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ABSTRACT 

KELLY RONEY: The Role of Plexin-B2 in the Immune System                                                                                              
(Under the direction of Dr. Jenny P.-Y Ting) 

                                                               
Plexins and semaphorins are a family of transmembrane proteins that mediate diverse roles 

such as cell-cell contact, cell adhesion, cell movement, and cell response.  Plexins and 

semaphorins are unique from other proteins in containing a conserved extracellular 

semaphorin domain.  Semaphorins are smaller than plexins and have short intracellular tails.  

Plexins are larger and have long intracellular tails that are involved in intracellular signaling.  

The majority of plexin and semaphorin research has focused on the nervous system since 

their discovery in the late 1980’s.  Recently plexins and semaphorins were discovered in the 

immune system, where they play similar roles similar to those of the nervous system for cell 

guidance.  However, the receptor ligand pairs for semaphorins and plexins in immune system 

are distinct from those in the nervous system, and plexins and semaphorins have been found 

to mediate many immune specific cell processes including T cell activation and cytokine 

response.  The B subfamily of plexins has been found to mediate cell movement through 

activation and deactivation of the Rho family of small GTPases.  The majority of B family 

plexin studies have focused on Plexin-B1 in cell lines or the nervous system.  The data in this 

thesis show that Plexin-B2, and understudied B family plexin, is expressed on cells of the 

innate immune system in-vivo.  Plexin-B2 regulates cell velocity, activation of Rho family 

members Cdc42 and Rac, and cytokine secretion in macrophages and dendritic cells. 
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Chapter 1: Introduction 

 
1.1 Significance 
 

Plexins and semaphorins are a large family of proteins that are involved in cell 

movement and response.  The importance of plexins and semaphorins has been emphasized 

by their discovery in many organ systems including the nervous (reviewed in Negishi et al. 

2005), epithelial, (Miao et al. 1999; Fujii et al. 2002), and immune systems (reviewed in 

Kumanogoh et al. 2003; Takegahara et al. 2005) as well diverse cell processes including 

angiogenesis (reviewed in Klagsbrun et al. 2005), embryogenesis (Perala et al. 2005), and 

cancer (reviewed in Chedotal et al. 2005).  Our lab has identified a novel plexin in the 

immune system, Plexin-B2, which is expressed on dendritic cells and macrophages and plays 

a role in the immune response. 

Plexins and semaphorins are transmembrane proteins that share a conserved 

extracellular semaphorin domain of approximately 500 amino acids (reviewed in Gherardi et 

al. 2004; Kruger et al. 2005).  The plexins and semaphorins are divided into eight and four 

subfamilies respectively based on deoxyribonucleic acid (DNA) sequence similarity.  

Semaphorins are relatively small proteins containing the semaphorin domain and short 

intracellular tails, and often serve as the ligand for plexin receptors.  Plexins contain the sema 

domain, as well as the extracellular met related sequence (MRS) domain and long 

intracellular tails containing a Sex and Plexin (SP) domain (Maestrini et al. 1996; Bork et al. 

1999; Tamagnone et al. 1999; Kruger et al. 2005).  
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The majority of plexin and semaphorin research has focused on the nervous system, 

particularly the developing nervous system, and most studies are in-vitro.  Plexins and 

semaphorins are thought to mediate many common neuronal cell processes including cell 

movement, dendrite extension and repulsion, cytoskeletal rearrangement, and signal 

transduction (reviewed in Cohen 2005; Masuda et al. 2005; Negishi et al. 2005).  Many 

neuronal cell processes are similar to those found in cells of the immune system.  Both cell 

types must be able to move within the body in a directional pathway, make and maintain 

contact with other cells, communicate across cell contact sites, and respond to both 

intracellular and extracellular cues in order to facilitate these maneuvers.  Though historically 

studied in the nervous system or cell lines, plexins and semaphorins have been recently found 

to play critical roles in the immune system. 

Our lab has historically studied Plexin-A1, which, unlike any other plexins found to 

date, is under the control of the major histocompatability complex (MHC) class II 

transactivator (CIITA) and is expressed only in dendritic cells in the immune system (Wong 

et al. 2003).  RNA interference of Plexin-A1 in dendritic cells reduced dendritic cell 

mediated T cell activation by 90% (Wong et al. 2003).  The Plexin-A1 ligand Sema6D is 

required for CD127 expression, which is critical for late phase T cell development (O'Connor 

et al. 2008). 

 Our group has recently identified another plexin, Plexin-B2, on in-vitro bone marrow 

derived dendritic cells (BMDCs) by gene microarray profiling.  Originally identified in 

human brain tumors in 1995 (Shinoura et al. 1995), Plexin-B2 is a 206 kD protein that 

contains a furin-like proprotein convertase cleavage site found only in the Plexin B subfamily 

(Tamagnone et al. 1999), suggesting Plexin-B2 is capable of both long and short range 
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signaling as it can be both membrane bound and secreted.  Plexin-B2 is expressed in the 

developing mouse nervous system (Worzfeld et al. 2004), stimulates neurite growth and 

induces cell aggregation through trans-homophilic interactions (Hartwig et al. 2005).  In 

transfection experiments with human HEK293T cells, full-length Plexin-B2 is cleaved and 

heterodimerizes at the cell surface (Artigiani et al. 2003), interacts with the Scatter Factor 

Receptors Met and Ron (Conrotto et al. 2004), and binds to overexpressed Sema4D (Fig. 1.4) 

(Masuda et al. 2004). 

 Our finding of Plexin-B2 gene expression in mouse dendritic cells and macrophages 

provides evidence of a plexin previously unreported in the innate immune system.  We have 

also found that the expression level of Plexin-B2 is modulated throughout cell maturation, 

which suggest that Plexin-B2 may play a regulatory role in the life cycle and activation of the 

dendritic cells and macrophages.   We have found the Plexin-B2 is a negative regulatory of 

cell motility through negative regulation of the small GTPases Rac and Cdc42. 

 

1.3 Plexin and Semaphorin Biology 

1.3A.  Discovery of Plexins and Semaphorins. 

Semaphorins and their receptors, plexins, are a large family of transmembrane 

proteins that share a conserved semaphorin domain.  Semaphorins and plexins are thought to 

mediate cell guidance and movement through attractive and repulsive cues.  A group of 

proteins that mediate cell movement was first hypothesized by R.W. Sperry in his 

chemoaffinity hypothesis for nerve fiber growth (1963).  This hypothesis was later supported 

by time lapse video of retinal ganglion growth fibers extending towards the optic tectum in 

Xenopus laevis embryos (Harris et al. 1987).  Proteins thought to be involved in guidance 
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were detected that same year in Xenopus optic tectum by monoclonal antibodies which are 

today known to recognize Plexin-A1 and neuropilin-1 (Takagi et al. 1987; Ohta et al. 1992; 

Fujisawa 2004).  The first semaphorin was identified as such in 1993 (Luo et al.), and this 

lead to the discovery that semaphorins are a family of proteins based on homology of a 

common extracellular semaphorin domain (Luo et al. 1995).  The semaphorin family was 

later expanded to include the semaphorin receptor proteins named plexins, which contain the 

semaphorin domain as well as an additional intracellular plexin domain (Ohta et al. 1995; 

Satoda et al. 1995; Maestrini et al. 1996; Comeau et al. 1998).  Currently at least 30 

semaphorins and nine plexins have been identified.  

 

1.3B.  Plexin and Semaphorin Structure  

 The semaphorin family is divided into eight subclasses based on phylogenetic 

analysis and protein structure by the Semaphorin Nomenclature Committee (1999).  All 

subclasses contain an approximately 500 amino acid conserved sema domain (reviewed in 

Kolodkin et al. 1993; Gherardi et al. 2004).  Many of the semaphorins also contain a 

cysteine-rich domain termed plexins, semaphorins, and integrins (PSI) or MRS (Bork et al. 

1999; Tamagnone et al. 1999).  The first two subclasses, classes I and II, are invertebrate 

semaphorins. Classes III- VII are vertebrate semaphorins, and class VIII are viral 

semaphorins.  Class III and IV are distinct in that they can be secreted.  Class V semaphorins 

have seven thrombospondin repeats, and class VII semaphorins are 

glycosylphosphatidlinositol (GPI)-linked to the cell membrane.  Class VI semaphorins are 

prototypical in that they contain only the sema domain, transmembrane domain, and a short 

cytoplasmic domain.   



 5 

 Like semaphorins, plexins are single pass transmembrane proteins containing an 

extracellular semaphorin domain, although this domain in plexins is less conserved.  Unlike 

semaphorins, plexins contain three cysteine rich extracellular domains homologous to scatter 

factor receptors called MRS, an immunoglobulin-like fold shared by plexins and 

transcription factors (IPT) domain, as well as a long cytoplasmic tail containing an SP 

domain (Maestrini et al. 1996; Tamagnone et al. 1997; Bork et al. 1999).  The plexin domain 

is a highly conserved 600 amino acid region that shares no homology to any other known 

domains and mediates signaling through a pathway that has not yet been fully elucidated. 

Plexins are found in vertebrates, invertebrates, viruses and bacteria and are divided 

into four subfamilies based on their DNA sequence (Tamagnone et al. 1999).  The plexin 

family consist of subfamilies A (members A1-A4), B (members B1-B3), C (member C1), 

and D (member D1) (reviewed in Tamagnone et al. 1999).  All subfamilies contain 

transmembrane proteins, and subfamilies A and B also contain secreted proteins. 

The receptor and ligand pairs that mediate semaphorin and plexin signaling have been 

studied extensively however they vary greatly by cell type, leading to some confusion.  

Plexins often serve as receptors for semaphorins, and are sometimes coupled with the co-

receptor neuropilin (Takahashi et al. 1999; reviewed in Tamagnone et al. 1999; reviewed in 

Fujisawa 2004).  However, the receptor ligand roles are dynamic due to the ability of both 

plexins and semaphorins to be membrane bound or secreted, transmit signals intracellularly, 

or bind to other types of proteins and form co-receptors.  Semaphorin and plexin roles are 

further complicated by the ability of these proteins to act as either repulsive or attractive 

cues, with the type of signal depending on the receptor-ligand pair, developmental stage of 

the organism, cell type, and/or cellular context (Kantor et al. 2004) .    
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The majority of semaphorin and plexin research has focused on the nervous system, 

particularly the developing nervous system.  The distal tip of growing neurons is easily 

studied, very sensitive to small amounts of signal, and thought to grow and extend relative to 

cytoskeletal rearrangement (reviewed in Goshima et al. 2002).  Plexins and semaphorins play 

both attractive and repulsive roles in neurons, and often lead to cytoskeletal rearrangement 

thought to be mediated by several different signaling pathways including regulation of the 

Rho family of GTPases and integrin regulation (Driessens et al. 2001; Oinuma et al. 2004; 

Tamagnone et al. 2004).   Recently, the importance of plexins and semaphorins in basic cell 

movement and cellular response has been emphasized by their discovery in other organ 

systems and processes including the epithelial system (Miao et al. 1999; Fujii et al. 2002) , 

angiogenesis (Serini et al. 2003; Shoji et al. 2003; Conrotto et al. 2005), embryogenesis 

(Perala et al. 2005), and the immune system (Takamatsu et al. 2010). 

 

1.3C.  Plexins and Semaphorins in the Immune System 

 The immune system and nervous system share many commonalities.  Cells in both 

systems need to be able to move within the body in a directional pathway, make contact and 

communicate with other cells, and respond to environmental cues.  Plexins and semaphorins 

have been implicated in many of these processes, although the exact role for these proteins 

and how they signal is not yet fully understood. 

 Semaphorin 4D (Sema4D), also known as CD100, is the most studied protein of the 

semaphorins and plexins in the immune system and is a good example of the complex 

pathways involving these proteins.  Sema4D is a 150-kDa cell surface protein that exist as a 

homodimer on most hematopoietic cells (except red blood cells and platelets) and contains 
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both a semaphorin domain and a Ig-like domain in its extracellular region (Bougeret et al. 

1992; Herold et al. 1995).  In T cells, Sema4D associates with CD45 at the cell surface and 

increases homotypic cell adhesion, while stimulation of CD45 or cellular proteolysis leads to 

the release of a soluble form of Sema4D (Herold et al. 1996; Elhabazi et al. 2001).  There is 

also evidence that in human T and NK cells, the cytoplasmic domain of Sema4D interacts 

with a serine-threonine kinase (Elhabazi et al. 1997).  Soluble, dimerized Sema4D is capable 

of inhibiting the spontaneous migration of B cells and monocytes (Delaire et al. 2001).  

Sema4D expression leads to B-cell aggregation, differentiation, and improved viability in-

vitro (Hall et al. 1996), and associates with protein tyrosine phosphatase activity (Billard et 

al. 2000).  The receptor for Sema4D in lymphocytes has been identified as CD72 

(Kumanogoh et al. 2000), which is in contrast to its receptor in the endothelial and nervous 

systems, Plexin-B1 (Tamagnone et al. 1999; Conrotto et al. 2005).  The binding of Sema4D 

to CD72 is thought to promote B cell proliferation and differentiation by abrogating the 

negative effects of CD72 (reviewed in Kumanogoh et al. 2001; Kumanogoh et al. 2004).  In 

Sema4D deficient mice, CD5+ B1 cells are decreased, and in-vitro proliferative responses in 

B cells were reduced compared to wild type mice (Shi et al. 2000).  Dendritic cells from 

Sema4D deficient mice were unable to display co-stimulatory molecules (Kumanogoh et al. 

2002). 

 Other semaphorin and plexin family members have been found in the immune system 

but their biological roles are only partially understood.  Semaphorin 4A (Sema4A) is similar 

in structure to the above-described Sema4D.  Sema4A is found on B cells and dendritic cells 

and enhances activation of T cells through the receptor Tim-2 (Kumanogoh et al. 2002).  

Semaphorin 3A (Sema3A) inhibits immune cell migration, similar to the inhibition of 
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migration by Sema4D (Delaire et al. 2001).  Semaphorin 7A (Sema7A), whose function is 

unknown, is a GPI-anchored protein with high homology to viral semaphorin and is found on 

activated lymphocytes (Xu et al. 1998; Yamada et al. 1999).  Mouse dendritic cells express 

Plexin-C1.  When engaged by its poxvirus semaphorin ligand (A39), Plexin-C1 inhibits cell 

adhesion, spreading, and migration and induces actin cytoskeleton rearrangement (Walzer et 

al. 2005).  Plexin-A1 is under the control of CIITA and is expressed only in dendritic cells 

(Wong et al. 2003).  Reducing the amount of Plexin-A1 by RNA interference in dendritic 

cells reduced T cell activation by 90% without affecting antigen binding and presentation 

(Wong et al. 2003).  

 Plexin-B2, the focus of this thesis, has been identified but not studied in the immune 

system.  Because the role of Plexin-B2 is not well understood, both Plexin-B2 and its closely 

related but better-studied family member, Plexin-B1, will be reviewed.  Plexin-B1 research 

has served as the basis for the hypothesis that have guided the research into the immune 

system function of Plexin-B2.  Plexin-B1 is a cell surface protein that mediates many of its 

functions through Rho family of small G proteins.  Therefore G proteins will briefly be 

reviewed before proceeding to the biology of the B family of plexins. 

 

1.4 G Protein Biology 

Guanosine nucleotide-binding proteins (G proteins) are found in cells within every 

system of the body.  G proteins consist of two main families: large and small G proteins.  

Large G-proteins are composed of α-, β-, and γ subunits and are also called heterotrimeric G 

proteins.  Small G-proteins, also referred to as low-molecular-weight G (LMWG) proteins, 

consist of only one unit.  Both large and small G proteins cycle between an active, GTP-
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bound state and an inactive, GDP bound state and serve as molecular switches (Fig. 1.1).  G 

proteins have intrinsic ability to hydrolyze GTP to GDP and are referred to as GTPases, but 

this reaction rate is generally slow.  The rate of GDP/GTP binding is controlled by GTPase- 

activating proteins (GAPs) and guanine-nucleotide exchange factors (GEFs).  GAPs 

accelerate the intrinsic GTPase ability of the G protein, and thus downregulate G protein 

signaling.  GEFs serve the opposite function and accelerate the exchange of GDP for GTP 

and upregulate G protein signaling.  Control of G protein signaling can also be regulated 

spatially by guanine nucleotide dissociation inhibitors (GDIs), which bind and inhibit 

GTPases by preventing them from binding to the cell membrane, and thus spatially prevent 

them from interacting with their downstream partners and signaling.  Control of G proteins is 

very finely tuned and very complex.  The Rho subfamily alone has to date over 70 GEFs and 

60 GAPs to regulate their on/off state, and each of these regulators is in-turn controlled by 

other proteins (reviewed in Etienne-Manneville et al. 2002; Siderovski et al. 2005; 

Tybulewicz et al. 2009).  

