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ABSTRACT

Eric J. B. Daza: Longitudinal Regression Conditioning on Continuation.
(Under the direction of Michael G. Hudgens and Amy H. Herring)

Individuals in a longitudinal study may have missing data for multiple reasons, including in-

termittent missed visits or permanent study drop out. Additionally, individuals may experience

a truncating event, such as death, past which the outcomes of interest are no longer meaning-

ful. Kurland and Heagerty (2005) developed a method to conduct regression conditioning on be-

ing alive (RCA), which constructs inverse-probability weights (IPWs) of the dropout probabil-

ity among continuing individuals used to fit generalized estimating equations (GEE). RCA has

since been extended to allow for intermittent missingness (IM) of outcomes (Shardell and Miller,

2008). We further extend these methods to simultaneously accommodate different mechanisms

for dropout and IM, and call our method regression conditioning on continuation (RCC). RCC is

illustrated using data from a recent study of mother-to-child transmission of HIV to draw infer-

ence on mean infant weights subject to truncation from infant death or HIV infection.

Currently, there is no widely available software for conducting RCA. We present the xtrccipw

command in Stata, which can estimate the dropout IPWs required by RCC if there is no IM.

These IPWs estimated using xtrccipw are then used as weights in a GEE estimator using the

glm command, completing the RCC method. In the absence of truncation, the xtrccipw and

glm commands can also be used in a weighted GEE analysis. The xtrccipw command is demon-

strated by analyzing two example datasets and the original Kurland and Heagerty (2005) data.

A fundamental weakness of most non-sampling IPW methods is that the missing-data model

is unknown and yet must be correctly specified to obtain consistent mean-outcome estimates.

We extend the RCC approach to use augmented estimating equations (AEE) in what we call the

augmented RCC (ARCC) method. In addition to the missing-data model specified by IPW-GEE

methods, AEE approaches specify a model for the outcome joint probability. However, only one
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of these two models need be correct for the corresponding mean-outcome estimator to be con-

sistent, making such techniques doubly robust to model misspecification. The empirical bias of

the ARCC and RCC estimators are characterized and compared in a simulation study, and the

ARCC method is applied to the mother-to-child HIV transmission study.
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To Mommy (Celia Alvarez).
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CHAPTER 1: INTRODUCTION

Longitudinal studies in developing regions that investigate nutritional outcomes such as fal-

tering or micronutrient deficiency sometimes suffer from high rates of attrition. Subject data be-

comes missing either intermittently, or from dropout or loss to follow-up (i.e., when study partic-

ipants drop out of the study before its conclusion, and do not return). Dropout is sometimes re-

ferred to as attrition, or monotonic missingness, and intermittent missingness (IM) is sometimes

called arbitrary or non-monotonic missingness, respectively. While standard methods like mul-

tiple imputation (MI) and inverse-probability weights (IPWs) can respectively adjust for these

particular types of data missingness, investigators may rely on incorrect default methods for han-

dling missingness.

Unless specified otherwise, standard generalized estimating equations (GEE) procedures will

assume that any missing outcomes are missing completely at random (MCAR), which will pro-

duce biased estimates if the observability of an outcome at any given study time point depends

on any of the outcomes themselves. If a more severely HIV-compromised study participant is

less likely to make it into the clinic because of her weakened immune system, then her chances

of missing a clinical visit for a viral load assay depend on her viral load; viral load measurements

cannot therefore be justified as being MCAR. However, if we can at least assume that her chances

of coming in for a viral load measurement are completely predictable using only her previously

observed viral loads, we can use this information to impute participant outcomes past their point

of dropout.

In the latter situation, the outcomes are considered to be merely missing at random (MAR)

once previous outcomes have been taken into account. Standard maximum-likelihood (ML) based

mixed-effects models, also known as random-effects models or simply just mixed models, assume

MAR by design. Similarly, standard GEE approaches can be adjusted to account for previous

outcomes by incorporating IPWs that are constructed based on the probability of being observed

at a given time point given observed outcomes. The IPWs are used to balance the contribution
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of each complete-case observation, and these methods are frequently called “weighted estimating

equations” (IPWGEE).

Unfortunately, these MAR-based imputations are sensible only if we can reasonably expect a

subject’s unobserved post-dropout outcomes to exist. This expectation no longer makes sense,

for instance, for those study subjects who die before the end of the study—an example of a no-

tably different type of data missingness that is defined by a precluding or “truncating” event,

after which a subject cannot have outcomes that are meaningfully defined. (Under attrition and

dropout, we can at least assume that unobserved outcomes exist.) In a study of average trends

in weight, we do not observe the weights for a living participant who prematurely drops out, as-

suming they remain alive for the duration of the study. A person who dies before the end of the

study, however, cannot subsequently have any sensible weight measurements. The problem with

many longitudinal analysis methods that adjust for MAR is that they tacitly envisage weights

past the point of death because they consider death to be a missingness event similar to dropout.

Researchers have since developed methods that can correctly differentiate between dropout

and “truncation by death”. Kurland and Heagerty (2005) devised one such IPWGEE technique

to estimate the dropout probability at each time point, but only among the surviving subjects

at each of those time points. They tested their method on a binary longitudinal outcome in a

prospective cohort study of elderly disability, compared trends across three groups defined by dis-

ability risk, and demonstrated small empirical bias in mean estimates relative to those of other

standard methods. However, their approach cannot handle IM. Shardell and Miller (2008) devel-

oped a solution that extends the Kurland and Heagerty (2005) method to allow for IM. Neither

approach, however, can handle outcomes subject to both dropout and IM simultaneously.

We propose to 1.) extend this IPWGEE method to account for truncation while also distin-

guishing between dropout and IM, and to then apply this new approach to draw inference about

a continuous longitudinal nutritional outcome in a mother-to-child HIV transmission study, 2.)

create a general programming implementation of the original method in Stata, and 3.) augment

our extended method to produce a doubly robust estimator.
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CHAPTER 2: LITERATURE REVIEW

2.1 Motivation from Nutritional Studies

2.1.1 On (Not) Addressing Missing Data

A number of nutrition studies have adjusted for mortality through simple exclusion of sub-

jects with missing outcomes, or by assuming data were MCAR. A follow-up study of the effects

of dietary supplements randomized to then-pregnant women in rural Gambia employed GEE/GLS

methods that assumed the data were MCAR (Hawkesworth et al., 2008). The authors defended

this assumption by asserting that those recruited and those lost to follow-up were similar with

respect to the empirical distributions of other covariates, so that both observed and unobserved

outcomes could likewise have been similarly distributed. In a randomized trial of micronutrient

supplements in rural Nepal, Christian et al. (2003) assumed data were MCAR by running a stan-

dard, unadjusted GEE analysis. A randomized study conducted in Zambia investigating the ef-

fect of breastfeeding cessation on the growth faltering of uninfected infants born to HIV-infected

mothers also assumed their data were MCAR (Arpadi et al., 2009). Culnane et al. (1999) exam-

ined the long-term effects of ART randomized to uninfected infants of HIV-infected mothers, but

only the survivors were analyzed.

Reporting descriptive statistics of observable characteristics between those included and ex-

cluded from an analysis is a good first step at dealing with missing data, also known as missing-

ness. However, these findings may not justify an MCAR analysis if the observed data are in fact

associated with missingness, and such an analysis does not use of all of the data that are actually

available. Subjects that are similar with respect to a particular set of secondary characteristics

may nonetheless differ systematically in primary characteristics (i.e., outcomes or covariates) de-

pending on whether or not those primary characteristics are observed. This is a strong possibility

in longitudinal analyses, wherein the primary characteristics of the subjects at risk for becoming

missing may change over time.
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2.1.2 The BAN Study

The Breastfeeding, Antiretrovirals, and Nutrition (BAN) Study (van der Horst et al., 2009;

Chasela et al., 2010) was a clinical trial that randomized 2369 pairs of mothers infected with hu-

man immunodeficiency virus (HIV) and their uninfected infants. Mother-infant pairs in the trial

were scheduled to be followed for 48 weeks, with women receiving counseling for exclusive breast-

feeding during the first 24 weeks, hereafter the “study period.” During the study period, the

trial’s objectives were to assess the benefit of nutritional supplementation taken by women, the

safety and efficacy of antiretroviral treatment (ART) given either to mothers or their infants to

prevent HIV transmission, and the feasibility of exclusive breastfeeding followed by early, rapid

breastfeeding cessation. BAN employed a 3 × 2 factorial design involving a 2-arm maternal nu-

tritional intervention component crossed with a 3-arm ART component. Maize flour was given

to all enrolled women for family consumption, and half of these mothers were randomized to

receive a lipid-based nutrient supplement (LNS). Initially, ARTs were assigned either to moth-

ers, infants, or neither; this last control group was eliminated by the data and safety monitoring

board (DSMB) in March 2008 after 78% of participants had already received treatment.

For the first objective, BAN study investigators wanted to draw inference about the mean in-

fant anthropometric outcomes weight, length, and body mass index (BMI) over time among in-

fants who were alive and HIV-uninfected. Death and infection could therefore be said to “trun-

cate” the trajectory of outcomes, leaving these outcomes undefined after truncation. Among

infants who were alive and HIV-uninfected, some outcomes may have been unobserved because

mothers intermittently missed visits, or because they dropped out of the study altogether. An

infant was considered eligible for an intent-to-treat analysis if during the study period s/he had

available outcome measurements for more than one visit, and was a singleton at birth. Out of

2238 eligible infants, by the end of the study period, 307 had dropped out (14% of all infants),

and 187 infants who had not dropped out had either become infected with HIV or had died (8%

of all infants; 162 alive and infected, 25 dead). While they were alive, uninfected, and still in the

study, 645 infants missed 973 scheduled visits intermittently (5% of all scheduled visits before

truncation or dropout). Scheduled visits were irregularly spaced, and mother-infant pairs adhered

closely to the visit schedule.
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The original analyses were carried out using random-intercept mixed-effects models that con-

ceptualized truncated outcomes for the aforementioned 187 infants as well-defined but unob-

served MAR outcomes, thereby conflating truncation with missingness. Using such an analysis,

Flax et al. (2012) concluded that intervention was not significantly associated with infant weight.

Classifying the truncation and missingness events together may have masked a true association

among infants who survived uninfected at any given visit. In addition, infants may have dropped

out or missed visits intermittently (before dropout) for entirely different reasons. Hence, the Flax

et al. (2012) analysis must be corrected to separately account for death or infection, dropout, and

IM.

2.2 Methods for Handling Missing Data

Rubin (1976), followed by Little and Rubin (2002), laid out the comprehensive framework of

missingness mechanisms used to characterize how outcomes that always exist are related to their

observation status. When the reasons for observing an outcome are statistically independent of

any outcomes (observed or not), the outcomes are said to be missing completely at random. If

outcome missingness is no longer statistically associated with unobserved outcomes after con-

ditioning on observed outcomes, then outcomes are described as missing at random. If missing-

ness is associated with unobserved (and possibly also observed) outcomes, the outcomes are said

to be not missing at random, or missing not at random (MNAR). An equivalent way of defining

MNAR is that outcomes are MNAR if they are neither MCAR nor MAR. These three cases are

exhaustive.

Maximum likelihood estimation (MLE) can be used to estimate model parameters of longi-

tudinal outcomes when missingness is present. These methods often factorize the outcome and

missingness joint probability in one of three ways (Little, 1993, 1995; Diggle et al., 2002). For

example, Little and Rubin’s three missingness mechanisms can be defined using a selection fac-

torization, with the estimand of inferential interest being the marginal, or unconditional, mean.

Selection models define a conditional distribution that allows the “selection” of an outcome (i.e.,

to be measured or observed) to depend on some subset of the outcomes; this conditional distri-

bution is paired with a marginal distribution for all outcomes (i.e., the complete outcome data).
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They are particularly useful under MAR, where the missingness mechanism is often said to be ig-

norable or non-informative. In this case, inference carried out using only observed outcomes will

apply to all outcomes. MLE is efficient if, in addition, the missingness-mechanism parameters are

distinct from those of the outcomes (Rubin, 1976; Little, 1995; Diggle et al., 2007). Conversely,

an MNAR missingness mechanism is called non-ignorable or informative.

The two other factorizations are the pattern-mixture and shared-parameter factorizations.

Pattern-mixture models allow the outcomes to depend on missingness status. These models are

particularly suited to outcomes that can be stratified (or otherwise categorized) by subgroups de-

fined by their missingness “patterns”. (For example, the outcome distributions of participants

who become missing at time points 2 and 5 may differ.) This conditional distribution is paired

with a marginal distribution for the missingness mechanism. Shared-parameter models, by con-

trast, attribute any association between the outcomes and missingness to underlying subject-

specific latent variables; missingness and outcomes “share” a participant’s random-effect coef-

ficients (Ten Have et al., 1998). They are most useful when the estimands of interest are the

subject-specific mean outcomes. These are also known as random-effect models (Wu and Car-

roll, 1988; Hogan and Laird, 1997; Diggle et al., 2002), random-coefficient selection models (Lit-

tle, 1995), random-effect selection models (Ribaudo et al., 2000), and joint models for longitudi-

nal measurements and event-time data (Henderson et al., 2000; Guo and Carlin, 2004; Hu et al.,

2015).

The method of generalized estimating equations (GEE) is a commonly used non-MLE ap-

proach when one wishes to draw inference about the marginal means of an outcome for a large

sample. The three joint-probability factorizations may also be applied to GEE. While standard,

unweighted GEE is consistent only under MCAR (Liang and Zeger, 1986; Diggle et al., 2002),

adjustment using IPWs extends their usefulness to MAR and MNAR settings, where each IPW is

the reciprocal of a probability of not being missing (Robins et al., 1995; Scharfstein et al., 1999a).

In this IPWGEE approach, weighting balances (i.e., adjusts) the sample contribution of observed
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outcomes across all observed values of variables associated with missingness; the goal is to con-

sistently estimate the population parameter. This technique has notable origins in the survey-

sampling literature (Horvitz and Thompson, 1952), wherein each IPW corresponds to a sample-

selection probability that is known by design.1

Under MAR, the MLE and IPWGEE approaches possess somewhat complementary advan-

tages and disadvantages. While both approaches rely on correct specification of the mean out-

come model, MLE additionally relies on correct modeling of the joint distribution of outcomes;

however, MLE does not require knowledge of the missingness model (Kurland et al., 2009; Laird,

1988). Conversely, IPWGEE does not specify the joint-outcome distribution, but does rely on

correct modeling of the missingness model. MLE can be considerably more efficient than IP-

WGEE if the joint-outcome model is correct, and is well-suited to handle outcomes unbalanced

over time (i.e., occurring at arbitrary time points, or with varying frequency). What IPWGEE

lacks in efficiency and temporal flexibility, it makes up for through inference about mean out-

comes that is robust to misspecification of the covariance structure (which likelihood-based infer-

ence requires to be correct), provided the missingness model is correct. Furthermore, IPWGEE

is more flexible than MLE by allowing missingness patterns to be modeled on other auxiliary

covariates; MLE assumes outcomes are MAR conditional only on the covariates specified in the

mean outcome model. Doubly robust estimators leverage both approaches by modeling both the

joint outcomes and missingness patterns. These estimators are “doubly robust” because they are

consistent if just one of either the missingness or joint-outcome model is correct. MNAR out-

comes are more complicated to analyze using either approach because they require some knowl-

edge of the unobserved outcomes. The usual way of handling such outcomes is to impose a set of

1Caution should be exercised when intuiting the relationship between IPWs and the sample size in an IP-
WGEE analysis. In survey sampling, the Horvitz-Thompson (HT) estimator of the population total uses IPWs
defined as the inverse of the sample-inclusion probability of each individual in the sample (Lohr, 2010). Because
the sum of the IPWs is greater than or equal to the sample size, these IPWs might be understood to inflate the
sample size. Hence, the IPWGEE approach is frequently compared to the related method of imputation, which lit-
erally increases the sample size by adding estimated outcomes to the sample where none were originally observed.
However, it is important to remember that many IPW estimators in survey sampling do not actually “increase”
the sample size in this way. In fact, the commonly used HT ratio estimator of the population mean uses sampling-
probability IPWs that are normalized or standardized over the sum of the IPWs, such that the normalized weights
sum to one (Kish, 1965; Basu, 1971; Hájek, 1971). This HT ratio estimator is identical to the IPWGEE estima-
tor for a continuous mean outcome at one time point with independent errors and an intercept covariate; i.e., no
sample inflation has occurred in balancing the observed-outcome contributions.
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plausible assumptions or distributions regarding the unobserved outcomes. A sensitivity analysis

is then conducted to characterize any effects on inference that result from varying these assump-

tions.

Until now, we have assumed that all unobserved outcomes are well-defined. However, in a

number of missing-data settings, conceptualizing outcomes unobserved due to death similarly to

those unobserved due to missingness may not make sense substantively. Many authors have ac-

knowledged that in such cases, “missing” outcomes may be ill-defined after death, even though

death and true missingness both lead to unobserved outcomes that are easily (and therefore,

often) handled within the Little and Rubin framework. To address this, Ribaudo et al. (2000)

jointly modeled outcomes and censored survival times by applying methods originally developed

by Schluchter (1992) to handle informatively censored survival data in longitudinal studies. In

a review of such joint-modeling approaches, Billingham and Abrams (2002) expounded upon

the relationship between missingness and a quality-adjusted life-years outcome that accounts

for death. Pauler et al. (2003) used mixed-effects models to handle MNAR outcomes, grouping

outcomes by different patterns of times-to-event for dropout and death. However, many of these

approaches may still fundamentally treat death as a missingness event. For example, Pauler et al.

(2003) point out that marginalization over all outcome patterns at all times is still possible us-

ing their approach, thereby implying the existence of outcomes after death; these authors espouse

reporting of outcomes that resemble those of Billingham and Abrams (2002).

More recent methods have avoided this tacit conflation of death with missingness. Dufouil

et al. (2004) explored the use of IPWs that distinguish death and dropout in a study of cognitive

decline in the elderly. Borrowing the survey-sampling analogy that weighting increases the effec-

tive sample size, they argued that it did not make sense to implicitly impute outcomes for elderly

participants who had died because this immortal sample population would not represent the tar-

get population with its higher mortality rate. Following this, Kurland and Heagerty (2005) devel-

oped an IPWGEE method they called regression conditioning on being alive (RCA) for an anal-

ysis involving an elderly population that experienced both dropout and death. RCA was applied

to estimate disability status over time, but—crucially—only among living participants at each

time point. Shardell and Miller (2008) subsequently extended RCA to handle missing covariates,
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and to allow either outcomes or covariates to be unobserved intermittently. le Cessie et al. (2009)

adapted RCA for use with a multi-state model of disease, whereby both dropout and a contin-

uous quality-of-life outcome could vary depending on disease stage; i.e., alive and disease-free,

or alive but relapsed. Basu and Manning (2010) extended the Lin et al. (1997) survival-adjusted

estimator through the use of RCA to separate out covariate effects on continuous dropout and

survival times, and on their continuous outcome.

2.3 Regression Conditioning on Continuation

2.3.1 Overview

Kurland and Heagerty (2005) defined two problematic types of mean-outcome models: Un-

conditional models assume that mean outcomes at each time point exist for both living and de-

ceased subjects, and fully conditional models, while accounting for survival, require that the sur-

vival time of each subject be known. Clinical use of the latter could be problematic because it

requires the clinician to specify the time of death, which would not be known in advance, in or-

der to provide counsel about the expected outcome at a given time point. As a remedy, Kurland

and Heagerty (2005) proposed RCA, an IPWGEE mean model that only partly conditions on

survival. Inferences about outcomes from the partly conditional model of RCA can answer the

more general question of what outcome to expect among the living at a given time point; i.e.,

one need not know or posit a specific time of death. However, it should be emphasized that RCA

must first be conducted in order to draw inference on mean outcomes for subsequent use in clin-

ical practice. To conduct RCA, the time of death for each participant in the original (i.e., pre-

practice) study must be known. Hence, the real utility of RCA is that the resulting inferences

can more easily be applied towards future out-of-sample predictions for the same target popula-

tion, as would be the case in clinical practice.

Unlike standard MLE methods, RCA can produce consistent mean-outcome estimates for

MAR outcomes subject to death. This is because the RCA missingness model conditions on be-

ing alive, while the MLE joint-outcome likelihood model is marginalized over survival. Suppose

death happens completely at random such that death itself is not associated with any of the

outcomes, and that outcomes are either MCAR or MAR. If the likelihood model for observed
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outcomes is correct, then MLE produces consistent mean-outcome estimates because this likeli-

hood is independent of survival. Now suppose that death occurs at random such that death is

associated with observed past outcomes. Because the joint distribution of observed outcomes is

associated with survival, conducting MLE on this marginal likelihood no longer estimates the

same parameters that are estimated by RCA in general, even if missingness is ignorable. One

immediate solution is to specify the likelihood model to condition on survival, as is done in joint-

modeling approaches. In a recent example of this approach, Hu et al. (2015), developed a general

competing-risks, multiple-imputation framework that handles truncation and intermittent miss-

ingness requiring specification of models for both outcome and survival.

The key technical contribution of RCA is its definition of the IPW as the reciprocal of the

probability of non-dropout, but only for individuals with continuing trajectories at a given time

point. Like Kurland and Heagerty (2005), we are interested in drawing inference on longitudinal

mean outcomes for subjects who are alive. However, subjects in the BAN study must be both

alive and HIV-uninfected; i.e., BAN infant outcomes continue to be well-defined over time un-

less they are truncated due to either infant death or HIV infection. To accommodate this more

general concept of outcome-trajectory continuation and truncation, we call our RCA extension

regression conditioning on continuation (RCC). Like the BAN infant outcomes, some of the dis-

ability outcomes of Kurland and Heagerty (2005) were intermittently missing, which they ad-

dressed through imputation before the point of dropout (i.e., before the last IM time point). A

more principled approach was taken by Shardell and Miller (2008), who built an RCA method

that not only allows missingness to be intermittent, but that can also handle both outcome and

covariate missingness.

Our main contribution in developing RCC will be the ability to distinctly adjust for outcome

dropout and IM. Most IPWGEE methods do not consider dropout to reflect an underlying pro-

cess, such that arbitrarily missing outcomes before dropout are treated the same as monotoni-

cally missing outcomes that necessarily occur after dropout. Notable exceptions are found in the

work of Yang and Shoptaw (2005) and Yang et al. (2008), who recognized the substantive impor-

tance of distinguishing between the dropout and IM processes. To do so, these authors developed

the likelihood-based method of multiple partial imputation, which first imputes intermittently
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missing outcomes in order to subsequently address dropout. Following the developments in Kur-

land and Heagerty (2005) and Shardell and Miller (2008), and applying the concepts of Yang, Li,

and Shoptaw, we will define IM as being conditional on non-dropout.

