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ABSTRACT 
 
 
 

Nicole A. Crowley: Kappa opioid receptor modulation of neurotransmission in the 
amygdala 

(Under the direction of Thomas L. Kash) 
 
 
 

Kappa opioid receptors (KORs) and their endogenous ligand, dynorphin, have 

been implicated in a variety of neuropsychiatric disorders including anxiety and 

alcohol addiction. Here, we demonstrate the function and role of KORs in the bed 

nucleus of the stria terminalis (BNST), a key brain region involved in these diseases. 

In the first series of experiments, we show that KORs in the BNST inhibit 

glutamate release via a presynaptic, p38- and calcium- dependent mechanism. This 

synaptic inhibition is specific to basolateral amygdala (BLA) inputs, a previously 

identified key pathway in rodent models of anxiety-related behaviors. Additionally, 

we identified a frequency-dependent, light-evoked, local dynorphin-induced 

heterosynaptic plasticity of glutamate inputs to the BNST, allowing for optogenetic 

control of peptidergic transmission. We found differential KOR modulation of the 

BLA-BNST input based on the postsynaptic neurochemical identity. Collectively, 

these results demonstrate a local dynorphin- and KOR- dependent mechanism of 

inhibiting an anxiolytic pathway, providing a discrete therapeutic target for treatment 

of anxiety disorders. 

In the second series of experiments, we show that following chronic intermittent 
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ethanol exposure (CIE), a model of alcohol exposure, KORs differentially modulate 

glutamate and GABA in the BNST. KOR inhibition of electrically-evoked glutamate 

inputs is decreased, while KOR inhibition of electrically-evoked GABA inputs is 

increased, despite overall properties of glutamatergic and GABAergic transmission 

remaining intact. This change in synaptic physiology is complementary to a KOR- 

dependent behavioral change: mice exposed to ethanol show decreased social 

preference as compared to air exposed, an effect which is partially rescued by 

systemic pre-administration of the KOR antagonist JDTic. Taken together, these 

experiments demonstrate KOR-dependent alterations of synaptic transmission in the 

BNST following CIE, making the BNST a potential site of action for KOR targeted 

therapies related to alcohol and anxiety. 

Jointly, these experiments expand our understanding of how key peptidergic 

transmission in the extended amygdala can play a role in anxiety and addiction 

related diseases. 
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CHAPTER 1: INTRODUCTION1
 

 
 
 

 
INTRODUCTION: KORs IN THE CENTRAL NERVOUS SYSTEM 

 
 

 
Kappa opioid receptors (KORs) and their endogenous ligand, the peptide 

dynorphin (Chavkin & Goldstein, 1981a, Chavkin & Goldstein, 1981b, Chavkin et al., 

1982) are at the forefront of potential therapeutic targets for a range of health issues, 

including anxiety, depression, and drug addiction (Bruchas et al., 2010). Here, we 

outline current neurobiological research of KORs, focusing on the discrete circuit 

elements that are regulated by KOR signaling and their role in behavior. 

 
 

 
PHARMACOLOGY 

 
 

 
Kappa opioid receptors are seven transmembrane g-protein coupled receptors 

(GPCRs) coupled to Gαi/o, and they are known to utilize a variety of signaling 

cascades (reviewed in detail in Bruchas & Chavkin, 2010). KORs signal through 

 

1 This chapter has been previously published (Crowley NA, Kash TL (2015). Kappa opioid receptor 

signaling in the brain: Circuitry and implications for treatment. Progress in Neuro- 

Psychopharmacology and Biological Psychiatry, 62, 1; 51-60). It has been included with permission 

from Elsevier, and with additional editing by the author. 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200002712
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200002687
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200012649
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0155
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0160
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0165
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0165
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0090
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200014310
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200007837
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200007837
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200015465
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200002334
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200002334
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0075
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
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both Gα and Gβγ subunits, and then activate a host of downstream signaling 

molecules. Downstream actions include activating g-protein gated inwardly rectifying 

potassium channels (GIRKs), reducing calcium currents, and decreasing cyclic 

AMP. KORs have been shown to activate both MAPK and MEK/ERK signaling 

cascades (Belcheva et al., 2005, Hahn et al., 2010, Kivell et al., 2014a, Li et al., 

2012, McLennan et al., 2008, Potter et al., 2011, Yoshizawa et al., 2011), although 

some groups do not see significant MEK/ERK activation following KOR activation 

(Asensio et al., 2006). KORs have also been shown to signaling through p38 

(Bruchas et al., 2006, Bruchas et al., 2011, Hahn et al., 2010, Yoshizawa et al., 

2011). This interaction between KOR and p38 is thought to be mediated by arrestin 

signaling; co-expression with the dominant-mutant form of β-arrestin prevents 

human KOR internalization in CHO cells (Li et al., 1999). The interaction between 

p38 and arrestin may mediate the dysphoria-like side effects of KOR agonists 

(Bruchas et al., 2007), possibly through a reduction in biogenic amine levels (Chefer 

et al., 2005, Spanagel et al., 1994) such as serotonin, as shown in Bruchas et al. 

The ability of KORs to signal through different GPCR signaling cascades may prove 

useful in creating biased agonists at the KOR, allowing for therapeutic treatments for 

pain or neuropsychiatric illnesses without the adverse side effects, such as 

dysphoria and psychomemetic effects observed in humans (Pfeiffer et al., 1986). 

Interestingly, KORs can utilize different signaling cascades in a single brain region 

(Hjelmstad & Fields, 2003). Notably, Hjelmstad & Fields demonstrated that while 

KOR activation inhibits GABA release via a calcium-dependent mechanism, its 

inhibition of glutamate is calcium-independent. Other groups have similarly 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#200013360
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200013360
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200011237
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200012647
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200012647
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200008128
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200016482
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200013559
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0025
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0300
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0370
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0440
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0440
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0535
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0605
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0825
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0010
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0100
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0105
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0300
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0825
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0825
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0445
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200020666
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0085
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200010768
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0180
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0180
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0690
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200008660
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200023041
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0585
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0320
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200016778
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200007477
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demonstrated KOR-mediated inhibition of GABA (Li et al., 2012), but more in-depth 

assessments of biased KOR signaling in a single brain region have not been 

conducted. Potent long-acting inhibitors of KOR include norBNI (Endoh et al., 1992) 

and JDTic (Bruchas & Chavkin, 2010). More recently, short-acting antagonists have 

emerged, such as LY2456302 and the tracer 11C-LY2795050 developed by Eli Lilly 

and Company (Lowe et al., 2014, Zheng et al., 2013). As KORs may utilize different 

signaling cascades, understanding this divergent pharmacological mechanisms will 

not only lead to greater understanding of the role KORs play in an assortment of 

behaviors and conditions, but it will also allow for greater tailoring of pharmacological 

treatments. 

 
 

 
BEHAVIOR 

 
 

 
Depression 

 

The forced swim test (FST) is a classic screen for depressive phenotypes, and 

has been used since the 1970s as a way to screen for novel antidepressive drugs 

(Porsolt et al., 1977). Porsolt et al. first described the FST as a measurement of 

behavioral despair, wherein immobility indicates that the animal is no longer 

attempting to escape the experimental condition; antidepressants typically reverse 

this behavior (Castagné et al., 2001) (however, although the FST is effective as a 

screen for anti-depressants, it was not originally intended as a measurement of an 

actual depressive phenotype in the rodent). KOR antagonists produce 

antidepressant-like effects in the FST, as measured by a decrease in immobile 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0440
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0235
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200007754
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0075
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200018031
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0460
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0830
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200024284
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200024284
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200024319
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200003441
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0600
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200003441
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0130
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200003441
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200024319
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200018031
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200003441
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behavior (Reindl et al., 2008). A variety of studies have shown that administration of 

the KOR antagonist norBNI leads to decreased immobility in the FST (Carr et al., 

2009, Mague et al., 2003). NorBNI-induced decreases in immobility and increases in 

swimming are observed in Wistar Kyoto rats, but not in Sprague Dawleys, 

highlighting important strain differences (Carr et al., 2010). This effect was also seen 

when Carr et al. administered norBNI directly into the piriform cortex. The KOR 

antagonist DIPPA prevented the adenosine-mediated decrease in immobility time in 

the FST, illustrating that the effect of KORs on depressive-like behaviors may 

involve the moderation of other neurotransmitter systems (Kaster et al., 2007). 

Therefore, as the KOR system seems to produce a robust phenotype in the FST, 

this behavioral test may be a useful screen for future KOR antagonist compound 

development. 

In addition to its effects on the FST model of depression, KORs are also 

involved in depressive like states following drug withdrawal. Work from Chartoff et al. 

has demonstrated that though norBNI alone had no effect on latency to immobility in 

the FST, norBNI was able to block the cocaine-withdrawal-induced decrease in time 

to immobility (Chartoff et al., 2012). Like norBNI, JDTic has been shown to decrease 

immobility in the FST, and JDTic also decreased stress-induced reinstatement of 

cocaine responding (Beardsley et al., 2005). In other behavioral assays related to 

depression, site-specific infusion of the KOR antagonist norBNI into either the 

hippocampus or nucleus accumbens prevented the depressive phenotype seen in a 

learned helplessness paradigm (Shirayama et al., 2004). Consistent with these 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0625
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200018031
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0115
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0115
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0480
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0120
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200017710
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200014959
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200004734
http://www.sciencedirect.com/science/article/pii/S0278584615000020#200010737
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0360
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0140
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0020
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0680
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results, KOR agonists also increase intracranial self-stimulation (ICSS) thresholds, 

indicating a potential depressive-like phenotype (Todtenkopf et al., 2004). 

 
 

Anxiety 
 

Much of the animal literature has focused on KOR modulation of anxiety- 

related behaviors. The elevated plus maze (EPM), a common test for rodent anxiety, 

involves letting the rodent explore an apparatus with both closed arms and open 

arms; more time spent exploring the open arms indicates an anxiolytic phenotype 

(Pellow & File, 1986). Knoll et al. showed that administration of the KOR antagonist 

norBNI resulted in an anxiolytic phenotype in the EPM (Knoll et al., 2011). KOR 

antagonists can also reverse the anxiogenic effects of stress in the EPM (Peters et 

al., 2011), and, similarly, KOR antagonists can reverse the anxiogenic effects of a 

KOR agonist (Valdez & Harshberger, 2012). These experiments would suggest an 

anxiogenic effect of KOR agonists and an anxiolytic effect of KOR antagonists. 

However, some contradictory literature has emerged: administration of the KOR 

agonist Salvinorin-A increases both open arm time and number of entries into the 

open arm of the EPM (Braida et al., 2009). In addition, the KOR agonist U50,488 

can produce anxiolytic effects in the EPM at low doses (10–100 μg/kg) (Privette & 

Terrian, 1995). These discrepancies may be driven by two important points: first, in 

the Braida et al., study, Salvinorin-A was used. Salvinorin-A has been shown to 

utilize the ERK1/2 signaling cascade (Kivell et al., 2014b), and this biased ligand 

may produce differential behavioral effects compared to those of other KOR agonists 

(this hypothesis of differential effects by some KOR agonists is supported by work 

demonstrating that ICV administration of low, but not high, doses of Salvinorin 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0730
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0575
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0385
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0580
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0580
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0750
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0065
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0615
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0615
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0375
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produces a robust conditioned place preference (Braida et al., 2008)). Similarly, the 

global anxiogenic effect of KOR agonists may be dose dependent; the conditioned 

place preference seen by Braida et al., as well as the anxiolytic effect in the EPM 

seen by Privette & Terrian, were seen at lower doses of KOR agonists that were 

typically used. This may indicate that KOR agonists do have the potential to be used 

for therapeutic purposes, but much more research is needed. 

Taken together, the literature on KOR interactions with both depression and 

anxiety provides a mixed and muddled picture at best. Future experiments will need 

to address the nuances of behavioral effects (e.g., comparing multiple KOR 

agonists, detailed dose response curves) in order to thoroughly understand the 

relationship between the dynoprhin/KOR signaling system and depression and 

anxiety. In addition, circuit- and site-specific manipulations, discussed below, provide 

some clarity as to the convoluted effect seen with systemic administration of KOR 

agonists. This provides key important information as to how KOR modulation can be 

used to shift anxiety-related behaviors: both low doses of KOR agonists, as well as 

KOR antagonists, may prove to be effective. 

 
 
 
Addiction 

 

KORs have been shown to be involved in the consumption, withdrawal, and 

escalation of a variety of drugs of abuse, such as alcohol (Zhou et al., 2013), heroin 

(Schlosburg et al., 2013 and Sedki et al., 2014), and cocaine (Al-Hasani et al., 2013, 

Trifilieff & Martinez, 2013b). Despite of an abundance of literature demonstrating the 

promise of KORs for the treatment of drug addiction (Hasebe et al., 2004, Wee & 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0070
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0835
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0660
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0665
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Koob, 2010) few drugs impacting the KOR system have been taken to human 

clinical trials. The KOR antagonist JDTic did reach stage 1 clinical trials for the 

treatment of cocaine dependence, but the research was terminated due to adverse 

effects (RTI-International, 2012). The antagonist LY2456302 has upcoming phase 1 

and phase 2 clinical trials for treatment resistant depression and anxiety disorders 

and has completed phase 1 clinical trials for alcohol dependence (Massachusetts 

General Hospital, 2013). The existing animal literature on KORs and addiction, 

discussed below, should encourage further clinical investigations. 

Work on the KOR system and cocaine has shown that activation of KORs can 

reduce cocaine self-administration (Glick et al., 1995), and the utility of mixed 

mu/kappa opioid receptor agonists have been shown for the treatment of cocaine 

dependence (Bidlack, 2014). Administration of both a KOR agonist and cocaine 

blocks sensitization to the conditioned rewarding properties of cocaine using a 

conditioned place preference model (Shippenberg et al., 1996). Freeman and 

colleagues used experimental manipulations in non-human primates to support the 

hypothesis that this suppression of self-administration and rewarding properties of 

cocaine may be due to the ability of KOR agonists to punish responding for cocaine 

(Freeman et al., 2014). In these experiments, monkeys decreased operant 

responding for either cocaine or remifentanil when paired with the KOR agonist 

Salvinorin-A, highlighting the potential role of the KOR system to curtail drug self- 

administration. The hypothesized mechanism for KOR-induced changes in cocaine 

administration and dependence is fairly well established, as KORs are present on 

dopaminergic terminals and can inhibit dopamine release (Trifilieff & Martinez, 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0795
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0650
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb8000
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http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0740
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2013a). However, Ehrich, Phillips, & Chavkin (2014) found that KOR activation can 

potentiate cocaine-induced increases in evoked dopamine release, depending on 

the timing of KOR activation and cocaine administration. This study emphasizes that 

while KORs may be a promising target for drug addiction, for cocaine in particular 

and likely for other drugs as well, timing of the intervention may be crucial. If KOR 

activation can both increase and decrease drug self-administration based on timing, 

it is unlikely to be useful for treating addiction (to those particular drugs) in the real 

world. 

KORs have also been implicated in morphine abuse, by interacting with 

morphine's ability to potentiate dopamine release in the nucleus accumbens via its 

actions at the mu opioid receptor (MOR) in the ventral tegmental area (Vander 

Weele et al., 2014). Supporting this hypothesis, MOR and KOR agonists have 

opposing effects on dopamine release, with the former potentiating and the latter 

attenuating dopamine release (Di Chiara & Imperato, 1988). Administration of the 

KOR agonist U50,488 is capable of blocking morphine conditioned place preference 

(Funada et al., 1993). Dynorphin-A levels are altered during the development of 

morphine dependence, with levels increased in the hippocampus and hypothalamus 

(Wan et al., 1998). Interestingly, strains of mice with higher pro-dynorphin 

expression appear to be morphine insensitive, hinting at a mechanism by which the 

dynorphin/KOR system may protect against the abuse-potential of drugs activating 

the MOR system (Gieryk et al., 2010). Taken together, the existing literature on 

KOR/MOR interactions suggests that the dynorphin system may be a promising 

target for intervening in MOR-related drugs of abuse, such as morphine. 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0740
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http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0765
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0765
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Research regarding KORs and alcohol addiction has become more prevalent 

in the last decade, with a greater emphasis being placed on the molecular role of the 

dynorphin system (Faisal et al., 2014) and its potential therapeutic role in alcoholism 

(Heilig & Schank, 2014, Nutt, 2014, Walker et al., 2012). Leeman et al. discussed in 

depth how various animal models can appropriately recapitulate human studies, and 

importantly, the authors highlight the role rodent alcohol consumption and 

abstinence (as well as heavy drinking) can play in informing the human literature 

(Leeman et al., 2010). In the human population, genetic variants in the KOR gene 

OPRK1 modulate alcohol consumption (Li & Zhang, 2013, Wang et al., 2014) 

(though note that this effect is not replicated in all populations; see Cupic et al., 

2013). KOR antagonists can prevent alcohol self-administration in alcohol preferring 

rat lines (Cashman & Azar, 2014). Interestingly, administration of KOR agonists can 

also attenuate responding for alcohol in an operant paradigm (Henderson-Redmond 

& Czachowski, 2014). KORs are required for alcohol-induced increases in brain- 

derived neurotrophic factor (BDNF) in the striatum (Logrip et al., 2008). Targeting 

KORs with U50,488 blocks the rewarding effects of ethanol during conditioning, and 

importantly, this was seen with sub-anxiogenic doses of the KOR agonist (Logrip et 

al., 2009). Mice lacking KORs show decreased alcohol self-administration (Kovacs 

et al., 2005), and alcohol self-administration leads to an upregulation of dynorphin in 

the central amygdala, a region of the extended amygdala (D'Addario et al., 2013). 

