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ABSTRACT 

 
 

RODERICK A. ROSE: Teacher Effectiveness and Causal Inference in Observational Studies 
(Under the direction of Christine P. Durrance, PhD) 

 

An important target of education policy is to improve overall teacher effectiveness 

using evidence-based policies. Randomized control trials (RCTs), which randomly assign 

study participants or groups of participants to treatment and control conditions, are not 

always practical or possible and observational studies using rigorous quasi-experimental or 

comparison group methods must frequently be used. Each of the three studies in this 

dissertation studies a facet of teacher effectiveness that can be used to inform policy while 

also contributing to scholarship in the area of causal inference from observational data. First, 

estimating or measuring individual-level teacher effectiveness using student value-added 

requires models that are robust to observational data. Second, teacher participation in a 

teaching intervention does not necessarily imply compliance with the treatment. The factors 

that interfere in compliance are non-random such that understanding the role of the 

hypothesized process in an RCT requires observational methods. Third, if observational 

methods such as propensity score analysis offer credible evidence of causality, they may be 

useful for examining efficacious interventions that are taken to scale in non-random 

settings. These issues place observational designs and methods at the center of efforts to 

study evidence-based teaching and teaching practices.  
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INTRODUCTION 

 
Teacher effects are widely seen by education policy scholars as the most important 

school input to student learning. If this is true, then an important target of education policy 

must be to improve overall teacher effectiveness and ensure an equitable distribution of 

effective teaching, outcomes that can be manipulated through targeted evidence-based policy 

interventions. These policies are labeled evidence-based because rigorous scientific methods 

are used to rule out plausible alternative explanations for observed effects, allowing 

researchers to ascribe causality to the policy. Randomized control trials (RCTs), which 

randomly assign study participants or groups of participants to treatment and control 

conditions, are the most rigorous design for allowing causal inferences and contributing to 

evidence-based policy. However, RCTs are not always practical or possible and 

observational studies using rigorous quasi-experimental or comparison group methods must 

be used. These methods include fixed effects (Allison, 2009), instrumental variable 

estimation (Angrist, Imbens & Rubin, 1996); propensity scores matching and weighting 

(Rosenbaum & Rubin, 1983); regression discontinuity (Imbens & Lemieux, 2009); and 

interrupted time series (Bloom, 2003). The relative merit of observational studies is fairly 

controversial and remains the subject of scholarly work in education and other policy fields 

(see Cook & Steiner, 2009; Pirog, 2009).  

Each of the three studies in this dissertation studies a facet of teacher effectiveness 

that can be used to inform policy while also contributing to scholarship in the area of causal 

inference from observational data where randomization is not practical or possible. First, 
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estimating or measuring individual-level teacher effectiveness, typically obtained using 

models that aggregate student achievement data and attribute these aggregated effects to their 

teachers, requires models that are robust to observational data because teachers are generally 

not assigned randomly to students. Second, if observational methods are used in teaching 

practice intervention studies, as they typically are when there are difficulties in obtaining 

sufficiently large and heterogeneous study samples, they must offer credible evidence of 

causality. Demonstrating the equivalence of experimental and quasi-experimental studies in a 

population subjected to a particular treatment can help this effort. Third, the underlying 

mechanism promoting effectiveness, typically seen as important to developing a base of 

knowledge on effective teaching practices, requires observational methods, even in settings 

where a teaching practice intervention is randomized to groups of teachers such as in an 

RCT. Participating in the intervention does not necessarily imply compliance with the 

treatment and the factors that interfere in compliance are non-random. These issues place 

observational designs and methods at the center of efforts to study evidence-based teaching 

and teaching practices.  

Background and Significance 

The need for rigorous scientific methods to establish evidence-based policy is usually 

inferred to mean randomized experiments. The objective of a social or policy experiment is 

to determine the extent to which a manipulable condition such as a policy causes an intended 

effect, on average, in the target population (Heckman & Smith, 1995). This requires the 

researcher to not only show that an effect has been produced during the study period but that 

other plausible explanations for the effect have been ruled out, which can be onerous 

(Shadish, Cook & Campbell, 2002). An experimental study in which study participants have 
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been randomized to treatment and control conditions simplifies the latter condition because 

participants in the two conditions have a high probability of being similar to each other 

(Shadish, Cook & Campbell, 2002). Randomly assigning members of the sample to each 

condition means that in practice no pretreatment characteristic is taken into account in 

making assignment. In any given experiment, this process can produce chance differences 

between treatment conditions, but over repeated versions of this experiment no characteristic 

would be expected to emerge as significantly imbalanced between the two groups. Because 

of this expectation the treatment effect can be viewed as a simple difference between the 

average effect of those in the treated and non-treated groups as follows (Morgan & Winship, 

2007):  

E[d] = E[��] – E[��] = E[��– ��] with 1 = treated, 0 = control.  

Randomization is widely seen both in the scientific and policy research communities 

as the “gold standard” of research and evaluation. Federal mandates such as No Child Left 

Behind require that for policy to be considered evidence-based randomized experiments are 

preferred (Shadish & Cook, 2009). Education and education policy researchers responded by 

increasing their use of randomized experiments (Constas, 2007). The simplicity by which 

randomization works to promote causality makes it transparent and thus appealing to the 

researcher and policymaker alike, leading to political support for policies based on 

experimental evidence (Balducci & Wandner, 2009; Heckman & Smith, 1995). When 

studying teacher effectiveness, for example, a random assignment of teachers to students 

would make us more confident that typical student learning advantages such as parental 

resources are randomly distributed among teachers, and as a consequence the average end-of-

grade test score for the students taught by each teacher could be interpreted as an indicator of 
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that teacher’s effectiveness (Nye, Konstantopoulos, & Hedges, 2004). When studying the 

effects of a teaching practice treatment, random assignment of teachers to conditions – a 

condition in which they receive the treatment and a condition in which they do not – would 

increase our confidence that the observed difference in average student performance in each 

condition could be interpreted as the effect of the treatment.  

However, the conditions for these types of studies cannot always be met, making 

randomization impractical if not impossible. First, in many settings in which education policy 

researchers conduct their research, there are multiple social or political barriers to conducting 

randomized experiments (Cook, 1999). As I earlier noted, students and teachers are not 

typically randomly assigned to each other (Nye, Konstantopoulos, & Hedges, 2004). The 

actual assignment mechanisms used may be tailored to meet the needs of students or the 

wishes of their families, such as compensatory assignments in which lower-performing 

students are assigned to more effective teachers, or tracking systems in which more effective 

students and teachers are matched to each other. The evidence suggests that observed student 

achievement and teacher effectiveness are positively associated (Clotfelter, Ladd & Vigdor, 

2006). Although researchers have in the past succeeded in convincing schools to randomize 

the assignment mechanism for a short time (the Tennessee STAR study being the most well-

known example; Nye, Hedges, & Konstantopoulos, 1999), in most settings this is not the 

case. Consequently, to estimate teacher effects from aggregate student data and attribute 

those effects to the teacher, which implies a causal relationship between the teacher’s 

effectiveness and the student outcome, methods that are appropriate for causality in 

observational studies must be used.  
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Second, although randomized experiments of teaching practice interventions promote 

causal inference by averaging over pretreatment characteristics of participants in each 

treatment group, they do not guarantee generalizability of study findings over all target 

populations, particularly when conducted on small homogeneous populations (Shadish, Cook 

& Campbell, 2002). Finally, many in-school intervention studies require that entire 

classrooms or schools rather than their constituent members be assigned to treatment 

conditions. These studies, known as a cluster randomized trials, increase the burden on the 

researcher to satisfy the minimum effective sample size for a given level of statistical power, 

and ultimately leads to a higher cost of conducting in-school research and a higher risk that a 

study will be under-powered (Hedges & Hedberg, n.d.; Schochet, 2005). These three 

conditions often co-exist in randomized experiments conducted in schools due to the 

challenges faced by researchers in having schools or their gatekeepers at the district level 

agree to participate in a study design that calls for post-recruitment randomization into 

treatment conditions, resulting in fewer and more selective volunteer districts. Non-random 

study samples of more dispersed volunteer participants may present opportunities to address 

the problems of homogeneity and power.  

Finally, it is often the case that direct manipulation of the construct of interest through 

randomization is not possible. For example, although a packaged treatment can be randomly 

assigned to schools or teachers enabling a straightforward causal inference of the effects of 

this treatment, the processes that the treatment as designed is theorized to promote cannot 

themselves be randomized and may be subjected to multiple nonrandom factors at the 

district, school, teacher, and classroom levels (Schochet & Chiang, 2009). In the case of a 

typical teaching practice intervention, the objective of the intervention is to change teachers’ 
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practices to those that are consistent with theory or evidence about practices that better 

facilitate student learning. Imperfect compliance with the recommendations of the treatment 

implies that non-random factors effectively mediate the relationship between the treatment 

and compliance. This manifests as teachers’ varying usage of the instruments of the treatment 

and as variability in the proximal teacher outcomes the treatment is intended to promote (e.g., 

Rose et al., 2012). Although the treatment itself can be randomized, and questions about the 

effect of the treatment (often labeled “intent to treat”) inferred as causal, these mediating 

processes (often labeled “treatment on treated”) cannot be randomized and must be treated as 

observational.  

In all three of these scenarios a robust causal framework helps to clarify the specific 

challenges that education policy researchers face when randomization is not possible or 

practical, including in settings where teaching effectiveness or teaching practice is being 

studied. A number of causal frameworks are available. This includes the Campbell causal 

model which has enjoyed a long history in social research (Shadish, Cook & Campbell, 

2002), and which is based on an enumeration of the challenges to the internal validity of the 

causal inference of parameter estimates (Shadish, 2010). The second is the Rubin Causal 

model, which is a causal framework based on a rigorous statistical model and several key 

assumptions (Holland, 1986). The third is the Pearl causal model (Pearl, 2000), which is 

approach largely based on directed acyclic graphs. To be consistent with most of the 

contemporary policy analysis literature, I rely on the Rubin causal model framework, 

assumptions and terminology.  
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Rubin Causal Model 

In the Rubin causal model (RCM), also known as the potential outcomes model, the 

definition of the causal estimand for a treatment (a teacher or a teaching practice 

intervention) depends on the conditions that are experienced in the absence of the specified 

cause, known as the counterfactual. Formally, assume that the outcome for student � (with I = 

1,…N) under treatment condition � is ���, with J possible treatments. In many research 

settings, such as a typical intervention evaluation, this is dichotomous, with � = 1 for the 

treated and � = 0 for the control, while in others, such as when examining teacher 

effectiveness, this may be a many-valued treatment with the potential outcomes represented 

by a matrix of N students by J teachers (Reardon & Raudenbush, 2009; Morgan & Winship, 

2007). Second, the student has one potential outcome ��� under each possible treatment. At 

most one of these potential outcomes can be realized, as each student can only be assigned to 

one condition (the fundamental problem of causal inference; Holland, 1986). Consequently, 

the treatment effect is defined as a function of the distributions of students assigned to 

treatment � and the students under the other condition or conditions, usually the average 

treatment effect for treatment j (�	
�), comprised of the difference between students 

observed under assignment to treatment � and those assigned to the other conditions.  

The assumptions of the RCM highlight the primary benefit from randomization, and 

help to illustrate that although randomization is seen as the gold standard, it is certainly not 

perfect. In its most general form, the RCM requires the following assumptions for the �	
� 

to be inferred as a causal effect: (1) each student has a potential outcome under each 

treatment condition in the population (manipulability); (2) the potential outcome under each 

condition is independent of the assignment of other participants (the stable unit treatment 
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value or SUTVA assumption); and (3) unconfounded (also known as ignorable or 

exogenous) assignment to treatment conditions, which implies that participants’ assignment 

to treatment is not associated with the expectation of their outcome under treatment (Morgan 

& Winship, 2007). The RCM clarifies that the process of randomization, which provides that 

knowing a participant’s treatment assignment offers no information about that participant’s 

potential outcome in any condition, primarily addresses the unconfoundedness assumption 

(Shadish, Cook & Campbell, 2002). Randomization also makes manipulability a plausible 

assumption, as the assignment of participants to each treatment condition is under the control 

of the researcher. However, randomization does not address SUTVA. Yet SUTVA can be 

violated in any setting in which participants interact with each other under each treatment 

condition, making it difficult to ascertain what part of an observed effect is due to the 

treatment and which part may be due to the grouping-dependent interaction. SUTVA, 

although plausibly violated in many randomized experiments, must simply be assumed. 

In observational settings, all three of these assumptions come into question. 

Manipulability may not be observed in practice. In the study of teacher effectiveness, for 

example, it may be difficult to support the assumption that students can be assigned to any 

teacher in any school, as students from disadvantaged backgrounds tend to be educated in 

poorer schools. Observational studies, like RCTs, make no claims to the plausibility of 

SUTVA. Finally, the RCM clarifies that the plausibility of a causal estimate from an 

observational study depends on the extent to which proper observational methods 

approximate the unconfounded treatment assignment of a randomized design in the 

population. In fact, methods that rely strictly on a rich set of covariates may be sufficient 

provided they meet the requirement for unconfoundedness.  
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Proposed Studies 

In this dissertation, I undertook three studies that contribute to the education policy 

research literature. These studies (1) help to reveal an important confounding issue in the 

estimation of teacher effectiveness, (2) help to validate the logic model and reveal the 

processes operating in an evidence-based teaching practice intervention, and (3) replicated 

the findings of an RCT of this teaching practice intervention using observational methods. 

Each study also makes a unique contribution to the education policy literature regarding 

causal inference from observational study designs.  

Chapter 1. The first chapter examines questions related to the estimation of value 

added models (VAMs) for estimating teacher effectiveness for evaluating teachers, in the 

presence of confounding effects from non-random assignment of students and teachers to 

classrooms and from student-student and student-teacher interactions. These factors violate 

the SUTVA and unconfoundedness assumptions of the RCM (Rubin, Stuart & Zanutto, 

2004). This study uses simulated data to understand the extent to which the classroom and 

peer effects bias teacher estimates when no explicit controls for these effects are included and 

whether certain VAMs are better than others at minimizing this bias, and to determine if 

there are methods that can be used to adjust for the peer and classroom effects. This study 

contributes to the body of work on teacher effect estimation for research and teacher 

evaluation systems, demonstrating the challenges that must be overcome to use VAMs in 

teacher evaluation systems, and suggests approaches that make best use of the limited and 

imperfect information that VAMs provide (Henry, Rose & Lauen, under review; Amrein-

Beardsley, 2008; Gordon et al., 2006).  
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Chapter 2. The second chapter examines the logic model of a teaching practice 

intervention, CareerStart, to determine whether career relevant instruction (CRI), the use of 

career examples by teachers to associate lesson content and school tasks with something of 

value to students – their futures, and in particular, the types of careers they might be likely to 

have – promotes higher student engagement and achievement. Demonstrating such an effect 

would provide strong evidence for the final leg of the logic model that supports that 

CareerStart promotes higher use of career examples by teachers (in math; Rose et al., 2012), 

and higher student valuing of school (emotional engagement; Orthner et al., in press) and 

math achievement (Woolley et al., under review). In this study I use non-random methods to 

show that CRI promotes student valuing of school. Because CRI could not itself be randomly 

assigned, because it is subjected to non-compliance due to non-random factors at the district, 

school or principal, teacher, and classroom levels, the observed estimate of a unit of CRI 

cannot generally be interpreted as a causal estimate. Consequently, an instrumental variable 

framework known as local average treatment effects (Angrist, Imbens & Rubin, 1996) in 

which the assignment to CareerStart was used as the instrument for CRI was used. This study 

not only contributes to the investigation of the processes by which CareerStart affects student 

achievement and engagement, but also contributes to the larger body of work on local 

average treatment effects as a means of estimating the processes operating in teaching 

practice interventions (Gennetian, Magnuson & Morris, 2008). 

Chapter 3. The third chapter presents a quasi-experimental replication study of a 

randomized control trial (RCT) of CareerStart, which was shown to improve student 

achievement on end-of-grade math tests but not end-of-grade reading (Woolley et al., under 

review). The replication study is based on a non-random assignment of CareerStart to 20 
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schools in North Carolina. I use this opportunity to test the scalability of the program to 

populations and contexts outside of the RCT. I use propensity score analysis (PSA) to assign 

weights to these 20 schools and all other middle schools in North Carolina such that 

treatment assignment is rendered conditionally random. The challenge of propensity score 

studies is modeling the assignment process to produce effectively unconfounded assignment 

to treatment, and the combination of matching and regression methods using rich covariates 

has been shown to mitigate measurement error and minimize parameter bias (Glazerman, 

Levy & Myers, 2003; Steiner, Cook, & Shadish, 2011). A credibility test of the PSA design 

uses a continuation of the RCT treatment during the PSA study period to compare the PSA 

estimate on RCT treatment schools with the RCT estimate on these schools. Satisfying this 

credibility test implies satisfying the RCM requirement of unconfounded assignment. 

Equality of the two estimates for reading achievement suggests a credible PSA for reading, 

whereas for math achievement, the PSA was not found to be credible. The findings from this 

study suggested, in contrast to the RCT, that reading achievement was promoted by 

CareerStart. This study contributes to the larger scholarly work on quasi-experimental 

replication of RCTs in a study population.  

 



 

CHAPTER 1. THE CONTEMPORANEOUS INFLUENCE OF CLASSROOM PEER 
ASSIGNMENT AND STUDENT-TEACHER INTERACTIONS ON TEACHER 

VALUE-ADDED MODEL ESTIMATION 

 
Research into the effects of schooling inputs on student learning suggest that teachers 

are the most important input, such that improving teacher effectiveness is a legitimate policy 

target to promote greater student achievement and learning (Gordon, Kane & Staiger, 2006; 

Nye, Konstantopolous & Hedges, 2004; Rockoff, 2004; Rowan, Correnti & Miller, 2002). 

Timely and precise measures of teacher effectiveness must therefore be made available to 

state, district, and school administrators, and a number of different approaches have been 

proposed and used, including teacher (Rowan, Correnti & Miller, 2002) or student (Kahle, 

Meece & Scantlebury, 2000; Koth, Bradshaw & Leaf, 2008) survey data; and observation of 

teaching practice (Pianta et al., 2008; Schochet, 2011).  

Presently, the most widely recommended approach for measuring teacher 

effectiveness is to estimate teachers’ value added (TVA) to student learning (Tekwe, et al. 

2004). The TVA estimates the amount of learning that each teacher contributes to her 

students’ knowledge as it accumulates over multiple years of schooling, adjusting for 

achievement in past years. Using student learning as a metric for teacher effectiveness 

presents a substantial measurement challenge because in addition to students’ existing skill 

and knowledge set, there are many time-varying or contemporaneous inputs to student 

learning that may confound measurement, including factors related to school (e.g., Cook, 

MacCoun, Muschkin & Vigdor, 2008; Hanushek ,1996), home, family and neighborhood 

(e.g., Bronfenbrenner, 1989; Heckman, 2008), peers (e.g., Borman et al., 2004); and human 
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development (e.g., Juvonen, 2006). Value-added modeling (VAM) comprises multiple types 

of statistical and econometric methods that purport to control for these influences and 

estimate an unbiased teacher effect.  

Race to the Top (RttT), a federal program, requires states receiving RttT funding to 

rank and compare teachers statewide using VAMs (Henry, Kershaw, Zulli & Smith, 2012). 

Despite this mandate, the approach is controversial and several challenges to the adequacy of 

VAMs have yet to be completely resolved. These include 1) inconclusive evidence on 

whether teacher value added (TVA) estimates sufficiently adjust for previous learning and 

contemporaneous confounders (Chetty, Friedman & Rockoff, 2011; Goldhaber & Chaplin, 

2012; Rothstein, 2010); 2) year to year instability in value-added estimates for individual 

teachers (Sass, 2008); 3) disagreement on which VAMs perform best, the criteria and 

methods for determining relative performance, and the level of transparency of these models 

(e.g., Amrein-Beardsley & Collins, 2012; Guarino, Reckase & Wooldridge, 2012; Henry, 

Rose & Lauen, in review; Hill, Kapitula & Umland, 2011); and 4) that these methods may 

proscribe a limited view of teachers’ knowledge and skills (Hill, Rowan & Ball, 2005; 

Kennedy, 2010).  

In this study, I focus on the role of multiple classroom effects in the estimation of 

TVAs used to evaluate teachers, and in particular, their potential to induce bias. Classroom 

effects consist of the combined influence of non-random assignment of students to teachers 

and interactions among students and between students and teachers. In a causal interpretation 

of TVAs, these contextual effects are not viewed as characteristics of the teacher but instead 

as disturbances that bias teacher effect estimation (Reardon & Raudenbush, 2009; Rubin, 

Stuart & Zanutto, 2004). I demonstrate that estimating unbiased teacher effects in the 
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presence of these classroom effects disturbances may not be possible. In this study, I examine 

the robustness of four VAMs to two types of classroom disturbances, those based on non-

random assignment, and those based on student-teacher and student-student interactions. I 

use two statistical and two practical criteria as the basis for comparing the VAMs. I then 

propose and examine three potential disturbance-reducing strategies.  

In the following sections, I first discuss the importance of teachers and teacher 

evaluation, the role that VAMs are proposed to play, and the challenges associated with 

building a teacher evaluation system around student test scores and VAMs. I then discuss a 

causal framework, the Rubin Causal Model (RCM), which helps to clarify the 

methodological and conceptual challenges of this effort. Following this, I discuss the extant 

research on classroom effects and their role in TVA estimation. I then describe the methods 

and results of a study in which I examine the role of classroom effects in biasing teacher 

estimates; compare the performance of a set of typical value-added models in addressing 

these problems; and look at a number of potential analytic solutions. In doing so I model two 

simulations, each one designed to examine the failure of an assumption of the RCM. These 

simulations address one of the most challenging aspects associated with validating TVAs, 

that they are unobserved. By simulating data, I am able to create the true teacher estimate, 

but the stylized data are a limitation. I comment on this limitation in the discussion. In the 

discussion section, I also comment on the implications of this study for the use of VAMs in 

teacher evaluation systems; comment on the implications for the use of simulation in 

studying VAMs for teacher evaluation systems; and I raise questions about certain facets of 

teaching, such as those that emerge from classroom interactions, that may be evidence of 
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greater effectiveness but are discarded to meet the assumptions needed to obtain unbiased 

TVAs.  

The Role of Quality Teaching in Student Achievement 

Over the past three decades of research into the effectiveness of educational inputs on 

student achievement, scholars in diverse fields have examined the influence of 

contemporaneous influences on learning including home and family factors (e.g., Coleman et 

al., 1966; Heckman, 2008; Todd & Wolpin, 2007), school resources (e.g., Greenwald, 

Hedges, and Laine, 1996a; 1996b; Hanushek, 1981; 1996; Hedges et al., 1994), a variety of 

school organizational, cultural and structural factors (e.g., Carnoy et al., 2006; Cook, 

MacCoun, Muschkin & Vigdor, 2008; Ladd, 2002), peers and peer diversity (e.g., Borman et 

al., 2004; Juvonen, 2006; Woolley & Bowen, 2007), neighborhood and community 

influences (Bowen, Bowen & Ware, 2002), teaching practices (e.g., Rowan, Correnti & 

Miller, 2002), teacher preparation (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2008; 

Goldhaber & Brewer, 2000; Harris & Sass, 2011; Smith, Desimone & Ueno, 2005), and 

human development (e.g., Ames, 1992; Eccles & Wigfield, 2002; Juvonen, 2006).  

The effort to rigorously and fairly evaluating teachers emerges partly out of recent 

studies that suggest the relative importance of teachers to student learning. These studies 

cross disciplinary boundaries and use a variety of designs and methods, and as a result the 

findings are widely regarded as robust. For example, using data from the Tennessee STAR 

experiment (of the effect of small class sizes on student achievement) and a variance 

decomposition method, Nye, Konstantopolous and Hedges (2004) found that teacher effects 

for students from kindergarten through third grade range from .12 to .135 for math 

achievement and .066 to .074 for reading achievement, which constituted about one-third a 
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standard deviation in math and one-half a standard deviation in reading between teachers at 

the 25th and 75th percentiles. Rockoff (2004) used teacher fixed effects models to show that 

teachers promoted higher student achievement in reading vocabulary (teacher fixed effect 

joint significance F = 4.43); reading comprehension (F = 2.74); math computation (F = 3.72), 

and math concepts (F = 5.30). Rowan, Correnti & Miller (2002) used student repeated 

measures growth curves to demonstrate that the classroom accounted for more than 60% of 

the variation in student reading test score growth, and 52-72% of the variance in math test 

score growth. Gordon, Kain and Staiger (2006) found a 10-percentile difference in 

achievement between students having teachers in the top and bottom quartiles of the 

distribution of teacher effectiveness.  

The interest in teacher effectiveness or quality also represents a realignment of public 

priorities for education, representing the dynamic relationship between two often-competing 

values (Labaree, 1997; Sergiovanni et al., 1999), equity, our preference for equal opportunity 

and quality, the goal of ensuring that the education system helps children become informed, 

capable adults. After the publication of A Nation at Risk in 1983 (U.S. Department of 

Education), which argued for greater quality in public education, legislators in some states, 

such as North Carolina, implemented statewide assessment standards and incentives in the 

forms of rewards and sanctions for performance. At the federal level, reauthorizations of the 

Elementary and Secondary Education Act (in the form of No Child Left Behind legislation) 

have also addressed the quality deficit framed in terms of equity, such as requiring that 

students in a wide variety of demographic categories, such as special education or English 

language learners, meet pre-determined adequate yearly progress (AYP) standards. Further 

reflecting a convergence of quality and equity values, North Carolina’s Leandro decision, 
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which ruled that several local education agencies (LEAs) did not provide an equal education 

for all students, helped to refocus educational priorities on equity, though in this case, framed 

in terms of quality as the outputs of schooling rather than in terms of funding or inputs.  

Evidence suggests that interventions that improve teacher effectiveness may promote 

greater student achievement. For example, high stakes accountability consisting of rewards 

or sanctions relies largely on market forces to encourage ineffective teachers to leave the 

profession (e.g., Gordon, Kain & Staiger, 2006), or to compensate highly effective teachers 

with performance pay bonuses (e.g., Springer et al., 2010). Such methods are summative; 

alternatively, formative methods have been proposed (Amrein-Beardsley, 2008). In-service 

or professional development (PD) training programs may provide teachers with the 

knowledge and tools they need to become more effective (e.g., Grossman et al., 2000; 

Woolley et al., in press) and may address deficits resulting from lack of experience or less 

effective pre-service training (Henry, Bastian & Fortner, 2011).  

For education policymakers to act on these policies, precise measures of teacher 

effectiveness must be available. The typical evaluation system has, up to this point, consisted 

largely of principal observations of teachers at specified intervals during the school year, a 

method that is being subjected to greater rigor (Pianta et al., 2008). Research suggests a 

number of potential complements to the observational method. These include self-reported 

survey data obtained from teachers (e.g., Hill, Rowan & Ball, 2005; Rowan, Correnti & 

Miller, 2002); teacher logs of their daily practices (e.g., Hill, Rowan & Ball, 2005); survey 

data obtained from students as raters of their teachers (e.g., Koth, Bradshaw & Leaf, 2008; 

Kahle, Meece & Scantlebury, 2000; Rose, Woolley, Orthner, Akos & Jones-Sanpei, 2012), a 
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practice that has long been used in the higher education system (e.g., Marsh, Overall & 

Kesler, 1979).  

Although a number of measures of effective teaching have been proposed, the focus 

on outputs, combined with the availability of student standardized achievement test score 

data, has led scholars and policymakers to promote evaluation systems based on students’ 

accumulation of knowledge as measured by these test scores (Harris, 2009; Sanders, Saxton 

& Horn, 1997).  

Teacher Evaluation using Value-Added Models 

Value-added methodology comes from economic literature on production functions 

that describe industrial processes combining an input with technology to produce incremental 

value in a product. In the case of the education production function, the technology consists 

of schooling inputs such as teaching practice, the input is existing student knowledge, and the 

output is new student knowledge (Todd & Wolpin, 2003). A typical education production 

function (Todd & Wolpin, 2007) represents learning as a cumulative function with the 

following form:  

(1)  ����  = ��(�����, ����) 

���� is achievement for student i in household h in period w; �� is the achievement 

function evaluated in period w, with learning inputs up to period w, �����, and intelligence, 

����. The education production function is usually given an additive and linear functional 

form as follows:  

(2)  ���� = ����� + ��������� + … ����� + ������ 

+ ������ + ���������� + ������+ ���� 
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The inputs in �� are represented here as observed inputs ��� and unobserved inputs 

����, each corresponding to periods w = {0, … w}; ���� represents measurement error. Each 

observed and unobserved input is shown to contribute a different level to overall learning 

depending on how many years away from the current period the input was applied.  

Not all education and education policy scholars see learning in such starkly 

mechanical terms and many reject the industrial analogy to the process of learning suggested 

by economic theories and the education production function (e.g., Rutkowski, Rutkowski & 

Langfeldt, 2012). Nevertheless, value-added methods are now used widely as a means of 

assessing teacher effectiveness in education research and program evaluation (e.g., Harris & 

Sass, 2011; Hill, Rowan & Ball, 2005). Because production functions are used to direct 

resources to industrial processes, an analogous use of the education production function is to 

direct resources to the learning process, in the form of policy interventions with teachers 

(Gordon, Kane & Staiger, 2006). By holding teachers to standards using outputs in this 

manner, policymakers would be moving away from, or at least offering an alternative to, 

standards based on inputs in the form of educational and credentialing requirements and 

principals’ subjective observations (Harris, 2009). 

Under a teacher evaluation system that uses VAMs as a source of information about 

teacher performance, teachers would be evaluated partly on the basis of their performance in 

what is widely viewed as their primary task: the educational progress that their students are 

expected to achieve during the course of the school year in which they are assigned to each 

other. In the cumulative-additive education production function of model 2, the teacher at age 

a is a school-specific portion of the unobserved input φihac1. A value-added model of 

cumulative student learning, developed from the cumulative-additive form of the education 
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production function distinguishes inputs in previous periods from contemporaneous inputs, 

and among contemporaneous inputs further distinguishes between student-specific and 

within-school inputs such as teacher, classroom and school, as follows:  

(3)  ����= �������� + ������ + 	��+ ���+  !�+ ���� 

Relative to model 2, contemporaneous school inputs are given by teacher inputs 	�� 

for teacher j in period w, classroom inputs  !� for classroom c in period w, and school inputs 

��� for school s in period w; ���� represents contemporaneous student predictors of learning; 

and all inputs prior to period w are subsumed into ������. Any unobserved predictors of 

learning must be absorbed either by ������ or the measurement error ����, implying that the 

two components may be correlated.  

Methods used to estimate 	�� as shown in model 3 include multilevel models for 

identifying the proportion of variance in test scores that can be attributed to teachers and 

students (Henry, Rose & Lauen, in press; Raudenbush, 2004); covariate adjustment to 

attribute portions of student variance in test scores to measured inputs to learning (Ballou, 

Sanders & Wright, 2004); econometric methods such as fixed effects that rely on year-to-

year differencing in student achievement to completely eliminate other fixed inputs to 

learning (Rothstein, 2010); instrumental variables that adjust for autocorrelation in learning 

(Arellano & Bond, 1991); or combinations of these approaches (Guarino, Reckase & 

Wooldridge, 2012). Variations on model 3 are used throughout the literature on TVA 

estimation, some of which treat 	�� and  !� as one, or leave ��� out of the model altogether. 

The objective of using the model in this context is to sufficiently specify model 3 such that 

	��, which is not usually observed, can be estimated as the value added to learning that is 

leftover after accounting for all other contemporaneous sources, as well as prior knowledge:  
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(4)  	�� "  ���� $ ��������� %  ������ % ��� %  !� %  ����� 

There are two challenges to estimating TVAs from model 4. The first is that 

contemporaneous classroom and school inputs are generally not measured directly in 

administrative data (Raudenbush, 2004), and as a result, they are potentially taken up by the 

error, or absorbed into the teacher effect 	��� to the extent that  !� and ��� are correlated 

with 	���. The second is that because 	��� is estimated from leftover variation after taking 

measured inputs into account, 	��� must be distinguished from the error, ����, which captures 

any unmeasured contemporaneous inputs to learning. A more accurate depiction of the 

challenge represented by model 4 for any teacher j is given by 4’:  

(4’)  	�� % ���� "  ���� $ ��������� % ������ % ��� %  !�� 

In situations where  !� and ��� are not measured, the effects of these inputs would be 

subsumed into the terms on the left hand side. In research settings where population averages 

are estimated, the expected value of the error is assumed to be zero. However, in teacher 

evaluation settings, assuming that the expected value of the error for an individual teacher is 

zero is a much stronger assumption that may not be possible in the context of the 

relationships between the teacher effect and the other inputs. As this study and others 

demonstrate, these are both significant challenges.  

Advantages over Existing Approaches 

Measuring teacher effectiveness via outcomes may address limitations inherent in 

other approaches that have been used, including using teacher certification or preparation 

information; using survey data collected from teachers or students; using observational data; 

and using unadjusted student achievement data.  
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Certification & Training. Studies have demonstrated only a weak link between 

student achievement and structural characteristics of teacher preparation, including board 

certification (Darling-Hammond, Berry & Thoreson, 2001; Golhaber & Brewer, 2000), the 

number of content area courses (Boyd, Grossman, Lankford, Loeb & Wyckoff, 2009), 

PRAXIS II exam scores (Xu, Hannaway & Taylor, 2011), college entrance exam scores 

(Harris & Sass, 2011), route of preparation to teaching, such as through traditional 

preparation (Henry, Bastian & Fortner, 2011) or lateral entry such as Teach for America 

(Glazerman, Mayer & Decker, 2006; Xu, Hannaway & Taylor, 2011), or the number of in-

service hours of training (Harris & Sass, 2011). Experience, instead, is a much more 

important predictor of teacher effectiveness (Gordon, Kane & Staiger, 2006; Henry, Bastian 

& Fortner, 2011). Economic theory suggests that certification and training programs are 

actually barriers to the efficient flow of human capital into and out of the teaching profession 

(Rutkowski, Rutkowski & Langfeldt, 2012; Xu, Hannaway & Taylor, 2011).  

Surveys. Survey data can be obtained from teachers (Rowan, Correnti & Miller, 

2002) in the form of self-reports of the practices that they use, but these may be subjected to 

some desirability bias. Student survey data on teaching practice may solve the desirability 

bias problem and yield more reliable multiple ratings per teacher (Guo & Hussey, 1999; 

Kahle, Meece & Scantlebury, 2000; Koth, Bradshaw & Leaf, 2008), but may be affected by 

recall biases and subjective differences based on the same home and peer experiences that 

influence learning (Woolley & Rose, unpublished draft).  

Observations. Observational data of teaching practice have typically been collected 

by principals, peers, or independent observers (Hill, Charalambous & Kraft, 2012; Pianta et 

al., 2008). The observational method suffers from low reliability (Schochet, 2011), as well as 
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subjectivity of the observer, the choice of instrument, and the number and types of lessons to 

observe (Hill, Charalambous & Kraft, 2012). The use of rubrics and rigorous training in the 

use of these rubrics can reduce both the influence of subjectivity and the unreliability of 

observational measures (Pianta et al., 2008). Principal observations have been shown to be 

equivalent to VAMs in identifying the worst and best performing teachers (Jacob & Lefgren, 

2008).  

Unadjusted Student Achievement. District administrators and principals may 

already use educational outputs, in the form of student test score data, to evaluate teachers, 

but these educators may be using less sophisticated and untrustworthy methods, such as 

average student performance on end-of-grade tests (Andrejko, 2004). Because average 

student performance is a function not only of a teacher’s effectiveness in a given year but 

also of factors unrelated to that teacher, such as the effects of previous teachers and 

contemporaneous and historical factors related to neighborhood, home, peers, and family, a 

measure of teacher performance from average student achievement may unfairly reward or 

penalize teachers for factors beyond their control (Guarino, Reckase & Wooldridge, 2012). 

The validity of average student performance as a measure of teacher effectiveness depends 

on whether teachers are effectively randomly assigned to students. If random assignment is 

the norm, then any factors not due to the teacher can be assumed to be randomly distributed 

and average student performance is adequate (Guarino, Reckase & Wooldridge, 2012). The 

quantitative evidence suggests that this is not the case, because the means of assignment does 

not effectively randomize over students’ or teachers’ abilities (Clotfelter, Ladd & Vigdor, 

2010, 2005; Horng, 2009).  
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VAMS, alternatively, are hypothesized to account for these factors, rendering the 

student-teacher assignment conditionally random and allowing the TVA to be interpreted as 

the teacher’s effectiveness in adding to learning. VAMs represent some promise for an 

objective, outcome-based evaluation of teacher effectiveness, but as the evidence shows, 

there are important concerns, some of which have not been addressed.  

Concerns About VAMs as Evaluation Tools 

Teacher VAMs have been successfully applied in education production function 

research to identify causal inputs to schooling (e.g., Hanushek, 1986; Harris & Sass, 2011). It 

is this success that partly explains the interest in translating these research models to the 

practice of evaluating teachers (Sanders, Saxton & Horn, 1997). But some aspects of these 

research methods represent challenges to this effort. For example, in research that is typically 

concerned with population averages, an error of 5% in identifying a chance input as 

systematic, when that input is a population parameter representing an average tendency in a 

population, is acceptable. It implies that once out of every 20 similar studies we can expect to 

commit an error and demonstrate an effect where there is none. In evaluating individual 

teachers, which implies a focus on unit-specific estimation, a 5% rate of error may not be 

acceptable. Lower rates than this (e.g., 1.2% error in properly identifying a teacher as 

ineffective) can translate to a high number of teachers on a statewide basis.  

A second concern about applying these methods has to do with the transparency of 

the models and the buy-in from the stakeholders being evaluated. Certain VAMs are very 

sophisticated and as a result teachers, administrators, and parents may not view VAMs as 

transparent, and therefore decisions about model form or specification are not subjected to 

the input of these stakeholders (Hill, 2009; Amrein-Beardsley, 2008). Although those in 
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favor and those against VAMs represent a wide variety of disciplinary backgrounds, VAMs 

are viewed more favorably by education policy researchers (e.g., Harris, 2009), and not 

viewed as favorably by scholars involved in educator training (e.g., Amrein-Beardsley, 

2008). Because they may feel that these systems did not take their concerns, views, or 

expertise into account, some teachers and administrators may reject the findings of these 

evaluation systems, particularly if these findings contradict their own subjective experiences. 

One mixed method study reported that teachers who have been evaluated using VAMs 

indicate that their VAM scores have varied from year to year despite invariance in their 

teaching practice, implying that context varied and was insufficiently controlled for by the 

VAMs (Amrein-Beardsley & Collins, 2012).  

These concerns are not trivial. Educators may rebel against outside influence in the 

education process. For example, in January 2013, teachers in a Seattle school refused to 

administer standardized achievement tests that would be used to evaluate teachers, citing 

concerns about whether the test measures learning, and consequently whether it is an 

appropriate measure for teacher evaluation (Scott, 2013). In the week-long strike by the 

Chicago Teachers Union in 2012, the teacher evaluation system played a significant role, 

with the union opposed to efforts to increase the role of student standardized test scores in 

teacher evaluation; the union prevailed, and in the new system only 30% of teachers’ 

evaluations (the state minimum) will be based on test scores (Pearson, 2013).  

To use standardized end-of-grade tests for measuring student learning as markers of 

teacher effectiveness, evidence of their validity as measures of the teacher’s contribution to 

student learning, and their reliability from year to year in measuring this contribution with 

minimum error is needed. I now turn to discuss this issue.  
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Measurement Validity and Reliability  

A teacher evaluation system based on student test scores as measures of student 

learning must first demonstrate validity and reliability in measuring student learning. Validity 

of the test concerns systematic error in measurement, or that it measures the construct it 

purports to measure, in the context of its intended use (Hill, Kapitula & Umland, 2011; 

National Research Council, 1998). Thus, a seventh grade reading test is a valid measure of 

students’ reading skills for advancement to eighth grade if it accurately assesses the skills and 

knowledge needed to read at the seventh grade level as a prerequisite for eighth grade 

reading. Alternatively, if it assessed the skills needed to read at the sixth grade level, it would 

not be valid; nor would it be valid if it assessed only seventh grade vocabulary rather than the 

full complement of skills needed to read at this level, or if it assessed seventh grade reading 

and biology (National Research Council, 1998). Validity would also be called into question if 

instruction did not adequately prepare students for eighth grade reading, such as through test 

preparation or coaching to yield higher seventh grade results without commensurate gains in 

knowledge (Koretz, 2008).  

Reliability concerns whether a specified form of the test measures this domain with 

minimal random error includes internal consistency reliability (reliability across subsets of 

items), test-retest reliability (reliability over repeated administrations of the same set of 

items) and equivalent-form reliability (reliability of instruments with different sets of items; 

National Research Council, 1998). Failures of these forms of reliability represent challenges 

for making inferences about learning; for example, if an instrument fails to show test-retest 

reliability, it may not be possible to infer that an improvement in a test score implies an 

increase in knowledge.  
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Studies question whether the domain of content and skills students need to learn can 

be accurately measured and that the items that are prepared measure these content and skills 

(Koretz, 2002; Linn, 2000; Reckase, 2004); whether the tests can measure higher order 

thinking skills (Kennedy, 1999); whether test content narrows the curriculum (Linn, 2000); 

whether the tests assess learning rather than test preparation, given the influence that 

coaching and test preparation may have on the manipulation of student test scores (Koretz, 

2008); whether test scores correlate with known predictors of student learning and 

achievement (Pianta et al., 2008); and whether standardized tests have test-retest reliability 

(Koretz, 2002).  

At the level of student learning, standardized test scores have been called into 

question. Extrapolating further from individual students’ scores to aggregates of students’ 

scores at the teacher level introduces further challenges to validity and reliability. The 

amount of learning experienced in the new period as measured by a difference between 

achievement in the current period and the previous as represented by model 4, even leaving 

aside the other contemporaneous inputs to learning, requires an assumption about the 

persistence of previous periods’ learning and teachers’ effects (Lockwood, McCaffrey, 

Mariano, & Setodji, 2007; Raudenbush, 2004). Typically, full or partial persistence is 

assumed, implying a fixed persistence parameter representing the proportion of previous 

years’ learning remaining at the time new learning is assessed (e.g., Guarino, Reckase & 

Wooldridge, 2012). Lockwood et al. (2007) used Bayesian methods to estimate a VAM with 

an empirically derived a persistence parameter.  

The question of persistence concerns associating an amount of learning with two or 

more teachers over multiple years. The dilemma of associating a specified amount of 
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learning with multiple teachers can occur within a single year. Different types of instructional 

methods involve multiple teachers, including those that have more than one teacher or a 

teacher and teaching assistants in a classroom; those that involve outside tutoring and 

assistance; and those in which students change teacher assignments during the school year 

(Valli, Croninger & Walters, 2007). In these cases, apportioning learning gains to any teacher 

may be a challenge.  

These are substantial measurement challenges, but viewing TVA estimation strictly 

as a measurement problem through the lens of validity and reliability overlooks a key feature 

of VAM methodology. Because VAM-based evaluation systems are intended to attribute 

aggregate changes in student achievement to the teacher, there is an implied causal 

relationship in the teacher effect measure (Rubin, Stuart, & Zanutto, 2004).  

Attributing Student Test Score Changes to Teachers 

Causal processes are typically absent from conventional measurement efforts. For 

example, measuring student engagement using a set of items on a self-report instrument 

implies that the reporter and the subject are one and the same, and thus no causality is 

implied. Similarly, asking a student to report on his perception of his teacher’s practices does 

not imply a causal relationship. Although the reporter and the subject are not the same, the 

report is a subjective observation by the student reporter of the teacher and no causal process 

is implied. For a teacher effectiveness measure to be equivalent in design, a student would 

have to be asked to report back on their teacher’s effectiveness in promoting their learning 

during the school year, a subjective measure. An analogous subjective measure would 

involve asking a student to describe how much of the material she learned in a given year 

was due to her teacher, which would be affected by perceptive biases. However, the TVA 
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uses independent assessments of learning progress that are generally viewed as objective 

rather than subjective. The measure implies a relationship between the teachers’ practices 

and the level of performance demonstrated by the student on the learning assessment. If 

certain assumptions are met, the TVA can be viewed as causal estimates of the effects of 

teachers’ practices on each individual student. If they are not, then it is unclear whether the 

TVA can actually be fully attributed to the teacher, which raises questions about whether 

TVAs provide useful teacher evaluation information, and how such information is 

subsequently put to use.  

Viewing the measurement problem through the lens of this causal relationship helps 

to clarify the challenges of validity and reliability as challenges of establishing that the 

teacher effect estimate is a quantitative measure of factors attributable strictly to the teacher, 

including training, knowledge and teaching practices (validity), and that accordingly teacher 

ranking should not change unpredictably from year to year (reliability). A causal model 

provides a framework for demonstrating how typical value added models may violate these 

assumptions in the presence of classroom effects. The causal model that I will use is the 

Rubin causal model (RCM), also known as the potential outcomes model (Holland, 1986). I 

focus on classroom effects, a contemporaneous input to learning, as the central challenge 

described by the model.  

The Rubin Causal Model: Assumptions and Violations 

In the Rubin causal model (RCM), the definition of the causal estimand for a 

specified teacher’s effect depends on the counterfactual condition—the conditions that 

prevail in the absence of the specific cause—that is, all other teachers. Formally, assume that 

the outcome for student � (with I = 1,…N) under treatment condition � is ���, with J possible 
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teachers in the population of teachers (e.g., statewide for a statewide evaluation system) as 

treatments, a many-valued treatment with the potential outcomes represented by a matrix of 

N students by J teachers (Morgan & Winship, 2007; Reardon & Raudenbush, 2009). The 

student has one potential outcome ��� under each teacher, where ���is usually academic 

achievement. In what is known as the fundamental problem of causal inference (Holland, 

1986), only one of these potential outcomes can be realized given that each student can only 

be assigned to one teacher at a time. Instead, students assigned to one condition are compared 

to students assigned to the other conditions. This is done using a function of the distributions 

of performance of students assigned to treatment � and the students under the other condition 

or conditions. Typically this function is the average treatment effect for treatment � (�	
�), 

estimated as the difference between the average performance of students observed under 

assignment to treatment � and the average performance of those assigned to (for example) the 

average teacher, labeled . � (not j).  

There are three assumptions in the RCM—manipulability, stable unit treatment value, 

and unconfoundedness (Reardon and Raudenbush, 2009). Manipulability implies that each 

student has a potential outcome under each teacher in the population (manipulability). The 

stable unit treatment value assumption (SUTVA) implies potential outcome under each 

teacher is independent of the assignment of peers. Unconfoundedness implies that student-

teacher assignment is independent of students’ potential outcomes. When satisfied, these 

assumptions make it possible to infer the treatment effect as causal despite the fundamental 

problem of causal inference that only one of J potential outcomes can be realized. Violations 

of any of these assumptions may occur. Typically, the manipulability assumption is 

understood to be violated, because school attendance zones are determined largely by 



31 

income, and therefore it is not plausible to assume any student can be assigned to any school 

or teacher (Beller & Hout, 2006; Reardon & Raudenbush, 2009). Despite the implausibility 

of manipulability happening in practice, it is not impossible to imagine, and in fact has 

happened in randomized studies such as the Tennessee STAR class size experiment (Finn & 

Achilles, 1990). Therefore, the assumption is often seen as harmless (Reardon & 

Raudenbush, 2009). Violations of SUTVA and confoundedness as a result of classroom and 

peer effects are the focus of the present study.  

Stable Unit Treatment Value Assumption 

SUTVA implies that the teacher’s effect on any student does not vary according to 

the presence of the other students in that teacher’s classroom (Reardon & Raudenbush, 2009; 

Rubin, Stuart & Zanutto, 2004). The presence of interactions between students in classroom 

learning that produce net differences in student achievement may lead to an increment to (or 

decrement from) the teacher effect that would make it more difficult to obtain an unbiased 

estimate (Henry & Rickman, 2007). Formally,  

(i) ���(AZ) = ��� 

AZ is an N x J matrix of ij  elements recording assignment of students to teachers, with 

ij  = 1 if i is assigned to j and ij  = 0 otherwise. The statement above makes it explicit that ��� 

is invariant to all Z permutations of A, a vector indicating each student’s assignment to 

treatment.  

Unconfoundedness 

Unconfoundedness, also known as ignorability or exogeneity, implies that each 

student’s assignment to treatment – that is, their assignment A to a specific teacher– is 

independent of their potential outcome under that teacher (Morgan & Winship, 2007):  
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(ii) ��� ┴ � 

The formal statement ii  is the strictest version of this assumption, strong ignorability. 

A weaker form conditions on student background factors, x:  

(ii’) ��� ┴ � | ) = * 

Many VAMs ignore covariates and those that account for covariates handle them 

differently either by explicitly specifying them or by using fixed effects to eliminate their 

influence (e.g., Ballou, Sanders & Wright, 2004). The strong form is violated under any 

associations with measured or unmeasured covariates. The weak form is violated only in the 

presence of association between omitted variables – unmeasured inputs to learning– with 

each student’s potential outcomes, and each student’s assignment to teachers (Reardon & 

Raudenbush, 2009). The weak form is violated because typically, large-scale administrative 

data files do not contain measures of all of the inputs to learning (including, for example, the 

availability of reading material in the home). Because groups of students are not usually 

randomly assigned to teachers their influences cannot be safely disregarded. The 

unconfoundedness assumption establishes a “boundary” on the extent of this problem 

however, by clarifying that these unmeasured covariates of learning are confounders of the 

teacher effect only if these inputs are also associated with treatment (student-teacher) 

assignment, reducing the burden for inferring causality.  

Unaccounted-for classroom effects can both lead to violations of SUTVA and 

confoundedness, and thus they both reduce to measurement problems. SUTVA violations can 

emerge within the classroom as a consequence of interactions between groups of students 

and between students and the teacher. Further, they can be related to non-random assignment 

patterns (e.g., Henry & Rickman, 2007; Mashburn, Justice, Downer & Pianta, 2009). 



33 

SUTVA can occur even in scenarios where the treatment conditions are randomized. Non-

random assignment leads to violations of the unconfoundedness assumption and may affect 

TVA estimation by failing to provide a fair baseline against which to evaluate the teacher, 

though some methods may be more robust to this violation than others. SUTVA and 

unconfoundedness violations caused by the classroom environment are the focus of the 

present study.  

The Classroom Effect in the Context of the RCM 

The classroom is the environment for teaching and the setting for practice, which is 

influenced or affected by teacher training and inherent characteristics of teachers, and student 

assignments to teachers. These factors subsequently give rise to student peer and teacher-

student interactions. The classroom effect is an emergent property of the students and teacher 

that varies according to these factors (Kennedy, 2010; Mashburn, Justice, Downer & Pianta, 

2009; Rothstein, 2010; Skinner & Belmont, 1993). Aggregate pre-assignment characteristics 

of students typically consist of the average ability or preparation of students assigned to a 

teacher of a certain effectiveness level (Rothstein, 2010). Student peer interactions produce 

learning effects (good or bad) beyond those directly from the teacher and have the potential 

to alter the teacher’s perceived effectiveness (Reardon & Raudenbush, 2009). Teacher-

student interactions are viewed as consisting of a unidirectional transfer of knowledge and 

skills from the teacher to the student, but evidence suggests that the teacher may alter his 

teaching practices as a result of these interactions, suggesting that different groups of 

students may lead the teacher to act differently and use different practices (Hamre et al., 

2012). Hanushek, Kain, Markman and Rivkin (2003) classify these into exogenous (pre-

assignment) and endogenous or behavioral (post-assignment). Aggregate pre-assignment 
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characteristics are typically thought of as a manifestation of confoundedness and the post-

assignment factors thought of as violations of SUTVA that may arise as a result of this 

confoundedness or independent of it. I now turn to discuss these factors in detail.  

Aggregate Pre-Assignment Characteristics 

Non-random assignment, being widely viewed as the key problem that successful 

VAMs must address, has received most of the attention in the TVA literature. Thus far, the 

evidence is mixed (e.g., Tekwe et al., 2004). Raudenbush (2004), for example, suggests that 

the causal question being answered by VAMs—about the difference between the effect of 

treatments (teachers)—cannot be answered without bias because factors confounding teacher 

effectiveness cannot be easily controlled for without random assignment.  

In a landmark study, Rothstein (2010) demonstrated that teacher assignment in period 

w (e.g., fifth grade) was associated with average test score gains in period w-1 (e.g., fourth 

grade) implying that three econometric VAMs (change scores on grade and classroom 

dummies; regression of gains on classroom indicators and lagged score; and a panel of 

multiple gain scores with student FE), despite their statistical sophistication, did not 

sufficiently address the issue of confoundedness due to unmeasured variables associated with 

teacher-student assignment. Rothstein’s finding were replicated by Koedel & Betts (2009), 

who subsequently demonstrated that by using multiple years’ data, some of the 

confoundedness could be alleviated. Rothstein’s evidence for biasedness operated primarily 

through negatively correlated errors in measurement across consecutive grades.  

Goldhaber and Chaplin (2012) showed that the Rothstein test can actually reject the 

null hypothesis of no association between w-1 scores and w assignment when there is no 

confoundedness from omitted correlates of teacher assignment; that is, it could be completely 
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artifactual, implying that the Rothstein test is not a formal condition for confoundedness. 

They describe three conditions in which the test would artifactually be rejected. First, current 

teachers’ could be conditionally associated with student achievement from two periods prior, 

which is often the most recent data available to principals to make assignment decisions as 

one period prior (e.g., May) is not usually available at the start of the current period (e.g., 

August; that is, there is a lag of time before the most recent test scores become available). 

Second, current teachers may be associated with previous teachers possibly due to tracking as 

students advance together from one teacher to the next. Third, the current teacher may be 

conditionally correlated with the previous period’s error term—which represents the 

condition the Rothstein test was devised to detect. Goldhaber and Chaplin use a simulation 

study to show that all three manifestations can be detected by the test, despite the third being 

the only condition under which the teacher effect would be biased.  

Chetty, Friedman and Rockoff (2011), alternatively, use a quasi-experiment and 

measured parent data to suggest that conditional on these parent variables, there was no 

confoundedness. The authors used matched tax and school district data on 2.5 million third 

through eighth grade children and their parents. TVAs were estimated using Empirical Bayes 

shrinkage using only the district data, and a fixed effect strategy that uses cross-school 

movements in teachers. Specifically, if the TVA was confounded by student background, and 

a teacher with a high observed TVA score moved from one school to another, the students in 

her new school would be expected to have lower test scores implying the TVA was due to 

her previous students. Using this strategy, the authors show that the parent data provides no 

additional information beyond what is provided by typical school data for identifying 

unconfounded estimates of teacher effects.  
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Student Peer Interactions 

Scholars in diverse fields have demonstrated that peers exert an influence on each 

others’ learning and that separating them from the teacher effect may be a challenge 

(McCaffrey et al., 2004). The idea that peers may influence learning goes back to Coleman et 

al. (1966). In contemporary education policy research, student peer interactions are not 

usually measured directly (an exception is Kinderman, 2007), and much research in this area 

continues to utilize predictors of peer interactions as measures of peer interactions. Several 

studies have demonstrated important findings about the efficacy of student peer interactions 

in promoting achievement and learning.  

Although not all studies find significant peer effects (e.g., Harris & Sass, 2006), 

studies in education policy research, on balance, suggest the importance of peer effects to 

learning. Lefgren (2004), using school tracking mechanisms as a natural experiment, 

demonstrated small but statistically significant positive peer effects. Specifically, in 

comparison to students in untracked settings, students in tracked settings would be expected 

to perform higher if peer effects promoted positive gains to learning. Both instrumental 

variables and fixed effects were used to control for omitted variables.  

Zimmer and Toma (2000) used selected international public and private school data 

from five countries to demonstrate that peer effects were significant, and of greater 

magnitude for low-ability students as compared to high ability students. Peer effects were 

defined based entirely on existing ability as measured by the mean, squared mean and 

standard deviation of previous achievement of students in a classroom, as well as an 

interaction of this mean with students’ own previous achievement; alternative forms included 

the proportion of high and low ability students. The class mean was significantly positively 
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associated with achievement; the squared mean suggested that gains declined as average 

classroom performance increased; higher variability translated to higher performance; and 

the interaction of previous peer and self achievement suggested that lower achieving peers 

benefited more. In the alternative form of the model using proportions of high and low peers, 

more high-achieving peers promoted lower achievement gains, while no effect was observed 

for the proportion of low achieving peers. Burke and Sass (2008), using peer fixed effects 

rather than functions of aggregate previous achievement, found similar small and positive 

effects but also note that peer and teacher quality may co-vary.  

Hanushek, Kain, Markman and Rivkin (2003) defined two classes of peer effects, 

endogenous or behavioral effects and exogenous, predetermined or contextual effects that are 

not affected by in-class behavior, and use fixed-effects value-added specifications to control 

for unobserved heterogeneity in their examination of peer effects in three cohorts of Texas 

elementary school students. Using a measurement strategy similar to Zimmer and Toma, they 

demonstrate using a variety of model specifications significant effects of average prior 

achievement, standard deviation in this measure, and the proportion eligible for reduced price 

lunches in predicting math achievement levels and test score gains, with the most robust 

finding coming from average previous achievement.  

Henry & Rickman (2007) used a series of robust value-added specifications of 

preschool skills to demonstrate that peer effects were significant predictors of cognitive 

skills, pre-reading ability and expressive language skills conditioned on family and school 

characteristics and child skill level and enrollment among preschool children in Georgia. 

Further, they demonstrate that classroom composition, teacher motivation, and time on 

discipline do not explain the transmission of these effects. Peer effects were measured as 
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class averages of a composite of pretreatment measures, including cognitive skills, pre-

reading skills, expressive language skills and number of basic skills mastered.  

Studies in educational psychology support these findings and provide deeper insight 

into the mechanisms by which peers influence learning. For example, friends may provide 

direct help in the form of assisting with homework and problem solving (Juvonen, 2006). 

Alternatively, the mechanisms may be psychological or emotional. For example, students’ 

values and behaviors may be moderated by their perceptions of their peers’ values, including 

reinforcing either negative or positive behaviors, a trend that is stronger in older (e.g., middle 

school) students than in younger students (Juvonen, 2006).  

Kinderman (2007) examined whether student engagement as measured over multiple 

periods was associated with characteristics of early-schooling natural peer groups, where by 

natural the author meant the peers that students interact with most frequently as revealed by 

socio-cognitive mapping, rather than students’ subjective views of friends or acquaintances. 

Socio-cognitive maps were developed from surveys asking students to report back on 

interactions with peers as identified by name. Subsequent structural equation models 

examined the relationships between these groupings and engagement and demonstrated that 

students’ changes in engagement during the school year were significantly predicted by their 

peer group affiliations, though the magnitude was small (two% of variance). Affiliating with 

high-engagement peers predicted same-level or increased engagement, whereas those in 

networks of less-engaged peers reported decreases.  

Teacher-Student Interactions 

Teacher-student interactions are the day-to-day social and instructional exchanges 

between teachers and students (Hamre et al., 2012). Teachers set the classroom environment, 
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including norms and rules (Ryan & Patrick, 2001); academic press (Hamre et al., 2012; 

Juvonen, 2006; Lee & Smith, 1999); motivational approaches including intrinsic and 

extrinsic motivational strategies (e.g., Lepper, Corpus & Iyengar, 2005), goal structures 

(Ames, 1992; Anderman et al., 2010; Pintrich, 2000); classroom organization (Cameron, 

Connor, Morrison & Jewkes, 2008); classroom management (Kagan, 1992); and emotional 

support (Hamre et al., 2012; Lee & Smith, 1999). Further, pedagogical content knowledge, or 

the knowledge needed to teach the content (Shulman, 1987; Van Driel & Berry, 2012), 

requires knowledge about how students learn the subjects they are being taught (e.g., Hill et 

al., 2008). All of these involve interactions with students.  

Typically these manifestations of teacher-student interactions are seen as 

unidirectional from teachers to students and may be an inherent part of the teacher’s 

effectiveness. However, research has demonstrated that these interactions are bi-directional 

and teachers’ approaches to individual students are informed by those students’ behaviors, 

attitudes, and cognition, implying that they may be promoted or hindered by different 

groupings of students. For example, teachers may treat students differently on account of 

race/ethnicity or gender (Roeser, Eccles & Sameroff, 2000), or may take a more favorable 

attitude towards students who are highly academically motivated (Juvonen, 2006) and adjust 

their motivational practices to meet the motivation demonstrated by their students (Jang, Kim 

& Reeve, 2012). As the following paragraphs show, several studies use structural equation 

models to allow for bidirectional and reciprocal effects between these variables.  

Engagement and motivation have been shown to predict the quality of the teacher-

student relationship. Skinner and Belmont (1993) show that higher teacher involvement, 

structure and autonomy support was predicted by children’s motivation during the school 
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year, indicating reciprocal effects of teachers’ early-year interest in students’ motivation and 

suggesting that if students are undermotivated, during the course of the year their motivation 

will decline. In a study of self-determination and autonomy in secondary school classrooms, 

student engagement was found to predict teacher support (Van Ryzin, Gravealy & Roseth, 

2009). In a study of first grade children in a Texas school district over three years, student 

engagement in year 2 predicted teacher-student relationship quality in year 3 (Hughes, Luo, 

Kwok & Loyd, 2008).  

Reciprocity has also been demonstrated in the relationship between non-cognitive 

student measures and teacher-student relationships. In a separate study on the children in the 

Texas study conducted at a later time, peer relatedness was shown to predict higher teacher-

student relationship quality (Hughes & Chen, 2011). Antisocial conduct also has a reciprocal 

relationship with teacher practice, with aggressive student behavior increasing conflict with 

teachers, which in turn worsened student aggression (Stipek & Miles, 2008).  

The Classroom Effect as a TVA Disturbance 

The purpose of this study is to understand the role that these contemporaneous 

classroom effects may play in biasing TVA estimates of teacher effectiveness and the 

implications that this bias may have on teachers subjected to an evaluation system deployed 

in a typical state. The purpose of the evaluation system—the question that the evaluation 

system is designed to answer—is required to choose the counterfactual for each teacher’s 

effect (Raudenbush, 2004). In the context of this study of the influence of classroom 

influences on TVA estimation, I limit this choice to two possible counterfactual conditions.  

If the purpose of the teacher effect estimate is to understand whether the teacher is 

effective in a particular setting (i.e., with a particular group of students), then classroom 
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effects may not violate SUTVA or confoundedness and the TVA may be interpreted as 

causal for that setting, peer group, and teacher. This implies comparing a teacher’s 

performance in one setting with her performance in another setting. Formally, the teacher 

effect may be labeled 	�+ (rather than j; where k indicates classroom), with a counterfactual 

of j, not k (i.e., 	�.+) representing teacher j’s effect in settings other than k.  

