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ABSTRACT 

Daniel James Crona: Identification and validation of germline variations that associate with 
overall survival in metastatic renal cell carcinoma patients treated with sorafenib 

(Under the direction of Federico Innocenti) 
 

 

Sorafenib is a potent inhibitor of multiple oncogenic, stromal and angiogenic receptor 

tyrosine kinases. Germline variants in VEGF-pathway genes and in sorafenib pharmacology 

genes might associate with prognosis and/or sorafenib efficacy in metastatic renal cell 

carcinoma (mRCC patients). A total of 295 mRCC patients from the phase III TARGET trial 

were genotyped using candidate germline variants from 56 candidate genes implicated in 

angiogenesis, sorafenib pharmacology and/or RCC prognosis/pathogenesis. Seven variants 

that significantly associated with overall survival (OS) in mRCC patients treated with 

sorafenib, and an additional two variants associated with OS in a combined analysis of both 

treatment arms.  

Statistical associations between genetic variants and outcomes in cancer studies 

should be supported with molecular mechanistic evidence of variant function to aid in 

biomarker validation. Variants identified in Aim 1 that significantly associated with OS were 

analyzed using in silico bioinformatic tools to prioritize in vitro validation assays.  Cell 

viability assays validated one non-synonymous variant in FLT-4, and dual reporter gene 

luciferase assays validated two intronic VEGFA variants in three different cell lines.  

Novel pathways and targets of sorafenib activity remain to be identified. Primary 

mouse embryonic fibroblasts (MEFs) from 32 inbred strains were profiled for sorafenib 
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cytotoxicity utilizing high content imaging and simultaneous evaluation of cell health 

parameters (cell viability, membrane permeability, mitochondrial membrane potential, and 

cytochrome C release). One quantitative locus (QTL) on chromosome 9, which reached 

genome-wide significance and significantly associated with cytochrome C release, was 

identified. A total of nine genes, expressed in MEF cells at mRNA level, were present in this 

QTL. A second QTL associated with cell viability was also identified. A total of 13 candidate 

genes, expressed in MEF cells at mRNA level, were present in this QTL. In the future, 

functional validation of candidate genes under these two identified QTLs, using knockdown 

and overexpression approaches, will be conducted in MEF and human cell lines.
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CHAPTER 1: RENAL CELL CARCINOMA: 

ANGIOGENESIS, VEGF-PATHWAY INHIBITORS AND BIOMARKERS 

 

1.1 Overview 

Cancers of the kidney and renal pelvis account for approximately 2-3% of all adult 

malignancies, and have increased in overall incidence over the past few decades.  The most 

common subtype of kidney cancer arises from the renal parenchyma in the proximal tubules 

of the kidney and is classified as renal cell carcinoma (RCC). Approximately 30% of RCC 

patients will present initially with metastatic disease, and another 30% will relapse after 

surgical resection of their primary tumor. RCC responds poorly to standard cytotoxic 

chemotherapy and, prior to advent of targeted multikinase inhibitor therapies, interleukin-2 

(IL-2) and interferon-α (INF-α) were the only systemic therapies commonly used for the 

treatment of advanced or metastatic RCC (mRCC).  

However, over the past decade the treatment landscape for mRCC has changed 

dramatically due to the U.S. Food and Drug Administration (FDA) approval of multiple 

agents that target tumorigenic and angiogenic pathways. The approval of seven agents, which 

target angiogenic and/or oncogenic signaling pathways, has helped increase median survival 

time amongst mRCC patients.  Nevertheless, despite these major advancements, most 

patients experience disease progression while on treatment and mRCC is eventually their 

cause of death. 

Sorafenib is a multikinase inhibitor with potent activity against angiogenic, 

oncogenic, and stromal kinases, as well as the RAF/MEK/ERK signaling pathway, which 
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leads to inhibition of tumor proliferation and angiogenesis. Data from the pivotal phase III 

randomized, placebo-controlled, multicenter Treatment Approaches in Renal Cancer Global 

Evaluation Trial (TARGET) confirmed a significant overall survival (OS) and progression-

free survival (PFS) benefit. These data led to its U.S. FDA approval in December 2005 for 

the treatment of patients with advanced or metastatic RCC.  

 Despite the recent U.S. FDA approval of several additional multikinase inhibitors for 

the treatment of mRCC, there is a clear unmet need to identify and validate prognostic and 

predictive biomarkers that associate with improved survival. Because anti-angiogenic 

multikinase inhibitors target, in addition to the tumor itself, non-malignant endothelial cells 

and tumor microenvironment, germline DNA variations likely affect the treatment efficacy 

and/or toxicity profiles of these drugs. In addition, because RCC is a highly vascularized 

tumor type and considerable interindividual variability in response to sorafenib is observed 

clinically, identification and validation of germline genetic variants that associate with 

sorafenib response may help determine which patients should be treated with sorafenib. In a 

crowded landscape of targeted agents for the treatment of mRCC, identification of predictive 

pharmacogenetic variants could certainly impact clinician treatment decisions and improve 

patient outcomes.  

 Additionally, the identification of novel prognostic markers may provide insight into 

RCC pathogenesis/prognosis, or identify patients who would benefit from more intensive 

therapies and/or monitoring. Germline single-nucleotide polymorphisms (SNPs) in 

angiogenesis pathway genes have associated with patient outcome in numerous tumor types, 

but the results are often inconsistent across studies and rarely validated. Furthermore, 

previous candidate gene pharmacogenetic studies of oral multikinase inhibitors have each 
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only interrogated a small number of candidate genes or SNPs. Moreover, for the variants 

identified in these studies, little information regarding their effects on angiogenesis, at the 

molecular and cellular level, is available.  

 This research stems from the hypothesis that germline genetic variants in mRCC 

patients will help explain the interindividual differences in sorafenib response and patient 

survival. This hypothesis will be addressed through three aims, described in detail below. 

The overall goal of this dissertation research is to identify and validate predictive germline 

genetic markers of sorafenib efficacy, and prognostic germline genetic markers that associate 

with RCC pathogenesis and/or prognosis. 

 

1.2 Renal Cell Carcinoma 

Cancers of the kidney and renal pelvis account for approximately 2-3% of all adult 

tumors, and the overall incidence has increased over the past few decades.1,2 Renal cell 

carcinomas (RCC) arise from the epithelia that lines the renal tubules, and at least 85-90% of 

all malignancies arising in the kidney and renal pelvis can be classified as RCC.3 The most 

common histological subtype of RCC is clear-cell RCC (70-80% of all cases of RCC).4-6 

Clear-cell RCC often presents as a single solid tumor located at the periphery of the renal 

parenchyma, and is defined by its optically clear cytoplasm, with nested clusters of cells 

surrounded by a dense endothelial network.7,8  

Worldwide, RCC is the ninth most common type of cancer, with an estimated 

incidence of approximately 337,860 newly diagnosed cases and approximately 143,406 

deaths in 2012.9 In the U.S., RCC is the seventh most common cancer among men, and ninth 

most common cancer among women. It constitutes approximately 3.9% of all new cancers, 

with a median age of 64 years at diagnosis.10 The American Cancer Society estimated that 
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approximately 63,920 new RCC cases were diagnosed, and 13,860 deaths (8,900 men and 

4,960 women) occurred due to RCC in the U.S. in 2014.1  

Median overall survival rates for RCC have improved over the past two decades, 

which could be attributed to improved screening and early detection of smaller tumors, the 

use of cytoreductive nephrectomy prior to the use of systemic therapy in advanced disease, 

and/or the U.S. FDA approval of multiple agents that target angiogenic and oncogenic 

signaling pathways. The 5-year and 10-year relative survival rates for kidney cancer are 72% 

and 62%, respectively. A majority of RCC cases are diagnosed at an early stage when disease 

is localized (64%), and the 5-year relative survival rate for these patients is 92%. Overall, the 

5-year survival for all patients with RCC is 74%, and as high as 96% when patients present 

with stage I disease.11,12 However, approximately 30% of RCC patients will present initially 

with metastatic disease, and an additional 30-50% of RCC patients, initially thought to be 

curable through nephrectomy, will relapse.13-16 The median survival time for patients with 

metastatic disease is 10-12 months,17 the 5-year survival rate for these patients is 

approximately 23%, and the 10-year survival is only 12.3%.2,10,12 

 

1.3 Renal Cell Carcinoma and Angiogenesis 

RCC arises from a series of mutations and selection events in cells of the proximal 

tubules of the nephron. These events ultimately result in the formation of cells that possess 

characteristics that are consistent with the hallmarks of cancer: unregulated cellular 

proliferation, growth in a hypoxic environment, recruitment of pro-angiogenic factors, 

evasion of anti-apoptotic signaling, invasion of basement membrane, and ultimately distant 

metastases.18  
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A seminal event in the pathogenesis of clear-cell RCC is loss of function of the von 

Hippel-Lindau (VHL) tumor suppressor gene. VHL was identified in 1993,19 contains three 

exons, and is located on the short arm of chromosome 3 (3p25). Germline inheritance of 

mutated or deleted VHL alleles is the primary etiology for inherited clear-cell RCC.  In 

addition, at least 75% of sporadic clear-cell RCC cases also occur as a consequence of 

aberrant VHL function.18-21 Indeed, biallelic gene inactivation of VHL is a hallmark event that 

promotes clear-cell RCC tumor development, and it classically conforms to the Knudson 2-

hit carcinogenesis model in cases of sporadic clear-cell RCC.22 A deletion of one VHL allele 

results in a loss of heterozygosity in more than 90% of cases of sporadic clear-cell RCC.23 

Subsequently, the second allele can be inactivated through additional gene mutations,24 or 

through gene silencing secondary to hypermethylation.25,26 In contrast to inherited clear-cell 

RCC, both the first and second “hits” occur as a result of somatic mutations, rather than 

germline mutations.20 

VHL is an upstream mediator of a family of transcription factors, known as hypoxia 

inducible factors. Under normoxic conditions, VHL marks hypoxia inducible factor-1α (HIF-

1α) for ubiquitination and proteasomal degradation.27 Ultimately, dysfunctional VHL protein 

prevents HIF-1α degradation, which allows HIF-1α to translocate into the nucleus to 

facilitate transcription of pro-angiogenic and mitogenic factors (including vascular 

endothelial growth factor [VEGF], transforming growth factor beta [TGF-β], and platelet 

derived growth factor [PDGF]). RCC is often associated with up-regulated activity of distal 

HIF-1α effectors (VEGFA, VEGFRs, TGF-β [and its receptor, EGFR], PDGF, and PDGFRs) 

and the RAF/MEK/ERK signaling pathway (Figure 1.1).18,28,29 Because angiogenesis is so 

central to the pathophysiology of RCC, there is clear rationale for administering multikinase 



6 

inhibitors that target distal HIF-1α effectors, primarily pro-angiogenic effectors in the VEGF-

pathway, to patients with mRCC.  

 

1.4 The Treatment of Advanced or Metastatic Renal Cell Carcinoma 

RCC responds poorly to traditional cytotoxic chemotherapy. While multiple agents 

(e.g. gemcitabine, vinblastine, and 5-fluorouracil) have been tested in patients with mRCC, 

response rates are extremely poor (4% to 6%).3,30 One main mechanism of resistance to 

traditional chemotherapy could be related to the expression of MDR1, which encodes for the 

P-glycoprotein (Pgp) drug efflux transporter, in the proximal tubules of the kidney.3 Prior to 

2005, pharmacotherapeutic options for mRCC patients were limited to immunotherapies (IL-

2 and INF-α). However, IL-2 and/or INF-α are highly toxic to patients, only a subset of RCC 

patients adequately respond to these therapies,31 and prognosis for patients with mRCC 

receiving immunotherapy was poor with less than 10% achieving durable and complete 

remissions.5 

Over the past decade the treatment landscape for mRCC has changed dramatically 

due to the U.S. FDA approval of multiple agents that target tumorigenic and angiogenic 

pathways. The approval of seven agents (Figure 1.2), which target angiogenic and/or 

oncogenic signaling pathways (notably, inhibitors of the VEGF-pathway and the mammalian 

target of rapamycin [mTOR] pathway) based on the pathophysiology of the disease (Figure 

1.1), has helped increase median survival time amongst mRCC patients.2,32-38 

Ultimately, 5-year survival rates for RCC patients with advanced disease have 

improved from 7.3% during 1992-1995 to 12.3% during 2004-2010,2 which is likely to be at 

least partially attributable to the approval of multiple oral multikinase inhibitors that all have 
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a positive impact on patient overall survival. Nevertheless, despite these major 

advancements, most patients experience disease progression while on treatment and mRCC is 

eventually their cause of death.7  In 2014, it was estimated that over 13,000 patients in the 

U.S. died from RCC,2 and these statistics highlight the need for mRCC treatment 

optimization.   

 

1.5 Sorafenib  

Sorafenib tosylate (Nexavar; Bayer HealthCare Pharmaceuticals Corporation, Wayne, 

NJ; Onyx Pharmaceuticals, South San Francisco, CA) is an orally administered biaryl urea 

agent that is also a potent multikinase inhibitor. The chemical name of sorafenib is 4-[4-[[4-

chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methyl-pyridine-2-

carboxamide (Figure 1.3).  It has a broad spectrum of activity in angiogenic, oncogenic, and 

stromal kinases, as well as the RAF/MEK/ERK signaling pathway. Sorafenib was originally 

developed as a RAF kinase inhibitor, but was subsequently shown to effectively inhibit 

VEGFR-1, -2 and -3, PDGFR-β, FMS-like tyrosine kinase-3 (FLT-3), fibroblast growth 

factor receptor-1 (FGFR-1), RAF-1, BRAF (wild-type and mutant BRAFV600E), and c-KIT 

(cellular homolog of the feline sarcoma viral oncogene v-kit) receptor tyrosine kinases in 

multiple tumor cell lines (Table 1.1).39-42 Sorafenib also exhibited broad-spectrum, dose-

dependent inhibitory activity in multiple mouse xenograft models, including: breast, colon, 

lung, thyroid, and kidney tumors, as well as melanoma.39,41 The anti-proliferative effects of 

sorafenib are largely dependent on the inhibition of oncogenic signaling pathways that 

regulate tumor proliferation.41 Sorafenib has also been shown to induce apoptosis in 

numerous cell lines.41 While the mechanisms underlying its pro-apoptotic effects are not well 

understood, one proposed hypothesis revolves around sorafenib’s ability to inhibit 
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phosphorylation of initiation factor eIF4E combined with the loss of the anti-apoptotic 

myeloid leukemia-1 (MCL-1) protein.43 Dynamic contrast-enhanced magnetic resonance 

imaging (MRI) in RCC patients revealed that sorafenib also significantly altered vascular 

permeability and tumor perfusion.44 

 Data from four dose-escalation phase I trials revealed that sorafenib was relatively 

safe at its maximum tolerated dose (MTD) of 400 mg twice daily (BID).45-48 However, there 

was also a high degree of interpatient variability in the sorafenib pharmacokinetic profile for 

patients enrolled on these trials. The mean elimination half-life of sorafenib is approximately 

25–48 hours. Multiple dosing at the MTD for seven days resulted in sorafenib accumulation 

levels 2.5- to 7-fold higher than when a single dose was administered.40,47 Steady-state 

concentrations of sorafenib were reached after seven days of dosing, and no additional 

accumulation observed after steady-state was reached.48 In the non-continuous trials, the 

mean peak plasma concentration (Cmax) and area under the concentration–time curve (AUC) 

values were substantially greater on the last day than they were after sorafenib administration 

on the first day.49 And, at 200 mg BID and at the MTD of 400 mg BID, the interpatient 

variability (%CV) in sorafenib exposure (measured by its AUC) ranged from 5 to 83%, and 

from 33 to 88% for sorafenib Cmax.49,50 Fortunately, even with this wide interpatient 

variability in sorafenib pharmacokinetics, there was not an observed association between 

increased sorafenib exposure and increased toxicities (notably: fatigue, diarrhea and 

dermatologic toxicities).49  

Sorafenib metabolism is mediated through two parallel pathways: pyridine N-oxide 

oxidation catalyzed by cytochrome P450 (CYP) 3A4, and through glucuronide conjugation 

by uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A9. At steady state, the most 
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prevalent circulating analyte detected in the plasma is parent sorafenib (70-85%); however, 

the main pyridine N-oxide is still detected at high levels, and has been shown to be as potent 

as the parent drug.40,51 In patients with mild or moderate hepatic dysfunction (Child Pugh A 

and Child Pugh B) who received sorafenib twice daily at the MTD, AUC values for the N-

oxide metabolite were 23-65% lower than for patients without hepatic impairment.52  

As a target of glucuronide conjugation, sorafenib is believed to undergo extensive 

enterohepatic recirculation, as evidenced by occurrence of observable double peaks in the 

concentration–time profiles among patients treated with sorafenib. This is supported by 

population pharmacokinetic modeling, which adequately described sorafenib disposition 

when accounting for enterohepatic recirculation in the model.50 Sorafenib is highly bound to 

plasma proteins (99.5%), and because of its lipophilic characteristics, it is widely distributed 

to tissues. However, recent studies have also shown that sorafenib also undergoes OCT1, 

OATP1B1, and OATP1B3-mediated active transport.53,54  

Data from a phase II randomized discontinuation trial showed that sorafenib 

significantly improved PFS in mRCC patients.55 Data from the pivotal phase III randomized, 

placebo-controlled, multicenter TARGET confirmed a significant PFS benefit, and showed a 

trend towards an OS benefit in patients with mRCC treated with sorafenib. Median PFS was 

significantly improved for patients treated with sorafenib,33 and final survival analyses 

revealed improved OS for patients treated with sorafenib.56 Based on these clinical trial data, 

the U.S. FDA approved sorafenib in December 2005 as the first anti-angiogenic multikinase 

inhibitor for the treatment of mRCC.  
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1.6 Renal Cell Carcinoma Biomarkers 

The development and approval of oral multikinase inhibitors, such as sorafenib, that 

target the angiogenesis and the VEGF-pathway have improved overall survival for many 

patients with mRCC. However, there is a significant interindividual variability when it comes 

to the benefit of these medications. And, the overall response rate, defined generally as the 

proportion of patients with reduction in tumor burden of a predefined amount, only ranged 

from 10-44% in patients that received front-line VEGF-pathway inhibitor therapy.33,36,37,57 

The identification of prognostic and predictive biomarkers is an important next step in the 

evolution of mRCC treatment, and will help clinicians prioritize the use and sequence of the 

seven targeted agents approved over the past decade.  

Prognostic biomarkers are used to evaluate phenotypes, which correlate with survival 

outcomes, independent of treatment.12,58 Clinical prognostic biomarkers have been used 

extensively to estimate RCC prognosis. The Memorial Sloan Kettering Cancer Center 

(MSKCC) risk criteria score for estimating survival has been incorporated into routine 

clinical practice, and categorizes mRCC patients into low, intermediate and high risk 

categories. The MSKCC risk score examined five prognostic factors (serum hemoglobin 

levels, corrected serum calcium levels, serum lactate dehydrogenase (LDH) levels, interval 

between diagnosis and the start of treatment, and Karnofsky performance status) in mRCC 

patients.59,60 More recently, newer prognostic models have been developed subsequent to the 

U.S. FDA approval of VEGF-targeting agents.61,62 And, additional histological, molecular 

(e.g. circulating tumor cells, serum amyloid A protein, C-reactive protein, HIF-1α, 

phosphatidylinositol-4,5-bisphosphate 3-kinase [PI3K], etc.), and more recently genetic 

biomarkers have also been investigated as measures of prognosis.12 
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Predictive biomarkers are used to predict the clinical benefit and/or response to 

medications, and can be followed throughout the course of treatment.12,58 No clinically 

validated biomarkers for RCC are utilized. However, types of predictive molecular 

biomarkers have been investigated, including: circulating biomarkers (e.g. VEGFA, 

sVEGFR2 and sVEGFR3), cytokine angiogenic factors (e.g. baseline IL-6 and elevated 

LDH), tissue-based biomarkers (e.g. VHL mutations), and factors in the mTOR pathway (e.g. 

elevated phosphor-S6 expression, and elevated phosphorylated protein kinase B [pAKT] 

expression).58 In addition, single nucleotide polymorphisms (SNPs) that associate with 

differences in pharmacokinetics/pharmacodynamics, and that associate with differences in 

survival have been postulated to be predictive biomarkers of mRCC treatments.63-68   

To date, mRCC remains incurable, despite the approval of several targeted therapies, 

and there is a clear unmet need to identify and validate markers that associate with improved 

survival. And, despite the U.S. FDA approval of multiple VEGF pathway inhibitors that have 

become the mainstay for pharmacotherapeutic treatment of mRCC, many unanswered 

questions remain regarding the choice of drug for an individual patient, the timing of and 

dose at treatment initiation, and the optimal sequencing of these agents for an individual 

patient. But, there are currently no validated molecular/genetic prognostic or predictive 

biomarkers that have been incorporated into routine clinical practice to help answer these 

questions and help clinician decision making. The identification, validation and clinical 

implementation of novel prognostic and predictive biomarkers are important towards 

optimizing mRCC therapies, and could certainly help ascertain which patients would receive 

the greatest clinical benefit from sorafenib.  
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1.7 Purpose of the Research 

Despite the recent U.S. FDA approval of several multikinase inhibitors for the 

treatment of mRCC, there is a clear unmet need to identify and validate prognostic and 

predictive markers that associate with improved survival. Because anti-angiogenic 

multikinase inhibitors target, in addition to the tumor itself, non-malignant endothelial cells 

and tumor microenvironment, germline variations likely affect the treatment efficacy and/or 

toxicity profiles of these drugs. In addition, because RCC is a highly vascularized tumor type 

and considerable interindividual variability in response to sorafenib is observed clinically, 

identification and validation of germline genetic variants that associate with sorafenib 

response may help determine which patients should be treated with sorafenib. In a crowded 

landscape of targeted agents for the treatment of mRCC, identification of predictive 

pharmacogenetic variants will certainly impact clinician treatment decisions.  

 Additionally, the identification of novel prognostic markers may provide insight into 

RCC pathogenesis/prognosis, or identify patients who would benefit from more intensive 

therapies and/or monitoring. Germline single-nucleotide polymorphisms (SNPs) in 

angiogenesis pathway genes have associated with patient outcomes in numerous tumor types, 

but the results are often inconsistent across studies and results are rarely validated. 

Furthermore, previous candidate gene pharmacogenetic studies of oral multikinase inhibitors 

have interrogated small numbers of candidate genes or SNPs. Moreover, for the variants 

identified in these studies, little information regarding their effects on angiogenesis, at the 

molecular and cellular level, is available. 
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1.8 Specific Aims 

The central hypothesis of this research is that identification and validation of germline 

genetic variants in mRCC patients will help explain the interindividual differences in 

sorafenib response and OS. This hypothesis will be addressed through three aims, described 

in detail below. The overall goal of these studies is to identify and validate predictive 

germline genetic markers of sorafenib efficacy and/or pharmacology, and prognostic 

germline genetic markers that associate with RCC pathogenesis and/or prognosis.  

 

Aim 1. To genotype candidate SNPs from 56 candidate genes, using available genomic 

DNA from TARGET patients, and test associations with OS.  

Hypothesis: Germline variants in genes related to RCC prognosis/pathogenesis, the 

angiogenesis pathway and/or sorafenib pharmacology will associate with OS in patients with 

mRCC enrolled on the phase III TARGET trial.  

Significance: The oral multikinase inhibitor sorafenib helped revolutionize the treatment of 

mRCC, but mRCC remains incurable, even for patients with stage IV disease who have been 

treated with sorafenib.69 In addition, wide interindividual variation in response to sorafenib 

clinically, coupled with the recent U.S. FDA approval of three additional oral anti-angiogenic 

multikinase inhibitors, has revealed an unmet need in the treatment of mRCC. Identification 

of predictive markers of sorafenib response may help identify a subpopulation of mRCC 

patients who will benefit most from sorafenib therapy, while identification of novel 

prognostic markers will provide clinicians and researchers with insights concerning the 

tumor biology of mRCC and identify patients that may require more intensive therapies 

and/or monitoring. 
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Rationale: Anti-angiogenic multikinase inhibitors target tumor cells, host endothelial cells, 

pericytes, and even the tumor microenvironment rather than simply targeting the tumor cell 

alone. Therefore, germline variation is likely an important determinant of drug response in 

multikinase inhibitors.70 Identification and validation of germline genetic variants that 

significantly associate with survival will help identify patients who are optimal candidates for 

sorafenib therapy.   

 

Aim 2. To validate functionality of germline variants (identified in Aim 1) that associate 

with OS in TARGET patients. 

Hypothesis: Functional validation of germline variants that significantly associate with OS 

in TARGET patients can help elucidate the molecular effects of these variants on RCC 

pathogenesis/prognosis, angiogenesis and/or sorafenib pharmacology. 

Significance: Findings from pharmacogenetic and pharmacogenomic studies (both candidate 

gene and genome wide association studies [GWAS]) continue to provide a plethora of 

information about genetic variation that underlies both disease pathology and responses to 

pharmacotherapy. However, a clear understanding of the molecular effects of candidate 

variants (selected from significant associations between genotype and clinical phenotypes) is 

often absent. Since a tagging SNP approach was employed to select SNPs for genotyping 

TARGET patient DNA, it is imperative that the causal variant(s) is identified. Therefore, it is 

important that a series of validation assays characterize the effect(s) of the variant on 

signaling pathways and/or drug response. Essential steps in the functional validation process, 

aside from genotyping and imputation, include: in silico analyses to identify and prioritize 

putatively functional variants, and in vitro validation of predicted molecular effects to 
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provide a basic explanation of the mechanistic processes that underlie the genotype-

phenotype associations. Validation of these germline variants (in the absence of, or in 

conjunction with replicative genotyping in an independent, external cohort) is essential to 

their translation into potentially useful biomarkers that will inform treatment decisions 

concerning sorafenib therapy for mRCC patients.  

Rationale: Many significant genotype-phenotype associations, derived from multikinase 

inhibitor pharmacogenetic studies, lack validation.63-68 Information regarding the molecular 

effects, which underlie disease pathogenesis and/or response to therapy, is direly needed. 

Therefore, a sequential in silico � in vitro approach to validate germline variants of interest 

(garnered from Aim 1) will be employed. Functional validation of genetic variants that reveal 

significant associations with clinical phenotypes and drug response can increase the validity 

of the observed associations.71,72 Elucidation of the molecular effects of variants will help 

translate the genotype-phenotype associations derived from pharmacogenetic studies into 

clinically useful biomarkers. 

 

Aim 3. To use in vitro cell models to discover novel candidate genes and signaling 

pathways related to sorafenib cytotoxicity 

Hypothesis: Differential cell health and response data (e.g. EC50 or IC50 values) from 32 

MEF cells lines treated with sorafenib, can be used in GWAS to identify candidate genes 

associated with sorafenib response, which will ultimately lead to the discovery of novel 

genes for future pharmacogenetic testing in patients treated with sorafenib.   

Significance: Aim 1 identified germline variants that significantly associate with OS through 

a candidate gene/candidate SNP approach. Since this approach leverages existing knowledge 
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about mRCC pathogenesis/prognosis, angiogenesis and/or sorafenib pharmacology, there is 

little chance that novel and previously unidentified signaling pathways or candidate genes 

will be discovered. This aim will use a cellular genetics approach, using high-content cellular 

imaging and genetic mapping, and will help discover novel genes and pathways involved 

with sorafenib cytotoxicity and provide a better understanding of the variability observed 

with this phenotype. 

Rationale: Previous studies have shown that GWAS mapping can be successfully performed 

in a panel of diverse inbred strains of mice to identify genetic loci that contain candidate 

genes that modulate both single gene and polygenic traits.73-76 But to date, there have been 

few examples of animal GWAS pharmacogenetics, and even those that have been published 

have not analyzed the contribution of genetics to multikinase inhibitor (e.g. sorafenib) 

cytotoxicity.77,78 The use of genetically well-characterized inbred mouse strains provides a 

viable model system to analyze the genetic basis for cytotoxicity variability.  Mouse 

embryonic fibroblasts (MEFs) from 32 inbred mouse strains are used for this high-throughput 

cellular genetics approach for four main reasons: they retain the exact genetic composition of 

the mouse strain from which they are isolated, selection of over 30 strains increases the 

likelihood of detecting genetic differences that underlie differences in sorafenib response, 

technological advances (e.g. high-content imaging) have allowed for better characterization 

of cellular phenotypes, and technological advances (e.g. siRNA loss of function and cDNA 

over-expression in vitro techniques) have allowed for functional validation of genetic loci. 
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TABLES 

Table 1.1. Sorafenib inhibits angiogenic kinases and RAF/MEK/ERK pathway 

oncogenic kinases. Table adapted from Wilhelm, et al. Cancer Res. 2004;64:7099-7109. 

Abbreviations: BRAF, v-Raf murine sarcoma viral oncogene homolog B; c-KIT, v-Kit 

Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; c-MET, MET proto-oncogene, 

receptor tyrosine kinase; CDK1, cyclin dependent kinase 1; EGFR, epidermal growth factor 

receptor, ERK, extracellular-signal-regulated kinase; FGFR-1, fibroblast growth factor 

receptor-1; FLT-3, fms-related tyrosine kinase 3; HER-2, human epidermal growth factor 

receptor 2; IC50, half maximal inhibitory concentration; IGFR, insulin growth factor receptor 

; MEK, ; mitogen-activated protein kinase kinase; PDGFR- β, platelet derived growth factor 

receptor β; PIM-1, proviral integration site 1; PKA, protein kinase A; PKB, protein kinase B; 

PKC, protein kinase C; RAF, rapidly accelerated fibrosarcoma; SD, standard deviation; 

VEGFR, vascular endothelial growth factor receptor. 

Molecular Target Biochemical Activity Sorafenib IC50 (mmol/L) ± SD 

VEGFR-1 NA 

VEGFR-2 90 ± 15 

mVEGFR-2 15 ±  6 

mVEGFR-3 20 ±  6 

RAF-1 6 ±  3 

BRAF WT 22 ±  6 

BRAFV600E 38 ±  9 

FGFR-1 580 ±  100 

mPDGFR-β 57 ±  20 

c-KIT 68 ±  21 

FLT-3 58 ±  20 

IC50 >10,000 mmol/L: ERK-1, MEK-1, EGFR, HER-2, IGFR-1, c-MET, PKB, 
PKA, CDK1/CyclinB, PKC-α, PKC-γ,  and PIM-1 
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FIGURES 

Figure 1.1. Overview of the RCC pathway with VEGF and therapeutic targets. Under 

normoxic conditions and with normal VHL function, the VHL protein is an integral part of 

the E3 ubiquitin ligase complex that marks HIF-1α for proteasomal degradation. Under 

hypoxic conditions and/or mutated VHL, HIF-1α is allowed to accumulate, which leads to 

the accumulation of HIF-1α transcription factors. HIF-1α can also accumulate secondary to 

activation of mTOR by PI3K/AKT signaling. Activated HIF-1α translocate to the nucleus 

and promotes transcription of pro-angiogenic genes, such as VEGF and PDGF. 

Transcriptional activation of these genes subsequently leads to the production of pro-

angiogenic ligands that are released and able to bind to receptors present on the surface of the 

tumor cells, as well as on the surface host endothelial cells and/or pericytes. Activation of 

these receptors leads to increased migration, proliferation, and permeability of host 

vasculature. Bevacizumab is an inhibitor of the VEGFA ligand. Axitinib, pazopanib, 

sorafenib, and sunitinib are inhibitors of VEGFRs. Everolimus and temsirolimus are 

inhibitors of mTOR. Adapted from Rini BI, et al. Lancet Oncol. 2009;373:1119-1132. 

Abbreviations: AKT (also known as PKB), protein kinase B; HIF, hypoxia-inducible factor; 

mTOR, mammalian target of rapamycin; PDGF, platelet-derived growth factor; PDGFR, 

platelet-derived growth factor receptor; PI3K, phosphoinositide-3 kinase; TGF, transforming 

growth factor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial 

growth factor receptor; VHL, von-Hippel Landau. 
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Figure 1.2.  First and second line therapy recommendations for relapsed or Stage IV 

and surgically unresectable RCC. Per NCCN kidney cancer guidelines version 3.2015 

(http://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf), predictors of poor RCC 

prognosis include: lactate dehydrogenase >1.5 the upper limit of normal, hemoglobin level 

less than the lower limit of normal, corrected calcium >10.5 mg/dL (2.5 mmol/L), interval 

less than one year from original diagnosis until initiation of systemic therapy, Karnofsky 

performance score ≤70, ≥2 metastatic sites. Abbreviations: IFN, interferon; IL, interleukin; 

NCCN, National Comprehensive Cancer Network; PS, performance status RANKL, ligand 

of receptor activator of nuclear factor-κB; XRT, external radiation therapy. 
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Figure 1.3. Chemical structure of sorafenib 
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CHAPTER 2: TARGET TRIAL PATIENTS: IDENTIFICATION OF PREDICTIVE 

AND PROGNOSTIC GERMLINE VARIANTS ASSOCIATED  

WITH OVERALL SURVIVAL 

 

2.1 Overview 

Background:  

Sorafenib is a potent inhibitor of multiple oncogenic, stromal and angiogenic receptor 

tyrosine kinases. Germline variants in VEGF-pathway genes and in sorafenib pharmacology 

genes might associate with prognosis and/or sorafenib efficacy in mRCC patients. The 

primary objective of this aim was to identify novel germline genetic markers associated with 

OS in mRCC patients from the phase III TARGET trial. The secondary objective of this aim 

was to determine if the variants associated with OS also associated with PFS.   

 

Methods:  

A total of 295 mRCC patients from the phase III TARGET trial were genotyped using 

1,536 germline SNP variants from 56 candidate genes implicated in angiogenesis, sorafenib 

pharmacology and/or RCC prognosis/pathogenesis. Patients were either treated with 

sorafenib (n=155) or randomized to placebo (n=140). Directly genotyped variants were 

enriched through imputation, and imputation garnered an additional 10,097 germline variants 

(SNPs and insertions/deletions) for analyses. Germline variants were first tested for 

association with OS using the log rank test, and then in a multivariate analysis with clinical 

covariates using the Cox proportional hazards (PH) model. False discovery rate (FDR) was 
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used to correct for multiple comparisons for all variant-OS associations, from the 

multivariate model, with a p-value ≤0.05. Significant variants (p≤0.05 and q≥0.1) were then 

tested for associations with PFS using the log rank test and a multivariate Cox PH model.  

Germline variant effects are summarized using median OS, median PFS hazard ratios with 

95% confidence intervals, p-values and FDR q-values.  

 

Results: 

Genomic DNA form 295 patients enrolled on the phase III TARGET trial were used 

in this study. A total of 11,117 germline variants (1,020 directly genotyped and 10,097 

imputed variants) were used in the final analyses. The primary aim of the study was to 

determine if these variants significantly associated with OS. The secondary analysis of this 

study was to prospectively test whether variants that associated with OS also associated with 

PFS. This analysis identified five predictive variants that significantly associated with OS in 

mRCC patients treated with sorafenib (rs1885657 in VEGFA, rs3816375 in ITGAV, 

rs6719561 3’ of UGT1A9, rs8047917 in WWOX, and rs200809375 3’ of NRP-1), and an 

additional two possibly prognostic variants that associated with OS in a combined analysis of 

both treatment arms (rs307826 and rs3024987). PFS was correlated with OS among the 

genotyped patients, and five of the variants significantly associated with PFS as well. 

 

Conclusions:  

The identification of these seven variants is a key first step towards discovering and 

validating novel predictive and prognostic biomarkers to be used clinically in the treatment 
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of mRCC patients.  While these associations are novel and encouraging findings, they require 

functional laboratory validation and/or replication.  

 

2.2 Introduction 

Sorafenib tosylate (sorafenib, Nexavar®) was the first small-molecule, oral, VEGF-

pathway inhibitor approved by the U.S. FDA for the treatment of advanced and mRCC.  

Sorafenib is a potent multikinase inhibitor of numerous angiogenic, oncogenic, and stromal 

kinases. These include VEGFR2 and VEGFR3, PDGFR-β, FGFR-1, FLT-3, c-KIT, and 

genes that are part of the mitogen-activated protein kinase (MAPK) signaling cascade 

(including RAF-1 and BRAF).1-4  

The approval of sorafenib in mRCC was based upon the results from a randomized 

discontinuation phase II trial, and the phase III TARGET trial. In the phase II trial, sorafenib 

significantly improved PFS in mRCC patients (24 vs. 6 weeks; p=0.0087).5 The phase III 

TARGET trial was a double-blind randomized, placebo-controlled, multicenter study of 903 

patients with advanced RCC who had failed previous systemic cytokine therapy (Figure 2.1).  