2.3.2 Notation & Assumptions

Suppose we have a random sample of i = 1, . . . , n participants or subjects. Each participant

can be measured at up to j = 1, . . . ,m scheduled study time points. Dependence on i is sup-

pressed for notational ease when it is not ambiguous. Let Yj denote the outcome at time point j.

Let Cj = 1 if the truncating event has not occurred by time point j, and let Cj = 0 otherwise.

We assume the outcome Yj is well defined if and only if Cj = 1, and that truncation is a perma-

nent state transition such that Cj = 0 implies Ck = 0 for all k > j. The opposite of truncation

is referred to as continuation. If Cj = 1, let Rj = 1 if the outcome is observed at time point j;

otherwise, let Rj = 0. If Cj = 1, let RDj = 1 if a participant has not dropped out by time point

j; otherwise, let RDj = 0. If all continuing outcomes are missing at and beyond time point j, then

we define dropout to have occurred by time point j; i.e., dropout is monotonic such that Rk = 0

for all k ≥ j if Ck = 1. Let ∗ denote all undefined values. We adopt the convention that Yj = ∗,

Rj = ∗, and RDj = ∗ if Cj = 0.

For clarity, the following shorthand notation is used when applicable. For a quantity A that

can be either a random variable or a constant, let Aj denote the value of A at time point j, and

let Āj =
(
A1, . . . , Aj

)
so that Āj−1 represents an individual’s history of A prior to time point

j, where Āj−1 = ∅ at j = 1. For a random variable B, if B is discrete then let p(b) denote

Pr(B = b), the probability mass of B at b. Likewise, if B is continuous then let p(b) denote f(b),

the probability density of B at b. Let p(·|b) denote p(·|B = b).

Kurland and Heagerty (2005) describe regressions that incorrectly assume that truncation and

dropout both result in extant but unobserved outcomes as “unconditional regression models . . .

that do not account for survival status” (Kurland and Heagerty, 2005). We henceforth refer to

any method that does not account for truncation by conditioning on continuation as an uncondi-

tional regression (UR) method or approach.
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2.3.3 Estimand of Interest

In conducting regression, the mean outcome at time point j is often denoted as a function of a

p×1 covariate vector xj . This can be written as g
{
E
(
Yj
∣∣xj)} = η(xj), where η

(
xj
)

is commonly

specified as x′jβ with parameters β that are linear in xj , and g(a) is a link function for a quan-

tity a. Hereafter, we consider xj to be fixed, and hence suppress the notation for dependence on

xj in all expressions. Let µRCCj = E
(
Yj
∣∣Cj = 1

)
denote the mean outcome for individual i whose

trajectory is still continuing at time point j. The quantity µRCCj is our partly conditional esti-

mand of interest (Kurland and Heagerty, 2005; Kurland et al., 2009).

The UR definition of truncation as missingness can result in estimation of a quantity not

equal to µRCCj . The expected outcome E
(
Yj
)

for subject i at time point j can be expanded as

µj = µRCCj Pr (Cj = 1) + E
(
Yj
∣∣Cj = 0

)
Pr (Cj = 0) . (2.1)

If there is no truncation such that Pr
(
Cj = 0

)
= 0, then (2.1) reduces to µj = µRCCj . Definitional

problems arise when Pr
(
Cj = 0

)
> 0. Specifically, E

(
Yj
∣∣Cj = 0

)
is ill-defined if Pr

(
Cj = 0

)
> 0

because Yj = ∗ if Cj = 0. Hence,

µj = µRCCj Pr (Cj = 1) + E
(
∗
∣∣Cj = 0

)
Pr (Cj = 0)

is also ill-defined. The UR estimand of interest is µj itself, and UR considers truncation to be a

missingness event that can be handled via IPWs or imputation. Specifically, UR defines Cj = RDj

so that µRCCj = E
(
Yj
∣∣RDj = 1

)
and

µj = µRCCj Pr
(
RDj = 1

)
+ E

(
Yj
∣∣RDj = 0

)
Pr
(
RDj = 0

)
.

Recalling our discussion in Section 2.3 of MLE conducted using a marginal likelihood, it can now

be seen that such an approach is a UR method with survival defined as non-dropout, where the

estimand of interest is µ̄m.
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2.3.4 Estimation and Inference

In this section, we give a brief overview of the RCC theory covered extensively in Chapter

2.5. The generalized estimating equations of RCC are introduced first to precisely define µRCCij .

The dropout and IM mechanisms are then defined more precisely, and we show that µRCCij can

be consistently estimated under MAR if these mechanisms are correctly specified. For continuous

and unbounded outcomes, the identity link g(a) = a is commonly specified. Because the esti-

mand of interest in the BAN study was a continuous outcome, the theory was developed using an

identity link.

Details on the general class of GEE methods can be found elsewhere (Liang and Zeger, 1986;

Diggle et al., 2002, for example). Let µRCCij = x′ijβ
RCC denote the model for the mean outcome

as a linear function of covariates xij with corresponding parameters βRCC . The GEE expression

relevant to RCC is the vector estimating equation

U
(
βRCC

)
=

n∑
i=1

m∑
j=2

xijCij
RijR

D
ij

πij

(
Yij − µRCCij

)
, (2.2)

where

πij = Pr
(
Rij = 1, RDij = 1

∣∣r̄i(j−1), r̄
D
i(j−1), ȳim, c̄im

)
is the joint probability of not being missing and not having dropped out, conditional on the his-

tory of missingness and dropout, on all outcomes, and on the full truncation vector. We some-

times refer to πij as the missingness model. Recalling that Yij = ∗ if Cij = 0, we adopt the

convention that the summand in (2.2) for individual i at time point j equals 0 rather than being

undefined if Cij = 0. It can be shown that the estimating equations (2.2) are unbiased for zero

such that E
{
U
(
βRCC

)}
= 0. Hence, the solution to U

(
βRCC

)
= 0 is an unbiased estimate of

βRCC . Unfortunately, this estimation procedure is generally intractable because πij cannot be

calculated if ȳim is not fully observed (i.e., if Rij = 0 is true at least once in the sample). This

would not be a problem, however, if in reality πij only depends on observed outcomes.

One way of formulating such a πij presents itself through the expansion

πij = rDi(j−1) Pr
(
Rij = 1

∣∣RDij = 1, r̄i(j−1), ȳim, c̄im
)

Pr
(
RDij = 1

∣∣r̄i(j−1), R
D
i(j−1) = 1, ȳim, c̄im

)
.
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The IM mechanism is defined as 1 − Pr
(
Rij = 1

∣∣RDij = 1, r̄i(j−1), ȳm, c̄m
)
, and the dropout mech-

anism is defined as 1 − Pr
(
RDij = 1

∣∣r̄i(j−1), R
D
i(j−1) = 1, ȳim, c̄im

)
. As stated earlier, IM is defined

as missingness conditional on non-dropout, which differs from the usual definition of IM as arbi-

trary or non-monotonic missingness at any time point. Under certain assumptions described in

Section 3.2.2, these probabilities are seen to depend only on observed outcomes, and to thereby

imply that πij likewise depends only on observed outcomes. These assumptions are also shown to

imply that outcomes are MAR, which is broadly defined as

p
(
r̄im
∣∣ȳim, c̄im) = p

(
r̄im
∣∣ȳobs
im , c̄im

)
, (2.3)

where ȳobs
ij =

{
yik : Rik = 1, k ≤ j

}
denotes the observed values of ȳij .

Nonetheless, the functional form of πij must still be known in order to perform estimation and

inference using (2.2). That is, knowledge of the dropout and IM mechanisms coupled with a true

MAR assumption is not sufficient for estimation and inference. Non-parametric approaches can

be used to place minimal constraints or assumptions on the mechanism distributions. However,

to keep our initial development of RCC focused, we modeled the distributions instead. This para-

metric approach allowed for straightforward, consistent estimation of πij . The RCC estimator is

the solution to U
(
βRCC

)
= 0 using consistent estimates of πij , and is both consistent for βRCC

and asymptotically multivariate normal (Robins et al., 1995). This estimator can therefore be

used to conduct inference on βRCC using the empirical sandwich estimator of estimator variance

available in standard software, which treats each estimated πij as fixed, and is generally conser-

vative in constructing 95% Wald confidence intervals (Robins et al., 2000; Robins, 2000; Preisser

et al., 2002).

2.3.5 Methods Comparison

In Section 3.3, we conduct a simulation study to illustrate the performance of RCC along-

side the following three methods, which are not expected to be consistent for βRCC . To reflect

common analyses that assume outcomes are MCAR, GEE estimation is conducted using a lag-1

autoregressive (AR-1) working correlation structure and no IPWs. A UR approach is also imple-

mented, via IPWGEE with an independence working correlation, that nonetheless accounts for
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IM. To illustrate the effect of incorrectly treating all arbitrary missingness as IM even while cor-

rectly conditioning on continuation (i.e., incorrect application of the Shardell and Miller (2008)

method), RCC is conducted with IPWs that only specify an IM model; a dropout model is not

specified.

Simulations are used to compare the empirical relative bias and coverage probability of these

four estimators under 12 data-generation scenarios defined by varying the truncation, dropout,

and IM mechanisms, where outcome correlation followed an AR-1 structure. Kurland and Hea-

gerty (2005) assessed RCA performance using simulated data generated with only one trunca-

tion and dropout mechanism. Specifically, they generated monotonically MCAR outcomes sub-

ject to truncation completely at random; i.e., truncation that was not associated with any of the

outcomes. In our simulations, outcomes were generated subject to a combination of one of two

truncation mechanisms, one of two dropout mechanisms, and one of three IM mechanisms. These

mechanisms are defined using “completely at random” and “at random” concepts.

2.4 Augmented Regression Conditioning on Continuation

In Section 2.3.4, it was shown that the RCC estimator is consistent for µRCCj , but only if the

missingness model πj was correctly specified. In practice, πj is usually not known, and hence can

be wrongly specified in general. In a comprehensive simulation study, Preisser et al. (2002) re-

ported circumstances under which IPWGEE with a misspecified dropout model actually performs

worse than unweighted GEE. To mitigate the bias incurred by such misspecification, a clever,

technical GEE method has since been developed that involves specifying an additional modeled

component that “augments” the original IPWGEE.

In a series of seminal papers, Robins, Rotnitzky, and Zhao (RRZ) described a class of IPW-

based semi-parametric estimators that includes the RCC estimator (Robins et al., 1994, 1995;

Robins and Rotnitzky, 1995). They described methods for augmenting each IPWGEE summand

with a conditional expectation term. The resulting augmented IPW (AIPW) estimator has the

desirable property of being doubly robust in that misspecification of either the missingness model
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or the conditional expectation model (but not both simultaneously) still yields a consistent esti-

mator of the parameters, if the mean-outcome model is correct. In these articles, the RRZ meth-

ods were applied to MAR data with both monotonically and arbitrarily missing (i.e., IM) out-

comes, allowing for intermittently missing covariates. They were later extended to account for

MNAR data (Vansteelandt et al., 2007) and intermittently missing longitudinal MAR outcomes

and covariates (Chen and Zhou, 2011). The missingness and causal-inference literatures have

both been enriched by the development and use of these augmented estimating equations (AEE)

techniques (Robins et al., 1995; Rotnitzky et al., 1998; Scharfstein et al., 1999a; van der Laan

and Robins, 2003; Lunceford and Davidian, 2004; Bang and Robins, 2005; Kang and Schafer,

2007; Wooldridge, 2007).

Recent longitudinal AEE methods have been developed that differentiate between truncation,

dropout, and IM. The AEE method developed by Chen and Zhou (2011) does not address trun-

cation, but does handle both outcome and covariate IM. Shardell et al. (2015) extended an IP-

WGEE principal-stratification technique developed by Tchetgen Tchetgen et al. (2012) for draw-

ing causal inference on a continuous longitudinal outcome subject to death, thereby addressing

truncation. Shardell et al. (2015) augmented the original IPWGEE expressions, in the process

allowing for separate specification of the dropout and truncation mechanisms. However, their

approach does not handle IM. Both Chen and Zhou (2011) and Shardell et al. (2015) developed

their methods for application to MAR data with time-varying covariates. Hence, their techniques

are well-suited for use in augmenting RCC for MAR outcomes subject to truncation, dropout,

and IM. We use a pattern-mixture approach similar to that of le Cessie et al. (2009) to develop a

doubly robust RCC method that we call augmented RCC (ARCC).

2.5 Summary and Research Outline

Significant advances have been made in developing IPWGEE techniques that properly distin-

guish truncation from missingness. In particular, regression conditioning on being alive produces

consistent estimates of longitudinal mean outcomes by consistently estimating the probability of

dropout only for living participants at a given time point, then calculating the reciprocal of this

estimated probability as the inverse-probability weight that is used to balance the contribution of

each non-missing observation in weighted-GEE estimation. However, no such methods we know
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of can adjust for both dropout and IM. Our RCC method accomplishes this through specification

of distinct mechanisms for dropout and IM that reflect different underlying processes, wherein IM

is defined as arbitrary or non-monotonic missingness occurring only before dropout.

In this dissertation, we create software to make the original RCA method available for widespread

use, and extend RCA to accommodate distinct dropout and IM mechanisms. We call this extended-

RCA method regression conditioning on continuation. In Chapter 2.5, we develop the RCC the-

ory, compare its performance to three other common estimators under various scenarios, and ap-

ply RCC to an analysis of the BAN study data. Using the more general language and definitions

of RCC, a Stata implementation of RCA is developed in Chapter 3.8 for general application to

any dataset. Finally, in Chapter 4.6 we augment the RCC estimating equations to construct the

ARCC estimator. The performance of ARCC and RCC is compared under various scenarios, and

ARCC is applied to the previous BAN study analysis, with results compared to the those from

RCC. Additional details are provided in the Appendix.
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CHAPTER 3: REGRESSION CONDITIONING ON CONTINUATION

3.1 Introduction

The Breastfeeding, Antiretrovirals, and Nutrition (BAN) study (van der Horst et al., 2009;

Chasela et al., 2010) was a clinical trial in which 2369 mothers infected with human immunode-

ficiency virus (HIV), along with their infants, were randomized in a 3 × 2 factorial design to one

of three antiretroviral treatment (ART) arms, and to one of two lipid-based nutrient supplement

(LNS) arms. Mother-infant pairs in the trial were scheduled to be followed for 48 weeks, with

women receiving counseling for exclusive breastfeeding during the first 24 weeks, hereafter the

“study period.” BAN’s objectives during the study period were to assess (i) the benefit of nutri-

tional supplementation taken by women, (ii) the safety and efficacy of ART given either to moth-

ers or their infants to prevent HIV transmission to the infant, and (iii) the feasibility of exclusive

breastfeeding followed by early, rapid breastfeeding cessation. For the first objective, BAN study

investigators wanted to draw inference about the mean infant anthropometric outcomes weight,

length, and body mass index (BMI) over time among infants who were alive and HIV-uninfected.

Infant outcomes were not of interest after infection or, of course, death. Therefore, death and in-

fection are events that “truncate” the trajectory of infant outcomes over time. Additionally, some

infant outcomes were not observed during the study period either because mother-infant pairs

still in the study missed scheduled visits intermittently, or because they permanently dropped

out of the study for reasons other than death or infection. In an analysis of the association of

LNS with infant growth, Flax et al. (2012) included an infant in the analysis sample if s/he was a

singleton at birth, who during the study period was alive and uninfected for the first two weeks,

with available infant outcome data for more than one visit. The intent-to-treat (ITT) analysis in-

cluded infants in the analysis regardless of death or infection in the first two weeks. Out of 2238

ITT-sample infants, by the end of the study period 307 had dropped out (14% of all infants), and

187 infants who had not dropped out had either become infected with HIV or had died (8% of

all infants; 162 alive and infected, 25 dead). In addition, while they were alive, uninfected, and

18



still in the study, 645 infants missed 973 scheduled visits intermittently (5% of all scheduled visits

before truncation or dropout).

Typical approaches to handling missing data such as weighted estimating equations (WEE) or

maximum likelihood based on mixed-effects models frequently do not distinguish truncation from

dropout, in essence envisaging infant outcomes past the point of death or infection. Kurland and

Heagerty (2005) describe such approaches that implicitly assume the existence of infant outcomes

after truncation as “unconditional regression” (UR) models because they estimate the mean out-

come averaged over individuals who have and have not been truncated. Kurland et al. (2009)

consider both standard selection models and conditional submodels of pattern-mixture models

to be UR models. Mean infant outcomes for alive and uninfected infants may be estimated indi-

rectly with these two types of UR models, with additional modeling assumptions (Kurland et al.,

2009). As an alternative to UR models, joint modeling of longitudinal measurements and time

to truncation might be employed (Henderson et al., 2000; Guo and Carlin, 2004; Kurland et al.,

2009).

In order to estimate mean outcomes without relying on additional assumptions or joint model-

ing, Kurland and Heagerty (2005) developed a regression method conditional on being alive for a

population with monotonic dropout, treating death as a truncating event. Because we are inter-

ested in outcomes for infants who continue on in the study not just alive but also uninfected, we

will call this approach regression conditioning on continuation (RCC), where continuation is the

complement of truncation. Shardell and Miller (2008) subsequently extended Kurland and Hea-

gerty (2005) to handle missing covariates in addition to missing primary outcomes, and to allow

intermittent missingness (IM) via the same mechanism as dropout. RCC consistently estimates

longitudinal mean infant outcomes by utilizing weights based on the inverse of the estimated

probability of dropout only for subjects with a continuing outcome at any given time point.

To date, RCC methods such as those of Kurland and Heagerty (2005) and Shardell and Miller

(2008) do not allow for different reasons for dropout and IM. Such differences may be important

in settings such as the BAN study, in which the reason a participant misses a study visit may dif-

fer from the reason for dropout. Yang and Shoptaw (2005) and Yang et al. (2008) recognized the

substantive importance of distinguishing between dropout and IM in such instances, and hence
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developed the likelihood-based method of multiple partial imputation (MPI) that adjusts for IM

before handling dropout. Another limitation of RCC methods is that the empirical properties of

these estimators have only been characterized in a few settings. For example, Kurland and Hea-

gerty (2005) examined the empirical bias of the UR and RCC estimators for RCC parameters

of interest when the truncation time was correlated with outcome, and when dropout depended

on the truncation time but not on the outcome. They did not, however, investigate scenarios

wherein dropout and IM depend on outcomes via different mechanisms, which is likely to be the

case in practice.

Motivated by the BAN study, we develop an RCC method that defines IM as being condi-

tional on non-dropout (similar to the MPI approach) in order to adjust for both IM and dropout.

In Section 3.2, we introduce notation and key assumptions, motivate the use of RCC, and extend

the method to allow for different IM and dropout mechanisms. In Section 3.3, the empirical bias

and variance of the RCC and UR estimators are characterized in a simulation study. BAN study

data are subsequently analyzed using RCC in Section 3.4, and some concluding remarks are given

in Section 3.5. Additional details are provided in Sections 3.6 and 3.8.

3.2 Methods

3.2.1 Notation & Assumptions

Consider a random sample of i = 1, . . . , n subjects, each of whom is scheduled to be measured

at fixed study time points j = 1, . . . ,m. Where it is not ambiguous, the dependence on i will

be suppressed for notational ease. Let Yj denote the outcome at time point j. Let Cj = 1 if the

truncating event, i.e., death or infection, has not occurred by time point j, and let Cj = 0 oth-

erwise. Assume the outcome Yj is well defined if and only if Cj = 1. Assume that the truncated

state is irreversible such that Cj = 0 implies Ck = 0 for all k > j. If Cj = 1, let Rj = 1 if the

outcome is observed at time point j; otherwise, let Rj = 0. If Cj = 1, let RDj = 1 if an individual

has not dropped out by time point j; otherwise, let RDj = 0. Dropout is defined to occur by time

point j if all non-truncated outcomes are missing at and beyond time point j; i.e., Rk = 0 for all

k ≥ j if Ck = 1. Note that RDj = 0 implies RDk = 0 for all k > j such that Ck = 1. We use

∗ to denote all undefined values, and adopt the convention that Yj = ∗, Rj = ∗, and RDj = ∗ if

Cj = 0. Let S =
∑m

j=1Cj denote the number of visits before a trajectory was truncated, with

20



S = m indicating that the trajectory was not truncated. The following shorthand notation will

be used for clarity wherever possible. For any random variable A, let Aj denote the value of A at

time point j, and let Āj =
(
A1, . . . , Aj

)
so that Āj−1 represents an individual’s history of A prior

to time point j, where Āj−1 = ∅ at j = 1. For any random variable A, if A is discrete then let

p(a) denote Pr(A = a), the mass of A at a. Likewise, if A is continuous then let p(a) denote f(a),

the density of A at a. Let p(·|a) denote p(·|A = a).

3.2.2 Dropout & Intermittent Missingness Mechanisms

In this section, we describe different assumptions regarding the probabilities of dropout and

IM. The following conditional probabilities are needed for making our assumptions about dropout

and IM. Let

λDj (cj) = Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳobs

j−1, cj
)
,

where ȳobs
j =

{
yk : Rk = 1, k ≤ j

}
denotes the observed values of ȳj . Thus, the probability

of dropping out conditional on the history of missingness, on past non-dropout, on the history of

observed outcomes, and on current truncation status is 1− λDj (cj). Let

λIMj (cj+1, cj) = Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳ
obs
j−1, cj+1, cj

)
,

where
{
cj+1, cj

}
=
{
cj
}

at j = m. Thus, for j ≤ m the probability of IM conditional on current

non-dropout, on the histories of missingness and observed outcomes, on truncation status at the

next time point if j < m, and on current truncation status is 1− λIMj (cj+1, cj).

We now define analogous assumptions regarding the dropout and IM mechanisms. We say

dropout is at random (DAR) if

Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳm, c̄m

)
= λDj (cj),

and dropout is completely at random (DCAR) if

Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳm, c̄m

)
= Pr

(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, cj

)
.
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Dropout is not at random if it is neither DAR nor DCAR. Likewise, we say IM is at random

(IMAR) if

Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳm, c̄m
)

= λIMj (cj+1, cj),

and IM is completely at random (IMCAR) if

Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳm, c̄m
)

= Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, cj+1, cj
)
.

IM is not at random if it is neither IMAR nor IMCAR.

