
Concur: An Investigation of Lightweight

Migration in Support of Centralized Synchronous

Distributed Collaboration

John Edward Menges

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill
2009

Approved by:

Kevin Jeffay

F. Donelson Smith

John B. Smith

David Stotts

Stephen F. Weiss

c© 2009

John Edward Menges

ALL RIGHTS RESERVED

ii

Abstract

John Edward Menges: Concur: An Investigation of Lightweight
Migration in Support of Centralized Synchronous Distributed

Collaboration.
(Under the direction of Kevin Jeffay)

Synchronous distributed collaborative systems support simultaneous observation of and

interaction with shared objects by multiple, dispersed participants. Centralized architec-

tures for such systems support simple user mental models and are comparatively easy to

implement, but they suffer from high latency. Replicated architectures improve latency at

the expense of more complex user mental models and implementations. Hybrid and dy-

namic architectures apply centralized and replicated sub-architectures in an attempt to get

the best of both worlds, but in reality they further complicate implementations and user

mental models.

Concur is an architecture I developed to investigate lightweight migration as an alter-

native means to attain the best characteristics of centralized and replicated architectures.

Previous dynamic architectures improved latency using the migration of heavyweight pro-

cesses or (object-oriented) objects, which is costly in terms of migration time and runtime

requirements. In Concur I have instead organized collaborative applications and supporting

infrastructures around migrating entities which are not required to have full process or ob-

ject semantics. These entities are classified by properties affecting migration, such as their

size and their use of external references. In this way I achieved both the simpler user mental

models and implementations of centralized systems and the superior latency characteristics

of replicated systems. Concur accomplishes this through the fast migration of lightweight

entities in a multi-centered centralized system, where a multi-centered system is defined

as having single physical center and multiple, independently-migrating and entity-specific

logical centers.

iii

This dissertation also identifies other significant advantages of the Concur architec-

ture. Sub-object, easily-migratable entity classes minimize runtime requirements, facili-

tating widespread entity distribution. This in turn helps us to achieve the critical mass

required for the success of any communication technology. The speed of lightweight entity

migration also enables migrations to be triggered based on telegraphed user intentions (user

actions that hint at imminent succeeding actions). I have demonstrated that telegraphed

intentions are more accurate predictors of future interactions than the recent interaction

histories considered in previous systems. Migrating entities based on these telegraphed in-

tentions increases the probability that an entity will be located near a user when he begins

to manipulate it.

iv

To Nancy

v

Acknowledgments

I would like to thank my advisor, Kevin Jeffay, for his patience, his encouragement

to pursue these ideas, his confidence in my work, for continually asking me to do a

little more or a little better, and for his new perspectives that often seemed wrong to

me at first but hardly ever were.

To my other committee members, who knew what I ought to know and made

sure I learned it, and who always picked up on the important parts I’d missed, I’m

appreciative. They are Don Smith, John Smith, David Stotts, and Steve Weiss.

My fellow “gradual student” Dr. Rajeev Pandey was enormously helpful as he

prodded me to finish and kept reminding me that I could do it. Jay Aikat cheerfully

provided lots of valuable assistance with the experimental laboratory.

I am thankful for my late father’s confidence in me, and his willing support and

constant encouragement. My mother died before I began graduate school, but she

gave of herself to me for many years in ways that will be with me forever.

My children, Nathaniel, Lewis, Amelia, Michael, and Brian, have been precious

diversions for me. I am glad that I was able to finish school before you did!

To my wife Nancy, who patiently and cheerfully endured too many years of my

schooling and was always more confident in me than I was in myself, I am especially

grateful. I love you!

Finally, to God, who made such an interesting world of things and ideas to explore,

thank you! I am in awe of you!

vi

Table of Contents

List of Tables . xii

List of Figures . xiii

List of Abbreviations . xxi

List of Symbols . xxii

1 Introduction, Definitions, and Overview 1

1.1 Collaboration and Virtual Things . 1

1.2 Virtual Representations of Real Things 3

1.3 Synchronous Distributed Collaboration 8

1.4 Separation of Models and Views . 10

1.5 The Model-View-Controller Paradigm and the Observer Design Pattern 13

1.6 Centralized and Replicated Architectures 20

1.7 Hybrid Architectures and Dynamic Reconfiguration 30

1.8 Problem Statement and Thesis . 30

1.9 Contributions of this Work . 35

1.10 Evaluation Summary . 37

1.10.1 Experiment Setup . 38

1.10.2 Notes on Experimental Result Plots in this Dissertation 40

1.10.3 Experimental Results . 42

vii

1.11 Dissertation Outline . 53

2 Related Work . 60

2.1 Introduction . 60

2.2 Example Centralized Synchronous Distributed Collaborative Systems 61

2.2.1 XTV and Chung’s Logging Infrastructure 61

2.2.2 Rendezvous . 65

2.2.3 Weasel and Clock . 67

2.3 Issues with the Above Systems . 72

2.3.1 Functionality . 73

2.3.2 Implementation . 76

2.3.3 Performance . 80

2.4 Contributions of this Work . 81

2.5 Analysis Framework for Centralized Synchronous Distributed Collab-
orative Systems . 83

2.5.1 Models . 84

2.5.2 Protocol Manipulators . 87

2.5.3 View Computation Engines 88

2.5.4 Local View State Repositories 90

2.5.5 View Specifications . 91

2.5.6 View Realizations . 92

2.5.7 Controllers . 92

2.5.8 Analysis Summary . 93

2.6 Other Related Work . 95

2.6.1 Perspective-Like Constructs and User Models 95

viii

2.6.2 Coupling Systems . 96

2.6.3 State-Management Systems 98

3 Entity Taxonomy . 102

3.1 Introduction . 102

3.2 Application Domain vs. UI Domain State 103

3.3 Development of a Unified Model . 107

3.4 A State Classification Based on Entity Properties 109

3.4.1 View Computation Function 114

3.4.2 Controller . 114

3.4.3 Data Perspective . 115

3.4.4 Timer Perspective . 117

3.4.5 Mobile Model . 117

3.4.6 Immutable Model . 118

3.4.7 Immobile Model . 118

3.5 Data Caching . 119

3.6 Mobile Entity Migration . 119

3.7 Entity Classification Summary . 123

4 Concur Requirements and Architecture 125

4.1 Requirements . 125

4.2 Elements of a Solution . 126

4.2.1 The Push Model-View-Controller Paradigm 126

4.2.2 Logically Centralized Architecture 129

4.2.3 Common Hierarchical Data Modeling Facility 131

ix

4.2.4 Continuously Evaluated Functional Views 136

4.2.5 Declarative User Interfaces . 139

4.2.6 Perspectives . 140

4.2.7 Composition Functions . 151

4.3 Concur Architecture . 153

4.4 Debugging, Testing, and Scripting . 170

5 Concur Implementation . 173

5.1 Programming Language and Libraries 173

5.2 Concur Class Library . 176

5.3 Server Process . 180

5.4 Client Process . 180

6 Analysis and Evaluation of Concur 182

6.1 Criteria for Analysis . 182

6.2 Experimental Environment . 184

6.3 Experiments Performed . 187

6.4 Entity Types and Applications . 195

6.4.1 Text Editor Application . 198

6.4.2 Pixel Editor Application . 219

6.4.3 Jigsaw Puzzle Application . 229

6.4.4 Application Summary . 236

6.5 Determinism . 236

6.6 Divergence and Modes of Work . 238

6.7 Performance . 239

x

7 Summary and Future Work . 257

7.1 Summary . 257

7.2 Future Work . 258

7.2.1 Applying Concur to the Worldwide Web 258

7.2.2 Entity Taxonomy Maturity . 264

7.2.3 Divergence . 264

7.2.4 Continuously Evaluated Functions 265

A Experiment Automation with the Puzzle Solver 267

A.1 Puzzle Solver Motivation . 267

A.2 Puzzle Solver Overview . 268

A.3 Puzzle Solver Algorithm . 272

B Exceptionally Long Latencies in the Puzzle Graph 279

Bibliography . 284

xi

List of Tables

1.1 Basic Experiments . 38

1.2 Experiment Dimensions . 38

3.1 Entity Classes . 113

4.1 Summary of Divergence Possibilities 144

4.2 Maximum Degrees Fahrenheit . 156

6.1 Experiment Dimensions . 194

6.2 Application Component Code Line Counts 197

xii

List of Figures

1.1 A Taxonomy of Collaboration . 3

1.2 Definitions . 5

1.3 Multiple Model Scheme for Improving Performance 9

1.4 Simple Spreadsheet . 11

1.5 Spreadsheet Presentations . 12

1.6 The Model-View-Controller (MVC) Paradigm. 13

1.7 Spreadsheet MVC Organization . 14

1.8 View/Controller Consolidation . 14

1.9 Reused Model . 15

1.10 Reused View . 16

1.11 Pull MVC . 16

1.12 Push MVC . 17

1.13 Pull MVC Example . 18

1.14 Push MVC Example . 19

1.15 Cascading the Observer Design Pattern to Produce Layers 20

1.16 Example Centralized Architecture . 22

1.17 Example Replicated Architecture . 23

1.18 Detectable Inconsistency in a Replicated System 25

1.19 Model Synchronization in a Replicated System 26

1.20 Differing Projection Sequences Caused By Replicated Model Synchro-
nization . 27

xiii

1.21 Latency in a Centralized System . 29

1.22 Multi-centered Systems with Entity Migration 34

1.23 Telegraphed User Intentions . 35

1.24 Experimental Network . 39

1.25 Centralized Architecture Latencies 44

1.26 Latencies by Architecture . 45

1.27 Migration Latency over Time . 46

1.28 Advantage of Prediction based on Telegraphed User Intentions 47

1.29 Advantage of Prediction based on Telegraphed User Intentions when
Partial Migration is Included . 48

1.30 Latency and Task Duration By User Count, Latency 0ms 49

1.31 Latency and Task Duration By User Count, Latency 50ms 50

1.32 Latency and Task Duration By User Count, Latency 100ms 51

1.33 Centralized and Migrating Message Counts 51

1.34 Message Counts by Architecture . 52

1.35 Server CPU Utilization . 53

1.36 Client CPU Utilization . 54

1.37 Latency Distribution By User Count 55

1.38 Latency Distribution By User Count 56

1.39 Task Completion Times By Architecture 57

1.40 Migration Performance Under Contention 58

1.41 Migration Thrashing With and Without Prediction 59

2.1 XTV . 61

2.2 XTV Latecomer Support . 63

xiv

2.3 XTV Client Migration . 64

2.4 Rendezvous . 65

2.5 Weasel . 67

2.6 Clock Architecture Example . 69

2.7 Detail of Clock Example . 70

2.8 ClockWorks Client/Server Annotation 72

2.9 Entity Classes . 83

2.10 Entity Attributes . 84

2.11 Centralized and Replicated Architectures 101

3.1 GMD Shared Object Model . 104

3.2 GMD Coarse-Grained Sharing . 105

3.3 Notepad . 105

3.4 GMD Notebook UI State . 106

3.5 GMD Conditional Data Structure . 106

3.6 View and Model State Equality . 107

3.7 Flattened State Organization . 108

3.8 Coupled and Divergent State . 108

3.9 Unified Model State . 109

3.10 Dewan’s Generic Collaboration Architecture 110

3.11 Master/Slave Replication in a Centralized System 119

3.12 Master/Slave Migration in a Centralized System 120

3.13 Mobile Models . 121

4.1 The Model-View-Controller Paradigm 127

xv

4.2 Multiple Views of a Model . 127

4.3 Hierarchical Data Structure . 134

4.4 Graph implemented as Hierarchy with Special Links 134

4.5 Bubbling of Events or Changes . 135

4.6 Same Model, Perspective, and View 145

4.7 Same Model and Perspective, Different View 145

4.8 Same Model and View, Different Perspectives 146

4.9 Same View and Perspective, Different Model 147

4.10 Same Model, Different Perspective and View 148

4.11 Same Perspective, Different Model and View 149

4.12 Same View, Different Model and Perspective 150

4.13 Different Model, Perspective, and View 151

4.14 Concur Architecture . 154

4.15 Concur Architecture with Tags . 155

4.16 Public Model State . 158

4.17 View Specification . 159

4.18 Projection . 160

4.19 View Specification with Labels . 161

4.20 Projection with Labels . 161

4.21 Perspective . 162

4.22 View Specification with Sliders . 163

4.23 Projection with Sliders . 163

4.24 View Specification with Changed Slider Values 164

xvi

4.25 Zoomed Projection . 165

4.26 Controller Structure . 166

4.27 Projection after Deleting a Point . 167

4.28 Projection in Bar Chart Form . 169

4.29 Software Architecture with a Scripting Layer 170

6.1 Background Network Traffic . 186

6.2 Background Traffic Impact on Drag Latency (Centralized) 187

6.3 Background Traffic Impact on Drag Latency (Migrating) 188

6.4 Background Traffic Impact on Drag Latency (Replicated) 189

6.5 Puzzle Starting Point . 189

6.6 Puzzle in Early Stage of Completion 190

6.7 Puzzle in Late Stage of Completion 190

6.8 Complete Puzzle . 191

6.9 Text Editor Application . 198

6.10 MetaModels.xml . 199

6.11 TextEditorMetaModel1.xml . 199

6.12 TextEditorMetaModel2.xml . 200

6.13 ViewFunctions.xml . 200

6.14 ControllerMaps.xml . 201

6.15 Perspectives.xml . 201

6.16 TextEditorCursor.xml . 201

6.17 Applications.xml . 202

6.18 TextEditorProducer.tcl . 203

xvii

6.19 TextEditorModel.xml . 203

6.20 TextEditorConsumer1.tcl . 204

6.21 TextEditorViewFunction.xml Overview 205

6.22 TextEditorViewFunction Constructor 207

6.23 TextEditorViewFunction ViewFunctionInterestComplete 208

6.24 TextEditorViewFunction MetaModelInterestComplete 208

6.25 TextEditorViewFunction RequestParameter 209

6.26 TextEditorViewFunction ParameterReceived 209

6.27 TextEditorViewFunction ModelInterestComplete 210

6.28 TextEditorViewFunction ModelNotify create 210

6.29 TextEditorViewFunction CreateLine 211

6.30 TextEditorViewFunction ModelTextChanged 211

6.31 TextEditorViewFunction SetCursor 211

6.32 TextEditorViewFunction CursorPositionChanged 212

6.33 TextEditorViewFunction ControllerMapInterestComplete 212

6.34 TextEditorControllerMap.xml Overview 214

6.35 TextEditorControllerMap Constructor 215

6.36 TextEditorControllerMap ViewSpecNotify create 215

6.37 TextEditorControllerMap.xml CreateBindings 216

6.38 TextEditorControllerMap Key . 217

6.39 TextEditorControllerMap ViewSpecTextChanged 218

6.40 TextEditorControllerMap Button-1 218

6.41 Pixel Editor Application . 220

xviii

6.42 Pixel Editor Application Showing Area Boundaries 221

6.43 Pixel Editor MetaModel1 . 221

6.44 Pixel Editor Model . 223

6.45 PixelEditorViewFunction.xml Overview 224

6.46 PixelEditorViewFunction ModelInterestComplete 224

6.47 PixelEditorViewFunction ModelNotify create 225

6.48 PixelEditorViewFunction UpdateViewSpec 225

6.49 PixelEditorViewFunction ModelTileChanged 226

6.50 PixelEditorControllerMap Overview 227

6.51 PixelEditorControllerMap ButtonPress-1 228

6.52 PuzzleMetaModel1.xml . 229

6.53 PuzzleProducer.tcl Overview . 230

6.54 Puzzle Model . 231

6.55 PuzzleViewFunction.xml Overview 233

6.56 PuzzleControllerMap.xml Overview 234

6.57 PuzzleFragmentPerspectiveManager.xml Overview 235

6.58 Overlapping Latencies while Dragging a Puzzle Piece 240

6.59 User Perceived Latency Distribution by Introduced Latencies 241

6.60 User Perceived Latency Distributions by Architecture 242

6.61 Migrating and Replicated Latencies (The Centralized plot is off the
graph to the right.) . 244

6.62 Latency Distribution by Background Traffic 245

6.63 Latency Distribution by User Count 246

xix

6.64 Latency Distribution by User Count, Migrating and Replicated (The
Centralized plot is off the graph to the right.) 247

6.65 Distribution of Work Picking Up Piece by Architecture - Initiator . . 249

6.66 Distribution of Work Picking Up Piece by Architecture - Other Clients 250

6.67 Distribution of Work Picking Up Piece by Architecture - Server . . . 251

6.68 Distribution of Work Dragging a Piece by Architecture 252

6.69 Distribution of Work Moving Cursor With and Without Prediction -
Initiator . 253

6.70 Distribution of Work Moving Cursor With and Without Prediction -
Other Clients . 254

6.71 Distribution of Work Moving Cursor With and Without Prediction -
Server . 255

7.1 The HTTP Protocol . 259

7.2 HTTP Streaming . 261

7.3 Nested Requests with Streaming . 261

7.4 HTTP and Socket Connection . 262

A.1 Color Quadrant Matching Computation 274

B.1 Long Latency Replay Tool in Action 280

xx

List of Abbreviations

ALV . Abstraction-Link-View

CDF. .Cumulative Distribution Function

CLOS . Common Lisp Object System

DAG. .Directed Acyclic Graph

DOM . Document Object Model

HTML. .Hypertext Markup Language

HTTP. .Hypertext Transfer Protocol

LAN. .Local Area Network

MVC . Model-View-Controller

MPVC. .Model-Perspective-View-Controller

RVL. .Relational View Language

UI . User Interface

UNC. .University of North Carolina

URL . Uniform Resource Locator

WAN . Wide Area Network

WYSIWIS . What you see is what I see

WYSIWYG. .What you see is what you get

xxi

List of Symbols

u . approximately equal

C . command causing state machine transition

I . input to a view function

M . model input to a view function

O . outputs emitted by a state machine

P . output of a projection function

p . projection function

π . perspective input to a view function

V . output of a view function

v . view function

V . instantiation of a view function (with specific parameters)

X . uncontrolled inputs to a state machine

xxii

Chapter 1

Introduction, Definitions, and Overview

1.1 Collaboration and Virtual Things

There has always been a need for people to work together, or collaborate, to

do what individuals working alone cannot do. Before the invention of the Morse

telegraph[Mor08] in 1837, communication across distances was too slow and unreliable

to support most forms of collaboration. Thus, people generally had to be in the

same location to work together. In modern times the telegraph, the telephone, and

computer networks have made collaboration across distances routine.

Less obviously but just as significantly, we are now at the first point in history

where many (perhaps most) of the things we wish to collaborate on and with are

virtual rather than real, because many real things are being modeled by virtual coun-

terparts on computers. Real things modeled by virtual counterparts can be as ab-

stract as an idea or as concrete as a rock, as big as the universe or as small as a

sub-atomic particle, as professional as a contract or as personal as a wink. Any real

thing, using the term in its broadest sense, can be modeled by a virtual counterpart.

Common examples are control panels, documents, books, file cabinets, calendars,

alarm clocks, money, maps, drawings, pictures, movie theaters, musical performances,

games, shops, and business processes. Finally, virtual things can often be connected

to their corresponding real things, providing the ability to monitor and manipu-

late things in the real world via virtual counterparts. Printers, scanners, cameras,

microphones, and speakers provide simple examples, connecting virtual documents,

pictures, and sounds to real ones. A more elaborate example is a bomb-disposal

robot[Bom08] linked to a virtual (virtual reality) computer-modeled counterpart, the

utility of which should be evident.

Virtual things can be given properties and behavior that their real counterparts

cannot have. Virtual processes and objects can be slowed down or sped up, abstracted

or magnified, simulated, modified, manipulated, tested, and observed in ways that

may be expensive, difficult, unsafe, or impossible in the real world. And unlike

physical things, virtual things can exist in more than one place at the same time. We

can invert that concept and say that virtual things can reside at points in a virtual

space orthogonal to real space. This enables real people to operate in the same virtual

space, whether or not they are in physical proximity to each other.

Collaboration involves bringing people together in such a virtual space. If they

are there at the same time such collaboration is called synchronous. If the space is

persistent and people come and go independently, we term it asynchronous collab-

oration. If they are in near physical proximity to each other we say that they are

colocated; if not, they are distributed. These two dimensions, time and physical place,

define the simple taxonomy of collaborative systems shown in Figure 1.1, which was

first proposed by Robert Johansen in [Joh88], and has been adopted by many others

since.

Examples of collaborative tools in each of the four quadrants are as follows:

2

Figure 1.1: A Taxonomy of Collaboration

• Synchronous Co-Located: A projector used in a meeting room context fa-

cilitates communication among people meeting together at the same time and

in the same place.

• Asynchronous Co-Located: A physical bulletin board is a means for com-

municating among people who pass through a given location at different times.

• Synchronous Distributed: The telephone is the most common technology

supporting people who need to communicate at the same time from different

locations.

• Asynchronous Distributed: Voice mail and email enable people to commu-

nicate while they are in different locations and cannot or prefer not to meet

simultaneously.

1.2 Virtual Representations of Real Things

Before proceeding further, I will define a number of terms that will useful in

our discussion of how real things are represented as virtual things by a computer

3

(Figure 1.2). Unless otherwise noted, these definitions are my own and are tailored

to the work presented in this dissertation, but the definitions presented here are similar

to commonly-used definitions of these terms (i.e., their dictionary definitions).

A representation of one thing is another thing that “stands for” or “takes the place

of” the first thing. This is the standard dictionary definition of “representation”. For

example, my high school diploma is a representation of the fact that I graduated

from high school, a picture of me represents my appearance, my watch represents

the current time, and a map of the University of North Carolina (UNC) campus

represents the layout of the streets and buildings on that campus. Representations

are not unique. For example, “1”, “e0”, “one”, and “uno” all represent the abstract

mathematical concept of the number one. Representations can also be ambiguous. For

example, the name “John” currently refers to at least eight people in the Department

of Computer Science at the University of North Carolina.

I will use the term semantics to refer to the abstract, essential meaning of a thing,

independent of any representation of that thing. This is a slight generalization of

the computer science use of the term semantics as defined in [Web06]1. Often, the

semantics is the referent of a representation. For example, the fact that I graduated

from high school is the semantics behind my diploma, my appearance is the semantics

behind my photograph, the abstract mathematical concept of the number one is the

semantics behind the representations of one listed in the previous paragraph, and the

actual UNC campus is the semantics behind a map of that campus. It is because the

semantics are the same that we can say that “1”, “e0”, “one”, and “uno” all mean

the same thing.

Semantics can be static or dynamic. The static semantics of a thing consists of its

1From Webopedia: “In computer science, the term (semantics) is frequently used to differentiate
the meaning of an instruction from its format.”

4

Figure 1.2: Definitions

5

abstract state at a point in time. Thus, the static semantics of my watch right now

is the time 11:59am, and the static semantics of the local weather at this moment is

“partly cloudy and warm”.

The static semantics of a thing can change over time. For example, the static

semantics of my watch is now “12:00 noon”, and the static semantics of the weather

at 5:00pm last evening was “cloudy and cool”. The dynamic semantics of a thing, or

its behavior, is an abstraction of how the abstract state of a thing changes in response

to internal or external stimuli. For example, my watch increments by one second in

response to the internal stimulus of the passage of one second of time; this is the

behavior of my watch. My alarm clock, however, sets its wake-up time in response

to the external stimuli of “hour” and “minute” button presses; this is (part of) the

behavior of my alarm clock.

A model is a software component that is a computer representation of a subset

of the semantics (both static and dynamic) of a real thing. The purpose of a model

is to represent a real thing in a computer-accessible and/or -manipulable form. For

example, the current real time is represented as a model on my computer, in the form

of a 32-bit integer that whose current value is the number of seconds since 12:00am

GMT on January 1, 1970. By my definition, models are assumed to represent their

referent semantics faithfully. That is, they are the authority (within the computer

system) for the semantics of the referred-to thing. While, like any representation,

they need not represent all aspects of their referent, they are not allowed to repre-

sent semantics that do not refer to their referent. That is, they are allowed to only

represent the relevant portions of a real thing, but they may not add meaning that

is not present in the real thing. The only exception to this rule is if the real thing is

being represented virtually so that it can be “slowed down or sped up, abstracted or

magnified, simulated, modified, manipulated, tested, and observed in ways that may

6

be expensive, difficult, unsafe, or impossible in the real world”, as described in Sec-

tion 1.1. Even in these cases, any additional semantics are intended to reflect those

of the corresponding real referent, but in ways that are inaccessible using the real

referent. The point here is that if a model were to represent semantics that do not

correspond to its referent, it would be modeling something other than (or in addition

to) its referent.

A projection or presentation of a model (I use the terms interchangeably) is a

user-accessible representation of the model, through which a user may sense and

(optionally) interact with (invoke operations on) the model. A projection is usually a

2D representation of (some of) the externally-visible state and behavior (semantics) of

the model. Often it is an approximation of a geometric projection onto a plane of the

real object referred to by the model. Because they are concrete and not abstract (that

is, they do more than simply represent the essential, abstract semantics of a thing),

projections (unlike models) can present information in addition to what is present in

their referent. This is the syntactic sugar referred to in [Dew99]. Syntactic sugar can

include such things as decorations, labels, colors, and help text – everything, in fact,

that is not a representation of the model semantics. A projection does not need to be

a direct representation of a single model; it can be a representation of one model or of

a combination of models, plus syntactic sugar. As with any representation, there are

an infinite number of projections that can be produced from a single set of models at

any point in time. Unlike models, projections are entirely derived from models and

syntactic sugar, and are therefore non-authoritative with respect to the semantics of

the underlying real things. That is, any software component desiring to access the

semantics of the modeled real things must contact the model, not the projection, for

those semantics.

A view is a software component that maps one or more models to a projection.

7

For the purposes of this dissertation, I will consider a view to ideally be a function (in

the mathematical sense) whose domain is the externally-visible state of one or more

models, and whose range is the set of resulting projection states. Since the underlying

model is dynamic, the function is continuously evaluated so that it always produces

a particular projection of the input models. A controller is a software component

that maps low-level (e.g., keyboard and mouse) events applied to a projection into

operations on the underlying models.

A user’s mental model of a computer system is his understanding of the static and

dynamic semantics underlying the projections through which he performs his work.

Ideally, there is a strong correlation between the user’s mental model and the real

world being modeled by the computer system.

An application is simply an aggregation of projections. Thus, if I speak of the

semantics of an application, I mean the aggregated semantics of the models underlying

the set of projections of which the application is composed. For example, a typical

text editor application models a control panel (using menus and buttons), a document,

and document navigation facilities (using, e.g., scroll bars). The semantics of the text

editor application are the aggregated semantics of the control panel, document, and

navigation facilities.

1.3 Synchronous Distributed Collaboration

The primary focus of this work is on the synchronous distributed quadrant of

Figure 1.1. Because of synchroneity, this is the quadrant where the performance de-

mands are greatest. Because of distribution, this is also the quadrant where they are

most difficult to achieve. Meeting these performance demands in the synchronous

distributed quadrant ensures that they can also be met in the other three quadrants.

8

Typical work usually involves multiple collaborative quadrants and frequent transi-

tions among them, as well as transitions to and from individual (non-collaborative)

work. It is important for collaborative systems to support smooth (ideally seamless)

transitions among these types of work, and I have endeavored to do so in the work

described in this dissertation.

The difficulties encountered when attempting to provide reasonable performance

in synchronous distributed collaborative systems have forced designers to make trade-

offs in areas other than performance, compromising desirable characteristics in these

other areas. For example, multiple, per-participant models of a single real thing

are often used to increase interactive performance for each participant (Figure 1.3).

Figure 1.3: Multiple Model Scheme for Improving Performance

Unfortunately, this scheme invariably allows the models to diverge independently to

some degree. Since participants in synchronous distributed collaboration are working

together closely, these differences are likely to confound collaborative work by either

making the existence of differing models visible to participants (due to the tight

9

synchronization of their work), or by presenting inconsistent views of the world to

different participants undetectably (due to the distribution of participants). Either

way, these are undesirable properties of virtual things as compared to the real things

they are intended to represent. Real things are unique and therefore fully consistent

with themselves.

Another undesirable characteristic of multiple-model schemes is that they are

much more difficult to design and implement than single-model schemes. Keeping

multiple models synchronized is complicated, particularly because they must reside

in different (distributed and non-identical) environments. Shielding participants from

differences in the models or making such differences understandable to participants

also presents enormous difficulties not encountered in the single-model case. Finally,

multiple-model schemes complicate transitions to other quadrants of Figure 1.1 and

to individual work, where multiple model schemes are generally unnecessary.

This dissertation focuses on the task of providing good interactive performance to

all participants of synchronous distributed collaborative work while retaining simple,

consistent user mental models and implementations, and seamless transitions among

modes of work.

1.4 Separation of Models and Views

A widely used engineering principle for interactive software applications is to

cleanly separate models from views. As an extremely simple example, consider the

three-cell spreadsheet of Figure 1.4. There are various ways to define the model for

even this simple application. I will use the following definitions:

• The state of the model consists of the numbers in cells A1, A2, and A3.

10

Figure 1.4: Simple Spreadsheet

• The behavior of the model is that cells A1 and A2 can be modified to contain

any numbers, and cell A3 always contains their sum.

This model is independent of any particular presentation. In addition to the

presentation shown in Figure 1.4, any of the presentations of Figure 1.5 may be used.

The set of all possible presentations of this or any model is infinite.

It is apparent from Figure 1.5 that the state of an application can be presented

in different ways. What is not apparent from this figure, but is nonetheless part of

model/view separation, is that the behavior of the application can be presented in

different ways. For example, one might be able to modify the values of the top two

cells by editing the numbers in the upper textual presentations of the figure, or by

dragging lines in the lower graphical presentations.

Clean separation of the semantic and presentation aspects of an application is

particularly important for synchronous collaboration, because such collaboration in-

volves multiple participants viewing and interacting with a shared application model.

Presentation independence makes it easy to attach multiple views to a shared model.

It also facilitates the provision of different presentations to each participant, a likely

scenario given that different participants may have different preferences or may fulfill

different roles.

11

Figure 1.5: Spreadsheet Presentations

12

1.5 The Model-View-Controller Paradigm and the

Observer Design Pattern

In order to provide clean separation of semantics and presentations, interactive

software applications and infrastructures commonly use some variant of the Model-

View-Controller (MVC) paradigm illustrated on the left side of Figure 1.6. In this

Figure 1.6: The Model-View-Controller (MVC) Paradigm.

figure, circles represent software components, arrows represent method calls or events,

and squares represent the product of views (projections). In this paradigm the model

M maintains semantic state and behavior, the view V maintains a projection of the

model, and the controller C transforms user inputs applied to the projection into op-

erations on the model. The pseudo-code of Figure 1.7 sketches an MVC organization

of the application of Figure 1.4. Because the view and controller are intimately tied

to the user interface (projection) and to each other, and because interactions (bind-

ings of keyboard and mouse events to operations on a model) are rarely customized

separately from the view, controller functions are often subsumed by the view as

demonstrated by the right side of Figure 1.6 and the pseudo-code of Figure 1.8. The

primary advantage of MVC is that it separates models and views so that they can be

13

Figure 1.7: Spreadsheet MVC Organization

Figure 1.8: View/Controller Consolidation

14

reused with other views (Figure 1.9) and models (Figure 1.10), respectively.

Figure 1.9: Reused Model

Two important variants of the MVC paradigm are pull (Figure 1.11) and push

(Figure 1.12) MVC2. In the pull variant the view pulls data from the model, while in

the push variant the model pushes data to the view. The pull variant is the classical

MVC paradigm proposed in [KP88] and utilized by Smalltalk. The model need know

nothing about the view except that it is interested in changes in the model. The view

needs to know more about the model in order to query it for its current state, but it

can be reused with other models supporting the same interface. Figure 1.7 has been

fleshed out as Figure 1.13 to demonstrate pull MVC.

The push variant is more efficient than the pull variant because the model only

notifies a view of changes in the particular aspects of the model in which the view is

interested, and because the model sends descriptions of the changes with the notifi-

cation. The trade-off is that this requires more knowledge of the view by the model.

2Pull and push MVC are described in more depth in the Observer design pattern[GHJV95a],
which will be introduced shortly.

15

Figure 1.10: Reused View

Figure 1.11: Pull MVC

16

Figure 1.12: Push MVC

That is, the model must have more specific information about the view’s interests,

and it must match model changes to these interests. To demonstrate the push vari-

ant, we need a slightly more elaborate application with specific interest specifications

by views. Figure 1.14 sketches an example application where the model is a list of

stocks and their current quotes, while the view selectively displays stock symbols and

quotes. Note that the model only notifies views that have expressed an interest in

the particular stock whose quote has changed. Interests can be more complex than

this example demonstrates. For example, a view might only want to be notified when

stock S reaches a quote of at least Q. Note that in a pull implementation of this

application the model would notify all views when any stock changes, and each view

would have to pull the quotes of all stocks in its interest set to determine which, if

any, had changed, and whether the change was significant to the view.

A more recent generalization of the Model-View separation technique is found in

17

Figure 1.13: Pull MVC Example

18

Figure 1.14: Push MVC Example

19

the Observer design pattern[GHJV95a]. A design pattern is a generic object-oriented

solution to a software engineering problem that shows up in many contexts3. The

Observer design pattern uses the terms Subject for Model and Observer for View,

where the observer can be any object interested in the subject’s state changes, not

just view user interface elements. The Observer design pattern may be cascaded to

produce multiple layers, as shown in Figure 1.15. The middle object in this diagram

has two roles: it is an observer of the subject above and a subject for the observer

below. Cascading can continue indefinitely, but is subject to per-layer performance

overhead.

Figure 1.15: Cascading the Observer Design Pattern to Produce Layers

1.6 Centralized and Replicated Architectures

MVC and the Observer design pattern are applicable to a wide range of software

systems, whether individual or collaborative, colocated or distributed, synchronous

or asynchronous. Synchronous distributed collaboration obviously requires distribu-

tion of software and hardware components and data among multiple sites. Such

3MVC is also a design pattern. See [GHJV95b] for a complete discussion of these and other
design patterns.

20

distributed systems require architects to make decisions about how components and

computations are to be distributed.

Synchronous distributed collaborative systems have historically been categorized

as having either centralized or replicated architectures. Different definitions of cen-

tralized vs. replicated architectures are used in the literature. (See, for example,

[Dew99] and [GR99].) I will create and use the following definitions. My definitions

generalize upon the definitions in [GR99], which are specified at a coarse application

level of abstraction.

A centralized architecture (Figure 1.16) is one where each aspect of se-
mantic state and its behavior is represented at any given time by exactly
one master model.

Consider, for example, the application of Figure 1.16. All stocks could be represented

by one model as shown, each stock could be represented by a separate model, or any-

thing in-between. A given stock or all stocks could shift from one model instantiation

to another. However, a given stock cannot be simultaneously represented by more

than one model. There may be slave models corresponding to each master model

(e.g., transparent observer/subjects used to increase performance or fault tolerance),

but these are restricted to precisely tracking the master model’s external state and

its transitions.

By contrast,

A replicated architecture (Figure 1.17) is one where each aspect of semantic
state and its behavior is represented simultaneously by multiple (peer)
master models. These models are synchronized in some fashion but are
not required to go through the same sequence of external state transitions.

That is, Model 0 u Model 1 u Model 2 in Figure 1.17. All three models represent the

same stocks, stock LEH is the same in all three models, the quotes are all the same,

21

Figure 1.16: Example Centralized Architecture

22

Figure 1.17: Example Replicated Architecture

23

and the values are all Shares times Quotes. However, the number of shares of the

TEX stock differs among all three models and the number of shares of GGG in Model

2 differs from the number of shares in the other models. The fact that a given stock

can simultaneously have multiple static semantics exposes the fact that a replicated

architecture is being used; that is, that a given real thing is being represented by

multiple models simultaneously.

