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Abstract

MATTHEW J. GRIBBIN:  Better Power Methods for the

Univariate Approach to Repeated Measures

(Under the direction of Dr. Keith E. Muller)

New methods that improve upon current techniques related to power for UNIREP tests

are introduced.  The research is motivated by imaging applications, which often generate the

type of data that can be handled with UNIREP techniques.  The UNIREP Huynh-Feldt test

is based on the Huynh-Feldt sphericity estimator.  Claiming their estimator was a ratio of

unbiased estimators, Huynh and Feldt developed it as an alternative to the sometimes biased

Geisser-Greenhouse estimator.  The Huynh-Feldt estimator is examined and shown to be a

ratio of unbiased estimators only for the special case of rank of the design matrix, , equal\

to .  This realization results in a biased Huynh-Feldt test and power calculation when rank"

of  is greater than .  A proper, adjusted Huynh-Feldt estimator for any rank of is\ \"  

presented and shown to better estimate when rank of  is greater the population sphericity \

than .  A power approximation for the rank-adjusted Huynh-Feldt test is also presented."

For practical research situations, the rank-adjusted power approximation isHuynh-Feldt 

shown to perform as well as and, in most cases, better than the most accurate Huynh-Feldt

power approximation in use.  Furthermore, the Huynh-Feldt power approximation is shown

to yield artificially inflated power values at a cost of inflated test size when rank of  is\

greater than .  T" he rank-adjusted test is shown to control test size adequately.

Approximate confidence intervals for UNIREP power in the case of an estimated

covariance and fixed means are introduced and shown to provide accuratereasonably 

coverage probabilities for all four UNIREP tests.  The approximate confidence intervals
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perform well in most cases considered, even for small sample sizes.  The approximate

confidence intervals are shown to perform better for higher power values than for lower

power values, making them more useful in practical research conditions.  Factors affecting

UNIREP power confidence interval coverage probabilities are examined.  These factors

include sample size, rank of  and the degrees of freedom for both the estimating and\

target studies, as well as estimated sphericity multipliers.  To provide tighter, more

informative confidence bounds, one-sided confidence intervals are recommended.
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Chapter 1

Introduction and Literature Review

1.1  Introduction

Multivariate analysis techniques are used when data is collected on subjects with more

than one response value, either due to multiple outcomes or repeated measures.  One

strategy for analysis of such data is the univariate approach to repeated measures

(UNIREP).  A tremendous amount of work has gone into developing UNIREP methods

over the past 75 years.  However, there are still techniques that need to be examined and

improved upon.  Three areas related to power for UNIREP tests are the focus of the present

research.

Although the new methods that will be introduced and discussed may be applied to any

number of studies, the driving motivation and application has been imaging research.

Imaging is being used more and more in all forms of medical research, and the cost of such

procedures is constantly decreasing.  Researchers and physicians alike are realizing the

benefits to using these safe and non-invasive techniques.

UNIREP techniques make up a special case of the more broad area of statistical

modeling called mixed models.  The mixed model has several nice statistical features, such

as no requirement for balanced data, the ability to explicitly model and analyze the between-

and within-subject variation, and the capability of handling missing data without

eliminating all values for a particular subject.  However, there is still a need for better

inference and power analysis techniques in mixed models.  This is much less true for

UNIREP.  The inference techniques for UNIREP far outshine those used in mixed models,
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particularly for small sample sizes, and power techniques for UNIREP have been well

tested and documented.

The methods presented here focus solely on UNIREP procedures.  The expectation is

that this research will lay the groundwork for future researchers to ultimately extend these

methods to fit with the general mixed model.  This progression seems to be a natural one.

UNIREP methods were generalized by Catellier and Muller (2000) to allow for missing

data.  However, no repeated covariates are allowed, and no power calculation is currently

available.

Much of imaging research does not require the analysis qualities that are associated

with mixed model procedures.  Although in field studies missing data may be common,

imaging research often generates the type of complete data that can be handled with

UNIREP procedures.  Although a subject may be missing and MRI from a research study,

there is no data missing within an MRI, and, in UNIREP, there is no need for balance

between subjects, only within. Imaging does not always provide complete data, however. 

Pre-imaging processing may lead to situations in which portions of the imaging data may be

missing.  Thus, the techniques discussed here may not be appropriate for some imaging

research studies.

Although imaging research has been the driving motivating application of the current

research, the overall applications extend much further.  Experimental or controlled

laboratory research, such as animal studies (e.g. mouse recombinant DNA) or some

psychiatric studies, will often possess the type of complete data required for use of the

techniques discussed here.  Also, such studies often have small sample sizes, which makes

UNIREP (and MULTIREP) techniques much more desirable than mixed models.

Prior to introducing new methods, familiarization with existing methods is necessary.

In Chapter 1, many of the highlights pertaining to the development of UNIREP techniques
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are reviewed, including UNIREP power, confidence intervals for univariate analyses and

UNIREP sphericity estimators.

In 1976, Huynh and Feldt developed a new estimator of sphericity that improved upon

the sometimes biased Geisser-Greenhouse estimator.  They claimed that the Huynh-Feldt

estimator was a ratio of unbiased estimators.  The Huynh-Feldt UNIREP test uses this

estimator when calculating degrees of freedom for its approximate  distribution.  InJ

Chapter 2, the Huynh-Feldt estimator is examined and shown to be a ratio of unbiased

estimators only for the special case of rank of the design matrix, , equal to .  This\ "

realization may result in a biased Huynh-Feldt test and power calculation when rank of  is\

greater than .  A proper estimator for any rank of is presented and evaluated for a wide" \ 

range of conditions.

Improving upon existing power calculation methods, Muller et al. (2007) introduced

approximate power calculations for all four UNIREP tests which were accurate and easy to

use.  Their power approximation for the Huynh-Feldt test incorporates the Huynh-Feldt

sphericity estimator.  In Chapter 3, the work begun in Chapter 2 is extended by

incorporating the rank-adjusted approximately unbiased estimator into a power

approximation, similar to the  (2007) power approximation.  The accuracy ofMuller et al.

the rank-adjusted power approximation is evaluated for a wide range of conditions, and the

rank-adjusted test is shown to control test size as rank of \ increases better than the

Huynh-Feldt test.

Accurate power analysis is essential when designing a study.  Accurate power analysis

allows researchers the ability to focus the study hypotheses, clarify the analysis plans and

enhance study design efficiency.  When variance is estimated, power becomes a random

variable.  Providing confidence intervals that account for the uncertainty in these random

power values would be useful in any study design.  For instance, a lower bound for power
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would allow a researcher to state that a study has power of at least " " to detect an effect,T

with a specified confidence.

For estimated variance and fixed means, exact power confidence intervals for

univariate analyses have been presented by Taylor and Muller (1995).  In Chapter 4, the

methods of Taylor and Muller (1995) are extended to provide accurate, approximate

confidence intervals for UNIREP power.  The methods are evaluated using simulations

employing a wide range of conditions, and are shown to be accurate enough for any power

analysis.

1.2  Notation

A column vector , , is lower case bold.  A matrix, , is upper case bold withB \� �8 ‚ "

transpose , inverse  and generalized inverse .  Also,  is an  vector of\ \ \ "w �" �
8 � �8 ‚ "

" 8 ‚ 8 B's and  is an  identity matrix.  A diagonal matrix with  element  is writtenM8 3� � � �3ß 3

Dg .  � �B \ \The largest  is eigenvalue (or characteristic root) of ch  and themax� �
determinant of  .  The expected value, the variance and the trace of \ \ \ is  are denoted¸ ¸
by , and ,E� � � � � �\ \ \i   tr  respectively.  Throughout, \ µ ß; =#� �/  indicates that the

random variable  has a noncentral chi-square distribution with  degrees of freedom and\ /

noncentrality .   indicates that the random variable  has a central chi-= ;Also, \ µ #� �/ \

square distribution with  degrees of freedom.  / / /Similarly, \ J ß ß \µ � �" # =  indicates  has

a noncentral  distribution with  numerator and  denominator degrees of freedom, andJ / /" #

noncentrality cumulative distribution function= = with  .  As with the centralJ ßJ " #� �/ / ß

chi-square, if ,  follows a central = œ ! \ µJ \ J ß distribution, , with  numerator� �/ / /" # "

and  denominator degrees of freedom.  The quantile  of a central chi-square distribution/# ;

with  degrees of freedom is indicated by .  Similarly, the quantile  of a central/ J ;à ;;#
�"� �/

J J ;à ß distribution is indicated by .  Furthermore, ,J
�"

" #� �/ / C Cµ ßa:� �. D  indicates 

� �: ‚ " , is Gaussian with mean  and a fixed, unknown and positive definite or positive.

semidefinite covariance among response variables, If D, .  , , has � � � �: ‚ : R ‚ : R]
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independent rows and row , then  indicatesc d � � � �� �3 : 3 :
w w] W ] ]µ ß œ µ Rß ßa j. D D H

W  follows a Wishart distribution with  degrees of freedom, covariance , andR D

noncentrality .H Dœ ] ]E E� � � �w �"

The General Linear Multivariate Model (GLMM),

] \F Iœ � ,� � � � � �R R ‚ ; ‚ : R‚ : ‚ :
(1)

assumes  independent rows and row row .  Equivalently, R µ ß µc d c d� � � �ˆ ‰3 : 3
w w] \ F ]a D

aRß: R� �\F M ]ß ßD  indicates that  is distributed multivariate normal with expected value

\F, homogeneity of covariance across rows, independence of rows (i.e. independence of

the  sampling units) and Gaussian observations for the  response values.  In the model,R :

\ F is the fixed, known design matrix, and  represents the fixed, unknown regression

coefficients.  The associated general linear hypothesis is

H  , (2)! !À œ@ @œ GFY

such that , , G � � � �+ ‚ ; : ‚ ,, , considers the between-subject effects (rank ) while œ + Y

considers the within-subject effects .  Without loss of generality, assume (rank )œ , @! œ !.

The unscaled noncentrality is defined as ? @ @ @ @œ � �� � � � � �! !
wQ�" ,  such that, ‚ , ,

Q G \ \ Gœ +� �w w�
, .  The scaled noncentrality is defined as  , � � � �‚ + , ‚ ,H ?Dœ ‡

�" ,

such that, Dg , the covariance matrix among theD D E - E‡
w wœ œY Y � � � �, ‚ , , is 

transformed (hypothesis) variables, , , such thatwith , the eigenvectors of E D� �, ‚ , ‡

EE EE - Dw w
, 3 ‡œ œ M  and the vector of eigenvalues, , for .  Corresponding estimates -

are  (when applicable, else ),F \ \ \ ] F \ \ \ ]s œ œ� � � �w w w w� �1 ë

Ds œ R � <œ � Î] M \ \ \ ]w w w�
/c d� � / , such that // , the error degrees of freedom, with

< œ œ Ð � Ñ Ð � Ñ µ +ß ß œs s ss ssrank , ,  and � � � �\ GFY Q@ ? @ @ @ @ D H Dœ ! ! , ‡ ‡
w �" j

Y Y Ww
/ ‡ , / ‡ LD D D ?s s µ ß œ s,  .  The sum of squares hypothesis matrix is  andwith / j /� �

the sum of squares error matrix is , which are independent of one another.  OnlyWI ‡œ s//D

testable hypotheses are considered.  Testable hypotheses require full rank  and , andG  Y
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G \ \ \ \ Gœ � � � �w w�
.  This notation generally follows that presented in Muller and

Stewart (2006).

1.3  Literature Review Introduction

Many strategies for analyzing multivariate data are special cases of the general linear

multivariate model.  The multivariate analysis of variance (MANOVA), multivariate

approach to repeated measures (MULTIREP), univariate approach to repeated measures

(UNIREP) and the mixed model are but a few.  MULTIREP analyses model means and

allow for an unstructured covariance matrix.  Initially, UNIREP analyses required the

assumption of compound symmetry of covariance.  Approximate UNIREP tests such as the

Geisser-Greenhouse and Huynh-Feldt allow the methods to be applied to all covariance

structures.  Mixed models allow researchers to specify the type of covariance structure

desired.  In this respect, they are very convenient to use.  However, mixed models

techniques often fall short of the MULTIREP and UNIREP techniques in terms of inference

and power techniques.  This research focuses on UNIREP analyses and related power

calculations.

There are four UNIREP tests.  They are:  1) the uncorrected (Box, 1954a, b), 2) the

Huynh-Feldt (1976), 3) the Geisser-Greenhouse (1958, 1959) and 4) the Box conservative

(Geisser and Greenhouse, 1958).  All are computed in terms of the estimated hypothesis

sums of squares, , and the estimated variance, , and all use the same test? D Ds s sœ‡
wY Y

statistic, tr tr .X œ Ò Ð ÑÎ+ÓÎÒ Ð ÑÓs s
? ‡? D

In building covariance models, the two special patterns of sphericity and compound

symmetry play important and related, but distinct roles.  Sphericity requires all variances

equal and all covariances zero.  More generally, compound symmetry requires all variances

equal and all covariances equal, but not necessarily zero.

In UNIREP theory, compound symmetry of  the  covariance of row ,D, � � � �: ‚ : 3
wI

provides a condition to allow, but not guarantee, the UNIREP test statistic tosufficient 
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exactly follow an  distribution under the null.  Guaranteeing the result alsoJ +,ß ,� �//

requires one of two side conditions for the  contrast matrix :  either 1)  or� �: ‚ , , œ "Y

2)   .  Alternately, the weaker restriction of" � , Ÿ : œ œand and Y " ! Y Y Mw w
: ,

sphericity of , the  covariance of row , defines the D D‡
wœ Y Y IY� � � �, ‚ , 3

w
necessary

and sufficient condition, .  D‡
#
‡œ 5 M, Huynh and Feldt (1970) explicated the second

statement, which allows for a wider range of conditions.  The special case of compound

symmetric  reduces the necessary and sufficient condition to requiring D , œ " " � , � : or 

and and Y " ! Y Y Mw w
: ,œ œ .  A compound symmetric covariance may be written

D Dœ " � Î :5 5# w #
! ! >! ‡!

 ‘M " " Y " Y Y Y: : ::
w� � È3 3� œ œ.  Choosing , and ,  gives 

� �: ‚ , œ œ, , gives  such that ,  and .  Here,, œ : � " œY " ! Y Y M Y Y M> > > ‡>
w w w #

> >: , ,D 5

5 5 5 5# # # #
‡! ‡>œ " � : � " œ " �c d � �� �3 3 and  are the two distinct eigenvalues of compound

symmetric .  The second eigenvalue has multiplicity of .  As for any covarianceD � �: � "

matrix, the set of  eigenvalues are the of the underlying principal components: variances 

which have zero covariances and correlations.

If sphericity holds, then the uncorrected (UN) test is uniformly most powerful among

similarly invariant tests, of UNIREPexact size alpha.  If sphericity is not met, the corrected 

test statistics, the Huynh-Feldt (HF), the Geisser-Greenhouse (GG) and the Box

conservative (Box), approximately follow a central  distribution under the null,J

X µ J +, ß ,? /� �% / % .  The four tests differ only by their degrees of freedom by way of

different estimates of the measure of sphericity, tr tr .  This measure of% œ Ò Ð ÑÓÎÒ, Ð ÑÓ#
‡ ‡

#
D D

sphericity is bounded between and .  The test sphericity estimator multipliers are"Î, "

always ordered

Box GG HF UN ,

"Î, Ÿ Ÿ Ÿ "s% %ë

such that the uncorrected and the Box conservative tests have constant sphericity
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multipliers, while the Geisser-Greenhouse and the Huynh-Feldt tests use random

multipliers.

Sections 1.4 and 1.5 contain discussions of the history of MULTIREP tests and mixed

models, respectively.  The material is required in order to assess the relative advantages and

disadvantages of the nearest competitors and best alternatives to UNIREP analysis, which is

the focus of the present work.  Hence, although necessary to demonstrate the viability and

appeal of the UNIREP approach in comparison to competitors for many important

applications, some readers may wish to skip the sections.  Section 1.6 contains a discussion

of the history of UNIREP tests in a similar fashion to that presented in sections 1.4 and 1.5

for MULTIREP and mixed models.  The papers relating to the development and use of the

Huynh-Feldt estimator are of particular relevance to the current research presented in

Chapter 2:  A More General Version of the Huynh-Feldt Sphericity Estimator.  Section 1.7

contains a review of previous work related to power for UNIREP tests.  The papers relating

to the development and use of the Huynh-Feldt power approximation are utilized in Chapter

3:  Approximate Power for a More General Version of the Huynh-Feldt Test.  Section 1.8

contains a review of previous work related to confidence intervals for power.  Nearly all of

the papers in both sections 1.7 and 1.8 provide the groundwork for the current research

presented in Chapter 4:  Power Confidence Intervals for UNIREP Tests.

1.4  A History of MULTIREP Tests

This section contains a review of work performed towards the development of

MULTIREP tests.  The review is mostly a historical one, with the intention of highlighting

similarities and differences with UNIREP and mixed model methods.

Smith  (1962) described the basics of laimed that, atet al. MULTIREP analyses.  They c

the time their paper was written, the usual approach to multivariate problems was to simply

ignore, and thus fail to exploit, the correlations that may exist between responses.  This

approach was primarily due to the fact that computers capable of handling such calculations
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were not readily available.  Smith  (1962) discussed model setup, hypothesis testinget al.

(including matrices and ), hypothesis and error sums of squares, three MULTIREP testG Y

statistics and their rejection criteria.  The tests they discussed were Roy's Largest Root,

Wilks' Likelihood Ratio and the Hotelling-Lawley trace.  Schatzoff (1966) discussed similar

topics for a fourth MULTIREP test, the Pillai-Bartlett trace.

1) Roy's Largest Root: RLR ch

2) Wilks' Likelihood Ratio: WLK

3) Hotelling-Lawley: HLT tr

4) Pil

œ Î �

œ Î �

œ

maxc d� � � �¸ ¸ ¸ ¸
ˆ ‰

W W W

W W W

W W

L L I

I L I

L I
�"

lai-Bartlett: PBT trœ � ‘� �W W WL L I
�"

(3)

(4)

(5)

(6)

Before the mid 1960's, power for the MULTIREP tests seemed incalculable, due to the

noncentral distributions of the test criterion not being expressed in a numerically feasible

form.  ConstantineBy first deriving the noncentral Wishart distribution density function, 

(1963) was able to derive the distributions for the MULTIREP test statistics.  For the

nonnull case, he suggested that W WL , ‡ I , / ‡µ +ß ß µ ßj j /� � � �D H D and .  Posten and

Bargmann (1964) developed an asymptotic expansion of the distribution of WLK7 † log� �
in the form of an infinite series of weighted chi-square distributions.  This allowed for the

ability to approximate power.

Sugiura and Fujikoshi (1969) expanded upon the work of Constantine (1963) by

developing an asymptotically correct  mixture approximation for both WLK and HLT for;#

the nonnull case up to the order .  Lee (1971) derived the asymptotic formula for the7�#

PBT statistic.  Using the asymptotic formulae, he compared the powers of the three tests

numerically, and showed that exact powers for all three tests could be calculated in the case

of .: œ #

For moderately large sample sizes and small to moderate deviations from the

hypothesis, Lee (1971) showed that no one test is superior in terms of power without

specifying the alternatives.  If the 's are very unequal, HLT WLK PBT in terms of-3 / /

power.  However, if the 's are nearly equal, the reverse is true.  The PBT power varied the-3
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most with different alternatives, followed by the WLK, then the HLT, which varied the

least.

John (1971) expanded upon the work of Posten and Bargmann (1964) and Lee (1971)

by evaluating powers for the various MULTIREP tests.  He also concluded that there really

was no "best" test.

Olson (1974) examined all four MULTIREP tests by means of power comparisons for

various examples.  Based on his results, he suggested that RLR should be avoided in order

to protect against nonnormality and heterogeneity of covariance.  He recommended using

PBT because he found PBT to be the most robust of the tests, while alsoMULTIREP 

possessing adequate power.

Olson (1974) presented several special cases.  He showed that when , or when: œ "

= œ +ß , œ " Jmin� � , all the MULTIREP tests are equivalent and the usual  test is the

uniformly most powerful test, invariant with respect to linear transformations.  In general,

when , no invariant test is uniformly most powerful.  Finally, he showed thatmin� �:ß = / "

when only one non-zero root exists, the power for the tests are ordered

RLR HLT WLK PBT, with the order reversed in the diffuse situation.  Using     

examples, he observed that the power differences between PBT, WLK and HLT were not

large, in the latter case.  Olson (1974) recommended always using the second ordering

because, for the first ordering to win out, there must be an extremely concentrated structure.

Olson (1974) noted that this type of structure is not often seen in practice.

In a paper published in 1976, Olson furthered his work by evaluating the MULTIREP

tests with respect to both revious papers power and robustness.  He cited p in which

departures from normality in the direction of positive kurtosis had relatively mild effects on

type I error rates for the four MULTIREP tests.  Also, these effects tended to be

conservative.  In cases of nonnormality, the tests were ordered PBT WLK HLT   

  RLR in terms of type I error rates, with PBT remaining the closest to the nominal  levelα
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and RLR falling furthest below.  Olson (1976) suggested that departures from homogeneity

of covariance produced more dramatic effects.  The RLR test was most prone to an

excessively high type I error rate.  Although HLT and PBT did not perform well either, PBT

generally resulted in the smallest increases of type I error rates.  Overall, Olson (1976)

reconfirmed his choice of the PBT statistic, and did so again in his 1979 paper.  Stevens

(1980) acknowledged and supported Olson's thoughts on the developing importance of good

power analysis in multivariate analysis, but questioned his choice of test statistic.

Nagarsenker and (1983) claimed to provide formulas that allowed accurateSuniaga 

calculations of the WLK test statistic.  However, the formulas do not work as given.

Muller and Peterson (1984) reviewed approximations previously available for

noncentral distribution functions of multivariate test statistics.  They acknowledged that, in

practice for the null case, approximations based on an  distribution had been used withJ

great success.  Muller and Peterson (1984) extended the work in this area by providing new

and numerically feasible approximations for all MULTIREP tests except RLR, based on

single noncentral  random variables.  They showed that the power estimates obtainedJ

from such approximations appeared to provide nearly two digits of accuracy.

Barton and Cramer (1989) approached the problem of data missing at random using

the WLK test by means of the EM this method would notalgorithm.  They found that 

reduce power very much hen there were a large number of observations and smallw

amounts of missing data, but could be expensive in terms of inflated test sizes.