Data from an interim analysis of this pivotal phase III trial demonstrated a significant PFS 

benefit (5.5 vs. 2.8 months; HR=0.44, 95% CI 0.35-0.55; p<0.01). Based on these data, 

patients who progressed while receiving placebo were allowed to cross-over and receive 

open-label sorafenib. At the time of the interim analysis, data also revealed a trend toward 

improved OS for patients on sorafenib (14.7 months in the placebo arm, but had not been 

reached in the sorafenib arm at the time of interim analyses; HR=0.72, 95% CI 0.54-0.94; 

p=0.02); however, this result was not significant based on an a priori selected threshold for 

significance.6 Final survival analyses, where cross-over patients censored, revealed improved 
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OS for patients treated with sorafenib (17.8 vs.14.3 months; HR=0.78, 95% CI 0.62-0.97; 

p=0.029).7 Currently, sorafenib is used in the second-line setting after progression on an 

initial first-line therapy (Figure 2.2).1,8-10 However, in select patients (e.g. patients with 

adequate organ function and performance status, or even the elderly), sorafenib can be 

utilized as a first-line option.10 Several clinical trials focused on sorafenib have revealed a 

high degree of interindividual variability in sorafenib pharmacokinetics.11-15 Considerable 

interindividual variability in response to sorafenib is also observed clinically.5-7 

The MSKCC risk score (a score comprised of serum hemoglobin levels, corrected 

serum calcium levels, serum LDH levels, interval between diagnosis and the start of 

treatment, and Karnofsky performance status) was developed to help clinicians predict 

outcomes in patients with mRCC.16-18 In the era of VEGF-targeting agents, additional 

prognostic scores have also been validated.19,20 And, studies have analyzed how baseline 

soluble protein levels also associate with outcomes in these patients.21 Studies have also 

found a correlation between circulating VEGF levels and mRCC prognosis, but results 

remain inconclusive because results have not been replicated. Plasma VEGF levels, as well 

as soluble VEGFR2 levels, have also been examined as predictive markers of treatment 

response. But again, the correlations were weak, and have not been validated.22,23 Additional 

potential predictive biomarkers, such as cytokine angiogenic factors (e.g. baseline IL-6 and 

elevated LDH), tissue-based biomarkers (e.g. VHL mutations), and factors in the mTOR 

pathway (e.g. elevated phosphor-S6 expression, and elevated pAKT expression), have also 

been investigated, but have not been validated and are not used clinically.24 

New recommendations have also begun to emerge, which are designed to help 

optimize sequencing of VEGF-pathway inhibitors, for patients likely to benefit from several 
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lines of treatment.10 However, currently, there are still no validated molecular biomarkers to 

provide insights into mRCC prognosis, and no validated predictive biomarkers used routinely 

in clinic to help providers identify which patients will benefit most from a specific VEGF-

pathway multikinase inhibitor (e.g. sorafenib). To date, only a small number of studies have 

been conducted that attempt to identify predictive pharmacogenetic variants, and none of 

them have been validated (e.g. in the laboratory and/or though replication). Finally, none of 

the previous pharmacogenetic studies have been conducted in a population of mRCC patients 

treated with sorafenib.25-29  

RCC is a highly vascularized malignancy, due to molecular mechanisms abrogating 

the activity of the von VHL tumor suppressor gene, resulting in increased production of key 

growth factors integral to angiogenesis, including: VEGF, PDGF, TGF-α, and FGF.30-34 

Collectively, increased growth factor production results in epithelial cell proliferation in the 

tumor microenvironment, and dysregulated angiogenic signaling that results in induction of 

tumor angiogenesis and proliferation.2,31,35,36 Sorafenib has been shown to inhibit angiogenic 

and non-angiogenic targets in multiple RCC models.37-39  

Sorafenib affects tumor vascular endothelium,40 the tumor microenvironment,41 and 

as a VEGF-pathway inhibitor it also has effects on the host vascular endothelium and 

pericytes.42,43 Because RCC is dependent on angiogenesis and the VEGF pathway, it is a 

pathway that is a viable target for pharmacotherapy.44,45 And, because angiogenesis is 

primarily a host-mediated process,46 there is excellent rationale for investigating germline 

variants as predictors of sorafenib efficacy and/or as markers with prognostic significance.  

In this study, comprehensive assessments of the common germline DNA variants in 

genes related to the sorafenib pharmacology, angiogenesis and/or RCC 
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prognosis/pathogenesis were performed. Identification of germline variants that significantly 

associate with OS should help clarify which patients will benefit most from sorafenib. The 

primary objective of this Aim was to identify germline genetic markers that associate with 

OS. The secondary objective of the study was to prospectively analyze how the variants that 

associated with OS are also related to differences in PFS.  

 

2.3 Patients, Materials and Methods 

2.3.1 Patients and the TARGET Trial 

TARGET was a multinational, double-blind, randomized, phase III trial that enrolled 

patients with unresectable or metastatic clear cell RCC, and who had received prior systemic 

cytokine therapy (n=903). Patients were randomized 1:1 to receive continuous treatment with 

either 400 mg sorafenib orally twice daily (n=451), or matched placebo (n=452). Patients 

remained on study until disease progression or discontinuation due to intolerable toxicity or 

death (Figure 1.1). Baseline characteristics for patients from the entire TARGET population 

were compared to those TARGET patients who consented for genotyping (Table 2.1). 

The primary endpoint of TARGET was OS, defined as the time from the date of 

randomization until the date of death. The OS data used in these analyses were collected 

before patients in the placebo arm were permitted to cross over to receive open-label 

sorafenib. PFS was measured from the date of randomization until the date of progression. 

Disease progression was determined based on computed tomography (CT) or MRI, clinical 

progression, or death, with the use of the Response Evaluation Criteria in Solid Tumors 

(RECIST).47 Investigators and independent radiologists who were unaware of the study-

group assignments assessed PFS.6  
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Patient DNA collected from the peripheral blood from 295 patients (n=155 on 

sorafenib and n=140 on placebo) was used for genotyping.  All patients provided written 

informed consent to participate in both the main TARGET trial and this pharmacogenetic 

study. The studies were conducted in accordance with the Declaration of Helsinki, and the 

study was approved by the institutional review board at each center.  

 

2.3.2 Gene Selection 

Fifty-six candidate genes were selected based on five main criteria. These candidate 

genes were selected because they are either important to angiogenesis, the VEGF pathway 

and the function of the host and tumor endothelium (AKT1, CRK, EPO, FGF2, FGFR1, 

FLT1,  FLT-4, FRS2, GRB2, ITGAV, ITGB5, KDR, KRAS, MAP2K4, MAP2K6, MAPK1, 

MAPK3, MAPK10, MAPK11, MAPK14, NOS3, NRAS, NRP-1, PGF, PIK3C2A, PIK3C2B, 

PIK3R5, PRKCA, PRKCE, PXLDC2, RAF1, VEGFA, and VEGFB),  are targets of sorafenib 

not directly linked with angiogenesis (KIT and RET), are associated with pericyte survival 

(PDGFRα, PDGFRβ), are related to sorafenib pharmacology and toxicity (BGLAP, CDH13, 

CYP3A4, EXPH5, PMF1, STK39, UGT1A9, and WNK1), have been associated with RCC 

pathogenesis (EGFR, EPAS1, HIF1α, TGFα, and VHL), or have been associated with 

prognosis (CA9, IL8, IL17A, IL17F, STAT3, and WWOX). 

 

2.3.3 Variant Selection 

From these candidate genes, 1,536 common germline SNP variants were selected for 

genotyping. Variant selection consisted of four step-wise procedures. First, SNP variants 

with minor allele frequency (MAF) >0.05 in European Americans, identified from data 
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obtained through a sequencing initiative of VEGF-pathway genes conducted by the National 

Heart, Lung and Blood Institute’s  DNA Resequencing and Genotyping Service 

(http://rsng.nhlbi.nih.gov/scripts/index.cfm),48 and then from data from both 1000 Genomes 

(www.1000genomes.org) and HapMapIII,(www.hapmap.org) were selected. Second, 

variants not identified in Step 1 were selected based on dbSNP 

(http://www.ncbi.nlm.nih.gov/snp) annotation that predicted functionality (e.g. the variant 

creates or is located in: stop codon, missense, frameshift, insertion/deletion, 5’ or 3’ UTR, 

and/or a 5’ or 3’ splice site). Third, variants that were not identified in Steps 1-2 were 

selected if they were known to be expression quantitative trait loci (eQTL) in lymphoblastoid 

cell lines according to the SNP and CNV Annotation (SCAN) database.49 Fourth, variants 

that were not previously identified in Steps 1-3 were selected based on already published 

variant-phenotype associations in the literature. Redundancy was minimized by excluding 

variants if they were in high linkage disequilibrium (LD) with (r2≥0.80) other identified 

variants.  

 

2.3.4 Illumina GoldenGate Genotyping 

The GoldenGate Assay (BeadArray technology) was selected as the platform on 

which to conduct the genotyping. Briefly, the GoldenGate Assay is designed for large scale 

genotyping of biallelic markers such as SNP variants, and was selected because it allows for 

a custom-built panel of 1,536 germline variants.50,51 It consists of an initial allele-specific 

extension reaction followed by polymerase chain reaction (PCR) amplification, and allows 

for a high degree of multiplexing during the extension and amplification steps. In the 

GoldenGate Assay, allele-specific primers are hybridized to genomic DNA. The ligated 



36 

product then undergoes PCR amplification, and the amplified PCR products are then 

captured on beads carrying complementary target sequences for the SNP variant. 

Fluorescence signals from the extension and amplification steps are then read, and clustering 

for each individual variant is displayed in a scatter plot with the signal intensity on the y-axis 

and a signal intensity ratio on the x-axis (Figure 2.3). 

Germline DNA was extracted from peripheral blood samples (FlexiGene DNA kit; 

Qiagen, Valencia, CA, USA). DNA concentrations were quantified by NanoDrop at the 

University of Chicago, and then Pico Green (Invitrogen, Carlsbad, CA) was used at the 

University of North Carolina Mammalian Genotyping Core to assess DNA quality and 

quantity. Genotypes were called using Illumina GenomeStudio software v2011. Variants 

were excluded from final analyses if there was evidence of a genotype call rate <97.5%, a 

MAF <1% across the cohort, or if they deviated from Hardy–Weinberg equilibrium (HWE; 

p<0.0001). GenTrain scores were derived from the Illumina GenomeStudio scatter plots to 

measure of variant detection reliability based on genotypic clustering distributions (Figure 

2.3).52 GenTrain scores <0.4 were removed and considered examples of poor clustering. For 

all significant variant-OS associations, clustering was manually inspected.  

 

2.3.5 Imputation Procedures 

Using the directly genotyped SNP variants genotypes at additional loci were imputed 

within a 5 Mb window of a gene center, and variants located within 25 kb of the gene 

transcription start and stop sites were retained for final analyses. Sample phasing and 

imputation were carried out using Impute2 version 2.30.53,54 Phased reference haplotypes, 

based on 1,092 individuals from the 1000 Genomes Project (http://www.1000genomes.org; 
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2010 low-coverage whole-genome and 2011 high-coverage whole-exome sequence data 

freezes), were used. Only variants with information scores >0.90 and expected MAF >0.02 

were retained. Genotypes were assigned their most likely genotype if their posterior 

probabilities ≥0.90, but were otherwise excluded to diminish the chance of type I error. 

 

2.3.6 Polymerase Chain Reaction  

Four SNP variants (rs1885657 and rs3024987 in VEGFA, rs8047917 in WWOX and 

rs307826 in FLT-4) were selected for follow-up confirmatory genotyping by TaqMan® SNP 

genotyping assays (Applied Biosystems, Foster City, CA, USA). TaqMan® assays were 

performed on two directly genotyped variants (rs1885657 and rs307826) to confirm Illumina 

Genome Studio genotyping calls, and were performed on two additional variants (rs3024987 

and rs8047917) confirm Impute2 imputation calls. Each of the TaqMan® genotyping assays 

were carried out per the manufacturer’s instruction using a CFX384 Real-Time System (Bio-

Rad, Hercules, CA, USA) and allelic discrimination results were visualized on Bio-Rad CFX 

Manager software, version 1.6 (Bio-Rad).  

For each assay, 120 ng of TARGET patient DNA were loaded onto 384-well plates 

with TaqMan® Genotyping Mastermix (Applied Biosystems, Foster City, CA, USA) 

containing VIC and FAM reporter dyes. Briefly, the VIC reporter dye is linked to the 5’ end 

of the allele 1 probe, while the FAM reporter dye is linked to the 5’ end of the allele 2 probe. 

Fluorescence signal of the two reporter dyes, generated during PCR amplification, 

distinguishes variant alleles. For rs1885657, sense 5’-GAGAGAAGCCCCTGTCACC-3’ and 

antisense 5’-GCTGTGCTTTAGCTCTCGTG-3’ primers were used. For rs307826, sense 5’-

CCTGCCTGTATCCCTGACC-3’ and antisense 5’-GGAGAGAGAGGCCATTACTGC-3’ 
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primers were used. For rs3024987, sense 5’-GTCCCCTTTCCTCCTTGG-3’ and antisense 

5’-GGAGTTGGTGAGAGCTGGAG-3’ were used. For rs8047917, sense 5’-

CTGTGGGCTTGACTTGTCC-3’ and antisense 5’-CCATCTCCATGCAGTTAAGC-3’ 

were used. The cycling conditions were: an initial 10 minute step at 95°C for AmpliTaq Gold 

enzyme activation, followed by 40 cycles that alternated between a denaturation step for 15 

seconds at 95°C and an annealing/extension step at 60°C for one minute.   

Sanger-based DNA sequencing, using 3730xl Genetic Analyzers (Applied 

Biosystems) and performed at the UNC Mammalian Genotyping Core, was used to validate 

representative samples and determine thresholds for allelic discrimination. Analysis of the 

sequencing data, to confirm PCR thresholding prior to comparison against either Illumina 

Genome Studio or Impute2 genotype calls, was performed using Sequencher software, 

version 5.1 (Gene Codes Corporation, Ann Arbor, MI, USA). Comparison of PCR and 

sequencing to either Illumina Genome Studio or Impute2 calls was performed using MS 

Excel software (Microsoft, Redmond, WA, USA).  

 

2.3.7 Statistical Analyses 

The primary objective of this Aim was to identify germline genetic markers that 

associate with OS (Figure 2.1). To do so, univariate log rank tests and a multivariate Cox PH 

model were employed for each association. First, the effects of directly genotyped and 

imputed germline variants on OS were assessed using three separate log rank tests.  The first 

was performed to analyze differences in OS by a germline variant among patients in the 

sorafenib arm only, the second was performed for the same reason but only among the 
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patients in the placebo group only, and the third was performed using both the placebo and 

sorafenib arms from TARGET.  

Second, a multivariate Cox PH model was used to analyze the genotype-phenotype 

relationships for each variant while accounting for the effects of appropriate clinical 

covariates included in the model. Country, sex, age, race, Eastern Cooperative Oncology 

Group (ECOG) PS, time since RCC diagnosis, previous systemic IL-2 or INF administration, 

MSKCC prognostic score, number of metastatic sites, evidence of spread of distant 

metastasis to liver or lung, and treatment arm (sorafenib or placebo) were all covariates that 

were considered.  First, a Chi-squared test of homogeneity was used for categorical variables 

when testing for differences in the covariate between treatment groups (country, race, ECOG 

PS, previous IL-2 or INF use, MSKCC prognostic score, and liver or lung metastases). 

Linear regression, with treatment as the independent variable, was used for quantitative 

variables (age, time since diagnosis, and number of metastatic sites). Associations between 

OS or PFS and potential covariates were then assessed using a likelihood ratio test applied to 

a Cox PH model. Third, potential covariates that remained significant (p≤0.05) after the 

previous likelihood ratio test were then tested, conditioned on one another, in a multivariate 

Cox PH model. Only variants that were conditionally significant (p≤0.05) were included in 

the final OS and PFS multivariate models. The results for these tests are provided in Tables 

2.2 and 2.3. 

All germline variant-OS associations were tested without a priori assuming any 

genetic model (i.e. did not assume an additive, dominant or recessive genetic model). FDR q-

values were generated to account for multiple testing, and to ensure that type I error was 

limited so that spurious associations could be avoided.55 FDR was employed in lieu of 
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correcting the family-wise error rate (e.g. Bonferroni correction) to account better for the 

correlation among tests induced by LD between germline variants. Variants were deemed 

significant if their multivariate model p-value was ≤0.05 and if their FDR q-value was ≤0.1.  

Correlation analyses were conducted to ascertain if a significant relationship between 

OS and PFS existed among the TARGET genotyped patients. If the assumptions of 

normalized distributions were satisfied, a Pearson product moment correlation (Pearson’s r) 

test was employed. If not, then a Spearman rank order correlation (Spearman’s rho) test was 

used. For variants considered to be significantly associated with OS (p-value ≤0.05 and q-

value ≤0.1), prospective testing was conducted to determine if there was also an association 

with PFS. As described above, univariate log rank tests were conducted followed by 

multivariate Cox PH models. Variant-PFS associations were considered significant if p-value 

≤0.05. Because these associations were exploratory in nature, a correction for multiple 

testing was not applied.  

All hazard ratios (HRs) and 95% confidence intervals (CIs) for each variant-OS and 

variant-PFS association were derived from the OS and PFS multivariate models, 

respectively. All analyses were conducted in R software,56  and confirmed using SAS 

software, version 9.2 (SAS, Cary, NC, USA). GraphPad Prism® version 5.03 (GraphPad 

Software, Inc., La Jolla, CA, USA) software was also used in analyses and in the creation of 

all figures.  

 

 

 

 



41 

2.4 Results 

2.4.1 Patient Characteristics 

The genotyped patients used in this study were representative of the overall TARGET 

population. Baseline characteristics for those patients who consented for genotyping were 

similar to characteristics from the overall TARGET population (Table 2.1). In addition, OS 

was similar between the two groups (Figure 2.4). In the entire TARGET population, patients 

treated with sorafenib achieved a median OS of 175 days, compared with 162 days for the 

patients administered placebo. Among the genotyped TARGET patients, those treated with 

sorafenib achieved a median OS of 190 days, compared with 178 days for the patients 

administered placebo. PFS was also similar between the two groups (Figure 2.5). In the 

entire TARGET population, patients treated with sorafenib achieved a median PFS of 123 

days, compared with 50 days for the patients administered placebo. Among the genotyped 

TARGET patients, those treated with sorafenib achieved a median PFS of 125 days, 

compared with 46 days for the patients administered placebo. These comparisons provided 

confidence that the subgroup of genotyped patients (n=295) were representative of the entire 

TARGET cohort (n=903).  

 

2.4.2 Genotyping 

The first round of GoldenGate genotyping, consisting of four total plates, was 

conducted at the University of Chicago. Among the TARGET patients who consented for 

genotyping and DNA was obtained (n=334), 68 failed the initial genotyping. Systematic 

assay error was assumed to be the reason underlying such a high failure rate because 56 of 

the 68 total failures came from plate 4 (with the remaining 12 failure divided evenly from 
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plates 1-3). As a result, a second round of GoldenGate genotyping was conducted at the 

University of North Carolina’s Mammalian Genotyping Core. Prior to the second round of 

genotyping, Pico Green was performed on all failed DNA samples and on all positive control 

DNA samples to quantify the total amount and assess the quality of the DNA. A total of 29 

additional patients (21 were form the original failed plate 4) had sufficient genotype calls and 

were included in the final analyses. Genotype calls for samples included as positive controls 

from plates 1-3 (n=7) in the second round of genotyping at the University of North Carolina 

were found to be in 100% concordance with the original genotype calls from the University 

of Chicago.  

From the original 1,536 SNP variants that were directly genotyped, 416 were 

excluded. They were excluded if there was evidence of a genotype call rate below 97.5% 

(n=209), MAF <1% (n=123), HWE p<0.0001 (n=77), a combination of failing both MAF 

and HWE criteria (n=1), and poor clustering determined by an Illumina GenTrain score <0.4 

(n=6). An additional 100 directly genotyped variants were excluded from the final analyses 

because they were not concordant between the two genotyping cores. Imputation was then 

conducted to enrich the directly genotyped variants.  After quality control pruning, a total of 

11,117 variants (1,020 directly genotyped SNP variants, and 10,097 imputed SNPs and 

insertion or deletions [indels]) were included to test associations between genotype and OS 

(Figure 2.6). 

 

2.4.3 Confirmation of Genotyping and Imputation Calls 

As an additional quality control measure, TaqMan® assays were performed on two 

directly genotyped variants (rs1885657 in VEGFA and rs307826 in FLT-4) and two imputed 
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variants (rs3024987 in VEGFA and rs8047917 in WWOX) that were significantly associated 

with differences in OS (Figure 2.7A-2.7D). These assays were performed to confirm the 

accuracy of the calls for both the directly genotyped variants performed on the Illumina 

GoldenGate Assay, and the imputed variants gained through Impute2 analyses. Results from 

these assays revealed a very high concordance between TaqMan® assays and either the 

Illumina GoldenGate Assay or Impute2 analyses. For rs1885657, there was greater than 96% 

concordance between TaqMan and Illumina GoldenGate genotyping. Among the 11 calls that 

were discordant, eight were due to failed genotyping on the TaqMan® assay (no call was 

returned). The remaining three discordant results were called homozygous wild type (WT) on 

the Illumina GoldenGate platform, but were called heterozygous by TaqMan®. For 

rs3024987, there was 99% concordance between the TaqMan® assay calls and results from 

Impute2. In this case, all three of the discordant calls were due to failed genotyping on the 

TaqMan® assay. For rs307826 and rs8047917, 100% concordance was observed. These data 

provided a high level of confidence in both the Illumina GoldenGate Assay genotyping calls 

and GenomeStudio clustering algorithm, and the Impute2 results.  

 

2.4.4 Multivariate Model Covariates 

Multiple clinical covariates that could conceivably influence OS and/or PFS were 

examined based on their potential affect variant-OS or variant-PFS associations. These 

included country, sex, age (years), race, ECOG PS, previous interleukin or interferon use, 

MSKCC prognostic score, number of metastatic sites, and evidence of spread of distant 

metastasis to liver or lung, and treatment arm (sorafenib or placebo). For OS, number of 

metastatic sites and the MSKCC prognostic risk score were included in its final multivariate 
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model (Table 2.2). For PFS, time since diagnosis and patient age were included in its final 

multivariate model (Table 2.3).  

 

2.4.5 Germline variants associated with OS 

Seven variants that associated with OS in either the patients solely from the sorafenib 

arm, or from a combined analysis of both treatment arms, were identified and deemed 

significant by an a priori established criteria (p-value ≤0.05 and FDR q≤0.1). Five germline 

variants within genes were identified. Two variants (rs1885657 and rs3024987) were in 

intronic regions of VEGFA, rs3816375 was in an intronic region in ITGAV, rs8047917 was in 

an intronic region of WWOX, and rs307826 was in a coding region of FLT-4. In addition, two 

intergenic variants (rs200809375 and rs6719561) were found to be in close proximity to 

NRP-1 and UGT1A9, respectively (Table 2.4).  

Three intragenic variants that associated with differences in OS in sorafenib-treated 

patients (rs1885657 in VEGFA, rs3816375 in ITGAV, and rs8047917 in WWOX) were 

identified. For rs1885657, patients with the TT or TC genotypes had a 17-fold decrease in 

risk of death, when compared to patients with the CC genotype (HR=17.32; 95% CI, 5.69 to 

52.73; p=1.39x 10-4; q=0.076; median OS 175 v 409 days) (Figure 2.8). For rs3816375, 

patients with the AA or AG genotype had a 6-fold decreased risk of death, when compared to 

patients with the GG genotype (HR =5.88; 95% CI, 2.11-16.39; p=4.87x10-4; q=0.051; 

median OS 281 v 409 days) (Figure 2.9). And for rs8047917, patients with the TT genotype 

had a 4-fold decreased risk of death, when compared to patients with the TA genotype 

(HR=4.06; 95% CI, 1.88 to 8.78; p=3.27x10-4; q=0.076) (Figure 2.10).  
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Two additional intergenic variants that associated with differences in OS for patients 

treated with sorafenib (SNP rs6719561 located 1.8 kB 3′ of UGT1A9 and 606 bp 5′ of 

HEATR7B1 and short indel rs200809375 located 7.5 kb 3′ of NRP-1) were identified. For 

rs6719561, patients with the CC or CT genotype had a nearly 4-fold decreased risk of death, 

when compared to those with the TT genotype (HR =3.82; 95% CI, 1.56 to 9.52; p=3.27x10-

4; q=0.076; median OS 195 v 216 days) (Figure 2.11).  For rs200809375, patients without the 

insertion had a nearly 6-fold decreased risk of death, when compared to patients with at least 

one copy of the ATG insertion (HR=6.77; 95% CI, 2.62 to 17.5; p=2.65x10-4; q=0.076; 

median OS 374 v 281 days) (Figure 2.12). 

Finally, two intragenic variants, which associated with OS in a combined analysis of 

both treatment arms (SNP rs307826 in FLT-4 and SNP rs3024987 in VEGFA), were 

identified. For rs307826, patients with the AA or AG genotypes had a nearly 14-fold 

decreased risk of death, when compared to patients with the GG genotype (HR=13.79; 95% 

CI 3.04 to 62.61; p=1.24 x 10-4; q=0.088; median OS 93 v 210 days) (Figure 2.13). For 

rs3024987, patients with the CC genotype had a 3-fold decreased risk of death when 

compared to patients with the CT genotype (HR=2.98; 95% CI, 1.66 to 5.37; p=8.80x10-4; 

q=0.088; median OS 190 vs 210 days) (Figure 2.14). Decreased median OS was observed for 

patients with the CT genotype, when compared with those with the CC genotype, in patients 

from only the sorafenib (p=0.019) and in the patients from only the placebo arm (p=0.004), 

but these results were not deemed significant based q-values ≥0.1 (q=0.301 and q=0.371, 

respectively). This variant is in moderate LD with rs1885657 (r2=0.61).  

Unless specified above, none of the variant-OS associations observed in the sorafenib 

arm were also significant (p≤0.05 and q≤0.1) in analyses when the treatment arms were 
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combined. Similarly, neither of the significant variant-OS associations observed in the 

combined arm analyses was significant in the sorafenib arm alone. Finally, no associations 

between germline variants and OS among patients from the placebo arm met the criteria for 

significance (p≤0.05 and q≤0.1).  

 

2.4.6 OS Variant Associations with PFS 

PFS was correlated with OS in non-censored patients from the entire TARGET cohort 

(Figure 2.15A; Spearman ρ=0.5083, p<0.0001), genotyped TARGET patients (Figure 2.15B; 

Pearson r=0.4681, p=0.0001), genotyped TARGET patients treated with sorafenib (Figure 

2.15C; Pearson r = 0.4778, p=0.0076), and genotyped TARGET patients treated with placebo 

(Figure 2.15D; Pearson r=0.4701, p=0.0076). 

In this secondary endpoint, variants that significantly associated with OS were 

examined prospectively to test their associations with PFS. Among the five original variants 

that associated with OS in the sorafenib arm, rs1885657, rs6719561 and rs8047917 also 

significantly associated with PFS (p≤0.05). For rs1885657, patients from the sorafenib arm 

with the TT or TC genotypes had a four-fold decreased risk of disease progression, when 

compared to patients with the CC genotype (Figure 2.16; HR=4.00, 95% CI 1.57-10.21; 

p=0.0037). For rs6719561, patients from the sorafenib arm with the CC or CT genotypes had 

a nearly two-fold decreased risk of disease progression, when compared to patients with the 

TT genotype (Figure 2.17; HR=1.94, CI 1.00-3.76; p=0.05). For rs8047917, patients from the 

sorafenib arm with the TT genotypes had a 77% decreased risk of disease progression, when 

compared to patients with the TA genotype (Figure 2.17; HR=1.77, 95% CI 1.03-3.04; 

p=0.0389). Variant rs3816375 did not significantly associate with PFS.  
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Among the two variants that associated with OS in analyses when the treatment arms 

were combined, only rs307826 significantly associated with PFS (p≤0.05). For rs307826, 

patients with the AA and AG alleles decreased risk of disease progression, when compared to 

patients with the GG genotype (Figure 2.18; HR=2.92, 95% CI 1.19-7.19; p=0.0193). Also, 

rs307826 was associated with PFS among the patients from the sorafenib arm. Sorafenib-

treated patients with the AA or AG alleles, had a nearly 9-fold decreased risk of disease 

progression (Figure 2.18; HR=8.62, 95% CI 1.98-37.04, p=0.0041). Variant rs3024987 did 

not significantly associate with PFS.  

Two variants, rs200809375 and rs3816375, did not significantly associate with PFS 

in the sorafenib arm, nor in the combined arms. Similar to OS, none of the five variants 

significantly associated with PFS in the placebo arm.  

 

2.5 Discussion 

To date, this study represents the most comprehensive sorafenib pharmacogenetic 

study in mRCC patients, and the first to associate germline variants with OS and PFS. And, 

by analyzing 11,117 variants in 56 genes, it is the most comprehensive candidate gene 

pharmacogenetic study involving any of the four VEGF-pathway inhibitors approved by the 

U.S. FDA for the treatment of mRCC (axitinib, pazopanib, sorafenib and sunitinib). A 

candidate gene-candidate variant approach was selected in this case, instead of genome-wide 

studies or next generation sequencing approaches, based on how patients were consented for 

correlative studies during the TARGET trial.  

The primary objective of this Aim was to identify germline genetic markers that 

associate with OS. The secondary objective of the study was to prospectively analyze how 
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the variants that associated with OS are also related to differences in PFS. Germline variants 

were examined in this study, and they are appropriate for pharmacogenetic studies because 

germline DNA has significant advantages over other nucleotide and protein biomarkers in 

that it is inherited, fixed, and relatively insensitive to time and environmental factors.26 And, 

because angiogenesis is primarily a host-mediated process,46 there is excellent rationale for 

investigating germline variants as predictors of sorafenib efficacy and/or as markers with 

prognostic significance. 

In the TARGET study, OS was the primary endpoint and PFS was a secondary 

endpoint. In this study, OS was also used as the phenotype for the primary objective of this 

Aim. In the TARGET trial, sorafenib was used as monotherapy, and because there were no 

U.S. FDA approved VEGF-pathway multikinase inhibitors for the treatment of mRCC prior 

to sorafenib, OS results would not be confounded by concomitant and/or subsequent 

therapies. OS still remains the gold standard endpoint in clinical trials because OS is not a 

surrogate endpoint, and improved OS demonstrates a direct clinical benefit to the patient. 

Therefore, the identification of predictive and/or prognostic biomarkers that help provide a 

direct clinical benefit to mRCC patients, and help guide provider decision-making, is of the 

utmost importance. However, PFS was used as a phenotype for the secondary objective of 

this Aim. PFS has been shown to be a credible endpoint in oncology trials,57 and can be a 

valuable surrogate endpoint for OS. With the recent U.S. FDA approval of multiple treatment 

options for patients with mRCC, a clear understanding of how each treatment impacts PFS 

(to ultimately extend OS for patients) will be crucial towards clarifying how these treatments 

are sequenced.  



49 

For the purposes of this Aim, it is important to distinguish between a prognostic and a 

predictive variant. Simply, a prognostic variant is one that is objectively measurable and is 

associated with clinical outcome in the absence of active therapy, or with the administration 

of standard of care or best supportive care medications. Essentially, this type of variant 

provides valuable information about the patient’s overall cancer outcome.58 The TARGET 

placebo patients provide the ideal scenario for evaluating the prognostic significance of 

germline variants in relation to OS and PFS. In this study, germline variants that exhibit 

similar OS and/or PFS effects in both treatment arms, where it is evident that there is not an 

association being driven by the effects of sorafenib, could be prognostic. Conversely, a 

predictive variant is one that is associated with response or lack of response, and provides 

information on the likely benefit of a particular therapy.58 The sorafenib-treated TARGET 

patients are ideal for analyzing the interplay between germline variants, and sorafenib 

efficacy. In this study, germline variants that associate with the effects of OS and/or PFS, 

where the effects appear to be driven by sorafenib only, could be predictive.  

VEGFA encodes for VEGFA (also known simply as VEGF), which has been shown 

to be a major driver of angiogenesis, in multiple preclinical models, through its interactions 

with VEGFR1-3.59 Previously, baseline circulating VEGFA levels were shown to be 

prognostic for mRCC OS,7 and circulating VEGF-165 (the predominant isoform) has also 

been shown to associate with tumor stage/grade and poorer prognosis.60 More recently, 

VEGF-pathway multikinase inhibitor pharmacogenetic studies have shown that VEGFA SNP 

variants (e.g. rs699947, rs833061, rs2010963, and rs3025039) associated with differences in 

OS and/or PFS for patients treated with sunitinib or pazopanib.26,61,62 In this study, rs1885657 

(not in LD with the aforementioned variants) significantly associated with sorafenib efficacy 
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in TARGET patients. For sorafenib-treated patients with the CC genotype, this SNP 

associated with significantly worse OS and PFS and could be a predictive biomarker of 

sorafenib efficacy. A plausible hypothesis to explain these associations is that since 

rs1885657 is located in an intronic region of the VEGFA, two copies of the C allele resulted 

in altered transcription factor binding that ultimately caused VEGFA overexpression. 

Ultimately, increased VEGFA expression could have led to increased transcription and 

translation of VEGFA, which increased the pro-angiogenic capability of the ligand and 

overwhelmed sorafenib’s ability to effectively inhibit angiogenesis. In turn, increased 

angiogenesis, as a result of VEGFA overexpression, could have led to a greater risk of 

disease progression and death in patients with the CC genotype. These results are certainly 

compelling; however, the dramatic effects on OS and PFS observed in the sorafenib-treated 

patients could be driven by a low number of uncensored patients with the CC genotype 

(n=5). Therefore, these results require validation in the laboratory and/or in an independent 

replication cohort of mRCC patients treated with sorafenib.  

VEGFA variant rs3024987 was also found to significantly associate with poorer OS in 

TARGET patients. When both treatment arms were combined, patients with only one copy of 

the T allele experienced significantly shorter OS. This variant is also in an intronic region in 

VEGFA, is in moderate LD with rs1885657 (r2=0.61), and also likely altered transcription 

factor binding, which led to increased VEGFA expression. This variant significantly 

associated with OS in an analysis where treatment arms were combined, and associations 

with OS were not significant (p-value ≤0.05 and q-value ≤0.1) in either the sorafenib or the 

placebo arm alone. However, there appears to be an effect in both treatment arms. The 

association between rs3024987 and OS trended towards significance in the sorafenib arm 
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(p=0.019) and the placebo arm (p=0.004), and each of the individual study arm Kaplan-

Meier plots revealed a noticeable divergence in the OS curves for patients with the CC 

genotype versus those with the CT genotype. Therefore, rs3024987 could be prognostic of 

survival in mRCC patients. 

FLT-4 encodes for VEGFR3, a transmembrane kinase receptor that has been 

traditionally linked to lymphangiogenesis.63 But, VEGFR3 is also expressed in tumor 

vasculature.64 Moreover, inhibition of VEGFR3 can suppress vascular network formation,65 

and preclinical models have suggested that VEGFR3 could possibly be more relevant than 

VEGFR2 (a primary driver of angiogenic signaling, and a main target for the VEGF-pathway 

inhibitors used to treat mRCC) for the development of metastases.66 In this study, rs307826 

was associated with decreased survival. In a combined analysis of both study arms, patients 

with the GG genotype were at higher risk for both disease progression and death. 

Interestingly, sorafenib-treated patients with the GG genotype were also at significantly 

higher risk for disease progression. Variant rs307826 results in a threonine to alanine 

substitution at position 494 (Thr494Ala), located in the fifth IgG-like domain of VEGFR3. 

Although the PolyPhen-267 and the Sorting Intolerant From Tolerant (SIFT)68 algorithms 

predict this to be a benign and non-damaging amino acid substitution, several 

pharmacogenetic studies of mRCC patients treated with VEGF-pathway multikinase 

inhibitors showed that this variant is associated with significantly shorter OS and/or 

PFS.27,28,69 A primary hypothesis to explain the effects of rs307826 on differences in OS and 

PFS is that rs307826 results in an amino acid in one of the signaling domains of the receptor, 

which is sufficient to allow VEGFR3 signaling to overcome sorafenib inhibition. Increased 

VEGFR3 signaling could perpetuate increased lymphangiogenesis and RCC spread to the 
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lymphatics, but also increase the pro-angiogenic capability of this receptor. Together, they 

could increase a patient’s risk for disease progression and/or death. 