Effect 	�+ would enable comparisons within a single teacher over time or classrooms, 

but would not be acceptable for a comparison of teacher j with other teachers (.j). However, 

the purpose of the typical teacher evaluation system is to compare between teachers 

irrespective of setting, such that teachers can be compared with other teachers and 

subsequently be rewarded, sanctioned, or provided professional development and coaching. 

In this case, confoundedness and SUTVA may be violated to the extent that teacher 

assignment is effectively non-random and there are student-student and student-teacher 

interactions. If such violations exist, then different treatment effects will emerge from 

different combinations of students having the same teacher and teachers will be rewarded or 

sanctioned for reasons other than teacher effectiveness, regardless of the actual assignment 

mechanism.  

As the purpose of this study is to illustrate the influence of contemporaneous 

classroom effects on TVA estimation and the implications for an evaluation system of this 

type, I assume that the classroom effects from confoundedness and SUTVA are undesirable 

and should not be included in the TVA estimate. In the case of both SUTVA and 

unconfoundedness violations, positive associations between the classroom and teacher effects 

will produce stronger teacher effects, biasing the TVA upward, although negative 

associations will bias the TVA downward. VAMs that incorporate features that minimize 
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these biases are better from a policy perspective, benefitting the students that these teachers 

have as well as being fairer to the teachers themselves.  

Proposed Solutions to the Classroom Effect Disturbance 

Ideally, the factors underlying these violations are measured and properly specified in 

estimating the teacher effect. However, as noted above, many of these characteristics are 

simply unavailable in the data that are used for TVA estimates. The resilience of typical 

VAMs to classroom effect disturbances, and their resulting performance in estimating the 

true teacher effect in the presence of this disturbance, is not known. Barring that all of these 

models are completely resilient, solving the misattribution problem is essential to accurate 

teacher effect estimation, particularly if individual teacher rewards or sanctions are at stake. I 

propose three methods of reducing the effect of classroom effects disturbances on TVA 

estimation.  

Multiple cohorts of students. One option is to use multiple cohorts of students, 

which increases the number of teaching settings in which the teacher is observed. This 

method has been shown to stabilize teacher effect estimates, making them less likely to 

fluctuate from year to year (Koedel & Betts, 2009). Consequently, this approach is, from a 

measurement standpoint, reliability-promoting because using multiple observations of the 

teacher reduces the amount of random noise picked up by the teacher estimate. I argue, 

however, that it may also be validity-promoting in that it may make clearer the distinctions 

between classroom and teacher effects by averaging over the effects of multiple classrooms. 

In elementary school classrooms, this requires observing the teacher over multiple years in 

the same grade level, as teachers usually teach the same students over the course of the day. 

It is not clear how many cohorts would be needed for the biasedness from the classroom 
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effect to become negligible. However, if the evaluation system is to provide timely 

information to principals, at most three to five years would be possible, as this is typically the 

length of time for new teachers to level off in their effectiveness and for less effective 

teachers to sort themselves out of the teacher labor market (Henry, Bastian & Fortner, 2011). 

This strategy applies to all of the models, and no modifications to the models are required.  

Multilevel model with classroom level. The variance in the student outcome at the 

classroom level is between-student, within-teacher variance that if not properly accounted for 

will manifest on the teacher effect. One strategy to address the disturbance created by 

classroom effects is to use a multilevel framework with a classroom level or variance 

component added to estimate the classroom variance separately, preventing it from 

manifesting on the teacher variance (Raudenbush & Bryk, 2002; Schochet & Chiang, 2010). 

This strategy will only work if teachers are observed teaching the same subject and grade 

level to more than one cohort or class of students; otherwise, the classroom and teacher effect 

will be the same and the model will be over-identified. The baseline simulation satisfies this 

condition, having two cohorts of students. This is not a strategy that applies to all of the 

VAMs in this study but instead comprises a fifth VAM.  

Classroom covariates. As an alternative to adding a variance component, I add a 

composite classroom covariate to the multilevel model to absorb the classroom effect such 

that it does not bias the TVA estimate. Including classroom covariates is a common strategy 

(e.g., Harris & Sass, 2011; Rockoff, 2004). In these situations, the classroom covariates are 

often simple aggregates of student characteristics much like the methods used in Zimmer and 

Toma (2000). Although this approach is desirable for eliminating the classroom disturbance, 

model 4 (which shows that the teacher effect is estimated as the difference between student 
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outcome and the linear combination of all measured inputs) suggests that there may be two 

problems. First, this approach will only work to the extent that measured classroom variables 

explain all of the potential classroom effects. If residual unmeasured classroom effects 

remain after conditioning on these variables, they will be attributed to teacher effect. Second, 

the inclusion of the measured classroom variables will bias the teacher effect estimate to the 

extent that these variables are correlated with the teacher effect (Ballou, Sanders & Wright, 

2004). Diagram 1.1 shows how shared variance is treated in a regression framework, and 

demonstrates that any shared variance between the teacher and the classroom effect will be 

absorbed by the variables entered for the classroom effects. The net effect of these two 

sources of bias on the teacher effect is unclear.  

Objective and Research Questions 

In two previous studies using these simulations, Henry, Rose and Lauen (under 

review) and Rose, Henry and Lauen (unpublished manuscript) tested nine VAMs, 

demonstrating that four of these models—a random effects model, a student fixed effects 

model, a hybrid model, and a pooled ordinary least squares model—yielded estimated 

teacher effects that were more similar to simulated true teacher effects than five other models 

(also see Guarino, Reckase & Wooldridge, 2012). Table 1.1 is a summary table of all nine 

models, including the four examined in this study. In this study, I focused on these four 

VAMs. I propose to answer the following questions. First, how much does misattribution of 

classroom variances and fixed effects bias the teacher effects? Second, using a set of 

empirical and practical criteria, how do four typical VAMs compare to a true simulated 

teacher effect? Third, how does this comparison change as the proportion of variance 

attributed to the classroom increase (manifestation of SUTVA violations in the absence of 
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confounders) or as the correlation between the classroom fixed effect and teacher fixed effect 

increases (manifestation of confoundedness)? Fourth, are there realistic design or statistical 

approaches that can be employed to minimize the misattribution, including more cohorts of 

students, a classroom variance component, or including a classroom covariate?  

Methods 

To answer these research questions, I used two types of simulated data to demonstrate 

that classroom disturbances result in misattribution of classroom characteristics to the teacher 

effect in these four VAMs; examined the bias in the teacher effect from the classroom 

disturbance; compared the performance of these models in estimating a simulated and known 

true teacher effect; and proposed and tested three design and method-based solutions to the 

problem that have the potential to minimize bias. In testing these solutions, I maintained the 

following practical constraints on the evaluation system: first, the number of years used to 

estimate a TVA score had to be low enough to be timely, particularly for less experienced 

teachers or teachers new to North Carolina who would have few years’ data available; 

second, that the models be estimable on a system that a state could realistically be expected 

to have access to; and third, that the data consisted of those typically included in 

administrative data systems (i.e., not surveys).  

Value-Added Models 

Random Effects Model (HLM3). A random effects model treats the multiple levels 

of data—student, classroom, teacher and school—as hierarchically nested units, where each 

lower level (e.g., student) can only be nested within one higher level unit (e.g., classroom). 

These include hierarchical linear models and multilevel models (Raudenbush & Bryk, 2002). 

In this study, I estimated the following multilevel model:  
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(5)  ��,�� " )�,��,� % )��� % ������,��� % ���-��,��- %  .� %  .,� % ��,� 
 

Subscripts indicate the student (i), teacher (t), school (s) and period (w). The variable 

� is a student test score on a standardized end-of-grade exam; )�,� is a vector of student 

characteristics that are associated with the accumulation of knowledge, as well as a constant; 

)� is a vector of school characteristics; w = the period for which the teacher effect is being 

estimated; w-1 = the prior grade level; w-2 = the grade level two years’ prior. Therefore, � 

appears both as the dependent variable in the current period, as well as predictors of student 

achievement in the current period as both one-year and two-year lags or pretests. The terms 

.�, .,� , and ��,� are errors for (in order) the school, the teacher, and the student. The teacher 

effect was estimated using an Empirical Bayes estimator as follows, with /�� a measure of 

the intercept vector of �,�:  

(6)  /�� = ���+ .,�  

 

However, student scores were centered at the grand mean, ��� = 0, implying that /��= 

0 + .,�= .,�. Therefore, the teacher effect was estimated using the Empirical Bayes’ residual 

estimate of .,�.  

A variety of random coefficients models have been tested in the literature including 

by Henry, Rose & Lauen (under review), Guarino et al. (2010) and McCaffrey et al. (2004). 

Among several random effects models tested by Henry, Rose & Lauen, the model specified 

in equation 2 was the best performer among simpler variations that excluded the school 

random effect or the two-year lag.  

To satisfy the unconfoundedness requirement of the RCM, the .,�, the estimates of 

which comprise the teacher effects, had to be conditionally random (i.e., not associated with 

any other terms predicting student achievement). I assumed that the confoundedness of non-
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random assignment was controlled for via inclusion of pretests and covariates that predict 

student learning, such as family income. This assumption may or may not be valid (e.g., 

Chetty, Friedman & Rockoff, 2012; Rothstein, 2010). To satisfy SUTVA, the influences not 

attributable solely to the teacher, such as those from interactions, must not exist or would 

have to be attributed to the student or to the school, requiring that all system-wide student-

teacher interactions be homogeneous, which is unlikely.  

Student fixed effects model (SFE). The second major type of VAM examined was a 

fixed effects model. Fixed effects models are econometric models in which students or 

teachers (or both) are used, in the context of panel data comprising multiple years (e.g., 

three), as their own controls. Fixed effects models can be estimated using dummy variables 

for each “unit,” which in this case is a student or a teacher; or they can be estimated by 

differencing methods, which are similar to mean-centering methods except that both 

predictors and outcomes are mean-centered (Allison, 2009).  

In this study, a student fixed effect model (SFE) was used to estimate a teacher effect 

from the value-added specification in equation 1. Achievement and all of its correlates were 

de-meaned (i.e., mean-centered) that is, the mean of each measure was subtracted from the 

value of each measure in each of the three years of the panel. These demeaned terms were 

entered into a regression model as follows:  

(6.1)  �Y12 $  Y34� " �µ12 $  µ61� + �α1 $  α41� + �e1 $  e61� 

The term µ21 represents time-varying or contemporaneous predictors of student 

achievement. The student fixed effect α1, comprising characteristics of the students that did 

not change during the multiple years, was accordingly eliminated by de-meaning �α1 $  α41 "
 0). This elimination satisfied unconfoundedness for these invariant characteristics, but had 
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no bearing on the influence of time-varying or contemporaneous characteristics such as the 

classroom effects. Model 6.1 reduced to model 6.2 as follows:  

(6.2)  Y: " µ: + 0 + e: 
The teacher effect was estimated as the mean of the composite student residuals, 

�e1 $ e61� "  e:, within each teacher. To satisfy the unconfoundedness requirement of the 

RCM, this complex error had to be unassociated with the time-varying inputs that were not 

eliminated by de-meaning. Satisfying SUTVA required the same assumptions as in the 

HLM3.  

Hybrid fixed and random (URM). The Univariate Response Model (URM) is a 

variation on the simple random effects model that incorporates a function of three to four 

previous achievement scores in the model to estimate the teacher effect (Wright, White, 

Sanders & Rivers, 2010). The process by which the composite  � of prior achievement is 

estimated is a multi-step process, and summarized in Appendix 1. The process involves 

multiple phases of de-meaning, and therefore makes the model similar to a fixed effect 

model. However, it is also similar to a random effects model in that teacher effects are 

estimated using Empirical Bayes’ residuals. The model is as follows:  

(10) ;�, "  �� % �� � %  ., % ��, 
The nesting in this final model was of students within teachers within one school 

year. Covariates besides the pretests were not included under the assumption that multiple 

pretests spanning two years and two subjects control for all confoundedness (Ballou, Sanders 

& Wright, 2004). This assumption may not be valid (e.g., Amrein-Beardsley, 2008). The 

assumptions of the RCM will be satisfied only if this is true. Satisfying SUTVA required the 

same assumptions as the HLM3 and SFE.  
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Dynamic ordinary least squares (DOLS). A pooled ordinary least squares 

regression model as described in Guarino, Reckase & Wooldridge (2012) was tested as 

follows:  

(11)  ��, " )�,�, %  ���,�<� % ��, 
 

Unlike typical models that are estimated on panel data of multiple years, such as fixed 

effects or repeated measures random effects models, the panel nature of the data was ignored 

and each observation on each student, which was not actually independent from other 

observations on the same student, was treated as independent. The method of estimating the 

teacher effect was similar to the SFE; the errors for students within each teacher were 

averaged.  

To satisfy the unconfoundedness assumption of the RCM, the error must not be 

associated with any of the other terms in the model. To satisfy SUTVA, the same 

assumptions as required by the HLM3, SFE and URM are required. Despite the simplicity of 

the DOLS, in a comparison of the DOLS with several fixed and random effects models, 

Guarino, Reckase & Wooldridge (2012) showed that the DOLS was the best performing 

under a variety of student-teacher assignment mechanisms.  

Actual North Carolina Data 

Several stages of this simulation study required actual student and teacher data. These 

stages included a calibration study for setting the inputs in the data generation process in the 

simulations, as well as an analysis to examine whether some of the models proposed could be 

realistically estimated. I used a statewide data set of students, teachers and schools in North 

Carolina public schools during the years 2006 to 2010. These data were provided by the 

Carolina Institute for Public Policy (CIPP), which obtained the raw data files from the North 
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Carolina Department of Public Instruction. The data were limited to fifth grade students in 

the years 2008 to 2010, as these students correspond to the population being simulated. 

Several student, classroom, teacher and school covariates were available in these data; these 

covariates are listed in Table 1.2.  

Data Generation Process 

Data were simulated to provide a “true” teacher effect benchmark against which to 

compare the estimates of each VAM. Two simulations were conducted, one to test a violation 

of each of the two central assumptions of the RCM examined in this study. First, a simulation 

based on variance decomposition was conducted to test the violation of SUTVA in the 

absence of confounding effects. Second, a simulation based on correlated covariates was 

subsequently estimated to test the violation of unconfoundedness.  

Although every effort was taken to generate data that were as realistic as possible, 

several simplifications were employed that made the data generation process and estimation 

more tractable, and the results more easily interpreted. First, the value-added component to 

student learning, or the persistence of previous years’ teacher effects, was left out of the data 

generation process. Without this simplification, classroom effects in previous periods would 

propagate into later periods, confounding my effort to estimate the influence of the 

contemporaneous disturbance on the TVA. A robustness analysis, which I describe in the 

limitations section, re-examined this decision. Second, for computational feasibility, the 

number of students, teachers, and schools generated was smaller than that of a typical state. 

Third, school and LEA membership of both teachers and students were fixed and 

consequently neither students or teachers could change school or LEA. Fourth, only one 

grade level was used to assess teacher effectiveness (fifth grade). Fifth, missing data were not 



51 

simulated. Sixth, only one subject was used at a time as an outcome, though depending on 

the calibrated values of the inputs, the results could be interpreted as typical for either math 

or reading outcomes. The third through sixth simplifying procedures rendered the simulations 

less complicated. 

Data generation by variance decomposition. A simulation without fixed effects and 

with random assignment of students to teachers allowed me to examine the influence of 

SUTVA as a classroom disturbance without the additional influence of confounded non-

random assignment on the classroom disturbance. Each level of the data generation 

process—student, classroom, teacher, school and LEA—was assigned a pre-specified 

variance component �=+- , with m = {i = student, c = classroom, j = teacher, s = school, d = 

LEA}, k = subject = {math, reading}, and w = time or grade level. The classroom effect had 

a w subscript, while all others were assumed time invariant. Each variance component 

represented that level’s proportion of overall variance in the outcome. None of these 

generated variables were correlated with each other. These variance components were then 

square rooted to obtain standard deviations �=+� and multiplied by standard normal random 

variables >=+ that introduce variability between simulations, as follows (leaving out 

subscripts):  

(12)  ? "  >� 

Each of these components was a standard deviation that was assumed to be the effect 

associated with that level, or in other words, the contribution of that particular level—

student, classroom, teacher, school or LEA—to the overall test score for any student. The 

true teacher effect was thus the resulting standard deviation for the teacher. The mean for 

each of three standard normal test scores, one for each grade level, was specified and then 
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added to the student, classroom, teacher, school, and LEA effects created via the variance 

decomposition, as well as a random or measurement error component @1ABCDEF , to arrive at 

the total score for each student in each grade level, as follows:  

(13)  �1ABCDEF  = ��� + ?�++ ?!+�+ ?�++ ?�++ ?G++ @1ABCDEF  
The teachers were assumed to teach one group of 17-23 students in any given year, 

and peer groups were randomly re-sorted from year to year. The original purpose of this 

simulation was to provide information to the NC Department of Public Instruction, and the 

number of students and teachers was selected to reflect a range of actual districts of different 

sizes. Thus I simulated 833 teachers and 16,542 students in 827 classrooms, with 17-23 

classrooms per teacher. I started with two cohorts of students. The data were entered in the 

form of z-scores with a mean standardized test score in each year of 0, and a total standard 

deviation of 1, absorbing all sources of variation as specified in model 13. In the baseline 

scenario, classroom variance was held to zero.  

Data generation by correlated covariates. A simulation having correlated 

covariates as characteristics of students, classrooms, teachers, and schools was devised such 

that the confoundedness of non-random assignment could be examined as the source of the 

classroom disturbance on TVA estimation. A correlation matrix decomposition procedure 

(Vale & Maurelli, 1983) allowed me to specify the exact correlations between simulated 

student, classroom, teacher and school fixed effects. The resulting classroom and teacher 

effects varied within their respective contexts; i.e., the simulated effect for any given 

classroom varied within that classroom. To solve this problem, I averaged the effects up to 

their respective levels. This process slightly altered the correlations but not enough to 

substantively alter the findings.  
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Each level of the data generation process was assigned one or more correlated 

covariates �=+�. Correlations between student and school, student and teacher, classroom 

and school, and teacher and school were set at .20. The correlation between students’ 

teachers over time was set at 0.50. These were realistic values as determined by a calibration 

study (see below). The correlations between the classroom effect and student effect, and 

between the classroom effect and teacher effect, were varied to examine the bias in the TVA 

due to classroom disturbances of different intensities; this varying intensity is discussed 

below. Level-specific standard deviations were also generated in a manner similar to that 

described above for the variance decomposition simulation. These included �+  for student, 

!+� for classroom, + for teacher, and �+ for school. A subject and grade-specific state 

grand mean (�+�) and residual (��!H�G+�) were also estimated. The resulting fixed effects 

and standard deviations were all added together to produce the student achievement level in a 

given year, as follows:  

(14)  ��!H�G+�= �+�+ ��++ �!+�+ ��++ ��+ �++ !+�+ �++ �++ ��!H�G+� 

In this form of the data generation process, the variance component was included as 

parameter error, rather than as the effect for that level. This decision was re-examined in a 

robustness analysis. The “true” teacher effect was the simulated fixed effect for each teacher. 

In this design, students remained with their peer groups as they advanced. For the sake of 

simplicity, I simulated 1,000 teachers and 40,000 students in 2,000 classrooms, with 2 

classrooms per teacher (2 cohorts). Z-scores were used in this simulation as well. In the first 

set of models, the classroom covariate had a zero correlation with the other fixed effects, but 

the other correlations were non-zero.  
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Calibration of inputs. To develop simulations that were as realistic as possible, I 

used two sources of information to determine the levels of realistic inputs, including those for 

the teacher effect and its relationship with the classroom effects, for the two data generation 

processes. First, for the variance decomposition simulation, I required a proportion of 

variance at the student, teacher, and school levels. A proportion of variance at the classroom 

level was not needed as my research question implies that the classroom variance may absorb 

all of the teacher variance. I examined actual fifth grade NC data on math and reading 

achievement. Depending on whether the models were conditional or unconditional or 

spanned one or multiple years, between 10 and 25% of the variance in student outcomes was 

at the teacher level (Table 1.3). Most of the remaining variance was at the student level (from 

0.53 to 0.89), with the balance carried by the school level (0.06 to 0.20). According to a Nye, 

Konstantopolous & Hedges (2004) study of variance decomposition, teacher variance should 

be around 11%, though the grade levels examined were lower (first through third) than 

intended here (fifth). I set teacher variance to be 14% of total variance in the outcome. The 

student and school proportions of variance were set to 0.77 and 0.08; classroom variance was 

zero until introduced as a disturbance.  

Correlated covariates were informed by additional analyses on actual North Carolina 

data. The key inputs to the correlated covariates model were the levels of the correlation 

between student, classroom, teacher, and school covariates in the data generation process. 

Using the fifth grade data on math and reading achievement as well as student, classroom, 

teacher and school covariates, I observed that typical correlations between student covariates 

and all other levels was as high as 0.55; between classroom and all other levels were as high 

as 0.20; and between school and all other levels was as high as 0.55. The parameter variances 
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(the amount of conditional variance at each level) were informed by the calibration for the 

variance decomposition. For students, parameter variance was set to 0.77; at the classroom 

level to 0.02; at the teacher level to 0.12 and at the school level to 0.08. The correlation of 

each student’s third grade teacher with their fourth and fifth grade teachers was set 

sufficiently high (0.50) such that students had a high probability of being assigned to a 

teacher of similar skill level in each year.  

Number of simulations. The number of simulations in this study, 100, was low 

relative to what is recommended in general for simulations (normally in the thousands) but 

tradeoffs were necessary due to the high computational demands of some of the models and 

the length of time it took to finish a complete round of models. As the typical use of large N 

in a Monte Carlo simulation is to smooth out the variability between simulations imposed by 

measurement or random error, I elected to minimize the random error simply by specifying 

that it should only constitute 1% of the variance in the student outcome. A robustness check, 

conducted on only one classroom variance scenario comparing the results of 100 simulations 

with that from 1,000 simulations, demonstrated that the two were nearly identical.  

Classroom disturbance input. Using the simulated data, I examined and compared 

VAMs for estimating teacher effectiveness under a range of scenarios having different 

classroom effects disturbances. First, in the variance decomposition simulation, I created 

seven scenarios in which I varied the proportion of variance attributable to the classroom 

from 0 to 0.12 in 0.02 increments. The rationale behind varying the classroom disturbance in 

this range was to test the effect on the TVA estimate if the teacher effect could be almost 

entirely explained by interactions in the classroom. The teacher variance was accordingly 

reduced by the same two units, starting at 0.14 and varied down to 0.02. To have a teacher 
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effect to estimate, the lowest teacher proportion of variance was set 0.02. In effect, the two 

components were swapped in 0.02 increments. Total variance was not changed and remained 

at 1 throughout. 

Second, in the correlated covariates simulation, I applied varying intensity to the 

correlation between the classroom effect and student and teacher effects, creating scenarios 

in which the correlations had the following values: -0.6, -0.4, -0.2, 0, 0.2, 0.4 and 0.6. This 

range covered the range of observed correlations between student, classroom, teacher and 

school covariates as observed in the calibration study.  

Methods to Minimize Classroom Effects Disturbances 

After comparing the four value added models, I propose and examine the three 

methods, proposed above, which may reduce the misattribution of classroom variances and 

effects: a) adding additional cohorts of students to the VAM estimation (up to 5); b) testing a 

four level model of students, classrooms, teachers and schools (a fifth VAM, with the 

classroom level as the enhancement); and c) testing models with a classroom covariate 

added. In all these cases, the extent of disturbance in biasing the teacher effect was examined, 

and the performance of each model is compared with the true effect.  

Additional cohorts. Two cohorts of students were used in the baseline simulations. 

In an elementary school setting where a classroom of students is typically with the same 

teacher throughout the course of the day, a cohort of students is equivalent to a year 

observing the teacher in one classroom setting. As cohorts are increased, the number of years 

and thus the number of classroom settings is increased. The increased number of classrooms 

represents a larger sample of teacher-classroom measurements for each teacher, and large 

sample theory suggests that as long as there is no systematic bias over time, the average of 
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the TVAs over the multiple cohorts should converge on the true value. Although it would be 

ideal from a measurement standpoint to allow the number of years to be large (e.g., 20), from 

the perspective of informing teacher evaluation, which requires timely data on all teachers 

including younger, less experienced teachers, the number of years should be limited. Henry, 

Bastian & Fortner (2011) demonstrated that teachers’ effectiveness grows over the first three 

to five years. In this analysis, I doubled the number of cohorts from two to four.  

Four-level model (HLM4). A four-level model was estimated, adding a classroom 

variance component .!,� to the HLM3 as follows:  

(15)  ��,�� " )�,��,� % )��� % ������,��� % ���-��,��- %  .� %  .,� % .!,� %  ��,� 
 

In the HLM3, just as in the SFE, URM and DOLS the classroom disturbance did not 

have a parameter of its own to manifest on and therefore manifests on another parameter, 

biasing that parameter as an estimate of its true value. Alternatively, in the HLM4 specified 

in Model 15, the between-student but within-teacher variance that contains the classroom 

disturbance is attributed to a separate variance component .!,�. Because a four level model is 

more computationally intensive than a three level model, there was some concern that 

estimating such a model would be impractical. I therefore used the CIPP actual NC data to 

test a simple statewide HLM4 over a period of 3 years to determine if the computational 

intensity of the model presented a practical constraint on implementation of such a model.  

Classroom covariate (HLMC). As an alternative to the classroom variance 

component, which may be too computationally demanding to be implemented in a typical 

statewide teacher evaluation system, I proposed to include a classroom covariate in the 

HLM3. Because the variance decomposition simulation has no fixed effects because students 

are randomly assigned in that simulation, this strategy was only available for the correlated 
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covariates simulation. Classroom covariates are often simple aggregates of student 

characteristics (e.g., Zimmer and Toma, 2000). The classroom covariate simulated in the 

correlated covariates data generation, which had a correlation with the student and teacher 

effects of varying intensity, reflecting the calibration study, of -0.6, -0.4, -0.2, 0, 0.2, 0.4 and 

0.6, was entered into the models. As noted, there are two opportunities in this solution for 

biasing the teacher effect. The covariate may not sufficiently control for classroom effects, 

and therefore the teacher effect may still be biased after inclusion of the covariate. Further, 

the classroom covariate may also have shared variance with the teacher effect. If the 

classroom covariate is modeled, this shared variance will be removed from the variance used 

to estimate the teacher effect, potentially biasing the teacher effect.  

The covariate, the �!+� generated in the simulation, was added to the HLM3 as 

follows, with coefficient ��, to yield the HLMC model:  

(16)  ��,�� " )�,��,� % )��� % ������,��� % ���-��,��- %  ���!+� % .� %  .,�% ��,� 
 
Comparison Methods and Criteria 

Mean squared error of TVA. To assess the impact of unaccounted-for classroom 

variance and correlated covariates on the estimation of teacher effectiveness, the mean 

squared error was calculated. The MSE is the average of the squared differences between the 

TVA and the true teacher effect:  

(17)  I�
 "  �J  ∑ �	L $ 	�-J�<�  

Criteria for comparison. Three criteria were used to compare the absolute 

performance of each VAM on estimating the true teacher effects in the simulated data. First, 

Spearman rank order correlation coefficients, a non-parametric measure capturing the 

association between the rankings of two variables, was estimated for each pairing of a VAM 
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with the true effect and with each other VAM. This simple measure describes the relative 

placement of teachers along the entire distribution of teacher effectiveness as determined by 

the true and TVA estimates, regardless of the absolute differences between teachers’ 

placement in these two distributions. For the simulated data, the estimates in each simulation 

needed to be combined into a single point estimate which required a Fisher z transformation; 

the mean of this z-transformed correlation was calculated, and then back-transformed using 

the tanh function (Schafer & Graham, 2002). High performing VAMs have relatively higher 

Spearman coefficients.  

Second, I calculated the percent agreement on fifth percentile teachers: First, the 

teachers in the bottom 5% under the “true” effect were identified, as were the teachers in the 

bottom 5% on each TVA. Subsequently, those who were similarly classified (in the bottom 5 

or above the bottom 5) under both versions were considered “in agreement” while those who 

were in the bottom 5 on one but not both were considered not in agreement. A 5% threshold 

is important because this represents a relatively small proportion of teachers who are likely to 

be considered for the harshest sanctions or most demanding coaching and assistance. High 

performing VAMs have relatively higher levels of agreement. Because the simulated 

distributions were normal, the findings were nearly identical for teachers in the 95th 

percentile.  

Third, I examined the false identification of ineffective teachers in the simulated data. 

First, I identify those teachers above the cutoff for ineffectiveness (using a z-score of -1.64 or 

-1.64 standard deviations from the mean, implying that 95% of teachers should be above the 

cutoff) on the “true” measure. Then I identify the proportion of teachers who were below this 

cutoff on the estimated TE. The teachers who satisfy both conditions were considered false 
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positives or falsely identified as ineffective. This method of comparison differed from the 

percent agreement method, despite having a very similar threshold for ineffectiveness, 

because the focus was on the experiences of average teachers found ineffective, rather than 

on the overall level of agreement. High performing VAMs have relatively low proportions of 

false positives. In addition to the proportion, I calculate how many of North Carolina’s 

approximately 9,000 fifth grade teachers would be falsely identified as ineffective by each 

TVA, and I calculated the mean true scores of teachers falsely identified as ineffective. Note 

that for the opposite problem—falsely identifying a teacher as highly effective when he or 

she is not, which although certainly important is not in my view as risky as falsely 

identifying ineffective teachers—I could assume that the results would actually be very 

similar as the simulated distributions are highly normal. Note also that given the 

distributional rather than absolute threshold of effectiveness, the number and proportion of 

teachers falsely identified as ineffective imply an equal number and proportion of teachers 

who were ineffective but identified as average or better, as well as an equal number of 

teachers falsely identified as average or above average. Thus, the true disturbance on the 

teacher workforce could be four times as high as that reported in the tables.  

Results 

Variance Decomposition & SUTVA 

MSE of the teacher effect. The MSE of each TVA increased approximately linearly 

as the classroom portion of variance was increased (Table 1.4 and Figure 1.1). At zero, the 

HLM3 was the best performing model (MSE = .011), followed closely by the URM (MSE = 

0.014). The SFE (MSE = 0.021) and DOLS (MSE = .026) performed relatively poorly. 

However, as the proportion of classroom variance increased, the SFE, though it increased, 
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did not increase as much as the other three models, and when the proportion of classroom 

variance reached 0.06, the SFE had the lowest overall MSE. The relative ordering of the 

other three models was preserved.  

Spearman rank order. When the classroom variance was held to zero, correlations 

of each of the four models with the true effect was very high at .955 for the HLM3; .941 for 

the SFE; .946 for the URM; and .909 for the DOLS (Table 1.5). As the classroom effect 

disturbance was increased from zero to 0.12, these correlations decline. The trend in these 

correlations as the classroom proportion was increased took on a convex curvilinear shape 

(Figure 1.2), with the degradation in the TVAs increasing relative to equivalent increments of 

the classroom effect. At 0.12 of variance (at which point only 2% can be attributed to the 

teacher), the TVAs have much more modest rank correlations with the true effect, with the 

HLM at .460; SFE at .454; URM at .456; and DOLS at .437.  

Percent agreement on fifth percentile. When classroom contributed zero variance, 

agreement on classification in the bottom 5% was very high, with the HLM at 97.71%; SFE 

at 97.33%; the URM at 97.44%; and the DOLS at 96.62% (Table 1.6). As classroom variance 

increased (Figure 1.3), performance declines nearly linearly for all four models, with a drop 

of just under one percentage point in agreement for each two percentage point increase in the 

proportion of variance due by the classroom. The differences between the models were 

modest (no more than 0.8 percentage points).  

False identification as ineffective. When the classroom proportion of variance was 

set to zero, 2% or less of average or better teachers were falsely identified as being 

ineffective at a threshold of -1.64 standard deviations (numbers of teachers out of 9,000 in 

parentheses): for the HLM, 1.6% (n = 144); for the SFE, 1.8% (n = 160); for the URM, 1.7% 
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(n = 155); for the DOLS, 2.0% (n = 180) (Table 1.7). As the proportion of variance attributed 

to the classroom increased to 0.12, the four models converged to 3.9-4.0% falsely identified, 

or about 352-358 out of 9,000 teachers. The true scores of teachers falsely identified as 

ineffective increases with a slightly convex shape indicating greater degradation in 

performance as the proportion of the variance attributed to the classroom increased in 

equivalent increments (Table 1.8). At a classroom variance of zero, the mean true z scores 

were -1.43 for the HLM3; -1.40 for the SFE; -1.41 for the URM; and -1.33 for the DOLS. 

Higher scores implicate the TVA in more egregious errors, as teachers farther from and 

above the cutoff point for ineffectiveness are wrongly found to be ineffective. At 0.12 of 

variance at the classroom level, the four models converged to a range of -0.63 to -0.58 mean 

true scores (Figure 1.4).  

Correlated Covariates and Unconfoundedness 

MSE of the teacher effect. The mean squared error in the teacher effect remains 

roughly constant as the correlation between the teacher and classroom effect was varied from 

-0.60 to 0.60 (Table 1.9 and Figure 1.5). The DOLS had the highest MSE, between 0.13 and 

0.14; the HLM, SFE and URM were all roughly similar, between 0.05 and 0.10, and varying 

only slightly.  

Spearman rank order. When correlation between classroom and teacher was held to 

zero (though teacher-student, teacher-school, student-school and classroom-school 

correlations were non-zero), the HLM was the best performing model at a 0.788 (Table 1.10), 

with the DOLS (.701), URM (.701) and SFE (.639) following. Varying the correlation 

between classroom and teacher from -0.60 to 0.60 did not greatly alter these findings, with 
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each model changing only slightly as the intensity of the correlation moved away from zero 

in either direction (Figure 1.6).  

Percent agreement on fifth percentile. At zero correlation between classrooms and 

teachers, the four models had similar performance in finding teachers in the bottom 5% of the 

distribution with the HLM at 94.8% agreement; SFE at 93.4%; URM at 93.9%; and DOLS at 

93.9% (Table 1.11). Further, performance did not change very much as the correlation was 

varied between -0.60 and 0.60 across all of the models (Figure 1.7).  

False identification as ineffective. At zero correlation between classrooms and 

teachers, 2.6% of teachers would be misidentified as ineffective (Table 1.12) using the HLM 

(n = 232 out of 9,000 teachers); 3.3% using the SFE (n = 293); 3.1% using the URM (n = 

277); and 3.1% using the DOLS (n = 275). There were no substantive changes as correlation 

was increased in either direction to 0.60 or -0.60. The true scores of teachers misidentified as 

ineffective ranged between -1.12 (HLM3) and -0.96 (URM) with the DOLS (-0.99) and SFE 

(-0.89) in between. These were also largely invariant to the level of correlation between 

classroom and teacher effects, though true scores tended to decline as the correlation moved 

from -0.60 to 0.60, and tendency that was most substantial for the SFE (Table 1.13 and 

Figure 1.8).  

Proposed Solutions 

Additional cohorts of students. When the number of cohorts in the variance 

decomposition simulation was doubled from two to four, neither the Spearman rank order or 

percent agreement on fifth percentile were any different from the results obtained using two 

cohorts (Tables 1.14 and 1.15, respectively; Figures 1.9 and 1.10, respectively). However, the 

proportion and number of teachers falsely identified as ineffective was less than half of that 
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when using two cohorts (Table 1.16). When classroom variance comprised 0.04 of overall 

variance, the models showed that under the HLM, 0.9% (n = 85) of teachers would have been 

misidentified as ineffective; under the SFE and URM, 1.0% (n = 89 and 88, respectively, the 

differences due to rounding error in the proportion); and 1.1% (n = 98) under the DOLS. 

When the proportion of classroom variance was increased to 0.12, the proportion and number 

remained below half and the average true score moved farther away from the cutoff (Table 

1.17 and Figure 1.11).  

When the number of cohorts in the correlated covariates simulation was doubled from 

two to four, and when the correlation between classrooms and teachers was moderate and 

well within the observed range (0.40), there was small improvement in most models. On the 

Spearman rank correlation, the HLM3 improved from .762 to .820; the SFE improved from 

.638 to .706; however, the URM fell from 0.686 to 0.748. The DOLS went from 0.697 to 

.748 (Table 1.18). On percent agreement on the fifth percentile (Table 1.18), there was 

negligible improvements in all models; the HLM3 went from 94.68% to 95.32%; the SFE 

from 93.49% to 94.07%; the URM from 93.87% to 94.50%; and the DOLS from 94.05% to 

94.45%. On the proportion and number of teachers falsely identified as ineffective (Table 

1.18), the proportion and number of teachers changed only slightly, with the HLM3 

improving from 2.7% (n = 245 teachers) to 2.4% (n = 212); the SFE falling from 3.3% (n = 

299) to 2.9% (n = 264); the URM falling from 3.2% (n = 284) under 2 cohorts to 2.8% (n = 

249) under 4; and the DOLS falling from 3.0% (n = 270) to 2.8 (n = 252). The average true 

scores, similarly changed only very slightly.  

Four level multilevel model (HLM4). A four level HLM was added to the models to 

determine if a separate variance component for the classroom level would minimize the bias 
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in the TVA. In the variance decomposition simulation, the HLM4 had the same or only 

slightly higher (e.g., 0.01 difference) Spearman rank order correlation than the HLM3, 

generally the best performing model (Table 1.19). For example, when classroom variance 

was 0.04 of the total, both the HLM3 and HLM4 had a Spearman rank order coefficient of 

0.864. Alternatively, when classroom comprised 0.12 of total variance, the HLM3 was at 

0.460 and the HLM4 at .461. A similar finding emerged for percent agreement on the fifth 

percentile (Table 1.19). On the false identification of ineffective teachers (Table 1.19), at 

both 0.04 and 0.12 of variance, the HLM3 and HLM4 were roughly equal in proportion and 

number misidentified, as well as the average true score. No changes were observed for the 

correlated covariates simulation when the HLM4 was introduced (Table 1.20).  

The modest-to-nonexistent improvement in performance of the HLM4 over the 

HLM3 may not be worth the computational requirements of the HLM4. An HLM4 estimated 

on actual as opposed to simulation data might be too computationally intensive to estimate on 

a system likely to be available for a state teacher evaluation system. To ascertain whether a 

four level model could be estimated on such a system using real data, I used actual NC data 

to estimate a conditional four level model with student, classroom, and school covariates. I 

used three cohorts of students to estimate a fifth grade teacher effect. The operation could not 

be completed with available memory. I attempted the operation again with one cohort at a 

time, but this too could not be completed. This suggests that even if the classroom variance 

approach had worked to adequately minimize the disturbance in the TVA, such a strategy 

may not be possible in practice, at least at the present time.  

Classroom covariate (HLMC). In the correlated covariates models, I added the 

classroom effect �!+� to the HLM3, the best performing model in this analysis. The results 
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depended on the level of correlation between the classroom and teacher effects. When the 

correlation was zero, the Spearman rank correlation changed negligibly. Although the HLMC 

was a better performing model than the SFE, URM and DOLS in every scenario, it did not 

improve the resilience of the random effects framework to estimate an unbiased TVA. A 

similar pattern emerged for the percent agreement on fifth percentile, with the HLMC model 

performing slightly better than the HLM3 for scenarios with low correlation in between 

classroom and teacher, and slightly worse at high correlations (Table 1.20). 

On the false identification of ineffective teachers, the results were similar, with the 

HLMC (2.4%; n = 220) being only slightly better than the HLM3 (2.5%; n = 223) at zero 

correlation, but then slightly worse at all other correlations (Table 1.20). The difference was, 

however, negligible.  

Discussion 

Value-added models are intended as a means of estimating teacher effectiveness 

using changes in student achievement on end-of-grade standardized tests. These models use 

econometric or statistical methods to adjust for inputs to learning that are not directly related 

to the teacher in an effort to derive an unbiased measure of teacher effectiveness. The use of 

outputs rather than inputs in this manner addresses research that shows that typical inputs to 

teacher training are not highly associated with student learning (e.g., Boyd et al., 2009; 

Henry et al., 2011). Coupled with the availability of standardized test data and federal and 

state mandates for reform, states are implementing statewide teacher evaluation systems that 

include the use of VAMs.  

This study examined four VAMs and provided evidence that all of them estimate 

teacher effectiveness with non-zero error; that one model in particular, the HLM3, 
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outperformed the others regularly; and that the resilience of these models to scenarios of 

increasing classroom disturbances depended both on the model and the type of disturbance. 

For the most part, the performance of these models did not vary in accordance with varying 

correlation between the teacher and classroom effect in correlated covariate simulations. The 

evidence from the zero-correlation scenarios in contrast with the scenarios in the variance 

decomposition simulation suggests that these TVAs are greatly affected by the presence of 

correlation and shared variance between teachers and their students and schools. The 

classroom disturbances did not contribute further bias. However, in the simulations for 

variance decomposition for assessing the impact of SUTVA violations, all of the models 

experienced substantial degradation.  

Although the Spearman rank order correlation provided reliable evidence that the 

HLM3 was the top performer, under certain classroom effect scenarios, it did not differ 

enough to favor this model over the others when the full range of classroom effects scenarios 

was considered. Further, on the MSE, the SFE was a far better model as the classroom effect 

increased. When observing percent agreement on the bottom 5% of teachers, the results were 

not too different from those observed on the Spearman rank order. In this comparison, the 

models were bunched together tightly, with the HLM3 slightly outperforming the others. 

However, the models converged to a point as the classroom effect was increased. The false 

identification of ineffective teachers showed that these models performed similarly, though 

again slightly favoring the HLM3. Of the approaches that I tested to reduce the effect of 

these disturbances, only increasing the number of cohorts showed potential in reducing the 

bias of the TVA and the false identification of ineffective teachers. However, the benefits of 

this approach were nevertheless modest and subjected to a strong caveat. A substantial 
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amount of bias and misidentification remained, and opportunities for further reductions are 

limited by the need to provide timely information on new and inexperienced teachers. Given 

the number of years of data needed to obtain relatively reliable TVA estimates, the 

evaluation of teachers who are new to their subject areas may be challenging. It is also worth 

noting that in the course of conducting multiple versions of these analyses, often the results 

changed by a greater amount as a result of simply random variation, than they did as a result 

of the solutions that I proposed.  

Limitations 

The key limitation in this study is that I utilized stylized simulation data to examine 

the influence of a single contemporaneous disturbance, the classroom effect in the current 

period, on the estimation of TVAs. This required generation of data that isolated this 

disturbance in the current period free of other pathways for this disturbance to further 

influence TVA estimation. An important component of the process of student learning, that 

new knowledge generated in each period is added to that gained in the previous period, was 

left out of the data generation process. This component, a central part of the learning process 

as expressed in the education production function, is the value-added that gives value-added 

models their name, and thus this approach may seem novel and potentially counterintuitive to 

satisfying the objectives of a study of VAMs. However, if these effects had been included, 

then the classroom effects of previous periods would have been propagated through the 

value-added component. Leaving this component out allowed me to isolate the influence of 

this effect on measurement of TVAs absent the influence of past years’ classroom 

disturbances, but it did so at a cost of sacrificing some realism to the data. Under more real 
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conditions, the performance of the models in estimating TVAs may be degraded further, and 

these degradations may not be preserve the rank ordering of the four models.  

Robustness checks showed that for some of the models, this distinction did not 

matter. In a model with classroom and teacher effects correlated at 0.20, the HLM3 and 

URM, demonstrated the same level of performance in estimating the true effect as measured 

by the Spearman rank order correlation as when the value-added component was excluded. 

The performance of the SFE and DOLS, on the other hand, was further degraded by the 

inclusion of these learning effects. The Spearman rank order correlation for the SFE fell from 

0.64 to 0.56, and for the DOLS it fell from 0.70 to 0.49. The primary difference between the 

two groups of models was that in the HLM3 and URM the variance was decomposed into 

constituent parts first. In the case of the HLM3, variance was decomposed into student, 

teacher and school. In the case of the URM, school effects on prior achievement were 

controlled for via fixed effects, and the teacher effects were subsequently estimated from 

teacher-level variance separate from student-level variance. On the other hand, in the SFE 

and DOLS, teacher effects were estimated by averaging up student-level residuals to the level 

of the teacher. If learning effects manifested on the error, given non-randomness in the 

distribution of these effects across classrooms, the aggregating process may have attributed 

prior learning to the teachers. This would have occurred even in the presence of an explicit 

control for previous achievement as in the DOLS, if there was a difference between within-

teacher (controlled for) and between-teacher (not controlled for) effects.  

The inclusion or exclusion of the learning effect is not simply a technical question but 

may have some substantive support. The exclusion of the previous period’s learning effect is 

equivalent to a zero-persistence model of student learning in which all knowledge 
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accumulated in the previous period is lost. Although this seems unrealistic, one study 

demonstrated that the persistence of teacher effects is very low, with 80% of student learning 

gains in one period decaying into the next (Jacob, Lefgren & Sims, 2010). Studies of VAMs 

generally use the education production function, which depicts learning as a cumulative and 

even additive process, as a basis for assuming some form of persistence in learning from 

period to period (e.g., Guarino, Reckase & Wooldridge, 2012; Jacob, Lefgren & Sims, 2010). 

McCaffrey, Lockwood, Koretz, Louis & Hamilton (2004), included persistence as an 

estimable parameter in the model. The purpose of excluding the value-added in this study 

was not to lend support to any one view or the other. This study stands out for excluding this 

question from consideration in the examination of the sensitivity of four models to a 

contemporaneous classroom disturbance. This exclusion provided greater clarity in 

answering the question.  

Implications for Teacher Evaluation Policy 

Because the teacher effect is measured using assessments of students’ learning, and 

because the purpose of the typical teacher evaluation system is to hold teachers accountable 

for this growth, there is an implied causal relationship between the measure—the student test 

score—and the key input, the teacher. That is, these evaluation systems are being designed to 

attribute changes in student achievement to the practices of individual teachers. This intent is 

an important point. There is nothing inherently causal about the VAMs themselves, but 

including TVA estimates in the evaluation system implies a causal inference. Failures of 

these assumptions can then manifest not only as misdirected professional development 

supports, sanctions or rewards, with effects on student learning, but also as loss of prestige 

and decreased psychological well-being of teachers (Finnigan & Gross, 2007; Santoro, 
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2011). Given the causal inference implied by a TVA evaluation system, it is necessary to 

understand the influences on student learning that are related to these assumptions, how these 

influences potentially bias TVA estimation, and how teacher evaluation can be implemented 

to safeguard against these influences.  

The RCM provided a framework in this study for understanding what is required of a 

teacher evaluation system using TVAs (Holland, 1986). In the RCM, each teacher is an 

individual treatment “administered” to her students, and in any given state there are 

numerous such treatments. In North Carolina alone, there are more than 9,000 teachers in 

each grade level. To use the RCM, a counterfactual for each teacher j—conditions that would 

have prevailed in the absence of this teacher—is required. Although this is an abstraction, it 

nevertheless has practical implications for the development and implementation of an 

evaluation system if the necessary conditions cannot be supported.  

The counterfactual. In a binary treatment condition, the conditions that would have 

prevailed in the absence of treatment would be labeled the control condition. In a many-

valued treatment such as this one, a typical counterfactual would be .j (not j), and might be 

implemented using the average teacher effect. However, the counterfactual cannot be 

identified until the purpose of the evaluation system—the question that the evaluation system 

is designed to answer—is identified (Raudenbush, 2004). In the context of classroom effects 

that may occur in conjunction with teachers’ effectiveness, there are two possible 

counterfactual conditions. A between-context counterfactual condition contrasts condition j 

with condition .j. A second, within-context counterfactual condition is possible as well. In 

this counterfactual, the condition jk, of teacher j in classroom k, is contrasted with condition 

j.k, or teacher j not in classroom k.  
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The state evaluation systems that are being deployed, such as in North Carolina, are 

intended to compare teachers statewide. North Carolina’s system, in theory, should enable 

teachers in two far-flung districts in the state to be exchanged for each other with predictable 

consequences for the achievement of students taught by these teachers. This type of system 

suggests that the between-context counterfactual is desired, having teacher j with 

counterfactual .j. For this to be the case, the teacher effectiveness estimate cannot be biased 

by conditions specific to the context in which the teacher was evaluated, because that would 

imply condition jk, which does not have counterfactual .j. For the between-context 

counterfactual to be possible, assumptions related to the assignment of students and teachers 

to each other, and related to the processes of teaching and learning in a classroom, must be 

made. These assumptions clarify the well-defined states of the counterfactual and therefore 

have implications for development and implementation of a teacher evaluation system 

(Morgan & Winship, 2007).  

Assumptions. The key requirements of the RCM for supporting the desired 

counterfactual condition, and therefore supporting the causal inference of TVAs as unbiased 

estimates of teacher effects are unconfoundedness and SUTVA. These requirements imply 

assumptions about teacher-student assignment and the processes of teaching and learning, 

and in the context of these assumptions, the methods and data used to estimate the TVAs. 

Unconfoundedness requires that student-teacher assignment be effectively random, perhaps 

conditionally so after adjusting for measured predictors of assignment. Whether conditional 

unconfoundedness can be supported depends on the measures available in the data for 

estimating TVAs; how these measures are incorporated into the VAM; whether these 

measures have sufficient shared variance with unmeasured inputs to learning to control for 
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the influence of these unmeasured variables; and whether these measures have shared 

variance with the teacher effect. The evidence in this study suggests that correlations between 

teachers, students, schools, and classrooms are important and contribute to error in the 

measurement of teacher effectiveness via TVAs.  

The assumption of SUTVA requires that a student’s teacher effect be invariant to the 

different ways in which that student could be grouped with others; if this assumption was not 

met, then the student would not have one potential outcome for teacher j, but as many 

potential outcomes as there are combinations of peers. The violation of SUTVA is therefore 

intuitive and the evidence supporting the violation is robust (Reardon & Raudenbush, 2009; 

Rubin, Stuart & Zanutto, 2004). If peer effects—students’ interactions with each other—

affect the rate of learning they experience during the school year, or if the other students 

interact with the teacher in a way that alters the teacher’s methods or practices as they affect 

each student, then SUTVA is violated. The only means by which SUTVA would not be 

violated in the presence of these interactions is if the effects of these interactions were 

equivalent across every possible assignment of students, which is no more credible an 

assumption. The findings from this study are very clear. As the proportion of variance 

attributed to the classroom rises, the models were degraded, sometimes substantially.  

Together, these findings regarding confoundedness and SUTVA reject that the TVA 

can be clearly interpreted as a between-context measure of teacher effectiveness without 

caveats. The findings suggest that the TVAs may not actually be valid for the within-context 

teacher effect estimate either, and that at best the typical TVA estimate might be a hybrid of 

the within (jk) and between (j) effects, which does not have a clearly defined counterfactual. 

Failing to find that these assumptions are realistic raises questions about interpreting the 
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TVAs as causal estimates of teachers’ effects on student learning. Another factor to consider, 

and one that has not received much attention in studies of TVAs, is whether these 

assumptions serve the purpose of fairly evaluating teachers.  

Fair Teacher Evaluation. Factors that cause the assumptions of the RCM to be 

violated may nevertheless be important determinants of a teacher’s effectiveness. To put it 

another way, the SUTVA and unconfoundedness assumptions, if they could be satisfied by 

some design or statistical method, would serve the purpose of measuring teacher 

effectiveness by attributing student performance changes to teachers, but they might not serve 

the purpose of fairly evaluating teachers if in fact some of these factors contribute in deeper 

ways to teachers’ effectiveness.  

Education scholars have raised the possibility that the abstract process of teaching and 

learning represented by the education production function is too simple and unrealistic and 

have raised questions about the extent to which it excludes from consideration factors that 

might inform administrators about unique forms of teacher effectiveness or ineffectiveness. 

The inferential problem presented by VAMs has provided an opportunity to clarify this 

limitation. Evidence from education research suggests for example, that both cognitive 

(Hughes, Luo, Kwok & Loyd, 2008; Skinner & Belmont, 1993) and non-cognitive (Hughes 

& Chen, 2011; Stipek & Miles, 2008) student processes and behaviors inform the unfolding 

of teacher practices over the course of the school year, implying that with different groups of 

students, teachers’ practices would be different and the resulting level of effectiveness 

potentially affected as well. Although the practices themselves might be fairly considered 

part of a within-context teacher effectiveness estimate, and thus not appropriate to consider 

as a teacher’s effect for estimating a between-context TVA, the teacher’s skill set that drove 
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the feedback process, and made this effect possible, should not be discounted. This is a more 

complex process than that represented by the education production function. More effective 

teachers may be more skilled at using feedback to inform further instruction; alternatively, 

less effective teachers may be less skilled at these approaches. In sum, the technical demands 

imposed by the implied causal relationship between teachers and students may conflict with 

the complexities inherent in the processes of effective teaching (Kennedy, 2010).  

Many of the assumptions needed to interpret TVAs as causal estimates simplify how 

the process of teaching is represented in measurement, and more complex questions have not 

been addressed. For example, many students have multiple teachers or a teacher and teaching 

assistant in the same classroom; others have outside tutoring; still others switch teachers 

during the year (Valli, Croninger & Walters, 2007). The technical need in these settings 

involves partitioning learning gains on the subjects taught in these settings to multiple 

teachers, and an analysis similar to the one in this study may be required to assess the 

sensitivity of the models to these issues. Alternatively, the issue of fairness concerns whether 

more effective teachers make better use of these multiple-teacher settings and that perhaps 

the multiple teachers’ effects are emergent.  

The measurement versus fairness question extends beyond the issue of multiple 

teachers to encompass other contemporaneous school inputs. This study demonstrated that 

separating the teacher’s effectiveness from components of student learning that are wholly or 

partly due to the unique group of students assigned to the teacher for that year is a significant 

challenge. The day-to-day work of teachers represents numerous opportunities for such 

effects to emerge. These situations will interfere with or support the practice of teaching, 

with teachers adapting their lessons to fit the needs or opportunities of the situation 
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(Kennedy, 2010). Studies of the situational context of teaching are being developed in 

response to the intense focus of typical teacher effectiveness studies on characteristics of the 

teacher rather than the characteristics of teaching (Gilbert & Malone, 1995; Hiebert & 

Morris, 2012; Hill, Rowan & Ball, 2005; Kennedy, 2010). In sum, teacher evaluation 

systems that rely on TVA estimation may not contain unbiased estimates of teacher 

effectiveness, and in serving the needs of estimating teacher effectiveness with TVAs they 

may miss opportunities for a deeper understanding of teacher, or teaching, effectiveness.  

Teacher evaluation policy. Teacher evaluation systems that incorporate TVA 

estimates should acknowledge issues related to the failures of SUTVA and 

unconfoundedness assumptions to hold, as well as questions regarding whether TVAs can 

fairly represent teachers’ skills. The policy recommendations for teachers that are found 

ineffective using a TVA estimate have ranged from high-stakes options such as dismissal 

(e.g., Gordon, Kain & Staiger, 2006) to low-stakes options such as requiring additional 

professional development and coaching (e.g., Amrein-Beardsley, 2008), Based on the 

findings of this study that TVAs measure teacher effectiveness with error and a non-zero 

probability of incorrectly classifying an average or better teacher as ineffective, I propose a 

number of potential directions for a teacher evaluation system that mitigate misclassification 

risk. Further, because TVAs provide no information about the skills in which teachers are 

deficit, I propose a number of different ways in which alternative measures of teacher 

effectiveness such as observations (Hill, Charalambous & Kraft, 2012; Pianta et al., 2008) 

and surveys (Koth, Bradshaw & Leaf, 2008; Rowan, Correnti & Miller, 2002) can be 

incorporated into the evaluation system.  
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Most importantly, given the non-zero error, high-stakes sanctions such as dismissal 

should not be based on a TVA estimate without additional data to support the dismissal. For 

the most part, this recommendation reflects actual policy decisions. The North Carolina 

teacher evaluation system being deployed in 2012-13 combines a TVA estimate with five 

criteria from a rubric-based observational instrument. Error in measurement can be mitigated 

by combining data from TVA estimates with data from unannounced, rubric-based teacher 

observations or student surveys administered at periodic intervals, and requiring that action 

be taken only for teachers who are found deficient on a certain number of these measures. 

There are potentially subjective decisions involved in this approach, such as how much 

weight to give to each component, but such subjective decisions at the level of the system are 

fairer to teachers than subjective decisions made by administrators that prevail in the absence 

of a teacher evaluation system (e.g., Andrejko, 2004).  

Alternatively, a number of low-stakes options are available that make best use of the 

limited information about teacher performance that TVAs provide. It can be argued, for 

example, that using TVAs to identify teachers for professional development is sufficiently 

low-stakes. The risks associated with providing professional development to the wrong 

teacher manifest on the learning of the students who have teachers who should have been 

identified as needing professional development. Further, such a system would not be very 

cost-effective as funds for professional development would be wasted on teachers who do not 

need it. Finally, it may not be possible to identify the particular training teachers need based 

solely on TVAs as no information is provided about the areas in which teachers are deficit. 

By combining the TVA with other measures of teacher effectiveness, these risks and costs 

can be minimized as well.  
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An alternative that may be even more cost-effective and provide more timely 

information to administrators on teachers’ needs is to use the TVA estimates to identify 

teachers for more robust data collection. For example, an evaluation system that calls for 

teachers to be observed using a rubric 10 times in one year may be prohibitively expensive to 

implement system-wide. However, a system that calls for teachers who are found to be 

ineffective using TVAs to be identified for additional data collection may enable 

administrators to identify those teachers who may be in need of additional supports, thus 

enabling the targeted allocation of professional development funds. This approach may also 

enable administrators to ascertain whether the evaluation system provided inaccurate data. 

This approach also solves a key problem associated with TVAs, which is that they do not 

provide any information regarding teachers’ areas of deficit, which would instead be 

collected using the observation rubric or students’ responses to questions about teachers’ 

practices. 

Whether they are intended for high stakes or low stakes decisions, the evaluation 

system should be designed to minimize unintended consequences. For example, the flaws 

inherent in TVA estimates of teacher effectiveness should be communicated to principals and 

superintendents responsible for using the information provided by the evaluation system such 

that they understand the limitations of the TVA method. Whether the state evaluation system 

requires that TVAs be used, enthusiastic administrators may use these estimates of their own 

volition to make hiring and firing decisions. The evaluation system may create the conditions 

for high stakes uses simply by providing the estimates to principals and superintendents. 

Training and documentation regarding the advantages and disadvantages of each approach 

used in the evaluation system should be provided. Further, the recommendations above 
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should help guard against the potential for teachers to be shifted around by grade level or 

subject to avoid having a TVA estimate.  

Implications for Further Research 

The implications for future research go beyond the direct implications of this study of 

classroom effects to the broader picture of how one conducts assessments of VAM 

performance. The main rationales for continuing to assess and compare VAMs, at a time 

when these methods are being deployed in state evaluation systems as teacher performance 

criteria, are to determine the extent to which there may be harmful unintended consequences 

for students, and the extent to which the evaluation systems promote higher student 

achievement, learning, and later life outcomes. Many of these considerations will have 

implications for the well-being of teachers as well. Taylor & Turner (2011), for example, 

demonstrated that an observation-based teacher evaluation system deployed in Cincinnati 

public schools, promoted student achievement both during the year following teacher 

evaluation and in long-term follow-up; however, no such study that I am aware of has been 

attempted for a TVA-based evaluation system or one consisting of both TVA and 

observations. The questions for scholars of education policy go beyond examining the virtues 

of each model to demonstrating how the harmful impacts of these imperfect models can be 

minimized and their advantages maximized, such that teachers can be evaluated fairly. As 

these systems are deployed, new opportunities will arise for studying the teacher labor 

market and the academic outcomes of students.  

The central challenges of conducting research into VAMs are the trustworthiness of 

the models and the transparency of the methods used to make these assessments. A 

straightforward implication of this study is that the methods may not be sufficiently 
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trustworthy, and that additional methods for minimizing the disturbances from 

contemporaneous influences operating in the classroom should be tested. None of the 

methods demonstrated that they could adequately minimize the influence of this disturbance 

to be considered as essential for incorporation into TVA evaluation systems.  

Transparency is critical as findings regarding the trustworthiness of the models, like 

the models themselves, must be understood by laypersons who may distrust highly technical 

methods that cannot be easily understood. I propose that this study has contributed to 

education scholars’ understanding of how to assess the trustworthiness of VAMs in a 

transparent manner. Generally, the use of simulation data to examine the trustworthiness of 

VAMs may not be sufficiently transparent for lay audiences. Simulations are useful because 

they get around the problem of not having a true teacher effect to which the TVAs can be 

compared. The true teacher effects, which the TVAs are purported to measure, are 

unobserved (or equivalently, latent or missing). The simulations allow researchers to 

generate the “true” teacher estimate. Despite these advantages, the fact that the data are 

“made up” remains a challenge to their transparency and resulting efforts to examine the 

trustworthiness of the VAMs. The stylized nature of the data and the number of assumptions 

that must be employed in generating the data are subjective decisions that are then added to 

further subjective decisions about the choice of VAMs to examine and the methods by which 

these VAMs should be compared.  

The credibility of these simulations can be improved by reducing the subjectivity of 

this decision process. This can be done, for example, by calibrating the inputs to real data 

(e.g., Schochet & Chiang, 2011); by comparing the performance of the models on both 

simulated and real data (e.g., McCaffrey et al., 2004); or, as in the present study, by limiting 
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the investigation to a single disturbance at a time. Under the last approach, further 

disturbances that add realism can be examined in robustness checks. The disturbances due to 

this violation are clarified by not being confounded by additional noise, and the limitations 

can be more easily communicated to skeptical audiences.  

Second, the unconfoundedness assumption (though not SUTVA) can be examined in 

other more conventional settings. For example, researchers can develop randomized trials, 

much like the Tennessee STAR study, whereby teachers and students in multiple settings are 

randomly assigned to each other (Nye, Konstantopolous & Hedges, 2004). As noted 

previously, under these circumstances the average performance of each student would 

constitute a measure of teacher effectiveness unconfounded by student and teacher 

assignment. Consequently, this average could be assumed to be the teacher’s true 

effectiveness, and the TVAs could be estimated and compared to this measure. This would 

not imply that the estimates satisfied the SUTVA assumption, as SUTVA violations can 

occur under any assignment pattern. Although non-experimental approaches cannot be 

assumed to satisfy the assumption of unconfoundedness, they can approximate this to the 

extent that credible natural experiments exist. These natural experiments can lend further 

support to investigations into the trustworthiness of VAMs for estimating TVAs (e.g., Jacob, 

2011), serving for example as replication studies of more expensive and onerous randomized 

trials. The advantage of conducting new randomized trials, rather than relying on existing 

trial data, is that effectiveness can be examined in the context of a deployed VAM-based 

teacher evaluation framework.  

