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Abstract 

Kevin N Boyd: Mechanisms of Ethanol-Induced Steroidogenesis Following Acute and 
Chronic Ethanol Exposure 

“Under the direction of Dr. A. Leslie Morrow, Ph.D.” 
 

The 3α,5α-reduced pregnan steroids, including (3α,5α)-3-hydroxypregnan-20-one (3α,5α-

THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC), are potent allosteric 

modulators of γ‐aminobutyric acid type A  (GABAA) receptor activity. These neuroactive 

steroid levels are increased by acute ethanol administration at doses ≥ 1.5 g/kg in rats and 

mediate specific actions of ethanol in rodents and subjective effects of ethanol in humans. 

Acetaldehyde, a metabolite of ethanol, may also play a role in some of ethanol’s actions. 

The first aim of this project examined if acetaldehyde plays a role in ethanol-induced 

increases in neuroactive steroids. We found that acetaldehyde is capable of increasing 

neuroactive steroid levels at high doses but does not seem to have effects when 

administered at doses observed after acute ethanol administration (2 g/kg). Manipulation of 

various ethanol and acetaldehyde metabolizing enzymes to alter acetaldehyde 

concentrations confirmed that the increases in neuroactive steroids observed after ethanol 

administration are not directly resulting from acetaldehyde. I also examined mechanisms by 

which acute ethanol administration elicits increases in neuroactive steroids. Focusing on key 

enzymes and signaling molecules involved in the steroid biosynthetic pathway, I found that 

pituitary adrenocorticotrophic hormone (ACTH) release and de novo adrenal steroidogenic 

acute regulatory (StAR) protein synthesis are each necessary, but not sufficient for ethanol-

induced steroidogenesis. Furthermore, phosphorylation of StAR is markedly increased by 

acute ethanol administration and may be involved in StAR activity. Interestingly, tolerance to

ii 
 



ethanol-induced increases in neuroactive steroids occurs following chronic ethanol 

exposure. Thus, I investigated the biosynthetic enzymes and signaling molecules found to 

be important for ethanol-induced steroidogenesis to see if any were altered by chronic 

ethanol exposure. Indeed, chronic ethanol exposure elicited tolerance to ethanol-induced 

ACTH as well as plasma and brain steroids. StAR remained elevated following chronic 

ethanol exposure; however phosphorylation of StAR was no longer observed. ACTH 

replacement restored the neuroactive steroid response and enhanced phosphorylation of 

StAR protein following chronic ethanol exposure. Thus, the dysregulation of ethanol-induced 

ACTH release may lead to tolerance to ethanol-induced increases in neuroactive steroid 

levels and contribute to behavioral tolerance to ethanol. These mechanisms may provide a 

better understanding of ethanol sensitivity and factors that influence the progression towards 

alcoholism.    
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Chapter I 

Introduction 

Significance of Alcoholism 

Alcohol use has been prevalent throughout history and is a major health issue 

costing hundreds of billions of dollars each year. Alcohol is the most widely used 

psychoactive drug in the United States, yet only within the last 20-30 years have we made 

significant strides towards understanding the genetic and neurobiological changes 

associated with alcoholism. A study in 2002 by the National Epidemiologic Survey on 

Alcohol and Related Conditions (NESARC) found that roughly 18 million (8.5%) Americans 

either abuse alcohol or are alcohol dependent. Alcohol abuse is defined by one’s drinking 

causing social and/or legal problems as well as interfering with their ability to fulfill 

obligations at work and home. Alcohol dependence, or alcoholism, defines a case where an 

individual cannot control their drinking, demonstrates a compulsion to drink, and elicits 

tolerance to alcohol as well as withdrawal symptoms. These conditions cannot be explained 

by any one particular factor and are likely the result of a combination of genetic and 

environmental influences. Interestingly, in the decade from 1992 to 2002, the rate of alcohol 

dependence declined while the rate of alcohol abuse increased to a greater extent (Grant et 

al., 2004). 

Underage drinking is a major problem in the United States and is important to 

address because the rates of alcohol abuse are highest in 18-29 year olds (Grant et al., 

2004). If an individual begins drinking at an earlier age they are much more likely to develop 

alcohol-related problems (Dawson et al., 2008). Furthermore, adolescents are less 

 



sensitive than adults to the sedative and intoxicating effects of ethanol (Varlinskaya and 

Spear, 2006) increasing the likelihood of increased drinking. Not only does alcohol have 

differential effects in adolescents compared to adults, but differences exist between both 

men and women and between various populations and ethnicities. For example, men have 

higher rates of dependence than women (Grant et al., 2004), and Oriental populations have 

polymorphisms in ethanol metabolizing enzymes that protect against the development of 

alcoholism (Thomasson et al., 1991).  

Until recently, alcoholism was viewed as a social problem rather than a disease. 

Recognition of alcoholism as a disease has helped in guiding efforts to develop effective 

treatments, but this remains a challenge without a clear understanding of the mechanisms of 

alcohol dependence. These mechanisms are difficult to determine because ethanol affects 

numerous cellular functions and neurotransmitter pathways. Currently, there are only three 

approved medications for alcohol dependence; disulfiram, naltrexone, and acamprosate. 

These medications, however, are not effective in most individuals, and many alcoholics 

never even seek treatment or utilize medication for alcohol use disorders. Thus, there is a 

clear need for more effective treatments for alcohol dependence, and research into the 

mechanisms of dependence are beginning to uncover potential targets.  

Ethanol Toxicity 

 Ethanol is one of the most organ-toxic drugs as it can affect just about every part of 

the body. At the same time, it is also one of the least potent as it requires millimolar 

concentrations to exert its effects. One of the primary targets of ethanol toxicity is the liver 

where ethanol is directly toxic through its metabolism and production of reactive oxygen 

species and indirectly toxic through such mechanisms as cytochrome P450 2E1 (CYP2E1) 

induction (Lieber and DeCarli, 1970). Ethanol is first metabolized to acetaldehyde by alcohol 

dehydrogenase (ADH) isoforms. Acetaldehyde is extremely toxic, and alcoholics have blood 

levels of acetaldehyde that may contribute to ethanol toxicity (Korsten et al., 1975). 
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Acetaldehyde is then subsequently metabolized to acetate by aldehyde dehydrogenase 

(ALDH) isoforms and acetate is broken down to carbon dioxide and water for elimination. 

Ethanol may also be metabolized by CYP2E1, a common drug metabolizing enzyme whose 

activity is increased by chronic ethanol exposure. Not only does CYP2E1 metabolize many 

chemicals to reactive toxic intermediates, but chronic ethanol alterations of CYP2E1 can 

increase sensitivity to certain drugs as well as causing resistance to others in the absence of 

ethanol. Furthermore, ethanol metabolism by CYP2E1 significantly increases free radicals, 

consequently depleting glutathione levels and contributing to oxidative stress and tissue 

damage (Lieber, 2004).  

In the brain, ethanol-induced neurotoxicity causes neurodegeneration and damages 

brain structures that regulate behavioral control leading to further ethanol consumption 

(Crews et al., 2004). Interestingly, data suggests that ethanol-induced damage occurs 

during intoxication, perhaps due to reactive oxygen species generated from ethanol 

metabolism, and/or from acetaldehyde toxicity. This suggests that glutamate excitotoxicity is 

not the mechanism of ethanol-induced brain damage (Crews and Nixon, 2009). An 

important factor in ethanol-induced neurotoxicity, however, is the stimulation of 

proinflammatory cytokines and oxidative stress (Collins et al., 1998). Indeed, inflammatory 

enzymes alter transcription factors such as CREB, and reduced CREB transcription 

contributes to ethanol neurotoxicity (Bison and Crews, 2003; Crews and Nixon, 2009). 

Furthermore, there are gene and age-related contributions to ethanol-induced 

neurodegeneration. For example, the alcohol-preferring P rat is genetically bred for alcohol 

preference and shows more ethanol-induced neurodegeneration than non-alcohol-preferring 

NP rats (Bowden et al., 2001). In humans, female alcoholics are more sensitive than their 

male counterparts to the damaging effects of ethanol, including ethanol-induced cirrhosis 

(Loft et al., 1987), cardiomyopathy (Fernandez-Sola et al., 1997), and neurotoxicity 

(Hommer et al., 2001). In addition, adolescent rats exhibited more damage than adult rats in 
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anterior portions of piriform and perirhinal cortices (Bowden et al., 2001). Thus, while 

adolescents may be less sensitive than adults to the intoxicating effects of ethanol, their 

developing brains are more susceptible to toxic insults and increased neurodegeneration. 

This may contribute to the progression to alcoholism.   

Ethanol Effects on Central Nervous System (CNS) Function 

Ethanol has a vast array of effects throughout the body including effects on the 

cardiovascular system, immune system, liver and CNS. The effects of ethanol on the brain 

are incredibly diverse and rely upon many factors and pre-existing co-morbid conditions. 

Ethanol can stimulate the release of several neurotransmitters including serotonin and 

dopamine that may contribute to the positive feelings and cravings to drink. Although 

ethanol affects multiple aspects of CNS function, a major site of acute ethanol action in the 

brain is at ion channels (see Crews et al., 1996, for review), specifically those of the 

glutamatergic and GABAergic systems. These ionotropic receptors are important for ethanol 

actions because they are able to elicit rapid changes in CNS activity. Glutamate is the major 

excitatory neurotransmitter and ethanol inhibits NMDA-glutamate receptor ion channels 

affecting functions such as memory. GABA is the major inhibitory neurotransmitter, and 

ethanol potentiates GABAergic transmission eliciting effects such as anxiolysis and 

sedation. Furthermore, the subunit combinations that make up these ion channel receptors 

play a role in determining sensitivity to ethanol.   

GABAA Receptors 

Various subtypes of GABAA receptors exist throughout the brain and compounds that 

potentiate GABAA function increase neuronal inhibition. There are close to twenty different 

GABA subunits and different receptor subunit compositions exist in different areas of the 

brain (Sieghart and Sperk, 2002). Various combinations of these subunits combine to make 

a heteropentameric receptor forming a chloride-gated ion channel. Activation of these 

receptors decreases cell excitability by opening the ion channel allowing negatively charged 
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chloride ions to flow into the cell. GABAA receptors are transmembrane receptors with the 

extracellular protein region responsible for GABA binding while the intracellular regions have 

phosphorylation sites allowing for kinases to regulate receptor function (Song and Messing, 

2005). GABAA receptors are also the target of several clinically relevant drugs such as 

benzodiazepines, barbiturates, general anesthetics, and neuroactive steroids. These 

different classes of drugs have different binding sites on GABAA receptors, but share the 

general function of increasing chloride conductance. Thus, these compounds are effective 

as sedative/hypnotics and anxiolytics because they enhance GABAA mediated neuronal 

inhibition. Not surprisingly, alterations in GABAA receptor neurotransmission are implicated 

in many neuropsychiatric disorders. 

Ethanol Effects on GABAA Receptors 

 Ethanol is known to interact with GABAA receptor function. GABAA receptor agonists 

enhance actions of ethanol’s while antagonists diminish the ethanol response (Lister and 

Linnoila, 1991). Since GABAA receptors are present throughout the brain these effects 

would be presumed to be widespread. Recent evidence, however, has suggested that these 

effects are quite selective, as GABAA receptor responsiveness to ethanol is dependent upon 

receptor subunit composition. GABAA receptors composed of α1, β, and γ subunits are 

benzodiazepine sensitive and are the most abundant receptors in the brain (Barnard et al., 

1998). The α1 containing receptors are synaptic receptors mediating phasic inhibition and 

have low sensitivity to ethanol (Wallner et al., 2003; Wallner et al., 2006). In contrast, 

extrasynaptic or perisynaptic receptors mediate tonic inhibition, exhibit higher sensitivity to 

GABA than synaptic GABAA receptors, and respond to ethanol at pharmacologically relevant 

concentrations. Indeed, ethanol potentiates these receptors at concentrations of about 1-30 

mM (Sundstrom-Poromaa et al., 2002; Wallner et al., 2003). These receptors have a more 

localized distribution in the brain and are composed of α4 or α6 subunits, β subunits, and a 
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δ subunit, which replaces the γ2 subunit found on synaptic receptors (see Olsen et al., 2007, 

for review). Thus, extrasynaptic receptors appear to be important for mediating effects of low 

doses of ethanol.  

GABAA receptors have been shown to mediate some of the effects of ethanol, but 

there is still not clear evidence as to whether or not this is a direct effect (Kumar et al., 

2009). Studies with δ subunit containing extrasynaptic GABAA receptors have provided 

some evidence of direct ethanol binding in recombinant receptors, but this area of study is 

controversial (see Santhakumar et al., 2007, for review). Furthermore, there is not evidence 

of ethanol directly binding to synaptic GABAA receptors suggesting that some of ethanol’s 

effects via GABAA receptors are mediated by other factors. Indeed, ethanol may alter 

kinases such as PKA and PKC (Kumar et al., 2006) to reduce GABAA receptor 

phosphorylation and enhance GABA-mediated Cl- flux (Kumar et al., 2005) or alter GABA 

binding to the receptor (Oh et al., 1999). Ethanol has also been shown to enhance 

presynaptic GABA release (Ariwodola and Weiner, 2004; Criswell and Breese, 2005; 

Roberto et al., 2003) that may contribute to behavioral effects of ethanol, and ethanol can 

increase the GABA agonist taurine (De Witte et al., 1994), which has been shown to 

enhance tonic inhibition (Jia et al., 2008). Furthermore, ethanol elevates neuroactive steroid 

levels (Barbaccia et al., 1999; Boyd et al., 2008; Gabriel et al., 2004; Khisti, 2005; Korneyev 

et al., 1993; Morrow et al., 1999; Morrow et al., 1998; O'Dell et al., 2004; Serra et al., 2003; 

VanDoren et al., 2000a) and these endogenous compounds are potent allosteric modulators 

of GABAA receptor activity capable of acting on multiple GABAA receptor subtypes (Herd et 

al., 2007). Moreover, these neuroactive steroids have similar pharmacological effects as 

ethanol.  
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Neuroactive Steroids 

The discovery of neurosteroids is rather recent and denotes steroids that are 

synthesized de novo in the nervous system (Baulieu, 1981). Since steroids can also be 

produced peripherally, a more general term is neuroactive steroids, referring to those that 

have actions in the CNS regardless of their origin. Neuroactive steroids are synthesized to 

physiologically significant levels in rodents, monkeys, and humans (for review Morrow et al., 

2006) and rapidly alter neuronal excitability through interactions with neurotransmitter 

membrane receptors rather than acting at nuclear receptors to affect gene expression. 

Specifically, these neuroactive steroids have been noted for their potency at GABAA 

receptors in the brain (for review Belelli and Lambert, 2005). The fact that these steroids can 

be synthesized both peripherally and centrally means that they can act via endocrine, 

paracrine, or even autocrine mechanisms.    

Twenty years ago neuroactive steroids were shown to have multiple binding sites on 

GABAA receptors (Morrow et al., 1990). Recently, specific neuroactive steroid binding sites 

have been identified on the α subunit. One site on the α subunit mediates the potentiating 

effects of certain steroids, whereas another site at the interface of the α and β subunits is 

affects direct gating of GABAA receptors by neuroactive steroids (Hosie et al., 2006). Indeed, 

high concentrations of neuroactive steroids can directly gate the GABAA channel in the 

absence of GABA (Ueno et al., 1997). Although the action of certain GABAA receptor 

agonists (e.g. benzodiazepines and some anesthetics) is highly dependent upon receptor 

subunit composition, the action of GABAergic neuroactive steroids is more promiscuous. 

Neuroactive steroids affect both δ subunit containing extrasynaptic receptors (Brown et al., 

2002; Mihalek et al., 1999) and γ2 containing synaptic receptors (Harrison et al., 1987; 

Majewska et al., 1986), possibly because their binding site involves α subunits and virtually 

all GABAA receptors contain this subunit type.   
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The most potent endogenous GABAergic neuroactive steroids are the 3α,5α− 

reduced metabolites of progesterone and deoxycorticosterone: (3α,5α)-3-hydroxypregnan-

20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC). The 3α 

reduction is vital for GABAergic activity whereas the C5 reduction can be either the α or β 

confirmation without much effect on activity. In regards to GABAA receptor potentiation, 

these 3α,5α-reduced endogenous neuroactive steroids are more efficacious than 

benzodiazepines (Wafford et al., 1993) and much more potent than barbiturates (Harrison 

and Simmonds, 1984). 

Synthesis of Neuroactive Steroids 

 All steroids are derived from cholesterol that is metabolized to bile acids in the liver 

and steroid hormones in multiple organs. Steroids are classified into mineralocorticoids, 

glucocorticoids, and the androgenic and estrogenic sex hormones. All steroid synthesis, 

however, begins with cholesterol’s conversion to pregnenolone by the cytochrome P450 

side chain cleavage (P450scc) enzyme. The pathway of steroid synthesis is similar in all 

steroid producing tissues with differences in products dependent upon the enzymes that are 

expressed. For example, Leydig cells in the testis, and theca and granulosa cells in the 

ovary, primarily produce testosterone, estrogen, and progesterone respectively because 

they lack most of the enzymes necessary to synthesize mineralocorticoids and 

glucocorticoids. These latter two groups of steroids, along with neuroactive steroids, are 

primarily synthesized in the adrenal. 

The adrenal gland is comprised of two distinct regions each responsible for different 

functions. The majority of the adrenal is the cortex and this region surrounds the adrenal 

medulla. The adrenal medulla receives direct innervations from the central nervous system 

and is involved with catecholamine synthesis. Conversely, the adrenal cortex relies on 

neuroendocrine signals from the pituitary and hypothalamus to regulate steroid biosynthesis. 
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The adrenal cortex is further divided into zones that are each responsible for production of a 

specific group of steroid hormones. The outermost zone is the zona glomerulosa, which is 

responsible for synthesizing mineralocorticoids like aldosterone to affect salt and water 

balance. The middle zone, the zona fasciculata, is primarily involved with glucocorticoid 

production that is implicated in glucose metabolism and immune suppression. The 

innermost zone, the zona reticularis, is the site of androgen synthesis and is important for 

developing and maintaining masculine features. The zona fasciculata and zona reticularis 

have similarities and both contain the necessary enzymes for neuroactive steroid synthesis 

(Compagnone and Mellon, 2000). Thus, the adrenal makes numerous steroids with 

important functions that must act all over the body. Moreover, since steroids are involved 

with a number of important processes in the brain, determining mechanisms of neuroactive 

steroid synthesis is pivotal to understanding and potentially treating numerous diseases and 

disorders.   

Steroidogenesis in the adrenal is the result of a signaling cascade beginning in the 

hypothalamus. Activation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for the 

body’s response to stress (Chrousos and Gold, 1992; Spencer and Hutchison, 1999). 

Activation of this axis stimulates the release of corticotrophin releasing factor (CRF) from the 

hypothalamus. CRF activates cells in the pituitary to release adrenocorticotropic hormone 

(ACTH) that subsequently acts upon the adrenal leading to synthesis of steroids from the 

adrenal cortex. Thus, stress activates HPA axis function and synthesis of steroids is one 

mechanism of coping with stressful stimuli, either through direct anxiolytic actions of 

neuroactive steroids or through their ability to shut down the HPA axis. Both neuroactive 

steroids and glucocorticoids, primarily cortisol in humans and nonhuman primates, and 

corticosterone in rodents, provide negative feedback on the axis.  

 The ability of steroids to return HPA axis function to normal appears to be important 

for CNS function since this response is dysregulated in disorders such as depression, post-
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traumatic stress disorder (PTSD) and premenstrual dysphoric disorder (PMDD) 

(Handwerger, 2009; Lombardi et al., 2004; Vermetten and Bremner, 2002; Young et al., 

1993). Neuroactive steroids may also play a role in Parkinson’s disease and other 

neurodegenerative disorders (Adibhatla and Hatcher, 2008). Indeed, alterations in 

neuroactive steroid levels may be due to changes in HPA axis activity. Socially isolated 

animals have an altered HPA axis response (Serra et al., 2005) accompanied by changes in 

the neuroactive steroid response to either stress or acute ethanol administration (Serra et 

al., 2003; Serra et al., 2000). Furthermore, the resulting stress from chronic ethanol 

administration alters HPA axis activity and decreases corticosterone levels (Spencer and 

McEwen, 1990). These alterations in HPA axis activity blunt the response of the axis to a 

subsequent ethanol challenge (Lee and Rivier, 1995) and are associated with a reduction in 

CRF and ACTH levels (Lee et al., 2001a). Similar changes in HPA axis function are also 

seen in human alcoholics who actively consume ethanol (Wand and Dobs, 1991).  