Muller  (1992) evaluated methods for power calculation for several exampleset al.

using both MULTIREP and UNIREP tests.  The authors discussed how Muller and Peterson

(1984) and Muller and Barton (1989) had made power calculations for multivariate analyses

convenient for MULTIREP and UNIREP, respectively.  Further details regarding the results

with respect to UNIREP tests are discussed in section 1.7.  Muller  (1992) highlightedet al.

several special cases.  For example, when , all MULTIREP and UNIREP tests are, œ "
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equivalent providing a uniformly most powerful test, and when  and , all, / " + œ "

MULTIREP statistics transform exactly to a noncentral no one test isJ .  They noted that 

uniformly most powerful for  and unstructured covariance.  Without a= œ +ß , / "min� �
uniformly most powerful test, the choice of test depends on the alternative and the degree to

which sphericity is not met.

Much like Barton and Cramer (1989), Catellier and Muller (2000) considered the

problem of missing data using MULTIREP techniques.  While previous papers had worked

on methods for estimation for repeated measures with missing data, Catellier and Muller

(2000) approached the problem with a focus towards inference They described analogues.  

of PBT and HLT which allowed for missing data.  The authors noted that while asymptotic

methods work well for large samples, seriously inflated type I error rates may exist in small

samples.  For all tests, accuracy decreased with more repeated measures, fewer subjects,

more missing data and higher correlation within subjects.  However, with no missing data

the MULTIREP tests controlled the type I error rate at or below the nominal rate, even for

small samples.

1.5  A History of Mixed Models

This section contains a review of work performed towards the development of mixed

models.  The review is mostly a historical one with the intention of highlighting similarities

and differences with MULTIREP and mixed model methods.

Before the early 1980's, mixed model analyses were not commonly used in practice.

However, this trend was not because the methods had not yet been developed.  Rather, the

reason mixed model analyses were not often used was because computers required to

handle the iterative computations needed for such methods were not yet readily available.

As a result of this historical fact, much of the work prior to the 1980's dealt with attempting

to modify the standard multivariate techniques of the time to accommodate the various data

problems commonly found in practice.  These problems included unbalanced data, missing
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data and/or mistimed data, for example.  For instance, Rao (1972) presented a

comprehensive review of past work on MULTIREP tests.  In terms of estimation and

hypothesis testing, he observed that very little work on missing or incomplete data analysis

had been done, despite the commonality of such data in practice.  Still, the theory did exist

and had, in some form, since the 1930's, but was simply waiting for the computing

capabilities to apply it.

In 1967, Hartley and Rao developed a procedure for maximum-likelihood estimation

of the unknown constants and variances in mixed model analyses.  Tests of hypotheses and

confidence regions were also derived.  Beale and Little (1975) offered various algorithms as

alternatives to MULTIREP tests for multivariate analyses with missing data.  hese are justT

a few of the many statisticians that laid the groundwork for the mixed model techniques

used today.

With the 1980's came the capability for many to apply the general theory of mixed

models in common practice, due to more readily available computers.  Laird and Ware

(1982) helped to popularize the theory of mixed models.  They approached mixed models

by way of a two-stage process:  first the individual, then the population.  For , ,C3 3� �8 ‚ "

\ ^ , /3 3 3 3 3 3 3, ,  , , , ,  and , , Stage 1 is for the� � � � � � � � � �8 ‚ : : ‚ " 8 ‚ 5 5 ‚ " 8 ‚ "α,

individual subjects, ,3

C \ ^ ,3 3 3 3 3œ � �α /  , (7)

such that  with  .  At this stage,  and  are assumed to be/3 3 3 3 3 3µ R ß 8 ‚ 8� � � �! V V ,α

fixed, and the  are assumed to be independent.  Stage 2 is for the population.  The/3

assumption is that  independently of one another and , such that  is, ! H H3 3µ R ß� � /

� �5 ‚ 5 .  Only the  are assumed to be fixed at this stage.  Marginally,α

C \ V ^ H^3 3 3 3 3
wµ R ß �� �α .

The model has several nice statistical features:  1) no requirement for balanced data, 2)

explicit modeling and analysis of between- and within-subject variation, and 3) the
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capability of handling missing data without eliminating all values for a particular subject.

The multivariate model commonly used in practice at the time did not allow for the

definition and estimation of random individual characteristics.  Furthermore, mixed model

techniques allowing unbalanced or incomplete repeated measures offered a great deal more

flexibility than the strict assumptions required in MULTIREP practices.  However, very

little work towards accurate inference in mixed model theory existed.  In this respect, as

long as there was not a need to specify a covariance structure, MULTIREP and UNIREP

analyses stood, and still stand, above mixed models, especially in cases of complete data.

Although practical mixed model analyses were now available, Koele (1982)

acknowledged that the power methods for mixed models available at the time did not

perform well.  He did not offer a solution to this problem.

Jennrich and Schluchter (1986) presented techniques that took advantage of specific

covariance forms, such as compound symmetry (CS) and first order autoregressive (AR1).

They also illustrated how, based on the design of the model, one could allow groups to have

different covariance matrices from others.  Other commonly used mixed model techniques

discussed in their paper included Newton-Raphson and Fisher scoring algorithms,

maximum likelihood (ML) and restricted maximum likelihood (REML) methods.  These

techniques are also discussed in Laird and Ware (1982).

Catellier and Muller (2000) evaluated the effectiveness of UNIREP, MULTIREP and

mixed models on inference techniques in cases with data missing at random and missing

completely at random.  They observed simulated test sizes as high as 0.59 with a target of

0.05 for the mixed model test of the interaction between the repeated measure and the

grouping factor with complete and balanced data.  Meanwhile, the UNIREP and

MULTIREP tests controlled the type I error rate at or below the nominal rate.  Catellier and

Muller (2000) further noted that, while mean estimates often coincide between mixed and

multivariate models, hypothesis testing and confidence intervals usually differ greatly.
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They recommended using the UNIREP and MULTIREP techniques over those of mixed

models whenever appropriate.

Gueorguieva and Krystal (2004) fully supported the use of the mixed model over

UNIREP and MULTIREP methods, however.  Although, their reasons were more directed

towards convenience.  When applied to psychiatric studies frequently with mistimed or

missing data for many subjects, they claimed that the appeal for use of the mixed model was

due to flexibility of use.  They also cited the prevalence and availability of mixed model

software as a reason.  All of their examples had large sample sizes, which allowed for more

accurate asymptotic approximations.  Gueorguieva and Krystal (2004) did not mention

inference accuracy in detail.  However, they did acknowledge that small samples may bias

parameter estimates and statistical tests in mixed models.  They claimed that in their field of

psychiatry, larger sample sizes and missing data are common.

Muller and Stewart (2006) demonstrated that MULTIREP and UNIREP are special

cases of mixed models.  An oversimplification of their explanation is that MULTIREP

techniques require ^3 œ ! V with an unstructured covariance matrix, .  Traditionally,3

UNIREP techniques  with a spherical or near spherical covariance matrixrequire ^3 œ !

required.

1.6  A History of UNIREP Tests

This section contains a review of work performed towards the development of

UNIREP tests.  The the basic theory behind the methods used and reviewed papers provide 

the theory developed in Chapters 2-4 of this paper.  Also, the reasons for the development

of the Huynh-Feldt sphericity estimator are discussed.  More relevant to the current

research, the need for a more general Huynh-Feldt sphericity estimator is introduced.

Box (1954a, b) described consequences of violating the assumption of homogeneity

within subjects using the uncorrected UNIREP test.  He began by noting that any real

quadratic form of rank , , is distributed as a< Ÿ : U œ D ED Dw , such that µ ßa:� �! D
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weighted finite sum of chi-square random variables , such.  In particular, U œ Ð"Ñ�
4œ"

<

4
#- ;

that each  is independent and the 's are the  non-zero eigenvalues of ; -#
4 < DE.  From this,

he was able to calculate exactly a ratio of quadratic forms,

X œ U ÎU œ Ð Ñ Ð Ñ" # 4 4

4œ" 4œ"

< <
w # w #
4 4– — – —� �„

w

w- ; / - ; / . (8)

He showed that the UNIREP test statistic,  could be X œ Ò Ð ÑÎ+ÓÎÒ Ð ÑÓs s
? ‡tr tr ,? D approximated

with an  distribution under the null hypothesis, J J +, ß +,� �% / %/ , even if sphericity was not

met.

Geisser and Greenhouse (1958) offered an extension to Box (1954a, b) for UNIREP

test statistics.  They provided bounds for , which are independent of % the elements of the

covariance matrix, , such that rank"Î, Ÿ Ÿ " , œ% � �Y .  When sphericity came into

question, they recommended either using the lower bound as an estimate of , thus%

X µ? J +ß +� �// ,  maximum likelihood estimator (MLE), or the

%s œ
Ð Ñs

, Ð Ñs

tr

tr
 , (9)

#
‡

‡

#

D

D

now known as the Geisser-Greenhouse estimator.  Use of the former, known as the Box

conservative estimator, yields conservative results.

Greenhouse and Geisser (1959) acknowledged that when sphericity was not met, most

had approached the problem using MULTIREP techniques.  However, they recommended

using approximate  distributions instead, J J +, ß +,� �% / %/ , because they were easier to

compute than the MULTIREP statistics.  Based on the bounds on  presented by Geisser%

and Greenhouse (1958), clearly  degrees of freedom for the approximate tests.  The% reduces

measure of sphericity, , is a function of the population covariance matrix.  However, the%

population covariance matrix is rarely known and is instead estimated from the sample.
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Greenhouse and Geisser (1959) suggested using the conservative test offered in their 1958

paper, unless the covariance matrix is estimated with a large number of degrees of freedom.

Cole and Grizzle (1966)  to test the hypothesis , discussed known methods D D" œ #

thus allowing one to test .  Furthermore, they confirmed the work and conclusionssphericity

offered by Geisser and Greenhouse (1958, 1959).  Cole and Grizzle (1966) also compared

the use of MULTIREP and UNIREP tests when was not met, or not known to besphericity 

met.  When they wrote their paper, only the uncorrected and Box conservative UNIREP

tests were used in common practice.  Cole and Grizzle (1966) noted that there is some loss

of power when using MULTIREP techniques, and that the loss of power is most obvious for

the tests for the single degree of freedom contrasts.  The reasoning behind such a loss in

power begins with the realization that each test essentially consists of a comparison between

a single squared deviation and an estimate of a variance.  The assumptions required for the

UNIREP analysis allow this estimate to be based on more degrees of freedom than its

counterpart.  Cole and Grizzle (1966) did point out that in the case of + œ ", each

MULTIREP test is equivalent, and in the case of , UNIREP and MULTIREP tests are, œ "

equivalent.

Huynh and Feldt (1970) discussed the necessary conditions for the UNIREP tests to be

distributed .  Previous work had already shown that if J the outcomes were normally

distributed and the covariance was compound symmetric, then the mean square ratios for

the treatment, group and treatment by group interaction followed exact  distributions in aJ

two-way ANOVA.  The distributions are central if the null hypothesis is true.  Huynh and

Feldt (1970) showed that these ratios were distributed  under more general conditions forJ

which compound symmetry represented a specific case.  The condition they presented as

necessary was called sphericity.  This condition is met if and only if the covariance matrix

of  is , i.e. proportional to an identity matrix.  More] Y] Y Y M‡ ‡ ,
wœ œ œD D -

generally, stating that  satisfies sphericity for a comparison with  degrees of freedomD ,
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amounts to putting  linear constraints among the variances and covariancesc d� �, , � " Î# � "

of .  They suggested using Mauchly's sphericity test to check this assumption, a strategyD

later determined to be a poor approach.

Rouanet and Lepine (1970) compared MULTIREP and UNIREP tests, and, similar to

many authors before them, advocated UNIREP tests because generallythey saw them as 

more powerful.  However, this is not always the case because, for min� �:ß = / " without

sphericity being met, .  In this case, the choice of there is no uniformly most powerful test

test depends on the alternative and the degree to which sphericity is not met.  Rouanet and

Lepine (1970) They agreed withalso examined the requirements for use of UNIREP tests.  

Huynh and Feldt (1970) by claiming that  was merely a compound symmetry sufficient

requirement, and that sphericity was the requirementnecessary .  Rouanet and Lepine (1970)

also recommended Mauchly's sphericity test to check this assumption, but warned that tests

about variances and covariances are known to be sensitive to nonnormality.  They suggested

that normality should be checked.

In his 1972 paper, Davidson offered his thoughts on choices among MULTIREP and

UNIREP tests.  Still, only evaluating the uncorrected and Box conservative UNIREP tests,

Davidson (1972) recommended UNIREP tests over for small sample sizes,MULTIREP  due

to the fact that the latter were much less powerful in the cases he considered.  However, for

large sample sizes he the standard test ofadvocated MULTIREP tests.  He reasoned that 

sphericity had acceptable power only when the MULTIREP tests of the hypothesis was

essentially as powerful as the UNIREP.  When one does not concern oneselfuncorrected 

with checking sphericity, practice suggests use of the Box conservative test, which he

showed to perform from somewhat better to much worse than the MULTIREP tests.  The

choice between the Box conservative and the MULTIREP tests depended mostly on the

extent to which the covariance matrix was spherical.  Of the tests considered in his paper,

he concluded that if the covariance was not known ahead of time, only the Box conservative
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and the MULTIREP tests allowed the researcher to control the type I error.  Today, testing

sphericity with Mauchly's test is not necessary due to the abilities of the Geisser-

Greenhouse and Huynh-Feldt tests to control test size despite covariance structure.

By the mid 1970's, the Box conservative test, using , and the Geisser-% œ "Î,

Greenhouse test, using , were both used in practice.  However, Huynh and Feldt (1976) and%s

Huynh (1978) cited examples where  might be seriously biased if the population sphericity%s

was approximately .  This bias resulted in an overcorrection of the degrees of freedom!Þ(&

and implied a more stringent significance level than the nominal level desired.  Huynh and

Feldt (1976) responded to this problem by introducing a new estimator for sphericity.

Under the assumption of multivariate normality,  is the MLE for .  The MLE is% %s

biased when the population is homogeneous.  By calculating expected values of the

numerator and denominator of the ratio Huynh and Feldt (1976)% œ Ò Ð ÑÓÎÒ, Ð ÑÓtr tr , #
‡ ‡

#
D D

developed, what they claimed to be, a ratio of unbiased estimators,

% % / % % %ë ëœ R, � # Î , � ,  s s s� � c d� �/ .  Huynh and Feldt (1976) determined that  with equality if

%s œ "Î,.  The difference between the two estimates decreased as sample size increased.

Huynh and Feldt (1976) further noted that their estimate occasionally exceeded 1, and

should be truncated to 1  in such cases.  Their simulations showed that while  was a lessÞ! s%

biased estimator than  when ,  was less biased when .% % % %ë ëŸ !Þ& / !Þ(&

In Chapter 2, the Huynh-Feldt estimator is shown to be a ratio of unbiased estimators

only for the special case of rank of  equal to .  did not derive an\ " Huynh and Feldt (1976) 

estimator that may be used for any rank of .  As a result, the Huynh-Feldt test\  and power

calculation may be biased when .rank of \ is greater than "

Huynh and Mandeville (1979) reviewed past works on the condition of sphericity

citing Huynh and Feldt (1970) and Rouanet and Lepine (1970) as the authors who showed

that compound symmetry is a sufficient property, but not necessary.  In general, Huynh and
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Mandeville (1979) concurred with the need for sphericity to be met and noted that this

condition is not based on the orthonormal variables or on the repeated measures.

Wallenstein and Fleiss (1979) took a unique approach to specifying a lower limit for %

by considering specific covariance structures, such as Geisser and Greenhouse (1958)AR .  "

showed a lower bound for  to be , for the general case.  Wallenstein and Fleiss (1979)% "Î,

showed that when the covariance structure is AR , the " œ œmin� �% %lim
3Ä"

c d � �� �& : � " Î #: � (#   "Î, : / # : œ # : when  with equality at .  Here,  is defined as the

number of responses per subject and  for their examples.  They, œ rank� �Y œ � �: � "

further showed that this bound applies to the following covariance structures as well:

 1)  uch that  is AR1 and  represents the subject effectD œ �5 5 5, ,
# w # #

/� �" " W W, s

variance with the subject effect assumed to be ,R !ß� �5,
#

 2)  such that  is AR1 and  represents the subject effectD œ �5 5 5, ,
# # #

/� �W M W, 

variance with the subject effect assumed to be .  The latter is more appropriate inR !ß� �5,
#

cases in which time points are not as close to one another.

Huynh and Feldt (1980) took a closer look at the theoretical derivation of the UNIREP

J  tests, and considered the ramifications for various assumption violations.  They noted

that the test of interaction is more vulnerable to conditions of covariance heterogeneity than

the tests for main effects.  Also, they observed that the traditional  test in repeatedJ

measures designs with identical covariance matrices will err on the liberal side (i.e. show a

size larger than the nominal test size), especially when  and  are small.  They further% R

gave examples of how high correlation results in smaller residual error, and thus greater

power for the test when sphericity was not met.

O'Brien and Kaiser (1985) suggested MULTIREP over the uncorrected UNIREP test in

nearly all cases.  They claimed that repeated measures are rarely independent and that the

conditions implied as necessary by the uncorrected UNIREP test are too severe.

Additionally, they claimed that pretesting with Mauchly's sphericity test had the following
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shortcomings:  1) if there was insufficient sample size, sphericity may be accepted, even if

not warranted, and 2) Mauchly's test was very sensitive to violations of normality.

Specifically, they claimed that Mauchly's test tended to accept sphericity too often for light

tailed distributions and rejected sphericity for heavy tailed distributions.  Huynh and

Mandeville (1979) showed that these tendencies were amplified by increasing sample size.

O'Brien and Kaiser (1985) believed that so much work was required for testing sphericity,

that simply moving to the MULTIREP tests was more logical, despite the lost power.

Today, there is no need to test sphericity because the Geisser-Greenhouse and Huynh-Feldt

tests are capable of controlling test size, even when sphericity is not met.

O'Brien and Kaiser (1985) evaluated the results of Davidson (1972) and Huynh (1978),

among others, who had compared the power of the Box conservative UNIREP test to

MULTIREP tests.  Overall, O'Brien and Kaiser (1985) found that no procedure was always,

or even usually, the most powerful.

Catellier and Muller (2000) developed hypothesis tests for Gaussian repeated measures

with missing data, accurate in small samples.  Along with describing analogs of several 

MULTIREP tests, they developed techniques for the Geisser-Greenhouse test.  When

compared to the now popularized mixed model techniques, they showed that for small

samples, even with no missing data, the mixed model had inflated type I error rates.

Meanwhile, the UNIREP and MULTIREP tests controlled the type I error rates at or below

the nominal rate.  Thus, the approximate  tests were essentially unbiased for completeJ

data.

Coffey and Muller (2003) extended their work on the general linear univariate model

for UNIREP, internal pilots to providing mostly approximate results.  They indicated that

UNIREP required complete and consistently timed data within-subject and did not allow for

repeated covariates.  Like Catellier and Muller (2000), Coffey and Muller (2003) preferred

UNIREP over mixed models, est size, when applicable, due to superior control of t
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especially in small samples.  They also noted that UNIREP power approximations, using

the Muller and Barton (1989) approximation (discussed in section 1.7), had had extensive

study, while power approximations for mixed models had not.

1.7  Power for UNIREP Tests

This section contains a review of work performed towards the development of power

calculations for UNIREP tests.  Specifically, the power approximations for UNIREP tests

developed by Muller and Barton (1989), and later improved upon by Muller (2007),et al. 

provide much of the background and distributional approximations needed for the

theoretical development of confidence intervals for power for UNIREP tests presented in

Chapter 4.  Additional background theory is reviewed in section 1.8:  Confidence Intervals

for Power.

Boik (1981) offered some basic work on power for UNIREP tests under nonsphericity.

He demonstrated that even small departures from sphericity could result in serious changes

to test size and power.  Boik (1981) cited various studies, including Huynh (1978), that had

shown that the Geisser-Greenhouse test slightly negatively biased (i.e. test size is lesswas 

than ), with the greatest bias with minimal departures from sphericity.  For these minimalα

departures, he suggested using Huynh-Feldt as a test that produces a test size closer to the

nominal  level.α

Muller and Barton (1989) offered more on the topic of power for UNIREP tests than

anyone before them.  They provided power equations for all four UNIREP tests:  1)  the

uncorrected (Box, 1954a, b), 2)  the Huynh-Feldt (1976), 3)  the Geisser-Greenhouse (1958,

1959), and 4)  the Box conservative (Geisser and Greenhouse, 1958), with sphericity

multipliers

Box GG HF UN .

"Î, Ÿ Ÿ Ÿ "s% %ë
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Muller and Barton (1989) noted that the UNIREP approach allows for fewer subjects

with equal power, ith sphericity met, when compared to the MULTIREP approach.w

Muller and Peterson (1984) had provided accurate power approximations for Wilks, Pillai-

Bartlett and Hotelling-Lawley tests.

As mentioned previously, the corrected tests decrease the degrees of freedom of the

approximate  distribution, and thus increase the critical value, leading to decreased power.J

The order of increasing critical value, decreasing test size (type I error rate) and decreasing

power is UN, HF, GG, Box.  In order to calculate power for all UNIREP tests using the

Muller-Barton approach, there is a need for a noncentral  distribution that can handleJ

fractional degrees of freedom.

Muller and Barton (1989) found that the agreement of the power calculations was

excellent with the biggest differences at  for the corrected tests, usually in small% œ "

samples. Obviously, the exact uncorrected test could be used here.  Without prior

knowledge of the sphericity, Muller and Barton (1989) suggested using the Geisser-

Greenhouse test because their simulations and examples showed acceptable type I error

control and maximization of power.

Muller and Benignus (1992) provided an informative review of the power methods for

univariate analysis, laying the groundwork for future developments in power for UNIREP

tests.  Muller (1992) evaluated the m Muller andet al. ultivariate power techniques given by 

Barton (1989) and Muller and Peterson (1984) for UNIREP and MULTIREP, respectively.

They emphasized the importance of power analysis choosing a study design and testing in 

strategy.  They described two possible mistakes that might occur if the power analysis and

data analysis were misaligned.  First, choosing a sample size too small would lead to a study

with inadequate sensitivity, and second, choosing a sample size too large would lead to

wasted resources.
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Muller and Peterson (1984) claimed that in order to calculate power for the

MULTIREP tests, only , , , , , and  need to be specified.  The methodα D \ F G Y  @!

produces exact results for min .  Power calculations for UNIREP tests are= œ +ß , œ "� �
quite similar.  If sphericity holds, the uncorrected UNIREP power is exact.  For the

corrected UNIREP tests, the power calculations are a simple extension, but approximate.

