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ABSTRACT
Zhixian Yu: Excess Centrosomes in Endothelial Cells: Causes And Effects
(Under the direction of Victoria Bautch)

Tumor endothelial cells, which line the intergurface of tumor blood vessels, were
considered genetically normal until recent findings stwbthattheycan beaneuploidandhave
compromised p53 signaling aegcess centrosomdsowever, thecauses andffectsof
centrosome oveduplication ancompromised p53 signaling endothelial cellsemain elusive.
In this dissewdtion, | designed and performed vari@xperimentsd investigate these questions
| found thatsome BMP Igands induceBMPR1A-dependent excess centrosomes in primary
human endothelial cells, likethough SMAD signalingln addition,hypoxia and abrogated p53
signaling, but noinflammation promoted centrosome oveuplication.These results contribute
to ourunderstanding of tumor rroenvironmentl also demonstrated thekcess centrosomes
induced p53lependent senescence in primary endothelial, ceticating that the response of
centrosome oveduplication is dependent on whether cells have intact cell Ciis.is the first
evidence linking excess centrosomes and senesa@i@ay alsahelpexplain the abnormal
morphology and function in tumeasculatureFinally, | showedthatloss of p53 induced
angiogenesis vitro by promoting endothelial cell migration and proliferatibat not in mouse
retina vesseldn summarymy thesis work helps understand the causes and effects of
centrosom@verduplicaion in endothelial cells, contributing to the studies on tumor

microenvironment.
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CHAPTER I -General Introduction
A. Tumor angiogenesis and tumor endotheliatells

My thesis work started with tledservedabnormalities in tumor endothelial cells (EC),
and | tested the effects of several tumor environmental factors on EC. This section summarizes
basic understanding about tumor EC and their environment.

Blood vessels, whose inner surfaces are lined by endothelial cells (EC), support tissue
growth by providing oxygen/nutrients and carrying away the metabolic waste. The growth of
blood vessels can be divided into two consecutive steps: vasculogenesmgauknes [1].

During vasculogenesiembryonic angioblasts differentiate, migrate and coalesce to form a
primitive vascular network, which is then expanded by angiogenesis to form mature pMegkels

As the major method of vessel expanding and growth, angiogenesis is defined as the process that
new vessels form from pexisting ones. Upon the stimulation of angiogenic factors, such as
vascular endothelial growth factor (VE&) [3], some EC in prexisting vessels respond and
become tip cells, and begin to migrate towards the stimuli. ECedjto tip cells follow the

migration of tip cells to support sprout elongatjdh[2]. At the final stage, tip cells anastomose

with cells from neighboring sprouts and build vessel lumens, which allows for bloo{jlow

Similar to normal tissues, solid tumors, specifically those with a diameter larger than 2
mm, require blood vessels for their groyfh. To induce angiogenesis in the tumor
compartment, tumor cells and tumor stromal cells secrete various angiogenic factors, including
VEGF-A [6], Interleukin8 (IL-8) [7,8] and bone morphogenetic protein 2 (BMH9,10], to

recruit blood vessels from the surralimg environment. Tumor vasculature is morphologically



and functionally distinct from normal vasculature. Tumor vessels appear tortuous and leaky, and
have irregular blood floyl1]. Therefore although most tumors are highly vascularized, the

tumor environment does not acquire sufficient blood supply and become hypoxic, leading to a
more clinically aggressive phenoty#,13].

Despite the morphological and functional abnormedittumor EC were originally
considered genetically normal and stable because most tumor vessels are recruited from their
normal counterpartsl4,15]. However, recent studies indicate that tumor EC,lamm tumor
cells, have genetic abnormalities such as aneup|a®¥7]. In line with this, ~30% of tumor
endothelial cells possess excess centrosonZesgptrosomes/cell), which can contribute to the
genetic abnormalities in these c4ll§,18]. Previous studies in our lab demonstrated that high
levels of VEGFA induce excess centrosomes in BHQ]. However, it is not known whether
other tumor environmental factors contribute to excess centrgson€. In addition, the

effects of excess centrosomes on EC cell cycle remain elusive.

B. Centrosomes

| found that severgumorenvironmental factors induce excess centrosame€. This
section summarizes the structure, regulations and common abntesaficentrosomes.

Centrosomes are important organelles involved in multiple aspects of cell function. A
canonical centrosome is comprised of two centrioles and their surrounding pericentriolar
material (PCM)Fig. 1.1) A typical human centriole is ~500 nm long and ~250 nm wide, and it
is has a cylinder structure formed by 9 radially symmetric triplet microtup20e22]. At the
innermostcore of the proximal end of a centriole, there is a cartwheel structure containing a

central hub with 9 emanating spokes connecting with outside microtyBa|24]. At the distal



end of a centriole, there are 9 doublet microtubules, which are modified and associated with
subdistal and distal appendag2s].

Over 150 proteins are involved in building the centrosf2d£6]. Sas6, which carself-
assemble to ringjke structures, exists at the cartwheel core of a centriole, and helps dictate the
nine-fold symmetry structurf27,28]. Another protein, Sas (or the orthologue prein STIL in
human), is also present at the cartwheel structure, and cooperates vbtto@assist the
cartwheel formatio29,30]. Sas4 (or the human homolog CPAP), is recruited to the central
cartwheel structure by S&sand Sa%, and promotes centriolar microtubule polymerization
[31,32]. Centrioles are surrounded by the PCM containing hundreds of pr[@8jnand serve
as the dominant microtubule organizationteem the cell.

Normally centrosomes are duplicated once and only once in each cell cycle, reminiscent
of DNA replication. A typical G1 phase cell has 1 newly born centrosome, which has two
centrioles orienting orthogonally to each other. New proceagibégin to form near each
centriole at G1/S phase, and they continue to elongate throughout G2 phase until reaching
similar size to their mother centriold®efore mitosis, the fibrous tether between two newly
formed centrosomes will be severed to allber to migrate to opposite ends of the cell and to
set up the mitotic spind[2]. After cell division, each new daughter cell will inherit one
centrosome to maintain homeostasis.

The signaling pathways controlling centrosome duplication are complex and not yet fully
understood. It is believed that the CDK2/cyclin E complex, which initiates S phase and promotes
DNA replication[34-36], licenses centrosome duplicati8v-39]. The exact mechanism of how
CDK2/cyclin E initiates centrosome duplication remains elusive, although several deasmstr

targets are implicated, including nucleophosmin (NPAQ), Mps1[41], and CP11042].