Mice lacking dynorphin show increased alcohol preference; however, in contrast to 

control littermates, they do not show increased alcohol consumption following a mild 

stressor (Racz et al., 2013). Therefore, it seems that both antagonist and agonists of 

http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0245
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http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0570
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0775
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0430
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0450
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0785
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0200
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0200
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0125
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0315
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0315
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http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0205
http://www.sciencedirect.com/science/article/pii/S0278584615000020#bb0620


10  

KORs may play a promising therapeutic role in treating alcohol addiction, but much 

like the cocaine, depression, and anxiety literature, the timing and nature of 

intervention and state of the individual may be crucial. 

Alcohol consumption, however, is only one part of the spectrum of alcohol 

addiction. Reinstatement models (as reviewed in detail in Le & Shaham, 2002) allow 

for critical assessment of another component of addiction, relapse. Though it can be 

difficult to model alcohol relapse in a rodent (as noted in Leeman et al., 2010), 

reinstatement provides relevant information on this topic. In addition to effects on 

alcohol consumption, KORs appear to play an important role in withdrawal from 

alcohol and further alcohol seeking. Administration of the KOR agonist U50,488 

reinstated alcohol seeking in a norBNI-dependent manner (Funk et al., 2014). In 

addition, Funk and colleagues found that norBNI pretreatment 2 h before the session 

blocked yohimbine-induced reinstatement of alcohol seeking, further elucidating the 

KOR/stress interactions in alcohol seeking behaviors. Schank and colleagues 

similarly demonstrated that the KOR antagonist JDTic attenuates both alcohol 

seeking behaviors and withdrawal (Schank et al., 2012). Berger et al. has 

demonstrated that norBNI dose-dependently decreased post-alcohol ultrasonic 

vocalizations, an indicator of negative affective state; in addition, norBNI altered cue 

induced alcohol consumption (Berger et al., 2013). However, Morales and 

colleagues found that the KOR antagonist norBNI increased alcohol self- 

administration in male rats, while decreasing self-administration in females, 

highlighting key sex differences in KOR-mediated alcohol phenotypes (Morales et 

al., 2014). 
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finding, administration of norBNI or JDTic increases open arm time in the elevated 

This relationship between alcohol and KORs may be bi-directional: mice 

exposed to alcohol prenatally had altered KOR systems, and displayed an appetitive 

response to KORs (Nizhnikov et al., 2014). Interestingly, prenatal exposure to 

alcohol increases ethanol intake later, and this effect is partially blocked by KOR 

antagonists (Diaz-Cenzano et al., 2014). And, despite the abundance of this 

behavioral evidence, little has been done to investigate the mechanism of interaction 

between alcohol and KORs, with most of the existing literature focuses in the central 

amygdala (Gilpin et al., 2014, Kang-Park et al., 2013, Kissler et al., 2014). 

 

 
Paradoxical effects 

 

The KOR system has been shown to be involved in numerous psychiatric- 

disease related behaviors, including depression, stress, and addiction. Important 

studies using modern genetic approaches have highlighted the multiple ways that 

KORs' effect behavior, and paradoxical effects have emerged when manipulating the 

dynorphin system. For example, researchers found that when dynorphin was 

genetically deleted globally, mice showed enhanced cue-dependent fear 

conditioning (Bilkei-Gorzo et al., 2012) as well as enhanced social partner 

recognition (Bilkei-Gorzo et al., 2014). In addition, these dynorphin knock out (KO) 

mice showed decrease c-fos immunoreactivity in key limbic brain regions. In another 

paper, the authors demonstrated that dynorphin KO mice show subtle alterations in 

anxiety, most notably increased startle amplitude in the startle response test (Bilkei- 

Gorzo et al., 2008). These results would conclude that dynorphin KO mice show 

increased fear and anxiety, and increased pro-social behaviors. In contrast to this 
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plus maze (EPM), with no effect on general locomotor behavior in rats (Knoll et al., 

2007), thought to be representative of an anxiolytic phenotype (other examples of 

behavioral studies consistent with Knoll et al. are outlined above). Though this work 

by Bilkei-Gorzo et al. may at first seem contradictory to the dogmatic perspective of 

dynoprhin as a stress and anxiety peptide, it importantly highlights the mixed role 

that dynorphin and KORs may play throughout the brain. While KOR activation in 

regions such as the hippocampus may have protective effects, activation in regions 

such as those involved in anxiety-related behaviors (amygdala, prefrontal cortex) 

may have negative effects, as discussed below. In addition, key differences between 

the work of the Bilkei-Gorzo et al. and Knoll et al. studies include timepoint of 

manipulation of the KOR system; importantly, those where dynorphin is knocked out 

from birth, allowing compensatory mechanisms to come on board, versus those with 

site-specific or acute dynorphin manipulations. The work from the Zimmer group 

may highlight that when KORs are globally excised from birth, other compensatory 

mechanisms may regulate anxiety and fear related behaviors. Equally important, the 

work by Bilkei-Gorzo et al., 2008, Bilkei-Gorzo et al., 2012 and Bilkei-Gorzo et al., 

2014 was conducted in dynorphin KO mice maintained on a C57Bl/6J background; 

Knoll et al. and others have used Sprague–Dawley rats, highlighting what may be 

important species differences in mammalian models of anxiety related behaviors. In 

addition, an important study by Chefer and Shippenberg provided some clarifications 

to the perplexing effects sometimes seen with dynorphin KO mice (Chefer & 

Shippenberg, 2006). The authors find that developmental compensations following 

dynorphin KO may lead to changes in the endogenous dopamine system; 
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specifically, dynorphin KO mice shown decreased extracellular dopamine in the 

nucleus accumbens, resulting in a decreased responsiveness to cocaine. Thus, 

global manipulation of the KOR/dynorphin system may prove to be problematic as a 

tool to develop treatments for disorders related to the mesolimbic dopamine system, 

such as anxiety, depression, and addiction, and must be pursued with caution. It 

may be more fruitful to use pharmacological versus genetic manipulations of the 

dynorphin KOR system when developing therapeutic lines of research. 

 
 

 
CIRCUITRY 

 
 

 
Key brain regions have emerged as major players in the actions of KORs — 

notably, the dorsal raphe (DR) nucleus, the ventral tegmental area (VTA), the 

nucleus accumbens (NAC), the prefrontal cortex (PFC), the amygdala and extended 

amygdala, and the hippocampus (HIPP). Novel technological approaches, including 

genetically modified mice, optogenetics, and other site-specific manipulations, have 

allowed for a more in-depth analysis of these crucial brain regions, further informing 

potential therapeutic targets. Importantly, this approach has allowed researchers to 

parse apart discrepancies seen with classic behavioral pharmacology approaches, 

and provide a more detailed picture into the roles of the KOR dynoprhin system. 



express with the dopamine transporter (Svingos et al., 2001), and KORs located on 
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Dorsal raphe nucleus 
 

The DR contains the majority of the brain's serotonergic neurons (Lowery- 

Gionta et al., 2014), and is involved in established KOR mediated behaviors, such 

as dysphoria (Lemos et al., 2012, Maier & Watkins, 2005), and alcohol addiction 

(Tomkins et al., 1994). Site-specific administration of the KOR agonist U50,488 into 

the DR decreased extracellular serotonin by approximately 30% (Tao & Auerbach, 

2005). Behaviorally, KORs in the DR have been shown to be necessary for stress 

related behaviors. In recent years, work from Chavkin and colleagues has 

thoroughly investigated KORs in the DR and their relationship to stress. They 

demonstrated (Land et al., 2009) that administration of the KOR antagonist norBNI 

into the DR blocked not only aversive effects of the KOR agonist U50,488, but also 

blocked stress-induced reinstatement of CPP. In addition, Land and colleagues 

further elucidated that this phenotype is dependent on DR projections to the nucleus 

accumbens. In follow-up studies, they (Bruchas et al., 2011) demonstrated that 

stress regulates the serotonin transporter via a p38 MAPK dependent mechanism, 

and that deletion of p38 from serotonin neurons in the DR prevents the development 

of stress-induced avoidance behavior, as well as a host of other stress-related 

phenotypes; this p38 mediated translocation of the serotonin transporter appears to 

be KOR-mediated. Further enhancing our understanding of KORs in the DR, Lemos 

et al. (2012) also investigated KOR effects using slice electrophysiology. KOR 

activation in the DR produces an inhibition of evoked glutamatergic transmission 

onto DR serotonergic neurons, as well a decrease in miniature excitatory post 

synaptic current frequency (Lemos et al., 2012). Interestingly, Lemos and 
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colleagues did notsee changes in GABAergic transmission (evoked and miniature), 

indicating that KOR regulation of the serotonergic system may be largely through 

inhibition of excitatory inputs onto serotonin neurons. However, no published work 

to date has looked at KOR modulation onto other DR neuron subtypes, such as the 

dopaminergic population; other neurons may also be inhibited by KOR, effectively 

shutting down DR communication. In addition, Lemos et al. demonstrated that 

KORs increase post-synaptic G-protein-gated inwardly rectifying potassium 

channels (GIRK) currents in the DR; this KOR-activated GIRK is reduced following 

exposure to a two day forced swim stress procedure while the effects of KORs on 

glutamate transmission remain unaltered following stress. This work was 

complementary to previous published work (Pinnock, 1992) that demonstrated KOR 

activation inhibited excitatory post-synaptic potentials (EPSPs) in the DR. However, 

Pinnock did not see any effects on membrane potential with the KOR agonist CI-

977. In contrast to the GIRK-mediated effects of U69593 shown by Lemos et al. 

Pinnock did not have access to cell-type specific recording techniques; in addition, 

Pinnock's study was conducted in rats while Lemos et al.'s was conducted in mice, 

possibly explaining the differences in the two publications. 

 

 
Ventral tegmental area 

 

Kappa opioid receptors have been studied in the VTA for their role in the 

inhibitory modulation of dopaminergic neurons (Shippenberg et al., 1993), both on 

the cell bodies within the VTA and downstream dopamine targets, such as the 

medial prefrontal cortex (Tejeda et al., 2013). KORs have been demonstrated to co- 
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dopaminergic neurons are necessary for conditioned place aversion (Chefer et al., 

2013). Chefer et al. demonstrated that when KORs are selectively deleted from 

dopamine neurons, mice do not display conditioned place aversion to a systemic 

KOR agonist, as their control counterparts do. This work is consistent with previously 

published studies which demonstrated that microinjection of a KOR agonist directly 

into the VTA produce conditioned place aversion (Bals-Kubik et al., 1993), and is 

consistent with slice electrophysiology experiments demonstrating that postsynaptic 

KORs directly inhibit dopamine neurons (Margolis et al., 2003). There are likely 

KORs located on other neurons within the VTA as well, such as on the GABAergic 

populations synapsing onto dopamine neurons (Graziane et al., 2013). Graziane et 

al. demonstrated that an acute stressor blocks GABAergic long-term potentiation 

(LTP) in the VTA, but this LTP is rescued when a KOR antagonist is administered 

prior to exposure to the stressor. In addition, slice experiments have demonstrated 

that KORs inhibit glutamate transmission onto VTA neurons (Margolis et al., 2005) 

(notably, a previous study did not see KOR inhibition of glutamate transmission in 

the VTA, (Manzoni & Williams, 1999); however, as noted in the Margolis et al., 

paper, Manzoni & Williams did see a high degree of variability in their KOR agonists 

effects, and an inhibition may have emerged if parsed apart by cell type 

characteristics. For example, Margolis et al. (2006) demonstrate that KORs 

selectively inhibit PFC projecting dopamine neurons in the VTA, and to the 

amygdala (Margolis et al., 2008), but not those that project to the NAC). Importantly, 

interactions with other neuropeptides have recently been discovered; dynorphin 

projections to the VTA also co-express with orexin, and orexin can facilitate reward 
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possibly through a CREB dependent mechanism (Chartoff et al., 2009). Following 

in ICSS by blocking KOR-mediated effects (Muschamp et al., 2014). Taken together, 

work on KORs in the VTA shows a surprisingly consistent and concise effect on 

dopamine neurons and local circuitry, as well as conditioned place aversion and 

addiction related behaviors, but much work is left to be done in order to understand 

how this local circuit interacts with inputs to the VTA. Importantly, KORs also 

modulate the major downstream target of the VTA, the NAC, discussed below. 

 

 
Nucleus accumbens 

 

Dynorphin and KORs are known to be important regulators of NAC circuitry; 

KOR activation inhibits glutamate transmission in the NAC, and is abolished during 

cocaine withdrawal (Mu et al., 2011). Using microdialysis, Spanagel et al. (1992) 

demonstrated that activation of KORs by the KOR agonist U69,593 inhibited 

dopamine release (and complementary, the antagonist norBNI enhanced dopamine 

release). Interestingly, the main dopaminergic projection to the NAC, arising from the 

VTA, is also inhibited by KOR activation (Margolis et al., 2003). The Berridge lab 

(Castro & Berridge, 2014) recently published a comprehensive study of opioids in 

the NAC: activation of KORs (as well as the u- and delta-opioid receptors) in the 

NAC “hotspot”, the rostrodorsal quadrant of the medial shell, was found to positively 

regulate “liking” and “wanting” responses. Castro & Berridge similarly discovered a 

“coldspot” for hedonic responses in the NAC. This work very importantly, and 

interestingly, indicates that not just KORs, but the location of KORs, may be integral 

to their much-researched regulation of stress and anxiety related behaviors. 

Stress increased prodynorphin (pDyn) messenger RNA (mRNA) in the NAC, 
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resident intruder stress, dynorphin mRNA in the NAC dorsal and medial shell is 

increased, which, in conjunction with other experiments, the authors hypothesize 

promotes maladaptive behavioral responses following stress (Berube et al., 2013). 

Similarly, dynorphin mRNA in the NAC was altered following protracted withdrawal 

from repeated immobilization stress (Lucas et al., 2011). Following a forced swim 

stress procedure, Bruchas et al. found increased phosphorylation of ERK1/2 in the 

NAC, which was blocked by the KOR antagonist norBNI and absent in KOR 

knockout mice (Bruchas et al., 2008). Stress similarly causes a dynorphin- 

dependent increase in KOR activation in the NAC, as well as the basolateral 

amygdala, HIPP, DR, and basolateral amygdala, all discussed in detail in other 

sections of this review (Land et al., 2008). 

Much of the work on KORs in the NAC has been done in the context of drug 

addiction, particularly cocaine, allowing greater clarity as to how KORs modulate the 

reward system. Gehrke and colleagues (Gehrke et al., 2008) demonstrated that 

KORs enhance cocaine-evoked dopamine overflow. Similarly, Ehrich and colleagues 

(Ehrich, Phillips, & Chavkin, 2014) showed that KOR activation can enhance 

cocaine-induced increases in dopamine release. Erich and colleagues explain the 

time dependence of KOR agonist/cocaine administration: when KORs are activated 

in close proximity to cocaine administration, a dysphoric effect occurs, as the KOR 

activation has blocked cocaine's rewarding properties; however, when they are 

activated at greater time differences (over 20 min apart), the KOR activation leads to 

a greater enhancement of cocaine's effects, possibly to overcome the dysphoric 

effect of the KOR activation. Previously, the Chavkin lab (McLaughlin et al., 2006) 
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reuptake). Interestingly, they also demonstrated that KORs presynaptically inhibit 
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similarly demonstrated that KORs effects on cocaine conditioned place preference 

(CPP) were time dependent; in addition, forced swim stress induced cocaine CPP 

was unaltered in KOR(−/−) mice as compared to WT controls, and the effect in WTs 

was blocked by the KOR antagonist norBNI (also seeMcLaughlin et al., 2003). 

These findings provide important insight into the time dependents of KOR-mediate 

stressors and the development of drug addiction; blocking KORs during stress may 

help prevent the development of further cocaine use. 

Modulation of KORs in the NAC has potential therapeutic benefits for other 

drugs of abuse as well. The Koob lab (Schlosburg et al., 2013) found that 

pretreatment with norBNI prevented escalation in heroin intake seen in a long- 

access paradigm in rats, while also reducing anxiety-like behavior seen with 

withdrawal. This decrease in heroin self-administration was also seen when norBNI 

was administered site-specifically into the NAC shell (however, administration into 

the NAC core increased heroin self-administration, but not the escalation of intake). 

