2.030 

(R)-174) and the propargyl protons (δ 2.469 (S), δ 2.434 (R)); 13C NMR (CDCl3) 

δ 23.4 (CH3C(O)), 43.5 (NH2CH2C6H4), 52.8 (CHCH2OCH3), 58.9 (CH2OCH2C≡CH), 

69.2 (CH2OCH2C≡CH), 75.7 (CH2C≡CH), 79.0 (CH2C≡CH), 128.0, 130.3, 135.8, 

145.1 (C6H4), 170.2, 170.7 (CHC(O)NH, CH3C(O)), 192.0 (C(O)H). 

 

(S)-N-(4-Formylbenzyl) 2-Acetamido-3-(prop-2-ynyloxy)pro pionamide (( S)-174). 

Using Method D, acid (S)-163 (480 mg, 2.6 mmol), amine 137 (550 mg, 3.12 mmol) 

and DMTMM (862 mg, 3.12 mmol) in THF (30 mL) gave a crude yellow residue upon 

work-up. Using Method I, the residue was reacted with aqueous HCl in THF:H2O 

(2:1, 20 mL) to give (S)-174 as a white solid (382 mg, 49%, two steps) upon work-up 

and silica gel flash chromatography (1/2 CH2Cl2/EtOAc to 1/9 MeOH/CH2Cl2): mp 

142–144 °C; [ α]25
D +9.1° ( c 0.3, CHCl3);  Rf = 0.51 (1/9 MeOH/CH2Cl2); IR (nujol) 

3442, 3372, 3288, 2856, 2111, 1687, 1635, 1554, 1457, 1375, 1108 cm 1; 1H NMR 

(CDCl3) δ 2.05 (s, CH3C(O)), 2.48 (t, J = 2.4 Hz, CH2C≡CH), 3.67 (dd, J = 7.2 Hz, 

9.0 Hz, CHH’OCH2), 3.96 (dd, J = 4.2, 9.0 Hz, CHH’OCH2), 4.14–4.30 (m, 

OCH2C≡CH), 4.48-4.66 (m, NHCH2C6H4, CHCH2O), 6.42 (d, J = 6.4 Hz, 

CH3C(O)NH), 6.82–6.92 (m, NHCH2C6H4), 7.44 (d, J = 8.3 Hz, 2 ArH), 7.85 (d, J = 

8.3 Hz, 2 ArH), 10.00 (s, C(O)H), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-174 gave only one signal for the acetyl protons (δ 2.040) and the 
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propargyl proton (δ 2.469), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-174 and (R)-174 in a ~2:1 ratio gave two  signals with a relative ~2:1 

intensity for the acetyl protons (δ 2.040 (S), δ 2.030 (R)) and the propargyl protons (δ 

2.469 (S), δ 2.434 (R)); 13C NMR (CDCl3) δ 23.4 (CH3C(O)), 43.4 (NH2CH2C6H4), 

52.8 (CHCH2OCH3), 58.9 (CH2OCH2C≡CH), 69.2 (CH2OCH2C≡CH), 75.7 

(CH2C≡CH), 79.0 (CH2C≡CH), 128.0, 130.3, 135.8, 145.1 (C6H4), 170.2, 170.7 

(CHC(O)NH, CH3C(O)), 192.0 (C(O)H); Mr (+ESI) 325.1 [M+Na]+ (calcd for 

C16H18N2O4Na+ 325.1). Anal. Calcd for C16H18N2O4: C, 63.56; H, 6.00; N, 9.27. 

Found: C, 63.34; H, 5.91; N, 9.20. 

 

(2R)-N-(4-(Oxiran-2-yl)benzyl) 2-Acetamido-3-(prop-2-ynyl oxy)propionamide 

((R)-176) (mixture of diastereomers). Using Method F, solution A (DMSO, [C]= 0.1 

M, 11.7 mL, 1.2 mmol) and (R)-174 (410 mg, 1.23 mmol) gave (R)-176 (80 mg, 

19%) as a white solid after purification by flash chromatography (15/85 

acetone/EtOAc): mp 131–136 °C; [ α]25
D +3.2° ( c 0.5; MeOH); Rf = 0.30 (8/92 

acetone/EtOAc); IR (nujol) 3283, 3061, 2109, 1634, 1544, 1458, 1375, 1306, 1096 

cm 1; 1H NMR (CD3CN) δ 1.94 (s, CH3C(O)), 2.72–2.80 (m, CH2C≡CH, CH(O)CHH’), 

3.08 (dd, J = 4.0, 5.8 Hz, CH(O)CHH’), 3.63 (dd, J = 4.8, 9.0 Hz, CHH’OCH2C≡CH), 

3.80–3.88 (m, CH(O)CHH’, CHH’OCH2C≡CH), 4.09–4.22 (m, CH2OCH2C≡CH), 4.34 

(d, J = 6.0 Hz, NHCH2C6H4), 4.38–4.44 (m, CHCH2O), 6.76–6.86 (br d, 

NHCHCH2O), 7.18–7.28 (m, NHCH2C6H4), at 300 MHz, we were not able to detect 

individual peaks for the two diastereomers; 13C NMR (CD3CN) δ  23.1 (CH3C(O)), 

43.2 (NHCH2C6H4), 51.6, 52.6, 54.4, 59.1 (CHC(O)NH, CH(O)CH2, OCH2C≡CH), 
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70.5 (CH2OCH2C≡CH), 76.2 (CH2OCH2C≡CH), 80.5 (CH2OCH2C≡CH), 126.7, 

128.3, 137.8, 140.3 (C6H4), 170.7, 171.2 (CH3C(O), CHC(O)NH), at 75 MHz, we 

were not able to detect individual peaks for the two diastereomers; Mr (+ESI) 339.1 

[M+Na]+ (calcd for C17H20N2O4Na+ 339.1). Anal. Calcd for C17H20N2O4: C, 64.54; H, 

6.37; N, 8.86. Found: C,  64.38; H, 6.35; N, 8.65. 

 

(2S)-N-(4-Oxiran-2-yl)benzyl) 2-Acetamido-3-(prop-2-ynylo xy)propionamide 

((S)-176) (mixture of diastereomers). Using Method F, (S)-174 and solution A 

(DMSO, 17.8 mL, [C] = 0.1 M, 1.78 mmol) gave (S)-176 as a white solid (90 mg, 

26%) after purification by flash chromatography (15/85 acetone/EtOAc): mp 132–

138 °C; [ α]25
D -3.1° ( c 0.3; MeOH); Rf = 0.30 (8/92 acetone/EtOAc); IR (nujol) 3412, 

3277, 3138, 2874, 2109, 1633, 1544, 1458, 1375, 1306, 1096 cm 1; 1H NMR 

(CD3CN) δ 1.94 (s, CH3C(O)), 2.73–2.80 (m, CH2C≡CH, CH(O)CHH’), 3.08 (dd, J = 

4.0, 5.8 Hz, CH(O)CHH’), 3.63 (dd, J = 4.8, 9.0 Hz, CHH’OCH2C≡CH), 3.80–3.88 

(m, CH(O)CHH’, CHH’OCH2C≡CH), 4.08–4.21 (m, CH2OCH2C≡CH), 4.34 (d, J = 6.0 

Hz, NHCH2C6H4), 4.39–4.47 (m, CHCH2O), 6.76–6.88 (br d, NHCHCH2O), 7.17–

7.28 (m, NHCH2C6H4), at 300 MHz, we were not able to detect individual peaks for 

the two diastereomers; 13C NMR (CD3CN) δ  23.1 (CH3C(O)), 43.2 (NHCH2C6H4), 

51.6, 52.7, 54.4, 59.1 (CHC(O)NH, CH(O)CH2, OCH2C≡CH), 70.5 (CH2OCH2C≡CH), 

76.2 (CH2OCH2C≡CH), 80.5 (CH2OCH2C≡CH), 126.7, 128.3, 137.8, 140.3 (C6H4), 

170.7, 171.2 (CH3C(O), CHC(O)NH), at 75 MHz, we were not able to detect 

individual peaks for the two diastereomers; Mr (+ESI) 339.1 [M+Na]+ (calcd for 
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C17H20N2O4Na+ 339.1). Anal. Calcd for C17H20N2O4: C, 64.54; H, 6.37; N, 8.86. 

Found: C, 64.63; H, 6.40; N, 8.76. 

 

2.3.3.3.2.  Derivatives bearing the CR group on the  aromatic ring 

 
Scheme 39.  Structure of the different intermediates and chemical reactions used in the synthesis of 
AB&CR agents 178, 179, and 180. 
 

 

 

(R)-N-(4-Azidobenzyl) 2-Acetamido-3-(3-hydroxypropoxy)pro pionamide (( R)-

200). Using Method D, acid (R)-123 (1.00 g, 4.90 mmol), benzylamine hydrochloride 

134 (1.07 g, 5.80 mmol), NMM (640 µL, 5.80 mmol), and DMTMM (1.60 g, 5.80 

mmol) in anhydrous THF (100 mL) gave 1.20 g (73%) of (R)-200 as a white solid 

after flash column chromatography (1/9 MeOH/CHCl3). The solid slowly turned light 

yellow upon exposure to light: mp 127–130 °C; [ α]25
D +46.3° ( c 0.9, MeOH); Rf = 

0.57 (1/9 MeOH/CHCl3); IR (nujol) 3400–2700 (br), 3282, 3085, 2119, 1638, 1552, 
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1459, 1378, 1296, 1127 cm-1; 1H NMR (DMSO-d6) δ 1.63 (quint, J = 6.3 Hz, 

OCH2CH2CH2O), 1.87 (s, CH3C(O)), 3.38–3.48 (m, OCH2CH2CH2OH), 3.48–3.56 

(m, CH2OCH2CH2CH2OH), 4.19–4.34 (m,  NHCH2Ph), 4.40 (t, J = 5.1 Hz, CH2OH), 

4.40–4.48 (m, CHCH2O), 7.06 (d, J = 8.4 Hz, 2 ArH), 7.28 (d, J = 8.4 Hz, 2 ArH), 

8.05 (d, J = 7.8 Hz, CH3C(O)NH), 8.51 (t, J = 5.7 Hz, C(O)NHCH2); 
13C NMR 

(DMSO-d6) δ  22.5 (CH3C(O)), 32.5 (OCH2CH2CH2O), 41.4 (NHCH2Ph), 52.8 

(CHCH2OCH2), 57.7 (OCH2CH2CH2OH), 67.6 (CHCH2OCH2CH2CH2), 70.3 

(CHCH2OCH2CH2CH2), 118.8, 128.6, 136.4, 137.7 (C6H4), 169.4, 169.8 

(CHC(O)NH, CH3C(O)NH); Mr (+ESI) 358.1494 [M+Na]+ (calcd for C15H21N5O4Na+ 

358.1491). Anal. Calcd for C15H21N5O4•0.43H2O: C, 52.51; H, 6.42; N, 20.37. Found: 

C, 52.90; H, 6.30; N, 19.99. 

 

(S)-N-(4-Azidobenzyl) 2-Acetamido-3-(3-hydroxypropoxy)pro pionamide (( S)-

200). Using Method D, acid (S)-123 (260 mg, 1.27 mmol), benzylamine 

hydrochloride 134 (281 mg, 1.52 mmol), NMM (167 µL, 1.52 mmol), and DMTMM 

(420 mg, 1.52 mmol) in anhydrous THF (13 mL) gave 327 mg (77%) of (S)-200 as a 

white solid after flash column chromatography (1/9 MeOH/CHCl3). The solid slowly 

turned light yellow upon exposure to light: mp 127–130 °C; [ α]25
D -46.1° ( c 1.1, 

MeOH); Rf = 0.57 (1/9 MeOH/CHCl3); IR (nujol) 3400–2700 (br), 3282, 3084, 2119, 

1638, 1552, 1459, 1377, 1296, 1127 cm-1; 1H NMR (DMSO-d6) δ 1.63 (quint, J = 6.3 

Hz, OCH2CH2CH2O), 1.87 (s, CH3C(O)), 3.38–3.48 (m, OCH2CH2CH2OH), 3.48–

3.56 (m,  CH2OCH2CH2CH2OH), 4.19–4.34 (m,  NHCH2Ph), 4.40 (t, J = 5.1 Hz, 

CH2OH), 4.40–4.48 (m, CHCH2O), 7.06 (d, J = 8.7 Hz, 2 ArH), 7.28 (d, J = 8.7 Hz, 2 
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ArH), 8.05 (d, J = 7.8 Hz, CH3C(O)NH), 8.51 (t, J = 5.7 Hz, C(O)NHCH2); 
13C NMR 

(DMSO-d6) δ  22.5 (CH3C(O)), 32.5 (OCH2CH2CH2O), 41.4 (NHCH2Ph), 52.8 

(CHCH2OCH2), 57.7 (OCH2CH2CH2OH), 67.6 (CHCH2OCH2CH2CH2), 70.3 

(CHCH2OCH2CH2CH2), 118.8,  128.6, 136.4, 137.7 (C6H4), 169.4, 169.8 

(CHC(O)NH, CH3C(O)NH); Mr (+ESI) 358.1494 [M+Na]+ (calcd for C15H21N5O4Na+ 

358.1491). Anal. Calcd for C15H21N5O4: C, 53.72; H, 6.31; N, 20.88. Found: C, 

53.73; H, 6.32; N, 20.76. 

 

(R)-N-(4-Azidobenzyl) 2-Acetamido-3-(3-oxopropoxy)propion amide (( R)-178). 

Using Method E, alcohol (R)-200 (1.20 g, 3.56 mmol) in a 2:1 CH2Cl2:DMSO mixture 

(12 mL), (COCl)2 (406 µL, 4.65 mmol) in CH2Cl2 (12 mL), DMSO (660 µL, 9.30 

mmol) in CH2Cl2 (24 mL), and DIEA (3.1 mL, 17.8 mmol) gave 663 mg (56%) of (R)-

178 as a white solid after recrystallization from EtOAc: mp 120–122 °C; [ α]25
D -18.3° 

(c 2.4, CHCl3); Rf = 0.68 (1/9 MeOH/CHCl3); IR (CHCl3 film) 3293, 3109, 2859, 2108, 

1712, 1635, 1563, 1457, 1384, 1293 cm-1; 1H NMR (CDCl3) δ 2.02 (s, CH3C(O)), 

2.60–2.80 (m, CH2C(O)H), 3.48 (dd, J = 7.5, 9.6 Hz, CHCHH’OCH2CH2), 3.70–3.78 

(m,  CH2OCHH’CH2C(O)H), 3.78–3.90 (m,  CH2OCHH’CH2C(O)H), 3.86 (dd, J = 3.9, 

9.6 Hz, CHCHH’OCH2CH2), 4.40 (d, J = 6.0 Hz,  NHCH2Ar), 4.52–4.62 (m, 

CHCH2O), 6.73 (d, J = 6.6 Hz, CH3C(O)NH), 6.84–7.02 (m, 2 ArH), 7.15–7.20 (m, 

C(O)NHCH2, 2 ArH), 9.72 (t, J = 1.4 Hz, C(O)H), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-178 gave only one signal for the acetyl methyl 

protons and the aldehyde proton, addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-178 and (R)-178 (~1:3 ratio) gave two signals for the acetyl methyl 
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protons (δ 2.027 (S) and 2.010 (R) (∆ppm = 0.017)) in a ~1:3 ratio, and two signals 

for the aldehyde protons (δ 9.671 (S) and 9.698 (R) (∆ppm = 0.027)) in a ~1:3 ratio; 

13C NMR (CDCl3) δ  23.3 (CH3C(O)), 43.0, 43.7  (OCH2CH2C(O)H, NHCH2Ar), 52.4 

(CHCH2OCH2), 64.5 (OCH2CH2C(O)H), 70.4 (CHCH2OCH2CH2C(O)H), 119.3, 

129.2, 135.1, 139.3 (C6H4), 170.1, 170.6 (CHC(O)NH, CH3C(O)NH), 201.0 (C(O)H); 

Mr (+ESI) 334.1518 [M+H]+ (calcd for C15H19N5O4H
+ 334.1515). Anal. Calcd for 

C15H19N5O4: C, 54.05; H, 5.75; N, 21.01. Found: C, 53.90; H, 5.77; N, 20.86. 

 

(S)-N-(4-Azidobenzyl) 2-Acetamido-3-(3-oxopropoxy)propion amide (( S)-178). 

Using Method E, alcohol (S)-200 (327 mg, 0.98 mmol) in a 2:1 CH2Cl2:DMSO 

mixture (5 mL), (COCl)2 (127 µL, 1.46 mmol) in CH2Cl2 (5 mL), DMSO (207 µL, 2.92 

mmol) in CH2Cl2 (10 mL), and DIEA (848 µL, 4.87 mmol) gave 188 mg (58%) of (S)-

178 as an off-white solid after work-up and recrystallization from EtOAc: mp 120–

122 °C; [ α]25
D +18.1° ( c 1.1, CHCl3); Rf = 0.68 (1/9 MeOH/CHCl3); IR (CHCl3 film) 

3293, 3108, 2859, 2108, 1712, 1635, 1552, 1457, 1384, 1293 cm-1; 1H NMR (CDCl3) 

δ 2.04 (s, CH3C(O)), 2.62–2.82 (m, CH2C(O)H), 3.48 (dd, J = 7.5, 9.3 Hz, 

CHCHH’OCH2CH2), 3.70–3.78 (m,  CH2OCHH’CH2C(O)H), 3.80–3.88 (m,  

CH2OCHH’CH2C(O)H), 3.89 (dd, J = 3.9, 9.3 Hz, CHCHH’OCH2CH2), 4.42 (d, J = 

6.0 Hz,  NHCH2Ar), 4.50–4.58 (m, CHCH2O), 6.64 (d, J = 6.3 Hz, CH3C(O)NH), 

6.94–7.20 (m, 2 ArH), 7.04–7.14 (m, C(O)NHCH2), 7.22–7.30 (m,  2 ArH), 9.73 (t, J 

= 1.4 Hz, C(O)H), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-

178 gave only one signal for the acetyl methyl protons and the aldehyde proton, 

addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-178 and (R)-178 
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(~1:3 ratio) gave two signals for the acetyl methyl protons (δ 2.027 (S) and 2.010 (R) 

(∆ppm = 0.017)) in a ~1:3 ratio, and two signals for the aldehyde protons (δ 9.671 

(S) and 9.698 (R) (∆ppm = 0.027)) in a ~1:3 ratio; 13C NMR (CDCl3) δ  23.4 

(CH3C(O)), 43.1, 43.8  (OCH2CH2C(O)H, NHCH2Ar), 52.3 (CHCH2OCH2), 64.5 

(OCH2CH2C(O)H), 70.3 (CHCH2OCH2CH2C(O)H), 119.4, 129.3, 135.1, 139.4 

(C6H4), 170.0, 170.6 (CHC(O)NH, CH3C(O)NH), 200.9 (C(O)H); Mr (+ESI) 334.1520 

[M+H]+ (calcd for C15H19N5O4H
+ 334.1515). Anal. Calcd for C15H19N5O4: C, 54.05; H, 

5.75; N, 21.01. Found: C, 54.15; H, 5.80; N, 20.75. 

 

(R)-N-(4-Azidobenzyl) 2-Acetamido-3-(but-3-enyloxy)propio namide (( R)-201). 

Using Method D, (R)-120 (300 mg, 1.50 mmol), benzylamine hydrochloride 134 (330 

mg, 1.79 mmol), NMM (200 µL, 1.79 mmol), and DMTMM (495 mg, 1.79 mmol) in 

THF (15 mL) gave (R)-201 (280 mg, 56%) as a pale yellow solid after purification by 

flash chromatography (EtOAc) and further recrystallization from EtOAc and hexanes: 

mp 116–118 °C; [ α]25
D +42.4° ( c 0.6; MeOH); Rf = 0.38 (5/95 MeOH/CH2Cl2); IR 

(nujol) 3285, 3093, 2124, 1640, 1551, 1458, 1378, 1127 cm 1; 1H NMR (CDCl3) δ 

2.03 (s, CH3C(O)), 2.22–2.36 (m, CH2CH2CH=CH2), 3.40–3.62 (m, CH2OCH2CH2, 

CHH’OCH2CH2), 3.85 (dd, J = 4.2, 9.0 Hz, CHH’OCH2CH2), 4.42 (d, J = 7.2 Hz, 

NHCH2Ph), 4.44–4.54 (m, CHCH2O), 4.94–5.08 (m, CH2CH=CH2), 5.62–5.78 (m, 

CH2CH=CH2), 6.45 (d, J = 7.2 Hz, NHCHCH2O), 6.84–6.96 (m, NHCH2Ph), 6.99 (d, 

J = 8.7 Hz, 2 ArH), 7.25 (d, J = 8.7 Hz, 2 ArH), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-201 gave only one signal for the acetyl protons (δ 

2.011 ppm), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-201 
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and (R)-201 in a ~3:1 ratio gave two signals with a relative ~3:1 intensity for the 

acetyl protons (δ 2.019 ppm (S), δ 2.011 ppm (R), (∆ppm = 0.008)); 13C NMR 

(CDCl3) δ  23.5 (CH3C(O)), 34.2 (CH2CH2CH=CH2), 43.2 (NHCH2Ph), 52.5 

(CHC(O)NH), 69.8, 70.6 (CHCH2OCH2), 117.0 (CH2CH2CH=CH2), 119.5, 129.2, 

134.9, 135.3, 139.6 (C6H4, CH2CH2CH=CH2), 170.3, 170.5 (CH3C(O), CHC(O)NH); 

Mr (+ESI) 354.1542 [M+Na]+ (calcd for C16H21N5O3Na+ 354.1542). Anal. Calcd for 

C16H21N5O3: C, 57.99; H, 6.39; N, 21.13. Found: C, 58.08; H, 6.30; N, 21.00. 

 

(S)-N-(4-Azidobenzyl) 2-Acetamido-3-(but-3-enyloxy)propio namide (( S)-201). 

Using Method D, (S)-120 (164 mg, 0.87 µmol), benzylammonium hydrochloride 134 

(192 mg, 1.04 mmol), NMM (114 µL, 1.04 mmol), and DMTMM (287 mg, 1.04 mmol) 

in THF (10 mL) gave (S)-201 (150 mg, 60%) as an off-white solid after purification by 

flash chromatography (EtOAc) and further recrystallization from EtOAc and hexanes: 

mp 116–118 °C; [ α]25
D -42.1° ( c 0.6; MeOH); Rf = 0.38 (5/95 MeOH/CH2Cl2); IR 

(nujol) 3278, 3091, 2123, 1640, 1551, 1458, 1378, 1127 cm 1; 1H NMR (CDCl3) δ 

2.03 (s, CH3C(O)), 2.22–2.36 (m, CH2CH2CH=CH2), 3.40–3.62 (m, CH2OCH2CH2, 

CHH’OCH2CH2), 3.85 (dd, J = 4.2, 9.0 Hz, CHH’OCH2CH2), 4.42 (d, J = 7.2 Hz, 

NHCH2Ph), 4.44–4.54 (m, CHCH2O), 4.94–5.08 (m, CH2CH=CH2), 5.62–5.78 (m, 

CH2CH=CH2), 6.45 (d, J = 7.2 Hz, NHCHCH2O), 6.84–6.96 (m, NHCH2Ph), 6.99 (d, 

J = 8.7 Hz, 2 ArH), 7.25 (d, J = 8.7 Hz, 2 ArH), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (S)-201 gave only one signal for the acetyl protons (δ 

2.011 ppm), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-201 

and (R)-201 in a ~3:1 ratio gave two signals with a relative ~3:1 intensity for the 
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acetyl protons (δ 2.019 ppm (S), δ 2.011 ppm (R), (∆ppm = 0.008)); 13C NMR 

(CDCl3) δ  23.4 (CH3C(O)), 34.2 (CH2CH2CH=CH2), 43.2 (NHCH2Ph), 52.5 

(CHC(O)NH), 69.8, 70.6 (CHCH2OCH2), 117.1 (CH2CH2CH=CH2), 119.5, 129.2, 

135.0, 135.3, 139.5 (C6H4, CH2CH2CH=CH2), 170.3, 170.5 (CH3C(O), CHC(O)NH); 

Mr (+ESI) 354.1536 [M+Na]+ (calcd for C16H21N5O3Na+ 354.1542). Anal. Calcd for 

C16H21N5O3: C, 57.99; H, 6.39; N, 21.13. Found: C, 58.09; H, 6.52; N, 20.85. 

 

(2R)-N-(4-Azidobenzyl) 2-Acetamido-3-(2-(oxiran-2-yl)ethox y)propionamide 

((R)-179) (mixture of diastereomers). Using Method J, (R)-201 (80 mg, 0.24 

mmol), Na2SO4 (15 mg) and mCPBA (77% wt, 176 mg, 0.41 mmol) in CH2Cl2 (3 mL) 

gave (R)-179 (54 mg, 65%) as a mixture of diastereoisomers after purification by 

flash chromatography (15/85 acetone/EtOAc): mp 105–112 °C; [ α]25
D -15.3° ( c 0.6; 

CHCl3); Rf = 0.33 (15/85 acetone/EtOAc); IR (nujol) 3281, 2123, 1639, 1553, 1459, 

1378, 1126 cm 1; 1H NMR (CDCl3) δ 1.50–1.64 (m, CH2CHH’CH(O)CH2), 1.92–2.02 

(m, CH2CHH’CH(O)CH2), 2.03, 2.04 (s, CH3C(O)), 2.42–2.50 (m, 

CH2CH2CH(O)CHH’), 2.66–2.74 (m, CH2CH2CH(O)CHH’), 2.84–2.98 (m, 

CH2CH2CH(O)CHH’), 3.42–3.52 (m, CHH’OCH2CH2), 3.54–3.76 (m, CH2OCH2CH2), 

3.84–3.94 (m, CHH’OCH2CH2), 4.34–4.48 (m, NHCH2C6H4), 4.48–4.58 (m, 

CHCH2O), 6.58–6.70 (2 br d, NHCHCH2O), 6.96 (m, 2 ArH, ½ NHCH2C6H4), 7.08–

7.18 (m, ½ NHCH2C6H4), 7.23 (d, J = 8.2 Hz, 2 ArH), addition of excess (R)-(-)-

mandelic acid to a CDCl3 solution of (R)-179 gave only one set of signals for the 

acetyl protons (δ 2.025 and 2.017 ppm), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (S)-179 and (R)-179 in a ~2:3 ratio gave two sets of signals with a 
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relative ~2:3 intensity for the acetyl protons (δ 2.037 and 2.029 ppm (S), δ 2.030 and 

2.019 ppm (R)); 13C NMR (CDCl3) δ  23.4 (CH3C(O)), 32.4, 32.6 

(CH2CH2CH(O)CH2), 43.2 (NHCH2C6H4), 46.7 (CH2CH2CH(O)CH2), 50.5, 50.7, 52.6, 

52.7 (CHC(O)NH, CH2CH2CH(O)CH2), 68.6, 68.9, 69.8, 70.0 (CHCH2OCH2), 119.3, 

119.4, 129.3, 135.1, 135.2 (C6H4), 170.3, 170.6 (CH3C(O), CHC(O)NH), the 

remaining peaks were not detected and are believed to overlap with nearby signals; 

Mr (+ESI) 370.1491 [M+Na]+ (calcd for C16H21N5O4Na+ 370.1491). No satisfactory 

elemental analysis was obtained for (R)-179. The 1H NMR indicated low levels 

(<10%) of an additional unidentified compound. 