Muller (1992) showed that often there is no uniformly most powerful test, so theet al. 

choice of test depends on the alternative and the degree to which sphericity is not met.

Muller  (2007) discussed the advantages of UNIREP methods and disadvantageset al.

of mixed models in relation to imaging studies, focusing on how UNIREP controls test size

and offers better power methods than mixed models.  They suggested always using

UNIREP  over mixed models, when applicable.   or MULTIREP "Many applications with

correlated outcomes in medical imaging and other fields have simple properties which do

not require the generality of a mixed model."  In imaging studies, there are often repeated

measures with no missing or mistimed data and small sample sizes.

More relevant to this research, Muller  (2007) created a better UNIREP poweret al.

approximation.  Coffey and Muller (2003) gave cases where the Muller and Barton (1989)

approximations failed to provide even one digit of accuracy for the Geisser-Greenhouse

test.  Using the noncentral distribution function approximation presented by Kim et al.

(2006), Muller  (2007) were able to give second order approximations for theet al.

uncorrected and Box conservative tests, yielding exact power.  They also provided

approximate power for the Geisser-Greenhouse and Huynh-Feldt tests by combining the

CDF approximation with approximations for the expected degrees of freedom.  They

showed that the test statistic could be approximated by a noncentral  distribution, suchJ

that



25

Pr Pre f � �œ � �� �X Ÿ > ¸ Ÿ > œ J >à ß ß
C Î +,

C Î ,
? J " #

" "

# # /

-

- /
/ / =  , (10)

with , , tr  and tr .  For the sake of clarityC µ ß C µ Ð Ñ ¸ C Ð Ñ ¸ Cs s
" " # # " " ‡ # #

# #; / = ; / - -� � � � ? D

of presentation, the right side of equation 10 is shown simplified by way of Lemma 4.2 in

section 4.3 of this paper.  Through simulations, they demonstrated that the new power

approximations eliminated most inaccuracies in existing methods for all four UNIREP tests.

1.8  Confidence Intervals for Power

When designing a study, accurate power analysis is essential to enhancing study design

efficiency.  Often the variance is estimated in this analysis, and power becomes a random

variable.  Providing confidence intervals for these random power values would be useful in

any study design.  A lower bound for power would allow stating that a study has power of at

least " " to detect an effect, with a specified confidence.T

This section contains a review of work performed towards the development of power

confidence intervals.  Much of the theoretical background needed for the development of

confidence intervals for power for UNIREP tests presented in Chapter 4 come from three

papers.  Taylor and Muller (1995, discussed below) developed exact power confidence

intervals for estimated variance and known means in the univariate case.  Muller and Barton

(1989) and Muller  (2007) provided the methods for power calculations in the UNIREPet al.

setting.  These methods are discussed in section 1.7.

Dudewicz (1972) was one of the first to discuss methods for confidence intervals for

power in a univariate setting He suggested substituting confidence bounds for.  approximate 

5# into power calculations for a  test.  This approach resulted in approximate confidence>

limits for power.  Although he did not present any asymptotic or simulation evidence as to

the accuracy of his method, he claimed the technique was quite good, especially for small

samples.  Venables (1975) discussed confidence intervals for noncentrality in noncentral

chi-square and  distributions.J
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Taylor and Muller (1995) developed exact confidence intervals for power of the

univariate linear model with estimated variance and fixed mean.  They began in much the

same way as implies that power for aDudewicz (1972), with an estimated variance, which 

fixed sample size must be recognized as a random variable.  The univariate test statistic is

J œ
W Ð ß RÑÎ+s

W Î
9,=

L

I /

)

/
 , (11)

such that  is a function of sample size through .  Gaussian theory leads toWL \

/ 5

5
; /

/
#

#
#

/
s

µ � � . (12)

Thus, a confidence interval for  is found like so:5#

Pr Ÿ� � � �5 / 5 /

α / α /
5 α α

s s

- " � l - l
� � œ " � �

# #
/ /

-<3> -Y / -<3> -P /

#
P Y  , (13)

such that  is the confidence coefficient and quantile for� � � �" � � - l œα α α / α-P -Y -<3> -P / -P

central .  Similarly for .  In the univariate case, the expression for; / α#
/ -Y� � " �

noncentrality is .  Thus, the confidence interval for noncentrality is= 5œ W Î� �L
#

Prœ � � � � � � � �W - l W - " � l

s s
� � œ " � �

L -<3> -P / L -<3> -Y /
# #

/ /
P Y

  
 , (14)

α / α /

5 / 5 /
= α α

such that  and= α /s œ - l † W ß R ÎWP -<3> -P #/ L I� � c d� �)

= α / 5 /s œ - " � l † W ß R ÎW W œ sY -<3> -Y #/ L I I /
#� � c d� �) , and .  These bounds provide exact

confidence intervals for , such that .= =! Ÿ Ÿ ∞

Due to the strict monotone dependence of the noncentral  distribution function onJ

noncentrality, an exact confidence interval for power follows from an exact confidence

interval for .  Thus, exact power confidence limits are=

T œ " � J 0 " � l+ß ßs sP J -<3> > / Pc d� �α / = (15)
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and

T œ " � J 0 " � l+ß ßs sY J -<3> > / Yc d� �α / =  . (16)

Taylor and Muller (1995) also demonstrated how to construct one-sided confidence

intervals for power using the same method.  Additionally, they broadened their technique to

allow for the development of exact confidence regions for the whole of the power curve.

Muller and Fetterman (2002) described how to use existing power software to compute

exact power confidence intervals in univariate analyses, as presented by Taylor and Muller

(1995).

Taylor and Muller (1996) extended their 1995 paper by discussing confidence intervals

for univariate power when both the variance and mean are estimated.  They described how

power calculations may result in biased estimators, but unbiased bounds.  No research has

been published with respect to power confidence intervals for UNIREP, despite the

commonness of such designs in practice.



Chapter 2

A More General Version of the

Huynh-Feldt Sphericity Estimator

2.1  Motivation

When sphericity is not met, Box (1954a, b) showed that the UNIREP test statistic

under the null could be approximately distributed as an  with reduced degrees of freedom,J

J � �+, ß ,% / %/ .  The reduction comes from various estimators of , a measure of sphericity%

that ranges from , which are used as degrees of freedom multipliers Geisser and"Î, " to .  

Greenhouse (1958) offered the Box conservative estimate, , and the maximum% œ "Î,

likelihood estimator, tr tr , now known as the Geisser-Greenhouse%s œ Ò Ð ÑÓÎÒ, Ð ÑÓs s#
‡ ‡

#
D D

estimator, as degrees of freedom multipliers.

In their 1976 paper, Huynh and Feldt described examples of when the Geisser-

Greenhouse estimator was seriously biased, most often in near  populations.ly spherical

They found that, in such cases, the estimator overcorrected the degrees of freedom, resulting

in a more stringent significance level than the nominal level desired.  Huynh and Feldt

(1976) responded with an estimator of  which they showed through examples to be less%

biased and less dependent on large sample sizes than the Geisser-Greenhouse estimator

when the population covariance deviated only moderately from sphericity.  They claimed

that their estimator, , was a ratio of unbiased estimators, and% % / %ë œ R, � # Î , � ,s s� � c d� �/

showed that  with equality if .  However, their claim holds true only if % % %ë   œs s "Î, rank of

\ is equal to , resulting in"   error degrees of freedom between subjects. They// œ R � "   

further illustrated through simulations that, while  is a better estimator of the population%s

sphericity parameter than  when ,  is less biased when .% % % %ë ëŸ !Þ& / !Þ(&
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The Huynh-Feldt estimator will be shown to be a ratio of unbiased estimators only for

the special case of rank of  equal to .  As a result, the Huynh-Feldt test and power\ "

calculation may be biased in cases with rank of  greater than .  An estimator composed\ "

of a ratio of unbiased estimators for any rank of will be presented and evaluated for a\ 

wide range of simulations.  For the sake of clarity, the Huynh-Feldt estimator, %ë, will hence

forth be referred to as .%ëLJ

2.2  Notation and Known Results

The estimated covariance matrix among response variables is

Ds œ Î] \ \ \ \ ]w w w
R

�c d� �M � //, and the estimated covariance matrix among

transformed (hypothesis) variables is .  Also, , D D Ds s sœ µ ß ß‡ ‡
wY Y W !œ / j // , / ‡� �D

with , , the eigenvalues of   - D -� �, ‚ " ‡ ‡ ‡
w. If tr  and tr ,7 7" #

# #œ Ð Ñ œ œ Ð Ñ œD D - -� �",
w #

then the population sphericity parameter can be written as a ratio of two parameters,

% œ Ò œtr tr .  If tr tr  and# # # # #
" # " /Ð ÑÓÎÒ, Ð ÑÓ Î , œ Ð Ñ œ Ð ÑÎsD D‡ ‡‡ 7 7 7 /ë� � D W

7 /ë#
# # #

/œ Ð Ñ œ Ð ÑÎstr tr , maximum likelihood estimation gives the Geisser-GreenhouseD‡ W

estimator as tr tr .  Note that while %s œ Ò Ð ÑÓÎÒ, Ð ÑÓ œ Î ,s s s# #
" #D D D‡ ‡‡ 7 7ë ë� �  is an unbiased

estimator of ,  are not unbiased estimators of .  D‡ 7 7 7 7ë ë" # " # and  and , respectively For

> œ Ð Ñ œ" "
# #

/tr , Muller  (2007, Appendix A) provedW / 7ë et al.

E ‘ � �tr tr tr (17)# # # #
/ / ‡‡ /Ð Ñl   , œ # Ð Ñ �W / / /D D

and, for tr ,> œ Ð Ñ œ# #
# #

/W / 7ë

E ‘ � � � �tr tr tr  . (18)Ð Ñl   , œ � " Ð Ñ �W# # #
/ / / / ‡‡/ / / /D D

2.3  A Rank-Adjusted Huynh-Feldt Sphericity Estimator

Based on the moments presented in the previous section, unbiased estimators for both

7 7 7ë" # " and  may be derived.  The unbiased estimators are functions of the biased estimators 

and , and are introduced in Lemma .1 below.  In Lemma .2, an approximately unbiased7ë# 2 2
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sphericity estimator, , is described for any as the ratio of the two unbiased, but%ë< rank of  \

correlated, estimators for  and .7 7" #

Lemma 2 1.  Unbiased estimators for  and  are7 7" #œ œtr tr# #
‡ ‡Ð ÐD DÑ Ñ

7 / / / /

7 / 7 / /ë ë

7 / / / /

/ 7 / 7ë ë

s œ Ò> � # � " > Ó Ö" � # � " ×

œ Ò � # � " ÓÖ" � # � " ×

s œ > � > � " � #

œ �

" " / # / /
�" �"

/
�# �"

" / # / /
�" �" �"

# / # " / / /
�"

/
#

# / "

� � c d� �
� � c d� �

� �e fc d� �ˆ ‰c d� �/ // /
�"� " � #  .

(19)

(20)

Lemma 2 2.  A ratio estimating  in terms of correlated, but unbiased, estimators is%

%ë< œ
,

œ
�

, �

7

7

s

s

"

#� �/ %

/ %
/

/

� " , #s

,s� �  .

(21)

Corollary 2 3.  If , Huynh and Feldtrank , then the estimator proposed by � �\ œ " % %ë ë< LJœ

(1976).

Huynh and Feldt  noted cases in which their estimator exceeded a value of . (1976) "Þ!

In turn, they suggested using a truncated estimator, .  Theirs is a special case ofmin� �%ëLJ ß "

the newly proposed rank-adjusted estimator, so a similar truncation must be performed.

Thus, an approximately unbiased estimator derived from a ratio of unbiased estimators for

any rank of  is\

%ë< œ ß "
�

, �
min” •� �� �/ %

/ %
/

/

� " , #s

,s
 . (22)

Obviously, , with equality of the three estimators if and only if %s Ÿ Ÿ œs% % %ë< LJë "Î, and

rank of  is equal to .  Equality of  and \ " s% % % % %ë ë< < LJ exists if  and s œ "Î,, and equality of ë

exists if rank of  is equal to .\ "
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2.4  Simulations

The new rank-adjusted approximately unbiased sphericity estimator was evaluated for

a wide range of simulations.  All of the simulations considered the condition of rank of \

greater than   The simulated realizations consisted of  repeated measures,  the"Þ : œ & R

sample size of ,  and , and  the rank of  equal to ,  and , in the model"' $# %) ; % ) "'\

] \F Iœ �
R ‚ & R ‚ ; ‚ & R ‚ &

 .

( ) ( ) ( )
(23)

Population covariance matrices were chosen to provide specific population sphericity

values, .  Specific design matrices, , were defined.% − !Þ#)#ß !Þ&!&ß !Þ(#!ß "Þ!!e f \

Matrices of regression coefficients, , were defined as , , to illustrate the null case.F ! � �; ‚ &

Pseudo-random realizations of the error matrix, , were generated, and both theI

Huynh-Feldt and new rank-adjusted sphericity estimates were calculated and tabulated for

&!! !!!,  replications per condition.  This number of replications was chosen to ensure a

standard error of observed mean estimates less than or equal to , nearly guaranteeing!Þ!!!$

$ digits of accuracy.  The calculated sphericity estimates were then compared to the

population sphericity values.  Appendix C contains a more detailed description of the

simulation parameters.  All simulations were conducted in SAS/IML (SAS 9.1, SAS

Institute, 2003).  Software that performs a wide variety of General Linear Multivariate

Model computations called LINMOD 3.3 (http://ehpr.ufl.edu/muller/) was modified to

include the rank-adjusted estimator and test.  The modified version was used in all

simulations and will be made available soon.

In Table 2.1, the mean and maximum absolute deviations of the Huynh-Feldt and rank-

adjusted sphericity estimates from the population sphericity values are compared.  These

deviations have been averaged over all sample sizes and  considered for three ofranks of \

the four predetermined population sphericity values spanning the range of possible values.
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The out performance of the Huynh-Feldt sphericity estimate by the rank-adjusted in terms

of accuracy is immediately evident, for each of the population sphericity values.

Table 2.1. Mean / (Max) Absolute Deviations 

of HF and Rank-Adjusted Sphericity Estimates averaged over

 an

� �Observed Population�

R d Rank , Standard Error of Observed 0.0003.

HF Rank-Adjusted

� �\ Ÿ

% % %ë ë<
0.282 0.131 / (0.314) 0.008 / (0.022)

0.505 0.229 / (0.447) 0.049 / (0.111)

0.720 0.189 / (0.279) 0.028 / (0.059)

In Tables 2.2-2.5, mean deviations between the Huynh-Feldt, rank-adjusted, and

Geisser-Greenhouse sphericity estimates and the four predetermined population sphericity

values are presented for the various sample sizes and  considered.  For everyranks of \

case in Table 2.2 with population sphericity of , the rank-adjusted sphericity estimates!Þ#)#

better estimated the population sphericity value than the Huynh-Feldt estimates.  The

accuracy of the rank-adjusted estimates compared to those of the Huynh-Feldt seems to

have improved as the sample size and  increased.  For the smallest sample sizerank of \

and smallest  considered, and , the deviation between therank of rank\ \R œ "' %� � œ

Huynh-Feldt estimate and the population sphericity value was approximately  times that of(

the deviation between the rank-adjusted estimate and the population sphericity value.  This

difference in magnitude increased to approximately  for the largest sample size and the$$

largest  considered,  and .rank of rank\ \R œ %) "'� � œ
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Table 2.2. Mean Deviations ( ) of Sphericity Estimates

for the HF, Rank-Adjusted and GG with Population 0.282

Observed Population�
% œ ,

Standard Error of Observed 0.0003.

HF Rank-Adj GG

Rank  s.d.  s.d.  s.d.

Ÿ

R \ s� � � � � � � �% % %ë ë<
16 4 0.092 0.033 0.013 0.027 0.003 0.020

8 0.314

� � � � � �� � � � � �
� � � � � �� � � � � �� � � �

0.072 0.022 0.044 0.005 0.028

32 4 0.037 0.014 0.005 0.013 0.001 0.011

8 0.093 0.018 0.006 0.014 0.001 0.012

16 0.296 0.037 0.009 0.020 0.002 0.016

48 4 0.023 0.010 0.003 0.009 0.001 0.009

8 0.054 0.011 0.003 0.010 0.001 0.009

16 0.142 0.017 0.004 0.011 0.001 0.

� �
� � � � � �� � � � � �� � � � � �010

In general, the same trends were also observed in Tables 2.3 and 2.4 for the population

sphericity values of  and , respectively.  For every case considered, the rank-!Þ&!& !Þ(#!

adjusted sphericity estimates better estimated the population sphericity value than the

Huynh-Feldt estimates, and the accuracy of the rank-adjusted estimates compared to those

of the Huynh-Feldt seems to have improved as  increased.rank of \

Table 2.3. Mean Deviations ( ) of Sphericity Estimates

for the HF, Rank-Adjusted and GG with Population 0.505

Observed Population�
% œ ,

Standard Error of Observed 0.0003.

HF Rank-Adj GG

Rank  s.d.  s.d.  s.d.

Ÿ

R \ s� � � � � � � �% % %ë ë<
16 4 0.212 0.160 0.078 0.150 0.019 0.098

8 0.43

� � � � � ��
4 0.096 0.111 0.185 0.034 0.104

32 4 0.091 0.099 0.034 0.090 0.006 0.074

8 0.196 0.120 0.039 0.098 0.007 0.079

16 0.446 0.076 0.0

� � � � � �
� � � � � �� � � � � �� �

�

�
�

59 0.127 0.013 0.091

48 4 0.057 0.073 0.021 0.068 0.003 0.061

8 0.116 0.085 0.023 0.072 0.004 0.063

16 0.276 0.109 0.029 0.083 0

� � � �
� � � � � �� � � � � �� � � �

�

�
�
� .005 0.070� �
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Table 2.4. Mean Deviations ( ) of Sphericity Estimates

for the HF, Rank-Adjusted and GG with Population 0.720

Observed Population�
% œ ,

Standard Error of Observed 0.0003.

HF Rank-Adj GG

Rank    

Ÿ

R \ s� � % % %ë ë� � � � � �s.d. s.d. s.d.<

16 4 0.186 0.112 0.045 0.134 0.118 0.086

8 0.27

� � � � � ��
2 0.033 0.059 0.163 0.161 0.093

32 4 0.097 0.088 0.020 0.081 0.057 0.065

8 0.210 0.080 0.023 0.089 0.066 0.069

16 0.279 0.010 0.0

� � � � � �
� � � � � �� � � � � �� �

�

�
�

35 0.114 0.093 0.079

48 4 0.062 0.066 0.012 0.062 0.038 0.053

8 0.140 0.074 0.013 0.066 0.041 0.056

16 0.265 0.037 0.017 0.075 0

� � � �
� � � � � �� � � � � �� � � �

�

�
�
� .051 0.061� �

The Geisser-Greenhouse estimates are also presented in these tables in an attempt to

demonstrate how well the new rank-adjusted estimator compares to one whose bias

spawned the work of Huynh and Feldt .  In general, the Geisser-Greenhouse (1976)

estimates seem to have better approximated the population sphericity values for the smaller

values.  However, as Huynh and Feldt  had observed, the accuracy of the Geisser- (1976)

Greenhouse estimates began to deteriorate as population sphericity increased.  In the case of

population sphericity of , the rank-adjusted sphericity estimates seem to have better!Þ(#!

approximated the population sphericity values than either of its two competitors.

Uniformly, both the Huynh-Feldt and new rank-adjusted sphericity estimators appear

to have been biased high for population sphericity values of ,  and .  The!Þ#)# !Þ&!& !Þ(#!

Geisser-Greenhouse estimator seems to have been biased high when the population

sphericity value was low, as evidenced by the results in Table 2.1 with population sphericity

of .  The bias became low when the population sphericity value increased, as!Þ#)#

evidenced by the results in Tables 2.2 and 2.3, with population sphericity values of !Þ&!&

and , respectively.!Þ(#!
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In Table 2.5, the mean deviations between the Huynh-Feldt, rank-adjusted, and

Geisser-Greenhouse sphericity estimates and the population sphericity value of  are"Þ!!

presented for the various sample sizes and  considered.  This table illustrates aranks of \

case in which a researcher guesses incorrectly at the population sphericity and uses an

approximate UNIREP test rather than the uncorrected test.  In this case, the uncorrected

tests would be uniformly most powerful among similarly invariant tests, and exact size

alpha.  In this case, obviously all sphericity estimators besides that of the uncorrected will

be biased low.  Of those examined here, the order of the sphericity estimators remain

%s Ÿ Ÿ% %ë< LJë , which implies the Geisser-Greenhouse estimator will be most biased,

followed by the rank-adjusted and the Huynh-Feldt.  When the researcher does guess

incorrectly about a spherical population, the rank-adjusted sphericity estimator still

performs well.  The largest deviation between the estimate and the population sphericity of

"Þ!! �!Þ!'* was  for those cases considered.  The biases seem to have improved as sample

size increased and  decreased.rank of \

Table 2.5. Mean Deviations ( ) of Sphericity Estimates

for the HF, Rank-Adjusted and GG with Population 1.00,

Observed Population�
% œ

Standard Error of Observed 0.0003.

HF Rank-Adj GG

Rank  s.d.  s.d.  s.d.

Ÿ

R \ s� � � � � � � �% %ë ë< %
16 4 0.007 0.030 0.051 0.082 0.255 0.081

8 3.

� � �

�

� � � � � �
0 10 0.006 0.069 0.108 0.333 0.092

32 4 0.004 0.017 0.025 0.043 0.133 0.052

8 2.0 10 0.004 0.029 0.049 0.151 0.057

16 4

‚ � �

� � �

� ‚ � �

�

�%

�%

� � � � � �
� � � � � �� � � � � �

.7 10 0.000 0.041 0.067 0.207 0.072

48 4 0.003 0.012 0.017 0.029 0.090 0.037

8 2.0 10 0.003 0.019 0.032 0.098 0.040

16

‚ � �

� � �

� ‚ � �

�

�(

�%

� � � � � �
� � � � � �� � � � � �

9.4 10 0.000 0.023 0.038 0.119 0.047‚ � ��( � � � � � �
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As described in section 2.3, both the Huynh-Feldt and rank-adjusted sphericity

estimators are truncated when their estimates exceed a value of .  The estimates are"Þ!

truncated to the maximum sphericity estimate value, .  In Table 2.6, the proportions of"Þ!

the ,  observed Huynh-Feldt and rank-adjusted sphericity estimates that were&!! !!!

truncated are shown for each sample size,  and population sphericity valuerank of \

considered.  As expected, virtually none of the estimates for the lowest population

sphericity value considered were in need of truncation.  As the population sphericity value

increased, the need for truncation of both the Huynh-Feldt and rank-adjusted sphericity

estimates increased as well.  The Huynh-Feldt estimates were truncated much more

frequently than the rank-adjusted estimates.  The need for truncation of both estimators

increased as sample size decreased and the  increased.  However, the proportionrank of \

of truncations for the rank-adjusted estimator was much less affected by sample size and the

rank of \ than was the proportion of truncations for the Huynh-Feldt estimator.