The centriole assembly process begins with the activation ofligel&inase 4 (Plk4).
Activated Plk4 localizes at the proximal end of the mother centriole, and recruits downstream
structural proteins such as S&swhich triggergshe assembly of the cartwheel structure and also
the whole centriole by further recruiting other proteins likessaad Sasgl [43-45]. Because of
its central function in initiating new centriole formation, demgulation of Plk4 inhibits
centrosome duplicatiof®6], and overexpression leads to centrosome egreplication (>2
centrosomes/cel[43]. However, the exact mechanisms how cells regulate Plk4 activity during
cell cycle are not fully understood. It seems that Plk4 regulates its own phosphorylation to
maintain homeostatic Plk4 levels and centrosome eusnland phosphorylated Plk4 is degraded
through a SCFS | i mb /-BE8 Tibiqditih ligasedependent mechanisj#7-50].

Centrosomes mainly function #ee primary microtubule organization center (MTOC) to
nucleate microtubules which participate in numerous cellular functions such as defining cell
polarity[51], cell migration[52], protein transportatiofb3], and most importantly mitosj$4].
Therefore centrosome abnormalities can lead to cellular defects in both interphase and mitosis.
Recent results from our lab showed that excess centrosomes affect microtubule nucleation and
dynamics, contributing to disrupted irpbiase behavidri8,55]. During mitosis, the two newly
separated centrosomes localize at different poles of a cell to assist the formation of a mitotic
spindle, which ensures the proper and accurate segregation of chromosomes. As a result,
centresome abnormalities, such as centrosome-duglication which occurs frequently in most
tumor cellg[56], can compromise chromosome segregation.

The idea that centrosome oxdrplication is correlated with tumorigenesis dates back to
more than 100 years ago, first proposed by the German biologist Theodor [Rdj,eand it was

demonstratethat centrosome oweluplication is strongly associated with aneuploidy and



chromosome instability (CIN), which refers to the phenotype that cells constantly undergo
chromosome missegregation and fail to maintain chromosome stgbtbg]. Originally it was
believed that excess centrosomes (>2 centrosomes/cell) lead to the formation of multipolar
spindles to induce CIN because excess centres@nd multipolar spindles are frequently
detected in tumors with CIN0,61]. However, most daughter cells from multipolar division do
not survive because they lack sufficient genieticrmation[62]. Therefore, the idea of
multipolar spindleinduced CIN creates a paradox, which is resolved by recent literature
demonstrating that centrosome odeiplicated cells still undergo classiegmlar cell division by
clustering centrosom¢g62]. In this model, daughter cells develop Kmvel of aneuploidy and
CIN from merotelic attachment without compromising their fithess. However, most of these
findings were based on results in tumor cells, and the effects of excess centrosomes on primary

cells remain elusive.

C. p53

| found that excess centrosomes activate p53 and phosphorylates p53 &b $6£33
This section summarizes the structure, regulations and functions of p53.

p53 is a tumor suppressor protein which does not function correctly in most human
cancers, and is mutated in about 50% of turfi@8k It was first identified as a target protein of
the T antigen of the virus SV40, which induces tumor develop[6d+67]. Originaly, p53 was
considered as an oncogene because it wasexygessed in some tumor cqi8,69). However,
later examinations of p53 in both tumors and normal cells revealed the tumor suppressing
function of p53, and demonstrated that higakpressed p53 in tumor cells are actually p53

mutant§ 70,71].



Human p53 is a transcription factor with 393 amino acids, which can be divided to 5
major domains: the NMerminal transactivation domain (NTD), the Rich domain (PRD), the
central DNA binding domain (DBD), the tetramerization domain (TD) and ttexr@inal basic
domain (BD)[72,73]. NTD interacts wh many transcriptional factors such as DFand ThHH
to promote target gene expressj@d,75]. DBD binds DNA, and confers specificity in selecting
target genes. Theconsensus ndi ng s e gque nRRREA/D)T/A)BBYDY-(nkr e 50
RRRC(A/T)(T/A)GYYY-3 6 , w h-23r amd Rhand)Y stand for purine and pyrimidine,
respectivel({76]. TD is required for p53 tetramerizatipriz,78], which is essential for DNA
binding, protein interaction and pesanslational modifications (PTMY9].

MDMZ2 is a weltknown regulator of p53, although other regulators have been reported.
MDMZ2 functions as the E3 ubiquitiprotein ligase, binds TAD of p53, and mark p53 for
proteasomal degradati¢80,81]. Increased levels of MDM2, frequently detected in some tumor
types, result in enhanced degradation of p53, and contribute to tumor develpp283t
Interestingly, MDM2 is alg a downstream target of p53, creating a feedback loop te auto
regulate its own levelB4]. This delicate system ensures that the stasate levels of p53 are
precisely controlled until it is activated by stress signaling.

p53 can be amtated by several cell stress signals such as DNA dai8ags],
deregulated oncogene expresdi®A and hypoxig88]. p53 activation requires its stabilization,
which is dependent on the PTM on p53. Phosphorylation of p53 is usually considered as the first
step of p53 stabilization dylocking the physical association between p53 and MDM2, and
inhibiting the ubiquitination of p5B39]. For example upon DNA damage, several kinases (e.g.
ATM and ATR) will phosphorylate p53 at Serl5 #er20 to alleviate its inhibition by MDM2,

and to stabilize and activate pB®-93]. Another amino acid, Ser46, can atsophosphorylated



upon stress stimulation, and this particular phosphorylation event seems critical-iodp&Sd
apoptosis and replicative senescej®2g95]. Furthermore, osotic shock induces p38
dependent Ser33 phosphorylat{®6], which is also involved in oncogeteduced senescence
[97].

Although some results suggest that p53 can function without its transcriptional activation
activity [98,99], activated p53 mainly affects cell behavior by inducing the expression of various
downstream target genes such as 200, 14-3-3 §101], Pumg 102 and p53AIP194]. These
targets are differentially involved in various p53 activatiapendent effects.