Both centralized and replicated synchronous distributed collaborative systems

have been built, each class having its characteristic advantages and disadvantages.

Centralized systems support simpler user mental models and are easier to implement,

but they suffer from greater latency and reduced scalability. Replicated systems im-

prove latency and scalability at the cost of more complex user mental models and

implementations.

To understand these trade-offs, consider again Figures 1.16 and 1.17. The user’s

mental model of the application as implemented by the centralized system of Fig-

ure 1.16 is simple, because he and his collaborators always see consistent, though

perhaps different, projections of the model (ignoring different transmission times that

will cause users’ displays to be updated at slightly different times). Even considering

network transmission times, all projections go through states corresponding to exactly

the same sequence of model transitions. By contrast, users of the replicated system of

Figure 1.17 must construct a more complex mental model of the application, because

their projections need not conform to each other at any particular point in time,

and the sequence of updates to one user’s projection need not be consistent with the

sequence of updates to another user’s projection. Figures 1.18 and 1.19 demonstrate

these problems. In Figure 1.18, the users may become confused because some out

of band communication mechanism (e.g., audio or video) exposes the inconsistencies

in model values. Furthermore, if each user changes the number of shares in his local

24

Figure 1.18: Detectable Inconsistency in a Replicated System

25

model copy as indicated by the shaded boxes of Figure 1.17, and the models are ulti-

mately synchronized, the sequence of model (and therefore projection) changes may

be inconsistent from user to user, as shown in Figures 1.19 and 1.20. Note that each

Figure 1.19: Model Synchronization in a Replicated System

participant starts and ends with the same projection, but the intervening projection

sequences differ. (For clarity, I have given each user the same pie-chart projection and

have only shown the pies themselves in Figure 1.20.) Whether or not these update

sequence differences are of any consequence depends on the application. The point

here is that the separate models change in ways that are inconsistent with viewing

them as a virtual representation of a single shared real thing. Finally, it should be

apparent that replicated systems are more difficult to implement, since they, unlike

centralized systems, require synchronization of models.

On the other hand, replicated systems can typically provide much better interac-

26

Figure 1.20: Differing Projection Sequences Caused By Replicated Model Synchro-
nization

tive performance than centralized systems. There are three reasons for this:

• The impact of network latencies on interactive performance is much greater

for centralized systems. For example, if network transmission time is 100ms,

as shown in the centralized system of Figure 1.21, every user interaction (e.g.,

every incremental movement of the cards being dragged in the figure) will have

a latency (i.e., the time between the user’s movement of the mouse and the

corresponding movement of the cards) of at least 200ms. In a replicated system,

the user dragging the cards would get immediate feedback.

• In a centralized system, the “center” of the system where the model resides

can become overloaded if many participants join a collaborative session. In a

replicated system this will not happen, because there is no unique “center” that

must process all interactions. Thus, replicated systems are more scalable in

terms of the computations that must be performed.

27

• A centralized system typically places more demands on network bandwidth

than a replicated system, because lower-level operations are transmitted over

the network (e.g., mouse movements instead of final card positions). Thus, like

the processor at the center, the network is more likely to become overloaded.

This, like the former point, means that replicated systems generally scale better

than centralized ones.

The focus of this work is on scenarios involving highly synchronized collaboration,

where multiple simultaneous participants react to other participants’ actions on vir-

tual things by invoking their own actions, all during a short (e.g., sub-second) time

span. Examples are users working together closely on a game, a puzzle, or a project.

Conceptually, the simpler user mental models supported by centralized architectures

are better suited to these scenarios than the more complex mental models required

by replicated architectures. The whole point of highly synchronous collaboration is

to share some virtual thing at the current point in time. This implies that the model

defining the real thing should be unique. In replicated architectures the approxima-

tions in the equation Model 0 u Model 1 u Model 2 can cause confusion for users,

particularly if there are out-of-band communication channels that can redundantly

communicate model state, as we saw in Figure 1.18. Replicated architectures are used

where performance is at a premium and can be purchased at the cost of complexity

for implementors and participants.

28

Figure 1.21: Latency in a Centralized System

29

1.7 Hybrid Architectures and Dynamic Reconfig-

uration

Attempts to resolve the conflicting characteristics of centralized and replicated

architectures have resulted in hybrid architectures that are partly centralized and

partly replicated (e.g., [RG97]). These systems apply centralized and replicated sub-

architectures selectively in order to best fit their architectural properties to various

aspects of the system. More recent research (e.g., [CD01]) has investigated support

for dynamic reconfiguration among centralized, replicated, and hybrid configurations

in response to the changing properties of a collaborative session over time. Dynamic

reconfiguration typically involves migration of processes or objects among physically

dispersed processors.

Unfortunately, hybrid and dynamic architectures further complicate the user’s

mental model, because they expose to the user more of the internal structure of the

system and how it changes dynamically. Process and (object-oriented) object migra-

tion are also expensive in terms of migration time and the container requirements

at various processors, where a container is the surrounding runtime environment

that must be available to host a process or object. Process and object container re-

quirements also tend to be extensive and operating-system and/or language specific.

Finally hybrid and dynamic systems add another layer of implementation complexity

to the infrastructure, and perhaps the applications.

1.8 Problem Statement and Thesis

Collaborative systems enable people to work together. They can be categorized

along one dimension as either synchronous or asynchronous, and along another dimen-

30

sion as either colocated or distributed, as shown in Figure 1.1. Synchronous systems

demand higher performance than asynchronous systems because they imply a high

degree of interaction by participants. That is, participants must respond to actions

by other participants within a short (e.g., sub-second) time-frame. It is more difficult

to meet performance demands in distributed systems than in colocated systems, be-

cause distribution implies networks spanning larger distances, which means greater

latencies and lower bandwidths than are typical for colocated systems. Synchronous

distributed systems therefore have the highest performance demands and the most

difficult environment for meeting those demands. If performance demands can be

met in this quadrant of Figure 1.1, they can be met in all the quadrants.

Centralized, replicated, and hybrid architectures have been used to build syn-

chronous distributed collaborative systems. Centralized systems suffer from long

latencies because all model operations must go through the physical center of the

system. They also scale poorly because they place more demands on the central com-

puter and the network than do replicated systems. Replicated systems solve these

performance problems by using distributed model replicas at each participant site.

Unfortunately, these replicas are difficult to keep synchronized. Worse, replicated

architectures necessarily allow the replicated models to diverge independently. Con-

sequently, users either become aware that there are multiple divergent model replicas

(complicating the user’s mental model of the application), or they are presented with

divergent versions of a world that is ostensibly the same, without the participants

being aware that this is happening. This latter case can lead to inconsistent under-

standings of and actions on the virtual world by different participants. In either case,

collaborative work is confounded by the replicated architecture.

Hybrid architectures attempt to apply centralized and replicated sub-architectures

selectively to a single system in order to ameliorate these problems. Unfortunately,

31

this further complicates the programmers’ and users’ mental models because they

have to make distinctions in their mental models between centralized and replicated

aspects of the system. More recent research has focused on dynamically modify-

ing the architecture of the system to meet the changing demands of a collaborative

session over time. While this can improve performance and scalability, the implica-

tions for the user’s mental model of the application are even worse than for a static

hybrid system, since the user’s mental model must adapt over time to the changing

architecture. Dynamic architecture adaptation also typically requires mechanisms for

migrating processes or objects. Process and object migration systems have extensive

container requirements for distributed computers, and process and object migrations

are slow as compared to user interaction times.

In this dissertation, I have taken a finer-grained approach to migration. Instead

of migrating processes or even object-oriented objects, I have identified smaller and

simpler entities that do not need to conform to full process or object semantics and

that therefore have reduced container requirements. For example, an entity may be a

simple data element represented in an open, standard format (e.g., string). As such,

it does not require it’s own execution environment (thread) or data hiding facilities.

I have defined and classified entities based on their migration characteristics. In

so doing, I have identified a number of important entity types with low container

requirements that can be migrated extremely quickly and easily.

The central thesis of this dissertation is that:

A taxonomy of application entities (objects with less than process and
object-oriented object semantic requirements) based on their migration
characteristics facilitates the construction of collaborative applications
and supporting infrastructures that retain the simplified user mental model
and implementation characteristics of centralized systems while achieving
the enhanced latency and scalability characteristics of replicated systems.

32

This is achieved through the fast migration of lightweight entities in a multi-

centered centralized system. I define a multi-centered system (Figure 1.22) as having a

single physical center and many logical, per-entity centers that migrate independently

and dynamically in response to user interactions. The speed of such lightweight entity

migration opens up the possibility of triggering migrations based on telegraphed user

intentions (user actions that hint at imminent succeeding actions), which are likely

to be more accurate predictors of future interactions than are longer-term interac-

tion histories. For example, in Figure 1.23, the user is telegraphing his intention to

move the two of clubs by moving his cursor into an invisible “halo” around that card

(made visible in the figure as a light-colored box). Relatively slow user interaction

times can be overlapped with object migration, so that the objects being manipulated

will have been migrated before they are manipulated (or, at worst, the migration will

have begun). Identifying sub-object, easily-migratable entity classifications also mini-

mizes container requirements, facilitating widespread entity distribution. I anticipate

that this will help us to achieve the critical mass required for the acceptance of any

communications system.

This dissertation also asserts and demonstrates that an entity classification based

on migration characteristics serves well to identify and independently assign the en-

tities users may wish to diverge upon in a collaborative session. That is, the entities

one might wish to migrate for performance reasons are typically the very entities that

one might want to diverge upon. This presents fine-grained, user-understandable,

and application-unaware divergence possibilities along the full spectrum from WYSI-

WIS4 collaboration to independent work, and supports dynamic transitions along

this spectrum. This capability is important because the desired degree of coupling in

4What You See is What I See. That is, everyone sees exactly the same thing.

33

Figure 1.22: Multi-centered Systems with Entity Migration

34

Figure 1.23: Telegraphed User Intentions

collaborative work has been shown both to vary depending on the task at hand, and

to fluctuate during particular collaborative sessions.

1.9 Contributions of this Work

The following are the contributions of the work described in this dissertation:

• A novel classification of application software components (entities) based on

their migration characteristics. This classification identifies a number of entity

types that can be migrated very easily and quickly (as compared to user interac-

tion times of 50-100ms[Shn98]). Experimental evidence is presented supporting

migration speed claims.

• A demonstration that these entity types can be used to build a wide range of

applications, in the form of implemented applications of representative types.

These applications are written assuming a centralized infrastructure. The rep-

35

resentative applications are a jigsaw puzzle, a text editor, and a pixel-based

drawing editor. These were chosen because they require radically different ways

of representing their model data (as objects, text, and pixels, respectively), and

because they stress the infrastructure’s ability to provide both collaboration

and local, high performance interaction with different interaction styles (using

drag-and-drop, typing, and pixel painting, respectively).

• An informal demonstration that this infrastructure provides a reasonable and

understandable programming environment based on a centralized architecture,

in the form of sample code for the above applications. These applications are

collaboration-unaware; that is, they do not need to be aware of the number or

identity of participants.

• A prototype infrastructure supporting these applications, built as a multi-

centered centralized system with entity migration support.

• Experimental evidence supporting my claim that this infrastructure and appli-

cations conforming to it give substantially better interactive performance to all

participants than does a purely centralized architecture, and close to that of a

replicated architecture.

• Experimental evidence supporting my claim that this architecture scales better

in terms of both processor and network bandwidth utilization than a purely

centralized architecture.

• An informal proof that this architecture does not require model synchronization

algorithms akin to those used in replicated architectures, which simplifies the

programming of the infrastructure and/or applications.

36

• An informal proof that the kinds user mental model complexities required by a

replicated architecture are not present in this architecture.

• A demonstration of how the above-mentioned entities can be used to implement

a wide range of desirable per-participant divergence scenarios.

• An analysis of predictive migration based on telegraphed user intentions rather

than a past history of interaction.

1.10 Evaluation Summary

As my proof of concept, I have developed Concur5, a novel architecture and pro-

totype implementation of an infrastructure supporting lightweight entity migration.

Chapter 6 details the evaluation of this work with respect to performance (both la-

tency and scalability), ease of application construction, and usability by participants.

A summary of this evaluation is given here.

Evaluation for the performance criteria has been done formally via experiments

on a laboratory network at the University of North Carolina (UNC) Department of

Computer Science. All experiments were automated, with user interaction charac-

teristics that model recorded traces of actual user interactions. Evaluation for the

other two criteria (ease of application construction and usability) has been done less

formally via demonstration applications and argument.

5con·cur \k@n-"k@r, kän-\ vi con·curred; con·cur·ring [ME concurren, fr. L concurrere, fr.
com- + currere to run – more at CAR](15c) 1 : to act together to a common end or single effect 2 a
: APPROVE <& in a statement> b : to express agreement <& with an opinion> 3 obs : to come
together : MEET 4 : to happen together : COINCIDE syn see AGREE (WEBSTER’S Ninth New
Collegiate Dictionary)

37

Architecture Prediction
Centralized N/A
Replicated N/A
Migrating no
Migrating yes

Table 1.1: Basic Experiments

Dimension Values
Network Delay Introduced (each way) 0 ms, 50 ms, 100 ms

UNC Traffic no, yes
Users 1, 2, 4, 6

Table 1.2: Experiment Dimensions

1.10.1 Experiment Setup

The formal experiments (Tables 1.1 and 1.2) consisted of a jigsaw puzzle solved

by varying numbers of users (clients), with three different architectures: centralized,

replicated, and migrating. The tests with the migrating architecture were performed

both with and without using a prediction mechanism for migrating puzzle pieces based

on telegraphed user intentions. The puzzle application was chosen because it exhibits

a range of collaboration, from mostly-independent work near the beginning of a given

puzzle solution to mostly-collaborative work as the puzzle nears completion.

A single server computer hosted two processes: the Producer, which created and

maintained the jigsaw puzzle model, and the Server, which served this model to

the clients. Each client computer hosted a process containing the view computation

function, whose output was projected locally via the X Window System. The same

process also contained a special controller embodying the puzzle solving logic. The

puzzle solver took into account the general shapes of the pieces (straight, male, or

female edges) and a rough notion of the color of the half of the piece nearest an edge

38

to be matched, in order to simulate how a person would solve the puzzle. The puzzle

to be solved was a picture of Franklin Street in Chapel Hill, NC.

The laboratory network (Figure 1.24) consisted of two gigabit Ethernet switches

connected by routers. Each experiment was performed using artificially-introduced

Figure 1.24: Experimental Network

network delays of 0, 50, and 100ms. Each was performed with 1, 2, 4, and 6 users

solving the puzzle. Each was performed both with and without additional network

load. The network load introduced was an actual reproduced load of the UNC net-

work, from a trace taken in August of 2004. (See [HC06] for a description of how

the capture and replay of this network load were performed.) This introduced traffic

load had no significant impact on any of the experiments, so it will not be further

discussed in this chapter. The graphs in this chapter were all computed from experi-

39

ments without UNC traffic.

Each experiment was repeated four times. The total number of experiment repeti-

tions was 4 (basic experiments) * 3 (network delays) * 2 (with and without introduced

network traffic) * 4 (user counts) * 4 (repetitions of each of these) = 384. Each of

these 384 experiments was started with a unique arrangement of puzzle pieces ran-

domly placed on the table (such that they could overlap). Puzzle pieces were not

rotated (i.e., they always had the orientation they would have in the final picture), as

rotation was deemed an unnecessary complication for the purposes of this experiment.

1.10.2 Notes on Experimental Result Plots in this Disserta-

tion

Plots of experimental results in this dissertation (Figure 1.25, for example) show

either a distribution of values recorded over the duration of an experiment (if the Dis-

tribution tab at the top is selected) or values recorded over time as the experiment

progresses (if the Value Over Time tab is selected). Distributions are typically first

plotted as a histogram of values recorded (where the X axis shows the values recorded

and the Y axis shows the count of each value during the experiment). They are then

plotted as a Continuous Distribution Function (CDF)[CDF08], where the X axis is

the same as in the histogram, but the Y axis shows the percentile of the X value.

That is, the Y value corresponding to an X value in a CDF shows the fraction of the

total area under the histogram curve that is to the left of the X value.

The data from the experiments ultimately comes from log files that trace various

events during experiment execution. A relational database was populated from these

traces, organizing the data as required for plotting and analysis. The experimental

result plots shown in this dissertation are created by an application that queries the

40

database using parameters selected from some of the drop-downs at the bottom of

the graph, and plots it according to the values selected by other drop-downs. The

drop-downs are defined as follows:

• Architecture, Latency, Prediction, Traffic, and UserCount - Selects one

point along a dimension (e.g., the Centralized architecture), or a comparison of

all points along a dimension. Comparisons can be plotted on a single graph or

on separate graphs arranged vertically or horizontally.

• Repetition - Selects one repetition of the experiments, a comparison of all

repetitions, or an average of the values over all repetitions.

• Data - Selects the data to be plotted.

• CDF - Determines whether distribution data should be plotted as a histogram

(N) or CDF (Y).

• Client - Selects one client, a comparison of all clients, or an average of values

over all clients.

• Interval (Seconds) - On Value over Time plots, selects the interval over

which data is averaged. This determines the spacing of labeled data points on

the graph.

• Bucket Size - Determines the bucket size for Distribution graphs.

• X Max, Y Max - Determines the maximum X or Y value to be plotted.

Two drop-downs are used. The leftmost selects the significant digits and the

rightmost selects the power of 10.

• Y Min 0 - Should the Y axis be anchored at zero? (Y or N)

41

• Smoothing - Determines the type of smoothing to be done between data points

(e.g., linear, or quadratic spline).

• Legend - Determines where to place the legend.

If a graph contains more than one plot, there is a legend identifying each plot

by color and symbol. The following abbreviations identify the dimensions that differ

among plots:

• A - Architecture

– C - Centralized

– M - Migrating

– R - Replicated

• L - Introduced latency in milliseconds

• P - Prediction algorithm based on telegraphed user intentions used? (Y or N)

• T - Background traffic generated? (Y or N)

• U - User count - 1, 2, 4, or 6

• R - Repetition - 1, 2, 3, or 4

• C - Client - 1, 2, 3, 4, 5, or 6

1.10.3 Experimental Results

The primary measurement in my experiments was latency. Latency was measured

during puzzle piece drag operations. It was calculated as the elapsed time from the

user’s initiation of a cursor movement while holding a piece, until the first draw

42

operation corresponding to that user action was executed. Each measured latency

corresponded to moving the piece a few pixels, not to the entire drag of the piece.

Thus, there were many measurements for one drag of a piece. See Section 6.7, and

Figure 6.58 in particular, for more details.

The introduced network delays simulated the delays of a Local Area Network

(LAN) (0 ms), intranet (50 ms), and Wide Area Network (WAN) (100 ms). Latency

in a pure centralized system was demonstrated, as expected, to be O(2 * network

transmission time) (Figure 1.25). Latencies with the migrating architecture were

confirmed to be similar to those of the replicated architecture (Figure 1.26). This is

the single most important result of my experiments.

Entity migration was confirmed to be O(4 * network transmission time), as ex-

pected (Figure 1.27). (Look at the data near the middle of each plot, after most

pieces have been moved from the server to a client, and before contention for pieces

begins to take over.)

Predictive migration techniques based on telegraphed user intentions were com-

pared with prediction based on past interaction history. The prediction algorithm

used was cursor vectoring (migrating puzzle pieces toward which the cursor is mov-

ing). Prediction based on past interaction history was implemented by simply leaving

each piece where it was last used. Figures 1.28 and 1.29 show the advantage of using

telegraphed user intentions as a prediction mechanism. The migration hit ratio is the

probability that a piece is already migrated to the user’s client when he picks it up

to move it. (The former graph includes only completely migrated pieces, while the

latter includes pieces that have begun but not completed migration.) The advantage

decreases as the number of users increases, due to contention over pieces. This type

of prediction is enabled by the speed of Concur’s lightweight entity migration.

Scalability results were less dramatic, but still significant. Figures 1.30, 1.31, and

43

Figure 1.25: Centralized Architecture Latencies

44

Figure 1.26: Latencies by Architecture

45

Figure 1.27: Migration Latency over Time

1.32 show that latencies typically increase and task completion times typically de-

crease with an increase in the number of users, for all architectures and introduced

latencies. Network bandwidth utilization during interaction was better with migra-

tion than without (N messages per interaction, where N is the number of participants

in a collaborative conference, instead of N+1 in centralized case, per Figure 1.33).

This is significant when N is small, which true of most collaborative sessions. (See

Figure 1.34, which only shows messages received by clients.) CPU utilization for

both server (Figure 1.35) and client (Figure 1.36) were similar for all three architec-

tures6. However, both server CPU and network utilization can be reduced to zero for

the migrating architecture in the fairly common case where only a single user is view-

6The replicated architecture’s server CPU utilization is artificially high, because the replication
algorithm synchronized replicas through the central server.

46

F
ig

u
re

1.
28

:
A

d
va

n
ta

ge
of

P
re

d
ic

ti
on

b
as

ed
on

T
el

eg
ra

p
h
ed

U
se

r
In

te
n
ti
on

s

47

F
ig

u
re

1.
29

:
A

d
va

n
ta

ge
of

P
re

d
ic

ti
on

b
as

ed
on

T
el

eg
ra

p
h
ed

U
se

r
In

te
n
ti
on

s
w

h
en

P
ar

ti
al

M
ig

ra
ti
on

is
In

cl
u
d
ed

48

Figure 1.30: Latency and Task Duration By User Count, Latency 0ms

ing a particular entity at a particular point in time. For example, if multiple users

are collaborating on a large puzzle, any puzzle pieces viewable by only one user (due,

for example, to scrolling of a large workspace or document) can migrate to that user’s

client, and any interactions with those pieces need not use any network bandwidth

or central CPU cycles. This optimization was not implemented in the prototype.

There was one important and dramatic scalability result, shown in Figures 1.37

and 1.38. These figures show that the migrating architecture scales as well as the

replicated architecture, and much better than the centralized architecture, in terms

on user-perceived latency as the number of users increases.

Task completion time varied a great deal due to the small size of the puzzle, the

random placement of the puzzle pieces, and the independent and randomized be-

havior of the per-user solvers. Figure 1.39 shows the average task completion time

49

Figure 1.31: Latency and Task Duration By User Count, Latency 50ms

for each architecture, with separate averages for the migrating architecture with and

without migration prediction. While average task completion time for the migrating

experiments was lower than for the centralized architecture, it was higher than ex-

pected. This was due to the migrating architecture tending toward the performance

of the centralized architecture toward the end of the puzzle solution when contention

for pieces increases (Figure 1.40), and the short length of the experiments. In longer

experiments this tendency toward centralized performance would be amortized over

a longer period. The migrating architecture can also thrash on piece migrations to-

ward the end of the solution. This effect was more pronounced in the predictive

experiments due to the length of time between predictive migration and actual use

of a piece (Figure 1.41). This effect could be diminished by increasing hysteresis in

the migration algorithm and by migrating the piece to the physical center in order

50

Figure 1.32: Latency and Task Duration By User Count, Latency 100ms

Figure 1.33: Centralized and Migrating Message Counts

51

Figure 1.34: Message Counts by Architecture

to diminish thrashing. (The experiments included some degree of hysteresis, but did

not migrate pieces to the center.)

Example program code is presented as evidence of the ease of construction of

applications for my infrastructure. The text editor, drawing editor, and jigsaw puz-

zle were implemented in 322, 394, and 965 lines of code, respectively, as shown

in Figure 6.2. This code was implemented for a centralized architecture, and is

collaboration-unaware.

The usability of the system is argued from two standpoints. First, I demonstrated

that the more complex user mental model required for replicated systems is unnec-

essary for my architecture, because it is fundamentally centralized. Second, I have

demonstrated the utility of the entity classification with respect to identifying and

implementing useful divergence scenarios.

52

Figure 1.35: Server CPU Utilization

In sum, the most dramatic result of this work is to show that predictive, lightweight

entity migration based on telegraphed user intentions reduces latency to near repli-

cated architecture levels in what is still fundamentally a centralized architecture.

1.11 Dissertation Outline

The remainder of this dissertation proceeds as follows. In Chapter 2 I present

several of the most relevant previous synchronous distributed collaborative systems,

organized with respect to their fundamental approach to view computation. I then

present issues with these systems regarding their functionality, implementation, and

performance, based on the literature and my own observations. Finally, I present a

formal analysis framework and analyze the referenced systems with respect to the

53

Figure 1.36: Client CPU Utilization

framework. This analysis leads to the entity classification of Chapter 3.

Chapter 3 develops an entity taxonomy based on migration characteristics, with

an eye toward identifying entity classes that can be easily and quickly migrated. This

classification process becomes the starting point for developing applications for my

infrastructure.

In Chapter 4 I present the requirements that my infrastructure, Concur, must

meet, and then the architecture of the Concur infrastructure. This chapter continues

by motivating various aspects of the architecture. Chapter 5 describes a prototype

implementation of this architecture.

Chapter 6 consists of my analysis and evaluation of the Concur architecture and

implementation with respect to the requirements delineated in Chapter 4. I have

demonstrated how Concur supports the relatively simple user mental models and

54

F
ig

u
re

1.
37

:
L
at

en
cy

D
is

tr
ib

u
ti

on
B

y
U

se
r

C
ou

n
t

55

F
ig

u
re

1.
38

:
L
at

en
cy

D
is

tr
ib

u
ti

on
B

y
U

se
r

C
ou

n
t

56

Figure 1.39: Task Completion Times By Architecture

57

Figure 1.40: Migration Performance Under Contention

implementations of centralized systems while retaining most of the desirable latency

and scalability characteristics of replicated systems.

Chapter 7 concludes this dissertation by summarizing the results of this research

and pointing out interesting areas for future work.

58

Figure 1.41: Migration Thrashing With and Without Prediction

59

Chapter 2

Related Work

2.1 Introduction

In this chapter I will describe several representative centralized synchronous dis-

tributed collaborative systems and will note functionality, implementation, and per-

formance issues with these systems that are either reported in the literature or that

result from my own observations. I will then provide a framework for understanding

and analyzing these issues and will analyze each system within the context of this

framework. Finally, I will discuss other related work that influenced the work of this

dissertation in various ways. In the next chapter I will use the framework developed

here to derive a novel philosophy for addressing some of the identified issues and an

architecture based on this philosophy. I hypothesize that this architecture will re-

sult in collaboration infrastructures and associated applications that are easier than

current systems to implement as well as applications having improved characteristics

with respect to the functionality and performance issues raised.

2.2 Example Centralized Synchronous Distributed

Collaborative Systems

In this section I will give a brief description of each of the following centralized

synchronous distributed collaborative systems, chosen because of differences in the

manner in which they compute synchronized views of model data:

• XTV and Chung’s Logging Infrastructure (synchronized using state machine

transitions),

• Rendezvous (synchronized using constraints), and

• Weasel and Clock (synchronized using functions).

2.2.1 XTV and Chung’s Logging Infrastructure

XTV[AWF91] (Figure 2.1), a window sharing system for the X Window System[SGR92],

was developed at the University of North Carolina and Old Dominion University.

Figure 2.1: XTV

XTV is implemented as a pseudo-server that intercepts the communication protocol

61

between an X client (application) and server (window system). Thus, it is a client of

the server(s) and a server to the client. At a very high level of abstraction, XTV “sim-

ply” distributes messages from the client to multiple servers, and merges messages

from the servers to the client. In this way it can enable multiple people to interact

with a single-user application. These applications are designed to receive input from

only one user at a time, so XTV must also implement floor control to coordinate

input from multiple users.

The X window system does not directly support model/view separation. In Fig-

ure 2.1, the X client, which is a black box to XTV, represents both the model (appli-

cation state and behavior) and the view (a mapping from the model to a particular

projection represented as X windows). In the spirit of the Observer design pattern,

where subjects and observers can be chained, we will consider what is logically the

view (the user interface computed by the X client) to be the model to be shared by

XTV. We will then consider the view to be the portion of the X server that maps this

user interface to the projection realized as windows on a display. This view can be

conceptualized as a state machine where most state transitions are triggered by mes-

sages from the application via the pseudo-server, though some can also be triggered

by the X server itself or by other clients (such as window managers). The model,

implemented by the X client, is also assumed to be a state machine responding to

X input events and request responses, and possibly other stimuli. The domain of

this model is unusual because the semantics are those of a user interface, which is

typically the responsibility of views.

Over time, XTV was extended to support latecomers[CJAW93][CJAW94] (users

joining a conference after it has begun) by logging the requests made by the X client

and replaying them to the X server of the new participant (Figure 2.2), in effect,

replicating the view. After the log has been replayed, the new participant is treated

62

Figure 2.2: XTV Latecomer Support

the same as a pre-existing participant. While the log size is theoretically O(r) where

r is the number of requests (a measure of the length of the conference, which grows

indefinitely), XTV compresses the log such that, except in unusual circumstances, it

approximates O(s) where s is the size/complexity of user interface, which tends to

be relatively stable.

Later, similar mechanisms were used to migrate X applications from one host to

another[CD96], by logging application inputs and replaying them to a new application

instance (Figure 2.3), in effect, replicating the application. The original instance can

then be terminated (for migration), allowed to continue running (for replication), or

kept in a dormant state so that it can be re-activated later after its state is updated

through a log replay. This application migration process is less deterministic than

replicating the view. Applications are, in general, less deterministic than window

servers with respect to their state transitions in response to replayed logs, because

applications are more likely to respond to other stimuli such as the passage of time

and other external references (e.g., files). In addition, far less is known about the

semantics of various applications than window servers. Nevertheless, the XTV re-

63

Figure 2.3: XTV Client Migration

searchers were able to get migration to work in most cases. However, logs are not

as easy to compress in the input direction as they are in the output direction. This

is because one never knows what an input might do to an application state, while

window system operations are well defined. Thus, nearly all inputs must be replayed,

and the size of the log is O(i), where i is the number of inputs.

These log-based view and application migration facilities were later generalized

to apply to any collaborative system involving layers represented by state machines,

where the state machine inputs can be captured and replayed[CDR98]. Each sys-

tem must be adapted to the log-based approach by providing a loggable, which is a

component that intercepts inter-layer, system-specific protocols, translates them to

and from the generic protocol used to communicate with Chung’s logger, and replays

them to the adjacent layer. A range of log compression capabilities can be achieved

by providing more or less semantic information describing the messages passed to the

logger. View and application migration operations were then used to create an infras-

tructure capable of dynamically changing the architecture of any such collaborative

system among centralized, replicated, and hybrid variants[CD01][Chu02][CD04].

64

XTV does not support different views of the same model. Chung’s infrastructure

does not directly support such divergence either, though if it replicates components

at a high level of abstraction, lower levels are free to diverge in this way.

2.2.2 Rendezvous

Rendezvous[HBR+94] (Figure 2.4) is a language and centralized architecture for

synchronous distributed collaborative applications, developed at Bellcore. It is de-

Figure 2.4: Rendezvous

signed according to the Abstraction-Link-View (ALV) paradigm[Hil92][BH93], an

adaptation of push MVC where the abstraction corresponds to the model, the view

subsumes the view and controller functions, and abstractions and views are synchro-

nized via links.

Abstractions, links, and views are represented in the Rendezvous object-oriented

language, an extension of the Common Lisp Object System (CLOS)[CLO08] sup-

porting events and constraints. Links are objects encapsulating bundles of one-way

constraints between abstractions and views. Constraints are typically paired, with

one in each direction. They synchronize abstractions and views by linking individual

65

state variables in abstractions with corresponding variables in views, and vice versa.

Links may perform arbitrary transformations of the data along the way, enabling

abstractions and views to each represent the same logical data in a manner that is

convenient for the implementation of their respective responsibilities.

Abstractions and views are tree data structures, typically with a high degree of

correspondence between the structure of a view and the structure of a correspond-

ing abstraction. This simplifies the correspondence between abstractions and views

maintained by links. In turn, the view tree corresponds to the containment hierar-

chy of user interface components. Thus, by transitivity, there is generally a strong

correspondence between the visible user interface and both the view and abstraction

structures. A special kind of link called a tree-maintenance link is used to maintain

the appropriate constraints between abstractions and views as the structure of the

abstractions and views changes.

The view tree declaratively specifies the user interface, which is actually main-

tained by the Rendevous infrastructure using the X Window System. The Rendezvous

infrastructure maintains constraints on the declarative view data structure, respond-

ing to changes in this structure by updating the visible user interface. In the other

direction, interactions with the user interface trigger events which are directed to

event handlers in view code. These may cause changes to view state variables, which

may be the source end of constraints targeted at variables in the shared abstraction.

Thus, the abstraction is modified in response to user events, triggering abstraction-

to-view constraints in the same or other views. In this manner, views are kept in sync

with the abstraction and therefore with each other.

Different views of the same abstraction can, of course, be implemented by different

links and/or different view code. In addition, not all view state needs to be linked

to abstraction state, which allows individual views to diverge from other views, even

66

given identical view code and constraints.

Rendezvous is strongly centralized, in that models and views both reside on a

centralized host. Views are then distributed using the X Window System. This

architecture greatly simplifies the constraint maintenance engine, which does not

have to be distributed. The Rendezvous researchers also developed an experimental

version of Rendezvous that distributed view computation using a distributed subset

of their constraint facilities, but a fully distributed version of Rendezvous was never

completed.

2.2.3 Weasel and Clock

Weasel[Urn92][GU92][UN94] (Figure 2.5) is a development environment support-

ing synchronous distributed collaborative applications, from GMD and the Norwegian

Institute of Technology. It uses an adaptation of the pull MVC paradigm.

Figure 2.5: Weasel

In Weasel, applications written in an imperative language (Turing) play the role of

models. Views are constructed using a the Relational View Language (RVL), which

creates a bi-directional relationship between application data structures and views.

67

When constructing views, functions (in the functional programming language sense)

map from data structures in the application to view (user interface) components.

Functions can be composed to produce composite views. Functions can also be anno-

tated such that the view components they produce (e.g., buttons) are active. If such

an active component is manipulated (e.g., a button is pressed), the Weasel infrastruc-

ture stores a value in an argument of the function. This value can then be propagated

back to the application. Thus, as in Rendezvous, views subsume the controller MVC

function. Changes to application state trigger re-evaluation of the view function. In

the course of re-evaluating this function, expressions are passed to the application for

evaluation, so that the new view will correspond to the current application state.

Parameters to Weasel view functions can be either remote (i.e., they can come

from the application) or local (from the view component itself). Thus Weasel, like

Rendezvous, can implement different views of the same application by using different

functions or local view state.

The authors of Weasel later developed the Clock architectural style and visual

architecture language[GU96], and the associated ClockWorks[GMU96] visual pro-

gramming environment. The components of a Clock architecture are programmed

textually using a functional language based on Haskell[Bir98].

Clock architectures are designed visually using ClockWorks. On the left side of

Figure 2.6 is a simplified drawing of a Clock architecture being designed in Clock-

Works. On the right side of the figure is a drawing of the resulting user interface.

This simple application represents a toggle switch labeled Press below a light that

goes on or off each time the button is pressed (it is off at present). A Clock archi-

tecture is a hierarchical structure matching the user interface containment hierarchy.

Components are represented by rectangles, with a component name at the top of each

rectangle and a class name at the bottom.

68

Figure 2.6: Clock Architecture Example

Figure 2.7 shows more detail of this simple clock architecture1. Boxes above

components (Toggle and Depressed, in the figure) are Abstract Data Types (ADTs)

associated with the components. Arrows to the left of components and ADTs denote

the supported incoming event/update (single arrow) or request (double arrow) calls.