 

(2S)-N-(4-Azidobenzyl) 2-Acetamido-3-(2-(oxiran-2-yl)ethox y)propionamide 

((S)-179) (mixture of diastereomers). Using Method J, (S)-201 (100 mg, 0.30 

mmol), Na2SO4 (25 mg) and m-CPBA (77% wt, 131 mg, 0.59 mmol) in CH2Cl2 (3 

mL) gave (S)-179 (85 mg, 81%) as a mixture of diastereoisomers after purification 

by flash chromatography (15/85 acetone/EtOAc): mp 106–112 °C; [ α]25
D +18.8° ( c 

0.6; CHCl3); Rf = 0.33 (15/85 acetone/EtOAc); IR (nujol) 3279, 2122, 1640, 1550, 

1459, 1378, 1127 cm 1; 1H NMR (CDCl3) δ 1.50–1.64 (m, CH2CHH’CH(O)CH2), 

1.84–1.96 (m, CH2CHH’CH(O)CH2), 2.02, 2.03 (s, CH3C(O)), 2.42–2.48 (m, 

CH2CH2CH(O)CHH’), 2.66–2.74 (m, CH2CH2CH(O)CHH’), 2.82–2.98 (m, 

CH2CH2CH(O)CHH’), 3.44–3.52 (m, CHH’OCH2CH2), 3.54–3.72 (m, CH2OCH2CH2), 

3.82–3.90 (m, CHH’OCH2CH2), 4.34–4.50 (m, NHCH2C6H4), 4.50–4.60 (m, 

CHCH2O), 6.66–6.76 (m, NHCHCH2O), 6.96 (d, J = 8.2 Hz, 2 ArH), 7.06–7.14 (m, 

0.5 NHCH2C6H4), 7.18–7.28 (m, 2 ArH, 0.5 NHCH2C6H4), addition of excess (R)-(-)-
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mandelic acid to a CDCl3 solution of (S)-179 gave only one set of signals for the 

acetyl protons (δ 2.040 and 2.032 ppm), addition of excess (R)-(-)-mandelic acid to a 

CDCl3 solution of (S)-179 and (R)-179 in a ~2:3 ratio gave two sets of signals with a 

relative ~2:3 intensity for the acetyl protons (δ 2.037 and 2.029 ppm (S), δ 2.030 and 

2.019 ppm (R)); 13C NMR (CDCl3) δ  23.3 (CH3C(O)), 32.4, 32.6 

(CH2CH2CH(O)CH2), 43.1 (NHCH2C6H4), 46.6, 46.7 (CH2CH2CH(O)CH2), 50.5, 50.6, 

52.6, 52.7 (CHC(O)NH, CH2CH2CH(O)CH2), 68.5, 68.8, 69.8, 70.1 (CHCH2OCH2), 

119.3, 119.4, 129.2, 135.1, 135.2, 139.3 (C6H4), 170.2, 170.5, 170.6 (CH3C(O), 

CHC(O)NH) the remaining peaks were not detected and are believed to overlap with 

nearby signals; Mr (+ESI) 370.1494 [M+Na]+ (calcd for C16H21N5O4Na+ 370.1491). 

No satisfactory elemental analysis was obtained for (S)-179. The 1H NMR indicated 

low levels (<10%) of an additional unidentified compound. 

 

(2R)-N-(4-Ethynylbenzyl) 2-Acetamido-3-(2-(oxiran-2-yl)et hoxy)propionamide 

((R)-180) (~1:1 mixture of diastereomers).  Using Method D, (R)-120 (350 mg, 

1.74 mmol), 4-ethynylbenzylamine (272 mg, 2.08 mmol), DMTMM (575 mg, 2.08 

mmol) in THF (40 mL) gave a residue that was directly used for the next step. Using 

Method J, Na2SO4 (500 mg) and mCPBA (70% by wt., 447 mg, 1.88 mmol) in 

CH2Cl2 (25 mL) were added to give (R)-180 as a white solid (252 mg, 43% for two 

steps) after flash chromatography (1/9 to 3/7 acetone/EtOAc) and recrystallization 

from EtOAc and hexanes: mp 130–136 °C; [ α]25
D -19.2° ( c 0.8; CHCl3); Rf = 0.36 

(15/85 acetone/EtOAc); IR (nujol) 3275, 3069, 1638, 1550, 1458, 1375, 1298, 1256, 

1130 cm 1; 1H NMR (CDCl3) δ 1.50–1.64 (m, CH2CHH’CH(O)CH2), 1.90–2.04 (m, 



 

 203 

CH2CHH’CH(O)CH2), 2.03, 2.04 (s, CH3C(O)), 2.42–2.48 (m, CH2CH2CH(O)CHH’), 

2.66–2.74 (m, CH2CH2CH(O)CHH’), 2.82–2.98 (m, CH2CH2CH(O)CHH’), 3.07 (s, 

ArC≡CH), 3.42–3.52 (m, CHH’OCH2CH2), 3.54–3.76 (m, CH2OCH2CH2), 3.84–3.92 

(m, CHH’OCH2CH2), 4.38–4.50 (m, NHCH2C6H4), 4.51–4.58 (m, CHCH2O), 6.60–

6.72 (m, NHCHCH2O), 7.02–7.12 (m, 0.5 NHCH2C6H4), 7.14–7.25 (m, 2 ArH, 0.5 

NHCH2C6H4), 7.40–7.48 (d, J = 8.0 Hz, 2 ArH), addition of excess (R)-(-)-mandelic 

acid to a CDCl3 solution of (R)-180 gave only one set of signals for the acetyl 

protons (δ 2.019 and 2.010 ppm), addition of excess (R)-(-)-mandelic acid to a CDCl3 

solution of (S)-180 and (R)-180 in a ~1:2 ratio gave two sets of two signals with a 

relative ~1:2 intensity for the acetyl protons (δ 2.030 and 2.023 ppm (S); δ 2.017 and 

2.009 ppm (R)); 13C NMR (CDCl3) δ  23.4 (CH3C(O)), 32.4, 32.6 

(CH2CH2CH(O)CH2), 43.4 (NHCH2C6H4), 46.7 (CH2CH2CH(O)CH2), 50.5, 50.6, 52.6, 

52.7 (CHC(O)NH, CH2CH2CH(O)CH2), 68.6, 68.9, 69.8, 70.1 (CHCH2OCH2), 77.5 

(ArC≡CH), 83.5 (ArC≡CH), 121.3, 121.4, 127.6, 132.5, 132.6, 139.1, 139.3 (C6H4), 

170.3, 170.5, 170.6 (CH3C(O), CHC(O)NH), the remaining signals were not detected 

and are believed to overlap with nearby peaks; Mr (+ESI) 353.1 [M+Na]+ (calcd for 

C18H22N2O4Na+ 353.1). Anal. Calcd for C18H22N2O4: C, 65.44; H, 6.71; N, 8.48. 

Found: C, 64.76; H, 6.61; N, 8.19. 

 

(2S)-N-(4-Ethynylbenzyl) 2-Acetamido-3-(2-(oxiran-2-yl)et hoxy)propionamide 

((S)-180) (~1:1 mixture of diastereomers).  Using Methods D and J, and following 

the preceding procedure, (S)-120 (348 mg, 1.73 mmol), amine 141 (272 mg, 2.08 

mmol), and DMTMM (575 mg, 2.08 mmol) in THF (40 mL), followed by mCPBA 
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(70% by wt., 447 mg, 1.88 mmol), Na2SO4 (500 mg) in CH2Cl2 (25 mL) gave (S)-180 

as a white solid (152 mg, 26% for two steps) after work-up, purification by flash 

chromatography (1/9 to 3/7  acetone/EtOAc) and recrystallization from EtOAc and 

hexanes: mp 130–136 °C; [ α]25
D +18.7° ( c 0.5; CHCl3); Rf = 0.36 (15/85 

acetone/EtOAc); IR (nujol) 3281, 3193, 3072, 2861, 1638, 1551, 1458, 1376, 1297, 

1256, 1130 cm 1; 1H NMR (CDCl3) δ 1.50–1.64 (m, CH2CHH’CH(O)CH2), 1.90–2.04 

(m, CH2CHH’CH(O)CH2), 2.03, 2.04 (s, CH3C(O)), 2.42–2.48 (m, 

CH2CH2CH(O)CHH’), 2.68–2.74 (m, CH2CH2CH(O)CHH’), 2.82–2.98 (m, 

CH2CH2CH(O)CHH’), 3.07 (s, ArC≡CH), 3.42–3.52 (m, CHH’OCH2CH2), 3.54–3.76 

(m, CH2OCH2CH2), 3.84–3.92 (m, CHH’OCH2CH2), 4.38–4.50 (m, NHCH2C6H4), 

4.51–4.58 (m, CHCH2O), 6.58–6.72 (m, NHCHCH2O), 7.02–7.12 (m, 0.5 

NHCH2C6H4), 7.14–7.25 (m, 2 ArH, 0.5 NHCH2C6H4), 7.40–7.48 (d, J = 8.0 Hz, 2 

ArH), addition of excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-180 gave 

only one set of signals for the acetyl protons (δ 2.030 and 2.023 ppm), addition of 

excess (R)-(-)-mandelic acid to a CDCl3 solution of (S)-180 and (R)-180 in a ~1:2 

ratio gave two sets of two signals with a relative ~1:2 intensity for the acetyl protons 

(δ 2.030 and 2.023 ppm (S); δ 2.017 and 2.009 ppm (R)); 13C NMR (CDCl3) δ  23.4 

(CH3C(O)), 32.4, 32.6 (CH2CH2CH(O)CH2), 43.4 (NHCH2C6H4), 46.7 

(CH2CH2CH(O)CH2), 50.5, 50.6, 52.6, 52.7 (CHC(O)NH, CH2CH2CH(O)CH2), 68.6, 

68.9, 69.8, 70.1 (CHCH2OCH2), 77.5 (ArC≡CH), 83.5 (ArC≡CH), 121.4, 127.6, 

132.5, 132.6, 139.1, 139.3 (C6H4), 170.3, 170.6 (CH3C(O), CHC(O)NH), additional 

signals were not detected and are believed to overlap with nearby peaks; Mr (+ESI) 
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353.1 [M+Na]+ (calcd for C18H22N2O4Na+ 353.1). Anal. Calcd for C18H22N2O4: C, 

65.44; H, 6.71; N, 8.48. Found: C, 65.17; H, 6.58; N, 8.28. 

 

2.3.3.4. Synthesis of biotin and fluorescent Probes  

1,11-Diazido-3,6,9-trioxaundecane (184) .417 To a cooled (ice bath) CH2Cl2 solution 

(250 mL) of tetraethylene glycol (10.30 g, 52.9 mmol) and Et3N (16.5 mL, 60.8 

mmol) was added MsCl (9.16 mL, 60.8 mmol) dropwise. The reaction was then 

stirred at room temperature (2 h), the salts filtered, and the CH2Cl2 layer washed 

with aqueous 10% citric acid (250 mL) and brine (250 mL). The organic layer was 

dried (Na2SO4) and evaporated to yield tetraethyleneglycol dimesylate (183) as a 

yellow liquid residue (18.70 g, quant.). Dimesylate 183 was dissolved in DMF (50 

mL) and NaN3 (8.65 g, 133 mmol) was added. The solution was stirred at 80 °C (12 

h) and cooled to room temperature. H2O (450 mL) was added to the DMF and the 

mixture was extracted with Et2O (8 x 50 mL). The organic layers were combined, 

dried (Na2SO4), and evaporated to yield 184 (10.74 g, 83%) as a pale yellow liquid 

that was used directly in the next step: Rf  = 0.23 (2/1 hexanes/EtOAc); 1H NMR 

(CDCl3) δ 3.39 (t, J = 5.1 Hz, 2 CH2N3), 3.65–3.70 (m, 6 OCH2); 
13C NMR (CDCl3) 

δ  50.9 (OCH2CH2N3), 70.2 (OCH2CH2N3), 70.9 (2 OCH2CH2O). 

 

1-Amino-11-azido-3,6,9-trioxaundecane (185) .417 Compound 184 (1.52 g, 6.22 

mmol) was dissolved in a mixture of EtOAc (50 mL) and aqueous 1 M HCl (10 mL). 

PPh3 (1.94 g, 7.40 mmol) was added and the reaction was vigorously stirred (12 h). 

The aqueous layer was separated, extracted with EtOAc (4 x 50 mL), basified (pH 
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~11) with solid K2CO3, saturated with NaCl, and extracted with CH2Cl2 (6 x 30 mL) to 

yield 185 (950 mg, 70%) as a colorless residue that was used without further 

purification: Rf = 0.18 (1/9 MeOH/CHCl3); 
1H NMR (DMSO-d6) δ 2.74 (t, J = 5.4 Hz, 

CH2NH2), 3.36–3.46 (m, CH2N3, CH2CH2NH2), 3.48–3.62 (m, 2 OCH2CH2O, 

CH2CH2N3), 3.84–4.08 (m, CH2NH2); 
13C NMR (DMSO-d6) δ  40.5 (CH2NH2), 50.0 

(OCH2CH2N3), 69.2, 69.5, 69.6, 69.7, 69.8, 71.3  (6 OCH2).   

 

3,6,9,12-Tetraoxapentadec-14-yn-1-ol (186). 418 To a cooled (ice bath) THF solution 

(50 mL) of tetraethylene glycol (2.00 g, 10.3 mmol) was added NaH (60% 

suspension in oil, 272 mg, 11.34 mmol). After stirring at 0 °C (15 min), propargyl 

bromide (80% wt in toluene, 1.68 mL, 11.34 mmol) was added dropwise at 0 °C, the 

suspension warmed to room temperature and stirred (1 h). The salts were removed 

by filtration, the filtrate was concentrated in vacuo and purified by flash 

chromatography to yield 186 as a colorless oil (642 mg, 27%): Rf = 0.58 (1/9 

MeOH/CHCl3); 
1H NMR (CDCl3) δ 2.44 (t, J = 2.2 Hz, OCH2CCH), 2.68 (t, J = 6.3 

Hz, CH2OH), 3.58–3.64 (m, CH2OH), 3.64–3.76 (m, 3 CH2OCH2, CH2OCH2CCH), 

4.21 (d, J = 2.2 Hz, CH2CCH); 13C NMR (CDCl3) δ  58.6 (CH2CCH), 61.9 (CH2OH), 

69.3, 70.5, 70.6, 70.7, 70.8, 70.9, 72.7 (7 OCH2), 74.7 (CH2CCH), 79.8 (CH2CCH).   

 

1-Azido-3,6,9,12-tetraoxapentadec-14-yne (188). To a cooled (0 °C) THF solution 

(25 mL) of 186 (624 mg, 2.69 mmol), Et3N (450 µL, 3.22 mmol) was added mesyl 

chloride (250 µL, 3.22 mmol) dropwise. After stirring at room temperature (45 min), 

the salts were filtered, and the filtrate concentrated in vacuo. The residue was 
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dissolved in CH2Cl2 (25 mL), successively washed with aqueous 10% citric acid (25 

mL) and brine (25 mL), dried (Na2SO4) and evaporated to dryness. The crude 

mesylated product 187 (788 mg, 2.54 mmol, 94%) was directly dissolved in DMF (10 

mL). NaN3 was added (214 mg, 3.3 mmol) and the reaction was heated at 60 °C (18 

h). The reaction was cooled, H2O (90 mL) was added and the mixture was extracted 

with Et2O (3 x 100 mL). The combined organic layers were successively washed 

with H2O (2 x 50 mL), brine (50 mL), and dried (Na2SO4). The solvents were 

removed under vacuum to yield 188 as pale yellow oil (400 mg, 61%) that was used 

without further purification: Rf = 0.46 (5/95 MeOH/CH2Cl2); IR (neat) 3251, 2869, 

2106, 1454, 1531, 1293, 1107 cm-1; 1H NMR (CDCl3) δ 2.44 (t, J = 2.2 Hz, 

OCH2CCH), 3.41 (t, J = 5.1 Hz, CH2N3), 3.62–3.74 (m, 3 CH2OCH2, CH2OCH2CCH), 

4.21 (d, J = 2.2 Hz, CH2CCH); 13C NMR (CDCl3) δ  50.9 (CH2N3), 58.6 (CH2CCH), 

69.3, 70.2, 70.5, 70.6, 70.7, 70.8, 70.9 (7 OCH2), 74.7 (CH2CCH), 79.8 (CH2CCH); 

Mr (+ESI) 296.1012 [M+K]+ (calcd for C11H19N3O4K
+ 296.1013).  

 

3,6,9,12-Tetraoxapentadec-14-yn-1-amine (189). Azide 188 (355 mg, 1.38 mmol) 

was dissolved in THF (20 mL) and PPh3 (724 mg, 2.74 mmol) was added. After 

dissolution, H2O (1 mL) was added and the reaction was stirred at room temperature 

(12 h). The solvents were removed in vacuo, the residue was dissolved in aqueous 

0.1 M HCl (20 mL), and washed with CH2Cl2 (6 x 80 mL) and EtOAc (2 x 100 mL). 

The aqueous layer was evaporated to dryness and the remaining salts were 

suspended in CH2Cl2 (25 mL), vigorously stirred (5 min), and filtered. The cake was 

extensively rinsed with CH2Cl2, and the combined organic fractions were evaporated 
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to yield 189 (247 mg, 77%) as a hygroscopic pale yellow oil that did not require 

further purification: Rf = 0–0.10 (1/9 MeOH/CH2Cl2); IR (neat) 3367, 2870, 2112, 

1661, 1596, 1457, 1353, 1294, 1250 cm-1; 1H NMR (CDCl3) δ 1.38–1.56 (br s, 

CH2NH2), 2.44 (t, J = 2.2 Hz, OCH2CCH), 2.87 (t, J = 5.4 Hz, CH2NH2), 3.51 (t, J = 

5.4 Hz, CH2CH2NH2), 3.60–3.75 (m, 2 CH2OCH2,  CH2OCH2CCH, 

CH2OCH2CH2NH2), 4.21 (d, J = 2.2 Hz, CH2CCH); 13C NMR (CDCl3) δ  42.0 

(CH2NH2),  58.6 (CH2CCH), 69.3, 70.5, 70.6, 70.7, 70.8, 73.7 (6 OCH2), 74.7 

(CH2CCH), 79.8 (CH2CCH), the remaining signal was not detected and is believed to 

overlap with nearby peaks; Mr (+ESI) 232.1547 [M+H]+ (calcd for C11H21NO4H
+ 

232.1549). Anal. Calcd for C11H21NO4•0.35H2O: C, 55.60; H, 9.21; N, 5.89; Found: 

C, 55.34; H, 8.95; N, 6.26. 

 

 

Biotin-PEG-azide (191) .418 Using Method D, amine 185 (415 mg, 1.9 mmol), D-

biotin (464 mg, 1.9 mmol) and DMTMM (525 mg, 1.9 mmol) in DMF (20 mL) were 

stirred at room temperature (12 h). The DMF was removed in vacuo and the residue 

directly purified using flash chromatography (1/9 MeOH/CHCl3) to yield biotin-PEG-

azide 191 as an off-white solid (523 mg, 62%): mp 118–119 °C; Rf  = 0.40 (1/9 

MeOH/CHCl3); 
1H NMR (CD3OD) δ 1.45 (q, J = 7.2 Hz, C(6)H2), 1.50–1.80 (m, 

C(7)H2, C(8)H2), 2.22 (t, J = 7.2 Hz, C(9)H2), 2.70 (d, J = 12.6 Hz,  C(5)HH’), 2.92 

(dd, J = 4.8, 12.6 Hz, C(5)HH’), 3.18–3.25 (m, C(2)H), 3.32–3.45 (m, NHCH2CH2, 
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CH2N3), 3.55 (t, J = 5.7 Hz, NHCH2CH2O), 3.59–3.71 (m, 2 OCH2CH2O, 

OCH2CH2N3), 4.30 (dd, J = 4.8, 7.8 Hz, C(3)H), 4.49 (ddd, J = 0.9, 4.8, 7.8 Hz, 

C(4)H); 13C NMR (CD3OD) δ  27.0 (C(6)), 29.6, 29.9 (C(7), C(8)), 36.9 (C(9)), 40.6 

(NHCH2CH2O), 41.2 (C(5)), 51.9 (OCH2CH2N3), 57.1 (C(2)), 61.8 (C(4)), 63.5 (C(3)), 

70.7 (NHCH2CH2O), 71.3, 71.4, 71.6, 71.7, 71.8 (2 OCH2CH2O, OCH2CH2N3), 166.3 

(C(2’)), 176.3 (C(O)NHCH2).  

 

Biotin-PEG-amine (192) .422 Compound 191 (235 mg, 0.53 mmol) was suspended in 

THF (5 mL), and PPh3 (208 mg, 0.79 mmol) was added. After 15 min stirring, H2O (2 

mL) was added and the reaction was stirred at room temperature (24 h). Aqueous 1 

M HCl was added (5 mL) to the reaction and the mixture was washed with EtOAc (3 

x 20 mL). The aqueous layer was basified (pH ~11) with K2CO3, saturated with 

NaCl, and then extracted with EtOAc (5 x 20 mL) and CH2Cl2 (5 x 20 mL). The 

aqueous layer was concentrated in vacuo and the residual salts triturated repeatedly 

with CH2Cl2 and filtered. The combined organic layers were evaporated to yield 192 

(110 mg, 50%) as a colorless residue that did not require further purification: [α]25
D 

+40.4° ( c 1.6, CH2Cl2); Rf  = 0.15 (1/4 MeOH/CHCl3); 
1H NMR (CD3OD) δ 1.58 (q, J = 

7.2 Hz, C(6)H2), 1.66–1.92 (m, C(7)H2, C(8)H2), 2.36 (t, J = 7.2 Hz, C(9)H2), 2.84 (d, 

J = 12.6 Hz, C(5)HH’), 2.92 (br t, J = 5.1 Hz, OCH2CH2NH2), 3.07 (dd, J = 4.8, 12.6 

Hz, C(5)HH’), 3.30–3.39 (m, C(2)H), 3.50 (t, J = 5.1 Hz, C(O)NHCH2), 3.62–3.71 (m, 

NHCH2CH2O, OCH2CH2NH2), 3.72–3.84 (m, 2 OCH2CH2O, OCH2CH2N3), 4.44 (dd, 

J = 4.8, 7.8 Hz, C(3)H), 4.49 (ddd, J = 0.6, 4.8, 7.8 Hz, C(4)H); 13C NMR (CD3OD) 

δ  26.8 (C(6)), 29.5, 29.7 (C(7), C(8)), 36.7 (C(9)), 40.6 (NHCH2CH2O), 41.2 (C(5)), 
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42.1 (OCH2CH2NH2), 51.9 (OCH2CH2N3), 57.1 (C(2)), 61.8 (C(4)), 63.5 (C(3)), 70.7 

(NHCH2CH2O), 71.2, 71.5, 71.6 (3 OCH2), 73.5 (OCH2CH2NH2), 166.0 (C(2’)), 176.0 

(C(O)NHCH2), the remaining methylene signal was not detected and is believed to 

overlap with a nearby peak;  Mr (+ESI) 419.2324 [M+H]+ (calcd for C18H34N4O5SH+ 

419.2328).  

 

Biotin-PEG-alkyne (193) .423 Using Method D, amine 192 (96 mg, 229 µmol), 4-

pentynoic acid (27 mg, 275 µmol) and DMTMM (76 mg, 275 µmol) in THF (5 mL) 

gave compound 193 (85 mg, 75%) as a white solid after silica gel flash 

chromatography (1/9 MeOH/CHCl3): mp 108–110 °C; [ α]25
D +25.3° ( c 1.1, CHCl3); Rf  

= 0.47 (1/9 MeOH/CHCl3); 
1H NMR (CD3OD) δ 1.45 (q, J = 7.2 Hz, C(6)H2), 1.50–

1.80 (m, C(7)H2, C(8)H2), 2.22 (t, J = 7.2 Hz, C(9)H2), 2.29 (t, J = 2.6 Hz, CH2C≡CH), 

2.35–2.50 (m, CH2CH2C≡CH), 2.70 (d, J = 12.6 Hz,  C(5)HH’), 2.92 (dd, J = 4.8, 

12.6 Hz, C(5)HH’), 3.18–3.25 (m, C(2)H), 3.32–3.42 (m, NHCH2CH2O, 

OCH2CH2NH), 3.55 (app. t, J = 5.1 Hz, NHCH2CH2O, OCH2CH2NH), 3.59–3.71 (m, 

OCH2CH2O), 4.30 (dd, J = 4.8, 7.8 Hz, C(3)H), 4.49 (ddd, J = 0.6, 4.8, 7.8 Hz, 

C(4)H); 13C NMR (CD3OD) δ 15.9 (CH2CCH), 27.0 (C(6)), 29.6, 29.9 (C(7), C(8)), 

36.1 (CH2CH2C≡CH) 36.9 (C(9)), 40.5, 40.6 (NHCH2CH2O, OCH2CH2NH), 41.2 

(C(5)), 51.9 (OCH2CH2N3), 57.1 (C(2)), 61.8 (C(4)), 63.5 (C(3)), 70.7 (NHCH2CH2O), 

71.3, 71.4, 71.6, 71.7, 71.8 (2 OCH2CH2O, OCH2CH2N3), 83.7 (C≡CH) 166.3 (C(2’)), 

176.3 (C(O)NHCH2), the remaining alkyne carbon resonance was not detected. Mr 

(+ESI) 522.2407 [M+Na]+ (calcd for C23H38N4O6SNa+ 522.2410).  
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TAMRA-PEG-alkyne (195). Using Method D, 5-carboxytetramethylrhodamine (20 

mg, 47 µmol), compound 189 (14 mg, 61 µmol), and DMTMM (17 mg, 61 µmol) in 

DMF (500 µL) gave 195 as a dark pink residue (10 mg, 33%) after purification by 

preparative TLC (5/95 to 15/85 MeOH/CH2Cl2): Rf  = 0.25 (1/9 MeOH/CH2Cl2); 
1H 

NMR (CD3OD) δ 2.85 (t, J = 2.4 Hz, OCH2CCH), 3.30 (s, 2 N(CH3)2), 3.60–3.80 (m, 

3 CH2OCH2,  NHCH2), 4.17 (d, J = 2.4 Hz, CH2CCH), 6.92–7.08 (m, 2 C(4)H, 2 

C(2)H), 7.13–7.28 (m, 2 C(5)H), 7.41 (d, J = 8.7 Hz, C(9)H), 8.09 (d, J = 8.7 Hz, 

C(10)H), 8.60–8.75 (br s, C(12)H); 13C NMR (CD3OD) δ  41.0 (2 N(CH3)2), 41.3 

(C(O)NHCH2), 59.2 (CH2CCH), 70.2, 70.7, 71.4, 71.5, 71.6, 71.7, 71.8 (7 OCH2), 

76.1 (CH2CCH), 80.8 (CH2CCH), 97.5, 115.0, 115.2, 129.9, 131.0, 132.7, 137.3, 

158.9, 159.2, 162.3, 169.4 (TAMRA), the remaining signals were not detected; Mr 

(+ESI) 644.2968 [M+H]+ (calcd for C36H41N3O8H
+ 644.2972). 