To date, Plexins have been found to interact with only small G proteins.  Small G-

proteins are a family of proteins containing 50 members, and is referred to as the Ras 

superfamily.  This family is further divided into five subfamilies: 1) Ras, 2) Rho, 3) Rab, 4) 

Arf, and 5) Ran families (reviewed in Scheele et al. 2007).  Of these subfamilies, the B 

plexins have been found to interact with small G proteins of the Ras and Rho families and  

the GEFs, GAPs and GDI’s that modulate their activation. 

 

1.4A.  Ras Subfamily of Small G Proteins 
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Proteins of the Ras subfamily members includes H-, K-, M-, N-, and R-Ras, Rheb, 

and Rap.  The Ras superfamily must be either extracellular or intracellular membrane linked 

to function, and have gained considerable attention due to their roles as oncogenes.  Ras 

activating mutations are found in 30% of human cancers, and thus Ras has been targeted for 

therapeutic intervention (reviewed in Calvo et al. 2010).  Ras proteins are capable of 

translocating between cellular membranes, and Ras localization is thought to be a major 

method of control of Ras signaling.  Similar to other Ras superfamily members, Ras 

activation can also be controlled by GEFs and GAPs (reviewed in Scheele et al. 2007; Calvo 

et al. 2010). 

Ras is linked to the extracellular-regulated kinase (ERK) signaling pathway and its 

control of cell proliferation and survival.  Mutations in the Ras subfamily are linked to 

Noonan syndrome, a form of dwarfism with overgrowth of cells, Costello syndrome, in 

which cells grow in a constitutive manor, and Cardio-facio-cutaneous syndrome, which is 

characterized by abnormal cell growth (reviewed in Roberts et al. 2007; Lau et al. 2009).  

Ras mutations have been specifically linked to pancreatic, thyroid, colon, neuronal, liver, 

skin, and lung cancers with many other types of cancer linked to mutations in the Ras-ERK 

pathway (reviewed in Roberts et al. 2007).  The Ras-ERK pathway has therefore been 

targeted by many pharmaceutical companies in the treatment of cancer.  Ras family proteins 

have also been linked to T cell receptor and IL-2 receptor stimulation and subsequent cell 

proliferation and cytokine gene induction (reviewed in Scheele et al. 2007). 

 

1.4B.   The Rho Subfamily of GTPases 
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The Rho subfamily consists of 23 proteins.  The members Ras-related C3 botulinum 

toxin substrate 1 (Rac1), cell division cycle 42 (Cdc42), and Ras homologue gene family 

member A (RhoA) are the most well studied of the group.  This subfamily is distinct in that it 

contains some atypical members, including Rnd, that are not cycled between the GTP/on and 

GDP/off for regulation, and are instead thought to be regulated by expression or stability 

(reviewed in Etienne-Manneville et al. 2002; Tybulewicz et al. 2009).  The Rho family of 

GTPases mediates cell shape, migration, and adhesion as well as other cell processes 

including cell activation, proliferation, and survival.  For example, in hematopoietic stem and 

progenitor cells (HSC/Ps), Cdc42 and Rac deletional mutants show a loss of proliferation and 

increased apoptosis, as well as defects in adhesion, migration, and homing capabilities.  T 

and B cells deficient in Cdc42 or Rac also display defects in proliferation, survival, 

migration, and adhesion (reviewed in Mulloy et al. 2010).  In macrophages, Rac and Cdc42 

are implicated in Fcγ receptor-mediated phagocytosis as well as migration, cell shape, and 

adhesion (reviewed in Ridley 2008; Mulloy et al. 2010).  Rac, Rho, Rnd, and Ras, as well as 

other GTPases, have been linked to B family plexins. 

 

1.5 The Biology of B Family Plexins 

The B family plexins are one of the four main plexin families, A-D.  The B plexin 

family is composed of three members, Plexin-B1, B2, and B3 (Fig. 1.2).  The B family 

plexins show the highest homology to the scatter factor receptor family, which is a family of 

transmembrane receptors that lead to invasive growth and are often linked to cancer 

(Maestrini et al. 1996; Conrotto et al. 2004).  All Plexin-B family members share the protein 

domains common to all plexins, including the extracellular semaphorin and MRS [also called 
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plexins, and semaphorins, and integrins (PSI)] domains, and the three intracellular 

immunoglobulin like fold, plexins, transcription factors (IPT) domains, followed by the 

Plexin Cytoplasmic RasGAP domain (also known as SP domain).  Plexin-B1 and B2 have a 

distinct protein domain that separates them from the other plexins, the furin-like protease 

domain, which are thought to facilitate cleavage by proteases (Tamagnone et al. 1999). 

Plexin-B1 was the first of this family identified, and has been the most extensively 

studied, particularly in its role as a regulator of the Rho family of small GTPases.  Thus, 

Plexin-B1 is a model B family plexin from which hypothesis can be generated for other B 

family plexins.  A critical review of Plexin-B1 biology and roles in the immune system 

allows for comparisons between Plexin-B1 and Plexin-B2 and highlights unanswered 

questions for Plexin-B2 and the B family of plexins. 

 

1.6 Plexin-B1 Biology 

1.6A. Plexin-B1 and RacGTPase 

In Drosophila, which has only one B family plexin, Plexin-B has been found to bind 

and inhibit only active, GTP-bound Rac and enhance RhoA signaling at the same time, 

suggesting that Plexin-B in this system functions to fine tune the Rho family GTPase 

signaling (Hu et al. 2001).  The binding of Plexin-B1 to Rac-GTP but not Rac-GDP to has 

been found for Plexin-B1 and B2 in vertebrates, and thus this function of the B family 

plexins is conserved across species (Fig. 1.3) (Rohm et al. 2000; Vikis et al. 2000; Driessens 

et al. 2001).  Plexin-B1 binds to activated Rac via a sequence that is partially homologous to 

the CRIB (Cdc42/Rac interactive binding) domain in the Plexin-B1 cytoplasmic tail (Vikis et 
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al. 2000; Driessens et al. 2001).  This domain binds to the switch I region (effector domain) 

of Rac (Vikis et al. 2000).    

The function of Plexin-B1 binding to active Rac is poorly understood.  In Drosophila 

Plexin-B, dosage assays suggest that Plexin-B inactivates Rac, yet how this occurs has not 

yet been determined (Hu et al. 2001).  In HEK293T cells Plexin-B1 inhibition of Rac 

signaling is accomplished by binding of activated Rac to Plexin-B1 and sequestering it away 

from its downstream effector p21-activated kinase (PAK), though the phenotypic 

consequence of Plexin-B1 Rac sequestration from PAK is not reported (Figure 3) (Vikis et 

al. 2002).  It has also been suggested that Plexin-B1 could function directly as a Rac GEF 

(Rohm et al. 2000; Hu et al. 2001; Vikis et al. 2002).   However, extensive structural studies 

of Plexin-B1 have suggested that it does not function as a RacGAP (Bouguet-Bonnet et al. 

2008).  Bouguet-Bonnet et al. have demonstrated that the GTP binding state of Rac does not 

change in response to titration of Plexin-B1, and thus the role of Plexin-B1 is likely that of an 

effector of Rac but not a direct GAP (2008).  These structural studies have also suggested 

that Rac binds to only undimerized Plexin-B1, and that the Rac-Plexin-B1 interaction is 

temperature and pH dependant (Hota et al. 2009; Tong et al. 2009).  Human prostate cancer 

clinical samples have been found to have mutations in Plexin-B1 Rac binding site (Wong et 

al. 2007).  These mutations, when cloned and overexpressed in HEK293T cells, upregulate 

active Rac and increased cell motility, invasion, and adhesion (Wong et al. 2007).  Together 

these data suggest that regulation of Plexin-B1, and regulation of the small GTPases by 

Plexin-B1, is very finely tuned by temperature, pH, dimerization state of Plexin-B1 by its 

ligand, and cell type. 
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Interestingly the binding of activated Rac to Plexin-B1 enhances the amount of 

Plexin-B1 and its localization to the cell surface, suggesting bidirectional signaling, and is, 

according to the authors, the first known example of a small GTPase directly regulating the 

function of a receptor (Vikis et al. 2000; Vikis et al. 2002).  Biochemical experiments using 

one of the ligands for Plexin-B1, Sema4D, have shown that ligand binding to Plexin-B1 

enhances the interaction of Plexin-B1 and Rac (Vikis et al. 2000).  

Plexin-B1 binding to activate Rac has been confirmed in many papers and across 

species, suggesting that this is likely an important function of Plexin-B1 and other B family 

plexins.  The Plexin-B1-Rac interaction has been shown to function to downregulate Rac, 

although the mechanism is unknown.  Future studies should explore how this downregulation 

occurs, what ligand binding state or dimerization state of Plexin-B1 is required for this 

downregulation, and determine the phenotypic consequences. 

 

1.6B. Plexin-B1 and its Effects on Rho Activation 

Unlike Rac, which is bound by Plexin-B1 only in its active, GTP-bound state, both 

RhoA-GDP and RhoA-GTP interact with Drosophila Plexin-B (Hu et al. 2001).  Studies in 

mammalian and yeast cells lines have shown that Plexin-B1, B2 and B3 but not A2 and D1 

bind to Rho guanine nucleotide exchange factors (RhoGEFs) containing a post synaptic 

density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein 

(PDZ) domain instead of directly to Rho (Ranganathan et al. 1997; Hu et al. 2001; Driessens 

et al. 2002).  The Plexin-B family control of Rho is mediated through dimerization of the 

PDZ domain found in the Plexin-B cytoplasmic tail with the PDZ domain of the RhoGEFs 

PDZ-RhoGEF and Leukemia-associated RhoGEF (LARG) (Hu et al. 2001).  PDZ 
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dimerization results in cell rounding and retraction and the formation of stress fibers in 

overexpression studies in Swiss3T3 fibroblast and in HEK293T cells (Hu et al. 2001; 

Aurandt et al. 2002; Driessens et al. 2002).  The binding of Plexin-B1 to PDZ-RhoGEF and 

LARG in primary hippocampal neurons and retinal ganglion leads to growth cone collapse in 

response to Sema4D (Swiercz et al. 2002).  In COS-7 cells it has been shown that a direct 

interaction between Plexin-B1 and another Rho family member, Rnd1, amplifies the 

interaction of Plexin-B1 and Rho, and thus Plexin-B1 is modulated by a Rho family member 

(Oinuma et al. 2003).   In-vivo experiments in using Plxnb1-/- mice demonstrate that long 

term, Sema4D induces dendrite branching in hippocampal neurons post the immediate effect 

of growth cone collapse (Vodrazka et al. 2009).   

 Intriguingly, Plexin-B1 interacts with p190RhoGAP in a ligand dependant manner 

and can thus downregulate Rho (Barberis et al. 2005).  This suggests that Plexin-B1 is well 

positioned and equipped to respond to environmental cues and down- or up-regulate Rho as 

needed.  

Plexin-B1 Rac and Rho binding are separate events.  Studies with mutated Plexin-B1 

that does not contain the Rac binding domain show that it can dimerize and activate Rho 

normally (Driessens et al. 2001).  This finding is supported by structural studies which 

suggest that Rac1 binding is not compatible with Plexin-B1 dimer formation, and thus 

ligand-induced Rho activation similar to wild type Plexin-B1 (Hota et al. 2009).  Additional 

studies of overexpressed Plexin-B1 in 3T3 cells suggest that undimerized Plexin-B1 does not 

affect cell morphology, and that clustering of the cytoplasmic domain of Plexin-B1 by ligand 

is required for cell contraction and stress fiber formation (Driessens et al. 2001).   
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1.6C.  Plexin-B1 and Ras GAP Activity 

 In a pivotal 2004 paper, Plexin-B1 was shown to have yet another function in 

modulating the Rho family of GTPases: Ras-GAP (Oinuma et al.).  Previous studies had 

noted homology between the intracellular domains of Plexin-B1 and Ras-GAPs at two 

conserved arginine residues (Rohm et al. 2000; Hu et al. 2001).  Oinuma et al. found that 

Plexin-B1 directly interacts with the active, GTP bound from of the Rho family member R-

Ras (2004).  This interaction depends on the binding of Plexin-B1 to the Rho family member 

Rnd1 and results in the activation of the intrinsic GTPase ability of R-Ras in a ligand 

dependant manner in both overexpression studies with COS-7 cells and studies of 

endogenous Plexin-B1 in PC12 cells (neuroendocrine tumor cell line) (Oinuma et al. 2004).  

The GAP activity of Plexin-B1 towards R-Ras induces neurite retraction and inhibits 

extracellular matrix-mediated cell migration in response to Sema4D, and functions 

independently of the modulation of Rho by Plexin-B1 (Oinuma et al. 2004; Oinuma et al. 

2006).   Plexin-B1 has also been shown to be a GAP for M-Ras in COS-7 cells and neurons 

(Saito et al. 2009).  The interactions between Plexin-B1 and R- and M-Ras affect the 

downstream signaling of R and M-Ras, including suppressing phosphatidylinositol-3-OH 

kinase [PI(3)K] signaling and activation of phosphatase and tensin homolog (PTEN) 

(Oinuma et al. 2006; Saito et al. 2009; Oinuma et al. 2010).  PI(3)K and PTEN are major 

regulators of PIP3, a key modulator of many cell processes including cell growth, migration, 

and survival that is often implicated in cancer and autoimmunity (Zhang et al.; Patel et al. 

2005).   

 

1.6D. Plexin-B1 and c-Met 
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Plexin-B1 is tyrosine phosphorylated within minutes of binding to Sema4D in porcine 

endothelial cells (Basile et al. 2005).  This phosphorylation of Plexin-B1 is required for 

activation of RhoA by Plexin-B1 and is meditated by epidermal growth factor receptor B-2 

(ErbB-2, also known as Human Epidermal growth factor Receptor 2 [HER2] in humans and 

neu in rodents) and N-Methyl-N'-nitro-N-nitroso-guanidine HOS Tranforming gene (c-Met) 

(Swiercz et al. 2002; Swiercz et al. 2004; Swiercz et al. 2008; Swiercz et al. 2009).  ErB-2 is 

a member of the family of epidermal growth factor receptor tyrosine kinases.  c-Met, also 

called hepatocyte growth factor receptor (HGFR), is a member of the scatter factor receptor 

family.  c-Met associates in a complex with Plexin-B1 in a ligand independent manor and is 

itself phosphorylated by ligand binding to Plexin-B1 (Giordano et al. 2002).  This co-

stimulation leads to the ability of cells to migrate towards Sema4D and to invasive growth in 

liver progenitor cells (Artigiani et al. 2003).  The interaction of c-Met and Plexin-B1 requires 

the extracellular domain of both proteins (Giordano et al. 2002).  The interaction between 

plexin and c-Met is mediated exclusively by the B family plexins and not other plexins 

(Conrotto et al. 2004).  Surprisingly in metastatic melanoma cells Plexin-B1 is diminished 

compared to benign melanomas, and expression of Plexin-B1 suppresses activation of c-Met 

and migration in response to hepatocytic growth factor (Stevens et al. 2010).   However 

Plexin-B1 did lead to the activation of Akt in melanoma cells, suggesting that Plexin-B1 may 

function in both tumor suppression and progression (Stevens et al. 2010).  The 

phosphorylation of Plexin-B1 is not required for its ability to bind to Rac-GTP or function as 

an R-Ras GAP (Swiercz et al. 2009).  

 

1.6E.  Plexin-B1 Binds to PLCγ 
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Swiercz et al. has shown that Plexin-B1 binds to both 1-phosphatidylinositol-4,5-

biphosphate phosphodiesterase γ1 (PLCγ) and growth factor receptor bound protein 2 (Grb-

2) upon activation by Sema4D in an Erb-2 containing breast cell line  (Swiercz et al. 2009).  

This binding is not observed in the breast cell line MDA-MB-468, which does not express 

Erb-2 (Swiercz et al. 2009).  PLCγ1 binding to Plexin-B1 is dependent on the tyrosine 

phosphorylation of Plexin-B1 by Erb-2 to create a docking site for PLCγ (Swiercz et al. 