These assumptions will be shown to imply that outcomes are missing at random (MAR). Out-

comes are said to be MAR if

p
(
r̄m
∣∣ȳm, c̄m) = p

(
r̄m
∣∣ȳobs
m , c̄m

)
. (3.4)

Outcomes are missing completely at random (MCAR) if p
(
r̄m
∣∣ȳm, c̄m) = p

(
r̄m
∣∣c̄m) . Outcomes

that are neither MAR nor MCAR are missing not at random. The left side of (3.4) can be ex-

panded to

p
(
r̄m
∣∣ȳm, c̄m) = p

(
r̄m, r̄

D
m

∣∣ȳm, c̄m) =
m∏
j=1

p
(
rj , r

D
j

∣∣r̄j−1, r̄
D
j−1, ȳm, c̄m

)

because r̄m implies r̄Dm. Because RDj = 1 and R̄Dj =
(
1, . . . , 1

)
are equivalent statements, we have

Pr
(
Rj = 1, RDj = 1

∣∣r̄j−1, r̄
D
j−1, ȳm, c̄m

)
= rDj−1 × Pr

(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳm, c̄m
)
× Pr

(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳm, c̄m

)
,

where we refer to 1− Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳm, c̄m
)

as the IM mechanism, and where we refer

to 1− Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳm, c̄m

)
as the dropout mechanism. Hence, outcomes are MAR

if DAR and IMAR are true.

Two common regression approaches misclassify truncation, dropout, or IM. The first is the

UR approach mentioned earlier, which equates truncation with missingness. One may also de-

fine all missingness as IM and therefore only model missingness and not dropout, as was done in
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Shardell and Miller (2008) with respect to the outcomes; call this the IMRCC approach. Define

the UR analogues to λDj (cj) and λIMj (cj+1, cj) as

λD†j = Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳobs

j−1

)
,

λIM†j = Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳ
obs
j−1

)
,

respectively, and let

λIM‡j (cj) = Pr
(
Rj = 1

∣∣r̄j−1, ȳ
obs
j−1, Cj = cj

)
represent the IMRCC analogue to λIMj (cj+1, cj). These quantities will be used in Section 3.2.3 to

construct the UR and IMRCC estimators.

3.2.3 Estimators and Inference

In this section, we describe the RCC, UR, and IMRCC estimators used to draw inference

about our estimand of interest, the mean outcome conditional on continuation at time point j

for individual i, denoted µRCCij = E
(
Yij
∣∣Cij = 1

)
. In the regression setting, for a continuous and

unbounded outcome we might posit a linear model of the form µRCCij = x′ijβ
RCC , where xij is an

observed p × 1 vector of (possibly time-dependent) covariates with first element 1 for the inter-

cept, and where βRCC is the corresponding parameter vector. Following Kurland and Heagerty

(2005), consider the vector estimating equation

U
(
βRCC

)
=

n∑
i=1

m∑
j=1

xijCij
RijR

D
ij

πij

(
Yij − µRCCij

)
, (3.5)

where

πij = Pr
(
Rij = 1, RDij = 1

∣∣r̄i(j−1), r̄
D
i(j−1), ȳim, c̄im

)
is the joint probability of not being missing and not having dropped out, conditional on the his-

tory of missingness and dropout, on all outcomes, and on the full truncation vector. We adopt

the convention that if Cij = 0, then the summand in (3.5) for individual i at time point j equals

0 rather than being undefined because of Yij = ∗. The probability πij is unknown in practice, but

can be consistently estimated if the dropout and IM mechanism models are correctly specified.
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The quantity 1
/
πij is the corresponding inverse-probability weight (IPW). Suppose DAR and

IMAR hold such that πij = λIMij (ci(j+1), cij)λ
D
ij (cij). Let π̂ij = λ̂IMij (ci(j+1), cij) λ̂

D
ij (cij) denote

a consistent estimator of πij , and let β̂ denote the solution to U
(
βRCC

)
= 0 when π̂ij is sub-

stituted for πij . The estimator β̂ is consistent and asymptotically multivariate normal for βRCC

(Robins et al., 1995). Standard software packages allow the empirical sandwich estimator of the

variance of β̂ to be computed as if the IPWs are known and fixed. This estimator is expected to

be conservative (Robins et al., 2000; Robins, 2000; Preisser et al., 2002). Thus, 95% Wald confi-

dence intervals (CIs) constructed using the empirical sandwich estimator should have a coverage

probability for βRCC of at least 95%.

Compared to RCC, the UR and IMRCC approaches each produce a different estimator that is

generally not consistent for βRCC when outcomes are DAR and IMAR. Comparing UR to RCC,

outcomes for individuals with Cij = 0 are used to estimate λD†ij but not λDij (1). And outcomes

for individuals with Ci(j+1) = 0 are used to estimate λIM†ij whereas λIMij (0, 1) = 1 is set. The UR

estimator is the solution to U
(
βRCC

)
= 0 with πij replaced by π̂†ij = λ̂IM†ij λ̂D†ij . If there is no

truncation, then the RCC and UR estimators are identical. Otherwise, the estimating equations

(3.5) with πij replaced by π̂†ij will generally be biased for zero. Comparing IMRCC to RCC, out-

comes for individuals with RDij = 0 are used to estimate λIM‡ij (1) but not λIMij (1, 1). At j = Si in

particular, λIM‡ij (1) is estimated while λIMij (0, 1) = 1 is set. The IMRCC estimator is the solution

to U
(
βRCC

)
= 0 with πij replaced by λ̂IM‡ij . If there is no dropout, then the RCC and IMRCC

estimators are identical. Otherwise, the estimating equations (3.5) with πij replaced by λ̂IM‡ij will

generally be biased for zero. Hence, the UR and IMRCC estimators will generally not be consis-

tent for βRCC , and therefore µRCCij .

3.3 Simulation Study

A simulation study was conducted to characterize the finite-sample performance of RCC and

UR estimators. The continuous outcome of infant weight Yij was simulated for n = 2238 infants,

reflecting the 2238 analysis sample infants of the BAN study. The mean outcome of interest was

µRCCij = E
(
Yij
∣∣Cij = 1

)
at visits j = 1, . . . , 10. Outcomes were generated for m = 11 visits to

reflect the fact that BAN outcomes (and therefore, missingness) were observed past the last visit

of analytical interest, i.e., visit 10. Recall that the IM mechanism at visit j depends on whether
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or not j is the last visit. Hence, estimation of the IM IPW at the last analytical visit depends on

whether or not this is also the last visit with outcomes available for IM IPW estimation.

Simulations were conducted under a variety of scenarios with different truncation and miss-

ingness mechanisms. Truncation was not at random (TNAR) if truncation was generated con-

ditional on possibly unobserved outcomes by specifying c̄im associated with ȳim whereby lighter

infants were more likely to be truncated. Truncation was completely at random (TCAR) if trun-

cation was generated independently of the outcomes by specifying c̄im independent of ȳim. Sim-

ulation parameters were chosen so that heavier infants were more likely to drop out under DAR.

Infant weight trajectories were simulated according to combinations of the following mechanisms:

TCAR or TNAR; DCAR or DAR; and IMCAR, IMAR similar to the truncation mechanism

(IMART), or IMAR similar to the dropout mechanism (IMARD). For each of the 12 resulting

scenarios, we generated and analyzed ` = 1, . . . , 1000 simulated data sets. All parameter values

for generating outcomes and truncation indicators were derived from the BAN data, and can be

found in Tables 3.2 and 3.3.

3.3.1 Data Generation Procedure

Outcomes and truncation were generated first. For all infants and all visits, age at visit j was

set equal to µage(j). Let Ti represent the natural logarithm of truncation time from birth for indi-

vidual i. Let τj = log
(
µage(j)

)
, and define Cij = I

(
Ti > τj

)
. Let ρyjyk represent the autoregressive

(lag-1) correlation between outcomes at time points j and k, and let ρyjt represent the correla-

tion between outcome at time point j and T . Let Ψ represent the symmetric (m + 1) × (m + 1)

matrix where
{
ρyjyk

}
comprise the first corresponding m × m elements, and where

{
ρyjt

}
com-

prise the corresponding elements of row m + 1 and column m + 1, with element m + 1,m + 1

equal to 1. Outcomes and logged truncation time were generated from the multivariate normal

distribution of
(
Y1, . . . , Ym, T

)
with means

(
µy1 , . . . , µym , µt

)
, variances

(
σ2
y1
, . . . , σ2

ym , σ
2
t

)
, and

correlations Ψ. TNAR outcomes were generated by setting ρyjt ≡ γσyjσ
−1
t where γ was a con-

stant derived from the BAN data, while TCAR outcomes were generated by setting ρyjt ≡ 0.

Note that realizations ti, cij , and si were thereby generated simultaneously.

Dropout and IM were subsequently generated. Note that Si ≥ j and Cij = 1 are equivalent

statements, as are Si = j and
{
Ci(j+1) = 0, Cij = 1

}
where

{
Ci(j+1)

}
= ∅ at j = m. We

25



proceeded as follows.

1. If si ≥ 1, then rDi1 was generated using λDi1(1).

2. If si > 1, the following was done for j < si. If rDij = 0, then rij ≡ 0 was set. Otherwise, if

rDij = 1 then rij was generated using λIMij (1, 1). Subsequently, if rij = 0 then rDi(j+1) ≡ rDij

was set. Otherwise, if rij = 1 then rDi(j+1) was generated using λDi(j+1)(1).

3. At j = si, rij ≡ rDij was set.

4. For all j > si, r
D
ij and rij were left undefined.

For a quantity b, let gj
(
b
)

= (j − 1)−1b
∑j−1

k=1 kRikYik for j > 1. Dropout was generated us-

ing the probit model λDij (1) = Φ
{
ηD0 + I(j > 1)gj

(
ηD1
)}

, where Φ
(
·
)

is the standard normal

cumulative distribution function, I(a) = 1 if statement a is true and I(a) = 0 otherwise, and

ηD0 = Φ−1
(
p

1/m
D

)
where a fixed value was assigned to pD. IM was generated using a model identi-

cal to the dropout model, with λDij (1), ηD0 , ηD1 , and p
1/m
D replaced with λIMij (1, 1), ηIM0 , ηIM1 , and

pIM , respectively, where a fixed value was assigned to pIM . For each of the seven mechanisms,

the simulation values pD, ηD1 , pIM , and ηIM1 are listed in Table 3.4. Values for pD and pIM were

chosen so that truncation, dropout, and IM occurred at rates of approximately 8%, 14%, and 5%,

respectively, by visit 10.

3.3.2 Results

For each simulated data set, the estimand of interest was parametrized as µRCCij = βRCC0 +

I(j > 1)βRCCj−1 . Let βRCC =
(
βRCC0 , . . . , βRCC9

)′
, the parameter vector that was estimated for

each data set using the following four regression methods.

1. URAR was estimated using GEE with autoregressive (AR) working correlation and no

IPWs. This assumes truncation, dropout, and IM occur completely at random, and is not

generally expected to be consistent.

2. UR was estimated using GEE with independence working correlation using IPWs. This

allows truncation, dropout, and IM to occur at random, but assumes that all three events

mask unobserved data. It is not generally expected to be consistent.
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3. IMRCC was estimated using GEE with independence working correlation using IPWs. This

allows truncation and IM to occur at random, and assumes that only IM masks unobserved

data. However, this method assumes there is no dropout, and only specifies an IM model.

Estimates of λIM‡ij (1) were calculated by fitting the probit model for λIMij (1, 1) defined in

Section 3.3.1. IMRCC is not generally expected to be consistent.

4. RCC was estimated using GEE with independence working correlation using IPWs. This

allows truncation, dropout, and IM to occur at random, and assumes that only dropout

and IM mask unobserved data. It is expected to be consistent.

Empirical bias and coverage were then calculated for each method as follows. Let β̂q` denote the

estimate of βRCCq for data set `. For each of the q = 0, . . . , 9 parameters, the empirical bias of β̂q

was calculated as 1000−1
∑1000

`=1 β̂q` − βRCCq . The estimate β̂` and its empirical sandwich variance

estimator were used to construct 95% Wald CIs. The empirical coverage probability of each β̂q

was calculated as the proportion of CIs over all 1000 data sets that contained βRCCq . The true

value of µRCCij , a non-trivial function of µyj , was calculated as detailed in Section 3.7.

The results are summarized as follows, where good performance was defined as an absolute

empirical bias of less than or equal to 0.005. RCC and UR performed as good as or better than

URAR and IMRCC in all 12 scenarios, and RCC generally performed slightly better than UR.

URAR and IMRCC each performed worst in 10 out of 12 scenarios. Most importantly, IMRCC

performed worst even when all events occurred completely at random because at any visit j, the

IPW for an individual who had dropped out earlier was generally larger than the IPW for an in-

dividual who had not yet dropped out. This occurred because past (and therefore smaller) ob-

served outcomes of individuals who had previously dropped out were overrepresented in estimat-

ing λIM‡ij (1). The results for two scenarios are shown in Figure 3.1 for illustration. The increasing

bias at later visits was a result of sample attrition, and was shown to decrease with samples of

size 10000 (results not shown). The over-coverage of RCC was an expected result of using the

empirical sandwich estimator to conservatively estimate the variance.
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3.4 Analysis of the BAN Study

We applied the RCC method to the BAN data in our sample of n = 2238 infants. Our goal

was to estimate mean infant outcome at each of nine scheduled follow-up visits for those infants

who were alive and uninfected (i.e., who had continuing outcome trajectories) at that visit, while

accounting for 307 dropouts, 187 truncations, and 973 IM observations.

The mean outcome for infant i at visit j conditional on continuation, µij = E
(
Yij
∣∣Cij = 1

)
,

was modeled separately for boys and girls because their growth patterns were considered to be

different a priori. We modeled the mean outcome as a linear function of 1.) drug assignment to

no ART (the reference), maternal ART, or infant ART, 2.) supplement assignment to no LNS

(the reference) or LNS, 3.) dummy indicator variables for visit with visit 1 as the reference, and

4.) interactions between drug assignment, supplement assignment, and visit. The conditional

probability of non-dropout, λDij (1), was modeled as a probit function with observed past infant

outcomes Ȳ obs
i(j−1) and drug/supplement group assignments and their interactions as predictors.

The conditional probability of non-IM, λIMij (1, 1), was modeled likewise. The corresponding IPWs

were used to estimate the mean outcomes at each visit, and standard errors were estimated using

the empirical sandwich variance estimator.

We report the primary results for the infant outcomes of length, BMI, and weight. Infant

length was not significantly associated with drug or supplement in either boys (Wald test p =

0.72) or girls (p = 0.82). Infant BMI was also not significantly associated with drug or supple-

ment in either boys (p = 0.60) or girls (p = 0.18). Likewise, infant weight was not significantly

associated with drug or supplement in either boys (p = 0.46) or girls (p = 0.23). Figure 3.2 de-

picts the estimated means and 95% CIs separately for girls and boys, for each treatment group at

study period weeks 6, 12, 18, and 24 (i.e., visits 5, 7, 8, and 10, respectively).

These findings are consistent with those in Flax et al. (2012), who concluded that LNS was

not significantly associated with infant weight. These authors also posited that LNS may have

been associated with fewer adverse effects of ART on the weight of male infants. This result

is generally supported by our findings. While Flax et al. (2012) considered all unobserved out-

comes to be intermittently missing, our RCC approach distinguished truncation, dropout, and

IM as different events by separating truncation from dropout and IM, and modeling dropout
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and IM distinctly. Because our findings of statistical significance agree with those of the origi-

nal analyses, they provide reassurance that the intermittent missingness, dropout, and truncation

mechanisms may not have been notably different. However, the proportions of these events may

also have been small enough to mask any true differences between mechanisms. Like Flax et al.

(2012), we concluded that no treatments were substantively important in explaining the trend in

mean infant weight over time, and instead report the reduced-model parameters in Table 3.1.

The BAN mean infant weight trajectories differed from the WHO median standard growth

curves for children. These are plotted alongside their respective WHO growth curves (WHO

Multicentre Growth Reference Study Group, 2006) in Figure 3.3. Exact values of WHO infant

weights were not available for visits 8 through 10 (BAN study weeks 18, 21, and 24), and Figure

3.3 instead plots WHO weights at months 4, 5, and 6, which correspond to weeks 17.39, 21.74,

and 26.09, respectively. The following discussion only applies to visits 2 through 7. At these vis-

its, the BAN infant weights were significantly lower than those of girls and boys in the WHO

standard population of children; i.e., the 95% confidence intervals of the BAN estimates did not

overlap those of the WHO median infant weights at any visit. However, the BAN mean infant

weights for both girls and boys fell above their respective WHO 25th percentiles (not shown). On

average, the BAN girls were roughly 0.2 kg lighter than girls in the WHO standard population of

children, while the BAN boys were roughly 0.3 kg lighter than boys in the WHO standard popu-

lation of children.

3.5 Discussion

In this paper, the method of RCC for continuous longitudinal outcomes was extended to ac-

commodate different dropout and IM mechanisms. The empirical performance of estimators us-

ing each of three IPW variants was characterized for 12 scenarios with different mechanisms for

truncation, dropout, and intermittent missingness. Our simulation study demonstrated that RCC

achieved much smaller empirical bias and better coverage than did IMRCC in general, even when

truncation, dropout, and IM had occurred completely at random. The simulations also illus-

trated that RCC may be applied to samples with various truncation patterns without having to

model the actual truncation probabilities.

Analysis of the BAN study data using our RCC method supported the findings of the original
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study by Flax et al. (2012). Drug and supplement were not found to be significantly associated

with weight in either HIV-negative infant girls or boys. Even after distinguishing truncation from

dropout and IM, and modeling dropout and IM separately, mean model estimates did not sub-

stantially differ from the original findings that considered all unobserved outcomes to be inter-

mittently missing at random. However, our investigation was limited to models that assumed at-

random mechanisms, while actual mechanisms may have been not-at-random. Additional studies

of the sensitivity of the mean infant weight estimates to such mechanism misspecifications could

be undertaken to assess the robustness of the results presented here.

3.6 Simulation Parameter Values

All BAN-derived parameters for generating outcomes and truncation are listed in Supporting

Tables 3.2 and 3.3. All parameters for generating truncation, dropout, and IM for each of the 12

simulation scenarios are listed in Supporting Table 3.4.

Parameters for generating outcomes and truncation were derived from the BAN data as fol-

low. We first fit the mean model

Yij = α′0 + α′j−1I
(
j > 1

)
+ εij

to the BAN data, where εij ∼ N
(
0, σ′2εj

)
was measurement error with cov

(
εij , εi′j′

)
= 0 for all

i, j, i′ 6= i, and j′. We assumed a lag-1 autoregressive correlation structure for the errors. Let

σ′2yj = V
(
Yij
)

= V
(
εij
)

= σ′2εj Let ρ′yjyk = corr
(
Yj , Yk

)
for k = 1, . . . ,m, and let Ψ′ =

{
ρ′yjyk

}
represent the symmetric m×m correlation matrix. Let

µ′yj = E
(
Yij
)

= α′0 + α′j−1I
(
j > 1

)
.

We thereby obtained estimates of coefficients α̂′0, . . . , α̂
′
9, variances σ̂′2y1

, . . . , σ̂′2ym , correlations Ψ̂′,

and means µ̂′0, . . . , µ̂
′
9. Let

Ti = log
(
TDi −BDi

)
,

where TDi and BDi are the truncation date and birth date, respectively, for individual i. Let µ′t

and σ′2t represent the empirical mean and variance, respectively, of logged truncation times for
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Table 3.1: BAN infant weight RCC parameter estimates for reduced models.

Sex Covariate Estimate (95% CI)

male intercept 3.07 (3.05, 3.10)
visit 2 0.13 (0.12, 0.15)
visit 3 0.37 (0.36, 0.39)
visit 4 1.00 (0.98, 1.03)
visit 5 1.56 (1.54, 1.59)
visit 6 2.05 (2.02, 2.08)
visit 7 2.85 (2.81, 2.89)
visit 8 3.71 (3.66, 3.76)
visit 9 4.05 (4.00, 4.10)
visit 10 4.33 (4.27, 4.38)

female intercept 2.98 (2.95, 3.00)
visit 2 0.13 (0.12, 0.15)
visit 3 0.34 (0.32, 0.36)
visit 4 0.90 (0.87, 0.92)
visit 5 1.39 (1.36, 1.42)
visit 6 1.81 (1.78, 1.84)
visit 7 2.52 (2.48, 2.56)
visit 8 3.30 (3.26, 3.35)
visit 9 3.61 (3.56, 3.66)
visit 10 3.88 (3.82, 3.93)

Note: All estimates were statistically signifi-
cant at α = 0.001.
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Figure 3.1: Simulation study: Empirical biases (×1000) and coverage probabilities (%) under
TCAR, DCAR, IMCAR and TNAR, DAR, IMARD. (1000 simulated datasets, 2,238 subjects;

URAR �, UR A, IMRCC �, RCC u. Dotted lines are marked at ±5 on bias figures.)
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Figure 3.2: Estimates and 95% CIs of mean weight for HIV-negative, alive infants at study period weeks 6, 12, 18, and 24 using
data from the BAN study. These correspond to study visits 5, 7, 8, and 10, respectively. The y-axis scales are identical. (Treatment
Group: 1 = control and no LNS, 2 = maternal ART and no LNS, 3 = infant ART and no LNS, 4 = control and LNS, 5 = maternal
ART and LNS, 6 = infant ART and LNS. Dashed lines correspond to CIs of the reference group, Treatment Group 1.)
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Figure 3.3: BAN study estimated mean weight trajectories and WHO median standard
growth curves. (— BAN boys; - - - WHO boys; — BAN girls; - - - WHO girls)
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individuals whose outcomes were eventually truncated, i.e.,
{
ti : cim = 0

}
. Let µ′age(j) denote the

empirical mean age at visit j. At each visit j = 1, . . . ,m, we fit the mean model

Tij = γ′0 + γ′jYij + δij ,

where Tij = Ti, and δij ∼ N
(
0, σ′2δj

)
was measurement error with cov

(
δij , δi′j

)
= 0 for all i and

i′ 6= i at each j. Let

γ̃ = m−1
m∑
j=1

γ′j .

We assumed cov
(
δij , εi′j′

)
= 0 for all i, j, i′, and j′. We thereby calculated the parameters µ′t,

σ′2t , and µ′age(1), . . . , µ
′
age(m), and the estimate ˆ̃γ.

The parameters used for outcome and truncation generation were set equal to their corre-

sponding BAN-derived estimate or parameter values; e.g., σy4 ≡ σ̂′y4
and µage(1) ≡ µ′age(1). There

were two important exceptions. We set µt = ζµµ
′
t, where ζµ ≡ 2.72 was set to ensure the desired

truncation rate of about 8% by visit 10. We also set γ = ζγ ˆ̃γ, where ζγ ≡ 5 was set to ensure a

desired magnitude of the association between outcome Yij and truncation time Ti.

3.7 Simulation Joint Distribution Properties

We will prove that µRCCij = µyj − ωj where

ωj =
φ
(
τj−µt
σt

)
σyjρyjt

Φ
(
τj−µt
σt

)
− 1

.