Third, a conventional approach in psychometric studies is to use cross-instrument 

validation techniques. Such techniques can be applied here. The more measurements taken 
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on a process, the more reliably the process will be understood (for example, see Willett, 

Singer & Martin, 1998). Under a comparison design that includes multiple methods, the TVA 

estimates would be compared to teacher effectiveness estimates obtained from observation 

rubrics (Pianta et al., 2008; Schochet, 2011), teacher surveys (Rowan, Correnti & Miller, 

2002), student surveys (Kahle, Meece & Scantlebury, 2000; Koth, Bradshaw & Leaf, 2008) 

or combinations of these approaches. In states such as North Carolina, where teacher 

evaluation systems are being developed consisting of multiple approaches, opportunities 

exist for comparisons to be made. Although none of the instruments used in the comparison 

purport to represent a “true” teacher effect, multiple approaches that similarly rank teachers 

have a low probability of emerging from chance occurrence, and the influence of outliers in 

this evaluation process can be identified.  

Finally, the means by which these models are compared should be as transparent as 

possible. Although no scholar doubts the importance of rank correlations and mean squared 

errors, there are some problems with using these methods to compare VAM performance and 

translate them to a lay audience. First, these methods may not be sensitive enough to detect 

minor statistical but high clinical differences between VAMs. In this study, I used the mean 

squared error and Spearman rank order correlations as “statistical” methods of comparison. 

Under both methods, these models outperform what we typically see when using these 

statistics in empirical frameworks. Secondly, however, these statistics lack practical meaning 

to lay audiences including policymakers who would benefit from understanding the 

differences between these models in terms of the number of teachers likely to be affected by 

the errors implied by these statistical measures. Therefore, in this study, I have demonstrated 

the comparison using a set of “practical” measures, including the level of agreement that 
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each model had with the true effect in ranking teachers in the bottom 5%, and the count of 

the number of teachers who would be affected by the choice of a lower-performing model 

over a higher performing one. These are gross person-level manifestations of VAMs’ 

trustworthiness, representing the movement of teachers around a predetermined cutoff in a 

distribution, which may have more practical meaning to policymakers.  

Concluding Comments 

Evaluation systems that include TVAs have already been developed and implemented 

in the United States (e.g., in Florida and Texas) and thanks to Race to the Top, are 

disseminating further into states like North Carolina. These systems have strong political 

support that persists despite reservations of scholars and stakeholders about the impact these 

evaluation systems will have on the teacher workforce and student learning and achievement. 

Teacher evaluation may have a significant and lasting impact on student achievement (Taylor 

& Tyler, 2011). The method by which teachers are evaluated may be an important factor, 

however. 

Although this study showed that the error in measurement from TVAs is much lower 

than what is considered safe in a research context for estimating population parameters, these 

errors may not be low enough to use the data to take action on individual teachers, and thus 

caution is warranted. As I have noted, however, it is not true to suggest that a state-level 

evaluation system based on TVAs will have a uni-directional negative effect on teachers’ job 

security. In fact, these methods can provided better information to principals about teachers’ 

effects on students’ performance on state standardized tests than simple averages would 

provide. In addition, the data can be supported with information provided to principals 

regarding the flaws associated with TVAs, such as those illustrated in this study. Finally, 
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they are based on more objective criteria than either survey or observational data, and they 

measure productivity rather than inputs.  

When the advantages and disadvantages of these multiple approaches are considered, 

an evaluation that relies partly on all of these methods may be an important tool for 

principals. In North Carolina, for example, the state is adding a VAM teacher measure to an 

evaluation system consisting of five observational criteria, and requiring that teachers who 

fail to meet a predetermined effectiveness cutoff after a certain number of years be targeted 

for dismissal. Even in a scenario where the evaluation system does not contain other teacher 

effectiveness measures, but may contain a probationary period for teachers identified as 

ineffective, principals can intervene by using the TVA data formatively to identify teachers 

for further data collection by other methods, identifying those teachers who need professional 

development support, and providing that support.  
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Figure 1.1. Shared variance between student growth and classroom and teacher effects. 
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Table 1.1. 
 
Summary of Models 
 
 Type Cross-

Sectional 
or Panel 

Time 
Invariant 
Covariate
s 

Lagged 
Outcomes 
(Pretests) 

Teacher 
Effect 
Parameter 

School 
Random 
Effect 

HLM2 Nested 
random 
effects 

Cross-
sectional 

Yes 1 in same 
subject 

Teacher 
random 
effect (EB 
shrinkage 
estimator) 

No 

HLM3 1 in same 
subject 

Yes 

HLM3+ 2 in each of 2 
subjects 

SFE Fixed 
effects 

Panel Difference
d to zero 

None (all 
outcomes as  
DV) 

Mean of 
within-
teacher 
residuals 

N/A 

TFE Cross-
sectional 

Yes 1 in same 
subject 

Teacher 
fixed effect 
(dummy 
variable) 

SFEIV Panel (2 
periods) 

Difference
d to zero 

once lagged 
as 
endogenous 
predictor; 
twice lagged 
as instrument 
(same 
subject) 

Mean of 
within-
teacher 
residuals 

TFEIV Teacher 
fixed effect 
(dummy 
variable) 

DOLS 1 in same 
subject 

URM Hybrid RE 
& FE 

Cross-
sectional 

No 2 in each of 2 
subjects used 
to calculate 
composite 

Teacher 
random 
effect (EB 
shrinkage 
estimator) 

No 
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Table 1.2. 
 
List of Variables in Actual NC Data used in Calibrations and HLM4 Analysis 
 

Student Variables Description 

Correlated 
Covariate 

Calibration HLM4 
asian  Asian Ethnicity x x 
black  African American Race x x 
multi  Multiracial x x 
hispanic  Hispanic Ethnicity x x 
amindian  American Indian x x 
male   Gender = Boy x x 
frlnch* Free lunch x x 
redlnch* Reduced price lunch x x 
islep* Currently is LEP x x 
waslep* Was LEP in previous year x x 
ex_dis  Disabled x x 
ex_aig  Gifted x x 
movediy* Moved during school year   x 
movedpy* Moved between school years   x 
movedpymiss  Missing, moved between school years   x 
underage  Student is under age for grade x x 
overage  Student is over age for grade x x 
force_move Change of school due to advancement x x 

ma_peer/rd_peer 
Avg of peers' standardized exam 
scores, previous year x x 

    
Classroom 
Variables   
num_students   Number of students in classroom x x 
ma_peer_sd   / 
rd_peer_sd 

Classroom SD of previous year's 
exam scores x x 

lep75  Class LEP above 75th percentile x x 
dis75  Class disabled above 75th percentile x x 
aig75  Class gifted above 75th percentile x x 
frl75  Class FRL above 75th percentile x x 
oage75  Class overage above 75th percentile x x 
Teacher Variables   
teach_exp Teacher Experience (yrs) x   

elem_ed_ic 
Licensed elementary education: 
initial/continuing x   
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any_cont Any type of continuing license x   
any_init Any initial license x   

any_cont_tested 
Any type of continuing license in a 
tested subject x   

any_init_tested 
Any type of initial license in a tested 
subject x   

    
School Variables   

pctfrpl  
School level percent free/reduced pric 
lunch x x 

asian_mean  Proportion Asian x x 
black_mean  Proportion Black x x 
amindian_mean  Proportion American Indian x x 
hispanic_mean  Proportion Hispanic x x 
multi_mean  Proportion Multiracial x x 
tot_ppx  Total per pupil expenditures x x 
actper1k_l1  Violent acts per 1,000 previous year x x 

stsrate_l1  
Short term suspension rate previous 
year x x 

adm  
Average daily membership (Student 
pop.) x x 

admsq Squared ADM x   
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Table 1.3 
 
Calibration of Variance Component Inputs 
 

Unconditional Conditional 
Level Math Reading Math Reading 
Teacher 0.134 0.152 0.017 0.012 
School  0.138 0.120 0.034 0.016 
Residual (student) 0.452 0.310 0.352 0.243 

Teacher proportion 0.185 0.261 0.042 0.045 
Student proportion 0.625 0.533 0.874 0.894 
School proportion 0.190 0.206 0.085 0.060 

 
 



Table 1.4 
 
Mean Squared Error, Variance Decomposition Models
 

0 
URM 0.014 
HLM3P 0.011 
SFE 0.022 
DOLS 0.026 

 
 
 
 

 
Figure 1.2. Mean squared error, variance decomposition model
 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 0.02 0.04

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Proportion of Variance at Classroom Level

Mean Squared Error, Variance 

Decomposition Models

90 

Mean Squared Error, Variance Decomposition Models 

Proportion of Variance at Classroom Level
0.02 0.04 0.06 0.08 

0.022 0.030 0.038 0.046 0.054
0.018 0.025 0.032 0.039 0.046
0.023 0.025 0.027 0.028 0.030
0.034 0.041 0.049 0.057 0.065

Mean squared error, variance decomposition model. 

0.04 0.06 0.08 0.1 0.12

Proportion of Variance at Classroom Level

Mean Squared Error, Variance 

Decomposition Models

URM

HLM3P

SFE

DOLS

Proportion of Variance at Classroom Level 
0.1 0.12 

0.054 0.061 
0.046 0.052 
0.030 0.032 
0.065 0.073 

 



Table 1.5 
 
Correlation of Estimated Teacher Effect with
Variance 
 

0 
URM 0.946 
HLM3+ 0.955 
SFE 0.941 
DOLS 0.909 

 
 
 
 

 
Figure 1.3. Spearman correlation by classroom variance.
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Correlation of Estimated Teacher Effect with True Effect at Varying Levels of Classroom 

Proportion of Variance at Classroom Level 
0.02 0.04 0.06 0.08 

0.905 0.856 0.795 0.718 
0.913 0.864 0.802 0.724 
0.900 0.851 0.791 0.714 
0.869 0.822 0.763 0.689 

Spearman correlation by classroom variance. 

0.04 0.06 0.08 0.1 0.12

Proportion of Variance at Classroom Level

Spearman Correlation by Classroom Variance

True Effect at Varying Levels of Classroom 

 
0.1 0.12 

0.613 0.456 
0.618 0.460 
0.610 0.454 
0.589 0.437 

 

Spearman Correlation by Classroom Variance

URM

HLM3+

SFE

DOLS



Table 1.6 
 
Percent Agreement between TVA and True Teacher Effect on Identifying Bottom 5% of 
Teachers 
 

0 0.02
URM 97.443 96.564
HLM3 97.712 96.812
SFE 97.333 96.487
DOLS 96.622 96.036

 
 
 
 

 
Figure 1.4. Percent agreement on 5th percentile by classroom variance
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Percent Agreement between TVA and True Teacher Effect on Identifying Bottom 5% of 

Proportion of Variance at Classroom Level 
0.02 0.04 0.06 0.08 

96.564 95.813 95.035 94.226 93.354
96.812 96.014 95.167 94.331 93.472
96.487 95.750 94.994 94.170 93.313
96.036 95.352 94.725 93.990 93.172

Percent agreement on 5th percentile by classroom variance. 

0.04 0.06 0.08 0.1 0.12

Proportion of Variance at Classroom Level

% Agreement on 5th Percentile by Classroom 

Variance

Percent Agreement between TVA and True Teacher Effect on Identifying Bottom 5% of 

 
0.1 0.12 

93.354 92.372 
93.472 92.439 
93.313 92.351 
93.172 92.218 

 

% Agreement on 5th Percentile by Classroom 

URM

HLM3

SFE

DOLS



 

Table 1.7 
 
Number and Proportion of Teachers Falsely Identified as Ineffective by Classroom Proportion of Variance 
 

0 0.02 0.04 0.06 0.08 0.10 0.12 
Prop. N Prop. N Prop. N Prop. N Prop. N Prop. N Prop. N 

URM 0.013 118 0.017 155 0.021 193 0.025 225 0.029 264 0.034 309 0.040 357 
HLM3+ 0.012 108 0.016 144 0.020 182 0.024 219 0.028 256 0.034 302 0.039 352 
SFE 0.014 122 0.018 160 0.022 194 0.025 227 0.029 263 0.034 309 0.040 358 
DOLS 0.017 153 0.020 180 0.023 210 0.027 241 0.030 274 0.035 312 0.039 355 
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Table 1.8 
 
True Scores of Teachers Falsely Identified as Ineffective
 

0 
URM -1.41 
HLM3+ -1.43 
SFE -1.40 
DOLS -1.33 

 
 
 
 

 
Figure 1.5. True scores of teachers falsely identified as ineffective
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True Scores of Teachers Falsely Identified as Ineffective 

Proportion of Variance at Classroom Level 
0.02 0.04 0.06 0.08 

-1.33 -1.24 -1.14 -1.02 -
-1.35 -1.26 -1.16 -1.03 -
-1.32 -1.23 -1.13 -1.01 -
-1.26 -1.18 -1.09 -0.98 -

True scores of teachers falsely identified as ineffective. 

0.04 0.06 0.08 0.1 0.12

Percent of Variance at Classroom Level

True Scores of Teachers Falsely Identified as 

Ineffective

 
0.1 0.12 

-0.85 -0.61 
-0.86 -0.63 
-0.84 -0.61 
-0.81 -0.58 

 

URM

HLM3+

SFE

DOLS
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Table 1.9 
 
Mean Squared Error 
 

Correlation between Teacher and Classroom Effects 
-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 

URM 0.08 0.08 0.08 0.08 0.08 0.07 0.07 
HLM3P 0.06 0.06 0.05 0.05 0.06 0.05 0.05 
SFE 0.11 0.10 0.10 0.09 0.09 0.09 0.08 
DOLS 0.14 0.14 0.13 0.13 0.13 0.14 0.13 

 
 
 
 

 
 
Figure 1.6. Mean squared error, correlated covariate models. 
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Table 1.10 
 
Spearman Rank Order Correlation by Correlation between Teacher and Classroom
 

Correlation between Teacher and 
-0.60 -

URM 0.670 0.668
HLM3+ 0.758 0.767
SFE 0.612 0.619
DOLS 0.684 0.681

 
 
 
 

 
Figure 1.7. Spearman rank order correlation by level of correlation between classroom and 
teacher. 
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Spearman Rank Order Correlation by Correlation between Teacher and Classroom

Correlation between Teacher and Classroom 
-0.40 -0.20 0.00 0.20 
0.668 0.686 0.701 0.684 
0.767 0.783 0.788 0.760 
0.619 0.636 0.639 0.634 
0.681 0.699 0.701 0.698 

Spearman rank order correlation by level of correlation between classroom and 

-0.20 0.00 0.20 0.40 0.60

Correlation between Classroom and Teacher

Spearman Rank Order Correlation

by Level of Correlation between Classroom 

and Teacher

Spearman Rank Order Correlation by Correlation between Teacher and Classroom 

 
0.40 0.60 

0.716 0.728 
0.777 0.780 
0.657 0.674 
0.688 0.704 

 

Spearman rank order correlation by level of correlation between classroom and 

URM

HLM3+
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Table 1.11 
 
Percent Agreement between TVA and True Estimate on Bottom 5% of Teachers
 

-0.6 

URM 93.8 
HLM3+ 94.7 
SFE 93.4 
DOLS 94.0 

 
 
 
 

 
Figure 1.8. Percent agreement, bottom 5% of teachers
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Percent Agreement between TVA and True Estimate on Bottom 5% of Teachers

Correlation between Teachers and Classrooms
-0.4 -0.2 0 0.2 

93.7 93.9 93.9 94.0 94.3
94.7 94.8 94.8 94.7 94.9
93.3 93.5 93.4 93.5 93.8
93.9 94.0 93.9 93.9 94.0

Percent agreement, bottom 5% of teachers. 

-0.2

Correlation between Classroom and Teacher

% Agreement, Bottom 5% of Teachers

Percent Agreement between TVA and True Estimate on Bottom 5% of Teachers 

Correlation between Teachers and Classrooms 
0.4 0.6 

94.3 94.4 
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Table 1.12 
 
Proportion and Number of Teachers Falsely Identified as Ineffective 
 

Correlation between Teacher and Classroom Effects 
-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 

Prop. N Prop. N Prop. N Prop. N Prop. N Prop. N Prop. N 
URM 0.031 277 0.032 288 0.030 270 0.031 277 0.030 273 0.030 267 0.028 256 
HLM3+ 0.027 241 0.027 245 0.026 232 0.026 232 0.026 236 0.026 231 0.025 229 
SFE 0.033 300 0.034 306 0.033 293 0.033 293 0.033 293 0.032 288 0.030 273 
DOLS 0.030 270 0.031 282 0.029 265 0.031 275 0.030 274 0.031 275 0.030 269 

Assuming 9,000 Fifth Grade Teachers 
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Table 1.13 
 
True Z Scores of Teachers Falsely Identified as Ineffective
 

Correlation between Teacher and Classroom Effects
-0.60 

URM -0.93 
HLM3+ -1.08 
SFE -0.85 
DOLS -0.95 

 

 
Figure 1.9. True Z scores of teachers above cutoff with TVAEs 
correlation between classroom and teacher.
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True Z Scores of Teachers Falsely Identified as Ineffective 

Correlation between Teacher and Classroom Effects
-0.40 -0.20 0.00 0.20 0.40
-0.93 -0.95 -0.96 -0.98 -1.00
-1.09 -1.10 -1.12 -1.12 -1.12
-0.86 -0.86 -0.89 -0.92 -0.92
-0.96 -0.99 -0.99 -0.98 -0.98

 
 
 

True Z scores of teachers above cutoff with TVAEs below cutoff by level of 
correlation between classroom and teacher. 
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Table 1.14 
 
Correlation of Estimated Teacher Effect with True Effect at Varying Levels of Classroom 
Variance 
 
4 Cohorts 

0 
URM 0.947 0.906
HLM3+ 0.955 0.914
SFE 0.942 0.901
DOLS 0.911 0.872

 
 
 
 

 
Figure 1.10. Spearman correlation by classroom variance
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Correlation of Estimated Teacher Effect with True Effect at Varying Levels of Classroom 

Proportion of Variance at Classroom Level
0.02 0.04 0.06 0.08 

0.906 0.857 0.796 0.719 
0.914 0.864 0.803 0.724 
0.901 0.852 0.792 0.715 
0.872 0.825 0.766 0.691 

Spearman correlation by classroom variance. 

0.04 0.06 0.08 0.1 0.12

Proportion of Variance at Classroom Level

Spearman Correlation by Classroom 

Variance

URM

HLM3+

SFE

DOLS

Correlation of Estimated Teacher Effect with True Effect at Varying Levels of Classroom 

Variance at Classroom Level 
0.1 0.12 

0.614 0.456 
0.619 0.460 
0.611 0.454 
0.590 0.439 

 



Table 1.15 
 
Percent Agreement between TVA and True Teacher Effect on Identifying Bottom 5% of 
Teachers 
 
4 Cohorts 

0 
URM 97.400 96.612
HLM3 97.570 96.739
SFE 97.285 96.492
DOLS 96.677 96.110

 
 
 
 

 
Figure 1.11. Percent agreement on 5th percentile by classroom variance
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Percent Agreement between TVA and True Teacher Effect on Identifying Bottom 5% of 

Proportion of Variance at Classroom Level 
0.02 0.04 0.06 0.08 

96.612 95.839 95.049 94.199 93.333
96.739 95.923 95.148 94.276 93.390
96.492 95.758 95.001 94.170 93.316
96.110 95.429 94.749 93.969 93.193

Percent agreement on 5th percentile by classroom variance. 

0.04 0.06 0.08 0.1 0.12

Proportion of Variance at Classroom Level

% Agreement on 5th Percentile by 

Classroom Variance

Percent Agreement between TVA and True Teacher Effect on Identifying Bottom 5% of 

 
0.1 0.12 

93.333 92.379 
93.390 92.420 
93.316 92.372 
93.193 92.267 

 

URM
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DOLS



 

Table 1.16 
 
Number and Proportion of Teachers Falsely Identified as Ineffective by Classroom Proportion of Variance 
 
4 Cohorts 

0 0.02 0.04 0.06 0.08 0.10 0.12 
Prop. N Prop. N Prop. N Prop. N Prop. N Prop. N Prop. N 

URM 0.007 62 0.008 74 0.010 88 0.011 103 0.013 120 0.015 136 0.018 160 
HLM3+ 0.006 57 0.008 69 0.009 85 0.011 99 0.013 115 0.015 137 0.017 157 
SFE 0.007 65 0.009 77 0.010 89 0.011 103 0.013 118 0.015 137 0.018 161 
DOLS 0.008 72 0.010 86 0.011 98 0.012 110 0.014 124 0.016 140 0.018 161 
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Table 1.17 
 
True Scores of Teachers Falsely Identified as Ineffective
 
4 Cohorts 

0 

URM -1.74 
HLM3+ -1.77 
SFE -1.73 
DOLS -1.67 

 
 
 
 

 
Figure 1.12. True scores of teachers falsely identified as ineffective.
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True Scores of Teachers Falsely Identified as Ineffective 

Proportion of Variance at Classroom Level
0.02 0.04 0.06 0.08 

-1.68 -1.61 -1.53 -1.42 
-1.71 -1.62 -1.54 -1.43 
-1.66 -1.59 -1.52 -1.41 
-1.60 -1.55 -1.47 -1.38 

True scores of teachers falsely identified as ineffective. 

0.04 0.06 0.08 0.1 0.12

Percent of Variance at Classroom Level

True Scores of Teachers Falsely Identified as Ineffective

Proportion of Variance at Classroom Level 
0.1 0.12 

-1.27 -0.99 
-1.25 -1.00 
-1.27 -0.99 
-1.22 -0.96 
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Table 1.18 
 
Correlated Covariate Simulation: 2 vs. 4 Cohorts 
 

True Scores, Proportion and Number of Teachers Falsely Identified 
as Ineffective 

Spearman Rank 
Order Correlation  

Percent Agreement 
on Bottom 5% 2 Cohorts 4 Cohorts 

2 
Cohorts 

4 
Cohorts 

2 
Cohorts 

4 
Cohorts 

True 
Score 

Proportio
n 

No. of 
Teachers 

True 
Score 

Proportio
n 

No. of 
Teacher

s 
URM 0.686 0.748 93.87 94.50 -0.961 0.032 284 -1.059 0.028 249 
HLM3
+ 0.762 0.820 94.68 95.32 -1.079 0.027 245 -1.181 0.024 212 
SFE 0.638 0.706 93.49 94.07 -0.896 0.033 299 -0.987 0.029 264 
DOLS 0.697 0.748 94.05 94.45 -0.966 0.030 270 -1.063 0.028 252 

At 0.20 correlation between teachers and classrooms 
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Table 1.19 
 
HLM4 Model Results: Variance Decomposition Models 
 

Proportion of Variance at Classroom Level 
Spearman Rank Order 
Correlations 0.864 0.803 0.725 0.620 0.461 
Percent Agreement, Bottom 
5% 96.02 95.17 94.35 93.47 92.41 
Teachers Falsely Identified as 
Ineffective  

Mean True Z-Score -1.26 -1.15 -1.04 -0.87 -0.63 

Proportion Falsely Identified 0.02 0.02 0.03 0.03 0.04 
N (Assuming 9,000 5th  
Grade Teachers) 180.86 218.25 254.77 301.44 352.55 
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Table 1.20 
 
True Scores, Proportion, and Number of Teachers Falsely Identified as Ineffective (HLM4 
and CCOV Models) 
 

HLM4 
Spearman 

Rank Order 

Percent 
Agreement on 

Bottom 5% True Score Proportion N (of 9,000) 
-0.6 0.726 94.31 -1.01 0.028 256 
-0.4 0.720 94.30 -1.00 0.029 265 
-0.2 0.730 94.30 -1.01 0.028 254 

0 0.728 94.142 -1.02 0.029 263 
0.2 0.707 94.10 -1.02 0.029 259 
0.4 0.730 94.36 -1.03 0.029 259 
0.6 0.740 94.46 -1.05 0.028 249 

CCOV 
Spearman 

Rank Order 

Percent 
Agreement on 

Bottom 5% True Score Proportion N (of 9,000) 
-0.6 0.802 95.23 -1.14 0.024 220 
-0.4 0.802 95.08 -1.14 0.025 221 
-0.2 0.800 95.20 -1.14 0.024 217 

0 0.799 94.93 -1.14 0.025 224 
0.2 0.763 94.62 -1.09 0.026 237 
0.4 0.775 94.69 -1.10 0.027 240 
0.6 0.763 94.66 -1.10 0.027 243 

 
 
 



 

CHAPTER 2. CAREER RELEVANT INSTRUCTION AS A CAUSAL PROCESS IN 
THE CAREERSTART TEACHING INTERVENTION PROGRAM 

 
Teacher effects on student achievement are widely seen in education policy as large, 

suggesting a potential for student gains by focusing policies on intervening with teachers 

(Nye, Konstantopolous, & Hedges, 2004). Education policy researchers have identified 

several policy interventions for promoting teacher effectiveness: high stakes accountability 

consisting of rewards or sanctions, promoted largely by economists (e.g., Gordon, Kain & 

Staiger, 2006); pre-service training, promoted mainly by education scholars (e.g., Hill et al., 

2008; Wayne & Youngs, 2003); and in-service training or professional development (PD) in 

the form of interventions offered to teachers to alter their instructional practices, promoted by 

scholars across a spectrum of disciplines including policy, education and social work (e.g., 

Grossman et al., 2000; Orthner et al., 2010). Ultimately, all three approaches imply that 

teachers will adopt more effective teaching strategies though the routes to adoption differ 

(Hiebert & Morris, 2012).  

A strong case has been made for high stakes accountability policies (e.g., Gordon, 

Kain & Staiger, 2006) in part because the evidence suggests that the relationship between 

training (e.g., certification programs) and effective practice may be weak (Boyd, Grossman, 

Lankford, Loeb, & Wyckoff, 2008; Goldhaber & Brewer, 2000; Harris & Sass, 2011; Smith, 

Desimone & Ueno, 2005). However, by examining easily-measured structural features of 

teachers’ preparation (e.g., the number of content area courses required by a preparation 

program), teachers’ pre-preparation characteristics (e.g., college entrance exam scores), the 
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effects of specific teacher practices may not be realized (Kennedy, 2010; Palardy & 

Rumberger, 2008). Alternatively, these practices should be observed and measured (Rowan, 

Correnti & Miller, 2002; Smith, Desimone & Ueno, 2005), and effective practices 

incorporated into pre-service and in-service training and PD (Palardy & Rumberger, 2008). 

Evidence-based teaching practices oriented around promoting teacher effectiveness and 

ultimately student achievement can be identified using rigorous designs such as experiments 

or rigorous non-experimental methods (Cohen, Raudenbush & Ball, 2003; Rowan, Correnti 

& Miller, 2002).  

Rigorous studies informing best practices should build on the evidence demonstrating 

the processes by which children learn (Brophy & Good, 1986; Cohen, Raudenbush & Ball, 

2003; Hill et al., 2008; Hill, Rowan & Ball, 2005). A well-known objective process of 

student learning is school engagement, which represents an emotional, behavioral, or 

cognitive investment in learning tasks (Finn, 1989; Fredricks, Blumenfeld & Paris, 2004). 

Motivation has been shown to be a subjective precursor of engagement (Eccles & Wigfield, 

2002), and studies suggest that teaching strategies that target motivation may alter 

engagement (Orthner, Jones-Sanpei, Akos & Rose, 2012; Wentzel & Wigfield, 2007). One 

practice strategy that has demonstrated some promise and has been shown to operate through 

known motivational processes is relevance, the practice of associating course material with 

affectively and cognitively important aspects of students’ current or future lives (Hulleman, 

Godes, Hendricks & Harackiewicz, 2010). That is, course material is presented in ways in 

which it is associated with potential uses outside of the classroom. This may address several 

motivational challenges facing students in a typical classroom setting, where instruction is 
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typically decontextualized (e.g., Cordova & Lepper, 1996; Husman, Derryberry, Crowson & 

Lomax, 2004).  

One relevance-based teaching practice intervention, CareerStart, supports teachers in 

their efforts to use career-relevant instruction (CRI)—the relevance of jobs and careers that 

students might have in the future—as a middle school motivational technique (Orthner et al., 

2010). A randomized control trial (RCT) of CareerStart demonstrated significant effects on 

teacher use of CRI in math and science (Rose, Woolley, Orthner, Akos, Jones-Sanpei, 2012); 

and in student outcomes such as school valuing, a measure of emotional engagement with 

schooling (Orthner et al., 2012), middle school end-of-grade math achievement (Woolley et 

al., in press), and high school end-of-course biology achievement and progress towards 

graduation (Woolley, Unick, Rose & Orthner, in revision).  

However, the process by which CareerStart achieves these effects has only been 

partially confirmed. Understanding this process is essential to its further development and 

dissemination as a best practice. A logic model for CareerStart (Figure 2.1) suggests that by 

increasing teachers’ use of CRI (Rose et al., 2012). CareerStart promotes higher engagement 

and achievement partly through the effect of CRI on students’ motivation. Although the RCT 

enabled causal inferences about CareerStart from correlational analyses, the same cannot be 

said for causal inferences about CRI. That is, CRI was not randomly assigned to teachers. 

Instead, teachers who participated in CareerStart had a higher probability of using CRI—

itself a causal inference due to the randomization of CareerStart—but other factors not under 

the control of the evaluator, such as teachers’ years of experience, which are also associated 

with achievement, were shown to have influenced teachers’ use of CRI (Rose et al., 2012).  
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This study uses a rigorous econometric method typically used in non-experimental 

settings, instrumental variable estimation (IVE), combined with the random assignment of 

CareerStart to estimate a local average treatment effect (LATE; Angrist, Imbens & Rubin, 

1996) for CRI and demonstrate a causal effect of CRI on engagement and achievement 

despite the non-randomness inherent in teachers’ use of CRI. By establishing CRI as the 

pathway through which CareerStart promotes achievement, this study has potential to both 

support the logic model for the intervention and CareerStart as a validated best practice for 

teaching.  

In the following sections, I discuss the roles of engagement and motivation in student 

learning. I then describe five theories of motivation that may inform the importance of 

relevance as an instructional practice strategy, review the extant literature demonstrating the 

congruence of these theories, suggesting multiple pathways for relevance. I then review 

studies suggesting the instructional strategies that relevance may ultimately change. I follow 

this with a discussion of career relevant instruction and the CareerStart treatment program. 

Following that, I describe the methods and results of an investigation, based on an 

experimental evaluation of CareerStart, showing that career relevant instruction is a process 

for the benefits promoted by CareerStart and has a causal impact on students’ engagement 

and achievement. Practice and policy implications for the findings are provided.  

Engagement and Motivation 

The processes by which children learn may inform practice strategies that can be 

investigated for evidence in promoting achievement (Brophy & Good, 1986; Cohen, 

Raudenbush & Ball, 2003; Hill et al., 2008; Hill, Rowan & Ball, 2005). School engagement 

is a well-known objective process of student learning, which represents a cognitive 
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investment in learning tasks (Finn, 1989; Fredricks, Blumenfeld & Paris, 2004) and can be 

targeted for teaching practice intervention (Wentzel & Wigfield, 2007). 

School Engagement as a Learning Process 

School engagement, an objective dimension implying an individual commitment or 

investment of cognitive resources in learning tasks, has long been considered a causal 

process in learning and an important precursor to student achievement (e.g., Finn, 1989; Finn 

& Rock, 1997). Engagement is now understood to consist of three sub-dimensions—

behavioral, emotional and cognitive (Fredricks, Blumenfeld & Paris, 2004): a) behavioral 

engagement concerns student conduct and demonstration of staying on-task; b) emotional 

engagement concerns students’ attitudes, interests and values towards schooling; and c) 

cognitive engagement, which is a relatively new type of engagement, relates to motivational 

goals and self-regulating behavior.  

Engagement is associated with students’ successful transition from middle to high 

school (Anderman, Maehr & Midgley, 1999), and is a predictor of school drop out, with less 

engaged children more likely to drop out of school (Finn, 1989). Because academic resilience 

is partly explained by engagement, disengagement is a risk factor for school failure, and a 

potential target for intervention (Finn & Rock, 1997). Disengagement from school, which is 

often driven by factors outside of the control of the children or the school, such as parental 

work and income or neighborhood safety, is a developmental process that begins at an early 

age (Finn, 1989). A lack of fit between developmental needs and the social opportunities and 

structures provided to middle school adolescents may be an underlying source of maladaptive 

behaviors of children undergoing intense biological and social changes (Roeser, Eccles & 

Sameroff, 2000). For example, a key part of students’ developmental growth is to recognize 
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the link between their academic behavior and their performance in schools (Roeser, Eccles & 

Sameroff, 2000), and low performers are less likely than others to have recognized such 

connections (Anderman et al., 2010). To give these students the same opportunities as their 

better prepared peers, developmentally appropriate engagement interventions are needed, and 

introducing such interventions in the middle grades may act as a protective investment for 

later engagement in high school and prevent drop out (Balfanz, Herzog & Mac Iver, 2007; 

Janosz, Archambault, Morizt & Pagani, 2008). Again, because disengagement is often 

predicated on factors that are external to school and not under the direct control of educators, 

an important strategy is to strengthen the resilience of students’ engagement to these 

distractions and obstacles (Balfanz, Herzog & Mac Iver, 2007).  

Motivational Teaching Practices 

A goal of improving engagement suggests a teaching practice method that strengthens 

its causal precursors. Motivation, a subjective rather than objective antecedent of student 

achievement, may be a leverage point for intervening in student engagement (Wentzel & 

Wigfield, 2007). Motivation has been defined as “the process by which goal-directed activity 

is instigated and sustained” (Schunk, Pintrich, & Meece, 2008, p. 4), or a “set of processes 

that provides energy for different behaviors” (Wentzel & Wigfield, 2007, p. 262). In 

education research, the study of motivation is largely conducted by educational psychologists 

with the goal of understanding “how to motivate people to engage in new learning” (Weiner, 

1990, p. 618). Motivation is distinct from engagement but a direct causal antecedent, and 

those students reporting greater motivation demonstrate greater engagement (Balfanz, 

Herzog & Mac Iver, 2007). Thus, if motivation is improved via targeted teaching practices 

that are applied alongside quality content expertise, engagement may improve as well.  
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Opportunities exist for the implementation of motivational teaching practices. Two 

historical tendencies in instructional practice present significant challenges for motivating 

students to learn. First, teachers present new material in highly decontextualized forms to 

ensure it has the highest generalizability, and in doing so, it robs the material of what may 

make it interesting to students; paradoxically, any context that may be interesting may be a 

useful way to motivate (Cordova & Lepper, 1996). Second, school is by its very nature 

future-oriented, in that children are schooled to prepare them for their futures. This suggests 

three additional problems. First, early adolescents are by this developmental stage primarily 

focused on the present. Second, if the future is not seen as positive and hopeful, it may be an 

insufficient motivation, which may be one reason why minority students relatively 

underperform (Phalet, Andriessen & Lens, 2004). Third, if the future goals cannot be 

translated into more proximal near-term goals, then they may seem too far out of focus or 

reach to be realistic motivators, a challenge that may be even more urgent for younger 

children (Husman & Lens, 1999). By disconnecting the skills and knowledge of the 

classroom from the factors that give them relevance, less-prepared learners who do not 

inherently see these links are put at disadvantage. Thus, a candidate for motivational 

intervention is to imbue the content with relevance to children’s lives. In the next section, I 

discuss the motivational theories that may lend support to this hypothesis.  

Relevance and Motivation 

Relevance describes students’ perception of one or more potential uses for the 

material that they learn in school, outside of just successfully completing their schoolwork. 

Individual or multiple but congruent motivational theories may explain the process by which 

relevance benefits student motivation, engagement, and therefore learning (Hulleman, Durik, 
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Schweigert & Harackiewicz, 2008). These include expectancy value theory (Eccles & 

Wigfield, 2002); interest theories (Hidi & Harackiewicz, 2000; Schiefele, 1991); goal 

orientation theories (Ames, 1992; Harackiewicz, Barron, Pintrich, Elliot & Thrash, 2002); 

self-determination theory and intrinsic and extrinsic motivation theories (Lepper & Cordova, 

1992; Ryan & Deci, 2000); and identity or possible future selves theory (Markus & Nurius, 

1986).  

Motivational Theories 

First, the task value component of expectancy value theory (EVT) makes explicit that 

the utility of what is being learned may provide important cognitive and affective 

components to the motivation to learn (Eccles & Wigfield, 2002). Task value in EVT 

consists of four perceptive constructs associating a task with some relative value: attainment 

value (the importance of doing well on a task), intrinsic value (enjoyment from undertaking a 

task), utility value (the use of the task to complete other goals), and cost belief (the 

opportunity cost of what is lost by undertaking an activity) (Wigfield & Eccles, 1992). The 

third of these, utility value, describes the perception of future uses for these tasks, which may 

be a mediator for relevance (Wigfield & Eccles, 1992).  

Second, relevance may be directed through an effect on students’ goal orientations. 

Goals are generally dichotomized into mastery and performance goals (Ames, 1992), though 

a further distinction can be made between performance-approach and performance-avoid 

(Harackiewicz, Barron, Pintrich, Elliot & Thrash, 2002). A mastery goal orientation is 

marked by a student’s perception that the content is useful in and of itself and so worth 

learning, but not just to demonstrate performance relative to others (Ames, 1992). 

Performance-approach is an orientation concerning performance relative to others that is 
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marked by a student’s perception of the importance of doing well on a task relative to others 

on a task; alternatively, performance-avoid is an orientation away from tasks that the student 

perceives that they will not perform well at relative to other students (Harackiewicz, Barron, 

Pintrich, Elliot & Thrash, 2002). Relevance may not operate through a performance 

orientation. Evidence shows, however, that the learning environment becomes more oriented 

towards performance goals than mastery goals during middle school (Anderman & Midgely, 

1997). Reorienting the middle school classroom environment to support the relevance of 

learning tasks may therefore support a mastery goal orientation (Cordova & Lepper, 1996).  

Third, interest theories (Schiefele, 1991) support the notion that students’ affect 

towards certain subjects can be a powerful motivator and can be manipulated within the 

classroom setting. As noted previously, interest is a component of task value in EVT 

(Wigfield & Eccles, 1992), but it has received substantial attention in its own right as a 

motivational construct. The key facet of interest is that it is an emotional or affective 

constituent of motivation, not a cognitive one (Schiefele, 1991). Relevance may help teachers 

associate course material with interests that students already have, or it may help teachers 

cultivate new interests in students.  

Fourth, intrinsic and extrinsic motivation theories (Lepper & Cordova, 1992), and 

theories of self-determination (Ryan & Deci, 2000), suggest that students have basic needs 

for autonomy and self-competence, such that motivation for a specific task that is initiated as 

an internal state (intrinsic) will be sustained more deeply and for longer than motivation for 

the same task that is initiated by another person (extrinsic). That is, cognitive motivation can 

be promoted and maintained if students feel like they are pushing themselves rather than 

being coerced by others (Ryan & Deci, 2000). For students to be autonomous and make 
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informed choices regarding the direction of their work, they should have information about 

how the tasks and material can benefit them in some way outside of the classroom (Skinner 

& Belmont, 1993). Extrinsic and intrinsic motivation for a specific task were once thought of 

as extreme ends of a single dimension, but are now viewed as two negatively correlated 

dimensions in which extrinsic rewards may undermine intrinsic motivations (Lepper, Corpus 

& Iyengar, 2005). Intrinsic interest in the material may make it self-sustaining, reducing the 

need to use motivation-undermining extrinsic methods (Hidi & Renninger, 2006). 

Fifth, identity theories of motivation, notably possible selves theory, suggest that 

students’ positive images of their future selves can be called on to compel students to behave 

in accordance with these images and act as a motivator for learning (Markus & Nurius, 1986; 

Oyserman, 2008). Generally, identity motives, which students may not be consciously aware 

of, exert pressure to seek desirable identities and avoid undesirable identities (Vignoles, 

Golledge, Regalia, Manzi & Scabini, 2006). Consequently, instruction that is relevant to 

desirable future possibilities can provide cues to students to learn new concepts that are 

consistent with these identities, and students who report that their possible selves appear 

clearer to them perform better academically (Oyserman, 2008; Oyserman, Bybee & Terry, 

2006). 

Multiple Motivational Pathways for Relevance 

As suggested in the preceding discussion, studies support the relationship between 

relevance and each of five key motivational constructs. Alternatively, relevance may operate 

concurrently or sequentially through groups of these constructs. The extant literature 

examining multiple motivational constructs lends support to the suggestion that many of 

these theories are congruent. In this framework, students’ intrinsic interest in the material is, 



117 

in the context of relevance as a practice strategy, the ultimate motivational construct 

preceding engagement, with the other constructs causally preceding and supporting intrinsic 

interest.  

First, as noted previously, associating the tasks or content with aspects of value to 

students may activate an affective response and promote interest in the material (Cordova & 

Lepper, 1996). Interest and intrinsic motivation are often used interchangeably (Hidi & 

Harackiewicz, 2000), and in fact, they may share some precursors, e.g., need-related feelings 

may underly the development of interest and intrinsic motivation (Krapp, 2005). But interest 

should be seen as a distinct validated causal antecedent of intrinsic motivation (Hidi & 

Harackiewicz, 2000), and in fact is likely to be mediated by other factors preceding intrinsic 

interest, including task value and autonomy (Hulleman, Durik, Schweigert & Harackiewicz, 

2008).  

Second, a mastery goal orientation may be promoted by associating the content or 

tasks with factors of value to students’ current or future lives (Husman & Lens, 1999; Meece, 

2003). Goal orientation and interest may also have a relationship; for example, mastery goals 

are associated with increased interest among low-achieving children (Harackiewicz & Elliot, 

1993). The role of relevance in goal development is supported by a related theory, future 

time perspective (FTP; Husman & Lens, 1999). FTP suggests that near-term self-regulation 

can be influenced by future goals if these future goals promote proximal subgoals that can 

help attain the future goals (Miller & Brickman, 2004). Motivation is thus improved by 

informing the potential future use of a task or of knowledge, and by providing sufficient 

information about the authenticity of the task or knowledge (Husman, Derryberry, Growson 

& Lomax, 2004).  
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Third, task value may follow goal orientation and interests, but may also be 

independently promoted via relevance as relevance directly clarifies the current or future 

utility of a task. The task value component of EVT has both a direct effect on intrinsic or 

extrinsic motivation, as well as an indirect effect mediated by autonomy (Hidi & 

Harackiewicz, 2000). Identity or possible selves theory also suggests the importance of task 

value as a related concept in the context of relevance (Orthner et al., 2010). Relevance, by 

promoting the utility of a task can provide a framework for students to link the task to their 

identity formation and clarify those identities. Finally, situational interest in the task, and 

goals developed via the knowledge associated with utility of the task, may also spur the 

development of deeper interests, consistent with the four-phase model proposed for interest 

development (Hidi & Renninger, 2006). 

These constituents of the relevance-motivation process form the basis for the 

knowledge and values that motivates students and encourages them to engage in learning. In 

the next section, I discuss relevance interventions, which target motivational processes with 

the ultimate aim of promoting engagement and performance. 

Relevance as an Intervention in Instructional Practice 

A body of research dating back to Keller (1987) suggests that improving students’ 

perceptions of the relevance of learning tasks and schoolwork is a method to directly 

intervene with students in a cognitive and affective manner. Students begin their schooling 

reporting a high level of motivation and demonstrating high engagement, but their motivation 

is subsequently dulled by the schooling experience, and evidence across all levels of 

schooling shows that to change this, authentic academic work consisting of meaningful 

problems that are relevant to students may be needed (Marks, 2000). Decontextualized 
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instruction, which I now turn to discuss, may be the primary teaching practice that interrupts 

students’ motivation.  

The Challenges of Decontextualized Instruction 

Generally, content is taught by teachers in the most decontextualized form possible, 

which serves to maximize its generalizability to a wide array of possible uses (Cordova & 

Lepper, 1996). However, researchers have identified several problems with this approach. 

First, it removes from the material the information about the utility of the task or knowledge 

that might encourage students to learn the material, dulling students’ autonomy. Second, the 

inherent future-bias of these uses, which is consistent with the purpose of schooling, means 

that the utility of the material being taught is not immediately relevant to students even if 

such utility can be made explicit. As a result, goal formulation may be challenged. Third, it 

removes from the material the context that makes it interesting, which may serve as a 

primary affective motivator that acts independently to motivate students’ interest in the 

material.  

Information about task utility. To generalize the material being learned to a wide 

number of uses, educators have typically presented new tasks and content without the context 

for their uses (Cordova & Lepper, 1996). This is an admirable objective but is highly 

idealized, implicating the assumption that students themselves will visualize at present or in 

the future how the tasks and content may be of value to them. More realistically, 

decontextualization of the material, by separating the material from the information with 

which the material is associated, does not accord with how young children are shown to learn 

(Cordova & Lepper, 1996). By leaving the impetus for connecting the content and tasks to 

their current or future uses to the students themselves puts many students at a disadvantage 
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and leaves these students without valuable, if imperfect or incomplete, information about the 

utility of the tasks and content (Assor, Kaplan & Roth, 2002; Greene et al., 2004).  

Addressing this may be as simple as having the teacher explain how the learning task 

will help the students achieve certain goals, and asking the students about how they feel 

about such tasks in this regard (Assor, Kaplan & Roth, 2002). Providing the context for the 

material will directly influence the perceived instrumentality of a task, implying that it is an 

immediate outcome of relevant classroom instruction (Greene et al., 2004). In this context, 

relevance has been included as either a component of autonomy support (Assor, Kaplan & 

Roth, 2002; Skinner & Belmont, 1993) or as a component of motivating tasks (Greene et al., 

2004), both of which are viewed as causal precursors of autonomy. Assor, Kaplan & Roth 

(2002), argued that their findings suggest that autonomy, or choice, is ineffective without the 

support from the teacher, in the form of understanding the relevance of the material in a way 

needed to act autonomously. These authors entered relevance into their model as a 

component of autonomy support or enhancement. In Greene et al. (2004), relevance was 

included in the motivating tasks dimension, not autonomy support; although autonomy 

support did not predict the perceived instrumentality or utility of a task, motivating tasks did 

(Greene et al., 2004). In both cases, relevance was part of a broader measure predicting 

autonomy.  

Future Relevance for the task. Dewey argued against tying content to future use, 

arguing that it sent a message devaluing students’ current interests (Dewey, 1916). But 

schooling is inherently future oriented, largely lacking links to the present interests of 

students (Hagay & Baram-Tsabari, 2011). Therefore a focus on children’s futures may often 

be lacking, which may be one reason why minority students who often perceive lesser future 
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prospects underperform, may also reduce the motivation of some groups of children 

particularly those already at risk for school failure, which may contribute to the achievement 

gap (Phalet, Andriessen & Lens, 2004).  

The efforts at making topics and tasks relevant as described in the previous section, if 

they can be associated with future uses, are intended to address this shortcoming. By making 

explicit the future adult uses for the learned tasks and material, it accomplishes two related 

objectives. First, it helps students to see the value of the task to their futures and thus 

illustrates the value of being successful at the task in the present; and it illuminates positive 

prospects for students’ futures by relating current success at the task to future success at the 

task as an adult (Husman, Derryberry, Crowson & Lomax, 2004; Husman & Lens, 1999; 

Miller & Brickman, 2004). This finding generalizes to minority populations (Phalet, 

Andriessen & Lens, 2004).  

Interest in the task. The highly decontextualized form of teaching, meant to convey 

material in as generalizable a manner as possible, robs the material of what may make it most 

interesting to students (Cordova & Lepper, 1996). That is, the content is present without the 

context that may engage students’ affective response to it, making it dull and boring and 

resulting in a steady decline in intrinsic motivation from elementary through high school 

(Cordova & Lepper, 1996). Associating the material with a meaningful context, including 

about its use in students lives’ at present and in the future, may provide a way to invigorate 

students’ interest in the material. Tasks that are both cognitively demanding and relevant in 

the sense of being useful for students’ needs promote higher levels of motivation (Hoyt, 

2005) and engagement (Marks, 2000). Lessons that employ conceptual teaching strategies, 

such as those that demonstrate the utility of math to real life, may encourage higher cognitive 



122 

engagement than those that focus on rote procedures and memorization (Smith, Desimone & 

Ueno, 2005).  

Evidence for Relevance Oriented Teaching Strategies 

There is ample evidence in the education literature for the benefits that may come 

from intervening with relevance-oriented teaching practices to reverse the 

decontextualization of course content. I divide these findings into relevance for students’ 

current and future lives.  

Current. In a study of a fantasy-based computer-aided math learning tool, children 

completed math problems using one of five conditions—a non-fantasy control condition, and 

four progressively embellished fantasy conditions, including a generic fantasy condition, a 

personalized fantasy condition whereby the student was able to choose the particular fantasy, 

and two nearly-equivalent conditions that also allowed the students to select from 

instructionally-irrelevant features (Cordova & Lepper, 1996). In general, students learning 

from the fantasy oriented programs benefited relative to those in the control condition, but 

students in the most embellished condition improved more, used deeper task involvement, 

more complex operations, and learned more (Cordova & Lepper, 1996).  

In a study of a science curriculum based around linking science to students’ lives, 

which included inquiries such as why the students should wear a helmet while bicycling, 

demonstrated large effect sizes that were significant three years after the intervention, 

continuing into high school; students demonstrated higher order science thinking skills and 

narrowed a gender gap with boys closing the gap on girls (Geier et al., 2008). Two further 

studies of a relevance intervention in which undergraduate students were asked to provide a 

written explanation on how a technique that they had just learned would have relevance to 
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their lives was shown to increase perceptions of utility value and maintained situational 

interest in the material, particularly among those lowest in performance between pre and 

posttest; further, perceived utility value mediated the intervention’s effect on situational 

interest, and there was an interaction between the intervention and performance expectations 

or prior performance on situational interest and utility value (Hulleman, Godes, Hendricks & 

Harackiewicz, 2010).  

Non-experimental designs add further support and suggest a directed focus on a 

particular type of relevance. For example, a correlational study involving college students 

suggests that identity relevance—that the task at hand was central to an individual’s self-

perception of their identity—promoted motivation (Britt, 2005). This suggests that 

meaningful forms of relevance that relate schooling activities to their primary purpose—to 

prepare children for their future—may be as useful as helping students to understand the uses 

of the material in their current lives (e.g., Geier et al., 2008).  

Future. Future relevance, if made more explicit may work via means that are closer 

to the intent of schooling, and help students see the relation between school now and what 

they value for the future (Husman & Lens, 1999). Perceived instrumentality is seen as a 

future version of utility value that may promote extrinsic motivation. However, if a future 

instrumental use for a task can be imbued with a present day task value by realizing that 

competence in the present can provide future benefits, it may be possible for it to become 

intrinsic (Husman & Lens, 1999). A study of undergraduates in a human resources training 

program suggests that greater study time was associated with higher instrumentality for the 

learned tasks, with the focus on the future rather than present utility value; further, this 

observed instrumentality was associated with intrinsic motivation (Husman, Derryberry, 
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Crowson & Lomax, 2004). Another study with younger children demonstrated that when 

future careers were seen as education dependent (e.g., computer scientists or plumbers, rather 

than basketball players), students invested more time and effort in schoolwork by almost 

eight-fold; the relevance of what they were doing to future earnings encouraged motivation 

(Destin & Oyserman, 2010).  

Value itself may have a time dimension to its perception. Students with longer future 

time perspective may be more persistent in working towards goals and get more satisfaction 

from current goal-oriented activities; that is, the drop-off of students’ valuing for an activity 

as its utility recedes into the future may be less for these students (Husman & Lens, 1999). A 

correlational study of 44 African American high school students using a correlational design 

demonstrated a significant association between engagement and self-reported future 

relevance of the coursework (Crumpton & Gregory, 2011). It may also be possible to 

intervene to mitigate the drop off in valuing for tasks showing future utility. Oyserman, Terry 

and Bybee (2002) show that a program that helps youth focus on or imagine themselves as 

successful adults, and then to tie these images to current school activity motivation, was 

associated with higher school bonding, concerns about school performance, strategies to 

attain more realistic goals, better attendance and, among African American students, fewer 

problem behaviors.  

One type of future relevance that has demonstrated some promise as a means of 

promoting intrinsic motivation through interest, goals and autonomy processes is career 

relevance. Studies show that, despite not being old enough for vocational training, middle 

school students do consider college and career plans and identities (Akos, Konold & Niles, 

2004), and must make curricular choices that will determine future educational opportunities 



125 

(Akos & Galassi, 2004). Thus, getting students to think about their futures in an informed 

manner may require explicit efforts to inform them of the links between what they do in 

school and potential future outcomes. By tying tasks and material learned in the present to 

the instrumentality or utility of the material for successfully performing the tasks related to 

specific jobs and careers, students may associate otherwise decontextualized material with 

positive feelings; may develop both distal and proximal goals to strive towards; and may 

make better choices regarding engagement in and completion of schoolwork (Husman, 

Derryberry, Crowson & Lomax, 2004; Husman & Lens, 1999). I now turn to discuss a 

promising instructional intervention that is based on career relevance, CareerStart.  

CareerStart: A Career Relevant Instruction Intervention 

CareerStart is a middle-school teaching practice intervention that relies on career 

relevant instruction (CRI) as the means by which tasks and lesson materials are imbued with 

meaning that conveys information about the importance of the material, its potential affective 

value, and a distal goal in the form of being competent in a task that may have some utility 

later in life. CareerStart includes a newsletter distributed to teachers that describes the 

connections between emerging jobs and careers and the lesson content that they teach. 

Further, it includes 10 lessons in each of the four core subject areas—math, language arts, 

science and social studies—for a total of 40 lessons per grade level over all three middle 

grade levels. CareerStart lessons were developed by North Carolina teachers, and reviewed 

by curriculum specialists, to be integrated into the North Carolina Standard Course of Study 

so as to not further burden teachers. As an in-service practice intervention, it represents a 

type of professional development whereby teachers learn by doing, with only a brief pre-use 

training session to discuss the conceptual underpinnings of the program and provide 
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examples. Further, it marries conceptual tools—the use of career-relevance to contextualize 

instruction—with practical strategies for the use of these tools in the form of the 10 lessons 

per subject area, a key component of successful PD interventions (Birman, Desimone, Porter 

& Garet, 2005; Grossman et al., 2000).  

An example CareerStart lesson is included in Appendix 2; it is an eighth grade math 

lesson about using percent change calculation in a retail job. As the example illustrates, the 

jobs and careers that are used to contextualize the lesson material are not limited to those 

requiring a college degree. Many of the lessons do associate content with jobs and careers 

requiring higher education or vocational education. The jobs and careers that were selected 

were chosen with local labor market conditions in mind such that they were presented as 

realistic opportunities to children being raised in this labor market.  

Evidence for CareerStart and CRI 

CareerStart was developed, implemented and evaluated in a partnership with one 

district in North Carolina. Fourteen middle schools in this district were randomly assigned to 

the treatment conditions, with 7 schools receiving CareerStart and 7 schools being in the 

control condition. In the treatment condition, teachers were trained in the conceptual 

foundation of CRI, provided easy access to the lessons, which were provided online, and 

received consultation from a district-level representative. Further, principals in these schools 

were strongly encouraged by the superintendent and district to have their teachers use CRI in 

their classrooms. A logic model for CareerStart (Figure 2.1) supports CRI as a key process 

through which CareerStart operates to promote student engagement and academic 

achievement.  
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Teachers in the control condition were not barred from using CRI, and more than 

50% of students in the control schools reported that they agreed or strongly agreed that their 

teachers frequently used career examples, which may have come from textbooks or from 

original content and not from CareerStart lessons (Rose et al., 2012). Accordingly, CRI, or 

the use of career examples in instruction, was considered a proximal outcome of the 

treatment in the logic model for CareerStart because it could be observed in both treatment 

and control schools and could be conceived of as a general and potentially effective teaching 

practice that CareerStart was intended to promote.  

The literature described in the preceding sections supports the theory of change that 

CareerStart operates through CRI. However, the model also indicates that an alternative 

pathway for the CareerStart effect may be through teacher effectiveness. The argument 

supporting this alternative pathway is that teachers participating in CareerStart receive 

training on the “new 3 Rs of education”—rigor, relevance and relationships—including not 

only the importance of career relevance as a motivational technique (through, for example, 

expectancy value theory or possible selves theory; Orthner et al., 2010), but the importance 

of setting high expectations for students (i.e., academic press; Lee & Smith, 1999). 

Therefore, the training may in fact help teachers to become more effective in general.  

Using the randomized design, key portions of the CareerStart logic model have been 

validated. For teachers, CareerStart has been demonstrated as promoting the use of CRI 

among teachers in math and science, including a stronger effect for teachers with more years 

of service (Rose et al., 2012). Further, a mixed method fidelity study showed that in three of 

the seven treatment schools (labeled “low fidelity”), teachers used well less than half of the 

lessons on average and that in contrast to teachers in a selected high fidelity school, who 
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reported modifying the lessons to fit their students’ needs, teachers in a low fidelity school 

elected not to use the lesson when they perceived the fit to be poor (Phillippo & Rose, 2012). 

A qualitative study suggested that some teachers misunderstood the rationale for the program 

(confusing it with a vocational training program) and expressed some concern about the fit of 

the lessons to their students needs (Woolley, Rose, Mercado & Orthner, 2013).  

For students, CareerStart demonstrated a causal effect on students’ valuing of school 

(Orthner et al., 2012). In this study, positive and significant associations between students’ 

perception of CRI and both valuing and engagement were also demonstrated. In a qualitative 

study some teachers reported that the lessons increased students’ involvement in the 

classroom and promoted engaging classroom discussions (Woolley, Rose, Mercado & 

Orthner, 2013). Critically, Woolley et al. (in press) demonstrate that CareerStart affects the 

ultimate outcome of student achievement. CareerStart was demonstrated to have significantly 

increased students’ end-of-grade math achievement in middle school, at 0.61 points on the 

EOG test scale; this is equivalent to one-quarter of a standard deviation effect size and about 

1/3 the size of the annual rate of growth in math for the average student. Finally, CareerStart 

has lasting effects on children in high school, with students from CareerStart middle schools 

performing better on end-of-course biology tests and accruing credits towards graduation at a 

higher rate than students from control middle schools (Woolley, Unick, Rose & Orthner, 

under review). These findings, particularly those of Orthner et al. (2012) and Woolley et al. 

(in press) showing the positive effect of CareerStart on middle school outcomes, provide 

strong justification for understanding the role of the mediating processes described in the 

logic model.   
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Research questions. The evidence cited above suggests that CareerStart promoted 

use of CRI in math and science, student engagement and valuing, and math achievement. It is 

important to understand the process by which these effects emerged. Correlational analysis 

also showed an association between CRI and engagement and math achievement. An 

unanswered question in these analyses is whether CRI is the linking process tying the teacher 

effect (higher CRI) to student outcomes (engagement, valuing and achievement). That is, is 

CRI the causal process mediating the treatment effect of CareerStart and promoting 

engagement and achievement? The non-random assignment of CRI complicates the effort to 

ascribe causality to this relationship. There may be other factors, both measured and 

unmeasured, that compelled teachers to use more or less CRI. Such factors may have been 

inherent to the teacher, such as their gender, content area, or ethnicity (Rose et al., 2012), or 

they may have been in response to the needs or traits of the particular group of students being 

taught or unforeseen situations that emerged on a day-to-day basis (Woolley, Rose, Mercado 

& Orthner, 2013). 

This is an unanswered question in the logic model for CareerStart, and an affirmative 

answer would not only lend support to this intervention but add further support to the body of 

research concerning relevance as a motivational instructional technique. In this study, I use 

rigorous measurement and analysis methods to address this gap, answering the following 

important questions about the process by which CareerStart may promote academic 

achievement: (1) Does CRI promote higher engagement and valuing in school; (2) Does CRI 

promote higher end-of-grade eighth grade math and reading achievement; and (3) do the data 

support an alternative pathway through academic press, as measured by rigor (e.g., setting 

high standards for success) and preparation for further schooling (providing the support that 
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students need to achieve that success) as suggested by the logic model? Because of 

limitations in the data, I use eighth grade outcomes only. This approach deviates slightly 

from the longitudinal analysis used in Orthner et al. (2012) and Woolley et al. (in press) in 

which all three middle level grades were examined as outcomes of the treatment.  

Method 

Design 

CareerStart was developed, implemented and evaluated in a randomized control trial 

(RCT) in 14 middle schools in a district in North Carolina. In the treatment condition (N = 7), 

teachers were given a brief training in the conceptual foundation of CRI; provided access to 

pre-packaged CareerStart lessons via a web site; and received consultation from the district. 

A causal estimate of teacher CRI and an effort to link CareerStart, CRI and the outcomes has 

not been attempted due to two challenges: non-random assignment of CRI and measurement 

of CRI by students’ perceptions. I now turn to discuss these challenges.  

Non-random assignment. First, although CareerStart was randomly assigned, the 

level of CRI, which is an endogenous variable, could not be. If CRI was associated with 

these outcomes through some other unmeasured correlates of student engagement or 

achievement, then observed association between CRI and each outcome would be biased or 

inconsistent and could not be inferred as causal. The Rubin causal model (RCM), also known 

as the potential outcomes model, provides a causal framework for clarifying the problems of 

inferring causality from an endogenous variable of interest such as CRI (Holland, 1986; 

Morgan & Winship, 2007).  

Formally, I assumed that the outcome (engagement or achievement) for student � 
(with I = 1,…, N) under treatment condition j is ��� with each treatment condition being one 
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of multiple potential levels of CRI represented by j (of j = 1,…, J; Morgan & Winship, 2007). 

(For simplicity, I treated j as indicating both the level of CRI and the teacher, and ignored 

conditions where multiple teachers have the same level of CRI and where a teacher may be 

conceived of as having multiple levels of CRI.) Second, the student had one potential 

outcome ��� under each possible treatment. At most one of these potential outcomes could be 

realized, as each student could only be assigned to one condition (the fundamental problem 

of causal inference; Holland, 1986). To circumvent this, the treatment effect was defined as a 

function of the distributions of students assigned to each possible level of CRI, usually 

labeled the average treatment effect (ATE). Three assumptions were required. First, 

manipulability implied that students could be assigned to any condition, which is required for 

all potential outcomes to be defined. Second, the stable unit treatment value assumption 

(SUTVA) implied that the potential outcome under any level of CRI was not affected by 

peers also assigned to that condition. Neither of these could be challenged in the present 

study and were simply assumed.  

The third assumption, unconfoundedness, was directly related to the non-random 

assignment of CRI. Unconfoundedness implied that each student’s assignment (A) to a 

treatment condition j was independent of his or her potential outcome in that condition 

(Morgan & Winship, 2007):  

(i) ���  ┴ A 

If potential outcome ���, which describes the student’s benefit from instruction 

infused with various levels of CRI, was correlated with any variable X then condition i fails. 