2009).  PLCγ binding to Plexin-B1 results in activation of PDZ-Rho GEF through the SH3 

domain of PLCγ and induction of migration towards Sema4D and growth cone collapse in 

hippocampal neurons (Swiercz et al. 2009).   In ErbB-2 deficient cells, migration towards 

Sema4D but not fetal bovine serum is abolished, suggesting that PLCγ1 is required for 

Sema4D specific migration but not all migration (Swiercz et al. 2009).  This pivotal research 

links the activation of Plexin-B1 by its ligand Sema4D to its function as an activator for 

PDZ-RhoGEF and subsequent activation of Rho through creation of a docking site for PLCγ 

via phosphorylation of Plexin-B1 by ErbB-2.  This data also demonstrates that the processes 

involved in the Rho activation signaling pathway are separate from Plexin-B1 Rac-GTP 

binding and Plexin-B1’s function as a RasGAP as these two processes are not affected by 

mutations to Plexin-B1 that render it unable to be tyrosine phosphorylated by Erb-B2 

(Swiercz et al. 2008; Swiercz et al. 2009).  Additionally, c-Met phosphorylates Plexin-B1 in 

a different location than ErbB-2, and thus c-Met induces different downstream effects than 

Erb-B2, including pro and anti-migratory effects (Swiercz et al. 2008; Swiercz et al. 2009). 

 

1.6F.  Summary Model of Plexin-B1 Signaling 
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 Plexin-B1 signaling is very complex (Fig. 1.3).  One way to simplify the 

diverse functions of Plexin-B1 is to separate the known signaling components that function 

independently from those that function in response to ligand.  Ligand independent functions 

of Plexin-B1 include binding to c-Met and RacGTP.  c-Met can be phosphorylated by either 

its ligand HGF or by Plexin-B1 binding to its ligand Sema4D (Giordano et al. 2002).  

However, recent studies have demonstrated that c-Met is not phosphorylated in response to 

Sema4D, and c-Met phosphorylation is suppressed by expression of Plexin-B1 in melanoma 

cells (Stevens et al. 2010).  Plexin-B1 has also been shown to interact with active, GTP 

bound Rac, leading to sequestration of Rac from its downstream effector PAK (Vikis et al. 

2002).  The interaction of Plexin-B1 and active Rac has been characterized structurally and is 

thought to change the Plexin-B1 structure so that it is no longer able to dimerize (Hota et al. 

2009; Tong et al. 2009).  It is possible that binding to Rac changes Plexin-B1 so that it is no 

longer able to be dimerized in response to ligand, and thus can not activate RhoA.  However, 

studies in Drosophila suggest that Plexin-B downregulates Rac while enhancing RhoA 

activity (Hu et al. 2001).   Rac binding to Plexin-B1 is greatly increased by Sema4D binding 

to Plexin-B1 (Vikis et al. 2000), suggesting crosstalk between the two signaling pathways. 

Upon binding its ligand Sema4D, Plexin-B1 activates Rho through binding of its PDZ 

domain to the PDZ domain of the RhoGEFs PDZ and LARG (Aurandt et al. 2002; Driessens 

et al. 2002).  PDZ and LARG increase the exchange of GDP to GTP on Rho, increasing the 

amount of the active, GTP-bound form of Rho in the cell.  Plexin-B1 also acts as a GAP for 

R-Ras in response to its ligand, Sema4D (Oinuma et al. 2004).  The Rho GTPase Rnd1 is 

required for Plexin-B1 to function as an R-RasGAP (Oinuma et al. 2004).  Plexin-B1, upon 

Sema4D activation, shuts down R-Ras activation that occurs in response to adhesion to 
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fibronectin, and this results in suppression of R-Ras mediated activation of PI(3)K, inhibition 

of adhesion dependant cell migration and growth cone collapse (Oinuma et al. 2006).  Plexin-

B1 mediates the suppression of PI(3)K pathway through dephosphorylation and activation of 

PTEN, which functions as a phosphatase for PIP3 and therefore downregulates PI(3)K/PIP3 

pathway signaling (Oinuma et al. 2010).  The upstream pathway of Plexin-B1 mediated 

downregulation of PTEN is unknown, but is thought to involve casein kinase 2 alpha 

(CK2α), which phosphorylates and inactivates PTEN and is downregulated by Sema4D 

(Oinuma et al. 2010).  Plexin-B1 also serves as a GAP for M-Ras, which leads to 

downregulation of ERK activity and reduced dendrite outgrowth in cortical neurons (Saito et 

al. 2009). 

 Another group found that Sema4D binding to Plexin-B1 upregulates PI(3)K, AKT,  

ERK and migration (Basile et al. 2005; Aurandt et al. 2006).  How is this possible?  These 

dual functions are thought to be mediated by the binding state of Plexin-B1 to the receptor 

tyrosine kinases c-Met and ErbB-2 (Swiercz et al. 2008).  Plexin-B1 is preferentially bound 

to c-Met, and under these conditions RhoA and resulting migration is inhibited (Swiercz et 

al. 2008).  Plexin-B1 can also be found in complex with and be phosphorylated with ErbB-2, 

and this mediates activation of RhoA and migration through creation of a PLCγ docking site 

on Plexin-B1 for RhoGEFs (Swiercz et al. 2008; Swiercz et al. 2009).  c-Met and ErbB-2 are 

found alone or together in some cell types, and control of Plexin-B1 through these two 

receptor tyrosine kinases may be mediated by expression of c-Met and ErbB-2 or competitive 

binding.  Additionally, the Rho-GTPase p190 associates transiently with Plexin-B1 upon 

ligand stimulation and downregulates Rho (Barberis et al. 2005). 
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 How the activity of Plexin-B1 as an R-RasGAP, binding partner to ErbB-2, c-Met, 

RacGTP, and p190 fits together as a signaling pathway has yet to be elucidated, and will 

likely require cell specific studies as well as studies of specific sites within cells to fully 

understand this complex signaling cascade.  The regulation of Plexin-B1 signaling by ligand 

binding and/or the presence of other plexins and semaphorins within the same cell remain 

pivotal questions critical to fully understanding Plexin-B1 biology. 

 

1.6G.  Plexin-B1 in the Immune System 

Plexin-B1 is found on immature bone marrow derived cDCs but not mature cDCs, 

and is absent on monocytes (Chabbert-de Ponnat et al. 2005).  In immature cDCs, soluble 

Sema4D, a ligand for Plexin-B1, inhibits migration, and this inhibition can be blocked by 

antibody against Plexin-B1 (Chabbert-de Ponnat et al. 2005).  Plexin-B1 is also expressed on 

bone marrow stromal cells, activated T cells, and follicular dendritic cells, and T cells and 

upon encounter with Sema4D on B cells leads to increased B cell proliferation (Granziero et 

al. 2003).  This limited exploration of Plexin-B1 in the immune system reflects a paucity of 

research in this area.   

 

1.7 Plexin-B2 Biology 

 Plexin-B2 is much less studied than the closely related Plexin-B1.  Studies of the 

phenotype of the Plxnb2-/- mouse in the nervous system reveal that Plexin-B2 is required for 

proper cell homing and neural tube closure (Friedel et al. 2007) The majority of data 

published for Plexin-B2 stems from Plexin-B1 focused articles in which Plexin-B2 was also 

included in limited experiments.  To date Plexin-B1 and Plexin-B2 share similarities in their 
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interactions with Rho family GTPases despite the fact that the intracellular tails of Plexin-B1 

and B2 are only 61% identical at the protein level (data not shown).  Plexin-B2 considered in 

the context of Plexin-B1 allows for immediate hypothesis and research direction (Fig. 1.4). 

 

1.7A. Plexin-B2 and RacGTPase 

 The Rho family small GTPase Rac has been implicated in many cell functions, 

including cell migration, adhesion, and morphology.  Similar to Plexin-B1, Plexin-B2 

overexpressed in Escherichia coli (E. coli) has been shown to bind to active, GTP bound 

form of Rac (Driessens et al. 2001).  Unlike Plexin-B1, in which many studies in mammalian 

cells have concluded that Plexin-B1 binds to Rac, the Plexin-B2 Rac interaction has not been 

studied in mammalian systems.  We can hypothesize that Plexin-B2 will also bind to Rac in 

mammalian cells, and will mediate functions similar to those found for Plexin-B1 including 

cell migration, adhesion, and morphology. 

 

1.7B.  Plexin-B2 and its Effects on Rho Activation 

Plexin-B2, similar to Plexin-B1, can associate with the Rho GEFs PDZ and LARG in 

yeast two hybrid screens and overexpression studies in HEK293 T cells (Driessens et al. 

2002; Perrot et al. 2002; Swiercz et al. 2002).  When Plexin-B2 is overexpressed in Swiss-

3T3 fibroblast cells and synthetically dimerized by replacement of extracellular Plexin-B2 

with TrkA, the receptor for nerve growth factor, Plexin-B2 upregulates active Rho through 

binding of the PDZ domain found in the cytoplasmic tail of Plexin-B2 to the PDZ domain of 

PDZ and LARG RhoGEFs (Perrot et al. 2002).  The RhoGEFs then exchange the inactive 

GDP-bound form of Rho to the active GTP-bound form of Rho (Perrot et al. 2002).  The 
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activation of Rho by dimerized Plexin-B2 in Swiss-3T3s induced stress fibers, which are 

characteristic of Rho activation (Perrot et al. 2002).  The binding of the B family plexins to 

PDZ-Rho and LARG is specific, as both Plexin-B1 and B2 were shown to not interact with 

the Rac-GEF Tiam 1, or the Rho-GEF p115RhoGEF, which does not contain the PDZ 

domain (Perrot et al. 2002).  Additionally, the activation of Rho requires dimerization of 

Plexin-B2, which is opposite of the interaction of Plexin-B1 and B2 with Rac (Perrot et al. 

2002). 

The observation that Plexin-B2 interacts with Rho through PDZ and LARG suggests 

that the Plexin-B2 modulation of Rho is identical to the modulation of Rho by Plexin-B1.  

The interaction with PDZ-Rho and LARG has also been shown in Drosophila Plexin-B, 

suggesting that this mechanism of control of Rho is highly conserved (Hu et al. 2001) and is 

likely an important function of B family plexins. 

 

1.7C.  Plexin-B2 and RasGAP Activity 

Plexin-B2 has not been directly studied for its effects as a RasGAP.  One study has 

shown that in COS-7 cells, when any of the B family plexins are expressed with Rnd1 and 

then stimulated by Sema4A, cells display growth cone collapse, a  phenotype associated with 

downregulation of R-Ras by Plexin-B1 (Yukawa et al. 2010).  This suggests that Plexin-B2 

may also function in this way.  Interestingly Sema4A in this overexpression assay binds to all 

B family plexins and induces very similar percentages of growth cone collapse among cells 

expressing either Plexin-B1, B2, or B3 (Yukawa et al. 2010), suggesting that these genes can 

be redundant in their function.   
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1.7D. Plexin-B2 and c-Met 

Plexin-B2, similar to Plexin-B1, binds to both c-Met and Ron, members of the scatter 

factor receptor family, although binding to Met is stronger (Conrotto et al. 2004).  Studies of 

Plexin-B1 with c-Met have demonstrated that this interaction regulates invasive ability in 

NIH3T3 cells in a ligand dependant manner (Conrotto et al. 2004).  The outcome of the 

interaction between Plexin-B2 with c-Met or Ron has not yet been studied. 

 

1.7E. Plexin-B2 Binds PLCγ 

Plexin-B2 has been shown to bind to PLCγ1 in the breast cancer cell line MCF-7 

upon binding to its ligand Sema4C, but not in the breast cancer cell line MDA-MB-468, 

which lacks Erb-2 expression (Swiercz et al. 2009).  Interestingly PLCγ1 is more expressed 

in the nervous system, and PLCγ2 in the immune, suggesting PLCγ expression may regulate 

nervous and immune cell differences in Rho activation downstream of Plexin-B2 (Swiercz et 

al. 2009).  The downstream consequences of Plexin-B2 interacting with PLCγ are unproven, 

but likely result in the upregulation of the RhoA pathway, similar to Plexin-B1. 

 

1.7F. Plexin-B2 in the Immune System 

Plexin-B2 has been identified as a gene that is upregulated in T-dependent but not T-

independent germinal centers.  However the biological function of the upregulation of 

Plexin-B2 in germinal centers has not yet been elucidated.  The research presented in this 

thesis explores the expression and function of Plexin-B2 in the immune system.  Our studies 

show that in the innate immune system Plexin-B2 is dynamically expressed on macrophages 
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and dendritic cells and plays a role in cell motility, modulation of RhoGEFs, and cytokine 

response. 

 

1.8 Conclusions 

 Plexins and semaphorins mediate many cell processes critical to the immune system 

including cell-cell contact, migration, and cytokine secretion.  The B family of plexins 

includes Plexin-B1, B2, and B3.  Plexin-B1 has been linked to regulation of the above 

processes through regulation of the actin cytoskeleton and its modulators, the Rho family of 

GTPases.  The data presented here demonstrate the role of another B family member, Plexin-

B2, in the immune system.  Plexin-B2 is found on macrophages and dendritic cells and 

affects the Rho family of  GTPases and cell motility. 
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Figure 1.1 
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Figure 1.1:  Rho family GTPases are controlled by GAPs and GEFs. 

Rho family are intrinsic GTPases that modulate between GTP bound, active states and GDP 

bound inactive states to control downstream activities, the majority of which involve 

regulation of the actin cytoskeleton.  The binding state of Rho proteins are modulated by 

GEFs, which exchange GDP for GTP and turn the protein “on”, and GAPs, which accelerate 

the intrinsic GTPase capability of Rho family proteins and switch them to an inactive, GDP-

bound “off” state. 
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Figure 1.2 
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Figure 1.2:  Structure of the B family plexins. 

Plexin-B1, Plexin-B2, and Plexin-B3 contain a conserved, 500 amino acid extracellular 

domain, and three extracellular MRS domains that are common to all plexins.  Plexin-B1 and 

B2 are distinct from other plexins in containing furin-like cleavage sites, which may mediate 

extracellular cleavage and release of a soluble form of Plexin-B1 and Plexin-B2.  

Intracellularly, Plexin-B1-B3 contain a Rac/Ras binding domain that is flanked by two SP 

domains, which contain phosphorylation sites.  Plexin-B1 and B2 contain an intracellular 

PDZ domain that can dimerize with PDZ domains of RhoGEFs and facilitate the 

upregulation of Rho.  Figures were adapted from Tamagnone et al. (Tamagnone et al. 1999) 

and data from the National Center for Biotechnology Information (NCBI).  
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Figure 1.3 
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Figure 1.3:  Plexin-B1 regulates the Rho family of GTPases.  

Ligand independent functions of Plexin-B1: Plexin-B1 binds to c-Met.  c-Met can be 

phosphorylated by either binding to its ligand HGF or by Plexin-B1 binding to its ligand 

Sema4D (Giordano et al. 2002).  Plexin-B1 has also been shown to interact with active, GTP 

bound Rac, leading to sequestration of Rac from its downstream effector PAK (Vikis et al. 

2002). 

 

Ligand dependent functions of Plexin-B1: Plexin-B1 acts as a GAP for R-Ras when Rnd1 is 

also in the Plexin-B1 complex (Oinuma et al. 2004).  The Plexin-B1 mediated suppression of 

R-Ras induces inhibition of cell migration and suppression of PI(3)K pathway via activation 

of PTEN, resulting in inhibition of PIP3 and axonal growth cone collapse (Oinuma et al. 

2006; Oinuma et al. 2010).  Plexin-B1 also serves as a GAP for M-Ras, which leads to 

downregulation of ERK activity and reduced migration and dendrite outgrowth in cortical 

neurons (Saito et al. 2009).  This pathway operates when Plexin-B1 is bound to c-Met, and 

this binding partner is preferred over an alternative partner, ErbB-2.  When Plexin-B1 is in 

complex with ErbB-2 the PI(3)K pathway is upregulated (Basile et al. 2005; Aurandt et al. 

2006).  Plexin-B1 phosphorylation by ErbB-2 mediates activation of RhoA and migration 

through creation of a PLCγ docking site on Plexin-B1 for RhoGEFs (Swiercz et al. 2008; 

Swiercz et al. 2009).  Plexin-B1 activates Rho through binding of its PDZ domain to the PDZ 

domain of the RhoGEFs PDZ and LARG, leading to upregulated Rho, PI3K, AKT, ERK and 

migration (Driessens et al. 2002; Basile et al. 2005; Aurandt et al. 2006).  The Plexin-B1 

mediated activation of Rho can be downregulated by p190 (Barberis et al. 2005). 
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Figure 1.4 
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Figure 1.4:  Plexin-B2 regulates the Rho family of GTPases.  