One important function of§8 is to induce cell cycle arrest, serving as an important cell
cycle checkpoint mechanism. p53 can use multiple pathways to arresstitragated cells, and
the signaling is extremely complex. Mainly p53 arrests cells at G1/S and G2/M transition. p21,
the downstream target of p53, can bind and inhibit CDK2/cyclin E, which is required for G1/S
progression103, therefore arresting cells at G1 phase. p53 can also promotes G2/M arrest by
inhibiting Cdc2 viap21,18-3 0 and severl®4. ot her targets

In addition to cell cycle arrest, stressluced p53 promotes apoptosis, i.e. programmed
cell death, by activating the expression of multiple-@poptotic proteins like Punjd02 and
p53AIP194], which initiate the apoptoticgphway. Another important outcome of p53 activation
is permanent cell cycle arrest, i.e. senescgh@q (see below). It seems that whether cells
undergo cellcycle arrest, apoptosis or senescence is dependent on cell type and stress, and the
mechanisms for differential cell destiaye not fully understoofl0§.

Recent evidence suggests that loss of centrosome integrity activates p53. Loss of
centrosome integrity via dowregulation of important centrosome proteins induces p53

dependent cell cycle arrg4i07,10§. In addition, inhibition of centrosome assembly by



knocking out Sag activates p58lependent apoptosis in mouse embijld¥]. These findings
suggest that p53 is critically involved in a
complete centrosome structure and function.

Loss of p53 can induce centrosome edeplication. In 1996, results from Vande Woude
group demonstrated that centrosome algulication is frequently detected in mouse embryonic
fibroblasts (MEF) from p53 knockout mice, indicating that p53 is involved in regulating
centrosome duplicatiofi1(. Two theories may explain the p53 lasduced centrosome over
duplication: p53 controls the initiation of centrosome duplication, and/or p53 serves as a
surveillance mechanism for ovduplicated cent'somes.

It is not surprising that p53 may be involved in the initiation of centrosome duplication
because p53 upregulates p21, which inhibits CDK2/cyclin E, the initiator of centrosome
duplication. In support with this pathway, p21 deficiency inducesasmine oveduplication
by triggering a bona fide centriole ovéuplication phenotypgl11,117. In addition, re
introduction of p21 in p53 cells partially rescued their centrosome duplication cyd§.

However, there are contradictory results about whether cells havedep&Bdent
surveillance mechanism for centrosome eshgplication.In 2001, Andreassen et al.
demonstrated that cells possess ag@&3cndent tetraploid checkpoint which responds to
centrosome oveduplication and tetraploid genome resulting from failed cytokirjddi4.
However, this notion was | ater questioned by
may be a artifact of drug overdose and a side effect of DNA darmiabgg116. In linewith the
idea that no checkpoint detects centrosome-duelication, cells with excess centrosomes tend
to routinely undergo bipolar cell division and produce viable daughter [&]s However,

several recat results suggest that cells may actually have adgp8lendent mechanism for



monitoring extra centrosomes. Induction of extra centrosomes egpegssing a CDK6
activator induces p58ependent apoptodi$17]. In addition, extra centrosomes induced by Plk4
overexpression seem to stabilize and activate[@S318. However, thenechanisms and

effects of excess centrosormaduced p53 stabilization remain elusive.

D. Senescence

| found that excess centrosomes indps8dependensenescence in primary EC,
establishing the first link between excess centrosome and senescence. This section summarizes
current understandingof senescence.

Cellular senescence denotes permanent cell cycle arrest. Unlike quiescent cells, senescent
cellscannot go back to the cell cycle regardless of nutrient level or differentiation status.
Senescence was first noticed and identified by Hayflick who found that cells have a doubling
potential of ~50 passages in culture, referred as the Hayflick[ri&12(. It was later found
that the Hayflick limit is caused by shortened telomeres because DNA polymerases cannot fully
replicate the lagging stranfis21,127. Shortened telomeres trigger a DNA damage response
(DDR), which finally induces p58ependent senescer{d23124].

Besides telomere shortening, ectopic expression of oncogenes can also induce senescence.
In 1997, Serrano et al. demonstrated that enforced expression of oncogenic Ras in primary
human or rodent cells induces premature senes¢8#c which is contradictory to the general
perception of oncogene functions. Later studies showed thaegpezssion of BRAF or loss of
tumor suppressors such as PTEN can also induce senegt2ht26|, indicating that
oncogenanduced senescence (OIS) is a general mechanism in cells to prevent cell

transformation. It has been shown that the p38 MAPK contributes to onengerced



senescence partially by phosphorylating p53 at S&33In addition to telomere shortening
and oncogene ova@xpression, several genotoxic chemicals induce senescence, suyth as H
[127], etoposidg¢128, and hydroxyurefl?29.

Although there are no definite markers for cellular sesrese, it is now welhccepted
that senescence is a complicated and complex cellular program which alters cellular morphology,
signaling and behaviors in multiple ways. First, most senescent cells, such as those induced by
oncogene expression and®4, terd to have large and flat morpholof7,127]. Another
prominent feature of senescence is the expression of senescenseo c igaactesidiasd(SA
b-gal), which can be detected by chemical reaction at piB6]. SA-b-gal activity is expressed
from a lysosomal protein GLB1, which has optimal activity at pH 4.5 but markedly lower
activity at pH 6/131]. Because senescent cells accumulates high amount of GLB1, the
cumulative activity of GLB1 becomes readily detectable at pH 6, representing thg&A
activity [137. However, no evidence suggests thatfsgal/increased GLB1 contributes to
senescace progressiofiL3]]. Some senescent cells demonstrate senescesumzaasd
heterochromatic foci (SAHF) in their nuclei. In 2003, Narita et al. first described this phenotype,
and demonstrated that histone H3 with methylated Lys 9 are concentrated in thesglS3HF
which is supported by following repoit$34-13€6. However, similar to S/4-gal, SAHF is
dispensable for senescence, and its occurrence depends on specific cell type and stress signals
[137).

Both SAb-gal and SAHFseem to accompany the outcome of senescence without
contributing to its development, but two other senescence markers, p53 and pl6, are critically
involved in senescence progression. As mentioned above, p53 is involved in senescence by

mediating DNA damageespons¢123124]. Additionally, p53 participates in oncogemeluced
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senescence using similar mechanisms through DNA damage refp88s@21, a downstream
target of p53, is also involved in senescence. Ecmycession of p21 induced premature
senescencl39, and lack of p21 bypassed senescence in human fibrojdd6fsBesides
p53/p21, another CDK inhibitor, p16, is also critical for senescence. pl16 blocks the cell cycle at
G1/S transition by binding and inhibiting CDK4/cyclin D and CDK6/cyclifl®1]. It is up
regulated in several senescence scenarios, including those induced by telomere shortening
[142143 and oncogene ovaxpression87]. In addition, ectopic expression of p16 induces
premature senescend89, and loss/inactivation of p16 extend the lifespan of human mammary
epithelial cell§144,145. Although it isnot entirely clear how p16 and p53 interact with each
other to participate in senescence program, the general concept is that DNA damage response or
other stresses first activate p53 to induce transient cell cycle arrest, which progresses to stable
and pemanent arrest by inducing and maintaining p16 expre§#g.