 While HPA axis activation is important for ACTH release and subsequent adrenal 

stimulation, there are many important biosynthetic proteins and enzymes responsible for the 

synthesis of steroids and conversion to their neuroactive metabolites. As mentioned above, 

steroids can be synthesized in both adrenal and brain, suggesting that central levels of 

neuroactive steroids are likely a combination of peripherally and centrally derived steroids. 

Indeed, steroids are lipophilic molecules capable of crossing the blood brain barrier and the 

enzymes necessary for neuroactive steroid synthesis exist in brain and adrenals. After 

adrenalectomy there is an attenuation of stimulus-induced increases in central steroid levels 

suggesting the importance of peripheral synthesis. Yet brain metabolism of peripherally 

derived precursors may still play a major role in contributing to central levels of neuroactive 

metabolites. In fact, administration of 5α-dihydroprogesterone  
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(5α-DHP), the immediate precursor of 3α,5α-THP, to adrenalectomized rats restores 3α,5α-

THP levels in the brain (Khisti et al., 2003b).     

As mentioned, all steroids are derived from cholesterol through conversion to 

pregnenolone by P450scc enzyme. The transfer of cholesterol from the outer mitochondrial 

membrane to the P450scc enzyme on the inner mitochondrial membrane is rate-limiting 

making it a potential site where peptide hormones and cAMP could regulate cholesterol 

transfer and steroid biosynthesis. The steroidogenic acute regulatory protein (StAR) is a 

cholesterol transport protein found in steroidogenic cells. Although numerous groups have 

studied StAR protein in Leydig cell steroidogenesis, our lab was the first to show that 

ethanol increases StAR protein expression in rat adrenal, and that these increases correlate 

with increased steroid levels (Khisti et al., 2003a). Furthermore, of the two enzymes required 

for conversion of steroid precursors to the GABAergic neuroactive metabolites, 5α-

reductase enzyme activity was not affected by ethanol in adrenal or brain (unpublished 

data). Similarly, 3α-hydroxysteroid dehydrogenase enzyme activity was not affected by 

ethanol in adrenal (unpublished data) and would not be predicted to be affected in brain 

(Trauger et al., 2002). However, mRNA expression of these enzymes is observed in rodent 

brain in principal GABAergic output neurons, but not in cortical or hippocampal GABAergic 

interneurons (Agis-Balboa et al., 2006). Taken together, these data suggest the importance 

of cholesterol transport and subsequent steps prior to pregnenolone formation as important 

potential targets for ethanol’s effects. 

Role of Neurosteroids in Ethanol Actions and Behavioral Sensitivity 

Acute ethanol administration increases GABAergic neuroactive steroids that 

contribute to specific actions of ethanol. Ethanol-induced increases in neuroactive steroids 

are time-dependent and correlate with some, but not all, effects of ethanol. For example, 

motor-incoordinating effects of ethanol appear prior to increases in neuroactive steroid 
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levels (Khisti et al., 2004). However, neuroactive steroids do modulate several effects of 

ethanol including anticonvulsant, anxiolytic, hypnotic, and antidepressant-like effects. 

Indeed, anxiolytic effects of ethanol measured by time spent in the open arm of an elevated 

plus maze were attenuated by inhibition of steroid synthesis with the 5α-reductase inhibitor 

finasteride (Hirani et al., 2005). In addition, ethanol increased the seizure threshold of the 

GABAA receptor antagonist bicuculline, but this effect was blocked by finasteride (VanDoren 

et al., 2000b). Neuroactive steroids also modulate sedative hypnotic effects of ethanol and 

adrenalectomy inhibits ethanol-induced increases in the duration of loss of righting reflex 

(Khisti et al., 2003b). Furthermore, the antidepressant like effect of ethanol, as measured by 

forced swim test, was blocked by inhibition of neuroactive steroid synthesis (Hirani et al., 

2002). Moreover, in many of these examples the effects of neuroactive steroid inhibition are 

similar to that of GABAA receptor antagonism with bicuculline demonstrating that 

neuroactive steroids modulate specific ethanol actions via GABAA receptors. Taken 

together, these results suggest that neuroactive steroid synthesis contributes to the 

behavioral sensitivity of ethanol.      

Ethanol Effects on 3α,5α-THP and 3α,5α-THDOC Synthesis 

Much of the focus of ethanol effects on steroids has been directed towards the 

GABAergic neuroactive metabolites. However, ethanol effects on the biosynthesis of these 

neuroactive steroids is equally important as well as the pharmacological effects of precursor 

steroids. As early as the 1940s, it was found that DOC acetate and progesterone induced 

anesthetic effects in rats (Selye, 1941), and both DOC and progesterone had antiseizure 

effects (Selye, 1942), probably due to their 3α-reduced metabolites (Reddy and Rogawski, 

2002; Rhodes and Frye, 2005). DOC (precursor of 3α,5α-THDOC) and progesterone 

(precursor of 3α,5α-THP) can readily cross the blood-brain barrier and distribute throughout 

the brain. Whereas small amounts of these steroids may be formed de novo in the brain, 
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ethanol-induced increases in neuroactive steroids are predominantly formed from adrenal 

precursors (Khisti et al., 2003a). Plasma and brain concentrations of pregnenolone and 

progesterone are increased more rapidly than 3α,5α-THP after acute ethanol administration 

(Korneyev and Costa, 1996; O'Dell et al., 2004). Furthermore, an intravenous injection of 

[1,2-3H]-DOC increased DOC levels across many brain regions (Kraulis et al., 1975). The 

temporal and regional associations found in these studies suggest that the steroids originate 

in the adrenals and are transported to the brain. Upon entering the brain, the steroids are 

metabolized by 5α-reductase and 3α-dehydrogenase enzymes whose regional and cell 

specific expression (Li et al., 1997) may regulate the distribution of steroid levels. Studies of 

ethanol’s effects on neuroactive steroid precursors are important not only to determine the 

sources and synthesis of potent metabolites, but also to establish their role in physiological 

functions.   

Neuroactive Steroids and Ethanol Consumption 

The use of drug discrimination procedures has shown that neuroactive steroids 

substitute for other GABAA receptor positive modulators including ethanol (see Shannon et 

al., 2005, for review). In addition, neuroactive steroids can also affect drinking behavior. 

These results are difficult to interpret, however, because 3α,5α-THP has rewarding 

properties at certain doses and may mediate some of the reinforcing effects of ethanol (Finn 

et al., 1997a). On the other hand, 3α,5α-THP reduces voluntary ethanol consumption in 

non-selected rats (Martin-Garcia et al., 2007) and dose-dependently decreases ethanol self-

administration in ethanol-dependent P rats (see review, Morrow et al., 2001), and in mice 

(Ford et al., 2005). These results suggest that 3α,5α-THP may be protective against 

excessive drinking in dependent animals. This would have important therapeutic 

implications since steroid levels are suppressed in animals exposed to chronic ethanol.       
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Potential Role of Neuroactive Steroids in Ethanol-Induced Neurotoxicity 

Although pro-inflammatory molecules derived through systemic and CNS signaling 

mechanisms contribute to ethanol neurotoxicity, antioxidants have been shown to be 

protective (Hamelink et al., 2005). Adrenal steroids also suppress the immune response and 

inhibit inflammation. Given that inflammation is critical for ethanol toxicity, neuroactive 

steroids may have neuroprotective effects. Arguing against this point is the fact that 

corticosterone administration decreased neurogenesis in the dentate gyrus while 

adrenalectomy promoted neurogenesis (Cameron and Gould, 1994). However, 

corticosterone did not inhibit neurogenesis when administered to adrenalectomized animals 

suggesting a complex interaction that has also been shown to involve NMDA receptor 

activation (Cameron et al., 1998). Furthermore, neuroactive steroids such as 3α,5α-THP 

have been shown to promote neurogenesis possibly through increases in intracellular 

calcium and activation of voltage-gated L-type calcium channels (Wang et al., 2005). In 

addition, neuroactive steroids have many neuroprotective functions including delaying 

neurodegeneration in a mouse model of Niemann-Pick’s disease (Griffin et al., 2004), 

protecting against glutamate-mediated neurotoxicity (Kimonides et al., 1998), reducing 

damage and promoting neurological recovery from spinal chord injury (Guth et al., 1994; 

Thomas et al., 1999), inducing myelination (Schumacher et al., 2001) and promoting neuron 

survival in the face of excitotoxicity (Brinton, 1994). Furthermore, neuroactive steroids 

regulate growth factor expression (see Wang et al., 2008, for review) that could act to 

reverse neurodegenerative effects of a variety of diseases including alcoholism. Thus, it is 

plausible that the tolerance to ethanol-induced increases in neuroactive steroids following 

chronic ethanol administration (Janis et al., 1998; Khisti et al., 2005) decreases the 

protective effect of neuroactive steroids and contributes to ethanol-induced neurotoxicity.  

  Interestingly, using a variety of human brain cell lines, oligodendrocytes were the 

only cells capable of synthesizing steroids de novo (Brown et al., 2000). Loss of these cells 
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would be expected to decrease steroid production and may contribute to further 

neurodegeneration. Indeed, glial cells are more sensitive than neurons to the damaging 

effects of ethanol (Miguel-Hidalgo et al., 2002) and reductions in astrocytes and 

oligodendrocytes, but not neurons, were observed in human alcoholic hippocampus (Korbo, 

1999). However, glial cells subsequently increase in response to alcohol damage and this 

may increase steroid synthesis that contributes to regeneration during abstinence. Indeed, 

oxidative stress can regulate dehydroepiandrosterone (DHEA) synthesis (Brown et al., 

2000) and DHEA may act to prevent or reverse damage as it has been shown to be 

neuroprotective (Kimonides et al., 1998). Furthermore, PBR is involved in the regulation of 

cell proliferation and steroidogenesis and chronic ethanol increases the density of the PBR 

ligand [3H]PK-11195 (Obernier et al., 2002; Syapin and Alkana, 1988). Thus, neuroactive 

steroids may play a role in preventing ethanol-induced neurotoxicity.  

Neuroactive Steroids and Chronic Ethanol Exposure 

Chronic ethanol consumption progressively leads to tolerance and dependence to 

ethanol. These phenomena are the result of numerous cellular adaptations in the brain, 

including changes in GABAA receptor subunit expression and activity. Ethanol dependence 

causes changes in GABAergic tone that lead to hyperexcitability and enhanced withdrawal 

symptoms, such as increased anxiety and seizure susceptibility. Interestingly, 

benzodiazepines are a commonly used therapeutic treatment for alcohol withdrawal 

symptoms, yet ethanol dependence exhibits cross tolerance to benzodiazepines and other 

GABAA receptor modulators. 

 Neuroactive steroids also play an important role in ethanol dependence and 

withdrawal as they have anxiolytic and anti-seizure properties. Chronic ethanol 

administration in rats leads to a suppression of the neuroactive steroid response. Following 

chronic ethanol administration, rats become tolerant to ethanol-induced increases in 

neuroactive steroids (Janis et al., 1998) and show a blunted steroid response to an ethanol 
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challenge (Khisti et al., 2005; Morrow et al., 2001). The loss of increased neuroactive steroid 

levels likely contributes to ethanol tolerance since these steroids are required for specific 

ethanol actions including anxiolytic and anticonvulsant actions. Furthermore, rats exposed to 

a chronic intermittent ethanol (CIE) paradigm in which they go through repeated withdrawals 

similar to a binge model, also fail to show ethanol-induced increases in neuroactive steroid 

levels (Cagetti et al., 2004). In addition, tolerance typically develops to the anticonvulsant 

effects of most GABA potentiating drugs but not 3α,5α-THP (Kokate et al., 1998). In fact, 

ethanol-dependent rats become sensitized to the anticonvulsant properties of neuroactive 

steroids (Cagetti et al., 2004; Devaud et al., 1996) making steroids potentially useful as a 

treatment for alcohol withdrawal.     

Neuroactive Steroids and Ethanol Sensitivity 

Individuals who are either insensitive to ethanol, or who quickly develop a tolerance, 

are at a higher risk for alcoholism than those who are sensitive to the effects of ethanol. 

Neuroactive steroids may play a role in ethanol sensitivity in rodents (see Morrow et al., 

2006, for review) as well as humans (Pierucci-Lagha et al., 2005). Neuroactive steroids 

have similar pharmacological effects as ethanol, and the use of biosynthetic inhibitors has 

shown that neuroactive steroids are required for specific ethanol actions. Furthermore, the 

increases in plasma and brain levels of neuroactive steroids observed after acute ethanol 

administration are no longer present after chronic ethanol exposure. In turn, dependent 

rodents and humans are more susceptible to anxiety, seizures, and other withdrawal related 

phenotypes related to hyperexcitability. In addition, dependent rats challenged with ethanol 

can no longer mount the same steroidogenic response as a naïve animal administered 

ethanol. Taken together, these facts strongly support a pivotal role for neuroactive steroids 

in mediating the effects of ethanol, and suggest that the loss of the ethanol-induced steroid 

response following dependence is critical to the development of alcoholism and/or alcohol 

related disorders. Thus, variations in basal levels of neuroactive steroids may play a role in 
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ethanol sensitivity and risk for alcoholism. Manipulations of these steroid levels are a 

potential target for therapeutic intervention as neuroactive steroids may be beneficial for 

increasing ethanol sensitivity in dependent individuals, controlling drinking behavior and as a 

treatment for alcohol withdrawal.       

Rationale for Aims of Study 

Previous work in our lab and others had shown that acute ethanol administration 

increases neuroactive steroid levels to pharmacologically relevant concentrations in the 

brain. At some point during the development of ethanol tolerance and dependence this 

increase in neuroactive steroid levels is lost. The lack of neuroactive steroid response to 

ethanol following dependence is believed to contribute to ethanol tolerance since 

neurosteroids contribute to anxiolytic, sedative, and anticonvulsant effects of ethanol. Thus, 

the overall goal of these studies was to determine the mechanisms by which ethanol 

increases neuroactive steroid levels, and to identify the adaptations that occur in this 

response following chronic ethanol exposure. These studies are important because 

neuroactive steroid synthesis contributes to ethanol actions and is dysregulated following 

ethanol dependence. Thus, while the scope of this work is focused on ethanol action and 

dependence, the mechanisms identified can be applied to a variety of neuropsychiatric 

disorders where the use and/or regulation of neuroactive steroids is a potential therapeutic 

approach. Furthermore, the neuroprotective properties of neuroactive steroids may 

counteract some of the toxic effects of ethanol.  

Aim I Rationale 

 Characterization of the acute neuroactive steroid response to ethanol is imperative in 

order to understand what adaptive changes occur during the transition to ethanol 

dependence. Ethanol is a non-specific drug affecting multiple systems and signaling 

molecules making studies of its effects extremely complex. Furthermore, ethanol is 

metabolized to acetaldehyde by alcohol dehydrogenase (ADH) in liver and brain and 
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acetaldehyde is a biologically active molecule that can elicit similar behavioral responses as 

compared to ethanol (see Quertemont et al., 2005, for review). Thus, while the ability of 

ethanol to increase neuroactive steroids has been well documented, the first aim of these 

studies was to determine whether acetaldehyde played a role in the observed ethanol-

induced increases in neuroactive steroids.   

 Alcohol dehydrogenase metabolizes alcohol to the very toxic metabolite 

acetaldehyde. In fact, the unpleasant effects of acetaldehyde are the reason behind the use 

of disulfiram as a preventative. Disulfiram inhibits ALDH leading to the buildup of 

acetaldehyde. Under normal circumstances acetaldehyde is rapidly metabolized to acetate 

and subsequently acetate is excreted as carbon dioxide and water. We take for granted that 

biochemical and behavioral effects observed after ethanol administration are actually due to 

ethanol itself and not a result of metabolites. Interestingly, some scientists believe that 

acetaldehyde, and perhaps acetate as well, is responsible for at least some of the effects of 

ethanol. While this has been debated in the literature, enzyme activity controlling 

acetaldehyde levels is predictive of drinking behaviors (Edenberg and Kranzler, 2005). 

Indeed, genetic variations that increase alcohol dehydrogenase activity or decrease 

aldehyde dehydrogenase activity are protective against the development of alcoholism in 

rodent models as well as human populations (Isse et al., 2005; Isse et al., 2002; Ocaranza 

et al., 2008; Quintanilla et al., 2005; Wall et al., 2003b). Furthermore, since neuroactive 

steroids are also postulated to be protective for alcoholism risk, and acetaldehyde 

administration may elicit behavioral effects similar to those of neuroactive steroids, there 

exists an unexplored link between acetaldehyde and neuroactive steroids. 

Aim II Rationale 

 Ethanol-induced increases in neuroactive steroid levels could be achieved through 

three possible mechanisms. First, ethanol could initiate activation of steroid biosynthesis by 

affecting biosynthetic proteins. Second, increased steroid levels may be the result of 
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inhibition of steroid metabolism. Finally, ethanol may trigger the release of a sequestered 

steroid pool. A review of the literature does not lend much support to the latter two 

possibilities; however, numerous studies suggest a correlation between increased 

cholesterol transport, the rate-limiting step in steroidogenesis, and increased steroid levels 

(Clark et al., 1994; Crivello and Jefcoate, 1979; Khisti et al., 2003a; King et al., 1995; 

Krueger and Orme-Johnson, 1983; Papadopoulos et al., 2007). Thus, although I cannot rule 

out that ethanol-induced increases in neuroactive steroids are affected by a combination of 

these mechanisms, I focused the second aim studies on proteins involved in steroid 

biosynthesis and identifying how acute ethanol administration affects steroid biosynthesis.    

Aim III Rationale 

 As mentioned, previous studies have shown that ethanol-dependent rats develop 

tolerance to the ethanol-induced increases in neuroactive steroids, but this work has not led 

to insight as to involved mechanisms. The loss of the steroid response is clearly important 

for behavioral phenotypes related to ethanol dependence and withdrawal as administration 

of these steroids attenuates withdrawal-like symptoms (Devaud et al., 1996; Martin-Garcia 

and Pallares, 2005). Thus, building upon the important mechanisms required for neuroactive 

steroid synthesis following acute ethanol, the third aim of these studies was to identify the 

adaptations that occur in the activity of these steroidogenic enzymes following ethanol 

dependence. Restoring neuroactive steroid responses to ethanol through either exogenous 

administration of steroids or modulation of proteins and biosynthetic enzymes appears likely 

to ameliorate some of the negative effects of ethanol dependence and withdrawal.  



Chapter II 

Materials and Methods 

Animals: 

Male Sprague-Dawley rats weighing between 250-350 g were used for all experiments 

(Harlan, Indianapolis, IN). The animals were group housed (3 per cage) and maintained in 

standard light and dark (lights on, 7:00 A.M. to 7:00 P.M.) conditions with food and water 

available ad libitum. Rats were acclimated to the handling procedure for one week before 

the test day. Hypophysectomized and sham-operated animals were ordered from Harlan 

and housed for a week prior to experimentation. All experiments were conducted in 

accordance with the guidelines of the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals and approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina Chapel Hill. 

Chronic Ethanol Liquid Diet Administration: 

Rats were housed individually and administered a nutritionally complete liquid diet for the 

first 3 days (Dextrose diet, MP Biomedicals, Costa Mesa, CA). Rats then received ethanol (6 

% v/v in liquid diet) for 7 days followed by ethanol (7.5 % v/v in liquid diet) for the duration of 

study. Control rats were fed the identical diet with dextrose substituted equicalorically for 

ethanol. Water was available ad libitum and dietary consumption was monitored daily. The 

mean body weights for the controls and ethanol diet rats were similar at the termination of 

the experiment. This procedure reliably results in physical dependence on ethanol

(Morrow et al., 1992). Ethanol dependent rats had free access to ethanol diet up until the 

time of sacrifice. 