 

 
Prefrontal cortex 

 

Though much work has been done looking at the role of KORs in the main 

nuclei of the mesolimbic dopamine system (the NAC and VTA), other downstream 

dopaminergic projections, such as the PFC, are also modulated by KORs. KORs are 

known to be located presynaptically in the PFC (Svingos & Colago, 2002), and 

recently Tejeda and colleagues looked at this putative pathway in-depth. Tejeda et 

al. (2013)demonstrated that systemic administration of the KOR agonist U50,488 

decreased extracellular dopamine levels in the medial PFC (without altering 
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sardinian alcohol preferring (SP) rats show increased preprodynorphin levels in the 
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glutamate release onto pyramidal neurons. This provides a putative circuit for Bals- 

Kubik et al.'s (1993) findings that administration of a KOR agonist directly into the 

PFC causes a conditioned place aversion, possibly through inhibition of 

dopaminergic and glutamateric drive onto PFC neurons. 

 

 
The amygdala and extended amygdala 

 

The basolateral amygdala (BLA) and its downstream nuclei, the central 

nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) are 

enriched with both KOR and dynorphin, and thus are of increasing interest. The 

Carlezon group (Knoll et al., 2011) demonstrated that fear conditioning caused an 

upregulation of KOR mRNA in the BLA (but not CeA), and that site-specific 

administration of the KOR antagonist JDTic decreased conditioned fear (effective 

fear conditioning was associated with a reduction of KOR mRNA in the BLA). 

Interestingly, administration of JDTic to the BLA (but not CeA) produced an 

anxiolytic phenotype in the EPM. Bruchas and colleagues (Bruchas et al., 2009) 

previously published a similar anxiolytic effect of BLA KORs; they found that site 

specific administration of norBNI blocked a forced swim- or CRF-induced stress 

phenotype in the EPM. It has also been found that activation of KORs by U50,488 

decreased synaptic local field potentials, as well as blocked high-frequency-induced 

long term potentiation (Huge et al., 2009). However, the mechanism of KORs in the 

BLA has not been investigated further. 

Dynorphin containing neurons have been demonstrated in the CeA, where they 

occasionally co-express with CRF (Marchant et al., 2007). Following alcohol intake, 
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CeA as compared to both alcohol naïve-SP rats and alcohol naïve-nonpreferring rats 

(Zhou et al., 2013). Work by Koob et al. and Roberto et al. has focused extensively 

on characterizing KORs here, and their interactions with alcohol. Gilpin et al. (2014) 

demonstrated that KOR activation by dynorphin decreased GABAergic transmission 

in the CeA, while the antagonist norBNI enhanced GABAergic transmission, 

indicating the presence of a tonic dynorphin tone. In addition, Gilpin et al. showed 

that KOR activation partially blocked the effects of ethanol at these synapses. This 

effect was complementary to results published the previous year (Kang-Park et al., 

2013) demonstrated that KOR activation decreased GABAergic transmission in the 

CeA, and also demonstrating tonic activation of KORs, through a presynaptic 

mechanism. Interestingly, previous studies have shown that KOR activation 

decreased GABAergic transmission in naïve rats, consistent with Gilpin et al., while 

it increased GABAergic transmission in rats exposed to a long-access cocaine 

paradigm (Kallupi et al., 2013). The authors also found that site-specific 

administration of norBNI blocked cocaine-induced locomotor sensitization, as well as 

decreased withdrawal related behaviors. KORs in the CeA may prove to be an 

interesting target for the manipulation and treatment of alcohol consumption. 

Though dynorphin and KORs are known to be present throughout the BNST 

(Poulin et al., 2009), very little work has been conducted in this region. Li and 

colleagues (Li et al., 2012) demonstrated that activation of KORs produced a robust 

inhibition of GABA transmission from the CeA, and that this inhibition was 

presynaptic and MEK/ERK signaling dependent. Despite this promising avenue of 
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potential protective effect of KORs in the HIPP. In addition, stress causes both KOR 

investigation, no systematic work has been conducted to further assess KORs in the 

BNST, either at the pharmacological or behavioral level. 

 

 
Hippocampus 

 

KORs play an essential role in HIPP circuitry (Chavkin et al., 1985) Dynorphin 

has been shown to control glutamate transmission in the hippocampus (Wagner et 

al., 1993, Weisskopf et al., 1993), as well as increase cell excitability in dentate 

gyrus granule cells (McDermott & Schrader, 2011). Dynorphin is released from 

granule cells in the HIPP, and acts as a retrograde transmitter to inhibit excitatory 

inputs in the HIPP (Drake et al., 1994); for further reading see Chavkin (2000). In 

addition, dynorphin activates an inwardly rectifying potassium channel as well as 

voltage gated potassium channels (Wimpey & Chavkin, 1991), including functioning 

to inhibit M currents, a voltage-dependent potassium current, in CA1 neurons 

(Madamba et al., 1999). Administration of the KOR antagonist norBNI directly into 

the HIPP reversed ethanol-induced changes in glutamate transmission (Kuzmin et 

al., 2013). Bilkei-Gorzo et al. showed that mice lacking dynorphin show increased 

partner recognition; in addition, when exposed to object or social recognition 

paradigms, mice showed increased dynorphin-A immunoreactivity in the 

hippocampus, central amygdala, and basolateral amygdala (Bilkei-Gorzo et al., 

2014). They have also demonstrated that mice lacking dynorphin show enhanced 

fear conditioning, known to involve the hippocampus (Bilkei-Gorzo et al., 2012) 

(however note differences between the effects seen by the Carlezon group with 

systemic administration of norBNI, discussed above). This work seems to indicate a 
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and p38 activation in a variety of brain regions, including the hippocampus, and this 

was not seen in KOR −/− mice (Bruchas et al., 2007). Similar experiments have 

shown that a single immobilization stress results in increased dynorphin-A 

immunoreactivity in the hippocampus as well as the nucleus accumbens (Shirayama 

et al., 2004). Shiryama et al. also demonstrated that infusion of the KOR antagonist 

norBNI directly into CA3 produced antidepressant effects. Recently, investigators 

have begun to elucidate the mechanism of KOR induced alterations in the HIPP. 

Previous work demonstrated that dynorphin was upregulated in the HIPP following 

inhibition of NMDA receptors, in a pCREB-dependent manner (Rittase et al., 2014), 

and others have shown that dynorphin inhibition of NMDA receptors appears to be 

pH dependent (Kanemitsu et al., 2003). Interestingly, KORs and dynorphin in the 

HIPP have also been heavily investigated for their potential role in epilepsy (Clynen 

et al., 2014, Dobolyi et al., 2014). Dynorphin levels are elevated in the HIPP 

following a kainic acid induced seizure in rats (Rocha & Maidment, 2003). 

Prodynorphin KO mice show decreased seizure threshold and faster seizure onset 

(Loacker et al., 2007). Administration of a KOR agonist prevents drug-induced 

seizures in mice, possibly indicating the presence of a regulatory dynorphin tone in 

the HIPP (Solbrig et al., 2006). In the clinical population, prodynorphin transcription 

is upregulated in patients with temporal lobe epilepsy (Pirker et al., 2009). In line 

with this information, researchers have speculated that KOR manipulations may be a 

potential treatment for seizures, treating abhorrent dynorphin release/KOR activation 

in the hippocampus (Bortolato & Solbrig, 2007). This exciting line of hippocampal 

KOR research provides a promising therapeutic outcome for KOR drugs. 
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INTERACTIONS WITH OTHER SIGNALING MOLECULES 
 
 

 
Corticotrophin-releasing factor 

 

It is difficult to discuss the role of KORs in brain functioning without discussing 

its interactions with the closely related peptide corticotropin-releasing factor (CRF). 

The interactions between the KOR and CRF systems have been investigated heavily 

(Koob, 2013, Land et al., 2008, Tejeda et al., 2010). The KOR and CRF systems 

have long been thought to interact in order to orchestrate anxiety-like responses. 

Like dynorphin, CRF is a neuropeptide released in response to stress (Koob, 1999). 

Dynorphin and CRF are co-expressed in the periventricular nucleus of the 

hypothalamus (Roth et al., 1983) as well as the hypothalamic supraoptic nucleus 

(Meister et al., 1990). Axon terminals in the locus coeruleus coexpress dynorphin 

and CRF, most likely arising from the dynorphin–CRF co-expressing neurons in the 

central amygdala (Reyes et al., 2008). In addition to this anatomical overlay between 

the two peptidergic systems, behavioral experiments have hinted at their interactions 

as well. For example, the KOR antagonist JDTic attenuates CRF-mediated 

performance errors in a five choice serial reaction time task (Van't Veer et al., 2012). 

Though much of the literature on stress-related effects focuses on the CRF-1R, an 

emerging importance has been shown for CRF-2R as well (Gysling, 2012), 

indicating that the two receptors may have differing interactions with the KOR 

system (CRF-1R and CRF-2R are commonly thought to mediate opposing 

responses, possibly through different locations in the synapse, see Fu and 
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Neugebauer, 2008). In the basolateral amygdala, CRF-1R mediated anxiety-like 

behaviors are dependent on the KOR system (Bruchas et al., 2009). Importantly, 

CRF-1R antagonists can block KOR-dependent reinstatement of cocaine seeking 

(Valdez et al., 2007), and antalarmin, a CRF-1R antagonist, blocked KOR-agonist 

induced reinstatement of alcohol seeking (Funk et al., 2014), highlighting not only 

how KOR–CRF systems interact in relation to stress and anxiety, but addiction as 

well. Other work has highlighted the importance of the CRF-2R. Activation of CRF 

receptors in the CeA increased dynorphin levels as measured by microdialysis; 

acute alcohol administration also increased dynorphin levels, but this was blocked 

by a CRF-2R antagonist (a CRF-1R antagonist had no effect) (Lam & Gianoulakis, 

2011). In addition, injection of CRF produces a KOR-dependent place aversion, 

which was blocked by a CRF-2R antagonist but not a CRF-1R antagonist (Land et 

al., 2008). Supporting this, CRF-1R −/− mice still show KOR-dependent place 

aversion (Contarino & Papaleo, 2005), although this study did not assess CRF-2R 

−/− mice. 
 

Taken together, CRF-1Rs may interact with KORs to mediate anxiety (and 

anxiety related to drug withdrawal and relapse), while CRF-2Rs may interact with 

KORs in a more nuanced manner, possibly related to aversion. This potential 

interaction between CRF and KOR systems provides further information for the 

development of therapeutic targets for stress and addiction related disorders, as the 

two peptidergic systems can be targeted simultaneously. Further work is necessary 

to elucidate the causal nature of the KOR–CRF systems (for example, KOR 

activation may induce CRF release, see Valdez et al., 2007), to better understand 
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their relationship (KOR–CRF, CRF–KOR, or bidirectional, and the importance of 

CRF-1Rs versus CRF-2Rs). 

 

 
Glucocorticoids 

 

A smaller literature has emerged looking at interactions between 

glucocorticoids and KORs. In non-rodent models, KOR agonists have been shown to 

bind to glucocorticoid receptors (Evans et al., 2000), and KORs are known to 

interaction with the hypothalamic pituitary adrenocortical (HPA) axis (Iyengar et al., 

1986, Iyengar et al., 1987). Prodynorphin mRNA in the hippocampus was decreased 

in adrenalectomized (ADX) mice, and the effect was rescued with dexamethasone 

(Thai et al., 1992); similar results were seen with aldosterone (Watanabe et al., 

1995). This initial work points towards the interaction between glucocorticoids and 

the KOR dynorphin system, although much work is left to be done (particularly, 

studies should address this relationship outside of the hippocampus, in other regions 

related to the HPA axis, such as the extended amygdala). 

 
 
 

 
CONCLUSION: ROLE OF KORs IN STRESS AND ANXIETY, POTENTIAL AS A 

NOVEL THERAPEUTIC TARGET 

 

 
Despite the implication that KORs are involved in a wide range of psychiatric 

conditions, ranging from maladaptive disorders such as addiction and anxiety, to 
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basal states such as social interaction and learning and memory, their use as 

therapeutics in the clinic has thus far been limited. 

In addition, though classical behavioral pharmacology literature has focused on 

the aversive or the anxiogenic properties of KOR agonists, the invention of novel 

and advanced techniques to probe the site-specific and molecular interactions with 

KORs may soon add much needed nuance to this global statement. Importantly, we 

hypothesize that it is unlikely that KORs in any single region work in isolation to 

modulate any given condition, such as anxiety. More likely, is that KORs throughout 

the brain modulate interactions between key brain regions involved in anxiogenic 

phenotypes (such as the interactions between the PFC, HIPP, and NAC). This point 

is further supported by differences seen in experiments using global dynorphin KOs 

and systemic administration of the KOR antagonist norBNI: the dynorphin KOR 

system may function in discrete brain regions to regulate the anxiogenic–anxiolytic 

spectrum of behaviors by keeping behavioral responses in an optimal range; neither 

global deletion nor global blockade of components of the KOR system will function 

properly to modulate behavior. As KORs modulate many of the major circuits 

involved in psychiatric behaviors (Fig. 1.1), they may be functioning to dampen or 

enhance communication between key circuits involved in anxiety, as opposed to just 

taking offline a single nucleus. As further work probes these questions, it may 

emerge that dynorphins and KORs, in some cases, serve anxiolytic purposes 

depending on the functional status of the circuit. 

While KOR antagonists have been at the forefront of treatment options for 

psychiatric illnesses, they are also implicated in a medley of other physiological 
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disorders, including salt consumption (Nascimento et al., 2012), epilepsy and 

hypertension (though hypertension is not discussed here, see Wright and Ingenito, 

2001, Wright & Ingenito, 2003, Wright et al., 2000 for further reading). This brings 

together the importance of the “whole body” perspective when considering KOR 

drugs as therapeutic treatment for brain-related diseases. Drugs targeting KORs, 

both agonists and antagonists, have profound therapeutic potential, and more 

research is needed to understand this promising neuropeptide system. 

As discussed above, targeting the KOR system is one of the most promising 

treatments for AUDs. This dissertation attempts to further advance our 

understanding of KOR involvement in this disease by focusing on KORs in the 

BNST, a key region of the extended amygdala related to both stress and addiction. 

The two primary goals were to (1) demonstrate the signaling and function of KORs in 

a key brain region, the BNST; and (2) demonstrate how functioning of KORs in the 

BNST is altered following an animal model of alcohol consumption. 
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Figure 1.1 - KORs modulate the interactions between major circuits involved in 

stress responses, anxiety, and addiction. KORs are found in many key brain 

regions known to be involved in a variety of diseases, such as anxiety and addiction. 

It has been found that KORs do not only mediate aversive or anxiogenic responses 

(red circles); literature has shown that KORs (red and white circles) can also be 

reinforcing, such as in the nucleus accumbens. In addition, dynorphin knockout mice 

show increased fear conditioning. Key: Orbital frontal cortex (OFC); Pre frontal 

cortex (PFC); Nucleus accumbens (NAC); Amygdala and extended amygdala 

(AMG); Hippocampus (HIPP); Ventral Tegmental Area (VTA); Dorsal Raphe Nucleus 

(DR); Kappa Opioid Receptor (K). 
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CHAPTER 2: KAPPA OPIOID RECEPTORS CONTROL THE GAIN OF AN 

AMYGDALAR ANXIETY CIRCUIT 

 
 
 
 
 

INTRODUCTION 
 
 

 
Anxiety disorders are a major health concern, with 7.3% of the global 

population suffering from an anxiety disorder at any given time (Lepine, 2002, Baxter 

et al., 2013). Despite the high societal cost of anxiety disorders (Lepine, 2002) many 

of the most common treatments, including tricyclic antidepressants, monoamine 

oxidase inhibitors, benzodiazepines, and selective serotonin reuptake inhibitors, 

have side effects that limit their utility (Ravindran, 2010). In light of these limitations, 

there has been a greater effort to discover new modulatory systems for the 

treatment of anxiety disorders (Holden, 2003, Tye et al., 2011, Johansen, 2013, 

Deisseroth, 2014). In order to develop new and more efficacious therapeutics, a 

more thorough understanding of the circuitry underlying anxiety disorders is 

required. 