First, we will derive a skew-normal-type (SNT) distribution. We will then use properties of the

SNT to complete the proof.

3.7.1 Skew-Normal-Type Distribution

Identity between a Cumulative Distribution Function and an Expectation

We first define some notation that only applies to this subsection. Let S and X be continuous

random variables, and let a and b be constants. Define W = S − (aX + b), so that FS(aX + b) =

Pr(S < aX+b) = Pr{S−(aX+b) < 0} = Pr(W < 0). For any distinct random variables A and B,

let fA(a) denote the probability density function (PDF) of A, and let fA|B(a|b) denote the PDF
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of A conditioned on B. Let FA(a) and FA|B(a|b) denote the corresponding cumulative distribu-

tion functions (CDFs). Let EA(A) and EA|B(A|B) denote the corresponding expectations. It can

be shown that

FS(aX + b) = EX {FS (aX + b)} . (3.6)

In particular, if S ∼ N(0, 1), X ∼ N(µ, σ2), and S and X are independent, then W ∼ N
(
−{aµ+

b}, 1 + a2σ2
)
. Let Φ(·) represent the standard normal CDF. In this case, we have

FS(aX + b) = Φ

(
aµ+ b√
1 + a2σ2

)
,

and from (3.6), we write

EX {Φ(aX + b)} = Φ(aX + b) = Φ

(
aµ+ b√
1 + a2σ2

)
. (3.7)

Similar results have been proven elsewhere (Ellison, 1964; Azzalini, 1985).

Relationship to Skew-Normal Distribution

From (3.7), note that

1 = Φ

(
aµ+ b√
1 + a2σ2

)−1 ∫
Φ(ax+ b)fX(x)dx.

That is,

fY (y) = Φ

(
aµ+ b√
1 + a2σ2

)−1

Φ(ay + b)fX(y) (3.8)

is itself a probability density function with moment-generating function

MY (t) = E
(
etY
)

= Φ

{
aµ+ b√
1 + a2σ2

}−1

exp

{
t

2

(
tσ2 + 2µ

)}
Φ

{
a
(
tσ2 + µ

)
+ b

√
1 + a2σ2

}
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and mean

E(Y ) =
d

dt
MY (t)

∣∣∣
t=0

= µ+ Φ

(
aµ+ b√
1 + a2σ2

)−1

φ

(
aµ+ b√
1 + a2σ2

)
aσ2

√
1 + a2σ2

, (3.9)

where φ(·) represents the standard normal PDF. The case when b = 0 and X ∼ N(0, 1) corre-

sponds to the skew-normal distribution (Azzalini, 1985) with density

fY (y) = 2Φ(ay)φ(y)

and mean

EY [Y ] =

√
2

π

(
a√

1 + a2

)
.

We therefore say a random variable Y with density (3.8) has a skew-normal-type (SNT) distribu-

tion with mean (3.9).

3.7.2 Proof

We now use the notation defined in the main article. The notation in this subsection is dis-

tinct from that in subsection 3.7.1.

Recall that outcomes and logged truncation time were generated from the multivariate normal

distribution of
(
Y1, . . . , Ym, T

)
with means

(
µy1 , . . . , µym , µt

)
, variances

(
σ2
y1
, . . . , σ2

ym , σ
2
t

)
, and

correlations Ψ. Also recall that ρyjyk = corr
(
Yj , Yk

)
represents the autoregressive (lag-1) correla-

tion between outcomes at time points j = 1, . . . ,m and k = 1, . . . ,m, and that ρyjt = corr
(
Yj , T

)
represents the correlation between outcome at time point j = 1, . . . ,m and T . Let φ(·) represents

the standard normal probability density function. Let fA(a) and f(a) both denote the PDF of a

continuous random variable A. Note that ρyjt = σyjt
(
σyjσt

)−1
.

We write
{
T
∣∣Yj} ∼ N(µt|yj , σ2

t|yj

)
where

µt|yj = µt +
σt
σyj

ρyjt
(
yj − µyj

)
, σ2

t|yj = σt

√
1− ρ2

yjt
.

37



Note that Pr
(
T ≤ τj

∣∣yj) = Φ (b0j + b1jyj) , where b0j = a0j − b1jµyj and

a0j =
τj − µt

σt
√

1− ρ2
yjt

, b1j = −
σt
σyj

ρyjt

σt
√

1− ρ2
yjt

.

Let ξj = E
{

Φ
(
b0j + b1jYj

)}
, and note that ξj = Φ

{(
b0j + b1jµyj

)
gj

}
by (3.7), where gj =

1
/√

1 + b21jσ
2
yj . Let hj = b1jσ

2
yjgj = −σyjρyjt. We then have

µRCCij = E
(
Yij
∣∣Cj = 1

)
= E

(
Yj
∣∣T > τj

)
=

∫
yj {1− Φ (b0j + b1jyj)} f (yj) dyj∫
{1− Φ (b0j + b1jyj)} f (yj) dyj

=
µyj −

∫
yjΦ (b0j + b1jyj) f (yj) dyj

1− ξj
by (3.7)

ξ−1
j

{
µRCCij (ξj − 1) + µyj

}
=

∫
wjξ

−1
j Φ (b0j + b1jwj) fY (wj) dwj

= E [Wj ] by (3.8)

= µyj + ξ−1
j φ

{(
b0j + b1jµyj

)
gj
}
hj by (3.9)

µRCCij = µyj +
φ
{(
b0j + b1jµyj

)
gj
}
hj

ξj − 1

= µyj +
φ (a0jgj)hj

Φ (a0jgj)− 1
.

Noting that a0jgj =
(
τj − µt

)/
σt, we therefore conclude

µRCCij = µyj −
φ
(
τj−µt
σt

)
σyjρyjt

Φ
(
τj−µt
σt

)
− 1

.

�

For additional algebraic details, please email the primary author at ericjaydaza@unc.edu.

3.8 Detailed Simulation Results

The empirical bias and coverage probability results for all 12 simulation scenarios are listed in

Supporting Table 3.5. A scenario name is written in the format XXYYZZ, where XX, YY, and
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ZZ represent abbreviations that indicate the truncation, dropout, and IM mechanisms, respec-

tively. TCAR and TNAR are abbreviated TC and TN, respectively. DCAR and DAR are abbre-

viated DC and DA, respectively. IMCAR, IMART, and IMARD are abbreviated MC, MT, and

MD, respectively.

39



Supporting Table 3.2: Simulation parameters

Parameter Values

µage(1) · · ·µage(6) 0.87 7.87 14.87 28.87 42.87 56.87

µage(7) · · ·µage(11) 84.87 126.87 147.87 168.87 196.87

µy1 · · ·µy6 3.03 3.16 3.39 3.99 4.52 4.97
µy7 · · ·µy11 5.72 6.55 6.88 7.14 7.44
µt 8.55
σy1 · · ·σy6 0.41 0.42 0.44 0.51 0.55 0.61
σy7 · · ·σy11 0.70 0.83 0.86 0.90 0.94
σt 2.38
γ 0.11

Supporting Table 3.3: Simulation correlation matrix Ψ

1
0.92 1
0.84 0.92 1
0.78 0.84 0.92 1
0.71 0.78 0.84 0.92 1
0.66 0.71 0.78 0.84 0.92 1
0.60 0.66 0.71 0.78 0.84 0.92 1
0.56 0.60 0.66 0.71 0.78 0.84 0.92 1
0.51 0.56 0.60 0.66 0.71 0.78 0.84 0.92 1
0.47 0.51 0.56 0.60 0.66 0.71 0.78 0.84 0.92 1
0.43 0.47 0.51 0.56 0.60 0.66 0.71 0.78 0.84 0.92 1
ρy1t ρy2t ρy3t ρy4t ρy5t ρy6t ρy7t ρy8t ρy9t ρy10t ρy11t 1

Note: Values for ρyjt depend on whether outcomes are TCAR or TNAR,
and are derived in Table 3.4 using values from Table 3.2.
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Supporting Table 3.4: Truncation, dropout, and IM settings for 12 scenarios

Scenario ρyjt pD ηD1 pIM ηIM1

TCAR, DCAR, IMCAR 0 0.150 0 0.140 0
TCAR, DCAR, IMART 0 0.150 0 0.260 γ
TCAR, DCAR, IMARD 0 0.142 0 0.031 −γ
TCAR, DAR, IMCAR 0 0.014 −γ 0.140 0
TCAR, DAR, IMART 0 0.013 −γ 0.260 γ
TCAR, DAR, IMARD 0 0.013 −γ 0.031 −γ
TNAR, DCAR, IMCAR γσyjσ

−1
t 0.150 0 0.140 0

TNAR, DCAR, IMART γσyjσ
−1
t 0.150 0 0.260 γ

TNAR, DCAR, IMARD γσyjσ
−1
t 0.142 0 0.031 −γ

TNAR, DAR, IMCAR γσyjσ
−1
t 0.014 −γ 0.140 0

TNAR, DAR, IMART γσyjσ
−1
t 0.013 −γ 0.260 γ

TNAR, DAR, IMARD γσyjσ
−1
t 0.013 −γ 0.031 −γ

Note: Values for γ, σyj , and σt are listed in Table 3.2.
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Supporting Table 3.5: Detailed simulation results. Values are listed per coefficient as “empirical bias × 1000 (coverage probability).”
Scenario Regression Method β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

TCDCMC URAR −0.29 (0.94) −0.06 (0.94) 0.00 (0.95) −0.21 (0.96) −0.52 (0.96) −0.40 (0.96) −0.72 (0.96) −0.66 (0.95) −0.66 (0.97) −0.51 (0.96)
UR −0.39 (0.94) 0.16 (0.96) 0.29 (0.97) 0.28 (0.97) −0.09 (0.96) 0.23 (0.96) 0.23 (0.96) 0.26 (0.96) 0.56 (0.97) 0.78 (0.97)
IMRCC −0.39 (0.94) −5.57 (0.80) −11.34 (0.56) −17.14 (0.45) −22.41 (0.38) −26.15 (0.40) −32.39 (0.40) −40.67 (0.39) −44.50 (0.38) −48.97 (0.36)
RCC −0.39 (0.94) 0.17 (0.96) 0.27 (0.97) 0.32 (0.96) −0.10 (0.95) 0.22 (0.95) 0.03 (0.97) 0.31 (0.96) 0.51 (0.97) 0.74 (0.97)

TCDCMT URAR −0.18 (0.94) −0.06 (0.95) −0.41 (0.96) −0.06 (0.96) −0.42 (0.95) −0.14 (0.95) −0.24 (0.95) −0.04 (0.96) −0.42 (0.95) −0.44 (0.96)
UR −0.35 (0.93) 0.24 (0.95) 0.20 (0.96) 0.05 (0.96) −0.36 (0.95) −0.06 (0.95) −0.01 (0.97) −0.10 (0.96) −0.45 (0.96) −0.55 (0.97)
IMRCC −0.35 (0.93) −1.72 (0.93) −6.05 (0.88) −11.73 (0.75) −16.76 (0.63) −20.40 (0.64) −26.75 (0.61) −32.94 (0.65) −34.75 (0.69) −32.75 (0.75)
RCC −0.35 (0.93) 0.25 (0.95) 0.18 (0.96) 0.08 (0.96) −0.39 (0.95) −0.06 (0.95) −0.21 (0.96) 0.02 (0.96) −0.52 (0.96) −0.53 (0.97)

TCDCMD URAR −0.24 (0.94) −0.12 (0.95) −0.12 (0.96) −0.26 (0.95) −0.68 (0.95) −0.97 (0.95) −2.65 (0.94) −8.15 (0.92) −17.45 (0.83) −30.17 (0.70)
UR −0.24 (0.94) −0.10 (0.97) −0.10 (0.97) −0.20 (0.96) −0.52 (0.96) −0.44 (0.96) −0.45 (0.96) −0.09 (0.96) 0.21 (0.97) 0.43 (0.96)
IMRCC −0.24 (0.94) −8.30 (0.45) −8.71 (0.68) −10.17 (0.77) −13.17 (0.73) −18.05 (0.65) −30.58 (0.42) −56.22 (0.12) −89.54 (0.01) −122.19 (0.00)
RCC −0.24 (0.94) −0.09 (0.96) −0.11 (0.97) −0.16 (0.96) −0.55 (0.96) −0.45 (0.96) −0.63 (0.96) −0.00 (0.96) 0.08 (0.97) 0.33 (0.97)

TCDAMC URAR −0.10 (0.94) −0.09 (0.94) −0.22 (0.94) −0.24 (0.95) −0.61 (0.94) −0.65 (0.94) −1.43 (0.95) −3.60 (0.94) −9.94 (0.90) −25.33 (0.71)
UR −0.18 (0.94) −0.05 (0.96) 0.11 (0.96) 0.12 (0.97) −0.18 (0.95) −0.09 (0.95) −0.84 (0.96) −2.39 (0.96) −7.73 (0.94) −25.26 (0.78)
IMRCC −0.18 (0.94) −0.04 (0.95) 0.06 (0.96) 0.04 (0.96) −0.47 (0.95) −0.77 (0.95) −2.86 (0.95) −7.32 (0.94) −19.78 (0.81) −47.84 (0.38)
RCC −0.18 (0.94) −0.04 (0.95) 0.10 (0.96) 0.15 (0.97) −0.21 (0.95) −0.09 (0.95) −0.99 (0.96) −2.24 (0.96) −7.56 (0.94) −24.89 (0.79)

TCDAMT URAR 0.06 (0.95) −0.10 (0.95) −0.39 (0.94) −0.12 (0.95) −0.45 (0.95) −0.43 (0.95) −1.12 (0.95) −3.30 (0.94) −9.97 (0.91) −26.27 (0.71)
UR −0.43 (0.94) 0.10 (0.95) 0.24 (0.95) 0.23 (0.96) −0.09 (0.96) −0.02 (0.94) −0.57 (0.95) −2.18 (0.95) −7.73 (0.94) −26.04 (0.77)
IMRCC −0.43 (0.94) 0.10 (0.95) 0.21 (0.95) 0.22 (0.96) −0.25 (0.95) −0.56 (0.95) −2.59 (0.94) −7.59 (0.93) −24.26 (0.71) −69.25 (0.08)
RCC −0.43 (0.94) 0.10 (0.95) 0.22 (0.95) 0.26 (0.96) −0.11 (0.95) −0.02 (0.95) −0.72 (0.95) −2.04 (0.95) −7.59 (0.94) −25.67 (0.79)

TCDAMD URAR −0.20 (0.93) −0.07 (0.95) −0.11 (0.95) −0.24 (0.95) −0.62 (0.95) −1.06 (0.95) −3.45 (0.94) −12.54 (0.88) −27.58 (0.64) −47.77 (0.34)
UR −0.20 (0.93) −0.07 (0.96) −0.06 (0.95) −0.16 (0.96) −0.36 (0.96) −0.38 (0.95) −0.79 (0.97) −2.69 (0.96) −8.69 (0.95) −25.60 (0.86)
IMRCC −0.20 (0.93) −0.07 (0.96) −0.11 (0.96) −0.22 (0.96) −0.73 (0.95) −1.55 (0.94) −4.32 (0.94) −11.11 (0.91) −24.34 (0.77) −43.38 (0.58)
RCC −0.20 (0.93) −0.07 (0.96) −0.08 (0.96) −0.13 (0.96) −0.38 (0.95) −0.38 (0.95) −0.94 (0.96) −2.56 (0.96) −8.60 (0.96) −25.46 (0.86)

TNDCMC URAR −0.24 (0.94) −0.04 (0.95) −0.12 (0.94) −0.23 (0.95) −0.70 (0.96) −0.93 (0.95) −1.40 (0.94) −2.16 (0.95) −2.59 (0.96) −3.15 (0.96)
UR −0.28 (0.93) 0.11 (0.96) 0.35 (0.97) 0.38 (0.96) 0.38 (0.96) 0.58 (0.96) 0.42 (0.96) 0.22 (0.96) 0.93 (0.96) 0.82 (0.96)
IMRCC −0.28 (0.93) −5.49 (0.81) −11.06 (0.59) −16.76 (0.47) −21.44 (0.41) −25.54 (0.43) −31.24 (0.44) −39.44 (0.44) −43.41 (0.41) −48.60 (0.39)
RCC −0.27 (0.93) 0.30 (0.96) 0.56 (0.97) 0.84 (0.96) 0.79 (0.96) 0.98 (0.95) 1.20 (0.96) 1.37 (0.96) 1.48 (0.97) 1.38 (0.97)

TNDCMT URAR −0.29 (0.94) 0.09 (0.96) −0.27 (0.96) −0.16 (0.94) −0.59 (0.95) −0.71 (0.95) −1.30 (0.94) −2.03 (0.95) −2.70 (0.95) −3.14 (0.95)
UR −0.20 (0.93) −0.05 (0.95) 0.21 (0.95) −0.14 (0.96) −0.34 (0.95) −0.03 (0.95) −0.43 (0.95) −0.81 (0.95) −0.49 (0.96) −0.57 (0.95)
IMRCC −0.20 (0.93) −1.83 (0.94) −5.83 (0.90) −11.60 (0.76) −16.38 (0.64) −20.16 (0.65) −25.89 (0.63) −32.20 (0.66) −34.98 (0.69) −32.21 (0.77)
RCC −0.16 (0.93) 0.13 (0.95) 0.42 (0.95) 0.30 (0.96) 0.02 (0.95) 0.34 (0.95) 0.28 (0.95) 0.39 (0.95) 0.05 (0.95) −0.07 (0.96)

TNDCMD URAR −0.19 (0.94) −0.16 (0.95) −0.21 (0.95) −0.48 (0.96) −1.02 (0.96) −1.47 (0.94) −3.47 (0.94) −9.87 (0.91) −19.67 (0.80) −32.55 (0.65)
UR −0.19 (0.94) −0.18 (0.96) −0.10 (0.97) −0.20 (0.96) −0.18 (0.96) 0.07 (0.95) −0.17 (0.96) 0.11 (0.96) 0.53 (0.97) 0.89 (0.98)
IMRCC −0.19 (0.94) −8.18 (0.46) −8.64 (0.68) −9.76 (0.78) −12.28 (0.77) −17.27 (0.69) −29.26 (0.44) −55.18 (0.13) −88.44 (0.00) −120.90 (0.00)
RCC −0.19 (0.94) 0.01 (0.96) 0.11 (0.97) 0.27 (0.96) 0.22 (0.96) 0.48 (0.96) 0.59 (0.96) 1.30 (0.95) 1.09 (0.97) 1.48 (0.97)

TNDAMC URAR −0.06 (0.94) −0.10 (0.93) −0.29 (0.94) −0.49 (0.95) −0.89 (0.94) −1.15 (0.94) −2.28 (0.94) −5.39 (0.93) −12.17 (0.90) −28.02 (0.69)
UR −0.18 (0.94) −0.09 (0.96) 0.03 (0.97) 0.20 (0.97) 0.07 (0.95) 0.22 (0.96) −0.63 (0.96) −2.50 (0.95) −7.58 (0.94) −25.12 (0.78)
IMRCC −0.18 (0.94) 0.10 (0.96) 0.21 (0.97) 0.56 (0.96) 0.20 (0.95) −0.06 (0.95) −1.73 (0.95) −6.41 (0.93) −18.92 (0.81) −47.10 (0.39)
RCC −0.17 (0.94) 0.10 (0.96) 0.24 (0.97) 0.66 (0.96) 0.47 (0.95) 0.64 (0.96) 0.18 (0.96) −1.20 (0.95) −6.73 (0.95) −24.10 (0.81)

TNDAMT URAR 0.23 (0.95) −0.17 (0.95) −0.62 (0.96) −0.51 (0.95) −0.97 (0.96) −1.10 (0.95) −2.23 (0.95) −5.35 (0.94) −12.43 (0.88) −29.50 (0.64)
UR −0.34 (0.94) −0.07 (0.95) 0.17 (0.95) 0.16 (0.95) −0.06 (0.96) 0.21 (0.95) −0.59 (0.95) −2.49 (0.96) −7.80 (0.93) −26.54 (0.78)
IMRCC −0.34 (0.94) 0.11 (0.95) 0.37 (0.96) 0.58 (0.95) 0.18 (0.95) 0.06 (0.95) −1.79 (0.95) −6.86 (0.93) −23.76 (0.73) −69.79 (0.08)
RCC −0.30 (0.94) 0.10 (0.95) 0.38 (0.96) 0.60 (0.95) 0.29 (0.95) 0.59 (0.95) 0.17 (0.95) −1.25 (0.96) −7.02 (0.94) −25.62 (0.79)

TNDAMD URAR −0.16 (0.94) −0.10 (0.95) −0.19 (0.95) −0.46 (0.95) −1.05 (0.94) −1.59 (0.95) −4.43 (0.93) −14.13 (0.85) −29.74 (0.59) −50.56 (0.30)
UR −0.16 (0.94) −0.15 (0.96) −0.06 (0.95) −0.16 (0.96) −0.21 (0.96) −0.07 (0.96) −0.82 (0.96) −2.71 (0.96) −8.46 (0.94) −25.65 (0.85)
IMRCC −0.16 (0.94) 0.03 (0.95) 0.12 (0.96) 0.19 (0.96) −0.19 (0.96) −0.85 (0.95) −3.40 (0.95) −9.98 (0.91) −23.52 (0.80) −42.90 (0.58)
RCC −0.16 (0.94) 0.04 (0.95) 0.15 (0.96) 0.29 (0.96) 0.18 (0.96) 0.33 (0.96) −0.03 (0.96) −1.41 (0.96) −7.68 (0.95) −24.77 (0.86)
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CHAPTER 4: THE XTRCCIPW COMMAND

4.1 Introduction

The method of generalized estimating equations (GEE) is frequently used to estimate the

marginal means of a longitudinal outcome. When outcomes are missing completely at random

(MCAR), a standard GEE estimator is consistent for these marginal means (Liang and Zeger,

1986; Diggle et al., 2002). When outcomes are either missing at random (MAR) or missing not

at random, inverse-probability weights (IPWs) may be used to ensure consistency of the GEE

estimator provided that the data missingness model is correctly specified (Robins et al., 1995;

Scharfstein et al., 1999a). We refer to this approach as the IPW-GEE method.