 

TAMRA-PEG-azide (196).  5,6-Carboxy-TAMRA (25 mg, 58 µmol) and amine 185 

(12.6 mg, 70 µmol) were dissolved in DMF (300 µL) and EDCI (13 mg, 70 µmol), 

DMAP (1 mg, catalytic), DIEA (12 µL, 70 µmol) were successively added. After 

stirring at room temperature (1 d), the DMF was evaporated and the residue purified 

by silica gel chromatography (1/9 to 1/3 MeOH/CH2Cl2) to yield 16 mg (44%) of 196 



 

 212 

as a deep purple solid: Rf  = 0.25 (1/9 MeOH/CH2Cl2); 
1H NMR (CD3OD) δ 3.20–3.40 

(m, CH2N3, 2 N(CH3)2), 3.50–3.80 (m, 3 CH2OCH2,  NHCH2), 6.92–7.08, 7.20–7.30, 

7.38–7.42, 7.72–7.76, 8.05–8.20, 8.55–8.60 (m, 2 C(4)H, 2 C(2)H, 2 C(5)H, C(9)H, 

C(10)H, C(12)H); 13C NMR (CD3OD) δ  40.4, 41.0, 41.3 (2 N(CH3)2, C(O)NHCH2), 

51.9 (CH2N3), 70.7, 71.3, 71.5, 71.7, 71.8 (5 OCH2), 97.4, 108.4, 115.1, 115.3, 

130.2, 131.2, 132.7, 132.9, 137.3, 137.5, 159.0, 159.2, 163.1, 169.2 (TAMRA), the 

remaining signals were not detected; Mr (+ESI) 631.2876 [M+H]+ (calcd for 

C33H38N6O7H
+ 631.2881).  



3.  
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PROTEIN CHEMISTRY IN THE EYE OF THE CHEMIST 

 
 

SAR studies demonstrated that placement of AB&CR moieties at the 3-oxy 

site and the 4’-benzylamide positions in (R)-LCM did not lead to significant loss of 

anticonvulsant activity in the MES test. In those cases where an electrophilic AB 

agent was inactive, the activity of the corresponding isostere suggested that the AB 

group could be used in in vitro experiments, where metabolism is less likely an 

issue. With these molecular tools at hand, we advanced to the biological questions 

of this project. In the following sections, general methods to prepare a protein lysate 

from animal tissues are presented, along with the protein purification methods used 

in these studies. These methods are detailed, discussed and explained from the 

perspective of an organic chemist learning how to manipulate large molecules of 

complexity. Considerations concerning click chemistry in a biological setting are also 

discussed.   

 

3.1. General procedures for rat brain fractionation  

 Differential centrifugation is a widely used method to separate subcellular 

compartments from a given tissue.424-427 It is usually preferred to use freshly 

prepared tissue samples, by sacrificing the animal and removing the organs 
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immediately before subcellular fractionation.424 This ensures minimal subcellular 

cross-contamination that may arise from freeze/thaw cycles-induced compartment 

leakage. In our case, the purchased rat brains (6-7 weeks old, 200–300 g, male 

Sprague-Dawley rats, Rockland Immunochemicals or Pel-Freez Biologicals) were 

frozen in liquid nitrogen upon decapitation. The brains were shipped and received in 

dry ice, stored at -80 °C and thawed prior to fraction ation.  

The first tissue preparation step involves homogenizing the tissue in an 

appropriate homogenization buffer at 4 °C. A key comp onent in the buffer used is 

sucrose (280–320 mM), and serves as a molecular cushion to prevent the disruption 

of membranes (nucleus and organelles) by osmotic shock. Dounce homogenizers 

(glass/glass or glass/Teflon) are generally preferred to electric grinder or sonicators 

as they constitute a gentler way to disrupt tissues by shearing, leaving the bigger 

organelles intact. The clearance of the Dounce homogenizer is critical as a fitting too 

tight will lead to rupture of intracellular compartments and subcellular cross-

contamination. 

After grinding the tissue in a homogenization buffer the resulting crude 

homogenate can undergo several differential centrifugation steps to yield different 

subcellular compartments. The homogenization buffer typically includes a given 

buffer (5–50 mM Tris or HEPES [pH 7.4–8.0]), 320 mM sucrose, 5 mM MgCl2 

(improves stability of nuclei), and protease inhibitors. Generally, protease inhibitors 

were included in the different buffers to prevent proteolytic degradation that occurs 

as soon as the tissue is thawed. Accordingly, the following inhibitors were used for 

our studies. PMSF (paramethylsulfonyl fluoride) is an irreversible serine protease 
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inhibitor (working concentration 1 mM, 100 X stock solution in ethanol). PMSF 

hydrolyzes quickly in aqueous solutions, and should therefore be dissolved right 

before the homogenization step. E-64 (N-(trans-epoxysuccinyl)-L-leucine 4-

guanidinobutylamide) is an epoxide containing tripeptide mimic that acts as an 

irreversible and selective inhibitor of cysteine proteases but does not inactivate 

proteins containing reactive cysteine groups (working concentration 10 µM, 100 X 

stock in water). Pepstatin-A is a peptide analog that acts as a reversible inhibitor of 

aspartyl proteases. Because of the reversible nature of the inhibitor, the lysate 

studied should be resupplemented with pepstatin-A after a dialysis step, and before 

storing the lysate at -80 °C (working concentration 1 µM, 100 X stock in DMSO). 

TPEN (N,N,N’,N’-Tetrakis(2-pyridylmethyl)ethylenediamine) is a tight chelator of Zn2+ 

(pKd = 15.2 at pH 7.6)428 that prevents activation of zinc metalloproteases. As for 

Pepstatin A, this inhibitor should be resupplemented after a small molecule removing 

step such as dialysis (working concentration 1 µM, 100 X stock in ethanol).  

 

Scheme 40. Subcellular fractionation using differential centrifugation 

1,000 g, 10 min

Brain homogenate
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For our studies using rat brains, we utilized the following lysate preparation 

protocol (Scheme 40). All the following steps were carried out at 4 °C. The protocol 

was adapted from literature procedures.424-426,429 

 

3.1.1. The nuclear fraction (N1)  

N1 is obtained by centrifugating the crude homogenate at low speed (1,000 g) 

and comes with all the cellular debris. The supernatant (S1) is pulled for further 

separation. The pellet is rinsed 2 or 3 times with homogenization buffer and then 

resuspended in a high sucrose buffer (~4 to 5 times the approximate volume of the 

pellet), consisting of a given buffer (5–50 mM Tris or HEPES, pH 7.4), 2 M sucrose, 

and 5 mM MgCl2. This suspension is then carefully and slowly layered on top of 

another high sucrose gradient (2 M) in an ultracentrifuge tube and spun at 80,000 g 

for 30–40 min. An optional step can be included at this stage that entails filtering the 

suspension through several layers of cheese cloth or gauze to remove most of the 

cellular debris, allowing the following step to be cleaner. While it is recommended 

that sucrose gradient separations be conducted with a swing bucket rotor, it was 

found that a fixed-angle rotor works fine for this procedure. Upon centrifugation 

(80,000 g, 35 min), the cellular debris (if not removed by filtration) is found floating at 

the surface of the tube due to the buoyancy of the solution, while pure nuclei, visible 

as a white fluffy cloud-like aggregate are pelletted at the bottom of the tube. Nuclei 

can be recovered by gently removing the supernatant with a pipette, and then the 

nuclear aggregate is rinsed one time with homogenization buffer (5 mL per rat brain 

nuclear fraction) to remove the sucrose.  
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Nuclei are generally lysed under hypertonic conditions (high salt) that cause 

the disruption of the nuclear membrane. A typical nuclear lysis buffer includes a 

given buffer (5-50 mM Tris or HEPES [pH 7.4–8.0]), 400–500 mM NaCl, 1.5 mM 

MgCl2, 10–20% glycerol, and protease inhibitors. A high salt concentration and the 

presence of glycerol are critical to maintain proper folding of nuclear soluble proteins 

(mimics the high protein density inside the nucleus) as its removal by dialysis causes 

~70% of nuclear proteins to precipitate. Nuclei are resuspended in the lysis buffer 

and can be sheared by 10 syringe passages through a 18 or 20 gauge needle. The 

suspension is gently rocked at 4 °C for 30 min. The DNA i s then found floating at the 

surface as a white viscous material and removed with a pipette tip. Centrifugation at 

14,000 rpm at 4 °C yields a soluble nuclear fraction as a supernatant and a nuclear 

membrane fraction as a pellet. The pellet is resuspended in a buffer typically 

consisting of a given buffer (5–50 mM, Tris or HEPES [pH 7.4–8.0]), 1.5 mM MgCl2, 

100 mM KCl, 10–20% glycerol and 0.5%–1% of a desired non-ionic detergent (Triton 

X-100, β-Dodecylmatoside, Zwittergent 3-10) and gently rocked at 4 °C for another 

30 min. Centrifugation at 14,000 rpm for 10 min provides a solubilized membrane 

fraction. The fractions are stored at -80 °C and the pellet is discarded.  

The soluble nuclear fraction should be resuspended in the smallest possible 

volume of nuclear lysis buffer and diluted with 4 volumes of lysis buffer depleted in 

NaCl to reduce the salt concentration to 100 mM NaCl to permit subsequent 

chemical biology experiments. Final protein concentration should be ideally 1~2 

mg.mL-1.  
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3.1.2. The mitochondrial fraction (P2) 

P2 is obtained by centrifugation of the S1 supernatant at 6,000 g. The 

supernatant S2 is pulled for further purification. The mitochondrial fraction is 

comprised of mitochondria as well as the major cellular organelles (Golgi apparatus). 

The brain mitochondrial fraction is visible as a dark brown pellet and is lysed by 

osmotic shock with a hypotonic buffer (low salt). A typical mitochondrial lysis buffer 

includes a low concentration of buffer (5 mM Tris or 10 mM HEPES, pH 7.4) and 

protease inhibitors. The suspension is then gently rocked for 30 min at 4 °C and 

spun at 9,000 g for 30 min. The supernatant is then supplemented to a “normal” 

buffer concentration (5–50 mM Tris or HEPES, pH 7.4) and 50 mM NaCl. The pellet 

is then resuspended in a given buffer (5–50 mM Tris or HEPES, pH 7.4) containing 

100 mM KCl and 0.5–1% of a desired detergent and gently rocked for 30 min at 4 

°C. Centrifugation at 9,000 g for 30 min provides a solubilized mitochondrial 

membrane fraction. The fractions are stored at -80 °C and the pellet is discarded. 

 

3.1.3. The membrane fraction (P3) 

P3 is obtained by centrifugation of the S2 supernatant. Centrifugating at 

100,000 g or more for 1 h provides the membrane fractions, also called microsomal 

fraction. Supernatant S3 is pulled.  The pellet obtained is resuspended in a given 

buffer (5–50 mM Tris or HEPES, pH 7.4), 100 mM KCl, 0.5%–1% of a desired 

detergent, and 15% glycerol and protease inhibitors, and then gently rocked for 30 

min at 4 °C and centrifuged at 14,000 rpm (15 min) to provide a solubilized 

membrane fraction. The fraction is stored at -80 °C an d the pellet is discarded. 
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3.1.4. The cytoplasmic fraction (S3)  

S3 contains the soluble, cytoplasmic proteins. Typically, approximately 40 mg 

of total cytoplasmic protein (Bradford Assay) are obtained per rat brain. The lysate 

(~20 mL per brain) is then dialyzed at 4 °C for 2 h against 3 L of a given buffer (5–50 

mM Tris or HEPES, pH 7.4) containing 50 mM NaCl, changing the buffer after 1 h. 

Upon dialysis, the cytoplasmic fraction is resupplemented to 10 µM pepstatin A and 

1 µM TPEN and stored at -80 °C. 

 

3.2. Ammonium sulfate fractionation 
 

Ammonium sulfate (AMS) fractionation is a widely used protein fractionation 

method426,430-432 that uses the ability of high ionic concentrations to negate 

electrostatic repulsive charges on the solvent-exposed regions of a protein, leading 

to protein aggregation and precipitation. All proteins possess a specific AMS 

concentration range between which they progressively precipitate. That range is 

likely to change if the protein undergoes a conformational change, and therefore 

both pH and ligand binding can affect the needed AMS value for precipitation. 

In contrast with protein denaturing precipitating conditions (trichloroacetic 

acid/acetone), AMS precipitation is non-denaturing and is very often the first step 

utilized in protein purification protocols or enrichment methods from a complex 

mixture. The protein pellet obtained from a given AMS fraction can be readily 

redissolved (1 to 10 min) by letting it stand in a desired buffer (5–50 mM HEPES or 
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Tris). If further protein purification is needed, it may be necessary to remove the 

excess AMS present in solution by dialysis, particularly if the following step involves 

ion exchange chromatography. A high amount of residual AMS present in a sample 

can be detrimental to S or Q Sepharose® fractionation as it will interact with the 

support’s charged chemical groups and reduce their availability for proteins.  

As a general trend, we observed that a slight majority of proteins that 

precipitated at low AMS saturation were of medium to high molecular weight (40–

100 kDa) while a higher percentage lower molecular weight proteins (10–40 KDa) 

were found to precipitate in the higher AMS cut (>60–70%). Also, we did not observe 

proteins precipitating before ~15% AMS saturation. This information is important for 

the use of Phenyl Sepharose®. We also noticed an interesting pH-dependency in the 

AMS fractionation studies. At low levels (<30% AMS saturation), we found that as 

we lowered pH values from 8.5 to 7.5 to 6.5 we saw a general increase in the 

relative amounts of proteins that precipitate and it appeared that with decreasing pH 

we saw a buildup of large MW protein in the precipitate. At high AMS levels (>60–

70%), as the pH of the buffer was decreased from 8.5 to 7.5 to 6.5 we observed the 

opposite trend. At high pH (8.5) we detected higher amounts of protein with pH 7.5 

and 6.5.  

AMS can be added either as a solution (aqueous AMS saturated solution, 4.1 

M at room temperature) or as a solid. While it is easier to add a known precise 

volume (adding one volume of aqueous saturated AMS brings the solution to 50% 

saturation) this method becomes impractical at high AMS saturation (e.g., 9 volumes 

are required to bring a solution to 90% saturation) since it requires the use of larger 
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containers or multiple small containers. Moreover this method dilutes the proteins in 

solution and therefore increases the risk that the protein will not precipitate. 

Generally our experiments were carried out using AMS as a fractionation method 

employing liquid AMS up to 65-70% saturation (adding ~2 volumes of AMSsat) and 

using solid AMS to saturate from 70 up to 95%. The amount of solid added was 

calculated using online software (http://www.encorbio.com/protocols/AM-SO4.htm) 

that takes into account the specific volume of AMS added to the solution.  

A typical experiment involves the following protocol. A given volume of 

aqueous saturated AMS is added to the protein solution to bring the solution to the 

desired saturation, and the sample is gently mixed. The solution is allowed to stand 

at room temperature for 5 min and then centrifuged at 14,000 rpm for 4 min. The 

supernatant is transferred to another tube, and the process is repeated using the 

same procedure to obtain another protein AMS cut. Fractionation conducted in this 

way allowed the whole lysate to be “cut” in 5-6 different fractions within 90 min, 

including all the equilibration, centrifugation and supernatant transfer steps. The 

different cuts are hereon referred to as MXXYY, which designate the fraction that 

precipitate between XX% and YY% AMS saturation. 

  

3.3. Ion exchange chromatography 
 

Ion exchange resins are useful tools in protein purification and many different 

types have been developed. Protein ion exchange chromatography relies on the 

ability of proteins to form non-covalent electrostatic interactions between charged 
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amino acids and complementarily charged chemical groups covalently attached to a 

solid matrix.433  

In this method, the protein solution is incubated with the pre-equilibrated ion 

exchange resin under low salt conditions (equilibration buffer, typically 50 mM NaCl). 

Once proteins are adsorbed on the resin, the flow-through is either discarded or kept 

for further studies. The flow-through contains proteins that do not bind to the resin 

under these experimental conditions. The beads are then extensively washed with 

the equilibration buffer to remove unbound proteins present within the interstitial 

volume of the resin beads. The beads’ interstitial volume is called the dead volume. 

Proteins are then eluted off the resin with increasing salt (typically NaCl) 

concentrations (elution buffers). The increasing ionic strength of the buffer (salt) 

progressively displaces macromolecules from the resin and leads to the gradual 

protein release from the beads. Other constituents can be included in the 

equilibration, washing and elution buffers in addition to the salt, such as organic type 

molecules (non-ionic or zwitterionic detergents) when fractionating membrane bound 

proteins, or inorganic species (Ca2+, Mg2+) to enhance stability of certain proteins. 

A typical equilibration buffer contains 50 mM NaCl, and as a general trend for 

a cytoplasmic lysate, proteins generally start to elute off the column at ~150 mM 

NaCl, which is near the physiological concentration of NaCl.434 By 350–500 mM 

NaCl, almost all the proteins have come off the beads employed in this study, Q-

Sepharose® and S-Sepharose®.  

Elution fractions can be assayed for protein concentration, and also resolved 

on a SDS PAGE gel, knowing though that high salt concentration may be 
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detrimental to proper electrophoretic migration. The sample may also be used 

directly for a reaction (i.e. click chemistry) or for further protein purification. Before 

the next step it may be necessary to remove or lower the salt concentration either by 

a desalting column or by dialysis.  

In our studies, the ion exchange resins were Q-Sepharose® Fast-Flow 

(quaternary ammonium group) for anion exchange and S-Sepharose® Fast-Flow 

(sulphonate group) for cation exchange (GE Healthcare). For most proteins, the pI 

(isoelectric point) is below pH 7,435 therefore a majority of proteins are negatively 

charged at physiological pH. Consequently, in a cytoplasmic lysate Q-Sepharose will 

bind a greater number of proteins than S-Sepharose at pH 7.4. In addition, since 

proteins are more positively charged at lower pH, and more negatively charged at 

higher pH, more proteins are anticipated to adsorb to S-Sepharose® and Q-

Sepharose® under acidic and basic conditions, respectively.  

Protein fractionation of the soluble cytoplasmic rat brain lysate was first 

carried out at two different pH values to identify differences in fractionation patterns. 

We found that S-Sepharose® chromatography was more sensitive to pH change 

(different fractionation patterns at pH 6.5 vs 8.5) than Q-Sepharose®. We also 

observed that the relative amount of protein that bind to S-Sepharose at pH 8.5 was 

low. These findings led us to combine these two types of ion-exchange 

chromatographies by adsorbing the lysate at pH 6.5 on S-Sepharose® and then 

adsorbing the unbound fraction on Q-Sepharose® without modifying the pH. Since 

more proteins typically bind to S-Sepharose® at pH 6.5 rather than 8.5, this provided 

an added benefit for the selective elution of proteins with various salt concentrations. 
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Therefore, we found it unnecessary to start the fractionation at pH 8.5 using S-

Sepharose®. 

While Sepharose® columns are mostly used for large scale protein 

purifications involving several different types of columns, they can also be used on 

small scale to purify or simply enrich a protein. A practical, small scale fractionation 

experiment with Sepharose® is to use Spin Filter tubes (650 µL capacity) with a 

polymer type filter to hold the resin bed. Ideally, experiments should be carried out at 

4 °C. Equilibration and elution buffers should be fre shly prepared and chilled on ice 

prior to their use. 

In general, in our experiments we used 1 mg of total protein (cytoplasmic 

lysate) for 100 µL (termed Column Volume, CV) of Fast-Flow® Sepharose (GE 

Healthcare, 50% slurry of beads in 20% EtOH). To preequilibrate the beads, the 

20% EtOH is first removed by gravity or centrifugation at low speed (2,000 rpm, 5 

sec when using Spin Filters) and the beads are washed with ice-chilled ddH2O (2 x 

10 CV) followed by the equilibration buffer (2 x 10 CV). On small scale, low speed 

centrifugation can be used to accelerate the process. It should be recognized that 

high speed (>5000 rpm, table-top centrifuge) can damage the beads’ solid support. 

This general procedure was developed as a starting point for our studies of the 

whole lysate, and we expect that this protocol will be optimized when studying and 

purifying a specific protein.  

On small scale experiments (20 µL to 200 µL beads, 50 µL to 2000 µL protein 

solution), the protein solution is tumbled with the beads (1–5 min). The flow-through 

is then recovered and the resin bed washed with 10 CV of equilibration buffer. To 
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elute the proteins, 5 CV of the desired elution buffer is added to the washed resin 

bed and gently swirled for 10–15 sec. The eluted fraction is then recovered by low 

speed centrifugation. 5–10 CV of the same elution buffer are then added to the 

beads to wash remaining bound proteins and centrifuged. The flow-through is 

discarded, and the next salt elution step can take place. 

Sepharose type resins are useful in purifying or enriching a given pool of 

proteins based on electrostatic charges. Its other important role is to concentrate 

dilute samples, since the amount of resin used is proportional to the amount of 

protein that can be bound and not the protein concentration. 

The main limitations of this method are the general setup, and the recovery of 

the different fractions. Also, when combining S and Q Sepharose together, while it is 

possible to adsorb and selectively elute approximately 60-70% of all the proteins 

present in the lysate, nearly 30-40% of the proteins remain unfractionated under 

various pH conditions (pH range from 6.5 to 8.5). Thus, it may be necessary to 

combine this method with other fractionation methods to obtain sufficiently pure 

material of select proteins. 

 Another type of Sepharose used in protein purification is the Phenyl 

Sepharose® Fast-Flow (GE Healthcare) type resin that allows proteins to be purified 

based on hydrophobic interactions. Chemical groups present on the beads of Phenyl 

Sepharose® include linear carbon chains ending with a phenyl group. In order to 

properly fractionate proteins by Phenyl Sepharose®, the protein mixture first needs 

to be adjusted to a certain AMS saturation (15% for a cytoplasmic lysate). This step 

will shield off the solvent accessible electronic charges of the protein, thus 
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maximizing interactions of the protein’s hydrophobic residues with the Phenyl 

Sepharose. The purification methodology for Phenyl Sepharose® is similar to the 

one employed for S and Q Sepharose®, except the proteins are eluted off by 

progressively decreasing the AMS concentration of the buffer. This decrease frees 

the protein’s electronic charges and releases the proteins from the hydrophobic 

matrix. The main disadvantage of this fractionation method is the necessity to 

dialyze the samples upon elution to remove the AMS. 

 

3.4. Click chemistry 

Click chemistry was performed using slightly modified conditions from those 

of Cravatt and co-workers.276,345,359 Copper sulfate pentahydrate (CuSO4•5H2O) was 

used as the source of Cu2+, and tris(2-carboxylethyl)phosphine hydrochloride 

(TCEP) was used as the reducing agent to generate the Cu(I) species. Earlier work 

by Sharpless and Finn have shown that the addition of an appropriate Cu(I) ligand in 

the click reaction increases the yield of this cycloaddition step by stabilizing the Cu(I) 

species in aqueous solutions and by catalyzing the click chemistry 

reaction.279,284,436,437 When performing click chemistry between labeled proteins and 

a fluorescent- or a biotin-contatining probe, the different ratios of compounds are 

critical to obtain a correct signal to noise ratio of product versus background labeling. 

Therefore, for one equivalent of alkyne or azide-containing Probe the following 

quantities of reagents were used.  

25 equiv of CuSO4: When the azide-alkyne cycloaddition is done under 

organic reaction conditions, the reaction only requires a catalytic amount of Cu(I) (5-
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10% mol vs the alkyne or azide). In our proteomics studies, the reaction was 

performed in aqueous buffered solutions and required the use of a high amount of 

CuSO4 (25 equiv vs fluorescent probe). This is necessary if we are to detect a 

fluorescent signal within 1 h. Apart from the fluorescent or biotin probe, the CuSO4 

stock solution is the only component of the click chemistry reaction which does not 

need to be prepared freshly prior to using. 

12.5 equiv of TCEP (50% mol vs Cu2+). The theoretically optimal ratio should 

be 25 equiv since TCEP reacts stoichiometrically with CuSO4. However, it was found 

that for a 1 h click chemistry reaction, there is no significant difference between 50% 

mol and 100% mol (25 equiv) of TCEP vs Cu2+. Further increasing the TCEP vs Cu2+ 

ratio to 200% mol (50 equiv) resulted in an increase in background fluorescence. In 

experiments using sodium ascorbate (Na Asc) as the reducing agent, we did 

observe a slightly lower fluorescence signal compared with similar conditions using 

TCEP (data not shown). TCEP stock solution in water should be prepared prior to 

the experiment. 

2.5 equiv (10% mol vs Cu2+) of Cu(I)-chelating ligand: tris[(1-benzyl-1H-1,2,3-

triazol-4-yl)methyl]amine (TBTA) has been advanced by Sharpless and coworkers 

as a ligand of choice to perform click chemistry reactions in biological systems. The 

main disadvantage of TBTA remains its poor solubility in water. Water-soluble Cu(I) 

chelators, such as sulfobathophenantroline (SBP), have recently been introduced as 

useful accelerating ligands for click chemistry.438 Reports indicate that this ligand is 

more sensitive to oxidation than TBTA.439 When comparing SBP with TBTA, we 

found that click chemistry with SBP gave rise to fluorescent signals in the no drug 
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control experiments that were as intense as the signal from the AB&CR-labeled 

proteins. This problem was not encountered when using TBTA as a ligand. We, 

therefore, opted to use TBTA. The theoretically optimal ratio of Cu(I) to ligand varied 

from 1:1 to 1:2 depending on the nature of the ligand. In the case of TBTA, 2 

molecules of ligand are required to form the full complex with one Cu(I). We found 

that click chemistry performed with 200% mol of TBTA vs Cu2+ gave a higher 

fluorescence background when compared with only 10% mol TBTA vs Cu2+. These 

findings were in agreement with published results from the Cravatt group.276 As for 

TCEP, TBTA should also be prepared just prior to performing the click chemistry. 

In initial experiments, the click chemistry was executed by adding given 

volumes of stock solutions in the following order: fluorescent probe, CuSO4, TBTA, 

and TCEP. To combine 3 addition steps to one, we found it possible and more 

convenient to prepare a 10 x solution of premixed CuSO4, TBTA and TCEP (termed 

10X Cu(I) mix) and then add the appropriate volume to the protein solution 

containing the fluorescent probe. The 10X Cu(I) mix was prepared so that upon 

dilution the percentage (v/v) of organic solvents present in the reaction remained 

below 5%. 

A typical click chemistry experiment of a lysate mixture modified with a 

lacosamide AB&CR agent involved the following (based on a 20 µM Probe final 

concentration). The fluorescent probe 195 or 196 (20 µM final concentration, stock 

solution in water) was first added to the modified protein solution. Next, a prepared 

100 µL of 10X Cu(I) mix in a transparent tube was added. The Cu(I) mix was 

prepared by sequentially adding 10 µL of 50 mM aqueous CuSO4, and then 40 µL of 
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625 µM TBTA (in a 1/4 DMSO/tBuOH mixture). The TBTA in the binary stock 

solution should be made fresh by first dissolving the solid in 1/5 of the final volume of 

DMSO, and adding 4/5 of the final volume of tBuOH. Solubilizing TBTA directly in a 

1/4 DMSO/tBuOH mixture takes much longer. Upon mixing the Cu2+ and the TBTA 

stocks together, the solution turns cloudy quickly. At low CuSO4 concentrations, the 

suspension looks white, while at higher concentrations it looks light blue (Cu2+ 

complex). To the suspension is then added 50 µL of freshly prepared 5 mM aqueous 

TCEP. Immediately upon mixing, the cloudy solution becomes clear and turns pale 

yellow, characteristic of a Cu(I)-complex. The 10X Cu(I) mix is diluted 10-fold by 

adding to the protein mixture and homogenized by vortexing. All the additions should 

be performed relatively quickly (5–10 min). A 10X Cu(I) mix should not be left at 

room temperature for more than 1 h. When many samples are involved, the use of a 

multi-channel pipettor is recommended. In our experiments, we found it unnecessary 

to rotate the tubes while performing click chemistry on soluble (cytoplasmic) 

proteins. Samples are then let to stand at room temperature for 1 h, and SDS 

loading buffer is added to stop the reaction and then boiled (75 °C for 4 min) and 

resolved on SDS PAGE gel. 