A weaker form of this statement conditions on student and teacher background, here 

represented by )� and )�, respectively:  
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(ii’) ���  ┴ A | )� = *�, )� = *� 

Condition ii  fails if there were unobserved )� or )� that could not be conditioned on 

when estimating the effect of CRI on student engagement and achievement.  

The bias from the non-random assignment could increase or decrease the observed 

magnitude of the effect and could be related to observed or unobserved variables. For 

example, more experienced teachers ()�) may have been more likely to use CRI and could be 

assigned to higher achieving classrooms of students (as measured by previous performance; 

)�). This may have led to higher student engagement or achievement (���) that might be 

attributed to CRI rather than (more appropriately) to a mix of serendipitous assignment and a 

greater command of effective teaching strategies owing to experience. This could have 

magnified the observed effect of CRI relative to what it would be in the population. 

Alternatively, less experienced teachers may be more amenable to using innovative strategies 

such as CRI or may be more open to employing theories about human development that were 

learned in pre-service preparation, but may have been assigned to lower achieving 

classrooms. These assignments would have led to lower engagement or achievement being 

attributed to CRI, attenuating the effect.  

Despite not being randomized, observational or quasi-experimental approaches could 

approximate the results of a comparable randomized design if appropriate assumptions were 

met. In the present study, I propose to use instrumental variable estimation (IVE) to estimate 

a local average treatment effect (LATE; Angrist, Imbens & Rubin, 1996), which may satisfy 

the assumption of unconfoundedness, making inferences about CRI causal. I discuss the 

details of this method when discussing the analysis methods.  
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Measuring teacher CRI using student perception. Teachers were not asked 

directly about their use of CRI. Instead, the level of CRI used by teachers was obtained from 

end-of-year student survey reports of their agreement with the statement that each separate 

core subject teacher used career examples frequently. That is, the actual level of CRI was 

unobserved, but student perceptions of the level of CRI, which varied across students having 

the same teacher, was measured. In this design, students acted as raters of their teachers’ use 

of CRI. In previous studies (Orthner et al., 2012; Rose et al., 2012) CRI at the teacher level 

was obtained by taking the average response of students’ perceptions for each teacher.  

In this study, a more rigorous measurement strategy has been implemented that 

accounted for the effect that multiple student, school and home background factors may have 

on a student’s perception of how much CRI is considered “frequent,” including students’ 

race/ethnicity, family income, previous achievement, and students’ inherent tendency to rate 

their teachers high or low as measured by previous years’ perceptions of CRI. Exploratory 

analyses demonstrated that students’ responses to each question were associated with 

demographic data such as race/ethnicity and free/reduced price lunch, a rough indicator of 

family income (Woolley & Rose, unpublished manuscript). In addition, parents’ discussions 

with their children about the work that they do were indicated using five items on the student 

survey, and theses items were included in the measurement model. This strategy is an 

innovative approach in that I utilized Empirical Bayes shrinkage to estimate teacher CRI 

using the teacher residual as the deviation from the grand mean in a multilevel model 

(Raudenbush & Bryk, 2002).  
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Data Sources 

There were four sources of data. First, student surveys administered at the end of 

sixth, seventh and eight grades were used to collect a number of important variables 

including psychosocial information from students describing their emotional and cognitive 

engagement with school; student reports of their teachers use of career examples; students’ 

reports of career family interactions; teacher rigor and press; and future planning. Second, 

student academic data, consisting primarily of end-of-grade (EOG) math and reading exam 

performance from third to eighth grade and demographic data were obtained from school 

district administrative files. Third, teacher surveys recorded years of experience, race, gender 

and perspective on career relevance in instruction. Fourth, administrative records contained 

information only on students while they were within the district. All data collection 

procedures received IRB approval.  

Sample 

The sample included a cohort of students beginning sixth grade in school year 2005-

06, and their eighth grade teachers.  

Student participants. There were 2,866 eighth grade students in 14 eligible schools 

reporting on each of their core subject teachers: 49% were female; 30% were Black, 15% 

were Hispanic; 49% were White; 6% were Asian, Aleutian, Pacific Islander or Native 

American; 52% received free or reduced price lunches; 32% came from single-parent homes; 

18% were identified as academically gifted; and 11% received special education services. 

The average age was 11 years, 6 months.  

Teacher participants. The teachers included in this analysis were eighth grade math, 

language arts, science and social studies teachers for these students. The students were 
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considered “nested within” each of these four groups of teachers, though with different 

nesting patterns by subject (for example, the students having the same math teacher may not 

have had the same language arts teacher). There were 214 eighth grade teachers included in 

this study, including 62 math teachers, 55 language arts teachers; 46 science teachers and 51 

social studies teachers (Table 2.1). Language arts teachers had an average of 15 years of 

experience; 84% were female; and 18% were Black. Math teachers had an average of 12 

years of experience; 76% were female; and 15% were Black. Science teachers had an 

average of 15 years of experience; 63% were female; and 18% were Black. Social studies 

teachers had an average of 13 years experience; 56% were female; and 9% were Black. There 

were no Latino or Latina math teachers and less than five Latino or Latina teachers in any 

other subject.  

Measures 

Dependent variables. Several dependent variables of social or developmental 

importance were examined in this study. School valuing, a measure of emotional engagement 

to school, was measured using seven items from the Student Identification with School 

measure (internal consistency reliability α = .79; Voelkl, 1996) (sample item: “school is one 

of the most important things in my life”). The valuing scale indicated students’ belief that 

school is important to them at present and for their future, including the importance of 

education in getting a job. Cognitive engagement was measured using the School Success 

Profile engagement scale (α = .80; Bowen, Rose & Bowen, 2005), and consisted of three 

items indicating that students find school fun and exciting, and that they look forward to 

going to school and learning new things. Academic achievement was measured using 

performance on North Carolina end-of-grade reading and math standardized achievement 
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tests for eighth grade in the 2007-08 school year. Figures 2.1-2.4 are kernel density functions 

for each dependent variable.  

CRI measure and measurement strategy. The treatment or independent variable in 

this analysis was a measure of the teacher’s probability of using of CRI. As previously noted, 

teachers were not asked directly about their use of CRI. Instead, students were asked the 

following question for each content area on a survey conducted at the end of each grade 

level: “In [math/language arts/social studies/science], my teacher often uses examples from 

jobs and careers.” Potential responses to these questions included strongly disagree, disagree, 

uncertain/not sure, agree, or strongly agree; these were summarized into agree/strongly to 

indicate frequent and disagree/strongly disagree to indicate infrequent. Uncertain/not sure 

responses were set to missing and are imputed; this decision is reconsidered in the robustness 

analysis (Figures 2.5-2.8 are kernel density functions of CRI for each subject). The 

subsequent measurement strategy: a) accounted for the effect that multiple student, school 

and home background factors may have had on each student’s perception of how much CRI 

was considered “frequent,” and b) summarized this measure to the teacher level. A 

conditional model included students’ race/ethnicity, family income, and elementary school 

math and reading achievement as predictors of students’ perception that the teacher used CRI 

frequently. Students’ inherent tendency to rate their teachers high or low, as measured by 

previous years’ perceptions of CRI, was used to eliminate unmeasured time-invariant 

influences of perception of CRI. A key set of predictors described the extent to which 

parents’ discuss their own careers with their children during eighth grade; these measures are 

discussed below.  
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The multilevel logistic regression model (or hierarchical generalized linear model) 

estimated each teacher’s probability (Woolley & Rose, unpublished draft; Raudenbush & 

Bryk, 2002). This multilevel model was a regression of student-reported agreement with the 

CRI question on student and family factors at level 1 (student rater) and a teacher random 

effect (but no covariates) at level 2 (teacher), with separate regressions for each content area. 

Because each teacher’s use of CRI may include factors that are invariant within the school 

but should nevertheless be included in the teacher estimate when comparing teachers across 

schools, school level was excluded from the model such that effects inherent to the school 

would be absorbed into the teacher measure. Such effects may have included, for example, 

the principal’s enthusiasm for CareerStart or the level of support provided by the district.  

The empirical Bayes residual, the deviation of each teacher’s mean log-odds of 

frequently using CRI from the grand mean log-odds of all teachers, was derived as teacher 

CRI (Raudenbush & Bryk, 2002). The log-odds was converted to the probability that the 

teacher frequently used CRI and multiplied by 100 to arrive at the probability of frequently 

using CRI used as the independent variable in the analysis models. The CRI effect on the 

outcome was interpreted as the conditional incremental gain to eighth grade engagement, 

valuing or achievement from a one percentage point increase in the probability that the 

teacher used CRI.  

Student-level covariates. Student-level characteristics included demographics and 

family characteristics such as age (and age-squared and cubed), race/ethnicity (Black and 

Latino/Latina children relative to White children and an unsubstantial number of children of 

other backgrounds), gender (entered as female), free-reduced lunch, parent marital status 

(entered as single parent), academic giftedness, and special education. In addition, 
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achievement on elementary and middle school end-of-grade achievement tests from third to 

seventh grades, as well as their squares and cubes for addressing nonlinear relationships, 

were used to control for previous years’ learning in the models for academic achievement 

(math and reading separately). For valuing and engagement, elementary school achievement 

on math and reading was used alongside sixth and seventh grade reports of the dependent 

variable as controls.  

Five items reporting students’ interactions with their parents’ regarding their parents’ 

jobs and careers, and one item reporting the students’ plans to attend college (I plan to attend 

some type of college after high school), were included in the measurement models for CRI. 

The questions about students’ job and career interactions with their parents included the 

following questions: a) my parents/guardian tell me about the kind of work they do; b) my 

parents/ guardian show me the kinds of things they do at work; c) my parents/guardian tell 

me about their jobs; d) my parents/guardian have shown me where they work; and e) my 

parents/guardian tell me about things that happen to them at work. Given the size of the 

student sample, selection of the variables to use for controls, for which I preferred an 

exhaustive specification to eliminate all potential autocorrelation and other sources of 

confoundedness, was driven largely by robustness diagnostics to eliminate collinearity. 

Although these measures were used in the measurement model, they were not in the outcome 

models for demonstrating the effect of CRI on engagement and learning, as I assume that 

these measures may be endogenous. They may be endogenous with respect to CRI and the 

outcomes as students’ perception about how often they hear their parents talk about careers 

may be conditional on how often they heard their teachers talk about careers, and both may 

be associated with the outcomes.  
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Teacher-level covariates. Teacher-level covariates included race/ethnicity, gender, 

years of service, teacher perspective on career relevance, which were obtained from teacher 

surveys. In addition, because teachers were not randomly assigned to students, and studies 

have demonstrated the association between teacher effectiveness and the aggregate previous 

performance of their students, a crude correlate of teacher assignment was obtained by taking 

the average seventh grade math or reading score of the students assigned to each eighth grade 

teacher. To the extent that use of CRI is correlated with teacher effectiveness and student 

outcomes, this will address an alternative pathway through which CRI could be associated 

with student outcomes.  

The CareerStart logic model suggests an alternative pathway for the effect of 

CareerStart through teacher effectiveness, an issue I took up in the discussion of the 

CareerStart logic model. Typically, teacher effectiveness is measured using value-added 

estimates of student learning, but to do so in this study would have required matches of the 

eighth grade teachers to their previous years’ students, which were not available in the data. 

Instead, two academic press measures were collected on the student survey, and used in this 

analysis: rigor and preparation for further schooling. These were constructed by calculating 

the sum of students’ responses to the following set of questions (each question on a 1 to 5 

Likert response scale; yielding a sum ranging from 3 to 15). These questions were originally 

envisioned as a single construct of academic press (Dennis Orthner, personal communication, 

December 27, 2012) but for which factor analyses demonstrated a two-factor structure. For 

rigor the items were (a) my teachers give me challenging homework; (b) my teachers set high 

standards that I must meet to get good grades; (c) my teachers push me to think harder (α = 

.72). For preparation for future schooling the items were (d) my teachers are preparing me for 
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the next grade; (e) my teachers are preparing me to succeed in high school; and (f) my 

teachers are preparing me for college or other education/training after high school (α = .84). 

These measures were highly correlated (ρ = .70).  

Like CRI, conditional models (consisting of the same student-level measures) were 

estimated to derive a teacher level estimate of these practices, which was then entered into 

the analysis models. However, because students were not asked about each specific subject’s 

teacher (item wording indicated “my teachers”), I could not attribute the perceived level of 

press to any of the four teachers. To get around this measurement problem, the attribution 

was made empirically, based on the different nesting patterns of students across the four 

subjects, using the multilevel model. That is, because different groups of students are nested 

within each subject, there would be variability in how each student’s reports of their 

teachers’ press was aggregated to the teacher level. This is a substantial limitation of the 

current study, and I am cautious about making inferences from this analysis, and instead 

propose that it raises important measurement issues that should be taken up in a future 

evaluation of CRI or CareerStart.  

School-level measures. School-level covariates included title I status, proportion 

free/reduced lunch and minority student. The number of school-level covariates that could be 

entered was severely limited by the small number of schools, and these typically showed the 

highest amount of residual variance explained in exploratory models and models developed 

in Woolley et al. (in press).  

Missing Data 

Missing data occurred throughout the student data, including in the survey questions 

(from 23 to 1,025 of 2,866 students) and the achievement data. Further, I assumed that 
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students who responded “not certain/unsure” to the CRI questions on the survey gave 

effectively missing responses and recoded this response to missing. All of these missing 

values were subjected to an analysis to determine if they were missing completely at random 

(MCAR) using the Little (1988) chi-square test, which is a multivariate test of whether 

students with missing values were different from students without missing values. The 

hypothesis of MCAR was rejected suggesting that at least some of the data points were 

conditionally missing.  

The proper approach in this context was to subject the missing values to an informed, 

robust imputation model (Schafer, 1997). This model included, as recommended, all of the 

analysis variables described previously that were to be used in the analysis and measurement 

models, as well as a set of auxiliary variables that supplemented the analysis variables in 

explaining the missing values. Ten imputations of the data were simulated using SAS Proc 

MI; all analyses were conducted on each imputation separately using SAS and Stata and then 

the parameter estimates from these distinct analyses combined according to rules developed 

by Rubin (1976).  

Missing teacher level covariates (gender, race/ethnicity, years experience and 

perspective on CRI) presented an additional challenge. Multilevel techniques for imputation 

have not been developed, and multivariate normal techniques imputed values for these 

variables that varied within teachers. Differences between models with and without the 

teacher covariates could not be attributed to the covariates themselves or to the resulting loss 

of students and teachers with missing values. Techniques for addressing this problem are 

provided in the description of robustness tests.  
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Analysis 

First, I conducted the CRI measurement analysis, followed by the outcome analysis. 

The primary method of analysis used in this study, which addressed the non-random nature 

of CRI, was instrumental variable estimation (IVE) for obtaining a LATE. Several alternative 

analyses were also run to examine the robustness of the findings from the IVE to variations 

in model specification, alternative handling of missing data, and even the assumptions of IVE 

itself.  

Measurement model. As described in the section on the CRI measure, a rigorous 

measurement model for CRI in each content area was tested and the teacher level CRI 

measure obtained as the deviation of each teacher from the overall average of all teachers in 

that content area in the study. The model of M��� = probability (student i with teacher j in 

subject s reported CRI was used frequently) took the following form: 

(1)   Log (M���/O1 $  M���Q� = ���� + ���� X�� %  .��� 

 The index j indicates the teacher and i indicates the student. The deviation from the 

overall average is the teacher-specific value of .���. As needed for diagnostics, the student 

error variance was represented by the logistic error variance, S- "  TU
V  = 3.2899 (Snijders & 

Bosker, 1999); alternatively, (1) was re-estimated as a linear probability model replacing 

Log(.) with P. 

Instrumental variable estimation (IVE). CRI is the teaching practice that 

CareerStart is intended to promote. Because CRI is non-random it cannot be directly and 

randomly assigned by the evaluator. With the level of CRI being partly determined by 

teachers, after assignment to CareerStart, it cannot be guaranteed that there is a 1:1 

correspondence between treatment assignment and use of CRI. Econometric or statistical 
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adjustments are needed to obtain a causal estimate from a non-randomly assigned treatment, 

yielding a type of treatment on treated estimate known as a local average treatment effect 

(LATE) rather than an intent-to-treat population average treatment effect (ATE). One method 

used to obtain a local average treatment effect is IVE (Angrist, Imbens & Rubin, 1996).  

A LATE is, intuitively, a ratio consisting of the effect of CareerStart on the ultimate 

outcome (e.g., math achievement) divided by the effect of CareerStart on promoting 

teachers’ use of CRI. This ratio is also known as the Bloom (1984) treatment-on-treated 

estimator. If the “dose” of CRI was 100% the level promoted by CareerStart, this quotient 

would have yielded a CRI effect equivalent to that of the CareerStart intent-to-treat effect. 

The denominator being less than 1 in effect inflates the observed or intent-to-treat effect of 

CareerStart on the outcome. The resulting ratio could be interpreted one of two ways. First, it 

could be interpreted as the effect of teacher compliance with assignment to treatment on 

student outcomes. Or it could be interpreted as the effect of a “dose” of CRI on the student 

outcomes. Which interpretation is chosen depends on whether one views teachers as the 

receivers or implementers of the treatment in the context of the purpose of the analysis. As a 

mediator in the logic model, CRI is both, and in the present context, the purpose was two-

fold: to validate the logic model, which supported the teacher as receiver (of CareerStart) 

interpretation; and to contribute to the scholarship on relevance, which supported the teacher 

as implementer (of CRI, and more generally, relevance) interpretation, meaning that both 

interpretations had merit.  

An IVE estimand could be calculated directly via this ratio, but it would have been an 

unconditional estimand, unadjusted for measured covariates of the treatment effect. To adjust 

for measured non-random factors, the IVE estimand could be obtained via a two-stage 
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regression method; interpretations about compliance or dosage effects remain valid. To meet 

the conditions required for IVE, a variable (referred to as an instrument) had to be identified 

that was: highly correlated with the endogenous variable, but not independently associated 

with the outcome. This second requirement, known as the exclusion restriction, could 

equivalently be stated as requiring that the instrument had no association with the error in the 

model of Y on CRI; and that all of the effect of the instrument on the outcome was through 

the endogenous variable (a weaker form allows for conditioning on measured covariates). 

The exclusion restriction in effect describes the process by which the instrument causes the 

outcome.  

The literature on LATE estimation using IVE suggests the randomized treatment 

assignment variable (CareerStart) as the instrument (Angrist, Imbens & Rubin, 1996). In fact, 

CareerStart satisfied both IVE requirements: it was associated with CRI (Rose et al., 2012) 

and, being randomly assigned, had no association with the error between CRI and the 

outcome. To rely on the random assignment as the instrument, Angrist, Imbens and Rubin 

(1996) showed that additional assumptions are needed. SUTVA, an assumption of the RCM, 

had to be assumed to be satisfied. Further, the treatment had to have a unidirectional effect on 

participants’ CRI potential outcome; that is, CareerStart could only promote higher CRI or it 

could only promote lower CRI, it could not be assumed to do both. In other words, all 

participants’ potential outcome under CareerStart had to be a frequency of CRI use that was 

higher than their potential outcomes under the control condition. This is the monotonicity 

assumption, and because it regards potential outcomes, it could not be observed or proven 

from observed data (Angrist, Imbens & Rubin, 1996). However, Rose et al. (2012) 
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demonstrated that the average observed teacher response to CareerStart was to more 

frequently use CRI, providing some evidence that the assumption is realistic.  

In this study, I used panel multilevel IVE methods in a two-level clustered multilevel 

design of students nested in teachers. Nesting of teachers within schools was not accounted 

for. Because IV estimation also inflated the standard error of the focal variable much like 

multilevel modeling does, it is not clear the extent to which the standard error was upwardly 

or downwardly biased.  

The two-stage model for CRI on each outcome Y is as follows. First, a linear 

probability model predicted M� WX���� with @�� as student error and Y� as teacher error at this 

stage:  

(2)  M� WX���� "  Z��� % )��Z�[�  %  )�Z�[� % Z\] ��  % @�� %  Y� 

The predicted value of M� WX����, M� WX�^_�` was then entered into a second regression 

model as the independent variable in place of its observed equivalent, with ��� and a� as 

student and teacher errors, respectively: 

(3)  ��� "  ��� % )���[�  %  )��[� %  M� WX�^_�` �\bc� % ��� % a� 

The coefficient tested for the effect of CRI on each outcome and for answering 

questions 1 (does CareerStart promote higher engagement and valuing) and 2 (does 

CareerStart promote higher end-of-grade math and reading achievement) was �\bc�. In 

alternative models for answering question 3 (does teacher press represent an alternative 

pathway for the effects of CareerStart), rigor and preparation for further schooling were each 

separately entered as the endogenous variable, and subjected to the same two-stage model as 

represented by equations 2 and 3. The coefficients �b� and �de]� were obtained from these 

models and similarly tested.  
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Two models were tested. In the first all student-level predictors and teacher-level 

predictors that were derived from students, including the teacher assignment proxy and the 

CRI measure (or alternatively, rigor or preparation for future schooling), and a small set of 

school level measures such as average FRL or race/ethnicity composition. In the second 

model teacher’s years of experience, gender and race/ethnicity were all added to the model. 

Both of these models are given equivalent weight in the interpretation of the findings; the 

former suffers from an incomplete specification as these teacher variables are associated with 

use of CRI and thus potentially confounders, and the latter model suffers from unaccounted 

for missing data on these important measures. A robustness check was used to ascertain 

whether the differences between them were due to confoundedness or the loss of records with 

missing data. Two stage models were estimated with the XTIVREG procedure in Stata 12 

(Statacorp, 2011).  

Robustness Analyses 

A number of subjective decisions, such as how to handle students’ responses of 

uncertain/not sure to the CRI question and how to handle missing teacher covariates, were 

employed in these analyses and thus the study design was subjected to a variety of robustness 

tests to examine the sensitivity of the findings to these decisions. The imputation of 

uncertain/not sure responses after re-setting them to missing was reconsidered. Alternatively, 

uncertain/not sure was included as part of not agreeing to the statement that students’ 

teachers frequently used career relevance as a form of passive non-agreement (this is how the 

response was handled in Rose et al., 2012). The missing teacher covariates, which presented 

a complex problem due to the unavailability of multilevel imputation techniques that would 

impute invariant-within-teacher values of the missing covariates, made it difficult to discern 
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if effects observed after entering these covariates were due to the covariates themselves or 

due to the loss of records with missing values. This problem was subjected to two robustness 

tests. One was to impute the covariates as if multivariate normal and average the resulting 

imputed values up to the teacher level. The second was to remove the records with missing 

teacher covariates from the analysis and run the analysis without the teacher covariates.  

Multiple versions of the models under different student covariate specifications were 

tested, without substantive changes to the findings, though completely unconditional models 

showed some differences. A final robustness analysis was run under the assumption that 

conditional on the model covariates, CRI was not endogenous. For the purpose of most 

accurately reflecting the multilevel structure of the data these robustness models included a 

school level in addition to student and teacher levels. The addition of this level, which added 

a school-level error to the model, should have reduced the teacher-level conditional variance, 

potentially making the estimation of CRI, a teacher level variable, more precise. Without 

IVE, the standard errors of CRI should be further clarified.  

Results 

First I describe the results of the CRI measurement model, then turn to the results of 

the outcome analysis, including the IVE and the robustness checks.  

CRI Measurement Results 

The variance in the student perceived CRI was decomposed into student and teacher 

components to assess the extent to which there was actual teacher variation in use of CRI, 

and how much of the variance was related to students’ perceptions (Table 2.2). The 

proportion of variance at the teacher level was 0.08 for language arts and science CRI, 0.11 

for math, and 0.06 for social studies. For robustness to the assumption of a logistic 
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distribution, a linear probability model, which does contain a residual at the student level was 

estimated and the decomposition showed that the proportion of variance at the teacher level 

was 0.05 for language arts and science, 0.07 for math, and 0.03 for social studies. These 

results indicated that 89-90% or more of the variance was between students, suggesting the 

need to control for this variation to estimate a measure of eighth grade teacher CRI.  

Conditional models containing all available student predictors showed that, students’ 

sixth and seventh grade reports of CRI, students’ reports of how often they heard their 

parents talk about their careers at home, and students college plans were the most robust 

predictors of students’ perceptions, eliminating nearly all unconditional associations between 

CRI and demographics (Tables 2.3-2.6). With a discrete measurement model of high vs. low 

use of CRI, I report these results as pertaining to those characteristics that are significant in 

increasing the probability of reporting high use of CRI or the probability of reporting low use 

of CRI, in each subject. Across all CRI measures, student reported sixth and seventh grade 

CRI was significant at .01 or .001, with those students reporting high CRI in these grades 

having 45-180% higher odds of reporting high CRI in eighth grade.  

Students reporting that they agreed that their parents/guardians showed them the 

kinds of things they did at work (OR = 1.58; p < .01) and students reporting that they planned 

to attend college after high school (OR = 2.79; p < .001) reported high language arts CRI 

(Table 2.3). Students reporting that their parents/guardian told them about the kind of work 

that they do (OR = 1.90; p < .05), or showed them the kinds of things they did at work (OR = 

1.44; p < .05), and students planning to attend college (OR = 2.58; p < .001) reported high 

math CRI (Table 2.4). However, Latino or Latina students also reported high CRI (OR = 

1.49; p < .05). Students reporting that their parents/guardians showed them the kinds of 
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things the did at work (OR = 1.68; p < .05) or told them about things that happened to them 

at work (OR = 1.68; p < .05) and students reporting that they would attend college some day 

(OR = 2.32; p < .01) reported high science CRI (Table 2.5). Students reporting that their 

parents/guardians showed them the kinds of things they did at work (OR = 1.50; p < .05) and 

students planning to attend college (OR = 2.49; p < .01) reported high social studies CRI 

(Table 2.6). However, students receiving free or reduced price school meals also reported 

high social studies CRI (OR = 1.37; p < .05); further, a one point increase in fourth grade 

reading EOG predicted a 2% lower odds of reporting high social studies CRI. These results 

suggest the importance of including reports of CRI in prior years (to control for time-

invariant influences of students’ perceptions), elementary school math and reading 

achievement, and students’ reports of plans for future schooling and discussions with their 

parents/guardians about jobs and careers. In contrasting these findings with exploratory 

analyses, these groups of variables remove most, though not all, of the associations that were 

previously observed for race/ethnicity, family income and gender. 

Analysis Results 

Four variations on CRI models are presented here. These include IVE with no teacher 

covariates, IVE with teacher covariates, multilevel models without IVE, and models that 

treated uncertain responses as passive disagreement at the imputation stage. After discussing 

the main findings and robustness tests to answer the questions about CRI, alternative 

pathways for CareerStart, through rigor and preparation for future schooling, are explored, to 

answer the third.  

IVE, no teacher covariates. In the two-stage IVE models for estimating LATE, 

using the first imputation in which teacher covariates were not imputed but uncertain 
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responses to the CRI question were imputed, CRI did not demonstrate a significant and 

promotive effect on math, reading or engagement. However, findings for valuing were 

significant and robust across multiple forms of CRI in models in which teacher covariates 

were not included (Table 2.7A). A .01 increase in the probability that the language arts 

(Table 2.19) or the science teacher (Table 2.20) used CRI yielded a .01 increase in student 

valuing (p < .001); a one percentage point increase in the probability that the social studies 

teacher (Table 2.21) used CRI also increased valuing by .01, but with less precision (p < .01). 

These findings are presented as the main findings regarding the effect of CRI in promoting 

valuing, based on the findings of robustness tests that follow. 

IVE, teacher covariates. The first test of the robustness of these findings was to add 

teacher covariates to the models. When teacher covariates were added, only social studies 

(Table 2.7A and 2.21) CRI promoted higher valuing (β = .01; p < .05). However, the 

diminution in significant findings could have been due to the loss of teachers having missing 

values, as these values were not imputed, rather than due to the effects of the covariates. Two 

approaches confirmed that the change was at least partly due to the loss of data from students 

having teachers with missing data. First, the model in which teacher variables were imputed 

at the student level (the second version of the imputation) and averaged up to the teacher 

(Table 2.7B) showed that all forms of CRI were predictive of higher valuing, including math 

(β = .01, p < .05); language arts (β = .01; p < .001); science (β = .01; p < .001); and social 

studies (β = .01; p < .01). This would not have been the case if the change had been due to 

the confoundedness.  

Second, the model without teacher covariates, but also without the students having 

teachers with missing values showed that both math and language arts (β = .01; p < .05) were 
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significant for valuing (see Table 2.7C). The math finding was not found in the original 

model without the students having missing teacher covariates deleted; and science and social 

studies findings were found. This provides more evidence that it was deletion of missing 

values that drove most of the change in findings from models without teacher covariates to 

models with teacher covariates. Only language arts was unchanged, providing the only 

source of evidence that the teacher covariates may have confounded the treatment effect. On 

the whole, the addition of teacher covariates did not detract from characterizing the previous 

findings as the main findings for CRI. 

Models without IVE. Another concern of these models was that using IVE, which 

could have inflated standard errors, may have been more likely to result in type II errors. A 

robustness check confirmed that the IVE may have controlled for important unobserved 

variation and that any inflation in standard errors did not increase type II error. Under the 

assumption that the full conditional model explained all of the confoundedness from non-

random assignment of CRI, multilevel models without instrumental variables were estimated 

for each CRI-outcome pair. In one version of each model, teacher covariates were included, 

while in another they were left out. A standout finding was that math was significant (β = 

.04; p < .05) in the model without teacher covariates (Table 2.7D). Valuing again emerged as 

a robust finding. Math CRI in models with (β = .01; p < .05) and without (β = .01; p < .05) 

teacher covariates predicted higher valuing; language arts CRI without teacher covariates (β 

= .01; p < .05); science CRI in models with (β = .01; p < .05) and without (β = .01; p < .05) 

teacher covariates; and social studies CRI without teacher covariates (β = .01; p < .001). It 

was noteworthy that the magnitudes and directions of the IVE coefficients and the 

coefficients from the multilevel models were very similar. However, they were not similar 
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enough to reject that the IVE added additional control for unobservables. I take this up 

further in the discussion.  

Uncertain as passive disagreement. In the third version of the imputation in which 

students’ responses of “uncertain/not sure” to the CRI question were assumed to constitute 

passive disaffirmation that their teachers frequently used career examples, valuing results 

were observed for models with and without teacher covariates (Table 2.7E). Math CRI was a 

significant predictor of valuing (β = .01; p < .05) with teacher covariates; language arts CRI 

was a significant predictor of valuing (β = .004; p < .05) without teacher covariates; science 

CRI was a significant predictor of valuing with (β = .005; p < .05) and without (β = .004; p < 

.01) teacher covariates; and social studies CRI was a significant predictor of valuing with (β 

= .005; p < .05) and without (β = .01; p < .01) teacher covariates. These findings suggest that 

the main model results are robust to the approach used to handle students’ responses of 

uncertain/not sure on the CRI questions.  

Academic press. The logic model for CareerStart indicates that teacher effectiveness, 

measured in this study using two dimensions of academic press (rigor and preparation for 

future schooling), may be an alternative process by which CareerStart promotes engagement 

and learning (Table 2.22). Before presenting the findings, the coefficients were scaled down 

to the 0-1 metric that CRI was on, to make the coefficients comparable. Using the IVE 

framework (and treating each press measure separately as the endogenous variable), higher 

valuing was predicted by rigor with similar effects for math (β = .024; p < .05), language arts 

(β = .032; p < .001), science (β = .031; p < .001), and social studies (β = .029; p < .001). 

Higher valuing was also predicted by preparation for future schooling in math (β = .042; p < 

.001), language arts (β = .036; p < .001), science (β = .040; p < .001), and social studies (β = 
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.034; p < .001). Preparation for future schooling also predicted higher engagement including 

in math (β = .029; p < .05); science (β = .031; p < .05); and social studies (β = .016; p < .05). 

The findings for each subject were similar but not identical. The similarity was because 

students reported a single perception measure across all teachers and I derived a subject-

specific teacher estimate by aggregating the perception to the teacher level using the different 

nesting patterns that students demonstrated across teachers.  

Discussion 

In this study, I examined the causal effect of relevance as a teaching practice, in the 

form of career examples associated with lesson content in the four main subject areas of 

math, language arts, science and social studies, on students’ engagement, valuing and end-of-

grade achievement. I determined whether CRI serves as the process by which a randomly-

assigned teaching practice intervention, CareerStart, promotes student engagement (Orthner 

et al., 2012) and math achievement (Woolley et al., in press). A challenge in the effort to 

ascribe causality to career relevance is that the practice itself could not be randomly assigned. 

Teachers who were randomly assigned to each CareerStart treatment condition could choose 

to ignore their treatment assignment. Some teachers in schools assigned to CareerStart, for 

example, elected not to use career examples in their lessons or give incomplete lessons 

(Woolley, Rose, Mercado & Orthner, 2013). The challenge to evaluation arises because if the 

choice to ignore assignment was non-random and associated with the treatment outcomes, 

this could provide an alternative explanation for the observed effect of CRI. A non-

experimental evaluation method, IVE, combined with the randomized assignment of 

CareerStart, was used to estimate a local average treatment effect (LATE). The LATE could 

be interpreted as the causal impact of CRI, provided that assumptions are met regarding the 
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association between CareerStart and CRI (Rose et al., 2012) and that the assignment of 

CareerStart was random. Combined with a strong theory of change for CareerStart and 

several robustness checks, the evidence from this analysis lends support to the causal 

interpretation of CRI on student valuing. However, some of the results raise important 

questions that can only be answered by future studies.  

Questions 1 and 2 concerned whether CRI promoted higher engagement and valuing, 

and whether CRI promoted higher end-of-grade math and reading achievement, respectively. 

Valuing, adapted from the Student Identification with School measure (Voelkl, 1996) 

represents a measure of emotional engagement to schooling. Students who report higher 

valuing believe that schooling will help them achieve their objectives and that this belief 

manifests affectively (Voelkl, 1996). Valuing was the most robust finding in this analysis, 

with CRI showing significant and positive effects for valuing across multiple subject areas 

under a variety of specifications and robustness checks, and the effects were all of similar 

size, at about .01. Social studies CRI was a significant and positive predictor of valuing in all 

specifications and robustness checks except for the model without IVE having teacher 

covariates. Language arts CRI was significant except in models that included non-imputed 

teacher covariates, though the evidence of robustness checks indicated that the loss of 

missing values may explain the differences between models with and without teacher 

covariates, rather than the confoundedness of the teacher covariates. Math CRI was a 

significant predictor of valuing only in robustness checks that included imputation of teacher 

covariates, models without IVE, and in both cases, only when uncertain responses to the CRI 

question were imputed rather than considered passive disagreement. Science CRI was 

significant and positive in a model without teacher covariates, and in several robustness 
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checks, including those with imputed teacher variables, no IVE, and models in which 

uncertain responses were considered passive disagreement.  

The magnitude of the effect of CRI on valuing can be illustrated by calculating the 

difference in valuing scores for two students having teachers at one standard deviation above 

and below the mean in the probability of using CRI. For language arts, the gap between these 

two teachers was 18.2 percentage points, which translates to a .182 difference between these 

two students on the valuing scale, which ranged from 1 to 5 with a standard deviation of .64, 

suggesting that the difference between having teachers at -1 and +1 standard deviations 

amounted to about one-quarter of a standard deviation in the outcome. For math, the gap was 

22 percentage points (.22 difference in valuing); for science 17.4 percentage points (.174 

difference in valuing); and for social studies 17 percentage points (.17 difference in valuing).  

These findings are supported by other investigations. Orthner et al. (2012) examined 

the effect of CareerStart on valuing and found that being in a school in the treatment 

condition increased student valuing by 1.41. The evidence from this same study suggested an 

association between CRI—measured by the unconditional teacher mean of the original Likert 

responses to the question about the frequency of use of career examples—and valuing was 

1.31. This indicated that a one-point change on the CRI scale (ranging from 0 to 4) would 

result in a 1.31 point change in valuing.  

The findings described above were robust to specifications regarding imputation, 

teacher covariates, and instrumental variable modeling. Two other findings for CRI emerged 

that, although not robust across multiple specifications, suggest that further investigations are 

required. CRI predicted higher math achievement in the version of the model without IVE. 

The IVE model showed an effect of .031, and the model without IVE, .039. This was the 
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entirety of the difference between the two findings, as the standard error was the same (.018) 

in both models, contrary to what was expected of IVE (i.e., inflating standard errors). The t 

test in the IVE model suggested a trend (t = 1.67; p < .10) but not a finding at the desired 

level of confidence.   

Not finding a math result at p < .05 raises questions about how CareerStart may have 

affected math achievement (Woolley et al., in press), as that is part of the objective of this 

study. Rose et al. (2012) showed that CareerStart also promoted higher CRI in math. Taken 

together, the findings of the two preceding studies partially confirmed the logic model and 

suggested this study as a direction for research. The trend-level finding does not disconfirm 

that CRI may have been a process for math achievement, and suggests that this issue may 

need to be taken up again in a future evaluation, but at present the evidence is inconclusive, 

and therefore other factors must be considered.  It may be that the effects of CareerStart 

observed in previous studies on math achievement were driven by the effect in an earlier year 

of the treatment, such as sixth or seventh grade. Because student performance in these years 

is controlled for in the present study, the eighth grade teachers may not have added further to 

the gain from these years. In addition to being cumulative over multiple years, math 

performance may also be a function of cumulative CRI across subjects. Due to limitations in 

the data (students could not be matched to their teachers in sixth and seventh grades), neither 

of these was examined in the present study; both could be considered in further studies.  

Finally, engagement was not significantly affected by CRI except in robustness 

checks where teacher level imputation (science CRI) or non-IVE models (social studies CRI) 

were used. This finding may be congruent with the results of previous research into the 

relationship between CareerStart and engagement, and CRI and engagement. In Orthner et al. 
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(2012), CareerStart was shown to not predict higher engagement. However, CRI, measured 

using the unconditional teacher mean of students’ responses to the CRI question, was 

significant, with a coefficient of 1.59 (one unit movement on the 5-point CRI scale translated 

to a 1.59 point increase in engagement). Orthner et al. (2012) did not use a conditional 

measurement strategy to estimate teacher CRI. Furthermore, the authors estimated a “teacher 

team” CRI, combining the responses that students gave to all four subject area teachers, 

rather than attempting to isolate the effects of individual subjects as in the present study. 

Finally, Orthner et al. (2012) did not claim to estimate a causal effect, and the authors did not 

use an econometric method to adjust for unobserved confoundedness.  

It is conceivable that the difference between the findings in this study and the 

associations demonstrated by Orthner and colleagues may in fact be the result of unmeasured 

confounders in their models. The results of the analysis for answering Question 3, which 

suggests an alternative pathway through preparation for future schooling, may provide some 

insight into this relationship. Using IVE techniques, and treating preparation for future 

schooling as an alternative process for CareerStart, preparation for future schooling was 

demonstrated to have a significant and promotive effect on engagement. Engagement was 

measured by a scale consisting of items indicating a cognitive investment of resources in 

schooling. Positive responses to these questions suggest that students understand the value of 

school work, something which may be immediately responsive to teaching strategies that link 

the coursework being learned currently to schooling that will be required at a later time. 

Results for engagement and preparation for future schooling are robust across most subject 

areas (language arts, science and social studies). Inferences about this finding should not be 

overstated, because there were problems with measurement of preparation for future 
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schooling (in particular, that students were not asked to report on each individual teacher). 

However, they do suggest a direction for future research into teacher strategies that promote 

cognitive engagement.  

Similarly, valuing was shown to respond, robustly, to both preparation for future 

schooling and rigor. This finding suggests that multiple teaching practices promote valuing 

and the IVE suggests that CareerStart’s effect may operate through these multiple pathways. 

Although the LATE IVE method cannot adjudicate between the three the relative magnitudes 

of the three effects can be examined in a less formal manner. When CRI, rigor and 

preparation for future schooling were entered simultaneously into non-IVE multilevel 

models, preparation for future schooling was significant when paired with math, science and 

social studies CRI; none of these forms of CRI were significant. This finding raises questions 

about whether CRI was the process by which CareerStart operated to promote higher valuing. 

Because of measurement problems, it cannot be interpreted as a final answer.  

Limitations 

There are several limitations in the present study. The first several are measurement 

limitations. First, although the logic model for CareerStart, informed by the literature on 

student motivation, indicates that relevance operates through motivational processes, this 

component of the logic model has not yet been tested. To properly account for the 

mechanism influencing change in student outcomes, these motivational processes, including 

expectancy value, goals, interests, extrinsic and intrinsic motivation, and student identity, 

should have been directly measured. Future evaluations of CareerStart will address this 

discrepancy. Second and related, motivational processes occur in the context of an 

underlying developmental framework (Wentzel & Wigfield, 2007), and a panel design 
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consisting of multiple measures of CRI and each outcome over the full set of available years 

(e.g., third through eighth grades), would have helped to isolate the treatment effect from 

these processes. However, although student exam scores were available back to third grade, 

engagement and valuing were available only as early as sixth grade. Further, although CRI 

was collected from students as early as sixth grade, the information needed to match students 

to their teachers was only available in eighth grade. Consequently, I could not replicate the 

longitudinal analyses for the CareerStart effect in Orthner et al. (2012) and Woolley et al. (in 

press), and used a model consisting of eighth grade outcomes only. To address this 

limitation, I used all available covariates at the student and teacher level, and for continuous 

variables I included both quadratic and cubic terms. A third concern had to do with 

measurement of academic press in the form of rigor and preparation for future schooling. 

Students were asked to report on their teachers in general rather than on each specific 

teacher. In future studies of CareerStart or similar interventions or processes such as CRI, 

additional measures of teacher effectiveness, including academic press, should be collected 

and students should be asked to report on each subject’s teacher separately. There were 

limitations in how CRI was measured. For example, students were asked at the end of the 

year to recall whether teachers used career examples at any time during the school year. 

More timely measures at multiple time points may have provided better information about 

teachers’ use of career examples. It is also widely understood that EOG scores are imperfect 

measures of learning, and caution is warranted when interpreting these findings.  

A final set of limitations pertains to the IVE method. Some scholars have questioned 

the view that random assignment satisfies the assumption of IVE that the instrument 

(CareerStart assignment) not be associated with the outcome through unmeasured processes. 
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For example, Heckman (1997) indicated that because study participants make assignment-

conditional decisions for non-random reasons that are not measured, this assumption may not 

be satisfied. Further, because the monotonicity assumption concerns potential and not 

observed outcomes, it is not possible to demonstrate that the assumption holds in the data. 

Finally, although rigor, preparation for future schooling, and CRI were all shown to be causal 

processes for valuing using the IVE, and although the relative strengths of each process were 

demonstrated in a separate multilevel model without IVE, a true multiple endogenous 

regressor model would have included multiple instruments (e.g., Gennetian, Magnuson & 

Morris, 2008). The conditions for a multiple instrument model were not met in the current 

study.  

Implications for Further Research 

This study contributes in three ways to education policy research into teaching 

practice. First, it suggests the importance of collecting direct measures of teaching practices. 

Second, it demonstrates the utility and limitations of using instrumental variables to estimate 

causal processes in intervention research in schools. Third, it supports the continued 

investigation of relevance as a teaching practice.  

Collecting Practice Data. The ability to draw conclusions from this investigation 

was limited by the unavailability of all but a handful of indicators of practice. Non-

experimental education policy studies typically used structural inputs of teacher preparation 

and examine these inputs for their association with student learning or teacher effectiveness. 

These characteristics include board certification (Goldhaber & Brewer, 2000; Hammond, 

Berry & Thoreson, 2001), the number of content area courses (Boyd, Grossman, Lankford, 

Loeb & Wyckoff, 2009), PRAXIS II exam scores (Xu, Hannaway & Taylor, 2011), college 
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entrance exam scores (Harris & Sass, 2011), route of preparation to teaching, such as through 

traditional preparation (Henry et al., 2011) or lateral entry such as Teach for America (Xu, 

Hannaway & Taylor, 2011; Glazerman, Mayer & Decker, 2006), or the number of in-service 

hours of training (Harris & Sass, 2011). 

All of these inputs to learning must ultimately operate through the process of 

teaching. Studies using surveys, teaching logs or observations of both teacher training and 

teacher practice confirm our intuition that when they are rigorously measured, instructional 

practices are more robustly associated with achievement than are pre-service training and 

qualifications (Hamre et al., 2012; Kahle, Meece & Scantlebury, 2000; Meece, 2003; Palardy 

& Rumberger, 2008). In this regard, the present study, in which relevance-oriented practice 

was measured strictly via students’ perceptions taken at the end of the school year, does not 

go far enough. Multiple measures of career relevance, including teaching logs, teacher self 

reports, observations and student feedback at multiple time points during the school year 

could be developed for future studies of CareerStart or similar practice interventions.  

Using IVE to examine teaching processes. Instrumental variable methods are well-

known and used frequently in econometric studies, but have not traditionally been employed 

in psychology, education or social work. However, this is beginning to change with scholars 

promoting instrumental variable methods as an observational evaluation method appropriate 

across a wide range of domains (Rose & Stone, 2011; Schochet, 2011), including 

developmental and psychological research (Gennetian, Magnuson & Morris, 2008). Because 

IVE methods use standard correlational approaches, the most burdensome aspect of these 

methods typically has to do with justifying that the chosen instrumental variable satisfies a 

set of onerous identification conditions. Specifically, the instrument must simultaneously be 
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predictive of the process and uncorrelated with error. The second condition can be 

equivalently stated that the instrument must not be associated with the dependent variable 

except through the specified process, though this can be conditional on other measured 

variables. The difficulty in establishing that these conditions apply may explain the lack of 

widespread adoption of IVE outside of econometrics (e.g., Reiss, 2008).  

A subset of IVE that can be applied within randomized experiments to examine the 

causal influences of processes of intervention programs shifts the identification challenge 

from the instrument to randomized assignment and the Rubin causal model (Angrist, Imbens, 

&Rubin, 1996). If the random treatment assignment can be shown to be predictive of only 

higher values of the process and if SUTVA is satisfied, then the assumptions of the IV are 

satisfied. This study demonstrated the practicality and simplicity of their use in studying 

teaching practice to establish causality when teachers do not comply with assignment, though 

there were unresolved challenges when it came to the possibility of multiple potentially non-

additive processes.  

Relevance as a teaching practice. Research on motivation suggest that making 

lesson content and tasks relevant to students’ current and future lives may act on known 

motivational processes to promote engagement and student learning. Although motivation 

was not measured in this study, relevance was measured and shown to be predictive of 

student valuing, a measure of emotional engagement to schooling. This supports the results 

of other experiments into relevance oriented teaching strategies. Cordova and Lepper (1996) 

in a pivotal study on relevance demonstrated that the more they embellished the learning 

content and tasks with fantasy concepts that were subjectively relevant to the learner, the 

more the students learned relative to a control condition with no fantasy context. Future 
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relevance, such as the career relevance examined in this study may have greater value-added 

to student learning than other forms, because the form of relevance is partly tied to the 

purpose of schooling. Students now make curriculum choices as early as middle school—

choices that may constrain the careers available to them as adults—and are increasingly 

being exposed to college preparation at this age (e.g., Fleming, 2011). North Carolina 

Governor Pat McCrory has called for increased vocational training in public schools and to 

ensure children make informed choices, giving them information in middle school may be 

helpful to selecting course electives. Career relevance may inform students’ identities and 

goal aspirations in addition to their interests, utility value and intrinsic motivation (Akos & 

Galassi, 2004; Akos, Konold & Miles, 2004). Husman and Lens (1999) and Husman, 

Derryberry, Crowson and Lomax (2004) demonstrate that if the future use for a learned task 

can be imbued with value for the present by associating the learning of the task with future 

success, it can promote intrinsic interest. Identity formation may also be central to students’ 

motivation, as students who could imagine themselves as successful adults and tie these 

images to present day motivation to learn, demonstrated better engagement among other 

outcomes (Oyserman, Terry & Bybee, 2002).  

In the context of these contributions to understanding the role of relevance as a 

teaching practice, the results of this investigation undoubtedly provide some answers. 

However, they also suggest new questions that can be answered in future studies on the 

current sample or in a new RCT. First, it is not clear what subjective motivational processes 

were operating to transmit the benefits of career relevance to valuing. Second, it is not clear 

what component of the intervention compelled teachers to change their practices; for 

example, it could have been new knowledge about the motivational value of relevance, or it 
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could have been changed beliefs and attitudes towards existing knowledge about motivation. 

Third, an important part of the intervention was to encourage teachers to develop their own 

career relevant lessons, and because information about such activity was not collected, the 

influence of such developments on the efficacy of CareerStart is not known. Fourth, as I have 

demonstrated that rigor and preparation for future schooling, two measures of academic 

press, promote higher valuing, and preparation for future schooling promotes higher 

engagement, the CareerStart logic model may need to be clarified to reflect this new 

knowledge.  

Implications for Education Policy 

Teachers are now widely considered to be the most important input to learning, and 

they are assumed to have the potential to compensate for the deficits that students from 

disadvantaged backgrounds face (Nye, Konstantopolous and Hedges, 2004). Using data from 

the Tennsessee STAR experiment and a variance decomposition method, Nye, 

Konstantopolous and Hedges (2004) found that teacher effects for students from kindergarten 

through third grade range from .12 to .135 for math achievement and .066 to .074 for reading 

achievement, which constituted about 1/3 a standard deviation in math and ½ a standard 

deviation in reading between teachers at the 25th and 75th percentiles. Rockoff (2004) used 

teacher fixed effects models to show that teachers promoted higher student achievement in 

reading vocabulary (teacher fixed effect joint significance F = 4.43); reading comprehension 

(F = 2.74); math computation (F = 3.72), and math concepts (F = 5.30). Gordon, Kain and 

Staiger (2006) found a 10-percentile difference in achievement between students having 

teachers in the top and bottom quartiles of the distribution of teacher effectiveness. This 
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suggests, among other policy instruments to be examined by education policy scholars, a 

focus on identifying and disseminating effective practices.  

The development and implementation of evidence-based best practices is a goal of 

many professions including medicine (Sackett et al., 1996), social work (Albers & 

Kratchowill, 2006), and public policy (Davis & Boruch, 2001). Advocates for evidence-

based education practice call for greater empiricism (Davies, 1999; Oakley, 2002). The 

subject is controversial, however, with some scholars suggesting it narrows the range of what 

constitutes acceptable knowledge in education policy (Hleboswith, 2012; Stevenson, 2011; 

Webster, 2009) with some suggesting it excludes teaching practice altogether (Elliott, 2001). 

However, any failure to closely examine teaching practice is a sign of myopic application of 

the principles of best practice rather than of best practice itself. A requirement that 

educational policies and practices be evidence-based is the impetus for the What Works 

Clearinghouse, an arm of the Institute of Education Sciences that collectivizes scientific 

knowledge about effective education policies, including in-classroom practices that promote 

teacher effectiveness and student learning.  

Teaching is a largely uniform activity informed by cultural norms, but produces 

greatly different results according to context (Sykes, Bird & Kennedy, 2010). Evidence-

based practices, applied to teaching, provide scientific support rather than authoritarian or 

cultural rules for the complex preparation and implementation demands of teaching practice 

that influence student learning. Historical evidence from the “process-product” literature 

suggests that teaching practices influence learning, and many of these studies identified 

effective practices (see Brophy & Good, 1986), though many of these studies were criticized 

for being insufficiently rigorous and relying largely on correlational designs (Hill, Rowan & 
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Ball, 2005). Better evidence comes from rigorous designs such as experiments or the use of 

rigorous non-experimental methods (Cohen, Raudenbush & Ball, 2003; Rowan, Correnti & 

Miller, 2002), and designs that reflect the shifting goals, priorities and conditions in the 

classroom environment (Clements, 2007), and the greater intensity and scope of teachers’ 

responsibilities (Valli & Buese, 2007). In addition to strict attention to rigor in the methods 

used, studies that inform best teaching practice build on the evidence demonstrating the 

processes by which children learn (Hill et al., 2008), including the objective processes of 

engagement (Fredricks, Blumenfeld & Paris, 2004) and its subjective precursor, motivation 

(Wentzel & Wigfield, 2007).  

Studies into student motivation, engagement and developmental patterns suggest that 

interventions that aim to improve engagement in school and prevent school dropout should 

be implemented in a developmentally appropriate manner at a time before disengagement 

patterns set in, suggesting that middle school may be an appropriate setting (Janosz, 

Archambault, Moritz & Pagani, 2008; Roeser, Eccles & Sameroff, 2000). Programs that 

target student motivation through values, interests and identities have the potential to take 

advantage of students’ natural motivational predispositions to intrinsic rewards such as self-

fulfillment and autonomy (Hidi & Harackewicz, 2000). Intrinsic motivation can be sustained, 

and thus has greater potential for long-term influence on student learning than extrinsic 

rewards or sanctions, which are typically not sustained (Ryan & Deci, 2000) and may reduce 

the efficacy of intrinsic reward systems (Hidi & Renninger, 2006). One potential avenue for 

promoting relevance is to reverse the disconnection between learned content and its potential 

uses, which typifies how instruction is delivered, by making explicit to students the relevance 
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of what they are being asked to learn (Cordova & Lepper, 1996; Husman, Derryberry, 

Crowson & Lomax, 2004).  

This study suggests that CareerStart may be one such program. Experimental 

(Orthner et al., 2012; Rose et al., 2012; Woolley et al., in press) and non-experimental 

evidence (in this study) suggest that a relevance program implemented in middle school may 

promote school valuing. As revealed by this study, there are questions about the teaching 

practices that are ultimately responsible for the observed effects, though relevance has not 

been completely ruled out, and it is not known which motivational processes are largely 

responsible for the influence on valuing, or whether altering these patterns prevents dropout 

from middle school (as students in this cohort have not reached graduation age yet). 

However, additional evidence does suggest that high school outcomes are improved 

(Woolley, Unick, Rose & Orthner, under review). This study focused on the individual 

contribution of CRI to outcomes that could be explicitly linked to that form of CRI (e.g., 

math CRI on math achievement, or any form of CRI individual on engagement). This 

addresses concerns that learning in different content areas may reflect different processes 

(e.g., Hill, Rowan & Ball, 2005; Shulman, 1987). Orthner et al. (2012) combine all four 

content areas into a single omnibus measure of CRI and showed that it predicted higher 

engagement and valuing. As noted, this CRI measure was an unconditional average at the 

teacher team level, and econometric methods were not used to rule out unmeasured 

confounders, and in particular the influence of academic press was not considered. A future 

study could look at the cumulative effect of CRI across four content areas using these 

rigorous strategies and ascertain this as the path for the effects of CareerStart.  
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Conclusion 

The idea that teachers matter has some intuitive appeal because they are most 

proximal to the child. Because they primarily determine what goes on in their classrooms, 

teacher can ultimately decide on their own practices, including whether or not to implement 

mandated or recommended reforms (Kennedy, 2010; Wang et al., 2010). Teacher beliefs are 

culturally informed, largely by their own experiences as students (Pajares, 1992; Sykes, Bird 

& Kennedy, 2010) and reforms that do not accord with teacher belief systems often not only 

trigger passive resistance but active participation to change the new culture (Kelchtermans, 

2005). 

This may explain part of the appeal of changing teaching practice by changing the 

candidates in the teacher labor force to reflect these desired characteristics. More proximal 

strategies include changing how the teaching labor force is trained prior to service and 

supported during service. Worrisome trends in teacher recruitment and retention must be 

acknowledged when deciding which strategy to use. The teacher workforce has changed 

substantially over the last 30 years both in terms of average tenure and how teachers are 

prepared for teaching (Darling-Hammond et al. 2001; Glazerman et al, 2008; Gordon, Kane 

& Staiger, 2006). The trends in recruitment and retention, which may be associated with 

policies directed at teachers or students, are not positive (Clotfelder, Ladd, Vigdor & Diaz, 

2004; Horng, 2009; Ladd, 2011), and higher salaries or bonuses may not be a panacea 

(Clotfelder et al, 2008a; 2008b). Trends in teacher workloads relative to other professions, 

including work on Sundays and holding second jobs, suggest that other professions may be 

more desirable (Krantz-Kent, 2008). Reforms that are integrated into teachers’ existing 

practices may be more successful because they do not add to teachers’ already burdened 
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schedules and demands (Valli & Buese, 2007). Without involvement of teachers, or attention 

to their beliefs, values, and needs, reform efforts may be stymied or have a demoralizing 

effect on both current teachers as well as reducing the pool of quality teachers by acting as 

disincentives on qualified candidates (Kelchtermans, 2005; Wang, Spalding, Odell, Klecka & 

Lin, 2010).  

This study concerned the evidence for the theorized process for a program that lends 

support to teachers’ efforts to promote engagement and learning in the classroom. The study 

demonstrated strong but inconclusive evidence that this process, career-relevant instruction, 

promoted student valuing. There is also weak evidence that engagement, as well as valuing, 

may have been affected by teachers’ academic press. In sum, the evidence strongly suggests 

further investigations into the processes by which children learn. Because CareerStart has 

been shown to promote learning in an RCT, further investigations should be conducted to 

ascertain whether these effects are generalizable and if so, the processes by which they 

operate.  
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Career Relevant Instruction

Non-Cognitive Processes
•Improved self confidence and self esteem
•Reduced internalizing and externalizing 
behaviors
•Improved emotional regulation
•Increased belief that school is valuable for their 
future

Psychosocial  and Ecological Mechanisms
•Increased positive expectations from teachers 
and parents/ guardians to succeed on school and 
in the future
•Increased support for schooling from teachers, 
parents/caregivers, and peers
•Increased bonding to school
•Improved, more supportive learning climate

Achievement Outcomes
•Increased standardized achievement test scores in math
•Increased standardized achievement test scores in science
•Increased standardized achievement test scores in reading

Teacher Processes 
(Proximal & Intermediate)

Student Processes (Intermediate & Distal)

Teacher Effectiveness

Behavioral Outcomes
•More career focused conversations beyond CS lessons with parents/guardians, 
peers, and others
•Increased attendance, decreased unexcused absences
•Decreased problem behaviors, office referrals, and suspensions
•Increased academic behaviors including studying, completion of homework and in 
class work, and participation in class discussions and activities

Cognitive Mechanisms
•Improved engagement and valuing
•Students experience increased future 
career thinking
•Students experience increase curiosity 
for career possibilities and information
•Students see school as more coherent 
and something at which they can succeed

CareerStart Program - Teachers
•Teachers increase the frequency of career examples in their 
pedagogy in the classroom
•Those career examples are of a higher quality and have a 
higher level of integration into the curriculum.
•Teachers have increased awareness of career relevance of the 
curriculum and of future career possibilities for students

CareerStart Program - Principals
•Principal training in leadership around career relevant instruction and 
school-wide strategies and activities
•Increased Principal Leadership effectiveness around career relevance

Principal Processes (Proximal)

 

Figure 2.1. CareerStart theory of change model. 
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Figure 2.2. Kernel density engagement. 

 

 

Figure 2.3. Kernel density valuing. 
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Figure 2.4. Kernel density math. 

 

 

Figure 2.5. Kernel density reading. 
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Figure 2.6. Kernel density LA CRI. 

 

 

Figure 2.7. Kernel density math CRI. 
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Figure 2.8. Kernel density science CRI. 

 

 

Figure 2.9. Kernel density social studies CRI. 
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Table 2.1. 

Sample Characteristics (N = 2866) 

Student Background, 
Home & 
Demographic 
Characteristics Mean/Prop SD Min Median Max N(Missing) 
Black 0.30 0.46 0.00 0.00 1.00 0 
Hispanic 0.15 0.36 0.00 0.00 1.00 0 
Other R/E (Amer 
Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.06 0.24 0.00 0.00 1.00 0 

Gender (female) 0.49 0.50 0.00 0.00 1.00 0 
Receives free/reduced 
price lunches 0.52 0.50 0.00 1.00 1.00 0 
Academically gifted 0.18 0.38 0.00 0.00 1.00 0 
Enrolled in special 
education services 0.11 0.32 0.00 0.00 1.00 0 
Parent marital status 
(single) 0.32 0.47 -0.37 0.00 1.26 0 
Age 11.56 0.49 10.30 11.50 13.90 0 
Student Test Score 
Performance 
Measures Mean SD Min Median Max N(Missing) 
EOG score for math 
8th grade 362.93 7.86 334.00 362.00 386.00 0 
EOG score for math 
7th grade 359.07 10.02 328.29 359.00 383.11 0 
EOG score for math 
6th grade 355.88 10.34 323.03 356.00 382.06 0 
EOG score for math 
5th grade 354.81 9.59 326.37 355.00 379.49 0 
EOG score for math 
4th grade 343.37 6.65 323.14 343.39 362.54 0 
EOG score for math 
3rd grade 339.31 4.95 323.28 339.44 353.94 0 
EOG score for reading 
8th grade 360.53 7.60 329.00 361.00 382.00 0 
EOG score for reading 
7th grade 355.43 9.62 325.36 356.00 379.00 0 
EOG score for reading 
6th grade 350.09 9.74 317.15 350.83 376.37 0 
EOG score for reading 
5th grade 347.63 8.92 317.11 347.51 370.87 0 
EOG score for reading 342.42 9.89 309.55 343.07 368.19 0 
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4th grade 
EOG score for reading 
3rd grade 338.11 10.02 303.78 338.63 365.84 0 
Student Engagement 
and Psychosocial 
Measures Mean SD Min Median Max N(Missing) 
Connectedness 8th 
grade 3.69 0.79 0.97 3.72 5.77 0 
Connectedness 7th 
grade 3.79 0.80 1.00 4.00 5.94 0 
Connectedness 6th 
grade 3.87 0.78 1.00 4.00 5.92 0 
Engagement 8th grade 3.46 0.81 0.87 3.47 5.28 0 
Engagement 7th grade 3.51 0.84 0.88 3.67 5.50 0 
Engagement 6th grade 3.61 0.76 0.98 3.67 5.76 0 
Valuing 8th grade 3.95 0.65 1.00 4.00 5.64 0 
Valuing 7th grade 4.03 0.67 1.00 4.14 5.84 0 
Valuing 6th grade 4.15 0.64 1.00 4.29 5.92 0 
Career-Relevant 
Parenting/Home 
Career Relevance 
Measures by 
Response Mean SD Min Median Max N(Missing) 
My parents/guardian 
show me the kind of 
things they do at work 
(SA or A = 1) 0.84 0.36 0.00 1.00 1.00 0 
My parents/guardian 
tell me about their jobs 
(SA or A = 1) 0.89 0.32 0.00 1.00 1.00 0 
My parents/guardian 
have shown me where 
they work (SA or A = 
1) 0.95 0.23 0.00 1.00 1.00 0 
My parents/guardian 
tell me about things 
that happen to them at 
work (SA or A = 1) 0.90 0.29 0.00 1.00 1.00 0 

Future Preparation Mean SD Min Median Max N(Missing) 
I plan to attend some 
type of college after 
high school (SA or A = 
1) 0.97 0.18 0.00 1.00 1.00 0 
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Teacher 
Characteristics and 
Perspectives on CRI Mean/Prop SD Min Median Max N(Missing) 
LA teacher reported 
perspective on CRI 34.31 6.37 17.00 35.00 44.00 127 
LA teacher years of 
service 15.21 9.91 0.50 15.00 37.00 358 
LA teacher gender 
(female) 0.84 0.37 0.00 1.00 1.00 127 
LA teacher race 
(Black) 0.18 0.38 0.00 0.00 1.00 433 
Math teacher reported 
perspective on CRI 36.22 6.16 22.00 37.00 44.00 413 
Math teacher years of 
service 11.75 7.75 1.00 11.00 27.00 648 
Math teacher gender 
(female) 0.76 0.43 0.00 1.00 1.00 483 
Math teacher race 
(Black) 0.15 0.36 0.00 0.00 1.00 648 
Science teacher 
reported perspective 
on CRI 35.75 6.44 19.00 38.00 44.00 170 
Science teacher years 
of service 14.68 11.56 1.00 14.00 37.00 264 
Science teacher gender 
(female) 0.63 0.48 0.00 1.00 1.00 170 
Science teacher race 
(Black) 0.18 0.39 0.00 0.00 1.00 385 
Social studies teacher 
reported perspective 
on CRI 34.80 5.11 24.00 34.00 44.00 117 
Social studies teacher 
years of service 13.49 9.60 1.00 10.00 34.00 168 
Social studies gender 
(female) 0.56 0.50 0.00 1.00 1.00 117 
Social studies race 
(Black) 0.09 0.28 0.00 0.00 1.00 365 

 
  



178 

Teacher Quality and 
EVAAS Effectiveness 
Scores Mean SD Min Median Max N(Missing) 
Teacher quality: 
academic press or 
rigor 11.45 2.25 2.99 12.00 17.86 0 
Teacher quality: 
preparation for future 
schooling 11.86 2.37 3.00 12.00 18.50 0 

Treatment Condition Mean SD Min Median Max N(Missing) 
Enrolled in 
CareerStart treatment 
school in 8th grade 0.51 0.50 0.00 1.00 1.00 0 

 



 

Table 2.2. 