Separate groups of rats that consumed ethanol by liquid diet for 14 days were 

injected with a challenge dose of ethanol (2 g/kg, 20 % v/v in saline) and tissue was 

collected after 60 minutes. These rats had their bottles removed and were put back onto 

standard chow for 24 hours prior to challenge. Rats receiving exogenous ACTH were 

administered two doses of ACTH (2 μg), one concurrently with the saline or ethanol 

challenge and one 30 minutes later. Tissue was collected 60 minutes after the saline or 

ethanol challenge. All rats were handled and habituated to saline injections and were 

sacrificed by decapitation. 

Drug Administration for Aim I Studies:  

For steroid measurements, animals were sacrificed by decapitation 45 minutes after i.p. 

administration of saline, ethanol (2 g/kg, 20% v/v), or acetaldehyde (20, 50, 75, 100 mg/kg). 

4-methylpyrazole (200 mg/kg i.p.) was administered 60 minutes prior to ethanol to inhibit 

alcohol dehydrogenase. Animals receiving catalase inhibitor, similar to prior studies 

(Manrique et al., 2005), were administered sodium azide (10 mg/kg i.p.) 30 minutes prior to 

an acute ethanol injection (2 g/kg, 20% v/v). To inhibit aldehyde dehydrogenase, animals 

were administered cyanamide (50 mg/kg i.p.) 60 minutes prior to an acute ethanol injection 

(2 g/kg, 20% v/v) (Jamal et al., 2005). Saline pretreated animals were used for controls in 

both experiments. All experiments utilized a minimum of six animals per group. 

Drug Administration for Aim II Studies: 

Unless otherwise stated, animals were administered i.p. injections of saline or ethanol (2 

g/kg, 20% v/v). The protein synthesis inhibitor cycloheximide (20 mg/ml i.p.) was dissolved 

in saline and administered as a 1 ml injection either concurrently with ethanol or vehicle, or 

40 minutes post-administration of ethanol or vehicle. The PBR agonist, CB34 (15 mg/kg, 

i.p.), was dissolved in saline while the PBR antagonist PK11195 (1 mg/kg i.p.) was dissolved 

in Tween 80, diluted with saline, and given 30 minutes prior to ethanol or saline. The 

glucocorticoid receptor activator, dexamethasone 21-phosphate disodium salt (0.1 mg/kg 
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i.p.) was dissolved in saline and administered 90 minutes prior to ethanol or saline. The 

P450scc antagonist aminoglutethimide (10 mg/ml i.p.) was dissolved in propylene glycol, 

diluted with saline and administered as a 2 ml injection 1 hour prior to an ethanol or saline 

injection.   

Plasma Ethanol and Acetaldehyde Measurements by Gas Chromatography:  

A 6 μl aliquot of plasma was analyzed for ethanol levels using a SRI 8610c gas 

chromatograph (Torrance, CA). Acetaldehyde levels were determined using 100 μl of 

plasma and in both instances similar volumes were used to establish a standard curve. The 

ethanol standard curve ranged from 0 to 400 mg/dl and the acetaldehyde standard curve 

ranged from 0 to 250 μM. Samples were distributed to tubes containing 375 μl of water and 

0.5 g NaCl. Samples were heated in a water bath at 60 °C for 10 minutes and a 1.5 ml 

sample of headspace gas was removed and injected directly into the GC. Samples were run 

at 140 °C through a Hayesep D column and detected with a flame ionization detector. 

Hydrogen gas, carrier gas, and internal air generator flow rates were 13.3, 25, and 250 

ml/min respectively. Areas under the curve were analyzed with SRI PeakSimple software 

and converted to mg/dl for ethanol and μM for acetaldehyde based on the standard curves. 

Tissue and Protein Preparations:  

Mitochondrial membrane fractions from adrenal glands were prepared by homogenization, 

low speed centrifugation in 0.32 M sucrose and centrifugation of the supernatant at 17,000 x 

g for 30 minutes.  The pellet (mitochondrial fraction) was resuspended in phosphate 

buffered saline (PBS). Individual cerebral cortices, as well as other brain regions, were 

homogenized directly in 2% sodium dodecyl sulfate (SDS).  Protein measurement was 

conducted using a BCA protein assay (Thermo Fisher Scientific Inc, Rockford, IL).  
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Western Blot Analysis: 

Adrenal mitochondrial fractions and cerebral cortical homogenate were subjected to sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using Novex Tris-Glycine 

gels (8-16%) and transferred to polyvinylidene diflouride membranes (Invitrogen, Carlsbad, 

CA). These membranes were probed with StAR, MLN64 (Abcam, Cambridge, MA) or PBR 

(Trevigen, Gaithersburg, MD) antibodies. Blots were subsequently exposed to a second 

primary antibody directed against β-actin to verify equivalent protein loading and transfer. 

Bands were detected by enhanced chemiluminescence (Amersham, UK), apposed to x-ray 

films under nonsaturating conditions, and analyzed by densitometric measurements using 

NIH Image 1.57.  All comparisons were made within blots and statistical analysis was 

conducted using student’s t-test or one-way ANOVA. 

Phospho-PKA Substrate Immunoprecipitation Analysis: 

Protein in the mitochondrial fraction was immunoprecipitated with phospho-PKA substrate 

antibody (Cell Signaling Technology Inc., Danvers, MA) similar to the method previously 

described (Kumar et al., 2002). Briefly, mitochondrial protein (200 μg) was solubilized and 

denatured in radioimmunoprecipitation (RIPA) buffer (Sigma-Aldrich, St. Louis, MO) with 

phosphatase inhibitor cocktail (Sigma-Aldrich), phenylmethylsulfonyl fluoride (1 mM), sodium 

fluoride (50 mM), sodium vanadate (200 μM), and EDTA (2 mM) to prevent protein 

degradation and dephosphorylation. Solubilized protein was centrifuged at 10,000g and 

supernatant (solubilized protein) was collected. Denaturation of protein in the supernatant 

was confirmed by SDS-PAGE analysis.  

Immunoprecipitation of phosphoproteins for detection of phospho-StAR was 

performed using antibody conjugated to Dynal beads (Invitrogen, Carlsbad, CA) and 

western blot analysis of the immunoprecipitate. The optimal antibody and protein 

concentrations for immunoprecipitation were determined in pilot experiments to optimize the 
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conditions. The phospho-PKA substrate specific antibody or IgG (Rockland Inc., 

Gilbertsville, PA) was linked to Dynal beads by incubating 125 μl of Dynal beads with 100 μl 

of antibody (0.35 μg/μl) for 1 h at room temperature. The solubilized receptors were mixed 

with antibody-linked beads in a final volume of 500 μl and incubated in an orbital shaker 

overnight at 4°C. The receptor-antibody-bead complex was washed three times with PBS, 

resuspended in 50 μl of SDS, and boiled for 5 minutes. Phosphoprotein immunoprecipitates 

and adrenal mitochondrial fractions were analyzed by SDS-PAGE gel electrophoresis and 

western blotting from saline or ethanol-treated animals to examine the effects on 

immunoprecipitated phospho-StAR protein as well as total StAR protein. 

Radioimmunoassay (RIA) of Pregnenolone:   

Pregnenolone levels were measured by RIA as previously described (Porcu et al., 2006). 

Briefly, pregnenolone was extracted from 250 μl of plasma with 2 mls of diethyl ether three 

times. Extraction recovery was monitored by the addition of 1000 cpm of [3H]pregnenolone. 

Samples were reconstituted and assayed in duplicate by the addition of [3H]pregnenolone 

and anti-pregnenolone antibody (MP Biomedicals, Orangeburg, NY). Total binding was 

determined in the absence of unlabeled pregnenolone and nonspecific binding was 

determined in the absence of antibody. The antibody binding reaction was allowed to 

equilibrate for a minimum of 4 hours and cold dextran coated charcoal was used to separate 

bound from unbound steroid. Bound radioactivity was determined by liquid scintillation 

spectroscopy. Steroid levels in the samples were extrapolated from a concurrently run 

standard curve and corrected for their respective extraction efficiencies. The antiserum 

cross-reacts with 3α,5α-THP 16%, 3α,5β-THP 5.9%, progesterone 3.1%, 3α,5α-THDOC 

1.1%. All of the following steroids had less than 1% cross-reactivity: 5α-

dihydroprogesterone, 17α-hydroxyprogesterone, deoxycorticosterone, cortisol, 11-

deoxycortisol, corticosterone, androsterone, 5α-dihydrotestosterone, cholesterol, 17β-
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estradiol, estrone and estriol. The intra-assay and inter-assay coefficients of variation were 

7.71% and 5.93% respectively.  

RIA of Progesterone and ACTH:   

Plasma progesterone and ACTH levels were measured using RIA kits according to the 

manufacturer’s instructions (MP Biomedicals, Costa Mesa, CA). Total binding was 

determined in the absence of unlabeled progesterone or ACTH and nonspecific binding was 

determined in the absence of antibody. Steroid levels in the samples were extrapolated from 

a concurrently run standard curve. The intra-assay and inter-assay coefficients of variation 

for progesterone are 3.6% and 6.7% respectively and for ACTH they are 4.1% and 3.9%.  

RIA of Neuroactive Steroid 3α,5α-THP: 

RIAs were conducted as previously described (Janis et al., 1998). Briefly, brain samples 

were weighed and suspended in 2.5 ml of 0.3N NaOH, homogenized with a sonic 

dismembrator, and extracted three times with 3 ml aliquots of 10% ethyl acetate in heptane 

(vol/vol). Extraction recovery was monitored by the addition of 2000 cpm of [3H]3α,5α-THP. 

The brain extracts were purified using solid phase silica columns (Burdick and Jackson, 

Muskegon, MI) and subsequently dried. Samples were reconstituted and assayed in 

duplicate by the addition of [3H]3α,5α-THP and anti-3α,5α-THP polyclonal sheep antibody 

(Gift from Dr. Patrick Sluss). Total binding was determined in the absence of unlabeled 

3α,5α-THP and nonspecific binding was determined in the absence of antibody. The 

antibody binding reaction was allowed to equilibrate for 2 hours and cold dextran-coated 

charcoal was used to separate bound from unbound steroid. Bound radioactivity was 

determined by liquid scintillation spectroscopy. Steroid levels in the samples were 

extrapolated from a concurrently run standard curve and corrected for their respective 

extraction efficiencies. The 3α,5α-THP antibody has minimal cross reactivity with other 

circulating steroids (Finn and Gee, 1994). 3α,5α-THP antiserum cross-reacts with 
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progesterone < 3%, 3α,5β-THP 6.6%, 3β,5α-THP 2.8%, 3β,5β-THP 0.5%, 5α-pregnan-

3α,20α-diol 0.1% and 5α-pregnan-3,20-dione 3.5%. The antiserum cross-reacts with 3α-

hydroxy-4-pregnen-20-one > 80% but there have been no significant levels of this steroid 

reported in circulation (Finn and Gee, 1994). The inter-assay coefficient of variation was 

9.1% and the intra-assay coefficient of variation was not measured.    

Data analysis: 

Results are expressed as mean ± S.E.M.  Steroid levels are expressed as ng/g for brain 

tissue. Plasma ethanol levels are expressed as mg/dl and plasma acetaldehyde 

concentrations are expressed in μM units. Western blot data is normalized to β-actin signals 

from the same blot and expressed as % control values taken from each blot. Significance 

was determined by ANOVA followed by post hoc Newman Keuls test or the Student’s t test 

as appropriate. Analyses were performed using the software GraphPad Prism version 4.   



Chapter III 

The Role of Acetaldehyde in Ethanol-Induced Elevation of the Neuroactive Steroid 3α-
hydroxy-5α-pregnan-20-one in Rats 

 
Summary 

Systemic ethanol administration increases neuroactive steroid levels that increase 

ethanol sensitivity. Acetaldehyde is a biologically active compound that may contribute to 

behavioral and rewarding effects of ethanol. We investigated the role of acetaldehyde in 

ethanol–induced elevations of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) levels in 

cerebral cortex. Male Sprague-Dawley rats were administered ethanol and plasma 

acetaldehyde concentrations were measured by gas chromatography to determine relevant 

concentrations. Rats were then administered acetaldehyde directly, acetaldehyde plus 

cyanamide to block its degradation, or ethanol in the presence of inhibitors of ethanol 

metabolism, to determine effects on 3α,5α-THP levels in cerebral cortex. Ethanol 

administration (2 g/kg) to rats results in a peak acetaldehyde concentration of 6-7 μM at 10 

minutes that remains stable for the duration of the time points tested. Direct administration 

of acetaldehyde eliciting this plasma concentration does not increase cerebral cortical 

3α,5α-THP levels and inhibition of ethanol metabolizing enzymes to modify acetaldehyde 

formation does not alter ethanol–induced 3α,5α-THP levels. However, higher doses of 

acetaldehyde (75 and 100 mg/kg), in the presence of cyanamide to prevent its metabolism, 

are capable of increasing cortical 3α,5α-THP levels. Thus, physiological concentrations of 

acetaldehyde are not responsible for ethanol-induced increases in 3α,5α-THP, but a 

synergistic role for acetaldehyde with ethanol may contribute to increases in 3α,5α-THP 

levels and ethanol sensitivity.  

 
 



Introduction 

Neuroactive steroids produce their effects on membrane receptors that regulate 

central nervous system activity rather than nuclear receptors that regulate gene expression. 

The 3α,5α-reduced pregnan steroids, including (3α,5α)-3-hydroxypregnan-20-one (3α,5α-

THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC), are endogenous 

modulators of GABA-A receptors and produce rapid changes in central nervous system 

activity (for review Belelli and Lambert, 2005). The GABA-A receptor system is the primary 

inhibitory receptor system in the brain and is responsible for many behavioral effects of 

ethanol. Systemic ethanol administration increases plasma and brain levels of neuroactive 

steroids (Morrow et al., 1999; VanDoren et al., 2000b) that can act with nanomolar potency 

on GABA-A receptors (Morrow et al., 1987; Puia et al., 1990).   

Neuroactive steroids can be synthesized de novo in the brain or produced 

peripherally in the adrenals and gonads. While ethanol-induced increases in neuroactive 

steroids can originate from both adrenal glands and brain, the adrenal glands are a major 

source of neuroactive steroids and their precursors. Indeed, adrenalectomy reduces 

neuroactive steroid levels in plasma and brain and prevents ethanol-induced elevations. 

Conversely, administration of 5α-dihydroprogesterone, the immediate precursor of the 

potent GABAergic neurosteroid 3α,5α-THP, to adrenalectomized animals restores ethanol-

induced elevations of cortical 3α,5α-THP (Khisti et al., 2003b) suggesting an important role 

for both adrenal and brain steroidogenesis. In addition, studies have demonstrated brain 

steroidogenesis in adrenalectomized animals given time for recovery  (Follesa et al., 2006) 

as well as in cell culture (Hu et al., 1987). Indeed, all of the steroidogenic biosynthetic 

enzymes are present in brain and have been shown to colocalize in specific cell types (King 

et al., 2002).  
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  Ethanol increases rat plasma and brain concentrations of the neuroactive steroids 

3α,5α-THP and 3α,5α-THDOC, which are potent GABAergic modulators that can elicit 

many of the same effects as ethanol (Barbaccia et al., 1999; Morrow et al., 1999). The 

maximal effect of ethanol on neuroactive steroid levels is observed at 2.5 g/kg ethanol. 

Ethanol-induced increases in GABAergic neuroactive steroids are requisite for anxiolytic 

(Hirani et al., 2005) and anticonvulsant (VanDoren et al., 2000b) effects of ethanol and 

contribute to sedative-hypnotic actions (Khisti et al., 2003b) and spatial learning impairment 

(Matthews et al., 2002). In addition, electrophysiological effects of ethanol in medial septal 

and hippocampal neurons are dependent upon ethanol-induced increases in the GABAergic 

neuroactive steroids (Tokunaga et al., 2003; VanDoren et al., 2000b). These steroids 

substitute for ethanol in discrimination studies in rodents and monkeys (Grant et al., 1996; 

Hodge et al., 2001; Shannon et al., 2005) and exogenous administration can alter ethanol 

drinking patterns (Ford et al., 2007; Janak et al., 1998; Morrow et al., 2001). All these 

studies have suggested that neuroactive steroids mediate several behavioral effects of 

ethanol and contribute to ethanol sensitivity. 

The primary metabolite of ethanol, acetaldehyde, can also produce behavioral 

effects that are similar to ethanol (for review Quertemont et al., 2005). For example, 

systemic acetaldehyde administration causes a depression in locomotor activity (Myers et 

al., 1987), impairment of spatial memory (Abe et al., 1999; Quertemont et al., 2004), 

ethanol-like discrimination (Redila et al., 2002) and hypnotic effects (Quertemont et al., 

2004). These observations raise the possibility that acetaldehyde may contribute to 

GABAergic effects of ethanol mediated by neuroactive steroids. Although many behavioral 

effects have been studied, few studies have examined acetaldehyde’s anxiolytic or 

anticonvulsant properties that are dependent upon elevations of neurosteroids. Moreover, 

many of the experiments involving acetaldehyde have relied upon direct administration of 

acetaldehyde into the brain or systemic administration of high concentrations unlikely to be 
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found physiologically. Thus, the present study was designed to determine if physiologically 

relevant concentrations of acetaldehyde contribute to the ethanol-induced increases in 

neuroactive steroid levels.     

Results 

To determine the role of acetaldehyde in ethanol-induced increases in cerebral 

cortical 3α,5α-THP levels, we first sought to ascertain the concentrations of acetaldehyde in 

plasma following ethanol administration to rats. Rats were administered ethanol (2 g/kg) 

since this dose produces near maximal effects on GABAergic neuroactive steroids and 

produces prominent behavioral effects of ethanol. Plasma ethanol and acetaldehyde levels 

were measured at various time points following ethanol administration. Plasma ethanol 

levels peaked around 228 mg/dl (~50 mM) as quickly as 10 minutes post ethanol 

administration and steadily declined over time (Fig. 3.1A). Plasma acetaldehyde levels 

remained relatively constant at approximately 6-7 μM across the same time frame, while 

ethanol was continuously metabolized (Fig. 3.1B). Furthermore, plasma and cerebral cortical 

3α,5α-THP levels were elevated at 45 minutes, corresponding to peak elevations in ethanol-

induced acetaldehyde levels (Fig. 3.1C).   

To determine if the concentration of acetaldehyde produced by ethanol (2 g/kg) is 

capable of producing an increase in 3α,5α-THP levels, we measured 3α,5α-THP in the 

cerebral cortices of rats administered various doses of acetaldehyde. Various doses of 

acetaldehyde were used because it was unknown what doses would produce relevant 

concentrations. Neuroactive steroid levels were measured at 45 minutes, as this represents 

 

 



 

 

Figure 3.1: Time-course of plasma ethanol and acetaldehyde concentrations following 

ethanol administration. Animals were administered a 2 g/kg dose of ethanol and blood 

was collected at varying time points. (A) Plasma ethanol and (B) acetaldehyde levels were 

measured via gas chromatography. Ethanol and acetaldehyde are rapidly increased and 

then acetaldehyde levels stabilize as ethanol is metabolized. (C) 3α,5α-THP levels were 

increased in both the plasma and the cerebral cortex 45 minutes after ethanol 

administration. Plasma 3α,5α-THP levels are measured as ng/ml and brain as ng/g. *p<0.01 

compared to controls, n=4-8 in duplicate.  
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the timeframe of the peak neurosteroid response to 2 g/kg ethanol. Figure 2 shows 3α,5α-

THP and acetaldehyde levels 45 minutes post acetaldehyde administration from naïve 

animals (Fig. 3.2A,C)  and animals pretreated with the aldehyde dehydrogenase (ALDH) 

inhibitor cyanamide (Fig. 3.2B,D). Cyanamide administration was necessary to delay 

acetaldehyde metabolism in order to achieve concentrations similar to those observed 

following ethanol administration. In this experiment, animals were pretreated with cyanamide 

60 minutes prior to acetaldehyde administration and compared to control animals pretreated 

with the inhibitor prior to saline. Following cyanamide pretreatment, acetaldehyde 

administration increased 3α,5α-THP levels at both the 75 mg/kg and the 100 mg/kg doses 

of acetaldehyde. However, these treatments produced plasma acetaldehyde levels that 

were markedly higher than acetaldehyde concentrations found after ethanol administration 

alone (Fig. 3.2D).  At 50 mg/kg, acetaldehyde administration produced blood acetaldehyde 

concentrations similar to ethanol, but there was no effect on cerebral cortical 3α,5α-THP 

levels. 