 



4.  

 

 

                                               CHAPTER 4 

 

               SCREENING THE RAT BRAIN CYTOPLASMIC FRACTION 

 

4.1. The use of epoxide-based AB&CR molecules as se lective labeling agents 

4.1.1. Rationale 

 Early experiments with AB&CR agents 171 and 172 showed that the 

isothiocyanate (NCS) group led to appreciable non-specific protein labeling that 

gave complex in-gel fluorescence band patterns. The gel patterns made it difficult to 

identify unique targets associated with lacosamide function and almost impossible to 

identify potential tagets that are present in low abundance in the lysate. We 

hypothesized that by using a less reactive AB group, we would observe diminished 

protein adduction and an increased selectivity of target modification within the 

proteome. Recently, the epoxide AB was shown to selectively target certain classes 

of proteases in lysate experiments prepared from whole cells or organ 

tissue.273,309,358 This apparent selectivity was, however, biased by the inherent 

affinity of protease cysteine residues for epoxide electrophiles. Interestingly, in a 

comparative study of various protein affinity labels, the aliphatic epoxide was able to 

selectively modify carbonic anhydrase 2 (CA2) without reacting with abundant or 

reactive enzymes (i.e., bovine serum albumin (BSA), protein kinase A (PKA), 
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH)).290 Optimal labeling 

conditions for epoxide adduction labeling were 20 h at room temperature.290  

While aromatic epoxides differ from their aliphatic counterparts in terms of 

chemical reactivity,307 they can also be used as protein labeling agents.440,441 

Accordingly, to increase our chances of target protein capture, we screened the 

proteome with AB&CR agents containing an epoxide moiety at two different 

positions, where the aliphatic and aromatic epoxide groups were located on the side 

chain of the molecule (179, 180) and the benzylamide 4’-position (175, 176), 

respectively.  

 

 

Figure 10.  Structures of epoxide-based AB&CR agents used in the rat brain cytoplasmic fraction 
screening 
 
 

4.1.2. Labeling and fractionation experiments of cy toplasmic proteins 

Rat brain cytoplasmic lysate (S3) was prepared as previously described. 

Screening was initially performed using both enantiomers of 175, 179, and Probe 

195 for visualization and later with (R) and (S) enantiomers of 176, 180, and Probe 
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196 (Figure 10, Figure 11).  Starting with 200–300 µL of lysate (~2 mg.mL-1) at the 

desired pH (6.5, 7.5, or 8.5), AB&CR compounds were allowed to react at room 

temperature (20 h),290 and then the reaction mixture was fractionated with AMS. 

Recovered pellets were dissolved in 25 mM HEPES buffer (pH 7.5) and click 

chemistry (20 µM), CuSO4 (25 equiv), TCEP (12.5 equiv), and TBTA436,442,437 (200% 

vs. Cu2+) was performed using compound 195. The molar ratio of TBTA vs Cu2+ was 

reduced in later experiments (5% vs Cu2+) since the higher molar ratio led to high 

fluorescence backgrounds, as observed by Cravatt and coworkers.276,359 Samples 

were then resolved on SDS PAGE gel (8, 10, or 12.5%), scanned for fluorescence 

(532 nm excitation; 580 nm emission), and stained with Coomassie Brilliant Blue or 

silver stain for total protein quantification. 

 

 

Figure 11. Structures of the different Probes used to react with the CR groups after protein labeling. 
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4.1.3. Identification of a protein of interest in t he soluble fraction 

The first experiment was carried out at two different concentrations of AB&CR 

agent (R)-175 and (R)-179 (50 µM and 5 µM), and fractions M1030, M4050, M5058, 

M5865, M6590 were recovered then treated with 195 under Cu(I)-catalyzed 

conditions (“clicked”). Fluorescent labeling proved to be relatively high at 50 µM of 

AB&CR agent (R)-179, while only one protein in the M4050 and the M5058 fractions 

showed notable labeling at 5 µM. The protein was labeled by (R)-179 and not by (R)-

175 (Figure 12). Analysis of the other AMS cuts (M0040 and M6590) showed no 

bands that were selectively labeled by our AB&CR agents (data not shown). 

AMS cut M4050 M5058 M5865 
 

M4050 M5058 M5865 
                          

(R)-175 
(50 µM) 

x    x    x                 

(R)-175  
(5 µM) 

 x    x    x                

(R)-179 
(50 µM) 

  x    x    x               

(R)-179  
(5 µM) 

   x    x    x              

 
 
Figure 12. 6% SDS-PAGE gel of rat brain cytoplasmic AMS cuts containing a protein of interest 
labeled by (R)-179 but not (R)-175. Cytoplasmic lysate samples (~300 µg total protein) were labeled 
with (R)-179 and (R)-175 at 5 or 50 µM at room temperature (20 h), fractionated with AMS, clicked 
with Probe 195, and resolved. Left picture: in-gel fluorescence scan (ex.: 532 nm, em.: 580 nm); right 
picture: corresponding silver stain. Lanes 1–4: M4050; lanes 5–8: M5058; lanes 9–12: M5865. Lanes 
1, 5, 9: (R)-175 (50 µM); lanes 2, 6, 10: (R)-175 (5 µM); lanes 3, 7, 11: (R)-179 (50 µM); lanes 4, 8, 
12: (R)-179 (5 µM). Approximate molecular weight markers (kDa) are shown in red on the left. 
 

 



 

 234 

A similar experiment with (R)-179 at 50 µM showed that the protein (~45 kDa) 

precipitated in the M4065 fraction. However, it was possible to obtain a cleaner AMS 

cut containing the majority of the protein using the M4555 cut. In a subsequent 

experiment, we found that this protein, enriched in M4555, could further be purified 

using Q-Sepharose® (HEPES, pH 8.0) upon elution between 200 and 300 mM NaCl 

at pH 8.0 (Figure 13). This experiment also demonstrated that (R)-179 gave 

preferential labeling over (S)-179, while giving a solution highly enriched in the 

protein of interest. Utilizing this purification procedure, the protein was resolved on 

SDS PAGE gel (8%), Coomassie stained, excised, and sent for mass spectrometric 

(MS) analysis at the Michael Barber Centre for Mass Spectrometry (University of 

Manchester). 

Fraction 
Flow-

through 

50-200 
mM 

NaCl  

200-250 
mM 
NaCl  

250-300 
mM 
NaCl  

Flow-
through 

50-200 
mM 
NaCl  

200-250 
mM 
NaCl  

250-300 
mM 
NaCl  

                 
(R)-179  
(5 µM) 

x  x  x  x          

(S)-179  
(5 µM) 

 x  x  x  x         

 

Figure 13. 8% SDS-PAGE gel of rat brain cytoplasmic preferentially labeled by (R)-179 over (S)-179. 
Cytoplasmic lysate samples (~300 µg total protein) were labeled with (R)-179 and (S)-179 at 5 µM at 
room temperature (20 h), the M4555 cut was recovered and further fractionated on Q-Sepharose® 
(pH 8.0). The flow-through, and elution fractions (50–200 mM NaCl, 200–250 mM NaCl, 250–300 mM 
NaCl) were recovered, clicked with Probe 195, and resolved. Left picture: in-gel fluorescence scan 
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(ex.: 532 nm, em.: 580 nm), a small fraction of the labeled protein did not bind to the resin (lanes 1, 
2); right picture: corresponding silver stain. Lanes 1,2: M4555 Q-Sepharose® flow-through, lanes 3,4: 
50–200 mM NaCl elution fraction, lanes 5,6: 200–250 mM NaCl elution fractions, lanes 7,8: 250–300 
mM NaCl elution fractions. Lanes 1, 3, 5, 7: (R)-179 (5 µM); lanes 2, 4, 6, 8: (S)-179 (5 µM). 
Approximate molecular weight markers (kDa) are shown in red on the left. 
 
 

4.2. Brain-type creatine kinase B (CKB)  

The protein of interest was identified by mass spectrometry as brain-type 

creatine kinase (CKB). Mass spectral analysis of similarly cut gel bands from other 

experiments led to an approximate coverage of 60% of the enzyme sequence. 

These experiments did not reveal the modified residue on CKB. Table 2 provides 

representative tryptic fragments identified by MS.  

Table 2.  Representative list of the CKB tryptic digests identified from the fractionated cytoplasmic 
lysate 

Creatine kinase B -type  
 OS=Rattus norvegicus           

Observed   Mr(expt)   Mr(calc)   Miss  Score   Peptide 

759.2673 758.26 758.3347 0 35  R.DWPDAR.G 

439.7338 877.453 877.5021 1 43  K.FSEVLKR.L 

524.175 1046.3354 1046.543 0 54  K.LLIEMEQR.L + Oxidation (M) 

569.7446 1137.4746 1137.5601 1 43  K.GGNMKEVFTR.F 

616.7395 1231.4644 1231.6085 0 49  K.DLFDPIIEDR.H 

652.323 1302.6314 1302.7183 0 60  K.VLTPELYAELR.A 

750.8008 1499.587 1499.7694 0 78  R.FCTGLTQIETLFK.S 

801.8158 1601.617 1601.826 0 76  K.LAVEALSSLDGDLSGR.Y 

836.3497 1670.6848 1670.8416 0 65  K.TFLVWINEEDHLR.V 

841.8837 1681.7528 1681.8345 0 50  R.LEQGQPIDDLMPAQK.- 

924.8934 1847.7722 1847.9703 0 110  R.LGFSEVELVQMVVDGVK.L 

982.9081 1963.8016 1963.9236 0 75  R.GTGGVDTAAVGGVFDVSNADR.L 

707.6211 2119.8415 2120.0247 1 77  K.RGTGGVDTAAVGGVFDVSNADR.L 

729.2628 2184.7666 2184.9534 0 53  R.FPAEDEFPDLSSHNNHMAK.V 

819.0059 2453.9959 2454.1386 1 34  K.LRFPAEDEFPDLSSHNNHMAK.V 

839.9778 2516.9116 2517.1619 0 56  K.TDLNPDNLQGGDDLDPNYVLSSR.V 

 

4.2.1. CKB is selectively labeled by epoxide-based AB&CR agents 

Analogous experiments conducted using the AB&CR agents 176 and 180 (1–

10 µM) containing the alkyne CR moiety and azide Probe 196 (10–50 µM) showed a 
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reduced level of background fluorescence (Figure 15). We observed a similar 

reduced level of background protein labeling using azide Probe 196 compared with 

the alkyne Probe 195 in the absence of AB&CR agents. Finally, a slight reduction in 

background signal was observed between reactions where click chemistry was 

conducted with 5% TBTA vs Cu2+ compared with 200% TBTA vs Cu2+ (Figure 14).  

 

Ratio of 
TBTA 

Vs Cu2+ 
5%  200% 

              
AMS cut M2535 M3555 M5565  M2535 M3555 M5565 

              
(R)-180  
(5 µM) 

x  x  x   x  x  x  

(S)-180  
(5 µM) 

 x  x  x   x  x  x 

 

Figure 14. In-gel fluorescence scan of the brain cytoplasmic lysate (6% SDS-PAGE gel). Cytoplasmic 
lysate samples (~300 µg total protein) were labeled with (R)-180 and (S)-180 at 5 µM at room 
temperature (20 h), and fractionated using AMS. For each AMS cut recovered, the sample was split 
in half. The first half was clicked using a 5% TBTA vs Cu2+ratio and the second half with 200% TBTA 
vs Cu2+ ratio. The samples were resolved, and scanned for fluorescence. Left gel (lanes 1–6): click 
chemistry was performed using a 5% TBTA vs Cu2+ ratio; right gel: (lanes 7–12): click chemistry was 
performed using a 200% TBTA vs Cu2+ ratio. Lanes 1, 3, 5, 7, 9, 11: (R)-180 (5 µM); Lanes 2, 4, 6, 8, 
10, 12: (S)-180 (5 µM); Lanes 1, 2, 7, 8: M2535; lanes 3, 4, 9, 10: M3555; lanes 5, 6, 11, 12: M5565. 
CKB (blue arrow) is present in the M3555 cut. Approximate molecular weight marker (kDa) are shown 
in red on the left 
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To confirm that CKB was specifically labeled by compound (R)-179, the 

cytoplasmic brain lysate (500 µL, 1 mg total protein) was incubated with either 

DMSO (control) or 10 µM (R)-179 at room temperature (20 h). AMS fraction M4555 

was recovered, which was subsequently fractionated on Q-Sepharose® (pH 8.0) and 

the fraction eluting between 200 and 300 mM NaCl (HEPES, pH 8.0) was recovered. 

Click chemistry was performed using Probe 193 (20 µM) at room temperature (1 h) 

and each reaction was then incubated with Streptavidin beads (50 µL beads) that 

were pre-rinsed with 5 x 1 mL washing buffer (150 mM NaCl, 50 mM HEPES, pH 

7.5) by tumbling at room temperature (1 h). The beads were centrifuged at 2000 rpm 

on a table-top centrifuge (30 sec), and the supernatant was removed. For each 

reaction the resin was then successively washed with 3 x 1 mL washing buffer, 3 x 1 

mL washing buffer supplemented to 0.2% SDS, 3 x 1 mL aqueous 6 M urea, and 5 x 

1 mL washing buffer. The beads were sent for MS analysis using off-the-beads 

trypsinization.443 No proteins were found in the DMSO control sample, whereas only 

fragments of CKB were identified in the AB&CR sample, confirming that CKB was 

specifically labeled with (R)-179 (Table 3) 

Table 3.  List of peptides identified after trypsin digestion of Streptavidin beads for the cytoplasmic 
sample treated with 10 µM (R)-179. No peptides were identified after off-the-beads digestion from the 
DMSO treated sample. 
 
Creatine kinase B -type 
OS=Rattus norvegicus           
Observed   Mr(expt)   Mr(calc)   Miss  Score   Peptide 

516.23 1030.4454 1030.5481 0 38  K.LLIEMEQR.L 
801.86 1601.7054 1601.826 0 84  K.LAVEALSSLDGDLSGR.Y 
841.89 1681.7654 1681.8345 0 59  R.LEQGQPIDDLMPAQK.- 
924.93 1847.8454 1847.9703 0 88  R.LGFSEVELVQMVVDGVK.L 
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4.2.2. Competition experiments with ( R)-LCM and a known CKB inhibitor 

Protein modification experiments using agent 180 reproducibly showed that 

CKB was preferentially labeled by (R)-180 compared with (S)-180 and that (R)-176 

did not modify the protein. However, (R)-180 labeling experiments in the presence of 

excess (R)-1 (100–5000 equiv) led, in most cases, to no reduction in the 

fluorescence intensity signal of the ~43 kDa band (Figure 15, blue arrow). In only 

one out of the 9 competition experiments did we see a reduction of the intensity of 

the fluorescent band labeled by (R)-180 by (R)-LCM. This finding indicated (R)-LCM 

did not compete with (R)-180 protein adduction. Nonetheless, other findings 

suggested a direct interaction between (R)-LCM and CKB (see Section 4.2.6).  

 

DMSO x     
(R)-180 (5 µM)  x  x  
(S)-180 (5 µM)   x   
(R)-176 (5 µM)     x 

(R)-LCM (1 mM)    x  

170 

58 

80

30 

46 

 
1 2 3 4 5 1 2 3 4 5 

 
Figure 15. 8% SDS-PAGE gel of the cytoplasmic lysate M4555 cut. Left picture: fluorescence scan; 
right picture: corresponding Coomassie stain. Samples (~200 µg total protein) were incubated at 
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room temperature (20 h) with the appropriate AB&CR agent or control, and fractionated with AMS. 
M4555 was recovered, click chemistry was performed using Probe 196, and samples were resolved 
and scanned. Lane 1: DMSO; lane 2: (R)-180 (5 µM); lane 3: (S)-180 (5 µM); lane 4: (R)-180 (5 µM) + 
(R)-LCM (1 mM); lane 5: (R)-176 (5 µM). Approximate molecular weight markers (kDa) are shown in 
red on the left. 
 

Next, we preincubated (5 min) the lysate with 2,4-dinitrofluorobenzene 

(DNFB, 10–20 µM), a known suicide inhibitor of CKB,444-446 and then treated the 

lysate with (R)-180 at room temperature (18 h). We observed a marked reduction 

(>50%, quantified with ImageJ®) in fluorescence intensity of the CKB containing 

band, after AMS fractionation (M4555) and click chemistry. By comparison, a more 

modest decrease in CKB-specific reduction (~10%) in the signal intensity was 

detected when DNFB was added after reaction of (R)-180 with the lysate at room 

temperature (18 h). Interestingly, incubation with DNFB at room temperature (18 h) 

led to a shift in the AMS fraction of CKB, with a larger population of the protein now 

precipitating below 45% AMS saturation. This finding suggested that CKB underwent 

a protein conformational change upon DNFB modification. The DNFB findings were 

interesting and suggested that DNFB and (R)-180 may interact at or near the same 

site. However, our observation that the protein likely underwent conformational 

change upon DNFB labeling raised several alternative explanations for the reduced 

(R)-180 labeling with DNFB treatment. Among these, is that the CKB conformational 

change may have reduced either the efficiency of AB adduction or the extent of 

modification of the CR group of (R)-180 with Probe 196 by click chemistry. 

Accordingly, the reduced fluorescence intensity could potentially be due to a 

combination of several factors. First, DNFB and (R)-180 may label the same residue. 

Second, DNFB may have induced a conformational change of the protein resulting 
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in a reduction in (R)-180 labeling. Third, a protein conformational change may have 

reduced the efficiency of the click chemistry reaction.  Nonetheless, this set of 

experiments suggested the possibility that Cys283, the established residue modified 

by DNFB,444-446 was covalently modified by (R)-180. 

 

4.2.3. Possible significance of CKB as a target for  epilepsy 

 CKB is a ~43 kDa cytoplasmic dimeric protein responsible for catalyzing the 

dephosphorylation of phosphocreatine to generate ATP, and is mainly localized in 

inhibitory neurons.447,448 Importantly, this reaction represents the fastest way for a 

cell to generate ATP, using phosphocreatine as an energy buffer.449 Many studies 

have shown the physiological importance of CKB in seizures and it has been 

established that the CKB reaction rate dramatically increases during a seizure, 

where brain levels of phosphocreatine decrease up to 50%.449-452 This quick 

generation of ATP is required for fueling and maintaining the high-energy demand of 

the seizure.450-452 Thus, it is possible that an inhibitor of CKB may act as a 

preventive agent by suppressing the seizure’s energetic pathway. More recently, 

CKB has been shown to activate the K+-Cl--cotransporter 2 (KCC2) in GABAergic 

neurons.453,444 KCC2 has been implicated in playing a crucial role in maintaining 

homeostasis of the neuron and dictating the inhibitory or excitatory role of GABA in 

developing neurons.117 It has been recently found that some forms of epilepsy lead 

to dramatic changes in the expression profiles and the physiological properties of 

KCC2.117,119,454,118 CKB knockout mice (CKB-/-) have been generated and are viable 

while displaying a mild phenotype, a gradual hearing loss, due to the abundance and 
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important role played by CKB in cochlear cells.455 More interestingly, CKB-/- mice 

have been shown to have a higher seizure threshold in the ipPTZ seizure test when 

compared with normal mice.456     

 

4.2.4. Creatine Kinase B activity assay 

 To further explore whether CKB was a potential target for (R)-1 we 

determined if (R)-LCM, (S)-LCM and other derivatives could modulate the activity of 

the purified enzyme. Thus, we cloned, overexpressed and purified human His-

tagged CKB in E. coli following literature procedures457,458 and used the CKB activity 

assay to verify the functional integrity of the enzyme.  

 

Figure 16. 12.5% SDS-PAGE gel Coomassie stain of overexpressed purified human CKB enzyme 
after His-tag, AMS, and Q-Sepharose® fractionation. Cloning and overexpression protocols can be 
found in the Experimental Section.  Approximate molecular weight markers (kDa) are shown in red on 
the left. 
 

To do so, we used a validated and widely used CKB coupled enzymatic 

assay.446,459,460 The CKB activity assay was first performed using a commercial 

source of enzyme (human CKB, cat # 10-663-45059, GenWay Biotech, San Diego, 

CA), and later using purified overexpressed human CKB from E. coli (Figure 16, see 



 

 242 

Sections 4.6.7 and 4.6.8 for experimental details). In addition we first used a 

commercial CK activity assay kit (BioAssay Systems, cat # ECPK-100, Hayward, 

CA) and later utilized an in house assay using commercially available 

reagents.446,459,460 In this coupled assay, CKB catalyzes the transfer of a phosphate 

group from phosphocreatine to ADP, generating creatine and ATP (Scheme 41, top). 

The latter is used by hexokinase (HK) to convert D-glucose to glucose-6-phosphate, 

which is employed, in turn, by glucose-6-phosphate dehydrogenase (G6PDH), using 

NADP as a cofactor. NADPH, the reduced form of NADP, absorbs at 340 nm and 

360 nm (Scheme 41, bottom).  

 

Scheme 41.  Chemical reactions used in the CKB activity assay. Top: CKB-catalyzed generation of 
ATP. Bottom: coupled enzymatic reactions used in the activity assay. NADPH is quantified by 
measuring the absorbance at either 340 or 360 nm. The amount of NADPH generated is proportional 
to the activity CKB. 

  

 

We compared the enzymatic activities of commercial CKB with the 

overexpressed purified CKB (Figure 17). The activities were virtually identical, and 
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both enzymes were completely inhibited by pre-incubation with 10 µM DNFB at room 

temperature (10 min). The amount of NADPH produced is directly proportional to the 

activity of CKB. In early experiments, equipment availability (HTS 7000 Plus Bio 

Assay Reader, Perkin Elmer) led us to monitor reactions by measuring the optical 

density (OD) at the sub-optimal 360 nm wavelength. The theoretically optimal 340 

nm wavelength was used in later experiments using a different instrument 

(POLARstar OPTIMA, BMG Labtech). 
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Figure 17. Comparison of enzymatic activities of human commercial CKB and overexpressed CKB. 
The coupled assay was conducted at room temperature and OD360 was plotted versus time. Legend 
is shown on the right.   
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4.2.5. Identification of modification sites of CKB 

 An (R)-180 adduction experiment was conducted using overexpressed, 

purified human His-tagged CKB to determine which amino acid residue was 

modified by (R)-180. The buffer used for the labeling experiment was 100 mM MES 

(pH 6.5), containing 100 µM TCEP and a final concentration of 5% DMSO (v/v). One 

sample (0.5 mg) was incubated with no drug (control), and one with 500 µM of (R)-

180. The samples were then resolved on 8% SDS-PAGE denaturing gel, the gel was 

Coomassie stained, and the band corresponding to CKB excised and sent for MS 

analysis.  

 

Figure 18.  Crystal structure of human CKB (PDB ID: 3B6R). The protein dimer is represented in blue, 
and the modified residues identified from MS experiments are highlighted. Purified human CKB (~250 
µg) was labeled with 500 µM (R)-180 at room temperature (20 h), the protein was resolved on SDS-
PAGE gel (8%), the gel was Coomassie stained and the  ~43 kDa band corresponding to CKB was 
excised. Tryptic digests of the protein led to the identification of three residues. C283 (yellow) is a key 
amino acid for catalysis, while E362 (pink) and E41 (purple) are located on the protein surface. The 
figure was  prepared by Ms. Onrapak Reamtong. 
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In the labeled enzyme sample, three residues were modified by the (R)-180 

epoxide AB group: C283, E41, and E362, but the extent of labeling of each residue 

could not be determined. The two glutamate residues are located on the surface of 

the enzyme, while C283 is a critical catalytic residue. D340, another key CKB 

catalytic residue,461 was not modified under these conditions (Figure 18). The control 

reaction showed no evidence of amino acid modification.  

 A dose-dependent experiment was performed where a buffered solution of 

CKB (~200 µg per reaction) in 100 mM MES (pH 6.5), 5% DMSO, 100 µM TCEP 

was incubated at room temperature (20 h) with no drug, and 50, 500, 5000 µM of 

(R)-180. After labeling, an aliquot of each reaction was used in the CKB enzymatic 

assay (50 nM final concentration of enzyme). The remaining sample was equally 

split in two. One sample was dialyzed twice (1 h) against 3 L of double-distilled (dd) 

H2O, lyophilized and sent on dry ice for MS analysis of the intact protein. The other 

sample was dialyzed twice (1 h) against 1.5 L of 50 mM MES (pH 6.5) and 100 µM 

TCEP. A 20 µL aliquot was used to perform click chemistry with Probe 196. The 

remaining volume was snap-frozen (dry ice/acetone bath) and sent on dry ice for MS 

analysis. 

Sample preparation proved to be critical for the detection of the intact protein. 

Only the samples that had undergone dialysis against ddH2O and lyophilization gave 

a detectable signal. The CKB activity assay results showed an approximate 

correlation between the proportion of adducted protein and the inhibition of the 

enzyme. At 50 µM of (R)-180, the CKB enzymatic activity was virtually identical to 
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that of the unmodified enzyme (Figure 19) and no adduct could be detected by MS 

analysis (MW 44668 and MW 44710) (Figure 20). Interestingly, CKB appeared as a 

~1:1 doublet at MW 44668 and MW 44710. The difference between the two signals 

(42 Da) likely corresponds to protein N-acetylation. We are unsure of the source and 

location of the acetyl residue, but have tentatively attributed this phenomenon to the 

CKB overexpression in E. coli where acetylation processes can occur.462,463 

At 500 µM, the enzymatic activity was reduced by ~60%, and approximately 

33% of the enzyme, based on the MS peak intensities, corresponded to a (R)-180 

mono-adduct (330 Da modification: MW 44999 and MW 45040) with the rest 

matching the unmodified enzyme (MW of (R)-180: 330 Da).  
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Figure 19. CKB enzymatic inhibition assay with (R)-180 (abbreviated EXRKY). CKB samples were 
treated at room temperature (20 h) with DMSO, 50 µM, 500 µM, or 5 mM (R)-180. The assay was 
performed using an enzyme final concentration of 25 nM.  
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At 5 mM, the CKB activity was reduced ~95% and no MS peak characteristic 

of the unmodified enzyme could be observed. The major species in this sample was 

the (R)-180 CKB mono-adduct (MW 45001 and MW 45042) and trace levels of a 

(R)-180 di-adduct (MW 45330 and MW 45372). The evidence of a di-adduct may 

explain, in part, the three different modified residues observed in the tryptic digestion 

experiments.  

 

 

Figure 20.  MS analysis of intact CKB (~50 µg) modified with (R)-180 at different concentrations. 
Samples were incubated with DMSO or the AB&CR agent at room temperature (20 h), dialyzed 
against ddH2O, lyophilized, and analyzed. CKB samples were treated with the following conditions, 
top to bottom: DMSO, 50 µM (R)-180, 500 µM (R)-180, 5 mM (R)-180.  