It is not completely known why cells undergo senescence instegumbptosis. One
possible explanation may be related to the senes@msoeiated secretory phenotype (SASP) in
senescent cells. It was shown that senescent cells demonstrate a strong inflammatory phenotype
especially in fibroblastgl47], and many inflammatoryelated factors are secreted by senescent
cells, such as H1 U [188149, IL-6[150, and IL-8 [15]]. Therefore senescent cells can
contribute to inflammatory response via SASP, therefore promoting cell proliferation, migration,
and differentiatior}152.

Centrosome abnormtks (excess centrosomes and loss of centrosomes) are associated
with, and sometimes contributes to, cell cycle arrest or senescence. Some replicatively and
prematurely senescent MEF have excess centrosomes because of unidentified meft&isms

In addition, dowrregulation of centrosomal structural proteins, such as 2CMa +tubulim
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induces p53lependent cell cycle arrest arehescencglL07]. Inhibition of two other proteins,

Aurora A and TACC3, which promote centrosome maturation, leads to premature senescence in
tumor cellg[154,155. Therefore, centrosome abnormalities are associated with cellular
senescence, but whether centrosome-dugtication leads to senescence remain to be

elucidated.

E. Summary

Centrosme overduplication is ubiquitously associated witbna fidetumor cells, and
has been recently documented in tumor EC as well. The outcomes of centroseme over
duplication in tumor EC are not completely understood, but may contribute to the abnormalities
of tumor vasculature and the potential drug resistance in tumor angiogenic therapy. Recent
evidence suggests that centrosome -olalication activates a p53 stress pathway, although the
exact mechanisms remain elusive. Better understanding of these yathwaontribute to

further studies of centrosome function and its implications for disease.
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F. Figure

Figure 1.1.Structure of a centrosome

A centrosome is comprised of two centrioles Hresurrounding pericentriolar material (PCM
yellow). A centriole is a cylinder structure formed by 9 radially symmetric triplet microtubules.
At the proximal end of a centriole, there is a cartwheel structure (red) with 9 triplet microtubules
(green). At the distal end of a centriole, there are 9 doabérbtubules, which are modified and

associated with subdistal and distal appendages (blue).
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CHAPTER I 1-Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell
Centrosome Over-duplication®
A. Summary
Approximately 30% of tumor endothelial cells have edeplicated () centrosomes,

which may contribute to abnormal vessel function and drug resistance. Elevated levels of
vascular endothelial growth factor A induce excess centrosomes in endothelial cells, but how
other features of the tumor environment affect centrosmraeduplication is not known. To test
this, we treated endothelial cells with turt@rived factors, hypoxia, or reduced p53, and
assessed centrosome numbers. We found that hypoxia and elevated levels of bone
morphogenetic protein 2, 6 and 7 induced excentrosomes in endothelial cells through
BMPRZ1A and likely via SMAD signaling. In contrast, inflammatory mediator8 &nd
lipopolysaccharide did not induce excess centrosomes. Finally-ceguiation in endothelial
cells of p53, a critical regulatof DNA damage and proliferation, caused centrosome-over
duplication. Our findings suggest that some twa@rved factors and genetic changes in

endothelial cells contribute to excess centrosomes in tumor endothelial cells.

'This chapter is adapted from a paper submittd®LOS ONEn 2016. | performed most of the
experiments and wrote the first draft of the manuscript. Dr. Victoria Bautch edited and added to my
original draft. Dr. Kevin Mouillesseaux performed the experiments in Fig 2.1 and Supplementary Fig
2.1B. Dr. Erich Kushrreprovided the immortalized normal endothelial cells.
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B. Introduction

Tumor progession requires angiogenesis, a hallmark of cancer development, and tumor
vessels enable tumor metastasis by providing a conduit for tumor cell invasion and kgtead
Although tumor vessels are a critical part of the tumor meenaronment, artangiogenic
therapies have had no effect or provided transitory improvement, indicating that tumor vessels
become resistant to angiogenesis inhibif8fsConsistent with the lack of effectiveness of anti
angiogenic therapy, recestudies show that endothelial cells (EC) that line tumor vessels have
genetic abnormalities such as aneuploidy. Aneuploidy is often associated with excess
centrosomes, and up to 30% of tumor EC have excess centrdgb@je€entrosomes form the
microtubuleorganizing center (MTOC) in interphase cells to regulate cell migration, polarity,
and adhesion, and they form the spindle poles that segregate chromosomes durinf/initosis
Thus tumor EC acquire permanent structural and genetic alterations via excess centrosomes that
likely contribute to the pénotypic and functional abnormalities of tumor blood vessels.

Tumor blood vessels are thought to arise from normal vessels that enter thg8@mor
suggesting that the environment is responsible for inducing excess centrosomes in EC. Tumor
cells secrete elevated levels of various growth fagidlis and our previous work showed that
elevated levels of vascular endothelial growth factor A (VEEGduce centrosome over
duplicationin EC[11]. However, the frequency of centrosome edeplication in tumoierived
EC is significantly higher than that induced by excess Vi23B,11]. Thus other wpegulated
signaling pathways in the tumor environment likely contribute to centrosomealopkcation in
EC. For example, bone morphogenetic protein (BMP), which is required for appropriate

angiogenesis, is upegulated in certain ogers[12]. Furthermore, different BMP ligands such as
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BMP2, BMP4, BMP6 and BMP7 induce angiogen¢$®, and BMP2 and BMP4 promote
tumor angiogenesid 3).