Although direct acetaldehyde administration is important to assess acetaldehyde’s 

effects, experiments examining its effects after ethanol administration are necessary to 

determine how acetaldehyde contributes to the ethanol response. Therefore, one strategy to 

study the role of acetaldehyde in ethanol-induced increases in neuroactive steroids is to 

alter its metabolism after ethanol administration. If acetaldehyde is involved, then systemic 

manipulation of the enzymes involved in its metabolism should alter affects on 3α,5α-THP 

levels following ethanol administration. Figure 3.3 shows cerebral cortical 3α,5α-THP levels 

and the corresponding plasma ethanol and acetaldehyde concentrations for animals 

receiving ethanol with and without prior inhibition of ALDH. 3α,5α-THP levels were 

increased following ethanol administration compared to their respective controls regardless 

of ALDH inhibition (Fig. 3.3A). Pretreatment with the ALDH inhibitor prior to ethanol
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Figure 3.2: Acetaldehyde administration to levels that mimic ethanol metabolism do 

not increase 3α,5α-THP levels in cortex. (A) Acetaldehyde was administered in varying 

doses and brains were collected after 45 minutes to measure cortical levels of 3α,5α-THP. 

(B) The same concentrations of acetaldehyde were administered to rats pretreated with the 

ALDH inhibitor cyanamide (50 mg/kg) 60 minutes prior to acetaldehyde administration and 

cortical 3α,5α-THP was measured. Plasma acetaldehyde concentrations were measured in 

(C) animals receiving acetaldehyde alone and in (D) animals receiving the inhibitor prior to 

acetaldehyde administration. 3α,5α-THP levels were measured by RIA and acetaldehyde 

concentrations via gas chromatography. *p<0.001 compared to controls, n=6 for control and 

n=8 for acetaldehyde groups in duplicate. 
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Figure 3.3: Effect of pretreatment with the aldehyde dehydrogenase inhibitor 

cyanamide on ethanol-induced 3α,5α-THP elevation. Animals were administered 

cyanamide (50 mg/kg, i.p.) 60 minutes prior to an acute injection of ethanol or saline and 

steroids were measured 45 minutes following the injections. (A) 3α,5α-THP levels were 

increased in the rat cerebral cortex after acute ethanol (2 g/kg, i.p.) administration and were 

not affected by treatment with an aldehyde dehydrogenase inhibitor. (B) Plasma alcohol 

levels were unaffected by aldehyde dehydrogenase inhibition while (C) plasma 

acetaldehyde levels were increased. *P < 0.001 compared to controls, n=6 in duplicate.  
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administration did not alter 3α,5α-THP levels compared to ethanol alone. In addition, the 

cyanamide pretreatment did not significantly alter steroid levels compared to saline 

pretreated controls. Acetaldehyde levels were measured to confirm that the inhibitor was 

effective. Acetaldehyde concentrations were increased 386.8 ± 35.1% following ALDH 

inhibition compared to ethanol alone (Fig. 3.3C). Plasma ethanol levels were not 

significantly altered by ALDH inhibition (Fig. 3.3B).  

Next, we inhibited alcohol dehydrogenase and the catalase enzyme, which convert 

ethanol to acetaldehyde in the liver and brain, respectively. Inhibition of alcohol 

dehydrogenase with the competitive inhibitor 4-methylpyrazole (200 mg/kg) had no effect on 

3α,5α-THP levels compared to ethanol alone (Figure 3.4A).  However, there was no 

detectable change in plasma acetaldehyde concentrations, even though ethanol levels were 

increased from 195 mg/dl to 246 mg/dl and still elevated after 6 hours (data not shown). 

Furthermore, sodium azide (10mg/kg) had no effect on ethanol-induced increases in. 3α,5α-

THP levels (Fig. 3.4A). In addition, sodium azide pretreatment did not significantly affect 

steroid levels compared to saline pretreated controls. Plasma ethanol concentrations were 

slightly increased and plasma acetaldehyde levels were decreased by 27.8 ± 8.8% following 

catalase inhibition when compared to ethanol alone (Fig. 3.4B and 3.4C).   

Discussion 

The current study was performed to address a previously unexplored issue of 

whether acetaldehyde is involved in ethanol-induced increases in neuroactive steroids. 

Systemic administration of 2 g/kg ethanol elicits an increase in neuroactive steroids that is 

not altered by manipulation of ethanol metabolism. Although high concentrations of 

acetaldehyde can stimulate increases in neuroactive steroids, the administration of 

acetaldehyde at doses eliciting concentrations similar to those produced after ethanol
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 Figure 3.4: Effects of pretreatment with 4-methylpyrazole and sodium azide on 

ethanol-induced 3α,5α-THP elevation. Animals were administered 4-methylpyrazole 

(200mg/kg, i.p.) or sodium azide (10 mg/kg, i.p.) prior to an acute injection of ethanol or 

saline and steroids were measured 45 minutes following injections. (A) 3α,5α-THP levels 

were increased in the rat cerebral cortex after acute ethanol (2 g/kg, i.p.) administration and 

were not affected by treatment with either inhibitor. (B) Plasma alcohol levels were 

increased in animals receiving the catalase inhibitor and (C) plasma acetaldehyde 

concentrations were decreased when catalase was inhibited.  *P < 0.05 compared to 

controls, n=6 in duplicate. 
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administration does not increase neuroactive steroid levels. Taken together, these results 

indicate that ethanol is primarily responsible for ethanol-induced increases in neuroactive 

steroids. 

  The most important factor in determining whether acetaldehyde contributes to 

ethanol-induced increases in neuroactive steroids is to establish what concentration of 

acetaldehyde exists in the blood following ethanol administration. Acetaldehyde levels 

remained relatively steady across time and were low due to the high level of ALDH activity. 

Since acetaldehyde is toxic, the body is very efficient at breaking it down and its clearance is 

much larger than that of ethanol (Fujimiya et al., 2002). Next, the effect of acetaldehyde 

administration at doses that produce similar concentrations was evaluated for their affect on 

neuroactive steroid levels. It is important to keep in mind that the acetaldehyde levels 

decline more rapidly following acetaldehyde vs ethanol administration since it is not 

continuously formed and metabolized. Pretreatment with cyanamide stabilized acetaldehyde 

levels across time to allow evaluation of acetaldehyde effects on 3α,5α-THP levels. 

  In the present study, plasma acetaldehyde concentrations were critical in 

determining the role of acetaldehyde in ethanol-induced increases in neuroactive steroids. 

We used a dose of ethanol (2g/kg) that produces peak increases in 3α,5α-THP levels. 

When plasma acetaldehyde concentrations following systemic acetaldehyde administration 

were lower than or comparable to levels observed following ethanol administration, no 

increase in 3α,5α-THP levels was observed. However, when plasma acetaldehyde 

concentrations were greater than levels following ethanol administration an increase in 

3α,5α-THP levels was detected.  

  Previous studies with acetaldehyde administration involve various routes of 

administration as well as a variety of strains and species making it difficult to reliably 

compare results across studies. However, in studies with systemic acetaldehyde 
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administration, doses of at least 100 mg/kg were required to observe locomotor depression 

(Tambour et al., 2006) and sedative and hypnotic effects (Quertemont et al., 2004).  This is 

the same dose required to elevate 3α,5α-THP levels in our study.   

Indeed, we found that 100 mg/kg was the lowest acetaldehyde dose, without ALDH 

inhibition, that increased 3α,5α-THP levels, despite producing low acetaldehyde levels 

(approx 2.5 μM) compared to ethanol (7 μM). Since acetaldehyde is rapidly metabolized, its 

concentration would be expected to be low after 45 minutes without ALDH inhibition. 

Furthermore, when acetaldehyde levels were increased through ALDH inhibition, lower 

doses of acetaldehyde were capable of increasing 3α,5α-THP levels and produced plasma 

acetaldehyde concentrations greater than those seen after ethanol administration. This 

strongly suggests the importance of acetaldehyde concentration in producing or contributing 

to behavioral effects of ethanol.   

When ethanol was administered to the rats, inhibition of ALDH increased 

acetaldehyde levels, but did not have any increased effect on 3α,5α-THP levels in the cortex 

when compared to animals treated with ethanol alone. However, the present results cannot 

rule out the possibility that acetaldehyde may contribute to the elevation of neuroactive 

steroids via synergistic actions with sub-maximal doses of ethanol. It is possible that very 

high concentrations of acetaldehyde alone are required in order to elicit increases in 

neuroactive steroids whereas lower doses, in conjunction with ethanol, may contribute to 

increased 3α,5α-THP levels. Indeed, acetaldehyde has been shown to activate the 

hypothalamic-pituitary-adrenal (HPA) axis (Kinoshita et al., 2001), which is involved in 

neuroactive steroid synthesis. Furthermore, acetaldehyde is metabolized to acetate, which 

has also been shown to have CNS effects, although these appear to involve locomotor 

actions mediated by adenosine receptors (Carmichael et al., 1991). 
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The primary enzyme responsible for ethanol metabolism is alcohol dehydrogenase in 

the liver. In addition to alcohol dehydrogenase, CYP2E1 and catalase are also involved in 

ethanol metabolism. CYP2E1 is an inducible enzyme (Lieber and DeCarli, 1970) that plays 

a more important role in dependent individuals than after acute ethanol exposure. The 

catalase enzyme provides another pathway through which ethanol can be metabolized 

(Aragon et al., 1992) and plays a significant role in ethanol metabolism in the brain. 

Inhibition of catalase activity would be expected to have a marked effect on brain 

acetaldehyde concentrations, however, catalase inhibition did not affect cerebral cortical 

3α,5α-THP levels in these experiments. Inhibition of alcohol dehydrogenase also failed to 

elicit any changes in 3α,5α-THP levels. However, inhibition of alcohol dehydrogenase 

activity is not as favorable for determining acetaldehyde’s role in ethanol’s effects because 

brain alcohol dehydrogenase activity is very low (Beisswenger et al., 1985).  

The lack of effect of 4-methylpyrazole on acetaldehyde levels raises some concern. 

However, others have reported that inhibition of alcohol dehydrogenase fails to alter plasma 

acetaldehyde levels in the absence of an ALDH inhibitor (Quertemont and Didone, 2006). 

Since ethanol levels were increased up to 6 hrs following 4-methylpyrazole administration, 

we presume that alcohol dehydrogenase was inhibited. Changes in acetaldehyde levels 

may approach the limit of detection following 4-methylpyrazole administration.  However, we 

are able to detect dose-dependent acetaldehyde levels following acetaldehyde 

administration as well as the expected increases when ALDH is inhibited.  Hence, it is 

reasonable to conclude that ethanol-induced increases in 3α,5α-THP levels are independent 

of acetaldehyde. The lack of effect of 4-methylpyrazole on ethanol-induced increases in 

3α,5α-THP  levels also suggests that NADH/NAD+ redox changes secondary to ethanol 

metabolism are not involved in this effect of ethanol.  To date, there are not consistent 

results for alterations in alcohol dehydrogenase activity affecting ethanol consumption 
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patterns, suggesting that ALDH activity and acetaldehyde levels are important factors in 

regulating drinking behaviors. 

Acetaldehyde has been implicated in some of the behavioral effects of ethanol 

although the precise role and mechanism of action remain unclear. Importantly, direct 

administration of acetaldehyde results in some of the same behavioral effects as ethanol 

providing a basis for the idea that acetaldehyde contributes to behavioral effects following 

ethanol administration. However, many experiments used higher concentrations of 

acetaldehyde then what would be expected from endogenous ethanol metabolism. 

Therefore, experiments conducted here focused on the effects of physiologically relevant 

acetaldehyde concentrations on 3α,5α-THP levels. Interestingly, when plasma acetaldehyde 

concentrations were comparable to levels found after ethanol administration there was no 

increase in cerebral cortical 3α,5α-THP levels suggesting that acetaldehyde is not 

responsible for ethanol-induced increases in neuroactive steroids.  

Although these studies were performed in a rat model, the results may be applicable 

to humans. Adolescent males and females seen in the emergency room for alcohol 

intoxication had substantial increases in plasma levels of the neuroactive steroid 3α,5α-THP 

(Torres and Ortega, 2003; Torres and Ortega, 2004). Furthermore, various subjective effects 

of ethanol are diminished by prior administration of the neurosteroid biosynthesis inhibitor 

finasteride (Pierucci-Lagha et al., 2005). In contrast, laboratory administration of low or 

moderate ethanol doses had no effect on plasma 3α,5α-THP levels (Holdstock et al., 2006) 

or decreased 3α,5α-THP levels (Nyberg et al., 2005; Pierucci-Lagha et al., 2006). Though 

an explanation for these conflicting results is unresolved, the potential role of neurosteroids 

in human alcohol sensitivity has not been ruled out.  

The present results support the theory that acetaldehyde modulates some of 

ethanol’s effects rather than mediating them. However, the finding that high acetaldehyde 
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concentrations can increase neuroactive steroid levels leaves open the possibility that 

acetaldehyde could contribute to neurosteroid elevations after large quantities of ethanol 

consumption. Indeed, the extent of acetaldehyde’s effects would vary between individuals 

depending upon the respective activities of their alcohol metabolizing enzymes and the 

amount of ethanol consumed. For example, human studies have noted that Native American 

populations, which have high rates of alcohol abuse and dependence, have polymorphisms 

in alcohol metabolizing enzymes that may account for drinking behaviors (Wall et al., 

2003b). Other studies have suggested that high peripheral acetaldehyde concentrations are 

aversive and individuals with mutations in their ALDH2 gene metabolize acetaldehyde less 

rapidly and subsequently have a lower risk of developing alcoholism (for review Quertemont, 

2004). In addition, animals with high ALDH activity have less acetaldehyde in their blood 

and tend to drink more ethanol (Quintanilla et al., 2005) while animals administered an 

adenoviral vector containing an ALDH2 antisense gene have reduced ALDH2 activity and 

reduced ethanol consumption (Ocaranza et al., 2008). Furthermore, ALDH2 knockout mice 

have increased blood acetaldehyde concentrations and drink less (Isse et al., 2005; Isse et 

al., 2002).  

While speculative, it is intriguing to suggest a relationship between acetaldehyde and 

neuroactive steroids in risk for alcoholism. The production of neurosteroids is associated 

with an increased sensitivity to ethanol in rodents (for review Morrow et al., 2006) and 

possibly humans (Pierucci-Lagha et al., 2005). In the present study, high concentrations of 

acetaldehyde, which are associated with reduced drinking and risk for alcoholism, also 

increased neuroactive steroids. This effect may contribute to increased ethanol sensitivity 

and the decreased the risk for alcoholism. Therefore, while physiological concentrations of 

acetaldehyde do not appear to be responsible for ethanol-induced increases in neuroactive 

steroids in rats, the potential role of acetaldehyde cannot be excluded from contributing to 
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ethanol actions. Further studies will be necessary to clarify the importance of acetaldehyde 

in the effects of ethanol.  



Chapter IV 

Ethanol Induction of Steroidogenesis in Rat Adrenal and Brain is Dependent Upon 
Pituitary ACTH Release and De Novo Adrenal StAR Synthesis 

 
Summary 

The mechanisms of ethanol actions that produce its behavioral sequelae involve the 

synthesis of potent GABAergic neuroactive steroids, specifically the GABAergic metabolites 

of progesterone, (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP), and deoxycorticosterone, 

(3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC). I investigated the mechanisms that 

underlie the effect of ethanol on adrenal steroidogenesis. I found that ethanol effects on 

plasma pregnenolone, progesterone 3α,5α-THP and cortical 3α,5α-THP are highly 

correlated, exhibit a threshold of 1.5 g/kg, but show no dose dependence. Ethanol increases 

plasma ACTH, adrenal steroidogenic acute regulatory protein (StAR), and adrenal StAR 

phosphorylation, but does not alter levels of other adrenal cholesterol transporters including 

the peripheral benzodiazepine receptor (PBR), metastatic lymph node protein (MLN64) or 

the biosynthetic enzyme P450scc. Moreover, StAR and MLN64 levels are not altered by 

ethanol in brain, while PBR monomer levels are decreased. The inhibition of ACTH release, 

de novo adrenal StAR synthesis or P450scc activity prevents ethanol-induced increases in 

GABAergic steroids in plasma and brain. ACTH release and de novo StAR synthesis are 

independently regulated responses to ethanol administration and both are necessary, but 

not sufficient, for ethanol-induced elevation of plasma and brain steroids. These results 

suggest that ethanol enhances cholesterol transport via its effects on StAR protein and 

ACTH to stimulate increases in neuroactive steroids. Thus, both pituitary and

 
 



adrenal function are essential for ethanol-induced increases in circulating and brain 

neuroactive steroids. Since GABAergic steroids contribute to ethanol actions and ethanol 

sensitivity, the mechanisms of this effect of ethanol may be important factors that contribute 

to the behavioral actions of ethanol and risk for alcohol abuse disorders. 

Introduction 

Neuroactive steroids are endogenous modulators of GABAA receptor function (see 

Belelli and Lambert, 2005, for review). They are allosteric modulators of GABAA activity and 

bind at specific sites on α subunits (Hosie et al., 2006). Neuroactive steroids act at both 

synaptic and extrasynaptic GABAA receptors and the most potent steroids are the 3α-

hydroxy ring-A reduced pregnane steroids (Paul and Purdy, 1992). Neuroactive steroid 

levels are rapidly altered following stress (Purdy et al., 1991) and may contribute to the 

behavioral effects of various psychoactive drugs including ethanol (see Morrow, 2007, for 

review). 

Acute ethanol administration increases plasma and brain concentrations of 

GABAergic neuroactive steroids, including (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) 

and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC) (Barbaccia et al., 1999; 

Morrow et al., 1999). These steroids are active at nanomolar concentrations and stimulate 

GABAA receptor mediated chloride conductance to potentiate the inhibitory actions of the 

receptor (Fodor et al., 2005; Majewska et al., 1986; Morrow et al., 1990; Morrow et al., 

1987). In turn, these neuroactive steroids potentiate and/or mediate some of ethanol’s 

actions. Indeed, inhibition of steroid biosynthetic enzymes, or the use of adrenalectomized 

rodents, has demonstrated that neuroactive steroids contribute to ethanol’s inhibitory actions 

on medial septal and hippocampal neurons (Morrow et al., 2005; Tokunaga et al., 2003; 

VanDoren et al., 2000b), anxiolytic (Hirani et al., 2005), anticonvulsant (VanDoren et al., 

2000b), hypnotic effects (Khisti et al., 2003b) and spatial learning deficits (Matthews et al., 
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2002). Since ethanol-induced elevations in neuroactive steroids are important for ethanol 

actions, it is important to understand mechanisms that regulate the synthesis of these 

steroids. 

Steroid levels fluctuate naturally and in response to various stressors and 

challenges. Steroidogenic organs include the adrenals, testis, ovaries, placenta, and brain. 

Biosynthesis of adrenal steroids is initiated upon stimulation by trophic hormones (Brownie 

et al., 1973). The cascade of signals that stems from trophic hormone stimulation increases 

cholesterol transport to the cytochrome P450 side chain cleavage (P450scc) enzyme that 

resides on the inner mitochondrial membrane. This is the rate-limiting step in 

steroidogenesis (Miller, 1988; Stocco, 2000) and is thought to be mediated by cholesterol 

transport proteins such as steroidogenic acute regulatory protein (StAR) (Stocco and Clark, 

1996) and the peripheral benzodiazepine receptor (PBR) (Lacapere and Papadopoulos, 

2003). Indeed, mutations or deletions in the StAR gene disrupt steroid production causing 

congenital lipoid adrenal hyperplasia (Lin et al., 1995; Miller, 1997).  