Arrows to the right are outgoing calls that can be made by the respective components.

Identifying these outgoing calls supports the Clock constraint maintenance system,

described below. Rounded boxes show the code for the indicator (left) and button

(right).

Assume the user depresses the button. When he does so, the mouseButtonUpdt

function is evaluated with the “Down” argument. It calls depress, and this call bub-

bles up the tree to the Depressed ADT, changing its state. Since the button view

function calls isDepressed, a constraint invokes the view function of the button, and

the button is redrawn with a sunken relief. When the user releases the button, mouse-

ButtonUpdt is called with the “Up” argument. This calls release, which bubbles up to

the Depressed ADT again and resets its state, triggering the view function of the but-

ton to be re-evaluated, restoring the button to raised relief. Then mouseButtonUpdt

calls buttonClick. This bubbles all the way up to the Toggle ADT, toggling its value.

Since the indicator view function calls getValue, a constraint causes the re-evaluation

1I have taken some minor liberties with the language in order to clarify the example.

69

Figure 2.7: Detail of Clock Example

70

of this function, which turns the light on by filling the upper circle with the color

“white”.

Clock’s call bubbling facility enforces data hiding because components can only

make calls on components and ADTs that are their ancestors in the tree. ADTs should

therefore be located at the lowest point in the tree covering all components accessing

the ADT. Clock’s constraint facility enables communication among components that

are not in an ancestor/descendant relationship. Both facilities are indirect means of

communication, where components do not directly reference each other. This facil-

itates reorganization of the architecture, which can be performed in ClockWorks by

direct manipulation. Unlike XTV, Rendezvous, and Weasel, models are distributed

throughout Clock architectures as ADTs, making the various Model/View relation-

ships difficult to diagram.

Clock supports various annotations to the architecture, telling ClockWorks how

to generate a particular implementation. Like Rendezvous, default implementations

of Clock architectures are purely centralized, with views distributed using the X

Window System. One annotation tells ClockWorks to divide the architecture into a

client/server implementation (Figure 2.8). Various caching algorithms can be selected

with this annotation. In the figure, the portion of the architecture above the annota-

tion would be centralized, while the portion below (a copy of which would be created

for each participant) would be distributed. Calls from client to server and constraint

invocations from server to client will cross the network transparently. Clock annota-

tions are (normally) semantics-preserving, meaning that only the implementation, not

the functionality of the system is changed by an annotation. This allows applications

to be developed without annotations and then optimized using annotations. Other

annotations specify the type of concurrency control to use on particular ADTs, and

which ADTs should be replicated. Replicated ADTs may be specified on the server

71

Figure 2.8: ClockWorks Client/Server Annotation

side of the diagram to denote more global call/constraint bindings, but replicas will be

created for each client. A centralized replica will also be created to distribute updates

from one replica to another and to support latecomers. (When ADTs are replicated,

the developer asserts that the concurrency control implemented will not change the

semantics of the application, since this is difficult to determine automatically.)

Like Weasel, Clock uses a pull MVC variant. However, some of the caching options

implement push-like semantics, where the server anticipates model values that may be

needed in the future based on past queries, and proactively pushes these values to the

client cache[GUN96a]. Like XTV and Chung’s infrastructure, but unlike Rendezvous

and Weasel, Clock provides no support for different views of the same model.

2.3 Issues with the Above Systems

This section will briefly discuss issues with the above systems at a very high level.

These issues will be discussed in more detail in the remaining sections.

72

2.3.1 Functionality

There are several major functionality issues with the foregoing systems that I will

enumerate here:

MVC Issues

MVC issues are discussed here in the functionality section rather than in the

implementation section because the difficulties encountered are architectural, and

they bleed through strongly to the functionality of the system, as described below.

Rendezvous and Weasel both combine the view and controller functions of the

MVC paradigm. XTV and Chung’s infrastructure only marginally support MVC

through their model/view separation in layers. This is because models are black boxes

and cannot be queried, which is a required operation for pull MVC. Also, XTV and

Chung’s infrastructure rely on counting messages from models in order to heuristically

determine whether models are synchronized. This does not work with push MVC,

where different notifications are sent to different views, depending on view interest.

(See [Chu02] for a more complete description of the difficulties Chung’s infrastructure

has in supporting MVC.) Only Clock has a separate controller mechanism, in the

form of event handler functions that map between operations at the user-interface

and application domain levels (see [PG99] and Figure 2.7). However, Clock uses

the less efficient pull paradigm, enhanced with caching facilities as described above

to mitigate some of the performance problems. A push approach would be more

efficient, but it is difficult to implement with a constraint system based on method

calls (such as Clock) rather than events.

Rendezvous advertises that the ALV paradigm provides better separation of mod-

els and views than MVC, because links can map between the two, eliminating the

73

view’s knowledge of the model. Clock’s indirect call and constraint mechanisms ad-

vertise similar separation via indirect communication. However, both systems tend

to force model data to be structured like the user interface. This complicates imple-

menting multiple, differing views of the same model, since the model cannot simulta-

neously reflect the structures of radically different views. In general, any model/view

dependencies tend to reduce the reusability of these components, which diminishes

divergence possibilities available to participants.

Weasel implements a fairly traditional pull MVC paradigm, where view and con-

troller are combined. The Rendezvous ALV paradigm is more like push MVC. Ren-

dezvous and Weasel both modify models directly at a low level of abstraction, rather

than at the level of application-domain operations. Operating on models at a low

level of abstraction tends to complicate concurrency control on models (which may

need several low-level operations to be performed atomically), and consequently forces

user-interface and collaboration awareness into the model. This makes it difficult to

reuse models in unanticipated ways. Low-level operations on models also imply a

more detailed knowledge of models by views (or links, in the case of Rendezvous).

Unshareability of Local State

Rendezvous, Weasel, and Chung’s infrastructure2 allow view-local state. Ren-

dezvous and Weasel provide no mechanisms for sharing this state. This means that

any application using this mechanism to diverge cannot share all of its interaction

with anyone else. For Chung’s infrastructure, whether local state can be shared or

not depends on the layer at which logging takes place. If logging takes place at a

higher abstraction layer than the local state, then that state cannot be shared unless

2... and maybe Clock, depending on whether ADTs can be represented below the client/server
divide, and if so, what the semantics of that would be.

74

low-level events describing changes to that state are passed to higher layers. For ex-

ample, mouse cursors are not shareable in XTV unless the window system is told to

send all cursor motion events, because otherwise the local state of the cursor position

is entirely within the X server.

Invisibility to Participants of Divergence Parameters

Neither Rendezvous nor Weasel provides mechanisms for exposing to the users

the various ways in which their views might be allowed to diverge. For Rendezvous,

this would be difficult, because constraints link low-level variables that may not have

meaning to the user. For Weasel, it might be more reasonable, since function pa-

rameters can operate at a higher level of abstraction. However it is not clear that

function parameters would always indicate a reasonable point of divergence, or how

to indicate which parameters do and which don’t. Thus, for these systems, specifying

divergence is mostly within the realm of the developer, not the participant. XTV,

Chung’s infrastructure, and Clock do not support much in the way of divergence.

Non-determinism

XTV and Chung’s logging infrastructure are, in general, non-deterministic. They

are implemented using heuristics that usually work, but are not guaranteed to do

so. This is not a fault the infrastructure, as it is doing all it can to implement syn-

chronous distributed collaboration using components not necessarily designed for this

purpose. Nevertheless, non-determinism is a serious deficiency, and any collaborative

infrastructure should be deterministic whenever possible.

75

2.3.2 Implementation

In this section I will point out two issues with the above systems that compli-

cate infrastructure and/or application implementation: state machine problems and

container requirements.

State Machines

In general, moving or copying state machines and keeping state machine replicas

up to date can be both inefficient and difficult to implement, as is attested to by

the literature on XTV and other window sharing systems and Chung’s logging in-

frastructure[LJLR90][Pat90][CJAW93][AWJ94][CD96][CDR98][Chu02]. This applies

to both model state, which is usually unavoidably represented by a state machine,

and view state, which often is but need not be represented by a state machine. It also

applies to local state in view components that update other state using constraints

or functions. Difficulties include:

• Divergent containers. Usually replica containers (execution environments)

are mostly, but not entirely, identical. Examples are differences in available

fonts and color representations in the X Window System, applications or in-

frastructures installed on some systems but not others, and applications or

infrastructures installed to different revision levels.

• Uncontrolled inputs. Generalizing on the divergent container issue, it is very

often the case that state machines have inputs which are not under the control of

the infrastructure attempting to set the component’s state. Examples are files,

environment variables, and interrupts. This can cause non-deterministic state

changes, making it difficult or impossible to ensure that the desired state has

been achieved. Non-deterministic state changes are often impossible to detect,

76

and their effects on a component’s behavior can be hidden until arbitrarily

distant times in the future.

• Timing dependencies. A special case of uncontrolled inputs is timing depen-

dencies (where time is the uncontrolled input). Timing dependencies can also

lead to non-determinism. They are much more difficult to control than other

inputs.

• Non-idempotent operations. State machines not only change state in re-

sponse to inputs, they also emit outputs. Often, especially in the case of models,

the outputs they emit are non-idempotent. Writing to a file, sending email mes-

sages, and communicating with external processes are three examples. A more

subtle example is making changes to a display that are visible to a user, since

the user is capable not only of observing the current state, but of remembering

the sequence of observed events. Non-idempotent operations in general can oc-

cur when a state machine changes state that is outside the bounds of the state

machine itself, which it therefore cannot fully control.

• Representation mappings. Logically identical state in two replicas may

require physically different representations. This requires representation map-

pings to be performed when creating or updating a replica. Examples are re-

source identifiers and color specifications in the X Window System.

• State accessibility. It may be difficult or impossible to retrieve or set the

desired state.

Of the systems described, XTV and Chung’s infrastructure manipulate state ma-

chine components. Rendezvous and Weasel3 also have local state which must be

3and maybe Clock

77

treated as a state machine.

Container Requirements

Container requirements are critical in distributed systems, whether the compo-

nents executing in these containers are represented as state machines or not. In

distributed systems, container requirements go beyond the obvious need for contain-

ers to provide all the facilities and resources required by a contained component.

Distributed systems imply multiple, independent execution environments (contain-

ers). Infrastructures must have guarantees about these containers in order to ensure

that the operations they perform will have the specified effect. At a minimum, the

infrastructure must be able to detect container properties that may differ from sys-

tem to system. Ideally, containers should make guarantees of identicality. Two useful

methods that help achieve such guarantees are to ensure that the container require-

ments are extremely simple and well-defined, and to restrict inputs to a container to a

minimum. Security and idempotency concerns motivate restricting container outputs

to a simple, well-defined minimum as well.

Another strategy for achieving container identicality is to distribute sub-containers

from a central location. For example, if the operating system satisfies the necessary

guarantees as an outer container, portable application code can be delivered from a

central location to ensure that the application-level container is identical at all sites,

rather than depending upon the operating system to have the proper application at

the proper revision level installed.

The container requirements of the systems described above are as follows:

• XTV: For each model container, it requires an operating system with the same

version of the X client application installed, any external resources the client

78

might need, and TCP/IP. For the view container, it requires an X server. Any

differences in X servers are discernable using the X protocol. The infrastructure

(pseudo-server) only needs an operating system supporting TCP/IP and the

infrastructure code itself.

• Chung’s infrastructure: For each model container, it requires an operating

system with the same version of the application installed, any external resources

the application might need, and TCP/IP. The view container requirements de-

pend on the system being logged. The infrastructure requirements are the same

as XTV’s.

• Rendezvous: The central container requires the Rendezvous infrastructure,

model and view code, any external resources the model code might need, and

access to an X server. Since the model and views are not distributed, this is only

required on one machine. The distributed version of Rendezvous is different in

that it also requires the Rendezvous infrastructure on the view machines, and

the view code is on the view machines instead of the central machine.

• Weasel: The model and view containers both require the Weasel infrastructure.

The model code and any necessary external resources are only required on the

model side, and the RVL runtime and the view code are only required on the

view side. The model does not migrate.

• Clock: The model and view containers both require the Clock infrastructure.

The model container also requires the model code and resources it needs, and

the view container also requires the view code and access to an X server. The

model does not migrate.

79

2.3.3 Performance

The literature for the above systems reports performance problems for all of the

above systems. In fact, the broader literature consistently cites performance prob-

lems for centralized systems, due to latency (the time it takes for a message pair to

travel from view to model and back) and bottlenecks on the network or at the cen-

tralized server. Bottlenecks are particularly troublesome for centralized synchronous

distributed collaborative systems because multiple views are likely to need the same

data at the same time.

Other reasons for performance problems in the above systems include:

• Inefficient client/server task splits (e.g., generating large views on the central

system instead of the distributed peers) (XTV, Rendezvous),

• Inefficient protocols (e.g., using the pull vs. push MVC design pattern (see

[GHJV95a])) (Weasel, Clock[GUN96b]), or

• Inefficient computations (e.g., re-computing views from scratch every time some-

thing changes) (Weasel).

Moving or replicating components (e.g., for mobility or latecomer support) can also

be a source of inefficiency during the move or copy operation (XTV, Chung’s infras-

tructure), though these operations are usually invoked in order to improve future

interactive performance by locating components close to the participants who are

using them.

Performance problems due to latency in centralized systems are often alleviated

through the use of local view state. Unfortunately, in the systems described, this also

leads to unshareable state, because it is difficult to share local state in centralized sys-

tems. Replication is also used in Rendezvous and Clock. In both systems consistency

80

problems are reported which either result in “erroneous user interface feedback” or

“un-intuitive user interface behavior” (see [Urn98]). (In Rendezvous the replication is

subtle. It involves replicating state variables in the model and multiple views, which

are bound together by constraints. When two users simultaneously change one of

these state variables users will at least see different sequences of events in their user

interfaces, even if the views are guaranteed to be consistent when a quiescent state

is reached.) Clock also implements locking, which can be inefficient. Course-grained

locking can unnecessarily reduce concurrency, and fine-grained locking can be expen-

sive in terms of the locking time required for multiple resources and the memory

space required for fine-grained locks. In any case, consistency control mechanisms

for replicated state involve either using a centralized component for serialization, or

complicated algorithms for preventing or recovering from inconsistencies caused by

inconsistent ordering of events to multiple replicas[GM94].

2.4 Contributions of this Work

I will now briefly describe the contributions of my work pertaining to the func-

tionality, implementation, and performance issues raised about the centralized syn-

chronous distributed collaborative systems described above, in order to motivate the

focus of the analyses performed and conclusions derived in the following sections.

The major contributions of my work are as follows:

• I will motivate a particular variant of the MVC paradigm for use in centralized

synchronous distributed collaborative systems, involving the use of an explicit

controller and the push protocol. These are not new concepts, but the use of

other variants has caused functionality and performance problems in previous

systems as noted above.

81

• I will describe a novel solution to the classical tension between consistency with

bottlenecks and high latency on the one hand and responsiveness with sharing

and concurrency control problems on the other, in highly interactive centralized

synchronous collaborative systems. My solution is based on the identification

of classes of model entities4 that can be migrated automatically and extremely

quickly, while maintaining most of the simplicity of centralized semantics and

implementations. My solution will result in systems nearly as responsive as

replicated systems in most cases, without the complicated implementations and

potential un-intuitive user feedback of existing replicated systems.

• Based on an analysis of the view computation components in the above systems,

I will identify a class of view computation components that can migrate quickly

and easily, while enhancing the determinism of the system.

• I will identify a means of classifying and organizing model state in a man-

ner that allows the infrastructure to better manage the various classes of such

state. In particular, this classification and organization will help the infrastruc-

ture to enhance performance, reduce user interface and collaboration awareness

in applications, increase desirable view divergence possibilities, and present di-

vergence opportunities to users in an understandable manner.

4In this paper, I will use the term entity where one might expect the word object. I have purposely
avoided the word object because of its common definition in object-oriented systems, where it implies
support for the fundamental object-oriented concepts of abstraction, encapsulation, polymorphism,
and inheritance. Entities in this paper are such things as applications, processes, code, object-
oriented objects, data structures, files, databases, devices, mathematical functions, and concepts,
which may or may not meet object-oriented requirements.

82

2.5 Analysis Framework for Centralized Synchronous

Distributed Collaborative Systems

I will now present an analysis framework that can be used both to analyze cen-

tralized synchronous distributed collaborative systems like those described above, and

to point the way to improved architectures addressing many of the above concerns.

The analysis framework that I am proposing will identify various entity classes in the

systems being analyzed along with various attributes of each class.

The entity classes identified in the above systems are shown in Figure 2.9, while

the attributes of these entity classes that I will be discussing are shown in Figure 2.10.

• Models:

– Process-Based

– Object-Based

• Protocol Manipulators

• View Computation Engines:

– State-Machine-Based

– Constraint-Based

– Function-Based

• Local View State Repositories

• View Specifications:

– Imperative

– Declarative

• View Realizations

• Controllers

Figure 2.9: Entity Classes

83

I will discuss each entity class in turn, covering each of the attributes for each of the

• General attributes:

– The type of the entity.

– The representation of the entity.

– The role the entity plays in the system.

• The divergence possibilities of the entity in the system:

– actual

– desired

• The visibility of the entity:

– to developers

– to the infrastructure

– to users

• The location of the entity in the system:

– actual

– desired

• The mobility and ease of mobility of the entity in the system:

– actual

– desired

Figure 2.10: Entity Attributes

above systems.

2.5.1 Models

Models are entities that play the role of the MVC model by maintaining the pri-

mary semantic state for the system. In Chung’s infrastructure, the kind of data

represented in the model is dependent on the layers between which logging is im-

84

plemented and the details of the system being logged. The semantics of the state

are largely invisible to the infrastructure, but this is dependent upon the amount of

semantic information provided by the loggable. In all the other systems described

above, the model mixes state for both the application domain and the user inter-

face domain. For example, in the Clock example of Figure 2.7, the Depressed ADT

represents user interface domain state, while the Toggle ADT represents application

domain state. While these are separate ADTs, the infrastructure cannot identify

their different roles. In XTV it is impossible to distinguish between application and

user interface state, and in the other systems, any such distinction is application

dependent and invisible to the infrastructure.

Model state in the above systems is represented either as a process or as an object

structure. In XTV the model is represented as a process. In Rendezvous, Weasel, and

Clock it is represented as object structures, and in Chung’s infrastructure either pro-

cess or object representation is supported. Process representations are typically black

box state machines. Object representations have the advantage of giving the infras-

tructure finer-grained access to model data, making it possible to attach constraints

to objects or to use objects or object method calls as function parameters.

Process representations force coarse-grained divergence possibilities, as in XTV,

where the entire application must be shared wholesale. Object representations enable

finer-grained divergence, as in Rendezvous or Weasel. Chung’s infrastructure does not

support fine-grained divergence even when the model is object-based, because it does

not know enough about the semantics of the objects whose protocols are being logged.

Clock does not support divergence because its ADTs are strongly tied to a particular

user interface structure.

In all of the above systems, the model structure is visible to developers either at the

course-grained process level or at a fine-grained object level, so that the developer can

85

implement divergence at whatever granularity the model provides. XTV and Chung’s

infrastructure expose process-level models to the user for coarse-grained divergence

at the application level, while Rendezvous and Weasel do the same with entire model

object structures. With all these systems except XTV, models can be associated

with different views. In Clock the individual ADTs are distributed throughout the

architecture, whose structure is determined by the user interface. Thus, as with

XTV, models are tightly bound to user interfaces. All of these systems provide only

course-grained, entire-model visibility to users.

Ideally, model state would be object-based with a separation between application

and user interface domains, and object granularity would be at an appropriate level

to represent units of divergence (neither too high, obscuring finer-grained divergence

users might want, nor too low, making divergence too detailed and complicated).

Objects would be visible to both developers and users so that they could both control

divergence scenarios, and to the infrastructure, so that it could implement automatic

performance enhancements and expose divergence opportunities to developers and

users.

Undifferentiated models must in general be located where they have all the nec-

essary container support and access to external resources. Container support for

models is particularly demanding, since models are typically responsible for observ-

ing and manipulating the environment around them, and their container and external

resource needs are application dependent. Such dependencies are typically invisible

to the infrastructure. This is true of all the systems described above.

Model location would ideally be as near the currently-interacting participant(s) as

possible, to reduce latency. The membership of this set of participants is highly dy-

namic. XTV and Chung’s infrastructure are the only systems described that support

dynamic model mobility. Even in these cases, such mobility is non-deterministic, and

86

takes on the order of seconds. Ideally, such migration would be in the 100 millisecond

range or faster, to avoid disrupting the work of participants[Shn98]. The demands

for container and external resource availability on the one hand, and for low latency

on the other create a tension between required and desired model location that is a

central focus of this paper.

2.5.2 Protocol Manipulators

Protocol manipulators like Chung’s loggable and XTV’s pseudo-server are infras-

tructure components typically used to add collaborative capabilities to existing single

user applications. They can be represented either as independent processes or as em-

beddable software components. They are typically not visible to developers, because

the whole point is to add their functionality transparently to applications. They are

often made visible to users through a session user interface so that users can cre-

ate and manage sessions and attributes of sessions such as floor control. Whatever

divergence the infrastructure may be able to support is exposed via this user interface.

Protocol manipulators are interposed between layered components of existing soft-

ware systems. Given network communication, they can often be located anywhere,

but they are usually located centrally near the model or in a distributed fashion near

each view. If they are embedded, of course, they are located with the component in

which they are embedded. Since they are infrastructure, which is under the control

of the infrastructure developer, they can usually migrate fairly easily with either the

model or the view.

87

2.5.3 View Computation Engines

The purpose of a view computation engine is to create a mapping between a model

and a view specification, where the view specification defines the current state of a user

interface. View computations are represented in the above systems by state machines,

constraint bundles, and functions. XTV and Chung’s infrastructure represent these

engines as state machines, Rendezvous represents them as links (constraint bundles),

and Weasel and Clock represent them as functions.

Ideally, view computation engines should be distributed and located as near par-

ticipants as possible. There are several reasons for this location preference:

• Models are usually smaller than views, and changes to models are usually

smaller than changes to views. Locating views near the participant therefore

reduces network traffic, increasing performance and scalability.

• Performing view computations on participant hosts distributes the computa-

tion and reduces the bottleneck at the central location. This in turn increases

performance and scalability. Distribution of view computation is particularly

important when the views differ and must be computed separately.

• In the other direction, lower-level (e.g., user-interface-level) events are usually

more frequent than higher-level (e.g., model-level) events. Locating view com-

putation on the participant’s side of the network therefore reduces network

traffic and the frequency of over-the-network latency delays.

XTV, Rendezvous, and, in some cases, Chung’s infrastructure and Clock generate

views on the model side of the network. Weasel and the experimental distributed

Rendezvous are superior in that they compute the view on the participant side of the

network infrastructure, and Chung’s infrastructure and Clock are capable of doing

88

the same.

Locating a view near a participant implies migrating that view when the par-

ticipant moves, if user mobility is to be supported. Migrating a view is essentially

the same as supporting latecomers, except that any view-specific state must be mi-

grated as well. Migrating view computations is typically much easier than migrating

models because in general, views have more restricted and better defined semantics

than models. All of the described systems support view migration or latecomers.

Since XTV and Chung’s infrastructure must migrate state machines, their task is the

most difficult, and is in general non-deterministic, as described earlier. Migrating

views with Rendezvous is easier because view computation is constraint-based, and

views can therefore be re-computed automatically from model state. Migrating views

with Weasel and Clock somewhat easier still, since the parameters to functional view

computation can be at a higher level of abstraction than Rendezvous constraints and

are therefore easier to establish. Unfortunately, Rendezvous, Weasel, and (perhaps)

Clock allow local view state for performance reasons, and the papers on these systems

do not indicate that they provide any mechanism for migrating that state.

In all cases, view computations are visible to developers, since the code to com-

pute them is the developer’s responsibility. View computations are also visible to

infrastructures, except in the case of XTV and (sometimes) Chung’s infrastructure.

Making view computation visible to the infrastructure opens up the possibility of

allowing the infrastructure to position the view computation components in the net-

work. Rendezvous and Weasel can presumably make view computations available

to users so that they can mix them with different models, although this is not ex-

plicitly discussed in the literature. With Clock and XTV, view computations are

tightly bound to models, making such recombination impossible, and with Chung’s

infrastructure the ability to recombine models and views depends on the system being

89

logged.

2.5.4 Local View State Repositories

Local view state repositories are facilities for maintaining inputs to view computa-

tions that are local to each participant and can be manipulated by the local controller

or view. They function as a means of providing for private (unshared) data and are

also used to alleviate much of the latency in centralized systems. Unfortunately, the

distinction between private and shared data is often dynamic, and local data is diffi-

cult to share in a centralized system. There is therefore a tension between the desire

to locate view-specific data near the participant, where it results in greater respon-

siveness, and locating it near the central model, where it can more easily be shared.

As is true with model state, alleviating this tension is a major focus of this work.

XTV does not maintain any local view-specific state (other than the user interface

itself, which is not being considered here), and Chung’s infrastructure may or may not,

depending on the logged system. Rendezvous allows for view state that is not bound

by or to model state via constraints, and is therefore local state. Weasel explicitly

supports local view state (and Clock may do so). None of the above-mentioned

systems advertise that they support view state migration as users migrate. Ideally,

any local view state should be both shareable and migratable, as well as capable of

providing good responsiveness.

Local view state is typically visible to developers and the infrastructure. It is not

usually visible as such to users, as the location of state is an implementation detail.

90

2.5.5 View Specifications

View specifications determine what a user interface should look like. They can

take the form of a sequence of imperative commands (as with the X Window System

protocol), or a declarative representation of the current state of the user interface

that can be translated to window system commands.

XTV and Chung’s infrastructure take the imperative approach, while Rendezvous,

Weasel, and Clock take the declarative approach. Declarative representations of the

user interface are easier for the view computation to generate and keep up to date,

as it is dealing with a static representation of the current state rather than a state

machine. That is, a declarative view specification isolates all of the difficult work

of dealing with the window system state machine and allows the infrastructure to

perform that function. Declarative representations also allow efficient snapshots of

the user interface to be easily obtained, and they eliminate the potential of not being

able to retrieve the entire user interface state. They are also useful to the developer

for debugging and testing.

View specifications are visible to the developer and the infrastructure, but not

typically to the user. Making a declarative representation available to the user enables

him to take user interface snapshots in a structured (i.e., analyzable), efficient, and

easily rendered form.

View specifications, like view computations, should be near each participant, and

should migrate with the participant if user mobility is supported. In the case of

state-machine view computations, a declarative view specification could simplify and

speed migration, as the user interface could be automatically regenerated from the

specification. In the case of constraint-based or function-based view computations, it

is not necessary to migrate the declarative view specification, as it will be regenerated

91

automatically.

By the time a view specification is generated, it is too late to think about diver-

gence; any divergence among users is already represented in the view specification.

2.5.6 View Realizations

A view realization is the actual user interface generated from a view specification,

via a window system or user interface toolkit. View realization must be located with

each participant, and must migrate with the participant if user mobility is supported.

XTV, Rendezvous, and Clock realize their user interfaces using the X Window System.

Chung’s infrastructure can support different window systems. It is unclear from the

literature what window system was used by Weasel.

The view realization is visible to the infrastructure and, of course, to the user. If

the view specification is imperative, the view realization is visible to the developer;

if the specification is declarative, it is not. Like the view specification, the view

realization reflects any per-view divergence.

2.5.7 Controllers

The job of the controller is to map low-level events in the user interface domain to

high-level operations in the application domain. Of the systems described, only Clock

supports this controller function. XTV, Rendezvous, and Weasel typically operate on

models at a level of abstraction lower than the model domain. Chung’s infrastructure

just logs and replays operations without understanding their domain. Controllers are

typically represented as event handlers for user-interface domain events. They should

be located near the participant for the performance and scalability reasons described

earlier.

92

When present, controllers are visible to developers and the infrastructure. They

can be made visible to users in the form of a choice among user interface bindings (e.g.,

emacs vs. vi editor bindings), which can often be customized per-user. Controllers

thus represent a divergence mechanism that works in the input direction. When con-

trollers are present and when they allow per-view customization, they must migrate

with the user. Such migration is typically easy, because user interface bindings are

usually declarative and are visible to the infrastructure and developer, and because

no local execution state need be maintained between user interface events5.

2.5.8 Analysis Summary

Based on my analysis of XTV, Chung’s logging infrastructure, Rendezvous, Weasel,

and Clock I have observed the following about centralized synchronous distributed

collaborative systems:

• Centralized systems suffer from performance and scalability problems because

of latency between distributed and centralized locations, and because of bottle-

necks on the network and at the central location.

• Models are difficult to migrate in general, because they are state machines and

because of their container and resource access requirements. Classification of

models by their properties can enable the infrastructure to support various

classes differently. This may allow us to break down the model migration prob-

lem such that we can deal with it more effectively.

• In order to be able to manage divergence from WYSIWIS sharing, potential

and useful divergence points in models need to be exposed to users in an un-

5Incomplete gestures, which may require some local controller state in-between user interface
events, do not need to be carried across a user migration.

93

derstandable manner. Model classification may help in this regard as well.

• Model organization should be independent of user interface structure, so that

models can be reused with radically different user interfaces.

• Views should be separated from models and located near participants, for per-

formance and scalability. They should migrate with participants.

• Reducing container and external resource requirements facilitates migration of

entities.

• Functions are easier to migrate than constraints, which are easier to migrate

than state machines.

• Local view state should ideally be separated from distributed view computations

and centralized so that it can be shared, and so that views can be migrated more

easily. On the other hand, local view state mitigates the latency problems of

centralized architectures.

• Representing view specifications declaratively instead of imperatively simplifies

view computation.

• Maintaining a separate controller component, as in the original MVC paradigm,

helps to separate models from views, which in turn facilitates component reuse

and increased divergence possibilities. It also simplifies concurrency control and

helps to remove user interface and collaboration awareness from models.

It is clear from these observations that most of the performance, implementation,

and functionality problems of existing centralized synchronous distributed collabora-

tive systems stem from one or more of the following:

94

• Not maintaining a controller separate from the view in an MVC-like architec-

ture, and using MVC inefficiently.

• Lack of mechanisms to classify entities by their properties and expose these

classifications to the infrastructure, developer, and user.

• Issues surrounding the locations, replication, and migration of entities.

The first issue is mostly independent of the others, and the solution is straightforward:

use the push MVC paradigm, and implement a separate controller component that

maps between user interface and application domain operations. The second and third

issues are inter-related because entity classification can help us resolve location issues.

In the next chapter I will propose an architectural philosophy for the classification of

entities by properties such as their role in the system, their container and external

resource requirements, and their desired location and migration characteristics.

2.6 Other Related Work

2.6.1 Perspective-Like Constructs and User Models

The concept of Concur perspectives, which are introduced in Chapter 3, was

heavily influenced by a paper by Schuckmann, et. al. [SSS99], in which they propose

the following:

• Separation of models pertaining to the problem domain from those pertaining

to the user interface, in order to promote reuse of both.

• Shareability of all user interface models, to enable a wide range of dynamically

selectable coupling/divergence scenarios, and to promote group awareness.

95

This paper also promotes separately maintained but linked user models in the

UI and problem domains. In this context, a user model is a model that maintains

information about the users interacting with a particular UI, or information about

users that is part of the problem domain.

While this paper promotes underlying, Concur-like mechanisms for enabling a

wide range of coupling and divergence scenarios, it does not propose any particular

mechanism for managing coupling and divergence.

2.6.2 Coupling Systems

Suite[DC95] represents the most thorough analysis of coupling and divergence

possibilities in the literature. Suite automatically generates data-specific user inter-

faces (editors) from arbitrary application data structure specifications. It distributes

these editors to multiple users, associates them with a centralized application that

maintains committed values of the data structures, and manages couplings among

data items in related editors. Each data item is presented independently in the UI.

Suite’s focus is on when sharing of individual data items occurs.

Each editor maintains its own copy of each data item, which can be edited indepen-

dently. Couplings specify, for each data item, when changes should be communicated

to and received from other editors of the same data item. For example, a particular

item can be transmitted on every incremental change, only when it is syntactically

or semantically correct, on time intervals, or when explicitly committed or transmit-

ted by the user. Coupling parameters can be specified for each pair of users, and a

data item must satisfy both transmission and reception specifications in order to be

transferred between a pair of users. Coupling parameters can be specified as Suite

defaults, by the application programmer, or by the individual users. A coupling

96

editor is provided for user specification of coupling parameters, but the user must

make the association (by name) between a data item and its representation in the

editor. Because there may be many data items, Suite provides various grouping and

inheritance mechanisms based on the underlying data structures, to simplify coupling

specifications.

The full generality of Suite is applied only to model (semantic) data, not user

interface coupling. Particular aspects of the user interface (e.g., scrolling, selection,

and formatting of data) can be coupled, but this a boolean specification for each

aspect (it’s shared exactly or it isn’t at all), and the set of shareable UI aspects is

fixed.

Suite is built on the notion of simultaneously maintaining various divergent ver-

sions of the same object and transferring values among these versions, based on

coupling parameters. Thus, Suite provides for a wide (but fixed) range of coupling

scenarios for each of a number of directly-presented data items.

While Suite’s generation of user interfaces and its automatic6 management of

coupling scenarios among editors off-loads much work from application developers,

the consequence is that it is not as general with respect to the possible set of user

interfaces and divergence scenarios (in terms of the what of coupling and divergence)

as Concur. In Concur, view code determines the set of divergence possibilities by the

way in which it specifies its input parameters, and it determines how each potentially

divergent data item affects the UI. The Suite and Concur methodologies represent

different points in the collaboration infrastructure space, each suitable for its own

intended use: Suite provides more automation and less generality, while Concur has

the opposite characteristics.

6Suite does offer callbacks and methods that allow applications to implement their own arbitrary
coupling semantics, at the cost of automation.

97

2.6.3 State-Management Systems

In this section I will discuss what I will call state-management systems. These are

systems whose purpose it is to replicate state among components by extracting state

from one component and reproducing it in a replica.

Roussev’s Programming Patterns [Rou03] focuses on the issue of abstraction flex-

ibility, the ability to share a wide range of programmer defined abstractions. He

demonstrates that the logical structure of a program can be dynamically determined

and the state of its objects accessed by identifying common method signature pat-

terns. A small set of patterns can often be used to identify the methods for reading,

writing, and modifying the state of a large number of objects. Programmer-defined

handlers can then be provided to map from generic operations understood by the col-

laborative infrastructure (e.g., to read, write, or compare state) to the corresponding

pattern-specific operations. These generic operations can then be used to access and

communicate (e.g., replicate) the state of the objects. An event mechanism is required

to determine when and how objects have changed state. If the objects already sup-

ply such an event mechanism, it can be mapped to the infrastructure’s generic event

mechanism. Otherwise, through minimal code changes to the application, events can

be added that essentially encode state-changing method calls so that they can be

communicated to the infrastructure.

Roussev’s work also provides the infrastructure for Suite-like coupling of state

among related objects (e.g., replicas). Thus, coupling specifications can be used to

determine when state changes are communicated among objects7. In Roussev’s work,

however, the objects are arbitrary; they are not the automatically generated editor

UIs of Suite. Thus, Roussev’s infrastructure can be used in the context of arbitrary

7Roussev’s thesis did not address concurrency problems that arise when objects are modified
simultaneously by multiple users.

98

user interfaces.

Roussev’s programming patterns were implemented in Java using its reflection

capabilities, so it can be applied to compiled code, assuming that adequate event

mechanisms are already available in that code. His methodology could be applied to

any programming language supporting reflection.