It is unclear whether rs307826 is truly predictive of treatment response, or if it is a 

prognostic for mRCC. In each of the aforementioned studies, there were not a placebo 

control arms,27,28 or the placebo arm was not genotyped.69 And, in these studies, there were 

not a sufficient amount of GG patients to truly determine whether the variant’s effect on 

reduced OS was driven by sorafenib treatment, and therefore it is important not to over-

interpret these results. However, the results from the exploratory PFS analyses performed in 

this Aim may have helped clarify whether rs307826 could be a predictive variant. In the case 

of rs307826, replication is not as crucial since it has been associated with differences in OS 

and PFS in mRCC patients treated with oral VEGF-pathway inhibitors that inhibit many of 

the same targets as sorafenib (i.e. sunitinib and pazopanib). 

Two additional intragenic variants, found in regulatory regions of their respective 

genes, significantly associated with OS (rs3816375 in ITGAV and rs8047917 in WWOX), and 

could be predictive variants of sorafenib efficacy for mRCC patients. ITGAV encodes for 

integrin alpha-V, which is a member of the integrin superfamily. Integrin alpha-V is an 

adhesion receptor that, when dimerized to a beta subunit, mediates cell-adhesion of the 

cytoskeleton to extra cellular matrix (ECM) proteins, including: vitronectin, fibronectin, 

fibrinogen, collagen, osteopontin and thrombospondin.70 Aside from cellular adhesion, 

integrins have also been implicated in angiogenesis, proliferation and metastasis.71-73 

Although there have not been any studies linking variants in this gene to outcomes in mRCC 

or in patients treated with VEGF-pathway multikinase inhibitors, overexpression of ITGAV 

has been associated with progression, spread and poorer prognosis in patients with colorectal 
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cancer.74,75 In this study, sorafenib-treated mRCC patients with GG genotype experienced 

significantly decreased OS, which could be directly related to overexpression of ITGAV. This 

variant is also located in an intronic region, and could have an effect on transcription factor 

binding and gene expression. Overexpression of ITGAV in these patients could result in 

increased stabilization of the cytoskeleton to ECM proteins, increased angiogenesis and 

metastasis, and ultimately poorer clinical outcomes.  

WWOX encodes for WW domain-containing oxidoreductase, which has shown to be a 

tumor suppressor gene for multiple tumor types.76 WWOX variants have been shown to 

associate with increased disease susceptibility in prostate cancer, clinical staging of lung 

cancer, and decreased survival in patients with multiple myeloma.77-79 In this study, 

sorafenib-treated mRCC patients with one copy of an A allele at rs807917 experienced 

significantly decreased OS and PFS. A plausible hypothesis to explain these associations is 

that since rs8047917 is located in an intronic region of the gene, one copy of the A allele is 

sufficient to cause reduced WWOX. Therefore, sorafenib-treated patients with at least one A 

allele at rs8047917 experience less WWOX expression, and this could lead to their increased 

risk disease for progression and/or death. 

Finally, two intragenic variants significantly associated with OS (SNP rs6719561 1.8 

kb 3’ of UGT1A9 and indel rs200809375 7.5 kb 3’ of NRP-1, and are potential predictive 

variants of sorafenib efficacy for mRCC patients. UGT1A9 encodes for UGT1A9, which is 

integral to phase II metabolism and inactivation, through glucuronidation, of parent sorafenib 

and its N-oxide metabolite.80,81 Previously, pharmacogenetic variants in UGT1A9 have been 

associated with altered sorafenib pharmacokinetics and sorafenib-related toxicities.82,83 Yet, 

this is the first study where a UGT1A9 variant has been associated with differences in 
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survival in patients treated with sorafenib. In this study, mRCC patients with two copies of 

the T allele were shown to have decreased OS and PFS in these studies. One plausible 

hypothesis to explain the association could be that two copies of the T allele result in 

increased sorafenib glucuronidation, leading to decreased drug exposure. And, should 

patients be exposed to lower active drug concentrations over the duration of treatment, this 

could lead to increased risk of progression and death. However, the effects of this variant on 

OS and PFS may not be through UGT1A9. This intergenic variant is indeed in close 

proximity to UGT1A9 (~1.8 kb 3’ of the gene), it is also only approximately 600 bp 5’ of 

HEATR7B1 (also known as MROH2A).  While the function of HEATR7B1 is largely 

unknown, and there have not been any studies conducted on its relationship to sorafenib, it is 

conceivable that rs6719561’s predictive effects on OS and PFS are through this gene. Further 

investigation into this hypothesis is warranted.  

NRP-1 encodes for neuropilin-1 (one of two neuropilins), which is a membrane-

bound receptor that binds several ligands; most notably the VEGF-165 isoform of VEGFA, 

and helps mediate several signaling pathways that control angiogenesis and cell migration.84 

It has also been shown that in aggressive types of RCC, NRP-1 is overexpressed. And, in 

mouse xenograft models reduced NRP-1 levels led to the implanted RCC cells having 

reduced tumor-forming ability.85 One hypothesis for its association with OS in sorafenib-

treated mRCC patients could be that only one copy of the small ATG insertion is sufficient 

enough to cause increased NRP-1 expression. And, overexpressed NRP-1 could increase the 

pro-angiogenic and pro-migratory capabilities of mRCC. However, similar to rs6719561, 

rs200809375’s effects on OS may not be through NRP-1, and additional validation studies 
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should be conducted to determine how this germline variant influences survival in mRCC 

patients treated with sorafenib.  

Data from the studies in this Aim have demonstrated that sorafenib-treated mRCC 

patients with deleterious genotypes in these variants may experience increased angiogenic 

and/or oncogenic signaling, or increased bioinactivation of the drug. This may result in 

decreased sorafenib efficacy, and ultimately shorter time to progression and/or survival. In 

addition, two germline variants were identified that have the potential to be prognostic 

variants of mRCC survival. Clearly, validation of these results is necessary before they are 

incorporated into routine clinical practice. The first necessary step, which will be addressed 

in Aim 2, is to validate these findings in a series of laboratory experiments designed to: 1) 

confirm the functionality of the variant, and 2) provide insight into the mechanistic 

underpinnings of sorafenib response and/or RCC prognosis/pathogenesis. The relationship 

between the predictive variants identified in this study and sorafenib-induced toxicities 

experienced by patients enrolled on TARGET should also be examined. Next, in future 

studies, these results should be replicated in an independent, external cohort of mRCC 

patients treated with sorafenib. Traditionally, replication of positive findings in an external, 

independent cohort of patients has served as one of the gold standard types of validation for 

genotype-phenotype associations.86,87 And, replication studies will help to elucidate whether 

the variant-OS associations identified in this Aim, that seem to be driven by the effects of 

sorafenib, are truly predictive biomarkers. Finally, these potential biomarkers should be 

validated in a prospective clinical trial, which includes an interaction analysis design. This 

will provide the highest level of evidence for the validity of these germline variants as 

predictive and prognostic biomarkers for mRCC patients.88 
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In summary, amid a crowded landscape of targeted multikinase inhibitors recently for 

the treatment of mRCC, there is a clear unmet need to identify and validate predictive and 

prognostic pharmacogenetic germline variants as useful biomarkers to help guide provider 

treatment decisions. The identification of these seven variants is an important first step 

towards that pursuit.  
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TABLES 

Table 2.1. Patient characteristics for the entire TARGET population versus genotyped 

TARGET patients. There were no significant differences between the two populations, nor 

were there within group differences between the sorafenib arm and the placebo arm at 

baseline. Abbreviations: ECOG, Eastern Cooperative Oncology Group; MSKCC, Memorial 

Sloan Kettering Cancer Center 

All TARGET Patients (n = 903) Genotyped TARGET Patients (n = 295) 

Variable 
Sorafenib  
(n=451) 

Placebo  
(n=452) 

Variable 
Sorafenib 
 (n=155) 

Placebo 
 (n=140) 

Male Sex - no. (%) 315 (70) 340 (75) Male Sex - no. (%) 114 (74) 108 (77) 

Median Age - year 
(range) 

58 (19-86) 59 (29-84) 
Median Age - year 
(range) 

59 (19-80) 58 (31-82) 

ECOG Performance 
Status - no. (%) 

  
ECOG Performance 
Status - no. (%) 

  

0 219 (49) 210 (46)    0 83 (54) 81 (58)  

1 223 (49) 236 (52)    1 72 (46) 58 (42) 

2 7 (2) 4 (1)    2 0 0 

Number of Metastatic 
Sites - no. (%) 

  
Number of Metastatic 
Sites - no. (%) 

  

1 62 (14) 63 (14)    1 26 (17) 26 (19) 

2 131 (29) 129 (29)    2 42 (27) 40 (29) 

>2 256 (57) 258 (57)    >2 87 (56) 74 (52) 

Previous cytokine use 
- no. (%) 

374 (83) 368 (81) 
Previous cytokine use 
- no. (%) 

141 (91) 122 (88) 

Median Duration of 
Disease - year (range) 

2 (<1-19) 2 (<1-20) 
Median Duration of 
Disease - year (range) 

1.7 (<1-19.5) 1.5 (<1-16) 

MSKCC Prognostic 
Risk - no. (%) 

  
MSKCC Prognostic 
Risk - no. (%) 

  

Low  233 (52) 228 (50) Low  73 (47) 68 (49) 

Intermediate 218 (48) 223 (49) Intermediate 82 (53) 72 (51) 
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Table 2.2. Covariate selection for the OS multivariate model. For the univariate and 

multivariate Cox PH models, a likelihood ratio test was used. Abbreviations: ECOG, Eastern 

Cooperative Oncology Group; LRT = likelihood ratio test; MSKCC, Memorial Sloan 

Kettering Cancer Center; P, p-value; PH, proportional hazards; PS, performance status. 

* denotes covariates included in the final multivariate model 

Covariate Placebo-Sorafenib P Univariate Cox PH P Multivariate Cox PH P 

Sex 0.56 0.52  

Country 0.91 0.54  

Age 0.07 0.58  

Race 0.10 0.40  

ECOG PS 0.42 0.06  

Time since diagnosis 0.25 0.05 0.06 

Previous cytokine use 0.39 0.96  

MSKCC score 0.89 <0.01 0.05* 

No. of metastatic sites 0.88 <0.01 <0.01* 

Lung or liver 
metastases 

1.00 0.14  
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Table 2.3. Covariate selection for the PFS multivariate model. For the univariate and 

multivariate Cox PH models, a likelihood ratio test was used. Abbreviations: ECOG, Eastern 

Cooperative Oncology Group; MSKCC, Memorial Sloan Kettering Cancer Center; P, p-

value; PH, proportional hazards; PS, performance status. 

# >45% of the cells had expected counts less than 5 (46% for country and 60% for race). In 

these cases, the Fisher’s Exact test was used; * denotes covariates included in the final 

multivariate model.  

Covariate Placebo-Sorafenib P Univariate Cox PH P Multivariate Cox PH P 

Sex 0.48 0.95  

Country 0.75# 0.12  

Age 0.07 0.02 <0.01* 

Race 0.05# 0.06  

ECOG PS 0.42 0.77  

Time since diagnosis 0.24 <0.01 0.06 

Previous cytokine use 0.37 0.67  

MSKCC score 0.80 0.54  

No. of metastatic sites 0.85 0.09  

Lung or liver metastases 0.98 0.03 0.02* 
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Table 2.4. Significant variants associated with OS in TARGET patients. Seven total 

variants (five variants in four genes and two intergenic variants) significantly associated with 

OS by both p-value (p<0.05) and FDR q-value (q<0.1). Five variants associated with OS in 

patients from the sorafenib arm, while two variants associated with OS when both treatment 

arms were combined. Variants are listed in descending order, from smallest to largest, by p-

value. No variants were significant by p-value and after FDR correction in patients from the 

placebo arm. Alt, Alternate; Chr, chromosome; FDR, false discovery rate; HR, hazard ratio; 

HWE, Hardy Weinberg equilibrium; MAF, minor allele frequency; Pos, position; Ref, 

reference; * denotes imputed variants 

Variant ID Chr Gene 
Ref/Alt 
Allele 

Feature MAF HR (95% CI) P-value 
FDR  

Q-value 

Sorafenib Arm  (n=155) 

rs1885657 6 VEGFA T/C Intron 0.17 17.32 (5.69-52.73) 1.39x10-04 0.076 

rs200809375* 10 NA A/ATG 
7.5 kB 3' of 

NRP-1 
0.22 6.77 (2.62-17.5) 2.65x10-04 0.076 

rs6719561* 2 NA C/T 
1.8 kB 3’ of 

UGT1A9 
0.34 3.82 (1.56-9.52) 3.27x10-04 0.076 

rs8047917 16 WWOX T/A Intron 0.08 4.06 (1.88-8.78) 3.27x10-04 0.076 

rs3816375 2 ITGAV A/G Intron 0.38 5.88 (2.11-16.39) 4.87x10-04 0.051 

All Patients (n=295) 

rs307826 5 FLT-4 A/G 
Missense 

(Thr494Ala) 
0.10 13.79 (3.04-62.61) 1.24x10-04 0.088 

rs3024987* 6 VEGFA C/T Intron 0.11 2.98 (1.66-5.37) 8.80x10-04 0.088 
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FIGURES 

Figure 2.1. TARGET trial design 
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Figure 2.2. First and second line therapy recommendations for relapsed or Stage IV 

and surgically unresectable RCC. Per NCCN kidney cancer guidelines version 3.2015 

(http://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf), predictors of poor RCC 

prognosis include: lactate dehydrogenase >1.5 the upper limit of normal, hemoglobin level 

less than the lower limit of normal, corrected calcium >10.5 mg/dL (2.5 mmol/L), interval 

less than one year from original diagnosis until initiation of systemic therapy, Karnofsky 

performance score ≤70, and ≥2 metastatic sites. Abbreviations: IFN, interferon; IL, 

interleukin; NCCN, National Comprehensive Cancer Network; PS, performance status 

RANKL, ligand of receptor activator of nuclear factor-κB; RCC, renal cell carcinoma; XRT, 

external radiation therapy. 
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Figure 2.3. Illumina GenomeStudio output from GoldenGate assay. Fluorescence signals 

from the extension and amplification steps were read, and clustering for each individual 

variant was displayed in a scatter plot with the signal intensity on the y-axis and a signal 

intensity ratio on the x-axis. GenTrain scores were derived from the Illumina GenomeStudio 

scatter plots to measure detection reliability based on genotypic clustering distribution. 

Clustering distributions for three variants are included here as an example. 
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Figure 2.4. Kaplan-Meier analysis of OS in the entire TARGET population versus the 

genotyped TARGET patients. The curves show the percent of patients in each treatment 

group who survived while on trial (y-axis) versus time in days (x-axis) for all patients from 

the entire TARGET population (left panel) and the genotyped TARGET patients (right 

panel). Vertical bars on the survival curves indicate censored observations.  
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Figure 2.5. Kaplan-Meier analysis of PFS in the entire TARGET population versus the 

genotyped TARGET patients. The curves show the percent of patients in each treatment 

group who survived without progression while on trial (y-axis) versus time in days (x-axis) 

for all patients from the entire TARGET population (left panel) and the genotyped TARGET 

patients (right panel). Vertical bars on the survival curves indicate censored observations.  
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Figure 2.6. TARGET genotyping study schematics. Genomic DNA from 295 patients 

from the phase III TARGET trial was used in this genotyping study that sought to find 

associations between 11,117 germline variants (1,020 directly genotyped SNPs and 10,097 

imputed SNPs and indels) and clinical phenotypes (OS and PFS). Abbreviations: HWE, 

Hardy Weinberg equilibrium; Indels, insertions/deletions; MAF, minor allele frequency; 

SNP, single nucleotide polymorphism; TARGET, Treatment Approaches in Renal Cancer 

Global Evaluation Trial. 
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Figure 2.7. Results from confirmatory PCR assays. To corroborate genotype calls from 

both the Illumina GoldenGate Assay and Impute2, Taqman® assays were conducted on two 

directly genotyped variants: rs1885657 (panel A) and rs307826 (panel B), and two imputed 

variants: rs3024987 (panel C) and rs8047917 (panel D).  
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Figure 2.8. Kaplan-Meier analysis of OS for rs1885657 (VEGFA). The large panel shows 

that sorafenib-treated patients with the TT genotype live significantly shorter than patients 

with CC or TC genotypes. The other two panels are provided, for reference, to show the 

effects of the variant on OS in the patients from the placebo arm, and when both arms are 

combined. The curves show the percent of patients in each treatment group who survived 

without progression while on trial (y-axis) versus time in days (x-axis). Vertical bars on the 

survival curves indicate censored observations. 
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Figure 2.9. Kaplan-Meier analysis of OS for rs3816375 (ITGAV). The large panel shows 

that sorafenib-treated patients with the GG genotype live significantly shorter than patients 

with AA or AG genotypes. The other two panels are provided, for reference, to show the 

effects of the variant on OS in the patients from the placebo arm, and when both arms are 

combined. The curves show the percent of patients in each treatment group who survived 

without progression while on trial (y-axis) versus time in days (x-axis). Vertical bars on the 

survival curves indicate censored observations. 
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Figure 2.10. Kaplan-Meier analysis of OS for rs8047917 (WWOX). The large panel shows 

that sorafenib-treated patients with the AT genotype live significantly shorter than patients 

with TT genotype. The other two panels are provided, for reference, to show the effects of 

the variant on OS in the patients from the placebo arm, and when both arms are combined. 

The curves show the percent of patients in each treatment group who survived without 

progression while on trial (y-axis) versus time in days (x-axis). Vertical bars on the survival 

curves indicate censored observations. 
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Figure 2.11. Kaplan-Meier analysis of OS for rs6719561 (3’ of UGT1A9). The large panel 

shows that sorafenib-treated patients with the TT genotype live significantly shorter than 

patients with CC or CT genotypes. The other two panels are provided, for reference, to show 

the effects of the variant on OS in the patients from the placebo arm, and when both arms are 

combined. The curves show the percent of patients in each treatment group who survived 

without progression while on trial (y-axis) versus time in days (x-axis). Vertical bars on the 

survival curves indicate censored observations.    

 

  



72 

Figure 2.12. Kaplan-Meier analysis of OS for rs200809375 (3’ of NRP-1). The large panel 

shows that sorafenib-treated patients with the at least one ATG insertion genotype live 

significantly shorter than patients with the AA genotype. The other two panels are provided, 

for reference, to show the effects of the indel on OS in the patients from the placebo arm, and 

when both arms are combined. The curves show the percent of patients in each treatment 

group who survived without progression while on trial (y-axis) versus time in days (x-axis). 

Vertical bars on the survival curves indicate censored observations. 
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Figure 2.13. Kaplan-Meier analysis of OS for rs307826 (FLT-4). The large panel shows 

that in a combined group of patients, those with the GG genotype live significantly shorter 

than patients with AA or AG genotypes. The other two panels are provided, for reference, to 

show the effects of the variant on OS in the patients from the placebo and sorafenib arms. 

The curves show the percent of patients in each treatment group who survived without 

progression while on trial (y-axis) versus time in days (x-axis). Vertical bars on the survival 

curves indicate censored observations. 
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Figure 2.14. Kaplan-Meier analysis of OS for rs3024987 (VEGFA). The large panel 

shows that in a combined group of patients, those with the TC genotype live significantly 

shorter than patients with CC genotype. The other two panels are provided, for reference, to 

show the effects of the variant on OS in the patients from the placebo and sorafenib arms. 

The curves show the percent of patients in each treatment group who survived without 

progression while on trial (y-axis) versus time in days (x-axis). Vertical bars on the survival 

curves indicate censored observations.   

 

  



75 

Figure 2.15. Correlation analyses between OS and PFS. Correlation analyses between OS 

and PFS are provided for A) all TARGET patients, B) among all genotyped TARGET 

patients, C) among genotyped TARGET patients treated with sorafenib, and D) among 

TARGET patients administered placebo. For each of the correlation analyses, patients that 

were censored in the survival analyses were removed. For the correlation test between OS 

and PFS for all TARGET patients, a Spearman rank correlation test was used. For all others, 

a Pearson product moment correlation was used.  
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Figure 2.16. Kaplan-Meier analysis of PFS for rs1885657 (VEGFA). Variant rs1885657, 

which associated with OS, also significantly associated with PFS (p≤0.05) in A) sorafenib-

treated patients, and B) when both treatment arms were combined. The curves show the 

percent of patients in each treatment group who survived without progression while on trial 

(y-axis) versus time in days (x-axis). Vertical bars on the survival curves indicate censored 

observations. Abbreviations: PFS, progression free survival; VEGFA, vascular endothelial 

growth factor A. 
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Figure 2.17. Kaplan-Meier analysis of PFS for three variants previously with OS. Three 

variants, associated with OS, were also associated with PFS: A) rs8047917 in WWOX, B) 

rs3024987 in VEGFA, and C) rs6719561, which is 3’ of UGT1A9, also significantly 

associated with PFS (p≤0.05) in sorafenib-treated patients. The curves show the percent of 

patients in each treatment group who survived without progression while on trial (y-axis) 

versus time in days (x-axis). Vertical bars on the survival curves indicate censored 

observations. Abbreviations: PFS, progression free survival; UGT1A9, Uridine 5'-diphospho-

glucuronosyltransferase 1 family, polypeptide A9; VEGFA, vascular endothelial growth 

factor A; WWOX, WW domain-containing oxidoreductase. 
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Figure 2.18. Kaplan-Meier analysis of PFS for rs307826 (FLT-4). Variant rs307826, 

associated with OS, also significantly associated with PFS (p≤0.05) in A) sorafenib-treated 

patients, and B) when both treatment arms were combined. The curves show the percent of 

patients in each treatment group who survived without progression while on trial (y-axis) 

versus time in days (x-axis). Vertical bars on the survival curves indicate censored 

observations. Abbreviations: FLT-4, fms-related tyrosine kinase 4; PFS, progression free 

survival. 
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CHAPTER 3: VALIDATION OF GERMLINE VARIANTS THAT ASSOCIATE 

WITH OVERALL SURVIVAL IN TARGET TRIAL PATIENTS 

 

3.1 Overview 

Background:  

Statistical associations between genetic variants and outcomes in cancer studies 

should be supported with molecular mechanistic evidence of variant function to aid in 

biomarker validation. The primary objective of this Aim was to validate the functionality of 

germline variants were significantly associated with OS in TARGET patients, through a 

sequential in silico � in vitro approach, and to test the hypothesis that functional validation 

will elucidate the molecular effects of these variants on mRCC biology and sorafenib 

pharmacology. 

 

Methods:  

Germline variants, identified in Aim 1, that significantly associated with OS 

(multivariate model p<0.05 and FDR q<0.1) were analyzed using a selection of in silico 

bioinformatic tools to prioritize which would be validated using laboratory in vitro assays. 

Several resources were used to provide information on variant allele frequencies and LD 

patterns (e.g. 1,000 Genomes Project data, Ensembl and dbSNP). Others helped to predict the 

myriad ways variants influence gene regulation by leveraging ENCODE data (e.g. Ensembl, 

the UCSC genome browser, HaploReg, and Regulome DB). One non-synonymous germline 
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variant in a coding region of FLT-4 (rs307826) was assessed for function using cell viability 

assays. Dual reporter gene luciferase assays were used to examine effects of variants on gene 

expression. Only intragenic variants were selected for functional validation; therefore, no 

experiments were in the two intergenic variants identified in Aim 1 (rs6719561 and 

rs200809375). 

 

Results:  

In silico tools helped predict functionality for five intragenic variants which were 

associated with OS in Aim 1. These tools prioritized intronic SNPs in VEGFA (rs1885657 

and rs3024987) and rs307826 for functional validation. Cell viability assays revealed that 

rs307826 (G allele) results in a more resistant phenotype for HEK-293 cells treated with 

sorafenib. Dual reporter gene luciferase assays validated functionality of the two VEGFA 

variants (as well as two variants in perfect LD with rs1885657) in three different cell lines.  

 

Conclusions:  

In silico tools were useful for prioritizing variants for functional, in vitro validation. 

In vitro experiments validated the functionality of intronic VEGFA variants (rs1885657 and 

rs3024987), and the coding variant in FLT-4 (rs307826). Additional experiments should be 

conducted to further elucidate the mechanisms underlying molecular effects that these 

variants have on OS in mRCC patients.   

 

 

 



88 

3.2 Introduction 

Findings from pharmacogenetic and pharmacogenomic studies (e.g. candidate gene, 

GWAS, and now next generation sequencing) continue to provide a plethora of information 

about genetic variation that underlies both disease pathology and responses to 

pharmacotherapy. Statistical associations between genetic variants and outcomes (e.g. OS 

and/or PFS) in cancer studies should be properly supported with molecular mechanistic 

evidence of variant function, and the lack of mechanistically-based effects underlying clinical 

phenotypes is a major limitation for biomarker validation.1 And, a clear understanding of the 

molecular effects of candidate variants, selected from significant associations between 

genotype and clinical phenotypes, is often absent. In fact, none of the previous 

pharmacogenetic studies of oral VEGF-pathway inhibitors used for the treatment of mRCC 

have conducted studies to validate their observed clinical associations.2-8  

Replication of positive findings in an external, independent cohort of patients has 

traditionally served as a gold standard for validation of genotype-phenotype relationships.9,10 

However, validation of clinical variant-phenotype associations through replication can be 

problematic because independent, external cohorts of patients that match the discovery 

cohort (e.g. baseline patient characteristics, clinical presentation, and pharmacotherapies used 

in the treatment of their cancers) are not always easily obtainable, and do not provide insights 

into the mechanisms underlying disease pathology and/or drug response. Currently, a suitable 

replication cohort of mRCC patients treated with sorafenib is not available. Therefore, 

functional validation of these clinical associations becomes even more important to the 

overall goal of identifying and validating clinically useful biomarkers to aid clinicians in the 

treatment of mRCC.  
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The primary objective of this Aim was to validate the functionality of germline 

variants, identified in Aim 1, through a sequential in silico � in vitro approach, and to test 

the hypothesis that functional validation will elucidate the molecular effects of these variants 

on mRCC pathogenesis, angiogenesis and/or sorafenib pharmacology. 

 

3.3 Materials and Methods 

3.3.1 In Silico Functional Prediction 

In silico bioinformatic analyses will help to predict the functionality of the significant 

variants identified in Aim 1, and will help prioritize which variants will be pursued for in 

vitro functional validation. Genotype data from Caucasian patients of the 1,000 Genomes 

Project (http://www.1000genomes.org) was downloaded and visualized in HaploView to 

investigate LD and haplotype structure.11 The Broad Institute’s HaploReg version 2 

(http://www.broadinstitute.org/mammals/haploreg/haploreg_v2.php) and version 3 

(http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php), the dbSNP website 

(http://www.ncbi.nlm.nih.gov/projects/SNP), and the Ensembl website (www.ensembl.org) 

were also be used to assess LD for variants of interest and to help analyze haplotype 

structure.12,13 To help prioritize variants of interest for in vitro validation, only those in high 

LD (r2 >0.8; based on Caucasians from the 1000 Genomes Project) with a significant variant 

identified in Aim 1 were considered relevant to the haplotype structure.  

Additionally, data from the Encyclopedia of DNA Elements (ENCODE) Consortium 

was extensively queried, through the use of online resources (e.g. the HaploReg, the 

University of California Santa Cruz [UCSC] Genome Browser [https://genome.ucsc.edu], 

and the Center for Genomics and Personalized Medicine at Stanford University’s Regulome 
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DB version 1.1 website [http://regulomedb.org]).14-16 Output from these in silico 

bioinformatic tools that provided evidence of variant functionality helped prioritize candidate 

variants for in vitro validation based on the potential of the variant to alter regulatory 

pathways and/or gene function. Variants from Aim 1 that were associated with OS, and  

additional variants in high LD with the variants identified from Aim 1, that had predicted 

evidence of histone modifications (promoter or enhancer histone marks), open chromatin 

(DNaseI hypersensitivity peaks), or changes to transcription factor binding motifs were 

prioritized for in vitro validation in the laboratory.  

Finally, the SIFT and PolyPhen-2 algorithms were used to better understand the 

effects of amino acids substitutions caused by non-synonymous variants in gene coding 

regions.17,18  

 

3.3.2 Laboratory Functional Validation 

Cell Culture 

HEK293 (ATCC) cells were maintained-in DMEM with 10% FBS and 1% 

penicillin/streptomycin, and Caki-1 human clear-cell metastatic renal cell carcinoma cells 

were cultured in McCoy’s 5A (Iwakata and Grace Mod.) with L-glutamine media (ATCC, 

Manassas, VA, USA) with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, 

Waltham, MA, USA) and 1% and penicillin/streptomycin (Mediatech, Manassas, VA, USA). 

Human telomerase-immortalized microvascular endothelial (TIME) cells and human liver 

parenchyma endothelial cells (LPEC) were cultured in endothelial basal media (EBM-2) with 

5% FBS and supplemented with the EGM®-2 MV bullet kit (Lonza Inc., Allendale, NJ, 
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USA), per the manufacturer instructions. All cells were maintained in 5% CO2 at 37 oC and 

grown to desired confluency (80-90%). 

 

Dual Reporter Gene Luciferase Assays 

Dual reporter gene luciferase assays were performed by inserting a pGL4.26 

[luc2/minP/Hygro] plasmid (Promega, Madison, WI, USA), with a minimal promoter and 

Firefly luciferase gene into all cell lines that were assayed. This pGL4.26 plasmid was 

utilized in all reporter gene assays. The pGL4.26 plasmids with cloned sequences of interest 

were synthesized by GeneWiz (Research Triangle Park, NC, USA). Restriction sites were 

identified using CLC Sequence Viewer 6.6.2 (CLC Bio, Cambridge, MA), and mutagenesis 

primers were designed using Agilent Technology’s QuikChange Primer Design program 

(http://www.genomics.agilent.com/primerDesignProgram) Site-directed mutagenesis was 

carried out using a QuikChange II XL Site-Directed Mutagenesis Kit (Agilent, Santa Clara, 

CA), per manufacturer instructions.  Sanger-based DNA sequencing, using 3730xl Genetic 

Analyzers (Applied Biosystems) and performed at the UNC Mammalian Genotyping Core, 

was used to confirm site-directed mutagenesis.  

Two VEGFA variants that were prioritized for functional validation (rs1885657 and 

rs3024987) were tested for their functional effects on the transcriptional activity of VEGFA. 

An additional two variants that are in perfect LD (r2=1.0) with rs1885657 (rs58159269, and 

rs943070) were also selected. First, a 1,320 bp VEGFA fragment (chr6:43739302-43740622) 

was cloned upstream of a minimal promoter in pGL4.26 using KpnI and NheI for the 5’ and 

3’ restriction sites, respectively. DNA clones containing the reference sequence with each 

reference allele (rs1885657 T, rs943070 C, and rs58159269 T) were generated.  DNA clones 
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containing each variant allele (rs1885657 C, rs943070 G, and rs58159269 C) were all 

generated through site-directed mutagenesis. A separate DNA clone containing all three 

variant alleles (rs1885657 C/rs943070 G/rs58159269 C) was also generated through site-

directed mutagenesis.  

For rs3024987, a 463 bp VEGFA fragment (chr6:43741162-43741625) was cloned 

upstream of a minimal promoter in pGL4.26 using NheI and XhoI for the 5’ and 3’ 

restriction sites, respectively. DNA clones containing the reference sequence with the 

reference allele (rs304987 C) were generated. Again, allelic variation (rs3024987 T) was 

introduced through site-directed mutagenesis, and DNA clones containing the variant allele 

were produced. 

Once cells were grown to desired confluency (80-90%), they were seeded in 24-well 

plates at a density of 5x104 cells per well. Caki-1 cells lines were transfected using 

lipofectamine (Invitrogen), using the reporter gene plasmid construct of interest and a Renilla 

HSV-TK plasmid (Promega), in 24-well plates. TIME and LPEC cell lines were transfected 

in 24-well plates by TransIT®-2020 reagent (Mirus Bio LLC, Madison, WI, USA) and used 

a reporter gene plasmid of interest with a Renilla plasmid containing an SV40 promoter 

(Promega). Additionally, LPEC cells were treated with CombiMag (Oz Biosciences, San 

Diego, CA, USA) and were transfected under magnetoporation. All cells were lysed 40 h 

after transfection, and the luciferase assays were then conducted according to the 

manufacturer instructions (Promega). Firefly luciferase and Renilla were loaded into 96-well 

plates and read on a Beckman Coulter DTX 880 Multimode Detector (Beckman Coulter, 

Inc., Brea, CA, USA). 
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Each mutant of the three constructs for SNPs in the VEGFA haplotype (rs1885657, 

rs58159269, and rs943070), a “triple variant” construct that contained all three mutations, a 

reference construct, and an empty pGL4.26 plasmid were each transfected in four 

independent experiments, using triplicate wells. For rs3024987, a construct containing the 

mutant, a reference construct, and an empty pGL4.26 plasmid were each transfected in four 

independent experiments, using triplicate wells. Luciferase activity was defined as a ratio of 

Firefly to Renilla luciferase. Luciferase activity for each of the variant constructs was 

normalized to the luciferase activity of the empty pGL4.26 vector. For rs304987, differences 

in luciferase activity were tested between the variant and reference, using a two-sided t-test. 

For rs1885657, a one-way ANOVA was conducted, and then pairwise comparisons to the 

reference were conducted for each variant, and also for the “triple variant.” A Dunnett’s 

correction was used to correct for multiple tests for rs1885657. All calculations were 

performed and figures created using GraphPad Prism® version 5.03 (GraphPad Software, 

Inc., La Jolla, CA, USA) software. All statistical analyses were confirmed using SAS 

software, version 9.2 (SAS, Cary, NC, USA). 

 

Cell Viability Assays 

 Sorafenib tosylate (LC Laboratories, Woburn, MA) was reconstituted in 100% 

DMSO (Thermo), and stock concentrations (0.5–100 mM) were prepared. Working 

concentrations were then prepared in DMEM before addition to cells. The final 

concentrations of sorafenib used in cell viability assays ranged from 0.5–30 µM. The final 

concentration of DMSO introduced to cells was 0.2% in all experimental wells. The 

VEGFR3 Thr494Ala amino acid substitution, caused by rs307826, was introduced into the 
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pCMV6-XL5 expression vector containing FLT-4 cDNA (Origene Technologies, Rockville, 

MD, USA) through the use of the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies, Santa Clara, CA, USA), as per the manufacturer’s instructions. Sanger-based 

sequencing was again performed at the UNC Mammalian Genotyping Core to confirm site-

directed mutagenesis. 

Once cells were grown to desired confluency (80-90%), they were seeded in 24-well 

plates at a density of 5x104 cells per well. After 24 h, reference and variant vectors were 

transfected into HEK-293 cells using Lipofectamine® 2000 (Invitrogen).  In vivo, VEGFC is 

the ligand that is required for VEGFR3 dimerization and activation. So, after a 24 h 

transfection, cells were stimulated with VEGFC diluted in DMEM to a final 200 ng/mL 

concentration, or with a matched volume of DMEM media for unstimulated cells, for 1 h 

prior to the administration of sorafenib. Twelve concentrations of sorafenib (final 

concentration: 0 µM, 0.5 µM, 1 µM, 2 µM, 5 µM, 6 µM, 8 µM, 9 µM, 10 µM, 15 µM, 18 

µM, 20 µM, and 30 µM) were then added to cells, in triplicate, and incubated for 72 h. The 

concentrations of sorafenib selected for these assays overlap the estimated pharmacologically 

relevant concentration range for sorafenib (approximately 6-15 µM).19,20  Triplicate wells 

were also treated with 100% DMSO (final concentration of 20% in DMEM media), and 1% 

DMSO (final concentration of 0.2% in DMEM media) as controls. After a 72 h sorafenib 

incubation, alamarBlue® cell viability reagent (Life Technologies, Grand Island, NY, USA) 

was added to cells at an amount equal to 10% of the culture volume and incubated at 37 oC 

for 2 h. 