Kappa opioid receptors (KORs) have been proposed as a potential target for 

stress and anxiety disorders, as well as substance abuse disorders (Wee and Koob, 
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2010), and an abundance of behavioral pharmacology experiments support targeting 

KORs for these disorders. Findings have implicated recruitment of KOR signaling by 

its endogenous ligand dynorphin (Chavkin et al., 1982) as playing a key role in 

preclinical and clinical models of anxiety (Knoll et al., 2011); however the 

mechanism that underlies this effect and the circuitry involved has not yet been 

defined (Crowley and Kash). KOR modulation has been identified in key anxiety- 

related regions such as the dorsal raphe nucleus (Lemos et al., 2012), the ventral 

tegmental area (Spanagel et al., 1992), and the prefrontal cortex (Svingos and 

Colago, 2002, Tejeda et al., 2013). Despite evidence that all of these regions 

interact with the bed nucleus of the stria terminalis (BNST), a key region involved in 

anxiety-related behaviors (Kash, 2012), investigation of KORs in the BNST has so 

far been lacking. In addition, the BNST is known to express dynorphin (Poulin et al., 

2009), making it a promising and important target for neuropsychiatric 

manipulations. However, to date there has been little investigation into this key 

dynorphin-rich population due to a lack of available tools to investigate peptidergic 

release. Therefore, despite the promise of BNST KORs as a therapeutic target, this 

line of research has attracted little emphasis. 

Based on the abundance of evidence implicating KORs in anxiety disorders 

and the BNST’s critical role for regulation of anxiety-like behavior in both humans 

and rodent models, we hypothesized that KOR signaling in the BNST played an 

important role in the modulation of glutamate transmission and that dynorphin 

neurons within the BNST were involved in the microcircuitry of KOR activation. Here, 

we report that KORs in the BSNT inhibit glutamatergic transmission via a 
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pharmacologically distinct mechanism, and that this inhibition is pathway-specific; 

furthermore, we identify a novel technological approach to assessing peptidergic 

transmission in slice. 

 
 
 
 

MATERIALS AND METHODS 
 
 

 
Subjects 

 

All animal procedures were performed in accordance with the Institutional 

Animal Care and Use Committee at the University of North Carolina at Chapel Hill, 

conforming to US National Institutes of Health guidelines. Experiments were 

performed on adult male C57BL/6J mice and DBA/2J mice, both from Jackson 

Laboratory (Bar Harbor, ME). Preprodynorphin-IRES-Cre mice were generated as 

described previously, and bred in house at UNC (Krashes et al., 2014). Conditional 

KOR knock out mice (KOR KO), generated as described below, were bred in house 

at UNC. All mice were group housed in colony rooms with a 12:12hr light-dark cycle 

(lights on at 7 a.m.) with ad libitum access to rodent chow and water. 

 
 

 
Generation of conditional KOR knockout mice 

 

Mice were generated by Dr. Jennifer Whistler (UCSF) and bred at UNC. To 

generate these mice, a cassette containing G418 resistance flanked by 2 loxP sites 

was inserted in the intron downstream of the region to be disrupted for positive 
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selection of the ES cells. Putative homologous clones were selected and screened 

by DNA blot. Homologous recombinant ES clones were transfected with a cre- 

recombinase plasmid. PCR was used to identify Type 1 (non-conditional) alleles, in 

which loxP sites 1 and 3 were recombined (see Fig 2.3) and Type 2 (conditional) 

alleles, in which loxP sites 2 and 3 were recombined. C57/Bl6 blastocysts were 

generated from both type 1 and type 2 clones and implanted into C57/Bl6 mice (all 

resulting mice are therefore purebred C57/Bl6). F1 progeny were genotyped for 

transmission of the mutant allele by PCR. Disruption of receptor was confirmed by 

ligand binding (data not shown). 

 
 

 
Slice electrophysiology 

 

We performed whole-cell electrophysiology experiments similar to those 

published (Holmes et al., 2012, Li et al., 2012). All experiments within the BNST 

were performed in the dorsolateral portion (both oval and non-oval nuclei). Briefly, 

300 µM coronal slices containing the BNST, prefrontal cortex (PFC), paraventricular 

nucleus of the hypothalamus (PVN), or BLA were prepared on a vibratome (Leica 

VT1200, Leica, Wetzlar, Germany) from behaviorally naïve mice rapidly decapitated 

under isoflurane anesthesia. The brains were removed and placed in ice-cold 

modified high sucrose artificial cerebrospinal fluid (aCSF) containing the following (in 

mM): 194 sucrose, 20 NaCl, 4.4 KCl, 2 CaCl2, 1 MgCl2, 1.2 NaH2PO4, 10.0 glucose, 

and 26.0 NaHCO3. Slices were then transferred to normal aCSF maintained at 

approximately 30 degrees (Warner Instruments, Hamden, Connecticut) containing 



50  

the following (in mM): 124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 MgSO4, 1 NaH2PO4, 10.0 

glucose, and 26.0 NaHCO3. Slices were placed in a holding chamber, were allowed 

to rest for one hour, and remained there until used. Slices were continuously 

bubbled with a 95% O2 / 5% CO2 mixture throughout slicing and experiments. Thin- 

walled borosilicate glass capillary recording electrodes (3–6 MΩ) were pulled on a 

Flaming-Brown micropipette puller (Sutter Instruments, Novato, CA). Following 

rupture of the cell membrane, cells were allowed to rest and equilibrate to the 

intracellular recording solutions (below). For drug experiments, application bars on 

Figures indicate when aCSF was switched to aCSF+drug; there is a delay of 

approximately two minutes between the switch and when the drug reached the slice 

chamber. Input resistance was monitored continuously throughout the experiment, 

and when it deviated by more than 20% the experiment was discarded. 

Lidocaine N-ethyl bromide (1 mg/ml) was included in the intracellular recording 

solution to prevent postsynaptic sodium spikes for all voltage-clamp experiments. 

For basal KOR pharmacological effects and characterization, picrotoxin (5 µM) was 

added to aCSF to isolate excitatory postsynaptic currents (EPSCs). Tetrodoxtoin 

(500nM) and picrotoxin (5 µM) were added to the aCSF to isolate miniature EPSCs. 

Cells were held at -70mV to isolate AMPAR-mediated current, and EPSCs were 

recorded with a Cs-gluconate based intracellular recording solution containing the 

following (in mM): 135 cesium gluconate, 5 NaCl, 10 HEPES, 0.6 EGTA, 4 ATP, 0.4 

GTP. For voltage-clamp experiments requiring the simultaneous recording of 

excitatory and inhibitory events within the same neuron, a cesium-methanesulfonate 

based intracellular recording solution containing the following (in mM) was used: 135 
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cesium methanesulfonate, 10 KCl, 1 MgCl2, 0.2 EGTA, 2 QX-314, 4 MgATP, 0.3 

GTP, 20 phosphocreatine. Excitatory events were recorded at -55mV and inhibitory 

events were recorded at +10mV. For current clamp experiments, cells were 

recorded using a potassium-gluconate based internal recording solution containing 

the following (in mM): K-gluc, 5 NaCl, 2 MgCl2, 10 HEPES, 0.6 EGTA, 4 Na2ATP, 

0.4 Na2GTP. Experiments were conducted both at resting membrane potential 

(RMP) and -70mV. 

PSCs were electrically-evoked using a twisted bipolar nichrome wire placed 

dorsal to the recording electrode. For drug experiments, the following concentrations 

were used: 300nM Dynorphin-A, 1µM U69,593, 100nM norBNI, 5µM RP-Camps, 

20µM SB203580, 10µM SL-327. Drugs were applied as indicated in Figures; for 

experiments that required pre-application of a drug (such as KOR antagonist 

experiments), the drug was bath applied for at least 30 minutes prior to experiments. 

For in vitro optogenetic experiments, all brains were checked for light-evoked 

action potentials in the target region (BLA, PFC, PVN, or BNST) using a potassium- 

gluconate-based internal recording solution containing in mM: 135 K-gluc, 5 NaCl, 2 

MgCl2, 10 HEPES, 0.6 EGTA, 4 Na2ATP, 0.4 Na2GTP. Brains were discarded and 

not used for further experimentation if action potentials were not obtained or 

injections were missed. A blue LED (470nm, CoolLed, Hampshire, United Kingdom) 

was used to optically stimulate release from channelrhodopsin (ChR2)-containing 

fibers (5 msec pulse for voltage-clamp experiments, 1 msec for current clamp 

experiments). Following completion of some experiments, NBQX (10µM) was 

applied to confirm glutamate exclusivity, or 5µM picrotoxin to confirm GABA 
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exclusivity, of the optically evoked current (data not shown). For experiments 

isolating the local effects of dynorphin activation, non-ChR2 (putatively DYN-) cells 

were patched. 

Signal acquisition was performed identically to those published previously 

(Holmes et al., 2012, Li et al., 2012). 

 
 

 
Stereotaxic surgery 

 

Mice were anaesthetized in an induction chamber (3-4% isolflurane) and 

placed into a stereotaxic frame (Leica Angle 2, Leica Biosystems) where they were 

maintained at 1-2% isoflurane. A craniotomy was performed, and mice were 

bilaterally injected using a blunt needle (86200 and 65458-01, Hamilton Company, 

Reno, NV), with 400-500 nl of the vector into the BLA (stereotaxic coordinates from 

bregma: -1.30 anterior-posterior, +/−3.15 medial-lateral,−4.95 mm dorsal-ventral), 

350 nl of the vector into the BNST (stereotaxic coordinates from bregma: +0.27 

anterior-posterior, +/-0.90 medial-lateral, -4.25 dorsal-ventral), or 400-500 nl of the 

vector into the PFC (stereotaxic coordinates from bregma: +1.8 anterior-posterior, 

+/- 0.3-0.5 medial-lateral, -2.5 dorsal-ventral). For floxed KOR experiments, a 

ChR2/CRE cocktail was made (250nL ChR2, 250nL CRE) and injected into the BLA. 

Aseptic techniques were maintained for all surgeries, and mice were allowed to 

recover for at least six weeks prior to experiments, permitting optimal expression in 

terminals. 
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Viral vectors 
 

The viral constructs AAV2-CamKIIα-ChR2-EYFP, AAV2-CamKIIα-EYFP, 

AAV5-EF1α-DIO-ChR2-EYFP, AAV5-EF1α-DIO-EYFP, AAV5-EF1α-DIO-ChR2- 

mCHERRY, and AAV2-CamKIIα-CRE-EYFP, described elsewhere (Kim et al., 2013) 

were obtained from the UNC Viral Vector Core (Chapel Hill, NC). 

 
 

 
Data analysis and statistics 

 

Data are expressed as means ± SEM for all Figures. For all experiments, 2- 

way ANOVAs, paired t-tests, unpaired t-tests, and linear regression were used 

where appropriate, as described in Figure captions. Statistical analyses were 

conducted using Prism 6.0 (GraphPad, La Jolla, CA), and graphs were made in 

Illustrator CC 2015 (Adobe, San Jose, CA). 

 
 
 
 

RESULTS 
 
 

 
KORs signal via a presynaptic, p38- and calcium-dependent mechanism to inhibit 

glutamate release in the BNST 

Recent work links glutamate signaling in the BNST to both anxiolytic and 

anxiogenic behavior (Kim et al., 2013, Hubert & Muly, 2014). Therefore, we first 
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examined whether KOR activation could alter glutamate function in the BNST. We 

found that multiple KOR-selective agonists (Dynorphin-A and U69,593) inhibited 

evoked excitatory post synaptic currents (eEPSCs) in the BNST, both of which were 

blocked by pre-application of the selective KOR antagonist norBNI (Fig 2.1A-D). 

This KOR-mediated inhibition was not reversed by norBNI (Fig 2.1E-F), suggesting 

that this is a form of long-term plasticity. The KOR effect was blocked in the 

presence of the p38 inhibitor SB203580 (Fig 2.1G), but not the MEK/ERK inhibitor 

SL-327 (FIG 1G) or the PKA inhibitor RP-Camps (Fig 2.1H). Mechanistically, KORs 

inhibited function presynaptically, as there was a reduction in miniature EPSC 

frequency but not amplitude (Fig 2.1I-K); in addition, the kinetics of miniature EPSCs 

remained unaltered (data not shown). This KOR modulation of mEPSCs was absent 

when recordings were conducted in zero calcium conditions similar to those 

previously published (Fig 2.1L-M). This presynaptic, p38-, and calcium- dependent 

modulation of neurotransmitter release is consistent with known KOR signaling 

cascades (Brust et al., 2006, Bruchas, 2011) (Fig. 2.1N). In addition, the nature of 

the inhibition suggests a form of long-term depression (LTD) as has been seen in 

the striatum with modulation of opioid receptors (Atwood et al., 2014). 

 
 

 
KORs inhibit pathway-specific glutamate inputs to the BNST 

 

Glutamatergic innervation to the BNST arises from multiple cortical and 

subcortical nuclei. We next probed KOR inhibition of two of these known pathways, 

the prefrontal cortex (PFC) and the basolateral amygdala (BLA) in slice. We injected 
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ChR2 (AAV2-CamKIIα-ChR2-EYFP) in either the BLA or PFC and conducted slice 

electrophysiology experiments in the BSNT (Fig 2.2A). Independent activation of 

either of these pathways produced a robust, light-evoked EPSC, consistent with 

other studies examining BLA projections (Felix-Ortiz et al., 2013) (Fig 2.2B-D). The 

light-evoked BLA EPSC was inhibited by KOR activation, while the light-evoked 

EPSC arising from the PFC was not altered by KOR activation (Fig 2.2E). 

Optogenetic activation of the BLA input to the BNST produced action potentials in 

BNST neurons reliably up to 20-40 hz (Fig 2.2F). As we have previously shown that 

KOR activation can inhibit GABA release (Li et al., 2012), we wanted to test whether 

activation of KOR signaling would lead to a reduction of BLA-induced action 

potentials. Indeed, consistent with a net inhibitory action of KOR on this pathway, the 

KOR agonist reduced the fidelity of these BLA-BNST induced action potentials. This 

robust KOR-mediated inhibition of BLA-BNST circuitry allowed us to further probe 

the synaptic dynamics of KOR inhibition. KOR-mediated inhibition of the BLA input 

was absent when KORs were genetically deleted from the BLA, providing 

converging support for the presynaptic site of action (Fig 2.3A). Here, we virally 

deleted KORs expressed on BLA neurons (AAV2-CamKIIα-CRE-EYFP), while 

simultaneously expressing ChR2 (AAV2-CamKIIα-ChR2-EYFP). Though deletion of 

BLA KORs had no effect on spontaneous EPSC frequency or amplitude in the BNST 

(Fig 2.2G-H), suggesting basal glutamate properties remained intact, there was also 

no longer inhibition of the optically evoked BLA ESPC, suggesting KORs are 

exclusively expressed presynaptically at these synapses, and their deletion 

completely abolishes any KOR-mediated alterations at these synapses (Fig 2.2I). 
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Taken together, our data demonstrate that KORs in the BNST inhibit pathway- 

specific glutamate release, and that this inhibition has important behavioral 

implications for the modification of anxiety-related phenotypes. 

 
 

 
Dynorphin is a retrograde messenger in the BNST, and dynorphin neurons are 

preferentially modulations by KORs on BLA to BNST synapses. 

We next assessed the dynamics of endogenous dynorphin release in the 

BNST. In order to probe the activation dynamics of this system, we stereotaxically 

injected ChR2 using a cre-dependent vector (AAV5-EF1α-DIO-ChR2-EYFP) in the 

BNST of Preprodynorphin-IRES-Cre mice (Krashes et al., 2014) (Fig 2.4A). 

Dynorphin-positive (DYN+) neurons were located throughout the dorsal-lateral BNST 

(Fig 2.4A). Light activation of these cells reliably produced action potentials at 20 Hz 

and resulted in a monosynaptic IPSC (mean amplitude = 422.9pA, SEM = 149.0), 

but no EPSC (mean amplitude = -17.64pA, SEM = 6.414) (Fig 2.4B) onto 

neighboring, putatively non-dynorphin (DYN-) neurons, indicating BNST DYN+ 

neurons form robust local synapses that are exclusively GABAergic. We next probed 

whether optogenetic activation of these DYN+ neurons was capable of altering 

electrically-evoked glutamate release within the BNST. 5 hz activation of DYN+ 

neurons for 150 seconds produced a transient norBNI-sensitive inhibition of eEPSCs 

(Fig 2.4C), and EPSC amplitude returned to basal amplitudes. When these 

experiments were conducted with a 20 hz stimulation for 150 seconds, a robust and 

lasting inhibition of eEPSCs was found (Fig 2.4D); this inhibition was blocked by pre- 
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and continuous- application of the selective KOR antagonist norBNI. This effect was 

indistinguishable from that seen with KOR agonist application (Fig 2.1A-D). This 

effect was not seen when assessing a GABAergic dynorphin projection to the BNST 

from the paraventricular nucleus of the hypothalamus (PVN) (Fig 2.4E). 20 hz 

activation of PVN-BNST dynorphin neurons did produce an inhibition of eEPSCs, but 

this inhibition was not KOR-dependent, implying that another modulatory system 

may be playing a role in this distal inhibition by dynorphin neurons (Bodnar, 2013). 