In addition to growth factors, the tumor environment is hypoxic and has elevated levels
of inflammatory cytokines. The tumor environment is hypoxic in part because of abnormal tumor
blood vessel§l4]. Hypoxia activates the hypoxiaducible factor (HIF) family of transcription
factors, which further induce expression of numerous downstream targkiding VEGFA
[15]. Inflammation is also a hallmark of the tumor environment and is thought to promote tumor
growth[16], perhaps via secretion of angiogenic chemokines such as Interleuku8Btiat
induce tumor angiogenedis7]. It is not known whether hypoxia or inflammation promote
excess centrosomes in EC.

In this report, we analyzed the effects of specific inputs elevated in the tumor
environment on centrosome oxduplication in EC. We found that elevated levels of somd®BM
ligands are sufficient to induce centrosome elgplication in EC, using BMP receptor 1A and
likely via downstream SMAD signaling. Additionally, hypoxia promoted EC centrosome over
duplication through a VEGR-independent mechanism. In contrast, inflaatony mediators did
not affect centrosome numbers in EC. In addition to environmental factors;rdguation of
the tumorsuppressor p53 induced centrosome @elication in EC. These results indicate that
both environmental and genetic factors coniigtto centrosome owgluplication in EC, and

may contribute to the high frequencies seen in tumor vessels.
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C. Materials and Methods
Cell culture

Human umbilical vein endothelial cells (HUVEC, Lonza Grouf26&9), human brain
microvascular endothelial k& (HBMEC, Cell Systems ACBRI 376) and human umbilical artery
endothelial cells (HUAEC) were cultured in endothelial growth mee2uflaGM-2, Lonza
Group ce3162). Human lung microvascular endothelial cells (HMVIEQ.onza Group c2527)
were cultured in BEM-2 MV (Lonza Group ¢8102). Normal mouse EC (NEC) were originally
isolated from mouse mammary glands and cultured in E38). Growth factors or
lipopolysaccharide (LPS, List Biological Laboratories 201) were added to cultures at indicated
concentrations. Exogenous recombinant growth factors used in this study were MBEGFA
(PeproTech 10Q0), BMP2 (R&D Systems 35BM-010), BMP4 (R&D Systems 31BP-010),
BMP6 (R&D Systems 50BP-020), BMP7 (R&D Systems 358P-010), and Interleuki8 (IL-

8, PeproTech 2008). VEGFA and BMP were used at 200 ng/ml, and8kvas added at
indicated concentrations. Culture medium was replaced daily for 4 days, and cells were
maintained at 300% confluence. To study signaling, HUVEC were cultured in-OEM for
4 hr before treatment with 200 ng/ml BMP ligands in @pEM for 30 min.

Lipofectamine RNAIMAX (Life Technologies 1377B50) was used for sSiRNA
transfection according to manufacturer protocols. siRNAs weretargeting SiRNA (Life
technologies 4390847MBMPR1A siRNA (Life technologies 43924280), BMPR1B siRNA
(Life technologies 43924262043) and BMPR2 siRNA (Life technologies 4390824046).

For hypoxia experiments, HUVEC were culturedin2% or3h ©@r 4 days.
recombinant human VEGF Reater-1 (FIt-1)/Fc (R&D Systems 32EL-050) was added to

medium to block VEGHA signaling[18], and the medium was changed daily. In general, EC
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were immediately fixed with cold MeOH after hypoxic incubation. To test for translocation of
HI F1U, EC were recovered in nor-moeticagent or 30 m
desferrioxamine (DFO) and a hypoxia incubator chamber were kindly provided by Dr. Kimryn

Rathmell.

Immunofluorescence and microscopy

HUVEC were fixed in ice cold 100% MeOH for 10 min, then stained as previously
described19]. Briefly, fixed cells were blocked in 5% bovine serum in PBS for 1hr at room
temperature (RT), then incubated with mouse-anti m a-tobulim (1:5000, Sigm&ldrich
T6557), rabbit anthuman pSmad1/5 (1:500, Cell Signal 9516) or mouse adti u man HI F1 U
(1:50, Novus biologicals NB16005) at 4C overnight. After washing 3X 5 min in PBS, cells
were incubated with secondary antibodies (1:250), includingagygamouse Alexa 488
(Invitrogen A11029) or goantrmouse Alexa 594 (Invitrogen A11005), and DRAQ7 (1:1000,
Abcam ab109202) or SYTOX gre€étr50,000, Invitrogen S7020), for 2hr at RT. Both primary
and secondary antibodies were diluted in 5% bovine serum in PBS. Centrosome numbers were
determined using a Zeiss LSM 5 Pascal microscope with a 100X objective.

pPSMAD1/5 fluorescence intensities rgequantified in ImageJ. Briefly, the DRAQ7
(nucleus) channel from compressestacks was thresholded to segment nuclei and adjusted into
a binary image. Intensity analysis was redirected from the binary image to the pPSMAD1/5
channel by cMaagungmehesadSparameter. MAAnalyze

executed to determine pSMAD1/5 intensity in each nucleus.
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Western blot

Western blot analysis was performed as previously described, with slight modifications
[11]. Briefly, HUVEC lysates were lysed using RIPA buffer supplemented with protease
inhibitor (Cell Signaling 5871S). Proteins were separated on a 10% sodium dodecyil sulfate
polyacrylamide gel, transferred to a PVDF membrane (GE HealtliRBN303F), and blocked
in 5% bovine serum albumin (BSA) in PBS with 1% tw@€n(Sigma P2287) for 1h at RT.
Primary antibodies used were: rabbit ggtitbospheSmad1/5 (1:1000, Cell Signaling 9516),
rabbit antiAkt (1:1000, Cell Signaling 9272), rabbit aptiospheAkt (Ser473) (1:1000, Cell
Signaling 4060), rabbit anphospheERK1/2 (Thr202/Tyr204) (1:1000, Cell Signaling 4370),
rabbit anttERK 1/2 (1:1000, Cell Signaling 4695), mouse#hti F1 U ( 1: 500, Novus
NB100-105), mouse anp53 (1:1000, Acam ab1101) and rabbit apH3 (1:500, Abcam
ab131442). Membranes were incubated with primary antibodies diluted in 1% BSA overnight at
4°C. Signal was detected with horseradish peroxidase (HRPjadhiit (1:5000, Invitrogen G
21234) or HRP aninouse(1:30,000, Invitrogen 86720), and imaged via Clarity Western ECL

Substrate (BieRad 1765061).