Fluorescence, with excitation wavelength at 530-560nm and emission wavelength at 

590 nm, was measured using a Beckman Coulter DTX 880 Multimode plate reader 
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(Beckman Coulter, Inc.), and relative fluorescent units (RFU) were reported. Using the RFU 

output, the following equation was used to calculate the percent viability for each sorafenib 

concentration: ((PVconc – PVD20)/(PVD0.2 – PVD20) * 100), where PVconc is the percent viability 

of cells for a given concentration in experimental wells, PVD20 is the percent viability of cells 

in control wells treated with 20% DMSO, and PVD0.2 is the percent viability of cells in 

control wells treated with 0.2% DMSO. Experiments were performed, on different days in 

duplicate, and an average percent viability was used for all analyses. For all analyses, 

sorafenib concentrations were log10 transformed and a four-parameter non-linear regression 

model was used to assess log10 concentration versus percent viability, and to obtain IC50 

values. Two-sided t-tests were used to assess differences between IC50 values for VEGFC-

stimulated mutant-transfected HEK cells and VEGFC-stimulated reference-transfected HEK 

cells, and between IC50 values for VEGFC-stimulated mutant-transfected HEK cells and 

unstimulated mutant-transfected HEK cells. All calculations were performed and figures 

created using GraphPad Prism® version 5.03, and all statistical analyses were again 

confirmed using SAS software, version 9.2. 

 

3.4 Results 

3.4.1 In silico predictions 

To understand more about the variants identified and their LD structure, as well as to 

prioritize variants for in vitro validation based on their predicted functionality, a series of in 

silico analyses were conducted. Variants from Aim 1 with evidence of promoter or enhancer 

histone modifications (e.g. H3K4me1, H3K4me3 and H3K27ac marks), evidence of DNase 

sensitivity, evidence that they influence transcription factor binding through changes to 
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transcription factor binding motifs and/or evidence of being an expression quantitative trait 

locus (eQTL), were prioritized for in vitro functional validation. 

For the VEGFA variants identified in Aim 1 (rs1885657 and rs3024987) and two 

variants in perfect LD with rs1885657 (rs58159269 and rs943070), there was substantial 

evidence that they exist in a regulatory region. In multiple cell lines, there was evidence of 

both promoter and enhancer histone marks (H3K4me1, H3K4me3 and H3K27ac marks) 

(Table 3.1 and Figure 3.1).  Briefly, methylation or acetylation modifications, or marks, to 

histones can influence how accessible the chromatin is to transcription, thereby influencing 

gene expression. H3K4me1 histone mark is a mono-methylation of lysine 4 of the H3 histone 

protein and is associated with enhancers and DNA regions downstream of transcription start 

sites. An H3K4me3 histone mark indicates tri-methylation of the same lysine residue and is 

associated with promoters that are active or poised to be activated. And, a H3K27ac histone 

mark indicates acetylation of lysine 27 of H3, and like H3K4me1, a H3K27ac mark is also 

often indicative of a transcription enhancer.21 

These four VEGFA variants also revealed evidence of altered transcription factor 

binding and/or altered transcription factor motifs, and areas of DNase hypersensitivity (Table 

3.1 and Figure 3.1). Variants in active regulatory regions (e.g. promoters and enhancers) 

often reveal evidence of DNase hypersensitivity. Areas of DNase hypersensitivity indicate 

loss of condensed chromatin structure, which exposes DNA and makes it accessible for 

transcription.21,22 

No renal endothelial cell lines were analyzed during the ENCODE project.  This was 

a potential limitation to leveraging ENCODE resources because RCC is highly dependent on 

angiogenesis and host vascular endothelium. In addition, analyzing data from an endothelial 
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cell type was essential because sorafenib, in part, targets host vascular endothelium. 

Therefore, examining data from human umbilical vein endothelial cells (HUVEC) was 

important because it provided insight into regulatory elements within the cell type closest to 

renal endothelial cells. In HUVECs, there was evidence of H3K4me1, H3K4me3, and 

H3K27ac marks at rs1885657. For rs58159269, there was evidence of H3K4me3, and 

H3K27ac marks. For rs943070 and rs3024987, there was evidence of H3K27ac (Figure 3.2). 

By Regulome DB, the variant predicted to have the most influence on regulation of 

VEGFA was rs59159269. It had a Regulome DB score of 2b (Table 3.2), which means there 

was evidence of altered transcription factor binding sites, any transcription factor motif, a 

DNase footprint, and a DNase peak. Variants rs1885657, rs943070, and rs3024987 all had a 

Regulome DB score of 4, which means there was evidence of a DNase peak and altered 

transcription factor binding. Collectively, there was sufficient ENCODE prediction data to 

prioritize these variants for functional validation.  

There was only minimal evidence in ENCODE that rs3816375 in ITGAV and 

rs8047917 in WWOX were in regions that would affect gene regulation (Tables 3.3 and 3.4, 

respectively). There is no data to provide a Regulome DB score for rs3816375, and the 

Regulome DB score for rs8047917 was 6. Based on minimal ENCODE evidence in the 

UCSC Browser, HaploReg and Regulome DB, these two variants were not prioritized for 

functional validation. 

Variant rs30726 was not predicted to be deleterious or cause a harmful amino acid 

substitution. While a threonine to alanine amino acid substitution results in a change from a 

medium-sized and polar amino acid to a small-sized and hydrophobic amino acid,23 rs307826 

received a score of 0.53 from SIFT, which  means the algorithm predicted that the amino acid 



98 

substitution would be tolerated.18 Similarly, rs307826 received a score of 0.005 from 

PolyPhen-2, which means the algorithm predicted that the amino acid substitution would be 

benign.17 

 

3.4.2 Variant Effects on Cell Viability  

To validate the functionality of rs307826 and to gain insight into whether this non-

synonymous variant in a coding region of FLT-4 has an effect on VEGFR3 signaling, vectors 

containing reference and mutant cDNA were transfected into HEK-293 cells and 

subsequently treated with sorafenib. Cell viability assays were conducted to generate IC50 

values for VEGFC-stimulated and unstimulated reference cells, as well as VEGFC-

stimulated and unstimulated mutant cells. 

Cells were treated in triplicate wells with 12 concentrations of sorafenib (0–30 µM), 

and cell viability relative to untreated controls (0.2% DMSO only) was determined through 

the alamarBlue® cell viability assay. First, a statistically significant difference in sorafenib 

cytotoxicity was observed between reference-transfected and mutant-transfected HEK-293 

cells that were not stimulated by VEGFC (p<0.0001). The IC50 for reference-transfected cells 

was 7.58 µM, while the IC50 for mutant-transfected cells was 15.45 µM (Figure 3.3). Second, 

a statistically significant difference in sorafenib cytotoxicity was observed between 

reference-transfected and mutant-transfected HEK-293 cells that were both stimulated by 

VEGFC prior to sorafenib administration (p<0.0001). The IC50 for reference-transfected cells 

was 2.02 µM, while the IC50 for mutant-transfected cells was 7.67 µM (Figure 3.3). Finally, a 

statistically significant difference in sorafenib cytotoxicity was observed between VEGF-

stimulated and unstimulated mutant-transfected HEK-293 cells (p<0.0001) (Figure 3.3). 
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3.4.3 Variant Effects on Transcriptional Activity  

To provide insight into the mechanisms underlying the variant-OS associations 

observed among intronic variants identified in Aim 1, variants were assessed for their 

function as potential effectors of regulatory activity using dual reporter gene luciferase 

assays. Genomic regions containing the reference sequence, or sequence with the variants (or 

those in perfect LD with the identified variant) were cloned into a pGL4.26 plasmid construct 

containing a minimal promoter and downstream of the Firefly luciferase gene. Allelic 

variation (rs1885657 C allele, rs58159269 C allele, rs943070 G allele, or rs3024987 T allele) 

were introduced by site-directed mutagenesis. These assays were performed to determine 

how each variant (or the construct with three variants) affected the transcriptional activity of 

the minimal promoter. 

For the VEGFA variant that associated with shorter OS in patients treated with 

sorafenib (rs1885657), and the two variants in perfect LD (rs943070 and rs58159269), 

significant increases in luciferase activity in LPEC cells were observed individually for all 

three variants, as well as for the “triple variant.” For rs1885657 (T>C), the C allele increased 

luciferase activity by an average of 48% (p<0.05). For rs58159269 (T>C), the C allele 

increased luciferase by an average of 70% (p<0.001). For rs943070 (C>G), the G allele 

increased luciferase by an average of 40% (p<0.05). And, for the triple variant, luciferase 

was increased by an average of 98% (p<0.01), when compared to the reference alleles 

(Figure 3.4).  

In the TIME human endothelial cell line, increased luciferase activity was again 

observed.  For rs1885657 (T>C), the C allele increased luciferase activity by an average of 

57% (p<0.001). For rs58159269 (T>C), the C allele increased luciferase by an average of 
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80% (p<0.001). And, for the triple variant, luciferase was increased by an average of 99% 

(p<0.001), when compared to the reference alleles. Luciferase activity was not significantly 

different between rs943070 and the reference allele in TIME cells (Figure 3.4). 

Finally, in the clear-cell mRCC Caki-1 cell line significant increases in luciferase 

activity were observed individually for rs1885657, rs58159269 and rs943070, as well as for a 

haplotype of all three SNPs. For rs1885657 (T>C), the C allele increased luciferase activity 

by an average of 30% (p<0.05). For rs58159269 (T>C), the C allele increased luciferase by 

an average of 56% (p<0.001).  For rs943070 (C>G), the G allele increased luciferase by an 

average of 35% (p<0.01).  And, for the triple variant, luciferase was increased by an average 

of 70% (p<0.001), when compared to reference (Figure 3.4). 

For VEGFA rs3024987 (C>T), which was associated with shortened OS in a 

combined analysis of both study arms, significant increases in luciferase activity were 

observed in all three cell lines.  In LPEC cells, the T allele increased luciferase activity by an 

average of 34% (p=0.0032), when compared to reference. In the TIME cells, the T allele 

increased luciferase activity by an average of 38% (p=0.0002). Finally, in Caki-1 cells, the T 

allele increased luciferase activity by an average of 32% (p=0.0001), when compared to 

reference (Figure 3.5). 

 

3.5 Discussion 

The primary objective of this Aim was to validate the functionality of germline 

variants, identified in Aim 1, through a sequential in silico � in vitro approach, and to test 

the hypothesis that functional validation will elucidate the molecular effects of these variants 

on mRCC pathogenesis, angiogenesis and/or sorafenib pharmacology. For candidate gene-
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candidate variant studies, where a tagging SNP variant approach has been applied or where 

the functionality of the variant is unknown, relying on clinical associations severely limits the 

ability to translate candidate variants into clinically useful prognostic or predictive 

biomarkers.  

The initial step towards predicting if the candidate variants identified in Aim 1 were 

functional was to understand the LD structure of the other variants associated with the 

candidate. Sequencing data from the 1,000 Genomes Project was important for identifying 

other variants in high LD with the candidate variant that could also be functional. After 

gaining an appreciation of the haplotype and LD structure of each candidate variant, in silico 

bioinformatic tools were leveraged to understand more about whether the identified variants 

were in regulatory regions.24,25 Additional in silico resources, such as HaploReg, and 

RegulomeDB, that provided an interpretation of ENCODE data (e.g. histone modifications, 

transcription factor binding, eQTLs, and chromatin structure) helped predict the functionality 

of intronic variants and prioritized them for validation,16,21,22 The in silico predictions for 

variant functionality were consistent between HaploReg and Regulome DB (except for 

rs3816375, for which there was no prediction information in Regulome DB).  Ensembl 

Variant Effect Predictor (http://uswest.ensembl.org/info/docs/tools/vep/ 

index.html?redirect=no) incorporated resources like SIFT18 and PolyPhen-217 to help predict 

the effects of non-synonymous variants. Table 3.6 has been provided to summarize key 

results from Aims 1 and 2, including; the clinical association for each variant, in silico 

predictions concerning function as regulatory elements or as a deleterious amino acid 

substitution, and in vitro experiment results. 
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The in silico bioinformatic tools predicted that the four VEGFA variants identified in 

Aim 1 would be functional, and thus they were prioritized for laboratory validation. In Aim 

1, patients in the sorafenib arm with the CC genotype for rs1885657achieved significantly 

worse OS and PFS. This association could be caused by differences in regulatory elements 

(e.g. enhancer activity that results in altered transcription factor binding) at rs1885657, which 

could result in increased VEGFA expression. In addition, analyses of combined treatment 

arms revealed that patients with at least one copy of the T allele for rs3024987 also achieved 

poorer OS. This intronic variant is also likely to alter transcription factor binding and 

increase VEGFA expression. In both instances, increased VEGFA expression could 

conceivably lead to increased angiogenic capability of mRCC. 

Data from functional assays performed in in Aim 2 support the hypothesis that 

rs1885657 and rs3024987 are functionally active variants. Luciferase assay data validated the 

in silico predictions, revealing increased luciferase activity for rs1885657 rs943070, 

rs58159269, and rs3024987. Luciferase assays were chosen to help validate these variants 

because they test the transcriptional effects of genetic variants in potential regulatory regions, 

and  provide an  initial understanding of the mechanisms underlying the variant-OS 

associations observed in Aim 1.25 

The luciferase assay data also provided evidence that these variants could all be 

functional and acting independently to affect VEGFA expression through multiple different 

transcriptional regulatory elements. Because a tagging variant approach was used for many 

of the variants selected for Golden Gate genotyping in Aim 1, the original hypothesis tested 

in these experiments was that rs1885657 might only be a proxy for another functional 

variant. However, these data have shown that rs1885657 and two other variants in perfect LD 
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(rs58159269 and rs943070) are all likely to be biologically relevant, and that the entire three-

SNP haplotype is indeed functional. These data support a new hypothesis that combinational 

effects of multiple enhancer variants, in high LD with one another, will together increase 

VEGFA expression, and confer differences in OS to mRCC patients.26 While previous 

pharmacogenetic studies of oral VEGF-pathway inhibitors have identified SNPs that 

associate with OS and/or PFS in mRCC patients, none have attempted to functionally 

validate of their findings.5,27,28 Prior to these studies, rs1885657 and rs3024987 were of 

unknown significance. But, increased cellular transcription of VEGFA by the C allele of 

rs1885657, the C allele of rs58259269, the G allele of rs94307 and/or the T allele of 

rs3024987, combined with their  respective associations with OS, align well with the 

hypothesis that increased VEGFA expression increase the angiogenic potential of mRCC. 

In Aim 1, analyses when treatment arms were combined revealed that patients with 

the GG genotyped for rs307826 achieved significantly worse OS and PFS. The SNP variant 

rs307826 causes a threonine to alanine substitution at position 494 (Thr494Ala), located in 

the fifth IgG-like domain of VEGFR3. While the PolyPhen-217 and SIFT18 algorithms, did 

not predict this variant to be deleterious and cause a damaging amino acid substitution, 

several pharmacogenetic studies of mRCC patients treated with oral VEGF-pathway 

inhibitors have associated rs307826 with significantly shorter OS and/or PFS.2,3,8 

FLT-4 encodes for VEGFR3, a transmembrane kinase receptor that has been 

traditionally linked to lymphangiogenesis.29 But, VEGFR3 is also expressed in tumor 

vasculature,30 and inhibition of VEGFR3 can suppress vascular network formation.31 

Preclinical models have also suggested that VEGFR3 could possibly be more relevant than 

VEGFR2 (a primary driver of angiogenic signaling, and a main target for the VEGF-pathway 
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inhibitors used to treat mRCC) for the development of metastases.32 One notable study 

recently characterized the structure and function of VEGFR3, and revealed that the fifth IgG-

like receptor domain is critical to receptor signaling.33 Cell viability assays, which showed 

the cells overexpressing the variant G allele, were more resistant to sorafenib. These data 

support the primary hypothesis that this amino acid substitution results in increased VEGFR3 

signaling, resistance to sorafenib, and thus an increased risk of disease progression and death. 

While more common for non-synonymous variants to result in amino acid 

substitutions that alter protein function, evidence supports the alternate hypothesis that this 

non-synonymous variant can also modify FLT-4 expression.34-36 Although the in silico 

predictive evidence is not as compelling as for the VEGFA variants, HaploReg does reveal 

evidence of altered enhancer marks and changes to transcription factor binding motifs (Table 

4.5). Therefore, investigating rs307826 as an effector of gene expression should also be 

considered.  

Although not prioritized for validation by the in silico resources that use ENCODE 

data, rs3816375 in ITGAV and rs8047917 in WWOX could still potentially be functional. As 

previously mentioned, ENCODE experiments were not performed in a kidney endothelial 

cell line, nor in an mRCC line. These two variants were significantly associated with OS 

after a rigorous statistical design, which sought to avoid Type I error and detection of 

spurious variant-phenotype associations, was employed in Aim 1. Therefore, it would be 

premature to dismiss these two variants completely. For the two intergenic variants that 

associated with OS (rs6719561 and rs200809375), validation is still required. Luciferase 

assays could potentially provide insight into their activity as enhancers; however, because 

they are not located within genes it would be difficult to ascertain on which gene they act. In 
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addition, the physiologic relevance on a clinical phenotype of variants in intergenic regions 

could be directly related to currently unknown non-coding RNAs, (e.g.  microRNAs, or  

macro long non-coding RNAs).37 Certainly, additional future validation experiments 

involving these two variants should be conducted. 

Functional evidence by one validation method should not be relied upon because it is 

rarely sufficient to provide a mechanistic foundation to support clinical associations.25,38 

Additional laboratory validation experiments should be conducted on the variants identified 

in Aim 1 to ascertain if they influence gene expression, and to characterize the mechanistic 

underpinnings that result in altered gene expression. For example, variants with evidence of 

luciferase activity should be prioritized for additional in vitro functional validation by 

electromobility shift assays (EMSA). And, phosphorylation assays assessed through 

traditional Western blotting, enzyme-linked immunosorbent assays (ELISA), or by 

leveraging a mass spectrometry-based proteomic approach could provide necessary 

confirmation that rs307826 influences VEGFR3 signaling. 

Ultimately, variant constructs used in reporter gene assays are analyzed out of their 

natural context, and state. And, for cell viability and/or phosphorylation assays, cDNA 

vectors likely overexpress the gene more than what occurs in vivo.25 Therefore, the creation 

of isogenic endothelial cell lines, using clustered regularly interspaced short palindromic 

repeats (CRISPR)/cas9 or transcription activator-like effector nuclease (TALEN) 

technologies, could for the first time isolate how these variants influence gene expression, 

receptor signaling, even angiogenesis. 

In summary, the findings from Aim 2 provide evidence that the variants identified in 

Aim 1, which significantly associated with OS in TARGET patients treated with sorafenib, 
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are functional. These data lay provide validation of these germline variants, and also lay the 

groundwork for future studies that will further elucidate the molecular mechanisms 

underlying these variants. These data provide the next essential step towards conducting 

prospective trials that will then confirm them as predictive and prognostic biomarkers. 
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TABLES 

Table 3.1. HaploReg output for rs1885657 and rs3024987. VEGFA variants in high LD 

(r2≥0.8) with rs1885657 are shown. Additionally, rs3024987, which is in moderate LD with 

rs1885657 (r2≥0.6), is included. The Regulome DB score for rs1885657 is 4, for rs58159269 

is 2b, for rs943070 is 4, and for rs3024987 is 4. In TARGET, the CC genotype for rs1885657 

was associated with significantly shorter OS in patients from the sorafenib arm (p=1.39x10-

04, q=0.076). The CT genotype was associated with significantly shorter OS in a combined 

analysis of both patient arms (p=8.80x10-04, q=0.088). Abbreviations: LD, linkage 

disequilibrium; SNP, single nucleotide polymorphism. 

Position 
LD 

(r²) 
Variant Ref Alt 

EUR 

freq 

Promoter 

histone 

marks 

Enhancer 

histone 

marks 
DNAse 

Proteins 

bound 
Motifs 

changed 
GENCODE 

genes 

dbSNP 

functional 

annotation 

chr6:43739446 1 rs58159269 T C 0.20 24 organs 6 organs 
30 

organs 
13 bound 
proteins 

14 altered 
motifs 

VEGFA intronic 

chr6:43740094 1 rs1885657 T C 0.20 22 organs 12 organs 
18 

organs 
4 bound 
proteins 

5 altered 
motifs 

VEGFA intronic 

chr6:43740451 0.99 rs943070 C G 0.20 21 organs 13 organs 
28 

organs 
7 bound 
proteins 

ATF3, 
BDP1 

VEGFA intronic 

chr6:43740840 0.61 rs3024987 C T 0.13 19 organs 15 organs 
GI, 

MUS 
 

5 altered 
motifs 

VEGFA intronic 
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Table 3.2. Regulome DB scoring system. This table is adapted from one found on the 

Regulome DB website (http://regulomedb.org/). Abbreviations: eQTL, expression 

quantitative trait locus/loci; TF, transcription factor. 

Score Supporting Data 

1a   eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak 

1b   eQTL + TF binding + any motif + DNase Footprint + DNase peak 

1c   eQTL + TF binding + matched TF motif + DNase peak 

1d   eQTL + TF binding + any motif + DNase peak 

1e   eQTL + TF binding + matched TF motif 

1f   eQTL + TF binding / DNase peak 

2a   TF binding + matched TF motif + matched DNase Footprint + DNase peak 

2b   TF binding + any motif + DNase Footprint + DNase peak 

2c   TF binding + matched TF motif + DNase peak 

3a   TF binding + any motif + DNase peak 

3b   TF binding + matched TF motif 

4   TF binding + DNase peak 

5   TF binding or DNase peak 

6   Other 
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Table 3.3. HaploReg output for rs3816375. ITGAV variants in high LD with rs3816375 

(r2≥0.8) are included. There was no data in Regulome DB to provide a score for rs3816375. 

In TARGET, the GG genotype for rs3816375 was associated with significantly shorter OS in 

patients from the sorafenib arm (p=4.87x10-04, q=0.051). Abbreviations: LD, linkage 

disequilibrium; SNP, single nucleotide polymorphism. 

Position 
LD 

(r²) 
Variant Ref Alt 

EUR 

freq 

Promoter 

histone 

marks 

Enhancer 

histone 

marks 

DNAse 
Proteins 

bound 

Motifs 

changed 

GENCODE 

genes 

dbSNP 

functional 

annotation 

chr2:187503226 1 rs4667108 T C 0.40 
 

BLD, 

SKIN   

Cdx, 

TATA 

ITGAV intronic 

chr2:187505486 1 rs3816375 A G 0.40 
 

BLD, 

BONE 
LNG 

 
4 altered 

motifs 
ITGAV intronic 

chr2:187513708 0.87 rs202185248 
23-

mer 
T 0.58 

    
Mef2 ITGAV intronic 

chr2:187517655 0.91 rs4667109 T C 0.39 
    

CEBPG, 

Foxp1, 

PLZF 

ITGAV intronic 

chr2:187532010 0.92 rs41265951 G T 0.39 
    

TATA ITGAV intronic 

chr2:187533741 0.93 rs2290083 T C 0.39 
    

5 altered 

motifs 
ITGAV intronic 
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Table 3.4. HaploReg output for rs8047917. WWOX variants in high LD with rs8047917 

(r2≥0.8) are included. Regulome DB score for rs8047917 is 5, for rs77533819 is 6, and for 

rs7190335 is 6. There is evidence of siPhycons for rs7190335. In TARGET, the TA genotype 

for rs8047917 was associated with significantly shorter OS in patients from the sorafenib arm 

(p=3.27x10-04, q=0.076). Abbreviations: LD, linkage disequilibrium; SNP, single nucleotide 

polymorphism. 

Position 
LD 

(r²) 
Variant Ref Alt 

EUR 

freq 

Promoter 

histone 

marks 

Enhancer 

histone 

marks 
DNAse 

Proteins 

bound 
Motifs 

changed 

GENCODE 

genes 

dbSNP 

functional 

annotation 

chr16:78184378 0.83 rs8052567 C G 0.07 
    

Ets WWOX intronic 

chr16:78187380 0.98 rs16947192 T C 0.07 
    

ATF3 WWOX intronic 

chr16:78188868 1 rs77533819 T C 0.07 
 

4 organs 
  

5 altered 
motifs 

WWOX intronic 

chr16:78189414 1 rs8047917 T A 0.07 
 

6 organs LNG 
 

E4F1,HM
G-IY, 
XBP-1 

WWOX intronic 

chr16:78190218 0.96 rs7190335 T C 0.07 
 

BRST, 
BRN, 
SKIN 

SKIN, 
LNG  

5 altered 
motifs 

WWOX intronic 
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Table 3.5. HaploReg output for rs307826. There are no variants in high LD with rs307826 

(r2≥0.8); however, this SNP is in low LD (r2=0.38) with rs307821, which is another non-

synonymous variant previously associated with survival in patients treated with pazopanib 

and sunitinib. There is evidence of SiPhycons with rs307826 (not shown in table). The 

Regulome DB score for rs307826 is 5. In TARGET, the GG genotype was associated with 

significantly shorter OS in a combined analysis of both patient arms (p=1.24x10-04, q=0.088). 

Abbreviations: LD, linkage disequilibrium; SNP, single nucleotide polymorphism. 

Position 
LD 

(r²) 
variant Ref Alt 

EUR 

freq 

Promoter 

histone 

marks 

Enhancer 

histone 

marks 

DNAse 
Proteins 

bound 

Motifs 

changed 

GENCODE 

genes 

dbSNP 

functional 

annotation 

chr5:180051003 1 rs307826 A G 0.11  10 organs   
Egr-1 ,Irf, 

NRSF 
FLT-4 missense 
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Table 3.6. Summary of key results. For the seven variants identified in Aim 1, this table 

summarizes the key results from Aims 1-2: the clinical association, in silico predictions, and 

in vitro validation results. Abbreviations: HEK, human embryonic kidney; IC50, half maximal 

inhibitory concentration. 

Variant Gene 
Clinical 

Association 
HaploReg Evidence 

Regulome 

DB Score 

SIFT/ 

PolyPhen-2 

In Vitro 

Validation 

Results 

rs307826 FLT-4 

GG associated 
with decreased 
OS in 

combined 

analysis: 

• p=1.24x10-04 

• q=0.088 

Moderate: 

• Enhancer histone 
marks in 10 organs 

• 3 altered motifs 

5 

SIFT: 

• 0.53 

• Tolerated 
 
PolyPhen-2: 

• 0.005 

• Benign 

Resistant IC50  
in HEK cells 
transfected 
with rs307826 
and treated 
with sorafenib 

rs1885657 VEGFA 

CC associated 
with decreased 
OS in sorafenib 

arm: 

• p=1.39x10-04 

• q=0.076 

High: 

• Promoter histone 
marks in 22 organs 

• Enhancer histone 
marks in 12 organs 

• DNase 
hypersensitivity in 18 
organs 

• 4 proteins bound 

• 5 altered motifs 

4 N/A 

Increased 

luciferase 
activity 
(whole 
element and 
variant allele) 
in: 

• Caki-1 

• LPEC 

• TIME 

rs3024987 VEGFA 

CT associated 
with decreased 
OS in 

combined 

analysis: 

• p=8.80X10-04 

• q=0.088 

High: 

• Promoter histone 
marks in 19 organs, 

• Enhancer histone 
marks in 15 organs 

• DNase 
hypersensitivity in 2 
organs 

• 5 altered motifs 

4 N/A 

Increased 
luciferase 
activity 
(variant 
allele) in: 

• Caki-1 

• LPEC 

• TIME 

rs3816375 ITGAV 

GG associated 
with decreased 
OS in sorafenib 

arm: 

• p=4.87x10-04 

• q=0.051 

Moderate: 

• Enhancer histone 
marks in 2 organs 

• DNase 
hypersensitivity in 1 
organ 

• 4 altered motifs 

N/A N/A N/A 

rs8047917 WWOX 

TA associated 
with decreased 
OS in sorafenib 

arm: 

• p=3.27x10-04 

• q=0.076 

Moderate: 

• Enhancer histone 
marks in 6 organs 

• DNase 
hypersensitivity in 1 
organ 

• 3 altered motifs 

5 N/A N/A 
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rs200809375 
3' of 
NRP-1 

ATG associated 
with decreased 
OS in sorafenib 

arm: 

• p=2.65x10-04 

• q=0.076 

Minimal: 

• 2 altered motifs 
6 N/A N/A 

rs6719561 
3' of 
UGT1A9 

Associated with 
OS in sorafenib 

arm: 

• p=3.27x10-04 

• q=0.076 

Minimal: 

• 2 altered motifs 
5 N/A N/A 
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FIGURES 

Figure 3.1. UCSC Browser’s ENCODE output for VEGFA variants. ENCODE output 

from the University of Santa Cruz (UCSC) Genome Browser for variants rs1885657, 

rs3024987, rs58159269 and rs943070 is represented in this figure under a region on 

chromosome 6 (43,739,300-43,741,000). A) Regions where there is evidence of histone 

modifications are shown here (H3K4me1, H3K3me3, and H3K27ac marks). Individual 

colors represent evidence in individual cell lines. B) Evidence of DNase hypersensitivity is 

shown here. Black represents a region with more hypersensitivity. C) ChIP-Seq evidence of 

altered binding motifs for different transcription factors. Black represents evidence of altered 

transcription factor binding, while the lighter the shade of grey represents fewer cell lines 

that demonstrated altered binding for an given transcription factor.  Abbreviations: ChIP-Seq, 

chromatin immunoprecipitation-sequencing. 

 



115 

Figure 3.2. Histone marks in HUVEC cells for VEGFA variants. ENCODE output from 

the UCSC Genome Browser for variants rs1885657, rs3024987, rs58159269 and rs943070 is 

represented in this figure under a region on chromosome 6 (43,739,300-43,741,000). 

Regulatory regions where marks are present that are evident of histone modifications 

(H3K4me1, H3K3me3, and H3K27ac marks) are shown for HUVEC cells. Abbreviations: 

HUVEC, human umbilical vein endothelial cells; UCSC, University of Santa Cruz.   
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Figure 3.3. Effects of rs307826 on cell viability in reference-transfected, and mutant-

transfected HEK-293 cells. Transfected cells were treated 12 concentrations of sorafenib 

(0–30 µM) and then with alamarBlue® to assess cell viability and generate IC50 values. 

Stimulated cells were treated with VEGFC (200 ng/mL) prior to sorafenib administration. 

Relative fluorescence units (RFUs) were generated, and RFUs were used to determine the 

percent of viable cells present for a given concentration. Concentrations were compared to 

untreated controls with 0.2% DMSO. The IC50 for unstimulated reference-transfected cells 

was 7.58, while the IC50 for VEGFC-stimulated reference-transfected cells was 2.02.  The 

IC50 for unstimulated mutant-transfected cells was 15.4, while the IC50 for VEGFC-

stimulated mutant-transfected cells was 7.67. For the purpose of this figure, reference 

constructs with the A allele were referred to as reference, and mutant constructs with the 

rs307826 G allele were referred to as Mut.  
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Figure 3.4. Dual reporter gene assay results for luciferase activity of SNPs in VEGFA. 

Relative luciferase activity of SNPs is represented in Caki-1, TIME and LPEC cell lines 

(from left to right).  SNP luciferase activity is normalized to empty pGL4.26 plasmid 

luciferase activity. The mean ± SEM of the transfection experiments in quadruplicate is 

shown. In this figure, WT refers to the reference allele. Abbreviations: LPEC, liver 

parenchyma endothelial cells; SEM, standard error of the mean ; SNP, single nucleotide 

polymorphism; TIME, telomerase-immortalized microvascular endothelial; VEGFA,  

vascular endothelial growth factor A; WT, wild type. *p≤0.05, **p≤0.01, ***p≤0.001. 
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Figure 3.5. Dual reporter gene assay results for luciferase activity of rs3024987. Relative 

luciferase activity of SNPs is represented in Caki-1, TIME and LPEC cell lines (from left to 

right).  SNP luciferase activity is normalized to empty pGL4.26 plasmid luciferase activity. 

The mean ± SEM of the transfection experiments in quadruplicate is shown. Abbreviations: 

LPEC, liver parenchyma endothelial cells; SEM, standard error of the mean ; SNP, single 

nucleotide polymorphism; TIME, telomerase-immortalized microvascular endothelial; 

VEGFA, vascular endothelial growth factor A; WT, wild type.  
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CHAPTER 4: IDENTIFYING GENETIC MARKERS FOR CYTOTOXIC RESPONSE 

TO SORAFENIB IN MOUSE EMBRYONIC FIBROBLAST CELLS 

 

4.1 Overview 

Background:  

Sorafenib is an oral multikinase inhibitor that decreases tumor angiogenesis and 

proliferation. The antitumor efficacy and toxicity profiles of sorafenib vary among patients. 

Novel pathways and targets of sorafenib activity remain to be identified, and no predictive 

biomarkers of sorafenib activity exist to help guide clinicians. This aim sought to identify 

novel genes associated with sorafenib activity by using an in vitro methodology based upon 

mouse genomics and high-throughput screening of multiple cell health parameter 

phenotypes. 

 

Methods:  

Primary mouse embryonic fibroblasts (MEFs) from 32 inbred strains were profiled 

for sorafenib cytotoxicity utilizing high content imaging and simultaneous evaluation of cell 

health parameters. The 32 strains were genomically characterized previously. MEFs were 

treated with ten concentrations of sorafenib (0–300 µM), incubated for 24 and 72 h, then 

fixed and stained. Cell viability, MEF cell membrane permeability, mitochondrial membrane 

potential, and cytochrome C release were assessed (Table 4.1). Image analysis software 

assessed the effects of sorafenib on each phenotype. Dose response curves were generated 

from data using a Brain-Cousens model, and EC50 or IC50 values for each strain were 
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identified. Genome-wide association (GWA) mapping, using the efficient mixed-model 

associations (EMMA) and SNPster algorithms, was performed to identify quantitative trait 

loci (QTLs) associated with sorafenib activity. Approximately 277,000 single nucleotide 

polymorphisms were tested, and genomic loci discovered by EMMA, with p-values 

<1.0x10-7, were identified as potential candidate genes.  These genes were then examined 

using stringent, multi-faceted criteria before being selected for future laboratory validation.  

 

Results:  

Interstrain IC50 variability among the 32 MEF strains was observed after 72 h 

sorafenib incubations (17.2-44.5 µM). One peak (chromosome 9 from 51-52 Mb;  

p=1.0x10-8), which reached genome-wide significance and significantly associated with 

cytochrome C release, was identified. From this peak, candidate genes that may underlie 

variability in sorafenib-induced cytochrome C release from mitochondria have been 

identified. A total of nine genes, expressed in MEF cells at mRNA level, are present in this 

QTL. Interstrain IC50 variability, which associated with VOC, was also observed after 72 h 

sorafenib incubations (17-32 µM). One peak potentially associated with cell viability 

(chromosome 4 from 119,500,000-120,750,000; p=2.2x10-5). From this peak, candidate 

genes that may underlie variability in sorafenib cytotoxicity and cell viability have been 

identified. A total of 13 candidate genes, expressed in MEF cells at mRNA level, are present 

in this QTL. 
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Conclusions:  

This innovative high content cellular genetics approach has detected robust interstrain 

cellular differences in sorafenib activity. One QTL region, which reached genome-wide 

significance and potentially associates with sorafenib-induced cytochrome C release from 

mitochondria, was identified. An additional QTL was identified that potentially associates 

with sorafenib cytotoxicity and cell viability. Candidate genes for functional validation have 

been prioritized through a multi-faceted set of criteria. Future steps for this work include 

functional validation of candidate genes, using knockdown and overexpression approaches, 

in MEF and human cell lines. Ultimately, variants in candidate genes that are successfully 

validated will be genotyped in TARGET patients and tested for associations with OS, PFS, 

and sorafenib-induced toxicities. 

 

4.2 Introduction 

Since the approval of sorafenib in 2005, major advancements have been made in the 

treatment of metastatic clear-cell RCC.  These advancements, defined as improved OS and 

PFS for a majority of patients, are largely due to molecular knowledge underlying disease 

pathology. Subsequent to sorafenib, three additional angiogenesis inhibitors (axitinib, 

pazopanib, and sunitinib), and two inhibitors of mTOR (everolimus and temsirolimus) were 

approved by the U.S. FDA. While axitinib, pazopanib, sorafenib, and sunitinib belong to the 

same class of oral multikinase inhibitors that target the VEGF pathway, they all differ in the 

exact kinases they inhibit, the potency of kinase inhibition, clinical pharmacology, dosing 

and dose intensity, and ultimately clinical efficacy. 
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 Sorafenib is an exceptionally promiscuous oral multikinase inhibitor used in the 

treatment of RCC, hepatocellular carcinoma and thyroid cancer.1,2 Originally, sorafenib was 

developed as a RAF inhibitor based on in vitro screen showing its potent inhibition of RAS 

serine/threonine isoforms.3,4 Similarly, it was also shown to be a potent inhibitor of the 

several other targets in the RAS/MEK/ERK signal transduction cascade, the c-KIT receptor, 

initiation factor eIF4E and the anti-apoptotic protein MCL-1.2,5-7 Most notably though, 

sorafenib has been shown to be an effective VEGF-pathway and angiogenesis inhibitor by 

targeting several kinases, including: VEGFR-1-3, PDGFR-β, FLT-3, and FGF-1.2,6,7  

However, recent data has begun to emerge revealing novel and previously unknown 

targets of sorafenib. More recently, sorafenib has been shown to be a ligand for multiple 

serotonin receptors,8 an inhibitor of additional anti-apoptotic proteins not directly tied to 

angiogenesis (e.g. cyclin B1, cyclin D1 and survivin),9 and has been found to also affect the 

immune system (e.g. on the function of dendritic cells, and by modulating effector CD4+ cell 

and regulatory T cell function).10,11 There are very likely many novel and still undiscovered 

targets of sorafenib, and many of these targets are likely susceptible to germline genetic 

variation. 