Ligand independent functions of Plexin-B2:  Plexin-B2 binds to c-Met (Conrotto et al. 2005).  

Plexin-B2 binds to active, GTP bound Rac (Driessens et al. 2001). 

 

Ligand dependent functions of Plexin-B2:  Plexin-B2, when synthetically dimerized by 

replacement of its extracellular domain with a known receptor, activates Rho through binding 

of its PDZ domain to the PDZ domain of the RhoGEFs PDZ and LARG (Perrot et al. 2002).  

PDZ and Rho facilitate the activation of Rho by facilitating the exchanging GTP for GDP.  

Plexin-B2 has been shown to bind to PLCγ upon binding to its ligand Sema4C, and possibly 

interacts with ErbB-2, as the phosphorylation of Plexin-B1 by ErbB-2 creates the docking 

site for PLCγ (Swiercz et al. 2009). 
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ABSTRACT 

Plexins are cell surface receptors widely studied in the nervous system, where they mediate 

migration and morphogenesis though the Rho family of small GTPases.   More recently 

plexins have been implicated immune processes including cell-cell interaction, immune 

activation, migration, and cytokine production.  Plexin-B2 facilitates ligand induced cell 

guidance and migration in the nervous system and induces cytoskeletal changes in 

overexpression assays through RhoGTPase, but its function in the immune system is 

unknown.  This report shows that Plexin-B2 is highly expressed on cells of the innate 

immune system, including macrophages, conventional dendritic cells, and plasmacytoid 

dendritic cell.  However it does not have detectable effects on the production of 

proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration 

towards chemoattractants.  Instead, Plxnb2-/- macrophages have greater cellular motility than 

wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and 

Cdc42.   Studies have shown that B family plexins bind to only active Rac.  The closely 

related B family member Plexin-B1 sequesters Rac from downstream signaling.  These data 

presented here show that Plexin-B2 functions in macrophages as a negative regulator of Rac 

and Cdc42 and as a negative regulator of cell motility. 
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INTRODUCTION 

The plexins are a family of nine transmembrane proteins that are grouped by 

homology into four subfamilies: A, B, C, and D (Tamagnone et al. 1999).  All family 

members share an extracellular semaphorin domain and an intracellular plexin domain-

containing tail that can mediate intracellular signaling.  The plexins were originally identified 

in the nervous system (Ohta et al. 1992; Ohta et al. 1995), where they have been found to 

mediate diverse cell processes including axon guidance, neurogenesis, cell migration, cell 

proliferation and death.  Plexins have also been found to function in other body systems 

including the reproductive, circulatory, endocrine, urinary, digestive, and immune system 

(reviewed in Kruger et al. 2005; O'Connor et al. 2008; Serini et al. 2009).  Similar to other 

plexins, the B family of plexins were originally found in the nervous system (Tamagnone et 

al. 1999), and were later identified in the circulatory, endocrine, reproductive, urinary, 

digestive, respiratory, and immune systems (Regev et al. 2005; Harduf et al. 2007; Gomez 

Roman et al. 2008; Harduf et al. 2009; Li et al. 2009; Okuno et al. 2009; Pan et al. 2009; 

Stevens et al. 2010; Zielonka et al. 2010).   The B plexin family is distinct from the A, C, and 

D plexins in the domains found in the intracellular tail.  Two of the B family members, 

Plexin-B1 and Plexin-B2, contain an intracellular domain with a PDZ motif [post synaptic 

density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula 

occludens-1 protein (zo-1)] (Aurandt et al. 2002; Driessens et al. 2002; Hirotani et al. 2002; 

Perrot et al. 2002; Swiercz et al. 2002; Basile et al. 2004).   

In contrast to a paucity of studies on Plexin-B2, Plexin-B1 has been found in the 

immune system where it mediates processes similar to its function in the nervous system.  

Plexin-B1 is required for the optimal migration of monocytes and dendritic cells and 
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proliferation and survival of B cells (Granziero et al. 2003; Chabbert-de Ponnat et al. 2005).  

The mechanisms mediating these effects of Plexin-B1 in the immune system are unknown, 

but in other cell types the phenotypic effects of Plexin-B1 have been attributed to its role as a 

regulator of the Rho family of GTPases (Driessens et al. 2001; Aurandt et al. 2002; Driessens 

et al. 2002; Swiercz et al. 2002; Oinuma et al. 2004; Saito et al. 2009).  The Rho family of 

GTPases functions to regulate actin dynamics (Etienne-Manneville et al. 2002; Mulloy et al. 

2010).  Plexin-B1 has been shown to regulate Rho upon stimulation by binding to PDZ-Rho 

and LARGE (Driessens et al. 2001; Aurandt et al. 2002; Driessens et al. 2002; Swiercz et al. 

2002).   Plexin-B1, as well as Drosophila Plexin-B, have been shown to bind directly to the 

active GTP-bound form of the GTPase Rac but not the inactive, GDP bound form (Vikis et 

al. 2000; Driessens et al. 2001; Hu et al. 2001).  The downstream consequences of B family 

plexins binding to active Rac are not completely understood.  In overexpression studies 

performed in HEK293 cells, Plexin-B1- Rac-GTP binding has been shown to sequester 

active Rac from its downstream effector p-21-activated kinase (PAK), which leads to 

increased cell surface expression of Plexin-B1 (Vikis et al. 2000).  In Drosophila neurons, 

which have only one B family plexin, Plexin B binds to and down regulates Rac through an 

unknown mechanism (Hu et al. 2001).   

Plexin-B2, the focus of our study, is much less studied than Plexin-B1.  In 

overexpression studies Plexin-B2 has been found to regulate the GTPase Rho (Perrot et al. 

2002).  When Plexin-B2 is synthetically stimulated by replacement of its extracellular 

domain, the intracellular PDZ domain of Plexin-B2 binds to the PDZ domain of the 

RhoGEFs (guanine nucleotide exchange factors) PDZ-RhoGEF and LARGE (leukemia 

associated RhoGEF), leading to the activation of Rho and the formation of stress fibers in 
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fibroblast (Perrot et al. 2002).  Studies of Plexin-B2 in the mouse nervous system have 

demonstrated that Plexin-B2 is required for normal development during embryogenesis.  

Plxnb2-/- embryo brains have defects in cortical patterning and in cell guidance of several cell 

types, resulting in neural tube closure defects and exencephaly (Friedel et al. 2007; 

Hirschberg et al. 2010).  In the immune system, the function of Plexin-B2 has not been 

delineated, although Plexin-B2 has been identified on B cells as a marker of T cell dependent 

germinal center formation and on an undefined population of CD11b+ cells in the mouse liver 

(Yu et al. 2008; Zielonka et al. 2010).   The function of Plexin-B2 on these cells types has not 

been reported. 

This report shows that Plexin-B2 is most highly expressed by macrophages, 

conventional dendritic cells (cDC), and plasmacytoid dendritic cells (pDCs) and sought to 

determine the function of Plexin-B2 on these cells.  To explore the effects Plexin-B2 on the 

immune system, we created fetal liver chimeric mice to reconstitute the immune system of 

wild type mice with Plxnb2-/- cells because the Plxnb2-/- mice do not survive post-partum.  

Reconstitution of the immune system with Plxnb2-/- cells has similar efficiency as 

reconstitution with wild type cells providing a feasible system for this study.  The results 

show that Plxnb2-/- macrophages are not defective in their ability to secrete the inflammatory 

cytokines TNFα or IL-6, undergo phagocytosis of fluorescent beads, bacteria, or antibody 

bound T cells, or migrate towards chemokines CXCL12 and colony stimulating factor (CSF).  

However, Plxnb2-/- macrophages show a significant increase in cell mobility compared to 

wild type in steady state.  Additionally Plxnb2-/- cells have higher levels of the active forms 

of the small Rho GTPases Cdc42 and Rac.  These data show that Plexin-B2 is 
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transmembrane negative regulator of Rac and Cdc42 and modulates cell velocity in 

macrophages. 

 

RESULTS 

Plexin-B2 is expressed in the immune system. 

We and others have previously shown that Plexin-A1 is found on dendritic cells in the 

mouse immune system and is required for optimal stimulation of T cells and for proper 

formation of T cell-dendritic cell conjugates by influencing actin polarization (Wong et al. 

2003; Eun et al. 2006; O'Connor et al. 2008; Takamatsu et al. 2010).  These results prompted 

us to ask if other plexins were expressed in the immune system.  In silico analysis of the 

BioGPS database (Wu et al. 2009) demonstrates that human and mouse Plexin-B2 is highly 

expressed on macrophages, cDCs, and pDCs, with much less to little found on B and T cells 

(Fig. 2.1A, B).  This expression pattern was analyzed in the mouse at the protein level by 

flow cytometry (Fig. 2.1C).  Plexin-B2 is highly expressed on B220+ PDCA-1+ pDCs and 

CD11c+ B220- cDCs in spleen and bone marrow.  Plexin-B2 is also expressed moderately on 

splenic macrophages and higher on F4/80+ macrophages.  In addition bone marrow F4/80+ 

cells show two populations based on Plexin-B2 expression.  Bone marrow-derived B220+ B 

cells also express a higher amount of Plexin-B2 than splenic B cells.  The low levels of B cell 

Plexin-B2 transcript detected by in silico studies (Fig. 2.1A, B) and the much higher protein 

expression (Fig. 2.1C) might reflect post-transcriptional control of Plexin-B2 in B cells.  

Very little Plexin-B2 was detected on TCR+CD4+ T cells, TCR+CD8+ T cells, NK1.1+ natural 

killer (NK) cells, or NK1.1+TCR+ NK T cells consistent with the in silico studies. 
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Reconstitution of the immune system with Plxnb2-/- cells is equivalent to wild type. 

Mice lacking Plexin-B2 (Plxnb2-/-) have been previously shown to have a severe 

phenotype, exhibiting defects in neural tube closure, cerebellar disorganization and 

misregulated granule cell proliferation (Deng et al. 2007; Friedel et al. 2007).  To study the 

immune system, it was necessary to perform fetal liver transplant from Plxnb2-/- donor 

backcrossed onto a C57BL/6 background for at least ten generations into C57BL/6 CD45.1+ 

recipients.  We and others have shown that plexins can affect cell proliferation and 

homeostasis (Deaglio et al. 2004; Kumanogoh et al. 2005; Hu et al. 2007; O'Connor et al. 

2008; Takamatsu et al. 2010; Takamatsu et al. 2010).  Therefore we studied the ability of 

Plxnb2-/- cells to reconstitute the mouse immune system.   In the spleen and bone marrow, the 

reconstituted percentage of B220+ CD11c- (cDC), CD11clow PDCA-1+ (pDC) and F4/80+ 

(macrophage) cells, which express high levels of Plexin-B2, are equivalent in recipients of 

wild type Plxnb2-/- fetal livers (Fig. 2.2A).  This also holds true for B220+ CD11c- (B), TCR+ 

CD4+, and TCR+ CD8+ T cell percentages in the spleen and bone marrow (Fig. 2.2A).  

Furthermore, the total percentage of reconstituting donor (CD45.2+) cells compared to 

recipient (CD45.1+) is comparable for recipients of either Plxnb2-/- or wild type cells (Fig. 

2.2B).  These data suggest that Plexin-B2 does not affect cell proliferation or reconstitution 

of the mouse immune system in the fetal liver engraftment system used for the rest of the 

study. 

 

Plexin-B2 does not affect cytokine response in macrophages. 

Plexins and their semaphorin receptors have been shown to modulate cytokine 

secretion.  Plexin-A1 is required for upregulation of IFNα after Toll-like Receptor (TLR) 
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stimulation (Watarai et al. 2008).  Blocking antibodies to Plexin-B1 have been shown to 

abrogate Sema4D-induced cytokine modulation (Chabbert-de Ponnat et al. 2005).  To 

determine if Plexin-B2 also contributes cytokine response after TLR signaling, the 

inflammatory cytokines TNF and IL-6 in cell supernatants of macrophages stimulated by the 

TLR ligands Poly(I:C) (polyinosinic-polycytidylic acid, TLR3), LPS (lipopolysaccharide, 

TLR4), and R837 (imidazoquinoline compound imiquimod, TLR7) were assessed (Fig.2.3A, 

B).  In response to TLR ligands, Plxnb2-/- and wild type macrophages secreted comparable 

levels of TNFα and IL-6, indicating that Plexin-B2 does not play a role in the production or 

release of cytokines measured in this study. 

 

Plexin-B2 negatively regulates cell motility. 

Plexin-B2 has been shown in the nervous system to mediate cell guidance, migration, 

and proliferation These data prompted us to examine if Plexin-B2 could contribute to cell 

movement in macrophages.  We compared the motility of Plxnb2-/- and wild type 

macrophages on glass bottom dishes using time-lapse microscopy.  Three independent 

movies of Plxnb2-/- and wild type cells show that the mean velocity of Plxnb2-/- macrophages 

is significantly higher than wild type (Fig. 2.4A, B).  We also stimulated macrophages with 

macrophage colony stimulating factor (M-CSF) and found that while wild type macrophage 

motility increased with stimulation, Plxnb2-/- macrophage motility remained constant. This 

indicates that Plexin-B2 serve as a motility brake in unstimulated cells, and does not affect 

motility in response to M-CSF stimulation.  

 We also explored the directional migration capacity of Plxnb2-/- macrophages in 

transwell assays.  Macrophages have been demonstrated to migrate towards the attractive 
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chemokines M-CSF and stromal cell-derived factor-1 (CXCL12) (Kheir et al. 2005; 

Campana et al. 2009).  The data show that migration of Plxnb2-/- macrophages to M-CSF and 

CXCL12is normal compared to wild type.  This suggesting that while Plexin-B2 negatively 

regulates cell motility in steady state to prevent motility when cells are unstimulated, it does 

not regulate directed migration towards M-CSF and CXCL12 in macrophages.  

  

Plexin-B2 Negatively Regulates Rac and Cdc42. 

Previous studies with overexpressed Plexin-B2 in Swiss 3T3 cells have shown that 

Plexin-B2 binds to the active, GTP-bound form of Rac and contains a Rac binding motif in 

its intracellular tail (Driessens et al. 2001).  Following the findings that Plexin-B2 affects cell 

velocity, we investigated if this regulation of motility could be related to Plexin-B2 

dependent regulation of Rac.  Rac and Cdc42 have been demonstrated to modulate cell 

migration and motility (Etienne-Manneville et al. 2002; Pankov et al. 2005; Heasman et al. 

2008).  The GTP binding state of Rac and Cdc42 was assessed using GST–PBD (glutathione 

S-transferase PAK1 p21-binding domain) beads to pull down activated Rac and Cdc42 from 

cell lysate followed by specific detection of each of the molecule by western blot (Sander et 

al. 1998; Arthur et al. 2001).  In the unstimulated steady state, Plxnb2-/- macrophages 

repeatedly had more GTP bound Rac and Cdc42 than wild type (Fig. 2.5A).  Following 

stimulation with M-CSF for ten minutes, wild type and Plxnb2-/- macrophages showed 

similar levels of active Rac and less Cdc42.  This suggests that Plexin-B2 is a negative 

regulator of Rac and Cdc42 in the unstimulated state but not in the stimulated state.  Studies 

with the closely related protein Plexin-B1 have shown that Plexin-B1 binding to Rac-GTP 

occurs in steady state (Driessens et al. 2001).  Our data shows that Plexin-B2 is similar to 
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Plexin-B1 in that its effect on Rac but additionally found that the former also regulates 

Cdc42.  We also examined the effect Plexin-B2 on the ERK (extracellular-signal-related-

kinase) pathway, as previous studies of Plexin-B1 have shown that ERK is phosphorylated 

downstream of Plexin-B1 (Fig. 2.5B) (Aurandt et al. 2006).  Phosphorylated ERK levels in 

Plxnb2-/- and wild type macrophages were equivalent in the steady state and in response to 

treatment with M-CSF.  These data represent the first evidence that the endogenous effect of 

Plexin-B2 in unstimulated cells is to serve as a brake for Rac and Cdc42 activation. 

 

Plexin-B2 does not affect macrophage phagocytosis. 

The Rho family of GTPases regulate the process of phagocytosis, in which actin 

dynamics facilitate the cellular processes of membrane extension, phagocytic cup formation 

and closure, and particle uptake (reviewed in Fenteany et al. 2004).  Rac and Cdc42 have 

been shown to mediate FcγR mediated phagocytosis in macrophages (Cox et al. 1997; Caron 

et al. 1998; Park et al. 2009).  Plexin-C1, in response to viral semaphorin, has been shown to 

downregulate phagocytosis (Ji et al. 2009). 