Quantitative realtime PCR

HUVEC were collected 48 hr after siRNA transfection, and total RNA was isolated with
TRIZOL (Life technologies 1559626) accordig t o t he manufacturerds pi
was used for synthesizing cDNA with iScript (BRad 1708891). cDNA products were diluted
fivefold. For measuring BMPR1B, BMPR2 and GAPDH, 0.5 ul of diluted samples were used as
templates; for BMPR1A, 5 ul ofildted samples were used. FPICR was preformed using iTaq

universal SYBR Green supermix (Bitad 1725121) in a 7900HT fast APICR system (Applied
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Biosystems). Primer sequences were: GAPDH (forward:
CCTCAAGATCATCAGCAATGCCTCCT,; reverse:
GGTCATGAGTCCTTCCACGARCCAA), BMPR1A (forward:
AGCTACGCCGGACAATAGAA; reverse: CTATGACAACAGGGGGCAGT), BMPR1B
(forward: GCCTGCCATAAGTGAGAAGC; reverse: CTTTCTTGGTGCCCACATTT), and

BMPR2 (forward: GGTAAGCTCTTGCCGTCTTG; reverse: ATCTCGATGGGAAATTGCAG).

Lentivirus infection

Human p538targeted shRNA (clone ID: V3LHS_333920) with pGIPZ vector was
obtained from Open Biosystems. Mouseiga8geted shRNA clone (TRCNO0000012360) with
pLKO.1 vectors were obtained from the UNC LesttiRNA Core facility. ShRNA lentiviruses
were made by the UNCdntrs hRNA Core facility. Cells were i
in 5 ml medi um plus 1egg/ ml pol ybrene (Millipo
before fixation or collection. Virus lacking a target sequence (empty vector) was wsed as

control.

Statistical analysis
The paired orunpairedtwto a i | e d -Best wab esed t@deterinine statistical
significance in cases with 3 repeats. Tfdest was used to determine statistical significance in

cases with 2 repeats. Error bars represent standard deviation from mean between experiments.
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D. Results
Elevated levels of BMP ligands induce excess centrosomes in EC

We began to dissect the differgutential inputs to excess centrosome formation from
the tumor environment by introducing elevated levels of different signaling pathways or by
genetic manipulation of normal EC and assessing effects on centrosontiphestion.
Because BMP ligands ralate angiogenesis and are expressed in the tumor-snetmonment,
we asked whether elevated BMP signaling regulates centrosome number in EC. HUVEC treated
with different BMP ligands were stained with aptiubulin antibodies to label centrosomes, and
EC with different centrosome numbers were clearly identif@gp. Fig 2.1A). As previously
described, EC with 3 or more centrosomes were considered to have excess cenf{figomes
2.1A)[19]. Exposure to BMP2, BMP6, or BMP7 caused a significant increase in the percentage
of HUVEC with excess centrosom@sg 2.1B-C, Fig 2.2A). This effect was not observed with
BMP4 treatment in HUVEQSupp. Fig 2.1B), nor upon treatment with BMP2 or BMP6 in
HUAEC, HBMEC or HMVEGL (Supp.Fig 2.1GE). These results indicate that some but not
all BMP ligands induce excess centrosomes, and that different EC isolates respond differently to

these ligands.

BMP-induced cetrosome oveduplication is BMP receptor type 1A (BMPRidependent

To understand the mechanism of Biffduced centrosome ovduplication, we down
regulated BMP receptors in HUVEC. There are several BpEtific receptors that include type
1A BMP recepto(BMPR1A/ALK3), type 1B BMP receptor (BMPR1B/ALKG6), and type 2
BMP receptor (BMPR2)20]. siRNA targeting of these three receptors efficiently and

significantly knockdown their mRNA level$Supp. Fig 2.2A-C). The increase in EC with
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excess centrosomes seen with BMP2 or BMP6 was blocked by BMPR1A knockdown, but not by
BMPR1B or BMPR2 knockdow(Fig 2.2A-B). These findings suggest that BMPR1A is
required for BMPRinduced centrosome owvduplication.

Type 1 andype 2 BMP receptors form hetetetramers upon ligand binding that permits
phosphorylation of downstream effectors called receqgtgulated SMAD (RSMAD), including
SMAD1 and SMADS. Phosphorylated ®MADs bind SMADA4 to translocate into the nucleus
and malulate gene expressi¢paQ]. To further understand the mechanism of Bié&uced
centrosome oveduplication, we examined the phosphorylation of SMAD1/5 by
immunofluorescence. The levels of nuclear phospNAD1/5 (pSMAD1/5) were significantly
induced by BMP6 treatment in control siRNA, BMPR1B siRNA and BMPR2 siRfdated
HUVEC, but not in BMPR1A siRNAreated cell¢Fig 2.2CD), which was also confirmed by
western blo{Fig 2.2E). These results suggest that BMPR1Aeguired for BMPinduced

centrosome oveduplication through downstream&MAD activation.

Inflammatory mediators do not promote excess centrosomes in EC

Chronic inflammatiorassociated signaling, which is activated byregulation of
cytokines, is another characteristic of the tumor environmesg.ifLa preinflammatory
cytokine that regulates angiogeng&s|. To determine if IL8 promotes centrosome over
duplication in EC, we treated HUVEC with-B, which induced ERK phosphoagion in
HMVEC (Supp. Fig 2.3} however, these levels of 48 did not induce excess centrosor(iég
2.3A). To test more general effects of inflammation on centrosomedan@ication, HUVEC
were treated with lipopolysaccharide (LPS), a potentipifammatory agent that promotes

secretion of a wide range of inflammatory mediaf@8. Consistent with the results of-&
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treatment, LPS treatmedid not induce significant increases in excess centrosomes in HUVEC
(Fig 2.3B). These results indicate that-8.and LPS do not induce centrosome edkggplication
in EC, suggesting that inflammatory mediators are not causative agents in generating excess

centrosomes in EC.

Hypoxia induces excess centrosomes in EC

In addition to the complex milieu of cytokines and growth factors, tumor environments
are often hypoxic. To determine whether hypoxia induces excess centrosomes in EC, HUVEC
were first treatedvith the oxygen chelating agent desferrioxamine (DFO), which mimics
hypoxia in induci[23 Treatmert with BFOcesulted ina#d increase
in the frequency of excess centrosomes compared to coffiigl8.4A). To further test our
hypothesis, HUVEC were cultured in @820 oxygen envonment (hypoxia) for 4 days, then
fixed and stained to assess the frequency of centrosomeupigration. Hypoxic incubation led
to translocation of HIF1U from t {S#AEg2t)opl asm
and also induced (SupmHFiga4B) imndidatmaitheadtivatibh doF Hyfbxia
pathways. Incubation in 2% or 3% oxygen significantly promoted centrosomelapigration
compared to normoxic contro(Big 2.4B,Supp. Fig 2.4C). These restd indicate that a hypoxic
environment is sufficient to induce excess centrosomes in EC.