Table 2.6. Proportions 100 of 500,000 Observed HF and Rank-Adjusted

Sphericity Estimates Truncated to 1.0 for Sample Sizes,

Ran

� �‚  

k  and Population Sphericities Considered.

0.282 0.505 0.720 1.00

Rank HF RA HF RA HF RA HF RA

� �

� �

\

œ œ œ œ

R \

% % % %

16 4 0.0 0.0   9.9 1.8 39.3   6.4   92.1 56.3

8 0.5 0.0 60.7 6.4 92.7 15.5   99.6 56.4

32 4 0.0 0.0   0.1 0.0   2.3   0.1   91.5 56.2

8 0.0 0.0   2.6 0.0 35.1   0.3   99.4 56.2

16 0.0 0.0 59.2 0.5 98.4   2.4 100.0 56.3

48 4 0.0 0.0   0.0 0.0   0.1   0.0   91.3 56.2

8 0.0 0.0   0.0 0.0   3.5   0.0   99.4 56.2

16 0.0 0.0   5.5 0.0 77.3   0.0 100.0 56.2

As noted earlier, the Huynh-Feldt estimate will always be greater than or equal to the

rank-adjusted estimate.  This relationship corresponds to greater power values for the

Huynh-Feldt test as compared to the rank-adjusted test, for a fixed  matrix of regressionF
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coefficients.  However, the greater power is a false power, purchased at the price of test size

inflation.  The uncorrected test will always have power values greater than or equal to the

power values of the three corrected test.  Yet, the uncorrected test is not used uniformly

throughout UNIREP analyses because this increased power also comes with increased type I

error rate.  With target test size, , of , Table 2.6 contains observed mean and predictedα !Þ!&

test sizes for a test of interaction for the Huynh-Feldt, the rank-adjusted and the Geisser-

Greenhouse tests.  Contrast matrices,  and , and  are defined in Appendix C.G Y @!

Pseudo-random realizations of the error matrix, , were generated and appropriate testI

statistics were calculated.  The observed mean test size for both the Huynh-Feldt and new

rank-adjusted tests were calculated and tabulated under the null for ,  replications per&!! !!!

condition.  The observed mean test size for each condition was the proportion of rejected

tests among ,  simulated realizations.  All calculations were performed in SAS/IML.&!! !!!

Observed test size values were computed using the modified version of LINMOD 3.3 for

the null case.  Predicted test size values were computed using a modified version of

POWERLIB 2.0 (http://ehpr.ufl.edu/muller/), a software that computes statistical power for

the General Linear Multivariate Model.  POWERLIB 2.0 was modified to include the rank-

adjusted test and will be made available soon.

In every case presented, with the exception of sphericity ( ), the observed mean% œ "

and predicted rank-adjusted tests achieve a test size closer to the target test size than the

corresponding Huynh-Feldt tests.  In addition, the average error is merely slightly

conservative for  for the observed mean rank-adjusted test.  The largest observed mean% œ "

and predicted Huynh-Feldt test sizes were  and , respectively.  The maximum!Þ"$% !Þ"#$

test sizes for the observed mean and predicted rank-adjusted test were only  and ,!Þ!(* !Þ!&!

respectively.  In general, the larger test sizes for both the Huynh-Feldt and rank-adjusted

tests were observed for mid-range population sphericity values.  Test sizes seemed to

increase with  and decrease with sample size.rank of \
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Table 2.7. Observed Mean and Predicted Interaction Test Size for Target 0.05

for the HF, Rank-Adjusted and GG, Standard Error o

α œ
f Observed 0.0003.

Degrees of freedom multipliers, ,  and , adjust for nonsphericity indexed by .

Observed Predicted

Rank

Ÿ
s

R

% % % %ë ëLJ <

� �\ % HF Rank-Adj GG HF Rank-Adj GG

16 4 0.282 0.075 0.056 0.053 0.068 0.050 0.048

0.505 0.084 0.068 0.054 0.068 0.050 0.040

0.720 0.071 0.059 0.040 0.068 0.050 0.034

1.00 0.047 0.044 0.029 0.050 0.050 0.029

8 0.282 0.134 0.064 0.056 0.123 0.050 0.047

0.505 0.112 0.079 0.051 0.117 0.050 0.034

0.720 0.082 0.065 0.036 0.082 0.050 0.027

1.00 0.052 0.046 0.024 0.050 0.050 0.021

32 4 0.282 0.062 0.055 0.054 0.057 0.050 0.049

0.505 0.064 0.057 0.052 0.057 0.050 0.045

0.720 0.062 0.055 0.047 0.058 0.050 0.043

1.00 0.049 0.047 0.039 0.050 0.050 0.040

8 0.282 0.076 0.054 0.053 0.072 0.050 0.049

0.505 0.085 0.064 0.056 0.072 0.050 0.044

0.720 0.075 0.057 0.046 0.072 0.050 0.041

1.00 0.050 0.048 0.037 0.050 0.050 0.037

16 0.282 0.128 0.057 0.054 0.123 0.050 0.048

0.505 0.118 0.071 0.057 0.120 0.050 0.041

0.720 0.082 0.060 0.043 0.082 0.050 0.036

1.00 0.050 0.046 0.032 0.050 0.050 0.032

48 4 0.282 0.056 0.051 0.050 0.054 0.050 0.050

0.505 0.063 0.058 0.055 0.055 0.050 0.047

0.720 0.059 0.054 0.049 0.055 0.050 0.045

1.00 0.047 0.046 0.041 0.050 0.050 0.043

8 0.282 0.068 0.055 0.055 0.063 0.050 0.049

0.505 0.072 0.060 0.056 0.063 0.050 0.046

0.720 0.068 0.056 0.047 0.063 0.050 0.044

1.00 0.049 0.047 0.047 0.050 0.050 0.042

16 0.282 0.087 0.053 0.052 0.086 0.050 0.049

0.505 0.098 0.063 0.057 0.086 0.050 0.045

0.720 0.082 0.057 0.049 0.080 0.050 0.043

1.00 0.048 0.046 0.038 0.050 0.050 0.040
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2.5 Conclusions

In UNIREP analyses, statisticians are rarely able to claim sphericity with confidence

unless much is known about the data beforehand.  As a result, approximate UNIREP tests,

such as the Geisser-Greenhouse and the Huynh-Feldt, are often employed.  To use these

tests, appropriate sphericity estimates are needed.  The Huynh-Feldt sphericity estimator

was developed in an attempt to correct for biases found with the Geisser-Greenhouse

estimator.  Huynh and Feldt  claimed that their estimator was a  (1976) ratio of unbiased

estimators.  They further asserted that their estimator was less biased and less dependent on

large sample sizes than the Geisser-Greenhouse estimator when the population covariance

deviated only moderately from sphericity.  As demonstrated in this paper, their claims are

only true for the special case of rank of  equal to .  The rank-adjusted estimator,\ "

however, is a ratio of unbiased estimators for any rank of , reducing to that of the Huynh-\

Feldt when rank of  is equal to .  In all situations in which use of an \ " approximate

UNIREP test would be called for, and for all sample sizes and all  greater than rank of \ "

considered, the rank-adjusted sphericity estimator better estimated the population sphericity

than the Huynh-Feldt.  This outcome was particularly true for larger .rank of \

Although both the rank-adjusted and Huynh-Feldt estimators seem to be biased high

when the population is not completely spherical, this bias for the rank-adjusted estimator

seems to be less than that of the Geisser-Greenhouse estimator as the population approaches

sphericity.  This trend is particularly obvious in the case of a spherical population, in which

a researcher guesses incorrectly at the population sphericity and uses an approximate

UNIREP test instead of using the uncorrected test.  The uncorrected test would be

uniformly most powerful among similarly invariant tests, and exact size alpha in the case of

a spherical population.

The Huynh-Feldt estimate will always be greater than or equal to that of the rank-

adjusted estimate.  This relationship results in greater power for the Huynh-Feldt test when
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compared to the rank-adjusted for a fixed  matrix of regression coefficients.  However,F

this increased power comes at a price.  The Huynh-Feldt test demonstrated inflated test size

for many of the cases considered in this paper.  In some cases, the simulated Huynh-Feldt

test reached a test size greater than double the target size.  The rank-adjusted test essentially

always controlled test size adequately.

Based on the results presented here, the new rank-adjusted sphericity estimator is

recommended to immediately replace the Huynh-Feldt estimator in all statistical software

that handles UNIREP analyses.  In all cases except for a spherical population, when an

approximate UNIREP test would not be called for, the rank-adjusted estimator far

outperformed that of the Huynh-Feldt.  Furthermore, its use is more theoretically in line

with the goals originally set forth by Huynh and Feldt . (1976)



Chapter 3

Approximate Power for a More General Version of the

Huynh-Feldt Test

3.1  Motivation

When sphericity is not met, Box (1954a, b) showed that the UNIREP test statistic

under the null could be approximately distributed as an  with reduced degrees of freedom,J

J +, ß +,� �% / %/ .  The reduction comes from various estimators of , a measure of sphericity,%

used as degrees of freedom multipliers Geisser and Greenhouse (1958) offered the Box.  

conservative estimate, , and the maximum likelihood estimator,% œ "Î,

%s œ Ò Ð ÑÓÎÒ, Ð ÑÓs str tr , now known as the Geisser-Greenhouse estimator, as degrees of#
‡ ‡

#
D D

freedom multipliers.

In their 1976 paper, Huynh and Feldt described examples in which the Geisser-

Greenhouse estimator was seriously biased, most often in nearly spherical populations.

They found that in such cases the estimator overcorrected the degrees of freedom, resulting

in a more stringent significance level than the nominal level desired.  Huynh and Feldt

(1976) responded with an estimator of , which they showed through examples to be less%

biased and less dependent on large sample sizes than the Geisser-Greenhouse estimator

when the population covariance deviated only moderately from sphericity.  They claimed

that their estimator, , was a ratio of unbiased estimators.  In% % / %ë œ R, � # Î , � ,s s� � c d� �/

Chapter 2, this claim was demonstrated to be false, except for the special case of rank of \

equal to .  A new " rank-adjusted approximately unbiased estimator, , was proposed and%ë<

shown to be a better estimator of the population sphericity parameter than the Huynh-Feldt
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estimator when Huynh-Feldt estimator rank of  is greater than , and equal to the when\ "

rank of  is equal to .\ "

A power approximation for the rank-adjusted test using the rank-adjusted sphericity

estimator will be proposed.  For practical research situations, this power approximation will

be shown to be as accurate as the Huynh-Feldt power approximation introduced by Muller

et al. (2007), which incorporates the Huynh-Feldt sphericity estimator.  Furthermore, the

rank-adjusted approximation will be shown to adequately control test size when rank of \

is greater than 1.  In comparison, the Huynh-Feldt approximation will be shown to result in

artificially inflated power and inflated test size when rank of  is greater than 1, \ thus

potentially biasing the study analysis.  The severity of the artificial inflation will be

examined.  The Huynh-Feldt estimator, % %ë ë, will hence forth be referred to as .LJ

3.2  Notation and Known Results

 Muller  (2007) introduced power approximations for all four UNIREP tests.et al.

Using simulations, they demonstrated that their power approximations eliminated most

inaccuracy present in existing methods.  Muller  (2007, Appendix A) showed that theet al.

UNIREP test statistic CDF could be expressed exactly for the Box conservative and the

uncorrected tests.  Due to their random critical values, the CDFs for the Geisser-Greenhouse

and Huynh-Feldt test statistics could only be approximated.  Muller  (2007) formulatedet al.

approximations for the expected values of both the Geisser-Greenhouse and Huynh-Feldt

sphericity estimators for use in power calculations.  Only their approximation of the

expected value of the Huynh-Feldt sphericity estimator, , for the Huynh-Feldt test isE� �%ëLJ

pertinent to this discussion, and only the power approximations presented in Muller et al.

(2007) will be considered here. 

Their power approximation for the Huynh-Feldt test uses an approximate value of

E Ec d c d� � � �> > ¸crit critHF  as the critical value, such that HF

J à +, ß , + ,J
�"

/c d" � α % %E E� � � � ë ëLJ LJ/ .  Here,  and  are the ranks of the between- and
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within-subject contrast matrices, G Y and , respectively, and // is the error degrees of

freedom , rank between subjects Muller  (2007) expressed the Huynh-// œ R � � �\ .  et al.  

Feldt estimator as , such that tr  and%ëLJ " # # " "
�" #œ , R> � #> Î > � > > œ Ð Ñs� � � �// D‡

> œ Ð Ñ . œ > � > .s
# / # "

# �"tr .  They showed that if , then a first order Taylor series for D‡ � �/

about the point  gives.!

E E� � � � � �˜ ™ ‘%ëLJ " # !
�" �" �#

! !¸ , R> � #> . �. . � .  . (24)

With  equal to tr , the Huynh-Feldt power approximation is of the form- � �D‡ Î,

T " �
Î

œ " � J J à à ßJ J
�"” •� �α % % % %

- %
E E� � � � � �

ë ëLJ LJ 8 .
8

† +,ß † , † +,ß † ,/ // /
tr

(25)
?

 ,

such that

%

%

8

#
‡ ‡

‡
#

‡
#

‡

‡
# 8

œ
Ð Ñ � # Ð Ñ Î+

, Ð Ñ � # Ð Î+Ñ

Ð Ñ

, Ð Ñ
œ l œ

tr tr tr

tr tr

tr

tr

(26)

(27)

D D ?

D D ?

D

D
?

� �c d
% %. œ ´!  .

The parameter  is the sphericity parameter under the nonnull case.  As depicted above in%8

equation ,  reduces to the familiar sphericity parameter under the null case.27 %8

In section 2.3, a rank-adjusted approximately unbiased estimator was introduced and

shown to better estimate the population sphericity parameter than the Huynh-Feldt estimator

in all cases except sphericity ( ).  In the spherical case, neither the Huynh-Feldt nor the% œ "

rank-adjusted tests would be considered.  The rank-adjusted estimator achieves what Huynh

and Feldt  had originally intended to accomplish.  The rank-adjusted estimator is a (1976)

ratio of two unbiased estimators, which is less biased and less dependent on large sample

sizes than the Geisser-Greenhouse estimator when the covariance matrix deviates only

moderately from sphericity, and is so for any .  The rank-adjusted estimator isrank of \
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%ë< œ
�

, �

� �/ %

/ %
/

/

� " , #s

,s� �  . (28)

Like the Huynh-Feldt estimator, the is truncated to  whenrank-adjusted estimator "Þ!

necessary.  The rank-adjusted estimator will always be less than or equal to the Huynh-Feldt

estimator, with equality only if rank of \ is equal to .  This relationship corresponds to"

greater power values than rank-adjusted power values, for a fixed  matrix ofHuynh-Feldt F

regression coefficients.  However, due to the poor ability of the Huynh-Feldt estimator to

accurately estimate the population sphericity as compared to the rank-adjusted estimator

when  is greater than , these power values are artificially inflated, and may leadrank of \ "

to bias in a study analysis.

3.3  Power Approximation for a More General Version of the Huynh-Feldt Test

Using the same notation introduced in Muller  (2007), the rank-adjustedet al.

sphericity estimator can be expressed as .  The%ë< " # # "
�"œ , > � #> Î > � >c d � �� �/ // /� 1

expected value of the rank-adjusted estimator can be approximated with a first order Taylor

series for  about the point  as. .�"
!

E E� � c d � �˜ ™� �  ‘%ë< " # !
�" �" �#

! !¸ , > � #> . �. . � .// � 1  , (29)

such that .  The approximation method uses one term in equation  and. œ > � >� �// # " 29

. œ .! E� � to give

E
E E

E E
� � � � � � � �c d� � � �%ë<

" #

# "
¸

> � # >

, > � >

/

/
/

/

� 1
 . (30)

In section 2.2, the expected values of  and  are given to be> >" #

E� � � �> œ # Ð Ñ �" / ‡‡ /
# # #/ /tr tr (31)D D

and

E� � � � � �> œ � " Ð Ñ �# / / / ‡‡
# #/ / /tr tr  . (32)D D

Thus, the approximate expected value of the rank-adjusted sphericity estimator is
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E� � c d c d%ë
/

/
<

/

/
¸

# Ð Ñ � � # � " Ð Ñ �

, � " Ð Ñ � � # Ð Ñ �

� � � � c d� � � �e fc d � �� � � �� 1 / / / / /

/ / / / /
/ ‡ / / / ‡‡ / ‡

# # # # #

/ / / ‡ / ‡‡ ‡ /
# # # # #

tr tr tr tr

tr tr tr tr
 . (33)

D D D D

D D D D

This expected value approximation can be incorporated into the power approximation as

presented in equation , such that25

T " � " �
Î

œ J J à à ßJ J
�"” •� �α % % % %

- %
E E� � � � � �

ë ë< < 8 .
8

† +,ß † , † +,ß † ,/ // /
tr

(34)
?

 .

When the rank of \ equals , the rank-adjusted sphericity estimator reduces to the Huynh-"

Feldt sphericity estimator.  The reduction guarantees exactly the same tests and approximate

power calculations for the special case.

3.4  Simulations

The power approximation using the rank-adjusted approximately unbiased sphericity

estimator was evaluated for a wide range set of simulations.  All of the simulations

considered the condition of  greater than   When rank of  is equal to , therank of \ \"Þ "

Huynh-Feldt and rank-adjusted power approximations are identical.  The simulated

realizations consisted of  repeated measures,  the sample size of ,  and , and: œ & R "' $# %)

; % ) "' the rank of  equal to ,  and , in the model\

] \F Iœ �
R ‚ & R ‚ ; ‚ & R ‚ &

 .

( ) ( ) ( )
(35)

Appropriate fixed matrices of regression coefficients, , and contrast matrices,  and ,F YG

and  were chosen to test an interaction for a test size, , of , and to ensure target@! α !Þ!&

predicted power values for the rank-adjusted test of ,  and .  Specific design!Þ#! !Þ&! !Þ)!

matrices, , were defined.  Population covariance matrices were chosen to provide specific\

population sphericity values, .% − !Þ#)#ß !Þ&!&ß !Þ(#!ß "Þ!!e f
Pseudo-random realizations of the error matrix, , were generated and appropriate testI

statistics were calculated.  The observed mean power values for both the Huynh-Feldt and

rank-adjusted tests were calculated and tabulated for ,  replications per condition.&!! !!!
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The observed mean power values for each condition was the proportion of rejected tests

among ,  simulated realizations.  Observed power values were computed using a&!! !!!

modified version of LINMOD 3.3 (http://ehpr.ufl.edu/muller/), a software that performs a

wide variety of General Linear Multivariate Model computations.  LINMOD 3.3 was

modified to include the rank-adjusted estimator and test.

The rank-adjusted predicted power values were calculated using the approximation

introduced in section 3.3 above.  Predicted power values for the Huynh-Feldt test were

calculated as well using the approximation defined in section 3.2.  Predicted power values

were computed using a modified version of POWERLIB 2.0 (http://ehpr.ufl.edu/muller/), a

software that computes statistical power for the General Linear Multivariate Model.

POWERLIB 2.0 was modified to include the rank-adjusted test.  The modified versions of

both LINMOD and POWERLIB will be made available soon.

In Table 3.1, the mean power deviations of the predicted and observed mean rank-

adjusted and Huynh-Feldt tests, respectively, are tabulated for the  and targetrank of \

power values considered for sample size of  and for a population sphericity of .  The"' !Þ#)#

power values and deviations have been multiplied by  for clarity of presentation."!!

Similar results for population sphericity values of ,  and  are presented in!Þ&!& !Þ(#! "Þ!!

Tables 3.2-3.4.

In every case considered, the mean deviations between the predicted and observed

mean rank-adjusted and predicted and observed mean Huynh-Feldt power values were

adequately small.  For population sphericity of , the largest absolute observed mean!Þ#)#

deviation observed for the rank-adjusted and Huynh-Feldt tests were  and ,!Þ!#( !Þ!#!

respectively.  For population sphericity of , the largest absolute observed mean!Þ&!&

deviation observed for the rank-adjusted and Huynh-Feldt tests were  and ,!Þ!'% !Þ!#$

respectively.  For population sphericity of , the largest absolute observed mean!Þ(#!

deviation observed for the rank-adjusted and Huynh-Feldt tests were  and ,!Þ!#$ !Þ!!&
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respectively.  The most severe deviations of the observed mean and predicted power values

for the rank-adjusted test occurred for the smallest target power value, .!Þ#!

Table 3.1. Predicted and Observed Mean Rank-Adjusted and HF Power ( 100)

for Rank  and 16, Standard Error of Observed 0.001

‚
\ œ ; R œ �� � .

Mean Differences of Predicted and Observed

Rank-Adjusted and HF Power ( 100) for Population 0.282.

Predicted Observed 

Power Power

‚ œ%

 (Mean) Mean

Observed Predicted

Rank-Adj. HF Rank-Adj. HF Rank-Adj. HF

�

;
2 20 21.6 18.2 19.6 -1.8 -2.0

50 52.6 49.5 52.3 -0.5 -0.3

80 82.1 81.7 83.9 1.7 1.8

4 20 26.0 20.7 26.2 0.7 0.2

50 59.1 50.3 59.3 0.3 0.2

80 86.5 80.5 87.1 0.5 0.6

8 20 39.7 22.7 41.0 2.7 1.3

50 75.1 51.7 75.4 1.7 0.3

80 94.8 79.9 94.7 -0.1 -0.1

Table 3.2. Predicted and Observed Mean Rank-Adjusted and HF Power ( 100)

for Rank  and 16, Standard Error of Observed 0.001

‚
\ œ ; R œ �� � .

Mean Differences of Predicted and Observed

Rank-Adjusted and HF Power ( 100) for Population 0.505.