Since multiple glands can synthesize steroids, understanding mechanisms of 

steroidogenesis in adrenal and brain is critical for studying neuroactive steroids. Ethanol 

administration appears to mimic stress to activate the HPA axis and induce adrenal 

steroidogenesis. Indeed, previous studies have shown that ethanol-induced pituitary ACTH 

release appears to require both corticotrophin releasing factor (CRF) and vasopressin (Lee 

et al., 2004). Stress or ethanol-induction of neuroactive steroids in plasma and brain are 

completely prevented by adrenalectomy, although neuroactive steroids are still detectable in 

the brain of adrenalectomized rats (Khisti et al., 2003b; O'Dell et al., 2004; Porcu et al., 

2004; Purdy et al., 1991). Further, administration of 5α-dihydroprogesterone, the immediate 

precursor of 3α,5α-THP, to adrenalectomized animals restores the effect of ethanol on 

cortical 3α,5α-THP levels, demonstrating the possibility of brain steroidogenesis (Khisti et 
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al., 2003b). Moreover, ethanol-induced steroidogenesis has been directly demonstrated in 

hippocampal slices in vitro (Sanna et al., 2004) and recent studies have shown that ethanol 

increases StAR expression in rat brain (Serra et al., 2006). Therefore, whereas several 

studies have shown that ethanol increases neuroactive steroids, the adrenal mechanisms 

that are involved have not been elucidated and the role of the brain in ethanol-induced 

steroidogenesis in vivo remains unclear.  

   Using an in vivo rat model, this study examines the steroidogenic pathway including 

key enzymes, signaling molecules and cholesterol transport proteins to investigate which 

factors are critical for ethanol-induced increases of neuroactive steroids in adrenals and 

brain. Moreover, by concurrently measuring both plasma and brain steroid concentrations, I 

examined the importance of adrenal steroid synthesis for regulating brain neuroactive 

steroid levels.    

Results 

First, I investigated the threshold and dose dependence of ethanol-induced 

increases in plasma pregnenolone and progesterone and as well as cerebral cortical 3α,5α-

THP. There were significant differences between groups for plasma pregnenolone [F(6,21) = 

30.72, P < 0.0001] and progesterone [F(4,13) = 20.24, P < 0.0001]. Ethanol (0.5 g/kg to 3.0 

g/kg) induction of the 3α,5α-THP precursors pregnenolone and progesterone in plasma was 

only observed at doses of 1.5 g/kg ethanol and above (Fig. 4.1A,B). Interestingly, there does 

not appear to be a dose dependent effect of ethanol on plasma pregnenolone and 

progesterone as the 1.5 g/kg dose elicited a maximal response that was not increased by 

greater doses of ethanol. In cerebral cortex, 1.5 g/kg ethanol was also the lowest dose that 

increased 3α,5α-THP levels [F(5,15) = 7.23, P = 0.0013] demonstrating the same threshold 

response as plasma steroid levels (Fig. 4.1C). In addition, the plasma levels of 

pregnenolone and progesterone were highly correlated with one another (r2=0.94, p=0.0003) 
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and plasma progesterone was correlated with cortical levels of the neuroactive steroid 

3α,5α-THP (r2=0.82,  p<0.05) (Fig. 4.1D). Therefore, in subsequent experiments, either 

pregnenolone or progesterone was measured in plasma while 3α,5α-THP was measured in 

cerebral cortex. 

ACTH is released from the pituitary to stimulate steroid production from the adrenals. 

To determine the role of ACTH in ethanol-mediated steroidogenesis, I investigated the 

effects of hypophysectomy and dexamethasone in adult rats. Ethanol (2 g/kg) increased 

ACTH levels of intact animals 18-fold (Fig. 4.2A). There was a main effect of both ethanol 

[F(1,14) = 50.18, P < 0.0001] and hypophysectomy [F(1,14) = 58.06, P < 0.0001] as well as 

an interaction between ethanol and hypophysectomy [F(1,14) = 5058, P < 0.0001]. Ethanol 

also increased plasma progesterone levels of intact animals 36-fold (Fig. 4.2B). There was a 

main effect of both ethanol [F(1,14) = 228.8, P < 0.0001] and hypophysectomy [F(1,14) = 

249.3, P < 0.0001] as well as an interaction between ethanol and hypophysectomy [F(1,14) 

= 233.7, P < 0.0001]. Furthermore, ethanol increased cerebral cortical 3α,5α-THP levels of 

intact animals 9-fold (Fig. 4.2C). There was a main effect of both ethanol [F(1,12) = 34.56, P 

< 0.0001] and hypophysectomy [F(1,12) = 23.68, P = 0.0004] as well as an interaction 

between ethanol and hypophysectomy [F(1,12) = 34.96, P < 0.0001]. Hypophysectomized 

animals did not exhibit any changes in plasma ACTH, plasma progesterone, or cerebral 

cortical 3α,5α-THP levels (Fig. 4.2A,B,C).  

Pretreatment with the synthetic steroid dexamethasone also prevented ethanol-

induced increases in plasma ACTH, plasma progesterone, and cerebral cortical and 

hippocampal 3α,5α-THP. There were significant differences between groups for plasma  
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Figure 4.1: Threshold for ethanol-induced increases in plasma steroids. Ethanol was 

administered at varying doses and plasma and cerebral cortex were collected after 60 

minutes to measure steroid levels. (A) plasma pregnenolone, (B) plasma progesterone and 

(C) cerebral cortical 3α,5α-THP. (D) Correlation between plasma precursors and cortical 

3α,5α-THP. * p < 0.001 and ** p < 0.05 compared to saline control (one-way ANOVA 

followed by Newman-Keuls test), n = 4-5 for each group in duplicate.    
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Figure 4.2: Hypophysectomy abolishes ethanol-induced increases in ACTH release as 

well as plasma and brain steroid levels. (A) plasma ACTH (B) plasma progesterone and 

(C) cerebral cortical 3α,5α-THP levels following hypophysectomy compared to sham-

operated controls. * p < 0.001 compared to all groups, (Two-way ANOVA followed by 

Bonferroni test) n = 8-9 in duplicate. 
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Figure 4.3: Dexamethasone inhibits ACTH release as well as ethanol-induced 

increases in steroid levels. Effect of dexamethasone (0.1 mg/kg, i.p.) for 90 minutes on 

the ethanol-induced increase in (A) plasma ACTH (B) plasma progesterone (C ) 3α,5α-THP 

in the cerebral cortex and hippocampus and (D) adrenal StAR protein expression. A 

representative blot is shown for adrenal StAR protein. StAR protein was normalized to β-

actin and presented as % control. * p < 0.001 compared to control, ** p < 0.01 compared to 

control, # p < 0.001 compared to EtOH, (ANOVA, followed by Newman-Keuls test) n = 6 in 

duplicate. 
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ACTH [F(3,19) = 28.52, P < 0.0001; Fig. 4.3A], plasma progesterone [F(3,19) = 110.5, P < 

0.0001; Fig. 4.3B], and cerebral cortical and hippocampal 3α,5α-THP levels [F(3,19) = 9.07, 

P = 0.001; Fig. 4.3C]. In contrast, dexamethasone enhanced ethanol-induced increases in 

adrenal StAR protein expression by 65% [F(2,43) = 26.61, P < 0.0001; Fig 3D], showing that 

ethanol-induced increases in StAR protein are not sufficient to promote steroidogenesis. 

Together, these results suggest the importance of ACTH for ethanol-mediated 

steroidogenesis.    

In order to evaluate the importance of StAR protein in ethanol-induced 

steroidogenesis I investigated the time course and effects of ethanol dose on adrenal StAR 

expression. Similar to the plasma steroid levels seen in Figure 4.1, there was a threshold of 

1.5 g/kg ethanol required to elicit increases in adrenal StAR expression (Fig. 4.4A). To 

investigate the temporal effects of ethanol, rats were administered ethanol (2 g/kg) at 

various time points and plasma progesterone levels were measured along with adrenal 

StAR protein levels. Adrenal StAR protein (32kDa) levels were elevated as early as twenty 

minutes and remained elevated across the two hour testing period (Fig. 4.4B) corresponding 

with increased steroid levels [F(6,20) = 28.13, P < 0.0001; Fig. 4.4D]. The maximal 

steroidogenic response occurred at 60 minutes corresponding to previous data examining 

the temporal response of progesterone in plasma and 3α,5α-THP in cerebral cortex 

(VanDoren et al., 2000b). No effect of ethanol on StAR (32 kDa) expression was observed 

in cerebral cortex or any brain region tested (Table 4.1). The 37 kDa form of StAR was not 

detected by the antibody under any condition in adrenal mitochondria or brain homogenates. 

I also examined the effect of ethanol on other cholesterol transporters that may be 

involved in steroidogenesis. Rats were administered 2 g/kg dose of ethanol and PBR and 

metastatic lymph node 64 (MLN64) protein levels were measured 60 minutes later in 

adrenal and cerebral cortical fractions. Ethanol administration decreased expression of the  
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Figure 4.4: Ethanol exhibits a threshold for adrenal StAR induction and StAR 

expression and plasma progesterone levels are rapidly increased. Rats were 

administered ethanol and blood was collected at varying time points. (A) Adrenal StAR 

protein expression was measured by western blot analysis.  Each group was compared to 

saline controls on separate blots, normalized to β-actin and converted to % control values 

(B) Time course of StAR protein induction (C) Time course of plasma progesterone 

induction. * p < 0.01 compared to control, (Student’s t test or ANOVA followed by Newman-

Keuls test where appropriate) n = 4-6 for each group in duplicate. 
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Table 4.1: Ethanol decreases PBR expression in cerebral cortex but does not alter 

StAR or MLN64 expression. 

 StAR (32kDa) PBR (18kDa) MLN64 (53kDa) 

Saline 100 ± 4.95 100 ± 5.88 100 ± 18.34 

EtOH 101.5 ± 7.27 75.37 ± 4.79 * 108.5 ± 26.63 

Data represent mean values ± S.E.M. and are normalized to β-actin and presented as % 

control values from each western blot. * p < 0.01 compared to saline control (Student’s t 

test), n = 8-16 

 

  

55 
 



PBR monomer (18 kDa) in the cerebral cortex (Table 4.1), but did not alter PBR or MLN64 

levels in the adrenal (Fig. 4.5A,B) or MLN64 in brain (Table 4.1).  

To determine if ethanol altered the activity of PBR, I investigated the effect of the 

antagonist, PK11195, on ethanol-mediated steroidogenesis by measuring effects on plasma 

progesterone. PK11195 (1 mg/kg) had no effect on ethanol-induced increases in steroid 

levels, but a selective high affinity ligand of PBR, CB34 (15 mg/kg), increased plasma 

steroid levels similar to ethanol [F(4,12) = 168.3, P < 0.0001; Fig. 4.5C]. Higher doses of 

PK11195 (5 and 10 mg/kg) also had no effect on ethanol-induced increases in steroid levels 

(data not shown). 

A previous study suggested that only newly formed StAR is active and supports 

steroidogenesis (Artemenko et al., 2001). In order to determine if ethanol-induced elevation 

of neurosteroids is dependent upon de novo StAR synthesis, I tested the effect of the 

general protein synthesis inhibitor cycloheximide on ethanol-induced steroidogenesis. 

Simultaneous administration of cycloheximide with a 2 g/kg dose of ethanol 60 minutes 

before sacrifice prevented the ethanol-induced increases in StAR protein and plasma 

progesterone levels. There was a significant difference between groups for StAR protein 

[F(3,24) = 15.29, P < 0.0001; Fig. 4.6A]  and plasma progesterone levels [F(3,17) = 230, P < 

0.0001; Fig. 4.6B]. Ethanol-induced increases in cortical 3α,5α-THP levels were no longer 

detectable after simultaneous administration of cycloheximide (data not shown). In another 

experiment, cycloheximide was administered 40 minutes following ethanol but 20 minutes 

prior to sacrifice. This strategy more clearly prevented de novo StAR synthesis, and 

cycloheximide decreased ethanol-induced StAR protein expression and reduced steroid 

levels by 60%. There was a significant difference between groups for adrenal StAR protein 

expression [F(2,20) = 6.36, P = 0.0073; Fig. 4.7A], plasma progesterone levels  
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Figure 4.5: Ethanol did not alter adrenal PBR or MLN64 expression, and inhibition of 

PBR did not affect ethanol-induced plasma progesterone levels. Ethanol (2 g/kg) was 

administered and adrenals were collected after 60 minutes. (A) Adrenal PBR (18 kDa) and 

(B) MLN64 (53 kDa) levels were measured by western blot analysis. (C)  Rats were 

pretreated with the PBR antagonist PK11195 (1 mg/kg, i.p.) 30 minutes prior to ethanol 

administration and steroid levels were measured 30 minutes post ethanol. Protein levels 

were normalized to β-actin and presented as % control * p < 0.001 compared to control 

(ANOVA followed by Newman Keuls test), n = 6-8 for each group in duplicate.   
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Figure 4.6: Simultaneous administration of cycloheximide (CHX) with ethanol 

prevents ethanol-induced increases in StAR protein as well as plasma and brain 

steroid levels. Cycloheximide (20 mg, i.p.) was administered with ethanol (2 g/kg) and 

tissue was collected 60 minutes later. (A) Adrenal StAR protein expression was measured 

by western blot analysis as shown in a representative blot. StAR was normalized to β-actin 

and presented as % control values (B) plasma progesterone levels * p < 0.001 compared to 

control and # p < 0.001 compared to ethanol (ANOVA followed by Newman Keuls test), n = 

6 in duplicate.  
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Figure 4.7: CHX administration following ethanol arrests ethanol-induced increases in 

StAR as well as plasma and brain steroid levels. Cycloheximide (20 mg, i.p.) was 

administered for the final 20 minutes of a 60 minute ethanol exposure (A) adrenal StAR 

expression was normalized to β-actin and presented as % control (B) plasma progesterone 

levels, and (C) 3α,5α-THP levels in cortex and hippocampus. * p < 0.001 compared to 

control, @ p < 0.05 compared to control and # p < 0.01 compared to ethanol (ANOVA 

followed by Newman Keuls tests), n = 6 in duplicate.  
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[F(3,20) = 205.8, P < 0.0001; Fig. 4.7B] and cerebral cortical and hippocampal 3α,5α-THP 

levels  [F(4,20) = 19.23, P < 0.0001; Fig. 4.7C]. In addition to blocking the elevation in 

plasma steroids, cycloheximide inhibition also attenuated 3α,5α-THP increases in the 

cerebral cortex and the hippocampus.  

 StAR protein phosphorylation by PKA has been shown to be important for 

steroidogenesis (Arakane et al., 1997; Jo et al., 2005). In order to determine if ethanol alters 

phosphorylation of StAR, I examined phosphorylated StAR levels by immunoprecipitation 

with a phospho-PKA substrate antibody. First, the specificity of the phospho-PKA substrate 

antibody for phosphorylated proteins was confirmed by SDS-PAGE following incubation of 

adrenal fractions with Lambda phosphatase to dephosphorylate proteins (Fig. 4.8A). In 

addition, after solubilization and denaturation in RIPA buffer, SDS-PAGE analysis confirmed 

that StAR protein was not bound to any non-specific proteins that may be 

immunoprecipitated by the phospho-PKA substrate antibody (Fig. 4.8B). Furthermore, no 

band for StAR peptide was visible via Western blot from adrenal fractions 

immunoprecipitated with rabbit IgG signifying that immunoprecipitation with phospho-PKA 

substrate antibody is specific (Fig. 4.8C). Following confirmation of the antibody specificity, 

adrenal mitochondrial fractions were immunoprecipitated with the phospho-PKA substrate 

specific antibody, separated by SDS-PAGE, and probed for StAR. Ethanol administration to 

rats (2 g/kg) increased phosphorylation of adrenal StAR 5.7-fold compared to saline treated 

rats (Fig. 4.9). Furthermore, in the same adrenal fraction, ethanol-induced increases in total 

StAR increased 2.1-fold indicating that ethanol-mediated increases of StAR phosphorylation 

exceed its effect on StAR protein synthesis (p = 0.0095, Student’s t test). 

StAR protein is important for steroidogenesis, but the only enzyme known to convert 

cholesterol to pregnenolone is the P450scc enzyme (Miller, 2007b). Therefore, inhibition of 

this enzyme should prevent the formation of pregnenolone and neuroactive  
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steroids irrespective of StAR protein levels. Aminoglutethimide was used to inhibit the 

P450scc enzyme and blocked ethanol-induced increases in plasma steroid levels by 58% 

[F(2,29) = 39.83, P < 0.0001; Fig. 4.10A]; although there was a slight increase in steroid 

levels from the inhibitor alone. Aminoglutethimide had no effect on ethanol-induced 

increases in adrenal StAR protein levels (Fig. 4.10B). 

Discussion 

Although numerous studies have established that acute ethanol administration 

increases neuroactive steroids in plasma and brain, it has not been clear where ethanol acts 

to increase steroidogenesis. Because previous studies showed that adrenal integrity was 

required for ethanol-induced steroidogenesis in plasma and brain, the current study 

examined key steps in the adrenal steroidogenic pathway to attempt to determine which 

factors are required for ethanol-induced increases in neuroactive steroids. I hypothesized 

that adrenal and brain steroidogenesis would be differentially regulated, yet I found no 

ethanol-induced increases in cholesterol transport proteins in brain. 

The results indicate that both pituitary-derived ACTH and de novo StAR synthesis in 

the adrenals are required for ethanol-induced increases in circulating and cerebral cortical 

levels of 3α,5α-THP, as well as circulating levels of pregnenolone and progesterone. 

Further, I show that ethanol increases adrenal StAR phosphorylation, which has previously 

been shown to enhance steroidogenesis in COS-1 and Leydig cells (Arakane et al., 1997; 

Jo et al., 2005). Although cholesterol transport to the inner mitochondrial membrane is the 

rate-limiting step in steroidogenesis, the ability of ethanol to increase StAR protein levels, 

independent of ACTH, appears to be necessary, but not sufficient for ethanol-induced 

steroidogenesis. Hypophysectomy and dexamethasone both prevented ethanol-induced 

increases in neuroactive steroids, even while StAR protein was enhanced by  
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Figure 4.10: Inhibition of P450scc by aminoglutethimide (AG) attenuates ethanol-

induced increases in plasma steroids. Rats were administered aminoglutethimide (20 mg, 

i.p.) or propylene glycol (PG) vehicle 60 minutes prior to ethanol or saline vehicle and tissue 

was collected 60 minutes post ethanol administration. (A) Adrenal StAR protein levels were 

measured by western blot analysis. StAR levels are normalized to β-actin and presented as 

% control (B) Plasma progesterone levels. * p < 0.001 compared to control and # p < 0.001 

compared to ethanol (ANOVA followed by Newman Keuls test), n = 6 in duplicate.  
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ethanol. Ethanol-induced increases in brain 3α,5α-THP were also prevented by 

hypophysectomy and dexamethasone inhibition of ACTH as well as cycloheximide inhibition 

of adrenal StAR synthesis. Therefore, it appears that ethanol-induced increases in 

GABAergic neuroactive steroids in both plasma and brain are dependent upon pituitary 

activation to release ACTH and independent de novo StAR formation to promote adrenal 

steroidogenesis. 

The findings of the present study suggest that ethanol-induced increases in 

neuroactive steroids result from stimulation of the HPA axis as well as effects on the adrenal 

independent of HPA axis activity. Indeed, ethanol activates the HPA axis (Ogilvie and Rivier, 

1997) and increases ACTH release (Rivier et al., 1996). Since the adrenal is part of the HPA 

axis it can be difficult to separate these effects. Alterations in HPA axis signaling through 

inhibition of ACTH markedly altered steroidogenesis but did not block ethanol’s effect on the 

adrenal steroidogenic protein StAR. This suggests that ethanol is capable of increasing 

adrenal StAR protein by a mechanism independent of ACTH. Another study, however, found 

that ACTH can regulate StAR synthesis in adrenal fasciculata cells (Nishikawa et al., 1996). 

ACTH may also act to free up cholesterol for use in steroid biosynthesis (Jefcoate, 2002) or 

stimulate StAR phosphorylation. Previous studies have shown that CRF and vasopressin 

are necessary for ethanol-induced pituitary ACTH release (Lee et al., 2004). CRF 

replacement, however, does not reverse the effect of dexamethasone on corticosterone 

synthesis although ACTH administration does (Cole et al., 2000). Therefore, while CRF is 

clearly critical in coordinating HPA axis responses (Sarnyai et al., 2001), and ethanol may 

activate signaling upstream of ACTH, CRF does not appear to stimulate adrenal 

steroidogenesis without the presence of ACTH.  