Hypoxia upregulates the production and release ofggiogenic cytokines such as
VEGF-A in multiple tissue$15]. To determine whether hypoxiaduced centrosome over
duplication InEC requires VEGHA signaling, HUVEC were incubated in hypoxic conditions
with recombinant human soluble VEGF RecegtdFIt-1)/Fc to block VEGFA signaling. Flt

1/Fc treatment efficiently inhibited ERK phosphorylation induced by VE2ESupp. Fig 2.4C),
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but was unable to rescue hypoxmuced centrosome ovduplication(Fig 2.4C) This result
suggests that hypoxia induces excess centrosomes in EC throughAAB@€Ependent

mechanisms.

Inhibition of p53 signaling induces excess centrosomes in EC

Loss orinactivation of p53 induces excess centrosomes in mouse embryonic fibroblasts
[24]. Thus, we tested whether p53 attenuation leads to excess centrosomes in EGhaAirghort
RNA (shRNA) was used to downegulate p53 levels in HUVE(Supp. Fig 2.5A), and HUVEC
infected with shRNA had an approximatelydd increase in the percentageexicess
centrosomegFig 2.5A). Previous studies demonstrated that mouse tumor stromal cells,
including mouse tumor EC, have an attenuated p53 resp2js@ herefore we asked whether
downregulation of p53 induced excess centrosomes in mouse EC by infecting immortalized
normal mouse EC (NEQPp] with p53 shRNA. Dowsregulation of mouse p53 also induced
excess centrosomes in NES®upp. Fig2.5B, Fig 2.5B) These results suggest that dewn

regulation of p53 contrilites to centrosome owvduplication in tumor EC.

E. Discussion

We previously showed that high levels of the-priogenic growth factors VEGK
and bFGF promote excess centrosomes ifIHC However, thérequency of EC centrosome
overduplication, even with a combination of both VE@FRand bFGF, was much less than that
seen in primary isolates of tumderived E( 6], suggesting that other aspects of the tumor
environment contribute to pathologlcentrosome ovetuplication. Here we provide evidence

that excess centrosomes in EC occur downstream of numerousrelated inputs. We found
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that the BMP ligands BMP2, BMP6 and BMP7 significantly induced centrosome over
duplication, while inflammatgrmediators were ineffective. Hypoxia, which is associated with
most solid tumors, induced excess centrosomes in EC through-YEGdependent
mechanisms. Besides environmental factors;agibnomous perturbation of p53 also promoted
excess centrosomas EC. These findings suggest that multiple inputs contribute to the high
frequency of tumor vesselerived EC with excess centrosomes.
Elevated levels of some BMP ligands, similar to high levels of VEGF and FGF ligands,
induce excess centrosomes in EGedestingly, VEGF and FGF signaling are mediated by
VEGEF receptor 2 and FGF receptor, respectively, which belong to the tyrosine kinase receptor
family [26], whereas BMP signals through serine/threonine kinase rec&piprsuggesting that
diverse signaling inputs promote centrosome -agication in EC. Our results also show
ligand and cell type specificity of BMP in inducing excess centrosomes: BMP2, BMP6 and
BMP7, but not BMP4, significantly induced excess centrosomes in HUVEC, whereas BMP2 and
BMP6 did not significantly affect centrosome numbers in several other human primary EC.
BMP ligands initiate signal transduction by binding a hetettameric receptor
compiised of two dimers of type 1 and type 2 recepi@@. Among a group with specificity for
TGFb and/ or BMP signaling, BMPR1A, BMAER|1B and
Here we show that knockdown of BMPR1A, but not BMPR1B or BMPRZ2, inhibits BMP
induced SMAD1/5 phosphorylation and centrosome-oiuglication. BMPR1A iritically
involved in BMP signaling, and BMPR1A knockout mice are embryonically lethal with severe
heart valve and EC defed28-30]. However, BMPR1B knockout are viajl&l]. In line with
thein vivodata, previou# vitro data showed that BMPR1A siRNA, but not BMPR1B siRNA,

abrogates SMAD1/5 phosphorylation in human microvascular endotheligl 38l hese
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results are consistent with our findings. Interestingly, BMPR2 knockdown did not inhibit SMAD
activation or block BMP liganthduced centrosome ovduplication, indicating possible
redundancy ofyipe 2 receptors in EC. This is also consistent with previous finding that ablation
of BMPR2 in pulmonary artery smooth muscle cells allows signaling through ActR2A and does
not abolish BMP signalinfB3].

Another prominent feature of the tumor environment is a chronic inflammatory response,
which is mediated by infiltration of immune systeml€gB4]. Tumor inflammation is similar to
inflammation associated with normal physiological processes such as wound [8liur
results suggest that inflammatory mediators do not induce centrosemduplication in EC.

Thus, despite being a hallmark of the tumor environment, chronic inflammation is likely not an
input for centrosome ovetuplication in tumor EC. This finding also suggests that during
physiological inflammation, EC do not develogess centrosomes, therefore maintaining a
relatively normal phenotype and function.

Hypoxia upregulates the expression and secretion of growth factors, such asAYEGF
the tumor environmerj85]. Here we show that hypoxia induces excess centrosomes in EC.
However, although hypoxisnduced signaling wpegulates VEGH, which promotes
centrosome oveduplication[11], our data suggest that hypoxmmuced excess centrosomes in
EC are independent of E€erivedVEGFA. This indicates that, if tumor EC undergo
centrosome oveduplication as a result of eqegulated VEGFA signaling in the tumor
environment, the source of the ligand is likely the tumor cells or otheemadothelial stromal
cells.

In addition to banges in the tumor environment, tumor EC may also acquire cell

autonomous perturbations that promote centrosomedmication. Previous studies showed
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that tumor stromal cells, including tumor EC, have attenuated p53 activation in response to stress
stimulation[25], and p53 abnormalities habeen linked with centrosome o\drplication. For
example, mouse embryonic fibroblasts isolated from p53 konatknice possess multiple copies
of functional centrosomd®4]. Here we show that reduced p53 levels induced excess
centrosomes in EC, suggesting that cell autonomous p53 changes contribute to centrosome over
duplication in tumor EC.