Chung’s log-based collaborative infrastructure [Chu02] takes a different approach

to state management. Chung’s approach is to establish replica state by logging and

replaying communications between the layers of a layered application. His infras-

tructure supports state establishment by both direct state transfer (and update) and

command sequences.

Chung’s infrastructure can be used to replicate components of any of the layers

of an application (e.g., model, view, window, or screen). It can therefore be used to

implement centralized or replicated architectures or hybrid architectures with both

centralized and replicated sub-architectures. It also supports dynamic transitions

among these architectures, by which the collaborative infrastructure can adapt to

dynamic changes in the structure, needs, and performance characteristics of a collab-

orative session.

One of Chung’s goals was to be able to add collaborative capabilities to as wide

a range of applications as possible, including existing single-user applications. To

accomplish this, he requires inter-layer protocols to be mapped to an abstract I/O

protocol specified by his infrastructure. Another of his goals was that his infrastruc-

ture be as unaware of the semantics of the application protocols as possible. This goal

is in conflict with the need to manage non-determinism and non-idempotent outputs

and to reduce command sequence lengths. Thus, for correctness and efficiency, the

abstract I/O protocol contains facilities for tagging communications with semantic

information. Chung uses heuristic techniques such as message counting to determine

99

when a replica is in the desired state. However, given the typical scenario of existing

applications with incompletely-specified semantics and uncooperative protocols, there

usually remains some uncertainty with respect to the ability to deterministically put

components into the correct state without duplication of non-idempotent outputs,

and to bound the command sequence length. This is especially true when replicating

the model layer for a replicated architecture. Once a component is in an incorrect

state, there is often no way to ensure that future states are correct. While satis-

factory results can usually be obtained with enough experimentation and tweaking

of the protocol mapping, this is an arduous process. Chung’s dissertation is a good

exposition on what can go wrong, and how to address the issues when you have no

other choice.

By and large, it is much easier to set the state of a view than a model. Views have

a specific, limited purpose – to define the user interface of an application in terms

of some standard UI technology. The size of view state is bounded in practice by

this limited purpose. There is also little reason for extraneous inputs, since the user

interface should ideally be deterministically defined by the application. When such

inputs exist (e.g. different font sets for different instantiations of a window system),

they are usually inputs to the standard underlying UI technology, a well-defined sub-

component for which work-arounds can most often be found. Such work-arounds can

be reused from view to view. It is not the purpose of a view to affect its external

environment, other than to produce transient user interfaces on a display used for

user/machine communication, so there is little reason for a view state machine to

emit non-idempotent outputs external to the display. Finally, because of its specific,

limited purpose, view code can often be easily transported and executed in limited,

replicated contexts.

Models, by contrast, are arbitrary, application-dependent components. Since their

100

purpose varies from application to application, their state size is not bounded. They

often have context-specific inputs (e.g., file systems and environment variables, rep-

resented by Resources in Figure 2.11) that may affect their state transitions in non-

deterministic ways from context to context. Models are also often required to emit

non-idempotent outputs to affect their environments in various ways. In contrast

to view code, model code is generally more difficult to export and execute in a lim-

ited, replicated context, because it may have arbitrary dependencies on resources and

infrastructure.

Figure 2.11: Centralized and Replicated Architectures

It is largely because of the state-management difficulties discussed in this section

that I have chosen a centralized architecture and functional views for Concur. The

centralized architecture eliminates the need to replicate semantic models. Functional

views simplify state management and facilitate determinism and avoidance of non-

idempotent outputs (side effects, in functional language terminology).

101

Chapter 3

Entity Taxonomy

3.1 Introduction

In this section I will first discuss the distinction between model and view state

implied by the MVC paradigm. This discussion will have a unifying effect, suggesting

that model and view state should be handled similarly. (Since I will be advocating

treating view state as a model, I will use the terms user interface (UI) domain state for

view state and application domain state for model state, to avoid confusion.) Then I

will introduce a different classification of the unified state, based on properties such as

entity roles, container and resource requirements, and desired location and migration

characteristics. The end result will be an entity taxonomy that will point the way to

enabling most state to be efficiently shared and a wide range of divergence possibilities

to be exposed to users in an understandable manner.

3.2 Application Domain vs. UI Domain State

Schuckmann, et. al. at GMD[SSS99] propose a shared object model which is

a foundation for my work on entity classification1. They begin by proposing the

following two policies regarding the modeling of shared objects:

• Separation of application domain and UI domain state. State in the user inter-

face domain (e.g., scroll bar positions and selections) should be separated from

state in the application domain. This policy, essentially the same as that of dia-

logue independence[HBR+94], facilitates multiple views of the same model and

reuse of both models and views. (This policy may seem obvious for any archi-

tecture using the very common model/view separation advocated by dialogue

independence, but it takes on new significance when the UI state is separated

from the user interface itself, as recommended by the second policy below.)

• Shareability of all state. UI state should be shareable, just as application state

is. Making UI state shareable implies replicating and synchronizing it or sep-

arating it from the (typically distributed) view computation component and

centralizing it. This policy supports the sharing of parts of the user interface

itself. Unfortunately, this usually comes at a cost in performance or in the

complexity of UI state consistency management.

The rightmost diagram of Figure 3.1 illustrates these aspects of the GMD shared

object model (which I will henceforth call GMD). GMD essentially advocates a “sep-

arate but equal” policy for application and UI state. Another way of saying this is

that there should be two model domains: one for the user interface and one for the

1Schuckmann, et. al. use the term application to refer to the user interface, while I use the same
term to refer to the code implementing model behavior. In my discussion of GMD’s work, I have
therefore used my own terminology instead of theirs, in order to avoid confusion.

103

Figure 3.1: GMD Shared Object Model

application. Representations of both are intermixed in the view.

Based on the discussion so far, GMD only supports strict WYSIWIS sharing and

sharing of the application state using independent views (Figure 3.2). To see how

GMD achieves finer-grained sharing (relaxed WYSIWIS), we must first look at its

UI state representation in more detail. Consider the sample Notepad application of

Figure 3.3. GMD would represent the UI state of this Notepad as shown in Figure 3.4.

Like a Clock architecture, this tree mimics the widget hierarchy in the user interface,

but unlike Clock it contains only UI state, not application state. It can therefore

be thought of as a model for the user interface. Since view sharing is accomplished

by sharing the same UI state tree, the entire state of the user interface is shared

WYSIWIS by default.

In order to support relaxed WYSIWIS (e.g., independent scroll bars and selec-

tions), GMD uses what I will call a conditional data structure (Figure 3.5). That

is, nodes in the tree can present multiple alternatives. A particular view selects one

104

Figure 3.2: GMD Coarse-Grained Sharing

Figure 3.3: Notepad

105

Figure 3.4: GMD Notebook UI State

Figure 3.5: GMD Conditional Data Structure

106

alternative based on the identity of the view. In the figure, the scroll bar and selection

state diverge, while the menu state remains coupled.

Unfortunately, UI state trees with conditional nodes can get complicated if you are

trying to support a wide range of fine-grained divergence units. Also, as in Rendezvous

and Clock, the GMD tree-structured model for the user interface is compelled to

closely follow the component hierarchy in the view realization. This binds the UI

state model closely with the user interface, complicating the coupling of UI state in

views that may be very different.

3.3 Development of a Unified Model

Starting with the GMD model, I will now develop a line of reasoning that results

in a unified model, which will later be re-classified along different lines. First, I

propose a reorganization of the UI state such that it really does have a “separate

but equal” standing with application state (Figure 3.6). Note that the view directly

Figure 3.6: View and Model State Equality

accesses both UI and application state, instead of accessing model state through

the UI state component, as was the case in Figure 3.1. Second, since the UI state

should not conform to the user interface component hierarchy, I will flatten the UI

107

state (Figure 3.7). I will assume, as this figure shows, that the application state

Figure 3.7: Flattened State Organization

is flat as well. These figures show that both UI and application state should be

composed of smaller units (as they already were in the GMD model), which facilitates

individual coupling or decoupling of smaller units of state (Figure 3.8). This, in

Figure 3.8: Coupled and Divergent State

turn, dramatically increases the potential set of divergence scenarios that can be

supported. In fact, I am proposing that the units of state be organized such that

they represent exactly the set of useful units of divergence. Finally, in Figure 3.9,

I will remove the distinction between UI and application state in preparation for

deriving a new classification relating to role, container and resource requirements,

location, and mobility.

108

Figure 3.9: Unified Model State

3.4 A State Classification Based on Entity Prop-

erties

This section derives a state classification based the roles, container requirements,

desired location, and desired mobility of entities.

Synchronous distributed collaboration invariably requires the replication of en-

tities. This is clear from Dewan’s generic collaboration architecture[Dew99] (Fig-

ure 3.10), where at least one, and typically more than one of the bottom-most layers

is replicated in some fashion. Whether collaboration is WYSIWIS or not, some entity

or entities at some level of abstraction must be replicated in order for collaboration

(sharing) to take place. Support for latecomers and user mobility further require

such entities to be mobile, that is, to be capable of being moved or cloned from one

environment to another.

Entity mobility infrastructures can be complex. Simplifying the development of

entities that are to operate within such an infrastructure usually requires transparent

entity mobility, i.e., the ability to move entities from one environment to another

without the knowledge or participation of the entities being moved or of other en-

tities that know about them2. Implementing a transparent mobility infrastructure,

2Some entity management systems are purposely non-transparent so that entities can adapt to

109

Figure 3.10: Dewan’s Generic Collaboration Architecture

however, can be difficult, for the following reasons:

• Suitable and identical entity container technology must be replicated at all

execution environments that might host a given entity.

• Any code associated with the entity (e.g., for object behavior) must already be

available at the target environment, or must be replicated there as part of the

move.

• The state of the entity and any processes or threads associated with it must be

captured at the source and reproduced at the target of the move.

their current execution environment. I will only consider transparent systems here, since the main
purpose of synchronous collaboration is to share things to different locations, not to adapt to differ-
ences at these locations. Any such adaptations that may be required in synchronous collaborative
systems can usually be done transparently, so that the entities themselves do not need to consider
mobility.

110

• Any external entities referenced by a relocated entity (e.g., files, databases,

and other system resources or other mobile entities) must either be moved

or replicated with the relocated entity, or accessed over the network using a

location-transparent reference.

• Any references to a relocated entity must either be location-transparent or must

somehow be redirected to the relocated entity’s new location.

• Any information an entity might receive from referenced entities (e.g., via

queries or events) must be consistent over time, whether or not either or both

entities have moved during the interim.

• Various performance and resource utilization issues must be considered, such

as the time and network bandwidth costs for moving entities and for accessing

non-local references.

• Mobility management policies must be implemented which determine how to

map entities to execution environments and how and when to change the map-

ping dynamically as situations change.

The existing entity mobility literature generally focuses on process migration

(e.g., Berlix[Lux95] and Chung’s logging infrastructure[CD96]), (object-oriented) ob-

ject migration (e.g., COOL[AJJ+92] and Emerald[SJ95]), or mobile agents (e.g.,

Mole[BHR97] and MOA[MLC98]). Many of these systems take the approach of trying

to solve all of the difficult problems by providing transparent migration to complex

objects. As a result, container requirements are typically demanding and migration

times large, on the order of seconds. In order to support non-disruptive migration in

synchronous collaborative settings, we need migration times below 100 milliseconds.

Thus, I take the opposite approach, focusing on how to minimize the complexity of

111

migrated entities in order to make migration simple and fast. My migratable entities

are sub-objects – things that have less than full object-oriented properties.

What are the characteristic properties that would make entities easy and fast to

migrate? Here are the most important ones:

• Minimal, standard, technology-independent container requirements.

• Either no external references to other entities, or only location-transparent ref-

erences.

• Small size.

• Lack of execution (thread or process) state.

• Immutability.

• Lack of non-transient state.

• Requiring only generic (as opposed to application-specific) operations on state.

• Invisibility to the application.

It is not necessary for entities to have all of the above properties in order to achieve

fast and simple migration3, but all of these properties are potential means toward

that end. Table 3.1 summarizes the entity classes I have identified, along with their

properties. In this table, attribute values violating one of the above criteria for fast

and easy mobility are underlined. I will now discuss each of these entity classes in

turn.

3In fact, an entity meeting all of these properties might not be very useful.

112

T
ab

le
3.

1:
E

n
ti

ty
C

la
ss

es

113

3.4.1 View Computation Function

A purely functional view computation written in a portable language is extremely

easy to migrate. It makes few container demands, as it only needs a runtime en-

vironment for the portable language and access to a standard data representation

facility for its inputs and outputs. (The inputs are essentially the entity classes from

Table 3.1, all of which can be represented using the standard data representation

facility. The output is a view specification, which can be represented using the same

facility.) The view computation function maintains no non-transient state (i.e., state

that cannot be easily re-generated from centralized state), and execution state does

not need to be maintained because the purpose of the function is to generate its cur-

rent output based only on its current inputs. Its external references are to its input

parameters and output, which can be referenced in a location-transparent manner.

The function is immutable and invisible to the application, further facilitating mi-

gration. View computation functions will need to be migrated to support latecomers

and mobile users.

3.4.2 Controller

In Table 3.1, a controller has exactly the same properties as a view computation

function. It runs in the same container environment as the view function and has the

same needs for a portable language and standard data representation. Its external ref-

erences are to the view specification produced by the view function (for user-interface

event inputs) and a controller data structure (for invoking operations in the appli-

cation domain) represented using the standard data representation facility. Both of

these can be referenced in a location-transparent manner. The operations invoked

by all participant controllers are aggregated and applied to a common centralized

114

structure through which they are made available to the application. The controller

does not need to maintain non-transient controller state or execution state (because

execution state does not exist between events), it is immutable, and it is invisible to

the application. Thus, a controller is as easy to migrate as a view computation func-

tion. Controllers need to be migrated along with their associated view computation

function.

3.4.3 Data Perspective

A data perspective is a small data item typically used to represent UI state. It

has no behavior other than the representation of simple state, so all its operations are

generic data manipulation operations, and no execution state need be maintained.

This means that it can be represented using a standard data representation facility.

It may reference other perspectives or models, but these references can be location-

transparent. A data perspective is mutable and it maintains non-transient state (i.e.,

unreproducible state that needs to be migrated when a user moves), so support for

state migration is required. Data perspectives are distinguished from mobile models

in that they are not visible to applications and need not be persisted beyond the

lifetime of the session.

Data perspectives have many purposes:

• They can be used, as their name implies, to provide some perspective on model

data. For example, they may be used to represent scroll bar positions or a

viewpoint in space for a 3D model.

• More generally, they can be used to represent the state of the user interface

(as opposed to the state of the application). For example, a data perspective

can be used to represent a mouse cursor or telepointer position, whether or

115

not a drop-down menu is visible, and the highlighted state of menu items and

buttons.

• If a view computation function is able to compute multiple styles of views of the

same data (e.g., a pie chart vs. a bar chart, or an analog clock vs. a digital one),

a data perspective can be used to choose among these view styles. Similarly,

they can be used to select overlaid viewing options, e.g., viewing a map with or

without Points of Interest annotations.

• Like any other view computation function inputs, perspectives are free to affect

the result of the function in any way. This includes the portion of the user

interface that projects a view of model state. For example, perspectives can be

used to highlight a portion of a model’s projection to identify a user’s selection.

This is done without the application’s knowledge. If an operation needs to be

performed on the selection, the controller can identify the selection and pass it

to the application as an operation parameter.

• A data perspective could be used to actually warp the view of a model, in

order to represent tentative changes to the model that do not actually affect

the model until they are committed. The original model data does not change,

but the user’s view of it is modified as specified by the perspective. This could

be used, for example, to type proposed text directly into a document, or to

make proposed changes to a drawing or 3D model. The permanency of the

changes would be subject to the application’s acceptance at commit time.

• Data perspectives can be shared read-only with other participants’ views in

order to compute group awareness widgets4.

4Group awareness widgets are user interface components that give participants information about

116

• Data perspectives can be used to specify positioning and iconification of win-

dows in a workspace.

3.4.4 Timer Perspective

In certain cases it is impossible to send model change notifications to views with

the necessary frequency and precision, because of network latency, bandwidth, and

unpredictability in transmission times. For example, sending frame change events over

the network would not work well if participants were watching a movie or animation

together. In these cases, we can take advantage of the fact that all computers have

replicated clocks whose increments (and even values) are highly synchronized. Special

distributed and automatically incrementing perspectives can be set to trigger events

at regular, fine-grained, and precise intervals, thus synchronizing all participants’

views. The application can turn timers off and on to implement pause and play oper-

ations for a movie. Irregular intervals for fine-grained simulations can be represented

similarly. In this case, the application can stream irregular timer intervals to timer

perspectives used for simulations so that these intervals can be triggered precisely on

time. These timer perspectives need access to a clock input in their container. The

primary difference between data perspectives and timer perspectives is that the timer

perspective has object-specific behavior, which is triggered automatically.

3.4.5 Mobile Model

A mobile model is similar to a data perspective, except that it is visible to, and

can therefore influence, the application. Since the application has access to a mobile

perspective, it can also persist its data. Some application data need not be hidden

what other participants are doing.

117

behind application-specific operations. For example, a paragraph or sentence in a

document or a list of node positions in a graph can be easily manipulated with a

generic data structure using a standard data representation facility. The advantage

of doing so is that the data can then be physically separated from the application

(which may have more restricted mobility) and migrated to containers that need

know nothing in particular about the data and how it is being used. Migration (for

all mobile entity types) will be further discussed later in this chapter.

3.4.6 Immutable Model

An immutable model represents static (constant) data. Static data is easy to

reproduce because it can be maintained at the central location and copied to any

distributed location as necessary. It therefore doesn’t need to be captured from a

distributed site and replicated elsewhere when, e.g., a user moves. Immutable model

entities are visible to the application, and may be quite large. Caching subsets of

large models is discussed below. An example of an immutable model is map data for

a mapping application.

3.4.7 Immobile Model

The immobile model entity class is a catch-all for all models that cannot be easily

migrated due to excessive container requirements, location-dependent external ref-

erences, size, the need to maintain execution state, the need for application-specific

operations, or other reasons. Immobile models are represented centrally and are mod-

ified only by applications, in response to either external inputs or operations applied

to an aggregated controller.

118

3.5 Data Caching

Both mobile and immobile entities can be replicated in a master/slave relation-

ship (Figure 3.11). Master replicas can be modified directly by an application or

Figure 3.11: Master/Slave Replication in a Centralized System

controller. Slave replicas are only updated by master replicas, and they are kept as

up to date as possible at all times. However, slave replicas need not contain all the

data that their master replicas contain. They can act as data caches, filled on demand

according to view computation function needs. For example if two participants are

working independently on a document, only those portions of the document visible

to a particular participant need be represented in his slave replica.

3.6 Mobile Entity Migration

Data perspective migration enables perspectives to quickly migrate from floor

holder to floor holder, where the “floor” can be switched explicitly, or can be implic-

itly determined by the infrastructure based on participant activity. Migration can

happen extremely quickly, because perspectives can be replicated in a master/slave

119

relationship as discussed earlier and shown in Figure 3.11. (Note that latency is twice

the network transmission time for all participants in this diagram.) The result of such

a migration is shown in Figure 3.12. No actual data must be switched when the floor

Figure 3.12: Master/Slave Migration in a Centralized System

changes hands. (Note that latency is zero for the current floor holder, and four times

network transmission time for all others.) Data perspectives are migrated indepen-

dently, so that different perspective master replicas can be near different participants

at any given point in time.

Timer perspectives need not migrate; their entire purpose is to provide state

change for a particular participant, in synchrony with other participants.

Mobile models can migrate similarly to data perspectives. The main difference is

that the model application observes the central slave replica of the mobile model so

that it can react to its state changes (Figure 3.13). Applications can also explicitly

demand the master role for the mobile model for a time, should they need to gain

more control over the model for synchronization or other reasons. For example, an

application may wish to become the master of all the paragraph mobile models in

a document so that it can perform an atomic global replace operation in the entire

120

Figure 3.13: Mobile Models

document. The mobility of mobile models solves the most egregious latency problems

in centralized systems, where such operations as typing or moving objects using direct

manipulation are too slow because of frequent round trips to the central model.

Let’s revisit Figure 3.12 for a moment. If the master is not in the center and its

machine or connection dies, the central slave will have a reasonably up-to-date version

of the perspective or model, and can take over or reassign the master role. For data

perspectives, having the most up-to-date value would normally be unimportant, since

these interactions are transient and are never seen by the application. The lost up-

to-date value at the failed master would most likely represent interactions of the floor

holder, in which case the floor holder may have invoked the lost operation(s) and

may have even seen feedback from those operations (which other participants would

not have seen). In the latter case, the feedback seen would be rolled back when the

floor holder participant rejoins the conference. If the lost updates were from a non-

floor-holder they would represent actions taken by the non-floor-holder participant

for which he has not yet seen feedback (but for which the floor holder may have seen

121

feed-through5). In this case and in the former case where the floor holder has not yet

seen feedback from his interaction, the lost interactions would act as no-ops from the

participant’s perspective.

For data perspectives, if this degree of fault tolerance is not necessary, the central

slave can be eliminated and the central component can simply route perspective

operations. In this case, perspective state may simply be lost, e.g., if there are no

slaves and the master dies. The perspective can then be reset to a default state. This

might be appropriate, e.g., for scroll bars or selections. One advantage of this special

but common case is that if a perspective is not being shared at all, only a peripheral

master copy need be maintained, eliminating all network traffic and central node

processing for that perspective.

In the end, the centralized architecture has been adapted so that there are many

independent centralized architectures, one for each data perspective or mobile model.

This dramatically reduces latency issues and also spreads some of the load around,

reducing classical centralized system bottlenecks. Immobile models would need to

remain in a static central location, but mobile entities would be free to change the

“center” (master) location freely and quickly. There would still be a static physical

“center” through which all non-local communication would pass, but the current

master would be the authority on the value of the entity. Usually social protocols

and fine-grained entities will eliminate the cases where more than one participant is

interacting with the same mobile entity simultaneously, but when this does happen the

infrastructure can migrate the entity to the physical center to attain fair, consistent

responsiveness for all users.

Migrating entities are often a better solution than locking, because locking implies

5Feed-through is evidence one participant sees of another participant’s actions.

122

that everyone without the lock must wait. With migrating entities no one need wait

for a lock, though responsiveness for non-floor holders will suffer. Migrating entities

are also much easier to implement and are more predictable for users than replicated

schemes, because concurrency control is accomplished through serialization at the

master.

3.7 Entity Classification Summary

In essence, one proposed strategy for making classes of entities easily and quickly

migratable is to separate code from data (the opposite of what the object-oriented

paradigm promotes), which reduces or eliminates requirements to copy execution state

and internal state and reduces container requirements. Data is represented using a

single standardized data representation facility, eliminating the need to migrate object

class definitions to distributed containers. Other strategies are to limit entity size,

reduce or eliminate entity dependence on external references and application-specific

operations, reduce or eliminate the application’s dependence on entities, and take

advantage of immutability.

Making view computation and controller migration easier and faster results in

more robust and snappier latecomer and mobility support. Doing the same for data

perspectives and mobile models further enhances the robustness and speed of late-

comer and user mobility operations, and additionally improves overall interactive

responsiveness.

In centralized synchronous distributed collaborative systems, I have only found

two examples of support for migration to increase responsiveness for floor holders.

One is XTV/Chung’s infrastructure, which does process-level migration. The other

is GEN[O’G98], which demonstrates implementing the migration of object-oriented

123

objects as an example of that toolkit’s extensibility, but does not further explore

migration. Both are heavier-weight solutions than migrating perspectives and models.

In addition to simplifying and speeding migration, entity classification provides a

framework for exposing fine-grained divergence possibilities to developers and users.

View computation functions and controllers can be exposed to users so that they can

select wholesale divergence of views or operation bindings. Data and timer perspec-

tives represent finer-grained UI state divergence opportunities. Mobile and immobile

models are less apt to be good divergence units, though they may be in some cases.

View computations, controllers, perspectives, and models can have schemas (types)

associated with them, which can enable the infrastructure to limit the range of user

choices to ones that are likely to make sense.

124

Chapter 4

Concur Requirements and Architecture

4.1 Requirements

Based on the discussions of the previous chapters, the requirements of my proof

of concept software, Concur, are as follows:

• Must support individual work as well as all four classes of collaborative work

illustrated in Figure 1.1.

• Must support transparent transitions among these modes of work.

• Must support latecomers and mobility.

• Must be deterministic.

• Must achieve application software and user mental model simplicity comparable

to centralized systems.

• Must achieve latencies comparable to replicated systems.

• Must support a wider range of understandable, user-selectable divergence sce-

narios than previous collaborative systems.

The following section lists and elaborates upon the architectural choices I made

in order to meet these requirements.

4.2 Elements of a Solution

The primary elements of my solution are:

1. The push Model-View-Controller paradigm,

2. A logically centralized architecture,

3. A common hierarchical data modeling facility,

4. Continuously evaluated functional views,

5. Perspectives,

6. Declarative user interfaces, and

7. Composition functions.

Each of these elements is discussed briefly in the following subsections.

4.2.1 The Push Model-View-Controller Paradigm

The classic Model-View-Controller (MVC) paradigm[GR83] (Figure 4.1) is a soft-

ware engineering technique designed to promote software reuse. It does so by sep-

arating a software system into model, view, and controller components representing

an object’s state and behavior, a computation of a view (presentation) of the object,

and a means of mapping user inputs to operations on the object, respectively. Thus,

a model can be reused with different views, a view with different models, etc.

126

Figure 4.1: The Model-View-Controller Paradigm

In collaborative systems there are additional motivations for using this technique,

because it supports multiple and potentially different simultaneous views of the same

model (Figure 4.2), reduced or eliminated collaboration awareness in the model, and

distributed systems where the model and views are on different machines.

Figure 4.2: Multiple Views of a Model

The original MVC variant works like this:

1. A model is instantiated with no views attached.

2. Views are instantiated, which register themselves with the model. For each

view, a controller is instantiated, which attaches itself to both view and model.

127

3. A user interacts with the view presentation. The user’s interactions are mapped

to model operations by the controller.

4. The model notifies all registered views that something has changed in the model.

5. Each view queries the model to determine what has changed, and updates itself

accordingly.

The interaction described above is called the pull paradigm, because the view

“pulls” information from the model to determine what has changed. This paradigm

minimizes dependencies between the model and the view, because the model need

not know anything about a view other than the fact that it is interested in the model.

The disadvantage of the pull variant is that it can be quite inefficient for the view to

determine what has changed in the model.

For efficiency, and to simplify views, a push variation on this theme is sometimes

used1. In this case the view specifies an interest in particular changes in the model,

and the model, in turn, pushes descriptions of the changes that actually occur (i.e.,

change notifications) to the views interested in those particular changes.

The push MVC variant works like this:

1. A model is instantiated with no views attached.

2. Views are instantiated, which register themselves with the model, expressing

interest in particular types of changes in the model. For each view, a controller

is instantiated, which attaches itself to both view and model.

3. A user interacts with the view presentation. The user’s interactions are mapped

to model operations by the controller.

1Both the push and pull variants are discussed in [GHJV95a].

128

4. The model determines which views are interested in the particular changes that

have occurred, and sends a notification to each of these views, describing the

changes in detail.

5. Each view updates itself accordingly.

This push variant can be a great deal more efficient than the original push variant,

because views are not notified of changes in which they have no interest, and, more

importantly, because views are told exactly what has changed so that they need not

deduce this information. The cost of this approach is that the model must be more

complex and must have more knowledge about views, since changes in the model

somehow need to be matched with the interests of the various views. However, this

complexity and view knowledge can sometimes be encapsulated in a reusable data

modeling facility, as described in Section 4.2.3.

The Observer Design Pattern[GHJV95a], discussed in Section 1.5, is a gener-

alization of the MVC paradigm, where views (observers) can themselves be models

(subjects), and this pattern can be chained into multiple software layers (Figure 1.15).

4.2.2 Logically Centralized Architecture

Several of the requirements listed in Section 4.1 motivate a logically centralized

architecture. Of these, the most important are determinism and simplicity of the user

mental model.

Replicas implemented as state machines are difficult to keep in sync with each

other, even if they are not allowed to diverge for performance reasons. Tight control

must be maintained over the inputs of the various replicas, so that they do not diverge

due to differing inputs. The slightest difference in inputs can cause different replicas

to land in different states. It is usually difficult to determine that this divergence has

129

happened, and divergence may not become apparent until an arbitrarily long period

of time has elapsed. For the same reason, support for latecomers and mobility are

much easier in a centralized architecture. A centralized master model can be used to

persist application state while an individual moves from one location to another, and

it can be used to reconstruct a mobile user’s or instantiate a latecomer’s presentation.

Thus, centralized architectures simplify the implementations of both applications

and infrastructures. While complexity trade-offs can be made between the two (e.g.,

hiding synchronization issues from applications by implementing all synchronization

in the infrastructure), it is not always desirable for applications to be synchronization

unaware. In any case, the sum of the complexity in infrastructure and application is

greater for replicated systems than for centralized ones.

When replicas are allowed to diverge for performance reasons (which is the pri-

mary motivation for replicated collaborative architectures), accurately maintaining

an understandable notion of synchronization becomes much more difficult. Repli-

cated systems are capable of providing fast, local interaction with users because it is

possible for the user to interact with the local model with no dependency on network

latencies. However, this speedup comes at a cost with respect to the user’s mental

model. In general, it is impossible to maintain divergent replicas without negatively

impacting the user experience. If two model replicas are presented to the user as

representing the same object, Aristotle’s Law of Identity (A is A)[Ari08] would re-

quire that they be indistinguishable. The fact that they are not indistinguishable

indicates that, rather than being the same object, they are, in fact, different objects

that are similar in some sense. (Similarity might mean, for example, that differences

can be easily identified and automatically reconciled.) This creates confusion for the

user, who is encouraged to view two objects as being the same, while his senses tell

him otherwise. Furthermore, automatic reconciliation of divergent objects can cause

130

unexpected state changes, from the users’ perspectives (e.g., the reconciliation might

result in a state that neither user intended). For these reasons, our desire for a sim-

ple user mental model helps to motivate a centralized architecture, where there is a

clearer notion of object identity. Centralized architectures are much easier to control

in this regard, because they continually maintain a unique master copy of the model

state.

Note, however, that a simple user mental model and a clear notion of object

identity do not necessarily imply WYSIWIS collaboration. People are accustomed to

mental abstractions of the physical world in which they live. It is perfectly reasonable

for the object being shared to be some underlying abstraction instead of a particular

projection of that object onto a display. For example, it is reasonable to share a

notion of the current time between two users, who variously view the time via analog

and digital clocks, or to share a document abstraction where each user is scrolled to

a different position in the same document. The users understand that there is an

underlying, shared time or document, even though they do not see it the same way

(time) or do not see all of it at once (document).

4.2.3 Common Hierarchical Data Modeling Facility

In order for an infrastructure to provide collaborative capabilities to an applica-

tion, it must have access to either the state of the application’s model and/or view

components, or to the outputs emitted by these components. For reasons that will

become clear in Section 4.2.4, Concur takes the state approach.

There are two main approaches to giving the infrastructure access to the applica-

tion state. Either the infrastructure can be provided direct access to the application

state as it is naturally represented by the application, or the application can represent

131

(some of) its state in an infrastructure-determined form. The first approach requires

less work on the part of the application developer, while the second makes the in-

frastructure less dependent on particular application technologies (e.g., programming

languages and environments).

Concur takes the latter approach, for a number of reasons:

• Technology independence. Standard data representation languages tend to

outlive programming languages and runtime infrastructures. A standard data

representation language helps to isolate the collaborative infrastructure from

these technology changes.2

• Change notifications. Using a common data representation enables Con-

cur to ensure that change notifications are supported by the data structures.

This relieves the application from having to code view registrations and change

notification events. The common data representation thus encapsulates the

model/view protocol for the application, so that the model need know noth-

ing about views. This is especially valuable when using the push MVC design

pattern.

• Published vs. unpublished data. Requiring the application to separately

represent model data that might contribute to a view (published data) supports

an important data hiding capability at the component boundary, similar to

public/private distinctions at the object boundary. This avoids both having to

make private data public so that it can be accessed by the infrastructure, and

2The Concur proof of concept actually does not use a standard data representation language.
The Document Object Model[Mar02] (DOM) was originally used, but it was found to have certain
deficiencies with respect to the representation of hierarchical data structures. For example, repar-
enting operations are mapped to remove and insert operations, which are awkward and inefficient
for an observer/view to re-map back to reparenting operations. In the interest of expediency, I chose
a hierarchal data representation API that was convenient for the chosen programming environment.

132

using separate mechanisms to avoid exposing public data that should not be

exposed outside the component (unpublished data).

• Distribution. Concur distributes model state and view code, which generates

view state based on model state. View code must run in a restricted container.

If the model and view state were represented using the application’s native

representation, infrastructure for maintaining that representation would have

to be distributed as well, increasing container requirements.

• Testing, Debugging, and Scripting. A common data modeling language

supports testing, debugging, and scripting in a manner that is independent of

application technologies and less dependent on particular applications.

A common data representation language must support arbitrary application data

structures. This implies that the language must support arbitrary graphs. On the

other hand, hierarchical data structures are extremely common in applications, and

it is sometimes helpful to the infrastructure if it can assume a hierarchical view of the

data. For example, if the infrastructure needs to identify a portion of an arbitrary

graph, it can only do so by maintaining a set of nodes and links defining that portion,

or a computational rule defining that set. On the other hand, if it can assume the

graph is a hierarchy (or directed acyclic graph (DAG)), it can often identify a sub-

portion of the graph by simply specifying one (root) node. (In Figure 4.3, Chapter

1 can be used to refer to all the shaded nodes.) Like file systems, Concur uses a

representation language that assumes a basic hierarchical structure with a special

link type for specifying non-hierarchical graph structures (Figure 4.4) as an overlay

on the hierarchy.

In Concur, a common hierarchical data representation is used to represent both

model (view function inputs) and UI state (view function outputs). Low-level user

133

Figure 4.3: Hierarchical Data Structure

Figure 4.4: Graph implemented as Hierarchy with Special Links

134

events such as keyboard and mouse events must be able to be applied to the declara-

tive UI data structure representing the UI. Concur implements an event mechanism

similar to those used by the X Window System[SGR92] and the Document Object

Model (DOM)[Mar02]. Events can be applied to any node in the hierarchy, and in-

terest in these events can be registered (by a controller) with respect to any node.

Events bubble from the node to which they are applied up to the root, notifying ob-

servers along the way (Figure 4.5). The same mechanism is also used for registering

and notifying view functions of changes in its model or perspective inputs. Concur

Figure 4.5: Bubbling of Events or Changes

also requires that the set of (DAG) inputs to a continuously evaluated function always

remain in the domain of that function. Concur’s data representation therefore imple-

135

ments transactional modifications to the data structure, enabling multiple changes to

be made before event notifications are released.

4.2.4 Continuously Evaluated Functional Views

As described in Section 2.3.2, models and views are often best viewed as state

machines. The state of these components is established by either directly setting

the state (via transfer of all or part of the state from a replica) or by the execution

of commands (state machine inputs) which modify the component state in some

deterministic fashion. Initial state is often established via state transfer, after which

the state is maintained via command execution. Assuming an initial component state

S0 and subsequent states Si that result from the execution of commands Ci, the state

of a component after a command execution can be viewed as a function f of its

previous state and the command to be executed:

Si+1 = f(Si, Ci+1) (4.1)

By induction, another form of this equation is:

Si+1 = f(S0, Cj|j ∈ {1..(i + 1)}) (4.2)

That is, the current state of the component at any point in time depends on its initial

state and the ordered set of commands that have been executed.