An individual’s outcomes over time form an outcome trajectory. Events such as death can

truncate the trajectory, rendering the outcome at and after truncation undefined. The opposite

of truncation is referred to as continuation. Death is a common truncating event in most biomed-

ical studies (Ribaudo et al., 2000; Billingham and Abrams, 2002; Pauler et al., 2003; Dufouil

et al., 2004; Shardell and Miller, 2008; Basu and Manning, 2010). For example, the Precipitating

Events Project (PEP) is an ongoing longitudinal study of 754 community-living individuals aged

70 or older who were scheduled to be followed monthly for two years (Gill et al., 2001). Kur-

land and Heagerty (2005) considered inference about the probability of activities-of-daily-living

(ADL) disability conditioning on being alive, treating death as a truncating event in the PEP

data. Other events, such as disease relapse and HIV infection, have also been defined as truncat-

ing events. For instance, investigators of the Breastfeeding, Antiretrovirals, and Nutrition (BAN)

study (van der Horst et al., 2009) wanted to draw inference about a target population of infants

at high risk of HIV infection, but only while they were alive and uninfected (Flax et al., 2012).

In this case, HIV infection and death are truncating events. In le Cessie et al. (2009), the target

population consisted of patients with advanced breast cancer who had undergone chemotherapy.

The authors wanted to draw inference about patients who were alive and disease-free, such that

death and relapse are truncating events.
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For all of the aforementioned examples of truncated longitudinal data, outcomes were also

missing for some individuals. Dropout events occur when an individual leaves the study perma-

nently. For study dropout, the corresponding outcomes are unobserved but, unlike truncation,

they are well-defined. Typical approaches to analyzing longitudinal outcomes with missing data

include weighted GEE (WEE) or maximum likelihood based on mixed-effects models. These ap-

proaches generally do not distinguish truncation from dropout, in essence envisaging outcomes

past the point of truncation. Kurland and Heagerty (2005) described such approaches that im-

plicitly assume the existence of outcomes after truncation as “unconditional regression” (UR)

models because they estimate the mean outcome averaged over individuals who have and have

not been truncated. Kurland et al. (2009) consider both standard selection models and condi-

tional submodels of pattern-mixture models to be UR models. Mean outcomes among continu-

ing trajectories may be estimated indirectly with these two types of UR models, with additional

modeling assumptions (Kurland et al., 2009). As an alternative to UR models, joint modeling of

longitudinal measurements and time to truncation might be employed (Henderson et al., 2000;

Guo and Carlin, 2004; Kurland et al., 2009).

In order to estimate mean outcomes without relying on additional assumptions or joint mod-

eling, Kurland and Heagerty (2005) developed a method for regression conditioning on continua-

tion (RCC), i.e., not being truncated. The RCC method consistently estimates continuing lon-

gitudinal mean outcomes by first modeling and estimating IPWs at each time point based on

the probability of dropout, but only for subjects with a continuing outcome at that time point.

RCC then applies these IPWs in a WEE framework. In the absence of truncation, the usual

WEE method is therefore a special case of RCC. When there is truncation, WEE is a UR ap-

proach that will generally not produce consistent estimates for RCC estimands (Kurland and

Heagerty, 2005). Unfortunately, there is currently no widely available Stata command for esti-

mating the IPWs used in either RCC or WEE. The teffects commands aipw, ipw, and ipwra

estimate IPWs with the goal of making causal inferences by estimating average treatment effects

(StataCorp, 2013). However, these teffects commands cannot handle longitudinal or panel
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data, nor can they properly account for truncation directly. Therefore, in this paper we intro-

duce the xtrccipw command to allow Stata users to estimate the IPWs used by RCC in analyz-

ing longitudinal data subject to missingness or truncation. The user then specifies these IPWs

as the weights used by the glm command, which then performs WEE estimation. When there is

no truncation, xtrccipw can also be used to estimate the IPWs used by the glm command in a

WEE analysis.

The remainder of this paper is organized as follows. In Section 4.2, we introduce some nota-

tion and the assumptions behind the RCC method, detail the logit and probit link functions for

modeling the dropout mechanism, and note some large-sample properties of the RCC estimator.

The xtrccipw command is explained in Section 4.3. We conduct RCC in Section 4.4 on both a

binary outcome and a continuous outcome using an example dataset. In Section 4.5, we rean-

alyze the original Kurland and Heagerty (2005) data. Finally, the command is summarized in

Section 4.6, and its applications and future extensions are briefly discussed.

4.2 Background/Methods

4.2.1 Notation & Assumptions

Consider a random sample of i = 1, . . . , n individuals, each of whom is scheduled to be mea-

sured at fixed study time points j = 1, . . . ,m. For any random variable A, let Aj denote the

value of A at time point j, and let Āj =
(
A1, . . . , Aj

)
so that Āj−1 represents an individual’s

history of A prior to time point j. Define aj and āj likewise for any fixed variable a. Where it

is not ambiguous, the dependence on i will be suppressed for notational ease. Let Yj denote the

outcome at time point j. Let Cj = 1 if the truncating event has not occurred by time j, and let

Cj = 0 otherwise. Thus, the outcome Yj is well defined if and only if Cj = 1. Assume that trun-

cation is an irreversible state such that Cj = 0 implies Cj′ = 0 for all j′ > j. Define S =
∑m

j=1Cj

to be the number of time points before a trajectory is truncated, with S = m indicating that

the trajectory is not truncated. If truncation occurs at time point j, then outcomes at that time

point and beyond (i.e., Yj , . . . , Ym) are undefined. We use ∗ to denote all undefined values, which

extends the support of both the outcome Y and the binary dropout event R defined below. If

truncation does not occur by time point j, and if the individual drops out, then the outcome is

still defined but is not observed. Next, we define the indicator variable for dropout. If Cj = 1, let
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Rj = 1 if an individual has not dropped out by time point j; otherwise, let Rj = 0. Assume there

is no dropout at time point j = 1 (R1 = 1), and that dropout is monotonic such that Rj = 0

implies Rj′ = 0 for all j′ > j. If Cj = 0, then we adopt the convention that Rj = ∗.

Let π
(r)
j = Pr

(
Rj = r

∣∣Ȳm, C̄m). Thus, the probability of dropping out conditional on the

history of dropout, on all outcomes, and on the full truncation vector is denoted π
(0)
j . Assume

π
(r)
1 = Pr

(
R1 = r

∣∣C1

)
. We refer to outcomes as MAR if π

(r)
j = Pr

(
Rj = r

∣∣Ȳ obs
j−1, C̄j

)
for j > 1,

where Ȳ obs
j =

{
Yk : Rk = 1, k ≤ j

}
denotes the observed values of Ȳj . We refer to outcomes

as MCAR if π
(r)
j = Pr

(
Rj = r

∣∣C̄j) for j > 1. Outcomes that are neither MAR nor MCAR are

missing not at random. Under MAR, π
(1)
j =

∏j
k=1 λk where λk = Pr

(
Rk = 1

∣∣Rk−1 = 1, Ȳ obs
k−1, C̄k

)
for k > 1 and λ1 = π

(1)
1 . The xtrccipw command lets the user specify a model for λk.

4.2.2 The Full and Reduced Dropout Models

In the presence of dropout, the RCC method requires specifying a parametric dropout model.

The xtrccipw command allows the user to choose between two models. In particular, let g(·)

represent the logit or probit link function. The default dropout mechanism modeled by xtrccipw

is

g (λik) = α0k + α1kzik + α2kȲ
obs
i(k−1)I (k > 1) , (4.10)

where α0k is the intercept; zik represents the vector of both time-dependent and time-independent

fixed covariates, with conformable parameter vector α1k; and α2k represents the conformable pa-

rameter vector corresponding to lagged outcome values Ȳ obs
i(k−1). Equation (4.10) is referred to as

the full dropout model. Note that the parameters α0k, α1k, and α2k are time point-specific; i.e.,

the dropout model is estimated at each time point by default. If dropout is assumed or known

to happen completely at random, but truncation is present, the user has the option to specify an

MCAR model instead, which sets α2k = 0.

The user may want to estimate a reduced model with fewer lags, with possible values lag =

1, . . . ,m− 1. In this case, the dropout mechanism is instead modeled as

g (λik) =

 α0k + α1kzik + α2kLik if k ≤ lag

α0 + α1zik + α2Lik if k > lag
, (4.11)
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where Lik = 0 at k = 1, and Lik =
(
max{Yi1, Yi(k−lag)}, . . . , Yi(k−1)

)
at k > 1. Equation

(4.11) is referred to as the reduced dropout model. This model is time point-specific for time

points k ≤ lag, but shares the same parameters for time points k > lag. This approach al-

lows xtrccipw to estimate fewer parameters by assuming a common dropout model once all of

the requested lagged outcomes potentially become available for estimation (i.e., for time points

k > lag). The user has the option to specify a reduced MCAR model instead, which estimates

the model g
(
λik
)

= α0 + α1zik.

Note that the full and reduced MAR models are identical when lag = m − 1 is set, while the

full and reduced MCAR models are different. The full MCAR model specifies a model at each

time point, while the reduced MCAR model specifies a common model across all time points.

4.2.3 Inference

We are now prepared to draw inference on longitudinal mean outcomes for continuing individ-

uals, conditional on covariates. Let µRCCij = E
(
Yij
∣∣Cij = 1

)
denote the mean outcome for individ-

ual i whose trajectory is still continuing at time point j. In the regression setting, we might posit

a generalized linear model of the form h
(
µRCCij

)
= x′ijβ

RCC , where h(·) is a link function, xij is

an observed p × 1 vector of (possibly time-dependent) covariates that includes a column of ones

for the intercept, and βRCC is the corresponding parameter vector. Let d′ij = ∂µRCCij

/
∂βRCC

denote the Jacobian of partial derivatives of µRCCij with respect to βRCC .

Following Kurland and Heagerty (2005), consider the vector estimating equation

U
(
βRCC

)
=

n∑
i=1

m∑
j=2

dijCij
Rij

π
(1)
ij

(
Yij − µRCCij

)
. (4.12)

We adopt the convention that if Cij = 0, the summand for individual i at time point j equals 0

rather than being undefined. The IPW probability πij is unknown in practice, but can be con-

sistently estimated if the dropout mechanism model is correctly specified. Let π̂ij represent a

consistent estimator of πij , and let β̂ denote the solution to U
(
βRCC

)
= 0 under MAR when

π̂ij is substituted for πij . The estimator β̂ is consistent and asymptotically multivariate normal

for βRCC (Robins et al., 1995). The glm command is ideal for calculating β̂ because by default it

assumes the independence working correlation structure required by RCC, and it allows the user
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to specify time-varying IPWs through the pweight option. The empirical sandwich estimator of

the variance of β̂ is readily available by specifying the glm command option vce(cluster clust-

var), where clustvar is the variable that identifies individuals. When computed as if the IPWs

are known and fixed, the empirical sandwich estimator is expected to be conservative (Robins

et al., 2000; Robins, 2000). Thus, 95% Wald confidence intervals (CIs) constructed using the em-

pirical sandwich estimator should have a coverage probability for βRCC of at least 95%.

4.3 The xtrccipw command

4.3.1 Description

The xtrccipw command estimates time-specific weights equal to the inverse of the dropout

probability conditioning on continuation. This command uses either the logit or probit com-

mands to estimate IPWs. The user must then run glm while specifying the pweight and vce(cluster

clustvar) options in order to calculate RCC estimates of the mean-model parameters, along with

variance estimates constructed using the empirical sandwich estimator. The xtrccipw command

runs under Stata 13.

The rest of this section is organized as follows. Input dataset requirements will be described

and illustrated in an example. The command syntax will then be presented, along with defini-

tions of all relevant variables and options. Finally, we will describe the displayed outputs and

saved results, and instruct the user on subsequent inference using the glm command.

4.3.2 Input Datasets

The xtrccipw command accepts datasets in Stata long format (i.e., each row corresponds to

one observation at one measurement time point). It then creates indicator variables for trunca-

tion and dropout based on the supplied variables for measurement time, truncation time, and

mean-model outcome.

The dataset must include the following variables: unique individual identifiers, measurement

time, measurement time index, outcome, and dropout-model covariates. Each row must provide

values for unique individual identifiers, measurement time, and measurement time index. For

each individual, unique individual identifier values must be identical on all rows, and rows for all

possible measurement times and time indices must be included in order to create truncation and

dropout indicators, regardless of outcome value being missing or not missing on any given row.
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At the current time index, values for all dropout model covariates (except for past outcomes)

must be provided if an individual had not dropped out by the previous time index (i.e., if an out-

come value was provided at the previous time index) and had not been truncated by the current

time index. The dataset must additionally include a variable for truncation time if truncation

occurred for any individual, in which case truncation time must be identical on all rows for each

individual with a truncation time. Truncation time must be left missing on all rows for each indi-

vidual without a truncation time.

An example dataset is illustrated in Table 4.1. The variable names correspond to a unique

individual identifier idvar, measurement time timevar, measurement time index timeidxvar,

continuous outcome outcomevar, dropout-model time-dependent continuous covariate dtdcovar,

dropout-model time-independent binary covariate dticovar, and truncation time trtimevar.

4.3.3 Syntax

xtrccipw outcomevar
[

if
]
, idvar(varlist) timevar(varname) timeidxvar(varname)

generate(name)
[

timeidxf(#) timeidxl(#) trtimevar(varname) dlinkfxn(string)

dtdcovars(varlist) dticovars(varlist) dcar reducedlag(#)
]

outcomevar is the mean-model outcome variable that is used as a covariate in the dropout prob-

ability mechanism model. If outcomevar is an indicator/categorical factor variable, it must be

preceded with “i.”. The other unary operators “c.” and “o.” are not allowed.

4.3.4 Options

idvar(varlist) defines variables used to uniquely identify individuals (e.g., subjects, panels).

This is analogous to panelvar in xtset. This is a required option.

timevar(varname) defines the variable representing the measurement time (e.g., visit date).

This is analogous to timevar in xtset. This is a required option.

timeidxvar(varname) defines the variable representing the measurement time index (e.g., visit

number). All index values must be integers. This is a required option.

generate(name) defines the variable that will contain the estimated IPW. This is a required

option.

timeidxf(#) denotes the first time index value, which must be an integer, to be used in the
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mean-model analysis. This must be specified along with timeidxl(). The default is the first

non-missing index value found in the current dataset after
[

if
]

is applied.

timeidxl(#) denotes the last time index value, which must be an integer, to be used in the

mean-model analysis. This must be specified along with timeidxf(). The default is the last

non-missing index value found in the current after
[

if
]

is applied.

trtimevar(varname) denotes the truncation time (e.g., truncation date). The default is no trun-

cation.

dlinkfxn(string) specifies the dropout-model binary link function, and only accepts the values

logit or probit. The default is logit.

dtdcovars(varlist) defines the dropout-model time-dependent variables, in addition to the mean-

model outcome variable. Use spaces to separate multiple variables. Each indicator/categorical

factor variable argument in dtdcovars() must be preceded with “i.”. The other unary op-

erators “c.” and “o.” are not allowed, and neither is variable-interaction notation (i.e., “#”

or “##”). The varlist syntax is otherwise identical to the indepvars syntax for the logit or

probit commands. New variables representing the interactions between variables must be

created and included separately. For example, suppose we have time-dependent binary vari-

ables, x and y, and the continuous variable z. If we wish to model dropout dependent on x, y,

z, the interaction between x and y, and the interaction between x and z, we would first cre-

ate the interaction variables; e.g., “gen xy = x * y” and “gen xz = x * z”. Then we would

correspondingly type something like dtdcovars(i.x i.y i.xy z xz). The default is no ad-

ditional time-dependent variables.

dticovars(varlist) defines the dropout-model time-independent variables, in addition to the

mean-model outcome variable. The same description as that for dtdcovars(varlist) applies.

The default is no additional time-independent variables.

dcar defines whether to use the full MCAR model. This option cannot be specified simultane-

ously with reducedlag(). The default is the full MAR model.

reducedlag(#) defines whether to use the reduced dropout model. The number of lags # can

range from 1 to m − 1. However, specifying m − 1 lags is identical to specifying the full MAR

model. To specify the reduced MCAR model, type reducedlag(0). This option cannot be
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specified simultaneously with dcar. The default is the full MAR model.

4.3.5 Displayed outputs

Two outputs are shown. The first is a list of all arguments for verification by the user. The

second is a tabulation of the observed values of the regerrorcode xtrccipwRi variable, which

indicates the number of observations at each time point for which dropout regression and proba-

bility estimation were successful, or for which there were errors. It takes on the values “success”,

“failure 1: outcome does not vary” when there is either no dropout or all dropout at that time

point, “failure 2: collinearities and other errors” (e.g., all eligible observations dropped due to

regression collinearities), or “failure 3: prediction unavailable” if the regression succeeded, but es-

timation was unsuccessful. In any of the failure cases, the dropout probability is estimated as the

empirical mean of dropout in the risk set (i.e., among observations with Ri(j−1) = 1).

4.3.6 Saved results

The command attaches five variables to the input dataset. The outcome variable used in esti-

mating the dropout probability while accounting for truncation is stored as xtrccipw outcomevar.

The values of this variable only differ from outcomevar in that in cases when a truncation event

and outcome are both recorded at time point j, xtrccipw treats truncation as having occurred

before the outcome, and sets xtrccipw outcomevar as undefined (i.e., “.”). The indicators for

truncation (xtrccipwCi=0, =1 otherwise) and dropout (xtrccipwRi=0, =1 otherwise) used to

estimate the IPWs are also saved, as are the estimated IPWs themselves (as the variable speci-

fied by generate()). Finally, the regerrorcode xtrccipwRi variable is also output.

4.3.7 Relationship to glm

The xtrccipw command calculates IPWs, but the glm command must still be run on the re-

sulting dataset. However, for the resulting GEE mean-model estimates to be consistent, it is nec-

essary when running glm to include two options. The option [pweight=name] must be included,

with name equal to that specified in generate(name). The option vce(cluster idvars) must

also be included, with idvars = varlist as specified in idvar(varlist).
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4.4 Examples

Our example data came from the National Longitudinal Survey of Young Women (NLSYW).

We took a subsample of an available Stata dataset for our analysis, generated truncation, and

then analyzed both a binary and a continuous outcome from this analysis sample. Example code

for creating the example dataset is available in the Appendix.

We started with the dataset http://www.stata-press.com/data/r13/nlswork5.dta, a subsam-

ple of 4,711 young women ages 14-26 in 1968 that was derived to illustrate how to use the xt

commands. These data comprised “women in years when employed, not enrolled in school and

evidently having completed their education, and with wages in excess of $1/hour but less than

$700/hour” (StataCorp, 2011).

The longitudinal outcomes of interest were union membership union (=1 if yes, =0 if no) and

weeks unemployed in the previous year wks ue; the former is binary, the latter, continuous. The

covariates we used were age, ln(wage/GNP deflator) ln wage, total work experience ttl exp,

birth year birth yr, and college graduate indicator collgrad (=1 if yes, =0 if no). The identi-

fier variables were NLS ID idcode and interview year.

For our analysis, we selected the nlswork5.dta subsample of women with non-missing values

for any of these outcomes or covariates from years 70 through 73, 77, 78, and 80, which gave us

357 individuals. We then generated truncation at follow-up years, indicated by Ci=0. No trunca-

tion was generated for baseline year 70. Truncation was generated with probability 0.2 if union

membership in the previous year was missing. Otherwise, truncation was generated with higher

probability if an individual was a union member in the previous year, and with lower probabil-

ity if she was not a member. The degree of increase or decrease in truncation probability itself

increased over time.

4.4.1 Binary Outcome

We first regressed union on age, ln wage, and birth yr. Dropout was modeled on ttl exp

and collgrad using a probit link. The IPW variable was generated as xtrccipw ipw.

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)

> generate(xtrccipw_ipw) trtimevar(truncyear) dlinkfxn(probit) dtdcovars(ttl_exp)

> dticovars(i.collgrad)
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The xtrccipw arguments were output to the Stata log screen for verification. Here, timeidxf

and timeidxl took on values derived from the dataset because they were not specified. The

dropout event regression result for each month can also be quickly scanned for errors by the au-

tomatic tabulation of errors via the regerrorcode xtrccipwRi variable.

outcomevar = i.union

idvar = idcode

timevar = year

timeidxvar = yearidx

generate = xtrccipw_ipw

timeidxf = 1

timeidxl = 7

trtimevar = truncyear

dlinkfxn = probit

dtdcovars = ttl_exp

dticovars = i.collgrad

dcar =

reducedlag =

interview regerrorcode_xtrccipwRi

year success failure 1 failure 3 Total

1 357 0 0 357

2 155 0 0 155

3 106 0 0 106

4 78 0 0 78

5 0 55 0 55

6 43 0 7 50

7 36 0 7 43

Total 775 55 14 844

At this point, the IPW xtrccipw ipw has been calculated and attached to the input dataset.

We then ran the main RCC regression for union membership using glm, which by default as-

sumes an independence working correlation structure as required by RCC. The probability of

being a union member was modeled using a logit link.

. glm union age ln_wage birth_yr [pweight=xtrccipw_ipw], family(binomial)

> vce(cluster id)

Iteration 0: log pseudolikelihood = -684.98061
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Iteration 1: log pseudolikelihood = -677.41818

Iteration 2: log pseudolikelihood = -677.3618

Iteration 3: log pseudolikelihood = -677.3618

Generalized linear models No. of obs = 622

Optimization : ML Residual df = 618

Scale parameter = 1

Deviance = 1354.723594 (1/df) Deviance = 2.192109

Pearson = 1616.083078 (1/df) Pearson = 2.615021

Variance function: V(u) = u*(1-u/1) [Binomial]

Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.190874

Log pseudolikelihood = -677.3617969 BIC = -2620.833

(Std. Err. adjusted for 205 clusters in idcode)

Robust

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1633892 .0508454 -3.21 0.001 -.2630443 -.063734

ln_wage 1.156356 .3594872 3.22 0.001 .4517743 1.860938

birth_yr -.0577466 .0794246 -0.73 0.467 -.213416 .0979228

_cons 3.250271 4.481489 0.73 0.468 -5.533287 12.03383

Note that while there were 844 IPW values calculated, only 622 were used by glm. This is be-

cause xtrccipw estimates dropout probabilities for all time points in the set of observations at

risk for dropout; i.e., every time point with a non-missing outcome at the previous time point.

Hence, this risk set includes the subset of time points immediately after an individual’s last out-

come is observed, and at which outcome is missing. Because glm only uses complete cases (i.e.,

non-missing outcomes), this subset is excluded from its analysis. In the example above, there

were 222 time points in this subset.