 

The in-gel fluorescence experiment showed no adduction in the DMSO 

treated CKB sample, and a dose-dependent increase in the fluorescence intensity 

with samples modified with 50, 500 and 5000 µM of (R)-180 (Figure 21, blue arrow). 

We reduced the sensitivity of the fluorescence scanner for this gel (PMT 300) in 

order to have non-saturating fluorescence levels.   
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Figure 21. Fluorescence scan (very low sensitivity, PMT 300) of CKB samples treated with various 
concentrations of (R)-180. Samples were incubated with DMSO or (R)-180 at room temperature (20 
h), dialyzed against HEPES buffer (pH 7.5), clicked with Probe 196 and resolved on 15% SDS-PAGE 
gel. Lane 1: DMSO treated; lane 2: (R)-180 (50 µM); lane 3: (R)-180 (500 µM); lane 4: (R)-180 (5 
mM). The Coomassie stain of the gel showed equal amounts of protein per well (picture not shown). 
Approximate molecular weight markers are shown in red on the left. 

 

The correlation of the MS data with the levels of CKB enzymatic inhibition 

was not exact. We found that the enzyme activity was reduced by ~60% in samples 

that showed ~33% of a (R)-180 mono-adduct. Several factors may have accounted 

for this difference. One of these is the potentially different ionization properties of the 

CKB unmodified, (R)-180 mono-adduct and (R)-180 di-adduct samples in the mass 

spectrometer. Taken together, the results strongly suggest that the inhibitory activity 

of (R)-180 is mediated by a covalent modification of Cys283. In addition, the strong 

in-gel fluorescent signal obtained at 50 µM of (R)-180 combined with the absence of 

a detectable MS signal for the (R)-180 mono-adduct (Figure 20) and no detectable 

loss of enzymatic activity (Figure 19) indicated that very low adduction levels (<1%) 

are sufficient to generate an intense signal in the in-gel experiments. These findings 

provide an insight into the sensitivity of this proteomic method. 
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4.2.6. Interaction of lacosamide with CKB   

 Most CKB labeling competition experiments using the rat cytoplasmic lysate 

or the purified enzyme with (R)-180 (1–10 µM) in the presence of excess (R)- or (S)-

LCM (100 to 5000 equiv) at room temperature (20 h) led to no reduction in 

fluorescence intensity of labeled CKB. These findings raised concerns since protein 

adduction by (R)-180 should be competitively blocked by excess (R)-LCM. 

Accordingly, we asked whether CKB activity was inhibited by (R)-LCM.  

Intriguingly, our first experiments conducted using purified CKB, showed that 

(R)-LCM inhibited the enzyme at therapeutically relevant concentrations (IC50 ~20–

50 µM), while (S)-LCM had no effect up to 500 µM. The IC50 value of (R)-LCM, 

however, fluctuated with the amount of enzyme used per reaction. Furthermore, 

inhibition was only observed if the enzyme was pre-incubated with the drug for 10 

min prior to starting the kinetic assay measurement. Noteworthy, incubation of (R)-

LCM with a CKB sample containing 1 mM DTT led to no detectable inhibition of the 

enzyme.  

The protective effect of DTT led us to hypothesize that the batch of (R)-LCM 

used was contaminated with trace amounts of a heavy metal and that this metal led 

to enzyme inactivation.464,465 Significantly, the (R)-LCM sample used in these studies 

employed Ag2O in the final synthetic step for (R)-1 (route 1 , see Section 2.2.2.1, 

Scheme 14). To confirm this hypothesis, we separately tested the effects of TPEN, a 

known heavy-metal chelator, on the enzyme. At 10 µM, TPEN did not have any 

inhibitory activity on CKB. When CKB (2 nM) was pre-incubated with 200 µM (R)-

LCM, the enzyme was fully inhibited. However, in the presence of 10 µM TPEN, (R)-
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LCM (200 and 500 µM) had no appreciable effect on the activity of the enzyme. 

Further supporting these results was the lack of activity of O-ethoxy (R)-48, which 

possesses anticonvulsant activity similar to (R)-LCM in the MES test,466 and that 

was prepared using a heavy-metal-free synthetic route (route 3 , see Section 2.2.2.2, 

Scheme 16).466 Taking advantage of the large quantity of CKB that was available, we 

evaluated the binding affinity between CKB and (R)-LCM using isothermal titration 

calorimetry (ITC). In these experiments, highly concentrated stocks of CKB (5–10 

mg.mL-1, 115–230 µM) were dialyzed (2 x 2 h) against given equilibration buffers 

(phosphate buffer, pH 6.5 or 7.5, including TCEP or BME as reducing agent, in 

either the presence or absence of DMSO (5%)).  

0 1000 2000 3000 4000 5000

Time (sec)

 

Figure 22. Left picture: ITC trace of the interaction between CKB and (R)-LCM. The purified enzyme 
(200 µM) was dialyzed (3 h) against 50 mM phosphate buffer (pH 7.4) containing 100 µM TCEP. The 
enzyme was then titrated with a 5 mM solution of (R)-LCM dissolved in the dialysis buffer. Right 
picture: corresponding integrated heat plot showing no correlation between the kcal.mol-1 of injectant 
and the molar ratio of the enzyme to the ligand. Machine settings are detailed in the Experiment 
Section. 
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The equilibration buffer of the second dialysis was then used to prepare the stock of 

(R)-LCM (20–25 times the protein concentration, 2.3–6.0 mM). Under no conditions 

was any significant binding affinity observed (Figure 22). The integrity of the enzyme 

was assessed by the CKB kinetic assay prior to beginning the ITC measurement. 

We concluded that CKB is selectively adducted by (R)-180 in a complex protein 

lysate, but it is not a binding partner of (R)-1. 

 

4.3. Photoaffinity labeling of the cytoplasmic lysa te 
 

Following our studies with epoxide-based AB&CR agents 175, 179, 176, and 

180, other pairs of (R)- and (S)-AB&CR agents were employed to screen the rat 

brain soluble proteome (Figure 23).  

 

N
H

O
H
N

O

O
CF3

NN

N
H

O
H
N

O

O N3

N
H

O
H
N

O

O

O

N
H

O
H
N

O

O

N

N

181 169

170168

N
H

O
H
N

O

O NCS

172

 

Figure 23. Structures of electrophilic AB&CR agents 172, and photoAB&CR agents 181, 169, 168, 
and 170 used in the screening of the rat brain cytoplasmic lysate. 
 
 
One lesson learnt from the CKB experiments was that enantiospecific labeling of a 

protein should not be the sole criterion to identify potential targets. Instead, dose-
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dependent and enantiospecific competition with (R)-LCM should serve as major 

experimental criteria for target identification. In addition, electrophilic AB groups can 

introduce a bias in the proteome search since they react with specific nucleophilic 

residues. Accordingly, the proteomic search was expanded to include a suite of 

photoAB&CR agents 181, 169, 168, and 170 (Figure 23), and to rely primarily on 

competition experiments to select target(s) of interest. AB&CR agent 172 was used 

as a reference to compare the reactivity of the different photoAB&CR derivatives. 

Following previously described protocols, we screened the rat brain 

cytoplasmic lysate with compounds 172, 181, 169, 168, and 170 using AMS to 

fractionate proteins. Each photoAB&CR agent was irradiated under specific 

conditions (see Experimental Section). After irradiation, the content of each well was 

recovered and AMS fractionation followed by click chemistry with fluorescent Probe 

196 was performed. We screened the cytoplasmic lysate with AB&CR agent (R)-172 

(1 µM, 15 min at rt, pH 7.4) and photoAB&CR agents 181, 169, 168, and 170 (1 µM) 

in the presence or absence of excess (R)-LCM (1 mM). Under these conditions, no 

protein of interest could be identified where the fluorescent labeling was diminished 

in the presence of excess (R)-LCM (1000 equiv) (Figure 24, Figure 25). 
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DMSO x           
(R)-172  x x         
(R)-181    x x       
(R)-169      x x     
(R)-168        x x   
(R)-170          x x 
(R)-LCM   x  x  x  x  x 

 

Figure 24. Left: in-gel fluorescence of different AMS cut from the cytoplasmic lysate after labeling 
with various AB&CR agents. Right: Corresponding Coomassie stains. Top to bottom: M0030 (10% 
SDS-PAGE gel); M3035 (10%); M3555 (10%). Lane 1: DMSO; lane 2: (R)-172 (1 µM); lane 3: (R)-
172 (1 µM) + (R)-LCM (1 mM); lane 4: (R)-181 (1 µM); lane 5: (R)-181 (1 µM) + (R)-LCM (1 mM); lane 
6: (R)-169 (1 µM); lane 7: (R)-169 (1 µM) + (R)-LCM (1 mM); lane 8: (R)-168 (1 µM); lane 9: (R)-168 
(1 µM) + (R)-LCM (1 mM); lane 10: (R)-170 (1 µM); lane 11: (R)-170 (1 µM) + (R)-LCM (1 mM). 
Approximate molecular weight marker (kDa) are shown in red on the left. 
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DMSO x           
(R)-172  x x         
(R)-181    x x       
(R)-169      x x     
(R)-168        x x   
(R)-170          x x 
(R)-LCM   x  x  x  x  x 

 
 
Figure 25.  Left: in-gel fluorescence of different AMS cut from the cytoplasmic lysate after labeling 
with various AB&CR agents. Right: Corresponding Coomassie stains. Top to bottom: M5570 (12.5%); 
M7090 (12.5%). Lane 1: DMSO; lane 2: (R)-172 (1 µM); lane 3: (R)-172 (1 µM) + (R)-LCM (1 mM); 
lane 4: (R)-181 (1 µM); lane 5: (R)-181 (1 µM) + (R)-LCM (1 mM); lane 6: (R)-169 (1 µM); lane 7: (R)-
169 (1 µM) + (R)-LCM (1 mM); lane 8: (R)-168 (1 µM); lane 9: (R)-168 (1 µM) + (R)-LCM (1 mM); lane 
10: (R)-170 (1 µM); lane 11: (R)-170 (1 µM) + (R)-LCM (1 mM). Approximate molecular weight marker 
(kDa) are shown in red on the left. 
 
 

4.3.1. A potential protein target for ( S)-LCM  

 We did not identify a protein that was selectively competed with an excess of 

(R)-LCM using AB&CR agents (R)-172, (R)-181, (R)-169, (R)-168, and (R)-170. 

However, we found a ~25 kDa cytoplasmic protein that was selectively adducted by 

a (S)-AB&CR agent. The protein was first identified in two different AMS fractions 

(M3045 and M4555) and solely labeled by (S)-169 (Figure 26). Interestingly, 1H 
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NMR analysis of the (S)-169 sample used showed that it was contaminated with an 

impurity. Nonetheless, despite the lowered concentration of (S)-169 compared with 

(R)-169 in this experiment, (S)-169 gave a stronger fluorescence labeling while 

producing minimal non-specific protein labeling (Figure 26, blue arrow).  

DMSO x         
(R)-172  x        
(S)-172   x       
(R)-181    x      
(S)-181     x     
(R)-169      x    
(S)-169       x   
(R)-168        x  
(S)-168         x 

 

Figure 26.  Left: in-gel fluorescence of different AMS cuts (M0030, M3045, M4555) from the 
cytoplasmic lysate after labeling with various AB&CR agents. Right: Corresponding Coomassie 
stains. The different AMS cuts corresponding to each gel are shown on the left, along with the 
percentage of SDS-PAGE gel between parentheses. Lane 1: DMSO; lane 2: (R)-172 (5 µM); lane 3: 
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(S)-172 (5 µM); lane 4: (R)-181 (5 µM); lane 5: (S)-181 (5 µM); lane 6: (R)-169 (5 µM); lane 7: (S)-169 
(5 µM); lane 8: (R)-168 (5 µM); lane 9: (S)-168 (5 µM). An impurity was present in the (S)-169 sample 
(lane 7), leading to a lower effective AB&CR concentration. Approximate molecular weight markers 
(kDa) are shown in red on the left. 
 
 

DMSO x         
(R)-172  x        
(S)-172   x       
(R)-181    x      
(S)-181     x     
(R)-169      x    
(S)-169       x   
(R)-168        x  
(S)-168         x 

 
Figure 27. Left: in-gel fluorescence of different AMS cuts (M5565, M6590) from the cytoplasmic 
lysate after labeling with various AB&CR agents. Right: Corresponding Coomassie stains. The 
different AMS cuts corresponding to each gel are shown on the left, along with the percentage of 
SDS-PAGE gel between parentheses. Lane 1: DMSO; lane 2: (R)-172 (5 µM); lane 3: (S)-172 (5 µM); 
lane 4: (R)-181 (5 µM); lane 5: (S)-181 (5 µM); lane 6: (R)-169 (5 µM); lane 7: (S)-169 (5 µM); lane 8: 
(R)-168 (5 µM); lane 9: (S)-168 (5 µM). An impurity was present in the (S)-169 sample (lane 7), 
leading to a lower effective AB&CR concentration. Approximate molecular weight markers (kDa) are 
shown in red on the left. 
 
 
 We repeated the experiment with repurified (S)-169, and found that the 

protein of interest could be enriched in a refined AMS cut (M3555) and did not 

adsorb on S-Sepharose®, or Q-Sepharose® at pH 7.5. We saw a dose-dependent 

competition of the fluorescent signal with increasing concentrations of (S)-LCM 
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(100–1000 equiv). At 1000 equiv. of (S)-LCM, the (S)-169 fluorescent signal 

disappeared, while a 1000-fold excess of (R)-LCM had little to no effect (Figure 28).  

DMSO x         
(R)-169 
(1 µM) 

 x        

(S)-169  
(1 µM) 

  x x x x x x x 

(R)-LCM 
(equiv) 

        1000 

(S)-LCM 
(equiv) 

   10 50 100 500 1000  

   

Figure 28. 12.5% SDS-PAGE gel of the rat cytoplasmic M3555 cut. Left: in-gel fluorescence scan; 
right: corresponding Coomassie stain. Dose-dependant and enantioselective competition of the 
protein targeted by (S)-LCM. Rat cytoplasmic lysate was labeled with DMSO, (R)-169, and (S)-169 in 
the presence or absence of (R)-LCM and (S)-LCM. Lane 1: DMSO; lane 2: (R)-169 (1 µM); lane 3: 
(S)-169 (1 µM); lane 4: (S)-169  (1 µM) + 10 µM (S)-LCM; lane 5: (S)-169 (1 µM) + (S)-LCM (50 µM); 
lane 6: (S)-169 (1 µM) + (S)-LCM (100 µM); lane 7: (S)-169 (1 µM) + (S)-LCM (500 µM); lane 8: (S)-
169 (1 µM) + (S)-LCM  (1 mM); lane 9:(S)-169 (1 µM) + (R)-LCM (1 mM). Approximate molecular 
weight markers (kDa) are shown in red on the left.  
 
 
 Next, we tried to optimize conditions for biotin purification of the ~25 kDa 

protein by conducting a dose-dependent labeling experiment. However, we 

observed that while the extent of protein non-specific labeling increased with 

increasing (S)-169 concentrations, the intensity of the ~25 kDa fluorescent signal 

rapidly reached a plateau between 5–10 µM (Figure 29). This finding suggested that 

the protein’s extent of modification was maximal around 5 µM of (S)-169, and led us 

to hypothesize that, given the level of fluorescence intensity observed on the gels, 
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the ~25 kDa protein was present in low abundance in the lysate. In summary, a 1 

µM concentration of (S)-169 gave minimal non-specific protein labeling while 

providing a strong specific signal for the protein of interest. 

Concentration 
(in µM) 

5 10 15 20 

(R)-169  x  x  x  x  
(S)-169   x  x  x  x 

 

Figure 29.  Fluorescence scan of the cytoplasmic AMS cut M3555 after labeling with (R)-169 or (S)-
169 at various concentrations (10% SDS-PAGE gel) and click chemistry with 196. Lane 1: (R)-169 (5 
µM); lane 2: µM (S)-169 (5 µM); lane 3: (R)-169 (10 µM); lane 4: (S)-169 (10 µM); lane 5: (R)-169 (15 
µM); lane 6: (S)-169 (15 µM); lane 7: (R)-169 (20 µM); lane 8: (S)-169 (20 µM). The Coomassie stain 
(picture not shown) indicated equal amounts of protein loaded per well. Approximate molecular 
weight markers (kDa) are shown in red on the left.   

 

4.3.2. Enrichment procedure for the ~25 kDa protein  

Recognizing the low level of expression of the ~25 kDa protein, we 

implemented our protocol using two enrichment steps. First, we increased the 

molecular weight cut-off (MWCO) of the dialysis membrane used to dialyze the S3 
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supernatant in the lysate preparation. Using a MWCO of ~14 kDa instead of ~5–6 

kDa led to the recovery of ~35 mg of cytoplasmic protein per rat brain instead of ~40 

mg. Second, we included a pH-dependent protein precipitation step to further enrich 

the (S)-LCM target. Initially, we briefly (15 sec) lowered the pH of the lysate from 7.4 

to either 5.5 (40 mM MES buffer), 5.0, or 4.5 (40 mM acetate buffer) after the 

photolabeling step. Denatured proteins were pelleted by centrifugation (14,000 rpm, 

3 min), and the supernatant was readjusted to pH 7.4 by adding HEPES (pH 7.4) to 

80 mM. AMS fractionation was subsequently performed, the M3555 cut was clicked 

with Probe 196 and the gels were resolved and scanned for fluorescence. 

Gratifyingly, the fluorescence intensity levels corresponding to our protein of interest 

were not affected by the lysate acidification step  (pH 4.5), while the Coomassie 

stain showed a strong reduction in the total amount of protein on the gel (data not 

shown). We further refined these conditions by precipitating proteins under even 

more acidic conditions. Using the same protocol, we precipitated proteins at pH 4.0, 

3.5 (40 mM formate buffer) and pH 3.0 (40 mM citrate buffer). After AMS 

fractionation (pH 7.4) and click chemistry, we found that the protein was still 

unaffected after treatment at pH 4.0 and 3.5, while the Coomassie stain showed a 

more pronounced reduction in the total amount of protein. At pH 3.0, however, the 

fluorescent signal corresponding to the ~25 kDa protein disappeared (Figure 30). 

These combined steps (dialysis, acid precipitation, and AMS fractionation) led to the 

removal of ~90% of total cytoplasmic proteins (~10-fold enrichment, based on 

protein concentration measurement using the Bradford assay). We then endeavored 

to identify the ~25 kDa protein by performing a large scale biotin purification 
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experiment. The cytoplasmic S3 fraction from 3 rat brains was dialyzed through a 14 

kDa MWCO membrane, and split into three equal volumes (9 mL, ~35 mg total 

protein per reaction). 

 

Acid 
treatment 

prior to AMS 
pH 3.0 pH 3.5 pH 4.0 

No  
acid 

 
pH 
3.0 

pH 
3.5 

pH 
4.0 

No  
acid 

                  
(R)-169  
(1 µM) 

x  x  x  x           

(S)-169  
(1 µM) 

 x  x  x  x          

 

Figure 30.  10% SDS-PAGE gel of the rat brain cytoplasmic lysate M3555 labeled with 1 µM (R)-169 
or (S)-169. Left picture: fluorescence scan; right picture: corresponding Coomassie stain. Lanes 1, 3, 
5, 7: 1 µM (R)-169; lanes 2, 4, 6, 8: 1 µM (S)-169. Lanes 1,2: proteins were precipitated at pH 3.0 
prior to AMS fractionation; lanes 3,4: at pH 3.5; lanes 5,6: at pH 4.0; lanes 7,8: no acid treatment was 
performed before AMS fractionation. Approximate molecular weight markers (kDa) are shown in red 
on the left. 
 
Each reaction (DMSO control, (R)-169 (1 µM), and (S)-169 (1 µM)) was plated into a 

6-well plate (1.5 mL per well) and irradiated at 4 °C (10 min at 365 nm, 1 min at 312 

nm). The contents of each well was then recovered and brought to pH 3.5 by 

addition of 1 M formate buffer (pH 3.5) to provide a 40 mM formate solution. The 

reactions were mixed (10 sec) and centrifuged (5,500 g, 5 min). The supernatant 

was transferred to a new tube (50 mL), the pH adjusted to pH 7.4 by addition of 1 M 

HEPES buffer (pH 7.4) up to 80 mM, and the solution was brought to 35% AMS 
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saturation by addition of liquid saturated AMS (54% of solution volume). After mixing 

(5 min), the suspension was centrifuged (5,500 g, 5 min), the supernatant was 

transferred to a new tube and brought to 55% AMS with saturated aqueous AMS 

(64% of initial solution volume). After mixing (5 min), and centrifugation (5,500 g, 5 

min) the supernatant was discarded, and the residual liquid on the side of the tube 

carefully wiped without touching the pellet. For each reaction, the pellet was 

resuspended in 3 mL of 50 mM NaCl, 25 mM HEPES (pH 7.4) and click chemistry 

was performed with 20 µM of biotin Probe 196 (1 h). Each reaction was 

supplemented to 0.1% SDS, dialyzed overnight against 50 mM NaCl, 25 mM 

HEPES buffer (pH 7.4), and tumbled with streptavidin beads for 30 min. Beads were 

then sequentially washed with 50 mM NaCl, 25 mM HEPES (pH 7.4) supplemented 

to 0.2% SDS (120 CV), 8 M urea (120 CV), and 50 mM NaCl, 25 mM HEPES (pH 

7.4) (120 CV). The streptavidin beads were then boiled (95 °C, 15 min) in the 

presence of 2X SDS loading buffer, resolved on 10% SDS PAGE gel and silver 

stained. Traces of proteins were present in the DMSO control, while the lanes 

corresponding to (R)-169 and (S)-169 contained identical, low levels of protein 

despite using a extended silver stain developing time (>5 min, no picture available).  

The low recovery of the ~25 kDa band and our finding that the (S)-169 reaction did 

not provide measurably enhanced levels of adduction compared with (R)-169 did not 

warrant our MS analysis of this band, and we abandoned our efforts to identify this 

(S)-LCM interacting protein.  
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4.4. Discussion 

 Epoxide-containing AB&CR agent (R)-180 and (S)-180 proved highly 

selective at labeling CKB in a complex lysate. In addition we observed that the 

enzyme was preferentially labeled by (R)-180 over (S)-180, and that the aromatic 

epoxide-containing AB&CR agent (R)-176 did not adduct CKB. Mass spectrometric 

experiments strongly suggested that the principal CKB amino acid residue modified 

by (R)-180 was Cys283, a catalytic residue crucial for enzymatic activity. However, 

no direct interaction between (R)-LCM and CKB was observed using fluorescence 

competition experiments, enzymatic inhibition assay, or ITC experiments. We have 

tentatively attributed the lack of correlation between the CKB selective, 

enantiospecific labeling by (R)-180 and its binding with (R)-LCM to several reasons. 

First, epoxide electrophiles are prone to react with cysteine residues.274,308,309  

 

In this regard, the selective modification of CKB by aliphatic epoxide (R)-180 

compared with aromatic epoxide (R)-176 may be rationalized by the report that 

epoxycreatine 202, is a known rabbit muscle-type creatine kinase (CKM) epoxide 

inhibitor.467 CKM shares an 80% identity with CKB and possesses the conserved 

catalytic site in humans, rats and rabbits that is seen in CKB. Epoxide 202 is known 

to modifiy Cys 282 of rabbit CKM, the CKB Cys283 homolog,467 and (R)-180 and 



 

 263 

202 have structural features in common. They both possess an aliphatic epoxide 

moiety in proximity of an amino acid backbone. Among several other possibilities, 

one can hypothesize that this combination of pharmacophores in both (R)-180 and 

epoxycreatine, but unmet in (R)-176, is required for the cysteine residue nucleophilic 

attack. Thus, only a small fragment of the lacosamide framework in (R)-180 may be 

sufficient for binding and covalent modification of CKB, while the lack of an epoxide 

moiety in (R)-LCM results in a loss of interaction with CKB (Figure 22), and the 

absence of (R)-LCM competition for (R)-180 modification of CKB in the in-gel 

fluorescence experiments (Figure 15). We have tentatively attributed compound 

180’s (R)- vs (S)- labeling selectivity to a greater binding affinity with the CKB 180 

binding pocket. 

Consistent with our hypothesis, epoxide-based AB&CR agents 175, 179, 176 

and 180 all displayed high labeling selectivity that mirrored their expected low 

reactivity profiles. However, the extended reaction time (20 h) needed for epoxide 

adduction raises concerns that protein denaturation may have occurred during this 

reaction time. While a robust enzyme such as CKB remains functional over a long 

time, other proteins of interest in the lysate may denature quickly. This concern 

suggests that an ideal balance should be reached where the AB agent is sufficiently 

reactive over a moderate time period, but not too reactive leading to nonspecific 

adduction, to maximize chances of capturing potential targets. 

We also screened the rat brain cytoplasmic fraction using the suite of 

photoAB&CR agents 181, 169, 168 and 170 and compared them with the NCS-

containing agent 172. We observed that the 4 photoAB moieties and the NCS AB all 
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displayed very different reactivity profiles at 1 µM (Figure 24, Figure 25) at 4 °C. The 

isothiocyanate group (15 min incubation, pH 7.4) and the trifluoromethylaromatic 

diazirine (10 min at 365 nm, 1 min at 312 nm) gave fluorescence signals with 

comparable intensities, yet with different labeling patterns. Aromatic azide (R)-181 

(10 min at 365 nm), methyldiazirine (R)-168 (30 min at 365 nm, 1 min at 312 nm), 

and benzophenone (R)-170 (1 h at 365 nm) all displayed lower adduction levels 

compared with (R)-172 and (R)-169, and yet gave different protein labeling profiles. 

Unlike the three other photoAB&CR agents, we found that the protein labeling 

efficiency of the aromatic azide photoAB was highly temperature-dependent. At a 1 

µM concentration, photoAB (R)-181 went from a low fluorescence intensity (4 °C) 

comparable to that of benzophenone (R)-170, to a strong fluorescent signal (room 

temperature) that was greater than  isothiocyanate (R)-172 and aromatic diazirine 

(R)-169 under the same conditions (data not shown). These findings emphasize the 

need to use the largest possible variety of affinity labels to maximize the chances of 

identifying a drug target in a complex protein environment. Despite the number of 

affinity labels (7) used in this proteomic search, we were not able to identify a 

selectively labeled protein whose fluorescent signal was competed by an excess 

amount of (R)-LCM.  

Interestingly, a parallel study conducted in the laboratory using a mouse brain 

cytoplasmic lysate (work of Dr Ki Duk Park) showed that isothiocyanate-containing 

AB&CR 172 labeled CRMP2,384 a ~62 kDa putative binding partner of (R)-LCM.233 

The extent of protein labeling was ~2-fold higher with (R)-172 when compared with 

(S)-172.384 Nonetheless, using our screening conditions, we did not observe any ~62 
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kDa protein that was preferentially labeled by (R)-172 over (S)-172 (Figure 24, 

Figure 25). Many possibilities may account for this difference. The animal used in 

the protocol should not, in principle, greatly influence the results given the fact that 

(R)-LCM is potent in both the mouse and the rat against MES-induced seizures. 