Previous studies have shown that fine genome mapping, through genome wide 

association studies (GWAS), can be successfully performed in a panel of diverse inbred 

strains of mice to identify genetic loci that contain candidate genes that modulate both single 

gene and polygenic traits.12-15 But to date, there have been few examples of animal GWAS 

pharmacogenetics, and even those that have been published have not analyzed the 

contribution of genetics to multikinase inhibitor (e.g. sorafenib) activity.16-19 Moreover, 

previous pharmacogenetic studies of VEGF-pathway inhibitors of the same class as sorafenib 
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(e.g. pazopanib and sunitinib) have focused on associations between variants in drug 

metabolizing/transporter genes or genes involved with angiogenesis, and clinical phenotypes 

(e.g. OS, PFS and drug-induced toxicities).20-24 And, the only study in humans to test 

genotype-clinical phenotype associations in mRCC patients was not conducted in patients 

treated with sorafenib.25 

 In this Aim, MEFs from 32 inbred isogenic strains were treated with sorafenib in a 

concentration-response format. Phenotypic measurements of cell health were obtained 

through the use of high-content imaging, and GWAS was performed to identify potential 

candidate quantitative trait loci QTLs and candidate genes that underlie sorafenib activity 

(Figure 4.1). The use of genetically well-characterized inbred mouse strains provides a viable 

model system to analyze the genetic basis for drug activity and cytotoxicity.  These MEF 

strains can be used in a high-throughput cellular genetics approach for four main reasons: 

retention of the exact genetic composition of the mouse strain from which they are isolated, 

selection of these 32 strains increases the likelihood of detecting genetic differences that 

could underlie differences in sorafenib response and/or identify novel nodes in sorafenib 

signaling pathways, technological advances (e.g. high-content imaging) have allowed for 

better characterization of cellular phenotypes, and technological advances (e.g. siRNA loss of 

function and cDNA over-expression in vitro validation techniques) have allowed for 

functional validation of QTLs. This Aim will test the hypothesis that differential cell health 

and response data (e.g. EC50 or IC50 values) from 32 MEF cells lines treated with sorafenib, 

can be used in GWAS to identify candidate genes associated with sorafenib response, which 

will ultimately lead to the discovery of novel genes for future pharmacogenetic testing in 

patients treated with sorafenib. 
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4.3 Materials and Methods 

4.3.1 Animals 

Primary mouse embryonic fibroblast (MEF) cells derived from 32 inbred strains were 

obtained from The Jackson Laboratory (Bar Harbor, ME) were used in this screen: 

129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+ tf/J, BUB/BnJ, C3H/HeJ, C57BL/6J, 

C57BR/cdJ, CBA/J, CE/J, CZECHII/EiJ, DBA/2J, FVB/NJ, I/LnJ, KK/HlJ, LP/J, MA/MyJ, 

MOLF/EiJ, MRL/MpJ, NOD/ShiLtJ, NON/ShiLtJ, P/J, PERA/EiJ, PL/J, PWK/PhJ, RIIIS/J, 

SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ. Cells were harvested from male mice aged 10-

12 weeks. The isogenic strains chosen for this screen were a subset of strains from the Mouse 

Phenome Project.12 

 

4.3.2 Cell Culture 

 Each of the 32 MEF cell lines was expanded from passage 0 to passage 2 using 

DMEM (Cellgro, Manassas, VA) supplemented with 10% FBS (Cellgro), 1% non-essential 

amino acid solution (Sigma Aldrich, Milwaukee, WI), and 1% penicillin/streptomycin 

(Sigma Aldrich). MEF cells were maintained at 37oC and 5% CO2. When MEF cells reached 

90% confluence they were harvested. MEF cells were seeded into 384-well, PDL-coated 

Aurora 200 micron COP polymer plates (Aurora Biosciences/Brooks Life Science Systems, 

Fremont, CA) using Multidrop 384 dispensers (Thermo Scientific, Waltham, MA) to a final 

concentration of 5x104 cells/mL per well. Seeding densities were confirmed by an Invitrogen 

Countess automated cell counter (Invitrogen, Carlsbad, CA). For each 384-well microtiter 

plate (n=4 replicates), 12 wells were assigned to each of the 32 strains (Figure 4.2A). Cells 

were plated with two different densities: 1500 cells/well for the 24 h time point and 1000 
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cells/well for the 72 h time point. A final volume of 5 µL of cells in supplemented DMEM 

was administered to each well. Plates were incubated overnight at 37oC and 5% CO2. 

 

4.3.3 High Content Screening 

 The cytotoxic effects of sorafenib on MEF cells were screened using a nine-point 

logarithmic dose response. Sorafenib response was assessed 24 and 72 h post administration.  

Stock solutions were prepared in DMSO to create a master microtiter plate for the screens: 

75 mM, 25 mM, 8.33 mM, 2.78 mM, 0.93 mM, 0.31 mM, 0.10 mM, 0.03 mM, and 0.01 mM. 

Three-fold serial dilutions were prepared using DMSO (Sigma Aldrich) and a Biomek 2000 

(Beckman Coulter, Brea, CA), and the final sorafenib concentrations used in the screens 

were: 300 µM, 100 µM, 33 µM, 11 µM, 3.7 µM, 1.2 µM, 0.41 µM, 0.14 µM, and 0.045 µM. 

Two separate positive control microplates, containing valinomycin in DMSO, were prepared. 

For the 24 h time point, valinomycin with a concentration of 8.33 mM (final diluted 

concentration of 33 µM) was prepared. For the 72 h time point, valinomycin with a 

concentration of 5 µM (final diluted concentration of 20 nM) was prepared. The MEF cells 

were dosed with 200 nL of each sorafenib concentration, in quadruplicate, from the stock 

solution in the master microtiter plate using a slot pin tool (V&P Scientific, San Diego, CA) 

on a Biomek FX liquid handling automation system (Beckman Coulter). For plate reference 

control compounds, one well for each cell line was treated with valinomycin in DMSO, one 

well was treated with vehicle only (DMSO 0.4% final concentration) and one well for each 

cell line was treated with media only (Figure 4.2A). 

After 24 h or 72 h incubation with the compounds, cells were labeled and processed 

using the Thermo Cellomics Multiparameter Cytotoxicity 3 Kit protocol (Thermo Scientific, 
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Rockford, IL) and HCA Image Amp protocol (Perkin Elmer, Waltham, MA). First, MEF 

cells were stained with Mitotracker Orange dye (Invitrogen, Carlsbad, CA) to assess 

mitochondrial membrane potential, and YOYO-1 cell permeability dye (included in the 

Multiparameter Cytotoxicity 3 Kit) and incubated at 37oC. Next, MEF cells were fixed with 

16% paraformaldehyde, washed, labeled with anti-Cytochrome C antibody (Thermo), and 

finally counterstained with Hoechst 33342 nuclear stain (included with the Multiparameter 

Cytotoxicity 3 Kit). All dyes, buffer, and antibodies were administered using Multidrop 384 

well dispensers. All wash steps were completed using a BioTek ELx405 Select microtiter 

plate washer (BioTek, Winooski, VT). 

 

4.3.4 Image Acquisition and Analysis 

Plates were sealed once staining was completed, and subsequently imaged on the 

Cellomics ArrayScan VTi™ high content imager (Thermo), using 10X/0.45NA objective 

lens (Figure 4.2B). Cells expressing fluorescent bioprobes for Hoechst 33342 (386 nm), 

YOYO-1 (485 nm), Mitotracker Orange (549 nm), and Cytochrome C–Alexafluor 647 (650 

nm) were excited with LED light engine (L µM encor, Beaverton, OR), and emitted light 

through a Quadband filter set (Semrock, VT) to collect fluorescence signal using a 12-bit 

Orca-ER II CCD Camera (Hamamatsu, Japan). Exposure times were <0.05 seconds, and four 

fields per well were captured. Next, a compartmental analysis algorithm identified: valid 

object counts based on Hoechst nuclear staining (cell loss), mean average intensity of 

YOYO-1 positive cells in the nucleus (membrane permeability), mean average intensity of 

Mitotracker Orange in the cytoplasm (mitochondrial function), and mean average intensity of 
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Cytochrome C–Alexafluor 647 (apoptosis) in the cytoplasm (Table 4.1, Figure 4.2C). All 

generated data was exported using the vHCS View client (Thermo).  

Captured images were manually inspected for data integrity. Wells were rejected for 

replicate analyses from the final analysis if an image was not properly focused, contained a 

fluorescent artifact, or if debris occupied >20 % the field area. Outliers that failed the QC 

criteria were filtered and removed from the final data analyses.  

 

4.3.5 Response Analyses 

Values generated by the image analysis algorithm for each MEF strain were 

normalized to the DMSO control well on each plate. For the cell viability phenotype, 

hereafter referred to as Valid Object Count (VOC), values were normalized against the 

DMSO average among the quadruplicate plates for each individual MEF line). Dose response 

curves were created in F-Curve software, for each MEF cell line by fitting the normalized 

quadruplicates to a Brain-Cousens model implemented by the drc package (version 1.8-1) for 

R (Figure 4.2D).26 Brain-Cousens was chosen to account for biphasic response and biological 

shifts sometimes observed from toxic compound dose responses (e.g. hormesis).27 The Brain-

Cousens equation is: f(x,(b,c,d,e)) = c+((d+fx−c)/(1+exp(b(log(x)−log(e))))). 

All curves were visually inspected for outliers. In cases where outliers were removed, 

a new fit was performed in F-curve. Dose-response curves, generated using F-curve and the 

Brain Cousens model, were used to calculate the individual effective concentration (EC) or 

inhibitory concentration (IC) values of each MEF line. For the phenotypic endpoints where 

response decreased (VOC and cytochrome C release), IC50 through to EC80 values in six 

stepwise increments of 5% were interpolated from the fitted function (Figure 4.3). 
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4.3.6 Quantitative Trait Loci Mapping 

 GWA mapping was performed using the respective half-maximal effective 

concentration (EC50) and half-maximal inhibitory concentration (IC50) values for each cell 

health phenotype using the EMMA and SNPster algorithms.28,29 Only phenotypes with EC50 

or IC50 values for ≥27 strains were used in GWAS. The SNPster algorithm uses a bootstrap 

model to calculate the significance of association analysis from an inferred haplotype 

structure determined by overlapping three-SNP windows for each strain. A one-way 

ANOVA F-statistic from associations between the haplotypes and either EC50 or IC50 values 

for each phenotype. Then, p-values were generated after the phenotype values were 

bootstrapped (1x106 times), and thus the maximum –log(P) value was 6.28 Conversely, 

EMMA used single SNPs for GWA mapping, where the ANOVA F-statistic and p-values 

were generated from associations between the individual marker and phenotypic value.29 

EMMA SNPs were filtered to remove non-informative markers and redundant SNPs, where 

adjacent polymorphisms have the same allelic distribution pattern across the inbred mouse 

strains. P-values generated from these associations were corrected for multiple comparison 

testing using a Bonferroni correction, and therefore the threshold for genome-wide 

significance using EMMA was a p-value of 1.8x10-7, or a –log(P) value of ≥6.74. 

 Although EC50 and IC50 values were chosen a priori to represent the phenotype for 

each cell health parameter, a QC step was performed next to assess the robustness of 

genotype-phenotype associations. The identification of QTLs for each of the four phenotypes 

verified selecting the SNPs with the highest association scores (top 2% of association scores 

by –logP value) across EC50-80 and IC50-80 ranges, and the top 2% association scores were 

averaged at each SNP position (Figure 4.4A and 4.4B). Genomic regions with mean –logP 
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≥4.0 (including a window of 100 kb on each side) were selected for further analysis using 

EC50 or IC50 association data (Figure 4.4C). Genes that completely or partially overlap the 

regions associated with drug response were selected for pathway and functional enrichment 

analysis. Candidate genes were selected from the University of California Santa Cruz 

(UCSC) mouse RefSeq database (assembly mm9, http://genome.ucsc.edu/) (Figure 4.5). 

 The SNP genotypes used for association mapping were obtained from the Mouse 

Diversity Array set, available from the Comparative Genomics Database website (CGD; 

http://cgd.jax.org/cgdsnpdb/).30 SNPs were trimmed from the final set based on redundancy 

(identical haplotype pattern at a particular locus), missingness (few calls for a specific SNP 

among the 32 strains), and if they demonstrated a lack of genetic variability among the 32 

strains. After pruning, approximately 277,000,000 SNPs were used for the analyses. 

Manhattan plots were visualized using R version 3.1.0 and the UCSC Mouse Genome 

Browser on the Mouse July 2007 (NCBI37/mm9) Assembly (https://genome.ucsc.edu).31  

 

4.3.7 Candidate Gene Selection 

Candidate gene selection was conducted using a multi-step, multi-faceted approach 

(Figure 4.6). Genomic regions with mean –logP ≥4.0 for a given phenotype were moved 

forward for further analysis. Next, to increase efficiency of all downstream analyses, the first 

step in candidate gene selection was to examine genes with likely cellular responses in 

MEFs, so only genes with known expression levels in MEFs were selected. Subsequently, 

expression levels of genes were examined in kidney cells from six strains of inbred mice 

(A/J, AKR/J, C3H/HeJ, C57BL/6J, CBA/J, and DBA/2J).  Kidney cell expression was 

prioritized over other tissue types because of its relevance to the patients and tumor type 
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described extensively in Aims 1-2. Expression levels were measured in MEFs and using the 

Affymetrix Mouse Genome 430 2.0 Array (Santa Clara, CA). Genes were considered 

expressed if their expression level was greater than 50 for at least one of the strains following 

data processing with the gcRMA algorithm. 

Next, QTL regions that overlapped using both SNPster and EMMA algorithms were 

prioritized, and genes in these regions were still considered candidates. However, it is 

important to note that these QTL regions need not have a –logP ≥6.74 to still be considered. 

Candidate genes were further prioritized based on: literature evidence biology that underlies 

sorafenib response or cancer pathogenesis, differential haplotype structure between MEF 

strains with low EC50 or IC50 values versus those with high values, evidence of functional 

annotation using the UCSC Genome Browser and/or the Ensembl website 

(www.ensembl.org), evidence of cis-acting gene regulation among candidate genes in a QTL 

region, if there was presence of potentially deleterious non-synonymous coding SNPs within 

a QTL, or if there were direct connections between a candidate gene and sorafenib or known 

targets of sorafenib (e.g. receptors, transcription factors, kinases, etc.).32-35 

 The Mouse Genome Informatics Database (MGI; http://www.informatics.jax.org) and 

the CGD resources were used to examine non-synonymous coding SNPs in candidate genes 

within 30 MEF strains used for GWAS. Build 137 on the dbSNP website 

(http://www.ncbi.nlm.nih.gov/projects/SNP) was used to confirm the SNP position (m38) 

and amino acid substitution for a given non-synonymous SNP. PROVEAN (Protein 

Variation Effect Analyzer) version 1.1.322, PANTHER (Protein Analysis Through 

Evolutionary Relationships) version 9.0 and SIFT (Sorting Intolerant From Tolerant) version 

1.03 were utilized to assess that candidate non-synonymous SNPs would cause deleterious 
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effects to protein structure or function.36-39 For PROVEAN, a score of -2.5 indicates that the 

SNP results in alterations to the functional effect on the protein. For the PANTHER, a 

subSPEC (substitution position-specific evolutionary conservation) score of -3 indicates that 

there is a 50% probability that a score is deleterious (Pdeleterious= 0.5), MSA indicates the 

number of multiple sequence alignments, NIC (number of independent counts) is an estimate 

of observations used to calculate the amino acid probabilities. Pwt and Psubstituted refer to the 

respective probabilities of the wild-type (WT) and substituted amino acids. For the SIFT 

algorithm, a score <0.05 indicates that the SNP would likely cause deleterious effects on the 

protein.  Protein data for a given SNP was considered significant if PROVEAN predicted the 

protein to likely be deleterious, if PANTHER returned a score ≤-3, and/or if SIFT returned a 

score <0.05. Mouse Phylogeny Viewer (https://msub.csbio.unc.edu/) was used to examine 

haplotype structure among the MEF strains for a given QTL or candidate gene.40 Finally, 

Ingenuity® Pathway Analysis was used to determine if direct connections between a 

candidate gene and sorafenib or known targets of sorafenib (e.g. receptors, transcription 

factors, kinases, etc.) could be predicted (http://www.ingenuity.com).35 

 

4.4 Results 

4.4.1 High Content Imaging Screen 

A high content imaging screening approach based on mouse genetics was selected to 

simultaneously evaluate multiple cell health parameters involved with early and late 

apoptosis. The study design allowed MEF cells from 32 inbred mouse lines of the Mouse 

Phenome Project to be plated on a single 384-well plate and then treated with sorafenib in a 

10-point concentration-response curve manner (and with positive and negative controls) for 
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each strain. A total of four 384-well plates were successfully stained, imaged and analyzed 

during the experiments conducted for this Aim. Approximately 1.5% of the wells from all 

four plates were discarded due to image quality issues after visual inspection of each of the 

wells in question. The WSB/EiJ required re-analysis across the four plates due to issues 

related to the analysis algorithms versus the strain’s small-sized nucleus. Ultimately, issues to 

do with nucleus size also confounded analyses in F-Curve, and the WSB/EiJ strain was 

removed. In addition, due to problems with plating during the screen, the SWR/J strain was 

removed. The final SNPster and EMMA GWA mapping studies included 30 MEF lines for 

four cell health parameter phenotypes and both 24 h and 72 h sorafenib incubation time 

points. 

 

4.4.2 Quantitative Trait Loci Mapping 

 Using GWA mapping through the SNPster and EMMA, only two of the four 

phenotypes (Cytochrome C release and VOC) at the 72 hour time point revealed QTL 

regions with –logP value ≥4.0, and QTL regions that overlapped on both algorithms were 

identified. No QTL regions with –logP value ≥4.0 were identified for any of the four 

phenotypes after 24 h incubation with sorafenib. Similarly, no QTL regions with –logP value 

≥4.0 were identified for the cell permeability or mitochondrial membrane potential 

phenotypes after 72 h incubation with sorafenib. 

IC50 variability across the strains was observed for Cytochrome C release (Figure 4.7) 

and VOC (Figure 4.8) after a 72 h incubation with sorafenib, which indicated significant 

genetic variability among the strains for these two phenotypes. One genome-wide significant 

QTL (p=1.0x10-8, –logP=8), which overlapped using both SNPster and EMMA algorithms, 
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was identified for the Cytochrome C release phenotype: chromosome 9, position 50,500,000-

52,500,000 (Figure 4.9). A total of seven genes (Figure 4.10) were identified under this QTL 

(Arhgap20, Btg4, Fdx1, Layn, Pou2af1, Rdx, and Zc3h12c). The gene directly under the 

genome-wide significant peak, Arhgap20, was not expressed in MEF or mouse kidney cells. 

Among the genes under this genome-wide significant peak, only Fdx1, Layn, Rdx, and 

Zc3h12c were expressed in both MEF cells (Table 4.2) and in mouse kidney cells. Fdx1 

expression in kidney cells was 12,679.96, Layn expression was 64.23, Rdx expression was 

1,829.55, and Zc3h12c was 196.79. These four genes associated with Cytochrome C release 

were prioritized for candidate gene selection. 

A second notable QTL (p=2.2x10-5, –logP=4.66), which overlapped using both 

SNPster and EMMA algorithms, was identified for the VOC phenotype: chromosome 4, 

position 119,000,000-121,500,000 (Figure 4.11). A total of 13 genes (Figure 4.12) were 

identified under this QTL (Ctps, Col9a2, Exo5, Edn2, Foxo6, Hivep3, Kcnq4, Nfyc, Rims3, 

Scmh1, Slfnl1, Smap2, and Zpf69). Among the genes under this genome-wide significant 

peak, only Ctps, Exo5, Nfyc, Scmh1, Smap2, and Zpf69 were expressed in both MEF cells 

(Table 4.3) and in mouse kidney cells. Notably, Scmh1 was the gene closest to being directly 

under the peak. No probe sets were available to assess expression in Foxo6. Ctps expression 

in kidney cells was 615.64, Exo5 expression was 534.41, Nfyc expression was 498.13, 

Scmh1expression was 87.54, Smap2 expression was 222.71 in one probe set, and Zpf69 

expression was 125.74. These four genes associated with Cytochrome C release were 

prioritized for candidate gene selection 
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4.4.3 Candidate Gene Selection 

 Four genes (Fdx1, Layn, Rdx, and Zc3h12c) within the genome-wide significant QTL 

associated with Cytochrome C release (chromosome 9, position 50,500,000-52,500,000) 

were expressed in MEFs and mouse kidney tissue. For this phenotype, seven strains (SM/J, 

RIIIS/J, C57BL/6J, C57BR/cdJ, PL/J, MA/MyJ, and AKR/J) were more sensitive to the 

cytotoxic effects of sorafenib after a 72 h incubation. Differences in haplotype structure 

among these four genes were noted for the seven sensitive strains, when compared to the 23 

strains more insensitive to sorafenib in terms of cytochrome C release (Figure 4.13). The 

only exception involved Layn, where the second most sensitive strain (RIIIS/J) had the same 

haplotype structure as the insensitive strains. For this reason, Layn was not considered a 

viable candidate gene.  Among genes within this QTL, all were included in pathways directly 

related to sorafenib response and/or known signaling targets of sorafenib; however, one was 

found to have no direct connections to sorafenib or known targets of sorafenib (Zc3h12c) and 

was excluded. Only Rdx was shown to have a direct connection to a known target of 

sorafenib, FLT-1 (Figure 4.14). Only three potentially deleterious non-synonymous SNPs, in 

two genes, were identified among these potential candidates (Table 4.4). Only two non-

synonymous SNPs in Layn (rs33773426 and rs32764902) were predicted to be potentially 

deleterious. Finally, none of the six candidate genes within the QTL region associated with 

VOC revealed evidence of cis-acting gene regulation (data not shown). Considering data 

from all criteria, Rdx will be prioritized as a candidate gene for future validation studies.  

Six genes (Ctps, Exo5, Nfyc, Scmh1, Smap2, and Zpf69) within the QTL that 

associated with VOC/cell viability (chromosome 4, position 119,000,000-121,500,000) were 

expressed in MEFs and mouse kidney tissue. For this phenotype, 13 strains (C57BL/6J, 
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CZECHII/EiJ, RIIIS/J, FVB/NJ, SEA/GnJ, NON/LtJ, AKR/J, C57BR/cdJ, PWK/PhJ, 

BUB/BnJ, MA/MyJ, KK/HIJ, and A/J) were considered more sensitive to the cytotoxic 

effects of sorafenib after a 72 h incubation. Differences in haplotype structure among these 

four genes were noted for the 13 sensitive strains, when compared to the 17 strains more 

insensitive to sorafenib in terms of cell viability (Figure 4.15). Among genes within this 

QTL, all were included in pathways directly related to sorafenib response and/or known 

signaling targets of sorafenib; however, two were found to have no direct connections to 

sorafenib or known targets of sorafenib (Slfnl1 and Zfp69) and were excluded. Only Nfyc was 

shown to have a direct connection to a known target of sorafenib (PDGFR-β). Nfyc was also 

shown to have a direct connection to the oncogenic protein MYC (Figure 4.16). Only nine 

potentially deleterious non-synonymous SNPs, in five genes, were identified among these 

potential candidates (Table 4.5). Only one non-synonymous SNP in Schmh1 (rs28256862) 

and two SNPs in Zpf69 (rs27485619 and rs32769909) were predicted to be potentially 

deleterious. Finally, none of the six candidate genes within the QTL region associated with 

VOC revealed evidence of cis-acting gene regulation (data not shown). Considering data 

from all criteria, Nfyc and Scmh1 will be prioritized as a candidate gene for future validation 

studies. 

 

4.5 Discussion 

The primary objective of this Aim was to test the hypothesis that that differential cell 

health and response data (e.g. EC50 or IC50) from 32 MEF cells lines treated with sorafenib, 

can be used in GWAS to identify candidate genes associated with sorafenib response, which 



139 

will ultimately lead to the discovery of novel genes for future pharmacogenetic testing in 

patients treated with sorafenib.  

There are many advantages of conducting a high content in vitro screen of drugs 

based on mouse cellular genetics. For instance, this type of high-throughput technology 

allows for multiplexed measurements of several endpoints, and the evaluation of subtle 

cytological changes in response to drug can be observed.18 In addition, inbred mouse lines 

allow for greater reproducibility, when compared to primary human cell lines, due to genetic 

stability of the strains, which allows for robust GWA mapping studies based on the known 

and static nature of inbred and immortalized mouse lines. These strains are genetically and 

phenotypically diverse, and have a substantial number of recombinations, which improves 

GWA mapping resolution.18,28 Therefore, a relatively small number of inbred mouse strains 

can be used, like had been done in this Aim, to discover new genotype-phenotype 

associations that are applicable to human populations. This also enables this type of high-

throughput screen to capture a broad range of drug response variance, and identify genes that 

underlie drug response at a cellular level.18,41 

Aim 1 identified germline variants that significantly associate with OS and PFS 

through a candidate gene/candidate SNP approach. Since this approach leverages existing 

knowledge about mRCC pathogenesis/prognosis, angiogenesis and/or sorafenib 

pharmacology, there is virtually no chance that novel and previously unidentified signaling 

pathways and/or candidate genes will be discovered. This cellular genetics approach, using 

high-content cellular imaging and genetic mapping, has helped discover novel genes and 

pathways involved with sorafenib cytotoxicity and provide a better understanding of the 

variability observed with this phenotype. 



140 

A total of seven genes expressed in MEF cells at mRNA level were present in the 

QTL that associated with the Cytochrome C release phenotype after a 72 h incubation with 

sorafenib. After a multi-step and multi-faceted schema (Figure 4.6), one candidate gene was 

selected for future in vitro validation studies. Rdx encodes for radixin, which is a component 

of the ezrin-radixin-moesin (ERM)-binding phosphoprotein-50 (EBP50) complex, and is 

conserved between humans and mice. In humans, radixin, as part of the EBP50 complex 

(also known as NHERF1), belongs to the family of PDZ scaffolding proteins, has been 

shown to act as a tumor suppressor in multiple tumor types.42-46 Additionally, EBP50 has 

been shown to promote apoptosis in hepatocellular carcinoma (HCC) by modulating β-

catenin/E-cadherin, and to potentially enhance the metastatic potential of renal cell 

carcinoma.47,48 This is important because sorafenib has been approved by the U.S. FDA for 

the treatment of both mRCC and unresectable HCC.2 More recently, in an osteosarcoma 

model, sorafenib was shown to inhibit phosphorylation of the ERM complex.49 

A total of 13 genes expressed in MEF cells at mRNA level were present in the QTL 

that associated with VOC/cell viability after a 72 h incubation with sorafenib. After the same 

criteria were applied as before (Figure 4.6), two candidate genes were selected for future in 

vitro validation studies. Nfyc encodes for the C subunit of the nuclear factor-gamma (NF-γ) 

transcription factor. This transcription factor complex is conserved between humans and 

mice, and binds to CCAAT motifs in the promoter regions. In humans, NF-γC is integral to 

the trimerization of NF-γA, NF-γB and NF- γC, and is a target for regulatory proteins MYC 

and p53.50  NF-γC has also been shown to regulate DNA-dependent transcription of one of 

sorafenib’s primary targets, PDGFR-β, which is for pericyte formation.51 Scmh1 encodes for 

sex comb on midleg homolog 1 (Drosophila) protein, which forms multiprotein complexes 
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with other polycomb group proteins to help retain the transcriptionally repressed state of 

other genes. Traditionally associated with male spermatogenesis, Scmh1is also conserved 

between humans and mice.52 Nothing is currently known about whether Scmh1 directly 

affects cancer risk, pathogenesis, or prognosis; however, Scmh1 has recently been shown to 

directly and indirectly regulate geminin stability.53 Geminin is a key protein involved in 

DNA replication, has been linked to cancer, and therefore Scmh1 variants could be important 

in cancer and in sorafenib response.54-57 

Future studies to validate these candidate genes will certainly be conducted. First, the 

prioritized candidate genes (e.g. Rdx and Fdx1 for Cytochrome C release, as well as Nfyc and 

Scmh1 for VOC) will be validated in MEF cells using in vitro knockdown and 

overexpression approaches to confirm the capability of this high content imaging screening 

approach as a viable method for gene selection. In vitro methods, using and siRNA approach 

for knockdown and a pCMV-SPORT6 vector-based approach for overexpression, have been 

previously described.18 Validation of candidate genes identified in this study will follow a 

similar experimental design. Second, for genes validated by in vitro knockdown and/or 

overexpression in MEF cells and are conserved in humans, a second round of knockdown 

and overexpression experiments will be conducted. Orthologous human siRNA and 

overexpression vectors will be introduced to a human endothelial cell line (e.g. TIME cells) 

and a human mRCC cell line (e.g. Caki-1 cells) to confirm the putative effects of these genes 

on sorafenib response. Although translating results from an in vitro mouse screen to human 

in vivo studies may seem like a daunting task, it has been successfully accomplished 

previously.16,17,58 Therefore, for genes that are validated in both MEFs and human cell lines, 
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candidate SNPs will be identified, and genotyped in TARGET patients from the sorafenib 

arm to test associations with clinical phenotypes (OS, PFS, and sorafenib-induced toxicities). 

In summary, this innovative high content cellular genetics approach has detected 

robust interstrain cellular differences in sorafenib activity.  One QTL region, which reached 

genome-wide significance, which potentially associates with sorafenib-induced cytochrome 

C release from mitochondria, was identified. An additional QTL was identified that 

potentially associates with sorafenib cytotoxicity and cell viability. Candidate genes for 

functional validation have been prioritized through a multi-faceted set of criteria. Future 

steps for this work include functional validation of candidate genes, using knockdown and 

overexpression approaches, in MEF and human cell lines.  
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TABLES 

Table 4.1. Description of the high content imaging output data features. This description 

includes HCS feature, the corresponding probes used in assay, biological indication 

measured, and IC50 curve fitting trends projected following normalization of data to DMSO 

control. All generated data was exported using the vHCS View client from Thermo. 

Abbreviations: DMSO, dimethyl sulfoxide; HCS, high content screening. 

No. HCS Feature 
IC50 

Trend 
Probe Reagent 

Biological 

Indicator 

1 Valid Object Count Down Hoechst 33342 Stain Cell count / cell loss 

2 
Mean Size Intensity of YoYo-1 

positive cells in nucleus 
Up YOYO-1 Dye 

Comprised nuclear 
membrane 

3 
Mean Average intensity of 

Mitotracker in the cytoplasm 
Down 

Mitotracker Orange 
Dye 

Mitochondria 
function impaired 

4 
Mean Intensity of the 

Cytochrome C–Alexafluor 647 
Down 

Anti-Cytochrome C 
Antibody 

Apoptosis 
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Table 4.2. MEF cell expression of candidate genes within the QTL associated with 

Cytochrome C release. A total of seven genes were identified under that QTL region, and 

their respective expression levels, for all available expression probe sets, are presented in this 

table. Expression level values for six MEF lines and MEF expression levels reported in the 

BioGPS website (www.biogps.org) are included. Abbreviations: MEF, mouse embryonic 

fibroblast; QTL, quantitative trait locus/loci. 

Gene Full Name Probeset ID BioGPS DBA/2J C57BL/6J A/J AKR/J C3H/HeJ CBA/J 

Arhgap20 Rho GTPase activating protein 20 

1427522_at 9.27 7.308 7.161 7.29 7.732 7.296 7.331 

1429918_at 4.64 5.779 5.802 5.771 5.985 5.766 5.804 

Btg4 B cell translocation gene 4 1426520_at 5.37 4.447 4.467 4.44 4.544 4.446 4.519 

Fdx1 Ferredoxin 1 1449108_at 427.69 450.403 602.196 407.316 519.105 455.606 458.031 

Layn Layilin 

1442608_at 37.78 26.79 50.201 44.105 49.095 45.52 44.256 

1444165_at 190.09 78.682 90.642 95.183 114.413 92.013 72.725 

Pou2af1 
POU domain, class 2, 
associating factor 1 

1416957_at 4.64 6.061 6.094 6.088 6.193 6.089 6.329 

Rdx Radixin 

1416179_a_at 5282.61 3173.472 3026.9 3018.068 3043.828 2336.223 2598.385

1416180_a_at 841.34 558.965 465.09 480.598 400.75 389.205 424.604 

1448236_at 1394.17 1069.25 1001.683 956.406 931.784 870.561 933.532 

Zc3h12c 
Zinc finger CCCH type containing 

12C 

1437111_at 29.09 12.706 10.79 10.788 10.886 10.775 9.29 

1441787_at 13.25 7.611 7.66 9.071 7.789 7.651 7.689 

1444402_at 87.68 69.316 67.363 60.562 79.447 51.012 59.074 
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Table 4.3. MEF cell expression of candidate genes within the QTL associated with Valid 

Object Count. A total of 13 genes were identified under that QTL region, and their 

respective expression levels, for all available expression probe sets, are presented in this 

table. Expression level values for six MEF lines and MEF expression levels reported in the 

BioGPS website (www.biogps.org) are included. Abbreviations: MEF, mouse embryonic 

fibroblast; QTL, quantitative trait locus/loci. 