Taken together, these experiments demonstrate that activation of local BNST 

dynorphin neurons can inhibit electrically-evoked glutamatergic transmission in the 

BNST. Additionally, these experiments suggest a possible timing-dependent 

component in the persistence of KOR plasticity, similar to what has been 

demonstrated with norepinephrine-induced LTD in the BNST (McElligott & Winder, 

2008). 

We next assessed the relationship between BLA inputs to the BNST and BNST 

dynorphin neurons. ChR2 (AAV2-CamKIIα-ChR2-EYFP) was injected into the BLA 

and cre-dependent fluorophore (AAV5-EF1α-DIO-EYFP) was injected into the BNST 

of Preprodynorphin-IRES-Cre mice (Fig 2.4F) to assess the BLA inputs onto DYN+ 

and DYN- neurons. DYN+ neurons had smaller membrane resistance than their 

DYN- counterparts, and a trend towards a significant difference in capacitance, 

consistent with known classifications of BNST neuronal types (Hammack et al., 

2007) (Fig 2.5A-B). DYN- neurons had more action potentials per current injection 

when held at RMP, indicative of greater intrinsic excitability (Fig 2.5C-K). 

Surprisingly, both DYN+ and DYN- neurons received a glutamate projection from the 
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BLA, as well as a polysynaptic GABAergic projection, but no basal differences were 

seen with BLA innervation of these cells as indicated by similar paired pulse ratio 

and amplitude of evoked responses (Fig 2.5L-O). We next examined KOR 

modulation of BLA inputs to these two discrete cell types. We found that KOR 

activation more robustly inhibited BLA-induced light-evoked EPSCs in DYN+ 

neurons as compared to DYN- neurons (Fig 2.4G). Taken together, these data 

suggest that there is both pathway- and cell-type dependent modulation of glutamate 

function in the BNST by KOR, allowing for important gating of glutamate 

transmission at DYN+ and DYN- neurons. 

 
 
 
 

DISCUSSION 
 
 

 
The BNST has been shown to orchestrate both rewarding and aversive 

behaviors (Jennings et al., 2013). KORs have historically been thought to modulate 

aversive (or negatively regulate rewarding) systems (Chefer et al., 2005) or anxiety 

related behaviors (though some important exceptions exist (Castro & Berridge, 

2014)), placing KORs at the interesting and likely position of modulating function in 

the BNST. First, we demonstrate that KOR activation in the BNST modulates 

glutamatergic inputs by a presynaptic, p38-, and calcium- dependent mechanism, 

and that this modulation occurs at BLA-BNST synapses but not PFC-BNST 

synapses. Previous work has shown p38-dependent effects of KOR modulation in 

other brain regions, such as the dorsal raphe nucleus (Lemos et al., 2012), and 
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others have postulated that this intracellular signaling pathway may be critical for the 

dysphoric effects of KOR agonists (Bruchas et al., 2007). This is, therefore, a 

pharmacologically distinct mechanism of KOR inhibition of glutamate that is separate 

from KOR effects on GABAergic transmission in the same region (Li et al., 2012). 

Differential control by KORs has been demonstrated in the nucleus accumbens 

(Hjelmstad & Fields, 2003), and these pharmacologically distinct signaling 

mechanisms may play a key role in the development of biased synapse targeting. 

In addition to a pharmacologically distinct mechanism of KOR inhibition, we 

also demonstrate a pathway-specific inhibition of glutamatergic inputs to the BNST. 

This mechanism may provide for gating of information flow both to and from the 

BNST. We also demonstrate a mechanism by which KORs are activated: 

GABAergic/dynorphin co-expressing neurons in the BNST release dynorphin via a 

(likely retrograde) mechanism to presynaptically inhibit glutamate inputs to the 

BNST. This signaling mechanism through which dynorphin regulates transmission 

may be a common motif throughout the brain: it was originally postulated to be the 

mechanism of inhibition in the hippocampus (Drake et al., 1994), and, more recently, 

was shown to be the mechanism of inhibition in the PVN (Iremonger & Bains, 2009). 

We not only show similar findings in the BNST, but we expand upon this literature by 

showing a previously unused optogenetic mechanism for activation of such release. 

This allows for peptidergic and optogenetic coupling, greatly expanding upon the 

ability to assess peptide release both in vitro and in vivo. 

Importantly, we found this KOR inhibition exhibited both cell-type and pathway- 

dependent differences in function. Though BLA inputs to the BNST show similar 
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properties onto both DYN+ and DYN- neurons, there is a greater KOR-mediated 

inhibition of BLA-DYN+ synapses versus BLA-DYN- synapses. These results 

suggest a model in which activation of the BNST by the BLA excites DYN+ neurons, 

and this activation leads to a local retrograde release of dynorphin (Fig 2.6A-B). 

This dynorphin release then gates inputs to the BNST, providing a homeostatic 

balance within the system during times of heightened activity, suggesting a 

mechanism by which KOR antagonists exhibit anxiolytic actions. In addition, this 

further illuminates the micro-circuitry of the BNST and how it may coordinate such a 

broad range of behavioral states, such as those involved in stress and addiction. 

Further, this raises a new strategy for development of anxiolytic compounds— 

blocking endogenous inhibitors of defined circuits that reduce anxiety. 

Further work is necessary to elucidate the downstream effects of BNST 

dynorphin neurons. Specifically, an understanding is needed of their projection and 

activation patterns. This work provides an important framework to begin that 

research: though the circuitry of DYN+ and DYN- neurons may be equal, their 

activation and inhibition may not be. 

Taken together, this work demonstrates a pathway specific, p38- and calcium- 

dependent form of KOR inhibition of glutamate. It also demonstrates a mechanism 

by which retrograde dynorphin release may mediate this presynaptic effect. Finally, 

this work shows that KORs may preferentially inhibit glutamatergic inputs onto DYN+ 

neurons, versus DYN- neurons, allowing for specific gating of information flow. This 

circuit-based approach has numerous advantages over existing approaches, as it 

allows unprecedented precision in defining the substrate and mechanism of action. 
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Given the lack of efficacious and well-tolerated anxiolytic medications currently 

available, this work introduces a novel, site-specific manipulation of the mammalian 

anxiety system. 
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Figure 2.1 - KOR activation inhibits glutamate transmission in the BNST. (A) 

Representative experiment demonstrating KOR-mediated inhibition of eEPSC 

amplitude. Inset, eEPSC trace from the same neuron showing pre (black) and post 

(red) 1µM U69,593 application. Scale bar represents 200pA by 20msec. (B) KOR 

activation by U69,593 inhibited eEPSC amplitude (red circles, paired t-test, baseline 

v. min 21-25, t4 = 30.70, P < 0.001) and was blocked by continuous application of the 

KOR antagonist norBNI, 100nM (yellow circles, paired t-test, baseline v. min 21-25, 

t4 = 0.003, P > 0.05); the KOR agonist U69,593 significantly inhibited eEPSC 

amplitude as compared to the norBNI block effect (unpaired t-test, acsf v. norBNI, 

min 16-20, t8 = 10.22, P < 0.001). (C) Representative experiment demonstrating 
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KOR inhibition by 300nM Dynorphin-A. (D) KOR activation by 300nM Dynorphin-A 

produces a robust inhibition of eEPSCs (red circles, paired t-test, baseline v. min 21- 

25, t4 = 18.65, P < 0.001) that is blocked by the KOR antagonist norBNI (yellow 

circles, paired t-test, baseline v. min 21-25, t4 = 2.783, P = 0.05) mimicking the 

results seen with U69,593 (Fig. 1). Both U69,593 (E) and Dynorphin-A (F) activation 

of KORs are non-reversible forms of inhibition. Post U69,593 application of the KOR 

antagonist norBNI (100nm) failed to reverse the inhibition by either KOR agonist 

(U69,593, paired t-test, baseline v. min 21-25, t4 = 13.88, P < 0.001; Dynorphin-A, 

paired t-test, baseline v. min 21-25, t4 = 14.30, P < 0.001). (G) The p38 inhibitor 

SB203580 (10µM) but not the MEK/ERK inhibitor SL-327 (20µM) blocked KOR- 

mediated inhibition of eEPSCs (SB203580 effect, baseline v. min 16-20, t4 = 2.619, 

P > 0.05; SL-327 effect, baseline v. min 16-20, t4 = 14, P < 0.0001). (H) The PKA 

inhibitor RpCamps (5µM) does not alter KOR-mediated inhibition of eEPSCs (paired 

t-test, baseline v. min 16-20, t4 = 10, P = 0.0004) (I) Representative mEPSC trace 

pre (left) and post (right) U69,593 application, conducted in 500nM TTX and 5µM 

picrotoxin. No significant changes in mEPSC decay kinetics were seen, (not shown, 

paired t-test, t6 = 0.8170, P > 0.1). (J) mEPSC frequency (paired t-test, t5 = 5.567, P 

< 0.001) but not amplitude (K) (paired t-test, t5 = 0.2141, P > 0.1) was reduced 

following application of the KOR agonist U69,593 Raw values for mEPSC frequency 

(not shown, baseline frequency mean = 3.406, SEM = 3.475; post-U69,593 

frequency mean = 2.179, SEM = 1.118) and amplitude (not shown, baseline 

amplitude mean = -29.36, SEM = 1.944, post-U69,593 amplitude mean = -25.71, 

SEM = 1.465). This inhibition is abolished in zero calcium aCSF, where both 
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frequency (L) (paired t-test, t5 = 1.959, P > 0.05) and amplitude (M) (paired t-test, t5 = 
 
2.017 P > 0.05) of mEPSCs remain unaltered by U69,593. (N), model of KOR 

signaling at BNST glutamatergic synapses. Activation of KORs inhibits presynaptic 

glutamate release, likely through a calcium-dependent mechanism. 
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Figure 2.2 - KOR-mediated inhibition of eEPSCs is pathway specific. (A) Left, 

localization of ChR2 viral injection (BLA) and terminal expression (BNST); right, site 

of in vitro ChR2 activation and whole-cell recording. (B) Both the PFC and BLA send 

robust glutamatergic projections to the BNST, which do not differ in amplitude 

(unpaired t-test, t8 = 1.901, P > 0.05). (C) The BLA sends a monosynaptic EPSC and 

significantly time-delayed polysynaptic IPSC (paired t-test, t7 = 5.232, P < 0.01), 

comparable to BLA projections to other outputs. (D) Similarly, the PFC sends a 

monosynaptic EPSC and a significantly time-delayed polysynaptic IPSC (paired t- 

test, t4 = 4.138, P < 0.05). (E) KOR activation inhibits BLA-BNST light-evoked EPSC 

amplitude (paired t-test, baseline v. min 16-20, t4 = 14.86, P < 0.0001). However, 

KOR application did not alter PFC-BNST light-evoked EPSC transmission (paired t- 

test, baseline v. min 16-20, t4 = 0.6899, P > 0.1) (F) U69,593 reduces the fidelity of 

light-evoked BLA-BNST action potentials. When fitted with standard linear 

regression, the slope was significantly non-zero predrug application (F1,28 = 12.86, P 

< 0.01) but not post (F1,28 = 2.472, P > 0.05). The lines also showed significant 

different intercept points (F1,57 = 5.51, P < 0.05). Inset, representative traces of 

action potential fidelity at 20hz 5msec light stimulation pre (dark blue) and post (light 

blue) U69,593 application. Black boxes indicate light pulses. (G) BLA KOR-KO mice 

show similar spontaneous glutamate transmission to control mice, with no 

differences in sEPSC frequency (unpaired t-test, t9 = 0.2308, P > 0.05) or (H) 

amplitude (unpaired t-test, t9 = 0.7782, P > 0.05). (I) Deletion of KORs from BLA 

neurons prevented the KOR-mediated inhibition of BLA-BNST synapses, confirming 

that KORs act presynaptically to inhibit evoked glutamate release. Mice were 
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injected with ChR2 (AAV2- CamKIIα-ChR2-EYFP) and CRE (AAV2-CamKII-CRE- 

GRP) into the BLA, and light-evoked EPSCs were recorded in the BNST. U69,593 

no longer inhibited light-evoked EPSCs (paired t-test, baseline v. min. 16-20, t4 = 

1.474, P > 0.1). 
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Figure 2.3 - Generation of conditional KOR knockout mice. 
 

(A) Generation of conditional KOR knockout mouse. Mice were generated with non- 

conditional (type 1) and conditional (type 2) disruption of the KOR gene. The KOR 

type 1 mice are deleted for exon 1 and type 2 mice have exon 1 flanked by loxP 

sites. Insets show DNA blots of homologous recombination events. These clones 

were transfected with Cre recombinase and PCR screening of individual ES clones 

revealed type 1 (which produces non-conditional mutants) and type 2 (which 

produces conditional knock-outs) recombination events (lower insets). 
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Figure 2.4 - Optogenetic activation of BNST dynorphin neurons inhibits 

eEPSCs on DYN- neurons, and KORs preferentially inhibit glutamate release 

onto DYN+ neurons. (A) Localization of cre-driven ChR2 viral injection to the BNST 

of Dyno-Cre mice. DYN+ cells were found throughout the dorsal BNST (B) Left, local 
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dynorphin cells showed reliable light evoked action potentials at 20 hz. These cells 

synapsed locally, producing a light-evoked IPSC of approximately 423 pA, but no 

light-evoked EPSC. (C) 5 hz stimulation of DYN+ neurons produced a significant 

transient change in eEPSC amplitude (paired t-test, baseline v. min. 5-8, t4 = 6.033, 

P < 0.05), which returned to baseline (paired t-test, baseline v. min 11-15, t4 = 2.474, 

P > 0.05). (D) 20 hz stimulation of local DYN+ neurons produces a significant and 

lasting inhibition of eEPSC (paired t-test, baseline v. min 11-15, t4 = 10.42, P < 

0.001). This effect is partially blocked by norBNI (unpaired t-test acsf v. norBNI 

block, min 16-20, t8 = 10.59, P < 0.0001). (E) 20 hz optogenetic stimulation of PVN 

to BNST DYN+ neurons produces a significant inhibition of eEPSC (paired t-test, 

baseline v. min 11-15, t4 = 8.566, P < 0.001) but this was not significantly different 

from the inhibition seen when in the presence of the KOR antagonist norBNI 

(unpaired t-test, acsf+picrotoxin v. acsf+picrotoxin+norBNI, t8 = 1.191, P > 0.1). (F) 

Mice were injected with a cre-inducible mCherry (AAV5-EF1α-DIO-mCherry) to the 

BNST, and ChR2 (AAV2-CamKIIα-ChR2-EYFP) to the BLA. Optogenetic activation 

of BLA-BNST DYN+ and DYN- neurons was then assessed. (G) Application of the 

KOR agonist U69,593 significantly reduced the BLA-BNST eEPSC amplitude onto 

both DYN+ (paired t-test, baseline v. min 21-25, t4 = 12.14, P < 0.001) and DYN- 

neurons (paired t-test, baseline v. min 21- 25, t4 = 9.039, P < 0.001). However, the 

effect of KOR-mediated inhibition was significantly larger on DYN+ neurons as 

compared to DYN- neurons (unpaired t-test, DYN+ min 21-25 v. DYN- 21-25, t8 = 

7.071, P < 0.001), indicating KOR activation in the BNST may preferentially inhibit 

BLA-DYN+ neurons. 
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Figure 2.5 - DYN+ and DYN- neurons in the BNST show differences in 

membrane properties and intrinsic excitability. 

(A) Membrane resistance was significant lower in DYN+ neurons as compared to 

DYN- cells (unpaired t-test, t63 = 3.528, P < 0.001). (B) Similarly, differences in cell 

capacitance approached significance (unpaired t-test, t63 = 1.852, P = 0.0687).There 

was no significant difference in DYN+ and DYN- neurons in regards to (C) resting 

membrane potential (RMP) (unpaired t-test, t14 = 1.497, P > 0.1), (D) rheobase at 

RMP (unpaired t-test, t14=1.147, P > 0.1), and (E) rheobase when held at -70mV 

(unpaired t-test, t14 = 0.04802, P > 0.1), (F) representative traces of rheobase 

recordings at RMP for both cell types. Scale bar represents 20mV by 500 msec. 

Similarly, there was no difference in (G) the membrane potential at first spike 

(unpaired t-test, t14 = 1.106, P > 0.1) or (H) the membrane potential at first spike 

when held at -70mV (unpaired t-test, t15 = 0.9302, P > 0.1). (I) Representative traces 

of VI plots for both cell types. Scale bar represents 50mV by 100 msec; only every 

other sweep shown for clarity. (J) When recorded at RMP, A 2-way ANOVA 

revealed a significant interaction between current injection and cell type (F20,300 = 

1.936, P < 0.05) and significant effect of current injection (F20,300 = 18.19, P < 

0.0001), but no main effect of cell type (F1,15 = 0.9092, P > 0.1). (K) At -70mV, a 2- 

way ANOVA showed a significant effect of current injection (F20,300 = 34.58 P < 

0.0001) but no effect of cell type (F1,15 = 2.060, P > 0.1). (L) BLA-BNST optogenetic 

activation produced eEPSCs of equal amplitude onto DYN+ and DYN-DYN- neurons 

(t30 = 0.2233, P > 0.05 (M) as well as eIPSC (t35 = 0.8121, P > 0.1). (N) There was 
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also no difference in eEPSC PPR (t32 = 0.7981, P > 0.1) or (O) eIPSC PPR (t32 = 

0.4164, P > 0.1). 
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Figure 2.6 - KORs inhibit glutamate release by a pathway specific, presynaptic 

mechanism, and this inhibition is preferential to DYN+ neurons. 