Perhaps more important, the amino acid sequences of the mouse and rat CRMP2 

proteins are virtually identical. However, the two lysate preparations greatly differ 

and are likely the source of disparities observed.  Significantly, the mouse brain 

cytoplasm was obtained by homogenizing the rat brain in plain HEPES buffer (50 

mM, pH 7.4) that was not supplemented in sucrose, or protease inhibitors, and was 

used directly to conduct labeling experiments after centrifugation (100,000 g, 1 h). In 

contrast, the rat brain homogenate was prepared using literature established 

protocols,424-427 using a buffer system (HEPES, 25 mM, pH 7.4) supplemented to 

320 mM sucrose and 4 different protease inhibitors (see Section 3.1). Additionally, 

the rat cytosolic lysate obtained after centrifugation was extensively dialyzed (2 

buffer changes) against 100 volumes HEPES buffer (25 mM, pH 7.4, supplemented 

to 50 mM NaCl). These three major differences may result in very different protein 

environments and therefore different screening conditions. Importantly, the absence 

of sucrose may result in some intracellular organelle leakage during 

homogenization, thus increasing the complexity of the lysate, and the lack of 

protease inhibitors may lead to some extent of protease degradation. In addition, the 

absence of a dialysis step will lead to the presence in the lysate of a variety of 

secondary messenger molecules468-471 that might influence protein conformation.  
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We did, however, identify a soluble protein modified exclusively by (S)-169. 

This ~25 kDa soluble protein precipitated in the M3555 AMS cut (pH 7.4) (Figure 

28), and did not adsorb on S-Sepharose® (pH 4.5 or pH 7.5) or Q-Sepharose® (pH 

7.5) (data not shown). Fluorescence labeling experiments showed a highly selective 

labeling by (S)-169 over (R)-169, and the fluorescent signal of (S)-169 disappeared 

in a dose-dependent manner with excess (S)-LCM, but not (R)-LCM (Figure 28). 

Use of a strongly acidic workup (~pH 3.5) did not cause the protein of interest to 

precipitate while ~50% of all the proteins present in the cytoplasmic lysate were 

denatured and precipitated. Dose-dependent labeling experiments with (S)-169 

showed that the relatively weak fluorescent signal of the ~25 kDa protein rapidly (5–

10 µM) reached a plateau at 5–10 µM concentrations, while further increasing the 

photoAB&CR concentration (up to 20 µM) only resulted in a pronounced labeling of 

abundant proteins. This finding suggested that the protein was present in low 

abundance in the cytoplasmic protein lysate. Thus, we used a combination of protein 

dialysis (MWCO ~14 kDa), brief acidic treatment (pH 3.5), and AMS fractionation 

which resulted in a ~10-fold enrichment of the protein. The lysate was treated with 

DMSO, 1 µM (R)-169, and 1 µM (S)-169, irradiated, and each reaction was 

fractionated with AMS as described in the Experimental Section (see Sections 4.6.2 

and 4.6.3). After click chemistry with biotin Probe 191, dialysis, and streptavidin 

capture, the streptavidin-bound proteins were stringently washed, and eluted using 

SDS loading buffer. Traces of proteins were found in the DMSO control, while 

higher, yet minute amounts of proteins were present in samples treated with (R)-169 

and (S)-169. Both agents gave virtually identical protein profiles and did not mirror 
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the fluorescence scan previously observed (Figure 30). Even after prolonged 

developing, the silver stain did not show any ~25 kDa protein present in higher 

abundance in the (S)-169 reaction compared with the (R)-169 reaction. Thus, 

despite the use of acid and AMS fractionations and large amounts of protein per 

reaction (S3 fraction from one rat brain, ~35 mg per reaction, 3 rat brains), we were 

not able to isolate a protein band of interest after biotin purification.  We concluded 

that the level of expression of this protein targeted (S)-LCM was too low for us to 

identify using the employed methodolgy. 

 

4.5. Conclusions 

Screening the rat brain cytoplasmic fraction with a large panel of AB&CR 

agents yielded a potential, low abundance protein targeted by (S)-LCM, but no 

protein selectively modified by our (R)-LCM AB&CR derivatives. While many factors 

may have been responsible for our lack of target identification in the cytoplasmic 

lysate, one likely explanation is the subcellular localization of the drug target. Indeed, 

membrane-bound proteins such as VGICs, LGICs, neurotransmitter transporters are 

key targets for many AEDs. Therefore, we advanced to the next step by 

interrogating the membrane-bound proteome. 
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4.6. Experimental Section 

4.6.1. Preparation of the rat brain cytoplasmic lys ate 

 Frozen male Sprague Dawley stripped rat brains (6–8 weeks old, Pel-Freez 

Biologicals, cat # 56999, or Rockland Immunochemicals, cat # RT-T081, 1.5–1.8 g 

per whole brain) were thawed on ice at 4 °C until sof t, finely minced with razor 

blades and homogenized (10 mL buffer per gram of wet tissue) using a glass/Teflon 

Dounce homogenizer in 320 mM sucrose 25 mM HEPES buffer (pH 7.4) 

(supplemented with 1 mM PMSF, 10 µM E-64, 10 µM Pepstatin A, and 1 µM TPEN) 

by 10–15 up-and-down strokes by hand, taking 20 sec to complete one stroke. The 

homogenate was centrifuged at 4 °C (100,000 g, 50 min ), the supernatant was 

dialyzed twice (1 h) against 3 L of 25 mM HEPES (pH 7.4), 50 mM NaCl using a 

Spectra/Por® dialysis membrane (MWCO 3,500; Spectrum Laboratories Inc., cat # 

132720) and stored at -80 °C until use for up to 2 mo nths.  

 

4.6.2. Cytoplasmic protein labeling with AB&CR agen ts 

 The following AB&CR agents were incubated as follows prior to fractionation 

(AMS and/or ion exchange chromatography). Epoxide AB&CR agents 175, 179, 176 

and 180 (1–10 µM, 2% (v/v) DMSO final concentration) were incubated with the 

cytoplasmic lysate (pH 7.4) at room temperature (20 h). The lysate then underwent 

fractionation and click chemistry. PhotoAB&CR molecules were irradiated as follows: 

181, 10 min at 365 nm; 169, 10 min at 365 nm then 1 min at 312 nm; 168, 30 min at 

365 nm, then 1 min at 312 nm; 170, 60 min at 365 nm. On small scale (100 µL 
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reactions), photolabeling was carried out at 4 °C in cle ar 96-well plates (BD 

Falcon®). Larger scale experiments were conducted using 6-well plates (1.0–1.5 mL 

per well). Two types of UV lamps were used to irradiate samples (365 nm; 312 nm: 

Spectroline, LonglifeTM Filter), and were positioned 1 cm above the well. A maximum 

of 2 rows (2 x 12 wells) were irradiated at the same time when using 96-well plates 

and 1 row (1 x 3 wells) when performing large scale experiments.  

 Competition experiments were conducted by pre-incubating the lysate with an 

excess amount of (R)- or (S)-LCM for 5 min (500–1500 equiv) at room temperature 

prior to starting the labeling experiment. 

 

4.6.3. General procedure for lysate fractionation 

 The rat brain lysate (100–200 µL reactions, 2–3 mg.mL-1) was incubated with 

the desired AB&CR agents and AMS fractionation and ion exchange 

chromatography were performed as described in Section 3.2. Typical AMS cuts 

recovered were M0030, M3045, M4555, M5565, and M6590. The first 4 AMS cuts (0 

to 65% saturation) were obtained by liquid addition of a saturated AMS solution at 

room temperature (65% ~2 initial volumes of sat. AMS added). After mixing, the 

solution was let to stand for 5 min and centrifuged (14,000 rpm, rt, 3 min). The last 

cut was obtained by addition of solid AMS. AMS pellets were redissolved in 25 mM 

HEPES (pH 7.4) and click chemistry was performed. 

 For ion exchange chromatography, the resin (S-Sepharose or Q-Sepharose, 

~10 µL resin for 100 µg of total protein) was pre-equilibrated with the desired buffer, 

typically HEPES buffer supplemented with 50 mM NaCl, and the lysate was added 



 

 270 

to the resin. After a short incubation (30 sec), the flow-through was recovered, and 

the resin rinsed with 10 CV of equilibration buffer. At pH 7.4, typical elution fractions 

recovered on both S-Sepharose® and Q-Sepharose® were 50–200 mM NaCl, 200–

250 mM NaCl, 250–300 mM NaCl and 300–350 mM NaCl and click chemistry was 

performed on the eluates. 

  

4.6.4. Click chemistry 

Click chemistry was performed as described in Section 3.4. Fluorescent 

Probes 195 or 196, and biotin Probes 193 or 191 were added to the fractionated 

lysate samples (20 µM), typically in PCR 8-tube strips (volume 250 µL). 10X Cu(I) 

mix was freshly prepared by sequentially adding (for 100 µL) 10 µL of 25 mM CuSO4 

(aqueous), 40 µL of 625 µM TBTA (in 1:4 DMSO:t-BuOH), and 50 µL of 5 mM TCEP 

HCl (aqueous), and added to each sample at a 1/10 dilution. Samples were gently 

mixed and let stand at room temperature (1 h). SDS-loading buffer was added to 

samples, and then the samples were heated at 75 °C (5 min) and resolved on SDS 

PAGE gels (6–12.5%). 

  

4.6.5. ITC experiments 

ITC experiments were conducted at 25 °C (Microcal TM, VP-ITC 

microcalorimeter). The CKB enzyme (100–200 µM, ~2.5 mL) was dialyzed against 

the desired buffer (1.5 L) for at least 3 h, and a solution of (R)-LCM in the dialysis 
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buffer (2–5 mM) was prepared. In a typical ITC experiment, the enzyme was titrated 

with (R)-LCM, using the following conditions.  

Experimental parameters: total number of injections: 30; cell temperature: 25 

°C; reference power: 10 µCal.s-1; initial delay: 60 s; stirring speed: 490 rpm.  

Injection parameters: initial injection volume: 2 µL, duration: 4 s, spacing: 120 

s, filter period: 2 s; injections: 10 µL, duration 20 s, spacing: 180 s. 

 

4.6.6. Creatine Kinase B enzymatic assay 

The components of the coupled enzymatic assay were as follows. 

(A) CKB (GenWay Biotech cat # 10-663-45059): Commercial human CKB, 

tag-free. The overexpressed and purified human CKB was prepared according to 

literature procedures and contains a C-terminus His-tag (see Sections 4.6.7 and 

4.6.8).457   

(B) Hexokinase (HK) (Sigma cat # H4502): Catalyzes the transfer of a 

phosphate group from ATP to D-glucose to form glucose-6-phosphate (G6P) 

(C) Glucose 6-Phosphate Dehydrogenase (G6PDH) from leuconostoc 

mesenteroides (Sigma cat # G5885): Catalyzes the oxidation of G6P to 6-

phosphogluconolactone using NADP as a cofactor and generating NADPH.  The 

absorbance of the solution is measured at 340 nm. 

(D) Phosphocreatine (Sigma cat # P7936), ADP (Sigma cat # 01897), 

Mg(OAc)2 (Sigma cat # M5661), D-glucose (Sigma cat # G7528), NADP (Sigma cat 

# N5755), DTT and MES. For assays where a complex lysate is used as a source of 
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creatine kinase, it may be necessary to include 10 mM AMP to stop myokinase 

activity.446 AMP is not utilized in this assay. 

The assay was conducted in 96-well plates using 150/200 µL total volume for 

each reaction either at room temperature (Plate reader: HTS 7000 Plus Bio Assay 

Reader, Perkin Elmer) or at 37 °C (Plate reader: POL ARstar OPTIMA, BMG 

Labtech). HK was prepared as a 100 X stock in 100 mM MES buffer (pH 6.5) and 

stored at -20 °C. HK can sustain many freeze/thaw cycles without losing activity. 

G6PDH was prepared as a 1000 X stock in 50 mM phosphate buffer (pH 7.2), 200 

mM NaCl, and 1 mM EDTA, and stored at 4 °C. Phospho creatine (PCr), ADP, D-

glucose, Mg(OAc)2, and DTT were prepared as 50 X stock solutions in 100 mM MES 

(pH 6.5) separately, and stored at -20 °C. To prepar e a 10 X assay buffer mix, one 

volume of each of the 50 X stock solutions were mixed. When preparing 50 X stocks 

(concentrated solutions in MES buffer), the specific volumes of the solids were taken 

into account if the concentration of the stock solution was greater than 300 mM. 

NADP 10 X solutions were prepared prior to performing the assay and stored at -20 

°C. The NADP stock solutions did not undergo more than 2–3 freeze-thaw cycles. 

MES buffer (pH 6.5) was used at a 100 mM working concentration to dissolve all 

reagents and q.s. reactions to 150 or 200 µL.  

For a typical CKB assay having a reaction volume of 200 µL reaction, CKB 

was used at 5–50 nM final concentration (MW = 43,466 Da, His-tagged CKB). 

100    µL of 10 nM CKB (2 X) 

    4    µL of 500 mM DTT (50 X in 100 mM MES (pH 6.5))  

    4    µL of 1 M D-glucose (50 X in 100 mM MES (pH 6.5)) 
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    4    µL of 500 mM Mg(OAc)2 (50 X in 100 mM MES (pH 6.5)) 

    4    µL of 500 mM PCr (50 X in 100 mM MES (pH 6.5)) 

    4    µL of 50 mM ADP (50 X in 100 mM MES (pH 6.5)) 

    0.2 µL of 1000 U.mL-1 G6PDH (1000 X in 200 mM NaCl, 1 mM 

EDTA, 50 mM phosphate buffer (pH 7.2)) 

    2    µL of 50 U.mL-1 HK (100 X in 100 mM MES (pH 6.5)) 

  20    µL of 3 to 4 mM NADP. 

  53.8 µL of 100 mM MES (pH 6.5) 

 

4.6.7. Cloning of CK-B 

Cloning and overexpression of CKB was performed following literature 

procedures.457,458 The CKB gene was first PCR-amplified from a human brain cDNA 

library (Liu lab) using the following conditions (Table 4) and established primers.457,458  

 

5’-ATTGCCCATATGCCCTTCTCCAACAGC-3’ (Nde1 site ) 

5’-ATACCGCTCGAGTCATTTCTGGGCAGG-3’ (Xho1 site ) 

 

The following conditions were used for the PCR amplification. 1st denaturation 

step: 95 °C (5 min); 2 nd denaturation step: 95 °C (20 sec); annealing step: 60 °C (15 

sec); extension step: 72 °C (1 min); repeat from 2 nd denaturation step: 30 cycles; 

final extension step: 72 °C (10 min). 
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Table 4.  Components used for the PCR amplification of the CKB gene from a human cDNA library 
Component  Volume  Final Concentration  

10 X buffer for KOD DNA Polymerase 5 µL 1X 
25 mM MgSO4 3 µL 1.5 mM 

dNTPs (2 mM each) 5 µL 0.2 mM (each) 
DEPC-treated water 35.3 µL  

Sense (5’) primer (50 µM) 0.4 µL 0.4 µM 
Anti-Sense (3’) primer (50 µM) 0.4 µL 0.4 µM 

Template DNA 0.5 µL  
KOD DNA polymerase (2.5 U/µL) 0.4 µL 0.02 U/µL 

Total reaction volume  50 µL  
 

The obtained CKB PCR product (23 ng.µL-1) and pET28a vector were 

digested using Nde1 and Xho1 restriction enzymes at 37 °C  (3.5 h). The enzymes 

were heat-inactivated at 65 °C (20 min) and the sampl es were resolved on a low 

melting point agarose gel (1%). Digested products were excised from the gel 

(visualization with UV irradiation) and extracted following QIAGEN Quick Spin DNA 

extraction protocol.  

The digestion products were used for ligation using a T4 DNA ligase using 

either a DNA:vector ratio of 3:1 or a DNA:vector ratio of 1:1. Amounts were 

calculated using an online software (www.promega.com/biomath) based on 

concentrations of 9.0 ng.µL-1 of 1.1 kb DNA and 33 ng.µL-1 of 5.3 kb vector (Table 

5). 

 

Table 5. Components used for the ligation reaction between CKB and pET28a vector digested 
products 

Conditions  3:1 DNA:vector  1:1 DNA:vector  
Vector 5 µL  5 µL 

CKB DNA 2.4 µL 0.8 µL 
10 X buffer T4 ligase 1 µL 1 µL 

DEPC H2O 0.6 µL 2.2 µL 
T4 DNA ligase 1 µL 1 µL 
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The reactions were incubated at 16 °C (18 h), ligati on reaction products (5 µL) 

were transformed into TOP10 competent cells, and colonies were grown overnight 

(37 °C) on LB agar plates supplemented with kanamycin ( 50 µg.mL-1). Colony PCR 

was performed using T7 promoter (sequence: 5’ TAA TAC GAC TCA CTA TAG GG 

3’) and terminator (5’ TGC TAG TTA TTG CTC AGC GGT 3’) primers to check for 

correct insertion of the gene of interest. Three colonies positive for insertion were 

grown on a 5-mL culture scale and the plasmid was purified using commercial 

plasmid purification kits (QIAGEN, cat # 27104). Each purified plasmid was 

transformed into the expression cell line Rosetta 21 (Novagen®, cat # 69450) (+ 

chloramphenicol, 34 µg.mL-1), grown overnight on LB agar (+ kanamycin, 50 µg.mL-

1, + chloramphenicol, 34 µg.mL-1) and a single colony of each was used to grow a 5-

mL culture of bacteria. Each culture was supplemented to 25% glycerol and stored 

at -80 °C for future use. Sequencing (UNC-CH Genome Analysis Facility) showed 

one of the three CK-B plasmids contained a point mutation (K177R), while the other 

two plasmids were mutation-free. One of the mutation-free plasmids was used for 

protein overexpression. 

 

4.6.8. Overexpression and purification of CK-B 

A 1.5 L LB culture of CKB expressing E. coli was grown to OD600 ~0.6 by 

shaking at 37 °C. The culture was then cooled to room te mperature, induced with 1 

mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and vigorously stirred with a 

magnetic stirring bar (1000 rpm) at room temperature (15 h). The cells were then 

harvested by centrifugation at 5000 rpm at 4 °C (10 m in), and the pellet 
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resuspended in lysis buffer (10 mL per gram of wet pellet, 300 mM NaCl, 50 mM 

HEPES (pH 7.5)) supplemented with 5% (w/v) glycerol, 1 mM PMSF, and 0.5% (w/v) 

lysozyme. After rotating at 4 °C (30 min), the cells we re disrupted by sonication on 

ice at 4 °C (7 x 1 min bursts, 30 sec pauses) and the suspen sion was centrifuged at 

5000 rpm at 4 °C (15 min). The supernatant was adsorb ed on a cobalt-resin (TALON 

resin, BD Biosciences, cat # 635504) for His-tag purification. The resin was washed 

with the lysis buffer supplemented with 10 mM imidazole (10 CV) and eluted with 

lysis buffer supplemented with 250 mM imidazole (5 CV). The eluted fraction was 

purified by AMS fractionation and M4070 was recovered. The AMS pellet was 

resuspended in 50 mM MES (pH 6.5), and 100 mM NaCl, dialyzed against the same 

buffer (1 h) and fractionated on Q-Sepharose® equilibrated with 100 mM NaCl 50 

mM MES buffer (pH 6.5). The resin was washed with the equilibration buffer (10 CV) 

and a homogeneous solution of CK-B (~100 mg of protein) was obtained by eluting 

with 200 mM NaCl 50 mM MES buffer (pH 6.5). The enzyme was then precipitated 

with AMS (M0070) and stored (-20 °C) either as an AMS pellet, or as a  high-

concentration stock in 100 mM MES buffer (pH 6.5) supplemented with 1 mM DTT 

and 20% (v/v) glycerol. Under these conditions, no detectable loss of activity was 

observed for up to 2 months. 

 



5.  

 

 

CHAPTER 5 

 

MEMBRANE-BOUND FRACTION SCREENING 

 

We extensively screened the cytoplasmic fraction with different electrophilic 

and photoactivated AB&CR and did not identify a potential target protein displaying 

dose-dependent competition with (R)-LCM. Therefore, we turned to membrane-

bound, subcellular fractions within the rat brain proteome to search for potential 

lacosamide targets. Membrane-associated proteins can be studied without 

solubilization as heterogeneous microsomes formed after tissue homogenization. 

Alternatively, they can be solubilized with a variety of commercially available 

detergents. Solubilized membranous proteins may then be enriched or purified by 

ion-exchange resin fractionation, provided that the equilibration and elution buffers 

are supplemented with the desired detergent.  

 

5.1. Using non-denaturing detergents to solubilize m embrane-bound proteins 

Detergents, or surfactants, used in membrane protein biology are small 

molecules capable of forming micelles that serve as a water-soluble membrane-like 

environment for proteins. The specificity of these molecules lies in their amphiphilic 

character, and they are typically linear molecules with one hydrophilic head and one 

lipophilic tail. Other types of detergents exist, which are termed “facial amphiphiles” 
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and possess one polar and one non-polar surface area.472,473 Surfactants come in 

several classes: cationic, anionic, neutral and zwitterionic. Ionic detergents (i.e., with 

a net negative or positive charge) strongly interact with protein charged residues and 

can lead to a loss of protein structure. Anionic and cationic detergents are therefore 

considered denaturing. On the other hand, neutral and zwitterionic surfactants have 

been used as mild solubilizing agents to purify membrane-bound proteins while 

maintaining their activity.429,474,475 Nonetheless, the use of a non-denaturing 

detergent does not guarantee the proper solubilization, folding, or stability of a 

protein.476-478  

 

 
Figure 31. Structure of non-ionic and zwitterionic detergents used in our study of the membrane 
proteome. 

 

One important physicochemical constant of a given detergent is the critical 

micellar concentration (CMC), which is the concentration at which it will start forming 

micelles. A given surfactant can, therefore, only solubilize membrane proteins at a 
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concentration greater or equal to its CMC. For our studies, we used a small panel of 

structurally-diverse, non-denaturing detergents to solubilize a wide range of 

membrane-bound proteins. Triton X-100 (TX100), β-dodecylmaltoside (β-DDM), 3-

(N,N-dimethylmyristylammonio)propanesulfonate (zwittergent 3-14, Zw3-14), and 

CHAPS (Figure 31) are commonly used surfactants for the solubilization and study 

of functional membrane proteins.479-482  

 

5.1.1. Preparation of detergent-solubilized membrane  extract from rat brain  

In our initial approach, we recovered the heavy-membrane fraction (P2) and 

the light-membrane fraction (P3) after homogenization of the rat brain (Scheme 40). 

The organelles contained in the P2 fraction were hypo-osmotically lyzed, and the 

membrane fraction was recovered by centrifugation at 6,000 g (15 min) and the 

supernatant discarded. In other preparations, we directly centrifuged the S1 

supernatant at 100,000 g (1 h) to obtain a combined P2+P3 pellet containing the 

whole membrane fraction of the brain. This combined pellet was also subjected to 

hypotonic lysis to discard the soluble content of intracellular organelles. 

In a typical preparation, both membrane materials (P2+P3) was resuspended 

in isotonic buffer, such as 25 mM HEPES (pH 7.4) containing 150 mM NaCl, in 

separate tubes at 4 °C with a total protein concentrati on of ~5 mg.mL-1 (Bradford 

assay), and each suspension was then supplemented with a detergent at a specific 

concentration (i.e., (w/v): 1% TX100, 0.5% β-DDM, 0.5% Zw3-14, 1% CHAPS). The 

suspensions were gently rocked for 15 min at 4 °C and cent rifuged at 100,000 g for 

1 h. The pellet was discarded and the homogeneous supernatant containing 
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detergent-solubilized membrane proteins was used to perform labeling and click 

chemistry.  

Membrane proteins fractionation was performed at pH 7.5 using sequential S 

and Q Sepharose® and by supplementing the equilibration and elution buffers with 

the following concentrations of surfactant: 1% for TX100, 0.5% for β-DDM, 0.1% for 

Zw3-14, and 1% for CHAPS. For solutions containing greater than 0.5% Zw3-14, the 

addition of SDS loading buffer to the high salt (>250 mM NaCl) eluted fraction led to 

a highly viscous solution that impeded proper electrophoretic resolution. 

Furthermore, the Zw3-14-solubilized protein solutions were not kept for an extended 

period of time at 0–4 °C since the surfactant is water- insoluble at this temperature. 

Failure to do so led to protein sample precipitation. Finally, the Zw3-14 samples 

could be frozen at -80 °C without any special procedure  but were thawed quickly 

(i.e., by immersion in a water bath at room temperature) to avoid loss of proteins. 

Following this procedure, we did not observe any significant precipitation in our 

samples. 

 

5.1.2. Solubilized membrane fraction screening 

Following the previously described protocol, we screened the rat, detergent-

solubilized, membrane-bound proteome using both enantiomers of photoAB&CR 

agents 181, 169, 168, 170 and where (R)-LCM and (S)-LCM served as competing 

agents. The irradiation conditions for the photolabeling step were identical to those 

described in Section 4.6.2. When Sepharose® fractionation was used after the 

labeling step, membrane fractions were resolved on SDS-PAGE gel (minigel size, ~8 
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cm high). Alternatively, when no fractionation was performed, samples were 

resolved using a larger (~20 cm high) SDS-PAGE gel system (Protean II XL cell, Bio 

Rad) to provide a better protein separation.  

 

 Q-Sepharose® elution  Q-Sepharose® flow-through 
Enantiomer  (R) (S) (R) (S) (R) (S) (R) (S)   (R) (S) (R) (S) (R) (S) (R) (S) 

DMSO x          x         
181 (10 µM)  x x         x x       
169 (10 µM)    x x         x x     
168 (10 µM)      x x         x x   
170 (10 µM)        x x         x x 

 

Figure 32. 12.5% SDS PAGE gel of the detergent-solubilized (β-DDM, or CHAPS) membrane 
fraction (P2+P3) labeled with photoAB&CR agents 181, 169, 168, and 170. The lysate (~200 µg total 
protein) was irradiated at 4 °C under the appropria te conditions and each reaction was fractionated 
using Q-Sepharose® (equilibrated with 25 mM HEPES (pH 7.4), 50 mM NaCl, supplemented with β-
DDM or CHAPS). The flow-through (lanes 10–18) was recovered, the beads were rinsed with 
equilibration buffer, and eluted with 350 mM NaCl (lanes 1–9). Each fraction was then clicked with 
Probe 196, resolved, and scanned for fluorescence. Lane 1, 10: DMSO control; lane 2, 11: (R)-181 
(10 µM); lane 3, 12: (S)-181 (10 µM); lane 4, 13: (R)-169 (10 µM); lane 5, 14: (S)-169 (10 µM); lane 6, 
15: (R)-168 (10 µM); lane 7, 16: (S)-168 (10 µM); lane 8, 17: (R)-170 (10 µM); lane 9, 18: (S)-170 (10 
µM). The Coomassie stain (picture not shown) showed equal amounts of protein loaded in each gel. 
Approximate molecular weight markers (kDa) are shown in red on the left. 
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The reactivity profiles of the four photoAB&CR agents 181, 169, 168, and 170 

were varied, and were sometimes dissimilar within different Sepharose® fractions for 

a given photoAB&CR agent (Figure 32). The apparent order of reactivity of photoAB 

moieties was also different from the one observed in the cytoplasmic fraction 

screening.  