Non-determinism comes about when we do not have control over all of the inputs

to the state machine. That is, the component actually operates deterministically, but

it does not appear to do so from our perspective because we do not have access to all

136

of its inputs. If we represent all such uncontrolled inputs as X , Equation 4.2 becomes:

Si+1 = f(S0, Cj|j ∈ {1..(i + 1)},X) (4.3)

In order for us to make guarantees about the behavior of our system, we must ei-

ther assume that components to be replicated are coded such that they have no

dependencies on external inputs (Equation 4.2), or that their behavior is well-enough

understood that a careful choice of Cj|j ∈ {1..(i+1)} will avoid any non-determinism

introduced by X .

For completeness, we need to consider not only the state S of the component, but

the outputs O emitted by that component on state transitions. If we simplify the

equation by assuming that outputs are only emitted on the execution of commands C

(which we can do without affecting the results of this discussion), the output equation

corresponding to Equation 4.3 is:

Oi+1 = g(S0, Cj|j ∈ {1..(i + 1)},X) (4.4)

Here again, we must assume we can eliminate the affect of any uncontrolled inputs.

But since we must replicate the component multiple times, we must further constrain

the outputs to be idempotent.

The salient point of the preceding discussion is that all collaborative infrastruc-

tures must make assumptions about the coding of components they replicate. Where

these components are state machines, we must assume that there exists a sequence

of commands that will deterministically put the replica into the desired state, inde-

pendently of any uncontrolled inputs, while producing only idempotent outputs.

Concur takes a fundamentally different approach to the requirements imposed on

137

the view components it replicates. In Concur, a view is best modeled as a continuously

evaluated function of known inputs rather than as a state machine. A continuously

evaluated function is one whose output is always, modulo computation time, a func-

tion of its inputs. The functional requirement means that the same inputs always

produce the same outputs. This property is known as referential transparency.

Thus, in Concur, there is no state S, there are no uncontrolled inputs X , and

commands C are replaced by inputs I. The relevant view equation for Concur is:

Vcurrent = v(Icurrent) (4.5)

That is, the current output V is a function v of the current inputs I. Uncontrolled

inputs and non-idempotent outputs are also eliminated by the restricted container in

which Concur view and controller code runs.

The requirement set imposed on the coding of functional view components is not

substantially more burdensome than the requirements described above for compo-

nents modeled as state machines. However, it has the following dramatic advantages:

• Latecomer support is simplified, because the infrastructure need never store the

state of a view or the commands required to establish that state.

• Establishing a latecomer view can be more efficient, because it depends only on

a bounded set of current inputs, not a sequence of commands that can increase

in length indefinitely over the life of a session.

• Mobility support is simplified because there is no view state to maintain while

no one is viewing an object.

• The robustness of the system is enhanced because the current view output

does not depend in any way on previous state or inputs. Thus, if there is a

138

view code bug that causes the output to be incorrect for a given input, future

outputs that are correctly computed are not affected. By contrast, in the state

machine approach a view code bug can create incorrect internal state at one

point in time that can invalidate future states and outputs indefinitely, even if

the computation of these latter states and outputs is correct.

• Testing of the replica’s adherence to the infrastructure’s requirements is fa-

cilitated, because setting up the current inputs to a function is simpler than

establishing the state of a state machine, and because functional guarantees

can be checked without knowing the semantics of the function itself.

4.2.5 Declarative User Interfaces

The output V of the view function specifies what the user interface should look

like at any given point in time (not how it should be constructed). Specifying the UI

declaratively simplifies the coding of the view function v by off-loading the how of

its construction to the Concur infrastructure. It also provides an efficient means of

taking snapshots of the user interface, since the specification can be stored at a high

level, rather than as a pixel-level image.

In order to guarantee that the functional characteristics of view computation are

retained while mapping the output V to the display, the rendering of V is performed

by a continuously evaluated projection function p, which maps V to a (normally

contiguous) set of pixels P on the display:

Pcurrent = p(v(Icurrent)) (4.6)

The function p is provided by the Concur infrastructure. The projection P can be

139

realized using any UI technology or any combination of UI technologies. Examples

are HTML, XHTML[MK02], Windows GDI[WG02], X[SGR92], Java Swing[RV03],

Tk[WH03], and OpenGL[SWND03].

In addition to rendering its model data in some fashion, a view must accept in-

puts from users and pass them to the application (model code). In Concur, the UI

generated by the p function dispatches input events to the document V . Application-

specific controller code, distributed by the infrastructure and executed in the same

restricted environment that executes the view code, maps these UI-domain inputs

to model-domain operations and passes them to the model code via a controller.

Concur supports collaborative capabilities such as floor control in the infrastructure

itself, optionally relieving the model code of this aspect of collaboration awareness.

In this case, the infrastructure will determine which model-domain events to forward

to the application’s controller instance from the various users’ controller instances.

Alternatively, Concur can aggregate the model-domain operations from all users into

the application’s controller instance, augmenting them with information identifying

the users, so that the model code can implement such collaboration-aware features

itself. In more elaborate applications, this is precisely what is desired. This strategy

supports a full range of application styles, including various floor control strategies,

programmatic access controls, and multiple simultaneous inputs from various users,

while enabling applications to be completely collaboration unaware when that is de-

sirable.

4.2.6 Perspectives

Concur supports multiple model inputs feeding into one view:

V = v(Ii|i ∈ {1..n}) (4.7)

140

This is convenient for a number of reasons:

• It supports division of responsibility in model code by enabling different parts

of the code to maintain different models.

• It supports code reuse by enabling different applications to present different

data items, all of which contribute to the view.

• It enables data pertaining to the application domain to be separated from data

pertaining to the user interface. For example, the former might be the text of

a document, while the latter might be the positions of scroll bars.

• It enables views to diverge among participants, where some but not all of the

model inputs are shared.

The inputs feeding a particular view are typed, because the view needs to be

able to understand the structure of the set of inputs and of each input individually

in order to understand the data embodied therein. Type matching is performed

by the infrastructure at run time, to ensure that only valid view computations are

constructed.

One of the contributions of this work is to propose a variation of the Model-

View-Controller[KP88] (MVC) paradigm, which I will name Model-Perspective-View-

Controller (MPVC). This adaptation of MVC identifies a sub-class of models called

perspectives, which have the following characteristics3:

• Perspectives may have arbitrary structure, but they are typically small and

simple.

• Perspectives are not accessible to the model code of an application. That is,

perspective values cannot directly affect application logic.

3From this point forward, models and perspectives will be distinct in this paper.

141

• Perspectives are, however, accessible to views. Any influence a perspective may

have on a model will come via the view and controller.

• Views specify which perspectives they need, but they do not allocate their

perspectives. This task is performed by the infrastructure.

• Since perspectives are associated with views rather than models, they tend to

have a shorter lifetime than models. They are not persisted beyond the lifetime

of the view definitions referencing them.

• Perspectives may have certain basic collaborative services provided by the in-

frastructure, such as floor and access controls.

• Perspectives are shareable among multiple views, just as models are. However,

if they are not being shared, they can optionally migrate to the host running the

view code using them at the moment (i.e., the central master is not maintained,

and the local replica becomes the master). If no view replicas referencing a

perspective exist at some point in time (e.g. during a mobility transition), or if

an unshared perspective becomes shared again, it migrates back to the central

server. Perspective migration makes fast local interaction possible.

• Since perspectives are separate units of data that can be individually supplied to

views as inputs, they represent units of coupling and divergence, where different

users can either share or diverge on each perspective. The same is true for

models, but they are less likely used as a unit of divergence independent of

perspectives.

• Perspectives can be grouped so that they can be shared or diverge as a unit. This

is useful, for example, for specifying whether a group of perspectives defining a

user interface state are shared or not.

142

Taking this model/perspective distinction into account, Equation 4.7 becomes, for

models M and perspectives π:

V = v(Mi|i ∈ {1..n}, πj|j ∈ {1..m}) (4.8)

Perspectives are useful for implementing a broad range of single-user and collabo-

rative capabilities. Some of these are listed in Section 3.4.3. Many other possibilities

exist for the use of perspectives. These are only listed as representative examples.

In summary, perspectives help to separate application domain code from the user

interface, promote collaboration unawareness in applications, enable a wide range of

divergence among views of the same data, facilitate group awareness, support local

feedback that can be shared as needed, and support tentative manipulation of model

data.

Given this background on perspectives, it will be instructive to list and discuss

examples of the kinds of divergence supported by Concur, and how these are related

to changing the view function v and the representative model and perspective inputs

M and π, respectively. These examples are summarized in Table 4.1.

Consider the following equation:

V0 = v0(M0, π0) (4.9)

This is the baseline equation, to which we will compare all possible combinations of

differences in v, M , and π.

Now consider Equation 4.10:

V0 = v0(M0, π0) (4.10)

143

Equation Examples and Comments
V = v(M, π) WYSIWIS. Model, perspective, and view function all shared.

V ′ = v′(M, π)
Digital and Analog Clocks. View functions (formats) diverge, but
model (time) and perspective (time zone) do not.

V ′ = v(M, π′)
Viewing the same geographical map independently. Model (map) and
view function (format) are identical, perspectives (scroll bars and se-
lections) diverge.

V ′ = v(M ′, π)
Scheduling an appointment with the same UI. View function (format)
and perspectives (date & time selections) are shared, models (calendar
entries) are not.

V ′ = v′(M, π′)
Spreadsheet and graph of same data. Model (data) is shared, view
functions (format) and perspectives (scroll bars) are not.

V ′ = v′(M ′, π)
Scheduling an appointment with different UIs (e.g., Outlook vs. Any-
Time). Perspectives (date & time selections) are shared, view functions
(UIs) and models (calendar entries) are not.

V ′ = v(M ′, π′)
Code sharing of drawing editor with different drawings. View function
(UI code) is shared, models (drawings) and perspectives (UI state) are
not.

V ′ = v′(M ′, π′)
No sharing. Completely different applications operating on different
data with no perspectives to synchronize interaction.

Table 4.1: Summary of Divergence Possibilities

144

This equation is identical to equation 4.9, so it represents WYSIWIS collaboration

(Figure 4.6). That is, if both users share the same view function v and inputs M and

π, they will be sharing identical projections.

Figure 4.6: Same Model, Perspective, and View

Equation 4.11 represents sharing the same data (both model and perspective),

where the view function computed on that data differs (Figure 4.7).

V1 = v1(M0, π0) (4.11)

In this illustration the time of day represents the model, while the time zone (Chapel

Hill) represents the perspective. Another example of this type of divergence would

be viewing strip plots of the same data with a shared horizontal scroll bar, but with

different views of the data (bar chart and line graph).

Figure 4.7: Same Model and Perspective, Different View

145

The next equation (4.12) diverges in the perspective, but not in the model or view.

V1 = v0(M0, π1) (4.12)

This is illustrated in Figure 4.8, where the map (model) and the view function are

shared, but the perspectives (scroll bars and selections) are not. This is a very

common divergence scenario, other examples of which include viewing a 3D model

from different viewpoints, maintaining separate UI state (e.g., menus), and viewing

the same time via an analog clock from different time zones.

Figure 4.8: Same Model and View, Different Perspectives

Equation 4.13 represents an unusual scenario.

V1 = v0(M1, π0) (4.13)

In this case, the model differs while the view and perspective remain the same. Fig-

ure 4.9 shows an example, where John and Kevin are looking at their own calendars

(models) from the same perspective (date and selected time), in order to schedule a

meeting together. Another example would be a quartet, where each of four musicians

sees his own music (model) in a common format, and the point in time in the piece

(perspective) is synchronized. A third example might be a card table, where the

positions of the cards on the table are represented by perspectives, and the values of

146

the cards are represented by individual models for each user. In this way, cards a user

should not be able to see can be represented by the model for the back of the card, so

that the model data representing these cards is never sent to that user’s computer.

Figure 4.9: Same View and Perspective, Different Model

Equation 4.14 specifies that the model is shared, while the view and perspective

differ.

V1 = v1(M0, π1) (4.14)

147

This is a common way of viewing the same object in different formats, since per-

spectives often make sense only with respect to a particular format. Figure 4.10

demonstrates this scenario in terms of stock data and a corresponding stock chart.

Another example is to view the same time (model) from different time zones (per-

spectives) via analog and digital clocks (views), respectively.

Figure 4.10: Same Model, Different Perspective and View

Like equation 4.13, equation 4.15 is unusual because the model diverges while

other aspects are shared.

V1 = v1(M1, π0) (4.15)

In this case, the perspective is shared, but not the view. To envision this scenario,

examine Figure 4.11, which is a variant of Figure 4.9 where John and Kevin use

different view software (Outlook and AnyTime) to view their own data, but share the

date and time selection in order to schedule a meeting.

The next scenario, Equation 4.16, is much more common.

V1 = v0(M1, π1) (4.16)

148

Figure 4.11: Same Perspective, Different Model and View

149

Here, the model and perspective are different, but the view function is the same.

There is really no sharing in this scenario except for code sharing of the view. This is

illustrated in Figure 4.12, where two users are using the same drawing editor to edit

different drawings.

Figure 4.12: Same View, Different Model and Perspective

150

The final equation (4.17) is extremely common, but uninteresting.

V1 = v1(M1, π1) (4.17)

In this case nothing, not even code, is shared. In Figure 4.13, the users are using

different applications to view different data, and there are no shared perspectives for

synchronization.

Figure 4.13: Different Model, Perspective, and View

This concludes our tour of divergence scenarios. Of course, there are infinite

possibilities, since there can be multiple models M and perspectives π, which can be

shared or not shared, independently.

4.2.7 Composition Functions

Views rarely exist in isolation. On a macro scale, the UIs of multiple applications

are often grouped into a workspace. On a micro scale, individual applications are

nearly always composed of multiple views, in order to simplify construction of the UI

and facilitate code reuse. In Concur, view composition can be performed in two ways:

a single view function can generate a hierarchy of UI elements, or view functions can

be composed. The latter will be discussed in this section.

151

In the macro case, the enclosing view need know nothing about the enclosed view

other than, perhaps, its size, which can be determined using standard negotiation

techniques for widgets and window systems. That is, it need not know the identity of

the view function venclosed, what its parameters Ienclosed are, or even the (continuous)

result of the function, Venclosed. All it needs to do is to determine where it wants

to put Venclosed within its own Venclosing declarative output structure. The function

venclosing need not copy Venclosed into Venclosing, since venclosed can be allocated its own

portion of the Venclosing structure, where it can construct Venclosed directly. Revising

equation 4.9 to include this style of view nesting, we have:

V = v(Mi|i ∈ {1..n}, πj|j ∈ {1..m},Vk|k ∈ {1..q}) (4.18)

where each Vk is a view instantiation that recursively takes the form of the right side

of Equation 4.18.

In the micro case, embedded unknown views such as those described above for the

macro case may also make sense under certain circumstances. Additionally, applica-

tion UI views v may be second-order functions with view function parameters:

V = v(Mi|i ∈ {1..n}, πj|j ∈ {1..m}, vl|l ∈ {1..r}) (4.19)

This gives the enclosing view more control over what is displayed in the enclosed view

(because it can pass its own parameters to the enclosed view), and makes it possible

to build applications that can import 3rd party view functions to display their data

in different formats. The macro case can also make use of view function parameters,

for example, to format window decorations. Thus, a window manager can be passed

as a parameter, enabling divergence of window management.

152

Our final output equation, then, specifies that a view function v can depend on

four types of parameters: models M , perspectives p, view instantiations V , and view

functions v:

V = v(Mi|i ∈ {1..n}, πj|j ∈ {1..m},Vk|k ∈ {1..q}, vl|l ∈ {1..r}) (4.20)

Note that Equation 4.20 completely defines the current view output V with respect

to the current value of all of its inputs.

4.3 Concur Architecture

All of the important concepts used in the Concur architecture have been covered

in detail in the previous sections. In this section, I will pull these concepts together

into a coherent discussion of Concur’s architecture.

Figure 4.14 shows an overview of the Concur architecture. Figure 4.15 is the same

as Figure 4.14, except that it has been tagged with numbered circles for reference

in the following paragraphs. Note that we have also added a relational database to

Figure 4.15, referenced from the model. The reason for this will be apparent in a

moment.

The database (1) for our example contains weather data for Chapel Hill, North

Carolina4. In particular, we will be looking at maximum daily temperature data, a

small portion of which is shown in Table 4.2. The data in the database ranges from

the year 1948 to the year 2001. Blank entries (e.g., for 1961-03-16) indicate missing

data.

The model (2) is a software component whose purpose in this application is to

4This data is from the National Climactic Data Center[Nat08].

153

F
ig

u
re

4.
14

:
C

on
cu

r
A

rc
h
it

ec
tu

re

154

F
ig

u
re

4.
15

:
C

on
cu

r
A

rc
h
it

ec
tu

re
w

it
h

T
ag

s

155

Table 4.2: Maximum Degrees Fahrenheit
Year Month Day Maximum Degrees Fahrenheit
1961 3 1 69
1961 3 2 44
1961 3 3 57
1961 3 4 67
1961 3 5 79
1961 3 6 81
1961 3 7 79
1961 3 8 79
1961 3 9 72
1961 3 10 45
1961 3 11 51
1961 3 12 65
1961 3 13 74
1961 3 14 74
1961 3 15 71
1961 3 16
1961 3 17 59
1961 3 18 47
1961 3 19 39
1961 3 20 66
1961 3 21 59
1961 3 22 42
1961 3 23 41
1961 3 24 59
1961 3 25 50
1961 3 26 63
1961 3 27 71
1961 3 28 76
1961 3 29 76
1961 3 30 76
1961 3 31 66

156

make the data in the relational database available for presentation using the Concur

infrastructure. The relational database is an external reference for the model. If we

assume the model is behind a firewall, this external reference restricts the model’s

mobility. There is therefore no disadvantage to implementing the model as a state

machine.

The model makes a portion of the database public by representing its data in

hierarchical form in the Public Model State data structure (3). This is an in-memory

data structure built using Concur’s common data representation API5. The Public

Model State need not represent all the data in the database, only the data for which

an interest has been expressed by an observer. However, let’s assume that all the

maximum daily temperature data in the database is represented in (3) for this ex-

ample, since the data set is fairly small. Figure 4.16 shows a portion of the Public

Model State.

At this point we have Public Model State but no observers of that state. Now

let’s assume Client 1 is instantiated. The View Function (5) is downloaded from the

Server. The View Function then registers an interest in the Public Model State. For

the moment, assume that the View Function is interested in the entire state; later

we’ll deal with the case where it is only interested in a portion of the state. All of

the state is then downloaded to Client 1’s Model Cache (4), which takes the form of

Figure 4.16.

Next, the View Function is computed, generating the View Specification (6). The

View Specification defines a projection of the model state, using the common data

representation API. Figure 4.17 illustrates one form that this View Specification might

5In order to understand this example, we need a concise visual representation of the data struc-
tures built using this API. I will therefore map these data structures to XML[BPSM+04] for display
in figures.

157

Figure 4.16: Public Model State

158

take. (The X values are in seconds “since” 12:00am January 1, 1970. They are

Figure 4.17: View Specification

negative because 1961 < 1970.)

The next step is for the Projection Function (7) to compute a projection (8). That

projection might look something like Figure 4.18. Note the following:

• There’s a suspiciously low reading on the left side of the graph. We’ll deal with

159

Figure 4.18: Projection

that later.

• There’s probably too much data on the graph. The graph has one point for

every day between August of 1948 and December of 2001. We’ll deal with that

later, too.

• The graph could use some labels to make it easier to tell what the data means.

We’ll deal with that one now.

The labels we will add are of two forms. Some, like date labels for the X axis,

come from the model. For these, we will just be projecting this data in a different

format. Others, such as descriptive titles for the X and Y axes and the graph itself,

are “syntactic sugar”, because they do not come from the model. (This information

could be in the model, but it isn’t in ours.) We will now change the View Function

to add these labels to the View Specification. The resulting View Specification is

Figure 4.19, and the resulting projection is Figure 4.20.

160

Figure 4.19: View Specification with Labels

Figure 4.20: Projection with Labels

161

Now we’ll deal with the problem of having too much data on one graph. What we

need is to be able to specify a range of dates. This is a good job for a Perspective (10).

Figure 4.21 will do the trick. This perspective is requested by the View Function and

Figure 4.21: Perspective

initialized by the Controller (9). Now the View Function will take not only the model

as input, but also the perspective. But the View Specification still hasn’t changed,

since the Start and End times cover the entire data range.

We’d like to figure out why there’s an abnormally low reading toward the left of

the original graph. To do that, we need to zoom in on that part of the graph by

adjusting our Perspective. But how do we do that? The View Function must provide

a UI so that the user can adjust the range of data being displayed. We will add

two sliders to the ViewSpecification so that we can specify the start and end values

for the Perspective (Figure 4.22). Figure 4.23 shows the new projection. The

Controller will register an interest in slider events. It can register this interest once

at the ViewSpecification node of Figure 4.22 (because events bubble up), or it can

register its interest separately at each of the Slider nodes.

Now we can move the sliders to show the left of the graph in more detail. This

will apply events to the Slider nodes of the View Specification. The controller will

respond to these events by changing the Perspective values, and the View Function

will change the View Specification accordingly, as shown in Figure 4.24. (Note the

lack of ellipses, indicating that the points explicitly shown are the only ones to be

162

Figure 4.22: View Specification with Sliders

Figure 4.23: Projection with Sliders

163

Figure 4.24: View Specification with Changed Slider Values

164

graphed; all others have been removed from the View Specification of Figure 4.22.)

The View Function can also now narrow its interest in the Public Model State, which

means that less data needs to be cached in the Model Cache. Finally, the Projection

Function will respond by zooming in the graph as shown in Figure 4.25.

Figure 4.25: Zoomed Projection

Now we can see that there’s anomalous data somewhere around 1948-08-28. How

can we get more detail? One way would be to write a new View Function that

would take the same Public Model State as input and display it in XML, similar to

Figure 4.16, instead of graphically, like Figure 4.25. This would give the user the

same insight we have in this paper by exposing the underlying data structures on his

display as we can in our figures. This same View Function could be very handy for

debugging in general; it could be applied to any Public Model State, ViewSpecifica-

tion, Perspective, Controller Structure, etc. Using such a projection, we could see

165

that the anomalous data is actually on 1948-08-29, where a high temperature of 3

degrees Fahrenheit follows a high on the 28th of 102 degrees.

Suppose now that we have permission to edit the original model data. The con-

troller would need to register for events on the Graph node of Figure 4.24. (The

controller is a simple state machine because it needs to act on the Controller Struc-

ture based on transient events and sequences of events (gestures)). Some event (e.g.,

Control-leftclick) or series of events (e.g., right-click and select Delete from a menu)

could mean “delete the point under the cursor”. Similarly, we could define a series of

events that could move the point under the cursor. The controller would respond to

these events and then manipulate the Controller Structure (11) to request that the

point be deleted or moved.

There are numerous ways to set up the Controller Structure. For example, one

might have one node per point the graph; in this case one could send a Delete event

to that node to delete it, or a Move event to move it. For this example, I have

taken a different approach (Figure 4.26), which is to define a controller consisting of

a single node, through which more complex events can be sent6. A “DeletePointAt

Figure 4.26: Controller Structure

-673459200” event can then be sent to the ControllerStructure node of Figure 4.26.

This event would propagate to a similar node in the Aggregated Controller Structure

(12). The Model would listen for such events, and respond by deleting the point

from the database and the Public Model State. This change would be propagated

to the Model Cache, and the View Function would respond by updating the View

6Operations on the model can be requested by either applying events to a Controller Structure
or modifying the Controller Structure.

166

Specification. Finally, the Projection Function would react by updating the graph as

shown in Figure 4.27.

Figure 4.27: Projection after Deleting a Point

So far we have only addressed the single-user case; now we need to consider col-

laboration. Suppose Client 2 now joins the conference as a latecomer. Let’s assume

for now that it requests the same View Function and the same inputs to that function

as Client 1; i.e., that the conference is WYSIWIS. The View Function (14) is down-

loaded and the Model Cache (13) is set up and populated. A slave Perspective (19) is

created and linked to the central slave (21). The View Function generates the View

Specification (15). The Perspective Function (16) is instantiated, and it generates

the projection (17) of Figure 4.27. All of this is a straight-forward repetition of what

happened for Client 1, except that the Perspective is a Slave, not a Master. If Client 2

has permission to interact with the application, a Controller (18) is set up, and linked

167

to the Perspective Slave. The Controller generates the Controller Structure, which is

linked to the Aggregated Controller Structure (13). The only interesting point here

is that the events applied to the Controller Structures of both clients are serialized

when as they are forwarded to the Aggregated Controller Structure. I am assum-

ing that operations performed on the model in response to these events are atomic,

or that the events invoke a transaction mechanism to achieve transaction isolation

among clients. The Perspective Master role can migrate between the clients, depend-

ing on the semantics required by the application, which must be communicated to

the Concur infrastructure.

It should be apparent from the above discussion that migration is a simple matter.

One’s client instantiations are torn down and reproduced elsewhere. It should also be

apparent that there may be times when there are zero clients, and that this situation

is handled gracefully.

Now we will discuss the issue of divergence. Consider the following possibilities:

• Client 2 wishes to look at a different date range for the data. This is accom-

plished by giving Client 2 its own perspective. Note that the Model Cache

components will then differ for the two clients.

• Client 2 is communicating with Client 1, so they want their perspectives held in

common. In the process, however, Client 2 decides to look at the Minimum Daily

Temperature data along with the Maximum Daily Temperature data. This is

accomplished by adding the Minimum data to the Client 2 View Function’s

interest set7.

• Client 2 is accustomed to a different set of key bindings for interaction with the

7The View Specification Syntax would need to be enhanced to support multiple lines per graph;
this is easily accomplished.

168

application. (Think emacs vs. vi.) This is accomplished by swapping out the

controller.

• Client 2 wishes to see the data in bar chart form (Figure 4.28). This is accom-

plished by swapping out the View function.

Figure 4.28: Projection in Bar Chart Form

These and other divergence scenarios are reasonably simple to accommodate using

the Concur architecture.

But what mechanism would be used for identifying the View Functions, their

Public Model State and Perspective inputs, and Controllers? While I have given a

fair amount of thought to this, it is beyond the scope of this dissertation. I envision

something like putting the controller into meta-mode, where interactions are used

to edit the user interface by choosing different components, and then returning to

169

normal mode, where interactions invoke operations on the application. These and

other ideas for future research are discussed in Chapter 7.

4.4 Debugging, Testing, and Scripting

I will conclude this chapter by offering a few paragraphs on how the Concur

architecture facilitates debugging, testing, and scripting in ways that are a dramatic

improvement over the state of the art.

I am a strong believer in the following sometimes touted but rarely followed soft-

ware engineering principle:

Every interactive software application should be built such that all appli-
cation operations can be invoked via a script (Figure 4.29). User interfaces
should then be built such that they invoke all operations via the scripting
layer.

Figure 4.29: Software Architecture with a Scripting Layer

This principle ensures, among other things, that applications can be automated and

that extensive regression tests can be developed. Since so much of today’s software

lacks such a scripting layer, testing is often done using software that emulates user

inputs delivered to the actual user interface. This mechanism is non-deterministic

170

(e.g., timing dependent) and sensitive to minor changes in the user interface; it is

therefore not robust. It is also difficult to capture the results of an operation (i.e.,

its impact on the user interface) and compare them to expected results, especially in

the presence of small UI changes.

Concur’s use of a scriptable data representation API supports the scripting of

applications at multiple layers. Data representations using this API are utilized as

a communication mechanism among software components. Communication consists

of the creation and modification of hierarchical data structures and the application

of events to those structures. The rectangles in Figure 4.14 are such data structures,

and the ovals (continuously evaluated functions) and rounded rectangles (state ma-

chines) are such components. The use of continuously evaluated functions, which

contain no essential state internally, ensures that all the important state is accessible

externally to components. The use of a scriptable API with event and notification

capabilities ensures that the data structures between components, which do contain

essential state, can be observed and manipulated by debugging, test, and automation

software. The end result is that everything in the system can be tested, observed,

and automated deterministically via scripts (upon which UIs can be built), except

for the Projection Function and its results, and the Model’s external references. The

Projection Function (which is actually a state machine with functional guarantees) is

a small component that can be tested separately and reused for all applications, so it

can be trusted to be correct.

As examples, consider the following capabilities supported by Concur:

• Communication between components can easily be captured and analyzed or

replayed.

• A simple software component can manage the Model Cache to emulate a Model

171

before the Model is available, or in software (e.g., test) environments that don’t

support the full Model. View Functions can be tested by simulating a Model

Cache and programmatically observing the View Specification.

• View Specifications can easily be dumped as a compact, definitive, and struc-

tured (analyzable) alternative to pixel dumps. The can used to visually recon-

struct projections.

• The ability to capture and replay the dynamic visual history of a session comes

automatically.

• A simple software component can apply a scripted set of events to a View

Specification, and the changes to the View Specification resulting from the

Controller/Model/View Function loop can be programmatically analyzed.

• A simple software component can apply events or structural changes to a Con-

troller Structure or Aggregated Controller, and the Public Model state can be

programmatically analyzed, to test Model behavior.

• Special View Functions can be created to enable one to observe any of the

data structures in the system. Similarly, special Controllers can be created to

manipulate these structures. These special View Functions and Controllers can

be application-independent, and can therefore be used with any application.

172

Chapter 5

Concur Implementation

In this chapter I will give a brief tour of the implementation of the Concur proof

of concept infrastructure. First I will discuss the programming language and libraries

used, then the class library undergirding the server and client. Finally, I will describe

the server and client software themselves. I will only discuss the most important

classes of each component, and these only at a high level of abstraction. Applications

will be addressed in the next chapter.

5.1 Programming Language and Libraries

My programming language choice was based on the following requirements:

• Because Concur relies heavily on distributing code among hosts, it was conve-

nient and practical to choose an interpretive language.

• Distributed client code needs to be run in a secure container. I therefore needed

a language with security mechanisms appropriate for building such a container.

• Interpretive languages can become unwieldy unless they have object-oriented

capabilities, so these were desirable as well.

• Since performance was a central concern of my thesis, it seemed prudent to

choose an interpretive language with reasonably good performance character-

istics, and which offered the ability to incrementally and transparently replace

components written in an interpretive language with functionally-equivalent

ones written in a compiled language.

• I also needed easy access to user interface capabilities and an API for represent-

ing hierarchical data structures.

• It was desirable for the language chosen to be available on the three major

operating systems (Microsoft Windows, UNIX variants, and Apple OS/X).

• Finally, I wanted a robust environment on which to build, so that I could expend

my efforts on the proof of concept itself.

The language I chose was IncrTcl[Smi00], which meets all of the above require-

ments. IncrTcl is an object-oriented extension to Tcl[Ous93][WH03]. All the im-

portant object-oriented language facilities are supported, using keywords and syntax

similar to those of C++[Str00]. Method bodies are written using the Tcl language.

Tcl itself, which underlies IncrTcl, is a simple, consistent, and robust interpretive

language developed by John Ousterhout at the University of California at Berkeley.

It is easily embedded in programs written in other languages, and it contains an

extension facility that allows command libraries to be written either in Tcl or in a

compiled language (e.g., C++, Java[AGH05], or C#[Lib03]). Tcl also performs quite

well, for an interpreted language. This is because the interpreter contains a on-the-fly

byte code compiler and supports dual-ported objects.

Dual-ported objects are a mechanism for maintaining the value of an object both

as a string representation (as everything is specified in scripts and in I/O) and as

174

some binary representation (e.g., an integer). For example, suppose a Tcl variable

containing the string representation of an integer is passed to a Tcl command requiring

an integer. The string is converted to a binary integer which is stored alongside the

string as an alternate representation. If, as is likely, the variable is again used as

an integer, its integer representation is still available. If it is needed as a string,

the string representation is also available. If it is then needed as a third type (e.g.,

float), the integer representation is discarded and replaced by the new representation.

Of course, if one representation is changed (e.g., the integer is incremented), the

other is invalidated and must be re-created on demand. Tcl also supports sharing

of objects with the same value, with copy-on-write semantics. Together, the byte

code compiler, dual-ported objects, and shared object values combine to make Tcl an

efficient interpretive language.

Tcl also provides native capabilities for running scripts in a safe interpreter with

limited and precisely-specified capabilities. Safe interpreters can be set up to make

trapped calls (analogous to system calls on an operating system) that are executed in

a privileged master interpreter. Concur makes use of safe interpreters for executing

application code.

In addition to IncrTcl, there are many other Tcl extensions available. The basic

user interface extension, Tk (also developed by John Ousterhout), is nearly as simple

and fully as robust as Tcl, but it does not provide all the user interface components

one might want. The UI needs of the Concur prototype infrastructure are minimal, so

Concur only uses one other Tcl UI extension, an image management extension called

Img[Nij00]. A production implementation of Concur would use many other UI APIs

on various platforms for its projection functions. Concur also needed an API with an

event mechanism for managing hierarchical data structures. Originally the Document

175

Object Model (DOM) API[Mar02] was used1, but I eventually determined that the

DOM did not have the right facilities for caching and replicating data structures. I

then turned to a hierarchical data structure API that was part of the BLT[How97]

extension to Tcl, and I wrote an IncrTcl wrapper around it to augment it with the

facilities I needed.

5.2 Concur Class Library

The Concur class library contains utility classes that are useful to both the client

and server processes. The most important of these are described in this section.

The ConcurSafeInterp class implements a restricted container that only allows

certain Tcl commands to be executed. Some of these commands trap out to a priv-

ileged interpreter, much like system calls do in an operating system. Methods are

provided that allow a privileged interpreter to determine which commands can be

executed and how they may trap to a privileged interpreter.

The ConcurChannel class represents an end-point of a TCP/IP connection. In-

teraction among processes in Concur is normally asynchronous (message-based), not

synchronous (remote-procedure-call-based). Any synchronization that might be re-

quired is implemented above the ConcurChannel level. Thus the ConcurChannel

class is oriented around sending and receiving messages. Each message sent is a Tcl

command intended to be executed on the other side of the link. The Send method

packages up a command and writes it to its end of the link. It will optionally delay

the message by a specified amount of time, to simulate network delays. The Receive

method reads data off its link, parses it into commands, and executes these in a safe

1To use the DOM API, I wrote a Tcl program that generated a wrapper (written in Java) for
the Xerces-J DOM API[Xer08], as a Tcl extension.

176

interpreter. Each channel is given an instance of a sub-class of the ConcurChan-

nelCommands object, which defines which commands it is allowed to execute for

that channel. This is how all communication among processes in Concur occurs.

The ConcurProcess class is a super-class providing a runtime environment for

the server, client, and model (producer) processes.

The ConcurEventManager class implements a process-level event-based com-

munication mechanism. It has methods for registering an interest in and triggering

events. This allows components within a process to communicate event information

with each other indirectly. That is, the component triggering an event need not know

about components interested in the occurrence of that event.

The ConcurTree class represents a hierarchical data structure. It is used to

represent models, perspectives, and view specifications2. It is also used to encapsulate

view functions and controllers, by including Tcl code in a tree data structure. This

allows the same tree replication facilities used for models and perspectives to be

used for distributing view functions and controllers. Representing code in a tree

also provides a convenient mechanism for view functions and controllers to access

associated data, as they are allowed to access data items in the tree containing their

code.