Predicted Observed 

Power Power

‚ œ%

 (Mean) Mean

Observed Predicted

Rank-Adj. HF Rank-Adj. HF Rank-Adj. HF

�

;
2 20 21.4 21.3 22.6 1.3 1.2

50 52.2 51.9 54.0 1.9 1.8

80 81.7 80.9 82.5 0.9 0.8

4 20 25.3 23.1 27.6 3.1 2.3

50 57.7 52.7 59.4 2.7 1.7

80 85.3 80.2 85.3 0.2 0.0

8 20 36.9 26.4 36.8 6.4 -0.1

50 71.3 55.0 70.6 5.0 -0.7

80 92.8 79.6 91.5 -0.4 -1.3



48

Table 3.3. Predicted and Observed Mean Rank-Adjusted and HF Power ( 100)

for Rank  and 16, Standard Error of Observed 0.001

‚
\ œ ; R œ �� � .

Mean Differences of Predicted and Observed

Rank-Adjusted and HF Power ( 100) for Population 0.720.

Predicted Observed 

Power Power

‚ œ%

 (Mean) Mean

Observed Predicted

Rank-Adj. HF Rank-Adj. HF Rank-Adj. HF

�

;
2 20 21.3 20.2 21.3 0.2 0.0

50 51.9 50.1 51.9 0.1 0.0

80 81.3 80.5 81.8 0.5 0.5

4 20 24.9 21.2 24.8 1.2 -0.1

50 56.9 50.8 56.4 0.8 -0.5

80 84.7 80.1 84.4 0.1 -0.3

8 20 28.3 22.3 28.0 2.3 -0.3

50 61.3 51.9 61.2 1.9 -0.1

80 87.5 79.5 87.4 -0.5 -0.1

Table 3.4. Predicted and Observed Mean Rank-Adjusted and HF Power ( 100)

for Rank  and 16, Standard Error of Observed 0.001

‚
\ œ ; R œ �� � .

Mean Differences of Predicted and Observed

Rank-Adjusted and HF Power ( 100) for Population 1.00.

Predicted Observed 

Power Power 

‚ œ%

(Mean) Mean

Observed Predicted

Rank-Adj. HF Rank-Adj. HF Rank-Adj. HF

�

;
2 20 20 19.2 19.6 -0.8 -0.4

50 50 48.7 49.3 -1.3 -0.7

80 80 79.0 79.5 -1.0 0.5

4 20 20 18.8 19.8 -1.2 -0.2

50 50 48.3 49.9 -1.7 -0.1

80 80 78.7 79.9 -1.3 -0.1

8 20 20 18.2 20.0 -1.8 0.0

50 50 47.0 50.0 -3.0 0.0

80 80 77.5 79.9 -2.5 -0.1

In practical biomedical research, lower power values are of little concern.  Rarely will

one have a power analyses targeted below .  Thus, an examination of how well the!Þ(!

rank-adjusted and Huynh-Feldt power approximations perform at the target power of !Þ)!
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would be beneficial.  Additional predicted and observed mean power values for the rank-

adjusted and Huynh-Feldt tests for target power of  are tabulated in Table 3.5.  The!Þ)!

cases considered consisted of population sphericity values of ,  and ,!Þ#)# !Þ&!& !Þ(#!

sample sizes of  and  and rank of  greater than .  In nearly every case considered,$# %) "\

the new rank-adjusted predicted power approximation better approximated the associated

observed mean power values than did the Huynh-Feldt predicted power approximation.

The power approximations for both tests performed extremely well in all cases.  The largest

absolute mean deviations observed for the rank-adjusted and Huynh-Feldt tests were only

!Þ!%& !Þ!%' and , respectively.  The deviations for both tests decreased as rank of  and\

population sphericity increased and as sample size decreased.

Table 3.4, with population sphericity of , is presented solely for the sake of being"Þ!!

complete with respect to the research at hand.  In practice, if one believes that the

population is spherical, neither the rank-adjusted nor the Huynh-Feldt tests would be used.

This table illustrates a case in which a researcher guesses incorrectly at the population

sphericity and, instead of using the uncorrected test which would be uniformly most

powerful among similarly invariant tests, and exact size alpha, uses an approximate

UNIREP test.  A higher incidence of truncation allows the HF test to achieve a higher

power, which is acceptable here because .  However, the uncorrected test would be% œ "

appropriately even better.
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Table 3.5. Predicted and Observed Mean Rank-Adjusted and

HF Power ( 100) for Rank  and 32, 48 ,

Standard Error of Observed

‚ \ œ ; R −
�

� � � �
0.001.

Mean Differences of Predicted and Observed

Rank-Adjusted and HF Power ( 100).

Predicted Observed Observed P

Power Power (Mean)

‚

� redicted

Mean

Rank-Adj. HF Rank-Adj. HF Rank-Adj. HF% R ;
0.282 32 2 80 80.9 83.5 84.5 3.5 3.6

4 80 82.8 81.1 84.3 1.1 1.5

8 80 86.5 80.2 86.9 0.2 0.4

16 80 93.6 79.9 93.6 -0.1 0.0

48 2 80 80.6 84.5 85.2 4.5 4.6

4 80 81.8 81.5 83.6 1.5 1.8

8 80 84.1 80.3 84.7 0.3 0.6

16 80 88.8 79.9 88.9 -0.1 0.1

0.505 32 2 80 80.7 81.2 81.9 1.2 1.2

4 80 82.3 80.4 82.8 0.4 0.5

8 80 85.6 79.8 85.4 -0.2 -0.2

16 80 92.2 79.4 91.2 -0.6 -1.0

48 2 80 80.5 81.3 81.8 1.3 1.3

4 80 81.5 80.5 82.1 0.5 0.6

8 80 83.5 79.9 83.6 -0.1 0.1

16 80 87.8 79.5 87.4 -0.5 -0.4

0.720 32 2 80 80.6 80.5 81.2 0.5 0.6

4 80 82.1 80.2 82.3 0.2 0.2

8 80 85.1 79.7 84.7 -0.3 -0.4

16 80 87.0 79.6 87.1 -0.4 0.1

48 2 80 80.4 80.6 81.0 0.6 0.6

4 80 81.3 80.2 81.7 0.2 0.4

8 80 83.2 79.9 83.2 -0.1 0.0

16 80 86.5 79.9 86.3 -0.1 -0.2

The Huynh-Feldt sphericity estimate will always be greater than or equal to the rank-

adjusted sphericity estimate, as demonstrated through their respective equations and

simulations in Chapter 2.  In turn, this relationship corresponds to Huynh-Feldt power
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values greater than or equal to equivalent rank-adjusted power values for a fixed  matrixF

of regression coefficients.  For example, in Table 3.5, for population sphericity of ,!Þ#)#

sample size of , rank of  equal to  and a rank-adjusted predicted power of , the$# "' !Þ)!\

Huynh-Feldt predicted power was .  The difference in predicted powers is .  For!Þ*$' !Þ"$'

similar conditions for population sphericity values of  and , the Huynh-Feldt!Þ&!& !Þ(#!

predicted powers were  and .  This increased power seems to have decreased as!Þ*"# !Þ)("

population sphericity and sample size increased and rank of  decreased.  These power\

values are artificially inflated, however.  The uncorrected test will always have power

values greater than or equal to the power values of the three corrected test.  Yet, the

uncorrected test is not used uniformly throughout UNIREP analyses because this increased

power also comes with an increased type I error rate.

With target test size, , of , Table 3.6 contains observed mean and predicted testα !Þ!&

sizes for a test of interaction for the Huynh-Feldt and the rank-adjusted tests.  Contrast

matrices,  and , and  are defined in Appendix C.  Pseudo-random realizations of theG Y @!

error matrix, , were generated and appropriate test statistics were calculated.  TheI

observed mean test size for both the Huynh-Feldt and new rank-adjusted tests were

calculated and tabulated under the null for ,  replications per condition.  The&!! !!!

observed mean test size for each condition was the proportion of rejected tests among

&!! !!!,  simulated realizations.  All calculations were performed in SAS/IML.  Observed

test size values were computed using the modified version of LINMOD 3.3 for the null

case.  Predicted test size values were computed using the modified version of POWERLIB

2.0 under the same assumption.

In every case presented, with the exception of sphericity ( ), the observed mean% œ "

and predicted rank-adjusted tests achieve a test size closer to the target than the observed

mean and predicted Huynh-Feldt, respectively.  The largest observed mean and predicted

Huynh-Feldt test sizes among the conditions considered were  and , respectively,!Þ"$% !Þ"#$
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while the largest observed mean rank-adjusted test size was only .  In general, the!Þ!(*

larger test sizes for both the Huynh-Feldt and rank-adjusted tests were observed for mid-

range population sphericity values.  The test sizes seemed to increase with  andrank of \

decrease with sample size.  The severity of inflated test size seemed to increase for the

Huynh-Feldt test with .  The rank-adjusted test maintained control over test sizerank of \

as  increased.rank of \
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Table 3.6. Observed Mean and Predicted Interaction

Test Size for Target 0.05 for Rank  

for the HF and Rank-Adjusted,

Standar

α œ \ œ ;� �

d Error of Observed 0.0003.

Degrees of freedom multipliers,  and , 

adjust for nonsphericity indexed by .

Observed Predicted

Ÿ
% %ë ë

%
LJ <

R ; % HF Rank-Adj HF Rank-Adj

16 4 0.282 0.075 0.056 0.068 0.050

0.505 0.084 0.068 0.068 0.050

0.720 0.071 0.059 0.068 0.050

1.00 0.047 0.044 0.050 0.050

8 0.282 0.134 0.064 0.123 0.050

0.505 0.112 0.079 0.117 0.050

0.720 0.082 0.065 0.082 0.050

1.00 0.052 0.046 0.050 0.050

32 4 0.282 0.062 0.055 0.057 0.050

0.505 0.064 0.057 0.057 0.050

0.720 0.062 0.055 0.058 0.050

1.00 0.049 0.047 0.050 0.050

8 0.282 0.076 0.054 0.072 0.050

0.505 0.085 0.064 0.072 0.050

0.720 0.075 0.057 0.072 0.050

1.00 0.050 0.048 0.050 0.050

16 0.282 0.128 0.057 0.123 0.050

0.505 0.118 0.071 0.120 0.050

0.720 0.082 0.060 0.082 0.050

1.00 0.050 0.046 0.050 0.050

48 4 0.282 0.056 0.051 0.054 0.050

0.505 0.063 0.058 0.055 0.050

0.720 0.059 0.054 0.055 0.050

1.00 0.047 0.046 0.050 0.050

8 0.282 0.068 0.055 0.063 0.050

0.505 0.072 0.060 0.063 0.050

0.720 0.068 0.056 0.063 0.050

1.00 0.049 0.047 0.050 0.050

16 0.282 0.087 0.053 0.086 0.050

0.505 0.098 0.063 0.086 0.050

0.720 0.082 0.057 0.080 0.050

1.00 0.048 0.046 0.050 0.050
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3.5 Conclusions

In section 2.3, a rank-adjusted approximately unbiased sphericity estimator was

proposed.  The rank-adjusted estimator achieved what Huynh and Feldt  had (1976)

originally intended to accomplish.  The rank-adjusted estimator is a ratio of two unbiased

estimators, which is less biased and less dependent on large sample sizes than the Geisser-

Greenhouse estimator when the covariance matrix deviates only moderately from sphericity,

and is so for any .  In section 2.4 through simulations, the rank-adjusted estimatorrank of \

is shown to better estimate the population sphericity than the Huynh-Feldt estimator when

rank of \ is greater than .  " The rank-adjusted estimator reduces to the Huynh-Feldt

estimator when the  equals .rank of \ "

Muller  (2007) incorporated the Huynh-Feldt estimator into their poweret al.

approximation for the Huynh-Feldt test.  The, in some cases severe, bias that accompanies

the Huynh-Feldt estimator yields artificially inflated power values for the Huynh-Feldt test.

The artificially inflated power values for the Huynh-Feldt test could greatly bias any study

analysis that utilizes the Huynh-Feldt test.  The newly introduced rank-adjusted power

approximation is more in line with the original intent of the research of Huynh and Feldt

(1976), and more accurately depicts the true power of the test.  The rank-adjusted power

approximation deviated only minimally from the observed mean test powers for the cases

considered.  The most severe deviations of the predicted power using the rank-adjusted

power approximation from the observed mean power values occurred for small target power

values.  In practice, smaller power values are irrelevant.  In biomedical research, target

powers smaller than  are rarely of interest.  For the larger target power values, the rank-!Þ(!

adjusted power approximation matched the observed mean power values as well as, or

better than, the corresponding Huynh-Feldt approximations.  In the case of a spherical

population, the rank-adjusted and Huynh-Feldt power approximations were identical in all

cases, most likely due to the truncation of the sphericity estimators.
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Preferring the Huynh-Feldt power approximation simply because it provides a greater

power when compared to the rank-adjusted for a fixed  matrix of regression coefficientsF

would be a mistake.  The increased power comes at a price.  The Huynh-Feldt test of

interaction demonstrated inflated test size over the rank-adjusted test in every case

considered.  In some cases, the Huynh-Feldt test size was greater than double the target size.

The rank-adjusted test controlled test size adequately.

Based on the results presented here, use of the rank-adjusted power approximation

along with the rank-adjusted estimator and test are recommended over the corresponding

Huynh-Feldt methods.  In all cases when an approximate UNIREP test would be called for,

the rank-adjusted power approximations accurately described the true nature of the test.  In

fact, the rank-adjusted power approximations performed as well as and, in most cases,

better than the Huynh-Feldt power approximations for practical target power values.  They

also controlled test size better than the Huynh-Feldt in all cases considered.  Furthermore,

use of the rank-adjusted test is more theoretically in line with the original intent of the

research of Huynh and Feldt . (1976)



Chapter 4

Power Confidence Intervals for UNIREP Tests

4.1 Motivation

Imaging is used in all areas of medical research.  The number of medical applications

seems to increase every year, while the cost of such procedures decreases.  Researchers and

physicians alike are realizing the benefits of using these safe and non-invasive techniques.

Imaging research often generates the type of complete data that can be handled with

UNIREP procedures.  UNIREP makes up a special case of the more broad area of statistical

modeling called mixed models.  The mixed model has several nice statistical features, such

as no requirement for balanced data, the ability to explicitly model and analyze the between-

and within-subject variation, and the capability of handling missing data without

eliminating all values for a particular subject.  However, there is still a need for better

inference and power analysis techniques in mixed models.  This is much less true for

UNIREP.  The inference techniques for UNIREP far outshine those used in mixed models,

particularly for small sample sizes, and power techniques for UNIREP have been well

tested and documented.

The power of a test is the probability of rejecting the null hypothesis.  More and more,

researchers are realizing the need for accurate power analysis and the role it plays in

focusing the hypothesis, clarifying the analysis plan and enhancing study design efficiency.

Power is computed assuming known values of distributional parameters.  Rarely is the

variance stimatedactually known in these computations.  Rather, the variance is often e

from previous studies.  The estimated variance leads to random power values for a fixed

sample size.  Providing confidence intervals to account for the uncertainty inherent in the
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random power values would be useful in any study design.  A lower bound for power would

allow stating that a study has power of at least " " to detect an effect, with a specifiedT

confidence.

Hypothesis tests following the univariate approach to repeated measures are called

UNIREP tests.  The UNIREP tests include four types:  the Box conservative, the Geisser-

Greenhouse, the Huynh-Feldt, and the uncorrected.  For data analysis, UNIREP tests differ

only by their respective degrees of freedom due to different degrees of freedom multipliers,

which are measures of the sphericity in the model.covariance 

Taylor and Muller (1995) demonstrated how to construct exact power confidence

intervals for the general linear model for an estimated variance and fixed means.univariate 

Despite the prevalence of such designs in practice, methods to provide accurate confidence

intervals for power of a test in a UNIREP setting do not exist.  In this paper, the methods

introduced by Taylor and Muller (1995) are built upon and applied to UNIREP tests.

Furthermore, the techniques proposed are shown to allow for the calculation of accurate,

approximate confidence intervals for the UNIREP tests, in the case of an estimated

covariance and fixed means.

The methods presented here focus solely on UNIREP procedures.  Ultimately, one

would hope to be able to apply these methods to all forms of mixed models.  The

expectation is that the research presented here will lay the groundwork for future research

that will extend these methods to fit with the general mixed model.

4.2 Notation and Known Results:

UNIREP Power Approximations

The univariate approach to repeated measures can be expressed in terms of the General

Linear Multivariate Model (GLMM),

] \F Iœ �  , (36)

such that ,  and row .  Testable] I \F I ! and  are  is � � � � � � � �R ‚ : R ‚ ; ‚ : µ ß3 :
w a D
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hypotheses,  H  have .  ! !À œ@ @ @� �+ ‚ , œ GFY The unscaled noncentrality is defined

as ? @ @ @ @œ � � œ +� � � � � � � �! !
wQ Q G \ \ G�" ,  such that  , ‚ , ‚ +, , and� �w w�

,

rank of  is equal to Q +.  The covariance matrix among the transformed (hypothesis)

variables is Dg , , ,D D E - E E D‡ ‡
w wœ œY Y � � � � � �, ‚ , , ‚ ,, with , the eigenvectors of 

such that  and the vector of eigenvalues, , for .  EE EE - Dw w
, 3 ‡œ œ M  - If

// œ R � srank  are the error degrees of freedom between subjects, estimators are � �\ F œ

� � � �\ \ \ ] F \ \ \ ]w w w w� �1
 (when applicable, else ) andë œ

D Ds œ � Î s] M \ \ \ ]w w w�
/c d� � / .  Here,  is the unbiased restricted maximum likelihood

(REML) estimator while  is the (biased) maximum likelihood estimatorD Dë /œ ÎRs
/

(MLE).

The Box conservative, the Geisser-Greenhouse, the Huynh-Feldt, and the uncorrected

UNIREP tests may be computed in terms of the estimated hypothesis sums of squares,

? @ @ @ @ D Hs œ Ð � Ñ Ð � Ñ µ +ß ßs s
! ! , ‡

w �"Q j � � , (37)

and the estimated covariance among the transformed (hypothesis) variables, ,D Ds sœ‡
wY Y

with same test statistic, .  All use the W œ µ ßs/ j // ‡ , / ‡D D� �
X œ

Ð Ñ +s

Ð Ñs?
‡

tr

tr
 . (38)

?

D



Power analysis involves =‡ ‡55œ e f= ,

= -‡55 5 55
wœ Î8 ?8  , (39)

t  diagonal elements of the scaled noncentrality, Dg Dg ,he H E?E - ? -‡ ‡
�" �"œ œw � � � �

such that Necessarily,  is non-negative definite.  HenceEE EEw w
,œ œ M .  ? ?œ w

? F F F ? @ @œ , ‚ = = œ œ �? ??
w

‡ ‡ !, with   for rank rank .� � � � � �
Muller and Barton (1989) tr  derived the exact distribution of under the alternative.Ð Ñs?

With the independence of  and , their result allows expressing the test statistic in terms? Ds s
‡

of the independent set .  Here,  and , such thate f � � � �C C C C52 5/ 52 ‡55 5/ /
# #ß µ +ß µ; = ; /
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tr (40)Ð Ñ œ œ U ß + ßs? - =� � �
5œ"

,
5 52 , ‡- C "

and

/ -/ ‡ 5 5/ ,5œ"

,
tr  . (41)Ð Ñ œ œ U ß +, ßsD -� � �C " !

Muller  et al. (2007) showed that the CDF of the UNIREP test statistic could be

expressed exactly in terms of a CDF of the sum of  positively and  negatively weighted, ,

independent chi-squares,

Pr Pr Pr

Pr

e f � � Ÿ  Ÿ� �
e fc d� �

X Ÿ> œ Ÿ > œ � >+Î Ÿ!

œ U > ß ß Ÿ !

? 5 52 / 5 5/

5œ" 5œ"

, ,

. . . .

tr

tr

Ð Ñ +s

Ð Ñs

?

D


‡

- / -C C

- / =  .

(42)

Here, , , and .  - / =- - =. . .
w w w w w w

/ /
w w w

, , ‡ ,� � c d c d c d� �> œ œ œ� >+Î +/ /" " ! Their work

allows for the computation of exact test size and power for the uncorrected and the Box

conservative tests with Davies' (1980) algorithm.

Muller  (2007)   approximations work well for the Geisser-et al. further showed that J

Greenhouse and the Huynh-Feldt tests under the null.  Using a theorem from Kim et al.

(2006), they and the first central moment separately matched two noncentral moments of

the numerator of the test statistic to a scaled noncentral chi-square, and two moments of the

denominator to a scaled central chi-square.  This theorem allowed Muller  (2007) toet al.

approximate the UNIREP test statistic with a noncentral  distribution,J

Pr Pre f œ  Œ � �� �X Ÿ > ¸ Ÿ > œ J > à ß ß
Î +, +,

Î , ,
? J ‡" ‡# ‡

‡" ‡" ‡# ‡#

‡# ‡# / ‡" ‡" /

- - /

- / - / /
/ / =

C

C
 . (43)

Here, , , tr  and tr .C C C C‡" ‡" ‡ ‡# ‡# ‡" ‡" ‡ ‡# ‡#
# #µ ß µ Ð Ñ ¸ Ð Ñ ¸s s; / = ; / - -� � � � ? D

When sphericity is not met, Box (1954a, b) showed that the UNIREP test statistic

under the null could be approximately distributed as an  with reduced degrees of freedom,J

J � �+, ß ,% / %/ .  The reduction comes from various estimators of , a measure of sphericity,%
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used as degrees of freedom multipliers.  The four tests differ only by their choice for , and%

thus by their respective degrees of freedom.  Geisser and Greenhouse (1958) observed that %

is bounded, such that .  If sphericity exists in the model, , then"Î, Ÿ Ÿ " œ "% %

Dg� �- Hœ - /‡ , ? /M  and tr  exactly.  Under sphericity, the test is exactly sizeX µ J +,ß , ßc d� �
alpha and uniformly most powerful among similarly invariant tests.  Sphericity estimates

are always ordered Box (Box), (GG), (HF),conservative Geisser-Greenhouse Huynh-Feldt 

and uncorrected (UN); specifically .  Test size and power are in the same"Î, Ÿ Ÿ Ÿ "s% %ë

order.

The Geisser-Greenhouse test is based on the MLE,

%
ë

ë
s œ œ œ

Ð Ñ Ð Ñ Ð Ñs

, Ð Ñs , Ð Ñ , Ð Ñ

tr tr tr

tr tr tr
 , (44)

# # #
‡ ‡

‡

# #
‡

#

D D

D D

W

W

while the Huynh-Feldt test uses an approximately unbiased estimator (a 1-1 function of the

MLE),

%ë
%

/ %
œ

R, � #s

, � ,s� �/
 . (45)

In practice, the Huynh-Feldt estimator is truncated above at 1.0.