(A) KORs in the BNST presynaptically inhibit glutamate inputs from the BLA, but not 

PFC. (B) This presynaptic inhibition of BLA inputs shows cell type specificity; there is 

greater KOR modulation of BLA-DYN+ synapses than BLA-DYN- synapses. In 

addition, this inhibition likely arises from retrograde release of dynorphin from BNST 

GABA/dynorphin neurons. This allows for dynorphin to preferentially control the 

strength of BLA-BNST synaptic transmission, likely influencing downstream nuclei. 
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CHAPTER 3: CHANGES IN KAPPA OPIOID RECEPTOR FUNCTION 

FOLLOWING AN ANIMAL MODEL OF ALCOHOL EXPOSURE 

 
 
 
 

INTRODUCTION 
 
 

 
Alcohol use disorders (AUDs) comprise a major public health epidemic in the 

United States, and extant pharmacological treatments have had limited success. In 

addition, AUDs often have high comorbidity with anxiety disorders, suggesting 

common pathways and targets in these chronic and potent diseases (Sanchez-Pena 

et al., 2012). Thus far, attempts to treat comorbid alcoholism and anxiety have had 

inconclusive effectiveness (for systematic review, see Ipser et al., 2015). Kappa 

opioid receptors (KORs) have been proposed as a promising therapeutic target for 

AUDs; KOR antagonists have been shown to reduce alcohol consumption in rodents 

in free-drinking studies (Cashman & Azar, 2014), operant paradigms (Henderson- 

Redmond & Czachowski, 2014), and animals that are already alcohol dependent 

(Walker & Koob, 2008). Complementary work has shown that KOR agonists can 

reinstate alcohol seeking (Funk et al., 2014). In addition, alcohol has been shown to 

increase the levels of prodynorphin (pDyn) throughout the brain (Marinelli et al., 

2006,  D'Addario  et  al.,  2011,  D'Addario  et  al.,  2013),  suggesting  that  both  the 
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receptor and ligand may undergo alterations. These findings have led to promising 

clinical trials using KOR antagonists for the treatment of alcoholism (for detailed 

review, see Crowley & Kash, 2015). However, the neurobiological locus of this 

potentially encouraging treatment has not been identified. Most of the existing 

literature focuses on interactions between alcohol and KOR/pDyn in the amygdala 

and extended amygdala, most notably the central nucleus of the amygdala (CeA; 

Zhou et al., 2013). Activation of KORs has been shown to modulate GABA 

transmission, as well as the interaction between GABA and ethanol in the CeA 

(Gilpin et al., 2014). The bed nucleus of the stria terminalis (BNST), a region of the 

extended amygdala involved in integrating cortical and limbic information for 

behavioral responses, is abundant in both KORs and pDyn (Poulin et al., 2009). 

Recent work has highlighted the role of KORs in the BNST (Li et al., 2012), but the 

role of BNST KORs and alcoholism remains unexplored. 

Chronic intermittent ethanol (CIE) has been commended as a model that 

achieves stable and clinically relevant blood ethanol concentrations (BECs) in mice 

(Lopez et al., 2012). In this model, mice are exposed to vaporized ethanol for 14-16 

hours, after which they return to their home cage for 8-10 hours. This exposure is 

repeated for 4-5 days, which constitutes one cycle. Exposure paradigms use 1-4 

cycles, with longer (2-3 day) withdrawal periods in between cycles (i.e. four days of 

exposure, three days of withdrawal, repeated for two cycles; Melendez et al., 2012). 

This model has been used to elicit changes in BNST synaptic physiology (Kash et 

al., 2009) and related behavior (Marcinkiewcz et al., 2015). 

In the current study, male DBA/2J mice were exposed to this CIE model for 
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one cycle. Following a 5 day exposure and 24 hour withdrawal, we assessed 

changes in pDyn- and KOR-relative gene expression and KOR-mediated synaptic 

transmission in the BNST. Finally, we assessed changes in social behavior. We 

found alterations in KOR-relative gene expression, and changes in both KOR- 

modulation of GABA and glutamate transmission. In addition, we found that mice 

exposed to CIE displayed a KOR-dependent reduction in social behavior. Taken 

together, this work provides important evidence for the mechanism of a KOR- 

mediated treatment of alcohol abuse and alcoholism. 

 
 

 
MATERIALS AND METHODS 

 
 

 
Subjects 

 

Male DBA/2J mice (6-7 weeks; Jackson Labs, Bar Harbor, ME) were 

maintained in accordance with the University of North Carolina–Chapel Hill IACUC 

guidelines. Mice were housed 2-4 littermate mice to a cage and were provided 

standard rodent chow and water ad libitum throughout the duration of the study. All 

mice within the same cage received the same treatment (i.e., ethanol or air 

exposure). Mice were housed in the colony housing room for approximately 1-2 

weeks to allow for ample acclimation following transport. Lighting in both the 

vivarium and ethanol chamber room were on a 12hr cycle, with lights on at 7AM. 

Following acclimation, mice underwent CIE or air exposure, as described below  

(Fig. 3.1A). 
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Chronic intermittent ethanol (CIE) exposure 
 

Mice were exposed to 5 consecutive days of CIE or air as previously described 

(Becker & Lopez, 2004, Lowery-Gionta et al., 2015, Marcinkiewcz et al., 2015). 

Between 4PM and 5PM daily, both air- and ethanol-exposed mice were taken from 

the vivarium to the ethanol chamber room. All mice received an intraperitoneal 

injection with the alcohol dehydrogenase inhibitor pyrazole (1 mmol/kg in 0.9% 

saline) to generate stable BECs throughout ethanol exposure (see Lowery-Gionta et 

al., 2015 for blood ethanol concentrations). CIE mice were placed with cage mates 

into the cage compartments of vapor chambers (La Jolla Alcohol Research, Inc., La 

Jolla, CA). CIE mice were exposed to ethanol vapor from bubbled 95% ethanol and 

air (15 l/min), to produce BECs of 150-200 mg/dl (approximately 16 hours overnight). 

Air exposed mice were placed in chambers with the same air flow rate but did not 

receive vaporized ethanol. All mice were removed from the vapor chamber cages 

between 8AM and 9AM the next day, returned to their home cages, and taken back 

to vivarium (approximately 8 hours). This procedure results in 5 x 16 hour-exposures 

to ethanol vapors and 4 x 8 hour-withdrawal periods. Following the final exposure to 

ethanol vapor, mice were placed back in their home cage and left for 24 hours 

without disturbances prior to experiments. 

BECs were determined with the Analox Alcohol Analyzer (Analox Instruments) 

using plasma extracted from ~20ul blood samples taken from the tail identical to 

those described previously (Lowery-Gionta et al., 2015, Marcinkiewcz et al., 2015; 

data not shown). BECs were taken from mice not used for other experimental 

purposes to minimize stress. 
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Electrophysiology 
 

24 hrs following the final ethanol or air exposure, mice were used for 

electrophysiology experiments as described previously (Pleil et al., 2015). Briefly, 

mice were deeply anesthetized under isoflurane and rapidly decapitated. Brains  

were immediately placed in ice-cold high sucrose cutting solution, containing the 

following (in mM): 194 sucrose, 20 NaCl, 4.4 KCl, 2 CaCl2, 1 MgCl2, 1.2  NaH2PO4, 

10.0 glucose, and 26.0 NaHCO3. 300µM coronal hemi-sected slices containing the 

BNST were prepared on a Leica VT1200 Vibratome, and were transferred to normal 

aCSF maintained at approximately 30 degrees (Warner Instruments, Hamden, 

Connecticut) containing the following (in mM): 124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 

MgSO4, 1 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3. Slices were allowed to rest 

for one hour, and remained there until used. Slices were continuously bubbled with a 

95% O2 / 5% CO2 mixture throughout slicing and experiments. Thin-walled 

borosilicate glass capillary recording electrodes (3–6 MΩ) were pulled on a Flaming- 

Brown micropipette puller (Sutter Instruments, Novato, CA). Following rupture of the 

cell membrane, cells were allowed to rest and equilibrate to the intracellular 

recording solutions (below). Input resistance was monitored continuously throughout 

the experiment, and when it deviated by more than 20% the experiment was 

discarded. 

Lidocaine N-ethyl bromide (1 mg/ml) was included in the intracellular recording 

solution to prevent postsynaptic sodium spikes for all experiments. Electrically 

evoked excitatory post-synaptic currents (eEPSCs) and electrically evoked inhibitory 
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post-synaptic currents (eIPSCs) were evoked using a twisted bipolar nichrome wire 

placed dorsal to the recording electrode. 

In order to isolate EPSCs, cells were patched with a cesium-gluconate-based 

intracellular recording solution, containing the following (in mM): 135 cesium 

gluconate, 5 NaCl, 10 HEPES, 0.6 EGTA, 4 ATP, 0.4 GTP. 5 µM picrotoxin was 

bath-applied to the slices, and cells were voltage-clamped at -70mV. In order to 

isolate IPSCs, cells were patched with potassium-chloride/potassium-gluconate- 

based intracellular recording solution, containing the following (in mM): 70 KCl, 65 

potassium gluconate, 5 NaCl, 10 HEPES, 2 QX-314, 0.6 EGTA, 4 Na-ATP, 0.4 Na- 

GTP. 3mM kynurenic acid was bath applied to the slices, and cells were voltage- 

clamped at -70mV. 1µM U69,593 and 100nM norBNI were bath-applied where 

indicated in Figure legends. 

 

 
Social Approach Behavior 

 

24 hrs following the final ethanol or air exposure, mice were brought from the 

vivarium to the testing area. For at least 30 min prior to injections, mice remained in 

their home cages in a light- and sound-attenuating cabinet. Following this period, 30 

min prior to behavioral testing, mice were injected i.p. with either the KOR antagonist 

JDTic (10 mg/kg dissolved in 0.9% saline; injection volume of 10 ml/kg) or saline 

vehicle. Mice were then returned to the light- and sound-attenuating cabinet until 

testing. 

The social approach test took place in a 3-chambered plexiglass apparatus 

divided  by  two  panels  separating  the  left  and  right  chambers  from  the   middle 
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chamber, with small openings at the base of each panel to allow movement between 

chambers (Fig 3.1B). Between test phases, mice were confined to the center 

chamber. The social approach test consists of three 10 min phases: habituation, 

sociability, and social novelty (habituation and social novelty data not shown). In the 

habituation phase, mice freely explore all three chambers, which are empty. In the 

sociability phase, the side chambers each contain a circular plexiglass cage. One 

cage is empty while the other cage contains a novel mouse, with which the test 

subject has never interacted (the side of the empty cage and the cage with a novel 

mouse are randomized). In the social novelty phase, a different novel mouse is 

placed in the empty cage from the sociability phase (i.e., the novel mouse-paired 

side remains consistent). The chamber side containing the novel mouse in the 

sociability phase was counter-balanced within ethanol and air exposed, and JDTic 

and vehicle treatment groups. 

All phases were video recorded and were analyzed using EthoVision (Noldus, 

Wageningen, The Netherlands). Time (s) spent in the area directly surrounding the 

cages was quantified using EthoVision. The “sociability ratio” score was calculated 

by 

�𝑖𝑚𝑒 𝑤𝑖�ℎ 𝑚���𝑒 ÷ �𝑖𝑚𝑒 𝑤𝑖�ℎ 𝑒𝑚��𝑦    𝑐𝑎𝑔𝑒 
 
where a value of 1 indicates no preference for social approach, values greater   than 

 
1 signify a preference for social approach, and values less than 1 indicate an 

aversion to social approach. 

Prior to being used in the social approach behavioral task, the mice used as 

novel mice were habituated to the circular plexiglass cage for ten minutes per day 
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for three days. The novel mice reside in a separate vivarium than the CIE and air 

exposed mice. 

 

 
RNA detection and quantification 

 

Mice were anesthetized with isoflurane and rapidly decapitated. The brains 

were blocked into 1mm coronal slices and immediately placed on dry ice. Once the 

tissue was frozen, punches were collected from all regions of interest. All tools were 

cleaned between samples with 70% ethanol. Both hemispheres for each region were 

combined, and tissue samples were stored in RNA later solution until processed by 

the UNC Animal Clinical Chemistry and Gene Expression Laboratories. RNA  

isolation and RT-QPCR were conducted identically to methods published previously 

(Kim et al., 2002). Sequence information of primers and probes is available in Table 

1.1. 

 

 
Data analysis and statistics 

 

Data are expressed as means ± SEM for all Figures. Two-way  ANOVAs, 

paired t-tests, unpaired t-tests, or Mann-Whitney U were used for all experiments, as 

described in Figure captions. Statistical analyses were conducted using Prism 6.0 

(GraphPad, La Jolla, CA), and Figures were made using Prism 6.0 (Graphpad, La 

Jolla, CA) and Illustrator CC 2015 (Adobe, San Jose, CA). 
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RESULTS 
 
 

 
KOR relative gene expression is reduced following CIE 

 

Levels of pDyn- and KOR-relative gene expression were probed in the BNST 

following one week of CIE. Though levels of pDyn-relative gene expression were 

lower, they were not significantly altered (Fig 3.2A). However, levels of KOR-relative 

gene expression were significantly reduced following CIE (Fig 3.2B). 

 

 
Ethanol-exposed mice show differences in KOR-modulation of glutamate and GABA 

transmission 

Ethanol-exposed and air-exposed mice did not show any differences in BNST 

eEPSC frequency or amplitude (Fig 3.3A-C). However, despite the similarities 

between basal glutamatergic transmission in ethanol-exposed and air-exposed mice, 

differences emerged when assessing the KOR-mediated alterations of glutamate. 

The KOR agonist U69,593 produced a significantly smaller inhibition of eEPSCs in 

ethanol-exposed mice as compared to air-exposed mice (Fig 3.3D). In addition,  

there were small but significant differences in norBNI-mediated alterations in 

eEPSCs (Fig 3.3E). 

Similar to glutamate, ethanol-exposed and air-exposed mice did not show 

differences in BNST sIPSC frequency or sIPSC amplitude (Fig 3.4A-C). The KOR 

agonist U69,593 produced a significantly greater inhibition of eIPSCs in ethanol- 

exposed mice as compared to air-exposed mice (Fig 3.5D-E). In addition, there  

were significant differences in norBNI-mediated alterations in eIPSCs, with norBNI 
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application producing robust LTP in ethanol-exposed mice (Fig 3.5E). 
 
 
 
Ethanol-exposed mice show deficits in social behavior, which is partially rescued by 

the KOR-antagonist JDTic 

Next, we sought to determine whether CIE-exposure-induced changes in 

sociability were mediated by KORs. The KOR antagonist JDTic had no effect on the 

social preference score in air-exposed mice (Fig 5A). However, systemic 

administration of the KOR antagonist JDTic was able to significantly increase the 

social preference score in ethanol-exposed mice (Fig 5B). 

 
 

 
DISCUSSION 

 
Modulating KOR signaling has been proposed as a promising treatment for 

both alcohol addiction and anxiety-related disorders. Despite the progression of  

KOR antagonists to clinical trials, the mechanism of this potential therapy is not well 

understood. Here, we find that a model of alcohol exposure alters the KOR system  

in the BNST, a region known to be involved in addiction and anxiety. Activation of 

KORs at glutamatergic synapses results in an increased inhibition of glutamate in 

ethanol-exposed mice as compared to air-exposed mice, whereas the  opposite 

effect is seen at GABAergic synapses. This is likely to reflect KOR modulation of 

different inputs (i.e. the CeA and the BLA). Following CIE, we discovered norBNI- 

induced potentiation at GABAergic synapses, but not at glutamatergic synapses. 

This lack of an effect at glutamate synapses is likely due to opioid-mediated long- 

term depression (LTD), as seen in the striatum (Atwood et al., 2014). Here, the 
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authors demonstrated that norBNI is unable to reverse U69,593-mediated inhibition 

at glutamate synapses. Therefore, we hypothesize that following CIE, there is tonic 

dynorphin activation of KORs at both glutamatergic and GABAergic synapses, but 

the opioid-induced LTD makes it difficult to unmask. The reduced efficacy of  

U69,593 at glutamate synapses following CIE is likely due to a combination of 

opioid-induced LTD and, perhaps, reduced receptor expression. In addition to  

finding alterations in plasticity, we demonstrate that the KOR antagonist JDTic has 

the potential to rescue CIE-induced deficits in social behavior. Though the  

alterations in social behavior were conducted with systemic administration of the 

antagonist, when coupled with the electrophysiology results, they implicate the  

BNST as a potential regulator of alcohol-induced changed in social behavior.  