 

Detergent 
used 

Zw3-14 TX100  β-DDM CHAPS 

(R)-169 
(10 µM) 

x  x x x  x x  x  x x x  x x 

(S)-169 
(10 µM) 

 x    x     x    x   

(R)-LCM 
(10 mM) 

  x    x     x    x  

(S)-LCM 
(10 mM) 

   x    x     x    x 

 

Figure 33. 10% SDS-PAGE gel (minigel) of the membrane fraction (P2+P3) solubilized with a panel 
of detergents, flow-through of the S and Q Sepharose® (pH 7.4) fractionation steps. Top gels: 
fluorescence scan; bottom gels: corresponding silver stains. Black numbers: Zw3-14; green numbers: 
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TX100; blue numbers: β-DDM; red numbers: CHAPS. Solubilized proteins were labeled as follows. 
Lane 1: (R)-169 (10 µM); lane 2: (S)-169 (10 µM); lane 3: (R)-169 (10 µM) + (R)-LCM (10 mM); lane 
4: (R)-169 (10 µM) + (S)-LCM (10 mM). After photolabeling (10 min 365 nm, 1 min 312 nm), each 
reaction was passed through pre-equilibrated S-Sepharose® (pH 7.4) and Q-Sepharose® (pH 7.4) 
supplemented with the appropriate detergent. The flow-through was then clicked with fluorescent 
Probe 203 and resolved. Approximate molecular weight markers (kDa) are shown in red on the left. 
 

Using this approach, no potential lacosamide interacting proteins were 

identified that showed (R)- vs (S)-AB&CR specificity and displayed labeling dose-

dependent competition with excess (R)-LCM. (Figure 33, Figure 34). Nonetheless, 

some bands were found to be specifically labeled by one photoAB group versus the 

other three. A few detergent-specific protein candidates were found to show near 

complete selectivity for the (R)-AB&CR versus the (S)-AB&CR agent (Figure 32, 

blue arrow), but failed to show any selective competition with a 1000–3000-fold 

excess of either (R)- or (S)-LCM. For example, we observed a ~30 kDa protein 

(Figure 32, blue arrow) that was selectively labeled by (R)-169 over (S)-169 at 10 

µM. The protein was enriched in the β-DDM soluble fraction, and did not adsorb to S 

or Q Sepharose® (pH 7.4). This protein, however, did not display any fluorescence 

signal competition in the presence of excess (R)-LCM (1000 equiv, Figure 33). In 

addition, the overall fluorescence level of selectively labeled proteins was not 

intense, indicating either a low binding affinity with the AB&CR agent, a low 

expression level of the protein, a low level of recovered functional protein, a low 

efficiency for protein adduction or a combination of these factors.  
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Detergent TX100 β-DDM Zw3-14 TD DT CZ  TX100 β-DDM Zw3-14 TD DT CZ 
(R)-168 
(10 µM) 

x          x  x          x  x          x  x          x  x           x  x           x  
       

(S)-168 
(10 µM) 

  x   x   x x x x 
       

(R)-LCM 
(15 mM) 

x x x x x x 
       

 

Figure 34. 10% SDS-PAGE gel (large size) of the membrane fraction (P2+P3) solubilized with a single detergent or sequentially-solubilized with 
two different surfactants. Left: fluorescence scan; right: corresponding Coomassie stain. Lanes 1–3: TX100 solubilized; lanes 4–6: β-DDM 
solubilized; lanes 7–9: Zw3-14 solubilized; lanes 10–12: the TX100 insoluble pellet was solubilized with β-DDM; lanes 13–15: the β-DDM insoluble 
pellet was solubilized with TX100; lanes 16–18: the CHAPS insoluble pellet was solubilized in Zw3-14. Lanes 1, 4, 7, 10, 13, 16: (R)-168 (5 µM); 
lanes 2, 5, 8, 11, 14, 17: (S)-168 (5 µM); lanes 3, 6, 9, 12, 15, 18: (R)-168 (5 µM) + (R)-LCM (10 mM). Reactions were photolabeled (30 min 365 
nm, 1 min 312 nm), clicked with Probe 196, and resolved. Approximate molecular weight markers (kDa) are shown in red on the left. 
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Recognizing the complexity of the protein mixture, we also implemented 

another fractionation protocol using sequential detergent solubilization. The 

membrane material was first solubilized with a given surfactant, centrifuged, and the 

supernatant was discarded. The remaining pellet was solubilized in another 

detergent, centrifuged, and the supernatant was used for screening. The total 

protein stain (Coomassie blue or silver stain) showed diverse solubilization patterns 

for each detergent or combinations of detergents used (Figure 34). Three 

combinations were used and included β-DDM solubilization of the TX100 insoluble 

pellet (termed “TD”), the reverse combination (termed “DT”), and Zw3-14 

solubilization of the CHAPS insoluble pellet (termed “CZ”). Unfortunately, no 

membrane lysate preparation yielded any potentially interesting protein band that 

met our selection criteria.  

 

5.1.3. Interactions between fluorescent Probes and detergent molecules 

Our studies showed direct interactions between the fluorescent Probes and 

detergent molecules. For example, click chemistry with PEG-containing Probe 196 

proceeded smoothly in the presence of detergents lacking a PEG chain (β-DDM, 

Zw3-14, CHAPS), while the fluorescent labeling intensity was dramatically reduced 

in the presence of TX-100. This difference in click chemistry did not occur when the 

C3-azide Probe 203 was used for click chemistry. We suspect that this difference is 

due to the polyethylene glycol chain (containing 3 ethylenoxy units) in 196 that is 

likely solvated by the PEG chain in TX-100 (8–10 units), thus diminishing the Probe 

196’s ability to participate in the click chemistry reaction. We expect that these 
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findings would also apply to biotin purification experiments, where a biotin Probe 

such as 191 would likely behave similarly with TX-100 molecules and provide lower 

product recovery yields.  

 

We observed one experimental complication using the C3 Probe 203 and all 

the detergents. We found an intense smear close to the protein migration front 

(Figure 33, green arrow) in the gel that was not washed away by several rinses with 

ddH2O. Use of Probe 196 in place of Probe 203 eliminated this problem. 

 

5.2. Screening whole membrane extracts for potentia l targets 

The results using a detergent-based approach, suggested that treatment with 

surfactants may have been detrimental to the integrity of potential target proteins. 

Therefore, we decided to further pursue our interrogation of the proteome by using 

unsolubilized whole rat brain membrane extracts. We also tried to maintain a 

membrane environment as close as possible to native conditions and used a 

physiological-like buffer solution to conduct our photo-labeling experiments (Locke’s 

buffer: 154 mM NaCl, 5.6 mM KCl, 2.3 mM CaCl2, 1.0 mM MgCl2, 3.8 mM NaHCO3, 

5 mM D-glucose, 5 mM HEPES (pH 7.2)).483,484 Importantly, in our previous study, no 

special care was taken when freezing the material for storage. It has been 
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demonstrated that one single freeze-thaw cycle can lead to a near-complete loss of 

activity for some proteins.485 Therefore, we also included a protocol that used a slow, 

cryopreserving method to freeze and store samples. After preparation, the samples 

were suspended to ~1 mg.mL-1 in Locke’s buffer supplemented to 10 mg.mL-1 

bovine serum albumin (BSA) and 10% DMSO (solution termed “cryobuffer”).485  

 

5.2.1. Rationale for the synaptosomal fraction scre ening 

 Homogenization of animal tissue leads to the shearing of different organelle 

structures. When brain tissue is used, pre-synaptic buttons are pinched at the end of 

the axon and close themselves to form pre-synaptic membrane vesicles.486,487 These 

subcellular structures are termed synaptosomes, and are widely used as a model to 

study synaptic proteins or neurotransmission mechanisms.488-491 Given the fact that 

several AEDs target proteins are located at the pre-synaptic level (TGB,201 LVT,210 

gabapentin (GBP)492), we screened the synaptosomes for potential LCM targets. 

 Synaptosomes are usually recovered by centrifugation of the S1 supernatant 

at 15,000 g for 20 min (Scheme 40).486,487,493,208,494 The pellet recovered at that 

speed also contains other organelles such as mitochondria and is, therefore, often 

referred to as the “crude synaptosomal fraction”.495 A typical enrichment procedure 

for synaptosomes involves further centrifugating the pellet through a sucrose density 

gradient.485-487,208,209 Due to their specific buoyancy, synaptosomes are recovered at 

the interface of two specific sucrose layers. Such a procedure, though, requires a 

swing-bucket ultracentrifuge rotor,485-487,208,209 which was unavailable for our studies.  
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We used an alternative approach based on phase partitioning, which takes 

advantage of the differences between the physicochemical properties of 

mitochondrial and synaptic membranes (Figure 35).496,497 The method uses a 

biphasic system composed of two types of polymers: PEG-4000 (Sigma-Aldrich, cat 

# 81240), a polyethylene glycol polymer with an average molecular weight of 4000 

g.mol-1, and dextran 500 (Spectrum Chemicals, cat # D1004), a D-glucose 

glycopolymer with an average molecular weight of 500,000 g.mol-1.  

 

Figure 35.  General approach to the purification of synaptosomes by phase partitioning. Experimental 
details are given in the Experimental Section. The red arrow indicates the procedure’s step where 
differences were observed compared with the literature protocol. The figure was reproduced and 
modified from Ref. 496 
 

The two immiscible phases, a PEG-rich and a dextran-rich, are then mixed with the 

crude pellet and centrifuged at low speed to separate the layers. Synaptosomes are 
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recovered in the PEG-rich phase and then subjected to a similar, second round of 

purification to yield an enriched synaptosomal pellet. Utilizing this phase partitioning 

method, we observed one experimental difference between the synaptosomes 

preparation we used and the literature protocol (see Section 5.5.2).496 After the 

second purification step, which uses a fresh lower phase from a 30-g phase system, 

the layer termed “final upper phase” did not contain any synaptosomal particles 

floating in the layer as described (Figure 35, red arrow).496 Instead, a large amount 

of white material was found at the interface between the two layers. This material 

was collected with a pipette and directly pelleted at 17,000 g. The procedure yield 

was ~6 mg of synaptosomal protein per rat brain (~1.5 g wet tissue). To verify if the 

difference in the procedure was not detrimental to the preparation, we performed a 

Western blot of the enriched synaptosomes using an antibody raised against 

synaptosomal-associated protein 25 (SNAP-25), and using the crude rat brain 

homogenate as a positive control. In addition we also probed for the presence of 

mitochondrial proteins, using an antibody against the mitochondrial marker 

cytochrome c oxidase subunit IV (COX IV) (Figure 36). Mitochondria should have 

been removed during the preparation. Western blot analysis showed that, indeed, 

SNAP-25 was present in the membrane material recovered (Figure 36, left panel). 

The anti COX IV antibody was not functional and we could not, therefore, ascertain 

the absence of mitochondrial proteins (Figure 36, right panel). However, these 

results gave us confidence that the enrichment procedure worked correctly.  
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Figure 36.  Western blot of the crude brain homogenate and synaptosomes. Proteins SNAP-25 (~25 
kDa, synaptosomes) and COX IV (~17 kDa, mitochondria) antibodies were used as subcellular 
markers. Lanes 1–6: anti SNAP-25; lanes 7–14: anti COX IV. Lanes 1–3, 7–9: crude brain 
homogenate; lanes 4–6, 10–12: synaptosomes. Lanes 1, 7: ~10 µg of crude homogenate protein per 
lane; lanes 2, 8: ~1 µg; lanes 3, 9: ~0.1 µg; lanes 4, 10: ~2 µg of synaptosomal proteins per lane; 
lanes 5, 11: ~0.2 µg; lanes 6, 12: ~0.02 µg. Gels were transferred to nitrocellulose membranes and 
blocked with 5% milk in TBST. The rabbit polyclonal antibody against SNAP-25 was diluted 1:1000 in 
5% milk in TBST and incubated at room temperature (1h). The rabbit polyclonal antibody against 
COX IV was diluted 1:750 in 5% milk in TBST and incubated at 4 °C (15 h). Both membranes were 
then probed with donkey anti rabbit IgG, horseradish peroxidase (HRP)-linked, diluted 1:1000 in 5% 
milk in TBST at room temperature (1 h) and developed (ECLplus). Developing time: SNAP-25: 1 min; 
COX IV: 15 min. Approximate molecular weight markers (kDa) are shown in red on the left. 
 

5.2.2. Screening the synaptosomal and microsomal fr actions 

 Following the previously established protocol, we screened the synaptosomal 

fraction using both enantiomers of compounds 181, 169, 168, 170, and (R)- and (S)-

LCM as competing reagents. On small scale, unsolubilized proteins were dispensed 

in Locke’s buffer (100 µL per well) after removing the cryobuffer and washing the 

pellet. PhotoAB&CR agents and competing reagents were added (5% (v/v) DMSO) 

and the suspension was incubated at 4 °C (10 min) prior to irradiation. After the 

photolabeling step, the content of each well was transferred to a tube, and 

centrifuged at 14,000 rpm at 4 °C (5 min). At this st age, several procedures were 

examined. Pelleted samples were either solubilized in non-denaturing detergents (β-

DDM, Zw3-14, CHAPS) or in HEPES buffer (pH 7.4) supplemented to 1% SDS, and 

then “clicked” with Probe 196 (Method A). Alternatively, click chemistry was 

performed on the unsolubilized membrane pellet, after which the suspension was 

successively pelleted, rinsed with HEPES buffer (pH 7.4), spun down, solubilized 
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with a non-denaturing or denaturing detergent, centrifuged, and the supernatant was 

resolved on SDS-PAGE gel (Method B). 

 In the initial experiments, we used the set of photoAB&CR agents 181, 169, 

168, 170 to screen the unsolubilized membrane proteome as previously described 

(see Section 4.3). Using the synaptosomal preparation, we photolabeled proteins 

with 10 µM of the appropriate (R)-AB&CR and (S)-AB&CR agents. In addition, the 

synaptosomal preparation was irradiated with 10 µM (R)-AB&CR in the presence of 

15 mM (R)-LCM.  

 

Enantiomer  (R) (S) (R) (R) (S) (R) (R) (S) (R) (R) (S) (R) 
DMSO x             

181 (5 µM)  x x x          
169 (5 µM)     x x x       
168 (5 µM)        x x x    
170 (5 µM)           x x x 
(R)-LCM  
(15 mM) 

   x   x   x   x 

 

Figure 37.  Fluorescence scan of the synaptosomal fraction screened with photoAB&CR agents 181, 
169, 168, and 180 (6%SDS PAGE gel). Whole synaptosomal extracts (~0.2 mg.mL-1 in Locke’s 
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buffer) were irradiated, the pellet was rinsed, dissolved in 25 mM HEPES (pH 7.4) supplemented with 
1% SDS, clicked with Probe 196 and resolved. Lane 1: DMSO control; lane 2: (R)-181 (5 µM); lane 3: 
(S)-181 (5 µM); lane 4: (R)-181 (5 µM) + (R)-LCM (15 mM); lane 5: (R)-169 (5 µM); lane 6: (S)-169 (5 
µM); lane 7: (R)-169 (5 µM) + (R)-LCM (15 mM); lane 8: (R)-168 (5 µM); lane 9: (S)-168 (5 µM); lane 
10: (R)-168 (5 µM) + (R)-LCM (15 mM); lane 11: (R)-170 (5 µM); lane 12: (S)-170 (5 µM); lane 13: 
(R)-170 (5 µM) + (R)-LCM (15 mM). The Coomassie stain (picture not shown) showed equal amounts 
of protein loaded in each lane. Approximate molecular weight markers (kDa) are shown in red on the 
left.  
 

 Using Method A and SDS as a detergent, we observed a potential band of 

interest at ~60 kDa (Figure 37, blue arrow). This protein was exclusively labeled by 

(R)-169 and (S)-169, with a pronounced preference for (S)-169 and the presence of 

1,500 equiv of (R)-LCM gave a pronounced reduction in the fluorescence intensity of 

the band.  

We found that click chemistry in the presence of 1% SDS led to lower levels 

of fluorescence when compared with the three non-denaturing detergents β-DDM, 

Zw3-14, and CHAPS. All three detergents appeared to solubilize the protein of 

interest, as shown by the strong fluorescent band around 60 kDa on SDS-PAGE 

gels (Figure 38, blue arrow). Zw3-14 and β-DDM solubilized the protein equally well, 

while using CHAPS gave a slightly reduced fluorescent intensity. The amount of total 

protein solubilized with detergents decreased as follows: Zw3-14, β-DDM, CHAPS. 

We, therefore, chose to use β-DDM as it provided an adequate balance between its 

ability to provide a high recovery of the fluorescent signal and its solubilizing 

properties. The insoluble pellets corresponding to each detergent were then 

dissolved in 1% SDS (treatments termed “DS”, “ZS”, “CS”, for β-DDM, Zw3-14, and 

CHAPS, respectively). 

In later experiments, we also screened the microsomal fraction (see Section 

3.1, Scheme 40) to refine the subcellular localization of the ~60 kDa protein. Thus, in 
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the same lysate preparation, we isolated rat brain synaptosomes and microsomes, 

and stored them under identical conditions using the cryobuffer. When screening 

the two membrane fractions under heterogeneous conditions, we found the ~60 kDa 

protein characteristic signal in both subcellular compartments (Figure 39). Using 

Method B, we found that the protein was preferentially labeled by (S)-169 over (R)-

169. However, a 3000-fold excess of (R)-LCM led to a strong reduction of 

fluorescence intensity when compared to (S)-LCM. Intriguingly, both signals from 

(R)-169 and (S)-169 were more affected by (R)-LCM than by (S)-LCM. 

Several attempts were made to identify this protein by biotin purification. 

These efforts were unfruitful, while we observed some intriguing findings. First, when 

we used Method B to screen the microsomal fraction, the protein pellet after the click 

chemistry step could be solubilized in β-DDM. Fluorescence scans showed that the 

protein of interest was efficiently extracted in this detergent (data not shown). The 

corresponding Coomassie stain, however, showed that this protein was the 

predominant protein present in the entire gel, whereas all other proteins were only 

solubilized with denaturing conditions (1% SDS, Figure 39). These results 

contrasted with the high solubilization properties of β-DDM under native conditions 

(Method A, Figure 38). On large scale (~1 mg of membrane protein), the strong 

Coomassie stained band corresponding to ~60 kDa was excised and analyzed by 

MS (Figure 40). Serum albumin was identified as the likely major constituent in this 

band (Table 6) 
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Detergent SDS Zw3-14 ZS β-DDM DS CHAPS CS  SDS Zw3-14 ZS β-DDM DS CHAPS CS 
(R)-169 
(10 µM) 

x  x  x  x  x  x  x  
               

(S)-169 
(10 µM) 

 x  x  x  x  x  x  x 
               

 

Figure 38.  10% SDS-PAGE gel of the synaptosomal fraction labeled with (R)-169 and (S)-169. Left: fluorescence scan; right: corresponding 
Coomassie stain. Whole membrane extracts were irradiated in the presence of the photoAB&CR, solubilized with various detergents and the 
solubilized material was clicked with Probe 196 and resolved. Lanes 1, 3, 5, 7, 9, 11, 13: (R)-169 (10 µM); lanes 2, 4, 6, 8, 10, 12, 14: (S)-169 (10 
µM). After photolabeling, membrane extracts were solubilized in detergent-supplemented HEPES buffer (pH 7.4) as follows. Lanes 1,2: 1% SDS; 
lanes 3, 4: 0.5% Zw3-14; lanes 5, 6: 0.5% Zw3-14 insoluble pellet solubilized in 1% SDS; lanes 7, 8: 0.5% β-DDM; lanes 9, 10: 0.5% β-DDM 
insoluble pellet solubilized in 1% SDS; lanes 11, 12: CHAPS;  lanes 13, 14: CHAPS insoluble pellet solubilized in 1% SDS. Approximate molecular 
weight markers (kDa) are shown in red on the left. 
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 Fraction Synaptosomes Microsomes  Synaptosomes Microsomes 
DMSO x       x          
(R)-169 
(5 µM) 

 x x x     x x x     

  

(S)-169 
(5 µM) 

    x x x     x x x  

(R)-LCM 
(15 mM) 

  x   x    x   x   

(S)-LCM 
(15 mM) 

   x   x    x   x  

 

Figure 39. 8% SDS-PAGE gels of the intact membrane-bound fraction after photolabeling, click chemistry with 196 using Method B and 1% SDS 
25 mM HEPES (pH 7.4). Left: fluorescence scan; right: corresponding Coomassie stain. Lanes 1–7: synaptosomal fraction; Lanes 8–14: 
microsomal fraction. Lanes 1, 8: DMSO; lanes 2, 9: (R)-169 (5 µM); lanes 3, 10: (R)-169 (5 µM) + (R)-LCM (15 mM); lanes 4, 11: (R)-169 (5 µM) + 
(S)-LCM (15 mM); lanes 5, 12: (S)-169 (5 µM); lanes 6, 13: (S)-169 (5 µM) + (R)-LCM (15 mM); lanes 7, 14: (S)-169 (5 µM) + (S)-LCM (15 mM). 
Approximate molecular markers (kDa) are shown in red on the left. 
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Figure 40. Coomassie stain of the enriched protein of interest (8% SDS-PAGE gel). Starting from 1.5 
mg of total microsomal protein, the membrane lysate was irradiated in the presence of 10 µM (R)-
169, pelleted, rinsed, and clicked with biotin Probe 191 using Method B. After click chemistry, the 
membrane material was pelleted, rinsed with HEPES buffer and solubilized in 1% β-DDM 25 mM 
HEPES (pH 7.4). The suspension was centrifuged and the supernatant was resolved on a SDS-
PAGE gel and Coomassie stained. The predominant band (black arrow) was excised and sent for MS 
analysis (see table below). Approximate molecular weight markers (kDa) are shown in red on the left. 
 
 
Table 6. Representative list of tryptic fragments identified in the Coomassie stained band 
corresponding to ~60 kDa. Additional tryptic fragments corresponding to limbic system-associated 
protein (LSAMP) and brain acid soluble protein 1 (BASP1) were also identified.  
 
Serum albumin        
Observed   Miss  Score   Peptide 
486.7543 0 49  K.QTALAELVK.H 
550.7948 1 47  K.KQTALAELVK.H 
575.2831 0 37  K.LVQEVTDFAK.T 
633.7795 0 64  R.FPNAEFAEITK.L 
720.3389 0 59  K.APQVSTPTLVEAAR.N 
733.339 0 72  K.LGEYGFQNAVLVR.Y 

 

Second, the ~60 kDa protein’s characteristic fluorescence signal was not 

observed when we used an aliquot of a freshly prepared microsomal fraction (Figure 

41, blue arrow). However, when experiments were conducted on the cryopreserved 

material from the same preparation, the signal was again observed (data not 

shown). These findings indicated that BSA, the protein present at a high 
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concentration in the cryobuffer (10 mg.mL-1) was likely targeted by (S)-169 and to a 

lesser degree by (R)-169. 

 

Subcellular fraction Microsomes 
DMSO x       

(R)-169 (5 µM)  x  x x   
(S)-169 (5 µM)   x   x x 

(R)-LCM (15 mM)    x  x  
(S)-LCM (15 mM)     x  x 

 

Figure 41.  In-gel fluorescence scan of freshly prepared (non cryopreserved) microsomal fraction from 
the rat brain. Membrane extracts were incubate with photoAB&CR 169, clicked with Probe 196 using 
Method B, and resolved (8% SDS PAGE gel). Lane 1: DMSO; lane 2: (R)-169 (5 µM); lane 3: (S)-169 
(5 µM); lane 4: (R)-169 (5 µM) + (R)-LCM (15 mM); lane 5: (R)-169 (5 µM) + (S)-LCM (15 mM); lane 
6: (S)-169 (5 µM) + (R)-LCM (15 mM); lane 7: (S)-169 (5 µM) + (S)-LCM (15 mM). No specific 
fluorescence signal was detected around 60 kDa under these conditions. The Coomassie stain 
(picture not shown) indicated equal amounts of protein loaded per lane. Approximate molecular 
weight markers (kDa) are shown in red on the left. 
 
 
The serum albumin fragments identified in Table 6 could not be solely attributed to 

Rattus norvegicus and may have possibly originated from several other species, 

including Bos taurus. Photolabeling experiments conducted on pure BSA and human 
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serum albumin (HSA) was consistent with this hypothesis (Figure 42), although 

differences between (R)-169 and (S)-169 labeling were far less pronounced when 

using the isolated protein. Competition with (R)-LCM was also dramatically reduced 

from a fluorescent signal almost abolished with 3000-fold excess of (R)-LCM in the 

whole membrane lysate (Figure 39, lanes 2 and 3) to a barely detectable change 

with 5000-fold excess of (R)-LCM using the purified protein (Figure 42, lanes 2 and 

4). Nonetheless, AB&CR 169 selectively labeled BSA and HSA while 181, 168, and 

170 did not (Figure 43, blue arrow), thus mirroring the different photoAB labeling 

profiles observed in Figure 37. The differences observed in the two competition 

experiments (Figure 39, Figure 42) were surprising and have been tentatively 

attributed to a change of conformation due to the dissimilarity between the two 

protein environments.  

 

Protein Bovine Serum Albumin Human Serum Albumin 
DMSO x       x       
(R)-169  
(1 µM) 

 x  x x    x  x x   

(S)-169 
(1 µM) 

  x   x x   x   x x 

(R)-LCM 
(5 mM) 

   x  x     x  x  

(S)-LCM 
(5 mM) 

    x  x     x  x 

 

Figure 42.  In-gel fluorescence scan of purified BSA and HSA labeled with photoAB&CR agent 169. 
Purified proteins were solubilized (0.2 mg.mL-1) in 25 mM HEPES (pH 7.4) containing 150 mM NaCl, 
photolabeled, clicked with Probe 196, and resolved (~200 ng of protein were loaded per lane). Lanes 
1–7: BSA; lanes 8–14: HSA. Lanes 1, 8: DMSO; lanes 2, 9: (R)-169 (1 µM); lanes 3, 10: (S)-169 (1 
µM); lanes 4, 11: (R)-169 (1 µM) + (R)-LCM (5 mM); lanes 5, 12: (R)-169 (1 µM) + (S)-LCM (5 mM); 
lanes 6, 13: (S)-169 (1 µM) + (R)-LCM (5 mM); lanes 7, 14: (S)-169 (1 µM) + (S)-LCM (5 mM). The 
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Coomassie stain (picture not shown), showed equal protein loading in each lane. Approximate 
molecular weight marker (kDa) are shown in red on the left. 
 

Protein Bovine Serum Albumin Human Serum Albumin 
(R)-181 (1 µM) x       x      
(S)-181 (1 µM)  x       x     
(R)-168 (1 µM)   x       x    
(S)-168 (1 µM)    x       x   
(R)-170 (1 µM)     x       x  
(S)-170 (1 µM)      x       x 

 

Figure 43.  In-gel fluorescence scan of purified BSA and HSA labeled with photoAB&CR agent 181, 
168, and 170. Purified proteins were solubilized (0.2 mg.mL-1) in 25 mM HEPES (pH 7.4) containing 
150 mM NaCl, photolabeled, clicked with Probe 196, and resolved (~200 ng of protein were loaded 
per lane). Lanes 1–6: BSA; lanes 7–12: HSA. Lanes 1, 7: (R)-181 (1 µM); lanes 2, 8: (S)-181 (1 µM); 
lanes 3, 9: (R)-168 (1 µM); lanes 4, 10: (S)-168 (1 µM); lanes 5, 11: (R)-180 (1 µM); lanes 6, 12: (S)-
180 (1 µM). The Coomassie stain (picture not shown), showed equal protein loading in each lane. 
Approximate molecular weight marker (kDa) are shown in red on the left. 
 