ConcurTree instances can be named and referenced using a unique path string,

as are files in a file system. This, for example, is how models and perspectives are

identified. They are also given a shorter unique ID, which reduces network traffic and

improves performance. (File systems do the same thing.) Particular nodes of a tree

data structure can also be referenced by a path from the root to the desired node,

2A production implementation of Concur would provide a ConcurDAG class, representing a
Directed Acyclic Graph (DAG). None of the example applications written for this dissertation needed
DAG generality.

177

and by an ID that is unique to within the tree.

Each node in a tree can have any number of attributes (name/value pairs) asso-

ciated with it. All necessary facilities for traversing trees, reading or writing node

attributes, and changing the structure of a tree are implemented as ConcurTree

methods.

The ConcurTree class also provides facilities implementing Subject behavior in

the push Subject/Observer paradigm. That is, an observer can register an interest

in specific kinds of changes that might occur in a tree (e.g., structural changes or

attribute creations, deletions, or modifications). These notifications bubble up from

the nodes where the changes occur to the root, so that one can register an interest

in all the nodes of a sub-tree by registering an interest at the root of the sub-tree.

A registration request contains a Tcl command that will be executed with additional

parameters describing the change, when a specified change occurs.

Replication, master/slave behavior, and migration behavior is mostly implemented

in the ConcurTree class. Master or slave status can be applied to a sub-tree. If a

change to a node of a local instance of a tree is requested, the tree can determine

whether or not it is the master for that node. If it is, the change is made locally and

then replicated over the network to other instances of the tree. If the local tree is a

slave for that node, it simply forwards the request toward the master instance. The

migration algorithm (changing the master of a sub-tree) is also implemented mostly

in the ConcurTree class. This algorithm queues requests in order to ensure that

operations are not lost or reordered during a migration.

As part of its replication facility, the ConcurTree implements partial caching of

sub-trees. That is, if an observer wishes to have a replica of only part of an existing

tree, it can specify such in its registration request. For example, an observer can

specify that it only wishes to cache a particular subject sub-tree to a given depth.

178

In this way, an entire model needn’t be replicated if a view function currently only

needs access to a portion of the model.

The ConcurTree class implements some higher-level attribute modification logic

that essentially implements typing of attributes. For example, integer and vector op-

erations are supported. Typed attribute change notifications are also implemented,

which allows modifications to attributes to be described succinctly in a notification.

For example, inserting a character into a large block of text can cause a brief descrip-

tion of the change to be sent in a notification, instead of re-sending the entire block

of text.

A transaction mechanism is also implemented in ConcurTree. This allows mul-

tiple changes to be made atomically by bracketing them with BeginTransaction

and EndTransaction method calls. Any change notifications that occur during a

transaction are queued until the end of the transaction. When trees are replicated,

transaction boundaries are passed along to the replica (i.e., the change notifications

are also bracketed). In this way we can ensure that view functions do not receive in-

valid, transient inputs (i.e., inputs outside of their domain). It also keeps projection

functions from generating distracting transient UI modifications.

Application code and configurations are specified in XML. The ConcurXML

class is capable of reading an XML file and converting it into a ConcurTree instance,

making it accessible to the Concur infrastructure and/or applications. A production

version of Concur would also implement a mapping from ConcurTree to XML, e.g.,

for taking a snapshot of a view specification.

The entire Concur library consists of about 2850 lines of code, 600 of which is for

performance monitoring classes. The heart of the Concur library is the ConcurTree

class, which consists of about 1300 lines of code.

179

5.3 Server Process

The server process code consists of a Tcl script of about 200 lines of code. It

launches producers (model applications) accepts connections from clients and produc-

ers, and loads and distributes configuration information and code for perspectives,

view functions, and controllers. It also hosts ConcurTree instances for models, per-

spectives, and aggregated controllers. These tree instances replicate themselves as

necessary.

5.4 Client Process

The client process is more complicated than the server process because it includes

projection function classes, and abstract super-classes that are sub-classed by appli-

cation code. The super-classes used by application code create containers in which

models, perspectives, controllers, and view functions can run. The classes associated

with the client process are described briefly below. In all, the client-specific classes

and script consist of about 1000 lines of code.

The ConcurClient class creates a runtime environment for clients and producers.

It consists mostly of code to connect to the server and to shut down client processes.

The ConcurViewer class is a sub-class of ConcurClient that is specific to processes

hosting view functions and projections (i.e., not producers). It is responsible for

requesting model and perspective replicas, view functions, and controllers from the

server and for setting up safe containers for application code.

The ConcurPlaypenCommands class defines commands that can be executed

by view functions and controllers in a safe container. The ConcurClientChannel-

Commands class does the same for the safe client-side channel interpreter.

180

The ConcurProjection class is a super-class for all projection function classes.

Each projection consists of an instance of a ConcurProjectionRoot class instance

associated with a view specification. The ConcurProjectionRoot class looks for

sub-trees of the view specification corresponding to particular UI technologies and

instantiates UI-specific projection functions for each of these sub-trees.

The Concur prototype currently supports only one UI technology, Tk. An instance

of the ConcurProjectionTk class maps a view specification sub-tree of type Tk to

the actual Tk code that maintains a particular Tk projection on the screen. That is, it

traverses an initial view specification, creating the specified user interface (projection),

and then monitors the view specification for changes and updates the projection

accordingly. It also sets up UI event bindings for controllers and maps low-level Tk

events applied to the projection to events applied to the view specification. These

events, in turn, are observed by controllers, which map them to operations on models

and perspectives. The ConcurProjectionTk class accounts for about 600 of the

1000 client-specific lines of code. This is effort that needs to be duplicated for each

UI technology.

181

Chapter 6

Analysis and Evaluation of Concur

In Sections 1.9 and 4.1 there are two partially overlapping lists against which the

Concur prototype described in Chapter 5 can be evaluated. In this chapter I will

combine these lists and evaluate the Concur prototype with respect to each of the

items in the new list. The next section will present these criteria for analysis.

6.1 Criteria for Analysis

In Section 1.9 a list of the contributions of this dissertation was enumerated. This

list consists of items that are new in this work. In Section 4.1, a list of requirements

for Concur was enumerated. This list contains both items that are new in this work,

and items that may already have been demonstrated by others, but that Concur must

also achieve.

The following list combines and summarizes the above two lists into the items

against which Concur will be evaluated in this chapter.

1. Section 1.9 states that one of the contributions of this work is a novel classi-

fication of application software components (entities) based on their migration

characteristics. This taxonomy was presented in Section 3.4. Migration times

must be better than 100ms where network delays allow.

2. I will show that these entity types can be used to build a wide range of ap-

plications by building three sample applications chosen to be representative of

applications in general.

3. By means of analyzing the above sample applications, I will argue that Concur

provides a reasonable and understandable programming environment based on

a centralized architecture and collaboration-unaware applications. I will demon-

strate that this architecture does not require model synchronization algorithms

akin to those used in replicated architectures, which simplifies the programming

of the infrastructure and/or applications. I will also argue that the kinds of user

mental model complexities required by a replicated architecture are not present

in this architecture.

4. I will argue that Concur is deterministic.

5. I will argue that above-mentioned entities can be used to implement a wider

range of desirable per-participant divergence scenarios than existing systems.

6. I will argue that Concur supports individual work as well as all four classes of

collaborative work illustrated in Figure 1.1, and that Concur supports transi-

tions among all these forms of work. In the process, I will show how Concur

supports latecomers and mobility.

7. I will deliver a prototype infrastructure supporting these applications, built as

a multi-centered centralized system with entity migration support.

8. I will demonstrate that this infrastructure and applications conforming to it

183

give substantially better interactive performance to all participants than does a

purely centralized architecture, and close to that of a replicated architecture. I

will demonstrate that this architecture scales better in terms of both processor

and network bandwidth utilization than a purely centralized architecture.

9. I will demonstrate the advantages of predictive migration based on telegraphed

user intentions, made possible by Concur’s fast migration times, rather than a

past history of interaction.

Some of the above criteria will be met via informal argument, while others will

be demonstrated using the results of formal experiments. The next two sections will

describe the experimental environment and the experiments themselves.

6.2 Experimental Environment

A diagram of the experimental environment was shown in Figure 1.24. It consisted

of two 1Gb/s Ethernet switches joined using routers connected by 1Gb/s links. On

one of these switches was a single server host configured as follows:

• 3 GHz Pentium D dual-core processor

• 1 GB RAM

• 1 Gb/s Network Interface Controller (NIC)

• Red Hat Linux release 4

The other switch contained six client hosts configured as follows:

• 400 MHz Pentium II processor

• 256 MB RAM

184

• 100 Mb/s NIC

• FreeBSD UNIX version 5.4

The Concur infrastructure described in Chapter 5 ran on these hosts. A Server

process (which served as the physical center of the network) and a Producer process

(which managed the model data) ran on the server host, while a Client process and

an X server ran on the client hosts. Client and Producer processes communicated

with the Server process via TCP/IP[Com00] sockets.

Note that by today’s standards, these client hosts are severely under-powered. As

a reference point, in August of 2008, A Dell XPS 420 desktop computer selling for

$900 is configured as follows:

• 2.4 GHz Intel quad-core processor

• 3 GB RAM

• 1 Gb/s NIC

• Windows Vista Home Premium

Nevertheless, the client computers used for these experiments gave adequate interac-

tive performance for up to 6 users in the collaborative experiments described below.

One would expect that the computers of today and the future would have no perfor-

mance problems at all with the Concur infrastructure.

Eighteen additional hosts were also attached to each of the two Ethernet switches.

These hosts were used to generate background traffic for half of the experiments, in

order to measure the impact of such traffic on the Concur infrastructure. The traffic

generated was a replay of one hour’s actual traffic between the UNC network and the

Internet, captured on August 3, 2004. (See [HC06] for details on how this traffic was

185

captured and replayed.) The UNC side of the traffic was replayed on the client switch,

while the Internet side was replayed on the server switch. All traffic was directed at

the other switch, so that all traffic went through the routers, creating contention for

the network. The background traffic was re-sampled such that it generated a full load

of realistic traffic over a 90 minute period. Figure 6.1 shows the total background

traffic (sum of both directions) for several 90-minute runs. (The data points represent

Figure 6.1: Background Network Traffic

averages over 60-second intervals. The traffic is bursty, with measured bursts of up

to 600Mb/sec averaged over 10ms intervals.) The consistency of this traffic across

runs is apparent from this diagram. Four Concur experiments were run sequentially

within each 90-minute replay of this background traffic.

As it turns out, the background network traffic’s impact on the Concur experi-

ments was minimal. (For example, see Figures 6.2, 6.3, and 6.4.) (The biggest

186

Figure 6.2: Background Traffic Impact on Drag Latency (Centralized)

impact was on the Centralized architecture, because it is the architecture most de-

pendent on the network.) This is a good result for Concur, as it demonstrates that

the infrastructure works well under normal network loads. Most of the performance

results shown in the remainder of this chapter will show only those experiments with-

out background traffic. Corresponding experiments with network traffic had similar

results.

6.3 Experiments Performed

The application used for all experiments was a 70-piece jigsaw puzzle (Figures 6.5

through 6.8). The puzzle application was chosen because it progressed from mostly

individual work (Figure 6.6) to mostly collaborative work (Figure 6.7) as the puzzle

187

Figure 6.3: Background Traffic Impact on Drag Latency (Migrating)

was solved. Each experiment started with the same puzzle pieces, but their placement

was random and different for each experiment. Puzzle pieces were always in their

correct orientation; random rotations were deemed an unnecessary complication for

the purposes of these experiments.

The user interface for the puzzle application was as follows:

• Moving the mouse cursor over a piece highlighted it with a yellow border.

• Right-clicking on a piece moved it to the bottom of a stack of overlapped pieces.

• Left-clicking on a piece raised it to the top of a stack of overlapped pieces.

• Moving the mouse cursor with the left button depressed dragged the piece.

Releasing the left button “dropped” the piece.

188

Figure 6.4: Background Traffic Impact on Drag Latency (Replicated)

Figure 6.5: Puzzle Starting Point

189

Figure 6.6: Puzzle in Early Stage of Completion

Figure 6.7: Puzzle in Late Stage of Completion

190

Figure 6.8: Complete Puzzle

191

• Middle-clicking on a piece snapped it together with any matching pieces within

a few pixels of their correct position with respect to the piece under the cursor.

Each client for the experiments additionally contained puzzle solving logic emu-

lating a user’s attempts to solve the puzzle. The solver applied the above low-level

events to the view, just as a real user would. Think times, attempted matches, and

drag speeds simulated those of a real user. The solver algorithm had the following

characteristics:

• Each user’s solver randomly chose a “favorite” color. It began by attempting

to match pieces near that color, and progressed to colors further away from

its favorite color as the puzzle solution proceeded. This tends to encourage

different solvers to work on different parts of the puzzle.

• The solver would only attempt a match where it made sense. For example, it

would only attempt to match the sides of two pieces if the sides were of opposite

gender, and if the edge sides aligned properly.

• Priority was given to matching pieces where the sides to be matched were similar

in color. The chosen puzzle image, a picture of Franklin Street in Chapel Hill,

NC (Figure 6.8), was selected because of its areas of different color.

• Pieces were never moved off the board. A piece’s position would be adjusted

if a match could not be attempted in its current position without moving the

matching piece off the board.

• If the solver decided to stop attempting to match a piece, it was positioned

randomly before being dropped. This keeps pieces from piling up in one place.

• Attempts are made to move smaller fragments in preference to larger ones.

192

• If the solver is moving the cursor toward a piece to be moved and that piece

is moved by another player, the solver backs off and tries another match. The

same thing happens if the solver is dragging a piece and it is moved by another

player, or if it is dragging a piece toward another piece to attempt a match, and

the other piece is moved by another player.

These are all characteristics common to the way in which real users would solve a

puzzle. (For details on the puzzle solver implementation, see Appendix A.)

Each experiment, consisting of a complete puzzle solution, took roughly 10 minutes

to complete (Figure 1.39). Experiments were conducted with all combinations of

five variables1, using 2-4 points along each dimension, as shown in Table 6.1. Each

experiment was repeated 4 times, for a total of 384 puzzle solutions.

The Producer maintained the model, which consisted of piece descriptions and

their relative positions in the completed puzzle. When pieces snapped together, the

two pieces were joined into one in the model. Piece locations on the table, the

highlighting of pieces under cursors, and the stacking order of overlapped pieces were

represented by Perspectives.

The centralized architecture was implemented by simply disabling perspective

migration. For the replicated architecture, each client was told that it was the master

for each perspective, so that it could modify it locally. To synchronize peers, all such

modifications were then sent to the central server2, where the arrival times determined

the official ordering of the modifications. These modifications were then broadcast

1That is, excepting the prediction dimension, which only made sense with the migrating archi-
tecture.

2Peer synchronization in a replicated architecture can be implemented by peer-to-peer commu-
nication or through a central server. In our case, it was convenient to do the latter. What makes
this a replicated architecture is the fact that interactions are performed locally and independently,
and are synchronized later.

193

D
im

e
n
si

o
n

V
a
lu

e
s

C
o
m

m
e
n
ts

A
rc

h
it

ec
tu

re
C

en
tr

al
iz

ed
,
M

ig
ra

ti
n
g,

R
ep

li
ca

te
d

N
et

w
or

k
D

el
ay

0
m

s,
50

m
s,

10
0

m
s

E
ac

h
d
ir

ec
ti

on
P

re
d
ic

ti
ve

M
ig

ra
ti

on
n
o,

ye
s

Y
es

on
ly

fo
r

M
ig

ra
ti

n
g

ar
ch

it
ec

tu
re

B
ac

k
gr

ou
n
d

T
ra

ffi
c

n
o,

ye
s

U
se

r
C

ou
n
t

1,
2,

4,
6

T
ab

le
6.

1:
E

x
p
er

im
en

t
D

im
en

si
on

s

194

to all clients. If the official ordering differed from the actual ordering at a particular

replica, the out-of-order local modifications made at that client were undone and the

official ordering was replayed. Otherwise the duplicate modifications made by that

client and received from the central server were ignored.

Non-predictive migration was implemented by having the client request migration

of a piece’s perspective when it “picked up” the piece, if it was not already the master

for that perspective. Predictive migration was implemented by requesting migration

of a piece’s perspective if it appeared that the local cursor was moving toward that

piece and the client was not already the master for that piece’s perspective. The

solver logic for determining the piece toward which the cursor should move and the

prediction logic for determining the piece(s) toward which the cursor was moving

were segregated so that the prediction logic would work for non-automated puzzle

solutions, and to maintain the uncertainty that would exist in that case.

In the following sections, Concur will be evaluated against the criteria of Sec-

tion 6.1.

6.4 Entity Types and Applications

The first three criteria, listed below, will be discussed in this section.

Criterion 1: Section 1.9 states that one of the contributions of this work is
a novel classification of application software components (entities) based
on their migration characteristics. This taxonomy was presented in Sec-
tion 3.4. Migration times must be better than 100ms where network delays
allow.

Criterion 2: I will show that these entity types can be used to build a
wide range of applications by building three sample applications chosen
to be representative of applications in general.

195

Criterion 3: By means of analyzing the above sample applications, I will
argue that Concur provides a reasonable and understandable program-
ming environment based on a centralized architecture and collaboration-
unaware applications. I will demonstrate that this architecture does not
require model synchronization algorithms akin to those used in repli-
cated architectures, which simplifies the programming of the infrastruc-
ture and/or applications. I will also argue that the kinds of user mental
model complexities required by a replicated architecture are not present
in this architecture.

The Concur infrastructure proof of concept described in Chapter 5 supported all

of the entity types of Figure 3.1 except the Timer Perspective. All of the remaining

entity types were used to develop three sample programs:

• The jigsaw puzzle program used for all of the experiments,

• A simple text editor, and

• A simple pixel-based whiteboard editor.

The text and pixel editors are very simple, and these will be described in detail

first. Then the puzzle program, which is substantially more complex, will be described

in considerably less detail. Table 6.2 gives an overview of the components of each of

these three applications.

Before continuing with a description of the sample programs, one important note

must be made about Criterion 3. The multi-centered centralized architecture ensures

that operations on any given entity are shown to all users in the same order. However,

it does not guarantee that operations performed across multiple entities are likewise

shown to all users in the same order. That is, operation O1 on perspective P1 and

operation O2 on perspective P2 might be received by user U1 as (O1, O2), and by user

U2 as (O2, O1). This is an incidence of the architecture bleeding through to the user

that could not be prevented by the Concur architecture. It is the price of gaining much

196

T
ab

le
6.

2:
A

p
p
li
ca

ti
on

C
om

p
on

en
t

C
o
d
e

L
in

e
C

ou
n
ts

197

better interactive performance. Fortunately, different orderings of operations between

entities are less noticeable and less important than different orderings of operations on

a single entity. In sum, Concur improves the user mental model situation dramatically,

but does not eliminate it.

6.4.1 Text Editor Application

A simple text editor application is shown in Figure 6.9. In the interest of simplicity,

Figure 6.9: Text Editor Application

the editor as implemented only supports inserting characters into lines, and not, for

example, deleting characters or adding or deleting lines. Completing the text editor

would mostly involve the repetition of patterns in the existing example.

We’ll start with the configuration of the server. Figure 6.10 shows the MetaMod-

els.xml file, which lists the meta models, each of which defines the combination of an

application with all of its inputs. There are two meta models defined for the text

editor application, defining different perspectives for cursor position. If two users use

the same meta model, their cursor position is shared; if they use different ones, they

diverge.3 The Label attribute is used internally. The Path attribute indicates global

names of the entities (across process and hosts) within Concur; it is a file-name-like

path naming the meta model. The File attribute specifies the file where the meta

model is defined.

3In the prototype, server configuration files are read at startup time; in a production system
operations like adding perspectives would be done dynamically.

198

Figure 6.10: MetaModels.xml

The meta model definitions are shown in Figures 6.11 and 6.12. They combine

Figure 6.11: TextEditorMetaModel1.xml

the view function with its two inputs (Model and Cursor) and its associated con-

troller map. As you can see, the only difference is the cursor perspective name. The

controller map is the code that usually maps events on the view specification into

events or changes to a controller data structure being monitored by the producer (the

manager of the model). In the case of this simple editor, no controller data structure

is necessary, because the only operations on the model are changes to the text lines,

which are performed directly by the controller map. That is, the model is a mobile

model. The individual lines can migrate to the client using them, and the controller

map there can operate on the master replica directly. (This greatly improves the

performance of the text editor.) In this case, the producer has no work to do other

199

Figure 6.12: TextEditorMetaModel2.xml

than presenting the initial model. A more complete text editor would need a con-

troller data structure (listed in the meta model file) for invoking operations on pieces

of the model larger than a line, e.g., adding and deleting lines, performing global

replacements, and saving the file. The jigsaw puzzle application will demonstrate the

use of a simple controller data structure for invoking application operations.

The view function, controller map, and perspective are listed in the ViewFunc-

tions.xml, ControllerMaps.xml, and Perspectives.xml files, as shown in Figures 6.13,

6.14, and 6.15. The server needs no more model configuration, since the model is

Figure 6.13: ViewFunctions.xml

defined by the producer. We’ll hold off on describing the code in the view function and

controller map for a bit. The cursor perspective is defined in TextEditorCursor.xml

(Figure 6.16). It doesn’t actually define a cursor position yet; that will happen when

a user first clicks on the editor. The same cursor definition is used for both cursors.

Note that this divergence possibility is presented in the server’s configuration; the

application itself knows nothing of the divergence scenarios the user(s) may choose

200

Figure 6.14: ControllerMaps.xml

Figure 6.15: Perspectives.xml

Figure 6.16: TextEditorCursor.xml

201

to use.

The last piece of server configuration for this application is the entry in the Ap-

plications.xml file (Figure 6.17), which specifies file name of the producer script to

be launched. This script, TextEditorProducer.tcl, is shown in Figure 6.18. Line 1

Figure 6.17: Applications.xml

specifies that the Concur library should be used. Line 3 begins the definition of

the TextEditorProducer class, and Line 4 specifies that this class inherits from the

ConcurClient class in the Concur library. Lines 6-10 specify commands that should

be imported from the library. Line 12 defines an instance-specific variable that will

reference the model. Lines 14-19 define the constructor for the TextEditorProducer

class. Line 14 shows that the path name of the model and the server host name

and port number are passed to the constructor as arguments; this is done when an

instance of the class is created on Lines 27-28. On Line 15, the server connection

arguments are passed to the super-class, which creates the connection to the server.

Line 17 reads the initial model from an XML file and creates a Concur tree structure

representing the model. The model definition file is shown in Figure 6.19. Line 18

tells the infrastructure to replicate the model to the server. Line 23 is a Tcl construct

for initializing class (static) variables. Lines 28-29 iconify the producer’s windows

(since the producer performs background work and does not need a UI).

The client application script is shown in Figure 6.20. It simply creates a Con-

curViewer object, passing it the host name and port number and the meta model

202

Figure 6.18: TextEditorProducer.tcl

Figure 6.19: TextEditorModel.xml

203

Figure 6.20: TextEditorConsumer1.tcl

path. The ConcurViewer will connect to the server, fetch the meta model, and fetch

the view function, instantiating it in a secure, limited container. If one wishes to

share the document but to have an independent cursor, the TextEditorConsumer2.tcl

script would be used, which would reference TextEditorMetaModel2 (Figure 6.12)

instead of TextEditorMetaModel1 (Figure 6.11) on Line 8.

The view function for the text editor will now be shown in pieces4, given its length.

In this and the following discussions I will avoid boilerplate constructs already seen.

First, I will show an overview, in Figure 6.21.

The first thing to note is that the code is defined within the context of an XML

file. The XML file, code and all, will be loaded into a Concur tree data structure. This

allows us to conveniently make certain data (below the code in the figure) available to

the view function code, and to distribute the code and associated data using Concur’s

tree replication facilities. On Line 2, the XML attributes name the class that will

define the view function, so that it can be instantiated by the infrastructure. Line 2

also specifies that the CDATA section following (which contains the code) should be

4Line numbers are arbitrary and may not correspond between figures.

204

Figure 6.21: TextEditorViewFunction.xml Overview

205

stored in an attribute named Code in the Code node of the tree. (The CDATA

section in an XML file is used to store arbitrary text, so that no attempt is made to

interpret it as XML.)

Line 4 indicates that the view function inherits from the safe Concur library, not

the full Concur library. The full library is inaccessible to code running in a restricted

container; the safe library only contains code that is safe to run in the container.

Lines 6-8 begin the definition of the view function class, which inherits from the

ConcurViewFunction class in the safe library.

The constructor on Lines 16-21 is passed the meta model, the view specification,

and the bind specification tree data structures, which it then passes on to its super-

class. By the time this constructor is called, the meta model has been requested

from the server and instantiated locally5. The view and bind specifications are empty

trees monitored by the infrastructure6. The view specification will have a projection

function applied to it, and the bind specification will specify low-level event bindings

that will cause events to be delivered to the controller map.

Below the code, starting at Line 30, an initial view specification data structure is

defined, which will be copied by the view function to its view specification parameter.

On Line 30 the projection type is specified as Tk. This determines the user interface

technology to be used.7 Line 31 creates a top-level window named “.”8. Within that

window, it creates a frame (Line 33). The user interface components corresponding

5Note that this would allow the meta model to change dynamically, e.g., to change from a shared
to a private perspective. This type of dynamic changing of view function inputs was not used in any
of the sample programs.

6In a full implementation of Concur, these arguments would specify only an empty portion of a
larger tree, since any given view function would only create a portion of a user interface.

7Concur currently only supports Tk, but one could in principle define a user interface using
multiple UI technologies. I did this using HTML and Tk in an earlier prototype.

8Actually, Tk creates this window by default, and this line just specifies that the existing one
should be used. But other top-level windows can be created similarly.

206

to lines in the document will be created within the frame, by the view function.

Note that the attributes on Line 33 (borderwidth and background) are defined by the

specific UI technology being used (Tk), and are mapped to that UI by the projection

function.

The TextEditorViewFunction constructor is shown in full in Figure 6.22. Lines 23-

Figure 6.22: TextEditorViewFunction Constructor

24 find the path name of the view function in the meta model and fetch a reference

to the view function tree data structure. (The * command is a way of referencing

commands, in this case FindTree, implemented in the infrastructure, which have been

explicitly made available to code in the safe container by the infrastructure. These

commands trap to the privileged infrastructure much like system calls trap to the

operating system.) Line 27 requests that the ViewFunction and MetaModel tree data

structures be fully replicated to the client. These data structures already exist, since

the infrastructure needed them in order to instantiate the view function, but the local

replica may not be complete. Recall from Section 3.5 that even though a slave replica

has been obtained by a client, the entire master data structure may not be replicated

locally. The tree’s Interest method tells the infrastructure what portion(s) of the tree

are required by the client. As invoked here, without arguments, the request is for the

207

entire tree. Lines 28-29 register a callback to be executed when the entire tree has

been cached locally. We will now look at each of these callback methods.

The ViewFunctionInterestComplete method (Figure 6.23) is called when the entire

view function has been reproduced locally. (Only the code sub-tree need have been

Figure 6.23: TextEditorViewFunction ViewFunctionInterestComplete

requested by the infrastructure.) Lines 137-138 copy the initial view specification

from the bottom of Figure 6.21 to the ViewSpec tree monitored by the projection

function in the infrastructure. The projection function will respond by creating the

frame in the default top-level window (.).

The MetaModelInterestComplete method (Figure 6.24) requests replicas of all the

other trees specified in the meta model of Figure 6.11 (that is, the Model, the Cursor,

and the ControllerMap), by traversing the /MetaModel/ViewFunction sub-tree and

calling the RequestParameter command on each of its descendant nodes. The

Figure 6.24: TextEditorViewFunction MetaModelInterestComplete

RequestParameter method (Figure 6.25) makes the appropriate request and registers

the method ParameterReceived to be called when each replica has been received.

The ParameterReceived method (Figure 6.26) tells the infrastructure that the

view function is interested in the entire Model, Cursor, and ControllerMap trees,

208

Figure 6.25: TextEditorViewFunction RequestParameter

and registers corresponding InterestComplete methods to be called when these are

available.

Figure 6.26: TextEditorViewFunction ParameterReceived

Until this point, the methods of the view function are pretty much boilerplate,

and could be abstracted into the super-class and eliminated from the sub-class. It is

instructive, however, to discuss them, as a means of understanding Concur, and the

methods presented give full control to the view function so that it can efficiently tell

the infrastructure exactly what it does and does not want to see. From this point on,

the methods are mostly specific to the text editor application.

When the model replica is fully received, the ModelInterestComplete method (Fig-

ure 6.27) sets up callbacks for whenever any nodes in the model are created, moved,

209

or deleted. (The current sample program is really only interested in the creation of

Figure 6.27: TextEditorViewFunction ModelInterestComplete

nodes, but the other operations would be needed for a complete text editor implemen-

tation.) Then, if the /Text node exists9 (see Figure 6.19), the CreateLine method is

called for each of its children (one per line in the document). The ModelNotify create

callback (Figure 6.28) also calls CreateLine when a new line is created. The Create-

Figure 6.28: TextEditorViewFunction ModelNotify create

Line method (Figure 6.29) sets up a callback for whenever that line’s text is changed,

and creates a Tk “entry” UI component in the view specification’s frame. The en-

try component displays a single line of text. When the text of a line in the model

9Why wouldn’t the /Text node exist? The InterestComplete method is called when the server
has finished sending whatever it has of the document to the client; it may not have received the
entire document from the producer yet.

210

Figure 6.29: TextEditorViewFunction CreateLine

changes, the ModelTextChanged callback (Figure 6.30) updates the appropriate node

in the view specification, and the projection function reacts by changing the text in

the entry component.

Figure 6.30: TextEditorViewFunction ModelTextChanged

The CursorInterestComplete method registers a callback to be executed when

the Position attribute of the cursor changes10. If the Position attribute already ex-

ists (recall that it did not yet exist in Figure 6.16), it calls the SetCursor method

(Figure 6.31). The CursorPositionChanged callback method (Figure 6.32) also calls

Figure 6.31: TextEditorViewFunction SetCursor

10Using tree event bubbling, it should be possible to register a callback only on the /Text node
of the model. Unfortunately, I have not yet implemented bubbling for attribute tracing in the
infrastructure.

211

SetCursor whenever the position attribute changes. The SetCursor method sets the

Figure 6.32: TextEditorViewFunction CursorPositionChanged

current cursor position for the line containing the cursor. See the text insertion char-

acter before the word “men” in Figure 6.9. (Only the active line’s cursor will be

displayed and used by the application.)

The ControllerMapInterestComplete method (Figure 6.33) instantiates the con-

troller map in the container in which the view specification is running, passing along

the meta model, controller map, view specification, and bind specification. This

Figure 6.33: TextEditorViewFunction ControllerMapInterestComplete

method could also be considered boilerplate.

That’s it - the entire view function is 144 lines of code (including data represented

in XML), and could be considerably shortened by moving boilerplate code to the

super-class. Note that the code is not aware of how many users are sharing any

of its inputs, and that it does not have to be involved in any synchronization of

peer replicas. It is written for a centralized architecture. Note also that the view

function is implemented as a mathematical function, i.e., it reacts to its inputs by

changing its outputs, in a manner such that the same inputs always produce the

212

same outputs. Since the view function is implemented in an imperative language, it

need not implement a function, but it does. More will be said about this issue in

Chapter 7.

Now we will turn to the ControllerMap code, and here again, we will look at it

piece by piece, because of its length. We begin with the overview of Figure 6.34.

The main thing to note from this figure is the BindSpecification node at the bottom.

This is where the controller map would typically define its low-level event bindings

on the view specification. In this case, the bindings need to be applied to each Tk

entry UI component, and these aren’t created until the model replica appears, so the

BindSpecification node is empty11.

Figure 6.35 shows the controller map’s constructor. On Line 22, it copies the

empty bind specification to the infrastructure-monitored BindSpec. Since the bind

specification is empty in this case, this is a no-op. Then it obtains references to

the cursor and model trees (Lines 26-34). Finally, it sets up callbacks on the view

specification, so that it knows when entry components are created there by the view

function, and it can set up event bindings on them. (First it registers a callback so

that it will know when the entry components are added (Line 36), and then it sets

up bindings for any entry components that may already exist (Lines 37-39)). The

ViewSpecNotify create callback method is shown in Figure 6.36.

The CreateBindings method is shown in Figure 6.37. This method creates event

bindings on newly-created entry elements in the view specification. There are two

event bindings - one for keystrokes and the other for Button-1 button presses. The

keystrokes insert characters into a line, and the button press changes the location of

11A better approach using tags is implemented for the pixel editor, and is described in the next
section. That approach could not be used here because tags are not yet implemented in the Concur
infrastructure for most Tk UI elements, such as entry components.

213

Figure 6.34: TextEditorControllerMap.xml Overview

214

Figure 6.35: TextEditorControllerMap Constructor

Figure 6.36: TextEditorControllerMap ViewSpecNotify create

215

Figure 6.37: TextEditorControllerMap.xml CreateBindings

the insertion cursor. The Sequence attribute specifies which Tk event should gener-

ate callbacks. The ViewSpecPath attribute defines the node in the view specification

corresponding to the entry to which the binding should apply. The optional Param-

eterString attribute tells the infrastructure what event information should be passed

along to the callback - in the case of the Key binding these are K (the key cap name

of the key pressed, e.g., “Return”) and A (the key value itself, e.g., the newline char-

acter or the letter “a”). In addition, the CreateBindings method sets up a callback

when the text on a line in the view specification changes. This is needed to adjust

the cursor rightward when characters are added before the cursor on the line, either

by the local user or a remote one.

The Key callback method is shown in Figure 6.38. This method is passed a

reference to the (entry) node in the view specification corresponding to the event (I),

the parameter string containing event information described in the last paragraph,

the position of the insertion character, and the position of the mouse (the latter

216

Figure 6.38: TextEditorControllerMap Key

not being needed for keystrokes). Line 64 assigns the elements in the parameter

string to a hash table. Line 65 ignores all keystroke events except those that actually

insert a character. (For example, it ignores shift key presses.) Lines 67-68 determine

which document line in the model should be affected. Lines 73-75 effect the insertion

of the character into the appropriate line of the model. The extra complexity in

this call (ApplyToMaster) enables the infrastructure to find the master copy of the

line and insert the character in that copy, thus supporting migration of lines. The

InsertAttribute call inserts characters into an attribute at a specified point. This

is better than retrieving the attribute value, changing the value by inserting the

new character, and re-setting the value, because it enables the infrastructure to know

exactly what change was made. This allows for efficiency enhancements (e.g., inserting

the character into the entry component using that UI component’s operation, rather

than setting the entire value of the component). It also enables certain required

functionality, such as re-positioning the cursor only if characters inserted are to the

217

left of the cursor.

Updating the cursor in this case is handled by the ViewSpecTextChanged method

(Figure 6.39). I’ll leave understanding of the details of this method to the reader,

Figure 6.39: TextEditorControllerMap ViewSpecTextChanged

since it doesn’t have a lot to do with Concur. A similar algorithm could be used to

handle the deletion of characters or the insertion of lines before the cursor.

Figure 6.40 shows the Button-1 callback method. This method changes the cursor

Figure 6.40: TextEditorControllerMap Button-1

position in response to the mouse button press. It then requests master status for

218

both the cursor perspective and the line of the mobile model corresponding to the

line the user clicked. If it receives master status for these nodes (meaning that they

have migrated to the local host), future updates will be faster for that user while he

is editing the line.

This concludes our discussion of the text editor application. The entire application

consists of about 319 lines of collaboration-unaware code, written to the centralized

architecture. The user mental model is that of the simpler centralized architecture,

meaning that synchronization issues are not exposed to the user.