 To test whether the negative regulation of Rac and Cdc42 by Plexin-B2 in 

macrophages has an effect on phagocytosis we performed experiments to examine the uptake 

of GFP-E. coli, latex beads, and antibody coated thymocytes (Fig. 2.6A, B, C).  Plxnb2-/- or 

wild type macrophages were given either GFP-E. coli, fluorescent latex beads, or antibody 

coated thymocytes and assayed for cellular uptake using flow cytometry at different time 

points.  Both Plxnb2-/- and wild type macrophages were capable of phagocytosing all 

treatment groups.  However, the ability to phagocytose antibody coated thymocytes 
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repeatedly trended towards greater uptake of these thymocytes by Plxnb2-/- macrophages 

although this difference is not significant. 

  

DISCUSSION 

This is the first report to explore the expression of Plexin-B2 on macrophages, cDCs, 

and pDCs.  We found that Plexin-B2 is not expressed on resting B cells in the spleen, in 

agreement with previously reported expression of Plexin-B2 in B cells within T-dependent 

germinal centers (Yu et al. 2008).  By contrast, Plexin-B2 expression on T cells is consistent 

and it is not highly expressed in CD4+ or CD8+ splenic T cells or NK or NK T cells at the 

transcript and protein level.  In the BioGPS cDNA database (Wu et al. 2009), Plexin-B2 is 

most highly expressed in the macrophage, cDC and pDC in the immune system.  Our protein 

data confirms the database results.  Interestingly, the same database shows Plexin-B1 has no 

immune system cDNA expression above median, and Plexin-B3 is most highly expressed in 

mast cells (data not shown).  Other studies have demonstrated that Plexin-B1 is expressed in 

B cells, monocytes, and dendritic cells in humans (Granziero et al. 2003; Chabbert-de Ponnat 

et al. 2005).  This suggests that expression level of different B family plexins is cell type 

specific and may be a way of regulating the function of B family plexins. 

 The functional analyses indicate that Plxnb2-/- macrophages have higher steady state 

velocity than wild type macrophages by live cell microscopy, suggesting that Plexin-B2 is a 

negative regulator of cell velocity.  The data demonstrates that directional migration of both 

Plxnb2-/- and wild type macrophages in response to cytokines M-CSF or CXCL12 are 

equivalent, suggesting that stimulated, directional migration is not affected by Plexin-B2 

with these chemokines.  The majority of the studies of Plexin B family members have relied 
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on activation of the plexin receptor by its ligand or by synthetic dimerization.  Here we show 

that endogenous, unstimulated Plexin-B2 regulates macrophage velocity in steady state.  It is 

possible that Plexin-B2 may be dimerized in an autocrine fashion in our system by one of its 

reported ligands Sema4A, Sema4C, or Sema4D in steady state (Masuda et al. 2004; Deng et 

al. 2007; Yukawa et al. 2010; Zielonka et al. 2010).  Under the scenario, the semaphorin 

ligand could be secreted by macrophages, or could be provided by neighboring cells in the 

culture.  However, we are able to use a monoclonal antibody to stain for surface expression 

of Plexin-B2 indicating that either the anti-Plexin-B2 antibody binds to a portion of Plexin-

B2 that is not occupied by ligand binding or that Plexin B2 is not bound to its ligand in our 

experimental conditions.   

 To explore the mechanism of Plexin-B2 negative regulation of cell velocity, 

GTP pull down assays were carried out to determine the amount of active Rac and Cdc42.  

The data show that in the unstimulated steady state, Plxnb2-/- cells have higher levels of the 

GTP bound, active forms of Cdc42 and Rac.  Previous reports have shown that Plexin-B2 in 

its undimerized form binds to Rac-GTP in yeast and in bacterial overexpression studies 

(Driessens et al. 2001).  Our data suggests that similar to Plexin-B1, Plexin-B2 may bind to 

RacGTP and function to sequester Rac from it downstream effectors (Vikis et al. 2002).  In 

the absence of Plexin-B2, there is more active Rac, suggesting that Plexin-B2 might increase 

RacGAP (Rac GTPase accelerating protein) activity by serving as a RacGAP itself or recruits 

a RacGAP to the Plexin-B2 complex.  Structural and biochemical studies of Plexin-B1 have 

shown that Plexin-B1 does not function as a RacGAP, suggesting that the Plexin-B1 

modulation of Rac is through other mechanisms (Bouguet-Bonnet et al. 2008; Hota et al. 

2009).  The intracellular tails of Plexin-B1 and Plexin-B2 are similar (61% identical in their 
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amino acid sequence – data not shown) it is likely that Plexin-B2 also itself does not function 

as a RacGAP but instead mediates activity towards Rac through the modulation of other 

regulators in this pathway.  Interestingly Plexin-B1 has been shown in yeast to not interact 

with Cdc42, while our data indicate that Plexin-B1 does modulate Cdc42 activation.  This 

reveals a difference between Plexin-B1 and Plexin-B2, however species differences have to 

be taken into account for these differences.  We observe the effects of Plexin-B2 on Rac and 

Cdc42 only in an unbound state.  

 This study revealed several functions that are not regulated by Plexin-B1.  The 

reconstitution ratios of wild type or Plxnb2-/- fetal liver cells are similar in wild type 

recipients, and the percent of specific immune cell populations in the spleen and bone 

marrow reconstituted equivalently.  This includes cell types that express the highest levels of 

Plexin-B2: the cDC, pDC, and macrophage.  Numbers of macrophage cells derived from 

bone marrow cultures of Plxnb2-/- and wild type cells are equal, suggesting that Plexin-B2 

does not contribute to detectable differences in immune system ontogeny or proliferation in 

this study. 

 Antibody-mediated phagocytosis is a Cdc42 dependent mechanism.  Therefore we 

explored the phagocytic capacity of Plxnb2-/- macrophages compared to wild type.  However, 

the findings show that Plxnb2-/- macrophages are capable of phagocytosis of GFP-E. coli, 

latex beads, and antibody coated thymocytes.  Phagocytosis of GFP-E. coli and latex beads is 

similar for Plxnb2-/- and wild type macrophages.  However, there was a trend of increased 

phagocytosis of antibody-coated thymocytes by Plxnb2-/- macrophages.  Antibody-mediated 

phagocytosis has been shown to be dependant on Rac and Cdc42 (Caron et al. 1998), while 

bacteria bypass the need for activation of the small GTPases for cellular uptake (Gruenheid et 
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al. 2001).  It is possible that the over activation of Rac and Cdc42 in the absence of Plexin-

B2 leads to a modest upregulation of antibody-mediated phagocytosis, but not phagocytosis 

of E. coli and latex beads.   

Previous reports have shown that Plexin-B1 and other plexins can influence cytokine 

production in monocytic cells (Holmes et al. 2002; Chabbert-de Ponnat et al. 2005).  

However this study shows that TNFα and IL-6 production and secretion in response to TLR 

ligands is similar between wild type and Plxnb2-/- macrophages.  Thus in our system cytokine 

secretion is not affected by the absence of Plexin-B2 signaling.  It is possible that 

dimerization of Plexin-B2 or stimulation by its ligand could show that Plexin-B2 has a role in 

macrophage cytokine secretion and should be addressed in future studies. 

In summary, this study shows that Plexin-B2 is highly expressed in the immune 

system on cells of monocytic-myeloid lineage, including the cDC, pDC, and macrophage. 

Plexin-B2 has been shown previously to bind to only to the activated form of Rac, but the 

physiological consequence of Plexin-B2 Rac-GTP binding is unknown.   We show that ex-

vivo Plxnb2-/- macrophages have higher levels of activated Rac and Cdc42 and increased cell 

velocity in steady state.  Our data suggest that the function of Plexin-B2 in steady state is to 

negatively regulate Rac and Cdc42 and to maintain a brake on cell motility in unstimulated 

cells. 
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MATERIALS AND METHODS 

Mice 

C57BL/6 (CD45.2) and congenic C57BL/6 (CD45.1) mice were purchased from National 

Cancer Institute (Boston, MA).  Plxnb2-/- mice were provided by Dr. Marc Tessier-Lavigne 

(Friedel et al. 2007) (Stanford) and were backcrossed with C57BL/6 mice at least 10 

generations at the University of North Carolina Chapel Hill.  Mice were used at six to eight 

weeks of age and were housed in a pathogen-free barrier facility at the University of North 

Carolina Chapel Hill.  All animal procedures were approved by the Institutional Animal Care 

and Use Committee of the University of North Carolina at Chapel Hill and were performed 

in compliance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals.  Plxnb2+/- mice were crossed to obtain Plxnb2-/- and wild type fetal 

livers from stage E14 pups.  Fetal liver cells were then injected intravenously into lethally 

irradiated C57BL/6 CD45.1 to reconstitute the immune system and analyzed 6-10 weeks post 

reconstitution (Godin et al. 2002). 

 

Cell culture 

Macrophages were generated by bone marrow culture in L929 media.  In brief, mouse femurs 

and tibias were removed from 6-8 week old mice, cleaned, and aspirated to remove bone 

marrow.  Cells were cultured in L929 for six days.  Macrophages were harvested and 

replated in complete DMEM media [DMEM, 10% heat inactivated fetal bovine serum, non-

essential amino acids, L-glutamine, sodium pyruvate, and penicillin/streptomycin (P/S)], and 

rested overnight before experiments. 
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Reagents 

Poly(I:C), Ultrapure LPS, and Imiquimod (R837) were from InvivoGen.  M-CSF is from 

R&D Systems (Minneapolis, MN).  Antibodies for western blotting included Rac1 (C-14; sc-

217), Cdc42 (B-8; sc-8401), phospho-ERK1/2 (Thr202/Thr204) (197G2; 4377) from Santa 

Cruz Biotechnology (Santa Cruz, CA) and GAPDH (MAB374) from Millipore (Billerica, 

MA).  Secondary goat α mouse-HRP (horse radish peroxidase) and goat α rabbit-HRP 

antibodies are from Santa Cruz Biotechnology (Santa Cruz, CA).  Beads for assays of GTP-

bound Rac1 and Cdc42 glutathione-sepharose (GST) bead conjugated with Pak1 binding 

domain (Rac1 and Cdc42) were kindly provided by Dr. Keith Burridge  (University of North 

Carolina, Chapel Hill). 

 

Flow cytometry 

Antibodies used for flow cytometry included: B220 (RA3-6B2), CD45.2 (104), CD45.1 

(A20), CD4 (L3T4), CD8 (Ly-2), TCR (H57-597), CD11b (M1/70), CD11c (N418), NK1.1 

(NKR-P1C) PDCA-1 (BST2, CD317) and Plexin-B2 (3E7) from eBioscience (San Diego, 

CA).  Single cell suspensions of spleen and bone marrow were lysed in ACT to remove red 

blood cells, washed and resuspended in FACS buffer (1X PBS and 2% FBS) at 1x10 6 cells 

per well and stained with antibody combinations. All experiments were performed on a 

FACSCalibur (BD Biosciences, Franklin Lakes, NJ) or Cyan (Dako, Carpinteria, CA) and 

analyzed with FlowJo software (Tree Star, Ashland, OR). 

 

Live Cell Microscopy 
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1x104 cells were plated on glass bottom dishes (MatTek Ashland, MA P35G-1.5-10-C).  

Cells were imaged on a Nikon Biostation (Belmont, CA) with a 20X objective.  Cell velocity 

was analyzed using manual tracking in ImageJ (Abramoff 2004).  Images were collected 

every 5 minutes for a total time of 2.5 hours for unstimulated cells or following treatment 

with 50ng/ml M-CSF.  For each treatment three separate movies were filmed and 45 cells 

scored for velocity.  n=3 mice per group. 

 

Detection of GTP-bound Rac1, Cdc42, and pERK 

Cells were plated at 2x10 6 cells per well in six well plates and treated with 50ng/ml M-CSF or 

media for the indicated times.  Assays for GTP-bound Rac1 and Cdc42 were performed as 

described (Noren et al. 2003).  Cells were lysed and precipitated using GST-PBD beads for 

Rac and Cdc42.  Bead bound proteins and cell lysate were resolved on a NuPAGE (Invitrogen 

Carlsbad, CA) gel and were transferred onto nitrocellulose membranes.  Membranes were 

blocked with 10% milk and probed with primary antibodies against Rac1 and Cdc42 followed 

by appropriate secondary HRP conjugated antibody for detection.  For detection of pERK cells 

were plated as above, treated with 50ng/ml M-CSF for the indicated times, lysed and resolved 

on a NuPage (Invitrogen Carlsbad, CA) gel. 

 

Phagocytosis 

Macrophages were plated at 1x105 cells per well in a 96 well non-tissue culture treated plate 

in 100ul of macrophage media without antibiotics.  Cells were rested overnight and then 

treated with 1x107 GFP E. coli (green fluorescent protein expressing Eshericia coli kindly 

provided by Dr. Glenn Matoshima, University of North Carolina Chapel Hill), 1x107 

fluorescent latex beads (Invitrogen F13080, Carlsbad, CA), or 1x106 CFSE 
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(carboxyfluorescein diacetate succinimidyl ester, Invitrogen, Carlsbad, CA) labeled, antibody 

labeled (CD45.2, mouse IgG2a) thymocytes as previously described (Scott et al. 2001).  

Cells were washed with media, extracellular fluorescence quenched with 0.2% Trypan Blue 

(Sigma T8154, St. Louis, MO), fixed in 0.1% EM-grade formaldehyde and analyzed by flow 

cytometry for percent of fluorescent positive cells. 

 

ELISA 

Macrophages were plated at 2x105 cells per well in a 96 well plate and stimulated overnight.  

Cell supernatants were quantified using the ELISA kits for mouse TNF-α (555268) or IL-6 

(555240) (BD Biosciences San Jose, CA).   

 

Statistical analysis 

Statistical significance was determined with two-tailed Student’s t test.  All p values less than 

0.05 were considered significant.  
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Figure 2.1 
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Figure 2.1.  Plexin-B2 is expressed in the human and mouse immune system.   

A) cDNA expression level of Plxnb2 in mouse immune cells from BioGPS database (Wu et 

al. 2009).  B) cDNA expression level of Plxnb2 in human immune cells.  C) Plexin-B2 

protein expression by flow cytometry of ex-vivo mouse spleen and bone marrow cells.  pDCs 

were gated on B220+ PDCA-1+ cells.  cDCs were gated on CD11c+ B220- cells.  

Macrophages were gated on F4/80+ CD11c- cells.  B cells were gated on B220+ cells.  T cells 

were gated on TCR+ cells.  NK cells were gated on NK1.1+ TCR- cells, and NK T cells on 

NK1.1+TCR+ cells.  Wild type fetal liver reconstituted mice are indicated by unfilled 

histogram and Plxnb2-/- reconstituted mouse by filled histogram.  Results are representative 

of at least four experiments, n=8 per group. 



 54 

 

Figure 2.2 
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Figure 2.2.  Immune system reconstitution with Plxnb2-/- fetal livers is similar to wild 

type.   

Flow cytometry of reconstitution of congenic CD45.1+ mice with wild type and Plxnb2-/- 

fetal livers (CD45.2+) in the splenic and bone marrow compartments six weeks post 

transplant.  A) cDCs are designated as B220-/CD11c+ cells, pDCs as CD11c+ B220+, and B 

cells as B220+ CD11c-. pDCs were further defined as CD11clow and PDCA-1+.  Macrophages 

were defined as F4/80+ cells. T cells were first gated on TCR+ cells, and then divided into 

subpopulations by the CD4+ and CD8+ markers.  NK cells were defined as NK1.1 +/CD4- 

and NKT cells as NK1.1+CD4+. B) Total donor reconstitution in the spleen and bone 

marrow were similar between wild type and Plxnb2-/- mice. CD45.2 marked the donor, 

Ly5.1+ cells.  CD45.1 marked the residual host, Ly5.2+ cells.  Figures are representative plots 

of four separate experiments.  n=5 mice per group. 
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Figure 2.3 
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Figure 2.3:  Plexin-B2 does not affect cytokine secretion.   

Wild type and Plxnb2-/- macrophages were incubated for 16 hours with TLR ligands 

Poly(I:C) (10 ug/ml), LPS (1ug/ml) , and R837 (4 ug/ml).  Supernatants were collected at the 

16 hour time point and assessed for secretion of A) TNF and B) IL-6 by ELISA.  Graphs are 

representative of three independent experiments, n=3 mice per group.   
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Figure 2.4 
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Figure 2.4.  Plxnb2-/- cells have higher velocity than wild type macrophages.   