Gene Full Name Probeset ID BioGPS DBA/2J C57BL/6J A/J AKR/J C3H/HeJ CBA/J 

Ctps cytidine 5'-triphosphate synthase 1416563_at 2799.2 3289.424 2690.554 2226.492 3148.194 2547.071 2913.795

Col9a2 collagen, type IX, alpha 2 1450673_at 4.64 5.723 5.72 5.686 5.821 5.713 5.821 

Exo5 exonuclease 5 1428903_at 187.44 147.003 175.026 172.678 156.161 160.716 146.567 

Edn2 endothelin 2 1449161_at 4.64 5.599 5.61 5.712 5.685 5.613 5.601 

Foxo6 forkhead box O6 none N/A N/A N/A N/A N/A N/A N/A 

Hivep3 
human immunodeficiency virus 

type I enhancer binding protein 3 

1439660_at 8.68 4.062 4.064 4.05 4.111 4.05 4.072 

1450132_at 4.64 6.208 6.168 6.204 6.307 6.195 6.221 

1421150_at 4.64 4.219 4.23 4.213 4.266 4.212 4.253 

1429134_at 5.02 5.899 5.369 5.383 5.498 5.604 5.431 

1458802_at 8.21 56.808 15.764 15.702 20.173 15.884 16.002 

Kcnq4 
potassium channel, voltage gated 
KQT-like subfamily Q, member 4 

1435721_at 5.39 3.96 4.206 4.188 4.24 4.19 4.377 

Nfyc 
nuclear transcription factor Y, 

gamma 
1448963_at 523.45 300.231 247.408 283.674 237.023 242.022 267.626 

Rims3 
regulating synaptic membrane 

exocytosis 3 

1459042_at 4.64 5.843 5.841 5.833 5.98 5.852 5.897 

1435971_at 4.68 4.799 4.78 4.75 4.838 4.778 4.808 

Scmh1 sex comb on midleg homolog 1 

1426241_a_at 281.63 57.533 100.8 53.924 114.368 91.96 90.253 

1439554_at 8.57 5.244 5.279 5.25 5.35 5.249 5.275 

1441573_at 7.28 6.3 6.338 6.29 6.407 6.304 6.333 

Slfnl1 schlafen like 1 1455838_at 7.13 4.385 4.396 4.368 4.501 4.376 4.51 

Smap2 small ArfGAP 2 1450675_at 164.3 174.581 104.31 112.917 110.652 110.834 110.447 

Zfp69 zinc finger protein 69 

1458274_at 4.64 9.08 8.936 9.11 9.499 9.368 9.19 

1425209_at 14.79 11.118 16.559 12.406 11.115 9.893 10.529 

1435916_at 79.19 61.218 67.965 61.141 54.539 47.654 46.759 

1425210_s_at 55.95 17.165 18.55 17.514 16.922 17.508 14.864 
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Table 4.4. Non-synonymous coding SNPs and deleterious protein effects for genes 

associated with Cytochrome C release. The Mouse Genome Informatics Database (MGI; 

http://www.informatics.jax.org) and the Center for Genome Dynamics website (CGD;; 

http://cgd.jax.org/cgdsnpdb) were used to examine non-synonymous coding SNPs in 

candidate genes. Build 137 on the dbSNP website (http://www.ncbi.nlm.nih.gov/ 

projects/SNP) was used to confirm SNP position (m38) and amino acid substitution for each 

non-synonymous SNP. PROVEAN, PANTHER Classification System and SIFT (via 

Ensembl; http://www.ensembl.org) were used to assess that candidate non-synonymous 

SNPs would cause deleterious effects to protein structure or function. For PROVEAN, a 

score of -2.5 predicts alterations to the functional effect on the protein. For the PANTHER, a 

subSPEC (substitution position-specific evolutionary conservation) score of -3 predicts a 

50% probability that a score is deleterious (Pdeleterious=0.5), MSA is the number of multiple 

sequence alignments, NIC (number of independent counts) is an estimate of observations 

used to calculate the amino acid probabilities. Pwt and Psubstituted (Psubs) refer to the respective 

probabilities of the WT and substituted amino acids. For SIFT, a score <0.05 predicts the 

SNP to likely cause deleterious effects on the protein. Protein data was considered significant 

if PROVEAN predicted the protein to likely be deleterious, if PANTHER score ≤ -3, and/or 

if SIFT score <0.05. Protein data was highlighted in red if the protein was likely deleterious 

using PROVEAN and/or SIFT, and/or had a PANTHER score ≤-3. Protein data was 

highlighted in yellow if the PANTHER score was ≤-2 but >-3. Protein data was highlighted 

in yellow if the PANTHER score was ≤-2 but >-3. No non-synonymous variants, among the 

30 selected MEF strains, were identified in Fdx1 and Pou2af1 using MGI and CGD 

resources.



Gene 
SNP ID 

(dbSNP Build 
137) 

Position (m38) Substitution Protein Change 
PROVEAN 

Score 
Prediction SIFT Prediction 

Sub 
SPEC 

Pdel 
MSA 

Position 
Pwt P subs NIC 

Arhgap20 rs46602632 9:51831708 G>A Arg282Lys 0.867 Neutral 1 Tolerated -0.62 0.08 216 0.18 0.36 1.005 

 rs47224784 9:51848572 A>G Ile574Met -0.727 Neutral 0.07 Tolerated 2.38 0.35 501 0.36 0.03 1.128 

 rs51861578 9:51849843 G>T Arg998Leu -0.059 Neutral 0.71 Tolerated -0.36 0.07 916 0.12 0.09 1.128 

Btg4 rs13461391 9:51116640 A>G Ile37Val -0.346 Neutral 0.34 Tolerated -0.65 0.09 47 0.34 0.35 1.952 

 rs13461390 9:51117988 A>G Ile158Val 0.29 Neutral 1 Tolerated -0.89 0.11 174 0.17 0.23 1.952 

 rs32767530 9:51119206 G>A Cys202Tyr 2.231 Neutral 1 Tolerated -0.81 0.10 218 0.10 0.15 1.601 

Layn rs33773426 9:51057643 A>C Thr267Pro -1.316 Neutral 0.63 Tolerated -2.60 0.40 272 0.03 0.62 0.858 

 rs32764902 9:51063251 C>A Ser196Tyr -2.179 Neutral 0.01 Deleterious -1.92 0.25 201 0.11 0.01 1.049 

Rdx rs49859267 9:52081129 T>A Ser401Thr -0.202 Neutral 0.39 Tolerated N/A- no hit 

Zc3h12c rs51475643 9:52144261 G>A Val83Ile -0.16 Neutral 0.26 Tolerated N/A- no hit 

 

1
4
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Table 4.5. Non-synonymous coding SNPs and deleterious protein effects for genes 

associated with Valid Object Count. The Mouse Genome Informatics Database (MGI; 

http://www.informatics.jax.org) and the Center for Genome Dynamics website (CGD;; 

http://cgd.jax.org/cgdsnpdb) were used to examine non-synonymous coding SNPs in 

candidate genes. Build 137 on the dbSNP website (http://www.ncbi.nlm.nih.gov/ 

projects/SNP) was used to confirm SNP position (m38) and amino acid substitution for each 

non-synonymous SNP. PROVEAN, PANTHER Classification System and SIFT (via 

Ensembl; http://www.ensembl.org) were used to assess that candidate non-synonymous 

SNPs would cause deleterious effects to protein structure or function. For PROVEAN, a 

score of -2.5 predicts alterations to the functional effect on the protein. For the PANTHER, a 

subSPEC (substitution position-specific evolutionary conservation) score of -3 predicts a 

50% probability that a score is deleterious (Pdeleterious=0.5), MSA is the number of multiple 

sequence alignments, NIC (number of independent counts) is an estimate of observations 

used to calculate the amino acid probabilities. Pwt and Psubstituted (Psubs) refer to the respective 

probabilities of the WT and substituted amino acids. For SIFT, a score <0.05 predicts the 

SNP to likely cause deleterious effects on the protein. Protein data was considered significant 

if PROVEAN predicted the protein to likely be deleterious, if PANTHER score ≤ -3, and/or 

if SIFT score <0.05. Protein data was highlighted in red if the protein was likely deleterious 

using PROVEAN and/or SIFT, and/or had a PANTHER score ≤-3. Protein data was 

highlighted in yellow if the PANTHER score was ≤-2 but >-3. Protein data was highlighted 

in yellow if the PANTHER score was ≤-2 but >-3. No non-synonymous variants, among the 

30 selected MEF strains, were identified in Fdx1 and Pou2af1 using MGI and CGD 

resources 



Gene 
SNP ID (dbSNP 

Build 137) 
Position (m38) Substitution Protein Change 

PROVEAN 
Score 

Prediction SIFT Prediction 
Sub 

SPEC 
Pdel 

MSA 
Position 

Pwt Psubs NIC 

Col9a2 rs27518053 4:121039754 C>T Leu14Phe -0.946 Neutral 0.05 Tolerated -2.30 0.33 13 0.55 0.04 0.919 

 rs27517992 4:121049711 C>T Thr298Ile -0.979 Neutral 0.05 Tolerated -0.59 0.08 431 0.12 0.18 1.327 

 rs48849764 4:121053103 G>A Ala482Thr 0.71 Neutral 0.49 Tolerated -1.27 0.15 603 0.21 0.05 0.919 

 rs45643752 4:121053104 C>T Ala482Val -1.15 Neutral 0.29 Tolerated -0.36 0.07 603 0.21 0.13 0.919 

 rs27500263 4:121054292 G>A Arg610His -2.382 Neutral 0.02 Deleterious -0.76 0.10 871 0.17 0.10 1.327 

Edn2 rs27502234 4:120161517 C>G Ser3Cys -0.874 Neutral 0.1 Tolerated -2.32 0.34 43 0.11 0.01 1.397 

 rs27502233 4:120161519 G>A Ala4Thr -0.341 Neutral 0.1 Tolerated -1.28 0.15 44 0.28 0.10 1.397 

Foxo6 rs46653639 4:120269032 C/T Ala189Thr 0.529 Neutral 1 Tolerated -3.75 0.68 84 0.05 0.02 19.67 

Hivep3 rs27517176 4:120095806 G>T Asp4420Tyr -1.452 Neutral No SIFT Score N/A- no hit 

 rs27517175 4:120096389 C>T Ala634Val 0.571 Neutral No SIFT Score N/A- no hit 

 rs27517174 4:120096692 G>A Gly735Glu 0.719 Neutral No SIFT Score N/A- no hit 

 rs27517173 4:120097642 A>G Ser1052Gly -1.547 Neutral No SIFT Score N/A- no hit 

 rs27517171 4:120098851 G>A Gly1455Ser 0.742 Neutral No SIFT Score N/A- no hit 

 rs27517170 4:120099034 A>C Met15116Leu -0.111 Neutral No SIFT Score N/A- no hit 

 rs31783440 4:120132367 G>A Gly2005Glu -1.095 Neutral No SIFT Score N/A- no hit 

Scmh1 rs28256862 4:120508090 A>G Lys317Arg -1.668 Neutral 0.03 Deleterious -2.53 0.39 315 0.43 0.06 2.28 

 rs28256861 4:120508182 G>A Val348Ile -0.061 Neutral 1 Tolerated -1.18 0.14 345 0.09 0.13 2.28 

Slfnl1 rs28256783 4:120533203 T>C Val17Ala -0.595 Neutral 0.3 Tolerated N/A- no hit 

 rs28256782 4:120533307 A/G Ser52Gly 1.988 Neutral 1 Tolerated N/A- no hit 

 rs28256775 4:120535130 T>G His207Gln 1.465 Neutral 1 Tolerated N/A- no hit 

Zfp69 rs27485635 4:120930397 A>G Thr574Ala -0.329 Neutral 0.82 Tolerated N/A- no hit 

 rs27485631 4:120931234 C>G His295Asp -2.404 Neutral 0.65 Tolerated -1.54182 0.18875 163 0.18199 0.03284 1.001 

 rs27485619 4:120934354 G>A Gly197Ser -0.401 Neutral 0.87 Tolerated -2.77593 0.44422 64 0.71378 0.03472 1.091 

 rs32769909 4:120935120 A>G Gln153Arg 2.012 Neutral 1 Tolerated -2.00436 0.2698 22 0.47005 0.04965 0.996 

 rs27485601 4:120947398 A>C Glu92Ala -0.193 Neutral 1 Tolerated N/A- no hit 

 rs32810951 4:120947503 C>T Thr57Ile -0.081 Neutral 1 Tolerated N/A- no hit 
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FIGURES 

Figure 4.1. A high-throughput cellular genetics approach to identify QTLs and 

candidate genes that associate with sorafenib response. 
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Figure 4.2. Experimental workflow for high-throughput screening of MEF cell lines in a 

concentration-response format after administration of sorafenib.  A) Layout of 32 MEF 

strains on a single 384-well microtiter plate. 1500 cells/well for 24 h time point plates, and 

1000 cells/well for 72 h time point plates in a total of 50 µL of media were dispensed into 

each well. A total of 200 nL of ten sorafenib concentrations (0-300 µM) was added to each of 

ten wells. B) Cell staining reagents were added, incubated and then imaged via high-content 

imaging. From left to right: image 1 was nuclei staining representing cell viability, image 2 

was membrane permeability, image 3 was mitochondrial membrane potential, and image 4 

was cytochrome C antibody staining. C) Images were analyzed using Cellomics vHCS 

Toolbox Compartmental Analysis software. D) Dose response curves for each of the 32 MEF 

strains are generated by F-curve software for each of the four cell health phenotypes. IC50 

values from the dose response curves are then used for GWAS. This figure was adapted, with 

permission, from Suzuki, et al. Front Genet. 2014;5:272. Abbreviations: GWAS, genome 

wide association studies; HCS, high content screening; IC50, half maximal inhibitory 

concentration; MEF, mouse embryonic fibroblast; 
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Figure 4.3. Dose response curves and IC50 values generated using a Brain-Cousens 

model. Endpoints with a downward trend produced IC80 to IC50 values, decreasing in 5%-

effect steps. Cytochrome C release from MA/MyJ MEF cells after 72 hour sorafenib 

incubation is displayed here. Abbreviations: IC50, half maximal inhibitory concentration; 

IC80, concentration to achieve 80% inhibition; MEF, mouse embryonic fibroblasts. 
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Figure 4.4. Example of QTL interval selection. A) Up to seven SNPster GWA results, 

derived from IC50 through IC80, were used to account for slight differences in dose-response 

curve slopes. B) The 2% SNPs with highest –logP scores were averaged between the SNPster 

results to detect the SNPs that have consistently higher association scores. C) The region 

surrounding SNPs with an average –logP greater than 4.0 was determined as the QTL. If 

SNPs were located within 1 Mb of each other, the entire interval between them was included. 

Additionally, 100 kb on each side of the outermost SNPs were also included. The resulting 

interval, in this diagram, is indicated by the blue bar. Abbreviations: GWA, genome wide 

association; IC50, half maximal inhibitory concentration; IC80, concentration to achieve 80% 

inhibition; QTL, quantitative trait locus/loci; SNP, single nucleotide polymorphism. 
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Figure 4.5. Example of candidate gene selection from GWAS.  A) GWA Manhattan plot 

(here Cytochrome C release after 72 h sorafenib incubation is presented). The region with the 

highest –logP value is selected for further analysis. B) Detailed region under the identified 

QTL with candidate genes. C) Haplotype structure of the inbred MEF strains in the QTL 

region. Abbreviations: Genome wide association; GWAS, genome wide association studies, 

MEF, mouse embryonic fibroblasts; QTL, quantitative trait locus/loci. 
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Figure 4.6. A multi-step and multi-faceted schematic for candidate gene selection. 
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Figure 4.7. Distribution of IC50 values associated with Cytochrome C release across 32 

MEF strains. The distribution of Cytochrome C release IC50 values shows variability (17-

45µM) across 32 MEF strains. These data were then used as the basis for GWAS. Thirty of 

the 32 strains represented here were used for GWAS, with only SWR/J, and WSB/EiJ 

excluded from final analyses. Abbreviations: GWAS, genome wide association studies; IC50, 

half maximal inhibitory concentration; MEF, mouse embryonic fibroblasts. 
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Figure 4.8. Distribution of IC50 values associated with Valid Object Count release 

across 32 MEF strains. The distribution of Valid Object Count IC50 values shows variability 

(17-32µM) across 32 MEF strains. These data were then used as the basis for GWAS. Thirty 

of the 32 strains represented here were used for GWAS, with only SWR/J, and WSB/EiJ 

excluded from final analyses. Abbreviations: GWAS, genome wide association studies; IC50, 

half maximal inhibitory concentration; MEF, mouse embryonic fibroblasts. 
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Figure 4.9. Manhattan plots for Cytochrome C release. GWA Manhattan plots were 

generated for MEF cells exposed to sorafenib for 72 hours and associated with Cytochrome 

C release. Panel A shows results generated from the EMMA algorithm and panel B shows 

results generated from SNPster. One notable QTL with a –logP value ≥4.0 was identified 

(chromosome 9, position 50,500,000-52,500,000). This QTL reached genome-wide 

significance by the EMMA algorithm with a –logP value ≥6.74. Abbreviations: EMMA, 

efficient mixed model association; GWA, genome wide association; MEF, mouse embryonic 

fibroblasts, QTL, quantitative trait locus/loci. 
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Figure 4.10. Genes under the QTL associated with Cytochrome C release. A total of 

seven genes were identified under a QTL on chromosome 9 (50,500,000-52,500,000). 

Abbreviations: QTL, quantitative trait locus/loci. 
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Figure 4.11. Manhattan plots for Valid Object Count. GWA Manhattan plots were 

generated for MEF cells exposed to sorafenib for 72 hours and associated with VOC. Panel A 

shows results generated from the EMMA algorithm and panel B shows results generated 

from SNPster. One notable QTL with a –logP ≥4.0 was identified (chromosome 4, position 

119,000,000-121,500,000).  This QTL was notable, albeit not genome-wide significant, by 

the EMMA algorithm with a –logP value ≥4.66. Abbreviations: EMMA, efficient mixed 

model association; GWA, genome wide association; MEF, mouse embryonic fibroblasts, 

QTL, quantitative trait locus/loci; VOC, valid object count. 
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Figure 4.12. Genes under the QTL associated with Valid Object Count. A total of 13 

genes were identified under a QTL on chromosome 4 (position 119,000,000-121,500,000). 

Abbreviations: QTL, quantitative trait locus/loci. 
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Figure 4.13. Haplotype structure for genes associated with the Cytochrome C release 

QTL. The haplotype structure of select inbred mouse strains within chromosome 9 (position 

50,500,000-52,500,000), which represents the areas directly under and surrounding the 

genome-wide significant peak observed for this phenotype after 72 h incubation of sorafenib. 

Strains are shown in descending order from most sensitive to least sensitive. The blue arrow 

represents the location directly under the peak (position 51595846), the red arrow represents 

the location of Arhgap20 (position 51573457-51661164), and the green arrow represents the 

location of Rdx (position 51855255-51896843). The haplotype structure was visualized with 

the Mouse Phylogeny Viewer (https://msub.csbio.unc.edu/). Abbreviations: QTL, 

quantitative trait locus/loci. 
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Figure 4.14. Ingenuity pathway analysis for genes with the QTL associated with 

Cytochrome C release. Seven genes within the QTL associated with Cytochrome C release 

were input into an Ingenuity Pathway Analysis with sorafenib and known targets of sorafenib 

(BRAF, FLT-1, FLT-3, FLT-5, FGFR1, KIT, KDR, PDGFR-β, RET, and RAF-1). Only direct 

connections were included. Zc3h12c is not represented in this analysis because no direct 

connections to sorafenib and/or sorafenib targets were identified. A direct connection 

between a candidate gene and sorafenib or a sorafenib target is denoted in red. 

Abbreviations: QTL, quantitative trait locus/loci. 
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Figure 4.15. Haplotype structure for genes associated with the Valid Object Count 

QTL. The haplotype structure of the inbred mouse strains within chromosome 4 (position 

119,000,000-121,500,000), which represents the areas directly under and surrounding the 

highest peak observed for this phenotype after 72 h incubation of sorafenib. Strains are 

shown in descending order from most sensitive to least sensitive. The blue arrow represents 

the location directly under the peak (position 119987827), the red arrow represents the 

location of Scmh1 (position 120077886-120202804), and the green arrow represents the 

location of Nfyc (position 120430040-120498346). The haplotype structure was visualized 

with the Mouse Phylogeny Viewer (https://msub.csbio.unc.edu/). Abbreviations: QTL, 

quantitative trait locus/loci. 
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Figure 4.16. Ingenuity pathway analysis for genes with the QTL associated with Valid 

Object Count. Thirteen genes within the QTL associated with VOC were input into an 

Ingenuity Pathway Analysis with sorafenib and known targets of sorafenib (BRAF, FLT-1, 

FLT-3, FLT-5, FGFR1, KIT, KDR, PDGFR-β, RET, and RAF-1). Only direct connections 

were included. Zfp69 and Slfnl1 are not represented in this analysis because no direct 

connections to sorafenib and/or sorafenib targets were identified. A direct connection 

between a candidate gene and sorafenib or a sorafenib target is denoted in red. 

Abbreviations: QTL, quantitative trait locus/loci. 
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CHAPTER 5: DISCUSSION, PERSPECTIVE AND FUTURE DIRECTIONS 

 

5.1 Summary and Scope 

Over the past decade the treatment landscape for mRCC has changed dramatically 

due to the U.S. FDA approval of multiple agents that target tumorigenic and angiogenic 

pathways. The approval of seven agents, which target the VEGF-pathway (axitinib, 

pazopanib, sorafenib and sunitinib), and mTOR (everolimus and temsirolimus) have helped 

increase median survival time amongst mRCC patients.1-8 Nevertheless, despite these major 

advancements, many mRCC patients experience disease progression while on treatment, and 

eventually die from their cancer. There is currently a shortage of clinically relevant 

prognostic and predictive pharmacogenetic markers that have been translated for routine 

incorporation into clinical practice.9-11  

A “one-size-fits-all” paradigm might apply well to the Frank Zappa album of the 

same name, or might be appropriate for clothing like sweatpants and socks; however, it is a 

poor way to approach the treatment of advanced and metastatic cancer patients. It has been 

well established that, for cancer patients, responses to treatment vary greatly,12-14 and it is 

understood that genetic variations in therapeutic targets of medications can lead to altered 

treatment efficacy.15 Pharmacogenetics examines interindividual genetic variability that 

influences the course of drug action so that medication regimens may be optimized to 

maximize response, while minimizing drug-induced toxicity.  Personalized medicine through 

genetics and genomics is the overarching goal for the field of pharmacogenetics and vital to 
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the evolution of effective treatment paradigms (Appendix 1).16 Currently, there is an unmet 

need, yet an opportunity, to identify and validate predictive and prognostic pharmacogenetic 

biomarkers that can help clinicians individualize treatment strategies for mRCC patients.  

Sorafenib is a multikinase inhibitor with potent activity against angiogenic, 

oncogenic, and stromal kinases, as well as the RAF/MEK/ERK signaling pathway, which 

leads to inhibition of tumor proliferation and angiogenesis. Data from the pivotal phase III 

randomized, placebo-controlled, TARGET trial confirmed a significant OS and PFS benefit. 

Several clinical trials focused on sorafenib have revealed a high degree of interindividual 

variability in sorafenib pharmacokinetics.17-21 Considerable interindividual variability in 

response to sorafenib is also observed clinically.2,22,23  

This dissertation research stemmed from the hypothesis that germline genetic variants 

in mRCC patients will help explain the interindividual differences in sorafenib response and 

patient survival. Thus, the primary objective of this dissertation was to identify and validate 

germline genetic variants that are predictive of sorafenib response, as well as variants that are 

prognostic markers of survival in mRCC patients. The key findings of this work include:  

1) the identification of five germline variants associated with OS in patients from the 

sorafenib and two variants associated with OS in a combined analysis of both treatment arms, 

2) the validation of four intronic variants (rs3816375 in ITGAV, rs1885657 and rs3024987 in 

VEGFA, and rs8047917 in WWOX) in dual reporter gene luciferase assays, as well as the 

validation of one exonic variant (rs307826 in FLT-4) in a cell viability assay, and 3) the 

identification of a genome-wide significant QTL on mouse chromosome 9 associated with 

cytochrome C release, and a second QTL on mouse chromosome 4 associated with cell 

viability, in 32 MEF strains treated with sorafenib for 72 h. The major translational 
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implication of this dissertation research is that it provides a foundation for future laboratory 

and replication studies to confirm the analytical validity of these findings, followed by 

prospective clinical trials that will evaluate both the clinical validity and clinical utility of 

these variants as predictive biomarkers of sorafenib efficacy and/or prognostic biomarkers of 

survival for patients with mRCC.   

 

5.2 Key Findings 

Sorafenib affects tumor vascular endothelium,24 the tumor microenvironment,25 and 

as a VEGF-pathway inhibitor it also has effects on the host vascular endothelium and 

pericytes.26,27  Because RCC is dependent on angiogenesis and the VEGF pathway, it is a 

pathway that is a viable target for pharmacotherapy.28,29 And, because angiogenesis is 

primarily a host-mediated process,30 there is excellent rationale for investigating germline 

variants as predictors of sorafenib efficacy and/or as markers with prognostic significance.  

The primary objective of Aim 1 was to identify germline genetic markers that 

associate with OS. The secondary objective of the study was to prospectively analyze how 

the variants that associated with OS are also related to differences in PFS. Five germline 

variants within genes were found to significantly associate with OS (multivariate p≤0.05 and 

q≤0.1): two variants (rs1885657 and rs3024987) were in intronic regions of VEGFA, 

rs3816375 was in an intronic region in ITGAV, rs8047917 was in an intronic region of 

WWOX, and rs307826 was in a coding region of FLT-4. In addition, two intergenic variants 

(rs200809375 and rs6719561) were found to be in close proximity to NRP-1 and UGT1A9, 

respectively. Five of the seven variants associated with OS in the sorafenib-treated TARGET 

patients (rs1885657, rs3816375, rs6719561, rs8047917, and rs200809375), while two of the 
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variants only associated with OS in a combined analysis of both TARGET treatment arms 

(rs30786 and rs3024987). FDR was employed in lieu of correcting the family-wise error rate 

(e.g. Bonferroni correction). Variants were deemed significant if their multivariate model p-

value was ≤0.05 and also if their FDR q-value was ≤0.1. A p-value threshold of ≤0.05 was 

certainly appropriate for these analyses because discovery pharmacogenetic cohorts 

commonly utilize this same p-value threshold, and reserve corrections for multiple 

comparisons for subsequent replication pharmacogenetic studies that test associations in 

independent cohorts of patients. However, a replication cohort was not identified to validate 

these findings, and therefore an FDR correction was employed in this discovery cohort to 

reduce the chances of obtaining spurious findings due to type I error. FDR was selected over 

a Bonferroni correction because Bonferroni can be overly conservative because all tested 

associations are considered independent observations, which is clearly not the case in genetic 

association studies where variants are often in linkage with one another (and therefore not 

truly independent observations). While there is currently no consensus on the appropriate 

FDR threshold in the literature, FDR q-value ≤0.1 is an appropriate threshold because it was 

chosen a priori with the assumption that the variants significantly associated with OS would 

be subsequently validated through a combination of in silico prediction tools and in vitro 

experiments.  

PFS was correlated with OS, so these seven variants were also tested for associations 

with PFS.  Among the five original variants that associated with OS in the sorafenib arm, 

rs1885657, rs6719561 and rs8047917 also significantly associated with PFS (p≤0.05). 

Among the two variants that associated with OS in analyses when the treatment arms were 

combined, only rs307826 significantly associated with PFS (p≤0.05). Interestingly, rs307826 
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was also associated with PFS among the patients from the sorafenib arm. Because these 

analyses were a secondary endpoint, and exploratory in nature, they were not corrected for 

multiple comparisons.  

The primary objective of Aim 2 was to functionally validate germline variants that 

associated with OS (identified through Aim 1) to elucidate the molecular drivers underlying 

differences in sorafenib efficacy, as well as mRCC pathogenesis, angiogenesis and/or 

sorafenib pharmacology. First, in silico analyses, which leveraged information from 

ENCODE, predicted which variants were likely functional, and helped prioritize laboratory 

validation of variants based on their potential to alter regulatory pathways and/or gene 

function. The Broad Institute’s HaploReg website (http://www.broadinstitute.org/mammals/ 

haploreg/haploreg_v3.php), the UCSC Genome Browser (https://genome.ucsc.edu), and 

Stanford’s Center for Genomics and Personalized Medicine Regulome DB website 

(http://regulomedb.org) revealed that the intronic SNP variants, identified in Aim 1, in 

VEGFA (rs1885657 and rs3024987) were likely to be located in functionally active regions. 

Data from in vitro dual reporter gene luciferase assays confirmed the in silico predictions, 

and showed increased luciferase activity in the rs1885657 variant C allele (and in a “triple 

variant” construct that contained variant alleles for two SNPs in perfect LD with rs1885657: 

the rs943070 variant G allele, and the rs58159269 variant T allele), and the rs3024987 

variant T allele. These data are consistent with the observed clinical association that patients 

with two copies of the variant C allele at rs1885657 experience significantly shorter OS and 

PFS, and support the hypothesis that the haplotype, which includes rs1885657 C allele, the 

rs943070 G allele, and the rs58159269 C allele, causes increased VEGFA expression, which 

results in increased angiogenesis, and ultimately shorter patient survival. Cell viability assays 
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revealed that the non-synonymous SNP in FLT-4 (rs307826), which causes threonine to 

alanine amino acid substitution in the fifth IgG-like domain of VEGFR3, results in a more 

resistant phenotype when HEK-293 cells were treated with sorafenib. These data are 

consistent with the observed clinical association that patients with two copies of the variant G 

allele at this locus experience significantly shorter OS and PFS, and support the hypothesis 

that the amino acid substitution results in increased VEGFR3 signaling and resistance to 

sorafenib.  The findings from Aim 2 provide evidence that the variants identified in Aim 1 

are functional, and it lays the groundwork for future studies that will aim to better understand 

the molecular mechanism underlying these variants, and trials to validate them as predictive 

and prognostic biomarkers.  

The primary objective of Aim 3 was to test the hypothesis that that differential cell 

health and response data (e.g. EC50 or IC50) from 32 MEF cells lines treated with sorafenib, 

can be used in GWAS to identify candidate genes associated with sorafenib response, which 

will ultimately lead to the discovery of novel genes for future pharmacogenetic testing in 

patients treated with sorafenib. A total of seven genes were present in the QTL that 

associated with the cytochrome C release phenotype after a 72 h incubation with sorafenib. 

One candidate gene (Rdx) was selected for future in vitro validation studies. Rdx encodes for 

radixin, which is a component of the ezrin-radixin-moesin-binding phosphoprotein-50 

(EBP50) complex, has been shown to act as a tumor suppressor in multiple tumor types.31-35 

A total of 13 genes were present in the QTL that associated with cell viability after a 72 h 

incubation with sorafenib. Two candidate genes (Nfyc and Scmh1) were selected for future in 

vitro validation studies. Nfyc is a transcription factor that is a key regulator of MYC and 

p53,36  and has been shown to regulate DNA-dependent transcription of PDGFR-β.37 Scmh1 
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encodes for a protein that helps repress transcription, and has been shown to regulate 

geminin. Interestingly, geminin has been shown to regulate DNA replication and has been 

linked to cancer.38-41  

 

5.3 Future Directions 

Although the results described by this dissertation research have laid the foundation 

for these variants as biomarkers, there are still many future studies that should be conducted. 

First, this dissertation has presented only the results of variants that satisfied extremely 

stringent statistical criteria, which included an FDR multiple comparisons correction. 

However, variants that did not pass the FDR correction (q≤0.1), but were significant by p-

value (p≤0.05) should be evaluated, and potentially prioritized (along with the variants 

described in Aims 1-2) for replication pharmacogenetic studies in an independent cohort of 

sorafenib-treated patients.  

Replication of positive findings in an external, independent cohort of patients has 

served as the gold standard for validation of genotype-phenotype relationships.42,43 

Pharmacogenetic studies have identified a vast set of genetic variants as predictors of 

chemotherapy efficacy and toxicity. The majority of these proposed variants have failed to 

produce similar results across different studies, which has limited the clinical utility of 

pharmacogenetics.9,10 Therefore, prospective replication of pharmacogenetic findings in 

independent and external cohorts of patients is essential to hasten the implementation of 

pharmacogenetics into routine clinical practice (Appendix 2).44 Currently, a suitable 

replication cohort of mRCC patients treated with sorafenib is not available; however, 

collaborations with investigators on the Axitinib Versus Sorafenib in Advanced Renal Cell 
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Carcinoma (AXIS) trial should be pursued.8 Briefly, AXIS was a randomized phase III trial 

compared axitinib to sorafenib as second-line therapy in patients with mRCC. This cohort 

would not only have the potential to replicate findings from this work in their sorafenib-

treated patients, patients from the axitinib arm could potentially help identify variants that 

have a class effect among VEGF-pathway inhibitors used in the treatment of mRCC. 

Additionally, collaboration with the investigators on the ASSURE (E2805) trial 

(ClinicalTrials.gov NLM Identifier NCT00326898) should be pursued. This placebo-

controlled phase III trial examined the effectiveness, using PFS as the primary endpoint, of 

either sorafenib or sunitinib in the treatment of mRCC patients in the adjuvant treatment 

setting. While this cohort might not be optimal since ASSURE patients have not relapsed 

post-nephrectomy and do not have metastatic disease, this cohort could still be advantageous 

for two reasons: 1) it is a placebo-controlled trial, and thus comparisons to the TARGET 

patients from the placebo arm could be made, and 2) the sunitinib-treated patients could 

potentially help identify variants that have a class effect among VEGF-pathway inhibitors 

used in the treatment of mRCC.  

Next, all directly genotyped and imputed variants used in the OS analyses should be 

used to test associations with PFS, and also with common sorafenib-induced toxicities (e.g. 

hypertension, diarrhea, rash, and hand foot skin reaction). Replication of those results in an 

independent cohort of sorafenib-treated patients is also important. Additionally, there is 

accumulating evidence that sorafenib pharmacokinetics are at least partially mediated by 

drug transporters.45,46 Candidate variants in SLC22A1, SLCO1B1 and SLCO1B3, which 

encode for OCT1, OATP1B1 and OATP1B3, respectively, could be selected for the next 

round of genotyping using DNA from TARGET patients. Ultimately, a prospective clinical 
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trial, analyzing the effects of these variants on OS and PFS in sorafenib-treated patients, 

should be conducted to confirm clinical validity of the associations and their clinical utility as 

mRCC biomarkers. 

Additional functional validation of variants that associated with OS, identified in Aim 

1, is required. Results from the cell viability assays provided proof of concept that rs307826 

alters receptor signaling and confers increased resistance to sorafenib. However, the 

hypothesis that rs307826 results in altered receptor signaling requires confirmation. This can 

be accomplished through phosphorylation assays and traditional Western blotting. Alternate 

approaches, which would quantitatively compare the how the rs307826 G allele affects 

VEGFR3 phosphorylation when compared to the reference A allele, would be to leverage 

either ELISA assays or a proteomic mass spectrometry approach. While the non-synonymous 

variant likely causes a change in protein function, an alternative hypothesis is that the 

rs307826 G allele could alter FLT-4 expression. Therefore, dual reporter gene luciferase 

assays could be conducted to assess variant effects on gene expression.  

Additional laboratory validation experiments should be conducted on the variants 

identified in Aim 1 to ascertain if they influence gene expression, and to characterize the 

mechanistic underpinnings that result in altered gene expression. Variants that are predicted 

by ENCODE to influence transcription factor binding, based ChIP-Seq data and evidence of 

changes to transcription factor binding motifs, will be prioritized for additional in vitro 

functional validation by EMSA. Additional cell viability assays could be conducted to 

associate differences in gene expression with sorafenib response. Finally, using 

CRISPR)/cas9 or TALEN technologies, the creation of isogenic endothelial cell lines could 

for the first time isolate how variants (e.g. SNPs)  directly affect cellular phenoypes (e.g. 
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angiogenesis and/or VEGF-pathway inhibitor responses). TIME cell lines will be utilized 

because they retain many of the features of primary endothelial cells,47 without issues related 

to senescence and loss of endothelial phenotypes after multiple cell passages.48 

For the two intergenic variants that associated with OS (rs6719561 and rs200809375), 

validation is still required. Dual reporter gene luciferase assays would have indeed provided 

insight into their activity as enhancers; however, because they are not located within genes it 

would be difficult to ascertain on which gene the enhancer is active. One possible validation 

method that could be employed is the chromosome conformation capture (3C) technology.  

Intergenic regulatory elements can influence gene regulation through cis-interactions (i.e. on 

a gene in close proximity to the variant) or through trans-interactions (i.e. on a gene a great 

distance away from the variant) by engaging in direct physical interactions with target genes 

or with other elements.49 Therefore, the 3C technology could provide valuable validation that 

these variants help to regulate UGT1A9 and NRP-1, respectively.  Variant rs6719561 is in 

close proximity to two genes (approximately 1.5 kb 3’ of UGT1A9, and 600 bp 5’ of 

HEATR7B1), and thus provides some ambiguity about which gene is associated with 

differences in OS. After 3C is performed, the promoter of UGT1A9 and HEATR7B1could be 

cloned into a vector with a construct containing rs6719561, and dual reporter gene luciferase 

assays could be conducted to detect differences in activity.  

Future studies to validate the candidate genes identified in Aim 3 will certainly be 

conducted in MEF cells using in vitro knockdown and overexpression approaches. The 

prioritized candidate genes (Rdx and Fdx1 for Cytochrome C release, and Nfyc and Scmh1 

for VOC) will be validated using and the same siRNA knockdown and pCMV-SPORT6 

vector-based overexpression approaches that have been previously described.50 Any of the 
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genes validated through these siRNA and/or overexpression experiments in MEF cells will 

be repeated in orthologous human siRNA and overexpression vectors, and tested in human 

cell lines (e.g. the human endothelial TIME cells, and the human mRCC Caki-1 cells) to 

confirm the effects of these genes on sorafenib response. Finally, for genes that validate in 

human and MEF cell lines, a second candidate gene-candidate SNP genotyping study will be 

conducted using TARGET patient DNA.   

 

5.4 Conclusions 

In conclusion, the primary objective of this dissertation was to identify and validate 

germline genetic variants that are predictive of sorafenib response, as well as variants that are 

prognostic markers of survival in mRCC patients. The identification and validation of 

predictive pharmacogenetic variants may help determine which patients should be treated 

with sorafenib. In a crowded landscape of targeted agents for the treatment of mRCC, 

identification, validation, and then ultimately clinical incorporation of these predictive 

variants into routine clinical practice could help guide clinician treatment decisions. 