Excluding trtimevar(truncyear) from the xtrccipw call resulted in truncation being treated

exactly like dropout, with the following dropout regression error and UR glm results.

interview regerrorcode_xtrccipwRi

year success failure 3 Total
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1 357 0 357

2 205 0 205

3 116 0 116

4 101 0 101

5 2 57 59

6 43 12 55

7 36 9 45

Total 860 78 938

Iteration 0: log pseudolikelihood = -940.69266

Iteration 1: log pseudolikelihood = -924.46856

Iteration 2: log pseudolikelihood = -924.2712

Iteration 3: log pseudolikelihood = -924.27109

Iteration 4: log pseudolikelihood = -924.27109

Generalized linear models No. of obs = 622

Optimization : ML Residual df = 618

Scale parameter = 1

Deviance = 1848.542185 (1/df) Deviance = 2.991169

Pearson = 2414.920004 (1/df) Pearson = 3.907638

Variance function: V(u) = u*(1-u/1) [Binomial]

Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.984795

Log pseudolikelihood = -924.2710925 BIC = -2127.015

(Std. Err. adjusted for 205 clusters in idcode)

Robust

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.2074534 .0569579 -3.64 0.000 -.3190888 -.095818

ln_wage 1.228034 .3972456 3.09 0.002 .4494474 2.006622

birth_yr -.0845777 .0845946 -1.00 0.317 -.2503801 .0812247

_cons 5.516462 4.764426 1.16 0.247 -3.821642 14.85457

Compared to their RCC counterparts, the UR parameter estimates kept the same signs, and did

not change much in magnitude. Levels of statistical significance also resembled those under RCC.

The full and reduced MCAR models produced different output, as illustrated below. The fol-

lowing is the output for the corresponding RCC full MCAR model.
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outcomevar = i.union

idvar = idcode

timevar = year

timeidxvar = yearidx

generate = xtrccipw_ipw

timeidxf = 1

timeidxl = 7

trtimevar = truncyear

dlinkfxn = probit

dtdcovars = ttl_exp

dticovars = i.collgrad

dcar = dcar

reducedlag =

interview regerrorcode_xtrccipwRi

year success failure 1 failure 3 Total

1 357 0 0 357

2 155 0 0 155

3 106 0 0 106

4 78 0 0 78

5 0 55 0 55

6 47 0 3 50

7 40 0 3 43

Total 783 55 6 844

Iteration 0: log pseudolikelihood = -694.10882

Iteration 1: log pseudolikelihood = -687.47893

Iteration 2: log pseudolikelihood = -687.43162

Iteration 3: log pseudolikelihood = -687.43162

Generalized linear models No. of obs = 622

Optimization : ML Residual df = 618

Scale parameter = 1

Deviance = 1374.863241 (1/df) Deviance = 2.224698

Pearson = 1574.215399 (1/df) Pearson = 2.547274

Variance function: V(u) = u*(1-u/1) [Binomial]

Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.223253

Log pseudolikelihood = -687.4316203 BIC = -2600.694

(Std. Err. adjusted for 205 clusters in idcode)
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Robust

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1588589 .0498965 -3.18 0.001 -.2566542 -.0610637

ln_wage 1.158728 .3630167 3.19 0.001 .4472285 1.870228

birth_yr -.0516636 .0795114 -0.65 0.516 -.2075031 .104176

_cons 2.909992 4.464318 0.65 0.515 -5.83991 11.65989

And here is the output for the corresponding RCC reduced MCAR model for comparison.

outcomevar = i.union

idvar = idcode

timevar = year

timeidxvar = yearidx

generate = xtrccipw_ipw

timeidxf = 1

timeidxl = 7

trtimevar = truncyear

dlinkfxn = probit

dtdcovars = ttl_exp

dticovars = i.collgrad

dcar =

reducedlag = 0

regerrorco

interview de_xtrccipwRi

year success Total

1 357 357

2 155 155

3 106 106

4 78 78

5 55 55

6 50 50

7 43 43

Total 844 844

Iteration 0: log pseudolikelihood = -738.57945

Iteration 1: log pseudolikelihood = -730.94243

Iteration 2: log pseudolikelihood = -730.88735

Iteration 3: log pseudolikelihood = -730.88735

Generalized linear models No. of obs = 622
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Optimization : ML Residual df = 618

Scale parameter = 1

Deviance = 1461.774699 (1/df) Deviance = 2.365331

Pearson = 1706.799805 (1/df) Pearson = 2.761812

Variance function: V(u) = u*(1-u/1) [Binomial]

Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.362982

Log pseudolikelihood = -730.8873493 BIC = -2513.782

(Std. Err. adjusted for 205 clusters in idcode)

Robust

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1647539 .0514639 -3.20 0.001 -.2656214 -.0638865

ln_wage 1.115535 .3651293 3.06 0.002 .3998944 1.831175

birth_yr -.0488252 .0818688 -0.60 0.551 -.2092851 .1116348

_cons 3.01862 4.602351 0.66 0.512 -6.001822 12.03906

4.4.2 Continuous Outcome

We then regressed wks ue on age, ln wage, and birth yr. Dropout was again modeled on

ttl exp and collgrad using a probit link, with the IPW variable generated as xtrccipw ipw.

The dropout regression error and RCC glm results follow below.

. xtrccipw wks_ue, idvar(idcode) timevar(year) timeidxvar(yearidx)

> generate(xtrccipw_ipw) trtimevar(truncyear) dlinkfxn(probit) dtdcovars(ttl_exp)

> dticovars(i.collgrad)

(output omitted )

interview regerrorcode_xtrccipwRi

year success failure 1 failure 3 Total

1 332 0 25 357

2 256 0 20 276

3 175 0 85 260

4 171 0 62 233

5 0 228 0 228

6 223 0 0 223

7 215 0 0 215

Total 1,372 228 192 1,792
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. glm wks_ue age ln_wage birth_yr [pweight=xtrccipw_ipw], vce(cluster id)

Iteration 0: log pseudolikelihood = -6222.7092

Generalized linear models No. of obs = 1607

Optimization : ML Residual df = 1603

Scale parameter = 45.98446

Deviance = 73713.08961 (1/df) Deviance = 45.98446

Pearson = 73713.08961 (1/df) Pearson = 45.98446

Variance function: V(u) = 1 [Gaussian]

Link function : g(u) = u [Identity]

AIC = 7.749482

Log pseudolikelihood = -6222.709174 BIC = 61879.54

(Std. Err. adjusted for 347 clusters in idcode)

Robust

wks_ue Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .086099 .0634442 1.36 0.175 -.0382493 .2104472

ln_wage -.5719055 1.089603 -0.52 0.600 -2.707488 1.563677

birth_yr .3239657 .1216133 2.66 0.008 .0856081 .5623233

_cons -14.54912 7.865388 -1.85 0.064 -29.965 .8667553

Excluding trtimevar(truncyear) from the xtrccipw call resulted in truncation being treated

exactly like dropout, with the following dropout regression error and UR glm results.

interview regerrorcode_xtrccipwRi

year success failure 3 Total

1 332 25 357

2 347 0 347

3 250 20 270

4 256 0 256

5 106 126 232

6 228 0 228

7 217 0 217

Total 1,736 171 1,907

.

.

.
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Iteration 0: log pseudolikelihood = -8323.6825

Generalized linear models No. of obs = 1607

Optimization : ML Residual df = 1603

Scale parameter = 62.08307

Deviance = 99519.16617 (1/df) Deviance = 62.08307

Pearson = 99519.16617 (1/df) Pearson = 62.08307

Variance function: V(u) = 1 [Gaussian]

Link function : g(u) = u [Identity]

AIC = 10.36426

Log pseudolikelihood = -8323.682502 BIC = 87685.62

(Std. Err. adjusted for 347 clusters in idcode)

Robust

wks_ue Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0836737 .0669348 1.25 0.211 -.0475162 .2148636

ln_wage -.1151565 1.260023 -0.09 0.927 -2.584757 2.354444

birth_yr .3092506 .1330989 2.32 0.020 .0483816 .5701197

_cons -14.6233 8.829574 -1.66 0.098 -31.92895 2.682348

As in the regressions of the binary outcome union, UR parameter estimates kept the same signs

as the corresponding RCC estimates. However, birth yr was less than half as statistically signif-

icant under UR as it was under RCC. Also, while not statistically significant in either scenario,

the magnitude of ln wage changed notably.

4.5 PEP Data Analysis

We now reanalyze the Kurland and Heagerty (2005) analysis data from the PEP study. Few

individuals dropped out (n = 17, 2.3%), and only 62 (8.2%) died in the first two years of the

study. Out of 432 low-risk individuals, 30 died (7%); 14 of 213 (6%) died in the medium-risk

group; and 18 of 107 (17%) died in the high-risk group. They estimated the association of ADL

disability with ADL-disability risk group (i.e., risk levels low, medium, and high), month, month2,

and the interaction between month and risk group. Their dropout model included all of these co-

variates in addition to sex, ADL-disability status at the previous month to reflect the MAR as-

sumption, and a baseline depression indicator.
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The xtrccipw and glm commands were called as follows, with the relevant output displayed.

The variables were study ID (studyid), month (month), month index (monthidx), ADL disability

(adldis = 1 if disabled; = 0 otherwise), risk group (rgamed = 0, rgahigh = 0 for low; rgamed =

1, rgahigh = 0 for medium; and rgamed = 0, rgahigh = 1 for high), month2 (monthsq), medium

risk interaction with month (rgamedmonth = rgamed * month), high risk interaction with month

(rgahighmonth = rgahigh * month), and ADL disability status at the previous month (reducedlag

= 1). The dropout mechanism was modeled using a logit model.

. xtrccipw i.adldis, idvar(studyid) timevar(month) timeidxvar(monthidx)

> generate(xtrccipw_ipw) trtimevar(deathmo) dtdcovars(month monthsq rgamedmonth

> rgahighmonth) dticovars(i.rgamed i.rgahigh i.sex i.depresbl) reducedlag(1)

outcomevar = i.adldis

idvar = studyid

timevar = month

timeidxvar = monthidx

generate = xtrccipw_ipw

timeidxf = 1

timeidxl = 24

trtimevar = deathmo

dlinkfxn = logit

dtdcovars = month monthsq rgamedmonth rgahighmonth

dticovars = i.rgamed i.rgahigh i.sex i.depresbl

dcar =

reducedlag = 1

regerrorcode_xtrccipwRi

monthidx success failure 1 Total

1 0 752 752

2 750 0 750

3 748 0 748

4 743 0 743

5 742 0 742

6 740 0 740

7 735 0 735

8 731 0 731

9 730 0 730

10 729 0 729

11 727 0 727

12 721 0 721
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13 715 0 715

14 712 0 712

15 710 0 710

16 706 0 706

17 701 0 701

18 700 0 700

19 696 0 696

20 690 0 690

21 686 0 686

22 681 0 681

23 677 0 677

24 674 0 674

Total 16,444 752 17,196

. glm adldis month monthsq rgamedmonth rgahighmonth i.rgamed i.rgahigh

> [pweight=xtrccipw_ipw], family(binomial) vce(cluster studyid)

Iteration 0: log pseudolikelihood = -4805.9074

Iteration 1: log pseudolikelihood = -4456.9226

Iteration 2: log pseudolikelihood = -4448.8392

Iteration 3: log pseudolikelihood = -4448.7424

Iteration 4: log pseudolikelihood = -4448.7424

Generalized linear models No. of obs = 17177

Optimization : ML Residual df = 17170

Scale parameter = 1

Deviance = 8897.484773 (1/df) Deviance = .5181995

Pearson = 17402.11245 (1/df) Pearson = 1.013518

Variance function: V(u) = u*(1-u/1) [Binomial]

Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = .5188033

Log pseudolikelihood = -4448.742386 BIC = -158532.8

(Std. Err. adjusted for 752 clusters in studyid)

Robust

adldis Coef. Std. Err. z P>|z| [95% Conf. Interval]

month .042531 .0136743 3.11 0.002 .0157298 .0693322

monthsq -.0023904 .0007797 -3.07 0.002 -.0039185 -.0008622

rgamedmonth .0007953 .0159911 0.05 0.960 -.0305466 .0321372

rgahighmonth .0239548 .0186385 1.29 0.199 -.012576 .0604855

1.rgamed 1.869464 .2275534 8.22 0.000 1.423468 2.31546
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1.rgahigh 2.186206 .2463283 8.88 0.000 1.703412 2.669001

_cons -3.532125 .1850643 -19.09 0.000 -3.894844 -3.169405

These estimates were used to produce Figure 4.4. The predicted trajectories match the fitted

curves for the IPCW-IEE estimator in Figure 3 of Kurland and Heagerty (2005). The fitted odds

ratio comparing odds of disability in the high-risk group to that of the low-risk group at the last

time point is 8.90, while Kurland and Heagerty (2005) estimated this odds ratio as 8.95. This

minor difference likely results from our use of 752 individuals in the data we were provided (from

Professor Kurland), compared to 754 individuals used by Kurland and Heagerty (2005).

4.6 Discussion

In this paper, we introduced the xtrccipw command to estimate the inverse-probability weights

used to conduct weighted GEE regression, and in particular, regression conditioning on continua-

tion. The assumed dropout probability mechanism can be specified using either a logit or probit

link function. Large-sample properties of the resulting glm mean and empirical sandwich vari-

ance estimates were also noted, and xtrccipw was demonstrated using examples with binary and

continuous outcomes. Finally, the command was used to reanalyze the original study findings in

Kurland and Heagerty (2005). Note that the xtrccipw command produces IPWs that all equal

1 when there is only truncation but no dropout, so that running glm afterward is equivalent to

unweighted GEE regression.

The xtrccipw command does have some limitations. The command can only estimate IPWs

if missingness is monotonic, while many studies suffer from non-monotonic (i.e., arbitrary or in-

termittent) missingness. To use xtrccipw, an “artificial” dropout indicator that treats the first

instance of missingness as dropout may be constructed, discarding any subsequent non-missing

outcomes (Robins et al., 1995). One can also try imputing arbitrarily missing outcomes up until

the last non-missing outcome, as done in Kurland and Heagerty (2005).

The RCC method is appropriate when one wishes to draw inference about a target popula-

tion or real-world population that is itself subject to truncation, when one is interested only in

the subset of the target population consisting of continuing outcomes. In the PEP study of indi-

viduals aged 70 or older, the mortality pattern seen in the study sample population can be seen
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to represent that of the target population, so that up-weighting outcomes for those who had died

might not be reasonable because these up-weighted outcomes may be interpreted as representing

outcomes that do not exist in the target population. Regardless of the debate surrounding this

interpretation of the effect of using IPWs (Chaix et al., 2012; Tchetgen Tchetgen et al., 2012),

the PEP study investigators were only interested in the target population of living individuals.

This is the type of research question that RCC is specifically designed to handle. The xtrccipw

command gives the user readily available software to run a weighted GEE or RCC analysis with-

out having to write her own code to construct IPWs.
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Supporting Table 4.1: Short example dataset.

idvar timevar timeidxvar outcomevar dtdcovar dticovar trtimevar

1 05apr1979 1 13.2 432 yes .

1 04may1979 2 14.3 65 yes .

1 05jun1979 3 08.0 -5 yes .

2 18sep1982 1 24.1 83 no .

2 20oct1982 2 32.9 23 no .

2 21nov1982 3 . 633 no .

3 15sep1983 1 25.8 441 no 16nov1983

3 19oct1983 2 23.3 76 no 16nov1983

3 16nov1983 3 . . . 16nov1983

4 14jan1979 1 15.0 -23 no 24feb1979

4 14feb1979 2 . 455 no 24feb1979

4 16mar1979 3 . . . 24feb1979
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Supporting Figure 4.4: Predicted trajectories for PEP data by risk group.
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CHAPTER 5: AUGMENTED REGRESSION CONDITIONING ON CONTINUATION

5.1 Introduction

Previously, we introduced the Breastfeeding, Antiretrovirals, and Nutrition (BAN) study (van der

Horst et al., 2009; Chasela et al., 2010), a clinical trial of 2369 mothers infected with human im-

munodeficiency virus (HIV) who (along with their infants) were randomized in a 3 × 2 factorial

design of interventions. For one of the study objectives, investigators wanted to draw inference

about mean infant weight, length, and body mass index (BMI) over time, as long as infants were

alive and not infected with HIV. Death and infection were therefore conceptualized as “truncat-

ing” the temporal trajectory of such outcomes, rendering such outcomes undefined past the point

of truncation; the opposite of truncation was called “continuation”. By the end of the 24-week

study period, 14% of all 2238 analysis-sample infants had dropped out, and 8% of all other in-

fants had truncated trajectories. While infants were alive, uninfected, and still in the study, in-

fants missed 5% of their scheduled visits intermittently. To address the difference between out-

comes rendered undefined due to truncation, and outcomes that were missing but well-defined,

Kurland and Heagerty (2005) developed a method based on weighted generalized estimating

equations (GEE) for directly estimating continuing longitudinal mean outcomes. We extended

their method to be able to accommodate different mechanisms behind dropout (i.e., monotonic

missingness) and intermittent missingness (IM) using an approach similar to that of Shardell and

Miller (2008), added some large-sample results to perform inference, and called this approach

regression conditioning on continuation (RCC). This was achieved by specifying different prob-

ability models for the dropout and IM processes in constructing the inverse-probability weights

(IPWs) used in a weighted-GEE analysis (IPWGEE). However, a fundamental weakness of most

non-sampling IPWGEE methods is that while the missing-data model is unknown in practice,

it must nonetheless be correctly specified to obtain consistent mean-outcome estimates (Robins

et al., 1995). Simulations have shown that weighted GEE with a misspecified dropout model can
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even perform worse than unweighted GEE (Preisser et al., 2002). RCC therefore performs consis-

tent parameter estimation in general only if the models for dropout and IM are correct.

To protect against such missingness-model misspecification, methods that adjust IPW-equipped

estimating equations have been widely developed. Significant progress has been made in both the

missing-data and causal-inference literatures (Robins et al., 1995; Rotnitzky et al., 1998; Scharf-

stein et al., 1999a; van der Laan and Robins, 2003; Bang and Robins, 2005; Kang and Schafer,

2007; Wooldridge, 2007) on the development and use of these augmented estimating equations

(AEE). These approaches entail adding a term with mean 0 to each summand in the estimat-

ing equation; i.e., this extra component is said to “augment” IPWGEE. The augmentation com-

ponent is derived by projecting the estimating equations onto the tangent space of the missing-

ness model, which is a Hilbert space spanned by functions of the missingness model with mean

0, and then taking the orthogonal complement of that projection (Robins and Rotnitzky, 1995;

van der Laan and Robins, 2003; Carpenter and Kenward, 2006; Tsiatis, 2006; Chen and Zhou,

2011; Shardell et al., 2015). This component is often a function of the complete data (Bang and

Robins, 2005). For the resulting estimator to be consistent, either the IPW or complete-data

model must be correctly specified, but not necessarily both; i.e., such an estimator is “doubly

robust” to model misspecification (Scharfstein et al., 1999b; Bang and Robins, 2005; Kang and

Schafer, 2007; Vansteelandt et al., 2007).

Recently, the AEE approach has been applied in longitudinal settings that distinguish among

truncation, dropout, or IM. Similar to work done by Shardell and Miller (2008), Chen and Zhou

(2011) developed a method that allows IM in both outcomes and covariates. While they dealt

with binary outcomes, they defined a framework general enough to accommodate continuous

outcomes. Tchetgen Tchetgen et al. (2012) proposed a principal-stratification approach to draw

causal inference from longitudinal data with a continuous outcome subject to truncation. Shard-

ell et al. (2015) subsequently extended their work by augmenting the IPW-equipped estimating

equations used to estimate the g-formulas used in the original approach, and allowed for distinct

dropout and truncation mechanisms to be specified in the construction of the IPWs.

Nevertheless, these methods do not allow the AEE IPWs to be modeled with distinct mecha-

nisms for dropout and IM, while also accounting for truncation. The method developed by Chen
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and Zhou (2011) accommodates both outcome and covariate IM. However, they do not distin-

guish dropout from IM, and their method does not handle truncation. The approach of Shardell

et al. (2015) does handle truncation and dropout, but does not allow for IM. The RCC method

properly adjusts for truncation, and additionally distinguishes dropout from standard definitions

of IM by instead defining IM as being conditional on non-dropout. That is, most IPW methods

that allow for arbitrary or non-monotonic missingness define any such missingness as IM, while

RCC restricts the definition of IM to missingness that occurs only before dropout.

In this article, we propose to extend the IPW-based RCC approach by augmenting its weighted

estimating equations with expected outcomes conditional on continuation and observed data. We

call this the augmented RCC (ARCC) method. In Section 5.2, we introduce notation and key

assumptions, construct the augmentation component, and present the ARCC estimating equa-

tion. In Section 5.3, the empirical bias and variance of the ARCC and RCC estimators are char-

acterized in a simulation study. The BAN data are then analyzed in Section 5.4 using ARCC.

We conclude with a brief discussion in Section 5.5.

5.2 Methods

5.2.1 Notation & Assumptions

Suppose we have a random sample of i = 1, . . . , n subjects measured at up to j = 1, . . . ,m

fixed study time points. The dependence on i will be suppressed for notational ease when not

ambiguous. Let Yj denote the outcome at time point j. Let Cj = 1 if the truncating event has

not occurred by time point j, and let Cj = 0 otherwise. Assume the outcome Yj is well defined

if and only if Cj = 1. Assume that truncation is irreversible such that Cj = 0 implies Ck = 0

for all k > j. If Cj = 1, let Rj = 1 if the outcome is observed at time point j; otherwise, let

Rj = 0. If Cj = 1, let RDj = 1 if an individual has not dropped out by time point j; otherwise, let

RDj = 0. Dropout is defined to occur by time point j if all non-truncated outcomes are missing at

and beyond time point j; i.e., Rk = 0 for all k ≥ j if Ck = 1. All undefined values are denoted as

∗, and we adopt the convention that Yj = ∗, Rj = ∗, and RDj = ∗ if Cj = 0. For any time-indexed

quantity A, let Aj denote the value of A at time point j, and let Āj =
(
A1, . . . , Aj

)
. Hence, Āj−1

represents an individual’s history of A prior to time point j, where Āj−1 = ∅ at j = 1. For any

random variable A, if A is discrete then let p(a) denote Pr(A = a), the mass of A at a. Likewise,
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if A is continuous then let p(a) denote f(a), the density of A at a. Let p(·|a) denote p(·|A = a).

Let S =
∑m

j=1Cj denote the number of time points before a trajectory was truncated, with S =

m indicating that the trajectory was not truncated. In the regression setting, we might posit a

generalized linear model of the form h
(
µj(s)

)
= x′jβs, where µj(s) = E

(
Yj
∣∣S = s

)
, h(·) is a link

function, xj is an observed p × 1 vector of (possibly time-dependent) covariates that includes a

column of ones for the intercept, and βs is the corresponding parameter vector.