CRI Binary Variable 

Middle Category Set ("Uncertain") to Missing and Imputed 
Mean SD Min Median Max N(Missing) 

Student-reported level of CRI, binary (SA or A = 1), 
6th grade language arts 0.70 0.46 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
7th grade language arts 0.66 0.47 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
8th grade language arts 0.72 0.45 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
6th grade math 0.68 0.47 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
7th grade math 0.73 0.45 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
8th grade math 0.70 0.46 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
6th grade science 0.67 0.47 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
7th grade science 0.70 0.46 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
8th grade science 0.72 0.45 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
6th grade social studies 0.65 0.48 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
7th grade social studies 0.68 0.46 0.00 1.00 1.00 0 
Student-reported level of CRI, binary (SA or A = 1), 
8th grade social studies 0.69 0.46 0.00 1.00 1.00 0 
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Table 2.3. 

Decomposition of Variance in CRI 

Proportion of Variance at Teacher Level 
Using Logit 

Teacher Student Total 
Proportion at 
Teacher Level 

Language Arts 0.30 3.29 3.59 0.08 
Math 0.40 3.29 3.69 0.11 
Science 0.29 3.29 3.58 0.08 
Social Studies 0.20 3.29 3.49 0.06 

Using LPM 

Teacher Student Total 
Proportion at 
Teacher Level 

Language Arts 0.01 0.19 0.20 0.05 
Math 0.02 0.20 0.21 0.07 
Science 0.01 0.19 0.20 0.05 
Social Studies 0.01 0.21 0.22 0.03 

There are real differences between teachers (last column; from 3 to 11%, 
depending on the subject), but this means that 89 to 97% of the variance is 
within classroom; that is, between students. 
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Table 2.4. 

CRI Measurement Model for Language Arts: Factors Explaining Variation in Student 
Perceptions of 8th Grade CRI 
 

Language Arts OR LO SE p value 
Intercept (conditional mean for 
reference conditions) 3.18 1.16 0.126 0.000 *** 
Black 0.90 -0.11 0.149 
Hispanic 1.09 0.09 0.203 0.675 
Other R/E (Amer 
Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.81 -0.21 0.253 0.413 
Gender (female) 1.21 0.19 0.102 0.060 
Receives free/reduced price lunches 1.01 0.01 0.157 0.935 
Academically gifted 0.96 -0.04 0.195 0.834 
Enrolled in special education services 0.94 -0.07 0.225 0.771 
Age 1.09 0.09 0.170 0.598 
Age-Squared 0.86 -0.15 0.229 0.500 
Age-Cubed 1.16 0.15 0.183 0.430 
Parent marital status (single) 1.03 0.03 0.134 0.814 
EOG score for reading 5th grade 1.00 0.00 0.016 0.786 
EOG score for reading 5th grade-
Squared 1.00 0.00 0.001 0.970 
EOG score for reading 5th grade-
Cubed 1.00 0.00 0.000 0.582 
EOG score for reading 4th grade 0.98 -0.02 0.018 0.404 
EOG score for reading 4th grade-
Squared 1.00 0.00 0.001 0.476 
EOG score for reading 4th grade-
Cubed 1.00 0.00 0.000 0.477 
EOG score for reading 3rd grade 0.99 -0.01 0.016 0.684 
EOG score for reading 3rd grade-
Squared 1.00 0.00 0.001 0.477 
EOG score for reading 3rd grade-
Cubed 1.00 0.00 0.000 0.326 
Student-reported level of CRI, binary 
(SA or A = 1), 6th grade language arts 1.57 0.45 0.116 0.000 *** 
Student-reported level of CRI, binary 
(SA or A = 1), 7th grade language arts 2.56 0.94 0.129 0.000 *** 
My parents/guaridan tell me about the 
kind of work they do (SA or A = 1) 1.15 0.14 0.274 0.621 
My parents/guardian show me the 
kind of things they do at work (SA or 1.58 0.46 0.171 0.008 ** 
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A = 1) 
My parents/guardian tell me about 
their jobs (SA or A = 1) 1.19 0.17 0.309 0.582 
My parents/guardian have shown me 
where they work (SA or A = 1) 1.26 0.23 0.274 0.406 
My parents/guardian tell me about 
things that happen to them at work 
(SA or A = 1) 1.30 0.26 0.201 0.192 
I plan to attend some type of college 
after high school (SA or A = 1) 2.79 1.03 0.285 0.000 *** 

*** p < .001; ** p < .01; * p < .05 
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Table 2.5. 

CRI Measurement Model for Math: Factors Explaining Variation in Student Perceptions of 8th 
Grade CRI 
 

Math OR LO SE p value 

Intercept (conditional mean for reference cond.) 2.70 0.99 0.146 0.000 *** 

Black 1.12 0.11 0.148 0.456 

Hispanic 1.49 0.40 0.188 0.034 * 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.93 -0.07 0.225 0.743 

Gender (female) 0.94 -0.06 0.120 0.636 

Receives free/reduced price lunches 1.17 0.15 0.144 0.289 

Academically gifted 1.30 0.26 0.185 0.158 

Enrolled in special education services 0.90 -0.11 0.190 0.569 

Age 1.14 0.13 0.159 0.422 

Age-Squared 0.96 -0.04 0.245 0.855 

Age-Cubed 1.02 0.02 0.193 0.901 

Parent marital status (single) 0.96 -0.04 0.122 0.733 

EOG score for math 5th grade 1.01 0.01 0.017 0.731 

EOG score for math 5th grade-Squared 1.00 0.00 0.001 0.852 

EOG score for math 5th grade-Cubed 1.00 0.00 0.000 0.722 

EOG score for math 4th grade 0.98 -0.02 0.023 0.417 

EOG score for math 4th grade-Squared 1.00 0.00 0.002 0.375 

EOG score for math 4th grade-Cubed 1.00 0.00 0.000 0.770 

EOG score for math 3rd grade 1.02 0.02 0.034 0.476 

EOG score for math 3rd grade-Squared 1.00 0.00 0.003 0.451 

EOG score for math 3rd grade-Cubed 1.00 0.00 0.000 0.630 
Student-reported level of CRI, binary (SA or A = 1), 6th 
grade math 1.84 0.61 0.166 0.001 ** 
Student-reported level of CRI, binary (SA or A = 1), 7th 
grade math 2.80 1.03 0.131 0.000 *** 
My parents/guaridan tell me about the kind of work they 
do (SA or A = 1) 1.90 0.64 0.296 0.037 * 
My parents/guardian show me the kind of things they do 
at work (SA or A = 1) 1.44 0.36 0.177 0.042 * 
My parents/guardian tell me about their jobs (SA or A = 
1) 0.67 -0.40 0.301 0.195 
My parents/guardian have shown me where they work 
(SA or A = 1) 1.45 0.37 0.261 0.155 
My parents/guardian tell me about things that happen to 
them at work (SA or A = 1) 1.47 0.38 0.210 0.069 
I plan to attend some type of college after high school 
(SA or A = 1) 2.58 0.95 0.266 0.000 *** 

*** p < .001; ** p < .01; * p < .05 
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Table 2.6. 

CRI Measurement Model for Science: Factors Explaining Variation in Student Perceptions 
of 8th Grade CRI 
 

Science OR LO SE p value   
Intercept (conditional mean for reference 
conditions) 3.15 1.15 0.129 0.000 *** 
Black 1.14 0.13 0.151 0.404 
Hispanic 1.45 0.37 0.194 0.057 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 1.52 0.42 0.260 0.112 
Gender (female) 0.94 -0.07 0.114 0.564 
Receives free/reduced price lunches 1.13 0.13 0.153 0.414 
Academically gifted 1.26 0.23 0.188 0.215 
Enrolled in special education services 1.53 0.43 0.237 0.078 
Age 1.20 0.19 0.167 0.269 
Age-Squared 0.81 -0.21 0.221 0.340 
Age-Cubed 0.98 -0.02 0.171 0.898 
Parent marital status (single) 1.02 0.02 0.131 0.890 
EOG score for math 5th grade 1.02 0.02 0.013 0.081 
EOG score for math 5th grade-Squared 1.00 0.00 0.001 0.763 
EOG score for math 4th grade 0.98 -0.02 0.018 0.201 
EOG score for math 4th grade-Squared 1.00 0.00 0.002 0.705 
EOG score for math 3rd grade 0.98 -0.02 0.028 0.432 
EOG score for math 3rd grade-Squared 1.00 0.00 0.003 0.684 
EOG score for reading 5th grade 1.00 0.00 0.014 0.853 
EOG score for reading 5th grade-Squared 1.00 0.00 0.001 0.511 
EOG score for reading 4th grade 1.00 0.00 0.011 0.795 
EOG score for reading 4th grade-Squared 1.00 0.00 0.001 0.396 
EOG score for reading 3rd grade 1.01 0.01 0.014 0.559 
EOG score for reading 3rd grade-
Squared 1.00 0.00 0.001 0.260 
Student-reported level of CRI, binary 
(SA or A = 1), 6th grade science 1.47 0.39 0.126 0.003 ** 
Student-reported level of CRI, binary 
(SA or A = 1), 7th grade science 1.87 0.63 0.115 0.000 *** 
My parents/guaridan tell me about the 
kind of work they do (SA or A = 1) 1.08 0.08 0.259 0.763 
My parents/guardian show me the kind of 
things they do at work (SA or A = 1) 1.68 0.52 0.221 0.026 * 
My parents/guardian tell me about their 
jobs (SA or A = 1) 1.03 0.03 0.264 0.898 
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My parents/guardian have shown me 
where they work (SA or A = 1) 1.29 0.26 0.290 0.382 
My parents/guardian tell me about things 
that happen to them at work (SA or A = 
1) 1.68 0.52 0.210 0.015 * 
I plan to attend some type of college after 
high school (SA or A = 1) 2.32 0.84 0.262 0.001 ** 

*** p < .001; ** p < .01; * p < .05 
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Table 2.7. 

CRI Measurement Model for Social Studies: Factors Explaining Variation in Student 
Perceptions of 8th Grade CRI 
 

Social Studies OR LO SE p value 
Intercept (conditional mean for reference 
conditions) 2.34 0.85 0.122 0.000 *** 
Black 1.01 0.01 0.153 0.939 
Hispanic 1.15 0.14 0.189 0.474 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 1.08 0.08 0.218 0.710 
Gender (female) 0.94 -0.07 0.111 0.550 
Receives free/reduced price lunches 1.37 0.32 0.134 0.019 * 
Academically gifted 1.15 0.14 0.186 0.465 
Enrolled in special education services 1.19 0.18 0.209 0.401 
Age 1.07 0.07 0.176 0.689 
Age-Squared 1.02 0.02 0.241 0.950 
Age-Cubed 1.05 0.05 0.191 0.799 
Parent marital status (single) 0.98 -0.02 0.116 0.897 
EOG score for math 5th grade 1.01 0.01 0.016 0.657 
EOG score for math 5th grade-Squared 1.00 0.00 0.001 0.618 
EOG score for math 4th grade 1.00 0.00 0.017 0.952 
EOG score for math 4th grade-Squared 1.00 0.00 0.002 0.569 
EOG score for math 3rd grade 1.01 0.01 0.026 0.638 
EOG score for math 3rd grade-Squared 1.00 0.00 0.003 0.952 
EOG score for reading 5th grade 1.01 0.01 0.013 0.248 
EOG score for reading 5th grade-Squared 1.00 0.00 0.001 0.342 
EOG score for reading 4th grade 0.98 -0.02 0.011 0.035 * 
EOG score for reading 4th grade-Squared 1.00 0.00 0.001 0.162 
EOG score for reading 3rd grade 0.99 -0.01 0.012 0.548 
EOG score for reading 3rd grade-
Squared 1.00 0.00 0.001 0.680 
Student-reported level of CRI, binary 
(SA or A = 1), 6th grade social studies 1.45 0.37 0.116 0.002 ** 
Student-reported level of CRI, binary 
(SA or A = 1), 7th grade social studies 2.25 0.81 0.104 0.000 *** 
My parents/guaridan tell me about the 
kind of work they do (SA or A = 1) 1.31 0.27 0.242 0.270 
My parents/guardian show me the kind of 
things they do at work (SA or A = 1) 1.50 0.40 0.186 0.034 * 
My parents/guardian tell me about their 
jobs (SA or A = 1) 1.10 0.09 0.250 0.717 
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My parents/guardian have shown me 
where they work (SA or A = 1) 0.79 -0.23 0.287 0.422 
My parents/guardian tell me about things 
that happen to them at work (SA or A = 
1) 1.45 0.37 0.218 0.094 
I plan to attend some type of college after 
high school (SA or A = 1) 2.49 0.91 0.295 0.003 ** 

*** p < .001; ** p < .01; * p < .05 
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Table 2.8. 

IVE Models without Teacher-Level Imputation, Different Covariate Specifications 

Uncertain as Missing (and Imputed) 

Dependent 
Variable 

CRI 
Subject 

Indv, Teacher 
Assignment, 

School1 

Indv, All 
Teacher, 
School2 

8th Grade Math Math 

8th Grade Reading LA 

Engagement Math 
LA 
Science 
Social 
Studies 

Valuing Math 
LA .01** 
Science .01*** 
Social 
Studies .01** .01* 

*** p < .001; ** p < .01; * p < .05 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42. 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.9. 
 
IVE Models with Teacher-Level Imputation, Different Covariate Specifications 
 

Dependent 
Variable CRI Subject 

Indv, Teacher 
Assignment, 

School1 

Indv, All 
Teacher, 
School2 

8th Grade Math Math 

8th Grade Reading LA 

Engagement Math 
LA 
Science 
Social Studies 

Valuing Math .01* .01* 
LA .01** .01*** 
Science .01*** .01*** 
Social Studies .01** .01** 

*** p < .001; ** p < .01; * p < .05 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42. 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.10. 
 
IVE Main Models with Observations Having Missing Teacher Covariates Deleted 
 

Dependent 
Variable 

CRI 
Subject 

Indv, Teacher 
Assignment, 

School1 

Indv, All 
Teacher, 
School2 

8th Grade Math Math 

8th Grade Reading LA 

Engagement Math 
LA 
Science 
Social 
Studies 

Valuing Math .01* 
LA .01* 
Science 
Social 
Studies .01* 

*** p < .001; ** p < .01; * p < .05 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42. 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
  



191 

Table 2.11. 
 
No IVE: Three-Level Rich Covariate Models without Teacher Level Imputation, Different 
Covariate Specifications 
 

Dependent Variable CRI Subject 

Indv, Teacher 
Assignment, 

School1 

Indv, All 
Teacher, 
School2 

8th Grade Math Math .04* 

8th Grade Reading LA 

Engagement Math 
LA 
Science 
Social Studies 

Valuing Math .01* .01* 
LA .01* 
Science .01* .01* 
Social Studies .01** 

*** p < .001; ** p < .01; * p < .05 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42. 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.12. 
 
IVE Models without Teacher Level Imputation, Different Covariate Specifications 
 

Uncertain as Disagree 

Dependent 
Variable 

CRI 
Subject 

Indv, Teacher 
Assignment, 

School1 

Indv, All 
Teacher, 
School2 

8th Grade Math Math 

8th Grade Reading LA 

Engagement Math 
LA 
Science 
Social 
Studies 

Valuing Math .01* 
LA .004* 
Science .004** .005* 
Social 
Studies .01** .005* 

*** p < .001; ** p < .01; * p < .05 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42. 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
 



 

Table 2.13. 

EOG Math 8th Grade IVE/LATE 

Main: All Individual Covariates, 
Teacher Assignment, School Level 

Controls1 

Teacher Covs: All Individual 
Covariates, Teacher Assignment, School 

Level Controls; with Teacher  
Covariates2 

Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference 
conditions) 113.34 35.27 3.213 ** 130.66 963.45 0.136 
Independent Variable/Treatment 
Effect 
CRI (Student-reported probability that 
teacher frequenty used CRI) 0.03 0.02 1.679 0.00 0.67 -0.006 

Pretests (ES and MS) 
Math EOG 7th grade 0.32 0.02 14.036 *** 0.35 0.03 12.439 *** 
Math EOG 7th grade-Squared 0.00 0.00 3.451 *** 0.00 0.00 3.501 *** 
Math EOG 7th grade-Cubed 0.00 0.00 -0.691 0.00 0.00 -0.752 
Math EOG 6th grade 0.21 0.02 9.245 *** 0.21 0.03 7.748 *** 
Math EOG 6th grade-Squared 0.00 0.00 0.869 0.00 0.00 0.790 
Math EOG 6th grade-Cubed 0.00 0.00 1.940 0.00 0.00 1.688 
Math EOG 5th grade 0.05 0.03 1.851 0.05 0.03 1.496 
Math EOG 5th grade-Squared 0.00 0.00 0.950 0.00 0.00 1.315 
Math EOG 5th grade-Cubed 0.00 0.00 0.217 0.00 0.00 0.148 
Math EOG 4th grade 0.02 0.03 0.598 0.03 0.04 0.692 
Math EOG 4th grade-Squared 0.00 0.00 -0.955 0.00 0.00 -0.784 
Math EOG 4th grade-Cubed 0.00 0.00 2.120 * 0.00 0.00 1.370 
Math EOG 3rd grade 0.06 0.04 1.324 0.04 0.05 0.733 
Math EOG 3rd grade-Squared 0.00 0.00 -0.325 0.00 0.00 -0.684 
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Math EOG 3rd grade-Cubed 0.00 0.00 -0.315 0.00 0.00 0.005 

Demographics and Family Variables 
Age -0.61 0.20 -3.029 ** -0.52 0.23 -2.207 * 
Age-Squared -0.56 0.31 -1.785 -0.52 0.36 -1.423 
Age-Cubed 0.43 0.22 1.961 * 0.39 0.25 1.551 
Black 0.45 0.20 2.279 * 0.52 0.23 2.274 * 
Hispanic 0.58 0.24 2.382 * 0.49 0.28 1.767 
Other R/E (Amer 
Ind/Asian/Aleutian/Pac Isle/Multi/Other) 1.10 0.29 3.732 *** 1.29 0.36 3.586 *** 
Gender (female) 0.38 0.14 2.787 ** 0.43 0.16 2.701 ** 
Receives free/reduced price lunches -0.36 0.18 -1.954 -0.37 0.21 -1.721 
Academically gifted 0.76 0.24 3.128 ** 0.73 0.29 2.486 * 
Enrolled in special education services -0.43 0.25 -1.697 -0.68 0.29 -2.390 * 
Parent marital status (single) 0.04 0.16 0.260 0.00 0.19 0.015 

Teacher and School Characteristics 
Math teacher years of service -0.02 0.99 -0.018 
Math teacher gender: female 0.57 19.08 0.030 
Math teacher race: Black -0.26 16.66 -0.016 
Avg 7th grade math score of students 
with this 8th grade math teacher 0.74 0.05 14.035 *** 0.70 1.34 0.523 
School average free/reduced lunch -0.85 1.67 -0.507 -1.57 43.11 -0.036 
School average math 7th grade -0.05 0.07 -0.650 -0.05 2.10 -0.024 
         

*** p < .001; ** p < .01; * p < .05 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42. 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.14. 

EOG Reading 8th Grade IVE/LATE 

Main: All Individual Covariates, 
Teacher Assignment, School Level 

Controls1 

Teacher Covs: All Individual 
Covariates, Teacher Assignment, 

School Level Controls; with 
Teacher  Covariates2 

Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) 77.34 21.94 3.525 *** 112.85 1308.27 0.086 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher 
frequenty used CRI) 0.02 0.01 1.106 0.01 0.70 0.013 

Pretests (ES and MS) 

Reading EOG 7th grade 0.24 0.02 10.873 *** 0.22 0.03 8.690 
**
* 

Reading EOG 7th grade-Squared 0.00 0.00 0.495 0.00 0.00 0.709 
Reading EOG 7th grade-Cubed 0.00 0.00 1.093 0.00 0.00 2.853 ** 

Reading EOG 6th grade 0.14 0.03 5.432 *** 0.15 0.03 4.944 
**
* 

Reading EOG 6th grade-Squared 0.00 0.00 -1.237 0.00 0.00 -1.367 
Reading EOG 6th grade-Cubed 0.00 0.00 -0.106 0.00 0.00 -0.710 

Reading EOG 5th grade 0.14 0.03 5.206 *** 0.12 0.03 4.308 
**
* 

Reading EOG 5th grade-Squared 0.00 0.00 1.481 0.00 0.00 1.697 
Reading EOG 5th grade-Cubed 0.00 0.00 0.014 0.00 0.00 0.699 

Reading EOG 4th grade 0.13 0.02 5.577 *** 0.14 0.02 5.739 
**
* 

Reading EOG 4th grade-Squared 0.00 0.00 -0.039 0.00 0.00 -0.606 
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Reading EOG 4th grade-Cubed 0.00 0.00 -1.183 0.00 0.00 -1.734 
Reading EOG 3rd grade 0.06 0.02 2.684 ** 0.05 0.02 2.010 * 
Reading EOG 3rd grade-Squared 0.00 0.00 0.135 0.00 0.00 0.594 
Reading EOG 3rd grade-Cubed 0.00 0.00 0.506 0.00 0.00 0.609 

Demographics and Family Variables 
Age -0.42 0.21 -1.985 * -0.27 0.25 -1.095 
Age-Squared -0.49 0.33 -1.474 -0.63 0.37 -1.689 
Age-Cubed 0.06 0.24 0.241 0.00 0.29 -0.012 
Black -0.38 0.21 -1.827 -0.31 0.23 -1.338 
Hispanic -0.19 0.26 -0.729 -0.01 0.29 -0.031 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.03 0.31 0.105 0.31 0.36 0.852 
Gender (female) -0.21 0.14 -1.459 -0.26 0.16 -1.656 
Receives free/reduced price lunches -0.35 0.19 -1.783 -0.35 0.21 -1.669 
Academically gifted 0.27 0.26 1.073 0.19 0.28 0.665 
Enrolled in special education services -0.05 0.29 -0.186 -0.29 0.33 -0.880 
Parent marital status (single) 0.04 0.17 0.209 -0.06 0.19 -0.322 

Teacher and School Characteristics 
LA teacher years of service 0.00 0.61 -0.004 
LA teacher gender: female -0.35 16.30 -0.021 
LA teacher race: Black -0.09 15.44 -0.006 
Avg 7th grade reading score of students with this 8th 
grade LA teacher 0.81 0.04 19.384 *** 0.75 2.04 0.368 
School average free/reduced lunch 0.36 0.97 0.375 -0.67 48.79 -0.014 
School average reading 7th grade -0.02 0.05 -0.382 -0.05 2.30 -0.022 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.15.  

Engagement, Math CRI IVE/LATE 

Main: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) -5.45 3.21 -1.701 -4.55 4.12 -1.105 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty 
used CRI) 0.00 0.00 -0.073 0.00 0.00 0.375 

Pretests (ES and MS) 
Engagement, 7th grade 0.50 0.02 21.921 *** 0.51 0.03 19.863 *** 
Engagement 7th grade-Squared 0.06 0.01 4.296 *** 0.05 0.02 3.406 *** 
Engagement, 6th grade 0.18 0.02 7.137 *** 0.18 0.03 6.414 *** 
Engagement 6th grade-Squared -0.02 0.02 -1.294 -0.02 0.02 -0.751 
Math EOG 5th grade 0.00 0.00 -0.319 0.00 0.00 0.015 
Reading EOG 5th grade 0.00 0.00 0.267 0.00 0.00 0.505 
Math EOG 4th grade 0.00 0.00 0.100 0.00 0.01 0.144 
Reading EOG 4th grade 0.00 0.00 0.757 0.00 0.00 0.563 
Math EOG 3rd grade 0.00 0.01 0.734 0.01 0.01 1.119 
Reading EOG 3rd grade 0.00 0.00 -0.915 0.00 0.00 -1.140 

Demographics and Family Variables 
Age 0.03 0.04 0.780 0.05 0.04 1.009 
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Age-Squared 0.06 0.06 1.140 0.06 0.06 0.977 
Age-Cubed -0.06 0.04 -1.376 -0.05 0.04 -1.085 
Black 0.12 0.04 3.507 *** 0.15 0.04 3.621 *** 
Hispanic 0.05 0.05 1.194 0.07 0.05 1.294 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.01 0.06 0.164 0.08 0.07 1.156 
Gender (female) 0.04 0.03 1.420 0.02 0.03 0.532 
Receives free/reduced price lunches -0.13 0.04 -3.641 *** -0.10 0.04 -2.676 ** 
Academically gifted 0.03 0.04 0.658 -0.01 0.05 -0.151 
Enrolled in special education services -0.08 0.05 -1.545 -0.09 0.05 -1.695 
Parent marital status (single) -0.06 0.03 -1.990 * -0.04 0.03 -1.220 

Teacher and School Characteristics 
Math teacher years of service 0.00 0.01 -0.091 
Math teacher gender: female 0.03 0.11 0.295 
Math teacher race: Black 0.02 0.11 0.150 
Avg 7th grade math score of students with this 8th grade 
math teacher 0.02 0.01 2.811 ** 0.02 0.01 1.957 
School average free/reduced lunch 0.28 0.23 1.228 0.10 0.25 0.393 

*** p < .001; ** p < .01; * p < .05; 
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.16.  

Engagement, LA CRI IVE/LATE 

Main: All Individual Covariates, 
Teacher Assignment, School Level 

Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) -6.46 2.82 -2.286 * -11.91 3.90 -3.052 ** 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher 
frequenty used CRI) 0.00 0.00 1.177 0.00 0.00 0.217 

Pretests (ES and MS) 
Engagement, 7th grade 0.50 0.02 21.857 *** 0.50 0.02 20.761 ***  
Engagement 7th grade-Squared 0.05 0.01 3.959 *** 0.06 0.02 3.923 ***  
Engagement, 6th grade 0.18 0.02 7.318 *** 0.19 0.02 7.476 ***  
Engagement 6th grade-Squared -0.02 0.02 -1.220 -0.03 0.02 -1.271 
Math EOG 5th grade 0.00 0.00 -0.257 0.00 0.00 -0.204 
Reading EOG 5th grade 0.00 0.00 0.082 0.00 0.00 0.367 
Math EOG 4th grade 0.00 0.00 0.091 0.00 0.01 0.040 
Reading EOG 4th grade 0.00 0.00 0.614 0.00 0.00 0.365 
Math EOG 3rd grade 0.01 0.01 0.777 0.01 0.01 0.837 
Reading EOG 3rd grade 0.00 0.00 -0.948 0.00 0.00 -1.015 

Demographics and Family Variables 
Age 0.02 0.04 0.581 0.04 0.05 0.761 
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Age-Squared 0.07 0.06 1.180 0.08 0.06 1.231 
Age-Cubed -0.06 0.04 -1.351 -0.06 0.05 -1.263 
Black 0.12 0.04 3.240 ** 0.14 0.04 3.385 ***  
Hispanic 0.05 0.05 1.084 0.04 0.05 0.844 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.00 0.06 -0.016 0.02 0.06 0.265 
Gender (female) 0.04 0.03 1.495 0.02 0.03 0.809 
Receives free/reduced price lunches -0.13 0.04 -3.623 *** -0.12 0.04 -3.185 ** 
Academically gifted 0.06 0.05 1.336 0.06 0.05 1.162 
Enrolled in special education services -0.09 0.05 -1.701 -0.07 0.06 -1.158 
Parent marital status (single) -0.05 0.03 -1.812 -0.05 0.03 -1.657 

Teacher and School Characteristics 
LA teacher years of service 0.00 0.00 0.923 
LA teacher gender: female 0.00 0.07 -0.056 
LA teacher race: Black 0.17 0.07 2.446 * 
Avg 7th grade reading score of students with this 8th 
grade LA teacher 0.03 0.01 3.542 *** 0.04 0.01 3.940 ***  
School average free/reduced lunch 0.25 0.16 1.546 0.40 0.18 2.265 * 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.17.  

Engagement, Science CRI IVE/LATE 

Main: All Individual Covariates, 
Teacher Assignment, School 

Level Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) 1.22 1.60 0.766 2.51 1.56 1.608 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty 
used CRI) 0.00 0.00 1.257 0.005 0.00 1.447 

Pretests (ES and MS) 
Engagement, 7th grade 0.50 0.02 22.508 *** 0.50 0.02 19.820 *** 
Engagement 7th grade-Squared 0.05 0.01 4.043 *** 0.06 0.01 3.871 *** 
Engagement, 6th grade 0.17 0.02 7.064 *** 0.18 0.03 6.812 *** 
Engagement 6th grade-Squared -0.03 0.02 -1.416 -0.03 0.02 -1.407 
Math EOG 5th grade 0.00 0.00 -0.240 0.00 0.00 -0.010 
Reading EOG 5th grade 0.00 0.00 0.181 0.00 0.00 0.081 
Math EOG 4th grade 0.00 0.00 0.167 0.00 0.00 -0.214 
Reading EOG 4th grade 0.00 0.00 0.671 0.00 0.00 1.140 
Math EOG 3rd grade 0.01 0.01 0.843 0.00 0.01 0.499 
Reading EOG 3rd grade 0.00 0.00 -0.918 0.00 0.00 -0.971 

Demographics and Family Variables 
Age 0.03 0.04 0.615 0.01 0.05 0.267 
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Age-Squared 0.07 0.06 1.240 0.06 0.06 1.059 
Age-Cubed -0.05 0.04 -1.330 -0.04 0.04 -0.903 
Black 0.13 0.04 3.575 *** 0.13 0.04 3.326 *** 
Hispanic 0.05 0.05 1.083 0.05 0.05 0.910 
Other R/E (Amer Ind/Asian/Aleutian/Pac 
Isle/Multi/Other) 0.01 0.06 0.099 0.00 0.06 -0.051 
Gender (female) 0.04 0.03 1.328 0.03 0.03 0.924 
Receives free/reduced price lunches -0.13 0.04 -3.544 *** -0.14 0.04 -3.602 *** 
Academically gifted 0.01 0.04 0.202 0.00 0.05 -0.008 
Enrolled in special education services -0.09 0.05 -1.893 -0.10 0.05 -1.968 * 
Parent marital status (single) -0.06 0.03 -1.976 * -0.06 0.03 -1.918 

Teacher and School Characteristics 
Science teacher years of service 0.00 0.00 -0.509 
Science teacher gender: female 0.01 0.06 0.161 
Science teacher race: Black 0.04 0.08 0.469 
Avg 7th grade math score of students with same 8th grade 
math teacher 0.01 0.00 1.431 0.00 0.00 0.688 
School average free/reduced lunch -0.06 0.11 -0.526 -0.17 0.14 -1.258 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.18.  

Engagement, SS CRI IVE/LATE 

Main: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) 1.71 1.52 1.120 1.79 1.69 1.059 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty used 
CRI) 0.01 0.00 1.597 0.00 0.00 -0.354 

Pretests (ES and MS) 
Engagement, 7th grade 0.50 0.02 21.976 *** 0.51 0.02 21.764 *** 
Engagement 7th grade-Squared 0.05 0.01 4.038 *** 0.06 0.01 3.988 *** 
Engagement, 6th grade 0.17 0.02 7.124 *** 0.18 0.03 6.897 *** 
Engagement 6th grade-Squared -0.02 0.02 -1.211 -0.02 0.02 -0.881 
Math EOG 5th grade 0.00 0.00 -0.240 0.00 0.00 -0.259 
Reading EOG 5th grade 0.00 0.00 0.156 0.00 0.00 0.063 
Math EOG 4th grade 0.00 0.00 0.174 0.00 0.00 0.108 
Reading EOG 4th grade 0.00 0.00 0.680 0.00 0.00 0.857 
Math EOG 3rd grade 0.01 0.01 0.832 0.01 0.01 1.121 
Reading EOG 3rd grade 0.00 0.00 -0.940 0.00 0.00 -1.108 

Demographics and Family Variables 
Age 0.03 0.04 0.678 0.02 0.04 0.566 
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Age-Squared 0.07 0.06 1.174 0.06 0.06 0.914 
Age-Cubed -0.06 0.04 -1.356 -0.04 0.04 -1.026 
Black 0.13 0.04 3.550 *** 0.12 0.04 3.135 ** 
Hispanic 0.05 0.05 1.123 0.04 0.05 0.734 
Other R/E (Amer Ind/Asian/Aleutian/Pac Isle/Multi/Other) 0.01 0.06 0.154 -0.01 0.06 -0.223 
Gender (female) 0.03 0.03 1.309 0.05 0.03 1.576 
Receives free/reduced price lunches -0.12 0.04 -3.545 *** -0.11 0.04 -2.912 ** 
Academically gifted 0.01 0.04 0.312 0.00 0.05 0.026 
Enrolled in special education services -0.09 0.05 -1.961 * -0.09 0.05 -1.869 
Parent marital status (single) -0.06 0.03 -1.950 -0.06 0.03 -1.870 

Teacher and School Characteristics 
SS teacher years of service -0.01 0.00 -2.413 * 
SS teacher gender: female -0.01 0.04 -0.235 
SS teacher race: Black 0.31 0.07 4.324 *** 
Avg 7th grade math score of students with same 8th grade 
math teacher 0.01 0.00 1.207 0.00 0.00 1.078 
School average free/reduced lunch -0.15 0.12 -1.231 -0.18 0.11 -1.557 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.19.  

Valuing, Math CRI IVE/LATE 

Main: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) 1.83 2.51 0.729 2.09 3.08 0.678 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty used 
CRI) 0.00 0.00 1.860 0.01 0.00 1.754 

Pretests (ES and MS) 
Valuing, 7th grade 0.44 0.02 21.029 *** 0.43 0.02 19.056 *** 
Valuing 7th grade-Squared 0.03 0.02 2.031 * 0.03 0.02 1.613 
Valuing, 6th grade 0.17 0.02 7.160 *** 0.16 0.03 6.034 *** 
Valuing 6th grade-Squared 0.01 0.02 0.830 0.01 0.02 0.548 
Math EOG 5th grade 0.00 0.00 -0.239 0.00 0.00 0.081 
Reading EOG 5th grade 0.00 0.00 0.426 0.00 0.00 0.422 
Math EOG 4th grade 0.00 0.00 0.446 0.00 0.00 0.071 
Reading EOG 4th grade 0.00 0.00 0.900 0.00 0.00 0.336 
Math EOG 3rd grade 0.00 0.01 -0.455 0.00 0.01 0.061 
Reading EOG 3rd grade 0.00 0.00 -0.081 0.00 0.00 0.045 

Demographics and Family Variables 
Age 0.02 0.03 0.503 0.01 0.04 0.260 

205 



 

Age-Squared -0.01 0.05 -0.281 0.00 0.05 -0.031 
Age-Cubed 0.00 0.03 -0.110 0.00 0.04 0.093 
Black 0.19 0.03 6.418 *** 0.19 0.03 5.712 *** 
Hispanic 0.11 0.04 2.680 ** 0.10 0.04 2.222 * 
Other R/E (Amer Ind/Asian/Aleutian/Pac Isle/Multi/Other) 0.14 0.05 3.085 ** 0.16 0.06 2.933 ** 
Gender (female) 0.11 0.02 4.992 *** 0.13 0.03 4.987 *** 
Receives free/reduced price lunches -0.06 0.03 -2.123 * -0.04 0.03 -1.278 
Academically gifted -0.07 0.04 -1.855 -0.08 0.04 -1.917 
Enrolled in special education services 0.04 0.04 1.000 0.03 0.04 0.757 
Parent marital status (single) 0.01 0.02 0.537 0.01 0.03 0.486 

Teacher and School Characteristics 
Math teacher years of service 0.00 0.01 -0.010 
Math teacher gender: female 0.08 0.10 0.811 
Math teacher race: Black 0.02 0.10 0.199 
Avg 7th grade math score of students with this 8th grade math 
teacher 0.01 0.01 0.814 0.00 0.01 0.566 
School average free/reduced lunch 0.25 0.18 1.373 0.13 0.22 0.578 

*** p < .001; ** p < .01; * p < .05; 
1 Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.20.  

Valuing, LA CRI IVE/LATE 

Main: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) -1.15 2.30 -0.502 -1.06 3.82 -0.277 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty used 
CRI) 0.007 0.00 3.042 ** 0.01 0.00 1.815 

Pretests (ES and MS) 
Valuing, 7th grade 0.44 0.02 21.134 ***  0.44 0.02 19.263 *** 
Valuing 7th grade-Squared 0.03 0.01 2.098 * 0.03 0.02 1.911 
Valuing, 6th grade 0.16 0.02 6.912 ***  0.16 0.03 6.082 *** 
Valuing 6th grade-Squared 0.01 0.02 0.510 0.00 0.02 -0.061 
Math EOG 5th grade 0.00 0.00 -0.259 0.00 0.00 -0.164 
Reading EOG 5th grade 0.00 0.00 0.371 0.00 0.00 0.583 
Math EOG 4th grade 0.00 0.00 0.478 0.00 0.00 0.028 
Reading EOG 4th grade 0.00 0.00 0.925 0.00 0.00 0.723 
Math EOG 3rd grade 0.00 0.01 -0.426 0.00 0.01 -0.322 
Reading EOG 3rd grade 0.00 0.00 -0.016 0.00 0.00 0.033 

Demographics and Family Variables 
Age 0.01 0.03 0.403 0.02 0.04 0.575 
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Age-Squared -0.01 0.05 -0.224 -0.01 0.05 -0.236 
Age-Cubed 0.00 0.03 -0.075 -0.01 0.04 -0.347 
Black 0.19 0.03 6.476 ***  0.20 0.03 5.815 *** 
Hispanic 0.11 0.04 2.737 ** 0.12 0.04 2.735 ** 
Other R/E (Amer Ind/Asian/Aleutian/Pac Isle/Multi/Other) 0.14 0.05 3.056 ** 0.15 0.05 2.870 ** 
Gender (female) 0.11 0.02 4.928 ***  0.12 0.03 4.576 *** 
Receives free/reduced price lunches -0.06 0.03 -2.035 * -0.07 0.03 -2.197 * 
Academically gifted -0.08 0.04 -2.231 * -0.08 0.04 -2.044 * 
Enrolled in special education services 0.06 0.04 1.407 0.05 0.05 1.130 
Parent marital status (single) 0.01 0.02 0.615 0.02 0.03 0.773 

Teacher and School Characteristics 
LA teacher years of service 0.00 0.00 1.048 
LA teacher gender: female 0.01 0.07 0.132 
LA teacher race: Black 0.06 0.07 0.877 
Avg 7th grade reading score of students with this 8th grade 
LA teacher 0.01 0.01 2.196 * 0.01 0.01 1.273 
School average free/reduced lunch 0.32 0.14 2.360 * 0.34 0.18 1.913 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.21.  

Valuing, Science CRI IVE/LATE 

Main: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) 3.07 1.41 2.173 * 4.85 1.58 3.072 ** 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty used 
CRI) 0.007 0.00 3.454 ***  0.008 0.03 0.257 

Pretests (ES and MS) 
Valuing, 7th grade 0.44 0.02 21.111 ***  0.43 0.02 18.322 *** 
Valuing 7th grade-Squared 0.03 0.01 2.023 * 0.03 0.02 1.590 
Valuing, 6th grade 0.17 0.02 7.030 ***  0.17 0.03 6.418 *** 
Valuing 6th grade-Squared 0.01 0.02 0.632 -0.02 0.02 -0.946 
Math EOG 5th grade 0.00 0.00 -0.085 0.00 0.00 -0.159 
Reading EOG 5th grade 0.00 0.00 0.282 0.00 0.00 0.067 
Math EOG 4th grade 0.00 0.00 0.526 0.00 0.00 0.094 
Reading EOG 4th grade 0.00 0.00 0.855 0.00 0.00 0.938 
Math EOG 3rd grade 0.00 0.01 -0.332 0.00 0.01 -0.055 
Reading EOG 3rd grade 0.00 0.00 -0.134 0.00 0.00 0.120 

Demographics and Family Variables 
Age 0.02 0.03 0.494 0.01 0.03 0.401 
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Age-Squared -0.01 0.05 -0.143 -0.01 0.05 -0.233 
Age-Cubed -0.01 0.03 -0.168 0.00 0.04 0.035 
Black 0.20 0.03 6.548 ***  0.20 0.03 6.052 *** 
Hispanic 0.10 0.04 2.656 ** 0.09 0.04 2.103 * 
Other R/E (Amer Ind/Asian/Aleutian/Pac Isle/Multi/Other) 0.14 0.05 2.975 ** 0.15 0.05 3.041 ** 
Gender (female) 0.11 0.02 4.843 ***  0.10 0.02 3.881 *** 
Receives free/reduced price lunches -0.06 0.03 -1.957 -0.07 0.03 -2.240 * 
Academically gifted -0.08 0.04 -2.318 * -0.07 0.04 -1.893 
Enrolled in special education services 0.05 0.04 1.369 0.04 0.05 0.798 
Parent marital status (single) 0.01 0.02 0.470 0.02 0.03 0.638 

Teacher and School Characteristics 
Science teacher years of service 0.00 0.03 -0.113 
Science teacher gender: female 0.00 0.55 0.009 
Science teacher race: Black 0.01 0.76 0.016 
Avg 7th grade math score of students with same 8th grade 
math teacher 0.00 0.00 0.558 0.00 0.00 -0.641 
School average free/reduced lunch 0.19 0.09 2.287 * 0.04 1.08 0.038 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.22.  

Valuing, SS CRI IVE/LATE 

Main: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls1 

Teacher Covs: All Individual 
Covariates, Teacher 

Assignment, School Level 
Controls; with Teacher  

Covariates2 
Variable Est. SE t value Est. SE t value 
Intercept (conditional mean for reference conditions) 4.32 1.42 3.045 ** 3.40 1.53 2.222 * 

Independent Variable/Treatment Effect 
CRI (Student-reported probability that teacher frequenty used 
CRI) 0.01 0.00 2.925 ** 0.01 0.00 2.301 * 

Pretests (ES and MS) 
Valuing, 7th grade 0.44 0.02 21.628 *** 0.44 0.02 19.549 *** 
Valuing 7th grade-Squared 0.03 0.01 2.325 * 0.02 0.02 1.333 
Valuing, 6th grade 0.16 0.02 6.854 *** 0.17 0.03 6.849 *** 
Valuing 6th grade-Squared 0.01 0.02 0.612 0.02 0.02 0.830 
Math EOG 5th grade 0.00 0.00 -0.128 0.00 0.00 0.137 
Reading EOG 5th grade 0.00 0.00 0.288 0.00 0.00 -0.306 
Math EOG 4th grade 0.00 0.00 0.518 0.00 0.00 0.246 
Reading EOG 4th grade 0.00 0.00 0.874 0.00 0.00 1.078 
Math EOG 3rd grade 0.00 0.01 -0.378 0.00 0.01 -0.049 
Reading EOG 3rd grade 0.00 0.00 -0.081 0.00 0.00 -0.342 

Demographics and Family Variables 
Age 0.01 0.03 0.449 0.01 0.03 0.170 
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Age-Squared -0.01 0.05 -0.205 -0.01 0.05 -0.262 
Age-Cubed -0.01 0.03 -0.168 0.00 0.03 0.047 
Black 0.20 0.03 6.575 *** 0.20 0.03 6.201 *** 
Hispanic 0.11 0.04 2.777 ** 0.11 0.04 2.709 ** 
Other R/E (Amer Ind/Asian/Aleutian/Pac Isle/Multi/Other) 0.14 0.05 3.050 ** 0.13 0.05 2.704 ** 
Gender (female) 0.11 0.02 5.046 *** 0.12 0.02 4.753 *** 
Receives free/reduced price lunches -0.06 0.03 -2.002 * -0.07 0.03 -2.142 * 
Academically gifted -0.07 0.04 -2.055 * -0.07 0.04 -1.612 
Enrolled in special education services 0.06 0.04 1.416 0.06 0.04 1.345 
Parent marital status (single) 0.01 0.02 0.603 0.02 0.03 0.589 

Teacher and School Characteristics 
SS teacher years of service 0.00 0.00 -1.774 
SS teacher gender: female 0.01 0.03 0.427 
SS teacher race: Black 0.18 0.07 2.792 ** 
Avg 7th grade math score of students with same 8th grade 
math teacher 0.00 0.00 -0.295 0.00 0.00 0.363 
School average free/reduced lunch 0.03 0.11 0.304 0.04 0.10 0.377 

*** p < .001; ** p < .01; * p < .05;  
1Number of teachers: math, 48; language arts, 45; science, 50; social studies, 42; 
2Number of teachers: math, 33; language arts, 34; science, 33; social studies, 36. 
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Table 2.23. 

Models for Academic Press and Preparation for Future Schooling as Endogenous Variable 
(Replaces CRI) 
 

Uncertain as Missing (and Imputed) 

Dependent 
Variable CRI Subject Academic Press 

Preparation for Future 
Schooling 

8th Grade Math Math 

8th Grade Reading LA 

Engagement Math .029* 
LA 
Science .031* 
Social Studies .016* 

Valuing Math .024* .042*** 
LA .032*** .036*** 
Science .031*** .04*** 
Social Studies .029*** .034*** 

 
Models contain all possible student, teacher and school covariates. 

 



 

CHAPTER 3. A NON-RANDOMIZED EFFICACY TRIAL REPLICATION OF A 
TEACHING PRACTICE INTERVENTION USING PROPENSITY SCORE 

WEIGHTING 

 
Motivation is a cognitive or affective process that is related to student engagement, 

academic achievement, and learning (Wentzel & Wigfield, 2007). Interventions focused on 

motivation have the potential to improve student learning outcomes, and evidence-based 

teaching practice interventions that rely on motivational techniques are seen as one potential 

policy instrument for improving student performance (Roeser, Eccles & Sameroff, 2000; 

Wentzel & Wigfield, 2007). One such teaching practice intervention, CareerStart, supports 

teachers in their efforts to motivate students by associating lesson content with the 

knowledge and skills needed to be successful in a range of jobs and careers (Rose, Woolley, 

Orther, Akos, & Jones-Sanpei, 2012). A randomized control trial (RCT) demonstrated 

significant effects for CareerStart on school valuing, a measure of emotional engagement 

with schooling (Orthner, Jones-Sanpei, Akos & Rose, 2012), and achievement in middle 

school (Woolley, Rose, Orthner, Akos & Jones-Sanpei, in press) and high school (Woolley et 

al., revise & resubmit). This RCT was an efficacy trial conducted under idealized conditions 

including students and teachers from a single district and a partnership between researchers 

and district officials in ensuring a strong implementation. Given its success, an effectiveness 

trial, conducted under more realistic conditions including a more heterogeneous population 

and implementation that is independent of the developers and investigators (Fraser et al., 

2009; Lee & Krajcik, 2012) should be conducted.  
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Despite the favorable evidence, important questions remain before scaling up to an 

effectiveness trial. First, the findings did not support a significant treatment effect of 

CareerStart on students’ reading achievement. This may have been due to the higher 

variability between schools in reading than in math achievement. Whether CareerStart should 

continue to be implemented in language arts would be valuable information to have in re-

developing CareerStart for an effectiveness trial. Second, it would be useful to understand the 

role that district support played in the efficacy trial, as this support is not likely to be 

replicated elsewhere. A non-random dissemination of CareerStart has presented a unique 

opportunity to address both of these needs. Thirteen schools outside of the efficacy trial 

implemented CareerStart non-randomly beginning in 2007-2008. These schools had a more 

heterogeneous population than the original RCT. Further, on average, they received less 

contact and fewer site visits from the person responsible for implementation of CareerStart, 

the CareerStart Coordinator, than did the original RCT schools. Strategic use of this non-

random implementation, which also included the 7 control schools from the RCT, provided 

additional information that can be used to refine CareerStart for evaluation in an 

effectiveness trial.  

In this study, I use quasi-experimental methods to compare students in the 20 schools 

non-randomly implementing CareerStart—including 13 outside the efficacy trial district and 

7 within this district—with students from other middle schools in North Carolina to test the 

hypothesis that CareerStart promoted math and reading achievement. I use propensity score 

analysis (PSA) methods, with inverse probability weighting (Hirano, Imbens & Ridder, 

2003), to model an interrupted time series of student performance from third to eighth grade, 

replicating the analysis design in Woolley et al. (in press). This design was supplemented by 
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additional parameters intended to answer the question of whether the strength of the 

implementation in the seven former RCT controls was greater relative to the thirteen non-

RCT schools, and to establish the credibility of the causal inference of the PSA design, which 

is typically based on the strong assumption that observed variables sufficiently control for the 

influence of unobserved covariates of treatment and the outcome (Rosenbaum, 2002). 

Because the seven RCT treatment schools continued to implement CareerStart during the 

non-random study period, evidence showing that the PSA and RCT estimates for these seven 

schools are statistically equivalent may support the credibility of the PSA design in 

controlling for the influence of unobserved confounders. A future effectiveness study of 

CareerStart would benefit from answers to these questions.  

In the next sections, I describe CareerStart, prefacing this description with a review of 

engagement and motivation, and relevance as a teaching practice to promote these student 

processes. This is followed by a summary of evidence from the RCT. I then review the 

importance of replication and scalability of effective programs, describing extant research on 

replication of efficacious motivation programs. I provide evidence that CareerStart may meet 

the conditions for examination in a future effectiveness trial, but may have unanswered 

questions that a PS-based design applied to the existing non-random replication sample can 

help answer. I describe the Rubin Causal Model (RCM), which explicates requirements that 

study parameters must meet to be interpretable as causal, and detail the challenges and 

opportunities associated with using PSA designs for replication. I then discuss the methods 

and results of this PSA study, followed by policy and research implications.  
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CareerStart: Engagement, Motivation and Relevance 

Motivation is defined as “the process by which goal-directed activity is instigated and 

sustained” (Schunk, Pintrich, & Meece, 2008, p. 4)” or a “set of processes that provides 

energy for different behaviors” (Wentzel & Wigfield, 2007, p. 262). Two historical 

tendencies in instructional practice present significant challenges for motivating students to 

learn, and present opportunities for relevance-oriented teaching practices. First, teachers 

present new material deliberately in highly decontextualized forms to ensure it has the 

highest generalizability (Cordova & Lepper, 1996; Dewey, 1916). In doing so, what makes 

the material interesting to students may be lost (Cordova & Lepper, 1996). Second, school is 

by its very nature future-oriented. This suggests two additional problems. If the future is not 

seen as positive and hopeful, it may be an insufficient motivation (Phalet, Andriessen & 

Lens, 2004). Further, if the future goals cannot be translated into more proximal near-term 

goals, then they may seem too far out of reach to be realistic motivators (Husman & Lens, 

1999). Content can be imbued with relevance by linking the content to concepts that are 

relevant to students’ present or future lives (Cordova & Lepper, 1996; Husman & Lens, 

1999). Several theories suggest processes that transmit the benefit of relevance on 

engagement through student motivation. These include expectancy value theory (Eccles & 

Wigfield, 2002); interest theories (Hidi & Harackiewicz, 2000; Schiefele, 1991); goal 

orientation theories (Ames, 1992; Harackiewicz, Barron, Pintrich, Elliot & Thrash, 2002); 

self-determination theory (Lepper & Cordova, 1992; Ryan & Deci, 2000); and identity theory 

(Markus & Nurius, 1986).  

Relevance to students’ current lives has been shown to be an effective motivator 

(Cordova & Lepper, 1996). Geier et al. (2008), for example, demonstrated long-term learning 
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effects from a science-based inquiry curriculum that included content relevant to students’ 

lives. Given the future orientation of schooling, however, practices that link relevance for the 

future to present learning may help students realize the value of present-day competence at 

content and tasks (Husman & Lens, 1999). For example, a study with young children 

demonstrated that when future careers were seen as education dependent, students invested 

more time and effort in schoolwork (Destin & Oyserman, 2010). Oyserman, Terry and Bybee 

(2002) showed that a program that helps youth focus on or imagine themselves as successful 

adults, and then related these images to current school activity motivation, was associated 

with better behaviors and engagement.  

One type of relevance to students’ future lives that has demonstrated promise as a 

means of promoting intrinsic motivation through interest, goals and autonomy processes is 

career relevance. Studies show that even middle school students consider college and career 

plans and identities (Akos, Konold & Niles, 2004), and must make curricular choices that 

will in part determine future educational opportunities (Akos & Galassi, 2004). By tying 

tasks and material to specific jobs and careers, students may make better choices regarding 

engagement in school, courses taken, and completion of schoolwork (Husman, Derryberry, 

Crowson & Lomax, 2004; Husman & Lens, 1999).  

CareerStart 

CareerStart is a teaching practice intervention that improves the relevance of lesson 

content by associating the skills and knowledge taught with information from careers and 

jobs that use these skills. CareerStart provides direct and indirect assistance to teachers to 

help teachers convey to students information about the value of the material being taught, 

which I labeled career relevant instruction (CRI; Rose et al., 2012). This value is expressed 
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as a distal goal in the form of competency in tasks that may have some utility later in life 

during a job or career. One lesson, for example, uses hurricane disaster preparation as a 

context to teach science; another uses messages in advertising to teach language arts 

(Woolley et al., in press). Tasks that are presented as useful to students’ career identities, or 

career-relevant, during this formative period may help students translate distal career goals 

and aspirations into current learning goals (Husman & Lens, 1999). This may alter student’s 

affect towards and enhance the authenticity of the material and tasks, increasing students’ 

motivation to learn (Husman, Derryberry, Crowson, & Lomax, 2004). CareerStart consisted 

of seven interwoven components.  

Coordinator. A CareerStart Coordinator was responsible to schools for organizing 

and implementing CareerStart. The Coordinator had three primary responsibilities. The first 

was to discharge formal implementation components including organizing and leading 

trainings and quarterly meetings, acting as a resource to the teachers, for example by 

responding to questions about lesson modification, and preparing and distributing a 

newsletter to teachers. A second responsibility was to serve as the focal point for the informal 

distribution of information between schools. In this regard, the Coordinator was at the center 

of a “web” of information about CareerStart spanning the schools implementing the program, 

and teachers used this resource to share information between schools (about, for example, the 

modification of lessons and development of lesson plans). Third, the Coordinator acted as a 

liaison between the schools and the evaluation team, providing information to the evaluation 

team about progress of implementation and sharing data obtained from the evaluation team 

with teachers and principals. The coordinator was central to implementation of many of the 

other components.  
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Staggered grade-level implementation & training. Program fidelity called for 

CareerStart to be implemented one grade level at a time, starting with sixth grade and 

progressing through eighth grade. The first year of implementation was considered a training 

year in which teachers would learn on the job. This was a treated year, but the cohort of 

students from this year was not evaluated. Evaluation began in the second year of 

implementation. It was expected that a high fidelity implementation would be sustained after 

the training year in each grade level.  

Packaged lessons. The main implement of CareerStart was a set of 10 pre-packaged 

lessons in each of the four core subject areas—math, language arts, science and social 

studies—for a total of 40 lessons per grade level over all three middle grade levels, plus 10 

extra lessons for students taking algebra in eighth grade. These lessons were developed by 

teachers in the RCT district with the aid of the Coordinator, and reviewed by curriculum 

specialists to ensure that they met the requirements of the standard course of study. These 

lessons associated the tasks and materials to be learned with specific jobs and careers. 

Implementation fidelity called for all 10 lessons to be taught, though the lessons could be 

modified as needed to fit students’ needs and interests and teacher style.  

Teacher and curriculum coordinator buy-in. Principals were discouraged from 

simply pressuring their faculty to implement the program, but rather were encouraged to sell 

the program to the faculty. Teachers and curriculum coordinators who demonstrated 

enthusiasm for the program were encouraged to sell the program to their colleagues at their 

own school and at other treatment schools, as it was theorized that teachers would trust the 

views of other teachers. Enthusiastic support for CareerStart among faculty was considered a 

key element toward implementation fidelity. Buy-in was intended to address concerns that 
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the program would be seen as something important to the superintendent that was then 

subsequently imposed on the teachers. By helping teachers to understand how students could 

benefit and getting enthusiastic support from them, it was proposed that the teachers would 

take ownership of the program. In the efficacy trial, support by faculty was not measured 

directly, but could be measured indirectly using questions on a teacher survey regarding the 

importance of career relevance to student learning.  

Training. A training session was held at the start of every school year with teachers 

and principals new to CareerStart. The training consisted primarily of a slideshow and 

handouts that focused on the benefits of relevance to student learning. As data were collected 

during the evaluation, the trainings were supplemented with these data to demonstrate that 

the program was potentially valuable. Having a training session at each school at the 

beginning of the year was a central part of implementation fidelity, and qualitative data were 

collected to document fidelity in this area. Principal meetings were “joint” spanning multiple 

schools to encourage collaboration across schools.  

Supplementation. Teachers were encouraged to consider the career relevance of the 

other content they teach and develop career relevant lessons on their own or in teacher teams. 

Additional supports to teachers were provided in the form of a career newsletter to help them 

develop additional career relevant lessons, and schools were encouraged to hold career fairs 

that would encourage career interest among the students as well as help faculty understand 

the links between content they were teaching and jobs and careers in the local labor market. 

Supplementation was a key part of implementation, but not measured directly. Information 

about the newsletters that were distributed and the career fairs held at each school are 
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available, and qualitative data suggested that teacher teams worked together at some schools 

to develop supplemental lessons.  

Planning meetings. Quarterly planning meetings were to be held at each school for 

the faculty to develop lessons plans that incorporated the pre-packaged lessons as well as 

supplemental lessons. The Coordinator organized and led these meetings, and used these 

meetings as opportunities to distribute information about activities taking place at other 

schools. Teachers also completed accountability forms during these meetings. High fidelity 

implementation called for having a quarterly meeting in each school. Interview data provide 

limited documentation of fidelity in this area.  

Evidence of the Efficacy of CareerStart 

A randomized efficacy trial was conducted from 2004-05 to 2008-09 in the North 

Carolina school district in which CareerStart was developed. In this design, the 14 middle 

schools in the district at the time were randomly assigned to two conditions of seven schools 

each. During this evaluation, key portions of the CareerStart logic model been validated. For 

teachers, CareerStart has been demonstrated as promoting the use of CRI among teachers in 

math (odds = 1.879, p < .001), including a stronger effect for teachers with more years of 

service (at 1 standard deviation above the mean, odds = 2.171; Rose et al., 2012).  

Two qualitative investigations using focus group data obtained from teachers and 

students lent support to the findings of Rose et al. (2012). A fidelity study showed that in 

three of the seven treatment schools (labeled “low fidelity”), teachers used well less than half 

of the lessons on average and that in contrast to teachers in a selected high fidelity school, 

who reported modifying the lessons to fit their students’ needs, teachers in a low fidelity 

school elected not to use the lesson when they perceived the fit to be poor (Phillippo & Rose, 
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2012). In a second qualitative study teachers expressed concern about the fit of the lessons to 

their students’ needs (Woolley, Rose, Mercado & Orthner, 2013).  

For students, CareerStart demonstrated a causal effect on students’ valuing of school 

(b = 1.41, p < .01; Orthner et al., 2012). In Orthner et al. (2012), valuing (b = 1.31, p < .01) 

and engagement (b = 1.59, p < .001) were also demonstrated to be associated with the level 

of CRI used by teachers. The qualitative study lent support to these findings; some teachers 

reported that the lessons increased students’ involvement in the classroom and promoted 

engaging classroom discussions (Woolley et al., 2013).  

Woolley et al. (in press) demonstrated that CareerStart affected the ultimate outcome 

of student achievement. CareerStart was demonstrated to have significantly increased 

students’ end-of-grade math achievement in middle school, at 0.61 points on the EOG test 

scale; this is equivalent to one quarter of a standard deviation effect size and about 1/3 the 

size of the annual rate of growth in math for the average student. The math effect size of 0.25 

standard deviations was found to be significant at p < .05, but the much larger reading effect 

at 0.46 standard deviations was not (Woolley et al., in press). The between-school variance in 

the reading outcome inflated the standard error for the treatment effect in reading relative to 

that for math. The study may have been underpowered for detecting effects that are typical of 

educational interventions.  

Finally, CareerStart had lasting effects on children in high school at the time these 

students were in ninth grade, with students from CareerStart middle schools performing 

better on end-of-course biology tests (b = 2.52, p < .001) and accruing credits towards 

graduation (b = .21, p < .001) at a higher rate than students from control middle schools 

(Woolley et al., revise & resubmit).  
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The sum of this evidence suggests that CareerStart is a promising and potentially 

evidence-based program. However, these findings were obtained under idealized conditions 

typical of efficacy studies. Evidence-based support will require an effectiveness study of 

CareerStart. In the next section, I describe scalability and compare efficacy and effectiveness 

designs, the requirements that studies must typically meet to be candidates for effectiveness 

investigations, and then explain how the evidence supports that CareerStart satisfies these 

conditions.  