A) Representative cell movement tracks over a 2.5 hour time period on untreated wild type or 

Plxnb2-/- macrophages.  B) Combined velocity scores of wild type and Plxnb2-/- bone marrow 

macrophages in untreated or treated (50ng/ml M-CSF) groups.  Cell velocity was scored in 

45 cells per group per experiment.  The experiment was repeated three separate times using 

cells from different mice in each experiment.  C) Macrophage transwell migration towards 

CSF and CXCL12.  Cells were placed in the upper chamber and chemokines in the lower 

chamber of migration plates and allowed to migrate for four hours.  Cells were quantified and 

normalized to a standard curve of each genotype.  Graphs are representative of at least three 

independent experiments.  n= 4 mice per group. 
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Figure 2.5 
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Figure 2.5:  Plexin-B2 inhibits active Rac and Cdc42.   

A) WT and Plxnb2-/- macrophages were plated and rested overnight and assessed for 

RacGTP, Cdc42GTP, total Rac and total Cdc42 using a GST-PBD pulldown assay followed 

by western blot. B) Western blot of ERK activation as assessed by phospho-ERK level in 

untreated cells, as well as in response to 2 and 5 minutes of treatment with CSF (50 ng/ml) 

and 20 minutes of treatment with LPS (1 ug/ml).  Total protein level was determined by 

western blot of GAPDH.  Results are representative of four separate experiments.  n= 4 mice 

per group. 
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Figure 2.6 
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Figure 2.6:  Plexin-B2 does not significantly affect phagocytosis.  

A) Wild type and Plxnb2-/- bone marrow derived macrophages were incubated with GFP-E. 

coli, latex beads, or opsonized thymocytes (1:10 ratio E.coli, bead, or T cells: macrophage) 

for 30, 60, or 90 minutes.  Uptake was measured by fluorescence and flow cytometry.  

Graphs are representative or four independent experiments. n=5 mice per group. 
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ABSTRACT 

The plexin gene family is implicated in cellular movement and cell-cell communication 

during the course of the immune response.  In this study, we characterize the expression and 

function of Plexin-B2 and Plexin-D1 in the immune system.  We show that Plexin-B2 and 

Plexin-D1 are differentially expressed in dendritic cell (DC) populations.  Expression of 

Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and 

anti-CD40.  Absence of Plexin-B2 and Plexin-D1 in DCs does not affect the ability of these 

cells to upregulate costimulatory molecules or the ability of these cells to activate antigen 

specific T cells.  Additionally, Plexin-B2 and Plexin-D1 are dispensable for chemokine-

directed in-vitro migration of DCs towards CXCL12 and CCL19.  However, absence of 

Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40.  Plexin-

B2 and Plexin-D1 are negative regulators of IL-12/IL-23p40 signaling.  This suggests that 

both Plexin-B2 and Plexin-D1 may play a role in dendritic cells in cytokine and T cell 

response. 
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INTRODUCTION  

Semaphorins and plexins were initially identified as key molecules in axon guidance 

during neuronal development (Kolodkin et al. 1993; Winberg et al. 1998).  Semaphorins are 

classified into three different groups based on their origin and structural homology; 

invertebrate, vertebrate and viral semaphorins (Mizui et al. 2009).  Plexin receptors are 

divided into two large groups, invertebrate and vertebrate, and further subdivided into four 

different families, A-D (Takamatsu et al. 2010).  Although plexins are considered receptors 

for the semaphorin ligands, this view has been revised as semaphorins are shown to also 

mediate signal transduction (Tamagnone et al. 1999; Castellani et al. 2002; Kruger et al. 

2005; Yazdani et al. 2006).  The interactions between semaphorins and plexins are 

promiscuous.  Semaphorins can interact with multiple plexins on a single cell type or across 

multiple cell types and vice versa (Takamatsu et al. 2010).  Plexins and semaphorins control 

cell movement and migration and have been implicated in neural cell function, vasculature 

formation, and organ development (van der Zwaag et al. 2002; Gu et al. 2005; Choi et al. 

2008; Sakurai et al. 2010).  

Recent work has implicated plexins and semaphorins in the immune system 

(Granziero et al. 2003; Wong et al. 2003; Walzer et al. 2005; Yamamoto et al. 2008).  

Several plexins and semaphorins are expressed by naïve and activated immune cells.  Plexin-

D1 and Semaphorin-3E are expressed in the thymus (Choi et al. 2008).  Plexin-A1 and 

Semaphorin-6D are expressed on DCs and T cells (Wong et al. 2003; O'Connor et al. 2008).  

Semaphorin-4A is expressed by Th1 polarized T cells and DCs (Kumanogoh et al. 2002).  

Semaphorin-4D is expressed by T cells, DCs, and activated B cells (Delaire et al. 1998; 

Kumanogoh et al. 2000; Shi et al. 2000; Kumanogoh et al. 2002; Granziero et al. 2003; 
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Kumanogoh et al. 2005).  Plexin-A4 is expressed by T cells, B cells and DCs (Yamamoto et 

al. 2008).  Plexin-C1 is expressed by DCs (Walzer et al. 2005).  The wide distribution of 

plexins and semaphorins across immune system cells and environments suggest that they 

function in immune system development and response. 

The function of plexins and semaphorins on DCs has not yet been fully characterized.  

Plexin-A1 expression on DCs is required for proper T-cell activation and proliferation (Wong 

et al. 2003; Takamatsu et al. 2010).  Semaphorin-6D, a known ligand for Plexin-A1, is 

expressed on activated T cells and is required for late-phase T cell proliferation (O'Connor et 

al. 2008).  Mice deficient in Plexin-A4 develop exacerbated MOG-induced experimental 

autoimmune encephalomyelitis (EAE) (Yamamoto et al. 2008).  Semaphorin-4D maintains 

B-cell homeostasis and facilitates humoral immune responses (Shi et al. 2000).  Plexin and 

semaphorin function on DCs demonstrate their importance in the immune response. 

To date, Plexin-D1 and Plexin-B2 research in the immune system has been limited.  

In other systems Plexin-D1 partners with two different semaphorin molecules: Semaphorin-

3E and Semaphorin-4A (Gu et al. 2005; Toyofuku et al. 2007).  Plexin-B2 has been found to 

have several semaphorin ligands including Semaphorin-3E, Semaphorin-4A, Semaphorin-

4C, and Semaphorin-4D (Masuda et al. 2004; Lamont et al. 2009; Yukawa et al. 2010; 

Zielonka et al. 2010).  Plexin-D1 was recently shown to be expressed by double positive 

thymocytes and facilitate their migration from the cortex into the medulla (Choi et al. 2008).  

Plexin-B2 is expressed on T-dependent germinal center B cells but not T-independent 

germinal center B cells, though the physiological consequence of this increase in expression 

are unknown (Yu et al. 2008).  Studies of development in the model organism zebrafish have 

shown that Plexin-B2 and Plexin-D1 are antagonistic- Plexin-B2 deficiency results in 
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delayed migration of sprouting angioblast while Plexin-D1 deficiency results in early 

angioblast sprouting (Lamont et al. 2009).  These findings show that Plexin-B2 and Plexin-

D1 likley function in the same pathway but have differing roles.  The expression of both of 

these plexins is important for timing of cell homing. 

In this study, we report that Plexin-B2 and Plexin-D1 are differentially expressed in 

DCs.  To address the role of Plexin-B2 and Plexin-D1 in DC development and function we 

utilized Plxnd1-/- and Plxnb2-/- animals.  We used in-vitro and in-vivo approaches to examine 

the direct effect of Plexin-B2 and Plexin-D1 on DCs.  We found that DCs lacking Plexin-B2 

and Plexin-D1 were capable of inducing a normal T cell response in response to antigen.  We 

also found that both Plxnb2-/- and Plxnd1-/- DCs are capable of migrating towards 

chemokines and are present in the spleen in patterns comparable to wildtype.  Plxnb2-/- and 

Plxnd1-/- DCs are capable of secreting normal amounts of TNFα and IL-6.  However, both 

Plxnb2-/- and Plxnd1-/- DCs are hyper-responsive in their secretion of IL-12/ IL-23p40.  Our 

results show that in DCs, both Plexin-B2 and Plexin-D1 are differentially expressed and the 

absence of either does not impact T cell proliferation response, chemokine directed 

migration, and IL-6 and TNF secretion.  However, both Plexin-B2 and Plexin-D1 are 

negative regulators of IL-12/IL-23p40 response, demonstrating that they may function in 

DCs in the same pathway and that this pathway may be modulated by their differential 

expression. 

 

RESULTS 

Plexin-B2, Plexin-D1, and Semaphorin-3E Expression in Immune Cells 



 69 

Expression patterns of individual plexins in the immune system during cell 

maturation or activation have been reported in the literature.  Plexin-B2 is expressed on B 

cells from T cell dependent germinal centers but not T independent germinal centers (Yu et 

al. 2008).  Plexin-D1 is expressed by thymocytes and further downregulated with T cell 

maturation (Choi et al. 2008).  We extended Plexin-B2 and Plexin-D1 expression studies to 

include another immune cell type, DCs.  DCs are required for T cell priming in the secondary 

lymphoid organs.  We observed Plexin-B2 and Plexin-D1 expression in sorted splenic 

myeloid DCs (mDCs) (CD11b+CD11c+) (Fig. 3.1A, B, and C).  Plexin-B2 is expressed at day 

6 of maturation of bone marrow derived DCs treated with GM-CSF and IL-4, then decreases 

mid-maturation at day 8, and then increases at maturation day 10 and treatment with TNFα 

and IL-6 (Figure 1A).  Plexin-B2 expression is not increased by treatment with toll-like 

receptor (TLR) ligands (P3C, TLR1/2), lipopolysaccharide (LPS, TLR4), or CpG (TLR9).  

Plexin-B2 is highly expressed by plasmacytoid DCs (CD11c+B220+mPDCA1+) (Fig. 3.1A, 

B).   

The expression pattern of Plexin-B2 is in contrast with the expression pattern of 

Plexin-D1, which increases throughout the maturation of bone marrow-derived DCs 

(BMDCs) and with treatment by TLR ligands P(3)C, LPS, and CpG (Fig. 3.1C).  Plexin-D1 

expression is not increased in response to treatment with TNFα or CD40L, and is not 

expressed on plasmacytoid DCs.  Both Plexin-B2 and Plexin-D1 are expressed on splenic ex-

vivo DCs (Fig. 3.1A, C). 

We confirmed the expression of Plexin-B2 throughout DC maturation at the protein 

level using a monoclonal antibody against Plexin-B2 (Fig. 3.1B).  In conventional DCs that 

are produced with GM-CSF and IL-4, our data showed that expression of Plexin-B2 is 
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bimodal throughout maturation.  In plasmacytoid DCs that are matured with Flt3L Plexin-B2 

is highly expression throughout maturation.  These data support the differential cDNA 

expression pattern of Plexin-B2 (Fig. 3.1A). 

Studies have shown that the predominant Plexin-D1 partner in the immune system is 

Semaphorin-3E, although the specific cell type providing the ligand is unknown (Gu et al. 

2005; Choi et al. 2008).  These studies show that Semaphorin-3E is expressed in the thymic 

medulla where it creates a gradient that is responsible for migration of Plexin-D1 expressing 

thymocytes from the cortex into the medulla (Choi et al. 2008).  The immune system binding 

partner for Plexin-B2 is unknown.  However, in zebrafish angioblast, Semaphorin-3E is the 

ligand for Plexin-B2, and Plexin-D1 antagonizes the Plexin-B2/Semaphorin-3E pathway.  

Upon observing the opposing expression patterns of Plexin-B2 and Plexin-D1 in cDCs, we 

hypothesized that Semaphorin-3E may also be present on DCs.  We analyzed Semaphorin-3E 

expression in a number of immune cells (Figure 1D).  Our data show that Semaphorin-3E is 

minimally detected in naïve and activated T and B cell populations.  However, Semaphorin-

3E is highly expressed on Th2 skewed T cells and splenic cDCs.  The expression pattern of 

Semaphorin-3E suggests that partnering of this protein with Plexin-B2 and Plexin-D1 during 

the course of an immune response may be important for T cell activation.  

 

Plxnb2-/- and Plxnd1-/- DCs stimulate T cells similarly to wild type  

DCs are proficient antigen presenting cells required for proper T cell selection in the 

thymus and activation of naïve T cells in the periphery (Cella et al. 1997; Hanahan 1998).  

DCs take up antigen and present it to T cells in the context of MHC molecules (Hanahan 

1998).  Upon cognate antigen encounter, T cells proliferate, release a series of cytokines and 
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function as cytotoxic T-lymphocytes or helper T cells (Th) (Hanahan 1998).  To further 

define the role of Plexin-B2 and Plexin-D1 in DCs, we performed an in-vitro antigen 

presentation assay using transgenic T cells specific for ovalbumin (OVA), OTII T cells.  

Given that Plxnb2-/- and Plxnd1-/- mice die shortly after birth we created fetal liver chimeric 

mice to study Plexin-B2 and Plexin-D1 in the immune system.   Wild type congenic mice 

were reconstituted with hematopoietic cells from E14 fetal livers of Plxnb2-/- or Plxnd1-/- 

mice (Fig. 3.2).  

We first determined the ability of Plxnb2-/- and Plxnd1-/- DCs to take up OVA-protein.  

DCs were cultured for 2 hours in the presence of FITC-labeled OVA protein and the amount 

of OVA taken up by DCs was assessed by flow cytometry.  Plxnb2-/-, Plxnd1-/- and wild type 

DCs take up antigen equivalently as shown by the level of mean fluorescence intensity of the 

analyzed DCs (Fig. 3.3A).  To determine the ability of the DCs to stimulate T cells, freshly 

isolated carboxyfluorescein succinimidyl ester (CFSE)-labeled OTII T cells were cultured in 

the presence of OVA protein-pulsed Plxnb2-/-, Plxnd1-/-, and wild type splenic DCs for three 

days.  Non OVA-pulsed DCs were used as a negative control.  Proliferation of Vb5+ OTII T 

cells was assessed by flow cytometry.  As shown in Figure 3.3B, Plxnb2-/- and Plxnd1-/- DCs 

are capable of stimulating T cells similarly to wild type.  These data suggest that both Plexin-

B2 and Plexin-D1 are dispensable during in-vitro activation of CD4+ T cells by DCs.  

 

Plexin-B2 and Plexin-D1 do not affect the migration of DCs 

 Plexins and semaphorins have been implicated in migration of many different cell 

types including neuronal, endothelial, and immune cells (Kruger et al. 2005).  In zebrafish 

angioblast cells, knockdown of Plexin-B2 or its ligand Semaphorin-3E yields delayed 
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sprouting of intersegmental (ISV) angioblast during development (Lamont et al. 2009).  

Knockdown of Plexin-D1 in zebrafish embryos results in an opposite effect of early ISV 

sprouting (Lamont et al. 2009).  In the mouse nervous system, Plxnb2-/- animals show defects 

in neuronal cell homing that result in neural tube closure defects and cerebellum 

disorganization (Friedel et al. 2007).  Plexin-D1 is required for endothelial cell patterning 

(Gu et al. 2005) as well as migration of DP thymocytes from the cortex into the medulla 

during thymic maturation (Choi et al. 2008).  Therefore we investigated the ability of Plxnb2-

/- and Plxnd1-/- DCs to migrate towards chemokines that are associated with lymph node 

homing CXCL12 and CCL19 (Takamatsu et al. 2010).  Transwell assays of DCs and 

CXCL12 (Fig. 3.4A), CCL19 (Fig. 3.4B) show that both Plxnb2-/- and Plxnd1-/- DCs migrate 

similarly to wild type.  To further investigate the migration and homing capabilities of DCs 

deficient in Plexin-B2 or Plexin-D1, we visualized macrophages, DCs, and B cells in the 

spleens of Plxnb2-/-, Plxnd1-/-, and wild type reconstituted mice.  In Fig. 3.4C, we found that 

CD11b+ macrophages, CD11c+ DCs, and B220+ B cells were present in similar architecture 

in Plxnb2-/-, Plxnd1-/-, and wild type spleens.  Our data show that Plexin-B2 and Plexin-D1 

do not affect migration towards lymph node homing cytokines or architecture of DCs, 

macrophages, or B cells to the spleen. 

 

Plxnb2-/- and Plxnd1-/- DCs are negative regulators of IL-12/IL-23p40. 

To further assess development of Plxnb2-/- and Plxnd1-/- DCs, we stimulated BMDCs 

from Plxnb2-/-, Plxnd1-/-, and wild type animals with LPS.  We determined expression of co-

stimulatory molecules on the surface of DCs.  Surface levels of CD40, CD80, CD86, and I-
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Ab were equivalent between wild type, Plxnb2-/- and Plxnd1-/- mice at both the basal level 

and post activation.   