5.2.2 Dropout & Intermittent Missingness Mechanisms

In this section, we describe different assumptions regarding the probabilities of dropout and

IM. The following conditional probabilities are characterized in order to make assumptions about

dropout and IM. Conditioning on x̄m is assumed in all expressions, so this notation is suppressed

in this section. Let

λDj (cj) = Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳobs

j−1, cj
)
,

where ȳobs
j =

{
yk : Rk = 1, k ≤ j

}
denotes the observed values of ȳj . Let

λIMj (cj+1, cj) = Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳ
obs
j−1, cj+1, cj

)
,

where
{
cj+1, cj

}
=
{
cj
}

at j = m. The probability of dropping out conditional on the history

of missingness, on past non-dropout, on the history of observed outcomes, and on current trunca-

tion status is 1− λDj (cj). For j ≤ m the probability of IM conditional on current non-dropout, on

the histories of missingness and observed outcomes, on truncation status at the next time point if

j < m, and on current truncation status is 1− λIMj (cj+1, cj).

Analogous assumptions regarding the dropout and IM mechanisms are now defined. If

Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳm, c̄m

)
= λDj (cj),

then dropout is said to be at random (DAR). If

Pr
(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, ȳm, c̄m

)
= Pr

(
RDj = 1

∣∣r̄j−1, R
D
j−1 = 1, cj

)
,
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then dropout is said to be completely at random (DCAR). Likewise, if

Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳm, c̄m
)

= λIMj (cj+1, cj),

then IM is said to be at random (IMAR), and if

Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, ȳm, c̄m
)

= Pr
(
Rj = 1

∣∣RDj = 1, r̄j−1, cj+1, cj
)
,

then IM is said to be completely at random (IMCAR). Dropout is not at random if it is neither

DAR nor DCAR, and IM is not at random if it is neither IMAR nor IMCAR. It can be shown

that these assumptions imply that outcomes are missing at random (MAR), defined as

p
(
r̄m
∣∣ȳm, c̄m) = p

(
r̄m
∣∣ȳobs
m , c̄m

)
.

In particular, if DAR and IMAR are true for a set of outcomes, then these outcomes are MAR.

One approach to missingness can misclassify dropout and IM. Suppose that all missingness

for continuing outcomes is defined as IM, an approach akin to that of Shardell and Miller (2008)

with respect to the outcomes. We denote the corresponding IPWs that consider all missing and

truncated outcomes to be IM as IMRCC-IPWs, and let

πIM†j = Pr
(
Rj = 1

∣∣r̄j−1, ȳ
obs
j−1, Cj = 1

)
.

This quantity will be used in Section 5.2.4 to construct the IMRCC-IPW-based estimators.

5.2.3 Augmentation Component

The functional component used to augment the standard IPWGEE expression is described

in this section. Let Ȳ obs
m(−j) =

{
Yk : Yk ∈ Ȳ obs

m , k 6= j
}

, and define Ȳ mis
m(−j) likewise. In our

data setting, it can be shown that the augmentation component of Chen and Zhou (2011) re-

duces to the expected outcome at time point j conditional on observed outcomes at any other

time point, and on current continuation. Elsewhere in the literature, when similar augmentation

components have been modeled and estimated, the corresponding estimator has been called an
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outcome-regression (OR) estimator (Bang and Robins, 2005; Vansteelandt et al., 2010; Shardell

et al., 2015). Adopting this terminology here, we let

µOR
j (s) = E

(
Yj
∣∣ȳobs
m(−j), x̄m, c̄m

)
= E

(
Yj
∣∣ȳobs
m(−j), x̄m, S = s

)
(5.13)

denote the augmentation component with a functional form defined using OR models.

To solve the estimating equations in Section 5.2.4, µOR
j (s) must be estimable. Expression

(5.13) suggests taking a pattern-mixture approach that stratifies by truncation time, similar to

what was done in le Cessie et al. (2009). Let psk = Pr(S = k
∣∣x̄m), and let µj(s) = E

(
Yj
∣∣x̄m, S =

s
)

represent the mean outcome conditional on S = s for s > 0. The RCC estimand of interest is

µRCCj = E
(
Yj
∣∣x̄m, Cj = 1

)
=

∑m
k=j µj(k)psk∑m

`=j ps`
. (5.14)

Specifying the distribution f
(
ȳm
∣∣x̄m, S = s

)
would allow straightforward calculation of µOR

j (s)

and µj(s). We henceforth refer to a model for f
(
ȳm
∣∣x̄m, S = s

)
as an OR model.

In pattern-mixture applications, the multivariate-normal distribution is commonly used to

specify an OR model for mean continuous outcomes with an identity link. The components of

(5.13) are specified using a multivariate-normal distribution as follows. Let [A] represent the

probability distribution of a random variable A. Let qj =
∑m

k=1 rkI(k 6= j), where I(a) = 1

if statement a is true and I(a) = 0 otherwise. The density f
(
ȳm
∣∣x̄m, S = s

)
is defined using[

Ȳm
∣∣x̄m, S = s

]
= N

(
µ̄m(s),Σ

)
, where µ̄m(s) = E

(
Ȳm
∣∣x̄m, S = s

)
denotes the mean out-

come vector conditioned on s, and Σ is an m × m covariance matrix. Hence,
[
Ȳ obs
m(−j)

∣∣S = s
]

=

N
(
µ̄(s)obs

m(−j),Σqj

)
where µ̄(s)obs

m(−j) = E
(
Ȳ obs
m(−j)

∣∣x̄m, S = s
)

is a qj × 1 sub-vector of µ̄m(s), and

Σqj is the corresponding qj × qj sub-matrix of Σ. Hence,

µOR
j (s) = µj(s) + σqjΣ

−1
qj eqj (s),

where σqj is a 1 × qj subvector defined with the corresponding elements of Σ, and eqj (s) =

ȳobs
m(−j) − µ̄(s)obs

m(−j).

72



5.2.4 Estimators and Inference

In this section, we describe the ARCC and RCC estimators for our estimand of interest, the

mean outcome conditional on continuation at time point j for individual i; i.e., µRCCij . This esti-

mand is formulated as in (5.14), so our attention is focused on the necessary intermediate quan-

tity µij(s) = E
(
Yij
∣∣x̄im, S = s

)
. Let d′ij = ∂µij(s)

/
∂βs denote the Jacobian of partial derivatives

of µij(s) with respect to βs. Let ns denote the number of individuals with S = s.

Following Chen and Zhou (2011), consider the vector estimating equation

U (βs) =

ns∑
i=1

s∑
j=1

dij (Wij − µij(s)) , (5.15)

where

Wij =
Rij
πij

(
Yij − µOR

ij (s)
)

+ µOR
ij (s)

and

πij = Pr
(
Rij = 1

∣∣r̄i(j−1), r̄
D
i(j−1), ȳim, x̄im, Si = s

)
is the joint probability of not being missing, conditional on the history of missingness and dropout,

on all outcomes and covariates, and on the full truncation vector. The IPW probability πij is un-

known in practice, but can be consistently estimated if the dropout and IM mechanism models

are correctly specified. The OR quantity µOR
ij (s) is also unknown in practice, but can likewise be

consistently estimated by correctly specifying the relevant OR model.

The RCC quantity µRCCij is estimated in two steps. The quantity µij(s) is first estimated, and

subsequently the correspondence in (5.14) is used to calculate µRCCij using a consistent estima-

tor of psk . Suppose DAR and IMAR hold such that πij = λIMij (cj+1, c)λ
D
ij (c). Let π̂ij represent

an estimator of πij with estimates λ̂IMij and λ̂Dij substituted for λIMij and λDij , respectively, and let

µ̂OR
ij likewise represent an estimator of µOR

ij (s). Let β̂ denote the solution to U
(
βs
)

= 0 when π̂ij

and µ̂OR
ij are substituted for πij and µOR

ij (s), respectively. If π̂ij and µ̂OR
ij are both consistent for

their respective estimands, then β̂ is consistent and asymptotically normal for βs (Robins et al.,

1995). Furthermore, β̂ is doubly robust to misspecification in the sense that β̂ is consistent for

βs even if only one (and not both) of either π̂ij or µ̂OR
ij is consistent for its estimand. This can
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be seen by noting that Cij is an always-observed time-varying covariate in the notation of Robins

et al. (1995), Chen and Zhou (2011), and Shardell et al. (2015). Hence, the large-sample consis-

tency results in these articles apply here as well. The estimator β̂ is also asymptotically normal

(Robins et al., 1995, section 6 material on β̃† and β̃). Let p̂sk denote a consistent estimator for

psk . Let µ̂RCCij represent (5.14) with µ̂ij(s) = h−1
(
x′ijβ̂s

)
substituted for µij(s) and p̂sk substi-

tuted for psk . By the continuous mapping theorem, if β̂ is consistent for βs then µ̂RCCij is consis-

tent for µRCCij . The variance of µ̂RCCij can be consistently estimated using the bootstrap estima-

tor.

Compared to RCC, ARCC provides more robust estimation in cases when IPWs are incor-

rectly modeled as IMRCC-IPWs. When outcomes are DAR and IMAR, implementing RCC with

IMRCC-IPWs produces estimators that are generally not consistent for βs. However, running

ARCC with IMRCC-IPWs and the correct OR model will still produce a consistent estimator.

Let π̂IM†ij represent a consistent estimator of πIM†ij , and let β̂IM† denote the solution to U
(
βs
)

=

0 when π̂IM†ij and µ̂OR
ij are substituted for πij and µOR

ij (s), respectively. If there is no truncation

and no dropout, then β̂ and β̂IM† are identical. If there is truncation or dropout, and if µ̂OR
ij is

consistent for µOR
ij (s), then β̂IM† will still be consistent for βs. However, if there is truncation or

dropout and if µOR
ij (s) is misspecified, then β̂IM† will generally not be consistent for βs.

5.3 Simulation Study

A simulation study was conducted to characterize the empirical performance of ARCC and

RCC estimators. The continuous outcome of infant weight Yij was simulated for n = 1000 in-

fants. The mean outcome of interest was µRCCij = E
(
Yij
∣∣Cij = 1

)
at visits 1, 4, 6, 8, and 10

that correspond to time points j = 1, . . . , 5, respectively. However, outcomes were generated and

estimated for up to visit 12, i.e., time point m = 6, because estimation of the IM IPW at the

last analytical visit depends on whether or not this is also the last visit with outcomes available

for IM IPW estimation. Modeling and consistent estimation of the model parameters of the OR

quantity also required use of all outcomes possibly available up to time point m.

Truncation was not at random (TNAR) if outcomes were generated conditional on truncation

by specifying f
(
ȳim
∣∣si) as the generating probability density function (PDF). Truncation was
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completely at random (TCAR) if outcomes were generated independently of truncation by speci-

fying f
(
ȳim
)

as the PDF. Simulation parameters were chosen so that outcomes of lighter infants

were more likely to be truncated under TNAR, while heavier infants were more likely to drop out

under DAR. Infant weight trajectories were simulated according to combinations of the following

mechanisms: TCAR or TNAR; DCAR or DAR; and IMCAR, IMAR similar to the truncation

mechanism (IMART), or IMAR similar to the dropout mechanism (IMARD). For each of the 12

resulting scenarios, we generated and analyzed ` = 1, . . . , 31 simulation data sets. All parameters

for generating outcomes were derived from the BAN data, and can be found in Tables 3.2 and

3.3.

5.3.1 Data Generation Procedure

For all infants and all time points, age at time point j was set to the corresponding mean

BAN age, i.e., ageij ≡ µage(j). About half of all infants were generated with sexi = 0, and the

remaining half with sexi = 1. Simulated outcomes and events were generated as follows. Note

that Si ≥ j and Cij = 1 are equivalent statements, as are Si = j and
{
Ci(j+1) = 0, Cij = 1

}
where{

Ci(j+1)

}
= ∅ at j = m.

1. For each individual i, the number of continuing time points Si was generated using a multi-

nomial distribution with probabilities ps0 = ps1 = ps2 = 0, ps3 = ps4 = ps5 = 0.1, and

ps6 = 0.7 to ensure about 30% truncation by time point 5 (i.e., visit 10). Note that realiza-

tions cij and si were thereby generated simultaneously.

2. Set µij(si) = w(si)α0 + α1ageij + α2age
2
ij for s > 0, with α0 = 2.9964, α1 = 0.0389,

and α2 = −0.0001. If cij = 1, then an outcome was generated as Yij = µij(si) + bi + εij ,

where bi ∼ N
(
0, σ2

b

)
was the random shift generated for individual i, and measurement

error was generated as εij ∼ N
(
0, σ2

ε

)
, with σb = 0.59 and σε = 0.44. We set bi ⊥⊥ εij for

all j, and Ȳim ⊥⊥ Ȳi′m for all i′ 6= i. Hence, outcomes for each individual i conditional on si

were distributed as N
(
µ̄m(si),Σ

)
, where Σ was a compound-symmetric (i.e., exchangeable)

covariance matrix with diagonal elements σ2
b + σ2

ε and non-diagonal elements σ2
b . TCAR

outcomes were generated by setting w(si) = 1, while TNAR outcomes were generated by

letting w(si) = ζ0 + ζ1(si − 1)/(m − 1), where ζ1 = 2(1 − ζ0) and 0 < ζ0 < 1. In our
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simulations, we set ζ0 = 0.8. Under TNAR, w(smed) = 1 at the median value smed =

(m + 1)/2, but otherwise µij(si) was shifted by some distance with range
[
ζ0, ζ0 + ζ1

]
from

the median value. Hence, heavier infants tended to continue longer.

3. If si ≥ 1, then rDi1 was generated using λDi1(1).

4. If si > 1, the following was done for j < si. If rDij = 0, then rij ≡ 0 was set. Otherwise, if

rDij = 1 then rij was generated using λIMij (1, 1). Subsequently, if rij = 0 then rDi(j+1) ≡ rDij

was set. Otherwise, if rij = 1 then rDi(j+1) was generated using λDi(j+1)(1).

5. At j = si, rij ≡ rDij was set.

6. For all j > si, r
D
ij and rij were left undefined.

For a quantity b, let gj
(
b
)

= (j − 1)−1b
∑j−1

k=1 kRikYik for j > 1. Dropout was generated using a

probit model specified as λDij (1) = Φ
{
ηD0 + I(j > 1)gj

(
ηD1
)}

, where Φ
(
·
)

is the standard nor-

mal cumulative distribution function, and ηD0 = Φ−1
(
p

1/m
D

)
where a fixed value was assigned to

pD. IM was generated likewise with an identical model, but with λIMij (1, 1), ηIM0 , ηIM1 , and pIM

replacing λDij (1), ηD0 , ηD1 , and p
1/m
D , respectively, where a fixed value was assigned to pIM . For

each of the seven mechanisms, the simulation values pD, ηD1 , pIM , and ηIM1 are listed in Table

3.4. Values for pD and pIM were chosen so that truncation, dropout, and IM occurred at rates of

approximately 8%, 14%, and 5%, respectively, by time point 3.

5.3.2 Results

Six regression methods were used to estimate E
(
Yij
∣∣Cij = 1

)
for j = 1, . . . , 6. The event prob-

ability πij was modeled correctly by specifying λ
D(1)
ij and λ

IM(1)
ij as the probit models defined in

Section 5.3.1, while πij was wrongly specified as πIM†ij . Estimates of πIM†ij were calculated by us-

ing all observations regardless of the corresponding Ci(j+1), Cij , or RDij values. The correct OR

model was specified by fitting Yij = µij(si) + bi + εij , where µij(si) = α0si + α1siageij + α2siage
2
ij .

The wrong OR model does not account for truncation, and was specified as Yij = µ†j + bi + εij ,

where µ†j = α†0 + α†1ageij . For both models, bi and εij were specified correctly as in the generating

OR model.

For each simulated data set, µRCCij was modeled as E
(
Yij
∣∣Cij = 1

)
= βRCC0 + I(j > 1)βRCCj−1 .
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Denote the parameter vector that was estimated for each data set using the following six regres-

sion methods as βRCC =
(
βRCC0 , βRCC1 , βRCC2 , βRCC3

)′
. Each parameter was estimated using the

correspondence in (5.14) after using the sample proportion p̂sk = 1/n
∑n

i=1 I(si = k) to consis-

tently estimate psk , and estimating all relevant α coefficients.

1. ARCC-11. The correct models πij and µij(si) were fit. This ARCC estimator was expected

to be consistent.

2. ARCC-10. The correct model πij and the wrong model µ†j(si) were fit. This ARCC estima-

tor was expected to be consistent.

3. ARCC-01. The wrong model πIM†ij and the correct model µij(si) were fit. This ARCC esti-

mator was expected to be consistent.

4. ARCC-00. The wrong models πIM†ij and µ†j(si) were fit. This ARCC estimator was gener-

ally not expected to be consistent.

5. RCC-1. The correct model πij was fit. This RCC estimator was expected to be consistent.

6. RCC-0. The wrong model πIM†ij was fit. This RCC estimator was generally not expected to

be consistent.

Empirical bias and coverage were then calculated for each method as follows. Let β̂p` denote the

estimate of βRCCp for data set `. For each of the p = 0, . . . , 3 parameters, the empirical bias of β̂p

was calculated as 31−1
∑31

`=1 β̂p` − βRCCp .

The results are summarized as follows, where good performance was defined as an absolute

empirical bias of less than or equal to 0.003. As in our previous study on RCC, RCC0 performed

worst in all 12 scenarios. In all six TCAR scenarios, all four ARCC methods and RCC1 per-

formed well. The following are the results for the six TNAR scenarios. ARCC11 and RCC1 per-

formed best, and ARCC10 generally performed well (i.e., for 15 out of 18 coefficients). ARCC01

and ARCC00 both performed decently (i.e., for 11 out of 18 coefficients). Hence, ARCC was

shown to protect against misspecification of the IPW model. Figure 5.5 illustrates typical results

from two scenarios.
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5.4 Analysis of the BAN Study

The ARCC method was applied to our sample of n = 2238 infants in the BAN data, account-

ing for 307 dropouts, 187 truncations, and 973 IM observations. The goal was to estimate the

mean infant outcome at each of nine scheduled follow-up visits for those infants who were alive

and uninfected (i.e., who had continuing outcome trajectories) at that visit.

Growth patterns of girls and boys were considered to be different a priori. Hence, the mean

outcome for infant i at visit j conditional on continuation, µij = E
(
Yij
∣∣Cij = 1

)
, was mod-

eled separately for girls and boys. The mean outcome was modeled as a linear function of 1.)

drug assignment to no ART (the reference), maternal ART, or infant ART, 2.) supplement as-

signment to no LNS (the reference) or LNS, 3.) dummy indicator variables for visit with visit

1 as the reference, and 4.) interactions between drug assignment, supplement assignment, and

visit. We modeled the conditional probability of non-dropout, λDij (1), as a probit function with

observed past infant outcomes Ȳ obs
i(j−1) and drug/supplement group assignments and their inter-

actions as predictors. The conditional probability of non-IM, λIMij (1, 1), was modeled likewise.

The OR model was specified as the mixed-effect model conditioned on si = 1, . . . ,m, defined as

Yij = α0(si) + α1(si)ageij + α2(si)age
2
ij + bi + εij , where bi ∼ N

(
0, σ2

b

)
was the shift for individual

i, and εij ∼ N
(
0, σ2

ε

)
was measurement error. The corresponding IPWs were used to estimate the

mean outcomes at each visit, and standard errors were estimated using the empirical sandwich

variance estimator.

The results for the infant outcomes of length, BMI, and weight are reported as follows. In-

fant length was not significantly associated with drug or supplement in either boys (Wald test

p = 0.60) or girls (p = 0.89). Infant BMI was also not significantly associated with drug or sup-

plement in either boys (p = 0.56) or girls (p = 0.10). Likewise, infant weight was not significantly

associated with drug or supplement in either boys (p = 0.37) or girls (p = 0.10). Figure 5.6 de-

picts the estimated means and 95% CIs separately for girls and boys, for each treatment group at

study period weeks 6, 12, 18, and 24 (i.e., visits 5, 7, 8, and 10, respectively).

Our findings are consistent with the results from our original application of RCC to the BAN

study data, in which LNS was not significantly associated with infant weight. The application of
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ARCC to this same analysis is additional evidence that the truncation, dropout, and intermit-

tent missingness mechanisms may not have been different, and may have been unrelated to in-

fant weight. The caveat still remains, however, that there may simply have been too few of these

events to indicate any true variation between the mechanisms. The reduced-model parameters in

Table 5.1.

5.5 Discussion

The method of regression conditioning on continuation for continuous longitudinal outcomes

was extended using an augmented estimating equation approach, and the resulting augmented

RCC estimator is doubly robust to misspecification of either the missingness or joint-outcome

model. Truncation, dropout, and intermittent missingness mechanisms were varied to produce

12 simulation scenarios used to compare the performance of ARCC with that of RCC. The re-

sults indicated that ARCC is indeed doubly robust, and the method was applied to the BAN

study data. These findings resembled the original RCC results, further providing evidence that

the truncation, dropout, and intermittent missingness mechanisms may not have differed from

each other, and may have been unassociated with infant weight.

As alluded to by Kurland and Heagerty (2005), the inferences acquired via ARCC may be

applied towards future out-of-sample predictions without having to specify the full truncation

distribution. This is advantageous in clinical practice, wherein a clinician likely will not know a

patient’s future continuation status, yet will nonetheless be able to use previously derived ARCC

results to predict a continuing patient’s current outcome. However, in our development of both

RCC and ARCC, both IPW and OR-quantity estimation required future knowledge of truncation

status. That is, truncation status for at least one time point beyond the current time point was

needed to estimate model parameters. While this is not problematic if the ARCC analysis results

will be used for future in-clinic predictions, further extensions might involve developing ARCC

techniques that do not rely on such future knowledge. Such extensions would allow for real-time

ARCC analysis to be conducted across a common set of patients, and across clinics, to better

inform clinical decision-making.
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While specification of parametric mechanisms facilitated our statistical study of RCC prop-

erties, methods that allow the functional forms of the mechanisms to vary may be more com-

patible with the aims of the BAN study researchers, who were not concerned with specifying

models for the dropout or IM mechanisms. For example, machine learning might be applied to

find the best-fitting mechanism models, since human interpretability is not required for these

so-called nuisance models. If ARCC is the planned analysis, this type of approach might also

be applied to the OR model. In ARCC, a model for the joint outcomes is not of primary inter-

est, as might be the case if the planned primary analysis is a maximum likelihood estimation

or multiple-imputation procedure. We also limited our investigation to at-random mechanisms,

while actual mechanisms may produce data subject to not-at-random dropout or IM. Studies of

the sensitivity of the mean infant weight estimates to such mechanism misspecifications would

assist researchers in deciding how to explicitly model distributions of dropout, IM, and the joint

outcomes.

5.6 ARCC GEE Derivation from Chen and Zhou (2011)

We derive the ARCC GEE expression (5.15) using the general framework and notation of

Chen and Zhou (2011), hereafter referred to as CZ2011. Specifically, (5.15) is derived from their

expression

S1 (θ) =
n∑
i=1

S1i (θ) =
n∑
i=1

[
DiMi (Yi − µi) + E(Y m

i ,Xm
i |Y o

i ,X
o
i ,Zi,Ri) {DiNi (Yi − µi)}

]

as follows, specifying each quantity. In this section, “page” refers to the CZ2011 article page.