Intervention Scalability 

A stated goal of research into educational and curriculum innovation is to develop 

and refine programs that can be disseminated, potentially as systemic reform (Penuel, 

Fishman, Cheng & Sabelli, 2011). A typical education program, if brought “to scale,” would 

go through three stages: efficacy, effectiveness and dissemination (McDonald, Keesler, 

Kauffman & Schneider, 2006). Blumenfeld et al. (2000) defined a scalable program as one 

that could be implemented outside of the resource-intensive environment of an efficacy or 

effectiveness trial, suggesting that scale is synonymous with dissemination. Another 

definition suggests that scalability research involves an increase in the number of contexts of 

implementation (Fuchs & Fuchs, 1998). According to Clarke and Dede (2009) and Coburn 

(2003), scale encompasses multiple normative dimensions including the depth of changes, 

sustainability of these changes over long duration, diffusion to multiple heterogeneous 

settings, shift in ownership of the program to its users, and evolution of the program to fit 

local needs. Scalability, further, may imply transportability of effective programs to settings 

in which they were not specifically tested (Schoenwald & Hoagwood, 2001).  
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Scaling from Efficacy to Effectiveness 

Distinct phases of evaluation are critical to the cost-effective development of policy 

interventions including instructional practice interventions such as CareerStart, and only 

programs surpassing certain standards of evidence at one stage should be admitted to the 

next, more costly, stage. For example, the Institute for Education Sciences (IES) specifies 

efficacy and effectiveness as distinct goals for researchers seeking funding for their projects 

(2012). Generally, efficacy studies are intended to examine the causality of a program in 

promoting its intended outcomes and to rule out plausible alternative explanations for 

treatment effects (Lee & Krajcik, 2012), but are typified by settings that are unlikely to be 

realized in a real-world setting (Slavin, 2008). These may include a homogeneous population 

of students and teachers from a cooperating school or district (Lee & Krajcik, 2012) and a 

higher level of support for implementation from the investigator than would be expected in a 

real-world setting (Fraser et al., 2009). In the case of CareerStart, this cooperation went as far 

as to include having teachers in the district develop the lessons and to have frequent sharing 

of outcome data with teachers.  

An effectiveness study, alternatively, requires that the program be studied under more 

realistic conditions, including a more heterogeneous population and implementation that is 

independent of the developers and investigators as it would be as a systemic reform (Lee & 

Krajcik, 2012). In taking a program from efficacy to effectiveness evaluation, the role of the 

idealized context of the efficacy trial should be examined carefully (Fixsen, Blasé, Naoom & 

Wallace, 2009; Schoenwald & Hoagwood, 2001). Some compromises may be needed 

between fidelity of the intervention as described and demonstrated as efficacious in the 
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smaller context, and the constraints imposed by the larger more heterogeneous context (Lee 

& Krajcik, 2012).  

O’Donnell (2008) suggested that two dimensions—program fidelity and positive 

outcomes—inform the decision to scale up an intervention, and recommends that only 

programs demonstrating both effectiveness and fidelity should be scaled up. Elias, Zins, 

Graczyk, and Weissberg (2003) described several implementation factors that support 

sustainability at scale of evidence-based educational programs, including requirements for 

personnel at the school and district levels, training, and visibility of the program in the school 

and community. Flay and colleagues (2005) proposed five specific criteria for the level of 

evidence needed for a prevention program to scale up from efficacy to effectiveness: a) the 

evaluation must be conducted on a defined sample from a defined population that is the 

target of the program; b) measures and data collection techniques must be scientifically 

sound; c) studies must have sufficient analytic rigor; d) consistent positive treatment effects 

and no adverse effects from the treatment on either the treatment or control groups; e) at a 

minimum at least one program effect must be demonstrated over the long-term. Although 

these recommendations were not designed for educational programs, they are highly specific 

criteria that may be informative for education evaluators to consider.  

Extant Research on the Scalability of Motivational Instructional Practices 

Research on taking motivational instructional interventions to scale is limited. 

However, the few studies that are available are instructive in that they provide a clearer 

picture of the challenges described above as they apply to scalability of CareerStart. Bishop, 

Berryman, Wearmouth, Peter, and Clapham (2012) described a non-randomized within-study 

replication of an evaluation of a teaching practice intervention for improving the motivation 
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and engagement of indigenous students in New Zealand schools. The authors looked at two 

phases of implementation of this program (labeled phase 3 and phase 4), that took place in 

consecutive periods. Phase 4 had a larger number of settings (n = 21) than did phase 3 (n = 

12). The program targeted change in teachers’ interactions with students (e.g., demonstrating 

higher regard for student background, and modifying their instructional methods 

accordingly) and consisted of supports that the authors acknowledged could not be sustained. 

Despite the larger group of implementation sites, with the level of support maintained at high 

levels, phase 4 schools replicated the results of the phase 3 schools.  

Lynch, Pyke and Grafton (2012) examined implementation and scale-up of three 

middle school science curriculums. The authors showed that effects observed at the efficacy 

scale were not replicated on a larger scale; the authors subsequently used qualitative methods 

to examine the context of the scale-up to the effectiveness study to identify factors that may 

have impeded successful implementation at larger scale. Among other findings, the authors 

indicated that administrative, student and teacher support may have been inadequate. 

Blumenfeld et al. (2000) also used qualitative methods to study the fit between school 

capacity, policy, culture and the intervention as designed, and discussed the challenges in 

adapting an intervention across multiple contexts. The authors found that district and 

administrator support, including financial support, influenced effectiveness, that teacher 

beliefs may have impeded widespread adoption, and that teachers needed time to learn the 

basic approaches and to adapt the program to fit their own context. Buzhardt, Greenwood, 

Abbott and Tapia (2006), in a school-randomized trial examined barriers to the scale-up of an 

evidence-based peer tutoring program, identified failure to communicate with program staff 

as the strongest predictor of poor implementation.  
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Tatar and colleagues (2008) reported findings from a non-random study of 21 seventh 

grade math teachers in a wide variety of educational settings using a instruction practice 

intervention previously shown efficacious in another setting. The authors found that short-

term programs that lacked extensive professional development requirements, but that 

provided training and materials to use in instruction, were effective. Such programs may be 

more agile in that they can make an impact more quickly than those that require long-term 

commitments and long periods in professional development training.  

Taking CareerStart to Scale: An Effectiveness Trial 

The sum of the evidence from the CareerStart efficacy trial and the extant research on 

the scalability of motivational interventions that I described above suggests that scalability of 

CareerStart may be realistic given the agile packaged components such as the lessons and 

brief trainings (e.g., Tatar et al., 2008); the importance of district and administrator support 

and teacher buy-in (Blumenfeld et al., 2000; Lynch, Pyke & Grafton, 2012); and the role of 

communication among stakeholders (Buzhardt, Greenwood, Abbott & Tapia, 2006). 

However, they also suggest several problems that CareerStart must overcome to have a 

successful effectiveness trial.  

The evidence cited above, which indicates that CareerStart meets or exceeds the Flay 

et al. (2005) criteria for scalability to an effectiveness trial largely owing to a middle school 

math treatment effect and a high school science effect, suggests that a decision must be made 

about the role that language arts lessons will play in an effectiveness trial. The RCT may 

have demonstrated that career relevance does not work in language arts, but it is also 

plausible that it may have demonstrated that the study was underpowered or contaminated, or 

that it was simply typical of average educational interventions in not promoting achievement 
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in reading. First, the treatment was administered to entire schools, and with only 14 middle 

schools in the district at the outset of the study, only seven schools were randomized to each 

treatment condition. This type of study in which schools rather than students are assigned to 

treatment, known as a cluster randomized trial, is typically underpowered (Hedges & 

Hedberg, n.d.; Schochet, 2005). In the case of CareerStart, the small number of middle 

schools in the evaluation may suggest that the design was underpowered for detecting a 

significant treatment reading effect. The other possibility was control group contamination. 

Although no direct evidence of CareerStart program lesson use or other measures of fidelity 

in the control schools was available, Rose and colleagues (2012) established that control 

school teachers did use CRI. Although control school math teacher used significantly less 

CRI than their treatment school counterparts, the differences in language arts, science and 

social studies were not significant, suggesting that some level of contamination may have 

occurred. Finally, reading effects are often not seen in educational interventions, and one 

explanation that has been offered is that the material tested on the reading exam may not be 

linked as closely to instruction in language arts as tested math content is to math instruction 

(Harris & Sass, 2011).  

In addition, however, CareerStart has not been extensively studied for the intensity of 

the support provided, largely in the form of the CareerStart Coordinator, or its fit to local 

conditions, factors noted by O’Donnell (2008) and Elias, Zins, Graczyk and Weissberg 

(2003) as important to understand before introducing an intervention to a new environment. 

As noted, Bishop and colleagues (2012) were able to replicate a treatment effect in a larger 

sample but only if a level of support that would be impractical for systemic reform was 

maintained. Buzhardt, Greenwood, Abbott & Tapia (2006) indicated that communication 
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among stakeholders was important for fidelity; and Tatar and colleaguegs (2008) 

demonstrated the importance of brief training sessions. As all of these features are part of the 

Coordinator’s responsibilities, a key question regarding the long-term and widespread 

sustainability of CareerStart is whether the position of CareerStart Coordinator, which 

requires funding, is replicable in general settings. It was also not clear how many schools a 

single Coordinator could serve and maintain an effective treatment.  

Finally, the local conditions for the efficacy trial have not been examined. As noted, a 

key feature of the program was buy-in from principals and teachers for the concepts and 

practices of CareerStart. This was intended to address concerns that teachers would see the 

program as imposed on them by an enthusiastic superintendent who was heavily involved in 

its development and dissemination to neighboring districts. This could bias the program 

effect upward if teachers perceived the superintendent’s support positively. Alternatively, the 

superintendent’s support could bias the program effect downward if they perceived the 

superintendent’s support negatively. A negative perception might occur for example if 

teachers see the program only as something of importance to the superintendent without any 

commensurate value as a teaching practice. As a consequence, if buy-in had not been 

successfully applied in the RCT and program success could be attributed instead to pressure 

from the superintendent, there may have been “home-district” effects that would not be 

present and not generalizable to other settings.  

Questions about the power for testing a reading effect, about the importance and role 

of the coordinator, and buy-in vs. atypical local conditions would usually only be answerable 

in a subsequent effectiveness trial, but an opportunity has become available to respond to 

these needs and provide more information to program developers prior to scaling up by 
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examining the effect of a non-random replication of CareerStart on math and reading 

achievement in schools in the RCT district and outside this district.  

Non-Random Replication of CareerStart 

During the period of the efficacy RCT, neighboring schools and districts in central 

North Carolina expressed an interest in implementing CareerStart and the program was 

disseminated over a period of three years (2007-08 to 2009-10) to 13 additional schools in 7 

districts (see Table 3.1A and 3.1B). Also during this period, the 7 control schools in the RCT 

were admitted to the treatment condition as part of a 2-year graded waitlist design; i.e., two 

years after first implementing at the sixth grade level in 2005-06, sixth grade teachers in the 

control schools implemented CareerStart in 2007-08 (followed by seventh and eighth the 

subsequent two years). After imposing the one-year training period, these schools became 

available for evaluation starting in 2008-09.  

The 20 schools implementing CareerStart non-randomly represented an opportunity 

to provide key information to further develop CareerStart for the purpose of an effectiveness 

study. First, the sample of treatment schools is nearly three times the size of the original RCT 

treatment group. Second, the schools implementing the treatment were more heterogeneous, 

spanning seven districts and two regions of the state (Table 3.2). Students in the RCT district 

and outside the RCT district differed significantly on all pre-treatment outcomes except 

student receives free/reduced lunch, percent Black students, and teacher is full time or 

receives full time pay. Finally, the presence of both 13 new treatment sites and the 7 RCT 

control schools in treatment that started implementing at the same time presents an 

opportunity to test whether schools in the RCT district have greater effects due to a higher 

level of support. Three questions about implementation in the 20 non-randomly assigned 
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schools guide this study; first, whether the overall non-random treatment promoted higher 

math and reading achievement; second, whether there were differences between this 

treatment and the treatment administered during the RCT; and third, whether there were 

differences between schools in the RCT district and in other districts. A fourth question 

addresses the credibility of the impact estimates from PSA.  

The central challenge of a non-randomized evaluation design is obtaining a 

comparison group that mimics a randomized control group in its equivalence (Morgan & 

Winship, 2007). In this study, I examine these 20 schools for a treatment effect using a 

replication of the interrupted time series design of the efficacy RCT (Woolley et al., in press), 

including imposing a one-year wait time on implementing schools prior to evaluating, such 

that teachers may learn the treatment. Thus, the sixth grade cohort would be obtained from 

most of these schools in the school year 2008-09. I use PSA to obtain a weighted comparison 

sample using the entire middle school population in North Carolina starting sixth grade in 

2008-09. PSA is controversial, with some scholars suggesting that the method inadequately 

controls for unobservable characteristics (e.g., Wilde & Hollister, 2007), and other scholars 

suggesting that PSA, used in conjunction with other controls and designs, may be adequate 

(e.g., Cook, Shadish & Wong, 2008). Prior to discussing PSA in detail and discussing the 

controversy over their utility to educational evaluation, I describe a framework, the Rubin 

Causal Model (Holland, 1986), which explicates the challenges PSA must overcome.  

Propensity Score Analysis and the Rubin Causal Model 

The CareerStart efficacy study was conducted using an RCT. Randomization is 

widely seen as the gold standard for establishing the causal effects of treatments because 

randomization equalizes both observed and unobserved confounders of the treatment across 



233 

treatment groups. A non-random study must effectively replicate such conditions for 

inferences about the causality of observed treatment effects to be credible.  

In the Rubin causal model (RCM; Holland, 1986), also known as the potential 

outcomes model, the definition of the causal estimand for a treatment such as a teaching 

practice intervention depends on the conditions that are experienced in the absence of the 

specified cause, known as the counterfactual. In the case of a teaching practice intervention 

such as CareerStart that is given to entire schools, this is typically the standard teaching 

practices that teachers in each school use. Formally, assume that the outcome for student � 
(with I = 1,…N) under treatment condition j is ��� with two possible treatments, j = 1= 

CareerStart school, and j = 0 = non-CareerStart school (Morgan & Winship, 2007). Second, 

the student has one potential outcome ��� under each possible treatment. At most one of these 

two potential outcomes can be realized, as each student can only be assigned to one condition 

(the fundamental problem of causal inference; Holland, 1986). To circumvent this, the 

treatment effect is defined as a function of the distributions of students assigned to treatment 

and the students under the control, usually labeled the average treatment effect (ATE).  

There are three assumptions supporting the inference of a distributional function such 

as the ATE as the causal effect of the treatment for an individual student. Two of these cannot 

be proven but nevertheless are assumed to be present in both randomized and observational 

designs (Morgan & Winship, 2007): First, manipulability implies that students can be 

assigned to either condition, which is required for both potential outcomes to be defined. 

Second, the stable unit treatment value assumption, implies that the potential outcome under 

either condition is not affected by peers also assigned to that condition. A third assumption, 

unconfoundedness (also referred to as ignorability or exogeneity), is directly addressed by 
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randomization and must be supported in a non-randomized setting if such a setting is to be 

used for causal evidence. Unconfoundedness implies that each student’s assignment (A) to 

treatment j is independent of his or her potential outcome in that condition (Morgan & 

Winship, 2007):  

(i) ���  ┴ A 

Condition i is assumed to be met in randomized designs. In non-randomized designs, 

typically a weaker statement conditions on background factors, x:  

(ii) ���  ┴ A | X = x 

In other words, the potential outcome ��� under each condition is independent of 

assignment to treatment conditional on a set of characteristics X. Condition ii  is violated in 

the presence of association between unmeasured predictors of the outcome that are also 

associated with each student’s assignment to treatment. In an RCT, the treatment effect can 

be viewed as a simple difference between the expectations or average effects of those in the 

treated and non-treated groups (Morgan & Winship, 2007), relying on condition i: ATE = 

E[d] = E[���] – E[���] = E[���– ���] with 1 = treated, 0 = control. Non-random designs must 

effectively duplicate this using condition ii , as ATE = E[d] = E[���| X = x] – E[���| X "  x] = 

E[���– ���| X "  x].  

PSA may meet this criterion. The propensity score is the probability P of assignment 

to the treatment condition (j = 1) conditional on factors related to assignment (Rosenbaum, 

2002; Rosenbaum & Rubin, 1983). This can be represented as P = Pr[Zj = 1 | X], with Z 

representing a “switch” that assigns a participant to each condition. If the true propensity 

score is known then both observable and unobservable covariates are effectively randomized. 

Typically the propensity score is not known, but alternatively if all of the predictors of the 
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propensity score are known, measured, and included in the propensity score model then the 

treatment conditions can be considered conditionally random. In both cases, this would result 

in treatment assignment that is conditionally independent of covariates of the outcome, 

conditional on the propensity P, as follows:  

(iii) h��  ┴ X | P 

As a consequence, E[d] can be interpreted as a causal effect (Rosenbaum, 2002). This 

places the burden for satisfying unconfoundedness on the richness of the data.  

Propensity Score Modeling 

Because the propensity score is not typically known, it must be estimated using a 

conditional model consisting of a binary dependent variable describing probability of 

treatment assignment, P = Pr�h�<� " k0, 1l� and a linear combination of covariates of the 

assignment (Rosenbaum, 2002). This can be implemented as follows: the probability of 

treatment assignment is converted to log-odds, as ��� "  mn�M/�1 $ M��. o��� is then 

regressed on a vector of predictors X as follows:  

(1)  o���  "  )� 
The predicted values of this regression are reverse-transformed to probabilities, which 

are labeled the propensity scores. As RCM condition ii  makes clear, the covariates of the 

assignment outcome should include at a minimum all variables that are both predictors of 

assignment and predictors of the outcomes of the treatment. A number of approaches to 

covariate selection have been proposed (Guo & Fraser, 2009; Imbens & Wooldridge, 2009). I 

discuss the approach used in this study in the methods.  

This propensity score is then used to equalize participants in the treatment conditions, 

typically by matching or weighting. Participants in each condition can be matched on this 
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propensity using a number of different algorithms for matching (see, for example, Stuart & 

Green, 2008). Using the matching approach, participants in each condition that do not 

sufficiently overlap with the other condition are discarded, and a method of determining 

which participants should be matched to each other has to be determined. Typically matching 

methods focus on matching comparisons to each treatment and not the other way around. 

This implies that matching may not enable estimation of the ATE, but instead enable 

estimation of the average treatment on the treated (ATT), the average effect on the 

subpopulation that is treated (Imbens & Wooldridge, 2009). The ATT is a comparison 

between potential outcomes only among those participants in the treatment condition 

(Harder, Stuart & Anthony, 2010). However, the ATE, which is a comparison between all 

treatment and comparison individuals on their potential outcomes, is typically the estimand 

of interest (Guo & Fraser, 2009; Imbens & Wooldridge, 2009).  

An alternative to matching, which may enable estimation of the ATE in most settings, 

is to use inverse probability weighting (Harder, Stuart & Anthony, 2010; Hirano, Imbens & 

Ridder, 2003; Imbens &Wooldridge, 2009; Morgan & Winship, 2007), whereby participants 

in the treatment and comparison conditions are assigned a weight proportional to their 

probability of treatment assignment. Weighting methods are more efficient because typically 

no comparison or treatment participants are discarded. Although weights enable estimation of 

the ATE, a version of inverse probability weighting can alternatively estimate the ATT by 

constraining the treatment group weights to one (Guo & Fraser, 2009). Matching and 

weighting methods can also be combined, by sequentially matching followed by weighting 

(Henry, Gordon & Rickman, 2006) or by weighting in the common support, which 

potentially implies an ATT estimate (Harder, Stuart & Anthony, 2010), or by trimming 
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comparison cases from the lower unsupported range, leaving high probability treatment 

participants in the analysis to support an ATE estimate (Harder, Stuart & Anthony, 2010). 

Both matching and weighting methods can be combined with regression approaches 

(Glazerman, Levy & Myers, 2003; Imbens & Wooldridge, 2009). 

Few studies have been conducted to compare among the numerous matching and 

weighting methods, and given the different estimands from each, the methods may not be 

comparable. Frolich (2004) in a comparison of pair, k nearest neighbor and inverse 

probability weighting, found inverse probability to be the worst performing among the three 

methods. Alternatively, Harder, Stuart and Anthony (2010) and Kang and Schafer (2007) 

suggested that the relative performance of matching or weighting methods is context 

dependent and sensitive to specification of the propensity score model. Because they estimate 

different effects—matching an ATT and weighting an ATE—they may not be comparable. In 

this study, inverse probability weighting was used to ensure that an ATE was estimated and 

to have higher efficiency and power.  

Propensity Score Methods and Unconfoundedness 

PSA has received substantial attention over the past decade in social and policy 

research. The approach remains controversial because of the fallibility of the 

unconfoundedness assumption in non-random settings, and much of the policy audience for 

typical evaluation studies may not find evidence from PSA research studies credible (Cook, 

Shadish & Wong, 2008). The efficacy of PSA in equalizing non-equivalent treatment groups, 

relative to experimental randomized designs, has generated substantial controversy (Cook & 

Steiner, 2009; Dehejia & Wahba, 1999; Langbeim, 2009; Pirog, Buffardi, Chrisinger, Singh 

& Briney, 2009), including specifically as the approaches relate to school evaluations (Cook, 
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1999; Schochet, 2005). For the results of any study using PSA to be interpreted as causal by 

the broadest audience possible, these controversies—meaning, the unconfoundedness 

assumption of the RCM—must be addressed to the extent possible within a specific study.  

Smith and Todd (2005) demonstrated that PSA did not sufficiently address 

unmeasured confoundedness and although they may have potential in narrowly-defined 

situations the authors argue that PSA do not constitute a general application. Agodino and 

Dynarski (2004) and Wilde and Hollister (2007), using within-study replications of RCTs 

with PSA, demonstrated that PSA did not replicate the randomized study design. Other 

studies have demonstrated, alternatively, that PSA is a valid approach for inferring causality 

in observational studies as long as certain conditions and caveats are considered. Glazerman, 

Levy and Myers (2003) show that the coupling of PSA with regression covariate adjustment 

procedures—the first of which addresses covariances between treatment assignment and 

measured variables and the second of which addresses covariances between measured 

variables and the dependent variable—reduced bias more than either procedure alone 

(Glazerman, Levy & Myers, 2003). Diaz and Handa (2006) demonstrated that what they 

termed “off-the-shelf” variables that, in typical education data would include such 

demographic variables as race/ethnicity and free/reduced lunch, did not sufficiently capture 

the assignment process and that some effort must be taken to measure correlates of 

assignment. Cook, Shadish and Wong (2008), weighing the evidence from multiple studies, 

conclude that PSA is more likely to satisfy the unconfoundedness if pretreatment measures of 

the outcome can be included in the propensity score model. In sum, PSA may not constitute 

generalizable observational study methods and should be used sparingly when conditions are 

right.  
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PSA has often been applied in settings where the data are inadequate to model the 

treatment assignment process, leaving it unclear whether the unconfoundedness assumption 

was supported. The typical approach to establishing that unconfoundedness condition is 

satisfied in is to first demonstrate that observed covariates are balanced across propensity-

score adjusted treatment conditions, and then to subsequently assume that this balance 

constitutes evidence that treatment groups are balanced on unmeasured covariates or that 

unmeasured covariates of the outcome do not exist. The first assumption implies that the 

observed covariates proxy for the unobserved covariates and no residual covariation remains 

(Rosenbaum, 2002). Certain researchers (e.g., Wilde & Hollister, 2007) have found neither of 

these arguments sufficiently credible.  

My objective is not to take a stand on whether the balance argument is credible or 

not, but to offer a more rigorous criterion based on a weaker assumption. Specifically, PSA 

studies conducted in settings where a randomized control trial has also taken place offer the 

opportunity to replicate the RCT estimate on the same group of treatments but using a non-

randomized PSA comparison group (Peikes, Moreno & Orzol, 2008). For the PSA estimand 

to be a valid causal effect in this scenario, I need only assume that the treatment intensity in 

the RCT treatment schools is the same during the non-random study period as it was during 

the RCT. If such an assumption holds, then evidence of the credibility of the PSA design will 

be conclusive. I argue that the present study may have such a design, for which I have limited 

quantitative and qualitative evidence to support the necessary assumption. This design 

therefore constitutes what Smith and Todd (2005) labeled a “mapping from the 

characteristics of the data and institutions available in particular evaluation contexts to the 

optimal non-experimental estimators for those contexts” (p. 397); in other words, although 
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PSA may not be applicable in all settings, it may be ideal in the present context. In this 

section, I present extant research on PSA as a replication method that demonstrates the 

weakness of relying only on balance in observed covariates and supports the strength of the 

within-study comparison design. These studies have some similarities to the present study 

design.  

PSA as a Replication Method 

Agodino and Dynarski (2004) compared experimental and PSA estimates of 16 

dropout prevention programs on several student outcomes, including dropout, education 

aspirations, self-esteem, and attendance. An experiment showed that two of the programs 

were effective at reducing dropout. Using a difference-in-difference estimator to be 

consistent with the experimental study design, the authors show that the significant impacts 

observed in the experiment were not replicated. Non-significant findings in the experiment 

were also not replicated, with some ineffective dropout programs showing that they increased 

the odds of dropout. Using data from the Tennessee STAR class size randomized experiment, 

Wilde and Hollister (2007) similarly demonstrate that PSA do not give the same answers as 

the randomized experiment. Wilde and Hollister found that the PSA matched comparison 

groups were more equivalent to each other than the randomly assigned groups were on 

observable characteristics, but that unobservable characteristics had a heavy influence on the 

results in the PSA design.  

Other researchers have reached similar conclusions. Peikes, Moreno and Orzol 

(2008), conducted a replication of an experimental study of an education and employment 

program. Using the results of a PSA model alongside the results of three randomized 

experiments using difference-in-difference and regression estimates, and using a statistical 
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test for the equality of the PSA and randomized designs, the authors compared the 

performance of these programs in reported earnings and proportion employed. To give an 

example of one of the three programs evaluated, the evaluation of the New York treatment 

showed that impact estimates for employment were similar across the two designs, but the 

estimated impacts on earnings were very different, with the experiment suggesting negative 

effects and the PSA suggesting positive effects. Peikes, Moreno and Orzol (2008) argued that 

PSA requires knowledge of an experimental impact estimate as the only criterion for the 

unbiasedness of a PSA estimate, which is typically a drawback as such estimates are not 

usually available.  

Shadish, Clark and Steiner (2008), who took a different approach and designed a 

within-study comparison, argued that most of these failures of PSA to replicate RCTs were 

matters of design, not of PSA in general. The authors randomly assigning college students to 

an RCT or an observational study. Students in the observational study were permitted to self-

select into their treatment. The treatment and comparison groups demonstrated non-

equivalence before treatment and, further, without a PSA design the effects of the program 

being evaluated were different between the experimental and non-experimental designs. 

Using a series of covariate specifications, Shadish, Clark and Steiner (2008) show that 

typical demographic measures did not lead to bias reduction in PSA designs, but that 

additional measures less commonly available in administrative data but possibly collected via 

survey (e.g., indicators that measure motivation to participate) may help. In the case of their 

study, they were able to measure the variable determining self-selection into treatment. The 

findings demonstrated that if covariates are rich enough to measure the selection process or 
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proxy for it, PSA can replicate experimental studies. These findings were replicated by Pohl, 

Steiner, Eisermann, Soellner and Cook (2009).  

Cook, Shadish and Wong (2008) conducted the most robust assessment of the quality 

of intervention program replication studies using PSA designs. Eight of the studies that they 

cited relied on PSA, including three education studies cited above, Agodino and Dynarski 

(2004), Wilde and Hollister (2007), and Shadish, Clark, and Steiner (2008). Cook, Shadish 

and Wong (2008) argue that collectively, the studies that they reviewed suggest that localized 

comparison groups should be used, and that richer data than typical convenient measures 

such as race/ethnicity and gender are required. Following Cook, Shadish and Wong (2008), 

other researchers have demonstrated that flaws in PSA designs are not inherent flaws in PSA 

but are context-specific. For example, Bifulco (2012) demonstrated that the extent to which 

pretreatment outcome measures are available and used, and the geographic homogeneity of 

the comparison pool for the matching or weighting, largely determine whether a PSA design 

was valid. The findings in these studies suggest the importance of a credible assumption of 

unconfoundedness and lend support to the idea of using the within-study replication approach 

to assess the credibility of this assumption in settings where such a design is possible, such as 

in the current study.  

Study Objectives and Research Questions 

The objectives of this study were to re-evaluate CareerStart using a non-random 

sample to answer questions about the scalability of the program and address concerns about 

flaws in the RCT. Given the non-random assignment to treatment and the voluntary nature of 

adoption of CareerStart in some of the schools, the treatment effect may be biased in favor of 

a larger and significant effect of the treatment if the PSA did not credibly establish 
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unconfoundedness. Thus, the corollary objective of the study was to use methods that support 

the credibility of the unconfoundedness assumption of the RCM in a non-randomized setting. 

The following four research questions are answered by this investigation. First, do students 

in schools receiving CareerStart perform better on end-of-grade (EOG) reading and math 

exams, as measured across all three middle grade levels, in comparison to students in 

comparable schools not receiving the treatment? Second, are the effect sizes observed in this 

non-experimental evaluation similar to the effect sizes observed in the RCT conducted 

between 2006-07 and 2008-09? Third, are there differences in effectiveness between schools 

in the home district and schools in other districts? Fourth, is the claim that the PSA design 

provides an unbiased and consistent estimate of the treatment effect valid?  

Methods 

PSA Design 

I conducted a replication of the RCT design on the group of 20 schools in a non-

random implementation of CareerStart, including 13 schools outside of the RCT district and 

7 schools within (see Table 3.1A and 3.1B). As a propensity score design this study is 

unusually robust, because it also allows me to incorporate the seven original RCT treatment 

schools, allowing for a direct assessment of the credibility of the claim that assignment was 

conditionally unconfounded under a weaker assumption than the balance assumption 

typically requires. The design subsequently includes, and builds on, the interrupted time 

series model used in the RCT (Woolley et al., in press), adding to it a richer set of covariates 

at the student, classroom, teacher, and school level.  

Several factors were taken into account when developing the propensity score model. 

First, the treatment was assigned to entire schools. In these settings, matching of treatment 
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schools to comparison schools would have been desirable, because the PSA model was 

intended to approximate the assignment process (Stuart, 2007). In this case, this would have 

meant matching or weighting the 20 non-random treatment middle schools (plus the seven 

RCT treatment schools) to the 350 other North Carolina middle schools, or a subset of these 

middle schools. In such a design, the PSA model would have consisted of pre-treatment 

characteristics of the middle schools, which would have included aggregates of student 

characteristics during the pre-treatment period. Information about the students enrolled in 

these middle schools during the study period (which I label the “study cohort”) would not 

have been considered.  

However, the analysis design called for modeling student performance over both 

elementary and middle school years. For a middle school PSA design to satisfy the 

requirement of equalizing the treatment groups, the middle school information used in the 

PSA model would have had to equalize over both the middle schools themselves and the 

elementary schools that fed these middle schools. Because the elementary school years for 

these students comprise the pretreatment period in this study, leaving their characteristics out 

of the PSA model may not have yielded equivalent groups of pre-treatment characteristics. 

An exploratory analysis conducted on several matched middle school samples demonstrated 

that this was the case, and that the two treatment conditions were not balanced. The 

propensity for a middle school to have been assigned to treatment did not indicate the 

propensity of any of the students in its constituent elementary schools to be assigned to a 

treatment, and due to migration of students many of the elementary schools fed into both 

treatment and non-treatment schools.  
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Instead, I used a second-best strategy of estimating a PSA model comparing students 

in the treatment schools to other students in the same cohort in other middle schools in the 

state. All of the students in sixth grade at the start of the 2008-09 school year were identified 

as an evaluation cohort, with the students in the 20 non-random treatment schools and seven 

random treatment schools identified separately from the students in 352 non-treatment 

middle schools. In total there were 84,968 students. This allowed for a larger and richer set of 

pre-treatment covariates for predicting assignment to treatment, including middle school pre-

treatment covariates, elementary school covariates and student characteristics that could not 

be included a model strictly related to middle school assignment (see Table 3.3 for all 

covariates). This second-best design may not approximate the assignment mechanism, which 

in this case would mean modeling school assignment to treatment rather than student (Cook, 

Shadish & Wong, 2008). Rather, it approximates a design in which the treatment was 

assigned to schools and students subsequently assigned to these schools. Nevertheless, the 

results show that the design demonstrated improved balance when inverse probability 

weighting was used, relative to the balance across treatment conditions prior to weighting. 

Inverse probability weighting was selected to estimate an ATE for CareerStart, rather than an 

ATT that would be obtained via matching, as well as to minimize biases from loss of 

participants outside of the area of common support.  

Data and Sample 

Data. Three sources of data were used in this study. First, an existing database of 

North Carolina Department of Public Instruction (DPI) data, maintained by the Carolina 

Institute for Public Policy (CIPP), contains information on all schools and students in North 

Carolina dating back to 2004-05, four years prior to implementation in the replication sample 
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(2008-09). These data therefore include academic performance on sixth grade students in the 

entry cohort in 2008-09 dating back to third grade, the first grade in which end-of-grade 

testing was administered. These data also include school level data that may explain a 

substantial amount of the heterogeneity between treatment conditions in the years prior to 

schools joining the treatment condition.  

Second, implementation data were provided by two sources. Quantitative data 

contained the number of lessons used by teachers in each subject in each school during the 

RCT and PSA evaluation periods. Qualitative data were collected in the form of an interview 

with the CareerStart Coordinator responsible for implementation of CareerStart in the two 

evaluation periods. The interview contained questions related to implementation intensity 

during the two evaluation periods in the multiple treatment subgroups.  

Sample. The school sample consisted of three groups of treatments and one group of 

comparisons. The three treatment groups were labeled a) former RCT controls, consisting of 

the seven schools that initially served as controls in the RCT but were later admitted to 

treatment after a two-year wait, which can be considered a non-random assignment; b) non-

RCT treatment, consisting of the group of schools to which CareerStart was disseminated 

non-randomly; and c) RCT treatment, consisting of the seven schools used to evaluate the 

efficacy of CareerStart in the 2004-2009 RCT, included here only as a check on the 

credibility of the design. There were middle schools in the RCT district that implemented 

CareerStart during one or more years but were excluded because the schools newly opened 

late during the PSA evaluation period or had been opened during the RCT but were closed 

during the PSA period. The funding of the position of the Coordinator was shared by the 

districts during the PSA period.  
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The schools in RCT control and non-RCT treatment can also be organized according 

to the staggered implementation timetable. The schools joining the treatment started using 

CareerStart according to the timetable shown in table 3.1. Table 3.1A shows the years in 

which the treatment could be evaluated in these schools, and Table 3.1B shows the 

corresponding grade levels for the cohort. Partitioning the treatments into four groups of 

schools addressed the staggering of the non-random implementation of CareerStart over the 

years 2008-09 (Group 1; 13 schools; sixth grade and later), 2009-10 (Group 2; 2 schools; 

sixth grade and later); and 2010-11 (Groups 3 and 4; 3 schools with a sixth grade starting 

cohort and 2 schools with a seventh grade starting cohort, respectively). Comparison students 

would be drawn from sixth grade students in 2008-09. Steps were taken to ensure that 

students and schools only appeared in one group. Table 3.1 also shows that data are currently 

available up to the school year 2010-11, which implies shortened study periods for groups 2, 

3 and 4. Table 3.4 contains the unweighted description of the student sample.  

Measures 

The measures are organized according to their use in the analysis models, and in the 

descriptions I note the role that each variable played in the propensity score models.  

Dependent variables. The dependent variables were end of grade (EOG) math and 

reading test scores, collected over all six available grade levels (third through eighth). This 

provided three pre-treatment time points and a time point for as many as three grade levels of 

middle school. North Carolina EOG exams are developmentally scaled measures, appropriate 

for assessing change or growth over time. Because the scales were revised during the study 

period, the outcomes were standardized. The addition of multiple pre-treatment observations 

in the third through fifth grade waves provided more reliable evidence of learning prior to 
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treatment, which strengthened the counterfactual by minimizing random fluctuation and 

regression to the mean (Raudenbush, 2001).  

Time. An underlying “root” time variable ranged from -2 (corresponding to third 

grade) up to 3 (corresponding to eighth grade) with a center (zero) on fifth grade. This root 

time effect, which was entered as a predictor, served multiple purposes. First, as learning 

could be viewed as a developmental characteristic, this variable captured children’s 

underlying learning trajectory (e.g., Willett, Singer & Martin, 1998). Second, this variable 

controlled for all unmeasured time-varying correlates of assignment and the outcome that 

were common to participants in both treatment conditions. A quadratic version of the root 

time variable was included to account for non-linear development (Willett, Singer & Martin, 

1998).  

Second, an increment to learning or an interruption in the trajectory occurred at the 

point that students transitioned to middle school. This interruption variable was a time-

varying effect coded 0 for third through fifth grades and coded 1 for sixth through eighth. 

This interruption was a discontinuous jump in the trajectories of students between their fifth 

and sixth grade end-of-grade assessments. Reflecting the intense changes these students 

undergo during this transition, it was usually a negative value; that is, the average student’s 

performance tended to go down when he starts middle school in sixth grade (e.g., Cook, 

MacCoun, Muschkin & Vigdor, 2008).  

Treatment effects. There were multiple treatment effects tested in these analyses, 

reflecting the need to estimate an overall impact estimate across all non-randomly assigned 

schools (to answer questions 1 and 2); the need to estimate district-specific effect for 
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answering question 3; and to estimate a non-random treatment effect for the original RCT 

treatment group for answering question 4.  

First, a main binary treatment variable captured the residual difference between 

students in treatment (=1) and comparison schools (=0) immediately prior to treatment. Due 

to the PSA design and interrupted time series, I hypothesized that this difference would be 

non-significant. This binary treatment variable was also the dependent variable of the 

propensity score model. Second, this binary treatment variable was interacted with the 

interruption to produce a difference-in-difference (DD) estimate, a difference between 

students in each condition in the difference between average MS and ES performance 

adjusted for development. The DD was interpreted as the focal effect for answering questions 

1 and 2 regarding the magnitude and significance of the non-random treatment. It was 

hypothesized to be positive and significant to answer question 1, and to be statistically 

equivalent to the RCT treatment impact for question 2.  

Third, the effects of the treatment in the RCT control and non-RCT treatment schools 

were estimated in two ways to answer questions 3 and 4. First, a variable indicating that the 

school was in the RCT district was interacted with the DD (producing a difference-in-

difference-in-difference; DDD) treatment effect. The coefficient for this variable was the 

added benefit of the treatment experienced by students in RCT control schools relative to the 

treatment experience of those in non-RCT treatment schools (which would be negative if the 

non-RCT treatment schools had greater treatment effects), partly answering question 3. A 

second set of treatment variables enabled the estimation and testing of effects for each 

treatment group relative to the comparison group. This second set of treatment variables 

replaced rather than augmented the main treatment variable described above, and each was 
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interacted with the interruption to produce an independent DD treatment effect for each 

condition: former RCT control and non-RCT treatment for partly answering question 3; and 

RCT treatment for answering question 4.  

Student, classroom, teacher and school covariates. Covariates were required for 

the propensity score model to predict the log-odds of treatment. Further, as Glazerman, Levy 

and Myers (2003) demonstrated, PSA designs can be made more credible in addressing the 

unconfoundedness assumption by including covariates in a regression model for analysis of 

the study outcomes. The CIPP database contains numerous variables including student 

demographics, test score data over multiple years, and indicators of learning status such as 

limited English proficiency; classroom variables that may capture the confounding influences 

of peer learning effects on the treatment effect; teacher variables that capture student-to-

student differences in teachers’ skill level and readiness to teach their content areas; and 

school variables that account for aggregate demographics and may proxy for effects related 

to geography and local economic conditions. Table 3.3 lists all of the variables that were 

used during the imputation, propensity score and analysis stages of this study, and indicates 

in which stage of the study each variable was used.  

Data Analysis 

Propensity score model. A logistic regression as described in model 1 used a vector 

of student, classroom, teacher, and school characteristics to predict the log-odds of treatment 

assignment. The chosen covariates in the PSA model should be predictive of both treatment 

assignment and the outcome and rich enough to proxy for unobserved covariates of treatment 

and the outcome, and they should be balance-promoting (Diaz & Handa, 2006; Imbens & 

Wooldridge, 2009). The outcomes themselves cannot be used for selection, but proxies can 



251 

be used instead (Kelcey, 2011). Fifth grade math and reading scores were used as proxies for 

the middle grades outcomes. For selecting covariates and nonlinear functions of covariates 

that were highly predictive, numerous approaches have been recommended (e.g., Dehejia & 

Wahba, 1999; Guo & Fraser, 2009; Hirano & Imbens, 2001; Rosenbaum & Rubin, 1984). I 

synthesized an approach from these recommendations that fit the unique needs of this study: 

a high number of comparison participants; a high degree of imbalance between treatment and 

control samples (approximately 1:15), and a large vector of potential student, elementary 

school and middle school covariates (more than 250). First, I calculated the correlation 

between all available variables and the outcome proxies to narrow the number of variables 

for the propensity score model to 116 variables (these are labeled in table 3.3 as candidates 

for the PSA model).  

Following this reduction, exploratory logistic regressions were run to eliminate 

variables that contributed little, conditional on the other variables, to the prediction of 

treatment assignment. Among the variables entered into the PSA model were student math 

and reading scores in fifth grade, as well as differences between students third and fourth 

grade math and reading scores and their corresponding fifth grade scores, and both 

elementary and middle school average student performance during the year in which these 

students were in fifth grade. These additions address the findings of studies such as Cook, 

Shadish and Wong (2008) that multiple pre-treatments may aid in eliminating the influence 

of unmeasured covariates of the outcome and the treatment. With a very large sample size 

(consisting of 84,968 students), I assumed that the model could contain many variables and 

that variables should be eliminated only if they were collinear or were at risk of causing 

complete or quasi-complete separation of data points in the logistic regression. Collinearity 



252 

was detected using the variance inflation factor (VIF) statistic in linear regression models. 

Variables with high VIFs (e.g., VIF = 20) were removed, and most variables with VIFs 

between 10 and 20 were also removed. Minimizing the collinear relationships helped to 

reduce the occurrence of complete separation (linear dependence) or quasi-complete 

separation, which were tested via trial and error. Complete separation was reported by SAS 

Proc Logistic as an estimation failure. Quasi-complete separation was indicated by unusually 

high log-odds coefficients. Because of the time involved in the trial-and-error estimation of 

the PSA model, these exploratory analyses and balance tests were estimated on non-imputed 

data.  

Third, these variables were subjected to a search for potent interactions and 

quadratics, and a small group of interactions and quadratics that had satisfactory Wald pq 

statistics were retained for testing. The search considered all possible combinations of 

covariates, including quadratics, and was evaluated using a modest Wald criterion (pq = 1.4). 

At all stages, models showing evidence of complete separation or quasi-complete separation 

were either reduced by removing variables with high coefficients and errors (prior to the 

search), or the stage was discarded altogether (during the search).  

After the propensity score regression was run, a method for adjusting the sample 

using the propensity scores was needed. Because the objective was to calculate an ATE for 

CareerStart similar to that of the RCT, I used inverse probability weighting. Weights were 

calculated as r�1/M� for treatment school students and r�1/�1 $ M�� for comparison school 

students; r�. � was a re-norming function such that the post-weighting sample size was equal 

to the pre-weighted sample size (Hill, Weiss & Zhai, 2011). The weights were trimmed at 20 

(Imbens & Wooldridge, 2009). The propensity score model was a pooled binary outcome 
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model treating all student, elementary school and middle school characteristics as 

independent. 

Balance on covariates between the two treatment conditions was subsequently 

assessed. Two balances were estimated, one without weighting to determine the pre-adjusted 

differences between groups, and the second with the weights from the PSA model, and a 

comparison between these findings was conducted to ensure the PSA model improved, rather 

than worsened, balance (Harder, Stuart & Anthony, 2010). Imbens and Wooldridge (2009) 

recommend a clinical difference be used to assess whether groups were balanced after 

regression, as the clinical difference is insulated against the influence that sample size has on 

statistical significance. The clinical difference was calculated as:  

(2)  	 "  �s6tu s6v�
wxytUzt{u xyvUzv{

 

)6| and )6\ were the averages in the treatment and comparison groups; �|- and �\- the 

variances in each group; and }| and }\ the number of students. To be as robust as possible, I 

assessed balance on two groups of variables—those used in the PSA model and those that 

were found to be candidates but removed from the PSA model. 

Analysis model. I used a multilevel or hierarchical linear model (HLM; Raudenbush 

& Bryk, 2002) to estimate the interrupted time series model. HLM was used because 

treatment was implemented at the school level, although the outcomes were student level 

measures observed over repeated time points. Consequently, in this model there were three 

levels of data: Schools (J schools sampled); students (Ij students in each school j); and time 

(multiple measures wt on each student ij). According to this design, the treatment variable 

was the product of a school level assignment interacting with a time-level variable.  
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Modeling change over time on individuals (students) nested within clusters (schools) 

implied a complex error variance structure due to the simultaneous influence of dependence 

between multiple observations on each individual and between students within each school 

(both of which manifest as non-zero off-diagonals in the error covariance matrix). Not 

accounting for these sources of dependence would lead to under-estimated standard errors 

and spurious findings of significance. In the context of the PSA model employed in this 

study, in which comparison students could be sampled from any of the 350 non-participating 

middle schools in the state, this concern was not as great as it was in the RCT, but 

nevertheless the multilevel design of the Woolley et al. (in press) study was left intact. For 

questions 1 and 2 the model was estimated as follows:  

(3)  ����  "  )����  % )���  %  �~]I��  %  �\] ��  %  ��� � : I� 

% .�� % .�� % .�� % .�� %  ����  
Assume  ���� is math or reading achievement in each grade level; )��was a vector of 

student characteristics; )� a vector of school characteristics. I�� was the transition 

indicator;  �� the CareerStart treatment assignment variable in the PSA design; and  � :
I� the treatment difference-in-difference interaction. The .��, .��, .��, .��, and ���� terms 

were errors at the student (intercept and MS slope), school (intercept and MS slope) and time 

(residual) levels. The RCT treatment group was left out of this model. For question 3D the 

following model was estimated:  

(4) ����  "  )����  %  )���  %  �~]I��  %  �\] ��  %  ��� � : I� 

% ���� � : I� : � %  .�� % .�� %  .�� % .�� %  ����  
� = 1 indicated a school was in the RCT district, and  �*I�*� was the difference-

in-difference-in-difference for estimating the difference between RCT and non-RCT effects. 
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The RCT treatment group was also left out of this model. For question 3S the following 

model was estimated: 

(5) ����  "  )����  %  )���  %  �~]I��  %  �b\|\W 	 � 

% ��b\|}W 	 %  �b\||W 		 % ���b\|\W 	 � : I� %  ����b\|}W 	� : I� 
%  ���b\||W 		� : I� % % .�� % .�� %  .�� % .�� % ����  

W 	  = 1 indicated a former RCT control school; }W 	 = 1 indicated a non-RCT 

treatment school; and W 		 = 1 indicated an RCT treatment school. All comparison schools 

had a value of zero on all three of these parameters. Each of these was interacted with the 

transition variable MS to produce difference-in-difference treatment effects for each 

treatment sub-group as shown in the model.  

Comparison with RCT estimate. Two of the research questions (2 and 4) implied a 

statistical test between the non-random estimates from this study and the estimate from the 

RCT. To conduct the test, a standard error had to be estimated. Although Bifulco, (2012) 

recommended a standard error estimated from a function of the RCT and PSA variances, the 

PSA variance was found to be too large owing to the large sample size in this study, which 

rendered all hypothesis tests non-significant. Consequently, I used the standard error from the 

RCT, which was 0.039 for math and 0.018 for reading.  

Estimation procedures. Generalized least squares is an estimation approach that 

accommodates failures of independence and enables decomposition of variance according to 

approximate source of time, individual or school. Proc Mixed in SAS 9.1, estimated 

generalized least squares models with restricted maximum likelihood. Because of the sample 

size and imputation, maximum likelihood was computationally intensive. A linear 

approximation method, mivque0, which provides similar estimates in large sample sizes, was 
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used. To ensure that the range of values modeled was realistic for all of the participants and 

their schools, that each variable for each school could realistically have a value of zero (such 

that the random intercepts and slopes could be interpreted validly), and that the coefficients 

of the models could be interpreted as the effect for the average student, all variables (Table 

3.3) were mean-centered.  

Implementation data analysis. Quantitative implementation data on CareerStart 

lesson usage was reported at the school-by-subject-by year level, for each evaluation period. 

RCT treatment school implementation data were available from 2006-07 to 2010-11, and 

RCT control school implementation data in 2009-10 and 2010-11. For the PSA evaluation 

period, only the first two years of data were available. These data were subjected to a t-test 

comparing the average count of lesson use in each evaluation period. The quantitative data 

was supplemented by an interview conducted with the CareerStart Coordinator in February 

2013. Notes taken during the interview were reviewed for statements by the Coordinator 

regarding the relative intensity of implementation in each evaluation period and treatment 

subgroup, as well as statements regarding demands on the Coordinator’s time and differences 

observed by the Coordinator in implementation in each school. Intensity was expressed by 

the Coordinator primarily as its inverse in the form of the amount of demands on her time 

during each evaluation period.  

Missing data and imputation. There were missing data at the student level on a 

large number of characteristics, and missing school level data for years in which the schools 

were not open. Missing values were tested for completely random missingness using the 

Little (1988) chi-square test, a multivariate test of whether students with missing values were 
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different from students without missing values. This test was rejected, indicating that at least 

some of the data points were conditionally missing.  

An imputation model containing all of the PSA model and analysis variables was run. 

Five imputations of the data were simulated using SAS Proc MI. All analyses were 

conducted on each imputation separately using SAS and then the parameter estimates from 

these distinct analyses combined according to rules developed by Rubin (1976). A version of 

the PSA and analysis models without imputation was also run to assess the robustness of the 

findings to the imputation.  

Robustness diagnostics. I reconsidered several subjective decisions using a 

robustness diagnostic to assess their impact on the findings (Table 3.5 summarizes each 

robustness model relative to the main model). These included diagnostics related to missing 

data (discussed in the missing data section). For group 4 schools, the treatment was not 

administered in sixth grade. Thus, these schools were left out of the main models. In a 

robustness test, they were included and because they were not in treatment in sixth grade, the 

treatment period in these schools absorbed a non-treatment year, which I hypothesize would 

downwardly bias the treatment impact. The shorter post-treatment period in groups 2 and 3 

presented another opportunity for treatment effect dilution, and I estimated robustness 

models with these groups removed. Finally, following Woolley et al. (in press), students who 

moved during the study period (17.5% of the sample) were excluded from the analysis, and 

the model retested.  
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Results 

Propensity Score Model 

Selection of covariates for PSA model. In the first stage of the PSA model, I 

selected covariates of the outcomes that were predictors of treatment assignment, using fifth 

grade math and reading achievement (prior to treatment) as proxies for the outcomes. Given 

the large sample size, I allowed for variables with correlation coefficients as small as 0.01 on 

either math or reading to be considered as candidates. The variables that satisfied this 

condition, and their correlations with math and reading achievement, are shown in Table 3.6. 

The second stage of the PSA design was to enter these covariates into regression models with 

treatment assignment as the dependent variable and test for collinearity and separation. 

Variables with high VIFs (e.g., VIF = 20), indicating collinearity, were removed. Variable 

combinations that produced complete or quasi-complete separation, were detected by trial 

and error using SAS Proc Logistic. A set of 65 variables, which included 16 student level 

characteristics, 34 elementary school characteristics, and 15 middle school characteristics, 

was selected using this approach. Using an iterative search procedure I described in the 

analysis section, quadratic and interactions terms based on these 65 variables were tested. 

However, the quadratics and interactions that emerged in testing did not subsequently 

improve the balance of the treatment conditions and were discarded from the final model.  

After estimating the final PSA model (Table 3.7), box plots and kernel density 

functions were plotted across the whole sample (Figures 3.1 and 3.3) and by the treatment 

conditions (Figure 3.5). After trimming the propensity scores in the treatment and control 

such that the weights applied were no greater than 20, these plots were redone (Figures 3.2, 

3.4 and 3.6, respectively). Generally, the plots show a tendency for students who were in 
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schools not in the treatment to have near-zero propensities, though near-zero propensities 

also occurred in the treatment condition, though less often by a factor of 150.  

Balance 

Covariate balance before and after inverse probability weighting were compared to 

demonstrate whether the PSA model reduced measured differences between treatment 

groups. Covariate balance before the PSA model, using the variables in the final PSA model, 

showed that 18 characteristics were significantly different (Table 3.8). All 18 of these 

characteristics had sufficiently improved balance after the PSA that they were no longer 

significantly different (Table 3.10). An additional six characteristics from the original list of 

candidate covariates that were not included in the PSA model were shown to be significantly 

different before the PSA (Table 3.9), with three of these improved such that no significant 

differences remained after the PSA (Table 3.11).  

One characteristic in the PSA, proportion of Nationally Board Certified middle school 

teachers, went from being not significantly different (Table 3.9; d = -0.14) to significantly 

different (d = -0.28) after the PSA (Table 3.10). Three variables not in the PSA that were 

found different prior to the PSA (Table 3.9) remained significant after the PSA (Table 3.11), 

including per-pupil spending on district administration (d = 1.63 before PSA, and d = 0.43 

after PSA) and school is located in a large city (d = -0.34 before and after PSA), and 

proportion of teachers returning (d = 0.33 before PSA to d = 0.26 after PSA). An additional 

variable, elementary school has year-round calendar was not significant before the PSA (d = 

-0.23) but significant afterwards (d = -0.27). The inverse probability weighted student sample 

characteristics are reported in Table 3.12. The PSA model covariate that remained 
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unbalanced after the PSA, proportion of National Board Certified teachers, was not a 

significant predictor of math or reading achievement in any models (Tables 3.14-3.19).  

Analysis Model 

The results are organized according to the four questions of this study, and robustness 

results are reported separately. Table 3.13 contains a summary of the treatment effect results, 

for main and robustness models, and Tables 3.14-3.19 contain the full results for the main 

models.  

Questions 1 and 2. Question 1 concerned the overall impact of CareerStart, 

implemented non-randomly in 20 schools, on math and reading end-of-grade achievement 

using a PSA design. The RCT treatment schools and 2 non-RCT treatment schools that 

started implementation in seventh grade were excluded from this analysis. On math 

achievement (Table 3.13 and 3.14), the impact was negative but not significant (b = -0.04). 

For reading (Table 3.13 and 3.17), the impact was significant and positive (b = 0.04, p < .05).  

Question 2 concerned whether the findings from this PSA study were statistically 

different from the findings in the CareerStart RCT. For math, the findings were significantly 

different (Table 3.13). The CareerStart RCT effect for math was 0.039 standard deviations, 

yielding a difference of -0.079 (t = -7.9; p < .001). The difference for reading was not 

statistically significant (Table 3.13). The RCT effect for reading was 0.018 standard 

deviations, yielding a difference of 0.022 (t = .96; p = .339).  

The finding for reading—that the RCT and PSA effects were not statistically 

different, and that the reading effect in the PSA design was significant—may support the 

argument that the RCT was underpowered for detecting reading treatment effects. In fact, the 

reading standard error was the same (SE = .02) in both designs. However, the PSA impact 
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was more than twice as large, which implies the relative intensity may have been higher. This 

higher relative intensity could be due to a number of factors, such as contamination of the 

control during the RCT or to a poor PSA model. Alternatively, it could simply have been a 

higher intensity implementation. To understand this, the PSA impact was examined for sub-

group differences and effects.  

Question 3. Question 3 addressed two related issues. The first (Q3D) was whether 

there was a difference between schools in the RCT district (Former RCT controls) and 

schools outside this district (non-RCT treatment) in the PSA treatment effect. The second 

(Q3S) was whether either of these two treatment sub-groups had a significant impact on math 

and reading achievement relative to the comparison group. Both of these questions were 

important in their own right, as one aim of this study was to determine if there were 

implementation peculiarities in the RCT district that were not replicated elsewhere. However, 

looking at sub-group effects may also help to understand why the reading effect was more 

than twice as large in the PSA as in the RCT design as shown for Q2.  

For Q3D, which was tested using a DDD, the differences between the treatment 

impact for the Former RCT controls and non-RCT treatment schools was not significant in 

either math (Table 3.13 and 3.15) or reading (Table 3.13 and 3.18). Despite not being 

significantly different, the effects could still be different, and have different precision. For 

Q3S, there were no significant effects for math in either treatment subgroup (Table 3.13 and 

3.16). For reading (Table 3.13 and 3.19), the treatment in the RCT control subgroup (b = 

0.03) did not have a significant impact on reading achievement but the treatment in the non-

RCT treatment subgroup had a significant effect (b = 0.05; p < .05).  
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In sum, the findings of Q2 and Q3 suggest that intensity of the treatment, particularly 

in language arts, may have been greater in the PSA study period, and that this greater 

intensity may have been even greater in the non-RCT treatment schools. Quantitative data 

based on CareerStart lesson use in the former RCT control schools compared to the RCT 

treatment schools shows that lesson usage in all subjects in the former RCT control schools 

was higher, with a difference of four lessons on average (t = 2.05; p < .05). A similar test on 

language arts lessons showed the same difference of four lessons, but the effect was not 

significant, likely owing to the smaller sample size.  

Lesson usage statistics were not available in the non-RCT treatment schools, but 

qualitative data suggested a more complex picture of implementation. The number of schools 

to which the Coordinator was responsible for implementation was much larger during the 

PSA period, and included all seven RCT treatment schools, all seven RCT control schools, 

and 18 of the 20 non-RCT treatment schools. The Coordinator reported that this put a strain 

on her ability to implement CareerStart during the PSA period with similar intensity to that in 

the RCT. However, the Coordinator also indicated that schools in two counties demonstrated 

a high level of enthusiasm for the program. When these two counties were examined for their 

own DD effects—separately estimating parameters for the schools in these counties—one of 

the counties had an effect of 0.10 for reading achievement (p < .05), and no other effects 

were significant.  

Question 4. The last question, regarding the comparison between the PSA impact 

estimate and the RCT impact estimate for the RCT treatment schools, was devised to address 

the credibility of the PSA model. Based on the assumption that treatment intensity was 

equivalent in both designs, a non-significant difference on a t-test comparing the findings in 
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each design for these schools would represent evidence that the PSA model credibly satisfied 

the unconfoundedness assumption. For math (Table 3.13), this test was rejected (t = 3.9; p < 

.001), implying that the PSA model may not have sufficiently eliminated common 

confounders of treatment assignment and math achievement. Alternatively, for reading 

(Table 3.13), the test was not rejected, implying that the PSA model may have sufficiently 

controlled for common confounders of assignment and reading achievement. Although 

different findings for math and reading on the credibility test were not hypothesized, the two 

subjects respond differently to policy interventions (e.g., Harris & Sass, 2011; Carlson, 

Borman & Robins, 2011) and often have different predictors such as those shown in Table 

3.6 (e.g., elementary school classifications as low or no growth) and thus different PSA 

models for addressing confoundedness, implied by these findings, may be appropriate.  

The assumption supporting this test, that treatment intensity in the RCT treatment 

schools was the same in the PSA period as in the RCT period, was examined using both 

quantitative and qualitative data. Quantitative data consisting of the total number of 

CareerStart lessons used in each subject and school during each evaluation period (Table 

3.20) were compared using a t test and the null hypothesis of no difference was not rejected (t 

= 1.34; p = .18), indicating that intensity was statistically equivalent in both periods. 

Qualitative data, collected in the interview with the CareerStart Coordinator, lent support to 

the quantitative finding. By the time the PSA evaluation started, RCT treatment teachers 

would have been in their fourth year of implementation. The Coordinator reported that 

although the number of schools to which she was responsible was greater, the RCT treatment 

schools were sustaining the treatment with less direct oversight.  
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Analysis Model Robustness 

Several additional tests (summarized in table 3.13) were run to ensure the main 

analysis model was robust. For math, all of the robustness tests – the non-imputed results, the 

models with group 4, the models without group 3, the models without groups 2 and 3, and the 

model without movers (students that changed middle schools)—agreed with the main model. 

For reading, there were some differences across these robustness tests. On the NI data, the 

models with group 4 schools, without groups 2 and 3, and models without movers, the 

overall reading effect was not significant. However, the reading effect was robust to 

removing group 3 schools. The same was true of the significant non-RCT treatment effect, 

which went up slightly when the group 3 schools were removed. There were no difference 

across the variations in robustness for the comparisons of the PSA impact with the RCT 

impact, likely as a result of the PSA impact varying within a narrow range across these 

robustness tests (e.g., from 0.02 to 0.04). On the PSA credibility test, the robustness findings 

also produced no difference, though the model for the RCT treatment schools was identical 

across several of the variations.  

Discussion 

In this study I used a non-random dissemination of a teaching practice intervention to 

schools inside a county in which an RCT of this program was conducted as well as schools in 

neighboring counties to retest the efficacy of the treatment relative to a set of comparison 

schools weighted by the inverse of the propensity score of being assigned to treatment. This 

design also allowed me to test the relative magnitude of the effects inside the RCT county 

and outside of this county, as well as to test the credibility of the PSA model. The results 

were not a match to the results of the RCT. In math, the treatment effect was not significant 
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overall, which was an unexpected change from the RCT finding that CareerStart promoted 

higher math achievement. This finding was robust to all subgroups and to all robustness 

variations that were examined. However, the analysis for question 4 testing the credibility of 

the PSA design showed that for math, the PSA did not credibly eliminate all confounders of 

assignment and math achievement. As a consequence, nothing can be said about the effect of 

CareerStart in promoting math achievement in the PSA, and I downplay the non-significant 

finding in this discussion.  

For reading, alternatively, the treatment effect was significant, and contrary to 

expectations, it was driven primarily by non-RCT treatment schools, for which a significant 

subgroup treatment effect was found, rather than by former RCT control schools. Further, 

informed by information provided by the CareerStart Coordinator, I conducted a further 

analysis that showed that the magnitude and significance of the non-RCT treatment effect 

may have been due to enthusiastic implementation in one district. Finally, the PSA impact 

was more than twice the RCT impact. A number of explanations are possible for these 

findings.  