Test T with multiplier  has critical value T .% α % % /X X X /J
�"> œ J "� à † +,ß † ,crit� � � �

Thus, the associated power approximations use

> œ J Ò" � à " † +,ß " † , Ó

> œ J Ò" � à † +,ß † , Ó

> œ J Ò" � à † +,ß † , Ós s

> œ J Ò" � à † +,ß † , Ó

� �� � � � � �� � � � � �� �

Un

HF

GG

Box  .

J
�"

/

J
�"

/

J
�"

/

J
�"

/

α /

α % % /ë ë

α % % /

α /

E E

E E

"Î, "Î,

(46)

(47)

(48)

(49)

Here,  and  are approximate, expected sphericity estimator values derived byE E� � � �% %ë s

Muller  (2007)et al. .

The Box tests have constant critical values, whileconservative and uncorrected 

r multipliers,  and , yield random critical values for the andandom Geisser-Greenhouse %s %ë
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Huynh-Feldt tests.  Muller and Barton (1989) proposed accurate power approximations for

all four UNIREP tests using a noncentral  distribution.  expandedJ Muller  (2007) et al.

upon the work of Muller and Barton (1989), and presented their own power

approximations, which consistently performed as well as, or better than, those of Muller and

Barton (1989).  Only the Muller  (2007) approximations will be considered for theet al.

remainder of this discussion.

For known covariance and means, the Muller  (2007) UNIREP poweret al.

approximations are all of the form

T " �
Î

œ J J " � à à ßJ J
�"” •� �α / † +,ß / † , / † +,ß / † ,

/
" # / $ % /

&

/ /
tr

(50)
� �?

-
 .

Here,  is equal to tr  with .  The parameters  through - � �D D‡ ‡ " &Î, / /, equal to the rank of 

represent various sphericity values used at certain points in the power approximation.  They

are derived in Appendix A of Muller  (2007).  The parameter  is the sphericityet al. %8

parameter under the nonnull case,

%

%

8

#
‡ ‡

‡
#

‡
#

‡

‡
# 8

œ
Ð Ñ � # Ð Ñ Î+

, Ð Ñ � # Ð Î+Ñ

Ð Ñ

, Ð Ñ
œ l œ

tr tr tr

tr tr

tr

tr

(51)

(52)

D D ?

D D ?

D

D
?

� �c d
% %. œ ´!  .

As depicted above in equation , the parameter  reduces to the familiar sphericity52 %8

parameter under the null case.  In Table 4.1, particular values are summarized for /"

through  for the four UNIREP tests, when both covariance and means are known/& .

Table 4 1. Sphericity Multipliers for UNIREP Power Approximations.

for  (Both Known)D ?‡, 

Test

Un

HF

GG

Box

/ / / / /

" "

s s

"Î, "Î,

" # $ % &

8 . 8

8 . 8

8 . 8

8 . 8

% % %

% % % % %ë ë
% % % % %

% % %

E E

E E

� � � �� � � �
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4.3 Population Properties of UNIREP Power Approximations

in terms of known  and D ?‡

The Huynh-Feldt estimator,  described by Huynh and% % / %ë œ R, � # Î , � ,s s� � c d� �/ ,

Feldt (1976), was incorrectly proposed as the ratio of two unbiased estimators.  Their claim

holds true only for the special case of rank of  equal to .  In section 2.3, a rank-adjusted\ "

approximately unbiased estimator was introduced and shown to better estimate the

population sphericity parameter than the Huynh-Feldt estimator when rank of  was\

greater than .  This result was observed in all cases except sphericity ( ).  In the case" œ "%

of sphericity, neither the Huynh-Feldt nor the rank-adjusted tests would be considered.

When rank of  is equal to , the rank-adjusted sphericity estimator reduces to that of the\ "

Huynh-Feldt sphericity estimator.  The rank-adjusted estimator achieves what Huynh and

Feldt  had originally intended to accomplish.  The rank-adjusted estimator is a ratio (1976)

of two unbiased estimators, which is less biased and less dependent on large sample sizes

than the Geisser-Greenhouse estimator when the covariance matrix deviates only

moderately from sphericity, and is so for any rank .  The rank-adjusted estimator is of \

%ë
/ %

/ %
<

/

/
œ

� " , � #s

, � ,s

� �� �  . (53)

Like the Huynh-Feldt estimator, the rank-adjusted estimator is truncated to  when"Þ!

necessary.  The rank-adjusted estimator will always be less than or equal to the Huynh-Feldt

estimator, with equality only if rank of  is equal to .\ "

In section 3.3, a rank-adjusted power approximation was proposed.  The

approximation was similar to that of the Huynh-Feldt power approximation presented in

Muller  (2007).  The rank-adjusted power approximation was shown throughet al.

simulations to approximate observed mean power values as well as, or better than, the

Huynh-Feldt power approximation for practical research purposes.  Furthermore, the rank-

adjusted power approximation was shown to adequately control test size when rank of \
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was greater than .  Meanwhile, in some cases, the Huynh-Feldt test size was double the"

target test size.  For the remainder of this paper, the rank-adjusted Huynh-Feldt estimator,

test and power approximation will be used in place of the Huynh-Feldt estimator, test and

power approximation, respectively.

Muller  (2007) showed that if , , et al. W œ W œ W œ>" 5 ># >$5œ" 5œ"
, ,

5
#� �- -

� �
5œ" 5œ"
, ,

5 ‡55 >% ‡555
#- = - = and , thenW œ

-

/ -

= -

-

/ / / %

‡"
># >%

>" >$

‡" >" ‡"

‡ >$ ‡"

‡# ># >"

‡# / ># /
#
>"

œ
+W � #W

+W � #W

œ +W Î

œ W Î

œ W ÎW

œ W ÎW œ ,

� �� �

 . (58)

(54)

(55)

(56)

(57)

They used these parameters to approximate the UNIREP test statistic with a noncentral J

distribution, as presented in equation 43.

Lemma 4 1 . Defining

W œ W œ W œ W œ> 5 > > 5 ‡55 >% ‡55
5œ" 5œ" 5œ" 5œ"

, , , ,
# #
5 51 2 3

� � � �- - - = - = ,  ,  , (59)

implies , , , tr , tr , tr , tr .e f e f� � � � � � � �W W W W œ>" ># >$ >% ‡ ‡‡
#D D ? D ?

Lemma 4 2 . The constant in the critical value of the UNIREP test statistic approximation

introduced by Muller  (2007) is equal to ,et al. "

- /

- / /
‡# ‡#

‡" ‡" /

+,

,
œ " . (60)

Thus,

Pr Pre f � �œ � �� �X Ÿ > ¸ Ÿ > œ J >à ß ß
Î +,

Î ,
? J ‡" ‡# ‡

‡" ‡"

‡# ‡# /

-

- /
/ / =

C

C
 . (61)
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4.4 Estimated Properties of UNIREP Power Approximations

as a function of  and D ?s
‡

For some purposes, various collections of elements of tr  areÖ ß ×/ ß / ß / ß / ß / ß" # $ % & � �? -

estimates of (approximate) means or quantiles, and hence random.  These random elements

imply random power.  In the case of estimated covariance and fixed means, ,ÖD ?s
‡ß ×

Ds‡
w

œ Îs sI I /est indicates the REML (unbiased) estimator.  A distinction must be carefully

maintained between the estimation study and target study.  The estimation study provides

the covariance estimate and has sample size, rank of  and degrees of freedom, ,\ Rest

rank  and rank , respectively.  The target study for which power is� � � �\ \est est est est/ œ R �

desired has sample size, rank of  and degrees of freedom, , rank  and\ \R � �
// œ R � rank , respectively.� �\

The parameter  is the estimated sphericity parameter under the nonnull case, which%s8

reduces to the familiar estimated sphericity parameter, , under the null case,%s

%

%

s œ
Ð Ñ � # Ð Ñ Î+s s

, Ð Ñ � # Ð Î+Ñs s

Ð Ñs

, Ð Ñs
œ l œs

8

#
‡ ‡

‡

#
‡

#
‡

‡

# 8

tr tr tr

tr tr

tr

tr
 .

(62)

(63)

D D ?

D D ?

D

D
?

� �
’ “

% %s s´ œ. !

Lemma 4 3 . For the nonnull case, a ratio estimating  in terms of correlated, but%8

unbiased, estimators is

%ë8 œ
/ / / / /

/ / / /

est est est est est

est est est est

� � c d � �� �
š ›c d� �

� " Ð Ñ � # Ð Ñ � # � " � # Ð Ñ Î+s s s
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tr tr tr

#
‡ ‡
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# #

‡
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‡ ‡

D D D ?

D D D ?
 . (64)

 . (65)%ë ë< œ
� �� �/ %

/ %
%

est

est

� " , � #s

, � ,s
œ l œ8 ? !

This approximately unbiased estimator reduces to the rank-adjusted Huynh-Feldt sphericity

estimator under the null case, as depicted above in equation 65.
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For estimated covariance and fixed means, estimated UNIREP power approximations

are all of the form

T " �
sÎ

œ J J " � à à ßJ J
�"– —� �α / † +,ß / † , / † +,ß / † ,

/
" # / $ % /

&

/ /
tr

(66)
� �?

-
 ,

with  equal to tr .  In Table 4.2, particular values are summarized for -s sÐ ÑÎ,D‡ / /" & through 

for the four UNIREP tests.  The values for  and  are natural choices for the various/ /" #

UNIREP tests.  The particular values of ,  and of/ / /$ % & were chosen based on the results 

extensive, experimental simulations.  Nearly every combination of , , , % % %s " "Î,8 8 .% ëë  ,  and s <

was examined thoroughly for each UNIREP test for the wide range of simulations discussed

in Muller  (2007).  The values chosen provided the most accurate results.  Inet al.

retrospect, they are natural choices as well.

Table 4 2. Sphericity Multipliers for Approximately Unbiased UNIREP.

Power Approximations as a function of ,  (Estimated Covariance)D ?s
‡

Test

Un

HF

GG

Box

/ / / / /

" "

"Î, "Î,

" # $ % &

% %

% %

% %

% %

ë ë

ë ë

ë ë

ë ë

8 . 8

< < 8 . 8

. . 8 . 8

8 . 8

%

% % %ë ë
% % %

%

s

s

s s s

s

4.5 Approximate Power Confidence Intervals for UNIREP Tests

Taylor and Muller (1995) demonstrated that a function of the variance parameter

exactly follows a chi-square distribution.  They developed exact bounds for the

noncentrality,  is an inverse function of the=, in the univariate setting by realizing that =

variance parameter, .  Thus,= $ 5 $œ Î œ œ#, such that � � � �) ) ) )� �! !
w �"Q W ß RL� �)

exact confidence intervals may be calculated for power as well, due to the strict monotone

dependence of the noncentral  distribution function on the noncentrality, specifically,J

Pr PrÐ Ð= = =s sŸ Ÿ Ñ œ T Ÿ T Ÿ T Ñs s
P Y P Y .
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Here, the UNIREP problem is approached in much the same way that Taylor and

Muller (1995) did in the univariate case.  Muller  (2007) The power approximationset al.

for always defines  to be .  Thus, the noncentrality is ,known covariance and means /5 % =8 ‡

such that tr .= - %‡ 8œ ÎÐ Î Ñc d� �?

With

= -

- - %

%

‡ ‡"

‡" 8
‡

‡

8

#
‡ ‡

‡
#

‡

œ Î

œ œ Î
� # Î+

� # Î+

œ
Ð Ñ � # Ð Ñ Î+

, Ð Ñ � # Ð Î+Ñ

tr

tr tr

tr tr

tr tr tr

tr tr
 ,

� � � �� � � �� �c d

?

?D

D ?

D D ?

D D ?

Ð ÑD‡
#

(67)

(68)

(69)

it follows that

=‡
‡

‡
œ †

� # Î+

� # Î+
tr  .

tr tr

tr tr
� � � � � �� �?

D ?

?DÐ ÑD‡
#

(70)

To stay consistent with the notation presented in Taylor and Muller (1995), note that tr� �?

is, in actuality, the trace of the hypothesis sums of squares.  This realization (population) 

makes , in a sense, a form of the variance parameter.-‡"

For estimated covariance and fixed means, a ratio involving one biased and two

unbiased estimators may be written as(Appendix B has derivations of the first moments) 

-ë‡
‡

1 œ
� # Ð Î+Ñs

� # Î+

tr tr

tr tr
 .

Ð Ñs

Ð Ñs

D

D

‡

#

‡

?D

?� � (71)

In the univariate setting, Taylor and Muller (1995) were forced to deal with only one

random variable.  In the UNIREP case, there are three, all of which are correlated.

Still, similar to the univariate setting,  can be approximated with a chi-square using-ë‡1

a Satterthwaite approximation,

- /ë

-
; /

‡ ‡

‡"

#
‡

1
µ � � . (72)

Here, .  Lower and upper tail probabilities,  and , respectively,/ / % % α α‡ . P Yœ , † Îs� �est ë8
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define the confidence coefficient, .  Also,  and: œ " � � - œ J àGP P Y P P ‡
�"α α α /α ;# � �

- œ J " � à " �α ;Y Y ‡ P Y
�"

# � � � �α / α α are the  and  quantiles of a central chi-square

distribution with  degrees of freedom, respectively.  Approximate confidence limits for/‡

the noncentrality, and thus power, may be calculated in the UNIREP setting as:
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Approximate lower and upper bounds on the noncentrality,  and , respectively, are= =ë ë‡P ‡Y

thus defined as

=ë
?

- /ë‡P
P

‡ ‡

œ
-tr

(78)
� � α

1

and

=ë
?

- /ë‡Y
Y

‡ ‡

œ
-tr

 . (79)
� � α

1

The strict monotone dependence of the noncentral  function on the approximateJ

noncentrality ensures an approximate confidence interval for power.  Here, lower and upper

bounds on power,  and , respectively, are defined asT Të ëP Y

T " �ë =ëP ‡Pœ J J " � à à ßJ J
�" ‘� �α / † +,ß / † , / † +,ß / † ," # / $ % // / (80)

and
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T " �ë =ëY ‡Yœ J J " � à à ßJ J
�" ‘� �α / † +,ß / † , / † +,ß / † ," # / $ % // /  , (81)

such that  through  are defined in Table 4.2 above./ /" %

4.6 Simulations

The accuracy of the new approximate confidence intervals for UNIREP tests in the

case of an estimated covariance and fixed means were evaluated for a wide range set of

simulations.  In section 4.6.1, the new technique was applied to the CLAHE mammography

example presented in Muller  (2007).  The CLAHE mammography example illustrateset al.

a completely within-subject design.  In section 4.6.2, the technique is applied to an example

that tests the interaction of orthonormal trends for between- and within-subjects.  The latter

example provides a larger number of conditions that may affect the accuracy of the

coverage.  In particular, the effect of modifying the estimating study is examined.

Appendix C contains a more detailed description of the simulation conditions and the

examples.  All simulations were conducted in SAS/IML (SAS 9.1, SAS Institute, Copyright

2003).  Simulated observed mean power values were computed using a modified version of

LINMOD 3.3 (http://ehpr.ufl.edu/muller/), a software that performs a wide variety of

General Linear Multivariate Model computations.  LINMOD 3.3 was modified to include

the rank-adjusted Huynh-Feldt estimator and test.  Predicted power values and approximate

power confidence intervals were computed using a modified version of POWERLIB 2.0

(http://ehpr.ufl.edu/muller/), a software that computes statistical power for the General

Linear Multivariate Model.  POWERLIB 2.0 was modified to include the rank-adjusted test.

The modified versions of both LINMOD and POWERLIB will be made available soon.

4.6.1 1Simulation 

 The accuracy of the new approximate confidence intervals for UNIREP tests in the

case of an estimated covariance and fixed means were evaluated for a completely within-

subject design with  repeated measures and sample sizes of ,  and ,* "! #! %!
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] " F Iœ �
R ‚ * R ‚ " ‚ * R ‚ *

R  .

( ) ( ) ( )
(82)

Appropriate fixed matrices of regression coefficients, , contrast matrices,  and , andF YG

@! were chosen to test a within-subject interaction for a test size, , of .  The matricesα !Þ!&

were also chosen to ensure approximate target predicted power values for the Geisser-

Greenhouse test of ,  and , using the power approximation introduced in!Þ#! !Þ&! !Þ)!

Muller  (2007).  Specific design matrices, , were defined.  Population covarianceet al. \

matrices were chosen to provide specific population sphericity values,

% − !Þ#)#ß !Þ&!&ß !Þ(#!ß "Þ!!e f.  Pseudo-random realizations of the error matrix, , wereI

generated and appropriate test statistics were calculated.  The observed mean power values

for the four UNIREP tests were calculated and tabulated for ,  replications per&!! !!!

condition.  The observed mean power value for each condition was the proportion of

rejected tests among ,  simulated realizations.&!! !!!

For the conditions described above, additional pseudo-random realizations of the error

matrix were generated using an estimating study with sample size, , of  and rank ofR "!est

\ \, rank , of  with ,  replications per condition for all four UNIREP tests.� �est " &!! !!!

Corresponding estimated covariance matrices were calculated, as well as lower and upper

bounds for power using the methods presented in section 4.5.  Approximate confidence

interval coverage was defined as the proportion of the ,  simulated bound realizations&!! !!!

that successfully covered the observed mean power values for each condition described

above.  This number of replications was chosen to ensure a standard error of observed mean

estimates less than or equal to , nearly guaranteeing  digits of accuracy.  Only!Þ!!!$ $

coverage of observed mean power values, and not predicted, was tabulated.  The accuracy

of the predicted power values, with respect to the observed, made it essentially redundant to

consider both.  Both one- and two-sided confidence intervals were evaluated with target

coverages of % and %.*! *&
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Only the worst case results for two-sided % confidence intervals are presented here.*&

The worst cases occurred with the smallest sample size for the target study.  In Table 4.3,

the proportion of simulations in which the estimated confidence interval successfully

covered the observed mean population power is shown for the Box conservative test.  The

results presented are for a target sample size of , for the four population sphericity values"!

and three target power values considered.  The lower tail value is specifically the lower

error, tabulating the proportion of simulations in which the approximate confidence interval

fell below the observed mean population power.  A similar proportion was tabulated for the

upper tail value.  For the Box conservative test, for a wide range of population sphericity

values and target power values, the target % estimated coverage is consistently reached.*&

There are two cases in which the target coverage is not reached, and they both occur in

cases with large population sphericity values.  In both cases, the observed mean population

powers are extremely low.  Under these conditions, the Box conservative test would not be

used in practice.

Tables 4.4-4.5 contain similar results for the Geisser-Greenhouse and the Huynh-Feldt

tests, respectively.  The target % estimated coverage is consistently reached in the cases*&

of extreme population sphericity values for the Geisser-Greenhouse and Huynh-Feldt tests.

For midrange population sphericity values, the approximated coverage fell below the target

coverage by as little as % and as much as % for the Geisser-Greenhouse, and as little!Þ) (Þ$

as % and as much as % for the Huynh-Feldt.  Coverage accuracy seemed to improve"Þ% "#Þ"

as the estimated population power increased.  In practical biomedical research, lower power

values are of little concern.  Rarely will one have a power analyses targeted below .!Þ(!

For the highest target power value, , the largest deviation from the target % estimated!Þ)! *&

coverage was % and % for the Geisser-Greenhouse and Huynh-Feldt tests,#Þ' %Þ"

respectively.  Both occurred for the population sphericity value of .!Þ&!&
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In the case of the uncorrected test, only a spherical case need be considered.  When

sphericity is met, the uncorrected test is the uniformly most powerful exact size alpha test,

among similarly invariant tests.  If sphericity is not met, a corrected test such as the Geisser-

Greenhouse, the Huynh-Feldt or the Box conservative would be more appropriate to use.  In

Table 4.6, the proportion of simulated realizations in which the estimated confidence

interval successfully covered the observed mean population power is shown for the

uncorrected test for all sample sizes considered with a spherical population.  The

approximation always reached the target estimated coverage for the uncorrected test.

Realizing that exact confidence intervals exist in the case of sphericity is important.

Achieving the exact results require using the correct (maximum likelihood) estimates for

the common variance and covariance (Morrison, 1990), rather than the unstructured

covariance estimate used in the power program, POWERLIB.  Additional details are in the

POWERLIB manual, and are mostly associated with degrees of freedom corresponding to

making all choices of  through  equal to ./ / "" &

Although not presented here, in general, the conservative coverage values observed for

the Box conservative and the uncorrected tests slowly approached the target coverage value

as target sample size increased.  This trend was also observed for the conservative coverage

values for the extreme population sphericity values for the Geisser-Greenhouse and the

Huynh-Feldt tests.  The same is true of the liberal coverage values observed for the

midrange population sphericity values for the Geisser-Greenhouse and the Huynh-Feldt

tests.  Similar results were obtained for the target % two-sided confidence interval*!

coverage, as well as the % and % one-sided confidence intervals coverage.*& *!
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Table 4 3. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers 100  for the

Box Conservative 

.

� � � �
� �

‚ ‚
R œ 10 ,

95% Half Confidence Interval is 

Population Lower  Upper

Power Tail Coverage Tail

'Þ!% ‚ "!�%

  

0.282 12.3 1.1 97.8 1.1

53.5 1.9 97.0 1.1

93.0 1

%

.7 97.3 1.0

0.505 05.4 0.1 97.3 2.6

26.6 0.5 97.0 2.5

69.0 1.1 97.0 1.9

0.720 05.2 0.4 94.1 5.5

22.7 0.6 96.8 2.6

56.9 1.4 97.0 1.6

1 02.3 0.6 85.1 14.3

11.7 0.5 96.0 3.5

35.0 0.8 97.8 1.4

Table 4 4. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers 100  for the

Geisser-Greenhouse 

.

� � � �
� �

‚ ‚
R œ

'Þ!% ‚ "!

10 ,

95% Half Confidence Interval is 

Population Lower  Upper

Power Tail Coverage Tail

�%

  

0.282 15.5 3.1 94.7 2.2

58.5 2.6 95.6 1.8

94.

%

2 1.8 96.6 1.6

0.505 16.2 5.4 87.7 6.9

52.0 3.8 90.6 5.6

87.0 2.6 92.4 5.0

0.720 20.3 2.4 92.3 5.3

53.9 2.6 94.1 3.3

85.6 3.3 94.2 2.5

1 16.1 0.7 95.6 3.7

43.8 1.4 97.0 1.6

75.1 2.7 96.2 1.1
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Table 4 5. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers 100  for the

Huynh-Feldt 10 ,

95

.