To characterize DC activation we performed ELISAs of the common cytokines that 

are associated with DC function including IL-6, TNFα, and IL-12/IL-23p40.  Supernatants 

were collected from treatment of DC cultures that were treated with LPS, P3C, and anti-

CD40.  As shown in Figure 3.5A, we determined that levels of IL-6 and TNFα that were 

released in the culture supernatants were equivalent between Plxnb2-/-, Plxnd1-/-, and wild 

type DCs.  However, we observed that levels of IL-12/IL-23p40 were higher in both Plxnb2-/- 

and Plxnd1-/- DCs compared to wild type levels in CD40L stimulated, LPS treated, or 

unstimulated DCs.  

Taken together, these data suggest that despite expression of Plexin-B2 and Plexin-

D1 by the DC population and their upregulation post activation, these proteins are not 

required for expression of costimulatory molecules on the surface of DCs post activation or 

for production of IL-6 and TNFα.  Instead, Plexin-B2 and Plexin-D1 are required for the 

negative regulation of IL-12/IL-23p40 by DCs. 

 

DISCUSSION  

In this study, we characterize the expression of Plexin-B2, Plexin-D1, and 

Semaphorin-3E in various immune cell types.  We report that Plexin-B2 is expressed early in 

development of BMDCs, decreases, and then increases at maturation and with treatment of 

TNFα or LPS but not TLR ligands.  Plexin-B2 is highly expressed by pDCs. The bi-modal 

expression pattern in cDCs and high expression in pDCs of Plexin-B2 is opposite that of 

Plexin-D1.  Plexin-D1 expression increases in myeloid DCs throughout maturation, and is 
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not expressed on pDCs.  Expression of Plexin-D1 by myeloid DCs is increased when these 

cells are activated in the presence of TLR agonists.  Expression studies of a ligand for Plexin-

B2 and Plexin-D1, Semaphorin-3E, revealed that Semaphorin-3E is highly expressed by 

Th2-type T cells and DCs.  Based on differential expression of Plexin-B2 and Plexin-D1 on 

DCs and previous studies demonstrating a role for Plexin-D1 in thymocyte development 

(Choi et al. 2008), we hypothesized that absence of Plexin-B2 and/or Plexin-D1 would lead 

to abnormal T cell-DC interactions.  

Although a role for Plexin-D1 in the thymocyte migration has been previously 

reported, these studies do not address the role of Plexin-D1 in T cell activation during 

immune responses (Choi et al. 2008).  Studies of other plexins have demonstrated that 

plexins can have a profound impact on T cell-DC interactions.  For example, Plexin-A1 

deficient DCs result in an 85% reduction of T cell proliferation in response to antigen both 

in-vitro and in-vivo (Wong et al. 2003; O'Connor et al. 2008).  Our analysis of Plxnb2-/- and 

Plxnd1-/- mice did not reveal a role for Plexin-B2 or Plexin-D1 in antigen uptake by DCs or 

transgenic T cell proliferation in response to antigen.  These findings suggest that while other 

plexins are required for T cell proliferation, Plexin-B2 and Plexin-D1 likely participate in 

other functions of DCs. 

Plexins and semaphorins mediate cell migration in the immune system.  Plexin-C1 is 

expressed on DCs and facilitates inhibition of chemokine induced migration when bound to 

ligand (Walzer et al. 2005).  Plexin-A1 is required for transmigration of DCs across 

lymphatic endothelial cells yet is dispensable for chemokine induced migration in-vitro 

(Takamatsu et al. 2010).  DCs migrate towards the lymph node homing chemokines CXCL12 

and CCL19 upon maturation.  Our studies show that Plexin-B2 and Plexin-D1 do not play a 
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role in migration towards lymph node homing cytokines.  We also show that in steady state 

DC cell number and pattern in the spleen are similar between Plxnb2-/-, Plxnd1-/-, and wild 

type.  DCs are very dynamic in their migration patterns throughout maturation and activation 

in-vivo, and this cannot necessarily be mimicked in-vitro.  Future studies should address a 

role for migration of Plexin-B2 and Plexin-D1 in-vivo.  Studies in-vivo may reveal that 

Plexin-B2 and Plexin-D1 are involved in migration under specific conditions such as 

activation by pathogen or in specific immune environments. 

To further investigate the roles of Plexin-B2 and Plexin-D1 in DC activation, we 

assayed cell surface markers and cytokine production by Plxnb2-/- and Plxnd1-/- DCs.  Our 

data show that Plexin-B2 and Plexin-D1 are not required for upregulation of activation 

markers CD40, CD80, CD86, or I-Ab in response to LPS induced activation.  However, in 

untreated conditions and in response to LPS both Plxnb2-/- and Plxnd1-/- DCs show increased 

levels of IL-12/IL-23p40.  Levels of TNFα and IL-6 are not affected by Plexin-B2 or Plexin-

D1, revealing that this effect is specific for IL-12/IL-23p40.  Future studies should address if 

both IL-12 and IL-23, which share the common p40 subunit, are affected by both Plexin-B2 

and Plexin-D1.  Downstream physiological consequences of overproduction of IL-12/23p40 

in Plxnb2-/- and Plxnd1-/- mice, including Th skewing, response to pathogen, and potential 

pathways that mediate this effect should be assessed.   

In summary, our studies reveal that Plexin-B2 and Plexin-D1 are differentially 

expressed in DCs, yet both mediate negative regulation of IL-12/IL-23p40.  These findings 

suggest crosstalk between the signaling pathways of Plexin-B2 and Plexin-D1 in DCs, 

similar to that previously reported in zebrafish angioblast (Lamont et al. 2009).  The data 

suggest Plexin-B2 and Plexin-D1 function at different times of development of the DC and 



 76 

may also function in different environments or under different cellular conditions.  The 

differential expression of Plexin-B2 and Plexin-D1 demonstrate that control of cell processes 

by plexins may be determined by their expression. 

 

MATERIALS AND METHODS  

Mice  

C57BL/6 and congenic C57BL/6 CD45.1 mice were obtained from the National Cancer 

Institute (Boston, MA).  Plxnd1+/- mice were a gift from Dr. Thomas Jessell’s laboratory and 

have been described (Gu et al. 2005).  Plxnb2+/- mice were a gift from Dr. M. Tessier-

Lavigne and have been described (Friedel et al. 2007).  Plxnb2+/- and Plxnd1+/- mice were 

backcrossed in house at least 10 generations.  OT-II mice (B6.Cg.Tg(TcraTcrb)425Cbn/J), 

specific for the ovalbumin residue 323-339, were obtained from the Jackson Laboratory (Bar 

Harbor, ME).  Mice were housed in a pathogen-free barrier facility at University of North 

Carolina.  These studies were approved by the University of North Carolina Animal Care and 

Use Committee.  For fetal liver chimeras Plxnd1+/- or Plxnb2+/- mice were crossed for over 

10 generations with C57BL/6 mice and intercrossed to obtain -/- and +/+ embryos.  Fetal livers 

were prepared from E14 embryos post PCR genotyping as previously described (Gu, 

Yoshida et al. 2005).  Fetal liver cells were injected (iv) into lethally irradiated C57BL/6 

CD45.1 mice.  Mice were analyzed 6-10 weeks post reconstitution.  Mice were allowed to 

reconstitute for 6-8 weeks before use.   

 

ELISA 

Splenic DCs were isolated from wild type, Plxnb2-/- and Plxnd1-/- animals and were 
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stimulated for 24 hours in the presence Pam3Cys or LPS.  The culture supernatants were 

tested for IL6, TNFα, and IL-12/IL-23p40 cytokine levels by ELISA (Ebioscience, San 

Diego, CA).  

 

Antibodies and FACS 

Monoclonal Abs included: B220 (RA3-6B2), CD23 (B3B4) and APC-Alexa750-conjugated 

streptavidin from BD Pharmingen (San Diego, CA); CD45.2 (104), CD4 (L3T4), CD8 (Ly-

2), IFNgXMG1.2), IL2 (JES6-5H4), IL4 (11B11), CD3 (145-2C11), CD28 (37.51), CD62L 

(MEL-14), GL7 (Ly-77), CD11b (M1/70), CD11c (N418), CD21 (eBio8D9) and TCRβ 

(H57-597) from eBioscience (San Diego, CA).  Secondary antibodies included anti-FITC-

Alexa488 and Alexa405-conjugated streptavidin from Invitrogen (Carlsbad, California).  

Single cell suspensions of different tissues were counted and 106 cells were suspended in 

FACS buffer (1xPBS plus 2% FBS) and stained with various antibody combinations.  All 

flow cytometry was performed on a FACSCalibur and analyzed with FlowJo software (Tree 

Star).  

 

RT-PCR and Quantitative RT-PCR analysis  

RNA was isolated from tissues or sorted resting T cell populations (CD62Lhi CD4+ T cells, 

CD62LhiCD8+ T cells) as well as Th0, Th1 and Th2 cells using a Qiagen RNA extraction kit.  

cDNA was synthesized using SuperScript III reverse transcriptase (Invitrogen).  Primers used 

for RT-PCR and real-time PCR analysis were: HPRT, 5’-GCTGGTGAAAAGGACCTCT-3’, 

5’-CACAGGACTAGAACA CCTGC-3’; Plxnb2 5’- CTAGACATCCCTGAGTCACG-3’, 

5’- AGTCAGCAGTGATGCAAAGT-3’; Plxnd1, 5’-CCTGGGTCACCTCTGTGTTT-3’, 5’-
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TATCTGTCAGGCAGGGGTTC-3’; and Semaphorin3E, 5’-

AGGCCCTGAATACCACTGGTC-3’, 5’-GGTTCCTGTGCCAGCAAAGT-3’.  

Quantitative real-time PCR was performed using SYBR Green reagent in a BIORAD 

iCycler.  

 

Cell culture  

T cell activation: Th1 vs. Th2 skewing was conducted as follows. Sorted CD62Lhi CD4+ 

naive splenic T cells (2x106 cells/ml) were cultured for 3 days with immobilized anti-CD3 

(5mg/ml) and anti-CD28 (5mg/ml) in the presence of anti-IL4 (10mg/ml) and IL-12 

(10ng/ml) (Th1-skewing conditions) or in the presence of anti-IFNγ (10mg/ml) and IL-4 

(10ng/ml) (Th2-skewing conditions.  DC culture: Murine bone marrow DCs were isolated 

from wild type, Plxnb2-/-, or Plxnd1-/- mice and were cultured in the presence of GM-CSF 

and IL-4 as previously described (van Deventer et al. 2002).  T cell culture: T cells from OT-

II mice and purified by negative selection (STEMCELL). DC:T cell co-cultures: DCs were 

harvested at day 10 and pulsed overnight with 50mg/ml OVA (Sigma-Aldrich).  200,000 

DCs were then washed and cultured in a 1:10 ratio with T cells from OT-II transgenic T cells 

in 6 well plates.  

 

Histology  

Spleens of naïve Plxnb2-/- and Plxnd1-/- mice were embedded in OCT compound, snap 

frozen, and stored at -80°C.  5 mm sections were prepared and fixed with 1:1 

Acetone:Methanol for 10 min at -20°C and labeled with various combinations of 

fluorescently labeled CD11b, CD11c, TCRb and B220 mAb.  FITC signal was amplified 
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using anti-FITC-Alexa488 mAb.  Streptavidin-AlexaFluor405 was used to amplify B220-

biotin signal (blue). Images were acquired using a Zeiss LSM 710 confocal 

immunofluorescent microscope. 

 

Statistical analysis  

Statistical significance was determined with two-tailed Student’s t test or analysis of variance 

(ANOVA).  All p values less than 0.05 were considered significant.  
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Figure 3.1 
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Figure 3.1.  Plexin-B2, Plexin-D1, and Semaphorin-3E expression.   

(A) Expression of Plxnb2 in splenic DCs, BMDCs at day 6 (D6) and day 10 (D10), D10 post 

16 hour activation by TLR ligands P3C (1 ug/ml), (LPS (1 ug/ml), CpG (4 ug/ml), TNF (20 

ng/ml), CD40L (1 ug/ml), and plasmacytoid DCs (pDCs) as measured by real-time PCR. 

Data are representative of three independent experiments.  (B) Expression of PlxnB2 in BM-

derived pDCs and cDCs at D3, D6, and D10.  Green lines indicate IgG control antibody 

staining, red histograms are Plxnb2 antibody staining.  (C) Expression of Plxnd1 in sDCs, 

BM-derived DCs D6, D10, post activation, and pDC as measured by real-time PCR.  (D) 

Expression of Sema3E in sorted naïve and activated T cell and B cell populations, and DCs.  

Data are representative of 3 independent experiments.  
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Figure 3.2 



 83 

Figure 3.2.  Schematic of fetal liver transplant. 

Plxnb2+/- or Plxnd1+/- mice are crossed and fetal livers of wild type or Plxnb2-/- or Plxnd1-/- 

embryos are harvested at day 14 of gestation.  Fetal liver cells are harvested by 

homgenization.  2 x 106 fetal liver cells are then transplanted into lethally irradiated congenic 

CD45.1+ mice by tail vein injection.  Animals reconstitute the immune system with donor 

cells for six to eight weeks post transplant. 
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Figure 3.3 
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Figure 3.3.  Plxnb2-/- and Plxnd1-/- DCs efficiently stimulate antigen specific T cells.  

(A) OVA uptake for Plxnb2-/-, Plxnd1-/-, and wild type DCs.  DCs were isolated from spleens 

of mice reconstituted with Plxnb2-/-, Plxnd1-/-, and wild type fetal liver cells and cultured in 

the presence of OVA-FITC for 2 hours. OVA uptake was assessed by flow cytometry. Data 

are representative of 2 independent experiments. n=6 mice per group. (B) DCs were isolated 

from spleens of mice reconstituted with Plxnb2-/-, Plxnd1-/-, and wild type fetal liver cells.  

DCs were then co-cultured with OTII-specific T cells in the presence of OVA and T cell 

proliferation was assessed by CFSE dilution 72 hours later using flow cytometry.  Data are 

representative of 3 independent experiments.  n=9 mice per group. 
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Figure 3.4 
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Figure 3.4.  Plxnb2-/- and Plxnd1-/- DCs migrate similarly to WT control towards 

chemokine gradients.   

(A) Purified wildtype (black bar), Plxnb2-/- (grey bar), and Plxnd1-/- (open bar) DCs were 

placed in upper wells and subjected to in-vitro migration assays in the presence of medium 

alone, CXCL12 and CCL19.  Migrated cells were quantified by toxilight (Lonza, Basel, 

Switzerland) according to the manufacturers instructions and normalized to a standard curve 

n=6-7 mice per group.  (B) Five mm sections of spleens from wildtype, Plxnb2-/- and Plxnd1-

/- mice were labeled with B220-AF350 (blue), CD11b-PE (red) and CD11c-FITC (green).  

FITC signal was amplified using anti-FITC-AF488.  Images were acquired using a Zeiss 

Axiovert 200M confocal immunofluorescent microscope.  n=3 mice per group. 
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Figure 3.5 
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Figure 3.5.  Plxnb2-/- and Plxnd1-/- DCs overproduce IL-12/IL-23p40.  

(A) Plxnb2-/- and Plxnd1-/- DCs are able to upregulate cell surface receptors.  DCs were 

derived in the presence of GM-CSF and IL4 from the bone marrow of mice reconstituted 

with Plxnb2-/-, Plxnd1-/-, and wild type fetal liver cells.  DCs were then cultured in the 

presence of LPS and cell surface receptor expression was assessed 24 hours later using flow 

cytometry.  Data are representative of 3 independent experiments. n=6 mice per group.  (B) 

Plxnb2-/- and Plxnd1-/- DCs are able to produce inflammatory cytokines in response to TLR 

stimuli and anti-CD40.  DCs were cultured in the presence of LPS and anti-CD40 for 24 

hours.  Culture supernatants were assessed for cytokine production by ELISA.  Data are 

representative of 3 independent experiments.  n=3 - 4 mice per group. 

 



 
 
 
 
Chapter 4: Conclusions and Future Directions 

 

Plexin-B2 Expression in the Immune System 

 Data in Chapters 2 and 3 show that Plexin-B2 is expressed in macrophages, cDCs, 

and pDCs.  This is the first report of Plexin-B2 expression in defined populations of the 

innate immune system.  Our data show that Plexin-B2 is highly expressed on both peritoneal 

and bone marrow-derived macrophages yet its expression is not modulated by stimulation 

with TLR agonist to activate the macrophages.  This expression pattern suggests that Plexin-

B2 is active throughout the life cycle of the dendritic cell and may mediate functions during 

quiescence as well as cellular activation.  Macrophages also express Plexins-A1- A3 (Ji et al. 