My initial expectation that this study would demonstrate that the RCT was 

underpowered for detecting reading achievement effects was not realized. In fact, the 

standard error for reading achievement was equal in both designs (SE = 0.02). Because this 

design contained 379 middle schools, an underpowered RCT would have easily been 

detected by this comparison, manifesting as a smaller standard error in the PSA. Instead, the 

standard errors across the two designs were nearly identical and the significant and positive 

finding for reading in the PSA was driven by the greater magnitude of the effect, which was 

twice as large in the PSA. Although this difference in magnitude was not enough for it to be 
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found as a significant difference between the PSA and RCT estimates of the reading effect 

(question 2), it nevertheless rules out that the RCT was underpowered.  

To understand what was behind this larger overall effect, I considered question 3 to 

examine the subgroup effects. An added unexpected finding was that non-RCT treatment 

schools had a larger effect that the former RCT control schools. The non-RCT treatment 

effect was 0.01 standard deviations higher, which although not a significant difference was 

enough for the subgroup effect to emerge only for the non-RCT treatment schools.  

There are a number of potential explanations for the larger effect size in the non-RCT 

treatment schools, and accordingly, for the higher overall PSA effect. The first explanation, 

that the PSA was poor and the comparison group not equivalent, can be ruled out by the 

credibility test, which showed that equality of the RCT and PSA findings had a low 

probability of occurring by chance. A second potential explanation was that the RCT controls 

were contaminated during the RCT because of their indirect exposure to the treatment, which 

depressed the observed effect during the efficacy trial. Measures of fidelity such as lesson 

use statistics were not collected from the control schools, but indirect evidence exists that 

controls may have implemented CareerStart lessons. CRI use during the RCT was not 

significantly different in language arts, science of social studies (Rose et al., 2012), 

suggesting that some level of contamination may have occurred in these subjects and thus 

this explanation cannot be ruled out.  

Another explanation is that, in fact, the treatment was more intense during the PSA 

evaluation period. Quantitative data comparing lesson usage in the former RCT control 

schools in 2008-09 and 2009-10 with lesson usage in the RCT treatment schools from 2006-

07 to 2008-09 indicated that on average lesson usage was significantly higher (by 4 lessons) 
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in the former RCT control schools. Such information about the non-RCT treatments was not 

available. However, this does lend some support to the argument that treatment was more 

intense during the PSA period. Qualitative data present a mixed picture of implementation 

intensity. An interview with the CareerStart Coordinator revealed that she was responsible 

for four times as many schools during the PSA period, which put a strain on the Coordinator 

to implement CareerStart during the PSA period with similar intensity to that in the RCT. 

This would not have supported higher intensity implementation. However, in districts 

demonstrating a high level of enthusiasm for CareerStart, as noted by the Coordinator, 

implementation may have been more intensive, leading to a larger effect in some of these 

schools.  

However, using lesson counts and the Coordinator’s time as measures of fidelity may 

only narrowly depict the differences in implementation in the two periods and subgroups. 

The Coordinator’s effort, although an important part of CareerStart, was not the only 

component to the intervention, and it was possible that the other components were 

implemented more intensively. For example, although the Coordinator’s time for each school 

was less, it was possible that she may not have needed as much time per school after having 

implemented CareerStart for several years. That is, the Coordinator may have experienced 

learning effects that would have improved her effectiveness in implementation. Unlike lesson 

usage, no measures were collected on these aspects of treatment. Principal and teacher buy-in 

was the other component that was of concern in this study, largely to understand the role that 

the superintendent in the RCT district had in promoting the program. As reading outcomes 

were greater in the non-RCT treatment schools, it cannot be argued that the superintendent’s 

support biased the RCT treatment effect upward, and may have biased it downward; it may 
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also indicate that buy-in was successfully obtained. Qualitative data support this argument. 

The Coordinator indicated that strong efforts were made to get principals and teachers in the 

new districts to buy in to the program, including having the RCT district superintendent 

involved in selling the program.  

Limitations  

There were several limitations in this study. First, the study used a non-randomized 

design, and the PSA could not be implemented to reflect school assignment to treatment, 

which I documented extensively in the methods section and implemented a second-best 

approach. Further, although the PSA was shown to be credible for reading achievement, it 

was not credible for math achievement. It may be possible that interactions of covariates of 

achievement in math were overlooked, and it may also be possible that so-called “off-the-

shelf” variables such as those in administrative data files like the one used in this study, are 

not capable of adjusting for unmeasured confounders of math achievement. It was also 

possible that the proxy for middle school math achievement, fifth grade math, may not have 

been adequate in representing variation in middle school math achievement, as math scores 

tend to fluctuate more from year to year. In contrast, reading scores tend to be more stable 

from year to year. In a follow-up analysis, I re-analyzed the propensity score model using 

average elementary school math over third to fifth grade and student change in math 

achievement as measured by a linear growth parameter. There were no substantive changes 

to the balance between treatment conditions or the question four credibility findings. A 

different approach to incorporating interactions in the PSA models was also tried, but 

resulted in no substantive changes to balance or the credibility of the PSA. This suggests that 
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the variables typically available in an administrative education data set may not be adequate 

for controlling for unobserved covariates of math achievement.  

A second limitation was the voluntary nature of program adoption in the 13 schools 

outside the RCT district, which may raise questions about the generalizability of study 

findings (Heckman & Smith, 1995). Because districts elected to receive CareerStart services 

(i.e., they effectively volunteered to be members of a study in which they had 100% chance 

of being assigned to treatment), selection effects could be present. The extent of this bias is 

not known.  

Third, several schools in the treatment group were admitted late to treatment and 

therefore had limited post-treatment data. Two additional years of data collection would be 

needed to fill in seventh and eighth grade achievement for group 3 schools, and one 

additional year for eighth grade achievement for group 2 schools. Group 4 schools, in 

addition, were not treated in sixth grade, which was inconsistent with the treatment as 

designed. A further limitation had to do with the size of the sample (84,968 students). As a 

result of this size, several approximation procedures were used. These included using non-

imputed data to conducted exploratory analysis on the PSA model, and using a linear 

approximation to maximum likelihood to estimate the final outcome models.  

Fourth, there were missing data at both the student and school levels. Multiple 

imputation was used to impute the data five times. Although a larger number of imputation 

would be better, five was chosen due to the overall size of the sample being very large and 

computationally intensive. Fifth, the ability to understand the replicability of CareerStart was 

challenged by not having data on certain components of the implementation, such as the 

frequency and attendance at meetings, or the information shared across schools through the 
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Coordinator. To a certain extent, some of these measures represent factors important to the 

treatment that were not understood at the outset of the efficacy study, and some of them (e.g., 

the sharing of information across schools) would have been challenging to collect. Most of 

the components of the program are implemented to a certain extent through the 

responsibilities of the Coordinator, and thus would have reflected the Coordinator’s reduced 

role in the expanded group of treatment schools, but nothing certain can be said. Although 

the limited implementation information painted an incomplete picture of the challenges 

associated with replicability, and information about components central to the success of the 

program will be important to obtain, the finding that the effect had greater magnitude in the 

non-RCT treatment schools is beneficial, suggesting that an effectiveness evaluation is 

appropriate. Finally, EOG test scores are widely understood to be imperfect measures of 

student learning, and caution is warranted when interpreting findings from test score data.  

Implications for Policy 

This study cautiously suggests implications for policy, including CareerStart as a 

model for encouraging adoption of relevance as a teaching strategy, as a program that may be 

scalable pending modest changes to implementation, and as a program that should include 

language arts instruction. First, this study complements other studies of CareerStart, 

conducted in an efficacy RCT, showing that CareerStart has significant and sometimes 

lasting benefits on student achievement (Woolley et al., in press; Woolley et al., revise & 

resubmit), working through motivational processes (Rose, unpublished manuscript) and 

student engagement (Orthner et al., 2012). Importantly, the findings that address questions 1 

and 2 of this study indicate that the program continued to have a significant impact, though 

the findings indicated a different content area (reading achievement) than in the RCT (math 
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achievement). As noted in the limitations, this study can only partly address why the program 

continued to have an effect, and why the subject on which this effect was estimated was 

different; further, as I note in the research implications section that follows, the subject-

specific effects and the role of each subject in CRI need to be understood better.  

Nevertheless, CareerStart has promise as a model program for encouraging teachers 

to use career examples among other relevance approaches in their lessons. For education 

policymakers hoping to improve student achievement, CareerStart, and more generally, 

motivational practices like CRI, may be a low-cost method that complements accountability 

efforts. This argument is supported by evidence from this study that local conditions did not 

play a significant role in the RCT CareerStart effect. Contrary to my expectations, the 

personal investment of the RCT superintendent in the success of CareerStart, if such personal 

investment existed or had any effect at all in the RCT, did not upwardly bias the treatment 

effect in the RCT design relative to the non-RCT treatment schools, as the non-RCT schools 

showed a larger effect. The unique local conditions of implementation (Elias, Zins, Graczyk 

& Weissberg, 2003; O’Donnell, 2008) were an important concern that the program—through 

buy-in of principals and teachers—and this evaluation were intended to address. As a 

consequence of these findings, despite having incomplete implementation data in other areas, 

the local conditions may not have played as much of a role as I hypothesized. Through buy-

in, the replicability of the program was promoted. This provides some initial evidence – 

though inconclusive until an effectiveness trial is implemented—that CareerStart is a model 

program for systemic change in instruction, an important goal of education research.  

Other findings help make the case that CareerStart may be scalable to more 

heterogeneous populations of schools, teachers, and students, provided certain conditions are 
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met including making some changes to CareerStart. One of these conditions is to fund a 

position for a CareerStart Coordinator who is responsible for implementation of the program. 

The responsibilities of the Coordinator include helping principals and teachers buy-in to the 

value of the program; holding meetings with principals and teacher at multiple times during 

the year, encouraging use of the lessons through coordinated lesson planning sessions; 

encouraging the development of new lessons through the distribution of a newsletter 

describing local labor market careers; and acting informally to transmit information about the 

program between schools. It is not clear how many schools a Coordinator could effectively 

serve. In this evaluation, however, a single full time Coordinator was able to serve most of 27 

schools spread out over 8 districts, though not necessarily as effectively as when only serving 

seven schools. By sharing responsibility for a single Coordinator, multiple districts could 

pool resources to fund such a position, such as the strategy used in the non-random 

replication that was the focus of this study, but fewer schools may enable the Coordinator to 

be more effective. If funding a new position becomes a problem, the Coordinator’s 

responsibilities could be integrated into an existing district position. The Coordinator’s 

responsibilities could be aided by encouraging teachers in schools implementing CareerStart 

with high fidelity to “sell” the program to colleagues. Because the effects outside of the RCT 

district were driven largely by the enthusiastic implementation in one district, this suggests 

further the importance in future scaled-up implementations of calling on teachers in such a 

district to help train other teachers and disseminate the program more widely.  

While some changes were suggested, this study also suggested that some components 

may not need to be altered. First, the question about whether CareerStart should continue to 

include language arts lessons has been answered in the affirmative. In this evaluation, 
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CareerStart increased reading achievement by 0.04 standard deviations. In this population, 

the average growth during a middle school year was 0.02 standard deviations, which means 

that the treatment was more than double the typical annual rate of increase. More generally, it 

is possible that the cumulative effect of career relevant lessons across the four subject areas 

promoted reading achievement in this study or math achievement in the RCT. At present, this 

is not known. Second, the design of the packaged lessons by teachers in the RCT district may 

not have been central to the success of CareerStart in the RCT, as the findings of this study 

showed greater effects outside the RCT district.  

Implications for Research 

The research implications of this study pertain to the continuing effort to evaluate 

CareerStart, but also extend more generally to the use of PSA to conduct evaluations of 

educational interventions including teaching practice interventions.  

Implications for CareerStart evaluation. The findings of this study, which showed 

that CareerStart had a higher intensity implementation outside of the RCT district, suggest a 

direction for future evaluations, including collecting data on each of the seven components of 

the treatment. Although program and evaluation documentation data support high fidelity in 

several areas (presence of coordinator, staggered implementation, training, and planning 

meetings), teacher and curriculum coordinator buy-in, and teacher supplementation of the 

lessons have not been studied. Further, evidence for a social network with the Coordinator at 

the center, sharing information across schools, was available only via interview data.  

I also argue that the experiences of the CareerStart Coordinator should also be 

studied. One suggestion I have made regarding the higher implementation in the PSA 

evaluation period, despite the larger number of schools, is that the Coordinator experienced a 
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learning effect and became better at her job over the five years of these combined studies. 

The evidence in this study do not clearly indicate that Coordinator learning effects exist, and 

the program has no theory of Coordinator learning effects built into it, but I speculate that 

such learning effects are fairly intuitive and may explain why intensity remained high despite 

having four times as many schools. If learning effects existed, then when the program entered 

its fourth year of implementation, the Coordinator should have been much more effective in 

her role. To put it another way, the findings suggest that it may take some time for a new 

Coordinator to learn the best approaches to program implementation. Just as important, the 

feasibility of incorporating the Coordinator’s responsibilities into an already-existing district 

position should be examined. This would be a cost-effective approach, but may result in poor 

implementation as the Coordinator’s duties would conflict with duties of the existing 

position. The present study provides some evidence, alternatively, that multiple districts 

could pool resources to share a Coordinator. In a future evaluation, multiple versions of the 

treatment could be tested in this way.  

Finally, the findings of Tatar and colleagues (2008) suggest that the packaged design 

of CareerStart may support its replicability in other settings, but the effect on teacher buy-in 

of having the pre-packaged lessons developed by teachers in the RCT district has not been 

studied. One question that appears to be partly answered is whether to consider lesson design 

as a part of the implementation. Teachers in the RCT district designed the lessons, but no 

such design was incorporated formally into the non-random implementation. The fact that 

implementation was very intensive outside of the RCT district suggest that lesson design did 

not manifest as a type of “ownership” of the program.  
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Implications for PSA designs in educational evaluation. The combination of 

propensity scores for a treatment assigned at the school level with longitudinal 

developmental change in student learning spanning elementary and middle school years 

presented substantial methodological challenges that raise issues that should be taken up in a 

future study. Propensity score models in designs with clustered data tend to take one of two 

forms determined by the level at which the treatment is administered. One is typified by 

Hong and Raudenbush (2005), in which an intervention was administered to students 

randomly assigned within schools and the effect of the treatment on individual students was 

of central interest. Each school, subsequently, represented a site within the overall evaluation 

and the design was characterized and analyzed as a multi-site RCT. This approach has been 

examined extensively, most notably by Thoemmes and West (2011), who look at different 

forms the propensity score model might take, depending on whether assignment was 

independent of the clustered nature of the data. The other is typified by Stuart (2007), in 

which entire schools were randomized to conditions, but the effect of the treatment was 

assessed at the level of the school. Little guidance has been provided regarding how to 

conduct PSA studies when treatments have been non-randomly assigned to entire schools and 

in which interest in treatment impact is at the student level.  

The present study added the complicating factor of observing students over 

elementary and middle school levels. A straightforward approach to PSA modeling in this 

scenario, if present-day schools followed traditional highly structured feeder patterns, would 

have been to estimate a model for assignment with elementary schools nested within middle 

schools. But owing to school choice policies in place in many districts, the relationships 

between middle schools and the elementary schools that feed them are not so highly 
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structured. A more accurate appraisal of the relationship is that they are cross-classified 

rather than nested. In a cross-classified model, participants are nested within two or more 

different types of structures, but they may be differently nested across each. Thus, in the 

present scenario, two students (A.1 and A.2) in elementary school A may attend separate 

middle schools B and C, respectively, while two students in elementary school D (D.1 and 

D.2) do the same. Although A.1 and A.2, and D.1 and D.2, are nested within their elementary 

schools, and A.1 and D.1 are nested within one middle school and A.2 and D.2 in the other, 

the nesting pattern breaks when spanning the elementary to middle levels.  

As I explained in my discussion of the design, exploratory analyses strongly 

suggested that modeling middle school characteristics did not sufficiently proxy for 

elementary school characteristics. If the propensity score model was to account for pre-

treatment experiences of study participants in equalizing across study conditions, these 

elementary school characteristics had to be taken into account. A proper propensity score 

model for this design would have incorporated the cross-classification by modeling 

“sequences” of elementary and middle schools as observed in the data, with these sequences 

cross-classified within elementary and middle schools. However, despite several failed 

attempts, software for estimating discrete models would not estimate a discrete model with a 

cross-classified design. Educational and developmental scholars that analyze the effects that 

instructional practices have on the long-term trajectories of student outcomes would benefit 

from being able to model PSA designs that require an acknowledgement of the cross-

classified nature of the elementary-middle school relationship. In this study, I worked around 

the problem simply by modeling propensity scores at the level of student, in spite of the fact 

that the assignment mechanism was not at the student level.  
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Implications for the credibility of PSA designs. This study builds on the work of 

Peikes, Moreno & Orzol (2008), and Bifulco (2012) to propose a unique credibility test of 

the unconfoundedness assumption of the RCM in situations where PSA are applied to non-

random replications of efficacious interventions. This credibility test was more rigorous than 

the evidence suggested by a typical balance test because it was not completely founded on 

the assumption that unobservable variables are conditionally randomly distributed across 

conditions. The credibility test was not free of assumptions and it may be limited in scope. 

However, provided the following conditions are met, the conclusions of the test will be 

definitive: First, the non-random replication of a treatment must take place concurrent with a 

continuation of the treatment to participants in the RCT; second, the continuation of the 

treatment in the RCT treatment schools must be of similar intensity such that a statistical 

comparison between the RCT impact and an impact calculated by a non-random method was 

a meaningful test of the PSA design and not a combination of the design and differences in 

intensity; third, data on all participants including those in the RCT and the replication must 

be available in order that such a comparison can be conducted. The assumption about the 

intensity of the treatment can be supported by collecting data on implementation. In this 

study, the data collected consisted of an interview with the Coordinator responsible for 

implementation in all schools during both the RCT and non-random studies, as well as 

limited lesson usage data.  

Although the scope of such a test may be limited in that it will not apply to general 

PSA applications as the conditions under which the approach may be used are unique, a 

planful evaluator can use this as a strategic design feature to examine a localized scale-up of 

an efficacious treatment program.  
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Conclusion 

Evidence from this study suggests that, consistent with the findings from the RCT, 

that CareerStart has potential as an evidence-based program ready to be scaled up to an 

effectiveness trial. However, the subject area in which CareerStart was shown to be effective 

was not consistent with the RCT. CareerStart has now demonstrated effects in math (in 

Woolley et al., in press) in an efficacy study as well as in reading (in the present study) using 

a credible non-randomized design. Further, this study demonstrated that although attention 

must still be paid to the how the components of the intervention fit to the districts in which it 

will be implemented, the Coordinator and principal and teacher buy-in—which I argue may 

be the central features of the program along with the packaged lesson—appear to be 

replicable. Although there remain issues related to what should be included in a scaled-up 

version of the program, and the feasibility of a typical district hiring a full-time Coordinator, 

these critical features of the design have been validated. As a consequence, continuing 

evaluation of CareerStart should be undertaken, with a focus on the overall effect of 

treatment, local effects in different contexts, and implementation fidelity. Several questions 

were raised by this study that could be answered with another evaluation.  

This study also raised important issues about PSA models for assessing student 

improvement in longitudinal designs spanning elementary and middle school years, which 

required the use of a student-level PSA model, rather than a more-appropriate school-level 

model. Finally, this study proposed the statistical equivalence test used in Bifulco (2012) and 

Peikes, Moreno & Orzol (2008) can be applied as a design feature for evaluators looking to 

answer dissemination and scale-up questions in situations where an RCT treatment is 

continued while also disseminated non-randomly to nearby areas. This test, which requires 
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satisfying the assumption that the level of treatment offered to the RCT treatment participants 

be equivalent across the random and non-random design periods, offers clearer evidence of 

the credibility of the PSA than the balance test.  

 



Figure 3.1. Box plot, raw propensity 

 

Figure 3.2. Box plot, propensity 
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Figure 3.3. Kernel density function, 

 

Figure 3.4. Kernel density function, 
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Figure 3.5. Kernel density function, 

 

Figure 3.6. Kernel density function, 
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Table 3.1A. 

Cohort Entry and Years Observed (Aligned by Treatment Year) 

Pre-Treatment Treatment 

Schools -3 -2 -1 0   1 2 3 

Group 1 (N = 13) 
2005-

06 
2006-

07 
2007-

08 
2008-

09 
2009-

10 
2010-

11 

Group 2 (N = 2) 
2006-

07 
2007-

08 
2008-

09 
2009-

10 
2010-

11 

Group 3 (N = 3) 
2007-

08 
2008-

09 
2009-

10 
2010-

11 

Group 4 (N = 2) 
2006-

07 
2007-

08 
2008-

09 
2009-

10 
2010-

11 
 

Table 3.1B. 

Cohort Entry and Grade Levels Observed (Aligned by Treatment Year) 

Pre-Treatment Treatment 

Schools -3 -2 -1 0   1 2 3 

Group 1 (N = 13) 3 4 5 6 7 8 

Group 2 (N = 2) 3 4 5 6 7 

Group 3 (N = 3) 3 4 5 6 

Group 4 (N = 2) 3 4 5 6 7 
 



 

Table 3.2. 

Heterogeneity between Counties 

Outside RCT 
District In RCT District 

N 495243 11235 
Mean SD Mean SD t value p value 

 Student EOG math score, 3rd grade, difference from 5th 0.01 0.62 -0.05 0.60 9.192 0.0000 
 Student EOG reading score, 3rd grade, difference from 5th -0.01 0.64 0.02 0.63 -6.063 0.0000 
 Student EOG math score, 4th grade, difference from 5th 0.02 0.57 0.05 0.59 -6.708 0.0000 
 Student EOG reading score, 4th grade, difference from 5th 0.00 0.61 0.02 0.62 -3.006 0.0027 
 Classroom in 75th percentile academically/intellectually 
gifted 0.02 0.12 0.08 0.27 -24.282 0.0000 
 Student is Black 0.24 0.43 0.22 0.42 4.002 0.0001 
 No of days attended 164.30 16.27 162.39 15.92 12.381 0.0000 
 Classroom in 75th percentile learning disabled 0.00 0.07 0.02 0.15 -12.498 0.0000 
 Classroom in 75th percentile of students receiving free or 
reduced price l 0.07 0.26 0.17 0.38 -28.284 0.0000 
 Student receives free or reduced price lunch 0.37 0.48 0.36 0.48 0.585 0.5588 
 Student is Hispanic 0.10 0.30 0.15 0.35 -14.248 0.0000 
 Student has limited English proficiency 0.06 0.23 0.09 0.29 -13.164 0.0000 
 Student moved in current school year 0.01 0.11 0.00 0.07 11.448 0.0000 
 Student moved in previous school year 0.01 0.12 0.01 0.09 5.649 0.0000 
 Missing student school info for previous year 0.13 0.34 0.03 0.16 66.755 0.0000 
 Average classroom peer reading score 0.05 0.48 -0.04 0.58 16.099 0.0000 
 Student EOG math score, 5th grade, standardized 0.13 0.97 0.07 0.92 7.623 0.0000 
 Student EOG reading score, 5th grade, standardized 0.11 0.97 -0.01 0.96 12.723 0.0000 
 Student was limited English proficient in previous year 0.02 0.15 0.01 0.08 18.851 0.0000 
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 Violent acts per 1,000 1.89 3.12 0.76 1.37 81.128 0.0000 
 Percentage Asian students 2.42 3.62 1.62 1.49 52.850 0.0000 
 % AYP goals met 88.18 15.09 82.79 12.36 44.775 0.0000 
 Percentage Black students 25.09 21.55 24.81 18.46 1.573 0.1157 
 School is in a mid-sized city 0.15 0.35 0.36 0.48 -46.284 0.0000 
 Per-pupil spending on community services 71.42 105.73 47.78 108.57 22.491 0.0000 
 Per pupil spending on extracurricular activity 23.05 48.14 14.90 12.42 59.161 0.0000 
 Per pupil spending on food services 481.48 138.50 397.15 97.33 88.435 0.0000 
 Pct of teachers who are fully licensed 0.97 0.03 0.98 0.02 -57.291 0.0000 
 Teacher is full time or receives full-time pay 0.58 0.49 0.59 0.49 -0.490 0.6245 
 School ABC status is high performing 0.11 0.32 0.00 0.00 251.167 0.0000 
 School classified as high growth 0.62 0.48 0.21 0.41 105.401 0.0000 
 Percentage of Hispanic students 10.80 9.86 14.97 14.14 -30.610 0.0000 
 School ABC status is low performing 0.26 0.44 0.30 0.46 -8.517 0.0000 
 School classified as no growth 0.08 0.27 0.07 0.25 4.334 0.0000 
 Avg composite EOG passrate (N-passed/N-taken) 0.54 0.15 0.54 0.16 2.081 0.0375 
 Per pupil spending on professional development 67.69 38.49 69.04 30.09 -4.592 0.0000 
 Avg proportion of teachers with advanced degrees 0.28 0.10 0.31 0.08 -36.890 0.0000 
 Per pupil spending on school leadership 497.03 153.46 452.09 145.14 31.919 0.0000 
 Avg proportion of National Board Certified teachers 0.11 0.08 0.08 0.05 57.933 0.0000 
 Per-pupil spending on student services 384.92 141.34 438.83 92.54 -59.260 0.0000 
 School receives Title I funds 0.66 0.47 0.26 0.44 94.249 0.0000 
 Total per pupil expenditures 83.90 13.19 87.57 12.59 -30.012 0.0000 
 Per pupil spending on transportation 282.71 118.69 296.37 16.46 -58.613 0.0000 
 Avg proportion of teachers that returned the following year 0.80 0.11 0.85 0.08 -54.107 0.0000 
 Student is American Indian 0.01 0.09 0.00 0.04 18.640 0.0000 
 Overage students in classroom at 75th percentile 0.00 0.05 0.01 0.11 -9.060 0.0000 
 Avg standardized peer EOG score 0.87 0.16 0.83 0.17 22.092 0.0000 
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 Birthdate below standard cutoff for cohort 0.01 0.10 0.01 0.08 4.813 0.0000 
 Per-pupil spending on district administration 249.84 111.27 551.90 48.32 -616.404 0.0000 
 School is located in a large city 0.09 0.29 0.00 0.04 150.435 0.0000 
 Classroom standard deviation of previous year EOG math 
scores 0.86 0.18 0.82 0.20 22.389 0.0000 
 School is a magnet 0.07 0.26 0.00 0.00 194.036 0.0000 
 Per pupil spending on miscellaneous 0.08 1.02 0.00 0.17 37.110 0.0000 
 School ABC status is No Recognition 0.01 0.11 0.00 0.00 78.705 0.0000 
 Avg proportion of teachers that returned from previous year 0.87 0.14 0.90 0.06 -48.380 0.0000 
 Avg proportion of teachers that returned from previous year 0.87 0.14 0.90 0.06 0.000 0.0000 
 School is located in a rural area 0.52 0.50 0.19 0.39 85.410 0.0000 
 Avg proportion of teachers with supplemental Masters 0.20 0.09 0.21 0.08 -18.129 0.0000 
 Avg proportion of teachers with supplemental Masters 0.20 0.09 0.21 0.08 0.000 0.0000 
 Years of teacher experience 11.72 9.63 12.03 9.35 -3.295 0.0010 
 School has a year-round academic calendar 0.08 0.26 0.00 0.03 161.888 0.0000 
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Table 3.3.  

Variables used in Estimation 

Imputation/Candidates 
for PSM PSM Analysis 

Student Achievement or Differences in Achievement 
treatment Non-random assignment to treatment x DV x 
mdiff3  Student EOG math score, 3rd grade, difference from 5th x 
rdiff3  Student EOG reading score, 3rd grade, difference from 5th x 
mdiff4  Student EOG math score, 4th grade, difference from 5th x 
rdiff4  Student EOG reading score, 4th grade, difference from 5th x 
std_ma_score_l1  4th grade standardized math achievement x 
std_math  Student EOG math score, 5th grade, standardized x x x 
std_read  Student EOG reading score, 5th grade, standardized x x x 

Student Characteristics 

aig75 
 Classroom in 75th percentile academically/intellectually 
gifted x x x 

amindian x 
asian  Student is Asian x x 
black  Student is Black x x x 
daysmem  No of days attended x x x 
dis75  Classroom in 75th percentile learning disabled x x x 
ex_aig  Student is academically/intellectually gifted x x 
ex_dis  Student has learning disability x x 

frl75 
 Classroom in 75th percentile of students receiving free or 
reduced price l x x x 

frlnch  Student receives free or reduced price lunch x x x 
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hispanic  Student is Hispanic x x x 
islep  Student has limited English proficiency x x x 
ma_peer  Average classroom peer math score x x 
male  Student is a male x x 
movediy  Student moved in current school year x x x 
movedpy  Student moved in previous school year x x x 
movedpymiss  Missing student school info for previous year x x 
overage  Student is overage for cohort x 
rd_peer  Average classroom peer reading score x x x 
waslep  Student was limited English proficient in previous year x x x 
oage75  Overage students in classroom at 75th percentile x x 
peers_sd  Avg standardized peer EOG score x 
underage  Birthdate below standard cutoff for cohort x 

Elementary School Characteristics (During 5th Grade Year for Cohort) 
actper1k  Violent acts per 1,000 x x 
asian_mean  Percentage Asian students x x 
aypper  % AYP goals met x x 
black_mean  Percentage Black students x x 
city  School is in a mid-sized city x x 
comm_serv  Per-pupil spending on community services x x 
extra_cur  Per pupil spending on extracurricular activity x x 
food_serv  Per pupil spending on food services x x 
full_licen  Pct of teachers who are fully licensed x x 
fullpay  Teacher is full time or receives full-time pay x x 
high  School ABC status is high performing x x 
higrowth  School classified as high growth x x 
hispanic_mean  Percentage of Hispanic students x x 
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low  School ABC status is low performing x x 
nogrowth  School classified as no growth x x 
pctfrpl  Percentage free/reduced lunch students at school x 
perfcompeog  Avg composite EOG passrate (N-passed/N-taken) x x 
prof_dev  Per pupil spending on professional development x x 
sch_advdeg  Avg proportion of teachers with advanced degrees x x 
sch_lead  Per pupil spending on school leadership x x 
sch_nbc  Avg proportion of National Board Certified teachers x x 
stud_serv  Per-pupil spending on student services x x 
title1  School receives Title I funds x x 
tot_ppx  Total per pupil expenditures x x 
transport  Per pupil spending on transportation x x 

willreturn 
 Avg proportion of teachers that returned the following 
year x x 

dist_admin  Per-pupil spending on district administration x 
largecity  School is located in a large city x 

ma_peer_sd 
 Classroom standard deviation of previous year EOG math 
scores x 

magnet  School is a magnet x 
miscellan  Per pupil spending on miscellaneous x 
nr  School ABC status is No Recognition x 

returned 
 Avg proportion of teachers that returned from previous 
year x 

rural  School is located in a rural area x 
sch_dpisuppma  Avg proportion of teachers with supplemental Masters x 
teach_exp  Years of teacher experience x 
yrround  School has a year-round academic calendar x 

 
 

288 



 

 

Differences between 5th Grade and 4th Grade Elementary School Characteristics for Cohort 
d_aypper  Difference 4th-5th grades, % AYP goals met x x 

d_full_licen 
 Difference, 4th-5th grade, % of teachers who are fully 
licensed x 

d_hispanic_mean  Difference 4th-5th grades, % Hispanic students x x 

d_miscellan 
 Difference 4th-5th grades, Per-pupil spending on 
miscellaneous x x 

d_perfcompeog 
 Difference 4th-5th grades, school avg composite EOG 
passrate x x 

d_spec_instr 
 Difference 4th-5th grades, per-pupil spending on special 
instruction x x 

d_actper1k  Difference 4th-5th grades, violent acts per 1,000 x 
d_asian_mean  Difference 4th-5th grades, % of students who are Asian x 
d_black_mean  Difference 4th-5th grades, % of students who are Black x 

d_cap_outlay 
 Difference 4th-5th grades, per-pupil spending on capital 
outlays x 

d_comm_serv 
 Difference 4th-5th grades, per-pupil spending on 
community services x 

d_food_serv 
 Difference 4th-5th grades, per pupil spending on food 
services x 

d_pctfrpl 
 Difference 4th-5th grades, % of students receiving 
free/reduced price lunc x 

d_returned 
 Difference 4th-5th grades, proportion of teachers who 
returned from previo x 

d_sch_advdeg 
 Difference 4th-5th grades, avg proportion of teachers with 
advanced degree x 

d_sch_dpisuppma 
 Difference 4th-5th grades, avg proportion of teachers with 
supplemental Ma x 

d_sch_lead 
 Difference 4th-5th grades, per pupil spending on school 
leadership x 
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d_sch_nbc 
 Difference 4th-5th grades, Avg proportion of National 
Board Certfified tea x 

d_stsrate  Difference 4th-5th grades, short-term suspension rate x 

d_stud_serv 
 Difference 4th-5th grades, per-pupil spending on student 
services x 

d_transport 
 Difference 4th-5th grades, per pupil spending on 
transportation x 

d_willreturn 
 Difference 4th-5th grades, avg proportion of teachers who 
return the follo x 

Pre-Treatment Middle School Characteristics 
ms_cap_outlay  Per pupil spending on capital outlay 
ms_comm_serv  Per pupil spending on community services 
ms_extra_cur  Per pupil spending on extracurricular activities 

ms_returned 
 Avg proportion of teachers that returned to the school 
from previous year 

ms_actper1k  Violent acts per 1,000 x 
ms_asian_mean  Percentage Asian students x 
ms_aypper  Percentage of AYP goals met x 
ms_exp3orlessyr  Avg. proportion of teachers with 3 or fewer years exp x 
ms_food_serv  Per pupil spending on food services x 
ms_full_licen  Pct of teachers who are fully licensed x 
ms_miscellan  Per-pupil spending on miscellaneous 
ms_perfcompeog  School avg composite EOG passrate x 
ms_prof_dev  Per pupil spending on professional development x 
ms_sch_advdeg  Avg proportion of teachers with advanced degrees x 

ms_sch_dpisuppma 
 Avg proportion of teachers with supplemental Masters 
degrees x 

ms_sch_lead  Per pupil spending on school leadership x 
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ms_sch_nbc  Avg proportion of National Board Certified teachers x 
ms_stsrate  Short-term suspension rate x 

ms_willreturn 
 Avg proportion of teachers that return to the school in 
following year x 

Post-Treatment Middle School Characteristics 
a_pctfrpl Percent free/reduced price lunch x x 
a_title1 School has Title I status x x 
a_actper1k  Violent acts per 1,000 x x 
a_amindian_mean  Percentage American Indian students x 
a_asian_mean  Percentage Asian students x 
a_aypper  % AYP goals met x 
a_black_mean  Percentage Black students x x 
a_cap_outlay  Per-pupil spending on capital outlays x 
a_comm_serv  Per-pupil spending on community services x 
a_exp3orlessyr  Avg. proportion of teachers with 3 or fewer years exp x x 
a_extra_cur  Per-pupil spending on extracurricular activities x 
a_food_serv  Per-pupil spending on food services x 
a_full_licen  Pct of teachers who are fully licensed x x 
a_hispanic_mean  Percentage Hispanic students x x 
a_instr_sup  Per pupil spending on instructional support x 
a_miscellan  Per-pupil spending on miscellaneous x 
a_n_years_open  Number of years the school was open between 2005-2011 x 
a_prof_dev  Per-pupil spending on professional development x 
a_propteachers  Teacher-student ratio 
a_reg_instr  Per pupil-spending on regular instruction x x 

a_returned 
 Avg proportion of teachers that returned to the school 
from previous year x x 

a_sch_advdeg  Avg proportion of teachers with advanced degrees x x 
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a_sch_dpisuppma 
 Avg proportion of teachers with supplemental Masters 
degrees x x 

a_sch_lead  Per-pupil spending on school leadership x 
a_sch_maint  Per-pupil spending on school maintenance x 
a_sch_nbc  Avg proportion of National Board Certified teachers x x 
a_spec_instr  Per pupil-spending on special instruction x 
a_stsrate  Short-term suspension rate x x 
a_stud_serv  Per pupil-spending on student services x 
a_tot_distcap  Total district spending on capital outlay x 

a_willreturn 
 Avg proportion of teachers that return to the school the 
following year x 

a_tcount 
# of clssrm tchrs according to 2010 pay data *see codebook 
for other yrs x 

a_adm Average daily membership x 
a_schoolppe Per-pupil spending x 
magnet School is a magnet school x 
low  School ABC status is low performing x 
high  School ABC status is high performing x 
nogrowth  School classified as no growth x 
higrowth  School classified as high growth x 
magnet  School is a magnet x 
sch_dpisuppma  Avg proportion of teachers with supplemental Masters x 
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Table 3.4.  

Univariate Statistics 

Mean SD Min Median Max N(Miss) 
 Student EOG math score, 3rd grade, difference from 5th 0.00 0.63 -4.23 -0.01 3.91 19185 
 Student EOG reading score, 3rd grade, difference from 5th -0.02 0.65 -4.43 -0.02 3.95 19528 
 Student EOG math score, 4th grade, difference from 5th 0.01 0.58 -4.01 0.01 3.48 10719 
 Student EOG reading score, 4th grade, difference from 5th 0.00 0.62 -3.85 0.00 4.35 11092 
 Classroom in 75th percentile academically/intellectually 
gifted 0.01 0.12 0.00 0.00 1.00 7730 
 Student is Asian 0.03 0.16 0.00 0.00 1.00 0 
 Student is Black 0.27 0.45 0.00 0.00 1.00 0 
 No of days attended 162.23 21.30 0.00 166.00 186.00 8092 
 Classroom in 75th percentile learning disabled 0.01 0.08 0.00 0.00 1.00 7730 
 Classroom in 75th percentile of students receiving free or 
reduced price l 0.08 0.28 0.00 0.00 1.00 7730 
 Student receives free or reduced price lunch 0.41 0.49 0.00 0.00 1.00 73 
 Student is Hispanic 0.10 0.31 0.00 0.00 1.00 0 
 Student has limited English proficiency 0.06 0.24 0.00 0.00 1.00 8 
 Student moved in current school year 0.04 0.20 0.00 0.00 1.00 0 
 Student moved in previous school year 0.05 0.22 0.00 0.00 1.00 0 
 Missing student school info for previous year 0.14 0.35 0.00 0.00 1.00 7730 
 Average classroom peer reading score 0.03 0.49 -3.17 0.03 1.76 12956 
 Student EOG math score, 5th grade, standardized 0.06 0.98 -2.97 0.06 2.57 8129 
 Student EOG reading score, 5th grade, standardized 0.04 0.99 -2.97 0.11 2.81 8459 
 Student was limited English proficient in previous year 0.02 0.14 0.00 0.00 1.00 8 
 Violent acts per 1,000 1.97 3.38 0.00 0.00 227.27 7730 
 Percentage Asian students 2.47 3.66 0.00 1.27 47.97 7730 
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 % AYP goals met 86.93 16.58 0.00 92.30 100.00 7739 
 Percentage Black students 26.59 22.32 0.00 20.68 99.19 7730 
 School is in a mid-sized city 0.16 0.37 0.00 0.00 1.00 7891 
 Per-pupil spending on community services 72.47 106.48 -12.96 14.98 984.12 7730 
 Per pupil spending on extracurricular activity 23.04 46.73 -4.23 8.27 586.22 7730 
 Per pupil spending on food services 479.94 140.88 14.98 476.00 3570.73 7730 
 Pct of teachers who are fully licensed 0.97 0.03 0.71 0.98 1.00 7730 
 Teacher is full time or receives full-time pay 0.54 0.50 0.00 1.00 1.00 13008 
 School ABC status is high performing 0.14 0.35 0.00 0.00 1.00 7764 
 School classified as high growth 0.68 0.47 0.00 1.00 1.00 7751 
 Percentage of Hispanic students 11.16 10.16 0.00 7.56 72.50 7730 
 School ABC status is low performing 0.31 0.46 0.00 0.00 1.00 7764 
 School classified as no growth 0.06 0.25 0.00 0.00 1.00 7751 
 Avg composite EOG passrate (N-passed/N-taken) 0.53 0.16 0.00 0.54 1.00 7730 
 Per pupil spending on professional development 68.27 39.70 11.42 59.14 1319.40 7730 
 Avg proportion of teachers with advanced degrees 0.28 0.10 0.00 0.27 0.65 7730 
 Per pupil spending on school leadership 500.15 160.32 8.31 465.33 5936.89 7730 
 Avg proportion of National Board Certified teachers 0.10 0.08 0.00 0.09 0.50 7730 
 Per-pupil spending on student services 386.02 144.81 38.12 361.55 4217.15 7730 
 School receives Title I funds 0.65 0.48 0.00 1.00 1.00 7730 
 Total per pupil expenditures 84.34 13.95 59.48 81.63 622.62 7730 
 Per pupil spending on transportation 285.49 117.96 17.20 257.53 2334.39 7730 
 Avg proportion of teachers that returned the following year 0.80 0.11 0.00 0.82 1.00 8452 
 Difference 4th-5th grades, % AYP goals met -4.70 14.69 -99.06 0.00 50.00 9137 
 Difference 4th-5th grades, % Hispanic students 0.61 2.26 -10.48 0.49 38.40 9130 
 Difference 4th-5th grades, Per-pupil spending on 
miscellaneous -59.07 36.03 -635.71 -48.03 1.50 9130 
 Difference 4th-5th grades, school avg composite EOG 
passrate -0.13 0.07 -0.47 -0.13 0.26 9130 
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 Difference 4th-5th grades, per-pupil spending on special 
instruction 111.28 262.18 -8019.55 103.10 8265.43 9130 
 Violent acts per 1,000 10.20 7.82 0.00 8.86 47.62 0 
 Percentage Asian students 2.26 2.83 0.00 1.29 18.70 0 
 Percentage of AYP goals met 86.50 10.92 52.00 88.20 100.00 0 
 Avg. proportion of teachers with 3 or fewer years exp 0.24 0.10 0.00 0.23 0.55 0 
 Per pupil spending on food services 427.58 133.41 -0.21 427.04 1131.40 0 
 Pct of teachers who are fully licensed 0.91 0.08 0.53 0.93 1.00 0 
 Per-pupil spending on miscellaneous 58.40 35.70 14.75 46.62 237.43 0 
 School avg composite EOG passrate 0.64 0.14 0.18 0.64 1.00 0 
 Per pupil spending on professional development 67.91 32.12 20.85 57.71 257.64 0 
 Avg proportion of teachers with advanced degrees 0.27 0.09 0.04 0.27 0.52 0 
 Avg proportion of teachers with supplemental Masters 
degrees 0.19 0.07 0.02 0.19 0.42 0 
 Per pupil spending on school leadership 524.25 146.63 239.69 496.71 1523.45 0 
 Avg proportion of National Board Certified teachers 0.08 0.06 0.00 0.06 0.35 0 
 Short-term suspension rate 33.20 23.96 0.62 27.66 199.66 0 
 Avg proportion of teachers that return to the school in 
following year 0.75 0.10 0.43 0.76 1.00 0 
 Student is American Indian 0.01 0.09 0.00 0.00 1.00 0 
 Overage students in classroom at 75th percentile 0.00 0.06 0.00 0.00 1.00 7730 
 Avg standardized peer EOG score 0.87 0.16 0.08 0.88 2.53 7895 
 Birthdate below standard cutoff for cohort 0.01 0.11 0.00 0.00 1.00 8 
 Per-pupil spending on district administration 258.51 119.30 90.62 223.48 1194.23 7730 
 School is located in a large city 0.10 0.30 0.00 0.00 1.00 7891 
 Classroom standard deviation of previous year EOG math 
scores 0.86 0.18 0.00 0.87 2.84 7898 
 School is a magnet 0.06 0.24 0.00 0.00 1.00 7858 
 Per pupil spending on miscellaneous 0.07 0.95 -5.08 0.00 11.38 7730 
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 School ABC status is No Recognition 0.02 0.13 0.00 0.00 1.00 7764 
 Avg proportion of teachers that returned from previous year 0.87 0.14 0.00 0.90 1.00 7732 
 School is located in a rural area 0.50 0.50 0.00 0.00 1.00 7891 
 Avg proportion of teachers with supplemental Masters 0.20 0.09 0.00 0.19 0.59 7730 
 Years of teacher experience 11.62 9.62 0.00 9.00 49.00 14931 
 School has a year-round academic calendar 0.08 0.26 0.00 0.00 1.00 7730 
 Difference 4th-5th grades, violent acts per 1,000 0.32 3.48 -58.14 0.00 69.44 9130 
 Difference 4th-5th grades, % of students who are Asian 0.05 0.92 -6.08 0.00 5.80 9130 
 Difference 4th-5th grades, % of students who are Black -0.10 3.75 -52.24 -0.07 26.12 9130 
 Difference 4th-5th grades, per-pupil spending on capital 
outlays -120.93 2190.73 

-
25754.72 0.00 18694.10 9130 

 Difference 4th-5th grades, per-pupil spending on 
community services 23.72 91.24 -479.37 0.00 869.76 9130 
 Difference 4th-5th grades, per pupil spending on food 
services 29.73 85.16 -809.75 38.43 1510.15 9130 
 Difference 4th-5th grades, % of students receiving 
free/reduced price lunc 0.13 7.58 -99.00 0.40 61.30 9130 
 Difference 4th-5th grades, proportion of teachers who 
returned from previo 0.00 0.14 -0.59 -0.01 0.95 9130 
 Difference 4th-5th grades, avg proportion of teachers with 
advanced degree 0.01 0.05 -0.34 0.01 0.30 9130 
 Difference 4th-5th grades, avg proportion of teachers with 
supplemental Ma 0.00 0.05 -0.34 0.00 0.30 9130 
 Difference 4th-5th grades, per pupil spending on school 
leadership 27.11 88.33 -2238.75 23.26 1140.24 9130 
 Difference 4th-5th grades, Avg proportion of National 
Board Certfified tea 0.01 0.04 -0.22 0.00 0.22 9130 
 Difference 4th-5th grades, short-term suspension rate 0.13 6.05 -168.46 0.00 248.38 9130 
 Difference 4th-5th grades, per-pupil spending on student 
services -45.68 121.16 -8031.95 -33.97 860.39 9130 
 Difference 4th-5th grades, per pupil spending on 30.22 37.00 -1653.42 26.03 446.73 9130 
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transportation 
 Difference 4th-5th grades, avg proportion of teachers who 
return the follo 0.02 0.13 -0.86 0.02 0.75 10420 
 Per pupil spending on capital outlay 344.39 1614.61 -12.51 26.87 19989.74 0 
 Per pupil spending on community services 6.64 17.41 -0.03 0.00 130.77 0 
 Per pupil spending on extracurricular activities 33.54 36.31 0.00 29.87 283.10 0 
 Avg proportion of teachers that returned to the school from 
previous year 0.87 0.14 0.00 0.90 1.00 0 
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Table 3.5. 

Model Variations 

  Robustness Variations 

  
 Not 

Imputed Group 4 
No 

Group 3 

No 
Group 3 

or 2 
No 

Movers 
Label - R1 R2 R3 R4 R5 

Group 41 No No Yes No No No 

Group 32 Yes Yes Yes No No Yes 

Group 23 Yes Yes Yes Yes No Yes 
Unconditional Q1-
Q2 Yes Yes No No No Yes 

Condition Q1-Q2 Yes Yes Yes Yes Yes Yes 
Unconditional 
Q3D4 Yes Yes No No No Yes 
Unconditional 
Q3S4 Yes Yes No No No Yes 

Conditional Q3D4 Yes Yes Yes Yes Yes Yes 

Conditional Q3S4 Yes Yes Yes Yes Yes Yes 

Imputation No Yes No No No No 
Interactions in 
PSM No No No No No No 
Students moving 
during treatment Yes Yes No No No No 

1. Group 4 started in 7th grade and have only one year of MS tx and data by 2010-11. 
2. 2. Group 3 only had one year of MS tx and data by 2010-11. 
3. Group 2 had two years of MS tx and data by 2010-11. 
4. Q3D is the interaction model that tests the difference between RCT-control and 

nonRCT. 
Q3S is the status model that compares RCT-control and non-RCT separately with the 
comparisons. 
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Table 3.6. 

Correlations between Outcome Proxies and Candidates for PSM Covariates 

Pearson Correlation 
5th 
Grade 
Math 

5th 
Grade 
Reading 

Student EOG math score, 3rd grade, difference from 5th 0.341 0.088 
Student EOG reading score, 3rd grade, difference from 5th 0.149 0.370 
Student EOG math score, 4th grade, difference from 5th 0.280 0.030 
Student EOG reading score, 4th grade, difference from 5th 0.090 0.328 
Classroom in 75th percentile academically/intellectually gifted 0.151 0.150 
Student is Asian 0.093 0.048 
Student is Black -0.319 -0.288 
No of days attended 0.076 0.069 
Classroom in 75th percentile learning disabled -0.055 -0.064 
Classroom in 75th percentile of students receiving free or 
reduced price lunch -0.180 -0.186 
Student receives free or reduced price lunch -0.354 -0.376 
Student is Hispanic -0.087 -0.143 
Student has limited English proficiency -0.151 -0.214 
Student moved in current school year -0.077 -0.077 
Student moved in previous school year -0.086 -0.085 
Missing student school info for previous year -0.029 -0.025 
Average classroom peer reading score 0.382 0.393 
Student EOG math score, 5th grade, standardized 1.000 0.729 
Student EOG reading score, 5th grade, standardized 0.729 1.000 
Student was limited English proficient in previous year 0.045 0.020 
Violent acts per 1,000 -0.084 -0.070 
Percentage Asian students 0.118 0.114 
% AYP goals met 0.188 0.177 
Percentage Black students -0.216 -0.209 
School is in a mid-sized city -0.058 -0.052 
Per-pupil spending on community services 0.067 0.074 
Per pupil spending on extracurricular activity 0.035 0.022 
Per pupil spending on food services -0.200 -0.201 
Pct of teachers who are fully licensed 0.106 0.105 
Teacher is full time or receives full-time pay 0.363 0.379 
School ABC status is high performing 0.227 0.224 
School classified as high growth 0.158 0.101 
Percentage of Hispanic students -0.104 -0.132 
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School ABC status is low performing -0.276 -0.264 
School classified as no growth -0.135 -0.088 
Avg composite EOG passrate (N-passed/N-taken) 0.345 0.347 
Per pupil spending on professional development -0.167 -0.163 
Avg proportion of teachers with advanced degrees 0.067 0.071 
Per pupil spending on school leadership -0.059 -0.057 
Avg proportion of National Board Certified teachers 0.123 0.123 
Per-pupil spending on student services -0.072 -0.069 
School receives Title I funds -0.202 -0.201 
Total per pupil expenditures -0.122 -0.131 
Per pupil spending on transportation -0.026 -0.015 
Avg proportion of teachers that returned the following year 0.077 0.078 
Difference 4th-5th grades, % AYP goals met 0.048 0.046 
Difference 4th-5th grades, % Hispanic students -0.053 -0.053 
Difference 4th-5th grades, Per-pupil spending on miscellaneous 0.050 0.061 
Difference 4th-5th grades, school avg composite EOG passrate 0.080 0.117 
Difference 4th-5th grades, per-pupil spending on special 
instruction 0.074 0.056 
Violent acts per 1,000 -0.085 -0.090 
Percentage Asian students 0.114 0.106 
Percentage of AYP goals met 0.193 0.191 
Avg. proportion of teachers with 3 or fewer years exp -0.086 -0.089 
Per pupil spending on food services -0.139 -0.151 
Percentage of teachers who are fully licensed 0.161 0.153 
Per-pupil spending on miscellaneous -0.044 -0.059 
School avg composite EOG passrate 0.296 0.290 
Per pupil spending on professional development -0.142 -0.150 
Avg proportion of teachers with advanced degrees 0.107 0.109 
Avg proportion of teachers with supplemental Masters degrees 0.050 0.054 
Per pupil spending on school leadership -0.045 -0.045 
Avg proportion of National Board Certified teachers 0.147 0.146 
Short-term suspension rate -0.194 -0.188 
Avg proportion of teachers that return to the school in following 
year 0.095 0.098 
Student is American Indian -0.024 -0.027 
Overage students in classroom at 75th percentile -0.053 -0.064 
Avg standardized peer EOG score -0.044 -0.049 
Birthdate below standard cutoff for cohort 0.038 0.034 
Per-pupil spending on district administration -0.014 -0.024 
School is located in a large city 0.016 0.013 
Classroom standard deviation of previous year EOG math scores 0.005 0.006 
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School is a magnet 0.014 0.023 
Per pupil spending on miscellaneous -0.011 -0.006 
School ABC status is No Recognition -0.019 0.006 
Avg proportion of teachers that returned from previous year 0.086 0.095 
School is located in a rural area -0.025 -0.018 
Avg proportion of teachers with supplemental Masters 0.023 0.027 
Years of teacher experience 0.032 0.039 
School has a year-round academic calendar 0.054 0.051 
Difference 4th-5th grades, violent acts per 1,000 -0.028 -0.015 
Difference 4th-5th grades, % of students who are Asian 0.035 0.036 
Difference 4th-5th grades, % of students who are Black 0.017 0.027 
Difference 4th-5th grades, per-pupil spending on capital outlays -0.022 -0.009 
Difference 4th-5th grades, per-pupil spending on community 
services 0.043 0.051 
Difference 4th-5th grades, per pupil spending on food services -0.032 -0.022 
Difference 4th-5th grades, % of students receiving free/reduced 
price lunches -0.041 -0.047 
Difference 4th-5th grades, proportion of teachers who returned 
from previous year 0.025 0.032 
Difference 4th-5th grades, avg proportion of teachers with 
advanced degrees -0.011 -0.013 
Difference 4th-5th grades, avg proportion of teachers with 
supplemental Masters degrees -0.013 -0.015 
Difference 4th-5th grades, per pupil spending on school 
leadership -0.042 -0.042 
Difference 4th-5th grades, Avg proportion of National Board 
Certfified teachers 0.013 0.023 
Difference 4th-5th grades, short-term suspension rate -0.022 -0.012 
Difference 4th-5th grades, per-pupil spending on student 
services -0.026 -0.031 
Difference 4th-5th grades, per pupil spending on transportation -0.015 -0.012 
Difference 4th-5th grades, avg proportion of teachers who return 
the following year -0.025 -0.027 
Per pupil spending on capital outlay 0.019 0.018 
Per pupil spending on community services 0.032 0.031 
Per pupil spending on extracurricular activities -0.013 -0.001 
Avg proportion of teachers that returned to the school from 
previous year -0.020 -0.022 
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Table 3.7. 

Propensity Score Model—Imputed Data (M = 5) 

  Est. SE t value p value 
Intercept -14.829 1.282 -11.566 0.000 *** 
 Student EOG math score, 3rd grade, 
difference from 5th -0.156 0.051 -3.050 0.002 ** 
 Student EOG reading score, 3rd 
grade, difference from 5th 0.185 0.047 3.897 0.000 *** 
 Student EOG math score, 4th grade, 
difference from 5th 0.206 0.054 3.828 0.000 *** 
 Student EOG reading score, 4th 
grade, difference from 5th -0.032 0.049 -0.648 0.517 
 Classroom in 75th percentile 
academically/intellectually gifted 2.660 0.149 17.831 0.000 *** 
 Student is Asian -0.388 0.209 -1.855 0.064 
 Student is Black -0.142 0.076 -1.874 0.061 
 No of days attended -0.001 0.002 -0.695 0.487 
 Classroom in 75th percentile 
learning disabled 0.696 0.289 2.413 0.016 * 
 Classroom in 75th percentile of 
students receiving free or reduced 
price l 0.481 0.091 5.302 0.000 *** 
 Student receives free or reduced 
price lunch -0.057 0.080 -0.715 0.475 
 Student is Hispanic 0.007 0.118 0.061 0.951 
 Student has limited English 
proficiency -0.049 0.139 -0.357 0.721 
 Student moved in current school year -0.237 0.188 -1.257 0.209 
 Student moved in previous school 
year -0.506 0.133 -3.806 0.000 *** 
 Missing student school info for 
previous year -3.334 0.208 -16.026 0.000 *** 
 Average classroom peer reading 
score -0.623 0.077 -8.111 0.000 *** 
 Student EOG math score, 5th grade, 
standardized 0.086 0.046 1.842 0.065 
 Student EOG reading score, 5th 
grade, standardized -0.091 0.047 -1.945 0.052 
 Student was limited English 
proficient in previous year -0.303 0.201 -1.511 0.131 
 Violent acts per 1,000 -0.311 0.017 -17.748 0.000 *** 
 Percentage Asian students -0.111 0.016 -7.008 0.000 *** 
 % AYP goals met -0.080 0.003 -25.496 0.000 *** 
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 Percentage Black students -0.037 0.002 -15.575 0.000 *** 
 School is in a mid-sized city 2.121 0.073 29.064 0.000 *** 
 Per-pupil spending on community 
services -0.003 0.000 -12.704 0.000 *** 
 Per pupil spending on extracurricular 
activity -0.016 0.001 -15.460 0.000 *** 
 Per pupil spending on food services -0.005 0.000 -13.326 0.000 *** 
 Pct of teachers who are fully 
licensed 13.558 1.028 13.191 0.000 *** 
 Teacher is full time or receives full-
time pay -0.069 0.079 -0.872 0.383 
 School ABC status is high 
performing 0.829 0.105 7.883 0.000 *** 
 School classified as high growth 0.195 0.066 2.941 0.003 ** 
 Percentage of Hispanic students 0.038 0.003 11.596 0.000 *** 
 School ABC status is low 
performing -0.556 0.117 -4.738 0.000 *** 
 School classified as no growth -0.350 0.103 -3.404 0.001 *** 
 Avg composite EOG passrate (N-
passed/N-taken) -0.219 0.625 -0.350 0.726 
 Per pupil spending on professional 
development 0.002 0.001 2.645 0.008 ** 
 Avg proportion of teachers with 
advanced degrees 3.990 0.316 12.617 0.000 *** 
 Per pupil spending on school 
leadership -0.006 0.000 -21.116 0.000 *** 
 Avg proportion of National Board 
Certified teachers -8.249 0.424 -19.467 0.000 *** 
 Per-pupil spending on student 
services -0.003 0.000 -11.218 0.000 *** 
 School receives Title I funds -3.084 0.093 -33.110 0.000 *** 
 Total per pupil expenditures 0.160 0.005 34.437 0.000 *** 
 Per pupil spending on transportation -0.003 0.000 -7.960 0.000 *** 
 Avg proportion of teachers that 
returned the following year 1.277 0.292 4.372 0.000 *** 
 Difference 4th-5th grades, % AYP 
goals met 0.002 0.003 0.595 0.552 
 Difference 4th-5th grades, % 
Hispanic students 0.050 0.012 4.025 0.000 *** 
 Difference 4th-5th grades, Per-pupil 
spending on miscellaneous 0.026 0.001 17.795 0.000 *** 
 Difference 4th-5th grades, school 
avg composite EOG passrate 0.132 0.610 0.217 0.828 
 Difference 4th-5th grades, per-pupil 
spending on special instruction -0.002 0.000 -14.345 0.000 *** 
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 Violent acts per 1,000 -0.033 0.004 -8.723 0.000 *** 
 Percentage Asian students -0.066 0.020 -3.327 0.001 *** 
 Percentage of AYP goals met -0.059 0.004 -14.516 0.000 *** 
 Avg. proportion of teachers with 3 or 
fewer years exp -6.212 0.423 -14.670 0.000 *** 
 Per pupil spending on food services -0.003 0.000 -12.200 0.000 *** 
 Pct of teachers who are fully 
licensed 8.762 0.648 13.518 0.000 *** 
 Per-pupil spending on miscellaneous 0.015 0.001 12.428 0.000 *** 
 School avg composite EOG passrate -0.917 0.505 -1.817 0.069 
 Per pupil spending on professional 
development 0.022 0.001 24.018 0.000 *** 
 Avg proportion of teachers with 
advanced degrees -8.459 0.714 -11.839 0.000 *** 
 Avg proportion of teachers with 
supplemental Masters degrees 16.512 0.895 18.445 0.000 *** 
 Per pupil spending on school 
leadership 0.001 0.000 3.415 0.001 *** 
 Avg proportion of National Board 
Certified teachers -20.525 0.775 -26.489 0.000 *** 
 Short-term suspension rate -0.021 0.002 -10.924 0.000 *** 
 Avg proportion of teachers that 
return to the school in following year 0.720 0.383 1.880 0.060 
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Table 3.8. 