Indeed, other studies have shown glutamate signaling in the BNST to be essential  

for aggression (Masugi-Tokita et al., 2015), and serotonergic control of social 

interaction has been shown to be altered following CIE (Marcinkiewcz et al., 2015). 

Taken together, this work implicates KOR signaling in the BNST as a further 

regulator of alcohol-induced changes in social behavior. 
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TaqMan Primers and Probes 

Gene Type Sequence (5’-3’) 

Pdyn Forward 

Reverse 

Probe 

CCT GAT TTG CTC CCT GGA GT 

ATG AGA AGC CCC GGC ATG TC 

f AGG ACC TGG TGC CGC CCT CAG Aq 

Oprk1 Forward 

Reverse 

Probe 

GGT CAT GTT TGT CAT CAT CCG 

CAT CTG CCA AAG CCA GGT TA 

f CAC GAA GAT GAA GAC CGC AAC CAA C q 

β-Actin Forward 

Reverse 

Probe 

CTG CCT GAC GGC CAG GTC 

 
CAA GAA GGA AGG CTG GAA AAG A 

 
t CAC TAT TGG CAA CGA GCG GTT CCG q 

f, Reporter dye1 (FAM:6-carboxyfluorescein); t, Reporter dye2 (TET:Tetrachloro-6- 

carboxyfluorescein); q, Quencher dye (TAMRA: 6-carboxytetramethyl1-rhodamine) 

 
 

Table 3.1 – sequence information for primers and probes. 
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Figure 3.1 - CIE exposure schedule and social approach arena. (A) Mice were 

exposed to ethanol or air for 16 hrs a day with an 8 hr withdrawal. Prior to each 

session, both ethanol- and air- exposed mice received priming injections of the 

alcohol dehydrogenase inhibitor pyrazole (1mmol/kg). Following the last exposure, 

mice were returned to the vivarium for 24 hrs prior to use for behavioral or 

electrophysiology experiments. (B) Social approach arena as described in methods. 

Arena contained a center zone and two social approach zones. 
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Figure 3.2 – Dynorphin-relative gene expression remains unaltered, while 

KOR-relative gene expression is reduced following CIE exposure. (A) 

Dynorphin-relative gene exposure is not significantly altered following CIE exposure 

(Mann Whitney U = 20, n1=10, n2=9, P > 0.05 two-tailed). (B) KOR-relative gene 

exposure is significantly reduced following CIE exposure (Mann Whitney U = 16, 

n1=10, n2=9, P < 0.05). Both experiments are normalized to β-actin. 
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Figure 3.3 - Following CIE, ethanol-exposed mice show a decrease effect of 

KOR activation on glutamate transmission. (A) Traces showing air-exposed 

(orange) and ethanol-exposed (blue) sEPSCs. (B) Ethanol-exposed and air-exposed 

mice did not show any significant differences in BNST sEPSC frequency (unpaired t- 

test, ethanol v. air, t16 = 0.5259, P > 0.05). (C) Similarly, no significant differences in 

sEPSC amplitude were seen (unpaired t-test, ethanol v. air, t16 = 0.4601, P > 0.05). 

(D) Ethanol-exposure resulted in a reduced KOR-mediated inhibition of eEPSCs 

(unpaired t-test, ethanol v. air min 16-20, t8 = 10.63, P < 0.0001). Inset, traces 

showing baseline (orange and blue) and post-drug (grey). (E) A small but significant 

difference was seen with application of norBNI (unpaired t-test, ethanol v. air min 21- 
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25, t9 = 7.362, P < 0.0001). Inset, traces showing baseline (orange and blue) and 

post-drug (grey). 
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Figure 3.4 - Following CIE, ethanol-exposed mice show a greater KOR-induced 

inhibition of GABA transmission. (A) Traces showing air-exposed (orange) and 

ethanol-exposed (blue) sIPSCs. (B) Ethanol-exposed and air-exposed mice did not 

show any differences in BNST sIPSC frequency (unpaired t-test, ethanol v. air, t19 = 

0.1141, P > 0.05) Traces showing ethanol-exposed (blue) and air-exposed (orange) 

sIPSCs. (C) and did not show any differences in sIPSC amplitude (unpaired t-test, 

ethanol v. air, t19 = 1.663, P > 0.05). Inset, traces showing baseline (orange and  

blue) and post-drug (grey). (D) Ethanol-exposure induced a greater KOR-mediated 

inhibition  of  eIPSCs  (unpaired  t-test,  ethanol  v.  air  min  16-20,  t8   =  10.35,  P < 
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0.0001). (E) In addition, eIPSCs are potentiated by norBNI in ethanol-exposed mice 

(unpaired t-test, ethanol v. air, min 21-25, t8 = 8.610, P < 0.001). Inset, traces 

showing baseline (orange and blue) and post-drug (grey). 
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Figure 3.5 - CIE causes a decrease in social preference that is partially  

rescued by pretreatment with a KOR antagonist. (A) Air-exposed mice do not 

show any significant changes in social preference following treatment with JDTic 

(unpaired t-test, saline v. JDTic, t17 = 0.596, P > 0.05). (B) However, ethanol- 

exposed mice show an increase in social preference following treatment with JDTic 

(unpaired t-test, saline v. JDTic, t9 = 2.427, P = 0.0350). Though these levels do not 

reach those of air exposure mice, they do represent a significant rescue of the 

phenotype. 
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CHAPTER 4: GENERAL DISCUSSION 
 
 
 
 
 
 
 

ALCOHOL USE DISORDERS, ANXIETY, AND KORs 
 
 

 
Alcohol use disorders (AUDs) constitute one of the leading causes of 

preventable death (Hingson, Zha, & Weitzman, 2009), making it a major global 

public health concern (Room, 2005). In addition AUDs have a strong comorbidity 

with many psychiatric disorders (Hasin & Grant, 2015), and alcohol dependence is 

associated with three times greater risk for depression and six times greater risk for 

anxiety disorders (Klimkiewicz et al., 2015). Though many behavioral and 

pharmaceutical treatments for AUDs exist, there is no comprehensively effective 

treatment for either disorder (Witkiewitz et al., 2015). Targeting kappa opioid 

receptors (KORs) as therapeutic intervention for both anxiety disorders and AUDs is 

at the forefront of treatment research (Walker et al., 2015). Changes in the KOR/dyn 

system have been noted in post-mortem brains of alcoholics, further suggesting an 

interaction between alcohol dependence and this anxiety-related system (Bazov et 

al., 2013, Taqi et al., 2011). The literature suggests that KOR activation may be a 

key component of ethanol-withdrawal-induced anxiety, making it a likely candidate 
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for the treatment of both disorders. Administration of alcohol increases extracellular 

dynorphin levels in the accumbens (Marinelli et al., 2006), as well as the central 

amygdala (CeA; (Marinelli et al., 2006). Activation of KORs has been shown to 

mitigate ethanol-withdrawal induced-anxiety related behaviors (Valdez & 

Harshberger, 2012), termed “hangover anxiety” (Valdez & Harshberger, 2012). KOR 

antagonists can block the potentiating effect of stress on alcohol conditioned place 

preference (CPP; (Sperling et al., 2010), while KOR agonists can induce alcohol 

CPP in a manner similar to stress-induced alcohol CPP (Walker et al., 2012). 

Importantly, the role of KORs in ethanol-withdrawal induced anxiety-related 

behaviors has been noted long after ethanol exposure, up to six weeks in rodents 

(Gillett, Harshberger, & Valdez, 2013). However, it is unlikely that the interaction 

between KORs and alcohol is as straightforward as this; others have postulated that 

KOR-mediated withdrawal-induced anxiety is relieved by further alcohol 

consumption, implicating a more complex interaction between KORs, anxiety, and 

alcohol (Walker & Koob, 2008). This complex interaction between KORs and alcohol 

has led to the testing of various KOR antagonists in multiple clinical trials for the 

treatment of AUDs, depression, and anxiety (Crowley & Kash, 2015). However, 

KORs throughout the brain have not been well characterized, limiting their utility as a 

pharmacological treatment (for review, see (Crowley & Kash, 2015)). It is prudent to 

better understand how KORs facilitate interactions between anxiety and alcohol use. 

Here, our overall goals were two-fold: (1) to identify the signaling and function of 

KORs in the BNST, an alcohol- and anxiety- relevant brain region and (2) to identify 

how  KOR  functioning  in  this  region  is  modulated  following  a  model  of  alcohol 
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consumption. 
 

Though both KOR and dynorphin mRNA have been demonstrated to be 

anatomically present in the BNST (Poulin et al., 2009), few studies exist assessing 

the role of KORs in altering BNST neurotransmitter signaling or function. Poulin and 

colleagues hypothesized that either KORs were expressed presynaptically in the 

BNST or that dynorphin was released locally there; we confirmed both hypotheses 

with this work. Systemic administration of the KOR agonist Salvinorin-A was found to 

cause metabolic activation in the BNST (Hooker et al., 2009), producing further 

evidence of KOR functioning in the BNST. Li, Pleil, et al. (2012) first demonstrated 

direct functional KOR modulation in this region. They found that activation of KORs 

inhibited GABAergic transmission, specifically at (but not limited to) GABAergic 

projections arising from the central amygdala (CeA). In addition, this KOR-induced 

inhibition was found to be dependent upon ERK signaling. Their paper confirmed 

previous anatomical work and demonstrated that KORs in the BNST have an 

important inhibitory control over GABAergic signaling. 

 
 

 
KORs IN THE BNST 

 
 

 
Building upon the work by Li, Pleil, et al. (2012), we assessed how KORs exert 

control over glutamatergic signaling in the same region. We found that KORs in the 

BNST inhibit electrically-evoked glutamate release, albeit through a different 

mechanism than they employ in GABA release. Though KORs at GABAergic 

synapses  inhibit  transmission  through  ERK  signaling,  KORs  at      glutamatergic 
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synapses inhibit transmission via p38-dependent signaling. This divergent signaling 

mechanism in a singular region has been demonstrated elsewhere, such as in the 

nucleus accumbens (Hjelmstad & Fields, 2003). This finding has implications for the 

development of biased signaling ligands: p38 signaling via KOR activation has been 

identified as being responsible for the dysorphia-like effects of KOR agonists 

(Bruchas et al., 2007). Though not addressed in the Li, Pleil, et al. paper or the 

current study, drugs targeting subsets of synapses or signaling cascades within 

specific brain regions may be developed for use as therapeutic compounds without 

side effects. Biased ligands have been developed at other receptors, such as the 

dopamine D2 receptor, resulting in greater symptom-specific targeting (Allen et al., 

2011). Some attempts have been made to identify biased ligands at the KOR (White 

et al., 2014), but more work is needed. 

We next demonstrated that KORs inhibit specific glutamate inputs to the BNST; 

though the glutamatergic projection from the basolateral amygdala (BLA) is inhibited 

by KOR activation, the glutamatergic projection from the prefrontal cortex (PFC) 

remains unaltered following bath application of the KOR agonist. Interestingly, KORs 

inhibit other BLA outputs, such as that projecting to the PFC (Tejeda et al., 2015). 

This result has important implications, suggesting that KORs in the BNST filter 

specific glutamatergic pathways into the region. Four important questions arise from 

these results. 

(1) How are other glutamatergic and GABAergic projections to the BNST 

altered by KOR activation? Future experiments should address other excitatory 

projections to the BNST, such those that arising from the hippocampus (HIPP) and 
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other cortical regions. In addition, though KORs are known to inhibit the GABAergic 

input from the CeA, other GABAergic projections, such as those arising from the DR, 

should be investigated as well. 

(2) Do PFC and BLA projections synapse onto the same neurons within the 

BNST? The current experiments demonstrated that while KORs inhibit BLA and not 

PFC projections to the BNST, the experiments were done in separate mice, thus 

limiting the interpretation. Future experiments should address whether PFC and BLA 

projections synapse onto the same, overlapping, or entirely different neurons. These 

experiments could be conducted using a combination of traditional ChR2 and 

ReaChR, a red-shifted channelrhodopsin (Lin et al., 2013). Though important 

differences between ChR2 and ReaChR exist, the combination of the two would be 

useful for basic circuitry identification. 

(3) Do PFC and BLA projections influence different BNST output neurons? If 

we learn whether PFC and BLA neurons synapse onto a portion of the same or 

different BNST neurons, we could then investigate whether these connections have 

different control over downstream regions. The BNST sends projections to many 

regions implicated in anxiety, reward, and addiction related behaviors, such as the 

VTA (Jennings, Sparta, et al., 2013) and the LH (Jennings et al., 2013). Experiments 

using a combination of anterograde and retrograde viruses, as well as chemogenetic 

cell-type identification, could help elucidate this. 

(4) Do KORs inhibit all BLA outputs? KORs inhibit the BLA projections to the 

BNST and PFC, and it would be interesting to address other outputs including the 

HIPP, which is known to regulate a strong anxiety-related behavioral phenotype 
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(Mamiya et al., 2014). KORs are known to be expressed in the HIPP (Wagner, 

Terman, & Chavkin, 1993), making this site a likely candidate for a similar circuit. 

Previous work has demonstrated the importance of BLA projections, including 

those to the BNST, in regulating anxiety-related behaviors (Felix-Ortiz et al., 2013; 

Kim et al., 2013). Indeed, we confirmed the importance of the BLA-BNST circuit as a 

key mediator of anxiety-related behaviors in both the open field and the elevated 

plus maze (unpublished data in collaboration with Michael Bruchas, University of 

Washington-St. Louis), and we demonstrated ex vivo that KORs are an important 

regulator of this circuit. Other neuropeptides within the BNST have robust behavioral 

effects as well (Pleil et al., 2015), though they have not been assessed in the context 

of the BLA-BNST circuit. This work provides an important reminder for all 

optogenetic research that, though light activation of a singular pathway may be 

sufficient to drive elegant behavioral phenotypes in animal models, these pathways 

do not exist in a vacuum. It is important to consider the brain’s natural checks and 

balances against hyperstimulation of any one pathway, such as in the current case, 

where peptidergic activation is capable of overriding a circuitry-driven phenotype. 

This has important implications for translational research and goals founded on 

optogenetic studies. 

We next demonstrated optogenetic, frequency-dependent control over 

dynorphin release within the BNST. Previous work demonstrated KOR-dependent 

inhibition following electrical stimulation (Neumaier & Chavkin, 1989), and to our 

knowledge, our experiments are the first to demonstrate peptidergic release using 

optogenetics.  These  experiments  provide  an  important  advancement  over     the 
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traditional methodology used to look at neuropeptide effects. Traditionally, peptide- 

induced effects are assessed either using bath application (ex vivo) or systemic 

administration and site-specific infusion (in vivo). In both cases, the physiological 

relevance of both concentrations and activation patterns is unknown. Here, we find 

that 20 hz activation of dynorphin/GABAergic local neurons in the BNST is capable  

of inhibiting electrically-evoked glutamate release in a manner indistinguishable from 

that seen with ex vivo bath application of KOR agonists. Four important questions 

arise from these experiments. 

(1) Do BNST dynorphin neurons only release dynorphin in the BNST, or are 

similar effects seen downstream? Though BNST dynorphin neurons are known to 

project to other regions such as the LH (Thomas Kash, unpublished data) it is not 

known whether dynorphin is released downstream. In the current work, we 

demonstrated that, using the same 20 hz activation protocol, dynorphin-containing 

PVN projections to the BNST do not inhibit glutamate in the BNST in a KOR- 

dependent manner. This, coupled with other experiments in the literature, suggests 

that local, not long-range, release of dynorphin is a common motif throughout the 

brain. Nonetheless, it would be prudent to thoroughly characterize this effect by 

demonstrating that the same 20 hz activation of BNST dynorphin neurons does not 

produce glutamate inhibition in projection sites. 

(2) Does optogenetically-stimulated dynorphin release produce similar effects 

in vivo? Preliminary experiments suggest that a 5 minute, 20 hz stimulation of 

dynorphin/GABA neurons in the BNST can alter anxiety-related phenotypes seen in 

the  elevated  plus  maze  and  open  field  (Nicole  Crowley  and  Jonathan  Sugam, 
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unpublished data). However, these experiments require replication, and further 

experiments are needed to address any behavioral contribution from the presumed 

co-release of GABA. Though the slice experiments were conducted in the presence 

of the GABAA blocker picrotoxin, behavioral experiments will need to be conducted 

with site-specific infusion of the GABAA antagonist as well. And, like the ex vivo 

experiments, it will be important to tease apart the effects of GABA (and putatively, 

dynorphin) downstream. 