Additionally, the identification of novel prognostic markers may provide insight into RCC 

pathogenesis/prognosis, or identify patients who would benefit from more intensive therapies 

and/or monitoring. The studies from Aims 1-2 of this dissertation have identified and 

validated seven pharmacogenetic variants that associate with OS among mRCC patients 

originally enrolled on the phase III TARGET trial. Among the seven identified germline 

variants, five (rs3816375 in ITGAV, rs1885657 in VEGFA, rs8047917 in WWOX, as well as 

rs6719561 in a region 3’ of UGT1A9, and rs200809375 in a region 3’ of NRP-1) have the 

potential to be variants that are predictive of sorafenib efficacy. It is unclear if the remaining 
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two variants that associated with OS (rs307826 in FLT-4 and rs3024987 in VEGFA) are 

purely prognostic, or if they also possess predictive effects. Replication of these associations 

in an independent and external cohort of mRCC patients treated with sorafenib is of utmost 

importance before incorporating them into routine clinical practice. Additional laboratory 

validation of these variants, to elucidate the molecular underpinnings of their predictive 

and/or prognostic effects, should also be conducted. In Aim 3, innovative high content 

cellular genetics approach has detected robust interstrain cellular differences in sorafenib 

activity.  One QTL region, which reached genome-wide significance, which potentially 

associates with sorafenib-induced cytochrome C release from mitochondria, was identified. 

An additional QTL was identified that potentially associates with sorafenib cytotoxicity and 

cell viability. Candidate genes for functional validation have been prioritized through a 

multi-faceted set of criteria. Future steps for this work include functional validation of 

candidate genes, using knockdown and overexpression approaches, in MEF and human cell 

lines. Collectively, this dissertation research has identified variants in genes known to be 

central to angiogenesis and/or sorafenib pharmacology, as well as QTLs that influence 

sorafenib’s pro-apoptotic capabilities. This work lays a critical foundation for future studies 

that will help validate novel biomarkers that will aid clinicians in the treatment of patients 

with mRCC.   
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APPENDIX 11: CAN KNOWLEDGE OF GERMLINE MARKERS OF TOXICITY 

OPTIMIZE DOSING AND EFFICACY OF CANCER THERAPY? 

 

A1.1 Overview 

The systemic treatment of cancer with traditional cytotoxic chemotherapeutic agents 

and more targeted agents is often complicated by the onset of adverse drug reactions (ADRs). 

Pharmacogenetic prediction of ADRs might have consequences for dosing and efficacy. This 

review discusses relevant examples where the germline variant-toxicity relationship has been 

validated as an initial step in developing clinically useful pharmacogenetic markers, and 

provides examples where germline variants have influenced dosing strategies and/or survival 

or other outcomes of efficacy. This review will also provide insight into the reasons why 

more pharmacogenetic markers have not been routinely integrated into clinical practice. 

 

A1.2 Introduction 

It is well established that when cancer patients are administered chemotherapy, their 

clinical response will vary greatly.1-3 While many patients experience a complete or partial 

response, for a sizable proportion of these patients the chemotherapy will be largely 

ineffective despite the onset of toxicities, which might be severe, and even life threatening. 

Often these adverse drug reactions (ADRs) will lead to hospitalizations.4 Numerous factors 

                                                           
1 This chapter was published in Biomarkers in Medicine in 2012 (Crona D and Innocenti F. Biomark 

Med. 2012;6(3):349-62). 
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influence whether a patient will experience an ADR, including baseline clinical and 

demographic characteristics and genetics. Among available efficacious regimens, the 

selection of the safest regimen for a given patient, is not guided by molecular biomarkers, 

but, rather, by considerations related to the patient’s age, comorbidities, and performance 

status. 

Traditional cytotoxic chemotherapy and more novel molecularly-targeted agents 

(some of them also called “biologics”) are the two core pharmacotherapeutic paradigms at 

the center of modern cancer care. Phase I trials identify the dose-limiting toxicities (DLTs) of 

a new chemotherapeutic agent, and 5 doses are advanced until the onset of DLTs to define its 

maximum tolerated dose (MTD) to be used in phase II trials. For most approved 

chemotherapeutic agents, there is only one dose, rather than a dose range. This dose-

escalation design to MTD intrinsically narrows the distance between toxic and effective 

doses.  It is natural to expect that one single dose might not be tolerated by some patients and 

during the entire duration of the scheduled cycles of treatment. As a result, the onset of 

serious grade 3 or 4 toxicities (as defined by the National Cancer Institute Common 

Terminology Criteria for Adverse Events, CTCAE, version 4.036) can largely affect drug 

dosing and dose intensity.  

In all therapeutic areas, ADRs account for an estimated 7% of all hospital admissions, 

occur in 10-20% of all patients, and result in significantly increased hospital stays.7 The costs 

to the health system associated with ADR-related morbidity exceed $3.6 billion annually in 

the United States. ADRs are consistently among the top 10 reasons for death among 

patients.8 Several studies have reported on the incidence of cancer chemotherapy-related 

ADRs. A meta-analysis of 1,219 colorectal cancer patients, who received 5-fluorouracil as 
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part of their regimen, revealed that up to 31% experienced grade 3-4 neutropenia.9 A more 

recent meta-analysis disclosed that approximately 30% of 2,090 non-small cell lung cancer 

patients who received docetaxel experienced grade 3-4 neutropenia.10 It is estimated that 

greater than 60,000 oncology patients are hospitalized due to severe neutropenia and its 

complications each year in the United States, and that neutropenia is associated with an 

inpatient mortality rate of 6.8% annually.7 Dose-toxicity curves often differ between 

traditional cytotoxic chemotherapies and targeted molecular agents, and efficacy may occur 

in targeted agents at doses that do not cause significant toxicities.5 Although the development 

of dosing strategies for targeted agents and biologics are still largely dependent on the 

identification of the MTD, there is significant debate concerning the practicality of 

abandoning traditional dosing strategies in favor of the identification of a minimal effective 

dose or the optimal biologic dose (OBD).11 OBD can be defined as the dose associated with a 

pre-specified most desirable effect on a biomarker among all doses studied. 5 There are those 

who argue that the dosing of targeted agents should continue to follow the traditional MTD 

dose-finding model because they believe there is still a lack of knowledge concerning OBD 

strategies.12 But, others favor investigation of a minimal effective dose,13 or optimum 

biologic dose.14,15 

Since dose-toxicity curves and OBD dosing strategies for targeted agents could be 

starkly different from traditional cytotoxic chemotherapy, the ADRs associated with these 

agents are rarely life-threatening, but still no less serious. These drugs tend to be associated 

with more non-hematological ADRs and less neutropenia than the traditional cytotoxics. 

ADRs, which adversely affect quality of life and activities of daily living, can result in non-

compliance to oral targeted agents. For instance, a post-approval survey of epidermal growth 



191 

factor receptor (EGFR) inhibitors revealed that 76% of respondents were non-compliant to 

therapy due to rash, and that up to 32% of clinicians discontinued therapy due to rash.7 

Moreover, at least 11% of patients who receive cetuximab experience grade 3-4 rash, 16 

which could lead to dose modifications by the clinician or non-adherence by the patient and 

ultimately complicate efficacy and survival outcomes. Up to 15% of patients treated with 

bevacizumab experience grade 3-4 hypertension, 7 and are at a significantly higher risk of 

grade 3-4 proteinuria and hypertension at both low and high doses.17 

These common ADRs are still very concerning because medication non-adherence 

compromises dose-intensity and ultimately survival.18,19 Maintenance of dose intensity in 

patients for the entire course of their treatment is extremely important because it has been 

shown both prospectively and retrospectively, in a variety of tumor types, to be correlated 

with more positive outcomes.20,21 Dose intensity is a function of both dose and frequency, 

and modifications to either chemotherapy dosing or frequency, as a result of ADRs, are 

detrimental to outcomes.22 Dosing is often adjusted based on renal or hepatic function, 

hematologic counts, results of basic metabolic panels, or drug levels measured in plasma. In 

addition, chemotherapy package inserts also provide recommendations on how to adjust 

dosing (usually dose reductions or dose interruptions) based upon the onset of toxicity. 

Although very pragmatic, this approach of personalizing chemotherapy dose remains 

inefficient, expensive, and adversely affects the quality of life of patients. However, certain 

ADRs have been researched as surrogate pharmacodynamic markers, and seem to possess a 

predictive role for chemotherapy response and efficacy. The relationship between drug-

induced rash, dose escalation, and survival has been investigated in EGFR inhibitors such as 

erlotinib and cetuximab. Likewise, the relationships linking drug-induced hypertension, the 
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dose of the vascular endothelial growth factor (VEGF) inhibitor bevacizumab, and survival 

have been explored. These studies support both the paradigm that these specific ADRs are 

likely pharmacodynamic proxies for efficacy, and the approach of dosing patients to OBD 

rather than MTD. 

Pharmacogenetics examines interindividual genetic variability that influences the 

course of drug action so that medication regimens may be optimized to maximize response, 

while minimizing drug-induced toxicity.  Personalized medicine through genetics and 

genomics is the overarching goal for the field of pharmacogenetics and vital to the evolution 

of effective treatment paradigms. The ability to predict and mitigate ADRs in oncology is of 

paramount importance because a majority of chemotherapeutic agents are dosed to their 

MTD, and possess a narrow therapeutic index between efficacy and toxicity. There is 

currently a dearth of clinically relevant prognostic and predictive pharmacogenetic markers 

derived from germline variants that have been translated for routine incorporation into 

clinical practice.23-25 There is an opportunity to better understand the relationship between 

germline variants, toxicity, and chemotherapy dose so that more of these pharmacogenetic 

markers may be utilized clinically to individualize therapies for cancer patients. 

The purpose of this review is to analyze the available literature to elucidate pertinent 

germline variant-ADR relationships, and to describe how these associations may impact the 

delivery of an optimal chemotherapy dose to patients and, consequently, affect survival 

outcomes. We have chosen to systematically concentrate on a focused number of validated 

germline pharmacogenetic variants that associate with ADRs and the manner in which those 

variants might influence downstream effects, such as chemotherapy dosing and survival 

outcomes. This review should not be construed as a complete evaluation of all 
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pharmacogenetic variants detailed in oncology-related literature, as this has been addressed 

extensively in many recent reviews.26-28 However, the resulting effects of these associations 

on dosing and survival have never been analyzed in detail. For each specific gene discussed, 

we will not review a comprehensive list of all alleles in each of the genes. Rather, we have 

highlighted several specific pharmacogenetic variants that account for the majority of 

variability in each gene to highlight our approach. 

 

A1.3 Establishing the Relationship Between Germline Variants and Toxicity 

Validation of pharmacogenetic markers related to ADRs is of utmost importance to 

clinicians so they may personalize the most efficacious and safe regimen for each patient, 

without sacrificing dose intensity. With the advent of hypothesis-driven candidate gene 

studies and more unbiased genome-wide approaches, oncology researchers have begun to 

characterize the genetics that underlie serious ADRs. The labels for over twenty 

chemotherapeutic agents have been rewritten or revised to include information regarding 

pharmacogenetic markers. Specifically, seven of these agents (6-mercaptopurine, 6-

thioguanine, 5-fluorouracil, capecitabine, irinotecan, nilotinib, and imatinib) include 

language describing a gene-toxicity relationship, which emphasizes the growing importance 

of validating clinically useful pharmacogenetic markers to prevent the onset or mitigate the 

severity of ADRs.29 

Numerous pharmacogenetic studies have been conducted in an attempt to identify 

novel germline variants that conclusively associate with ADRs. A majority of the validated 

pharmacogenetic markers, and those primarily discussed in this review, are germline variants 

that contribute to differences in drug metabolizing enzymes of drug inactivation. A classic 
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example is the thiopurine antimetabolite, 6-mercaptopurine, an integral component in the 

treatment of pediatric acute lymphoblastic leukemia (ALL).30 6-mercaptopurine is activated 

into thioguanine nucleotides (TGNs), which are then incorporated into the DNA and interfere 

with the activity of nucleic acid-processing enzymes.26 Thiopurine-S-methyltransferase 

(TPMT) inactivates 6-mercaptopurine through methylation. Genetic variations in the TPMT 

gene (*2, *3A, and *3C) lead to TPMT deficiency and reduced inactivation of 6-

mercaptopurine,31 and usually these patients have increased TGN erythrocyte levels.32,33 

The germline variant-toxicity relationship between uridine-5’-diphospho-

glucuronosyltransferase (UGT) and irinotecan has also been studied extensively. UGT1A1 is 

responsible for the inactivation of the active metabolite of irinotecan through 

glucuronidation. Irinotecan is commonly used in advanced colorectal cancer in combination 

with 5-fluorouracil. An inverse relationship exists between the number of TA repeats in the 

UGT1A1 promoter, and the transcriptional efficiency of the gene,34 its protein35 and mRNA 

expression,36 and the  level of glucuronidation of the active metabolite of irinotecan.37,38 

UGT1A1-deficient patients are homozygous carriers of the *28 variant (7 TA repeats, versus 

6 repeats in 1*1). In addition, the germline variant-toxicity relationship has been validated 

between dihydropyrimidine dehydrogenase (DPD) and fluoropyrimidines. 5-fluorouracil, and 

its oral equivalent capecitabine, are routinely used in the treatment of gastroesophageal, 

hepatocellular and colorectal cancers. DPD is responsible for up to 85% of the catabolism of 

fluoropyrimidine antimetabolites,23 and the DPYD*2A variant has been associated with 

decreased DPD catabolic activity.  

The germline variants described above are associated with increased risk of 

myelotoxicity (most notably neutropenia), as well as other potentially lethal clinical sequelae. 
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Myelosuppression is often the DLT of many chemotherapeutic agents due to their 

mechanisms of action, which target highly replicating cells like those of the bone marrow. 

Neutropenia can be routinely measured and quantified, which increases the ability to 

characterize pharmacodynamic effects of these medications with relative precision.  

Complications associated with neutropenia (i.e. infection and sepsis) are associated with 

poorer outcomes and increased costs to the health system. It has been estimated that the cost 

of inpatient treatment of neutropenia for one patient exceeds $13,000 per hospitalization.39 

Overall, severe neutropenia has a detrimental effect on dose intensity, not only in terms of 

the drug causing neutropenia but also to all other combined chemotherapies administered as 

part of that regimen.20,40TPMT deficient patients are at greater risk for 6-mercaptopurine–

induced ADRs, mainly severe myelosuppression.32,33 The positive predictive value of the 

TPMT genotype test has been estimated to be 67-100%.41 UGT1A1-deficient patients are at a 

9.3 fold higher risk for the development of irinotecan-induced grade 4 neutropenia, than 

patients with non-deficient UGT1A1 activity.42 The positive predictive value of a 

UGTA1A1*28/*28 genotype to detect grade 3-4 toxicity has been estimated to be 50%.43 

Approximately 20-50% of patients who experienced a grade 3-4 ADR are carriers of 

DPYD*2A,44-47 and exhibited decreased DPD activity.47 They have a 3.4-fold higher risk for 

grade 4 neutropenia when compared to patients with normal DPD activity.48 The positive 

predictive value of DPYD*2A for grade 3-4 toxicity has been estimated at 46%.49 Germline 

variants have also been associated with chemotherapy-induced ADRs other than 

myelotoxicities, such as neutropenia. Genetic associations have been investigated linking 

hypertension with bevacizumab, and skin toxicities with EGFR inhibitors (i.e. cetuximab, 

panitumumab, erlotinib and gefitinib). Skin rash has been reported in approximately 80% of 
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patients taking these drugs.50 Inhibition of EGFR signaling in basal keratinocytes leads to 

abnormalities in cell growth, differentiation and maturation, as well as an inflammatory 

response, which ultimately leads to the onset of rash.51 One proposed germline 

polymorphism associated with skin rash is a CA dinucleotide repeat in intron 1 of EGFR.52 

The number of CA repeats is inversely proportional to expression of EGFR, and shorter CA 

repeats have been linked to greater incidence of skin toxicity.53-55 Bevacizumab is a 

monoclonal antibody that binds to VEGF and inhibits angiogenesis. Evidence suggests a link 

between hypertension and impaired angiogenesis,56 and treatment with bevacizumab has 

been associated with increased incidence of grade 3-4 hypertension.17,57,58 A meta-analysis of 

12,656 patients demonstrated that bevacizumab significantly increases the risk of all grade 

hypertension by 23.6% (95% CI: 20.5-27.1%) and grade 3-4 hypertension by 7.9% (CI: 6.1-

10.2%), relative to control patients on concurrent traditional chemotherapies.57 In another 

study of patients who took bevacizumab, two VEGF germline genotypes (-634CC and  

-1498TT) were associated with lower rates of grade 3-4 hypertension.59 This was the first 

trial to investigate biomarkers associated with bevacizumab-induced hypertension. Emerging 

data have confirmed a similar relationship and showed that patients with either the -634CCor 

-1498TT genotypes, who were treated with the VEGF-inhibitor sunitinib, had less incidence 

of hypertension (P = 0.03, in both cases).60 Nevertheless, at this stage, the variants in EGFR 

and VEGF require additional validation before they can be used as predictive markers of 

toxicity.  

The process of pharmacogenetic marker validation still faces several major hurdles 

before these markers are integrated into routine clinical practice. Conflicting data generated 

from pharmacogenetic trials have been reported for many of the most well characterized 
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potential markers. For example, the UGT1A1*28/*28 genotype was not associated with 

severe diarrhea (another common side effect of irinotecan) in one study, but it was in 

others.42,61,62 In addition, inconsistencies concerning the functional variant associated with a 

particular ADR complicate the validation of pharmacogenetic markers. For example, data 

points to -216G/T and -191C/A EGFR variants, rather than CA dinucleotide repeats in intron 

1, as the causative single nucleotide polymorphisms (SNPs) responsible for EGFR inhibitor-

induced skin toxicity.52 The relationship between 5-fluorouracil toxicity and DPYD*2A also 

illustrates another problem in the process of pharmacogenetic marker validation: rare 

germline variants, which have limited predictive power. Data suggests that alternate germline 

variants in DPYD,63 non-coding region genomic variants found through haplotype 

assessment,64 DPYD promoter hypermethylation,65-67 or the influences of TYMS, MTHFR and 

other genes23,27 may play a significant role in explaining the remainder of the germline 

variant-toxicity relationship  involving  neutropenia and 5-fluorouracil. 

 

A1.4 The Effect of the Germline Variant-Toxicity Relationship on Chemotherapy 

Dosing 

While over twenty chemotherapeutic agents have references to pharmacogenetic 

markers in their FDA label,29 a clear disconnect exists between these pharmacogenetic 

markers and dosing recommendations.68 Only 6-mercaptopurine, 6-thioguanine, nilotinib and 

irinotecan include pharmacogenetic-based dose reduction recommendations in their drug 

labels.68 But, given the limited scale of clinical investigations on genotype-based dose 

individualization, they did not recommend mandated pharmacogenetic testing, nor did they 

provide guidance concerning the optimal timing for testing. This same limited scale of 

clinical investigations led the FDA to exclude explicit dose reduction guidelines from the 
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irinotecan or 6-mercaptopurine labels.68 While the package insert for irinotecan includes 

language endorsing dose reductions by one level for patients with the UGT1A1*28/*28 

genotype, these recommendations are not sufficiently specific.69 Genotype-based dose 

modification information should be far more precise because vague dose reduction language 

could conceivably compromise the efficacy of irinotecan if clinicians reduce doses too low.  

Despite the fact that the 6-mercaptopurine label does not contain specific dose 

reductions based on genotype, accumulating data regarding its dosing in TPMT-deficient 

heterozygous70 and homozygous71 patients led to guidelines supporting 50% and at least 90% 

reductions, respectively, of the initial dose of 6-mercaptopurine in pediatric patients treated 

for ALL.  This genotype-based dosing strategy has successfully limited ADRs.72 These 

conclusions were based on studies showing that TPMT-deficient heterozygotes can tolerate 

65% of the standard 75 mg/m2 6-mercaptopurine dose used in pediatric ALL (50 mg/m2 

daily),71,73,74 while homozygotes can receive 1/10th to 1/15th of the standard dose (i.e. 10 

mg/m2 every third day).70 In subsequent studies, patients were prospectively screened for 

TPMT status, and doses of 6-mercaptopurine were reduced in patients with TPMT-deficient 

alleles, according to a pre-specified dosing algorithm.75,76 As a result, these patients were 

successfully treated with 6-mercaptopurine, with rates of grade 3-4 ADRs comparable to 

patients with wild-type TPMT.72 In addition, the identification of TPMT-deficient patients not 

only permits clinicians to rationally reduce doses of 6-mercaptopurine to avoid severe ADRs, 

it also allows them to preserve the dose intensity of the regimen by administering concurrent 

chemotherapies at unadjusted doses and without interruptions.77,78 

The irinotecan doses used in current regimens were previously identified through 

phase I development without stratifying patients for UGT1A1*28. It has been postulated that 
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the dose of irinotecan might be suboptimal in patients with *1/*28 and *1/*1 genotypes, and 

these patients may benefit from higher, safe doses. This hypothesis has been tested in 

colorectal cancer patients treated with irinotecan combined with 5-fluorouracil (FOLFIRI 

regimen).79 Dose-escalation of irinotecan was assessed in *1/*1 and *1/*28 patients, and 

results from these studies showed they were safely and effectively treated with irinotecan 

doses of 370 and 310 mg/m2, respectively. These doses were considerably higher than the 

180 mg/m2 dose currently used in the clinic. Similar dose levels were safely given in another 

study of FOLFIRI (390 and 340 mg/m2, respectively).80 This study also demonstrated that the 

MTD for *28/*28 patients was 130 mg/m2, which is 30% lower than the standard dose. A 

similar conclusion has been also obtained in Japanese patients with *28 and/or *6, the 

common deficient allele in Asians.  *28/*28, *28/*6, and *6/*6 patients also achieved an 

MTD of 150 mg/m2.81 Meta-analyses demonstrated that *28/*28 patients have a significantly 

higher risk for grade 3-4 neutropenia, when compared to *1/*28 and *1/*1, at low doses (RR 

= 2.43; P = 0.003),82 at medium doses (OR = 3.22; P = 0.008) and high doses of irinotecan 

(OR = 27.8; P = 0.005).83 

There are additional examples where a germline-variant toxicity relationship might 

alter dosing. In a capecitabine study of 568 patients with advanced colorectal cancer, all of 

the patients with DPYD*2A experienced at least one grade 3-4 ADR (mostly diarrhea).84 The 

cumulative percentage dose reduction in these patients was significantly higher (50%) than 

wild-type patients (10%). For EGFR and VEGF-pathway inhibitors, there are not data on the 

effect of variants for skin rash and hypertension (respectively) on dosing and dose intensity. 

This represents a significant gap in current knowledge that should be addressed.  
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A1.5 The Downstream Effect of Germline Variants of Toxicity on Dosing and Efficacy 

The assumption that patients should be treated at the highest, safe doses of 

chemotherapy is still the foundation of a successful treatment regimen. Although we believe 

a pharmacogenetic marker of toxicity has high clinical utility, translation of such markers to 

clinical practice will be increased dramatically if ADRs can be linked to efficacy and 

survival. Currently, only the example of TPMT and 6-mercaptopurine exists where the 

knowledge of a germline variant-toxicity-dosing relationship is a tool to optimize efficacy.  

When 6-mercaptopurine doses were determined prospectively, based on TPMT genetic 

status, relapse rates were not significantly different between wild-type patients and those 

with TPMT-deficient genotypes (13.2% + 2.3% versus 6.7% + 6.7%; P = 0.46). In addition, 

patients with TPMT-deficient genotypes were not at significantly higher rates of grade 3-4 

neutropenia when compared to wild-type patients (OR = 1.4; 95% CI = 0.3–6.9; P = 

0.71).72,74 Most importantly, this genotype-based dosing strategy has successfully limited 

potentially life-threatening ADRs, while not sacrificing efficacy in this patient 

population.72,77 The interaction between 6-mercaptopurine and the bone marrow is unique 

because it is not only activated intracellularly in the bone marrow, but is also the site for its 

anti-leukemic efficacy and its myelotoxic DLT. This idiosyncrasy of 6-mercaptopurine 

allows the downstream effects of TPMT genetics on survival to be more directly assessable. 

But aside from the TPMT example, the relationship between germline variant-toxicity, 

chemotherapy dosing and survival outcomes have been extremely difficult to establish. For 

other relationships, the consequences on survival are tested as a secondary endpoint or have 

not been tested at all in clinical trials. 
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Very few genotype-driven dose-optimization studies have prospectively assessed 

objective response rate, progression-free survival, overall survival, or other measures of 

efficacy, as their primary endpoints.  For example, little evidence exists to conclusively link 

UGT1A1 germline variants to ADRs, dose and survival. In a retrospective analysis, dose 

reductions of irinotecan due to UGT1A1*28-related toxicity did not affect progression-free 

survival (10 versus 11 months) or overall survival (19 versus 18 months).85 A second study 

retrospectively evaluated the association between UGT1A1 genotype, prevalence of grade 3-

4 toxicity, and survival outcomes in colorectal cancer patients treated with irinotecan. This 

study demonstrated a significantly higher rate of ADRs, coupled with worse survival, for the 

*28/*28 patients. Grade 3-4 neutropenia was significantly more common in *28/*28 patients 

(24% compared with 8.2% and 5.5% in the *1/*28 and *1/*1 genotypes, respectively; P = 

0.019), while the median overall survival for the three genotypes was also significantly 

different (2.4, 2.0 and 1.6 years for the *1/*1, *1/*28 and *28/*28 genotypes, respectively; P 

= 0.019).86 It is currently unclear whether the results of this study point to a true downstream 

effect of the *28/*28 genotype-neutropenia relationship on survival, or if the decrease in 

median overall survival for patients with the *28/*28 genotype is simply due to neutropenia-

induced dose modifications that decrease overall exposure to irinotecan. Two recent studies 

of irinotecan, dose-escalated by genotype, showed that patients receiving higher doses 

experienced higher response rates than those treated at lower doses. In the first study, 65% of 

the patients treated with doses greater than or equal to the MTD of irinotecan achieved a 

complete or partial response compared with only 25% of patients treated with doses below 

the MTD of irinotecan (P = 0.14). Irinotecan dosed above MTD was an independent 

predictor of response in all patients (OR = 4.38; 95% CI 1.13-17.03; P = 0.03). Median time 
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to progression (TTP) was not significantly different between the patients treated above and 

below the irinotecan MTD (HR = 0.85; 95% CI 0.40-1.80).79 In the second study, 67% of 

patients treated with irinotecan doses >260 mg/m2 achieved a complete or total response, 

compared to only 24% of patients treated with doses <260 mg/m2 (P = 0.001). But unlike the 

previous study, TTP was higher in patients treated with doses >260 mg/m2, when compared 

to patients treated <260 mg/m2 (16 versus 7 months; P = 0.003).80 These data are premature, 

and intervention prospective studies should test the superiority of genotype-driven dosing of 

irinotecan versus standard dosing, in relation to survival in metastatic colorectal cancer. 

The evidence is still too sparse to provide a complete understanding of the 

relationship between germline variants associated with ADRs and survival in patients treated 

with EGFR and VEGF-pathway inhibitors, largely due to a lack of validated SNPs predictive 

of toxicity. Several phase II-III studies have linked the occurrence and severity of EGFR 

inhibitor-induced rash to improvements in survival.87-91 One notable phase III trial of NSCLC 

patients revealed a substantial survival benefit when patients experienced grade 2 and 3 rash 

compared to when no rash was observed (7 and 11 months, respectively, versus 3 months).87 

Moreover, several studies have reported an association between higher response and survival 

with less CA repeats, independently from its effect of skin rash or other toxicities,52,92 but 

other studies failed to validate this relationship.93 A prospective phase II dose-driven 

erlotinib study in NSCLC patients attempted to discover whether dose escalation beyond 

MTD would confer a survival advantage. The results from this dose-to-rash erlotinib dosing 

study revealed that all patients who achieved at least a partial response also experienced rash. 

Progression free survival was significantly extended in patients who experienced grade 2 

rash, when compared to patients without rash (3.5 versus 1.9 months; HR = 0.52; P = 
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0.051).94 But, this study did not investigate the role of germline variants on incidence and 

severity of rash, dose escalation or survival. Furthermore the effects of dose reductions of 

EGFR inhibitors, as a result of grade 3-4 rash, on efficacy and survival have not been 

assessed. Clearly in the case of EGFR inhibitors, the germline variant-rash-dose escalation 

(or reduction) relationship and its effects on efficacy and survival require further and deeper 

examination. 

Studies of patient populations have linked the incidence of bevacizumab-induced 

grade 3-4 hypertension to improved survival outcomes.95,96 More recently, associations 

between VEGF variants and survival have been explored.97,98 A trial of advanced breast 

cancer patients treated with bevacizumab tested VEGF germline variants (-634G/C, -

1498T/C, -2578C/A and -1154G/A) for associations with hypertension and survival. This 

study demonstrated that patients with the -634CC and 1498TT genotypes, who experienced 

grade 3-4 hypertension, achieved superior median overall survival compared to patients with 

no hypertension (38.7 versus 25.3 months; P = 0.002), while the -634G/C and -1498C/T 

variants were not associated with improved survival.59 But, the results of these associations 

have not been readily replicated, and data from other studies have associated improved 

survival outcomes to the  -634GG 98 and 1498CC genotypes.99 However, data from this trial 

did reveal the potentially important impact of the -2578AA and -1154AA genotypes on 

improved survival outcomes.59 The -2578A and the -1498T alleles are in high linkage 

disequilibrium in the 1000 Genomes reference population of Caucasians (LD, r2= 0.966).100 

This suggests that an LD block of genetic variation, containing these variants, may impact 

both phenotypes, and could potentially be useful as predictive markers of both hypertension 

and survival.   
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High VEGF expression and MVD have been associated with decreased survival,101 

and the results from the previous study showed that the -2578A allele trended toward lower 

VEGF expression 59. A plausible mechanistic explanation is that the -2578AA genotype 

causes lower VEGF expression and lower levels of VEGF may slow angiogenesis and the 

vascularization of the tumor, therefore contributing to increased survival. A similar process 

may also account for the bevacizumab-induced hypertension. It can be postulated that 

inhibition of the VEGF pathway, as a result of bevacizumab administration and in 

combination with the -1498TT and -634CC genotypes, may result in impaired 

vascularization. Lower VEGF levels leads to rarefaction, which is a process that results in 

reduced MVD, increased peripheral vascular resistance, and ultimately the onset of 

hypertension.56 The impact of these germline variants, in terms of their effects on 

hypertension and survival, has just begun to be analyzed in studies of other VEGF-pathway 

inhibitors, such as sunitinib.60 Such studies could be extremely useful to prioritize validation 

of these variants in patients prescribed other targeted therapies from this class, which all 

share similar rates of high-grade hypertension. These findings exemplify the challenges 

facing researchers and clinicians, and illustrate the difficulty in applying such information to 

guide dosing. Although we start to understand the intricacy of the effects of VEGF genetics 

on both hypertension and survival, more efforts should address whether genotype-driven 

hypertension of bevacizumab or sunitinib can negatively impact dosing and compromise 

survival.   
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A1.6 Conclusions 

Incorporation of validated pharmacogenetic markers into routine practice is of 

paramount importance to clinicians as they strive to reduce severe and life-threatening 

ADRs. Prevention and mitigation of ADRs improves patient quality of life and compliance to 

chemotherapy, which ultimately may lead to better survival outcomes. Understanding the 

putative relationship between germline variants, ADRs, chemotherapy dosing, and survival is 

essential to the identification and translation of pharmacogenetic markers. We believe that 

any validation approach of pharmacogenetic markers, with potential clinical utility, must 

reflect incorporation of these four key components.  

The examples of TPMT and 6-mercaptopurine, UGT1A1*28 and irinotecan, DPYD 

and the fluoropyrimidines, EGFR and EGFR inhibitors, and VEGF and bevacizumab provide 

illustrations of the varying levels of success that researchers and clinicians have had in 

translating pharmacogenetic molecular markers to the clinic.  Currently, the example of 

prospective TPMT screening and subsequent dose adjustments in pediatric ALL patients has 

been the model for pharmacogenetic success in oncology. Increased numbers of prospective 

clinical trials, similar to those used to justify prospective TPMT testing, are direly needed to 

validate many more pharmacogenetic markers.  Moreover, specific dosing recommendations 

need to be included into drug labels to help guide clinician decision-making processes.  

Dosing recommendations based on TPMT and UGT1A1 genotypes should be clarified and 

prospective trials should be conducted to solidify the relationship linking DPYD, EGFR, and 

VEGF variants to ADRs.  

While a few smaller trials have explored the effect of genotype on ADRs, dosing and 

survival, only a handful of studies have conducted well-powered prospective trials to explore 



206 

this relationship. This could be due to a number of reasons, ranging from low frequency of a 

particular germline variant (i.e. DPYD*2), to a lack of a convincing body of evidence 

conclusively linking a germline variant to ADRs and dose modifications (i.e. EGFR and 

VEGF-pathway inhibitor germline variants). The DPYD example illustrates how the current 

approach of trying to identify highly penetrant, single gene variants to explain complex 

phenotypes, such as ADRs, to be used as pharmacogenetic markers, may be partially flawed. 

Research to identify novel markers may rely on more sophisticated methods to characterize 

polygenic effects. In addition, research to identify translatable pharmacogenetic makers with 

downstream effects on survival may be complicated by the inability to take into account the 

effects of somatic mutations, tumor heterogeneity, epigenetic factors or other undiscovered 

prognostic confounders. But, identification of pharmacogenetic markers, validated through 

approaches that consider the germline variant-toxicity-survival relationship, will help 

clinicians craft strategies that rationally dose drugs within an enlarged therapeutic window to 

optimize efficacy while mitigating ADRs. 

 

A1.7 Future Perspectives 

Adoption of validated pharmacogenetic markers into routine clinical practice has 

been slow, in part due to the scarcity of genotype-driven trials that implement the approach 

we have outlined. As the field of pharmacogenetics continues to evolve, retrospective meta-

analyses of promising gene variants might validate or refute their use in the clinic. 

Prospective interventional studies involving patients stratified by genotype will be a means of 

systematically collecting phenotype data, while also collecting data on potential confounding 

factors that would inhibit translation of germline variants into clinically useful 
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pharmacogenetic markers. Finally, secondary, pharmacogenetically driven post-hoc analyses 

of phase III studies (which are sufficiently powered for genomic analysis) will further 

analyze the relationship between genetics, dosing strategies, ADRs and survival outcomes. 

Candidate gene and genome-wide association studies are two methods that will continue to 

drive identification of pharmacogenetic markers.102 As the number of approved oral 

chemotherapeutic medications increases, strategies based on germline variant-toxicity-dose 

paradigms need to be developed to help identify patients at increased risk for the onset of 

common ADRs that adversely affect patient quality of life and compliance to therapy. 

Existing statistical models might aid in the process of elucidating the links that 

connect germline variants to toxicity, dosing, and survival. These relationships will be better 

understood by evaluating a cumulative incidence of an event in the context of a regression 

model of competing risks. Interdependence of variables limits the ability of existing 

statistical models to extricate one event of interest, for analysis, from all other competing 

risks. Frequently in cancer studies, several competing events (phenotypes) are present that 

cause treatment failures. The event of interest might occur later in treatment than the 

occurrence of severe ADRs, disease progression, or death, which could result in early 

withdrawal from the study. Use of a standard case-control approach for analyzing the data 

might be flawed because competing risks and cumulative incidences are ignored, and has the 

potential to shroud the identification of pharmacogenetic markers. In recent years, cancer 

researchers have successfully implemented novel methodologies103,104 into cumulative 

incidence competing risks model in their analyses.96,105-107 Future studies, which analyze 

pharmacogenetic markers, should employ these types of analyses because the intricacies of 

the model allow for a more accurate depiction of probabilities of events of interest occurring 
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in the presence of competing risks. By employing this statistical model, researchers will be 

able to compare cumulative incidence curves, between two or more groups stratified by 

genotype, for a phenotype of interest. 

Another reason for the slow inclusion of pharmacogenetic biomarkers into clinic is 

the conspicuous absence of explicit pharmacogenetic-based dosing guidelines published by 

regulatory bodies. The Clinical Pharmacogenetics Implementation Consortium (CPIC) of the 

National Institutes of Health’s Pharmacogenomics Research Network (http://www.pgrn.org) 

and the Pharmacogenomics Knowledge Base (PharmGKB, http://www.pharmgkb.org) 

provide peer-reviewed, updated, evidence-based, freely accessible pharmacogenetic 

guidelines for chemotherapeutic agents.77 These guidelines will facilitate the translation of 

knowledge derived from laboratory-based pharmacogenetic and pharmacogenomic research 

into the clinic, and provide explicit instructions regarding dosing and testing of these agents. 