Although up to 30% of primary tumor EC have excess centrosf@hesur results
indicate that no single environmental factor or deegulation of p53 alone achieves such a
high percentage of excess centrosomes if1EL It is possible than vivo,several inducing
factors combine to achieve the high percentage of excess centrosomes in tumor EC. In summary,
we show that multiple environmental inputs and attenuated p53 contribute to centrosome over
duplication in EC. This work contributes ¢air understanding of both normal and tumor

angiogenesis, and provides potential insights foramgiogenic therapy.
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F. Figures

Figure 2.1. BMP2 and BMP7 induce excess centrosomes in EC.

(A) Representative images of HUVEC with normal (left) and altgticated centrosomes
(right). HUV E C -twrlm ér centrasomese(greeny and BRAQ7 for nuclei
(blue). (B, C) Frequency of excess centrosomes in HUVEC after treatment with 200 ng/mi
BMP2 (B) or BMP7 (C) for 4 days. Error bars, standard dendtiom mean. Statistics: two

tailed unpaiesd. St udpo® 685t
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Figure 2.2. BMP-induced centrosome oveduplication is dependent on BMPR1A.

(A, B) Frequency of excess centrosomes in indicated sHtbi#ted HUVEC cultured with

vehicle or 200 ng/ml of BMP6 (A) or BMP2 (B) for 4 days. C, #targeting control SiRNA;

R1A, BMPR1A siRNA; R1B, BMPR1B siRNA; R2, BMPR2 siRNA. (C) Representative images
of HUVEC treated with indicated siRNA and vehicle or BMP6 and stained for phospho
SMAD1/5 (pSMAD1/5, green) and nucleus (DRAQ?7, blue). Cells were starved i¥MEjii

for 4 hr, followed by 30 min treatment with vehicle or BMP6. Only the nuclear pPSMAD1/5 is
shown (see Methods for details of mask). (D) Quantification of nuclear pPSMAD1/5 in HUVEC
treated as indicated. (E) Western blot of phospMAD1/5 (pSMAD) and total SMADL1 in
HUVEC treated as indicated. Cells were starved in-OiM for 4 hr, then treatedith vehicle

or BMP6 for 30 min. Error bars, standard deviation from mean. Statisticdailed paired (A,

B) or unpaireadesitD) nSt,udcernt &s gtni fi cant; *, pOO
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Figure 2.3. Inflammatory mediators do not indwce excess centrosomes in EC.

(A) Frequency of excess centrosomes in HUVEC after treatment with indicated factors for 4
days. (B) HUVEC incubated with 10 ng/ml LPS for 4 days prior to determination of excess
centrosome frequency. Results are shown indblidcrease, and each frequency was normalized
to its respective control. Error bars, standard deviation from mean. Statistic$ailedo

unpaired-tStsuddmgdgs §B). *, pO0.05; ns, not
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Figure 2.4. Hypoxia induces excessentrosomes in EC independent of cedutonomous

VEGF-A signaling.

(A) Frequency of excess centrosomes-mmeicHUVEC
agent desferrioxamine (DFO) for 4 days. (B) Frequency of excess centrosomes in HUVEC after

4 days dincubation in 2% oxygen. (C) Frequency of excess centrosomes in HUVEC after

incubation in 20% or 2% oxygen for 4 days and indicated treatments. Error bars, standard

deviation from mean. Statistics: tvioa i | ed unpai e®dd. St udp0® 685t ns,

significant.
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Figure 2.5. Downregulation of p53 induces excess centrosomes in EC.

(A) Frequency of excess centrosomes in HUVEC infected with human p53 shRNA. (B)

Frequency of excess centrosomes in normal mouse endothelial cells (NEC) infectadwgéh

p53 shRNA. Error bars, standard deviation from mean. Statisticd: two | ed unpaired S

ttest. *, pOO0.O05.
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Supplementary Figure 2.1. Effects of BMP ligands on human primary EC.

(A) Representative images of HUVEC with different centrosome numbers (n). (B) Frequency of
excess centrosomes in HUVEC after treatment with 200 ng/ml of BMP4 for 4 dalg. (C
Frequency of excess centrosomes in HUAEC (C), HBMEC(D), or HMNEE) after treatment

with 200 ng/ml of BMP2 or BMPG6 for 4 days. Error bars, standard deviation from mean.

Statistics:twet ai | e d u n p a-test. asgnotSignificeet.nt 6 s t
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Supplementary Figure 2.2. Validation of BMP receptor siRNAs.
(A-C) Relative mRNA leve of BMPR1A (A), BMPR1B (B), or BMPR2 (C) in HUVEC treated
with indicated siRNAs. Cells were collected 48 hr after siRNA treatment. Error bars: standard

deviations from mean. Statistics: toai | ed unpaired. *, pOO0.O05;

55



k%%

0 o L0 o
~ ~— o
S|9A3| @AllE|a) ¢HdING

O

X
X
X

—

G S © o
~ ~ o
m_m>m_m>=m_m__mEa_>_m

1"

_I

0w o v o

< <~ O.
S|ons] aAlBIal Y LY dING

<

siRNA C R1B siRNA C R2

R1A

O

<
Z
=
/)]

56



SupplementaryFigure 2.3. Elevated IL-8 activates ERK phosphorylation.
HMVEC were treated with 200 ng/ml {8 or VEGFA for indicated times, collected, and

analyzed for phosphorylated ERK (pERK) and total ERK.
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Suppl ementary Figure 2. 4dFlt-AobloaksxME@FAssignalingz at e s
(A) HUVEC were MeOH fixed immediately (lower panel) or afterr8h recovery in normoxia
(toppanel)poshypoxi ¢ incubation, then stained for
Western bl ot f or kdifdokhoxiaor 24 OxydgerC (C) Fnequerzyaof

excess centrosomes in HUVEC after incubation in 3004 days. (D) HUVEC were treated

with VEGF-A (200 ng/ml) or VEGFA plus FltFc (1 ug/ml) for 20 min. Cell lysates were

collected and blotted for phosplytated ERK (pERK) and total ERK. Error bars, standard

deviation from mean. Statistics: twwoa i | ed unpai e®td. St udp0® 685t
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