5.3. Discussion 

 The rat membrane-bound proteome was screened under a variety of 

conditions with the suite of photoAB&CR agents 181, 169, 168, and 170. Our first 

attempt at identifying potential LCM targets took advantage of the variety of 

commercially available non-denaturing detergents. Recognizing the complexity of 

the membrane proteome, we chose to use four structurally diverse surfactants to 

solubilize different sets membrane-bound proteins. Indeed, each detergent displayed 

pronounced differences in the solubilized protein patterns (Figure 33, Figure 34, 

Figure 38). For example, only CHAPS was found to efficiently solubilize very high 

molecular weight proteins (>300 kDa). Overall, TX100 (1%), β-DDM (0.5%), and 

Zw3-14 (0.5%) solubilized comparable amounts of protein (Bradford assay) that 

appeared greater than CHAPS (1%). We hypothesized that a wide range of 
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solubilization conditions would result in higher chances of identifying a potential 

target protein. Importantly, this non-denaturing solubilization protocol allowed us to 

use ion-exchange chromatography to deconvolute the membrane lysate. Another 

technique employed in this study was the use of a larger sized SDS PAGE 

electrophoresis system. Using longer SDS PAGE gels (~20 cm height) provided a 

greater separation of the different membrane proteins present in the lysate (15–250 

kDa, Figure 34). We also gained in sensitivity by loading increased amounts of 

protein per well. The downside of the approach, however, was the prolonged gel 

migration times (from 50 min for mini-gels to 4 h for the larger gels) and the fact that 

some protein patterns were deformed or appeared smeared on the gel. 

 Using these screening conditions, we identified a few proteins displaying a 

strong (R) vs (S) selectivity for the photoAB&CR molecule by in-gel fluorescence. 

The overall order of reactivity for 181, 169, 168, and 170 with the membrane fraction 

was slightly different than that observed for the cytoplasmic fraction screening. 

Under identical irradiation conditions (see Section 4.6.2), we observed for the 

membrane fraction that generally the aromatic azide 181 and alkyl diazirine 168 

provided the most intense signals, followed by aromatic diazirine 169, and 

benzophenone 170. Nonetheless, these differences varied within different 

fractionation cuts (Q-Sepharose elution, left gels, and Q-Sepharose flow-through, 

right gels). By comparison, in the cytosolic fraction, 181 was more reactive, followed 

by 169, 168 and 170, and less disparities in reactivity were observed within different 

AMS cuts. Differences in the photoAB&CR reactivity profiles between the 

cytoplasmic and solubilized membrane fractions have been tentatively attributed, in 
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part, to differences in the inherent nature of proteins present in each subcellular 

fraction. The fluorescent signals in the membrane fraction were, however, not 

intense, and unaffected by an excess of competing (R)-LCM during the 

photolabeling step. In addition, the low-intensity fluorescent labeling observed for 

proteins specifically labeled suggested several potential problems. Among these are 

that (1) the protein labeled may have been present only at low levels in the lysate; 

(2) the photoAB&CR agent may only bind weakly to the protein; (3) the efficiency of 

the photolabeling step was low; (4) the detergent may have only solubilized a partial 

amount of membrane-bound protein; and (5) the detergent may have partially 

denatured the protein. A combination of these reasons may also explain the 

absence of protein targets that were strongly labeled in the membrane fractions. 

Indeed, some membrane-bound proteins cannot be easily solubilized or remain 

properly folded upon action of a detergent.498-500  

Thus, we also screened the membrane-bound proteome under more native 

conditions. First, we changed from a simple HEPES-based buffer previously used to 

the more physiologically relevant Locke’s buffer. Second, we took additional care in 

the handling of the freshly prepared membrane extracts by adding a slow cooling 

step in a cryobuffer prior to storage at -80 °C. The cr yobuffer used was Locke’s 

buffer supplemented to 10% (v/v) DMSO and 1% (w/v) BSA and has been 

demonstrated to enhance the stability of sensitive membrane synaptosomal 

proteins.485 Using this protocol, we prepared and screened intact synaptosomal and 

microsomal fractions with the photoAB&CR agents 181, 169, 168, and 170. We took 

advantage of a convenient phase-partitioning fractionation method496 to quickly 
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enrich for synaptosomes from the P2 fraction of the rat brain. However, in our hands, 

we observed a difference in the synaptosome preparation. The literature method 

indicated that the synaptosomes would be present in the upper layer after the 

second purification step (Figure 35, red arrow).496 Instead, we observed abundant 

white particles present at the interface between the two layers and assumed them to 

be the enriched synaptosomes. To check the integrity of the membrane extracts, we 

probed for the presence of a synaptosomal marker, SNAP-25, using an antibody and 

showed that the protein the material isolated after fractionation was enriched in 

SNAP-25 (Figure 36). We also probed the isolated synaptosomes for a 

mitochondrial marker (COX IV) to confirm that the protein isolated was not cross-

contaminated with mitochondria, using the crude brain homogenate as a positive 

control. However, the antibody purchased was not functional and this secondary 

control was not pursued further. Recovery yields of synaptosomes (~6 mg per rat 

brain, 3–4 mg per gram of wet tissue) were in agreement with yields obtained using 

other literature procedures.501,493,502  

Using this new screening condition and utilizing the same irradiating conditions, 

we observed another difference in the reactivity profile of photoAB&CR derivatives. 

In the intact membrane photolabeling, aromatic azide 181, aromatic diazirine 169 

and benzophenone 170 displayed a similar non-specific labeling profile whereas the 

photolabeled products from aliphatic diazirine 168 were less intense (Figure 37). 

However, we identified a ~60 kDa protein targeted in the synaptosomal fraction, 

which was exclusively labeled by aromatic diazirine 169, and displayed a strong (S) 

vs (R) preference (Figure 37, Figure 38). Interestingly, both (R)-169 and (S)-169 
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were competed by an excess of (R)-LCM, and to a lesser extent by (S)-LCM (Figure 

39). The preference for (S)-169 over (R)-169 in the labeling step was intriguing, 

especially in view of the competition experiments. Indeed, the competition results 

suggested that (R)-LCM bound to that protein stronger than (S)-LCM. This (S)- vs 

(R)- preference for 169 has been tentatively attributed to an increased labeling 

efficiency of (S)-169 due to a more ideally positioned amino acid residue, despite a 

potentially lower binding affinity when compared to (R)-169. We observed the 

presence of the same molecular weight protein in the microsomal fraction. The 

fluorescent signal observed for this photoadduction was intense (Figure 38, left 

panel) and did not correlate with the amount of total protein (Figure 38, right panel) 

present in the lane, thus suggesting a specific photolabeling. Attempts to purify this 

protein using a biotin purification experiment did not provide us with definitive 

identification of the protein but suggested that the putative interacting partner of (R)-

LCM was likely serum albumin (Figure 40, Table 6). Supporting this hypothesis was 

the disappearance of the characteristic ~60 kDa fluorescent signal when we used a 

freshly prepared brain microsomal extract (e.g., without BSA present) to perform the 

assay (Figure 41). The fluorescent signal returned when the same extract was 

stored using the slow cooling step in the presence of cryobuffer. A photolabeling 

experiment using pure BSA and HSA showed that serum albumin was indeed 

selectively labeled by photoAB&CR agent 169 (Figure 42), and not by 181, 168, and 

170 (Figure 43). However, we observed notable differences when labeling was 

performed on the protein by itself. The difference in fluorescence intensity between 

(R)-169 and (S)-169 was greatly reduced, and competition with a large excess of 
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(R)-LCM (5000 equiv) had almost no effect on (R)-169 or (S)-169’s fluorescent 

signals (Figure 42). We have hypothesized that the conformational states of serum 

albumin could be different in an isolated setting and in a complex hydrophobic 

environment, and that this difference could affect the AB&CR modification. 

Nonetheless, this finding indicates that lacosamide has an inherent binding affinity 

for serum albumin, a finding that has been previously observed for numerous 

marketed drugs.503-506  

 

5.4. Conclusions 
 
 We screened the membrane-bound proteome with photoAB&CR agents using 

a variety of screening conditions. The search yielded one protein of interest for 

which the AB&CR 169’s fluorescent labeling displayed enantiospecific competition 

with (R)-LCM over (S)-LCM. This protein has been tentatively identified as bovine 

serum albumin, a component of the cryobuffer for membrane extract storage. The 

labeling specificity was greatly reduced when either purified BSA or HSA was used 

for the experiment in buffer alone. While the therapeutic relevance of serum albumin 

for lacosamide overall function is unknown, we did not pursue this lead because the 

literature did not provide a rationale to link SA to epilepsy.  

The identification of SA in our proteomic screening protocol suggested that 

the AB&CR methodology worked, in part, in that we were able to identify a medium-

to-low affinity binding partner of (R)-LCM from a complex protein environment. 

Significantly, we do not assert that lacosamide function is intimately connected with 

SA binding. Rather, our finding suggests that lacosamide possesses an inherent, 
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modest binding affinity to serum albumin. If this is the case, SA sequestration of 

LCM may indirectly affect the AED’s function by modulating the serum concentration 

of lacosamide and its biodistribution in the CNS. 

5.5. Experimental Section 
 

5.5.1. Preparation of the solubilized membrane lysat e 

The whole rat brain homogenate (320 mM sucrose, 25 mM HEPES (pH 7.4), 

supplemented with protease inhibitors 1 mM PMSF, 10 µM E-64, 10 µM pepstatin A, 

1 µM TPEN) was centrifuged at 1,500 g (10 min). The supernatant (S1) was pulled 

and centrifuged at the desired speed. Centrifugation at 15,000 g (20 min) yielded the 

P2 fraction (heavy membrane), and a S2 supernatant that was centrifuged at 

100,000 g (50 min) to yield a P3 fraction (light membrane). Alternatively, the S1 

supernatant could also be centrifuged directly at 100,000 g to yield a combined 

P2+P3 membrane fraction. The pellet (P2, P3, or P2+P3) was hypoosmotically lysed 

by resuspension in 10 mM HEPES buffer (pH 7.4) on ice (20 min) and centrifuged at 

15,000 g (20 min, P2) or 100,000 g (50 min, P3, P2+P3). The supernatant was 

discarded, and the pellets resuspended in 25 mM HEPES, 150 mM NaCl to a total 

protein concentration of 4–5 mg.mL-1. The desired supernatant was added at the 

desired concentration (1% TX100, 0.5% β-DDM, 0.5% Zw3-14, 1% CHAPS), the 

suspension gently rocked at 4 °C (20 min) and centrifuged  at 15,000 g (20 min, P2) 

or 100,000 g (50 min, P3, P2+P3). The supernatant was used as the detergent-

solubilized membrane fraction for screening. 
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5.5.2. Protocol for the enrichment of synaptosomes by phase partitioning  

 Synaptosomes were prepared following a literature procedure.496 One day 

prior to the experiment, the two phase systems (termed 21-g and 30-g (g for grams)) 

were prepared and stored at 4 °C. Because biomolecule s are very sensitive to small 

changes in polymer concentrations, all solutions were prepared by weighing the 

different reagents. The stock solution of PEG-4000 (40% w/w) was prepared by 

accurately weighing 40.0 g of PEG-4000 and made up to 100.0 g with ddH2O. The 

dextran-500 was prepared at least 2 days in advance. For a 20.0% (w/w) stock, a 

~35% (w/w) solution was prepared by layering 35 g of dextran over 65 g of water. 

The highly viscous solution was heated in a water bath (40–50 °C) while gently 

stirring until all the polymer was dissolved (~30 min). The solution was then dialyzed 

against ddH2O (15 h) and transferred to a weighed container. The following was only 

carried out if no air bubbles were present in the viscous liquid. A known amount of 

dextran solution (~2 g) was precisely diluted to 10 mL with ddH2O and the optical 

rotation was measured with a polarimeter. Using the specific rotation of dextran 500 

([α]D
25 = +199°.g.dm.mL -1),507 the exact concentration was determined and the stock 

solution was adjusted to 20.0% (w/w) by addition of ddH2O. Care was taken to 

gently swirl the solution and avoid creating air bubbles. 

 The two stock solutions described were used as follows. The 21-g phase 

system was prepared in a 50 mL plastic centrifuge tube by weighing 7.680 g of 

20.0% (w/w) dextran 500, 3.840 g of 40.0% PEG-4000, 6.720 g of 1 M sorbitol, 600 

mg of 200 mM potassium phosphate (pH 7.4), 300 mg of 10 mM potassium EDTA, 
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and 1.860 g of ddH2O. For convenience in later experiments, all volumes were 

increased by 20%. The 21-g solution was mixed and stored at 4 °C.  

 The 30-g phase system was prepared by weighing 9.600 g of 20.0% dextran 

500, 4.800 g of 40.0% PEG-4000, 9.600 g of 1 M sorbitol, 750 mg of 200 mM 

potassium phosphate (pH 7.4), 375 mg of 10 mM potassium EDTA and 4.875 g of 

ddH2O. After mixing well, the phase system was allowed to settle at room 

temperature until two phases appeared. The process could be accelerated by low 

speed centrifugation (1,500 g, 3 min). The lower phase was collected without 

disturbing the interface and stored at 4 °C (fresh lowe r phase). 

 The following buffers were used in the preparation of rat brains. 

Homogenization was carried out using 320 mM sucrose, 1 mM potassium EDTA, 10 

mM Tris HCl (pH 7.4) (buffer A), supplemented with protease inhibitors (PMSF 1 

mM, E-64 10 µM, Pepstatin A 10 µM, TPEN 1 µM). Resuspension of the 

synaptosomal pellet was carried out in 320 mM sorbitol, 0.1 mM potassium EDTA, 

and 5 mM potassium phosphate (pH 7.4) (buffer B).  

 Starting with 4 rat brains, homogenization was conducted as described in 

Section 3.1 using 15 mL buffer A per rat brain: The crude homogenate was 

centrifuged at 1,500 g (5 min), the supernatant (S1) was transferred to a new tube 

and the pellet was discarded. 

 The S1 fraction was centrifuged at 1,500 g (5 min), to give a cleaner 

supernatant (S1-clean) and the pellet was discarded. 
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 The S1-clean fraction was centrifuged at 17,000 g (10 min), the supernatant 

(S2) was kept aside and later centrifuged at 100,000 g (50 min) to provide the 

microsomal fraction (P3) and the cytoplasmic fraction (S3). 

The pellet (P2, crude synaptosomal pellet) was resuspended in 30 mL of 

buffer B and centrifuged at 12,000 g (10 min) and the supernatant was discarded. 

The pellet was resuspended in a minimal amount of buffer B. Three grams of 

resuspension were precisely weighed in a conical tube and were added to one 21-g 

phase system, creating a 24-g phase system. Typically, one 21-g phase system was 

used for 2 rat brains. 

The 24-g phase was mixed by 20 inversions and centrifuged at 600 g (2 min). 

The upper phase was carefully transferred to a tube containing 9 mL of fresh lower 

phase from the 30-g phase system. The new phase system was mixed by 20 

inversions and centrifuged at 600 g (2 min). The final upper phase and the interface 

was layered on 20 mL of buffer A and centrifuged at 17,000 g (10 min). The pellet 

was rinsed with Locke’s buffer, and then resuspended in cryobuffer for storage. 

 

5.5.3. Photolabeling of the membrane fraction 

The detergent-solubilized membrane lysate was photolabeled like the 

cytoplasmic lysate. Briefly, 100 µL (~200 µg total protein) aliquots of detergent-

solubilized membrane lysate were dispensed in 96-well plates and irradiated under 

the appropriate conditions (see Section 4.6.2).  

For the photolabeling of intact synaptosomes and microsomes, the extracts 

were rinsed from cryobuffer (see Section 5.5.5) and resuspended in Locke’s buffer 
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(154 mM NaCl, 5.6 mM KCl, 2.3 mM CaCl2, 1.0 mM MgCl2, 3.8 mM NaHCO3, 5 mM 

D-glucose, 5 mM HEPES (pH 7.2))483,484 to a total protein concentration of 0.1–0.2 

mg.mL-1. Small scale experiments were conducted in 100 µL reaction volume in a 

96-well plate. Photolabeling was performed at 4 °C w ith photoAB&CR 181, 169, 168, 

and 170 as previously described.  

 

5.5.4. Click chemistry on intact labeled membrane p roteins (Methods A and B) 

After photolabeling, the content of each well was transferred to an 1.5 mL 

Eppendorf tube, spun down (14,000 rpm, 10 min), resuspended in 200 µL 25 mM 

HEPES (pH 7.4), spun down again (14,000 rpm, 10 min), and the washing process 

was carried out one more time. 

Using Method A, the pellet was resuspended in 30–50 µL of 25 mM HEPES 

buffer (pH 7.4) supplemented to the desired concentration of detergent (5 min) and 

centrifuged (14,000 rpm, 10 min). Click chemistry with the desired Probe was 

performed on the supernatant as previously described (see Section 4.6.4).  

Using Method B, the pellet was resuspended in 30–50 µL of 25 mM HEPES 

buffer (pH 7.4), the desired Probe and click chemistry reagents were added, and the 

suspension was tumbled at room temperature (1 h). Each tube was spun down 

(14,000 rpm, 10 min) and the supernatant was discarded. The pellet in each tube 

was rinsed twice with 200 µL of 25 mM HEPES buffer (pH 7.4). The final pellet was 

resuspended in 30–50 µL 25 mM HEPES buffer (pH 7.4) supplemented to 1% SDS 

(5 min) and spun down (14,000 rpm, 10 min). SDS loading buffer was then added to 

the supernatant and the proteins resolved on SDS-PAGE gel. 
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5.5.5. Protocol for the cryopreservation step  

The slow cooling step485 was performed as follows. A thick-wall (~4–5 cm) 

Styrofoam box was filled halfway with loosely packed cheesecloth. The tubes were 

placed in the center of the box and more cheesecloth was added on top of the 

samples. The Styrofoam container was closed and allowed to cool in a dry ice chest 

at least 5 h before transferring the slowly frozen samples to a -80 °C freezer box. 

Before performing the labeling experiment, samples were quickly brought to room 

temperature using a water bath (37 °C). The samples we re then spun down (14,000 

rpm, 4 °C, 5–10 min), the cryobuffer was discarded and the pellet resuspended in 

Locke’s buffer. These steps were repeated once, and the final pellet was 

resuspended to a protein concentration of ~0.1–0.2 mg.mL-1 (10–20 µg in 100 µL) in 

Locke’s buffer. 

 



6.  

 

 

CHAPTER 6 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this research project, we have designed, synthesized, and evaluated a 

series of molecular tools to identify the biological targets of the antiepileptic drug 

lacosamide. Over the course of our study, we have extended the structure activity 

relationship of LCM at the 3-oxy site, and the N-benzylamide 4’ position. Based on 

the SAR results, we have constructed a series of LCM AB&CR analogs to 

interrogate the rat brain proteome and identify potential binding partners of LCM.  

Using up to 11 LCM AB&CR derivatives, we have screened the brain soluble 

and membrane-bound proteome. We took advantage of several established protein 

purification methods and subcellular fractionation protocols to reduce the complexity 

of the brain proteome. Following this approach, we were not able to identify a protein 

target with a therapeutic relevance to epilepsy. Nonetheless, our methodology 

allowed the identification of some proteins that were stereospecifically adducted by 

either (R)-AB&CR or (S)-AB&CR derivatives. In some instances, the protein 

displayed a labeling dose-dependent competition with excess (R)-LCM or (S)-LCM. 

Among these were creatine kinase B, serum albumin, and a ~25 kDa cytosolic 

protein in too low abundance for us to identify. These results have not allowed us to 

further define the mechanism of action of lacosamide.  
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Our overall findings exemplified two potential limitations in the use of the 

AB&CR methodology to identify protein targets of small molecules. First, the 

methodology may not allow the pull-down capture of proteins expressed at low 

levels, although the in-gel fluorescence approach is sensitive enough to allow their 

detection. Second, and perhaps most important, is that the method used can only 

yield an interacting partner, and no guarantee exists that the adducted protein is a 

biomolecule with therapeutic relevance to epilepsy. Following is a general discussion 

on this project’s observations and learnt lessons, as well as potential shortcomings 

of our drug target identification method. Comparisons with the work of other groups 

are presented, where applicable. For each section, possible suggestions for future 

work are highlighted. 

 

6.1. The importance of the lysate source 

The handling of the animal tissue is a crucial step in the preparation of a 

lysate. In our study, we used a commercial source of rat brains that were frozen on 

dry ice prior to overnight shipment, and stored upon arrival at -80 °C. Ideally, the 

animal should have been sacrificed prior to brain homogenization, as potential 

proteins of interest may have been denatured by a single freeze-thaw step.424 

Lacosamide is able to prevent MES-induced seizures in healthy rodents and the 

protein targeted by this AED likely is present in the rat brain. Nonetheless, it is 

possible that the expression levels of this protein are too low to detect. Thus, it may 

be helpful to prepare a whole brain protein lysate from animals that have been 

undergone MES-seizure or 6 Hz treatment prior to sacrifice. Indeed, the protein(s) 
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targeted by (R)-LCM may be upregulated in the early events or during the course of 

a seizure.  

Along the same line, screening the rat brain proteome of healthy animals with 

our AB&CR analogs would, if successful, only lead to identification of protein(s) 

involved in the development of artificially-induced seizures (i.e. implicated in epileptic 

pathways). In light of the unique pharmacological profile of (R)-LCM and notably its 

activity against kindled seizures, screening the brain proteome of kindled animals 

may lead to the identification of proteins implicated in epileptogenic pathways. These 

proteins and their biological pathways still remain to be discovered, and together this 

information would provide invaluable insights into the pathology of epileptic 

disorders. These could potentially translate into “cures” for epileptic patients. 

Similarly, using genetically modified animals (Frings and DBA/2 mouse models) as a 

source of brain tissue, would enhance the diversity of proteins screened, and thus 

the chances of identifying key macromolecules implicated in audiogenic or reflex 

epilepsy pathways. 

 

6.2. Other subcellular fractions and proteins for s creening 

Our study focused on the cytosolic and membrane fractions. Other rat brain 

subcellular compartments yet to be screened include the mitochondria (soluble and 

membrane fraction) and the nucleus (nuclear membrane and nucleoplasm). 

Attempts to isolate nuclei from rat brain were unsuccessful, as the traditional 

sucrose gradient procedure requires a swing-bucket ultracentrifuge.508-510,425 In 

addition, brain nuclei are reported to be more fragile than other organs’ nuclei.510  
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Several findings support the importance of nuclear proteins in epileptic 

pathways. A recent publication indicates that drastic changes in the brain nucleus 

occur during a seizure, from increased protein activity to histone modifications.511 It 

is interesting to note that curcumin, an established histone acetyltransferase (HAT) 

inhibitor,512 has protective effects in a variety of animal seizure models including 

chemoconvulsant-induced kindled seizures.66,513,514 In addition, the established AED 

VPA has been shown to have a direct inhibitory activity against histone deacetylases 

(HDAC).515 However, the pharmacological relationship between HDAC inhibition and 

the antiepileptic or neuroprotective effects of VPA still remains to be validated.  

Ion channels are extensively, and rightfully, studied for interactions with 

AEDs. Nonetheless, some currently emerging drugs (RGB, 2DG) do not interact with 

any epilepsy-related VGIC, LGIC, neurotransmitter transporter, or neurotransmitter 

degradative enzyme. These observations should encourage researchers to probe for 

different biological mechanisms and to approach epilepsy from a less 

electrophysiological perspective. The reemergence of the ketogenic diet as a front 

line treatment for refractory epilepsy222,221 and the advancement of 2DG224,212 in 

clinical trials suggest a trend to tackle epileptic syndromes from the energetic 

standpoint. In this regard, and despite its lack of interaction with (R)-LCM, it would 

be interesting to determine if small molecule CKB inhibitors have a protective effect 

on seizures. Indeed, the CKB-catalyzed phosphotransfer reaction is the fastest way 

for a cell to generate ATP.449 Studies have shown the physiological importance of 

CKB in seizures and that the enzyme’s reaction rate dramatically increases during a 

seizure, while brain levels of PCr decrease by up to 50%.449-452 This quick 
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generation of ATP is required for fueling and maintaining the high-energy demand of 

the seizure.450-452 Inhibitors of CKB may, therefore, act as preventive agents by 

suppressing the seizure’s energetic pathway.  

 

6.3. Drug target identification methods 

Advantages and drawbacks of electrophilic and photo-activated affinity labels 

used in this study have already been highlighted. We took advantage of a variety of 

AB moieties with different reactivity profiles to cover a wide spectrum of potential 

amino acid modification sites. Experimental observations from our research project 

show distinct protein labeling patterns for each AB moiety and support the rationale 

for the use of a wide range of affinity labels. Significantly, all the “selectively 

modified” proteins we observed in our experiments (e.g., proteins showing 

enantiospecific labeling but not necessarily displaying competition with either (R)-

LCM or (S)-LCM) were only labeled by one AB moiety. For example, serum albumin 

(Figure 37) and the protein targeted by (S)-LCM (Figure 26) were only identified with 

the trifluoromethyl aromatic diazirine photoAB 169. Other proteins in the membrane-

bound fraction were exclusively labeled by the alkyl methyldiazirinyl photoprobe 168 

(Figure 32, Figure 33). These findings support the idea that identification of unknown 

proteins using an affinity label/pulldown strategy is a delicate task that requires 

multiple approaches. In this regard, it is impossible to have a universal affinity label.  

Whether or not click chemistry is involved, activity-based protein profiling 

(ABPP) has developed into a powerful proteomic method. ABPP involves the use of 

electrophilic moieties (e.g., phenylsulfonates,359 epoxides,358,309 beta-lactones,516 or 
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fluorophosphonates517) to establish the reactivity profile of specific enzymes or 

identify new macromolecular entities that interact with specific AB moieties. In that 

sense, ABPP may be viewed as a drug target discovery method where the drug 

target is a reactive enzyme and possesses activated nucleophilic residues prone to 

react with the AB. Using this method, proteases518 implicated in cancer and bacterial 

signaling pathways have been identified.519-521,517 The ABPP ligands preferentially 

target small molecule binding sites or spatially related sites, because the enzyme’s 

reactive residue is located within this pocket. 

By comparison, in an epilepsy drug target discovery project such as ours, the 

biological target is more likely to be a membrane-bound or soluble protein where the 

AED binding site does not possess reactive amino acids. Rather than utilizing 

substrate-processing catalytic binding sites, AEDs seem to interact at sites 

modulating protein conformation. In these cases, photoactivated ligands may be 

more appropriate tools to covalently modify the target via a non-nucleophilic residue, 

and therefore be more suited for receptor binding site identification. For example, the 

use of the aromatic azide photoAB led to the identification of the binding site of 

LVT,208 and photoreactive analogs of tetrodotoxin (TTX) and saxitoxin (STX) helped 

identify key regions for VGSCs function.522 

Finally, we did not identify any specific labeling of VGSCs, an established 

binding partner for (R)-LCM. It is, however, possible that our lysate preparation did 

not yield functional Na+ channel. Indeed, extensive purification studies by Catterrall 

and coworkers have demonstrated the extreme sensitivity of these proteins to 

detergent solubilization or proteases.429,427 Thus, it would be interesting to use our 
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array of photoAB&CR agents on oocytes overexpressing VGSCs to potentially 

identify the channel’s binding region critical for slow inactivation.135 In addition, it 

would also be interesting to use a complementary screening approach to the whole 

brain lysate. One could, for example, use a variety of readily available neuronal and 

glial cell lines to screen the AB&CR agents. These less complex protein sources 

may increase our chances of biological target capture. 
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