The use of hypophysectomized animals further demonstrated the significance of 

ACTH signaling on ethanol-induced increases in adrenal steroidogenesis. One caveat of the 

hypophysectomized animals is that the adrenals are atrophied due to lack of stimulation. 
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Nevertheless, the results in hypophysectomized rats are consistent with the effects of 

dexamethasone, suggesting that ACTH signaling is needed for ethanol-induced 

steroidogenesis. Furthermore, hypophysectomy and dexamethasone administration not only 

inhibited ethanol-induced increases in plasma neuroactive steroids and but also similarly 

blocked the elevation of cerebral cortical and hippocampal neuroactive steroid levels. Many 

studies have examined the effects of ethanol on ACTH but the present study demonstrates 

that ACTH is necessary, but not sufficient, for ethanol-induced steroidogenesis.  

Although ACTH stimulation of adrenal is important for steroidogenesis, cholesterol 

transport to P450scc is the rate-limiting step (Miller, 1988; Stocco, 2000). I investigated the 

effects of ethanol on the cholesterol transport proteins StAR, PBR, and MLN64 in adrenal 

and brain. Although StAR is initially synthesized as a 37 kDa pre-protein I was only able to 

measure the processed 32 kDa mitochondrial form. Although the 37 kDa form can mediate 

cholesterol uptake in nonsteroidogenic COS-1 cells, it is barely detectable in steroidogenic 

cells (Artemenko et al., 2001), and its processed form may be the major factor in cholesterol 

transport to P450scc (for review Jefcoate, 2002). I found that ethanol-induced increases in 

adrenal StAR protein expression corresponded with increases in plasma steroid levels. In 

addition to the temporal association, I looked for a dose-dependent response of StAR and 

steroid levels. Rather than a dose response, I found a threshold effect where ethanol 

induction of adrenal StAR protein and plasma steroid levels required a dose greater than 1.0 

g/kg ethanol. Interestingly, this finding agrees with studies in humans where blood alcohol 

levels less than 0.1 mg% (comparable to a 1.0 g/kg injection), did not increase plasma 

steroid levels (Holdstock et al., 2006; Jenkins and Connolly, 1968; Pierucci-Lagha et al., 

2006; Waltman et al., 1993). Rodent studies, however, have elicited mixed results, with 

studies finding steroids increased at ethanol doses ≥ 1.3 g/kg (VanDoren et al., 2000b) and 

others observing effects at 1.0 g/kg (Barbaccia et al., 1999; Serra et al., 2003). Genetic 

differences in rat strains may underlie these results. Still, it is worth noting that when a lower 
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dose of ethanol (1.0 g/kg) increases steroids, there is a corresponding increase in StAR 

protein (Serra et al., 2006). Both the temporal and dose relationship of StAR with steroid 

levels following ethanol administration suggest the importance of StAR protein in mediating 

ethanol-induced steroidogenesis.  

MLN64 was examined in this study because it has been shown to have StAR-like 

activity in cells (Bose et al., 2000; Watari et al., 1997), but its expression in adrenals and 

brain was not changed by ethanol. It has been suggested that MLN64 plays a role in the 

placenta, where StAR is absent but steroidogenesis still occurs. Perhaps a more intriguing 

example is PBR, recently named the mitochondrial translocator protein. It has been 

suggested that StAR and PBR may work together to promote steroidogenesis (Miller, 

2007a; Papadopoulos et al., 2007). In the present study, I did not detect any change in 

adrenal PBR expression following ethanol administration; possibly because PBR is already 

highly expressed in steroidogenic cells. PBR agonists have been shown to increase steroid 

levels (Serra et al., 1999) and the present study also found an increase comparable to that 

seen following ethanol administration. Further, I found no effect of the PBR antagonist 

PK11195 (1, 5, 10 mg/kg) on ethanol-induced increases in neuroactive steroids, suggesting 

that PBR does not mediate ethanol-induced steroidogenesis. Interestingly, 1 mg/kg of 

PK11195 has been shown to attenuate ethanol-induced anxiolysis (Hirani et al., 2005); a 

behavior commonly associated with neuroactive steroids. The Hirani et al. study, however, 

only measured behavioral effects, and not neuroactive steroid levels, so the lack of 

anxiolysis may be linked to a pharmacological effect of PBR antagonism unrelated to 

neuroactive steroid synthesis. Therefore, while PBR is clearly capable of steroidogenesis, it 

does not appear to be necessary for ethanol-induced steroidogenesis. Taken together, 

these studies also suggest, albeit indirectly, that StAR is the cholesterol transporter involved 

in ethanol-induced steroidogenesis.  
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A convincing role for StAR’s importance in steroidogenesis is also evident in other 

animal and human studies. Generation of a StAR knockout mouse showed the absence of 

StAR to be lethal (Caron et al., 1997) and humans with mutations in the StAR gene have 

congenital lipoid adrenal hyperplasia (Miller, 1997). Thus, I investigated the importance of 

StAR for ethanol-induced steroidogenesis in more detail. If ethanol is increasing steroid 

levels by increasing cholesterol transfer to the P450scc, then inhibition of de novo StAR 

synthesis, a cholesterol transport protein, should diminish this ethanol effect. In fact, 

administration of cycloheximide concurrently with ethanol completely inhibited ethanol-

induced increases in StAR protein expression and both plasma and brain steroid levels. It is 

important to note that cycloheximide is a general protein synthesis inhibitor so many 

proteins could be inhibited and potentially affect steroid synthesis.  

To minimize inhibition of other proteins, I took advantage of the fact that StAR is 

rapidly synthesized and administered cycloheximide 40 minutes post ethanol administration 

and 20 minutes prior to sacrifice. This experiment showed that inhibition of de novo StAR 

synthesis arrested steroid production, although steroid levels were not completely blocked. 

When cycloheximide was administered with ethanol, there was complete blockade of steroid 

production. Together, these experiments demonstrate that inhibition of de novo StAR 

synthesis dramatically affects steroid levels and strongly supports its role as a major 

component of increases in ethanol-induced neuroactive steroid levels. Furthermore, 

synthetic hydroxycholesterols, which can cross the membrane freely, stimulate steroid 

synthesis in cells where StAR has been inhibited (Kim et al., 1997) providing further support 

for the essential role of cholesterol transport in steroidogenesis.  

Although ethanol’s ability to increase adrenal StAR protein is important for ethanol 

mediated steroidogenesis, StAR phosphorylation is critical for full steroidogenic activity of 

StAR (Arakane et al., 1997). In the present study, ethanol not only increased adrenal StAR 

protein expression but also increased StAR phosphorylation. Although the present study 
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cannot definitively conclude that this is PKA phosphorylation, a point mutation of the PKA 

phosphorylation site diminishes StAR activity (Arakane et al., 1997). Furthermore, 

experiments in Leydig cells demonstrated that protein kinase C (PKC) activation can elicit 

increases in StAR protein expression but PKC does not increase steroid levels or 

phosphorylate StAR. On the other hand, addition of a cAMP analogue increases StAR 

phosphorylation and steroid levels (Jo et al., 2005). Studies to determine if StAR 

phosphorylation is required for ethanol steroidogenesis in vivo are underway. 

Although cholesterol transport is the rate-limiting step in steroidogenesis, steroid 

synthesis is still dependent upon the conversion of cholesterol to pregnenolone and 

subsequent metabolism to neuroactive metabolites. To date, the only known enzyme 

capable of converting cholesterol to pregnenolone is the P450scc enzyme (Miller, 2007c). 

Therefore, inhibition of this enzyme should prevent ethanol-induced increases in steroid 

levels. In the present study, inhibition of P450scc abolished ethanol-induced increases in 

steroid levels without having any effect on increases in StAR expression. This suggests that 

cholesterol was still being transported to the inner mitochondrial membrane and may 

account for the low level of steroid formation as cholesterol accumulated. Cholesterol 

accumulates at the inner mitochondrial membrane following P450scc inhibition and at the 

outer mitochondrial membrane following cycloheximide administration (Privalle et al., 1983). 

I therefore conclude that ethanol enhancement of cholesterol transport from the outer to 

inner mitochondrial membrane is necessary for its effect on steroidogenesis.    

There is no doubt that the brain is a steroidogenic organ, but the results of the 

present study suggest that the increased neuroactive steroid levels measured by RIA after 

acute ethanol administration are dependent upon adrenal steroidogenesis. Indeed, 

neuroactive steroids are lipophilic and capable of crossing the blood brain barrier. Although 

the neuroactive metabolites can be synthesized peripherally and travel to the brain, it is 

likely that adrenal precursors also contribute to the central levels of GABAergic steroids 
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(Khisti et al., 2005; Kraulis et al., 1975; Wang et al., 1997). These precursors can be 

synthesized in the adrenals and metabolized to neuroactive metabolites in the brain with 

their regional distribution dependent upon steroidogenic enzyme expression (Li et al., 1997). 

Furthermore, no increases in cholesterol transport proteins were detected in the brain 

following ethanol administration. In fact, PBR levels of the 18 kDa monomer were decreased 

in the cerebral cortex. PBR monomers, however, can polymerize and I detected increased 

expression of bands corresponding to the molecular weight of a PBR dimer and trimer (data 

not shown). Thus, the decreased expression of PBR monomers may actually be the result of 

polymerization. Interestingly, PBR monomers are better suited for cholesterol binding, but 

reactive oxygen species, possibly as a result of ethanol metabolism, lead to polymerization 

(Delavoie et al., 2003). 

Basal StAR protein expression (32 kDa) was observed in multiple brain regions, but I 

found no evidence for ethanol-induced increases in cortex or hippocampus, possibly 

because ethanol-induced increases in neuroactive steroids are dependent upon adrenal 

biosynthesis. Inhibition of de novo StAR synthesis, with cycloheximide, and ACTH 

production, with dexamethasone, both show that inhibition of adrenal steroid biosynthesis 

prevents ethanol-induced increases in brain 3α,5α-THP levels. Prior adrenalectomy 

experiments further emphasize the importance of peripheral steroidogenesis for controlling 

brain steroid levels. Adrenalectomized animals subjected to either stress, GHB, ethanol, 

nicotine, morphine, olanzapine or clozapine administration fail to show increases in cortical 

levels of the potent GABAergic neuroactive steroids (Khisti et al., 2003b; O'Dell et al., 2004; 

Porcu et al., 2004; Purdy et al., 1991, Concas, 2006 #5534, Marx, 2003 #4412). Thus, an 

interesting dynamic exists where the brain is dependent upon the periphery for increases in 

neuroactive steroids, yet, may still ultimately control its levels of GABAergic neuroactive 

steroids through HPA axis activation.  
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Since neuroactive steroids have been postulated to affect ethanol sensitivity and the 

risk for alcoholism, it is important to understand how ethanol affects neuroactive steroid 

synthesis. Chronic ethanol administration elicits ethanol tolerance in both rodents and 

humans. Although studies in humans are limited, ethanol dependent rodents do not exhibit 

increased neuroactive steroid levels (Janis et al., 1998) and have a blunted response to 

ethanol challenge (Khisti et al., 2005; Morrow et al., 2001). Furthermore, adrenalectomy, 

which reduces peripheral and central neuroactive steroids, increases ethanol withdrawal 

severity in mice (Gililland and Finn, 2007). Thus, the present study demonstrates the 

importance of adrenal StAR protein and plasma ACTH in regulating ethanol-induced 

increases in neuroactive steroids. Moreover, the results of this study will also be utilized as a 

comparison for the effects of chronic ethanol exposure to examine ethanol-induced 

alterations in steroidogenesis.  

In conclusion, pituitary and adrenal function are essential for ethanol-induced 

increases in circulating and brain neuroactive steroids. Future studies manipulating proteins 

to control steroid biosynthesis may be beneficial for treatment of alcoholism and alcohol-

related diseases, as well as various other neuropsychiatric disorders involving altered 

steroidogenesis.  



Chapter V 

Effects of Chronic Ethanol Exposure on Ethanol-Induced Increases in ACTH, De Novo 
StAR Synthesis and StAR Phosphorylation 

 
Summary 

Acute ethanol administration increases potent GABAergic neuroactive steroids, 

specifically the GABAergic metabolites of progesterone, (3α,5α)-3-hydroxypregnan-20-one 

(3α,5α-THP), and deoxycorticosterone, (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-

THDOC). In addition, neuroactive steroids mediate and/or contribute to some of ethanol’s 

actions. Chronic ethanol exposure results in tolerance to many effects of ethanol including 

ethanol-induced increases in neuroactive steroid levels. I investigated critical steroid 

biosynthetic enzymes and signaling molecules that may be altered by chronic ethanol 

exposure. Male Sprague-Dawley rats were administered ethanol via liquid diet for two 

weeks and protein expression and steroid levels were measured. I show that chronic 

ethanol exposure elicits tolerance to ethanol effects on plasma ACTH and the steroids 

pregnenolone and progesterone. Adrenal steroidogenic acute regulatory (StAR) protein 

expression is important for steroidogenesis, but chronic ethanol exposure does not result in 

tolerance to ethanol-induced increases in adrenal StAR protein. However, StAR 

phosphorylation is decreased when compared to the effect of acute ethanol administration. 

Rats exposed to chronic ethanol diet and subsequently challenged with ethanol (2 g/kg) had 

no changes in plasma ACTH but exhibited a blunted elevation of progesterone and cerebral 

cortical 3α,5α-THP. Administration of ACTH with the ethanol challenge restores the 

phosphorylation of adrenal StAR protein as well as plasma ACTH, progesterone, and 

 
 



cerebral cortical 3α,5α-THP to levels observed in naïve rats administered ethanol. Thus, 

chronic ethanol exposure disrupts ACTH release that leads to tolerance to ethanol-induced 

increases in neuroactive steroid levels. Loss of the ethanol-induced increases in neuroactive 

steroids may contribute to behavioral tolerance to ethanol and influence the progression 

towards alcoholism.    

Introduction 

Neuroactive steroids produce their effects on membrane receptors that regulate 

central nervous system activity rather than nuclear receptors that regulate gene expression. 

Thus, these steroid hormones are capable of eliciting rapid changes in neuronal excitability 

primarily through their enhancement of GABAA receptor activity (for review Belelli and 

Lambert, 2005). Neuroactive steroids can be synthesized de novo in the brain or produced 

peripherally in the adrenals and gonads. Potent GABAergic neuroactive steroids (3α,5α)-3-

hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-

THDOC) positively modulate GABAA receptor activity (Majewska et al., 1986; Morrow et al., 

1990; Morrow et al., 1987) and can elicit many of the same effects as ethanol.  

Systemic ethanol administration increases plasma and brain levels of neuroactive 

steroids that contribute to several of the behavioral effects of ethanol. In fact, experiments 

with administration of steroid biosynthetic enzyme inhibitors, or adrenalectomized animals, 

have demonstrated that neuroactive steroids are required for specific ethanol actions. 

Indeed, GABAergic neuroactive steroids potentiate and/or mediate ethanol’s inhibitory 

actions on medial septal and hippocampal neurons (Morrow et al., 2005; Tokunaga et al., 

2003; VanDoren et al., 2000b), as well as antidepressant-like actions in the forced swim test 

(Hirani et al., 2002), anxiolytic effects in the elevated plus maze (Hirani et al., 2005), 

anticonvulsant effects on bicuculine-induced seizures (VanDoren et al., 2000b), hypnotic 

effects measured by the duration of the loss of the righting reflex (Khisti et al., 2003b) and 
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spatial learning deficits in the water maze test where spatial cues map the location of a 

submerged platform (Matthews et al., 2002). Furthermore, the GABA agonist-like steroids 

substitute for ethanol in discrimination studies in rodents and monkeys (Grant et al., 1996; 

Hodge et al., 2001; Shannon et al., 2005) and exogenous administration can alter ethanol 

drinking patterns (Ford et al., 2007; Janak et al., 1998; Morrow et al., 2001; O'Dell et al., 

2005). Thus, determining how GABAergic neuroactive steroids are synthesized and 

regulated following ethanol administration is important for understanding various ethanol 

actions.   

  We have recently reported that mechanisms of ethanol-induced increases in 

neuroactive steroids following acute ethanol administration are dependent upon pituitary 

ACTH release, de novo adrenal steroidogenic acute regulatory (StAR) protein synthesis, 

and cytochrome P450 side chain cleavage (P450scc) enzyme activity (Boyd et al., 2009). 

Indeed, ACTH release is important for adrenal stimulation (Rivier et al., 1984) and acute 

ethanol administration activates the HPA axis to synthesize the stress hormone 

corticosterone in rodents (Ellis, 1966; Ogilvie and Rivier, 1997; Rivier, 1996). Furthermore, 

HPA axis stimulation of adrenal steroidogenesis is also important for neuroactive steroid 

synthesis. Indeed, disruptions or alterations in HPA axis signaling markedly affect 

neuroactive steroid levels, and studies involving adrenalectomized animals have 

demonstrated the necessity of adrenals for ethanol-induced increases in plasma and brain 

neuroactive steroids (Khisti et al., 2003b; O'Dell et al., 2004; Porcu et al., 2004).  

  Although activation of the HPA axis is important for steroidogenesis, the rate-limiting 

step is the transfer of cholesterol from the outer mitochondrial membrane to P450scc 

enzyme residing on the inner mitochondrial membrane (Miller, 1988; Stocco, 2000). 

Cholesterol cannot pass freely across the mitochondrial membranes and must be assisted 

by protein transport. Acute ethanol administration has been shown to increase adrenal StAR 

protein concomitantly with plasma steroid levels (Khisti et al., 2003a), and we recently 
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demonstrated that de novo adrenal StAR synthesis is essential for ethanol-induced 

increases in plasma and brain neuroactive steroids (Boyd et al., 2009). In addition, a 

knockout of the StAR gene is lethal in mice (Caron et al., 1997) and mutations in humans 

disrupt steroid production causing congenital lipoid adrenal hyperplasia (Lin et al., 1995; 

Miller, 1997) further demonstrating its importance.    

Chronic ethanol exposure results in a number of adaptive changes in central nervous 

system activity leading to tolerance and hyperexcitability. Although chronic ethanol exposure 

does not affect basal levels of neuroactive steroids, tolerance develops to ethanol-induced 

increases in steroid levels. Indeed, whereas acute ethanol administration increases 

neuroactive steroid levels, chronic ethanol exposure eliminates this effect (Janis et al., 1998) 

and blunts the steroid response to a subsequent ethanol challenge (Khisti, 2005; Morrow et 

al., 2001). In addition, adrenalectomized rodents have reduced levels of neuroactive 

steroids, exhibit tolerance to the sedative-hypnotic effects of ethanol (Khisti et al., 2003b) 

and display an increased ethanol withdrawal severity (Gililland and Finn, 2007). Further, 

during withdrawal from chronic ethanol exposure, withdrawal seizure-prone mice display 

tolerance to the anticonvulsant effects of 3α,5α-THP (Gililland-Kaufman et al., 2008). 

However, GABAA receptor sensitivity to 3α,5α-THP and 3α,5α-THDOC is enhanced in 

ethanol dependent rats (Devaud et al., 1996).  

Since behavioral effects of ethanol are partially dependent on ethanol-induced 

steroidogenesis, the loss of this effect following chronic ethanol exposure may contribute to 

ethanol tolerance. Focusing on the mechanisms of steroidogenesis recently reported by our 

lab to be critical for increases in neuroactive steroids following acute ethanol administration, 

the present study, using an in vivo rat model, investigated alterations resulting from chronic 

ethanol exposure. Tolerance to ethanol-induced increases in neuroactive steroids may alter 

ethanol sensitivity and contribute to alcoholism and alcohol use disorders.      

75 
 



Results 

To determine if chronic ethanol administration elicits changes in steroid biosynthesis 

I first measured levels of the neuroactive steroids pregnenolone and progesterone. Rats 

were chronically exposed to ethanol through a nutritionally complete liquid diet and plasma 

steroid levels were measured. Following chronic ethanol administration, there were no 

changes in plasma ACTH, pregnenolone, or progesterone (Fig. 5.1A,B,C) compared to pair-

fed control rats. Our lab has previously shown that there are also no increases in plasma or 

cerebral cortical 3α,5α-THP in dependent rats (Janis et al., 1998). 