(3) What activates BNST dynorphin neurons? Though we demonstrated that 

BLA neurons synapse onto BNST dynorphin neurons, BLA neurons have been 

shown to fire in vivo in ranges under 10 hz (Pelletier et al., 2005), not fast enough to 

drive the effects seen here. Therefore, either another source of excitatory drive 

exists, or dynorphin neurons exist in a quiescent state until disinhibited. 

Understanding how dynorphin neurons are activated will help to place the circuit in 

greater context. 

(4) Does this paradigm actually mimic in vivo firing patterns of dynorphin 

neurons? Though this protocol is sufficient to obtain dynorphin-mediated effects ex 

vivo and is an advancement over traditional pharmacological bath application of  

KOR agonists, it remains to be seen whether it is truly representative of endogenous 

firing activity of these neurons. Single-unit recording combined with optogenetic 

identification of dynorphin-expressing neurons could be used to understand how 

these neurons fire in different states (i.e., under stressful conditions) and whether a 

similar high-frequency firing pattern can be observed. 

We also demonstrate that activation of KORs results in greater inhibition of 
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BLA-BNST glutamate onto DYN+ neurons compared to the inhibition seen at DYN- 

neurons. Three questions arise from these experiments. 

(1) How are DYN+ and DYN- neurons organized within the BNST? Other work 

has suggested that neurons within the oval nucleus versus non-oval nucleus  

neurons can be identified by the presence of D1 receptors (Kim et  al.,  2012). 

Though preliminary investigations do not indicate that DYN+ neurons are expressed 

in any singular sub region of the BNST, a more thorough analysis is warranted. This 

will have important implications for the next question. 

(2) Do these separate populations interact? The current set of experiments 

simply looked at BLA projections onto DYN+ and DYN- neurons separately. Other 

experiments demonstrate that dynorphin neurons do synapse locally (discussed 

above) and interestingly, these DYN+ to DYN- synapses are also inhibited by KOR 

activation (Crowley, unpublished data). This creates an interesting circuit whereby 

KORs inhibit BLA projections to DYN+ neurons, DYN- neurons, and the local 

interaction of DYN+ to DYN- (though the percent of inhibition by KORs differs). 

Another layer on top of this is the CeA projection to the BNST, which is also inhibited 

by KOR activation (Li et al., 2012). Due to the apparent near ubiquity of KOR 

inhibition of the BNST, it will be important to tease apart the precise circuitry on both 

a macro and micro level. 

(3) Do these separate populations represent divisions between other 

neuropeptide populations? Other peptidergic populations exist within the  BNST, 

most notably corticotrophin releasing factor (CRF). Interactions between CRF and 

dynorphin have been proposed (Bruchas et al., 2009), though the direction of this 
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relationship has been highly debated. Some work has demonstrated potential 

interactions between CRFRs and KORs (Thomas Kash, Kristen Pleil, and Nicole 

Crowley, unpublished data) but more work is needed. 

 
 

 
KORs, THE BNST, AND ALCOHOL 

 
 

 
Alcoholism is a chronic relapsing disorder (Koob, 2013). Alcohol exposure has 

been shown to activate neurons within the BNST (Chang, Patel, & Romero, 1995) 

but little is known about the precise interaction between KORs and alcoholism. We 

identified changes in KOR functioning in the BNST following an animal model of 

alcohol consumption, chronic intermittent ethanol exposure (CIE). CIE  protocols 

have been shown to produce many changes in synaptic physiology. Previously, we 

found no changes in BLA intrinsic excitability or current-injected action potential 

firing, following one week of CIE (Nicole Crowley, unpublished data), though 

changes in BLA excitability have been seen with anxiety-inducing protocols (Rau et 

al., 2015). Longer cycles of CIE produced changes in synaptic drive and intrinsic 

excitability in ventral BNST, with CIE exposed mice having much more excitable 

neurons than control littermates (Pleil et al., 2015). In addition, CIE-induced changes 

have been demonstrated elsewhere in the rodent brain (Holmes et al., 2012). 

A growing literature identifies alcohol-induced changes in BNST plasticity 

(Lovinger & Kash, 2015). Alcohol has been shown to activate neurons within the 

BNST (Chang et al., 1995) and has thus far been demonstrated to modulate 

glutamate (Kash, Matthews, & Winder, 2008) but not GABA (Weitlauf et al., 2004) 
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transmission. Kash et al. demonstrated that ethanol modulates NMDA-mediated 

glutamatergic transmission in the BNST (for extensive review of interactions  

between NMDA receptors and ethanol, see (Wills & Winder, 2013), but no work has 

demonstrated similar changes on GABAergic transmission. However, evidence does 

exist for ethanol-induced changes in peptidergic alteration of both glutamate and 

GABA transmission, most notably CRF and NPY (Kash & Winder, 2006). For 

example, in a similar CIE model, researchers demonstrated that alcohol exposure 

can alter CRF effects on glutamate transmission (Silberman, Matthews, & Winder, 

2013). 

In our studies, we first demonstrated a decrease in KOR relative gene 

expression following CIE. These results, unfortunately, are not bound to any specific 

cell type or synapse. Though most studies (Li et al. and the current study) suggest 

KORs are exclusively presynaptic in the BNST, a knowledge of where changes in 

receptor expression are occurring will improve understanding of the current results. 

We found no changes in spontaneous GABAergic or glutamatergic transmission 

following CIE. These results are not altogether surprising, as thus far no experiments 

have identified alcohol-induced changes in GABA transmission in the BNST, and 

alcohol-induced changes in glutamate transmission may depend on specific 

postsynaptic chemogenetic cell identities, such as CRF+ neurons (Silberman et al., 

2013). However, we did identify a significant reduction in the ability of KOR  

activation to modulate glutamate transmission in CIE-exposed mice as compared to 

control mice. Silberman et al. found that following CIE, CRF effects on glutamatergic 

transmission were occluded. It is likely that a similar phenomenon is occurring with 
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dynorphin and KORs. Interestingly, we found the opposite effect on GABAergic 

transmission: KOR-activation-induced alterations of GABAergic transmission were 

enhanced in CIE-exposed as compared to control mice. We also identified potential 

tonic activation at GABAergic synapses, which is apparent when the KOR antagonist 

norBNI is bath applied. Though we do not see this effect at glutamatergic synapses, 

this is likely due to the irreversibility of KOR activation at these synapses, similar to 

that seen in the striatum (Atwood, Kupferschmidt, & Lovinger, 2014). Taken  

together, this suggests that following one cycle of CIE, dynorphin is released (we  

can assume locally, from the previous studies), and this local dynorphin activates 

KORs at GABAergic synapses, and likely glutamatergic synapses as well. At some  

of these synapses, there may be decreased KOR expression. This sets the stage for 

the change in behavioral phenotype observed. 

We next assessed changes in social interaction following CIE. Social 

interaction has been noted for its simplicity as a measure of anxiety-like behavior 

(Knapp et al., 2004), and has been used to assess ethanol-withdrawal-induced 

anxiety (File, Baldwin, & Hitchcott, 1989). We demonstrated that following one week 

of CIE, social preference in mice was reduced compared to controls, but this deficit 

can be partially rescued by systemic administration of the KOR antagonist JDTic. 

This reduction in social preference following various models of alcohol exposure has 

been described by others (Knapp et al., 2004, Marcinkiewcz et al., 2015, Overstreet 

et al., 2006, Overstreet et al., 2003). 

Coupled with the known GABAergic (CeA) and glutamatergic (BLA) projections 

to the BNST, this work suggests that alcohol exposure may modulate the peptidergic 
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control over the balance of inputs from these two regions. CIE has been shown to 

produce changes in synaptic drive in the ventral BNST (Pleil et al., 2015) suggesting 

that following alcohol exposure, events that lead to activation of KORs (such as 

stress or substance withdrawal) may lead to greater changes in synaptic drive. A few 

interesting questions arise from this information. 

(1) Are the differences in GABA and glutamate modulation actually driven by 

changes at CeA-BNST and BLA-BNST synapses or other synapses? Though the 

CeA is one of the most robust GABA projections to the BNST, there is also an oval  

to non-oval GABAergic projection within the BNST itself (Kim et al., 2013). 

Optogenetics should be used to assess whether KOR functioning is altered at both  

or only one of these synapses following CIE. In addition, similar experiments should 

be conducted to address whether alterations in KOR functioning are confined to the 

BLA input, or are present in all glutamate inputs. 

(2) Does a greater alcohol exposure paradigm lead to different changes? For 

the current experiments, we used a one week exposure paradigm. Others have used 

longer periods of exposure (Maldonado-Devincci et al., 2014), as well as protocols 

involving the combination of CIE and free choice drinking (Lopez, Becker, & 

Chandler, 2014). These differences may result in important but nuanced differences 

in neuronal alteration. 

(3) Are KOR changes different at different points of withdrawal? In the current 

study, we conducted electrophysiological and behavioral assessments 24 hrs 

following the final alcohol exposure. In addition to longer exposure periods, other 

studies have used longer withdrawal sessions, up to 3 days (Becker & Lopez,  2004, 
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Pleil et al., 2015). KOR changes may be plastic and a more thorough time course 

analysis of these alterations would enhance our understanding of the therapeutic 

potential of targeting KORs. 

(4) Are there any protective effects against alcohol-induced KOR changes? We 

demonstrate that KOR antagonists administered after alcohol exposure can rescue 

deficits in social behavior. It would be interesting to assess whether pre- 

administration of KOR antagonists has similar effects. The drug norBNI is a long- 

lasting KOR antagonist and can be administered prior to the one-week ethanol 

exposure. It would also be interesting to identify any protective behavioral or genetic 

traits prior to ethanol exposure. Correlations can be drawn between pre-ethanol 

anxiety levels (using assays such as the elevated plus maze) and post-ethanol KOR 

alterations, which can potentially identify behavioral risk factors for ethanol-induced 

KOR alterations in synaptic plasticity and behavior. 

 
 

 
OVERALL THEMES 

 
 

 
Overall, the first major theme of this work is an improved understanding BNST 

circuitry. Recently, researchers used structural connectivity analysis in humans to 

identify regions that showed significant likelihood of functional connectivity with the 

BNST. They identified much of the basal ganglia (including the accumbens), limbic 

regions such as the hippocampus, and the thalamus as key interconnected regions 

(Avery et al., 2014), though only a few of these regions have been studied in animal 

models. Li, Pleil, et al. demonstrated that the CeA sends a GABAergic projection   to 
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the BNST, while Kim et al. demonstrated that the BLA sends a glutamatergic 

projection to the BNST, both of which suggest the BNST as a key regulating nucleus 

for anxiety- and addiction- related behaviors. In the current work, we confirm the 

BLA-BNST circuit, and also identify the PFC-BNST as a glutamatergic circuit. Other 

glutamatergic projections to the BNST exist, such as that arising from the 

parabrachial nucleus (Flavin et al., 2014), and functional imaging studies have 

suggested interconnectivity between the insula cortex and the BNST (Kober et al., 

2008). Multiple other neurotransmitter systems project to the BNST as well, including 

a serotonergic input to the BNST (Lowery-Gionta, unpublished data), as well as a 

noradrenergic input from the locus coeruleus and nucleus of the solitary tract. There 

is also dopaminergic innervation from the VTA. Identified outputs of the BNST 

include reciprocal innervations of some of these nuclei, such as the VTA (Jennings, 

Sparta, et al., 2013; Silberman et al., 2013), the lateral hypothalamus, the 

parabrachial nucleus (Kim et al., 2013), the periaqueductal grey, and the dorsal 

raphe (for detailed review, see (Kash, 2012)). Here, we identify how a neuropeptide 

system can be a key regulator of some of this circuitry. 

In addition to macro-anatomical research, much focus has been placed on 

micro-connectivity within the BNST itself. The BNST can be divided into multiple 

sub-nuclei mainly comprised of GABAergic populations (though some glutamatergic 

neurons exist exclusively in the ventral BNST; see (Jennings, Sparta, et al., 2013)). 

These sub-nuclei include the oval nucleus, the anterodorsal nucleus, and the 

juxtacapsular nucleus (in addition to those nuclei in the ventral BNST) (Lowery- 

Gionta, 2014). Here our work focused on the general circuitry of the dorsolateral 
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portion of the BNST. 
 

The oval nucleus is comprised of dense GABAergic neurons, expressing a 

variety of neuropeptides, including dynorphin (Lowery-Gionta & Kash, 2014). Kim et 

al. demonstrated that GABAergic/dopamine D1 receptor-expressing neurons within 

the oval nucleus inhibit non-oval neurons, setting up some intraBNST control 

(however, the oval nucleus also sends projections outside of the BNST, such as to 

the CeA – see (Dong, Petrovich, & Swanson, 2001)). Kim et al. also assert that BLA- 

BNST neurons synapse exclusively onto non-oval neurons. Though we refute their 

finding of exclusive non-oval BNST-BNST circuitry (see image in Fig 2.2A), we  

agree that a complex interplay exists between local circuits in the BNST. Our studies 

suggest that BLA-BNST projecting neurons, though favorably synapsing onto non- 

oval regions of the BNST, still show connectivity within the oval itself. We do not find 

evidence that dynorphin neurons are contained exclusively in either the oval or non- 

oval portion of the BNST, suggesting that there is not singular control of the oval  

over non-oval regions. Other neuropeptides, such as CRF and NPY, are similarly not 

confined to any one nucleus of the BNST (Pleil et al., 2015). So, though some 

receptors may have discrete expression patterns in the BNST, neuropeptides do not 

appear to follow this pattern. Taken together, the current work and literature paint a 

complex overall model of neurotransmitter and neuropeptide interactions in the 

BNST (Fig 4.1). 

A second minor theme of this work pertains to how this data relates to our 

hypothetical understanding of drug targets as therapeutics. KOR agonists and 

antagonists  are  in  various  stages  of  clinical  trials  for  anxiety,  depression, post- 
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traumatic stress disorder, anorexia, and alcoholism, with mixed results 

(clinicaltrials.gov). The FDA estimates only 30% of drugs even make it to clinical 

trials, with the vast majority never seeing the market at all (DiMasi, Hansen, & 

Grabowski, 2003). Drugs that appear promising in singular brain regions or discrete 

behavioral studies often do not transfer well to human therapy. Indeed, even the 

behavioral literature around KOR effects is mixed (as reviewed in detail in the 

introduction). Here we demonstrate a complex interplay between neuropeptides 

(dynorphin), receptors (KOR) neurotransmitters (glutamate and GABA), and a model 

of disease (alcoholism). Great caution should be taken when asserting that any  

drug, receptor, or pathway has the potential to be the ultimate solution for a 

neuropsychiatric disorder. 

 
 
 
 

 
CONCLUSIONS 

 
 

 
Taken together, this dissertation expands our understanding of KOR 

functioning in the BNST. We demonstrate that KOR modulation of glutamate inputs 

is pharmacologically distinct from KOR modulation of GABA inputs, and that this 

modulation occurs at some, but not all glutamate inputs to the BNST. The BLA- 

BNST circuit, an important pathway for anxiety-related behaviors, is heavily 

modulated by KORs, with greater KOR-induced inhibition of BLA-BNST DYN+ 

neurons than DYN- neurons. In addition, KORs at glutamate synapses in the BNST 

show decreased function following CIE exposure, with an enhancement at GABA 
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synapses. Importantly, the alterations in KOR modulation of glutamate and GABA 

transmission following CIE are likely related to other key circuits involved in anxiety- 

related behaviors. The CeA and BLA constitute major GABA and glutamate inputs to 

the BNST, respectively. Not only are they major nuclei involved in both alcohol 

consumption and anxiety-related behaviors, but they are likely the site of alcohol- 

induced changes in presynaptic KOR modulation in the BNST. Our work suggests 

that not only do KORs modify alcohol-induced changes in an anxiety-related 

behavior (sociability), but that the BNST is a likely site of this modification. These 

results will provide important information for the development of KOR-targeted drugs 

for the treatment of anxiety disorders and alcoholism. 
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Figure 4.1 - Model of BNST circuitry and KORs. In this depiction of BNST 

circuitry, the BNST is outlined in grey. Li, Pleil, et al. demonstrated KORs on the 

CeA-BNST circuit, while the current study demonstrated KORs on the BLA-BNST 

circuit. Tejeda et al. demonstrated that KORs inhibit other BLA outputs (the PFC) as 

well. In addition, we demonstrated that KORs inhibit BLA synapses onto both Dyn+ 

non-Dyn neurons within the BNST. It is not known whether CeA projections the 

BNST show any specificity in KOR inhibition; in addition, a subset of CeA neurons 

express dynorphin, and it is unknown whether these neurons specifically project to 

the BNST. Some questions left unanswered include (1) do dynorphin neurons in the 

BNST synapse on each other, and are those circuits inhibited by KORs, and (2) are 

dynorphin outputs, such as the LH, inhibited by KORs. 
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