6.4.2 Pixel Editor Application

The pixel editor application (Figure 6.41) is very similar in structure to the text

editor application. The main difference is in the way that units of the mobile

model are defined. Rather than migrating lines, as in the text editor, the pixel editor

migrates square areas (tiles) of the whiteboard, laid out in a grid. The boundaries of

these 50-pixel square areas are shown in Figure 6.42. This presents some challenges

not seen in the text editor application. This section will focus on the code that is

unique to the pixel editor.

As was the case with the text editor sample program, the pixel editor sample

program is very simple, in order to make its implementation easy to understand. The

pixel editor is only able to draw pixels (not objects like lines or rectangles), and only

in one color. No eraser capability is implemented.

The meta models (Figure 6.43) are similar to the text editor’s, except that the

cursor perspective has been replaced by a Color perspective. This perspective would

allow the pixel editor to use different color “pens”, and users could either share a pen

color or use different ones. Since this would be similar to how cursors are implemented

219

Figure 6.41: Pixel Editor Application

220

Figure 6.42: Pixel Editor Application Showing Area Boundaries

Figure 6.43: Pixel Editor MetaModel1

221

in the text editor, this functionality has not actually been implemented in the pixel

editor. The model (Figure 6.44) initially displays empty squares in each of the 50-pixel

tiles.

The View Function (Figure 6.45) is similar to the text editor’s, except that the

data portion at the bottom is different. On Line 39, there is a Group node called

“Resources”. The Tk API separates the notion of an image resource (which contains

the actual pixels) from an image drawn into a window (which references the resource).

The image resources will be placed under the “Resources” group node. A group

node is just a grouping mechanism for nodes; nothing interesting there. Instead of a

frame, a canvas resides under the top-level (Line 33). A Tk canvas UI component is

essentially a drawing editor that allows one to place lines, rectangles, ovals, images,

other UI components (e.g., entry components), etc. arbitrarily onto a rectangular

canvas12. The most interesting difference from the text editor is the “Tags” group

and the “Image” tag. The group was created here to group all tags, but there’s only

one, so it’s not required. The “Image” tag provides a place to apply bindings that

will automatically apply to all the images on the canvas. We’ll see how that’s done

when we look at the controller map.

When tiles show up in the model (Figures 6.46 and 6.47), the UpdateViewSpec

method (Figure 6.48) is called. On Lines 46-47, this method sets up a callback

for when the image data for a tile changes. Then it creates the image resource

corresponding to the tile, and finally it creates the tile component on the canvas.

Note that this tile component has a tag of Image, so that any event bindings for the

tag of that name will apply to this component. In this way, all image components on

12On Line 34, the width, height and scrollregion are hardwired to a given size; one should either
implement scrolling or make this dynamically dependent on the model size. Hardwiring them here
is just a shortcut for this example.

222

F
ig

u
re

6.
44

:
P

ix
el

E
d
it
or

M
o
d
el

223

Figure 6.45: PixelEditorViewFunction.xml Overview

Figure 6.46: PixelEditorViewFunction ModelInterestComplete

224

Figure 6.47: PixelEditorViewFunction ModelNotify create

Figure 6.48: PixelEditorViewFunction UpdateViewSpec

225

the canvas will trigger the same bindings. The pixel editor controller map therefore

does not need to create any bindings dynamically as images are created in the view

specification.

When the model image data for a tile changes, the ModelTileChanged method

(Figure 6.49) is called. This method simply updates the image resource with the

Figure 6.49: PixelEditorViewFunction ModelTileChanged

changes to the model tile image. The projection function will pick up this change

and effect the changes to the image on the display. The pixel editor does not need to

monitor the view specification in the way that the text editor did to update cursor

positions, since there is no insertion cursor.

The pixel editor controller map overview is shown in Figure 6.50. Bindings are

set up at the bottom for the mouse Button-1 click and for dragging the mouse with

button 1 depressed. The ParameterString specifies that the x and y coordinates of

the mouse should be passed to the callback routine when the event is triggered. Note

again that the bindings are set up using the Image tag, so they apply to all images

on the canvas.

The ButtonPress-1 callback routine (Figure 6.51) simply calls the Draw routine to

draw a dot at the position of the mouse, and requests master status for the tile under

the cursor. Once it receives master status (i.e., the tile has migrated), drawing within

that tile area will be a local interaction, and thus will be much faster for this user.

Note that the Row and Column of the tile should be obtainable from Tk, but Tk does

not always generate the event on the right tile. So this code computes the row and

226

Figure 6.50: PixelEditorControllerMap Overview

227

Figure 6.51: PixelEditorControllerMap ButtonPress-1

column number based on the x and y position of the mouse. It currently hard-codes

the width (50) and height (50) of tiles; these should be determined dynamically from

the model instead. The code for the B1-Motion event is identical to the code for

the ButtonPress-1 event, thus the code can be shared. This means that migration is

requested on every mouse movement, so that if the user draws into a new tile, the

new tile will also migrate. (If the tile is already migrated, requesting migration is an

efficient, local operation.)

The Draw routine is complicated by the fact that the pen width is not one pixel.

This means that all drawing calls must check to see if they are near the edge of one

tile, so that they can appropriately draw into adjacent tiles as necessary. Due to its

size, I have not included a figure for the Draw routine.

This concludes our discussion of the pixel editor application. It is about the same

complexity as the text editor application, but it does call out different issues with

respect to mobile model definition.

228

6.4.3 Jigsaw Puzzle Application

The jigsaw puzzle is a much more complete application than the text editor or

the pixel editor. It was used for all of the performance experiments described in

this chapter. I will describe this application at a higher level of abstraction, simply

showing method signatures and code fragments, and describing the functionality they

implement.

The puzzle meta model (Figure 6.52) defines a view function, a model, a perspec-

tive, and a controller map. The perspective in this case is compound; it contains one

Figure 6.52: PuzzleMetaModel1.xml

independently-migratable node for each piece of the puzzle. Each node defines sev-

eral attributes of that piece, which all migrate together. the perspective is also more

complex in that producer-like code is required to monitor the set of perspectives and

manage snap operations (since these involve multiple pieces). Since providing for this

type of code was not part of the original Concur design, more investigation will be

required to determine if the solution implemented in the current prototype is the best

solution. Essentially, my solution was to associate perspective manager code with the

perspective. This code is instantiated by the server automatically, and run in a secure

container there. In this way, the perspective remains independent of the application,

229

and multiple perspective instances can still be created to implement divergence.

An overview of the Puzzle producer is shown in Figure 6.53. The interesting thing

Figure 6.53: PuzzleProducer.tcl Overview

to note about this producer is that it registers an interest in the Snap event on the

controller. This event is applied to the controller by the perspective manager when a

user attempts to snap pieces together and the perspective manager determines that

such an operation is appropriate (i.e., the pieces are close enough together, and they

match). The snap method effects the snap operation by joining two puzzle fragments

into one in the model.

230

The model itself is shown in Figure 6.5413. Note that the puzzle is composed of

Figure 6.54: Puzzle Model

fragments, where a fragment is a set of connected puzzle pieces. A piece is composed

of edges Top, Right, Bottom, and Left. Each edge defines its coordinates and the

direction of the protruding key or intruding lock (if any). Both fragments and edges

identify adjacent fragments and edges, which facilitates the determination of whether

or not a piece can snap together with a nearby piece. Pieces also call out their average

color and the average color of each of the four quadrants of the piece; these are used

13The model was generated by a Tcl script that takes an image a cuts it into puzzle pieces.

231

to allow players to favor certain colors (so that they are not all working on the same

pieces), and to prioritize their match attempts (using the quadrant colors).

Figure 6.55 highlights several interesting things. Let’s look at the view spec-

ification at the bottom first. The canvas contains tags for edges, images, invisible

polygons, and the puzzle as a whole. This enables the code to selectively apply oper-

ations to sets of related UI components en masse. Tags are also set up dynamically

for each fragment and piece. Invisible polygons are overlaid on pieces to catch events

and apply them to the appropriate piece. Groups are set up for containing both the

visible and invisible polygons of from which the pieces are composed. The order of

pieces in these groups determines the stacking order of the pieces. A background

rectangle (table top) is also defined.

Several highlights of the view function code will now be pointed out. When UI

components are created in the view specification corresponding to the model and

perspective, the infrastructure is told to link attributes between the model and per-

spective on one hand, and the UI components on the other. In this way, attributes

(such as coordinate positions) are automatically updated in the view specification

when they change in the model or perspective, so that the code does not have to

explicitly monitor the source of these changes and make corresponding changes in the

target. Finally, note that the view function monitors changes in the model (which

occur when pieces are snapped together), and in the perspective (when pieces are

snapped, and when reference counts change) and make the corresponding changes

to the view specification. Reference counts are used to determine when a fragment

should be highlighted; it is highlighted when one or more user cursors are over the

piece.

Now we turn briefly to the controller map of Figure 6.56. As you can see, it is

composed of event handlers for various UI events. The code for the controller map

232

Figure 6.55: PuzzleViewFunction.xml Overview

233

Figure 6.56: PuzzleControllerMap.xml Overview

234

is about 160 lines long. Of course, the enhanced controller map that adds the puzzle

solver is much longer and more complex, coming in at around 1700 lines of code.

Finally, we’ll look at the perspective manager discussed above and shown in Fig-

ure 6.57. As you can see, it inherits from ConcurSafeObject, so that it can run in a

Figure 6.57: PuzzleFragmentPerspectiveManager.xml Overview

protected container. It is responsible for creating the perspective tree, which records

the coordinates, stacking order, pick count (how many users have the piece picked

up), reference count (how many users have their cursors over the piece) and snap

attribute (used to request a snap attempt). When a snap attempt is requested, the

perspective manager determines if it is ok to snap the pieces together (i.e., a nearby

235

piece fits and is close enough to the correct position of the one on which the snap

request was made). If so, it requests that the producer snap the pieces by applying a

Snap event to the controller. The perspective manager also monitors model changes

by the producer, so that it can merge perspectives when puzzle fragments are snapped

together. The entire perspective manager is around 250 lines of code.

6.4.4 Application Summary

In summary, the three applications developed for Concur are reasonable in com-

plexity, as measured by the ease of describing how they work, and the lines of code

required to implement them. They are written to the centralized architecture, are

collaboration unaware, and do not contain the peer synchronization logic often re-

quired in a replicated collaborative system. Future investigation should include the

development of a number of larger applications with a large number of perspective

types and a complete user interface, but the work that has been done is enough to

give convincing arguments that programming to the Concur infrastructure is reason-

able and that it avoids the complexity of replicated architectures. As a result, it also

avoids complexity in the user’s mental model caused by the replicated architecture.

6.5 Determinism

Criterion 4: I will argue that Concur is deterministic.

State machines are problematic with respect to determinism, especially if there

are multiple state machines running in different environments, with hard-to-eliminate

unknown inputs, and internal black-box state that is difficult or impossible to access.

I have argued in this dissertation that using functions instead of state machines is

236

a valuable software engineering technique, particularly in collaborative systems. It

facilitates reliable and accurate sharing, support of latecomers and mobility, and

treatment of view computation as a black box. I have illustrated the ease with

which functional view computation can be implemented using an imperative language,

through the examples described above. Functional computations (in this case, from

trees to tree or DAGs to DAG) are deterministic in that they always produce the

same output for a given set of inputs.

However, ideally one should be able to guarantee, at the language level, that a

view function is, in fact, functional (deterministic). That is, it should be possible

to define a language that efficiently computes and recomputes a view function as its

inputs change, and that also guarantees that the same output is always produced for

a given set of inputs.

Early in this work I investigated functional languages to use for this purpose. I was

not able to find a functional language that handled incremental re-evaluation of its

output based on incremental changes to its inputs. That is, using existing functional

languages, one would have to re-evaluate the entire function for every input change,

which is not efficient enough for practical use.

During the last few months of my research for this dissertation, I re-considered

this problem. I came to the conclusion that the development of such a language

would not be terribly difficult, taking the following approach. Suppose one developed

a functional language along with a full set of primitive functions implemented in

an imperative language, and certified to be functional (i.e., their functionality not

guaranteed by the imperative language, but by examination and/or proof techniques).

Then, any view function coded as a composition of these primitives would in turn be

functional. The design of such a language is left for future research.

237

6.6 Divergence and Modes of Work

Criterion 5: I will argue that above-mentioned entities can be used to
implement a wider range of desirable per-participant divergence scenarios
than existing systems.

Criterion 6: I will argue that Concur supports individual work as well
as all four classes of collaborative work illustrated in Figure 1.1, and that
Concur supports transitions among all these forms of work. In the process,
I will show how Concur supports latecomers and mobility.

By this point, it should be apparent that a very large range of desirable divergence

scenarios can be implemented by Concur. Chapter 4 contains a lengthy discussion

of the kinds of divergence that might be implemented, and the sample programs

show how a given divergence scenario might be reasonably implemented. Further

investigation of larger, more complex programs would contribute to our understanding

of the link between the units of state desirable for migration and those desirable for

divergence, but the examples provided certainly point to a strong link between the

two. Divergence is most commonly desired in the elements of state that are not part

of the essential semantics maintained by the model. It is usually most useful when

applied to small bits of state that determine how this essential state is to be viewed.

These same small bits of state are the easiest to migrate, and the most likely to

benefit from migration, because they typically change more quickly and frequently

than the essential state represented by the model. It also seems clear that the range

of divergence scenarios in Concur is much larger than in previous systems, which

tended to hard-code divergence possibilities into the infrastructure.

Concur’s support for functional view computation clearly facilitates the support

of latecomers and mobility. In Concur, applications are not aware (or, at least, need

not be aware) of how many users are participating in a conference. Thus, support for

238

differences between zero, one, and more than one participant, and transitions among

these, are clearly transparent. This means that transitions among the four quadrants

of Figure 1.1 and the special (but most common) case of individual work are also

supported transparently.

6.7 Performance

Criterion 7: I will deliver a prototype infrastructure supporting these
applications, built as a multi-centered centralized system with entity mi-
gration support.

This criterion was met by the Concur infrastructure implementation described in

Chapter 5.

In this section I will present the results of experiments using that infrastructure,

in order to demonstrate how criteria 8 and 9 were met.

Criterion 8: I will demonstrate that this infrastructure and applications
conforming to it give substantially better interactive performance to all
participants than does a purely centralized architecture, and close to that
of a replicated architecture. I will demonstrate that this architecture scales
better in terms of both processor and network bandwidth utilization than
a purely centralized architecture.

This criterion addresses latency and scalability. As measured in our experiments,

latency is the user-perceived delay between the time a user takes an action (such

as dragging a piece) and the time he actually sees the result of that action (e.g.,

when the piece actually moves in his projection). Network delays of 0 ms, 50 ms,

and 100 ms were introduced into the experiments to simulate local area networks

(LANs), Intranets, and the Internet (Wide Area Network, or WAN), respectively.

(See [AKSJ03] for a paper describing TCP round-trip times, which I cite as evidence

239

that my chosen introduced network delays are reasonable.) These delays are one-

directional, so the actual latency introduced was 0 ms, 100 ms, and 200 ms. It

is the user-perceived latency that normally distinguishes centralized (long latencies)

architectures from replicated ones (short latencies), and it is the short replicated

latencies that we were attempting to achieve in the migrating architecture. Latencies

(e.g., when dragging a single puzzle piece across the screen) often overlap as shown

in Figure 6.58, giving the user much better performance than he would have if he

Figure 6.58: Overlapping Latencies while Dragging a Puzzle Piece

had to wait for each round trip to occur before the next one began. Our latency

measurements are, for example, from T2 to T5. Figure 6.59 shows the impact of the

artificially-introduced latencies on user-perceived latencies.

Figure 6.60 is arguably the most important result of this dissertation. It shows

that the migrating architecture’s latencies are similar to those of the replicated archi-

tecture, while, as was argued earlier in this chapter, the programming model remains

that of the centralized architecture. It also shows that the migrating and replicated

240

Figure 6.59: User Perceived Latency Distribution by Introduced Latencies

241

Figure 6.60: User Perceived Latency Distributions by Architecture

242

architecture latencies are not affected significantly by latencies introduced by the net-

work.14 Figure 6.61 zooms in to show just how close the migrating and replicated

latencies are.

The next two figures show latency distributions as they vary by background traffic

(Figure 6.62) and user count (Figure 6.63). There is an almost imperceptible impact

on latencies in the centralized architecture caused by background traffic. Note also

the impact of user count on latencies; significant for the centralized architecture, but

minor for the migrating and replicated architectures. Figure 6.64 zooms in to show

the impact of user count on latency for these latter two architectures in more detail.

Figure 6.63 serves to demonstrate one important scalability result: that the mi-

grating architecture scales as well as the replicated architecture, and much better

than the centralized architecture, in terms of user-perceived latency as the number of

users grows. In other respects (e.g., resource utilization), scalability results were less

dramatic. These were discussed in Section 1.10.3.

Task completion times, shown in Figure 1.39 were a little shorter for the migrat-

ing architecture than for the centralized architecture, but a little longer than the

replicated architecture. This topic was also discussed in Section 1.10.3. One might

expect the differences between the architectures to be more pronounced for longer ex-

periments, and perhaps with better tuning of the migrating architecture’s migration

algorithms, e.g., to avoid migration thrashing. See Chapter 7 for a discussion of this

latter point.

In Section 6.2 I noted that the client machines used in these experiments were

severely under-powered by today’s standards. I will now briefly discuss the costs

(in CPU time) of the units of work performed by the client initiating an action, the

14One of my readers asked why the tails of the graphs in Figure 6.60 are so long (500+ ms). An
analysis of these long latencies is given in Appendix B.

243

Figure 6.61: Migrating and Replicated Latencies (The Centralized plot is off the
graph to the right.)

244

Figure 6.62: Latency Distribution by Background Traffic

245

Figure 6.63: Latency Distribution by User Count

246

Figure 6.64: Latency Distribution by User Count, Migrating and Replicated (The
Centralized plot is off the graph to the right.)

247

other clients, and server, and how these costs are affected by the migration algorithms

employed. This analysis will give the reader an idea of how these algorithms might

perform on the machines of today and of the future.

Figure 6.65 shows that the migrating architecture costs about 3-4 ms more on

the initiating client when a piece is picked up, plus an occasional additional cost of

about 6 ms when the piece actually migrates. This is the cost of checking, requesting,

and receiving the migration of pieces to the local computer. The other clients show

an occasional cost in the low tens of ms (Figure 6.66) when a piece migrates away

from them. Figure 6.67 shows an occasional server cost of several ms when a piece

migrates.

Figure 6.68 demonstrates at, on the initiating client, the migrating architecture

costs about 2 ms less than the other architectures for each mouse movement, when

dragging a piece. This is attributable to the fact that the client does not need to

receive a message describing mouse movements it makes when a piece is migrated

locally. (As I have implemented the replicated architecture, it does need to receive

such a message in order to perform peer synchronization.) The gain here outweighs

the loss in piece pickup times, because piece movements are much more frequent than

piece pickups. The other clients and the server are not significantly affected by the

architecture in this scenario, so their graphs are not shown.

Figure 6.69 shows an occasional cost in the tens and low hundreds of ms moving

the cursor using the cursor vectoring prediction algorithm. This cost is incurred

when a piece actually migrates. Figure 6.70 Shows that a corresponding cost is

only incurred on other clients when this prediction algorithm is enabled and when

migration actually occurs. Figure 6.71 shows a corresponding, but much smaller,

cost on the server.

248

Figure 6.65: Distribution of Work Picking Up Piece by Architecture - Initiator

249

Figure 6.66: Distribution of Work Picking Up Piece by Architecture - Other Clients

250

Figure 6.67: Distribution of Work Picking Up Piece by Architecture - Server

251

Figure 6.68: Distribution of Work Dragging a Piece by Architecture

252

Figure 6.69: Distribution of Work Moving Cursor With and Without Prediction -
Initiator

253

Figure 6.70: Distribution of Work Moving Cursor With and Without Prediction -
Other Clients

254

Figure 6.71: Distribution of Work Moving Cursor With and Without Prediction -
Server

255

In sum, the costs in terms of unit of work of the migrating architecture are rea-

sonable. While the experiments performed used a high percentage of the CPU on

client machines, this should not be the case when the automated puzzle solver is

not running and when client hosts of today and the future are used. In general, the

server, which was run on a fairly contemporary computer, did very well in the ex-

periments. Multi-threading should be explored for the migrating architecture, since

current computers are multi-core.

Criterion 9: I will demonstrate the advantages of predictive migration
based on telegraphed user intentions, made possible by Concur’s fast mi-
gration times, rather than a past history of interaction.

This criterion raises a topic that was only tangentially explored in this dissertation,

and will be further discussed in Chapter 7. The speed with which Concur migrates

perspectives introduces the possibility of using better algorithms for determining when

and to where migration should take place. Limited experiments in this dissertation

showed promise for this technique, using only one migration prediction algorithm.

The algorithm used was to predict a user’s near-future interactions with a puzzle

piece by analyzing the direction in which he is moving the cursor and determining

which puzzle pieces were in that direction. The idea is that the piece he is likely to

use can be migrated before the cursor even reaches it. Figure 1.28 demonstrated an

advantage of this migration prediction algorithm over the commonly-used method of

simply leaving an object where it was last used, in terms of the probability that the

piece will already be migrated locally when an attempt is made to move it.

256

Chapter 7

Summary and Future Work

7.1 Summary

In this dissertation I have conducted an investigation of lightweight migration in

support of centralized synchronous distributed collaboration. The primary aim was to

achieve the superior performance characteristics of replicated architectures within the

context of the simpler centralized architecture. The basic solution was a lightweight

migration strategy. As a result of this investigation I have proposed a taxonomy of

entities based on their migration characteristics. This taxonomy identified a number

of broadly-useful entity types with good migration characteristics. I implemented

an infrastructure supporting the migration of these entity types and the hosting of

applications built around the entity taxonomy. I developed several applications rep-

resenting a broad range of application types and demonstrated how such applications

could be developed within a simple centralized framework. One of these applications

was subjected to a large battery of experiments, which demonstrated performance

similar to that of replicated systems.

An investigation like the one described in this dissertation invariably spawns new

ideas and raises more questions than it answers. Here are the ideas that I believe are

most deserving of future investigative efforts:

• How might the ideas in this dissertation be applied to the Worldwide Web?

• How mature is the entity taxonomy developed in this dissertation? What new

insights might be obtained by building a number of large applications around

these entity types, and how might the taxonomy evolve as a result?

• Exactly how well do entities with lightweight migration characteristics map

to desirable divergence opportunities? What is the best way to expose such

opportunities to the user? What user mental model and implementation issues

arise when you expose a wide range of divergence opportunities to users?

• Are continuously evaluated functions a new programming paradigm, or just

a variant on old paradigms (e.g., constraints)? Is language support for such

functions feasible and worthwhile?

These candidates for future work will be discussed briefly in the following section.

7.2 Future Work

In this section I will discuss a few ideas for future work that this dissertation has

spawned.

7.2.1 Applying Concur to the Worldwide Web

When I initially began to undertake the work in this dissertation, I was motivated

by certain difficulties that other engineers and I were encountering when attempting

to provide richer, more interactive capabilities using Worldwide Web technologies on

258

the intranet at Hewlett-Packard. (I later encountered the same types of difficulties

in my work at Amazon.com.) Having had a background in synchronous distributed

collaboration, I realized that if these difficulties could be surmounted in web tech-

nologies, a side benefit would be that it would pave the way for synchronous dis-

tributed collaboration on the web, which has thus far been difficult to achieve in a

way that is well integrated with the current web experience. (For a sampling of these

efforts, see Artefact[BBD+98], CORK[IRC01], Groove[Gro05], LiveMeeting[Liv05],

Promondia[GH97], Tango Interactive[BCF+], and WebEx[Web05].) The main reason

for this is that a high degree of remote interactivity with the server is a requirement

for synchronous distributed collaboration, since the results of one user’s interactions

must be promptly shared with other users.

Why is synchronous collaboration difficult to achieve with today’s web? Primarily

because of early fundamental design decisions with reasonable roots. The HyperText

Transfer Protocol (HTTP)[BLFF96] was designed as a stateless request/response pro-

tocol, with requests initiated only by the client (browser), as shown in Figure 7.1.

This design minimizes resource utilization in servers, since a server need only respond

to isolated, individual requests from clients, without maintaining state about clients

between requests. This, in turn, supports a very high degree of scalability, which is

important in a context where thousands or millions of clients per day are just fetching

documents.

Figure 7.1: The HTTP Protocol

This is still a common scenario, but it is also common for today’s web servers to

present applications, rather than just document stores. Applications require applica-

259

tion state to be maintained between requests. If the amount of state is small, it can

be maintained by the browser and passed to and from the server on each request and

response. However, if the state is large, it is maintained on the server and indexed

by a small amount of state maintained by the browser. Stateful sessions are thus

commonly implemented on top of HTTP, negating the potential resource savings of

the HTTP protocol.

Furthermore, some application classes require server-initiated messages to the

browser (to avoid an unreasonable rate of polling by the browser). (See [PCH+00] for

a more complete discussion of this topic.) This is particularly true of synchronous

collaborative applications, which must immediately display the results of actions by

one participant to all other participants. In recent years AJAX[AJA05] has been

used to increase the remote interactivity of web pages. It accomplishes this with the

standard HTTP protocol, by using JavaScript[Fla01]1 to dynamically send multiple

HTTP requests to the server in the context of a particular web page. This does indeed

improve the interaction of a web page, but it does not really solve the problem of

server-initiated messages to the browser.

Within the bounds of the HTTP protocol, the best that can be done is for the

server to leave the connection open after sending the initial response, and to continue

sending messages over this open connection (Figure 7.2). (Another way of looking

at this is to view the server’s response as taking a very long time to complete, and

coming in segments separated by potentially long pauses.) Each message can be

composed of JavaScript commands which are executed immediately on receipt by the

browser, so that the user interface can change incrementally while the response is still

outstanding. (This technique is also used to implement streaming audio and video

1JavaScript is scripting code (not really related to the Java[AGH05] programming language) that
can be delivered in an HTML page and run in a restricted environment in the browser.

260

over HTTP.) If the browser needs to send a message to the server while the response

connection is still open, it can do so via nested2 HTTP requests, invoked, e.g., by a

Java applet3 embedded in the page (Figure 7.3).

Figure 7.2: HTTP Streaming

Figure 7.3: Nested Requests with Streaming

Staying within the bounds of HTTP is attractive, because it ensures that com-

munications will not be impaired by a firewall4. But the technique described above

2There is no structural nesting of requests in HTTP. I just use this term to describe the fact that
the nested request occurs while the outer request is outstanding, and that they both occur within
the context of the same page (as with AJAX).

3A Java applet is a little Java program that, somewhat like JavaScript, can be delivered with an
HTML page and run in a restricted environment in the browser.

4A firewall is software and/or hardware that filters network traffic in order to create a barrier
protecting corporate or personal assets. Firewalls commonly block all or most connections into the
protected domain, and may also block most connections initiated inside the domain to machines

261

is awkward, and inefficient for client-initiated messages. In addition, corporate net-

works appear to be moving toward technologies that enable outgoing connections

to arbitrary ports (while enabling them to be monitored for security breaches), and

personal firewalls often do not restrict such outgoing connections in the first place.

If we assume that outgoing connections through firewalls are not an issue, either

because the web application is intended for intranet use, or for the reasons described

above, there is a better solution using lower level, non-HTTP protocols (Figure 7.4).

HTTP can still be used to fetch the initial web page, so that existing browsers can

access the application. But thereafter, communication in both directions is carried

out over a socket-level, full-duplex TCP/IP[Com00] connection back to the host from

which the page originated5. Some applets use this approach, as would Concur.

Figure 7.4: HTTP and Socket Connection

The HyperText Markup Language (HTML)[MK02], the historical markup lan-

guage of web pages, presents its own set of problems for synchronous collaboration.

The first problem is that HTML defines what should be displayed on a page, but does

not specify exactly how it should be displayed, leaving browsers to make their own

determination of how to display various constructs. Furthermore, the way in which

on the outside. Firewalls usually allow HTTP requests from inside the protected domain to the
Internet as a whole. Thus, using HTTP as the only communication protocol typically avoids firewall
restrictions.

5One of the restrictions in the applet environment is that an applet can only set up connections
to the host from which web page originated. This is a security feature, designed to ensure that the
user is not sharing information with a third party of which he is unaware. Concur would enforce
the same restriction.

262

something is displayed depends on the size of the window, which may differ among

users visiting the same (shared) page. Thus, the simplest and most straight-forward

method of sharing, What-You-See-Is-What-I-See (WYSIWIS), is not supported by

HTML.

As a means of increasing performance and scalability, HTML also encourages au-

tonomous interactions, i.e., user interface changes that occur entirely locally, without

any communication with the server. (Examples are the display of a drop-down list,

the editing of text in a text box, button-press visualization, and highlighting of se-

lected text.) These autonomous interactions cannot be (easily) shared, since they

occur locally. JavaScript exacerbates the problem, since it can cause state and user

interface changes locally in the browser.

Concur could support HTML sharing (but not WYSIWIS for HTML), just like

any other UI technology. It could enable WYSIWIS sharing via embedded windows

using user interface (UI) systems designed for desktop applications. In fact, the first

version of Concur used Microsoft Internet Explorer as its client application, using a

Browser Helper Object[Rob99] to gain access to the DOM document describing each

web page, and embedding Tk windows within web pages.

Given the ubiquity and critical mass of acceptance attained by the web, any

practical application of Concur would need to seriously consider delivering its capa-

bilities in the web context. This could be part of a next-generation Worldwide Web

experience. Collaborative capabilities are best presented as part of the underlying

application fabric, rather than as separate “collaborative environments”, since this

creates a common user experience across all applications, makes collaboration avail-

able to all applications, and facilitates transparent transitions among modes of work.

One can imagine a future web experience where visiting the same URL necessarily

implies sharing a web page WYSIWIS, and where various kinds of divergence from

263

WYSIWIS (also shareable) could be represented using the query strings6 of URLs.

7.2.2 Entity Taxonomy Maturity

The entity taxonomy presented in Figure 3.4 is new, and its use has only been

explored with a few applications for this dissertation. It is likely that further experi-

ence with this taxonomy would uncover issues with the entities presented there and

suggest new entity types for various purposes. The Timer Perspective was also not

explored in the work of this dissertation. Further work is needed to apply various

entity types to more and larger applications, and to develop the entity taxonomy as

lessons are learned from this experience.

7.2.3 Divergence

This dissertation opens the door to a wider range of user-understandable diver-

gence scenarios (from WYSIWIS to complete independence) than has been heretofore

seen in collaborative systems. A taste of the possibilities was seen in Section 4.2.6.

This dissertation really did not explore these possibilities in much depth. I have sug-

gested and argued that the parameters to view functions map well to understandable

divergence scenarios. Further work could solidify this relationship and explore such

questions as how divergence possibilities might be presented to and communicated

among users, and how they might be implemented and managed by infrastructures.

One can imagine future application development and presentation environments

where developers present small items of functionality and combine them into sample

applications which are then modified using common divergence mechanisms as users

see fit. The applications so “developed” by end users could then feed ideas back into

6The query string of a URL is a list of name/value pairs appended to a URL.

264

more mature developer-produced sample applications that could be made available

to a wider spectrum of users. In this way users would have more control over the

applications they use, and might have a feasible process for influencing the evolution

of applications for the good of the entire community.

One possibility is that applications would have a “divergence editor” mode, which

would allow users to view divergence possibilities and effect divergence scenarios in a

WYSIWYG7 fashion. That is, one might put an application into a graphical “diver-

gence editor” mode, where a new controller would be assigned that would enable the

user to browse for possible divergences and effect them. The application would re-

main “live”, but would be augmented by annotations describing possible divergences,

and interactions with the application in this mode would effect changes in the set of

shared and unshared components. For example, a user might be able to determine

that he can detach scroll bars from a WYSIWIS page, such that he can scroll a doc-

ument on his own. Any changes a user might make to an application in this way

should be shareable in turn, e.g., via a new URL.

This work would necessarily require the investigator to perform user studies that

would help him to understand the impact of divergence on the user’s mental model,

and how one might present divergence possibilities in an understandable manner.

7.2.4 Continuously Evaluated Functions

Based on limited investigation by the author of this dissertation, continuously

evaluated functions appear to be a novel and useful programming paradigm (albeit

related to constraints). They could go a long way toward the development of ro-

bust, deterministic applications (both collaborative and non-collaborative) with good

7What you see is what you get.

265

mobility and latecomer characteristics. Further work should be initiated to explore

language support for these functions, their performance characteristics, coding effort

required, integration with other languages, and the applicability of this programming

paradigm to various kinds of application development.

266

Appendix A

Experiment Automation with the Puzzle

Solver

A.1 Puzzle Solver Motivation

My committee suggested that I automate my experiments rather than doing formal

user studies. The advantages of this approach are:

• Many more experiments can be performed. I was able to perform a set of 384

experiments that took a total of 96 hours to run.

• Experiments can easily be re-run after code improvements. I re-ran my tests

(or at least portions of them) many times before the final run.

The main disadvantages of this approach are:

• It can be difficult to prove that an automated test properly approximates how

a collaborative application would be used by real human users. Fortunately,

for the purposes of this dissertation, the main measure of interest was latency

while dragging a puzzle piece, which is not highly susceptible to differences in

how a piece might be dragged by different users.

• It does not allow for studies of how users accomplish tasks or how they react

to different application features. Fortunately, this was not a goal of the present

dissertation.

267

Automated experiments are often accomplished by tracing an actual set of exper-

iments performed by human users, and then re-playing the users’ actions for different

points in the experiment space. My previous experiences with this type of replay

software drove me away from this solution, for the following reasons:

• Timings are invariably different from run to run. This can make it very difficult

to deterministically apply pre-recorded user actions to an application such that

those actions make sense for subsequent replays.

• Application behavior may vary from run to run. This is particularly true

when re-running a set of experiments against a changing code base, where code

changes may cause different things to happen than were seen in the original live

experiment.

• One would need to repeat the same random number sequences for each experi-

ment run. This limits the code coverage, and opens one’s results to the concern

that they may have been unduly influenced by a particular set of random num-

ber sequences.

A.2 Puzzle Solver Overview

My solution was to create a smart controller that would emulate a user’s think-

ing and actions. In this way, my puzzle experiments could be completely different

every time, and could still be solved as if by a set of real human users. This is a

time-consuming approach from the perspective of the developer, but once a such a

smart controller is developed, it becomes a powerful tool that allows a large num-

ber of randomized experiments to be run, with a high degree of confidence in the

results. A high-level description of the puzzle solver user interface and a list of its

268

main characteristics are given in 6.3. In this section I will give an overview of the

implementation, and in the following section I will discuss its implementation in more

detail.

Because I wanted to ensure that my latency measurements were accurate, I decided

to initiate all actions as low-level user interface events (mouse movements, button

clicks, etc.). This turned out to be a supported feature of the Tk toolkit. The

puzzle solver was able to “see” his own and others’ interactions with puzzle pieces by

monitoring the declarative user interface specification produced by the view function.

Its decisions and subsequent interactions were determined by what was thus seen,

just as a human user’s actions are determined by his observations of the puzzle pieces

and their movements.

The collaborative solution of a puzzle is a long-term interaction composed of many

lower-level interactions by multiple participants. Concur was implemented as a set of

single-threaded processes, which made it impossible to directly maintain the context

of a particular puzzle solver’s interactions in its own thread. As a result, my puzzle

solver controller was implemented as a state machine, where the state of the machine

encoded the task the solver was attempting to perform at the moment, along the

whole spectrum from high to low levels of abstraction. For example, the solver might

be attempting the following tasks at a given point in time, listed from high to low

levels of abstraction:

• Working through a list of source pieces to attempt to match them to target

pieces, starting with those nearest the solver’s favorite color, and working toward

pieces increasingly distant from that color in a 3-dimensional color space.