� � � �
� �

‚ ‚
R œ

% Half Confidence Interval is 

Population Lower  Upper

Power Tail Coverage Tail

'Þ!% ‚ "!�%

  

0.282 16.6 3.8 93.5 2.7

60.2 2.8 95.2 2.0

94.6 1.9 96.

%

3 1.8

0.505 21.0 8.2 82.9 8.9

59.2 4.7 88.5 6.8

90.2 2.9 90.9 6.2

0.720 27.1 3.6 90.9 5.5

63.1 3.4 93.3 3.3

90.4 4.0 93.6 2.4

1 22.4 0.8 96.7 2.5

53.1 1.8 97.1 1.1

82.1 3.2 95.9 0.9

Table 4 6. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers 100  for the

Uncorrected  1.00

.

� � � �
� �

‚ ‚
œ% ,

95% Half Confidence Interval is 

Population Lower  Upper

Power Tail Coverage Tail

'Þ!% ‚ "!

R

�%

  

10 23.8 0.5 97.5 2.0

55.1 1.5 97.6 0.9

83.5 3.2 96.1 0.7

20 21.5 0.8 97.3 1.9

52.0 1.6 97.6 0.8

81.4 3.1 96.2 0.7

40 20.7 0.9 97.2 1.9

50.9 1.5 97.7 0.8

80.6 3.0 96.3 0.7

The methods presented in section 4.5 allow calculating more than confidence intervals

for a single power value at a time.  The logic of a proof described in Taylor and Muller

(1995) guarantees that accurate confidence are provided by the point-wiseregions 

calculations.  Figures 4.1-4.4 give graphical representations of approximate power
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confidence regions surrounding predicted power curves for the four UNIREP tests.  The

approximate confidence regions are shown for the population sphericity values most closely

related to the common and most practical use of the respective UNIREP tests.

The value of a graphical representation such as Figure 4.1 for the Box conservative test

is for researchers to realize that they should be extremely cautious about power analysis

results.  For the example examined in Figure 4.1, it seems that one may do just as well

guessing at the power analysis results.  In turn, a benefit of such results may be to provide

evidence for the need of an internal pilot study design, which calls for the reevaluation of

the power analysis once a portion of data has been collected.  Another benefit may be for

researchers to suggest the creation of only one-sided power confidence intervals.

Taylor and Muller (1995) suggested using one-sided power confidence intervals in the

univariate case claiming that "the change from a one-sided to a two-sided confidence

interval has little effect on the upper bound, but a large effect on the lower bound."  Muller

and Fetterman (2002) provided examples showing that use of a one-sided power confidence

interval in the univariate case resulted in tighter and more informative bounds when

compared to the two-sided confidence intervals.

The confidence bounds for all four UNIREP tests seemed to converge quickly to the

predicted power curve as the population sphericity increased, as evidenced by additional

figures created, but not shown here.  This suggests that greater population sphericity is

associated with less uncertainty for power.
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Figure 4.1. Approximate 95% Confidence Region for Predicted Power of the

Box Conservative Test of Interaction over tr  with 10� �? R œ  and

Population 0.282 for conditions described in Section  .% œ 4.6.1 Simulation 1

Figure 4.2. Approximate 95% Confidence Region for Predicted Power of the

Geisser-Greenhouse Test of Interaction over tr  with� �? R œ 10 and

Population 0.505 for conditions described in Section  .% œ 4.6.1 Simulation 1
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Figure 4.3. Approximate 95% Confidence Region for Predicted Power of the

Huynh-Feldt Test of Interaction over tr  with 10 and

P

� �? R œ
opulation 0.720 for conditions described in Section  .% œ 4.6.1 Simulation 1

Figure 4.4. Approximate 95% Confidence Region for Predicted Power of the

Uncorrected Test of Interaction over tr  with 10 and

P

� �? R œ
opulation 1.00 for conditions described in Section  .% œ 4.6.1 Simulation 1

4.6.2 Simulation 2

 All of the simulations in the second example considered the condition of rank of \

greater than   The cases consisted of  repeated measures,  the sample size of ,"Þ : œ & R "'

$# %) ; % ) "' and , and  the rank of  equal to ,  and , in the model\

] \F Iœ �
R ‚ & R ‚ ; ‚ & R ‚ &

 .

( ) ( ) ( )
(83)
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Appropriate fixed matrices of regression coefficients, , contrast matrices,  and , andF YG

@! were chosen to test a within-subject interaction for a test size, , of .  The matricesα !Þ!&

were also chosen to ensure approximate target predicted power values for the rank-adjusted

Huynh-Feldt test of ,  and , using the power approximation presented in!Þ#! !Þ&! !Þ)!

section 3.3.  Specific design matrices, , were defined.  Population covariance matrices\

were chosen to provide specific population sphericity values,

% − !Þ#)#ß !Þ&!&ß !Þ(#!ß "Þ!!e f.  Observed mean power values were simulated and

tabulated in a similar manner to that described in section 4.6.1.

Pseudo-random realizations of the error matrix were generated using an estimating

study with sample size, , of  and rank of , rank , of  with ,R "' % &!! !!!est est\ \� �
replications per condition for all four UNIREP tests.  Corresponding estimated covariance

matrices were calculated, as well as lower and upper bounds for power using the methods

presented in section 4.5.  Approximate confidence interval coverage was defined as the

proportion of the ,  simulated bound realizations that successfully covered the&!! !!!

observed mean power values for each condition described above.  Only coverage of

observed mean power values, and not predicted, were tabulated.  The accuracy of the

predicted power values, with respect to the observed, made it essentially redundant to

consider both.  Both one- and two-sided confidence intervals were evaluated with target

coverages of % and %.*! *&

In practical biomedical research, low power values are of little concern.  Rarely will

one have a power targeted below .  Therefore, only the results for target power values!Þ(!

of  will be presented and discussed.  Power confidence interval coverage converged to!Þ)!

the target coverage as sample size increased.  Only the worst case results for two-sided %*&

confidence intervals are presented here.  The worst cases occurred with the smallest sample

size for the target study, for a variety of population sphericity values and estimated

population powers.
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 In Table 4.7, the observed mean population powers are presented for the four UNIREP

tests for the population sphericity values and ranks of  considered for target rank-adjusted\

Huynh-Feldt power of  and sample size of .  In general, as the population sphericity!Þ)! "'

increased and rank of  increased, the observed mean power values for the Box\

conservative, the Geisser-Greenhouse and the rank-adjusted Huynh-Feldt tests decreased.

Only the Box conservative had severely biased power values as the population sphericity

increased.

In Table 4.8, the proportion of simulations in which the estimated confidence interval

successfully covered the observed mean population power values for each test is shown.

The results are based on using an estimating study with sample size, , of  and rank ofR "'est

\ \, rank , of .  In general, the approximate power confidence intervals nearly always� �est %

reached the target % coverage for the Box conservative test.  The coverage became more*&

conservative as rank of  decreased.  Similarly, the coverage became more conservative\

for the Geisser-Greenhouse and rank-adjusted Huynh-Feldt tests as rank of  decreased.\

The Geisser-Greenhouse and rank-adjusted Huynh-Feldt tests performed adequately in all

cases except for the midrange population sphericity value, .  The largest deviation% œ !Þ&!&

from the target % estimated coverage was % and % for the Geisser-Greenhouse*& "$Þ' "'Þ!

and Huynh-Feldt tests, respectively, which occurred for  and rank of  equal to% œ !Þ&!& \

).  The approximate power confidence intervals for the uncorrected test reached the target

coverage value for every case considered in which the uncorrected test would be used.

Although not presented here, in general, as sample size increased the conservative

coverage values observed for the Box conservative and the uncorrected tests slowly

converged to the target coverage value.  This trend was observed for the conservative

coverage values with the extreme population sphericity values for the Geisser-Greenhouse

and the Huynh-Feldt tests as well.  The same is true of the liberal coverage values observed

for the midrange population sphericity values for the Geisser-Greenhouse and the Huynh-
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Feldt tests.  Similar results were obtained for the target % two-sided confidence interval*!

coverage as well as the % and % one-sided confidence intervals coverage.*& *!

Table 4 7. Simulated Population Powers 100  for

Target Power 80 with 16 and Rank ,

Standard Error of Observed 0.001.

0.28

. � �
� �
‚

œ R œ \ œ ;
�

œ% 2 0.505

Box GG HF Box GG HF

0.720 1.00

Box GG HF Box GG HF UN

%

% %

œ

;

œ œ

2 77.9 81.1 81.7 56.1 77.8 80.9

4 76.3 79.7 80.5 51.0 76.2 80.2

8 75.3 78.7 79.9 45.5 73.6 79.6

 

2 45.7 76.0 80.5 39.9 74.8 79.0 79.9

4 35.5 74.0 80.1 25.5 72.4 78.7 80.1

8 26.7 69.5 79.5 13.8 65.5 77.5 80.0

Table 4 8. Target 95% CI (Two-Sided) Estimated

Coverage 100  of Simulated Population Powers for

Target Power 80 with 16 and Ra

.

� �‚
œ R œ nk .

Estimation Study:  16 and Rank 4,

95% Half Confidence Interval is .

0.282 0.505

Box GG HF Box GG HF

� �
� �

\ œ ;
R œ \ œ

'Þ!% ‚ "!

œ œ

;

est est
�%

% %

2 97.8 97.2 97.0 97.5 93.4 92.3

4 93.7 92.0 91.6 95.6 86.8 85.0

8 90.9 87.9 87.2 94.8 81.4 79.0

 

2 97.6 95.4 94.9 97.4 95.3 95.5 95.8

% %œ œ0.720 1.00

Box GG HF Box GG HF UN

4 97.5 93.6 92.9 97.6 96.8 97.0 97.4

8 96.9 90.6 89.8 97.0 96.1 96.9 97.4

Holding the target sample size constant, additional simulations were performed in an

attempt to better understand the role of the estimating study in the calculation of

approximate power confidence intervals.  For a target study with sample size of  and %) rank

of \ equal to , ,  and , observed mean power values for each UNIREP test were# % ) "'
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tabulated for ,  replications for each of the conditions described above.  Once again,&!! !!!

only the cases with target rank-adjusted Huynh-Feldt power of  will be presented and!Þ)!

discussed.  In Table 4.9, the observed mean population powers are presented for the four

UNIREP tests, the population sphericity values and ranks of  considered for sample size\

of .  The information presented in this table is similar to that in Table 4.7.%)

The estimated coverages of these tabulated observed mean power values for each test

are shown in Tables 4.10-4.13 for population sphericity values of , ,  and!Þ#)# !Þ&!& !Þ(#!

"Þ!! & !!!, respectively.  Approximate confidence intervals were simulated for ,  replications

per condition (standard error of observed coverage less than or equal to ).  The!Þ!!$

estimating studies use sample sizes, , of ,  and , and ranks of  of ,  and .R "' $# %) # % )est est\

In general, for population sphericity values of  and , the approximate power!Þ#)# !Þ&!&

confidence interval coverage for the Box conservative test converged to the target coverage

value as rank of   decreased.  Coverage decreased as rank of \ \est est increased, and thus /

from the target study increased.  For larger rank of approximate power confidence\, the 

interval coverage fell short of the target coverage in several instances.  No clear trend was

apparent as  increased.  The Box conservative test would not be used for largerRest

population sphericity values.  However, the realization that the target coverage was reached

in nearly every case considered for the larger population sphericity values is worth

mentioning.

The approximate power confidence interval coverages for both the Geisser-

Greenhouse and rank-adjusted Huynh-Feldt tests seem to have converged to the target

coverage value as rank of  decreased, except in cases of\est est increased, and thus /

sphericity.  Such cases have little practical importance since exact results are available if

sphericity is valid.   Coverage decreased as rank of from the target study increased.  As\

observed in previous simulations, the approximate power confidence interval coverages for

both the Geisser-Greenhouse and rank-adjusted Huynh-Feldt tests fell short of the target
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coverage to varying degrees in nearly every case considered for midrange population

sphericity values.  This outcome was also observed for larger rank of from the target\ 

study for population sphericity of .  The approximate power confidence interval!Þ#)#

coverage for the uncorrected tests reached the target coverage value in every case except for

large  and small rank of from the target study.  The approximate power confidence/est \ 

interval coverage increased as the ranks of for both the target and estimating studies\ 

increased and as  decreased.Rest

The slow convergence of the approximate power confidence interval coverage to the

target coverage may be due, in part, to use of  and  in the approximate power confidence% %ëë8 <

interval equation.  These estimators of the sphericity parameter are ratios of unbiased

estimators for the nonnull and null cases, respectively.  The variances of these estimators

are much larger than the variances for  and .  The larger variances may account for the% %s s8 .

slow convergence to the population power as the target and estimating study sample sizes

and degrees of freedom increase.  Further simulations may be needed to confirm this

reasoning.

Table 4 9. Simulated Population Powers 100  for

Target Power 80 with 48 and Rank ,

Standard Error of Observed 0.001.

0.28

. � �
� �
‚

œ R œ \ œ ;
�

œ% 2 0.505

Box GG HF Box GG HF

0.

%

%

œ

;

œ

2 80.3 84.3 84.5 58.6 80.2 81.3

4 77.3 81.2 81.5 55.2 79.4 80.5

8 76.6 80.0 80.3 54.4 78.7 79.9

16 76.2 79.6 79.9 52.2 78.0 79.5

720 1.00

Box GG HF Box GG HF UN

% œ  

2 50.0 79.2 80.6 45.5 78.5 79.7 80.0

4 42.7 78.7 80.2 34.6 78.1 79.6 80.0

8 40.2 78.1 79.9 28.0 77.8 79.7 80.1

16 35.9 77.5 79.9 22.1 77.0 79.5 80.1
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Table 4 10. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers for Population 0.282

for Target P

.

� �‚ œ%
ower 80 with 48 and Rank .

Estimation Study:  16, 32, 48  and Rank 2, 4, 8 ,

95% Half Confidence Interval is 

œ R œ \ œ ;
R − \ −

'Þ!

� �
� � � � � �est est

% ‚ "!

\ \ \
R ;

�$.

Box Coverage GG Coverage HF Coverage

Rank Rank Rank� � � � � �est est est

est 2 4 8 2 4 8 2 4 8

16 2 97.0 96.6 96.5 96.0 95.9 95.5 95.9 95.8 95.9

4 92.5 92.7 92.7 91.0 90.9 91.3 90.5 90.7 90.5

8 87.8 87.9 88.6 86.0 86.1 86.8 85.2 85.1 85.9

16 85.9 86.6 86.9 84.6 84.6 85.4 84.4 84.4 85.3

32 2 96.8 96.8 96.6 95.1 95.3 95.7 95.7 95.7 96.1

4 92.1 91.6 92.1 90.0 89.6 90.0 89.5 89.5 90.3

8 86.7 87.1 87.4 85.1 85.1 85.1 84.7 85.1 85.5

16 87.2 87.0 86.8 83.9 83.6 83.8 83.1 82.9 83.2

64 2 96.8 96.8 96.9 95.3 95.1 95.3 95.6 95.5 95.4

4 91.4 91.5 91.6 89.9 90.2 90.0 90.0 89.8 89.9

8 87.9 87.6 87.5 84.6 84.8 84.9 83.7 84.2 84.1

16 86.9 86.7 86.6 83.2 83.6 83.3 83.7 83.9 83.6



83

Table 4 11. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers for Population 0.505

for Target P

.

� �‚ œ%
ower 80 with 48 and Rank .

Estimation Study:  16, 32, 48  and Rank 2, 4, 8 ,

95% Half Confidence Interval is 

œ R œ \ œ ;
R − \ −

'Þ!

� �
� � � � � �est est

% ‚ "!

\ \ \
R ;

�$.

Box Coverage GG Coverage HF Coverage

Rank Rank Rank� � � � � �est est est

est 2 4 8 2 4 8 2 4 8

16 2 97.5 97.2 97.4 94.1 94.3 94.9 92.2 92.1 93.6

4 94.8 94.8 95.3 87.3 87.5 88.9 85.9 86.2 87.4

8 92.6 92.7 93.4 83.2 83.4 86.0 81.4 82.0 84.3

16 92.0 92.3 93.7 82.3 82.5 85.9 80.5 80.7 83.2

32 2 97.3 97.3 97.3 93.3 93.3 93.4 92.4 92.5 92.6

4 93.8 94.1 94.3 85.7 85.2 85.8 85.0 84.8 84.5

8 91.6 91.8 91.4 81.3 81.5 82.4 79.5 80.0 80.6

16 91.5 91.7 91.7 79.4 78.9 80.0 79.2 79.1 79.5

64 2 97.2 97.2 97.4 93.6 93.7 93.5 92.6 92.5 92.8

4 94.4 94.6 94.8 84.5 85.0 84.7 84.4 85.0 85.2

8 91.7 91.5 91.8 79.6 80.1 80.4 78.9 79.2 79.6

16 90.9 90.9 91.0 78.5 78.4 78.7 78.9 78.4 78.7
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Table 4 12. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers for Population 0.720

for Target P

.

� �‚ œ%
ower 80 with 48 and Rank .

Estimation Study:  16, 32, 48  and Rank 2, 4, 8 ,

95% Half Confidence Interval is 

œ R œ \ œ ;
R − \ −

'Þ!

� �
� � � � � �est est

% ‚ "!

\ \ \
R ;

�$.

Box Coverage GG Coverage HF Coverage

Rank Rank Rank� � � � � �est est est

est 2 4 8 2 4 8 2 4 8

16 2 97.5 97.3 97.7 94.5 94.4 94.8 95.1 95.4 95.8

4 96.5 96.9 97.8 93.4 94.0 93.6 93.6 93.9 95.1

8 96.3 96.6 97.1 90.7 91.1 91.6 91.0 91.5 93.1

16 96.2 96.3 97.2 89.7 89.9 90.7 89.9 90.2 91.8

32 2 96.8 96.9 97.3 93.5 93.6 93.5 94.5 94.6 94.8

4 96.4 96.3 96.4 92.2 92.4 92.2 92.0 91.8 91.9

8 95.4 95.4 95.5 89.4 89.4 89.6 88.9 88.9 89.2

16 95.0 94.8 95.2 88.9 88.3 88.8 87.9 88.6 88.5

64 2 96.3 96.6 96.8 93.3 93.2 93.3 93.1 92.8 93.0

4 95.8 95.8 95.9 91.8 92.1 92.0 91.0 91.1 90.6

8 95.3 95.5 95.1 88.2 88.5 88.5 88.2 87.6 88.1

16 94.6 94.5 94.7 87.4 87.5 87.5 86.5 86.6 86.7
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Table 4 13. Target 95% CI (Two-Sided) Estimated Coverage

100  of Simulated Population Powers for Population 1.00

for Target Po

.

� �‚ œ%
wer 80 with 48 and Rank .

Estimation Study:  16, 32, 48  and Rank 2, 4, 8 ,

95% Half Confidence Interval is 

œ R œ \ œ ;
R − \ −

'Þ!%

� �
� � � � � �est est

‚"!

\ \ \ \
R ;

�$.

Box Coverage GG Coverage HF Coverage UN Coverage

Rank Rank Rank Rank� � � � � � � �est est est est

est 2 4 8 2 4 8 2 4 8 2 4 8

16 2 97.3 97.1 98.0 93.4 93.1 92.9 95.3 95.2 96.0 95.5 95.6 96.5

4 97.7 97.8 98.5 94.7 94.6 94.6 97.4 97.5 97.9 97.2 97.6 98.3

8 97.3 97.6 98.2 94.9 94.7 94.5 96.9 96.9 97.5 97.3 97.4 98.3

16 97.5 97.6 98.5 94.8 94.9 94.5 96.7 96.8 97.2 97.3 97.4 98.3

32 2 96.4 96.5 96.5 93.6 93.8 93.6 93.5 93.3 93.5 94.0 94.0 94.5

4 96.4 96.5 96.6 95.9 95.6 95.8 96.0 96.3 96.7 95.8 96.1 96.5

8 96.5 96.5 96.6 95.1 95.1 95.0 96.4 96.5 96.5 96.3 96.1 96.6

16 96.4 96.5 96.7 95.7 95.9 96.2 95.7 95.9 96.2 96.8 96.7 96.7

64 2 95.6 95.9 95.9 92.7 92.8 93.1 93.2 93.3 93.3 92.8 92.7 92.8

4 95.6 95.5 95.7 94.7 94.7 95.0 95.4 95.5 95.7 95.8 95.7 96.1

8 95.9 96.0 96.1 95.3 95.6 95.4 95.7 95.7 95.5 95.6 95.8 95.8

16 95.8 96.0 96.0 94.6 94.7 95.1 95.6 95.3 95.5 95.6 95.8 96.2

4.7 Alternative Approximations Considered for Estimated Covariance

In attempts to develop better confidence bound estimates for UNIREP power,

additional experimental fittings of a variety of different distributions to , or a function of-ë‡"

it, have been performed.  One attempt was to approximate the distribution of  with an .-ë‡" J

Fitting  to an  made sense for several reasons.  First, an  distribution contains the-ë‡" J J

correct support.  All the components of  are positive suggesting that .  Second,- -ë ë‡" ‡"! Ÿ

-ë‡" is a ratio of two variables that could be somewhat estimated by chi-squares.

Using the methods presented in Kim  (2006), the numerator of  waset al. -ë‡"

approximated with a weighted noncentral chi-square, while the denominator was

approximated with a weighted central chi-square.  Two concerns arose.  First, the

denominator is not necessarily a central quadratic.  The tr  component makes the# Î+� �?

denominator more of a shifted central quadratic.  Second, the Kim  (2006) resultet al.
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requires that the components of the numerator and denominator be mutually independent.

This requirement is not met.  As a result, the approximated variance was much larger than

the simulated cases, which led to a poor distributional fit.

Additional attempts to match only the numerator to a weighted noncentral chi-square

or to a weighted central chi-square with the denominator a constant equal to

E tr tr  were performed.  These attempts resulted in similarly inaccurateÒ Ð Ñ � # Ð Î+ÑÓsD ?‡

outcomes.

4.8 Conclusions

In practice, statisticians realize that a measure of uncertainty that can be associated

with a parameter estimate is important.  When the random parameter is power, confidence

intervals that account for the uncertainty provide a method to state that a study has power of

at least " " to detect an effect, with a specified confidence.  For an estimated variance andT

fixed means, methods to provide exact power confidence intervals exist in the univariate

setting.  In this paper, approximate power confidence intervals have been proposed and

evaluated in the UNIREP setting for an estimated covariance and fixed means.  The

methods have been evaluated for a large range of conditions, and have been shown to

provide reasonably accurate coverage for power for all four UNIREP tests.