2009).  In contrast to Plexin-B2, the expression level of Plexins-A1-A3 increases throughout 

M-CSF stimulated maturation.  M-CSF stimulated maturation yields an M2, alternatively 

activated, less inflammatory type of macrophage.  The increase in Plexin-A1-A3 expression 

suggests function during M-CSF maturation that might be less inflammatory and more 

related to the modulation of adaptive immunity.  As an example, Plexin-A1 expression is 

reduced upon activation of macrophages with LPS, which results in a more inflammatory, 

classically activated M1 type of macrophage (Judas et al. 2003; Ji et al. 2009).  We and 

others have indeed confirmed that a major function of Plexin-A1 is in T cell activation. This 

expression pattern is in contrast to Plexin-A4, which is high on both immature and M-CSF 

matured macrophages, suggesting a more constant level of function (Ji et al. 2009) .  Thus, 

modulation of plexin expression in macrophages may serve as a method of regulating plexin 

signaling throughout cell maturation and activation.  Studies of Plexin-B2 should compare its 
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expression pattern in macrophages to an exhaustive study of expression of other plexins in 

macrophages throughout maturation and activation.  This data would yield a more complete 

understanding of plexins that are active at specific stages in macrophage maturation, 

polarization, or activation state.  Additional studies addressing the expression of plexins in 

macrophages from different sites in the body and during conditions such as tumorgenesis, 

angiogenesis, and immune response may also provide important clues as to the function of 

plexins in macrophages. 

 In contrast to macrophages, Plexin-B2 expression is modulated throughout the life 

cycle of the BM-derived cDC.  In cDCs derived from cultures of bone marrow with GM-CSF 

and IL-4, Plexin-B2 is expressed in a bi-phasic fashion.  It is expressed early in maturation, is 

reduced at mid-maturation, and then is slightly upregulated at maturation.  In pDCs derived 

from FLT3L supplemented bone marrow cultures, expression of Plexin-B2 is upregulated in 

the early stages of maturation and continues to remain at high levels throughout maturation.  

The pDC is most similar to macrophages in expression pattern in that Plexin-B2 expression 

remains unabated with maturation.  These data suggest that Plexin-B2 might be functionally 

active during the lifespan of macrophages and pDCs, but its function might be more specific 

to the early and late maturation stages of cDC.  However, in ex-vivo splenic cDCs, Plexin-B2 

is more highly expressed, suggesting that culture conditions may alter plexin expression in 

cells, and this must be carefully considered during experimental design. 

  Plexin-A1 is one of the better studied plexins in the immune system.  It is expressed 

on cDCs and is modulated throughout maturation.  Plexin-A1 levels are very low at the early 

and mid stages of maturation, and quickly spike at later stages and with TNFα (Wong et al. 

2003).  Plexin-A1 is not expressed in macrophages (Wong et al. 2003) nor pDCs (Eun, 
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unpublished observation), suggesting a cDC specific function.  Intriguingly, one of the 

ligands for Plexin-A1, Sema6D, does not appear on T cells until the later stages of cell 

proliferation that occurs in response to antigen presentation by the DC (O'Connor et al. 

2008).  Without Plexin-A1 T cell proliferation is stopped at late stage (O'Connor et al. 2008).  

Plexin-A1 is also required for entry of DCs into the lymphatic system through another ligand, 

Sema3A (Takamatsu et al. 2010).  This example highlights how timing of expression of both 

plexins and their ligands are critical in controlling their signaling responses. 

 

Plexin-B2 in Immune System Development 

 Plexins and their ligands are important in development of the nervous and vascular 

systems.  For example, Plexin-A2 and its ligand Nueropilin-2 mediate cell migration and cell 

homing during development at the interface of the peripheral and central nervous system 

(Chauvet et al. 2008).  Deficiency of Plexin-D1 or its vascular system ligand Semaphorin-3A 

result in embryonic lethality in the mouse due to defects in vascular patterning (Gitler et al. 

2004; Gu et al. 2005).  Plexin-B2 is critical during embryogenesis in the nervous system 

(Friedel et al. 2007).  Plxnb2-/- mice display severe neural tube closure defects that result in 

exencephaly and embryonic lethality (Friedel et al. 2007; Hirschberg et al. 2010).  The 

defects in neural tube closure are attributed to defects in cell migration and homing (Friedel 

et al. 2007).  Based on the expression of Plexin-B2 on innate immune cells, we hypothesized 

that Plexin-B2 may have an effect on immune system development.   

To study the formation of the immune system in embryonic lethal mice, we created 

fetal liver chimeric mice from wild type and Plxnb2-/- fetal livers.  As discussed in Chapter 2, 

the immune system of Plxnb2-/- mice is reconstituted normally in both the splenic and bone 
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marrow compartments.  Fetal liver transplants into Ly5.2+ mice reveal that percent of B220+ 

B cells, CD11c+ cDCs, PDCA-1+ / B220+ pDCs, and F4/80+ macrophages found in spleen are 

equivalent between wild type and Plxnb2-/- reconstituted mice.  T cell and NK cell 

development is normal, as TCR+CD4+, TCR+CD8+, NK1.1+CD4+ NKT cells, and NK1.1+ 

cell percentages are equivalent. The data in Chapter 3 show that the architecture of 

macrophages, dendritic cells, and B cells of Plxnb2-/- spleens are normal compared to wild 

type.  The finding that immune system development and homing are normal in the Plxnb2-/- 

mouse is surprising, given the extreme defects found in the nervous system of these mice.  It 

is possible that non-immune expression of Plexin-B2 in the recipient mouse is enough to 

mask any Plexin-B2 related defects in immune development and homing.  It is also possible 

that under different conditions of pathologic or beneficial immune activation, such as 

development of autoimmunity, cancer, or immune response to pathogen, a defect in Plxnb2-/- 

immune cell homing or proliferation could be observed.  Future Plexin-B2 studies should 

address more functional aspects of DCs and macrophages, as well as immune system 

development in response to stimulation and pathogens. 

 

Small GTPases and Plexin-B2 

As described in Chapter 2, Plexin-B2 is a negative regulator of the GTPases, Rac and 

Cdc42, but not Rho in macrophages.  Extensive studies of the closely related Plexin-B1 have 

demonstrated that Plexin-B1 is a critical regulator of not only Rac and Rho, but also M-Ras 

and R-Ras GTPases (Driessens et al. 2002; Vikis et al. 2002; Oinuma et al. 2004; Saito et al. 

2009).  Plexin-B1 regulation of Rho has also been shown to require Rnd1 GTPase (Oinuma 

et al. 2003).  The functional outcome of the Plexin-B1 regulation of the Rho family of 
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GTPases is very finely regulated modulation of the actin cytoskeleton and cell motility.  

Other plexins have also been found to mediate Rho family GTPase signaling.  Plexin-A1 

modulates antigen specific T cell proliferation through interaction with Rho but not Rac or 

Cdc42 (Eun et al. 2006).  Both Plexin-D1 and Plexin-C1 function as R-Ras GAPs to inhibit 

migration, but differ in their requirement for Rnd2 to mediate this function (Uesugi et al. 

2009).  Both plexins serve similar functions yet are regulated in this function by Rnd2, 

allowing for very finely controlled regulation of R-Ras. 

 Obvious questions regarding the function of Plexin-B2 in regulation of small 

GTPases can be raised.  Does Plexin-B2 regulate M-Ras and R-Ras similar to Plexin-B1?  

Does Plexin-B2 regulation of R-Ras require Rnd1 or Rnd2, and what are the downstream 

consequences?  What differentiates Plexin-B2 signaling from Plexin-B1 signaling?  Studies 

should examine other macrophage plexins and their influence on Rho family GTPases.  It is 

possible that plexins interact with each other and/or with ligand to regulate RhoGTPase 

signaling?  Studies have shown that Plexin-A1 and Plexin-B1 interact in their cytoplasmic 

domains, and are thought to cooperate in signaling (Usui et al. 2003).  In zebrafish embryos 

the signaling pathways of Plexin-B2 and Plexin-D1 antagonize each other to control 

sprouting behavior of angioblast (Lamont et al. 2009).  A complete understanding of how 

plexins as a group mediate cell movement, response to pathogen, proliferation, or survival 

cannot be ascertained by studying plexins individually.  Studies of plexins as a family will 

provide a more complete understanding of the intricacies of plexin signaling. 

 

Plexin-B2 and its Effects on Phagocytosis 
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In macrophages, FcRγ mediated phagocytosis requires Rac and Cdc42 (Cox et al. 

1997).  Data in Chapter 2 shows that Plxnb2-/- macrophages have more active Cdc42 and Rac 

in steady state than wild type.  We hypothesized that Plexin-B2 may play a role in uptake of 

opsonized T cells, E. coli, or latex beads.  However out data show that macrophages are not 

defective in their uptake of Ig-coated T cells, E. coli, or latex beads, suggesting that Plexin-

B2 does not regulate signaling that occurs during Fc-mediated phagocytosis.  These data 

demonstrate that Plexin-B1 control of Rac is very specific.  It is possible that FcγR signaling, 

while dependant on Rac and Cdc42, functions independently of Plexin-B2 regulation of Rac 

signaling.  Thus the two pathways may converge at Rac but not influence each other.  These 

questions could be answered by examining how Plexin-B2 affects RacGTP levels during the 

phagocytic process.  These results may show that Plexin-B2 regulation of Rac and Cdc42 

functions independently of FcγR mediated modulation of Rac.  Studies of Sema3A, which 

has been shown to inhibit actin cytoskeleton reorganization, does not affect phagocytosis in 

macrophages (Dent et al. 2004; Ji et al. 2009).  However, Plexin-C1 has been shown to 

inhibit phagocytosis upon binding to its viral ligand Poxvirus A39R (Walzer et al. 2005).  It 

is possible that because there is more already more active Cdc42 and Rac in Plxnb2-/- cells, 

and phagocytosis also induces activation of Rac and Cdc42, that additive active Rac and 

Cdc42 do not result in additional phagocytosis (Beemiller et al. 2010). 

 

Plexin-B2 and Cytokine Secretion 

The plexin family has been implicated in control cytokine secretion in the immune 

system.  Plexin-A1 regulates Type I IFN-α through association with PDC-TREM in pDCs 

(Watarai et al. 2008).  Sema4D deficient DCs are unable to produce IL-12 compared to wild 



 96 

type DCs (Kumanogoh et al. 2002).  Sema7A induces inflammatory cytokine production in 

macrophages through its integrin receptor α1β1 (Suzuki et al. 2007).  We hypothesized that 

Plexin-B2 may also regulate cytokine secretion in DCs and macrophages.  Data in Chapter 2 

shows that Plxnb2-/- macrophages secrete normal amounts of IL-6 and TNFα in response to 

TLR ligands Poly(I:C), LPS, and R837.  Data presented in Chapter 3 shows that Plxnb2-/- ex-

vivo dendritic cells secrete normal amounts of IL-6 and TNFα in response to LPS and anti-

CD40 antibody, but are overactive in their response to IL-12/IL-23p40 both without 

stimulation and in response to LPS.  

IL-12/IL-23p40 subunit contributes to the active forms of both IL-12 and IL-23, or 

can exist as a homodimer or monomer.  The IL-12 pathways leads to a Th1 response, while 

the IL-23 pathway leads to induction of Th17 cells (reviewed in Gee et al. 2009).  

Intriguingly, the IL-12/IL-23p40 subunit has been shown to exist in-vivo as a monomer or 

dimer of itself and is present in excess of IL-12 or IL-23, and is suggested to function as a 

negative regulator if IL-23 and/or IL-12 signaling (reviewed in Cooper et al. 2007).  The 

monomer form of IL-12p40 is required for dendritic cell migration in response to 

Mycobacterium tuberculosis infection (Khader et al. 2006).  Determining the exact form of 

IL-12/IL-23p40 protein(s) that are negatively regulated by Plexin-B2 and Plexin-D1 is a 

critical next step in understanding this finding and its immune consequence. 

 These data in the context of data from the field demonstrate that plexin control of 

cytokine secretion is very specific.  Plexins may couple environmental and attachment cues 

to inflammatory conditions so that cells respond only when in the correct location or in 

contact with the correct cells. 
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Plexin-B2 and Migration 

Chapter 2 demonstrates the Plexin-B2 negatively regulates macrophage motility but 

not directed migration.  Most plexins have been shown to mediate migration or motility.  It is 

interesting that many cells express more than one plexin, yet most plexins mediate cell 

movement.  Are different plexins activated at different locations within the body or within 

specific locations on the cell?  Are plexins so important for cell movement that they are 

redundant?  Do different cytokines or cell-cell contacts result in activation of different plexin 

signaling pathways?  These questions are very complex and are not easily addressed by 

individual knockout studies, as simply taking out a gene may induce others or eliminate 

interactions of plexins with each other.  Studies of Plexin-B2 and other plexins that are 

fluorescently labeled and can be observed in real time within the cell, similar to the biosensor 

studies used in the study of RhoGTPases at the leading edge of a cell (Machacek et al. 2009), 

would provide more answers to these complex questions. 

 

Plexin-B2 and Cancer Biology 

Mutations in Plexin-B1 that interfere with its ability to bind and regulate Rac have 

been identified in one study in 89% of percent of human prostate cancer samples with bone 

metastases (Wong et al. 2007).  Plexin-B2 contains many of the same mutation sites as 

Plexin-B1, and may contribute to cancer by a similar mechanism.  Plexin-B2 has been 

identified in the cells of vascular, brain, epithelial, and endocrine systems origin by immuno-

staining of sections of tissue (Friedel et al. 2007; Zielonka et al. 2010)  Thus mutations in 

Plexin-B2 could result in inappropriate regulation of many different cell types that have 

potential of overgrowth within the body.  
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Many other Plexins have been recently linked to cancer.  Overexpression of Sema3E 

increases invasion and metastasis in tumor cells through its receptor Plexin-D1 in complex 

with ErbB2 (Casazza et al. 2010).  Expression of Plexin-B3 and its receptor Sema5A increase 

from normal tissue to lymph node metastases in gastric carcinoma samples (Pan et al. 2009).  

Molecular profiling of melanoma and pancreatic cancer cells show that multiple plexins have 

loss of function mutations that increase progression (Casazza et al. 2010).  These studies 

suggest that Plexins have regulatory roles across broad types of cancers.  Understanding how 

the plexin interactions combine with other mutations in cancer may allow for development of 

drugs targeting the plexins or increased detection of metastatic cells.  Regulating the 

activation state by use of their ligand or other biological mimic is a potential strategy for 

targeting cancer cells and their ability to move or invade. 

 

Plexins and Semaphorins- Future Directions 

One of the most critical questions remaining to be answered is why and if plexin 

proteins function differently depending on the cell type.  Plexins can be tyrosine 

phosphorylated, are found at the cell surface, and can function in conjunction with growth 

factor receptors.  This makes them potential drug targets for the treatment of diseases such as 

cancer and autoimmunity.  However, it is critical to understand how the immune, nervous, 

and other systems mediate responses to plexins and semaphorins.  For example, does Plexin-

A1 function differently in the nervous system due to availability of ligand, expression of co-

receptors, or expression differences of individual plexins or groups of plexins?  B family 

plexins are capable of being cleaved by proprotein convertases in overexpression studies 

(Artigiani et al. 2003), suggesting that Plexin-B2 is capable of both long distance and local 
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signaling.  Alternatively, secreted Plexin-B2 may function to block secreted semaphorin 

ligand(s), such as Sema4D.  Understanding how plexin and semaphorin signaling is 

differentially regulated between different body systems may provide data that would allow 

for creation of drugs that target only plexin or semaphorin signaling in one body system but 

not others.  For example, Semaphorin-3A has been tested as a drug treatment in a rodent 

model of atopic dermatitis, where it was found to reduce disease (Yamaguchi et al. 2008).  

The effects of Semaphorin-3A on the brain were not assessed in this study.  Semaphorin-3A 

has been shown to induce cell death in cortical neurons of adult mice (Jiang et al. 2010), thus 

the side effects of Semaphorin-3A as a drug could be detrimental.  However, if difference in 

signaling components between the two systems could be ascertained, a more targeted drug 

could be created.  Future studies must address the roles of plexins and semaphorins across 

multiple body systems. 
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