Dosing information will be customized for patients based on treatment response. Guidelines 

have already been developed for TPMT and 6-thioguanine and 6-mercaptopurine dosing,78 

but the CPIC and other consortia will continue to develop guidelines for gene-chemotherapy 

pairings into the future. In addition to CPIC, other consortia, such as the Pharmacogenetics 

Working Group from the Netherlands, will also continue to publish pharmacogenetic-based 

dosing guidelines for chemotherapy and targeted agents. To date, the Pharmacogenetics 

Working Group has published dosing guidelines for tamoxifen, irinotecan, 6-mercaptopurine, 

and 5-fluorouracil/capecitabine, based on pharmacogenetic markers, but will continue to 

publish guidelines that will complement the work of the CPIC and PharmGKB.108 Published 

pharmacogenetic-based dosing guidelines will undoubtedly aid clinicians in the optimization 
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of treatment efficacy, mitigation of toxicity, and improvement of both medication adherence 

as well as quality of life for patients taking chemotherapy. 

Finally, interethnic differences in the distribution of variant alleles could also 

potentially obstruct the adoption of pharmacogenomic standards and impede adoption of 

pharmacogenetic biomarkers into the clinic. Projects, such as the Pharmacogenomics for 

Every Nation Initiative (PGENI, http://www.pgeni.org), will serve to address interethnic 

differences in allele frequency distributions. Currently, PGENI has established regional 

centers in six countries, and are determining allele frequencies of known polymorphisms in 

different populations. Ultimately, initiatives like PGENI will help identify interethnic 

differences that aid in medication formulary decisions, population stratification in genotype-

driven clinical trials, and even target identification early on in the global drug development 

process. 

 

A1.8 Executive Summary 

Adverse Drug Reactions (ADRs) 

• ADRs account for 7% of all hospital admissions, occur in 10-20% of all patients and 

increase hospital stays 

• ADR-related morbidity exceeds $3.6 billion annually in the United States 

• Common toxicities occur frequently in oncology patients and affect medication 

adherence 

• Greater than 60,000 oncology patients are hospitalized annually in the United states 

due to severe neutropenia and neutropenia has an annual mortality rate of 6.8% 

• Prevention and mitigation of ADRs improves quality of life and medication 

adherence, and may lead to better survival outcomes  
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Chemotherapy Dose  

• Maintaining dose for the entire course of treatment has been shown prospectively and 

retrospectively, in various tumor types, to be correlated with better outcomes 

• Traditional cytotoxic chemotherapies are dosed to MTD, but novel molecularly-

targeted agents could be dosed to OBD 

TPMT and 6-mercaptopurine 

• TPMT*2, *3A, and *3C account for over 95% of inherited TPMT deficiency. 

• Reduced TPMT function places patients at significantly greater risk for 6-

mercaptopurine–induced ADRs, including neutropenia  

• Patients heterozygous and homozygous for reduced TPMT function alleles receive 

50% and ≥90% reductions of the initial dose of 6-mercaptopurine, respectively 

• Dose reductions in patients with reduced TPMT function results in less grade 3-4 

neutropenia, while preserving positive survival outcomes 

UGT1A1 and Irinotecan 

• TA repeats in the UGT1A1 promoter have been associated with UGT1A1 

transcriptional efficiency and glucuronidation levels of the active metabolite of 

irinotecan  

• The risk of grade 3-4 neutropenia is ~9.3-fold higher in patients with the 

UGTA1A1*28/*28 genotype, when compared to all other patients, UGTA1A1*28/*28 

patients are at significantly higher risk for grade 3-4 neutropenia at low and medium 

doses of irinotecan, when compared to UGTA1A1*1/*28 and UGTA1A1*1/*1 patients 
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• UGT1A1*1 patients were able to tolerate doses that exceed the standard irinotecan 

MTD, and dose reductions to UGT1A1*28 patients due to neutropenia did not 

compromise survival outcomes 

• Explicit dosing recommendations for patients with UGT1A1*1 versus UGT1A1*28 

have not been published 

DPYD and 5-fluorouracil/Capecitabine 

• Germline variants in DPYD have been associated with increased ADRs 

• The DPYD*2 allele is not prevalent in the general population, but is associated with a 

3.4-fold higher risk for grade 4 neutropenia, when compared to patients with normal 

DPD activity 

• The relationship between DPYD*2 genotype, grade 3-4 neutropenia and survival 

remains unclear and requires further investigation 

EGFR and Erlotinib/Cetuximab 

• Skin rash is an ADR that is experienced by  ~80% of patients taking EGFR inhibitors 

• A CA repeat in the intron 1 region of EGFR has been associated with increased 

incidence of rash in patients taking EGFR inhibitors 

• Increased incidence of rash has been associated with increased progression free 

survival 

• The role of germline variants in EGFR inhibitor-induced rash, dosing and survival 

remains unclear 

VEGF and Bevacizumab 

• The onset of hypertension has been correlated with increased survival in patients 

treated with bevacizumab 
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• Bevacizumab-induced hypertension and better survival outcomes may be related to 

germline variations in the VEGF pathway 

• VEGF germline variants have been associated with decreased incidence of 

hypertension (-634CC and -1498TT) and increased survival (-2578AA and -1154AA) 

• The -2578C/A and -1498C/T variants are in high LD, and could be contributing to 

both bevacizumab-induced hypertension and survival outcomes 

• The relationship between VEGF-pathway germline variants and bevacizumab dosing 

is still unclear 

Conclusions 

• Any approach to clinical validation of pharmacogenetic markers must reflect an 

understanding of the relationships between germline variants, ADRs, chemotherapy 

dosing, and survival  

• Consortia, such as PharmGKB, CPIC and the Pharmacogenetics Working Group will 

provide pharmacogenetically-based dosing recommendations for chemotherapeutics 

and aid in the translation of pharmacogenetic markers into clinical practice  

• Initiatives such as PGENI will help identify interethnic differences that aid in 

medication formulary decisions, population stratification in genotype-driven clinical 

trials, and even target identification early on in the global drug development process   
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APPENDIX 22: CLINICAL VALIDITY OF NEW GENETIC BIOMARKERS OF 

IRINOTECAN NEUTROPENIA: AN INDPENDENT REPLICATION STUDY 

 

A2.1 Overview 

The overall goal of this study was to provide evidence for the clinical validity of nine 

genetic variants in five genes previously associated with irinotecan neutropenia and 

pharmacokinetics. Variants associated with ANC nadir and/or irinotecan pharmacokinetics in 

a discovery cohort of cancer patients were genotyped in an independent replication cohort of 

108 cancer patients.  Patients received single-agent irinotecan every three weeks. For ANC 

nadir, we replicated UGT1A1*28, UGT1A1*93 and SLCO1B1*1b in univariate analyses. For 

irinotecan AUC0-24, we replicated ABCC2 -24C>T; however ABCC2 -24C>T only predicted 

a small fraction of the variance. For SN-38 AUC0-24 and the glucuronidation ratio, we 

replicated UGT1A1*28 and UGT1A1*93. In addition to UGT1A1*28, this study 

independently validated UGT1A1*93 and SLCO1B1*1b as new predictors of irinotecan 

neutropenia. Further demonstration of their clinical utility will optimize irinotecan therapy in 

cancer patients.  

 

A2.2 Introduction 

Irinotecan is an anticancer agent commonly used for the treatment of metastatic 

colorectal cancer and other solid tumors. Irinotecan is a potent inhibitor of topoisomerase I, 

                                                           
2 This chapter was published The Pharmacogenomics Journal (Crona DJ, et al. Pharmacogenomics J. 
2015 Apr 14 [Epub ahead of print]. 
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and is initially hydrolyzed to its active metabolite, SN-38, which is then subsequently 

inactivated through UGT1A1-mediated glucuronidation. A significant proportion of patients 

treated with irinotecan develop toxicities, including severe neutropenia. Neutropenia is a 

common, serious, dose-dependent and dose-limiting toxicity of irinotecan.1 

A common, germline genetic variation in UGT1A1 predisposes patients to an 

increased risk of irinotecan-induced toxicities.2, 3 The number of TA repeats in the UGT1A1 

promoter is inversely proportional to the transcriptional efficiency of the gene,4 mRNA 

expression,5 and protein levels.6  Patients with the UGT1A1*28 variant have seven TA 

repeats (compared to six repeats in patients with UGT1A1*1), have decreased SN-38 

glucuronidation,7 and experience increased systemic exposure to SN-38, which results in a 

higher risk of severe neutropenia.1 As a result, an FDA-approved UGT1A1*28 genotyping 

test has been made commercially available,8 and the irinotecan label has been revised to 

include UGT1A1*28 as a predisposing factor for severe neutropenia.9  

Irinotecan-induced neutropenia is a complex, polygenic phenotype. There is 

significant interindividual variation in systemic exposure to both irinotecan and SN-38 that 

cannot be explained solely by UGT1A1*28. Several additional genetic variants contribute to 

both variability in irinotecan pharmacokinetics and the risk of severe neutropenia.10-16 The 

FDA-approved UGT1A1*28 genetic test has only moderate predictive power for severe 

toxicity due to its low positive predictive value,8 and therefore the genetic test has not been 

incorporated into routine clinical practice. The discovery of additional variants associated 

with neutropenia is needed to improve the utilization of irinotecan genetic testing. 

Pharmacogenetic studies have identified a vast set of genetic variants as predictors of 

chemotherapy efficacy and toxicity. The majority of these proposed variants have failed to 
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produce similar results across different studies, which has limited the clinical utility of 

pharmacogenetics.17, 18 Therefore, prospective replication of pharmacogenetic findings in 

independent and external cohorts of patients is essential to hasten the implementation of 

pharmacogenetics into routine clinical practice.  

In a previous study of cancer patients treated with single-agent irinotecan, novel gene 

variants that were associated with irinotecan disposition and toxicity were identified.16  In 

addition to UGT1A1*28, other variants, mostly in drug transporter genes, were associated 

with neutropenia and irinotecan pharmacokinetics. Therefore, we conducted a replication 

study to test the clinical validity of these variants in an external cohort of cancer patients 

treated with single-agent irinotecan.  

 

A2.3 Materials and Methods 

A2.3.1 Study design 

The overall goal of the study was to replicate genetic associations for irinotecan 

neutropenia and pharmacokinetics previously identified in a discovery cohort.16 The primary 

objective was to validate the associations between four genetic variants and absolute 

neutrophil count (ANC) nadir by testing them in an external replication cohort. The 

secondary objective was to validate the effects of eight genetic variants previously associated 

with pharmacokinetic parameters in the discovery cohort by analyzing them in the replication 

cohort. Thus, a total of nine common variants in five genes (ANC nadir and the 

pharmacokinetic phenotypes shared two variants) were genotyped in the replication cohort 

and tested for associations. Variants for replication testing were selected based on significant 

genotype-phenotype associations (p≤0.05) observed in the discovery cohort. All patients in 
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the replication cohort were White, and therefore only the previously genotyped White 

patients comprised the discovery cohort (n=67).16  

 

A2.3.2 Patient characteristics 

In the discovery cohort, advanced solid tumor patients were treated at the University 

of Chicago (Chicago, USA) with a 90-min infusion of single-agent irinotecan every three 

weeks at 300 mg/m2 (n=18) or 350 mg/m2 (n=49). Eligibility criteria included adequate 

hematopoietic function (white blood cell count >3,500/µL, ANC >1,500/µL, platelets 

≥100,000/µL), normal renal and hepatic function (creatinine <1.5 mg/dL, total bilirubin 

<1.25 x upper limit of normal (ULN), and AST/ALT <5 x ULN), and adequate performance 

status (Karnofsky score >70%). Plasma pharmacokinetic parameters of irinotecan and 

metabolites were measured during and after the first cycle infusion of irinotecan. Forty-two 

genetic variants in 12 candidate genes of the irinotecan pathway were previously genotyped 

and tested for association with irinotecan pharmacokinetics and ANC nadir, measured during 

cycle 1.  

In the replication cohort, 108 White advanced solid tumor patients were treated at the 

Erasmus University Medical Center, Erasmus MC Cancer Institute (Rotterdam, The 

Netherlands).19-21 Patients received a 90-min infusion of single-agent irinotecan every three 

weeks at 600 mg (flat dose, n=58), 350 mg/m2 (n=31), or 380-1060 mg (flat dose calculated 

according to an algorithm,19 n=19).  Eligibility criteria included adequate hematopoietic 

function (ANC >2,000/µL, platelets >100,000/µL), and normal renal and hepatic function 

(creatinine clearance >60 mL/min, total bilirubin <1.25 x ULN, and AST/ALT <3 x ULN). 
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Plasma pharmacokinetics of irinotecan and metabolites were measured during and after the 

first cycle infusion. 

  All patients in the discovery and replication cohorts provided written informed 

consent and the local institutional review boards approved the clinical protocols.  Patient 

characteristics from the discovery and replication cohorts are provided in Table A2.1. 

 

A2.3.3 Patient phenotyping: pharmacokinetic parameters and ANC nadir 

In both cohorts, pharmacokinetic parameters included: irinotecan area under the 

concentration-time curve to the last time of sampling (AUC0-24), AUC0-24 of the active SN-38 

metabolite, AUC0-24 of the inactive SN-38 glucuronide (SN-38G), and the ratio of SN-38G 

AUC0-24 to SN-38 AUC0-24 (glucuronidation ratio). 

For the discovery cohort, samples were collected on day 1 of cycle 1 at baseline prior 

to irinotecan infusion, during the infusion (30, 60, and 90 min), and after the infusion (10, 20, 

30 and 45 min, 1, 1.5, 2, 4, 6, 8, 12 and 24 h). Plasma concentrations of irinotecan and 

metabolites were measured, as previously reported.10 Pharmacokinetic parameters were 

calculated by non-compartmental analysis (WinNonlin®, Pharsight Corp., Cary, NC, USA).  

For the replication cohort, samples were collected on day 1 of cycle 1 at baseline 

prior to infusion, during the infusion (30 and 90 min) and after the infusion (10, 20 and 30 

min, and 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12 and 24 h). Plasma concentrations of irinotecan and 

metabolites were measured, as previously reported.20, 22, 23 Pharmacokinetic parameters were 

calculated by non-compartmental analysis (PK Solutions v2.0, Summit Research Services, 

Montrose, CO, USA).  
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In both cohorts, complete blood counts were taken at baseline, weekly throughout 

cycle 1, and then prior to the start of cycle 2 to obtain the measurements of the ANC nadir.   

 

A2.3.4 Genotype data 

Nine common variants, previously associated with irinotecan pharmacokinetics and 

ANC nadir in the discovery cohort, were genotyped in the replication cohort: ABCB1 IVS9 

44A>G, ABCC1 1684T>C, ABCC1 IVS11 -48C>T, ABCC2 3972C>T, ABCC2 -24C>T, 

SLCO1B1*1b, SLCO1B1*5, UGT1A1*28, and UGT1A1*93.  DNA isolated from peripheral 

blood was used for genotyping. All genotyping assays were performed on an Applied 

Biosystems TaqMan 7500 (Life Technologies, Grand Island, NY, USA). UGT1A1*93 was 

genotyped by restriction fragment length polymorphism PCR, using 5’-

ACCTCTAGTTACATAACCTGAA-3’ as the forward primer sequence and 5’-

ATAAACCCGACCTCACCAC-3’ as the reverse primer sequence. UGT1A1*28 genotyping 

methods for the replication cohort have been previously described.20 All other variants were 

genotyped using TaqMan SNP genotyping assays (Life Technologies, Grand Island, NY, 

USA) as per the manufacturer’s instructions. Positive controls of known genotypes were used 

in the assays.  

 

A2.3.5 Statistics 

Data for all phenotypes for both cohorts were log10 transformed. Hardy-Weinberg 

Equilibrium was evaluated for all nine variants genotyped in both the discovery and 

replication cohorts (Table A2.S1). In the discovery cohort, associations between genetic 

variants and clinical phenotypes were analyzed using linear regression, and were adjusted for 
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sex, age, and irinotecan dose (300 or 350 mg/m2). All ANC nadir analyses were also adjusted 

for baseline ANC.  

In the replication cohort, we prospectively tested associations between the nine gene 

variants described above and phenotypes of ANC nadir and irinotecan pharmacokinetics.  

The same statistical methodologies employed for the discovery cohort were applied: linear 

regression adjusted for sex, age, and irinotecan dose (350 mg/m2, 600 mg flat dose, or dose 

by an algorithm19), with baseline ANC used to adjust the ANC nadir analysis. Flat doses 

were converted to mg/m2 according to the body-surface area of each patient. The same mode 

of inheritance (dominant, recessive, or additive) used in the discovery cohort was also used in 

the replication cohort.  

No general consensus exists to provide standardized criteria for replication cohort 

analyses. We considered a given variant’s association to be replicated based on direct 

comparison of the observed estimates of effect in the discovery and replication cohorts:  an 

association’s estimate of effect in the replication cohort had to be in the same direction as in 

the discovery cohort (an increased or decreased estimate of phenotype change in both 

cohorts), and lie within the 95% confidence interval (CI) of the discovery cohort’s estimate. 

Two-sided p-values are reported for reference. Since comparisons between discovery and 

replication cohort estimates of effect were pre-specified and rely on 95% CIs from the 

discovery cohort, not on hypothesis testing in the replication cohort, issues related to 

multiplicity are not present. Therefore, no correction for multiple comparisons was 

performed.  
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A2.4 Results 

This study sought to replicate, in an independent, external cohort of White cancer 

patients from the Netherlands, nine variants from five genes that had previously associated 

with ANC nadir or irinotecan pharmacokinetics16. Baseline clinical patient characteristics 

and pharmacokinetic data (Table A2.1), as well as allele and genotype frequencies (Table 

A2.S1) were comparable between the two cohorts. Below we report the replication results of 

each variant for neutropenia and irinotecan pharmacokinetics (Table A2.2).  

 

A2.4.1 Replication of variants previously associated with ANC nadir 

For ANC nadir, four variants that previously associated with ANC nadir in the discovery 

cohort were tested in the replication cohort. In the discovery cohort, UGT1A1*28 (additive 

model), UGT1A1*93 (recessive model), and ABCC1 IVS11 -48C>T (recessive model) were 

associated with decreased ANC nadir; SLCO1B1*1b (dominant model) was associated with 

increased ANC nadir. In the replication cohort, we considered UGT1A1*28, UGT1A1*93 and 

SLCO1B1*1b replicated, since the direction of the estimate of the effect for each variant was 

consistent between both cohorts (decreased ANC nadir for UGT1A1*28 and UGT1A1*93, as 

well as increased ANC nadir for SLCO1B1*1b) and each was within the 95% CIs for its 

respective discovery cohort estimate. ABCC1 IVS11 -48C>T failed to replicate (Table A2.2).  

 

A2.4.2 Replication of variants associated with the pharmacokinetic parameters of irinotecan 

For irinotecan AUC0-24, two variants that were previously associated with irinotecan 

AUC0-24 in the discovery cohort were tested in the replication cohort. In the discovery cohort, 

ABCC2 -24C>T and SLCO1B1*5 (both dominant model) were associated with increased 
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irinotecan AUC0-24. In the replication cohort, we considered ABCC2 -24C>T replicated since 

the direction of the estimate of the effect was consistent between both cohorts (increased 

AUC0-24 for both variants), and was within the 95% CIs for the discovery cohort estimate. 

SLCO1B1*5 failed to replicate (Table A2.2).  

For SN-38 AUC0-24, three variants that were previously associated with SN-38 AUC0-

24 in the discovery cohort were tested in the replication cohort. In the discovery cohort, 

UGT1A1*28 and UGT1A1*93 (both additive model) were associated with increased SN-38 

AUC0-24, while ABCB1 IVS9 -44A>G (dominant model) was associated with decreased SN-

38 AUC0-24. In the replication cohort, we considered UGT1A1*28 and UGT1A1*93 replicated 

since the direction of the estimate of the effect for each variant was consistent between both 

cohorts (increased AUC0-24 for both variants), and each was within the 95% CIs for its 

respective discovery cohort estimate. ABCB1 IVS9 -44A>G failed to replicate (Table A2.2). 

For SN-38G AUC0-24, although ABCC2 3972C>T (recessive model) was associated 

with increased SN-38G AUC0-24 in the discovery cohort, it failed to replicate when tested in 

the replication cohort (Table A2.2).  

For the glucuronidation ratio, three variants that associated with the glucuronidation 

ratio in the discovery cohort were tested in the replication cohort. In the discovery cohort, 

UGT1A1*28 (additive model), UGT1A1*93 (additive model), and ABCC1 1684T>C 

(dominant model) were associated with a decreased glucuronidation ratio. In the replication 

cohort, we considered UGT1A1*28 and UGT1A1*93, replicated, since the direction of the 

estimate of the effect for each variant was consistent between both cohorts (decreased 

glucuronidation ratio for all variants), and each was within the 95% CIs for its respective 

discovery cohort estimate. Although the association between ABCC1 1684T>C (dominant 
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model) and glucuronidation ratio also satisfies our criteria for replication, we are less 

convinced of the association, given the 84% reduction in the magnitude of the estimate as 

compared to that of the discovery cohort (Table A2.2). 

 

A2.5 Discussion 

In this replication study, we validated the clinical effects of new germline genetic 

variants for neutropenia and irinotecan pharmacokinetics using an independent, external 

cohort of White cancer patients treated with single-agent irinotecan.  

The most important result of this study was the clinical validation of SLCO1B1*1b. 

To our knowledge, this provides the first replicated data implicating SLCO1B1*1b as a 

protective marker against irinotecan-induced neutropenia. SLCO1B1 encodes for organic 

anion transporter family member 1B1 (OATP1B1), and mediates hepatic uptake of both 

endogenous24, 25 and xenobiotic compounds.26 OATP1B1 is a hepatic uptake transporter of 

SN-38,27, 28 but not irinotecan.28 In this study, we have replicated results from the discovery 

cohort, and have shown that the variant *1b allele was associated with a higher ANC nadir 

compared to the reference sequence *1a allele (Figure A2.1A). Since SLCO1B1*1b is a non-

synonymous variant (asparagine to aspartate amino acid change), and SLCO1B1 is primarily 

expressed in the liver,29 we postulate this variant might associate with reduced neutropenia 

by altering systemic SN-38 exposure. The effect of SLCO1B1*1b on SN-38 AUC0-24 was -

0.083±0.076 (mean±SE) in the White patients of the discovery cohort (n=67; p=0.278), and 

because the p-value was >0.05, this association was not selected for analysis in the 

replication cohort. However, an exploratory univariate analysis (adjusted for dose (mg/m2), 

age and sex) revealed that SLCO1B1*1b was associated with decreased SN-38 AUC0-24 in 



232 

the replication cohort (n=84; -0.128±0.055, p=0.023). These results support the hypothesis 

that the protective effect of SLCO1B1*1b against neutropenia could be due to increased 

hepatic uptake of SN-38, resulting in increased SN-38 elimination from the plasma after 

irinotecan infusion.  

While the pharmacokinetic data are supportive of the protective effect of 

SLCO1B1*1b against neutropenia, the functional effect of this variant is less clear. Using 

RNA expression data from human livers,30 SLCO1B1*1b (as well as variants in linkage 

disequilibrium r2 ≥0.8) did not associate with changes in the mRNA expression of SLCO1B1 

(results not shown). In oocyte studies, the uptake of SN-38 was higher for SLCO1B1*1b than 

SLCO1B1*1a (the reference sequence allele), but the observed difference was not 

statistically significant (see Figure 6a of Nozawa et al.28). Our results provide evidence that 

SLCO1B1*1b results in a gain of function, which leads to increased hepatic uptake of SN-38 

from the plasma. Although this seems the most plausible hypothesis, other mechanisms 

related to the widespread functions of this transporter on several endogenous constituents 

cannot be ruled out. 

Another important conclusion of this study is that UGT1A1*93 confers an increased 

risk of irinotecan-induced neutropenia. We replicated results from the discovery cohort, and 

have shown that the *93 variant was associated with a lower ANC nadir compared to the 

reference sequence *1 allele (Figure A2.1B). UGT1A1*93 is a -3156G>A change discovered 

during a resequencing study of the region 5′ to the UGT1A exon 1.31 According to an analysis 

of more than 150 human livers where genome-wide genotyping data were available, 

UGT1A1*93 is a major determinant of decreased levels of the UGT1A1 protein (Pearson’s 

r=-0.46, p=3.5x10-9),30, 32 and additional preliminary data corroborate these findings.33 
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Because UGT1A1*93 is in partial linkage disequilibrium with UGT1A1*28 among White 

patients (r2=0.68),34 our results suggest that UGT1A1*93, based on its greater estimate of 

effect for ANC nadir, may be a more robust marker for neutropenia than UGT1A1*28 (Table 

A2.2). While the UGT1A1*93 variant has not yet been included in the FDA-revised 

irinotecan label, we envision that recommendations supporting UGT1A1*93 genotyping 

could eventually replace UGT1A1*28 in the irinotecan drug label. 

The association between ABCC2 -24C>T and increased irinotecan AUC0-24 was also 

replicated (Figure A2.1C). ABCC2 encodes for the multidrug resistant protein-2 and 

contributes to the biliary clearance of irinotecan, SN-38 and SN-38G.35, 36 The -24 C>T 

variant has been associated with a nearly 20% reduction in promoter activity.37 This 

observation is consistent with our results, where the variant T allele was associated with 

increased irinotecan AUC0-24, likely due to decreased biliary clearance. However the estimate 

of effect size was relatively small (Table A2.2), and additional studies should be conducted 

to elucidate the extent of its clinical relevance. 

Established criteria for conducting pharmacogenetic replication studies do not 

currently exist, but we provide a general framework for conducting such studies. 

Pharmacogenetic replication studies are beset with numerous challenges, including dosing 

and population heterogeneity between the discovery and replication cohorts. In our study, we 

attempted to control for population heterogeneity by comparing patients in the replication 

cohort to only the White patients from the original discovery cohort.16 Dosing heterogeneity 

between the two cohorts may have affected our ability to replicate some variants, but it did 

not confound all associations, as evidenced by the detection of associations serving as 

“positive controls”, such as UGT1A1*28 versus SN-38 AUC0-24 and UGT1A1*28 versus 
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glucuronidation ratio (but not irinotecan AUC0-24). Moreover, we are confident that dosing 

heterogeneity did not significantly confound our replication results because irinotecan has 

been shown to demonstrate dose linear pharmacokinetics over a wide range of doses.38 

Regarding our statistical approach, the assessment of replicated associations is not based on 

hypothesis testing, and therefore using p-values as our main criteria for replication would 

have been inappropriate. Moreover, given the influence of sample size on p-values, 

utilization of p-values as the main criteria for replication could have resulted in false negative 

results. We also cannot exclude the possibility that between-cohort differences limited our 

ability to detect phenotypic differences and replicate several variants.  

This replication study allowed us to demonstrate the clinical validity of associations 

between UGT1A1*93 and SLCO1B1*1b and neutropenia. The effects of these two variants 

on neutropenia should be confirmed in studies where irinotecan is given in combination with 

other anticancer agents that have neutropenic effects (for example with 5-fluorouracil). 

Additionally, the effects of these replicated variants can currently be applied only to White 

patients. Efforts should be made to validate these variants in patients from other races who 

receive irinotecan.  Further validation of their clinical utility will aid in the implementation of 

routine irinotecan pharmacogenetic testing and optimization of personalized treatments for 

cancer patients. 
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TABLES 

Table 1. Baseline patient characteristics and pharmacokinetic data from the discovery 

and the replication cohorts. Flat dosing and dosing by algorithm19  were used only in the 

replication cohort. The distribution of the algorithm-derived doses includes: 380 mg (n=1), 

500 mg (n=1), 520 mg (n=2), 540 mg (n=1), 560 mg (n=1), 620 mg (n=2), 640 mg (n=1), 

660 mg (n=1), 680 mg (n=1), 720 mg (n=2), 740 mg (n=3), 780 mg (n=1), 900 mg (n=1), 

1060 mg (n=1). 

 Discovery Cohort 
(n=67) 

Replication Cohort 
(n=108) 

Dose 

   300 mg/m2 18 (26.9%) - 

   350 mg/m2 49 (73.1%) 31 (29.7%) 

   Flat dose (600 mg) - 58 (53.7%) 

   Dose by algorithm (380-1060 mg) - 19 (17.1%) 

Sex 

   Male 42 (62.7%) 60 (55.6%) 

   Female 25 (37.3%) 48 (44.4%) 

 

 Median Range Median Range 

Age (years) 57 34-85 58 26-75 

BSA (m2) 1.87 1.46-2.55 1.88 1.36-2.50 

Baseline ANC (cells/µL) 5.27 2.18-14.36 5.12 1.30-13.60 

ANC Nadir (cells/µL) 2.21 0.05-7.83 1.79 0.03-7.13 

 

Pharmacokinetic Parameters Mean Range Mean Range 

Irinotecan AUC0-24 (h*ng/mL)  23251 8857-65305 22776 11422-67560 

SN-38 AUC0-24 (h*ng/mL) 385 38-1957 364 79-1776 

SN-38G AUC0-24 (h*ng/mL) 1824 360-8214 2238 396-6912 

SN-38G AUC0-24 to SN-38 AUC0-24 
ratio (glucuronidation ratio) 

5.85 0.78-37.57 7.32 1-24.07 
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Table 2. Univariate analyses of the associations between genetic variants and 

phenotypes. Data were adjusted for age, sex, and dose (mg/m2). ANC nadir was also 

adjusted for baseline ANC. The genotype reference groups were the same for all discovery 

and replication cohort analyses, with the exception of ABCC1 IVS11 -48C>T and ANC nadir. 

For ABCC1 IVS11 -48C>T and ANC nadir in the replication cohort, the reference genotype 

was only CC, as there were no TT genotypes. The estimates of effect of replicated variants 

are denoted in bold. The number of patients genotyped per variant in the replication cohort 

varied due to insufficient DNA quantity. *Although the association between ABCC1 

1684T>C (dominant model) and glucuronidation ratio satisfies our criteria for replication, we 

are less convinced of the association, given the 84% reduction in the magnitude of the 

estimate as compared to that of the discovery cohort. Abbreviation: Ref = Reference.  

 

 Discovery Cohort (n=67) Replication Cohort (n=74-103) 

Variant Ref Estimate±SE 95% CI 
P-

value 
n Estimate±SE P-value 

Log10 ANC Nadir 

ABCC1 IVS11 -
48  
(C>T)  

CC/CT -0.489±0.201 
(-0.095, -

0.883) 
0.018 74 0.053±0.117 0.652 

UGT1A1*28 
(TA6>TA7) 

*1*1=1 
*1*28=2 

*28*28=3 
-0.257±0.061 

(-0.137, -
0.377) 

<0.001 75 -0.139±0.081 0.090 

UGT1A1*93 
(G>A) 

GG/AG -0.607±0.129 
(-0.354, -

0.860) 
<0.001 103 -0.417±0.170 0.016 

SLCO1B1*1b 
(A>G) 

AA 0.240±0.106 (0.032, 0.448) 0.027 84 0.278±0.107 0.012 

Log10 irinotecan AUC0-24 

ABCC2 -24 
(C>T) 

CC 0.090±0.035 (0.021, 0.159) 0.012 94 0.067±0.030 0.040 

SLCO1B1*5 
(T>C) 
 

TT 0.084±0.036 (0.013, 0.155) 0.023 83 -0.010±0.035 0.769 

Log10 SN-38 AUC0-24 

UGT1A1*28 
(TA6>TA7) 

*1*1=1 
*1*28=2 

*28*28=3 
0.140±0.046 (0.050, 0.190) 0.004 75 0.189±0.043 <0.001 

UGT1A1*93 
(G>A) 

GG=1 
AG=2 
AA=3 

0.130±0.047 (0.038, 0.222) 0.007 103 0.171±0.033 <0.001 

ABCB1 IVS9 -44  
(A>G) 

AA -0.180±0.070 
(-0.043, -

0.317) 
0.013 77 0.021±0.054 0.703 
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Log10 SN-38G AUC0-24 

ABCC2 3972  
(C>T) 

CC/CT 0.250±0.100 (0.054, 0.446) 0.019 105 -0.104±0.086 0.232 

Log10 SN-38G AUC0-24 /Log10 SN-38 AUC0-24 

ABCC1 1684  
(T>C) 

TT -0.316±0.153 
(-0.016, -

0.616) 
0.043 95 -0.052±0.059* 0.382 

UGT1A1*28 
(TA6>TA7) 

*1*1=1 
*1*28=2 

*28*28=3 
-0.170±0.048 

(-0.076, -
0.264) 

<0.001 103 -0.243±0.053 <0.001 

UGT1A1*93 
(G>A) 

GG=1 
AG=2 
AA=3 

-0.150±0.051 
(-0.050, -

0.250) 
0.004 75 -0.214±0.042 <0.001 
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Table A2.S1. Allele and genotype frequencies of the nine variants genotyped in both the 

discovery and the replication cohorts. In the replication cohort, DNA was insufficient to 

genotype the nine variants in all patients; therefore, the number of genotyped patients varies 

by variant.  HWE=Hardy Weinberg Equilibrium; MAF=minor allele frequency 

  

 
Discovery Cohort  

(n=67) 
Replication Cohort 

 (n=74-104) 

Gene Variant (rs#) Function N (%) MAF HWE N (%) MAF HWE 

ABCB1 
IVS9 -44 A>G 
(rs10276036) 

Intronic  0.46 0.01 77 0.35 0.82 

AA   25 (37)   32 (41)   

AG   23 (34)   36 (47)   

GG   19 (28)   9 (12)   

ABCC1 
IVS11 -48 C>T 

(rs3765129) 
Intronic  0.17 0.08 74 0.17 0.08 

CC   48 (72)   49 (66)   

CT   15 (22)   25 (34)   

TT   4 (6)   0 (0)   

ABCC1 
1684 T>C 
(rs35605) 

Synonymous,  
Exon 13 

 0.23 0.78 95 0.22 0.03 

TT   40 (60)   54 (57)   

TC   23 (34)   40 (42)   

CC   4 (6)   1 (1)   

ABCC2 
-24 C>T 

(rs717620) 
5’ UTR  0.18 0.34 94 0.17 0.21 

CC   44 (66)   63 (67)   

CT   22 (33)   30 (32)   

TT   1 (1)   1 (1)   

ABCC2 
3972C>T 

(rs3740066) 
Synonymous,  

Exon 28 
 0.34 0.81 104 0.36 0.84 

CC   30 (45)   43 (41)   

CT   29 (43)   47 (45)   

TT   8 (12)   14 (14)   

SLCO1B1*1

b 

388 A>G 
(rs2306283) 

Nonsynonymous, 
Exon 5 (N130D) 

 0.46 0.58 84 0.40 0.73 

AA   21 (31)   29 (35)   

AG   31 (46)   42 (50)   

GG   15 (22)   13 (15)   

SLCO1B1*5 
521 T>C 

(rs4149056) 
Nonsynonymous, 
Exon 6 (V174A) 

 0.19 0.79 83 0.13 0.74 

TT   44 (66)   63 (76)   

TC   21 (31)   19 (23)   

CC   2 (3)   1 (1)   

UGT1A1*93 
-3156 G>A 

(rs10929302) 
Intronic  0.32 0.24 103 0.28 0.57 

GG   33 (49)   52 (50)   

GA   25 (37)   44 (43)   

AA   9 (13)   7 (7)   

UGT1A1*28 
TA6>TA7 

(rs8175347) 
TA repeat,  
Promoter 

 0.34 0.25 75 0.33 0.11 

*1/*1   31 (46)   31 (41)   

*1/*28   26 (39)   39 (52)   

*28/*28   10 (15)   5 (7)   
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FIGURES 

Figure A2.1.  Associations between SLCO1B1*1b and ANC nadir (A), UGT1A1*93 and 

ANC nadir (B), and ABCC2 -24C>T and log10 irinotecan AUC0-24 (C) in the replication 

cohort. For the purpose of illustrating the replicated genetic associations, the data are not 

adjusted for the same factors used in the univariate analyses, and the differences among 

genotypes might not be the same as the ones reported in Table A2.2. ANC nadir is 

normalized to the baseline pretreatment ANC. Data are expressed as medians, 25th and 75th 

percentiles, minimums and maximums.  
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