  Next, I investigated the steroid response to an ethanol challenge (2 g/kg) in rats 

chronically exposed to ethanol. In rats administered control diet, ethanol challenge resulted 

in increased plasma ACTH levels compared to rats administered a saline challenge [F(3,31) 

= 6.92, P = 0.0011; Fig. 5.2A]. However, rats exposed to chronic dietary ethanol exhibited 

reduced plasma ACTH levels compared to the control diet group challenged with ethanol, 

and no change in plasma ACTH levels compared to rats fed control diet and challenged with 

saline. Furthermore, ethanol challenge in rats exposed to chronic ethanol resulted in no 

changes in plasma ACTH compared to chronic ethanol exposed rats administered a saline 

challenge. Similar results were also observed for plasma progesterone levels [F(3,15) = 

27.28, P < 0.0001; Fig. 5.2B] as well as cerebral cortical 3α,5α-THP levels [F(3,14) = 14.2, 

P = 0.0002; Fig. 5.2C]. Indeed, ethanol administration to rats administered control diet 

increased steroid levels in plasma and brain that were lost following chronic ethanol 

exposure. Further, chronic ethanol exposure produced a blunted steroid response to ethanol 

challenge in both plasma and brain, but these levels were not significantly increased over 

saline challenge. Importantly, there does not appear to be any effect of the control diet on  
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Figure 5.1: Chronic ethanol exposure does not elicit changes in ACTH, pregnenolone 

or progesterone. Chronic ethanol administration was via liquid diet and (A) plasma ACTH 

as well as plasma (B) pregnenolone and (C) progesterone were measured.  n = 8-10 in 

duplicate.  
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Figure 5.2: Chronic ethanol exposure elicits no change in ACTH and a blunted steroid 

response to ethanol challenge. Groups of rats administered control or ethanol diet for two 

weeks received a challenge injection of saline or ethanol (2 g/kg, i.p.), tissue was collected 

60 minutes post-ethanol administration and plasma (A) ACTH and (B) progesterone, as well 

as (C) cerebral cortical 3α,5α-THP were measured. * p < 0.001 and **p < 0.05  compared to 

control diet + saline (CD+S), and #p < 0.01 compared to control diet + ethanol (CD+E)  

(ANOVA followed by Newman-Keuls test), n = 5-13 in duplicate.  
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ACTH or steroid levels and rats in this group respond to the ethanol challenge to the same 

extent as a naïve animal.  

Since chronic ethanol exposure appeared to produce tolerance to ethanol-induced 

increases in pregnenolone and progesterone, I hypothesized that adaptations in the steroid 

biosynthetic pathway had occurred in the adrenals. Thus, I investigated the effects of 

chronic ethanol exposure on the expression of the cholesterol transport protein StAR. 

Chronic ethanol administration increases adrenal StAR protein 3.26-fold compared to 

control diet [t(22) = 4.95, p < 0.0001; Fig. 5.3A]. This increase in adrenal StAR protein 

expression is similar to that observed following acute ethanol administration (Fig. 5.4). 

However, a 2 g/kg ethanol challenge does not have any further effect on adrenal StAR 

protein compared to a chronic ethanol exposed rat challenged with saline (Fig. 5.3B). 

Furthermore, while acute ethanol administration increases StAR phosphorylation [t(6) = 

3.75, p = 0.0096], chronic ethanol administration does not alter StAR phosphorylation 

compared to rats administered control diet, suggesting tolerance to ethanol enhanced StAR 

phosphorylation (Fig. 5.4). 

Since rats chronically exposed to ethanol appear to be tolerant to increases in ACTH 

and neuroactive steroid levels following an ethanol challenge, I examined if exogenous 

ACTH replacement could restore ethanol-induced steroidogenesis. Separate groups of rats 

were administered liquid diet as described above. However, in this experiment, all groups 

received chronic dietary ethanol and I compared the effect of ACTH (2 μg) replacement 

combined with ethanol challenge to the effect of ethanol challenge alone.  Ethanol challenge 

in combination with exogenous ACTH administration increased plasma ACTH [F(3,29) = 

10.24, P < 0.0001; Fig. 5.5A] and progesterone [F(3,30) = 25.35, P < 0.0001; Fig. 5.5B], as 

well as cerebral cortical 3α,5α-THP levels [F(3,30) = 7.39, P = 0.0008; Fig. 5.5C]. There was 

no effect of ethanol challenge alone, in agreement with the experiments shown in Figure  
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Figure 5.3: Adrenal StAR protein is elevated following chronic ethanol exposure but is 

not further increased by an ethanol challenge. (A) Adrenal StAR protein expression was 

measured via western blot analysis in rats exposed to liquid ethanol diet, normalized to β-

actin and presented as % control diet. (B) Adrenal StAR protein expression was also 

measured in separate groups of rats were exposed to liquid ethanol diet and subsequently 

challenged with saline or ethanol (2 g/kg). Results are normalized to β-actin and presented 

as % chronic ethanol + saline. Representative blots are shown above their respective bar 

graphs. * p < 0.0001 compared to control diet (Student’s t test), n = 8-12 in duplicate.   
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Figure 5.4: Chronic ethanol exposure results in tolerance to increased 

phosphorylation of adrenal StAR protein. Adrenal fractions were immunoprecipitated with 

phospho-PKA substrate antibody, separated by SDS-PAGE and probed with StAR. A 

representative blot is shown above the bar graph. For acute ethanol, results are reported as 

fold increase of phospho-StAR compared to saline. For chronic ethanol exposure, results 

are reported as fold increase of phospho-StAR compared to control diet. The fold increase 

of total StAR for both acute and chronic ethanol was also measured and compared to their 

respective controls. *p < 0.01 compared to total star for acute ethanol (Students t test), n = 

4. 
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5.2. Remarkably, ACTH restored the effect of ethanol on steroid levels to similar 

concentrations as those found in naïve animals administered ethanol (Fig. 5.2).  

Chronic ethanol exposed rats administered saline + ACTH have elevated ACTH 

levels compared to ethanol exposed rats administered saline without ACTH. Moreover, 

chronic ethanol exposed rats challenged with ethanol + ACTH show increased plasma 

ACTH compared to chronic ethanol exposed rats challenged with ethanol alone, as well as 

rats challenged with saline + ACTH. These rats also showed similar results for plasma 

progesterone levels as well as cerebral cortical 3α,5α-THP levels. Indeed, plasma 

progesterone and cerebral cortical 3α,5α-THP were increased in chronic ethanol exposed 

rats challenged with saline + ACTH compared to those challenged with saline alone. 

Furthermore, plasma progesterone and cerebral cortical 3α,5α-THP were increased in 

chronic ethanol exposed rats challenged with ethanol + ACTH compared to those 

challenged with ethanol alone, as well as those challenged with saline + ACTH.  

Since ACTH administration following chronic ethanol exposure in rats restored the 

ethanol-induced increases in plasma and brain steroid levels, I also examined whether it 

reinstated the phosphorylation of StAR. Adrenals are from the same rats used for steroid 

measurements in figure 5.5 and results are presented as fold increase of phosphorylated or 

total StAR for each group compared to chronic ethanol exposed rats administered a saline 

challenge. Although not significantly different from each other, chronic ethanol exposed rats 

receiving either ethanol challenge, saline + ACTH challenge, or ethanol + ACTH challenge, 

all exhibited increases in phosphorylated StAR protein (Fig. 5.6). By comparison, total StAR 

was not elevated in any groups suggesting that the observed increases in phosphorylated 

StAR cannot be attributed to an increase in total StAR. 
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Figure 5.5: Exogenous ACTH replacement restores plasma and brain neuroactive 

steroid levels following chronic ethanol exposure. Rats exposed to chronic dietary 

ethanol were challenged with saline or ethanol (CE+S and CE+E respectively). ACTH (2 μg, 

i.p.) was also administered along with the saline or ethanol challenge (CE+S+A and 

CE+E+A respectively). Tissues were collected 60 minutes after challenge and plasma (A) 

ACTH and (B) progesterone, as well as (C) cerebral cortical 3α,5α-THP were measured. *p 

< 0.001 compared to CE+S, #p < 0.05 compared to CE+S+A and CE+E, and @p < 0.05 

compared to CE+S (ANOVA followed by Newman-Keuls test), n = 8-9 in duplicate.  
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Figure 5.6: Phosphorylation of adrenal StAR protein is increased by ethanol and 

ACTH following chronic dietary ethanol exposure. Adrenal fractions were 

immunoprecipitated with phospho-PKA substrate antibody, separated by SDS-PAGE and 

probed with StAR antibody. A representative blot is shown above the bar graph. Results are 

reported as the fold increase of phospho-StAR for each group compared to the chronic 

ethanol + saline (CE+S) group. Total StAR was also measured and reported as fold 

increase for each group compared to fold increase of total StAR for CE+S group. Chronic 

ethanol + ethanol (CE+E), chronic ethanol + saline + ACTH (CE+S+A) and chronic ethanol 

+ ethanol + ACTH (CE+E+A), n = 6. 
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Discussion  

Changes in GABAA receptor activity contribute to tolerance and dependence 

following prolonged exposure to ethanol (for review Grobin et al., 1998). The ethanol-

induced increases in neuroactive steroids, which positively modulate GABAA receptor 

activity, following acute ethanol administration are lost after chronic ethanol exposure. The 

lack of neuroactive steroid production may influence GABAA receptor function and contribute 

to tolerance of ethanol’s effects. The present study examined mechanisms important for 

ethanol-induced steroidogenesis that may be altered by chronic ethanol exposure to explain 

the attenuated steroid response. The results indicate that chronic ethanol exposure 

produces tolerance to ethanol-induced increases in ACTH that dramatically alter plasma and 

brain neuroactive steroid levels. Further, these alterations affect the ability of chronic ethanol 

exposed rats to respond normally to a subsequent ethanol challenge. The availability of 

StAR protein to transport cholesterol is not diminished following chronic ethanol exposure, 

but phosphorylation of StAR is no longer increased. In addition, exogenous ACTH 

replacement restores the neuroactive steroid response in plasma and brain as well as 

increasing StAR phosphorylation. Together, these results suggest that the inability of 

chronic ethanol exposed rats to synthesize sufficient amounts of neuroactive steroids is a 

result of a blunted ACTH response leading to diminished neuroactive steroid synthesis in 

adrenals and brain. 

HPA axis activity is important for steroidogenesis and CNS functions as 

dysregulation of the HPA axis is associated with altered steroid responses as well as 

depression and various other mood disorders (McQuade and Young, 2000). When the HPA 

axis is functioning properly, steroids, including GABAergic neuroactive steroids, are 

increased by HPA axis activation but also provide negative feedback to inhibit CRF 

production and release, ACTH release, and corticosterone levels in rodents (Owens et al., 

1992; Patchev et al., 1996; Patchev et al., 1994). In the present study, the blunted steroid 
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response observed after chronic ethanol exposure appears to be related to dysregulation of 

the HPA axis as I also observed blunted ACTH levels following chronic ethanol exposure. 

Indeed, ACTH stimulation of adrenal function is essential for steroidogenesis as well as 

adrenal integrity. In fact, the tolerance to increased ACTH levels I observed following 

chronic ethanol exposure was concomitant with tolerance to increased neuroactive steroid 

levels. These results are congruent with previous data where hypophysectomized rats 

displayed atrophied adrenals characterized by reduced weight and less steroidogenic output 

(Boyd et al., 2009; Colby et al., 1974) demonstrating the importance of ACTH signaling. 

Furthermore, the fact that tolerance to ethanol-induced increases in neuroactive steroids 

occurred in both plasma and brain further exemplifies the significance of HPA axis signaling 

and the adrenal for regulating circulating and central levels of neuroactive steroids. 

The levels of pregnenolone, progesterone, and 3α,5α-THP are all blunted after 

chronic ethanol exposure suggesting that alterations occur early in the steroidogenic 

pathway. StAR protein, which mediates cholesterol transport required for steroidogenesis, 

was increased by acute ethanol administration and correlated with increased steroid levels 

(Khisti et al., 2003a). Since steroid levels are blunted following chronic ethanol exposure I 

hypothesized that I would observe changes in StAR protein expression as well. Conversely, 

adrenal StAR protein remained elevated following chronic ethanol exposure. However, 

tolerance to ethanol-induced phosphorylation of StAR was observed after chronic ethanol 

exposure and loss of StAR phosphorylation may contribute to reduced StAR activity 

(Arakane et al., 1997) irrespective of increased expression (Jo et al., 2005). Decreased 

StAR activity could reduce cholesterol transport to the P450scc for steroidogenesis and 

ultimately account for the reduction of neuroactive steroid levels.  

Alterations in ACTH following chronic ethanol exposure may explain the blunted 

neuroactive steroid responses directly, due to adrenal stimulation, and indirectly, through 

phosphorylation of StAR. In the present study, exogenous ACTH administration to 
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dependent rats restored the ethanol-induced steroid response suggesting that ACTH is 

critical. ACTH is rapidly broken down, yet it is still present 60 minutes post ethanol 

administration in a naïve animal (Fig. 4.3) suggesting that it is continuously formed. 

Furthermore, while StAR was still increased following chronic ethanol exposure, steroid 

levels remained blunted without exogenous ACTH administration. This result suggests that 

ACTH might be involved in freeing up cholesterol for steroidogenesis or in activating the 

adrenal and cholesterol transport by StAR. However, chronic ethanol exposed rats 

challenged with ethanol still show increases in phosphorylated StAR despite the blunted 

ACTH release. This suggests that ACTH is not the only factor controlling phosphorylation of 

StAR and that ethanol may stimulate StAR phosphorylation via another mechanism. 

Nevertheless, when exogenous ACTH is administered with an ethanol challenge, the 

combination of increased StAR phosphorylation and restoration of ACTH levels elicits a full 

steroidogenic response. Thus, following chronic ethanol exposure, increases in adrenal 

StAR protein expression are not sufficient for steroidogenesis and require ACTH release 

and StAR phosphorylation.   

Although the present study did not explore effects of chronic ethanol exposure on 

HPA axis function upstream of ACTH, these effects likely regulate ethanol-induced ACTH 

release. Indeed, knocking out the type 1 CRF receptor in mice blunts the ACTH response to 

ethanol, and repeated alcohol exposures blunts CRF and type 1 CRF receptor activity as 

well as ACTH (Lee et al., 2001a; Lee et al., 2001b). However, regardless of where proper 

functioning is altered, blunted ACTH release is an important consequence of chronic ethanol 

exposure. Following repeated ethanol exposures to rats, the ACTH response to an acute 

ethanol challenge has been shown to remain blunted for at least 21 days, which would 

correspond to over 1 year in humans (Rivier and Lee, 2001). Interestingly, in a subsequent 

study, the blunting of the ACTH response to acute ethanol challenge was not permanent 

(Lee and Rivier, 2003). However, if a short duration of repeated ethanol exposures can alter 
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ACTH function for an extended period of time then ethanol dependence might cause even 

more pronounced, or even permanent, effects. Furthermore, after repeated exposures to a 

stimulus such as ethanol, the HPA axis does not respond to the same stimulus, but remains 

capable of mounting a full response to different stimuli (Rivier and Lee, 2001). This result 

suggests that the HPA axis is extremely complex as ethanol is specific in blunting the axis 

responses to future ethanol exposures, while at the same time maintaining full HPA axis 

activation to new stressors. Perhaps ethanol is targeting extrahypothalamic mechanisms to 

initiate HPA axis activity.         

Different laboratories employ various paradigms for chronic ethanol administration 

with differences in lengths and routes of exposure. Our method of two weeks of ethanol in a 

liquid diet reliably results in physical dependence on ethanol (Morrow et al., 1992). In 

addition, extending the ethanol diet to six weeks produced the same effect in terms of 

blunted ACTH and steroid levels (unpublished result). In the present study, ACTH and 

neuroactive steroid levels were blunted whether I challenged the animal on the 15th day of 

liquid diet or if I withdrew the ethanol diet and waited 24 hours before administering the 

ethanol challenge. Similar alterations in neuroactive steroid levels have been seen in other 

chronic models where the loss of neuroactive steroid production was linked to behavioral 

effects such as increased anxiety and seizure susceptibility (Cagetti et al., 2004; Devaud et 

al., 1995).  

  Since neuroactive steroids are required for many of the effects of ethanol, tolerance 

to ethanol-induced increases in neuroactive steroids may lead to increased consumption of 

alcohol. Indeed, chronic ethanol exposed rats that no longer have elevated 3α,5α-THP 

levels readily self-administer ethanol, but this can be reduced by 3α,5α-THP administration 

(Morrow et al., 2001). Conversely, 3α,5α-THP appears to be rewarding in non-dependent 

rats (Janak et al., 1998) suggesting that tolerance to increased steroid levels drives the rat 
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to drink more in order to try and achieve the same pharmacological effects. Genetics plays a 

factor in alcohol dependence as well as neuroactive steroid sensitivity (Finn et al., 1997b) 

and may explain the variability in steroid levels of chronic ethanol exposed rats challenged 

with ethanol.  

Since neuroactive steroids are also postulated to contribute to ethanol sensitivity 

(Morrow et al., 2006) and HPA axis activation contributes to steroidogenesis, it is 

conceivable that proper HPA axis functioning plays a role in ethanol sensitivity. In fact, 

clinical studies have shown a link between alcoholism and alterations in HPA axis 

functioning (Adinoff et al., 2005; Lovallo et al., 2000). In rats, it has been suggested that 

increased drinking results from the loss of elevated ACTH and steroid responses once 

drinking begins rather than being attributed to low basal hormone levels (Richardson et al., 

2008). In other words, alterations in HPA axis functioning and steroid levels appear to be an 

effect of chronic ethanol exposure rather than a predictor of increased alcohol consumption. 

In fact, the opioid antagonist naltrexone, which reduces relapse risk in human alcoholics, 

activates the HPA axis and increases ACTH and steroid levels (O'Malley et al., 2002). 

Naltrexone has also been shown to reverse the suppression of testosterone seen after 

chronic ethanol exposure (Emanuele et al., 1999). In addition, plasma levels of the HPA 

antagonist leptin are elevated in human alcoholics, correlating with ethanol consumption 

(Nicolas et al., 2001), and leptin injections in mice increase alcohol intake (Kiefer et al., 

2001). Furthermore, leptin decreases the expression of StAR in adrenocortical cells and 

inhibits steroid synthesis (Cherradi et al., 2001). Together, these results suggest a link 

between HPA axis activity, StAR protein, neuroactive steroids and ethanol consumption.  

Thus, proper HPA axis functioning, including pituitary ACTH release, and adrenal 

StAR protein activity, are critical for ethanol-induced increases in neuroactive steroids. 

Chronic ethanol exposure alters the HPA axis and blunts steroid responses to subsequent 

ethanol challenges. These phenomena contribute to ethanol tolerance and dependence and 
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restoring ACTH levels in dependent individuals may be therapeutic for alcoholism and 

associated withdrawal symptoms. 



Chapter VI 

Conclusions and Future Directions 

The work carried out for this dissertation built upon previous findings in the field of 

neuropharmacology and evolved into an exploration into the mechanisms of neuroactive 

steroid synthesis following acute and chronic ethanol administration. Prior findings had 

demonstrated that neuroactive steroids are positive modulators of GABAA receptor activity 

that increase following acute ethanol administration and contribute to specific behavioral 

effects of ethanol. Furthermore, tolerance to some of the behavioral effects of ethanol, as 

well as tolerance to increased neuroactive steroid levels, develops following prolonged 

ethanol exposure suggesting that alterations in neuroactive steroid levels may play a role in 

ethanol tolerance. Thus, the present body of work attempts to identify the mechanisms by 

which acute ethanol administration increases neuroactive steroids, and to then use that 

knowledge to determine which of these processes are altered by chronic ethanol exposure.  

 I investigated ethanol-induced mechanisms of steroidogenesis using male Sprague-

Dawley rats as our model. While animal models have their limitations for mechanistic 

studies, they can also provide valuable data, and were particularly useful in the present 

studies in order to examine the relative contributions to steroidogenesis from both adrenal 

and brain. Furthermore, the in vivo model maintains signaling from the CNS to the periphery 

so that important pathways involved in steroidogenesis, such as HPA axis signaling, remain 

intact. Hence, while the results of the present in vivo studies are important in their own right, 

they may also be further utilized as a guide for subsequent in vitro experiments delving 

further into critical mechanisms of steroidogenesis. The overall 

 
 



conclusions of this project are that ethanol, possibly with some contributions from its primary 

metabolite acetaldehyde, increases neuroactive steroid levels by activating the HPA axis to 

initiate ACTH release. The effect of ethanol on ACTH is necessary, but not sufficient for 

ethanol-induced steroidogenesis. At the same time, ethanol increases the cholesterol 

transport protein StAR, as well as its phosphorylation, to facilitate increased cholesterol 

substrate for P450scc conversion to pregnenolone. Furthermore, while both the adrenals 

and brain are capable of synthesizing neuroactive steroids, the ethanol-induced increases in 

central and circulating neuroactive steroid levels are primarily driven by adrenal 

steroidogenesis. Consequently, the blunted steroid response observed after chronic ethanol 

exposure appears to be the result of alterations in HPA axis signaling leading to a blunted 

ACTH response and diminished StAR phosphorylation. Correcting for the loss of ethanol-

induced increases in ACTH by administration of exogenous ACTH restores neuroactive 

steroid levels to those seen in a naïve animal and increases StAR phosphorylation. 