Balance before PSA Model (Variables in PSA Model) 

Inverse Probability 
Weighted Means 

Comparison Treatment 
Difference 

(d) d > |.25| 
N per group 81217 6184     
 Student EOG math score, 3rd 
grade, difference from 5th 0.00 -0.01 -0.01 
 Student EOG reading score, 3rd 
grade, difference from 5th -0.03 0.03 0.07 
 Student EOG math score, 4th 
grade, difference from 5th 0.01 0.02 0.01 
 Student EOG reading score, 4th 
grade, difference from 5th 0.00 0.02 0.03 
 Classroom in 75th percentile 
academically/intellectually 
gifted 0.01 0.07 0.23 
 Student is Asian 0.03 0.01 -0.06 
 Student is Black 0.28 0.23 -0.09 
 No of days attended 161.78 160.60 -0.04 
 Classroom in 75th percentile 
learning disabled 0.01 0.02 0.11 
 Classroom in 75th percentile of 
students receiving free or 
reduced price l 0.08 0.19 0.23 
 Student receives free or reduced 
price lunch 0.40 0.44 0.05 
 Student is Hispanic 0.10 0.16 0.12 
 Student has limited English 
proficiency 0.06 0.09 0.09 
 Student moved in current 
school year 0.04 0.04 -0.02 
 Student moved in previous 
school year 0.05 0.04 -0.03 
 Missing student school info for 
previous year 0.15 0.04 -0.26 * 
 Average classroom peer reading 
score 0.02 -0.03 -0.07 
 Student EOG math score, 5th 
grade, standardized 0.03 0.03 0.00 
 Student EOG reading score, 5th 
grade, standardized 0.01 -0.02 -0.02 
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 Student was limited English 
proficient in previous year 0.02 0.02 -0.01 
 Violent acts per 1,000 2.06 1.11 -0.24 
 Percentage Asian students 2.54 1.68 -0.20 
 % AYP goals met 88.50 64.89 -0.63 * 
 Percentage Black students 27.29 22.42 -0.16 
 School is in a mid-sized city 0.15 0.33 0.30 * 
 Per-pupil spending on 
community services 72.94 69.56 -0.02 
 Per pupil spending on 
extracurricular activity 24.02 11.64 -0.24 
 Per pupil spending on food 
services 480.74 469.37 -0.06 
 Pct of teachers who are fully 
licensed 0.97 0.98 0.28 * 
 Teacher is full time or receives 
full-time pay 0.54 0.50 -0.05 
 School ABC status is high 
performing 0.13 0.20 0.13 
 School classified as high 
growth 0.68 0.66 -0.02 
 Percentage of Hispanic students 10.80 16.41 0.31 * 
 School ABC status is low 
performing 0.31 0.31 0.00 
 School classified as no growth 0.06 0.07 0.02 
 Avg composite EOG passrate 
(N-passed/N-taken) 0.53 0.55 0.08 
 Per pupil spending on 
professional development 68.30 71.57 0.05 
 Avg proportion of teachers with 
advanced degrees 0.28 0.32 0.30 * 
 Per pupil spending on school 
leadership 499.40 514.13 0.06 
 Avg proportion of National 
Board Certified teachers 0.10 0.10 -0.07 
 Per-pupil spending on student 
services 381.53 441.41 0.31 * 
 School receives Title I funds 0.66 0.50 -0.23 
 Total per pupil expenditures 83.89 91.10 0.37 * 
 Per pupil spending on 
transportation 284.28 306.95 0.14 
 Avg proportion of teachers that 
returned the following year 0.80 0.84 0.26 * 
 Difference 4th-5th grades, % 
AYP goals met -3.90 -16.05 -0.37 * 
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 Difference 4th-5th grades, % 
Hispanic students 0.55 1.17 0.19 
 Difference 4th-5th grades, Per-
pupil spending on miscellaneous -60.56 -37.35 0.48 * 
 Difference 4th-5th grades, 
school avg composite EOG 
passrate -0.14 -0.09 0.35 * 
 Difference 4th-5th grades, per-
pupil spending on special 
instruction 117.17 115.71 0.00 
 Violent acts per 1,000 10.25 9.50 -0.07 
 Percentage Asian students 2.32 1.47 -0.27 * 
 Percentage of AYP goals met 86.84 82.00 -0.29 * 
 Avg. proportion of teachers 
with 3 or fewer years exp 0.24 0.19 -0.43 * 
 Per pupil spending on food 
services 427.98 422.26 -0.03 
 Pct of teachers who are fully 
licensed 0.91 0.94 0.31 * 
 Per-pupil spending on 
miscellaneous 58.13 61.94 0.07 
 School avg composite EOG 
passrate 0.64 0.61 -0.13 
 Per pupil spending on 
professional development 67.49 73.42 0.13 
 Avg proportion of teachers with 
advanced degrees 0.27 0.30 0.32 * 
 Avg proportion of teachers with 
supplemental Masters degrees 0.19 0.22 0.30 * 
 Per pupil spending on school 
leadership 520.98 567.17 0.21 
 Avg proportion of National 
Board Certified teachers 0.08 0.07 -0.14 
 Short-term suspension rate 33.47 29.59 -0.13 
 Avg proportion of teachers that 
return to the school in following 
year 0.75 0.77 0.20 
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Table 3.9. 

Balance before PSA Model (Variables Not in PSA Model—Supplement) 

Inverse Probability 
Weighted Means 

Comparison Treatment Difference (d) d > |.25| 
N per group 81217 6184     
 Student is American Indian 0.01 0.00 -0.06 
 Overage students in classroom at 
75th percentile 0.00 0.01 0.08 
 Avg standardized peer EOG 
score 0.87 0.85 -0.10 
 Birthdate below standard cutoff 
for cohort 0.01 0.01 -0.03 
 Per-pupil spending on district 
administration 240.76 492.36 1.63 * 
 School is located in a large city 0.11 0.00 -0.34 * 
 Classroom standard deviation of 
previous year EOG math scores 0.87 0.83 -0.13 
 School is a magnet 0.06 0.02 -0.15 
 Per pupil spending on 
miscellaneous 0.08 -0.02 -0.09 
 School ABC status is No 
Recognition 0.02 0.03 0.05 
 Avg proportion of teachers that 
returned from previous year 0.86 0.91 0.26 * 
 School is located in a rural area 0.50 0.38 -0.17 
 Avg proportion of teachers with 
supplemental Masters 0.20 0.24 0.34 * 
 Years of teacher experience 11.42 13.21 0.13 
 School has a year-round 
academic calendar 0.08 0.01 -0.22 
 Difference 4th-5th grades, 
violent acts per 1,000 0.35 -0.10 -0.11 
 Difference 4th-5th grades, % of 
students who are Asian 0.07 -0.06 -0.10 
 Difference 4th-5th grades, % of 
students who are Black -0.12 -0.59 -0.10 
 Difference 4th-5th grades, per-
pupil spending on capital outlays -185.61 -160.38 0.01 
 Difference 4th-5th grades, per-
pupil spending on community 
services 23.35 27.90 0.03 
 Difference 4th-5th grades, per 26.60 41.73 0.15 
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pupil spending on food services 
 Difference 4th-5th grades, % of 
students receiving free/reduced 
price lunc 0.19 -1.13 -0.08 
 Difference 4th-5th grades, 
proportion of teachers who 
returned from previo -0.01 0.00 0.05 
 Difference 4th-5th grades, avg 
proportion of teachers with 
advanced degree 0.01 0.02 0.14 
 Difference 4th-5th grades, avg 
proportion of teachers with 
supplemental Ma 0.00 0.01 0.17 
 Difference 4th-5th grades, per 
pupil spending on school 
leadership 24.64 30.87 0.05 
 Difference 4th-5th grades, Avg 
proportion of National Board 
Certfified tea 0.01 0.00 -0.19 
 Difference 4th-5th grades, short-
term suspension rate 0.15 0.22 0.01 
 Difference 4th-5th grades, per-
pupil spending on student 
services -47.92 -8.99 0.25 
 Difference 4th-5th grades, per 
pupil spending on transportation 30.91 15.51 -0.34 * 
 Difference 4th-5th grades, avg 
proportion of teachers who return 
the follo 0.03 0.02 -0.07 
 Per pupil spending on capital 
outlay 366.99 47.56 -0.19 
 Per pupil spending on 
community services 6.60 7.17 0.02 
 Per pupil spending on 
extracurricular activities 31.06 66.05 0.58 * 
 Avg proportion of teachers that 
returned to the school from 
previous year 0.87 0.85 -0.11 
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Table 3.10. 

Balance after PSA Model (Variables in PSA Model) 

Inverse Probability 
Weighted Means 

Comparison Treatment Difference (d) d > |.25| 
N per group 81217 6184     
 Student EOG math score, 3rd 
grade, difference from 5th 0.00 -0.02 -0.01 
 Student EOG reading score, 3rd 
grade, difference from 5th -0.03 0.01 0.03 
 Student EOG math score, 4th 
grade, difference from 5th 0.01 0.02 0.01 
 Student EOG reading score, 4th 
grade, difference from 5th -0.01 -0.01 0.00 
 Classroom in 75th percentile 
academically/intellectually gifted 0.01 0.03 0.07 
 Student is Asian 0.02 0.01 -0.06 
 Student is Black 0.27 0.22 -0.07 
 No of days attended 163.99 164.43 0.01 
 Classroom in 75th percentile 
learning disabled 0.00 0.01 0.02 
 Classroom in 75th percentile of 
students receiving free or reduced 
price l 0.08 0.13 0.07 
 Student receives free or reduced 
price lunch 0.40 0.43 0.04 
 Student is Hispanic 0.09 0.11 0.03 
 Student has limited English 
proficiency 0.05 0.07 0.04 
 Student moved in current school 
year 0.03 0.03 0.02 
 Student moved in previous 
school year 0.05 0.05 0.00 
 Missing student school info for 
previous year 0.10 0.02 -0.21 
 Average classroom peer reading 
score 0.03 -0.02 -0.06 
 Student EOG math score, 5th 
grade, standardized 0.08 0.05 -0.01 
 Student EOG reading score, 5th 
grade, standardized 0.05 -0.01 -0.03 
 Student was limited English 
proficient in previous year 0.02 0.02 -0.01 
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 Violent acts per 1,000 2.02 1.21 -0.19 
 Percentage Asian students 2.46 1.68 -0.17 
 % AYP goals met 88.51 82.45 -0.14 
 Percentage Black students 26.75 21.36 -0.13 
 School is in a mid-sized city 0.16 0.22 0.08 
 Per-pupil spending on 
community services 70.89 62.75 -0.02 
 Per pupil spending on 
extracurricular activity 23.59 10.64 -0.21 
 Per pupil spending on food 
services 482.32 500.98 0.08 
 Pct of teachers who are fully 
licensed 0.97 0.98 0.07 
 Teacher is full time or receives 
full-time pay 0.54 0.52 -0.02 
 School ABC status is high 
performing 0.13 0.12 -0.02 
 School classified as high growth 0.68 0.72 0.05 
 Percentage of Hispanic students 10.78 12.15 0.06 
 School ABC status is low 
performing 0.31 0.34 0.03 
 School classified as no growth 0.06 0.05 -0.03 
 Avg composite EOG passrate 
(N-passed/N-taken) 0.53 0.53 -0.01 
 Per pupil spending on 
professional development 68.22 66.43 -0.02 
 Avg proportion of teachers with 
advanced degrees 0.28 0.28 -0.01 
 Per pupil spending on school 
leadership 506.65 518.31 0.03 
 Avg proportion of National 
Board Certified teachers 0.11 0.10 -0.07 
 Per-pupil spending on student 
services 386.60 416.34 0.13 
 School receives Title I funds 0.66 0.63 -0.04 
 Total per pupil expenditures 84.50 88.07 0.13 
 Per pupil spending on 
transportation 283.18 292.75 0.04 
 Avg proportion of teachers that 
returned the following year 0.80 0.84 0.20 
 Difference 4th-5th grades, % 
AYP goals met -3.89 -6.96 -0.09 
 Difference 4th-5th grades, % 
Hispanic students 0.57 1.22 0.16 
 Difference 4th-5th grades, Per- -61.27 -65.67 -0.06 
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pupil spending on miscellaneous 
 Difference 4th-5th grades, school 
avg composite EOG passrate -0.14 -0.13 0.03 
 Difference 4th-5th grades, per-
pupil spending on special 
instruction 104.99 77.56 -0.06 
 Violent acts per 1,000 10.29 9.72 -0.04 
 Percentage Asian students 2.27 1.73 -0.15 
 Percentage of AYP goals met 86.91 83.67 -0.16 
 Avg. proportion of teachers with 
3 or fewer years exp 0.24 0.23 -0.04 
 Per pupil spending on food 
services 430.48 439.06 0.04 
 Pct of teachers who are fully 
licensed 0.91 0.92 0.08 
 Per-pupil spending on 
miscellaneous 59.06 73.26 0.19 
 School avg composite EOG 
passrate 0.64 0.62 -0.06 
 Per pupil spending on 
professional development 68.15 78.54 0.16 
 Avg proportion of teachers with 
advanced degrees 0.27 0.26 -0.03 
 Avg proportion of teachers with 
supplemental Masters degrees 0.19 0.20 0.06 
 Per pupil spending on school 
leadership 520.89 517.90 -0.01 
 Avg proportion of National 
Board Certified teachers 0.08 0.06 -0.27 * 
 Short-term suspension rate 33.26 31.31 -0.06 
 Avg proportion of teachers that 
return to the school in following 
year 0.75 0.76 0.08 
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Table 3.11. 

Balance after PSA Model (Variables Not in PSA Model—Supplement) 

Inverse Probability 
Weighted Means 

Comparison Treatment Difference (d) d > |.25| 
N per group 81217 6184     
 Student is American Indian 0.01 0.00 -0.03 
 Overage students in classroom at 
75th percentile 0.00 0.00 0.02 
 Avg standardized peer EOG 
score 0.87 0.89 0.08 
 Birthdate below standard cutoff 
for cohort 0.01 0.00 -0.03 
 Per-pupil spending on district 
administration 240.58 371.03 0.46 * 
 School is located in a large city 0.11 0.00 -0.34 * 
 Classroom standard deviation of 
previous year EOG math scores 0.87 0.88 0.03 
 School is a magnet 0.07 0.07 0.01 
 Per pupil spending on 
miscellaneous 0.08 -0.01 -0.09 
 School ABC status is No 
Recognition 0.02 0.01 -0.01 
 Avg proportion of teachers that 
returned from previous year 0.87 0.92 0.33 * 
 School is located in a rural area 0.50 0.46 -0.05 
 Avg proportion of teachers with 
supplemental Masters 0.20 0.21 0.07 
 Years of teacher experience 11.51 11.71 0.01 
 School has a year-round 
academic calendar 0.08 0.00 -0.28 * 
 Difference 4th-5th grades, 
violent acts per 1,000 0.27 0.48 0.04 
 Difference 4th-5th grades, % of 
students who are Asian 0.06 -0.04 -0.06 
 Difference 4th-5th grades, % of 
students who are Black -0.15 -0.70 -0.11 
 Difference 4th-5th grades, per-
pupil spending on capital outlays -168.26 -573.99 -0.09 
 Difference 4th-5th grades, per-
pupil spending on community 
services 21.28 47.43 0.09 
 Difference 4th-5th grades, per 27.88 44.84 0.14 
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pupil spending on food services 
 Difference 4th-5th grades, % of 
students receiving free/reduced 
price lunc 0.22 1.10 0.05 
 Difference 4th-5th grades, 
proportion of teachers who 
returned from previo -0.01 0.04 0.21 
 Difference 4th-5th grades, avg 
proportion of teachers with 
advanced degree 0.01 0.02 0.12 
 Difference 4th-5th grades, avg 
proportion of teachers with 
supplemental Ma 0.00 0.01 0.09 
 Difference 4th-5th grades, per 
pupil spending on school 
leadership 25.66 39.22 0.10 
 Difference 4th-5th grades, Avg 
proportion of National Board 
Certfified tea 0.01 0.01 0.03 
 Difference 4th-5th grades, short-
term suspension rate 0.13 0.37 0.02 
 Difference 4th-5th grades, per-
pupil spending on student 
services -54.72 -30.79 0.07 
 Difference 4th-5th grades, per 
pupil spending on transportation 30.78 24.95 -0.11 
 Difference 4th-5th grades, avg 
proportion of teachers who return 
the follo 0.03 0.01 -0.10 
 Per pupil spending on capital 
outlay 358.50 88.64 -0.17 
 Per pupil spending on 
community services 6.67 2.36 -0.16 
 Per pupil spending on 
extracurricular activities 30.58 45.04 0.20 
 Avg proportion of teachers that 
returned to the school from 
previous year 0.88 0.87 -0.01 

 

 



 

Table 3.12. 

Sample Description after Weighting 

Mean SD Min Median Max N(Miss) 
 Student EOG math score, 3rd grade, difference from 5th -0.01 0.62 -4.23 -0.01 3.91 0 
 Student EOG reading score, 3rd grade, difference from 5th -0.02 0.65 -3.93 -0.02 3.95 0 
 Student EOG math score, 4th grade, difference from 5th 0.01 0.57 -3.23 0.00 3.11 0 
 Student EOG reading score, 4th grade, difference from 5th -0.01 0.61 -3.48 -0.01 3.41 0 
 Classroom in 75th percentile academically/intellectually 
gifted 0.02 0.13 0.00 0.00 1.00 0 
 Student is Asian 0.02 0.14 0.00 0.00 1.00 0 
 Student is Black 0.27 0.44 0.00 0.00 1.00 0 
 No of days attended 164.57 15.41 1.00 166.00 186.00 0 
 Classroom in 75th percentile learning disabled 0.00 0.07 0.00 0.00 1.00 0 
 Classroom in 75th percentile of students receiving free or 
reduced price l 0.09 0.29 0.00 0.00 1.00 0 
 Student receives free or reduced price lunch 0.40 0.49 0.00 0.00 1.00 0 
 Student is Hispanic 0.09 0.29 0.00 0.00 1.00 0 
 Student has limited English proficiency 0.05 0.23 0.00 0.00 1.00 0 
 Student moved in current school year 0.02 0.15 0.00 0.00 1.00 0 
 Student moved in previous school year 0.05 0.21 0.00 0.00 1.00 0 
 Missing student school info for previous year 0.08 0.27 0.00 0.00 1.00 0 
 Average classroom peer reading score 0.01 0.48 -3.17 0.03 1.76 0 
 Student EOG math score, 5th grade, standardized 0.07 0.97 -2.97 0.06 2.57 0 
 Student EOG reading score, 5th grade, standardized 0.04 0.98 -2.97 0.11 2.66 0 
 Student was limited English proficient in previous year 0.02 0.14 0.00 0.00 1.00 0 
 Violent acts per 1,000 1.85 3.04 0.00 0.00 137.93 0 
 Percentage Asian students 2.32 3.43 0.00 1.26 33.33 0 
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 % AYP goals met 87.89 14.33 0.82 92.30 100.00 0 
 Percentage Black students 25.96 22.52 0.00 19.10 99.19 0 
 School is in a mid-sized city 0.18 0.38 0.00 0.00 1.00 0 
 Per-pupil spending on community services 69.07 122.61 -12.96 2.44 975.64 0 
 Per pupil spending on extracurricular activity 20.57 43.71 -4.23 6.25 586.22 0 
 Per pupil spending on food services 486.63 138.50 17.48 477.88 2107.47 0 
 Pct of teachers who are fully licensed 0.97 0.03 0.71 0.98 1.00 0 
 Teacher is full time or receives full-time pay 0.54 0.50 0.00 1.00 1.00 0 
 School ABC status is high performing 0.13 0.33 0.00 0.00 1.00 0 
 School classified as high growth 0.69 0.46 0.00 1.00 1.00 0 
 Percentage of Hispanic students 11.20 10.50 0.00 7.35 70.29 0 
 School ABC status is low performing 0.32 0.47 0.00 0.00 1.00 0 
 School classified as no growth 0.07 0.25 0.00 0.00 1.00 0 
 Avg composite EOG passrate (N-passed/N-taken) 0.53 0.15 0.00 0.53 0.93 0 
 Per pupil spending on professional development 68.16 40.78 11.42 57.60 755.34 0 
 Avg proportion of teachers with advanced degrees 0.28 0.10 0.00 0.27 0.65 0 
 Per pupil spending on school leadership 503.40 158.64 65.80 466.59 2426.18 0 
 Avg proportion of National Board Certified teachers 0.10 0.08 0.00 0.09 0.50 0 
 Per-pupil spending on student services 391.69 135.87 48.02 370.02 1853.75 0 
 School receives Title I funds 0.66 0.47 0.00 1.00 1.00 0 
 Total per pupil expenditures 85.10 13.57 59.53 82.75 177.71 0 
 Per pupil spending on transportation 285.51 118.77 17.20 271.84 1892.68 0 
 Avg proportion of teachers that returned the following 
year 0.81 0.11 0.00 0.83 1.00 0 
 Difference 4th-5th grades, % AYP goals met -3.74 11.72 -47.60 0.00 46.20 0 
 Difference 4th-5th grades, % Hispanic students 0.72 2.20 -10.48 0.52 11.72 0 
 Difference 4th-5th grades, Per-pupil spending on 
miscellaneous -62.46 36.15 -309.07 -51.91 0.00 0 
 Difference 4th-5th grades, school avg composite EOG -0.14 0.06 -0.47 -0.14 0.18 0 
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passrate 
 Difference 4th-5th grades, per-pupil spending on special 
instruction 98.73 266.51 -7666.32 102.81 2267.54 0 
 Violent acts per 1,000 10.21 7.74 0.00 8.14 47.62 0 
 Percentage Asian students 2.18 2.66 0.00 1.33 18.70 0 
 Percentage of AYP goals met 86.18 10.66 52.00 88.00 100.00 0 
 Avg. proportion of teachers with 3 or fewer years exp 0.24 0.10 0.00 0.23 0.55 0 
 Per pupil spending on food services 432.63 131.92 -0.21 427.04 1131.40 0 
 Pct of teachers who are fully licensed 0.91 0.07 0.53 0.93 1.00 0 
 Per-pupil spending on miscellaneous 61.65 36.88 14.75 47.23 237.43 0 
 School avg composite EOG passrate 0.63 0.13 0.18 0.64 1.00 0 
 Per pupil spending on professional development 70.50 33.75 20.85 58.81 257.64 0 
 Avg proportion of teachers with advanced degrees 0.27 0.09 0.04 0.27 0.52 0 
 Avg proportion of teachers with supplemental Masters 
degrees 0.20 0.07 0.02 0.19 0.42 0 
 Per pupil spending on school leadership 519.83 142.31 239.69 493.76 1523.45 0 
 Avg proportion of National Board Certified teachers 0.08 0.06 0.00 0.06 0.35 0 
 Short-term suspension rate 33.18 22.49 0.62 27.14 199.66 0 
 Avg proportion of teachers that return to the school in 
following year 0.75 0.10 0.43 0.76 1.00 0 
 Student is American Indian 0.01 0.09 0.00 0.00 1.00 0 
 Overage students in classroom at 75th percentile 0.00 0.05 0.00 0.00 1.00 0 
 Avg standardized peer EOG score 0.87 0.16 0.08 0.89 1.93 0 
 Birthdate below standard cutoff for cohort 0.01 0.08 0.00 0.00 1.00 0 
 Per-pupil spending on district administration 268.02 126.97 90.62 223.48 1194.23 0 
 School is located in a large city 0.09 0.28 0.00 0.00 1.00 0 
 Classroom standard deviation of previous year EOG math 
scores 0.87 0.18 0.00 0.87 2.07 0 
 School is a magnet 0.07 0.25 0.00 0.00 1.00 93 
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 Per pupil spending on miscellaneous 0.07 0.91 -5.08 0.00 11.38 0 
 School ABC status is No Recognition 0.02 0.12 0.00 0.00 1.00 0 
 Avg proportion of teachers that returned from previous 
year 0.89 0.09 0.25 0.90 1.00 0 
 School is located in a rural area 0.49 0.50 0.00 0.00 1.00 0 
 Avg proportion of teachers with supplemental Masters 0.20 0.08 0.00 0.19 0.59 0 
 Years of teacher experience 11.55 9.68 0.00 9.00 49.00 5776 
 School has a year-round academic calendar 0.06 0.25 0.00 0.00 1.00 0 
 Difference 4th-5th grades, violent acts per 1,000 0.38 3.27 -20.00 0.00 69.44 0 
 Difference 4th-5th grades, % of students who are Asian 0.03 0.91 -6.08 0.00 5.31 0 
 Difference 4th-5th grades, % of students who are Black -0.21 3.59 -52.24 -0.09 26.12 0 
 Difference 4th-5th grades, per-pupil spending on capital 
outlays -217.78 2293.27 

-
25754.72 0.00 18694.10 0 

 Difference 4th-5th grades, per-pupil spending on 
community services 27.69 116.90 -479.37 0.00 869.76 0 
 Difference 4th-5th grades, per pupil spending on food 
services 33.59 81.90 -809.75 42.09 1090.30 0 
 Difference 4th-5th grades, % of students receiving 
free/reduced price lunc 0.34 7.25 -92.36 0.60 38.90 0 
 Difference 4th-5th grades, proportion of teachers who 
returned from previo 0.00 0.14 -0.59 0.00 0.95 0 
 Difference 4th-5th grades, avg proportion of teachers with 
advanced degree 0.01 0.05 -0.19 0.01 0.30 0 
 Difference 4th-5th grades, avg proportion of teachers with 
supplemental Ma 0.00 0.05 -0.19 0.00 0.30 0 
 Difference 4th-5th grades, per pupil spending on school 
leadership 29.66 83.88 -554.38 24.79 884.18 0 
 Difference 4th-5th grades, Avg proportion of National 
Board Certfified tea 0.01 0.04 -0.22 0.00 0.22 0 
 Difference 4th-5th grades, short-term suspension rate 0.16 5.87 -168.46 0.05 78.65 0 
 Difference 4th-5th grades, per-pupil spending on student -45.93 117.08 -695.76 -28.14 625.24 0 
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services 
 Difference 4th-5th grades, per pupil spending on 
transportation 30.17 35.32 -1653.42 26.18 226.08 0 
 Difference 4th-5th grades, avg proportion of teachers who 
return the follo 0.02 0.13 -0.86 0.01 0.75 493 
 Per pupil spending on capital outlay 304.50 1505.90 -12.51 30.88 19989.74 0 
 Per pupil spending on community services 5.82 16.71 -0.03 0.00 130.77 0 
 Per pupil spending on extracurricular activities 33.79 35.74 0.00 29.76 283.10 0 
 Avg proportion of teachers that returned to the school 
from previous year 0.88 0.12 0.00 0.89 1.00 0 
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Table 3.13A. 

Treatment Effects (Questions) 

Q1: 
Overall 

CS (PSA) Q2: Comparison of PSA Impact with RCT Impact 

Q3D: 
RCT 

control - 
nonRCT 

Q3S: Effects of RCT 
Control and nonRCT 

Impact 
(Sig) 

RCT 
Impact Difference Test prob > |t| Diff (Sig) 

RCTControl 
(Sig) 

NonRCT 
(Sig) 

Math                   
Main -0.04 0.039 -0.079 -7.9000 0.000 *** 0.03 -0.02 -0.05 

R1 Not Imputed -0.04 0.039 -0.079 -7.9000 0.000 *** 0.04 -0.02 -0.06 
R2 Group 4 -0.03 0.039 -0.069 -6.9000 0.000 *** 0.01 -0.02 -0.03 
R3  No Group 3 -0.02 0.039 -0.059 -5.9000 0.000 *** 0.00 -0.02 -0.02 
R4 No Groups 2, 3 -0.02 0.039 -0.059 -5.9000 0.000 *** 0.01 -0.02 -0.03 
R5 ML -0.05 0.039 -0.085 -8.5000 0.000 *** 0.09 -0.02 0.07 
R6 No Movers -0.05 0.039 -0.085 -8.5000 0.000 *** 0.10 -0.02 -0.07 

Reading                   
Main 0.04 0.018 0.022 0.9565 0.339 -0.02 0.03 0.05 

(p < .05) (p < .05) 
R1 Not Imputed 0.03 0.018 0.012 0.5217 0.602 0.01 0.03 0.03 
R2 Group 4 0.02 0.018 0.002 0.0870 0.931 0.01 0.03 0.02 
R3  No Group 3 0.04 0.018 0.022 0.9565 0.339 -0.03 0.03 0.06 

(p < .05) (p < .05) 
R4 No Groups 2, 3 0.03 0.018 0.012 0.5217 0.602 -0.01 0.03 0.04 
R5 ML 0.03 0.018 0.012 0.5217 0.602 0.01 0.03 0.03 
R6 No Movers 0.03 0.018 0.012 0.5217 0.602 0.01 0.03 0.03 
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Table 3.13b. 

Credibility of the PSA Design 

 PSA Design Difference Test prob > |t| 
Math           
Main 0.00 0.039 3.90 0.000 *** 
R1 0.00 0.039 3.90 0.000 *** 
R2 0.00 0.039 3.90 0.000 *** 
R3  0.00 0.039 3.90 0.000 *** 
R4 0.00 0.039 3.90 0.000 *** 
R5 0.00 0.039 3.90 0.000 *** 
R6 0.00 0.039 3.90 0.000 *** 

 
Reading           

Main -0.01 0.028 1.22 0.224 
R1 -0.01 0.028 1.22 0.224 
R2 -0.01 0.028 1.22 0.224 
R3  -0.01 0.028 1.22 0.224 
R4 -0.01 0.028 1.22 0.224 
R5 -0.01 0.028 1.22 0.224 
R6 0.00 0.018 0.78 0.434 

 

 



 

Table 3.14. 

Math (Overall PSA Treatment Effect—Imputed Data) 

Unconditional Conditional 
3 Level 
Random Slope 

3 Level Random 
Slope 

Est. SE t value p value Est. SE t value p value 
Intercept 0.04 0.02 1.96 0.050 0.07 0.01 6.00 0.00 *** 
 Developmental Time 0.00 0.00 -6.51 0.000 *** 0.00 0.00 -5.83 0.00 *** 
 Developmental Time-Squared 0.00 0.00 -4.93 0.000 *** 0.00 0.00 -5.55 0.00 *** 
 Interruption/Transition to MS -0.01 0.01 -2.24 0.025 * -0.01 0.01 -2.39 0.02 * 
 Treatment School (PSA 
Design) -0.06 0.08 -0.74 0.459 -0.04 0.05 -0.71 0.48 
 DD: Treatment (PS) by 
Interruption -0.04 0.03 -1.53 0.126 -0.04 0.03 -1.52 0.13 
 Classroom in 75th percentile 
academically/intellectually 
gifted -0.11 0.02 -4.46 0.00 *** 
 Student is Black -0.36 0.01 -52.72 0.00 *** 
 No of days attended 0.00 0.00 7.86 0.00 *** 
 Classroom in 75th percentile 
learning disabled 0.03 0.04 0.78 0.44 
 Student is 
academically/intellectually 
gifted 0.99 0.01 148.18 0.00 *** 
 Student has learning disability -0.43 0.01 -53.37 0.00 *** 
 Classroom in 75th percentile 
of students receiving free or 
reduced price l 0.01 0.01 1.07 0.29 
 Student receives free or -0.20 0.01 -35.37 0.00 *** 
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reduced price lunch 

 Student is Hispanic -0.05 0.01 -4.03 0.00 *** 
 Student has limited English 
proficiency -0.28 0.01 -20.85 0.00 *** 
 Average classroom peer math 
score 0.20 0.01 16.16 0.00 *** 
 Student is a male 0.05 0.00 10.55 0.00 *** 
 Student moved in current 
school year -0.08 0.02 -5.24 0.00 *** 
 Student moved in previous 
school year -0.09 0.01 -8.28 0.00 *** 
 Average classroom peer 
reading score 0.06 0.01 4.83 0.00 *** 
 Student was limited English 
proficient in previous year 0.22 0.02 13.23 0.00 *** 
 School ABC status is high 
performing 0.23 0.04 5.65 0.00 *** 
 School classified as high 
growth 0.09 0.02 3.84 0.00 *** 
 School ABC status is low 
performing -0.14 0.03 -4.41 0.00 *** 
 School classified as no growth -0.04 0.04 -1.13 0.26 
 Overage students in classroom 
at 75th percentile -0.12 0.06 -2.14 0.03 * 
 Birthdate below standard 
cutoff for cohort 0.15 0.03 5.36 0.00 *** 
 Classroom standard deviation 
of previous year EOG math 
scores 0.01 0.02 0.64 0.52 
 School is a magnet 0.22 0.04 5.07 0.00 *** 
 Classroom standard deviation -0.05 0.02 -2.84 0.00 ** 
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of previous year EOG math 
scores 
 Years of teacher experience 0.00 0.00 -0.42 0.68 
 Violent acts per 1,000 0.00 0.00 -1.58 0.11 
 Average days in attendance 0.00 0.01 -0.18 0.86 
 Percentage Black students 0.00 0.00 -4.99 0.00 *** 
 Avg. proportion of teachers 
with 3 or fewer years exp 0.17 0.13 1.27 0.20 
 Pct of teachers who are fully 
licensed 0.27 0.18 1.49 0.14 
 Percentage Hispanic students 0.00 0.00 0.47 0.64 
 Percentage free/reduced lunch 
students at school -0.01 0.00 -5.66 0.00 *** 
 Per pupil-spending on regular 
instruction 0.00 0.00 -1.16 0.25 
 Avg proportion of teachers 
that returned to the school 
from previous year -0.20 0.12 -1.64 0.10 
 Avg proportion of teachers 
with advanced degrees 0.86 0.24 3.65 0.00 *** 
 Avg proportion of teachers 
with supplemental Masters 
degrees -0.56 0.26 -2.17 0.03 * 
 Avg proportion of National 
Board Certified teachers 0.29 0.18 1.62 0.11 
 Per-pupil expenditures 0.00 0.00 1.09 0.27 
 Short-term suspension rate 0.00 0.00 0.26 0.80 
 School receives Title I funds 0.03 0.03 0.93 0.35 
 Residual 0.11 0.11 
 School random intercept 0.12 0.04 
 School intercept-slope -0.01 -0.01 
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covariance 

 School random slope 0.01 0.01 
 Student random intercept 0.72 0.39 
 Student intercept-slope 
covariance -0.08 -0.08 
 Student random slope 0.15 0.15 
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Table 3.15. 

Math (Difference in PSA Treatment Effect between RCT Control and Non-RCT—Imputed Data) 

Unconditional Conditional 
3 Level Random 
Slope 

3 Level Random 
Slope 

Est. SE t value p value Est. SE t value p value 
Intercept 0.04 0.02 1.88 0.060 0.07 0.01 5.88 0.00 ***  
 RCT District School -0.06 0.17 -0.32 0.753 0.07 0.10 0.65 0.51 
 Developmental Time 0.00 0.00 -6.72 0.000 *** 0.00 0.00 -5.95 0.00 ***  
 Developmental Time-
Squared 0.00 0.00 -5.10 0.000 *** 0.00 0.00 -5.56 0.00 ***  
 Interruption/Transition to MS -0.01 0.01 -2.20 0.028 * -0.01 0.01 -2.31 0.02 * 
 Treatment School (PSA 
Design) -0.04 0.11 -0.37 0.713 -0.06 0.07 -0.93 0.35 
 DD: Treatment (PS) by 
Interruption -0.05 0.03 -1.54 0.123 -0.05 0.03 -1.53 0.13 
 DDD: RCT District School 
by Interruption 0.03 0.05 0.61 0.543 0.03 0.05 0.61 0.54 
 Classroom in 75th percentile 
academically/intellectually 
gifted -0.11 0.02 -4.38 0.00 ***  
 Student is Black -0.36 0.01 -53.03 0.00 ***  
 No of days attended 0.00 0.00 7.71 0.00 ***  
 Classroom in 75th percentile 
learning disabled 0.05 0.04 1.26 0.21 
 Student is 
academically/intellectually 
gifted 0.99 0.01 148.67 0.00 ***  
 Student has learning -0.44 0.01 -53.72 0.00 ***  
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disability 
 Classroom in 75th percentile 
of students receiving free or 
reduced price l 0.02 0.01 1.41 0.16 
 Student receives free or 
reduced price lunch -0.20 0.01 -35.49 0.00 ***  
 Student is Hispanic -0.05 0.01 -4.10 0.00 ***  
 Student has limited English 
proficiency -0.28 0.01 -20.87 0.00 ***  
 Average classroom peer math 
score 0.20 0.01 16.05 0.00 ***  
 Student is a male 0.05 0.00 10.57 0.00 ***  
 Student moved in current 
school year -0.08 0.02 -5.39 0.00 ***  
 Student moved in previous 
school year -0.09 0.01 -8.23 0.00 ***  
 Average classroom peer 
reading score 0.07 0.01 5.43 0.00 ***  
 Student was limited English 
proficient in previous year 0.22 0.02 13.29 0.00 ***  
 School ABC status is high 
performing 0.23 0.04 5.76 0.00 ***  
 School classified as high 
growth 0.09 0.02 4.04 0.00 ***  
 School ABC status is low 
performing -0.15 0.03 -4.47 0.00 ***  
 School classified as no 
growth -0.05 0.04 -1.25 0.21 
 Overage students in 
classroom at 75th percentile -0.12 0.05 -2.33 0.02 * 
 Birthdate below standard 
cutoff for cohort 0.15 0.03 5.57 0.00 ***  
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 Classroom standard deviation 
of previous year EOG math 
scores -0.01 0.02 -0.92 0.36 
 School is a magnet 0.22 0.04 5.14 0.00 ***  
 Years of teacher experience 0.00 0.00 -0.44 0.66 
 Violent acts per 1,000 0.00 0.00 -1.72 0.09 
 Average days in attendance 0.00 0.01 -0.30 0.77 
 Percentage Black students 0.00 0.00 -5.06 0.00 ***  
 Avg. proportion of teachers 
with 3 or fewer years exp 0.17 0.13 1.32 0.19 
 Pct of teachers who are fully 
licensed 0.26 0.18 1.45 0.15 
 Percentage Hispanic students 0.00 0.00 0.48 0.63 
 Percentage free/reduced 
lunch students at school -0.01 0.00 -5.59 0.00 ***  
 Per pupil-spending on regular 
instruction 0.00 0.00 -1.30 0.19 
 Avg proportion of teachers 
that returned to the school 
from previous year -0.21 0.12 -1.75 0.08 
 Avg proportion of teachers 
with advanced degrees 0.86 0.24 3.68 0.00 ***  
 Avg proportion of teachers 
with supplemental Masters 
degrees -0.59 0.26 -2.26 0.02 * 
 Avg proportion of National 
Board Certified teachers 0.30 0.18 1.67 0.09 
 Per-pupil expenditures 0.00 0.00 1.19 0.24 
 Short-term suspension rate 0.00 0.00 0.27 0.79 
 School receives Title I funds 0.03 0.03 0.90 0.37 
 Residual 0.11 0.11 
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 School random intercept 0.13 0.04 
 School intercept-slope 
covariance -0.01 -0.01 
 School random slope 0.01 0.01 
 Student random intercept 0.72 0.39 
 Student intercept-slope 
covariance -0.08 -0.08 
 Student random slope 0.15 0.15 

 

 

330 



 

Table 3.16. 

Math (Treatment Effects for RCT Control, Non-RCT and RCT Treatment—Imputed Data) 

Unconditional Conditional  
3 Level Random 
Slope 

3 Level Random 
Slope  

Est. SE t value p value Est. SE t value p value  
Intercept 0.04 0.02 1.88 0.061 0.07 0.01 5.44 0.00 ***  
 Developmental Time 0.00 0.00 -8.15 0.000 *** 0.00 0.00 -7.07 0.00 ***  
 Developmental Time-
Squared 0.00 0.00 -5.56 0.000 *** 0.00 0.00 -5.81 0.00 ***  
 Interruption/Transition to 
MS -0.01 0.01 -1.98 0.047 * -0.01 0.01 -2.10 0.04 * 
 DD: Non-RCT School by 
Interruption -0.05 0.03 -1.49 0.135 -0.05 0.03 -1.52 0.13  
 DD: RCT Control School 
by Interruption -0.02 0.04 -0.47 0.632 -0.02 0.04 -0.46 0.65  
 DD: RCT Treatment 
School by Interruption 0.00 0.04 0.02 1.000 0.00 0.04 0.10 0.91  
 Non-RCT School -0.04 0.11 -0.37 0.711 -0.06 0.07 -0.85 0.39  
 RCT Control School -0.10 0.14 -0.70 0.484 0.01 0.09 0.11 0.91  
 RCT Treatment School -0.02 0.14 -0.15 0.880 -0.02 0.09 -0.28 0.78  
 Classroom in 75th 
percentile 
academically/intellectually 
gifted -0.10 0.02 -4.28 0.00 ***  
 Student is Black -0.37 0.01 -53.06 0.00 ***  
 No of days attended 0.00 0.00 7.71 0.00 ***  
 Classroom in 75th 
percentile learning 0.06 0.04 1.49 0.14  
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disabled 
 Student is 
academically/intellectually 
gifted 0.97 0.01 145.65 0.00 ***  
 Student has learning 
disability -0.44 0.01 -53.62 0.00 ***  
 Classroom in 75th 
percentile of students 
receiving free or reduced 
price l 0.01 0.01 1.00 0.32  
 Student receives free or 
reduced price lunch -0.19 0.01 -34.92 0.00 ***  
 Student is Hispanic -0.05 0.01 -4.12 0.00 ***  
 Student has limited 
English proficiency -0.29 0.01 -21.39 0.00 ***  
 Average classroom peer 
math score 0.21 0.01 16.34 0.00 ***  
 Student is a male 0.05 0.00 11.08 0.00 ***  
 Student moved in current 
school year -0.09 0.01 -5.81 0.00 ***  
 Student moved in 
previous school year -0.09 0.01 -8.36 0.00 ***  
 Average classroom peer 
reading score 0.07 0.01 4.95 0.00 ***  
 Student was limited 
English proficient in 
previous year 0.22 0.02 13.23 0.00 ***  
 School ABC status is 
high performing 0.24 0.04 5.51 0.00 ***  
 School classified as high 
growth 0.09 0.02 3.92 0.00 ***  
 School ABC status is low -0.16 0.03 -4.52 0.00 ***  
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performing 
 School classified as no 
growth -0.04 0.04 -1.10 0.27  
 Overage students in 
classroom at 75th 
percentile -0.15 0.05 -2.88 0.00 ** 
 Birthdate below standard 
cutoff for cohort 0.14 0.03 5.21 0.00 ***  
 Classroom standard 
deviation of previous year 
EOG math scores 0.02 0.02 0.92 0.36  
 School is a magnet 0.18 0.04 4.14 0.00 ***  
 Classroom standard 
deviation of previous year 
EOG math scores -0.05 0.02 -3.02 0.00 ** 
 Years of teacher 
experience 0.00 0.00 -0.45 0.65  
 Violent acts per 1,000 0.00 0.00 -1.14 0.26  
 Average days in 
attendance 0.00 0.01 -0.57 0.57  
 Percentage Black students 0.00 0.00 -4.55 0.00 ***  
 Avg. proportion of 
teachers with 3 or fewer 
years exp 0.17 0.14 1.20 0.23  
 Pct of teachers who are 
fully licensed 0.20 0.19 1.08 0.28  
 Percentage Hispanic 
students 0.00 0.00 0.40 0.69  
 Percentage free/reduced 
lunch students at school -0.01 0.00 -5.52 0.00 ***  
 Per pupil-spending on 
regular instruction 0.00 0.00 -1.55 0.12  

333 



 

 Avg proportion of 
teachers that returned to 
the school from previous 
year -0.21 0.13 -1.66 0.10  
 Avg proportion of 
teachers with advanced 
degrees 0.86 0.25 3.43 0.00 ***  
 Avg proportion of 
teachers with 
supplemental Masters 
degrees -0.57 0.28 -2.06 0.04 * 
 Avg proportion of 
National Board Certified 
teachers 0.35 0.19 1.84 0.07  
 Per-pupil expenditures 0.00 0.00 1.20 0.23  
 Short-term suspension 
rate 0.00 0.00 0.49 0.62  
 School receives Title I 
funds 0.02 0.03 0.82 0.41  
 Residual 0.09 0.10  
 School random intercept 0.13 0.05  
 School intercept-slope 
covariance -0.01 -0.01  
 School random slope 0.01 0.01  
 Student random intercept 0.74 0.40  
 Student intercept-slope 
covariance -0.07 -0.07  
 Student random slope 0.15 0.15  
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Table 3.17. 

Reading (Overall PSA Treatment Effect—Imputed Data) 

Unconditional Conditional 
3 Level Random 
Slope 

3 Level Random 
Slope 

Est. SE t value p value Est. SE t value p value 
Intercept 0.02 0.02 1.48 0.140 0.04 0.01 5.87 0.00 *** 
 Developmental Time -0.01 0.00 -14.99 0.000 *** -0.01 0.00 -15.12 0.00 *** 
 Developmental Time-
Squared 0.00 0.00 -1.18 0.237 0.00 0.00 -2.26 0.02 * 
 Interruption/Transition to 
MS 0.00 0.00 0.63 0.530 0.00 0.00 1.09 0.28 
 Treatment School (PSA 
Design) -0.13 0.07 -1.87 0.062 -0.11 0.03 -3.25 0.00 ** 
 DD: Treatment (PS) by 
Interruption 0.04 0.02 2.43 0.015 * 0.04 0.02 2.31 0.02 * 
 Classroom in 75th 
percentile 
academically/intellectually 
gifted -0.11 0.03 -4.17 0.00 *** 
 Student is Black -0.34 0.01 -47.28 0.00 *** 
 No of days attended 0.00 0.00 5.19 0.00 *** 
 Classroom in 75th 
percentile learning disabled 0.07 0.04 1.55 0.12 
 Student is 
academically/intellectually 
gifted 0.86 0.01 123.44 0.00 *** 
 Student has learning 
disability -0.54 0.01 -63.09 0.00 *** 
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 Classroom in 75th 
percentile of students 
receiving free or reduced 
price l -0.02 0.01 -1.76 0.08 
 Student receives free or 
reduced price lunch -0.23 0.01 -39.04 0.00 *** 
 Student is Hispanic -0.10 0.01 -8.22 0.00 *** 
 Student has limited 
English proficiency -0.45 0.01 -31.62 0.00 *** 
 Average classroom peer 
math score 0.10 0.01 7.37 0.00 *** 
 Student is a male -0.08 0.01 -14.78 0.00 *** 
 Student moved in current 
school year -0.09 0.02 -5.98 0.00 *** 
 Student moved in previous 
school year -0.05 0.01 -4.71 0.00 *** 
 Average classroom peer 
reading score 0.17 0.01 12.23 0.00 *** 
 Student was limited 
English proficient in 
previous year 0.19 0.02 10.90 0.00 *** 
 School ABC status is high 
performing 0.16 0.03 5.52 0.00 *** 
 School classified as high 
growth 0.00 0.02 -0.26 0.80 
 School ABC status is low 
performing -0.11 0.02 -4.57 0.00 *** 
 School classified as no 
growth 0.00 0.03 -0.16 0.87 
 Overage students in 
classroom at 75th 
percentile -0.21 0.06 -3.58 0.00 *** 
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 Birthdate below standard 
cutoff for cohort 0.12 0.03 4.20 0.00 *** 
 Classroom standard 
deviation of previous year 
EOG math scores 0.04 0.02 2.17 0.03 * 
 School is a magnet 0.20 0.03 6.62 0.00 *** 
 Classroom standard 
deviation of previous year 
EOG math scores -0.07 0.02 -4.09 0.00 *** 
 Years of teacher 
experience 0.00 0.00 0.76 0.45 
 Violent acts per 1,000 0.00 0.00 -1.12 0.26 
 Average days in 
attendance 0.00 0.00 -0.65 0.52 
 Percentage Black students 0.00 0.00 -5.04 0.00 *** 
 Avg. proportion of 
teachers with 3 or fewer 
years exp -0.02 0.10 -0.21 0.83 
 Pct of teachers who are 
fully licensed 0.17 0.13 1.32 0.19 
 Percentage Hispanic 
students 0.00 0.00 -2.79 0.01 ** 
 Percentage free/reduced 
lunch students at school -0.01 0.00 -8.51 0.00 *** 
 Per pupil-spending on 
regular instruction 0.00 0.00 -1.21 0.23 
 Avg proportion of teachers 
that returned to the school 
from previous year -0.06 0.08 -0.75 0.45 
 Avg proportion of teachers 
with advanced degrees 0.64 0.17 3.85 0.00 *** 
 Avg proportion of teachers -0.52 0.18 -2.84 0.00 ** 
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with supplemental Masters 
degrees 
 Avg proportion of 
National Board Certified 
teachers 0.15 0.13 1.15 0.25 
 Per-pupil expenditures 0.00 0.00 1.35 0.18 
 Short-term suspension rate 0.00 0.00 -1.17 0.24 
 School receives Title I 
funds 0.00 0.02 0.18 0.86 
 Residual 0.12 0.11 
 School random intercept 0.08 0.01 
 School intercept-slope 
covariance 0.01 0.00 
 School random slope 0.00 0.00 
 Student random intercept 0.73 0.42 
 Student intercept-slope 
covariance -0.08 -0.07 
 Student random slope 0.15 0.15 
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Table 3.18. 

Reading (Difference in PSA Treatment Effect between RCT Control and Non-RCT— Imputed Data) 

Unconditional Conditional 
3 Level Random 
Slope 

3 Level Random 
Slope 

Est. SE t value p value Est. SE t value p value 
Intercept 0.02 0.02 1.43 0.152 0.04 0.01 5.76 0.00 *** 
 RCT District School -0.07 0.14 -0.46 1.000 -0.01 0.07 -0.14 0.89 
 Developmental Time -0.01 0.00 -15.31 0.000 *** -0.01 0.00 -15.23 0.00 *** 
 Developmental Time-
Squared 0.00 0.00 -1.23 0.220 0.00 0.00 -2.36 0.02 * 
 Interruption/Transition to 
MS 0.00 0.00 0.63 0.531 0.00 0.00 1.06 0.29 
 Treatment School (PSA 
Design) -0.10 0.09 -1.16 0.248 -0.11 0.04 -2.46 0.01 * 
 DD: Treatment (PS) by 
Interruption 0.05 0.02 2.23 0.026 * 0.05 0.02 2.13 0.04 * 
 DDD: RCT District 
School by Interruption -0.02 0.04 -0.64 0.525 -0.02 0.03 -0.52 0.60 
 Classroom in 75th 
percentile 
academically/intellectually 
gifted -0.10 0.03 -3.99 0.00 *** 
 Student is Black -0.34 0.01 -47.39 0.00 *** 
 No of days attended 0.00 0.00 5.06 0.00 *** 
 Classroom in 75th 
percentile learning disabled 0.08 0.04 2.00 0.05 * 
 Student is 
academically/intellectually 0.86 0.01 123.43 0.00 *** 
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gifted 
 Student has learning 
disability -0.54 0.01 -63.27 0.00 *** 
 Classroom in 75th 
percentile of students 
receiving free or reduced 
price l -0.02 0.01 -1.37 0.17 
 Student receives free or 
reduced price lunch -0.23 0.01 -39.11 0.00 *** 
 Student is Hispanic -0.10 0.01 -8.30 0.00 *** 
 Student has limited 
English proficiency -0.45 0.01 -31.59 0.00 *** 
 Average classroom peer 
math score 0.09 0.01 6.99 0.00 *** 
 Student is a male -0.08 0.01 -14.80 0.00 *** 
 Student moved in current 
school year -0.09 0.02 -6.14 0.00 *** 
 Student moved in previous 
school year -0.05 0.01 -4.83 0.00 *** 
 Average classroom peer 
reading score 0.18 0.01 13.27 0.00 *** 
 Student was limited 
English proficient in 
previous year 0.19 0.02 10.96 0.00 *** 
 School ABC status is high 
performing 0.16 0.03 5.44 0.00 *** 
 School classified as high 
growth 0.00 0.02 -0.30 0.76 
 School ABC status is low 
performing -0.10 0.02 -4.43 0.00 *** 
 School classified as no 
growth 0.00 0.03 -0.16 0.87 
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 Overage students in 
classroom at 75th 
percentile -0.21 0.06 -3.69 0.00 *** 
 Birthdate below standard 
cutoff for cohort 0.13 0.03 4.40 0.00 *** 
 Classroom standard 
deviation of previous year 
EOG math scores 0.00 0.02 0.05 0.96 
 School is a magnet 0.19 0.03 6.44 0.00 *** 
 Years of teacher 
experience 0.00 0.00 0.66 0.51 
 Violent acts per 1,000 0.00 0.00 -1.09 0.28 
 Average days in 
attendance 0.00 0.00 -0.64 0.52 
 Percentage Black students 0.00 0.00 -4.91 0.00 *** 
 Avg. proportion of 
teachers with 3 or fewer 
years exp -0.02 0.10 -0.26 0.80 
 Pct of teachers who are 
fully licensed 0.17 0.13 1.32 0.19 
 Percentage Hispanic 
students 0.00 0.00 -2.75 0.01 ** 
 Percentage free/reduced 
lunch students at school -0.01 0.00 -8.35 0.00 *** 
 Per pupil-spending on 
regular instruction 0.00 0.00 -1.19 0.23 
 Avg proportion of teachers 
that returned to the school 
from previous year -0.06 0.08 -0.74 0.46 
 Avg proportion of teachers 
with advanced degrees 0.64 0.17 3.77 0.00 *** 
 Avg proportion of teachers -0.52 0.19 -2.78 0.01 ** 
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with supplemental Masters 
degrees 
 Avg proportion of 
National Board Certified 
teachers 0.14 0.13 1.11 0.27 
 Per-pupil expenditures 0.00 0.00 1.33 0.18 
 Short-term suspension rate 0.00 0.00 -1.14 0.26 
 School receives Title I 
funds 0.00 0.02 0.15 0.88 
 Residual 0.11 0.11 
 School random intercept 0.08 0.01 
 School intercept-slope 
covariance 0.01 0.00 
 School random slope 0.00 0.00 
 Student random intercept 0.73 0.42 
 Student intercept-slope 
covariance -0.08 -0.07 
 Student random slope 0.15 0.15 
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Table 3.19. 

Reading (Treatment Effects for RCT Nontrol, Non-RCT and RCT Treatment— Imputed Data) 

Unconditional Conditional  
3 Level Random 
Slope 

3 Level Random 
Slope  

Est. SE t value p value Est. SE t value p value  
Intercept 0.02 0.02 1.48 0.138 0.04 0.01 4.91 0.00 ***  
 Developmental Time -0.01 0.00 -14.95 0.000 *** -0.01 0.00 -14.45 0.00 ***  
 Developmental Time-
Squared 0.00 0.00 -2.67 0.008 ** 0.00 0.00 -3.55 0.00 ***  
 Interruption/Transition to 
MS 0.00 0.00 0.23 0.822 0.00 0.00 0.57 0.57  
 DD: Non-RCT School by 
Interruption 0.05 0.02 2.20 0.028 * 0.05 0.02 2.06 0.04 * 
 DD: RCT Control School 
by Interruption 0.03 0.03 1.05 0.296 0.03 0.03 1.10 0.27  
 DD: RCT Treatment 
School by Interruption -0.01 0.03 -0.39 0.693 -0.01 0.03 -0.38 0.71  
 Non-RCT School -0.10 0.09 -1.14 0.255 -0.11 0.05 -2.05 0.04 * 
 RCT Control School -0.17 0.11 -1.51 0.130 -0.11 0.06 -1.74 0.08  
 RCT Treatment School -0.08 0.11 -0.75 0.438 -0.05 0.06 -0.76 0.45  
 Classroom in 75th 
percentile 
academically/intellectually 
gifted -0.09 0.02 -3.84 0.00 ***  
 Student is Black -0.34 0.01 -48.17 0.00 ***  
 No of days attended 0.00 0.00 5.20 0.00 ***  
 Classroom in 75th 
percentile learning disabled 0.10 0.04 2.37 0.02 * 
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 Student is 
academically/intellectually 
gifted 0.85 0.01 122.86 0.00 ***  
 Student has learning 
disability -0.54 0.01 -63.95 0.00 ***  
 Classroom in 75th 
percentile of students 
receiving free or reduced 
price l -0.02 0.01 -1.92 0.06  
 Student receives free or 
reduced price lunch -0.22 0.01 -38.69 0.00 ***  
 Student is Hispanic -0.10 0.01 -8.51 0.00 ***  
 Student has limited 
English proficiency -0.46 0.01 -32.52 0.00 ***  
 Average classroom peer 
math score 0.10 0.01 7.58 0.00 ***  
 Student is a male -0.08 0.01 -14.94 0.00 ***  
 Student moved in current 
school year -0.11 0.02 -7.42 0.00 ***  
 Student moved in previous 
school year -0.03 0.01 -3.22 0.00 ** 
 Average classroom peer 
reading score 0.17 0.01 12.60 0.00 ***  
 Student was limited 
English proficient in 
previous year 0.19 0.02 11.00 0.00 ***  
 School ABC status is high 
performing 0.15 0.04 4.33 0.00 ***  
 School classified as high 
growth 0.01 0.02 0.30 0.77  
 School ABC status is low 
performing -0.12 0.03 -4.28 0.00 ***  
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 School classified as no 
growth 0.01 0.03 0.16 0.88  
 Overage students in 
classroom at 75th 
percentile -0.26 0.06 -4.62 0.00 ***  
 Birthdate below standard 
cutoff for cohort 0.12 0.03 4.20 0.00 ***  
 Classroom standard 
deviation of previous year 
EOG math scores 0.04 0.02 2.37 0.02 * 
 School is a magnet 0.16 0.04 4.40 0.00 ***  
 Classroom standard 
deviation of previous year 
EOG math scores -0.07 0.02 -4.22 0.00 ***  
 Years of teacher 
experience 0.00 0.00 0.78 0.44  
 Violent acts per 1,000 0.00 0.00 -0.41 0.68  
 Average days in 
attendance 0.00 0.00 -0.97 0.33  
 Percentage Black students 0.00 0.00 -3.74 0.00 ***  
 Avg. proportion of 
teachers with 3 or fewer 
years exp -0.03 0.12 -0.22 0.82  
 Pct of teachers who are 
fully licensed 0.10 0.16 0.66 0.51  
 Percentage Hispanic 
students 0.00 0.00 -2.00 0.05 * 
 Percentage free/reduced 
lunch students at school -0.01 0.00 -7.37 0.00 ***  
 Per pupil-spending on 
regular instruction 0.00 0.00 -1.36 0.18  
 Avg proportion of teachers -0.06 0.10 -0.56 0.58  
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that returned to the school 
from previous year 
 Avg proportion of teachers 
with advanced degrees 0.63 0.21 3.06 0.00 ** 
 Avg proportion of teachers 
with supplemental Masters 
degrees -0.48 0.23 -2.12 0.03 * 
 Avg proportion of 
National Board Certified 
teachers 0.20 0.16 1.28 0.20  
 Per-pupil expenditures 0.00 0.00 1.19 0.24  
 Short-term suspension rate 0.00 0.00 -0.51 0.61  
 School receives Title I 
funds 0.00 0.02 0.16 0.87  
 Residual 0.11 0.10  
 School random intercept 0.08 0.02  
 School intercept-slope 
covariance 0.01 0.00  
 School random slope 0.00 0.00  
 Student random intercept 0.74 0.42  
 Student intercept-slope 
covariance -0.07 -0.07  
 Student random slope 0.16 0.16  
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Table 3.20. 

Intensity of Implementation in RCT and PSM Evaluation Periods: Number of CareerStart 
Lessons Used by School and Subject 
 
Math RCT PSM 

6 7 8 6 7 
350 30 34 26 27 24 
392 24 17 6 19 20 
396 11 13 6 7 4 
406 24 31 24 57 27 
464 23 26 29 21 34 
480 3 4 1 10 17 
492 20 11 10 10 10 

Language Arts RCT PSM 
6 7 8 6 7 

350 31 27 27 10 26 
392 22 13 12 23 17 
396 13 15 3 17 11 
406 19 24 27 45 33 
464 17 21 33 28 30 
480 3 8 14 7 17 
492 11 8 0 9 16 

Language Arts RCT PSM 
6 7 8 6 7 

350 29 16 22 22 21 
392 17 17 15 23 21 
396 14 13 4 4 2 
406 17 16 21 41 25 
464 24 29 35 26 30 
480 9 5 6 7 16 
492 9 12 1 5 6 

Language Arts RCT PSM 
6 7 8 6 7 

350 26 17 20 17 22 
392 22 24 28 17 25 
396 11 12 1 7 5 
406 15 19 16 42 25 
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464 23 27 31 21 32 
480 8 7 8 4 18 
492 7 6 0 4 4 

Seven RCT Treatment Schools 
RCT from 2006-07 (6th grade) through 2008-09 (8th grade) 
PSM from 2008-09 (6th grade) through 2009-10 (7th grade) (2010-11 not available) 
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APPENDIX 1. ESTIMATION OF COMPOSITE IN URM 

 
First, I calculated the difference between each student score at time w, w-1 and w-2, 

and the mean of school means at each time point. Second, I estimated the partitioned 

covariance matrix C:  

(7)  C = �c�� c��c�� C��� 
 

The expectation-maximization algorithm was used to estimate C in the presence of 

conditionally random missing values. Third, I estimated the coefficients of a projection 

equation, b, as follows:  

(8)  b =  [[��c�� 

Fourth, I estimated the following prediction equation, using the elements of b as the �� 
which predicts a composite of students’ previous test scores, spanning two years and two 

subjects, that have been recalibrated as pooled-within-teacher fixed effect values (m = math 

and r = reading).  

(9)  � "  �̂� %  ��=��*�=� $ �̂=�� % ��=-�*�=- $  �̂=-� 

% �����*��� $  �̂��� %  ���-�*��- $  �̂�-� 

Finally, I substituted the composite  �into the two-level (students nested in teachers) model.  
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APPENDIX 2. CAREERSTART EIGHTH GRADE MATHEMATICS LESSON 

  
Percent of Change: What's the Deal?  
Developed by Debbie Brooks, Peggy Dickey, and Jan Sullivan  
  
Essential Question: How can the ability to calculate percent of change be important in retail 
careers?  
  
Learning Outcomes  
• Students will practice calculating percent of change.  
  
Teacher planning  
Materials Needed  
• Worksheet: “What’s the Deal?” (Includes answer key.)  
• Overhead copy of worksheet  
• Calculator (One for each student)  
Time required for lesson: One class period  
  
Activities  
1) Ask students when they were last in a store that was having a sale. What signs did they 
see?  
(Students may mention seeing signs that said things like “20% off.”  
2) Using the career information below, discuss careers in retail stores with the class.  
3) Discuss what determines whether you have a percent increase or a percent decrease in 
price.  
(The original is either higher or lower than the new amount.)  
4) Tell the students that they are going to be in charge of generating a price sheet that lists 
mark-ups and sales prices for items that are in a retail store.  
5) Place students in groups of no more than three for this activity. Hand out “What’s the 
Deal?” worksheets and have students work through the information given. (40 minutes)  
6) Use the overhead copy of the worksheet to have each group write answers to share with 
the class. (5 minutes)  
7) Discuss with students what other careers might involve finding percent of change. (5 
minutes) If students need help brainstorming, you may choose to access the following 
websites:  
a) The Bureau of Labor Statistics’ Occupational Outlook Handbook  
b) The Bureau of Labor Statistics’ K-12 career home page  
c) CareerOneStop.org  
8) Career information  
a) Some of the information below comes from the Bureau of Labor Statistics’ Occupational 
Outlook Handbook.  
 
Retail Managers  
Retail managers supervise salespersons and other store personnel. They are responsible for 
hiring and training retail employees and oversee the daily operations of a retail store. One of 
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the daily operations is setting prices for the items or the inventory in the store. When an item 
is purchased, the store must mark-up the item.  
The mark-up needs to be high enough to bring in income, but low enough so the item will 
sell. When business becomes slow or items do not sell, stores run sales and discount the sales 
price. Sales managers must be accurate with the mark-ups and discounts.  
Retail stores must have a profit to stay in business. The formula used to determine profit is: 
Profit = Sales - Expenses. Sales are the money customers pay for items purchased. From 
these sales, expenses are deducted. Expenses include the cost for items or inventory, rent or 
mortgages, utilities, salaries for salespersons, salaries for office workers, salaries for 
custodians, advertising costs, office and cleaning supplies, insurance, payroll taxes, sales tax, 
shipping costs, and any other expense needed to operate the store. The profit will only come 
from what is left of the mark-up.  
• Education: High school and college-level courses related to business  
• Pay: $27,500 - $46,500  
• Growth: Slower than average; 4% increase over the next 10 years  
  
Salespersons  
Salespersons are responsible for assisting customers in finding items to purchase, ringing up 
the sales, and bagging purchases. They should always be courteous and helpful to the 
customer. Salespersons may be responsible for opening and closing the cash register and are 
expected to maintain accurate accounting of the contents in the cash register.  
• Education: No formal education is required  
• Pay: $17,000 - $41,500  
• Growth: Average growth; 12% increase over the next 10 years 
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