Even for small sample sizes, the proposed power confidence intervals attain very

accurate coverage probabilities for the Box conservative and uncorrected tests in all cases.

This result is also true for the extreme population sphericity values for the Geisser-

Greenhouse and Huynh-Feldt tests.  For midrange population sphericity values, the

coverage probabilities of the approximate power confidence intervals for the latter two tests

often fell short of the various target coverage values considered.  Still, these results are quite

good, considering the small sample sizes being considered.  Coverage probabilities did

improve as sample size increased, as demonstrated through additional simulations (not all

presented here).  The approximate confidence intervals performed better for higher target
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power values than for lower.  This realization makes the approximate confidence intervals

more useful in practical research conditions.  One-sided confidence intervals are

recommended to provide tighter, more informative confidence bounds, as compared to the

two-sided confidence intervals.

The techniques also provide the means to plot power confidence regions around an

estimated power curve as demonstrated in Figures 4.1-4.4.  The resulting method of

displaying power analysis results have been extremely well received by researchers who

have seen it.

Many factors play a role in the computation of these approximate power confidence

intervals.  In general, the approximate power confidence interval coverage converged to the

target coverage value as the target and estimating study sample sizes increased.  As rank of

\ for the target and estimating studies increased, the coverage probabilities seem to have

decreased.  The coverage reduction was particularly noticeable for the Geisser-Greenhouse

and Huynh-Feldt tests for midrange population sphericity values.  These comments are

merely generalities, however.  The interplay of sample size, rank of  and the degrees of\

freedom for the estimating study confounded the trends in some cases.

The estimated sphericity parameters involved in the calculation of the approximate

power confidence intervals may also have confounded the general trends by having a

stronger influence over the coverage probabilities under certain conditions.  The

approximately unbiased estimators for both the nonnull and null cases have larger variances

than their corresponding MLEs.  The approximately unbiased estimators are integrated into

the approximate power confidence interval function at several points.  Their larger

variances almost certainly play a role in the slow convergence to the population power, and

thus target coverage.

Despite the many parts of the approximation, simulation results provide evidence that

the methods allow one to calculate reasonably accurate and useful power confidence
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intervals for all four UNIREP tests.  One must remember that a lot of guess work is often

involved in power analyses.  With that in mind, it is reasoned that the approximations

perform well enough for nearly all practical uses, even for smaller sample sizes, and should

be used in future study designs employing UNIREP techniques.



Chapter 5

Conclusions and Recommendations for Future Research

5.1  Conclusions

UNIREP techniques make up a special case of the more broad area of statistical

modeling called mixed models.  Due, in part, to their good inference and power techniques,

UNIREP analyses should be used whenever possible.  Here, three areas related to power for

UNIREP tests have been examined and improved upon.  Although the new methods

introduced here apply to a wide variety of studies, such as experimental or controlled

laboratory research, the driving motivation and application has been imaging research.

Imaging research  often generates the type of complete data that can be handled with

UNIREP procedures.  Also, such research often involves small sample sizes, which makes

UNIREP (or MULTIREP) techniques much more desirable than mixed models.

The Huynh-Feldt sphericity estimator was developed in an attempt to correct for biases

found with the Geisser-Greenhouse estimator.  Huynh and Feldt  claimed that their (1976)

estimator was a wasratio of unbiased estimators.  They further asserted that their estimator 

less biased and less dependent on large sample sizes than the Geisser-Greenhouse estimator

when the population covariance deviated only moderately from sphericity.  In Chapter 2,

their claims are shown to be true only for the special case of rank of  equal to .\ "

In Chapter 2, a rank-adjusted Huynh-Feldt sphericity estimator was introduced and

evaluated for a wide range of conditions.  When rank of  was greater than , the rank-\ "

adjusted estimator was shown to better estimate the population sphericity than the Huynh-

Feldt estimator.  This outcome was particularly true for larger rank of \.  The biased

Huynh-Feldt estimator yields a biased Huynh-Feldt test.  Furthermore, , for any rank of \
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the rank-adjusted estimator was shown to be less biased and less dependent on large sample

sizes than the Geisser-Greenhouse estimator when the population covariance deviated only

moderately from sphericity.  The rank-adjusted estimator is a ratio of two unbiased

estimators for any rank of , and reduces to the Huynh-Feldt estimator when rank of  is\ \

equal to .  In this sense, the rank-adjusted estimator is " more theoretically in line with the

goals originally set forth by Huynh and Feldt (1976).

Muller et al. (2007) introduced approximate power calculations for all four UNIREP

tests, which were accurate and easy to use.  Their power approximation for the Huynh-Feldt

test incorporates the Huynh-Feldt sphericity estimator.  In Chapter 3, the work begun in

Chapter 2 was extended by introducing a power approximation for the rank-adjusted test,

which uses the rank-adjusted sphericity estimator.  The accuracy of the rank-adjusted power

approximation was evaluated for a wide range of conditions For practical research.  

situations, the rank-adjusted power approximation was shown to perform as well as and, in

most cases, better than the Huynh-Feldt power approximation.  Furthermore, the Huynh-

Feldt power approximation was shown to yield artificially inflated power values at a cost of

inflated test size when In some cases, the Huynh-Feldt testrank of  was greater than .  \ "

size was observed to be greater than double the target test size.  Meanwhile, the rank-

adjusted test controlled test size adequately.  Based on the results presented in Chapters 2

and 3, use of the rank-adjusted sphericity estimator, test and power approximation are

recommended over the corresponding Huynh-Feldt methods.

Accurate power analysis is essential when designing a study.  An accurate power

analysis allows researchers the ability to focus study hypotheses, clarify the analysis plans

and enhance study design efficiency.  Power is computed assuming known values of

distributional parameters.  variance Rarely is the actually known in these computations.

Rather, the variance is often estimated from previous studies.  When the variance is
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estimated, power becomes a random variable.  Providing confidence intervals that account

for the uncertainty in these random power values would be useful in any study design.

For estimated variance and fixed means, exact power confidence intervals for

univariate analyses have been presented by Taylor and Muller (1995).  In Chapter 4, the

methods of Taylor and Muller (1995) were extended to provide accurate,reasonably 

approximate confidence intervals for UNIREP power, in the case of an estimated

covariance and fixed means.  The approximate confidence intervals performed well in most

cases considered, even for small sample sizes.  The approximate confidence intervals

performed better for higher target power values than for lower.  This realization makes the

approximate confidence intervals more useful in practical research conditions.  For

midrange population sphericity values, the coverage probabilities of the approximate

confidence intervals for the Geisser-Greenhouse and Huynh-Feldt tests often fell short of

the target coverage.  However, coverage probabilities for all four UNIREP tests seemed to

converge to the target coverage value as sample size for both the target and estimating

studies increased.  As rank of  for the target and estimating studies increased, the\

coverage probabilities seem to have decreased.  One-sided confidence intervals are

recommended to provide tighter, more informative confidence bounds, as compared to the

two-sided confidence intervals.

The methods presented in Chapter 4 offer more than merely approximate confidence

intervals for a single power value at a time in the UNIREP setting.  The methods may be

extended to allow for calculation and graphical representation of accurate confidence

regions for the entire power curve.  The resulting method of displaying power analysis

results have been extremely well received by researchers who have seen it.

5.2  Recommendations for Future Research

While the methods presented here improve upon several areas for power for UNIREP

tests, they also introduce new questions that may be examined in future research.  The
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methods discussed focus solely on UNIREP procedures.  The reason for such a focus was to

take advantage of the good power methods that accompany UNIREP procedures, especially

for small sample sizes.  Power techniques for UNIREP have been well tested and

documented.  This is not as true for the general mixed model.  Much of imaging research

and experimental or controlled laboratory studies do not require the analysis qualities that

are associated with mixed model procedures.  However, mixed models are called for in

many research situations, and easy to use software is readily available.

The mixed model has several nice statistical features, such as no requirement for

balanced data, the ability to explicitly model and analyze the between- and within-subject

variation, and the capability of handling missing data without eliminating all values for a

particular subject.  Furthermore, mixed models allow researchers to specify the type of

covariance structure desired.  In this respect, they are very convenient to use.

Proper use of UNIREP procedures assumes complete data.  UNIREP methods were

generalized by Catellier and Muller (2000) to allow for missing data.  This progression

seems to be a natural one.  The expectation is that the research introduced here will lay the

groundwork for future researchers to ultimately extend these methods to fit with the general

mixed model.  Accurate power onfidence intervals in research studies with and power c

missing, mistimed or unbalanced data would benefit researchers from every field of study.

Several specific challenges must be overcome in order to apply the methods described

here to studies with missing data.  The challenges include, but are not limited to, an

examination of the effects of percent of missing data in a research study, as well as types of

missing data.  The types of missing data may include missing at random (MAR) or missing

completely at random (MCAR).  The challenge of estimating the covariance matrix with

missing data may also be a potential source of difficulty.  A study with mistimed data may

be thought of as one with extreme amounts of missing data.  It seems doubtful that the
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methods described here would work well in such a setting because UNIREP tests implicitly

require estimating a complete unstructured covariance matrix.

In section 2.4, the proportion of observed truncated estimates of both the Huynh-Feldt

and rank-adjusted sphericity estimators were examined for the simulation cases considered.

The examination provides only the first step.  Evaluations of the entire distributions of the

estimators are recommended.  Information about the distributions of the Huynh-Feldt, rank-

adjusted and Geisser-Greenhouse sphericity estimates would provide a better understanding

of sphericity estimates and their effects on test size and power.

Many factors play a role in the computation of the approximate power confidence

intervals for UNIREP tests introduced in Chapter 4.  The interplay of sample size, rank of

\ and the degrees of freedom for the estimating and target studies confounded the trends of

confidence interval coverage in some cases.  The estimated sphericity parameters involved

in the calculation of the approximate power confidence intervals may also have confounded

the general trends by having a stronger influence over the coverage probabilities under

certain conditions.

The approximate power confidence intervals performed well in most cases considered.

However, some of the simulated results leave room for improvement.  The confidence

interval coverage for both the Geisser-Greenhouse and Huynh-Feldt tests for midrange

population sphericity values consistently fell below target coverage values.  Also, the

observed coverage probabilities for all UNIREP tests seemed to decrease as rank of \

increased for both the estimating and target studies.  This decrease in coverage probabilities

resulted in coverage values falling below the target coverage values.  A better understanding

of these trends require further examination of the accuracy of these approximate power

confidence intervals for various conditions.

The convergence of the approximate power confidence interval coverage to target

coverage values were surprisingly slow as sample size for the target and estimating studies
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increased.  The approximately unbiased estimators for both the nonnull and null cases are

integrated into the approximate power confidence interval function at several points.  The

approximately unbiased estimators for both the nonnull and null cases have larger variances

than their corresponding MLEs.  Their larger variances almost certainly play a role in the

slow convergence to the population power, and thus target coverage.  Further examination

of these estimators and their effects are needed.  Perhaps appropriate correction factors may

be developed and applied under certain conditions.

Finally, the realization that the variance component used in the approximate power

confidence intervals for the UNIREP tests is approximated to fit a chi-square distribution,

rather than fit exactly, allows for the possibility of a better approximation.  In section 4.7,

additional distributional approximations were discussed and discounted due to their poor

results.  The approximate power confidence intervals performed well in most cases

considered.  However, perhaps a better approximate distributional fit would allow for more

accurate results.  This task is left for future research.
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Appendix B:  Chapter 4 Proofs
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Lemma 4.2 The constant in the critical value of the UNIREP test statistic approximation
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This approximately unbiased estimator reduces to the rank-adjusted sphericity estimator

under the null case as depicted above in equation B.5.
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In the null case, ? œ 0, and  reduces to the rank-adjusted sphericity estimator,%ë8

%ë ë< œ
� �� �/ %

/ %
%

/

/
8

� " , � #s

, � ,s
œ l œ? ! .

�

First Moment Derivations for tr , tr , tr  and trÐ Ñ Ð Ñ Ð Ñ Ð Ñs s s sD D D ?D‡ ‡ ‡
#

‡
#

Following the method presented by Wishart (1928), let W œ µ ßs/ j /D D‡ , ‡� �, such

that / œ R � <.  In general, the notation introduced by Wishart (1928) is followed with the

exception of defining  as , while Wishart (1928) defines  as .  NoteØ Ù Ø ÙD D44 44 44
#
45 5

3 5 5 545 45 44 55
"Î#œ Î� � .  A key sentence in Wishart (1928) reads, with emphasis not in the

original, “ moment coefficients are in all cases  calculated about the meaná except the first

of the sample ”.  Using the notation  to indicate the expression given in equation  atá 8 8.� �
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the end of Wishart's seminal paper,

E E Ec d c d� � – —� � �tr W œ = œ = œ
4œ" 4œ" 4œ"

, , ,

44 44 44/5 (B.6)

such that

Ec d � �= œ " œ44 444. /5  . (B.7)

Thus,

E E’ “ c d � �� � � �tr tr tr  .Ð Ñ œ œ œ œsD D‡ 44 44 ‡

4œ" 4œ"

, ,� � � �"Î "Î/ /W /5 5 (B.8)

�

With W# #
‡œ Ð Ñs/D ,

E E E ‘ ˆ ‰– — �� ��trÐ Ñ œ = œ =W# # #

4œ" 4œ"

, , , ,

5œ" 5œ"
45 45 (B.9)

such that

E E E E

E E E

E E E E

ˆ ‰ ˜ ™c dc d � �� �˜ ™c d � �c d c d� � � � � �˜ ™c d � � c d c d� � � � � �
= œ = � = � =

œ = � = � # = = � = � =

œ = � = � # = = � = � =

45
#

45 45 45
#

45 45 45 45 45 45
# #

45 45 45 45 45 45
# #

E E

E E

œ = � = � =E E˜ ™c d c d� � � �45 45 45
# #

E  .

(B.10)

There are two cases to consider as shown below:

E

E E E

E E E
ˆ ‰

ÚÝÝÝÛÝÝÝÜ

ˆ ‰  ‘  ‘c d c d � � � �� � � �
ˆ ‰  ‘  ‘c d c d � � � �� � � �= œ

= œ = � = � = œ $ �

4 œ 5

= œ = � = � = œ & � #
45
#

44 44
# #

44 44
# #

4 4

#

45 45
# #

45 45
# #

45 45

#

. .

. .

"

 if 

 if 4 Á 5

 

(B.11)

(B.12)
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E

E
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(B.14)

Eˆ ‰  � �ˆ ‰= œ
# � 4 œ 5

� 4 Á 545
# 44

#

44 55 45
#

/5 /

/ 5 5 5

if 

if  .

(B.15)

(B.16)

Thus,

E E’ “ Û ‘
ÚÝÝÝ
ÝÝÝÜ

� � �
�� ˆ ‰tr tr

if 

if  .

Ð Ñ œ Ð Ñ œs

# � 4 œ 5

� 4 Á 5

D
#

‡
#

"

4œ"

,
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#

"

4œ"

, ,

5œ"
44 55 45
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#
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(B.17)

(B.18)

When simplified,

E’ “  ‘trÐ Ñ œ Ð ÑsD D
#

‡ ‡
#ˆ ‰"Î/# / / /� � � �� " �tr tr  .#

‡D (B.19)

�
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With W œ s/D‡,

E E E

E E

 ‘� � c d� � � � – —  � �

– —�� �� c d
tr tr tr#

4œ"

, ,

44 55

5œ"

4œ" 4œ"

, , , ,

5œ" 5œ"

44 55 44 55

W W Wœ œ = =

œ = = œ = =

(B.20)

such that

Ec d � �= = œ % œ # �44 55 44 5545
# #
45. /5 / 5 5  . (B.21)

Thus,

E E’ “  ‘ ˆ ‰� � ��
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tr tr# # # #
‡ 44 55
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Finally, for  and  ,W W œœ µ ß µ ßs s/ j / / j /D D ? F D F F D F‡ , ‡ ‡ = ‡
w w� � � �? ?? ?‡

E tr E tr E E (B.23)c d c d� � – —  ‘Ð Ñ œ œ œ œ? F FW W? ?
w � � �

4œ" 4œ" 4œ"

= = =

44

‡ ‡ ‡

44 44
= =?D ?D /5

such that

E ‘ � �= œ " œ?D44
. /54 44 . (B.24)

Thus,

E E’ “ c d� � � �
� �

tr tr

tr

Ð Ñ œ Î œ œ œs

œ

? ? F D F

?

D

D

‡ 44 44

4œ" 4œ"

= =

‡

W / /5 5� � � �"Î/
‡ ‡
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�

Thus, tr  and tr  are unbiased estimators, while tr  and tr  are biasedÐ Ñ Ð Ñ Ð Ñ Ð Ñs s s sD ?D D D‡ ‡ ‡
#

‡
#

estimators.
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Appendix C:  Simulation Details

Covariance Conditions

Covariance conditions 5-8 from Table III of Coffey and Muller (2003) were used for

each example described below:  Dg  for , withD -‡ 4œ 4 − "ß #ß $ß %� � e f
- -

- -
" #
w w

$ %
w w

œÒ Ó œÒ Ó

œÒ Ó œÒ

0.47960 0.01000 0.01000 0.01000 0.34555 0.06123 0.05561 0.04721, ,

0.23555 0.17123 0.05561 0.04721 0.12740 0.12740 0., 12740 0.12740 .

         (C.1)

Ó

Thus, .  Given Dg , it follows that .% − !Þ#)ß !Þ&"ß !Þ(#ß "Þ!!e f D - D D‡ 4 ‡
wœ œ� � Y Y

Test of Interaction with rank  Example� �\ * "

The cases consisted of  repeated measures, , and& R − "'ß $#ß %)e f
rank� �\ \− #ß %ß )ß "'e f.  For obvious reasons, a rank of  equal to "' was not considered

for the smallest sample size.  All four covariance patterns were factorially combined with

the sample sizes and ranks .  In the multivariate model,\

] \F Iœ �
R ‚ & R ‚ ; ‚ & R ‚ &

 ,

( ) ( ) ( )
(C.2)

\ M "œ Œ </:8 œ RÎ; Œ; </:8, such that , and  is a Kronecker product.  If

M

M M

M M"'

+ ,

- .
œ
Ô ×
Õ Ø; ‚ & ; ‚ ""

"' � ; ‚ & "' � ; ‚ ""� � � �
 , (C.3)

F M Fœ †" "T T+, such that  was the scaling factor for  corresponding to approximate target

power  using methods for the rank-adjusted Huynh-Feldt powerT − !Þ#!ß Þ!Þ&!ß !Þ)!e f,

approximation as presented in section 3.3.  The within-subject contrast, Y , , was an� �& ‚ %

orthonormal trends matrix for linear, quadratic, cubic and quartic trends,

Y œ

� #Î "! #Î "% � "Î "! "Î (!

� "Î "! � "Î "% #Î "! � %Î (!

!Î "! � #Î "% !Î "! 'Î (!

"Î "! � "Î "% � #Î "! � %Î (!

#Î "! #Î "% "Î "! "Î (!

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

È ÈÈ ÈÈ ÈÈ ÈÈ ÈÈ ÈÈ ÈÈ ÈÈ ÈÈ È
 . (C.4)
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The between-subject contrast, , is a  orthonormal trends matrix up to theG � �; � " ‚ ;

� �; � "  order across rows, similar to the within-subject contrast matrix is across columns.

The contrasts yield a test of interaction of between- and within-subject trends.  Without loss

of generality, assume @! œ !Þ!&!.  A test size, , of  was used.α

CLAHE Mammography Example

To improve contrast in digital mammography, computer scientists developed the

Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm.  Independent

observers considered  Clip Region combinations for one group only.  $ ‚ $ œ * ‚ Region

denotes the size of the image (pixels ) at which contrasts are controlled and Clip level limits#

the maximum contrast adjustment.  In the  multivariate model\ "œ R , while within-person

factors Clip and Region gave , .  Also , , contained mean] F� � � �R ‚ * " ‚ *

log"!� �contrast  for the unprocessed condition minus the mean for each of the nine

combinations of Clip and Region ( ).  If  contains orthonormal" . .cr unprocessed cr cœ � X

linear and quadratic trends for Clip , and  does the same forlog#� � e f− "ß #ß % Xr

log#� � e fRegion , then the  within-persons contrast matrix,  is− "ß $ß & *‚% Ycr

Y X Xcr c rœ Œ œ Œ

�%Î %# #Î "%

�"Î %# �$Î "%

&Î %# "Î "%

�"Î # "Î '

! �#Î '

"Î # "Î '

Ô × Ô ×Ö Ù Ö Ù
Õ Ø Õ Ø

È ÈÈ ÈÈ È È
È ÈÈÈ  . (C.5)

With L the linear and Q the quadratic trends for interaction components being tested,

Y ? ? ? ?cr LL LQ QL QQœ c d.
All four covariance patterns were factorially combined with .  TheR − "!ß #!ß %!e f

multivariate test considered  test size, , of @cr œ † !Þ!&"T c d!Þ& "Þ! �"Þ! !Þ&  with a , withα

"T  the scaling factor for  corresponding to approximate target powerF

T − !Þ#!ß Þ!Þ&!ß !Þ)!e f for the Geisser-Greenhouse approximation using methods

presented in Muller .  Simulated population power values were computed foret al. (2007)

500,000 replications per condition.  The conditions set forth in this example were utilized in
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section 4.6.1.  Further description of the CLAHE Mammography example may be found in

Muller  (2007).et al.

Standard Error Calculations

Standard error values are presented throughout the document in each table in which

observed mean simulation values are tabulated.  When calculating the standard error of

observed mean power values, the equation providing the most conservative value was used,

WÞIÞ œ !Þ&! !Þ&! ÎR RÈ� �� � </: </:, such that  was the number of replications used for each

case in a simulation.  For similar calculations for standard errors of the observed mean

sphericity estimates, the interaction test sizes and the confidence interval coverages, a more

liberal, but, simultaneously, more appropriate equation was used,

WÞIÞ œ !Þ*& !Þ!& ÎR *&È� �� � </:.  In Chapter 4, % Score half confidence intervals equal to

"Þ*' ‚ WÞIÞ are provided for the simulated confidence interval coverage values.

Computational Methods

All power computations were conducted in SAS/IML (SAS 9.1, SAS Institute, Copyright

2003).  Free software LINMOD 3.4 (http://ehpr.ufl.edu/muller/) was used for all data

analysis and includes new methods.  Free software POWERLIB 2.1

(http://ehpr.ufl.edu/muller/) was used for all power analysis and includes new methods.the 
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