Understanding the mechanism of tolerance to ethanol-induced steroidogenesis may lead to 

strategies to reverse the effects of chronic ethanol exposure to alleviate alcohol withdrawal 

symptoms as well as increase ethanol sensitivity.        

 Acetaldehyde administration is capable of eliciting some of the same effects as 

ethanol but its ability to increase neuroactive steroid levels had never been investigated. I 

found that acetaldehyde can stimulate increases in neuroactive steroid levels at high 

concentrations but has no effect at concentrations commonly observed after ethanol 

administration. Furthermore, I also found that high concentrations of acetaldehyde that 

increase neuroactive steroid levels also increased adrenal StAR protein further supporting 

the importance of this protein for steroidogenesis. Although I cannot rule out the possibility 

that acetaldehyde contributes to ethanol-induced steroidogenesis, the main conclusion 

drawn from these experiments is that ethanol is responsible for the observed increases in 
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steroid levels. Nevertheless, these experiments suggest that acetaldehyde may increase 

ethanol-induced steroidogenesis that would be expected to increase ethanol sensitivity.  

Neuroactive steroids have been associated with increased sensitivity to ethanol 

(Morrow et al., 2006) and changes in blood acetaldehyde levels are linked to ethanol 

consumption in rodents and humans. For example, studies in Native American populations, 

where there is a high prevalence of alcohol dependence, have found that certain 

polymorphisms are protective (Ehlers et al., 2004; Wall et al., 2003a). Interestingly, these 

polymorphisms lead to faster metabolism of ethanol and therefore a more rapid production 

of acetaldehyde. Furthermore, mutations affecting ALDH2 activity, such as those seen in 

Oriental populations, lead to increased acetaldehyde concentrations and are protective 

against the development of alcoholism (Thomasson et al., 1991). Hence, it is conceivable 

that the increased acetaldehyde levels observed in these situations are increasing 

neuroactive steroid levels thereby contributing to ethanol sensitivity and diminishing the risk 

for alcoholism. On the other hand, one may argue that the reduced drinking and protection 

from alcoholism in people with these polymorphisms are the result of the toxic profile of 

acetaldehyde and its negative associations to drinking. However, disulfiram is a drug used 

for the treatment of alcoholism and works by inhibiting acetaldehyde metabolism. 

Interestingly, the ALDH2 isozyme is resistant to disulfiram (Yoshida et al., 1984) suggesting 

that the protection inferred upon individuals with mutations in ALDH2 activity may not be due 

to the same factors as disulfiram; namely negative feelings from acetaldehyde 

accumulation. Therefore, future studies could investigate the relationship of not only 

neuroactive steroids, but also acetaldehyde, in regards to ethanol sensitivity. 

 Ethanol sensitivity is critical for predicting risk for alcoholism. This concept is intuitive 

as individuals who are sensitive to the effects of ethanol will tend to drink less than those 

who are insensitive, and lower consumption levels are less likely to lead to the development 

of alcoholism. Since neuroactive steroids play a role in ethanol sensitivity and chronic 
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ethanol exposure elicits tolerance to increased steroid levels, a big focus of this work was 

allocated to investigating the mechanisms regulating ethanol-induced steroidogenesis. 

Through either surgical removal of the pituitary gland or the administration of various 

inhibitors, I found that neuroactive steroid synthesis following acute ethanol administration is 

dependent upon ACTH release from the pituitary as well as de novo synthesis of adrenal 

StAR protein and P450scc activity. In addition, phosphorylation of adrenal StAR protein is 

increased following acute ethanol administration. 

 The mechanisms identified as being critical for ethanol-induced steroidogenesis 

following acute ethanol administration are exciting in their own right, but also serve as a 

guide for interpreting results obtained following chronic ethanol exposure. In other words, an 

adequate understanding of the acute effects of ethanol on steroidogenesis allows for us to 

observe what is altered by chronic ethanol for the ultimate purpose of identifying a 

therapeutic target. I found that chronic ethanol exposure leads to the development of 

tolerance to increases in ACTH as well as both plasma and brain steroid levels. Moreover, 

rats that underwent chronic ethanol exposure demonstrate a blunted ACTH and steroid 

response to a 2 g/kg ethanol challenge whether it is administered on the final day of ethanol 

diet or following 24 hour withdrawal. Interestingly, StAR protein remains elevated following 

chronic ethanol exposure suggesting that cholesterol transport could still occur. However, 

the increase in StAR phosphorylation observed after acute ethanol administration is lost 

following chronic ethanol exposure. Conceivably, the most striking result is that 

administration of ACTH to rats that underwent chronic ethanol exposure increases StAR 

phosphorylation and restores the neuroactive steroid response in both plasma and brain. 

Thus, this project has identified a critical mechanism for ethanol-induced steroidogenesis 

that is altered by chronic ethanol exposure, yet, when corrected, restores the steroid 

response to a similar level as that seen in a naïve animal.  
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 While the results of these experiments are exciting, there is always more work to be 

done. By focusing our chronic ethanol experiments on steps in the steroidogenic pathway 

that were affected by acute ethanol administration, and choosing to ignore those that were 

not altered by acute ethanol administration, I may have missed certain effects of chronic 

ethanol exposure. For example, the cholesterol transport protein PBR did not appear to be 

altered in connection with ethanol-induced steroidogenesis and I detected no changes in its 

adrenal protein expression. However, PBR ligand binding is increased in response to 

neurotoxicity (Gavish et al., 1999) and thus future studies should examine PBR expression 

and function following chronic ethanol exposure.   

 Another example involves P450scc activity. I demonstrated that P450scc activity is 

important for ethanol-induced steroidogenesis but found no changes in protein expression 

following acute ethanol exposure. Considering that P450scc is the only known enzyme that 

converts cholesterol to pregnenolone (Miller, 2007b), it was somewhat surprising to find that 

very few studies exist on the effects of ethanol on P450scc. Interestingly, many studies in 

rodents and cells measure one particular steroid (i.e. corticosterone) and draw conclusions 

about P450scc activity based on whether they observed increases or decreases in steroid 

levels. Hence, if steroid levels are decreased then it is concluded that P450scc activity was 

decreased. However, these results can be somewhat misleading as the experiments are not 

designed to measure enzyme activity, and there is no control or knowledge of available 

substrate levels (i.e. cholesterol). Therefore, following chronic ethanol exposure when 

steroid levels are comparable to basal levels, it would be interesting to know if ethanol 

directly alters P450scc enzyme activity or whether it is indirectly affected because ethanol 

alters cholesterol availability or delivery to the enzyme. In other words, since P450scc 

expression remains unchanged, is the blunted steroid response due to ethanol-induced 

alterations in P450scc activity or would the enzyme function properly if cholesterol substrate 

was supplied.  
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At first glance, one might presume that chronic ethanol decreases P450scc activity 

compared to acute ethanol because pregnenolone levels are decreased. Furthermore, StAR 

levels remain elevated following chronic ethanol exposure suggesting that cholesterol can 

still be transported to P450scc on the inner mitochondrial membrane. However, based on 

the present study, as well as data in the literature, it is likely that chronic ethanol exposure 

causes alterations in HPA axis functioning that lead to reduced steroid levels. Moreover, 

tolerance to HPA axis activation would diminish ACTH release and ACTH is postulated to 

contribute to cholesterol availability (Jefcoate, 2002). Furthermore, following repeated 

ethanol exposures, HPA axis activation is tolerant to an ethanol challenge but can mount a 

full response to a footshock (Rivier and Lee, 2001). Thus, P450scc activity seems to remain 

intact and the lack of an ethanol-induced steroid response appears to be due to HPA axis 

tolerance. Although the focus of this project was on in vivo mechanisms of adrenal 

steroidogenesis, future studies could take the important steps identified, such as P450scc 

activity, and use an in vitro system to do more in depth mechanistic studies. Indeed, some 

studies are underway in the lab to examine the effects of increasing P450scc enzyme 

expression, and presumably its activity, on neuroactive steroid levels.      

Phosphorylation of StAR had previously been shown to be important for full 

steroidogenic activity in COS-1 cells (Arakane et al., 1997) and was linked to 

steroidogenesis in our studies as well. If we examine the role of ACTH for a moment, it is 

possible that phosphorylation of StAR is directly related to increased ACTH secretion as 

ACTH stimulates cAMP production necessary for activation of PKA (Jefcoate, 2002). 

Without a commercially available antibody for phospho-StAR protein I used a phospho-PKA 

substrate antibody for immunoprecipitation experiments and then probed for StAR. While 

there is no doubt that acute ethanol administration increases StAR phosphorylation, and that 

this effect is lost following chronic ethanol exposure, I cannot say with absolute certainty that 

this is due to PKA. However, this appears to be likely as a point mutation of a PKA 
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consensus site in COS-1 cells inhibits steroidogenic output (Arakane et al., 1997). 

Nevertheless, I also attempted, to no avail, to demonstrate the importance of PKA 

phosphorylation for steroidogenesis by inhibiting PKA with H-89. However, while being 

marketed as a potent and selective inhibitor of PKA, H-89 affects at least eight other kinases 

(Lochner and Moolman, 2006) and kinase inhibition is extremely difficult to assess in an in 

vivo system. Interestingly, rolipram administration, which is a phosphodiesterase inhibitor 

that can prevent cAMP metabolism, was able to elicit increases in neuroactive steroids, 

albeit to a much lesser extent than ethanol. These results suggest that PKA activity plays a 

role in steroid biosynthesis, and this relationship should be further explored in an in vitro 

system where kinase activity can be easily manipulated. Furthermore, PKA RII β subunit 

knockout mice consume more ethanol than wild-type controls and are less sensitive to the 

sedative effects of ethanol (Ferraro et al., 2006; Thiele et al., 2000). Moreover, the specific 

PKA inhibitor KT 5720 attenuated the anticonvulsant effects of ethanol (Lai et al., 2007). 

Thus, it would be interesting to determine if these effects are due to decreased steroid levels 

as a result of decreased phosphorylation of StAR.  

Although there is at least enough evidence to cause speculation that ACTH directly 

leads to phosphorylation of StAR and contributes to steroidogenesis, data from this project 

suggests that ethanol-induced increases in adrenal StAR protein are distinct from increases 

in ACTH. However, both ACTH and adrenal StAR protein are required for full steroidogenic 

activity. Thus, a complex relationship exists where ethanol independently regulates two 

molecules that must both be present in order to achieve ethanol’s full steroidogenic 

potential. The dexamethasone experiment demonstrated that inhibiting ACTH reduced 

steroid levels but did not diminish StAR expression. Furthermore, cycloheximide 

experiments demonstrated that StAR was critical for steroidogenesis, although ACTH was 

still elevated in those experiments. Taken together, these data suggest that ethanol acts on 

the HPA axis to stimulate ACTH release while also acting directly on the adrenal to increase 
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adrenal StAR expression; and both processes are necessary for ethanol induction of the 

steroidogenic response. This project identified StAR as a critical component of ethanol-

induced steroidogenesis and future studies could explore exactly how ethanol increases 

StAR. Ethanol may act by increasing transcription through steroidogenic factor 1 (SF-1) but 

it may also affect StAR breakdown as well. Furthermore, StAR activity appears to be 

dependent upon its conformation (Miller, 2007a; Roostaee et al., 2009) and ethanol may be 

able to affect conformational changes to increase cholesterol transfer.   

Perhaps one of the more intriguing findings of these studies is that the adrenals 

appear to control neuroactive steroid levels in periphery and brain. Given the fact that the 

brain is a steroidogenic organ, I initially hypothesized to find differential effects on adrenal 

and brain steroidogenesis. However, no matter how I manipulated adrenal steroidogenic 

proteins I always saw similar alterations in cerebral cortical 3α,5α-THP levels. In support of 

these findings, previous studies in adrenalectomized animals observed no increases in 

central neuroactive steroid levels following a variety of drugs that increase steroid levels in 

intact animals (Concas et al., 2006; Khisti et al., 2003b; Marx et al., 2003; O'Dell et al., 2004; 

Porcu et al., 2004). Yet, systemic administration of 5α-DHP, the immediate precursor of 

3α,5α-THP, can be converted to the neuroactive metabolite in brain of adrenalectomized 

animals (Khisti et al., 2003b). Furthermore, de novo steroid synthesis has been observed in 

brain slices at very high ethanol concentrations (Sanna et al., 2004) and in oligodendrocyte 

cell cultures given cholesterol substrate (Hu et al., 1987). 

Interestingly, studies in human cell lines suggest that oligodendrocytes are the only 

CNS cell type capable of de novo steroidogenesis (Brown et al., 2000). They also found 

that, although not capable of converting cholesterol to pregnenolone, neurons could 

synthesize neuroactive metabolites provided precursors were supplied. Thus, it’s likely that 

the brains steroidogenic capability allows it to respond and control specific processes under 
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normal conditions, but the adrenals are required to respond to challenges such as ethanol. 

In addition, one of the limitations of RIA for neuroactive steroid measurements in brain is 

that we measure steroid levels using large amounts of tissue. Therefore we may not be able 

to detect smaller or more discrete, localized changes in neuroactive steroid levels. 

Moreover, since adrenals are important for steroidogenesis, neuroactive steroids may also 

act at sites other than brain when delivered via systemic circulation. Nevertheless, this 

project identified key mechanisms of adrenal steroidogenesis that mediate ethanol-induced 

increases in neuroactive steroids in plasma and brain.  

When interpreting the results of this project and comparing to studies in the literature, 

I would suggest that the two most interesting questions that immediately arise for future 

experiments are: 1) where does the cholesterol come from for steroidogenesis and 2) how is 

the HPA axis tolerant to one stimulus but able to fully respond to another. Cholesterol is 

abundant in cells but cholesterol available for steroid synthesis is postulated to be distinct 

from that used for structural integrity. In addition, StAR is only active on the outer 

mitochondrial membrane (Bose, 2002) and it is uncertain as to how cholesterol is 

transported to StAR. START proteins are proteins with a similar sequence as StAR and may 

be involved in transporting cholesterol to StAR (Alpy and Tomasetto, 2005). Uncovering this 

mechanism would be very interesting and may help clarify what is happening after chronic 

ethanol exposure. Maybe StAR is still increased because ethanol directly affects StAR 

expression but there is no cholesterol available to transport. Alternatively, the results of the 

present studies suggest that the loss of StAR phosphorylation after chronic ethanol 

exposure alters its function. Moreover, the ACTH replacement experiment suggests that 

ACTH regulates StAR phosphorylation and it may also affect cholesterol availability. 

Interestingly, cholesterol availability could also be linked to ethanol metabolism. Indeed, 

ethanol is metabolized to acetaldehyde and then acetate and acetate is a precursor for 

cholesterol.  
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As mentioned, another interesting topic for future studies is the idea that the HPA 

axis can become tolerant to a specific stimulus while still being able to respond to a new 

stressor (Dallman, 2007). Our studies demonstrated that there is tolerance to the ACTH 

response after chronic ethanol exposure. Interestingly, another study demonstrated that 

repeated ethanol exposure blunts the ACTH response to ethanol challenge but not 

footshock (Rivier and Lee, 2001). This suggests that there are important signaling pathways, 

possibly upstream of the HPA axis, where ethanol acts to blunt HPA axis activation. Indeed, 

in experiments with repeated restraint stress, tolerance develops in hypothalamic 

paraventricular nuclei (PVN) (Girotti et al., 2006). However, lesions of the paraventricular 

thalamus block this habituation (Bhatnagar et al., 2002). Furthermore, the limbic system can 

play a role in the stress response without directly innervating the PVN (Herman et al., 2004) 

demonstrating that upstream signaling pathways are involved in HPA axis activation. The 

present studies did not investigate mechanisms upstream of the pituitary and it would be of 

great interest to determine exactly how ethanol activates the HPA axis to initiate ACTH 

release and steroidogenesis.     

The results uncovered in our rat model may also be applicable in humans. To date, 

the role of neuroactive steroids in alcohol actions in humans has elicited mixed results. 

Indeed, adolescent males and females seen in the emergency room for alcohol intoxication 

had elevated 3α,5α-THP levels (Torres and Ortega, 2003; Torres and Ortega, 2004). 

However, administration of alcohol to humans in a laboratory setting did not increase 3α,5α-

THP and even decreased levels in some cases (Holdstock et al., 2006; Nyberg et al., 2005; 

Pierucci-Lagha et al., 2006). These differences may be explained by genetic factors or the 

amount of ethanol consumed. Indeed, GABAA receptor subunit polymorphisms have been 

identified and shown to have associations with ethanol dependence (for review Kumar et al., 

2009). For example, a GABAA receptor α2 subunit polymorphism associated with alcoholism 
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reduces sensitivity to alcohol and finasteride (Pierucci-Lagha et al., 2005). The blood alcohol 

concentrations of indivudals in these studies may also explain the observed effects on 

neuroactive steroid levels. Although not measured until hours later, admittance to the 

emergency room for alcohol intoxication would likely require very high blood alcohol levels. 

In contrast, humans administered alcohol in the laboratory setting had peak blood alcohol 

levels of about 0.08 mg% but levels below 0.1 mg% do not activate the HPA axis or 

steroidogenesis (Jenkins and Connolly, 1968; Waltman et al., 1993). Nevertheless, the 

steroid biosynthetic inhibitor finasteride can block various subjective effects of ethanol 

including sedative and anesthetic effects (Pierucci-Lagha et al., 2005). Thus, while not 

conclusive, these results suggest a role for neuroactive steroids in human ethanol 

sensitivity. Moreover, humans synthesize different neuroactive steroids than the rat and 

many of these steroids have never been measured in humans.  

Taken as a whole, this project identified key mechanisms of ethanol-induced adrenal 

steroidogenesis and demonstrated that ACTH administration can restore the steroid 

response after chronic ethanol exposure. While this research is only a small microcosm of 

the alcoholism field, it is nonetheless important as neuroactive steroids may be beneficial for 

treatment of alcoholism and alcohol withdrawal. In fact, following chronic ethanol exposure, 

there is cross-tolerance between ethanol and benzodiazepines but increased sensitivity to 

neuroactive steroids (Devaud et al., 1996). There is a continuing need to develop effective 

treatments for alcoholism, but it is an extremely difficult challenge. Ethanol is a progressive 

disease making it difficult to correct damage and abnormalities that have been accumulating 

over time. Perhaps the lack of a good target has delayed the development of treatments. 

For example, a treatment that makes an individual more sensitive to the effects of ethanol 

may cause them to drink less, but would be tough to effectively market since it could also 

make the individual feel more intoxicated. On the other hand, a drug that blocks the effects 

of ethanol may cause an individual to drink more and that would have negative 
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consequences. One advantage of neuroactive steroids is that they are endogenous 

molecules likely to have very low toxicity. Thus, utilizing steroids for their anxiolytic and 

anticonvulsant properties as an effective treatment for alcohol withdrawal disorders is likely 

to be well tolerated. Moreover, neuroactive steroids would be predicted to reduce ethanol 

consumption, prevent or reverse inflammation and neurotoxicity, and restore normal stress 

responsiveness. The combination of these properties may have therapeutic utility for 

alcoholism. 

 Although the findings of these studies are focused on neuroactive steroids in relation 

to alcohol and the potential development of alcoholism or alcohol use disorders, they have 

much broader applications. Indeed, neuroactive steroids are also involved in anxiety, mood 

disorders, Parkinson’s disease, and many other neuropsychiatric disorders. Since I studied 

the mechanisms of steroidogenesis, similar alterations to those discovered following ethanol 

may also exist for a variety of other disorders where steroid levels are altered. Therefore, not 

only can these results be used to understand and develop potential treatments for 

alcoholism, but StAR, ACTH, and other processes shown to be critical to steroidogenesis in 

this project could now be examined in some of these other neuropsychiatric disorders.  
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