The following material will be organized by article section number.

(2.1) Response Process

Refer to the following mean-outcome expression.

g(µij) = Xijβx +Z ′ijβz.

We do not consider the case with missing covariates, so we exclude Xij and βx from all expres-

sions where relevant, exclude all results concerning Xij where relevant. Let vij = σ2 for all i and
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Supporting Table 5.1: BAN infant weight RCC parameter estimates for reduced models.

Sex Covariate Estimate (95% CI)

male intercept 3.07 (3.05, 3.10)
visit 2 0.14 (0.12, 0.15)
visit 3 0.38 (0.36, 0.40)
visit 4 1.00 (0.98, 1.02)
visit 5 1.56 (1.53, 1.59)
visit 6 2.04 (2.01, 2.07)
visit 7 2.83 (2.80, 2.87)
visit 8 3.70 (3.66, 3.74)
visit 9 4.05 (4.00, 4.09)
visit 10 4.33 (4.29, 4.38)

female intercept 2.98 (2.95, 3.00)
visit 2 0.13 (0.12, 0.15)
visit 3 0.34 (0.32, 0.35)
visit 4 0.89 (0.87, 0.92)
visit 5 1.37 (1.35, 1.40)
visit 6 1.79 (1.76, 1.82)
visit 7 2.50 (2.47, 2.53)
visit 8 3.29 (3.25, 3.33)
visit 9 3.61 (3.57, 3.65)
visit 10 3.88 (3.84, 3.93)

Note: All estimates were statistically signifi-
cant at α = 0.001.
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Supporting Figure 5.5: Simulation study: Empirical biases (×1000) under TCAR, DCAR, IM-
CAR and TNAR, DAR, IMARD. (50 simulated datasets, 1000 subjects; ARCC-11 �, ARCC-10

∗ , ARCC-01 N, ARCC-00 0, RCC-1 e, RCC-0 5. Dotted lines are marked at ±20 on bias fig-
ures.)
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Supporting Figure 5.6: Estimates and 95% CIs of mean weight for HIV-negative, alive infants at study period weeks 6, 12, 18,
and 24 using data from the BAN study. These correspond to study visits 5, 7, 8, and 10, respectively. The y-axis scales are iden-
tical. (Treatment Group: 1 = control and no LNS, 2 = maternal ART and no LNS, 3 = infant ART and no LNS, 4 = control and
LNS, 5 = maternal ART and LNS, 6 = infant ART and LNS. Dashed lines correspond to CIs of the reference group, Treatment
Group 1.)
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j.

(2.2) Missing Data Process

For notational consistency with the article material, let Rij = 1 if Yij is missing, and let Rij =

3 if Yij is observed. In our case, for MAR mechanisms we require

P
(
Ri = ri

∣∣Yi,Zi) = P
(
Ri = ri

∣∣Y o
i ,Zi

)
,

and we make the further assumption that

P
(
Rij = rij

∣∣R̄ij ,Yi,Zi
)

= P
(
Rij = rij

∣∣R̄ij , Ȳ
o
ij ,Zi

)
,

which implies MAR defined above. Let

πij = P
(
Rij = 3

∣∣Yi,Zi)
=
∑
r̄ij

P
(
Rij = 3, R̄ij = r̄ij

∣∣Yi,Zi)
=
∑
r̄ij

P
(
Rij = 3

∣∣R̄ij = r̄ij ,Yi,Zi
)
P
(
R̄ij = r̄ij

∣∣Yi,Zi)
=
∑
r̄ij

P
(
Rij = 3

∣∣R̄ij = r̄ij ,Yi,Zi
)
P
(
Ri,j−1 = ri,j−1, R̄i,j−1 = r̄i,j−1

∣∣Yi,Zi)
=
∑
r̄ij

P
(
Rij = 3

∣∣R̄ij = r̄ij ,Yi,Zi
)
P
(
Ri,j−1 = ri,j−1

∣∣R̄i,j−1 = r̄i,j−1,Yi,Zi
)
×

P
(
R̄i,j−1 = r̄i,j−1

∣∣Yi,Zi)
=
∑
r̄ij

P
(
Rij = 3

∣∣R̄ij = r̄ij ,Yi,Zi
)
P
(
Ri,j−1 = ri,j−1

∣∣R̄i,j−1 = r̄i,j−1,Yi,Zi
)
× · · ·

× P
(
Ri3 = ri3

∣∣R̄i3 = r̄i3,Yi,Zi
)
P
(
Ri2 = ri2

∣∣Ri1 = ri1,Yi,Zi
)
P
(
Ri1 = ri1

∣∣Yi,Zi)
=
∑
r̄ij

P
(
Rij = 3

∣∣R̄ij = r̄ij ,Yi,Zi
) j−1∏
k=1

P
(
Rik = rik

∣∣R̄ik = r̄ik,Yi,Zi
)

=
∑
r̄ij

P
(
Rij = 3

∣∣R̄ij = r̄ij , Ȳ
o
ij ,Zi

) j−1∏
k=1

P
(
Rik = rik

∣∣R̄ik = r̄ik, Ȳ
o
ik,Zi

)
under MAR,

where R̄i1 = ∅.
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(3.1) Weighted Estimating Equation for the Response Parameters

Let Dij = ∂µij/∂βz, and note that

Di =
∂µ′i
∂βz

= (Di1, . . . ,DiJi)p×Ji .

We use a working independence assumption such that the working correlation matrix is Ci = I.

Let

Fi = diag
(
vij , j = 1, . . . , Ji

)
= diag

(
σ2, j = 1, . . . , Ji

)
= σ2I,

where I is the Ji × Ji identity matrix. We now have

Mi = F
−1/2
i

(
C−1
i •∆i

)
F
−1/2
i

= F
−1/2
i

(
I−1
i •∆i

)
F
−1/2
i under working independence

= F
−1/2
i ∆∗i (α)F

−1/2
i

=
1

σ2
∆∗i (α) ,

where • denotes the Hadamard product of matrices, and

∆∗i (α) = diag

(
I (Rij = 3)

πij
, 1 ≤ j ≤ Ji

)

is unchanged from the article. Note that the the definition of δijj′ does not matter because the

Hadamard product zeros all of these values under the working independence assumption. We also

have

Ni = F
−1/2
i

{
C−1
i •

(
11′ −∆i

)}
F
−1/2
i

= F
−1/2
i

{
I−1 •

(
11′ −∆i

)}
F
−1/2
i under working independence

= F
−1/2
i {I −∆∗i (α)}F−1/2

i

=
1

σ2
{I −∆∗i (α)} ,
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where 1 is a Ji × 1 vector. Note that the Hadamard product again zeros all of these values under

working independence.

The resulting estimating equations are

S1 (θ) =
n∑
i=1

S1i (θ)

=
n∑
i=1

[
DiMi (Yi − µi) + E(Y m

i |Y o
i ,Zi,Ri) {DiNi (Yi − µi)}

]
=

n∑
i=1

[
Di

1

σ2
∆∗i (α) (Yi − µi) + E(Y m

i |Y o
i ,Zi,Ri)

{
Di

1

σ2
(I −∆∗i (α)) (Yi − µi)

}]

=
1

σ2

n∑
i=1

[
Di∆

∗
i (α) (Yi − µi) + E(Y m

i |Y o
i ,Zi,Ri) {Di (I −∆∗i (α)) (Yi − µi)}

]
.

Note that

P
(
Y m
i

∣∣Y o
i ,Zi,Ri

)
=
P (Y m

i ,Y o
i ,Zi,Ri)

P (Y o
i ,Zi,Ri)

=
P (Yi,Zi,Ri)

P (Y o
i ,Zi,Ri)

=
P
(
Ri

∣∣Yi,Zi, )P (Yi,Zi)

P
(
Ri

∣∣Y o
i ,Zi,

)
P (Y o

i ,Zi)

=
P
(
Ri

∣∣Y o
i ,Zi,

)
P (Yi,Zi)

P
(
Ri

∣∣Y o
i ,Zi,

)
P (Y o

i ,Zi)
under MAR

=
P (Yi,Zi)

P (Y o
i ,Zi)

=
P (Y m

i ,Y o
i ,Zi)

P (Y o
i ,Zi)

= P
(
Y m
i

∣∣Y o
i ,Zi

)
.

Hence, the estimating equations are

S1 (θ) =
1

σ2

n∑
i=1

[
Di∆

∗
i (α) (Yi − µi) + E(Y m

i |Y o
i ,Zi) {Di (I −∆∗i (α)) (Yi − µi)}

]
.
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Expanding these estimating equations, we have

S1 (θ) =
1

σ2

n∑
i=1

[
Di∆

∗
i (α) (Yi − µi) + E(Y m

i |Y o
i ,Zi) {Di (I −∆∗i (α)) (Yi − µi)}

]
∝

n∑
i=1

{
Di∆

∗
i (α) (Yi − µi) +Di (I −∆∗i (α))

(
E(Y m

i |Y o
i ,Zi) (Yi)− µi

)}
=

n∑
i=1

Di

{
∆∗i (α) (Yi − µi) + (I −∆∗i (α))

(
E(Y m

i |Y o
i ,Zi) (Yi)− µi

)}
=

n∑
i=1

Di

{
∆∗i (α) (Yi − µi) +

(
E(Y m

i |Y o
i ,Zi) (Yi)− µi

)
−∆∗i (α)

(
E(Y m

i |Y o
i ,Zi) (Yi)− µi

)}
=

n∑
i=1

Di

{
∆∗i (α)

(
Yi − µi − E(Y m

i |Y o
i ,Zi) (Yi) + µi

)
+
(
E(Y m

i |Y o
i ,Zi) (Yi)− µi

)}
=

n∑
i=1

Di

{
∆∗i (α)

(
Yi − E(Y m

i |Y o
i ,Zi) (Yi)

)
+
(
E(Y m

i |Y o
i ,Zi) (Yi)− µi

)}
=

n∑
i=1

Di

{({
I (Rij = 3)

πij

{
Yij − E

(
Yij
∣∣Y o
i ,Zi

)}})
Ji×1

+
({
E
(
Yij
∣∣Y o
i ,Zi

)
− µij

})
Ji×1

}

=
n∑
i=1

Di

({
I (Rij = 3)

πij

{
Yij − E

(
Yij
∣∣Y o
i ,Zi

)}
+ E

(
Yij
∣∣Y o
i ,Zi

)
− µij

})
Ji×1

=
n∑
i=1

Ji∑
j=1

Dij (Wij − µij) ,

where

Wij =
I (Rij = 3)

πij

{
Yij − E

(
Yij
∣∣Y o
i ,Zi

)}
+ E

(
Yij
∣∣Y o
i ,Zi

)
.

To complete the derivation, we now redefine quantities using our own notation. Denote the

CZ2011 link function g(·) as h(·), let Zij = xij and denote the CZ2011 quantity βz as αs. Let

Rij = 1 if Yij is observed, and let Rij = 0 otherwise. For a variable A, denote the CZ2011 quan-

tity Āij as Āi(j−1), and denote Ȳ o
ij = Ȳ obs

j−1.
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5.7 Proof of ARCC Double-Robustness

We show that (5.15) is robust to misspecification of either the missingness or OR models. In

this section, we suppress the i notation. Recall that

πj = Pr
(
Rj = 1, RDj = 1

∣∣R̄j−1, R̄
D
j−1, Ȳm, C̄m

)
= Pr

(
Rj = 1, RDj = 1

∣∣R̄j−1, R̄
D
j−1, Ȳ

obs
j−1, Cj+1, Cj

)
under DAR and IMAR.

If the missingness model is correct but the OR model is wrong, then

E
(
Wj

∣∣S = s
)

= E
(
Wj

∣∣C̄m

)
= EȲm,Rj ,RD

j ,R̄j−1,R̄D
j−1

[
RjR

D
j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+ E

{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣∣C̄m

]

= EȲm

(
ERj ,RD

j ,R̄j−1,R̄D
j−1

[
RjR

D
j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+ E

{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣Ȳm, C̄m

] ∣∣∣∣∣C̄m

)

= EȲm

(
ERj ,RD

j ,R̄j−1,R̄D
j−1

[
RjR

D
j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+ E

{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣Ȳm, C̄m

] ∣∣∣∣∣C̄m

)

= EȲm

{
ER̄j−1,R̄D

j−1

(
ERj ,RD

j

[
RjR

D
j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+

E
{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣R̄j−1, R̄
D
j−1, Ȳm, C̄m

]∣∣∣∣∣Ȳm, C̄m

)∣∣∣∣∣C̄m

}

= EȲm

(
ER̄j−1,R̄D

j−1

[ERj ,RD
j

{
RjR

D
j

∣∣∣∣R̄j−1, R̄
D
j−1, Ȳm, C̄m

}
πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+

E
{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣∣Ȳm, C̄m

]∣∣∣∣∣C̄m

)

= EȲm

[
ER̄j−1,R̄D

j−1

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)
+ E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

) ∣∣∣Ȳm, C̄m

} ∣∣∣∣C̄m

]
= EȲm

(
Yj
∣∣C̄m

)
= E

(
Yj
∣∣C̄m

)
= E

(
Yj
∣∣S = s

)
.

For derivational clarity, let RMj =
{
Rj , R

D
j

}
, R̄Mj =

{
R̄j , R̄

D
j

}
, and RM×j = RjR

D
j . Now suppose

πj is incorrectly modeled. Recall that πj is a function of
{
R̄j−1, R̄

D
j−1, Ȳ

obs
j−1, Cj+1, Cj

}
under DAR
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and IMAR.

If instead the OR model is correct but the missingness model is wrong, then

E
(
Wj

∣∣S = s
)

= E
(
Wj

∣∣C̄m
)

= EȲ obs
m(−j)

,Yj ,R
M
j ,R̄M

j−1

[
RM×

j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+ E

{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣∣C̄m

]

= EȲ obs
m(−j)

(
EYj ,R

M
j ,R̄M

j−1

[
RM×

j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)}
+ E

{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣Ȳ obs
m(−j), C̄m

] ∣∣∣∣∣C̄m

)

= EȲ obs
m(−j)

(
EYj ,R

M
j ,R̄M

j−1

[
RM×

j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)} ∣∣∣∣Ȳ obs
m(−j), C̄m

]
+ E

[
Yj
∣∣Ȳ obs

m(−j), C̄m

] ∣∣∣∣∣C̄m

)

= EȲ obs
m(−j)

{
ER̄M

j−1

(
EYj ,R

M
j

[
RM×

j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)} ∣∣∣∣R̄M
j−1, Ȳ

obs
m(−j), C̄m

]∣∣∣∣∣Ȳ obs
m(−j), C̄m

)
+

E
(
Yj
∣∣Ȳ obs

m(−j), C̄m

) ∣∣∣∣∣C̄m

}

= EȲ obs
m(−j)

[
ER̄M

j−1

{
EYj

(
ERM

j

[
RM×

j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)} ∣∣∣∣R̄M
j−1, Ȳ

obs
m(−j), Yj , C̄m

]∣∣∣∣∣R̄M
j−1, Ȳ

obs
m(−j), C̄m

)∣∣∣∣∣Ȳ obs
m(−j), C̄m

}
+

E
{
Yj
∣∣Ȳ obs

m(−j), C̄m

} ∣∣∣∣∣C̄m

]

= EȲ obs
m(−j)

{
ER̄M

j−1

(
EYj

[
π0
j

πj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)} ∣∣∣∣∣R̄M
j−1, Ȳ

obs
m(−j), C̄m

] ∣∣∣∣∣Ȳ obs
m(−j), C̄m

)
+ E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

) ∣∣∣∣∣C̄m

}

= EȲ obs
m(−j)

(
ER̄M

j−1

[
π0
j

πj
EYj

{
Yj − E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

) ∣∣∣R̄M
j−1, Ȳ

obs
m(−j), C̄m

} ∣∣∣∣Ȳ obs
m(−j), C̄m

]
+ E

[
Yj
∣∣Ȳ obs

m(−j), C̄m

] ∣∣∣∣∣C̄m

)

under DAR and IMAR

= EȲ obs
m(−j)

(
ER̄M

j−1

[
π0
j

πj

{
EYj

(
Yj
∣∣R̄M

j−1, Ȳ
obs
m(−j), C̄m

)
− E

(
Yj
∣∣Ȳ obs

m(−j), C̄m

)} ∣∣∣∣Ȳ obs
m(−j), C̄m

]
+ E

[
Yj
∣∣Ȳ obs

m(−j), C̄m

] ∣∣∣∣∣C̄m

)
,

where

π0
j = ERM

j

(
RM×j

∣∣R̄Mj−1, Ȳ
obs
m(−j), Yj , C̄m

)
= EȲ mis

m(−j)

{
ERM

j

(
RM×j

∣∣R̄Mj−1, Ȳ
mis
m(−j), Ȳ

obs
m(−j), Yj , C̄m

) ∣∣∣R̄Mj−1, Ȳ
obs
m(−j), Yj , C̄m

}
= EȲ mis

m(−j)

{
ERM

j

(
RM×j

∣∣R̄Mj−1, Ȳm, C̄m

) ∣∣∣R̄Mj−1, Ȳ
obs
m(−j), Yj , C̄m

}
= EȲ mis

m(−j)

{
ERM

j

(
RM×j

∣∣R̄Mj−1, Ȳ
obs
j−1, Cj+1, Cj

) ∣∣∣R̄Mj−1, Ȳ
obs
m(−j), Yj , C̄m

}
under DAR and IMAR

= ERM
j

(
RM×j

∣∣R̄Mj−1, Ȳ
obs
j−1, Cj+1, Cj

)
.

Note that π0
j /πj 6= 1 in general because πj is modeled incorrectly. We will show that E

(
Yj
∣∣R̄Mj−1, Ȳ

obs
m(−j), C̄m

)
=

E
(
Yj
∣∣Ȳ obs
m(−j), C̄m

)
. For a random variable A and corresponding fixed realization a, let Aj =
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(
Aj , Aj+1, . . . , Am

)
. Note that

f
(
yj
∣∣r̄Mj−1, ȳ

obs
m(−j), c̄m

)
= f

(
yj
∣∣ȳobs
m(−j), c̄m

)
p
(
r̄Mj−1, yj , ȳ

obs
m(−j), c̄m

)
p
(
r̄Mj−1, ȳ

obs
m(−j), c̄m

) =
p
(
yj , ȳ

obs
m(−j), c̄m

)
p
(
ȳobs
m(−j), c̄m

)
∫
p
(
r̄Mj−1, yj , ȳ

obs
m(−j), ȳ

mis
m(−j), c̄m

)
dȳmis
m(−j)∫ ∫

p
(
r̄Mj−1, yj , ȳ

obs
m(−j), ȳ

mis
m(−j), c̄m

)
dȳmis
m(−j)dyj

=

∫
p
(
yj , ȳ

obs
m(−j), ȳ

mis
m(−j), c̄m

)
dȳmis
m(−j)∫ ∫

p
(
yj , ȳobs

m(−j), ȳ
mis
m(−j), c̄m

)
dȳmis
m(−j)dyj∫

p
(
r̄Mj−1, ȳm, c̄m

)
dȳmis
m(−j)∫ ∫

p
(
r̄Mj−1, ȳm, c̄m

)
dȳmis
m(−j)dyj

=

∫
p (ȳm, c̄m) dȳmis

m(−j)∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj∑
rMj

∫
p
(
r̄Mj−1, r

M
j , ȳm, c̄m

)
dȳmis
m(−j)∑

rMj

∫ ∫
p
(
r̄Mj−1, r

M
j , ȳm, c̄m

)
dȳmis
m(−j)dyj

=

∫
p (ȳm, c̄m) dȳmis

m(−j)∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj∑
rMj

∫
p
(
r̄Mm , ȳm, c̄m

)
dȳmis
m(−j)∑

rMj

∫ ∫
p (r̄Mm , ȳm, c̄m) dȳmis

m(−j)dyj
=

∫
p (ȳm, c̄m) dȳmis

m(−j)∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj∑
rMj

∫
p
(
r̄Mm
∣∣ȳm, c̄m) p (ȳm, c̄m) dȳmis

m(−j)∑
rMj

∫ ∫
p
(
r̄Mm
∣∣ȳm, c̄m) p (ȳm, c̄m) dȳmis

m(−j)dyj
=

∫
p (ȳm, c̄m) dȳmis

m(−j)∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj∑
rMj

∫
p
(
r̄Mm
∣∣ȳobs
m , c̄m

)
p (ȳm, c̄m) dȳmis

m(−j)∑
rMj

∫ ∫
p
(
r̄Mm
∣∣ȳobs
m , c̄m

)
p (ȳm, c̄m) dȳmis

m(−j)dyj
=

∫
p (ȳm, c̄m) dȳmis

m(−j)∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj
under DAR and IMAR

∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

) ∫
p (ȳm, c̄m) dȳmis

m(−j)∑
rMj

∫ ∫
p
(
r̄Mm
∣∣ȳobs
m , c̄m

)
p (ȳm, c̄m) dȳmis

m(−j)dyj
=

∫
p (ȳm, c̄m) dȳmis

m(−j)∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

)∑
rMj

∫ ∫
p
(
r̄Mm
∣∣ȳobs
m , c̄m

)
p (ȳm, c̄m) dȳmis

m(−j)dyj
=

1∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dyj
.

If yj ∈ ȳmis
m (i.e., yj /∈ ȳobs

m ), then

∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

)∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

) ∫ ∫
p (ȳm, c̄m) dȳmis

m(−j)dy
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j

=
1∫ ∫

p (ȳm, c̄m) dȳmis
m(−j)dy
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j∑

rMj
p
(
r̄Mm
∣∣ȳobs
m , c̄m

)∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

) = 1

∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

)
=
∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

)
,
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a tautology. If on the other hand yj ∈ ȳobs
m , then

∑
rMj

p
(
r̄Mm
∣∣ȳobs
m , c̄m

)∑
rMj

∫
p
(
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m , c̄m
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m dyobs
j

∑
rMj

p
(
r̄Mm
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(
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another tautology. Hence, working backwards from either tautology (i.e., if yj ∈ ȳmis
m or yj ∈

ȳobs
m ), we conclude that

E
(
Wj

∣∣S = s
)

= EȲ obs
m(−j)
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[
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j

πj
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EYj

(
Yj
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)
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[
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∣∣Ȳ obs
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)

= EȲ obs
m(−j)

{
E
(
Yj
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m(−j), C̄m

) ∣∣∣C̄m

}
= E

(
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)
= E

(
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)

if outcomes are DAR and IMAR.

�
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