• Attempting to match a particular source piece to a particular target piece.

• Moving the target fragment away from the edge of a table so that it can be

269

matched with the source fragment without putting any pieces off the table.

• Moving the cursor toward the target fragment.

• Moving the cursor a few pixels toward the target fragment.

Of course, there are many other states a solver might be in at a given moment.

When the machine is in a given state, it is looking for any of a set of events that

might change its state. Here are some examples of such events:

• The puzzle was started. I choose a favorite color, and order the pieces to match

based on their distance from that color in the 3-dimensional color space. I then

begin attempting to match the first source pieces in this list.

• The piece I was moving moved as I expected it to move due to a drag operation

I performed. If the piece has reached its destination, I will drop it. Otherwise,

I will move it some more.

• The piece I was moving moved in a manner that I did not expect it to move

in response to my drag operation. This means some other user was moving

the piece at the same time. I will drop the piece, after which I will wait for a

calculated backoff time before attempting to match a new source piece.

• A backoff timer expired. I can now continue by attempting the next match.

• I lowered a piece in the stacking order in order to look for a particular piece I

wish to move. Another piece came to the top of the stack. If it is the piece I

was looking for, I will pick up the piece in order to begin moving it. Otherwise,

I will lower the new piece to the bottom of the stack.

• I just performed a snap operation and the source piece was successfully snapped

to the target piece. I will move on to my next match attempt.

270

• I just performed a snap operation and the source piece was not successfully

snapped to the target piece. This was the last target piece I want to attempt

to match to this source piece. I will move the source piece to a random location

and drop it, and then proceed with the next attempted match.

• The last piece of the puzzle was just successfully snapped. I will stop.

Each time an event is detected, the solver determines what state the machine

it is in. Then, based on that state, it analyzes the event to determine whether or

not it is interested in the event. If it is, the solver determines what state transition

should be invoked on the machine. Finally, it invokes any actions associated with the

transition, and sets the machine to the new state. Different levels of state abstraction

are represented by a stack of states, such that when a low-level operation is complete,

the stack pops up to the next higher level of abstraction. Operations at this higher

level of abstraction are likely to push lower-level states on the stack. Error conditions

can involve multiple pops of the stack, similar to how exceptions are handled in the

runtime of a programming language.

Some time must usually elapse before a new operation is invoked (e.g., for the

implementation of think times). Since we cannot pause the single-threaded process,

these pauses must be implemented with timers, not sleeps. So the normal cycle

of events is: set a timer, handle the timer event, invoke an operation, handle the

resulting event(s), and repeat the cycle. Because one cannot always depend on one of

a set of expected events occurring, a timer is almost always set before waiting for any

other event. If the other event occurs before the timer expires, the timer is cancelled;

otherwise a timeout exception transition occurs.

The overlapping mouse movements shown in Figure 6.58 further complicated the

state machine implementation, because it required multiple outstanding drag opera-

271

tions to be in process at any given point in time. This set of overlapping drags was

limited, in order to ensure that the user’s mouse did not get too far ahead of the

piece. Once the window was full, the solver had to stop emitting drag operations.

When a drag of a few pixels completed, it then needed to emit the next drag to fill the

window. If an exceptional condition occurred, the solver would have to wait for the

all events caused by outstanding operations in the window to clear before proceeding.

As you can see, the set of states and events needed for solving a puzzle is rather

large. The puzzle solver is a complex piece of code that can only be effectively

developed and debugged by running it against a large set of highly-randomized puzzle

solutions. The fact that the solver could run 96 hours on up to 6 client hosts without

a hiccup gives me confidence in its correctness.

The following section describes the puzzle solver algorithm in greater detail. Be-

fore getting into that, I want to note that, in retrospect, more attention could have

been given to better match the automated puzzle solution to the solution of a puzzle

by real human users. In particular, uniform distributions of delay times were used,

where normal distributions would have better matched real users’ delays. The focus

of the work in this dissertation was on studying low-level drag latencies (from the time

a user moved his cursor a few pixels while dragging a piece, until the time he sees the

piece actually move a few pixels in response). These measurements are not affected

at all by the choice of delay distributions. However, more global measurements like

task completion times could be affected by such choices.

A.3 Puzzle Solver Algorithm

In this section I will describe the puzzle solver algorithm in detail, while avoiding

the actual implementation as a stack machine (which would be too complex). This

272

discussion will instead be a tour of the solver that covers all its important actions,

decisions, and introduced delays.

When the server and all of the clients are ready, all solvers are simultaneously

instructed to begin the solution of the puzzle. Each solver works through the same

algorithm, as described below.

First a favorite color is chosen at random. This solver will begin by ordering all

pieces1 on the board by the distance in the 3-dimensional color space of their average

color from this favorite color. The average color of each piece is pre-computed, and

the distance is computed using the following formula:

√
(FavR− PieceR)2 + (FavG− PieceG)2 + (FavB − PieceB)2 (A.1)

The solver will successively choose the nearest remaining piece from this list, and

attempt to match it to all other pieces previously so chosen. So initially it will choose

the first piece and match it to the empty list of previously chosen pieces. It will

then choose the second piece, and match it to the first piece. Next, it will choose

the third piece and match it to the first two pieces (in an order described shortly),

and so on. The use of a favorite piece and color distance ordering encourages the

various “players” to work on different parts of the puzzle, i.e., pieces surrounding

their favorite color.

When matching a new source piece to the set of previously tried target pieces, the

target pieces are first ordered by how well the edges of the source and target pieces

match in terms of the average colors of the halves of the pieces that are adjacent

to the four edges that might potentially be matched. Figure A.1 illustrates this

1A piece is one uniformly-sized (squarish) piece of the original puzzle. A fragment is a collection
of such pieces snapped together.

273

computation. In this example, the source piece is being compared to the target

Figure A.1: Color Quadrant Matching Computation

piece along each of the four sides. Color averages are pre-computed for the four

quadrants of each piece. These color averages are then made less specific by mapping

each primary color component (Red, Green, and Blue) to 3 bits (8 colors). Thus, a

highly-saturated blue would be 007, while a moderately-saturated yellow would be

274

440. Mapping to less specific colors allows us to use a set of 29 (512) color values and

to compare for equality, rather than doing a more costly color distance comparison.

(More sophisticated algorithms could be used, but this one was good enough for this

work. It does tend to give a positive color score only to very good matches, however.)

So, for example, quadrant S-NE is compared to quadrant T-NW, and quadrant S-SE

to quadrant T-SW. If only one of the quadrants along an edge matches, that edge

gets a score of 1. If two quadrants match, that edge gets a score of 3. The total

score for matching the two pieces is the sum of the four edge scores. In the case of

our example, the total score is 5. Giving priority to better color matches is what a

human user would do, and it expedites the solution of the puzzle.

Once a source and target piece are chosen, the set of possible edges to match is

computed. At most there will be four. Any straight edges, any already matched

edges, and any pieces that do not match because of their shapes (two male, two

female, an edge along one piece without a corresponding edge along the other, and a

few more complicated cases) are discarded from consideration.

If any possible matching edges remain, an attempt is made to match the two pieces

along each of those edges. It is here that actual visible operations on the puzzle begin

to occur. It is also here that failures, delays, and aborted interactions begin to come

into play. All delays in the system (for think times, etc.) are randomly chosen from

a uniform distribution in the range of a specified number of seconds plus or minus

1
2

second. This was good enough for the main target of this work, low-level drag

latencies. If the puzzle itself had been the target of this work, distributions for think

times and other delays would need to be chosen more carefully. The standard delay

upon failure of any attempted operation is 3 seconds. Other delays are specified in

the dialogue below.

In order to attempt a match of two edges, we must first pick up one of the pieces.

275

Normally the source piece is picked up and moved to the target piece. (Note that

moving any piece implies moving the entire fragment to which that piece belongs.)

However, if matching the source piece to the target piece would cause the source

piece’s fragment to be placed off of the board, we move the target piece to the source

piece instead. If that would also cause the target piece’s fragment to be moved off the

board, we revert back to moving the source piece to the target piece, and we must

move the target piece’s fragment first so that there is room for the source piece’s

fragment on the board in its new location.

In any case, to move a piece we must first pick it up, and to pick up a piece

we must first move the cursor to the center of that piece. We will next describe

this cursor motion when a piece is not being dragged. Cursor positions are pre-

computed from the current cursor position to the destination position in increments

of 10 pixels. (That is, each incremental cursor movement would be 10 pixels if the

cursor were being moved horizontally or vertically, or the same physical distance if

being moved in any other direction.) This may seem a large incremental distance, but

it was necessary to get reasonable cursor movement speed on slow computers2. Then

a cursor motion event is generated, causing the cursor to move a 10 pixel increment.

When the solver receives the cursor motion event from the operating system, the

event for moving the cursor the next increment is generated. No artificial delays were

needed or introduced in this process; the cursor increment is the only parameter used

to adjust cursor movement speed.

While the cursor is moving toward any piece, the solver watches for any movement

of the piece toward which the cursor is being moved. If the piece is moved (by another

2In window systems, cursor motion is compacted during rapid movement by dropping interme-
diate cursor positions. This was avoided in the solver by introducing intermediate events into the
event stream, to keep cursor movements from being compacted.

276

player), the operation is aborted. While the stack of operations at successively higher

levels of abstraction could be popped to any of a number of levels, I chose to give up

on the current source piece and move on to the next one whenever this happens. This

is because if there is any conflict between players regarding the attempt to match

pieces, it’s probably best for one of the users to choose an entirely different source

piece to match, to avoid future conflicts as much as possible. The delay introduced

in this and all other cases of failure to accomplish something the solver tried to do is

the standard 3 seconds. This is the simulated “think time” for a user to decide what

to do next.

Once the cursor arrives at the center of the piece to be picked up, the solver

must determine if the piece to be picked up is visible underneath the cursor, or if it

is obscured by one or more pieces on top of it. If it is obscured, a button event is

generated to lower the top piece. This is repeated until the piece to be picked up is

at the top of the stack. Now the button event for picking up the piece is generated.

It is at this point that piece migration is requested in the migrating architecture

if prediction is not enabled. The solver will proceed to drag the piece before the

migration occurs (if it ever does).

Dragging a piece is similar to moving the cursor. There are, however, a few more

complications. The solver monitors the movements of the piece being dragged. If it is

moved in a way that is inconsistent with the movements requested by this solver, the

drag operation fails and the solver moves on to the next source piece. If the solver

is dragging the piece toward another piece in order to attempt a snap operation, the

solver similarly monitors the other piece for movements and aborts the operation if

the other piece moves. Since dragging a piece takes more time than simply moving

the cursor, we must also initiate a number of overlapping events for dragging the

piece (Figure 6.58. It would be far to slow to move the cursor, wait for the piece to

277

move, move the cursor again, etc. But it would not do to have the cursor get too far

ahead of the piece, either. The solver initiates a maximum of 10 incremental cursor

movements. Once this window is full, it waits until a draw operation takes place, and

then it fills the window again by generating another cursor motion event.

Once the piece is in place, it is dropped. If this is part of a larger attempt to

match pieces, the event for a snap attempt is then generated. Once the snap attempt

is complete, the solver moves on to the next match attempt.

Once an attempt to match the new source piece to all previous tried pieces is

complete, the piece is moved to a random place on the board and dropped. If,

however, the piece is part of a fragment of at least 5 pieces, this random placement

of the piece is skipped. Thus, larger fragments tend to stay in one place, since their

pieces have likely all been tried as sources, and if not, they are not randomly placed

at the end of the match attempts of one of their pieces. Finally, a short pause (1

second) is executed, and the solver moves on to the next closest piece to its favorite

color and begins matching it to previously-tried pieces.

The algorithm above does not guarantee that the puzzle will be solved once all

solvers have finished one pass. When a solver finishes one pass, it then chooses a new

favorite color and begins a new pass. This process continues until all of the pieces are

snapped.

278

Appendix B

Exceptionally Long Latencies in the

Puzzle Graph

One of my readers asked me why some of the latencies in some of the graphs (e.g.,

Figure 6.60 were so long (500+ ms). In response, I investigated the longest latencies

in my experiments, and the results of that investigation are presented here.

Due to averaging of latencies across runs, the fact that graphs like Figure 6.60 do

not cover all experiments, and truncation of graphs like Figure 6.60 on the right, it

was not immediately apparent what the longest user-perceived drag latencies were.

So I first queried my database to answer that question. The longest latencies turned

out to be very long, around 13 seconds. There were 35 (Experiment, Client) pairs

demonstrating latencies of 5 seconds or longer.

My database contained sufficient data to visually replay any experiment from any

client’s perspective. I wrote a tool to perform such replays for those portions of

experiments where such long latencies were experienced.

Figure B.1 shows this replay tool in action. Along the top of the tool there is a

time strip labeled with seconds from the beginning of the replay period. Red bars in

this strip indicate where long latencies occurred, as found in the database. In this

case, two such instances of long latencies are shown. (Usually there is not more than

one per (Experiment, Client) pair.) A vertical bar in the strip shows the point in

time currently being displayed in the puzzle below. In the figure, this bar is on the

279

Figure B.1: Long Latency Replay Tool in Action

280

52 second mark, inside the rightmost red bar.

In the puzzle below, a dot indicates the position of the client’s cursor. This dot

is green when the user is not dragging a piece, and red when he is. As you can see in

the figure, the dot is red, indicating that the user is dragging a piece. Therefore drag

latencies are being computed for that user.

Next, note that a 4-piece fragment is being snapped by another user to the upper

left corner of a much larger fragment. This turns out to be very significant. When

two fragments are joined together, all pieces are consolidated into the fragment con-

taining the upper-leftmost piece. At this stage of the puzzle solution, when a small

piece is being joined to the upper-left corner of a large fragment, joining the fragments

together takes substantial time. (Recall that the client machines on which this exper-

iment were run were puny by today’s standards.) Since the current user is trying to

drag another piece at the same time, it gets abnormally-long latency measurements

while the snap is taking place.

I viewed every one of the 35 latencies longer than 5 seconds in my 384 experiments,

and in each case the scenario described above was the reason for the long measured

latencies. Since snap time is linear with respect to the number of pieces in the lower

right fragment, one could expect that many such long latencies below the 5 second

threshold would be found, where the latency would taper off as that fragment size

diminished. Thus, I am confident that this is at least the major source, if not the

only source, of exceptionally long latencies affecting graphs such as Figure 6.60.

It is interesting to note that 5+ second latencies only occurred in the centralized

and migrating architectures, not the replicated architecture. Further investigation of

one of the above long-latency scenarios identified in greater detail the reason for the

delay, and the reason it only affected the centralized and migrating architectures.

This is what happened. The user was dragging a piece that, for whatever reason

281

had not (yet) been migrated to his machine. This means he was effectively operat-

ing with a centralized architecture. In the centralized architecture, drag operations

must go through the central server. (In the replicated architecture, the entire op-

eration from event to draw is performed without communicating with the server.)

The incremental drag operation in question was transmitted quickly to the server,

which responded quickly with the corresponding perspective change. However, just

prior to the server’s handling this operation, the server serviced a request to snap

two fragments together. This involves a large number of model changes within one

transaction (moving pieces from the lower-right fragment to the upper-left fragment

and changing their offsets to refer to the upper-left fragment). The replication of

these changes caused a large number of messages to be sent from the server to the

client, which then proceeded to effect the changes to its replica and execute the cor-

responding draw events. The feedback from the drag event was queued behind all of

this other work.

One lesson from this analysis is that models should be designed such that wherever

possible, single transactions do not involve a lot of changes to the model. By careful

design of the model schema, snap operations could probably have been implemented

as one or two changes to the model. Higher-level operations on trees could also

be supported, such as the reparenting of all of the children of one node to another

node in one operation, instead of one per child. These changes would vastly reduce

the number of messages sent between Concur processes. However, unless the user

interface supports multiple offsets for objects drawn on a canvas (Tk doesn’t), the

drawing operations might still take a long time, and some model operations may

necessarily involve a large number of model changes.

So we are left to look at what might be done to allow interactions like dragging

pieces to proceed with low latencies while unavoidable longer operations are taking

282

place. Given that the ordering of events between entities is not guaranteed even in

Concur (Section 6.4), one solution might be to support more than one TCP/IP con-

nection between processes. These connections are fairly heavyweight, so it would not

be practical to have, say, one per entity. But it would be practical to have one for

model operations and one for perspective operations. This would make use of Con-

cur’s natural distinction between these types. This would not only allow perspective

operations (which are almost always smaller operations needing better latencies) to

be transferred between processes without waiting behind a large number of model op-

erations, but it would also allow the recipient of such messages to give higher priority

to the servicing of perspective operations, or to interleave them with smaller units of

model operations.

Finally, if single operations on models must take a long time to execute, the single-

threaded model would not be adequate to support low-latency perspective operations

in Concur. In this case, Concur should be enhanced to support multi-threading. This

would be a useful enhancement in any case, given the predominance of multi-core

computers today. Threads are lightweight enough that one could feasibly consider

assigning a separate thread to each entity.

283

Bibliography

[AGH05] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Prentice Hall PTR, Upper Saddle River, NJ, 4th edition,
August 2005.

[AJA05] AJAX. Website, 2005. <http://www.xml.com/pub/a/2005/02/09/xml-
http-request.html>.

[AJJ+92] Paulo Amaral, Christian Jacquemot, Peter Jensen, Rodger Lea, and
Adam Mirowski. Transparent Object Migration in COOL2. In Yolande
Berbers and Peter Dickman, editors, Position Papers of the ECOOP ’92
Workshop W2, pages 72–77, 1992.

[AKSJ03] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variabiliy
in TCP Round-trip Times. In Proceedings of Internet Measurement Con-
ference 2003, Miami, FL, October 2003.

[Ari08] A is A: Aristotle’s Law of Identity, May 2008.
<http://www.importanceofphilosophy.com/Metaphysics Identity.html>.

[AWF91] H. M. Abdel-Wahab and Mark A. Feit. XTV: A Framework for Sharing
X Window Clients in Remote Synchronous Collaboration. In Proceedings
of Tricomm ’91, Chapel Hill, NC, April 1991.

[AWJ94] Hussein M. Abdel-Wahab and Kevin Jeffay. Issues, Problems, and So-
lutions in Sharing X Clients on Multiple Displays. Internetworking -
Research and Practice, 5(1), March 1994.

[BBD+98] Jeff Brandenburg, Boyce Byerly, Tom Dobridge, Jinkun Lin, Dharmaraja
Rajan, and Timothy Roscoe. Artefact: A Framework for Low-Overhead
Web-Based Collaborative Systems. In Proceedings of the ACM 1998 Con-
ference on Computer Supported Cooperative Work (CSCW’98), pages
189–196, Seattle, WA, November 1998. Association for Computing Ma-
chinery (ACM).

[BCF+] Lukasz Beca, Gang Cheng, Geoffrey C. Fox, Tomasz Jurga, Konrad Ol-
szewski, Marek Podgorny, Piotr Sokolowski, Tomasz Stachowiak, and
Krzysztof Walczak. TANGO Interactive - a Collaborative Environment
for the World-Wide Web. White paper, Northeast Parallel Architectures
Center, Syracuse University, Syracuse, NY. <http://trurl.npac.syr.edu
/tango/Documents/Papers/WhitePaper/white paper.html>.

284

[BH93] T. Brinck and R.D. Hill. Building Shared Graphical Editors in the
Abstraction-Link-View Architecture. In Proceedings of ECSCW’93 (Eu-
ropean Conference on Computer-Supported Cooperative Work, Septem-
ber 1993.

[BHR97] Joachim Baumann, Fritz Hohl, and Kurt Rothermel. Mole - Concepts of
a Mobile Agent System. Technical Report TR-1997-15, 1997.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell.
Prentice Hall PTR, Upper Saddle River, NJ, 2nd edition, May 1998.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945:
Hypertext Transfer Protocol - HTTP/1.0. Internet Engi-
neering Task Force, Network Working Group, May 1996.
<http://www.ietf.org/rfc/rfc1945.txt>.

[Bom08] Bomb Disposal, May 2008.
<http://en.wikipedia.org/wiki/Bomb disposal>.

[BPSM+04] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and Franois Yergeau. Extensible Markup Language (XML)
1.0. World Wide Web Consortium, 3rd edition, February 2004.
<http://www.w3.org/TR/2004/REC-xml-20040204>.

[CD96] Goopeel Chung and Prasun Dewan. A Mechanism for Supporting Client
Migration in a Shared Window System. In UIST ’96: Proceedings of the
9th Annual ACM Symposium on User Interface Software and Technology,
pages 11–20, New York, NY, USA, 1996. ACM Press.

[CD01] Goopeel Chung and Prasun Dewan. Flexible Support for Application-
Sharing Architecture. In Proceedings of the European Conference on
Computer Supported Cooperative Work, 2001.

[CD04] Goopeel Chung and Prasun Dewan. Towards Dynamic Collaboration
Architectures. In CSCW ’04: Proceedings of the 2004 ACM Conference
on Computer Supported Cooperative Work, pages 1–10, New York, NY,
USA, 2004. ACM Press.

[CDF08] Cumulative Distribution Function, July 2008.
<http://en.wikipedia.org/wiki/Cumulative distribution function>.

[CDR98] Goopeel Chung, Prasun Dewan, and Sadagopan Rajaram. Generic and
Composable Latecomer Accomodation Service for Centralized Shared
Systems. In EHCI, pages 129–147, 1998.

285

[Chu02] Goopeel Chung. Log-Based Collaborative Infrastructure. PhD thesis,
University of North Carolina Department of Computer Science, Chapel
Hill, NC, 2002.

[CJAW93] Goopeel Chung, Kevin Jeffay, and Hussein M. Abdel-Wahab. Accom-
modating Latecomers in Shared Window Systems. IEEE Computer,
26(1):72–74, 1993.

[CJAW94] Goopeel Chung, Kevin Jeffay, and Hussein M. Abdel-Wahab. Dynamic
Participation in a Computer-based Conferencing System. Computer
Communications, 17(1):7–16, 1994.

[CLO08] Common Lisp Object System, June 2008.
<http://en.wikipedia.org/wiki/CLOS>.

[Com00] Douglas E. Comer. Internetworking with TCP/IP Vol.1: Principles,
Protocols, and Architecture. Pearson Education, Upper Saddle River,
NJ, 4th edition, Jan 2000.

[DC95] Prasun Dewan and Rajiv Choudhary. Coupling the User Interfaces of
a Multiuser Program. ACM Trans. Comput.-Hum. Interact., 2(1):1–39,
1995.

[Dew99] Prasun Dewan. Architectures for Collaborative Applications. In Michael
Beaudouin-Lafon, editor, Computer Supported Co-Operative Work, vol-
ume 7 of Trends in Software, chapter 9, pages 169–194. John Wiley &
Son Ltd., New York, NY, February 1999.

[Fla01] David Flanagan. JavaScript: The Definitive Guide. O’Reilly & Asso-
ciates, Sebastopol, CA, 4th edition, December 2001.

[GH97] Ulrich Gall and Franz J. Hauck. Promondia: A Java-
Based Framework for Real-time Group Communication in the
Web. In Proceedings of the Sixth International World Wide
Web Conference (WWW6), Santa Clara, CA, April 1997.
World Wide Web Consortium. <http://www.scope.gmd.de
/info/www6/technical/paper100/paper100.html>.

[GHJV95a] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software, chapter 5,
pages 293–303. Addison-Wesley, Reading, MA, January 1995.

[GHJV95b] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, January 1995.

286

[GM94] Saul Greenberg and David Marwood. Real Time Groupware as a Dis-
tributed System: Concurrency Control and its Effect on the Interface.
In Proceedings of the ACM 1994 Conference on Computer Supported Co-
operative Work (CSCW’94), pages 207–217, Chapel Hill, NC, October
1994. Association for Computing Machinery (ACM).

[GMU96] T.C. Nicholas Graham, Catherine A. Morton, and Tore Urnes. Clock-
Works: Visual Programming of Component-Based Software Architec-
tures. Journal of Visual Languages and Computing, pages 175–196, July
1996.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA, 1983.

[GR99] Saul Greenberg and Mark Roseman. Groupware Toolkits for Syn-
chronous Work. In Michael Beaudouin-Lafon, editor, Computer Sup-
ported Co-Operative Work, volume 7 of Trends in Software, chapter 6,
pages 135–168. John Wiley & Son Ltd., New York, NY, February 1999.

[Gro05] Groove Virtual Office. Website, Groove Networks, 2005.
<http://groove.net>.

[GU92] T. C. Nicholas Graham and Tore Urnes. Relational Views as a Model
for Automatic Distributed Implementation of Multi-User Applications.
In Proceedings of the ACM 1992 Conference on Computer Supported
Cooperative Work (CSCW’92), pages 59–66, Toronto, Alberta, Canada,
November 1992. Association for Computing Machinery (ACM).

[GU96] T. C. Nicholas Graham and Tore Urnes. Linguistic Support for the Evo-
lutionary Design of Software Architectures. In ICSE ’96: Proceedings of
the 18th International Conference on Software Engineering, pages 418–
427, Washington, DC, USA, 1996. IEEE Computer Society.

[GUN96a] T. C. Nicholas Graham, Tore Urnes, and Roy Nejabi. Efficient Dis-
tributed Implementation of Semi-Replicated Synchronous Groupware.
In Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 1–10, Seattle, WA, USA, 6–8 November 1996.

[GUN96b] T. C. Nicholas Graham, Tore Urnes, and Roy Nejabi. Efficient Dis-
tributed Implementation of Semi-Replicated Synchronous Groupware.
In Proceedings of the 9th Annual ACM Symposium on User Interface
Software and Technology (UIST ’96), pages 59–66, Seattle, WA, 1996.
Association for Computing Machinery (ACM).

287

[HBR+94] R. D. Hill, T. Brinck, S. L. Rohall, J. F. Patterson, and W. Wilner.
The Rendezvous Architecture and Language for Constructing Multi-
User Applications. ACM Transactions on Computer-Human Interaction,
1(3):81–125, June 1994.

[HC06] Félix Hernández-Campos. Generation and Validation of Empirically-
Derived TCP Application Workloads. PhD thesis, University of North
Carolina Department of Computer Science, Chapel Hill, NC, 2006.

[Hil92] Ralph D. Hill. The Abstraction-Link-View Paradigm: Using Constraints
to Connect User Interfaces to Applications. In CHI ’92: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
335–342, New York, NY, USA, 1992. ACM Press.

[How97] George A. Howlett. The BLT Toolkit. In Mark Harrison, editor, Tcl/Tk
Tools, chapter 7, pages 265–342. O’Reilly & Associates, Sebastopol, CA,
1997.

[IRC01] P. L. Isenhour, Mary Beth Rosson, and John M. Carroll. Supporting
interactive collaboration on the Web with CORK. Interacting with Com-
puters, 13(6):655–676, 2001.

[Joh88] Robert Johansen, editor. Groupware: Computer Support for Business
Teams. The Free Press (A Division of Macmillan, Inc.), New York, NY,
1988.

[KP88] Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80. Journal
of Object-Oriented Programming, 1(3):26–49, August/September 1988.

[Lib03] Jesse Liberty. Programming C#. O’Reilly & Associates, Sebastopol, CA,
3rd edition, June 2003.

[Liv05] Live Meeting. Website, Microsoft, 2005.
<http://microsoft.com/livemeeting>.

[LJLR90] J. C. Lauwers, T. A. Joseph, K. A. Lantz, and A. L. Romanow. Repli-
cated Architectures for Shared Window Systems: A Critique. In Proceed-
ings of the Conference on Office Information Systems, pages 249–260,
New York, NY, USA, 1990. ACM Press.

[Lux95] Wolfgang Lux. Adaptable Object Migration: Concept and Implementa-
tion. SIGOPS Oper. Syst. Rev., 29(2):54–69, 1995.

[Mar02] Joe Marini. Document Object Model. Osborne/McGraw-Hill, Berkeley,
CA, July 2002.

288

[MK02] Chuck Musciano and Bill Kennedy. HTML & XHTML: The Definitive
Guide. O’Reilly & Associates, Sebastopol, CA, 5th edition, August 2002.

[MLC98] Dejan S. Milojicic, William LaForge, and Deepika Chauhan. Mobile
Objects and Agents (MOA). In Proceedings of USENIX COOTS’98,
Santa Fe, 1998.

[Mor08] Electric Telegraph, May 2008.
<http://en.wikipedia.org/wiki/Electrical telegraph>.

[Nat08] National Climactic Data Center, June 2008.
<http://www.ncdc.noaa.gov/oa/climate/research/ushcn/daily.html>.

[Nij00] Jan Nijtmans. Img Homepage, June 2000. <http://members1.chello.nl
/∼j.nijtmans/img.html>.

[O’G98] Theodore Alan O’Grady. Flexible Data Sharing in a Groupware Toolkit.
Master’s thesis, Calgary, Alta., Canada, Canada, 1998.

[Ous93] John K. Ousterhout. An Introduction to Tcl and Tk. Addison-Wesley,
Reading, MA, 1993.

[Pat90] John F. Patterson. The Good, the Bad, and the Ugly of Window Shar-
ing in X. In Proceedings of the Fourth Annual X Technical Conference,
Boston, MA, January 1990.

[PCH+00] Joaquin Picon, Regis Coqueret, Andreas Hutfless, Gopal Indurkhya, and
Martin Weiss. Design and Implement Servlets, JSPs, and EJBs for IBM
WebSphere Application Server, chapter 9. Vervante, August 2000.

[PG99] W. G. Phillips and N. Graham. Software Architectures for Multiuser In-
teractive Systems. Technical Report TR-1999-425, Department of Com-
puting and Information Science, Queens University, Kingston, Ontario,
Canada, May 1999.

[RG97] Mark Roseman and Saul Greenberg. Building Groupware with Group-
Kit. In Mark Harrison, editor, Tcl/Tk Tools, chapter 15, pages 535–564.
O’Reilly & Associates, Sebastopol, CA, 1997.

[Rob99] Scott Roberts. Programming Internet Explorer 5, chapter 12, pages 461–
475. Microsoft, Redmond, WA, June 1999.

[Rou03] Vassil Roussev. Collaboration Transparency in Desktop Teleconferencing
Environments. PhD thesis, University of North Carolina Department of
Computer Science, Chapel Hill, NC, 2003.

289

[RV03] Matthew Robinson and Pavel Vorobiev. Swing. Manning Publications,
Greenwich, CT, 2nd edition, February 2003.

[SGR92] Robert Scheifler, James Gettys, and David Rosenthal. X Window Sys-
tem: The Complete Reference to Xlib, X Protocol, ICCCM, XLFD. Dig-
ital Press X and Motif Series. Digital Press, Bedford, MA, 3rd edition,
February 1992.

[Shn98] Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction, chapter 10. Addison-Wesley, Reading,
MA, 3rd edition, 1998.

[SJ95] B. Steensgaard and E. Jul. Object and Native Code Thread Mobility
Among Heterogeneous Computers. In SOSP ’95: Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, pages 68–
77, New York, NY, USA, 1995. ACM Press.

[Smi00] Chad Smith. [incr Tcl/Tk] from the Ground Up. Osborne/McGraw-Hill,
Berkeley, CA, January 2000.

[SSS99] Christian Schuckmann, Jan Schümmer, and Peter Seitz. Modeling Col-
laboration Using Shared Objects. In GROUP ’99: Proceedings of the
International ACM SIGGROUP Conference on Supporting Group Work,
pages 189–198, New York, NY, USA, 1999. ACM Press.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, MA, special 3rd edition, February 2000.

[SWND03] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version
1.4. Addison-Wesley, Reading, MA, 4th edition, November 2003.

[UN94] T. Urnes and R. Nejabi. Tools for Implementing Groupware: Survey and
Evaluation, 1994.

[Urn92] Tore Urnes. A Relational Model for Programming Concurrent and Dis-
tributed User Interfaces. Master’s thesis, Norwegian Institute of Tech-
nology, University of Trondheim, April 1992.

[Urn98] Tore Urnes. Efficiently Implementing Synchronous Groupware. PhD the-
sis, Department of Computer Science, York University, Toronto, Ontario,
Canada, 1998.

[Web05] WebEx. Website, Microsoft, 2005. <http://webex.com>.

[Web06] Webopedia Definition of Semantics in Computer Science, May 2006.
<http://webopedia.com/TERM/s/semantics.html>.

290

[WG02] Eric White and Chris Garrett. GDI+ Programming: Creating Custom
Controls Using C#. Peer Information, Hoboken, NJ, June 2002.

[WH03] Brent B. Welch and Jeffry Hobbs. Practical Programming in Tcl & Tk.
Prentice Hall PTR, Upper Saddle River, NJ, 4th edition, June 2003.

[Xer08] Xerces2 Java Parser. Website, The Apache XML Project, 2008.
<http://xml.apache.org/xerces2-j>.

291

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction, Definitions, and Overview
	Collaboration and Virtual Things
	Virtual Representations of Real Things
	Synchronous Distributed Collaboration
	Separation of Models and Views
	The Model-View-Controller Paradigm and the Observer Design Pattern
	Centralized and Replicated Architectures
	Hybrid Architectures and Dynamic Reconfiguration
	Problem Statement and Thesis
	Contributions of this Work
	Evaluation Summary
	Experiment Setup
	Notes on Experimental Result Plots in this Dissertation
	Experimental Results

	Dissertation Outline

	Related Work
	Introduction
	Example Centralized Synchronous Distributed Collaborative Systems
	XTV and Chung's Logging Infrastructure
	Rendezvous
	Weasel and Clock

	Issues with the Above Systems
	Functionality
	Implementation
	Performance

	Contributions of this Work
	Analysis Framework for Centralized Synchronous Distributed Collaborative Systems
	Models
	Protocol Manipulators
	View Computation Engines
	Local View State Repositories
	View Specifications
	View Realizations
	Controllers
	Analysis Summary

	Other Related Work
	Perspective-Like Constructs and User Models
	Coupling Systems
	State-Management Systems

	Entity Taxonomy
	Introduction
	Application Domain vs. UI Domain State
	Development of a Unified Model
	A State Classification Based on Entity Properties
	View Computation Function
	Controller
	Data Perspective
	Timer Perspective
	Mobile Model
	Immutable Model
	Immobile Model

	Data Caching
	Mobile Entity Migration
	Entity Classification Summary

	Concur Requirements and Architecture
	Requirements
	Elements of a Solution
	The Push Model-View-Controller Paradigm
	Logically Centralized Architecture
	Common Hierarchical Data Modeling Facility
	Continuously Evaluated Functional Views
	Declarative User Interfaces
	Perspectives
	Composition Functions

	Concur Architecture
	Debugging, Testing, and Scripting

	Concur Implementation
	Programming Language and Libraries
	Concur Class Library
	Server Process
	Client Process

	Analysis and Evaluation of Concur
	Criteria for Analysis
	Experimental Environment
	Experiments Performed
	Entity Types and Applications
	Text Editor Application
	Pixel Editor Application
	Jigsaw Puzzle Application
	Application Summary

	Determinism
	Divergence and Modes of Work
	Performance

	Summary and Future Work
	Summary
	Future Work
	Applying Concur to the Worldwide Web
	Entity Taxonomy Maturity
	Divergence
	Continuously Evaluated Functions

	Experiment Automation with the Puzzle Solver
	Puzzle Solver Motivation
	Puzzle Solver Overview
	Puzzle Solver Algorithm

	Exceptionally Long Latencies in the Puzzle Graph
	Bibliography

