
A RANDOMIZED APPROACH TO SPEED UP THE ANALYSIS OF

LARGE-SCALE READ-COUNT DATA IN THE APPLICATION OF CNV

DETECTION

WEIBO WANG, WEI SUN, WEI WANG AND JIN SZATKIEWICZ

1. The Proof of Consistency of RGE

1.1. Using IRLS to estimate GLM-NB model parameters. We first demonstrate using IRLS
to estimate GLM-NB model parameters.

The log likelihood for a negative binomial model is

l(y;β, φ) =

n∑
i=1

[
log

(
Γ(yi + 1/φ)

yi!Γ(1/φ)

)
+ yi log

(
φµi

1 + φµi

)
− 1

φ
log(1 + φµi)

]
,(1)

where y is the response vector of length n, β is the coefficients vector of length p, φ is the negative
binomial over-dispersion parameter, and µi = E(yi). Consider the generic form of a GLM model

l(y;β, ϕ) =

n∑
i=1

li =

n∑
i=1

{
ϕ−1[yiθi − b(θi)] + c(yi, ϕ)

}
where y is the response vector of length n, β is the coefficients vector of length p, ϕ is the GLM
dispersion parameter. Assuming the over-dispersion parameter φ is fixed, then a negative binomial
distribution belongs to the exponential family. Thus matching it with the generic form of a GLM
model, we have

ϕ = 1

θi = log

(
φµi

1 + φµi

)
,

∂θi
∂µi

=
1

V (µi)
=

1

µi + φµ2
i

b(θi) =
1

φ
log(1 + φµi) = − 1

φ
log[1− exp(θi)], b′(θi) = µi, b′′(θi) = Vi

c(yi, ϕ) =
Γ(yi + 1/φ)

yi!Γ(1/φ)

Let ηi = xTi β = g(µi), where g is a link function. In our model, ηi = g(µi) = log(µi).

To derive the the MLE of βj , we start with the score function and Fisher’s information matrix.
The score function is

Sj =
∂l(y;β, ϕ)

∂βj
=

n∑
i=1

∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

=

n∑
i=1

(yi − µi)
1

V (µi)

1

g′(µi)
xij .(2)

1
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Let Ijk be the (j, k)-th element of the Fisher’s information matrix,

Ijk =

n∑
i=1

E

[
∂li
βj

∂li
βk

]
=

n∑
i=1

E

{
(yi − µi)2

[V (µi)g′(µi)]
2xijxik

}
=

n∑
i=1

{
1

V (µi) [g′(µi)]
2xijxik

}
,

and the last equation is due to the fact that E[(yi − µi)2] = V (µi).

Let I(t−1) = I(β)|β=β(t−1) and S(t−1) = ∂l/∂β|β=β(t−1) . By Fisher scoring, the update of β

from the (t− 1)-th iteration to the t-th iteration is

β(t) = β(t−1) +
[
I(t−1)

]−1
S(t−1) ⇒ I(t−1)β(t) = I(t−1)β(t−1) + S(t−1).

Let W be a diagonal n × n matrix, with the i-th diagonal element wi = 1/{V (µi) [g′(µi)]
2} for

i = 1, ..., n. Then based on equations (2) and (3), the score function and information matrix can
be written as

S = XWζ and I = XTWX,

where X is the design matrix, ζ is a vector of length n and ζi = (yi−µi)g′(µi). When W is evaluate

based on β(t−1), we write it as W (t−1). Then the Fisher scoring equation can be written as

[XTW (t−1)X]β(t) = XTW (t−1)Xβ(t−1) + XW (t−1)ζ = XTW (t−1)
[
η(t−1) + ζ

]
.

Therefore, β(t) is the solution of weighted least squares with working response being z = η + ζ,

and zi = xiβ + (yi − µi)g′(µi), and weight for the i-th observation is 1/{V (µi) [g′(µi)]
2}. Here we

use log link function g(µi) = log(µi), and thus

zi = xiβ + (yi − µi)/µi, and wi =
µ2
i

µi + µ2
iφ

=
µi

1 + µiφ
.

1.2. Proof of Theorem 1. Here we provide proof details of Theorem 1. For equation

(3) f(β) = XT (m ◦Xβ)−XT(m ◦ y),

where X ∈ Rn×p is the original design matrix times the square root of weight matrix W , n is
the number of rows, p is the number of columns, y ∈ Rn is a n-dimensional known vector. Let
mi be the sampling indicator for the i-th entry, i = 1, ..., n; mi = 1 means that the i-th entry is
sampled, mi = 0 means otherwise. We denote ‖X‖∞ the L∞ norm of a matrix X, which is the
maximum absolute row sum of the matrix. We denote ‖v‖∞ the L∞ norm of a vector v, which is
the maximum absolute value of the elements.

Theorem 1 states that there exists a solution when Equation 3 equals 0 that is inside the hyper-
cube of the true coefficients β0.

Let

f(δ) = XT (m ◦Xδ)−XT(m ◦ y)

= XT (m ◦Xδ)−XT (m ◦Xβ0)−
[
XT(m ◦ y)−XT (m ◦Xβ0)

]
= XT (m ◦Xδ)−XT (m ◦Xβ0)−XT [m ◦ (y −Xβ0)]

Thus proving Theorem 1 is equivalent to prove that there exists a solution inside the hypercube
N to satisfy f(δ) = 0.
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After expanding XT (m ◦Xδ) around β0 by the second order Taylor expansion and inserting it
into f(δ) we have,

f(δ) =
[
XTdiag (m)X

]
(δ − β0)− ξ + r,

where ξ = (ξ1, ..., ξp)
T = XT [m ◦ (y −Xβ0)] = XTε, r = (r1, ..., rp)

T are Lagrange reminders and
for each j = 1, ..., p,

rj =
1

2
(δ − β0)∇2

[
xT
j (m ◦Xδ)

]
(δ − β0),

It is straightforward to see the second derivative ∇2
[
xT
j (m ◦Xδ)

]
= 0, so we have ‖r‖∞ = 0,

Let
f̄(δ) =

[
XTdiag (m)X

]−1
f(δ) = δ − β0 + u,

where u = −
[
XTdiag (m)X

]−1
[ξ − r].

The range ‖u‖∞, is determined by ‖
[
XTdiag (m)X

]−1 ‖∞ and ‖ξ‖∞ (we already know that
‖r‖∞ = 0).

Condition 1.1. ‖
[
XTdiag (m)X

]−1 ‖∞ = O(n−1).

Condition 1.1 ensures that the sampled matrix XTdiag (m)X is not singular. The CNV problem
setting (where copy number and intercept are set as two covariates) could be used as an illustration
example to explain Condition 1.1 is reasonable. Without the loss the generality we assume the
j-th column (j = 1, 2) of the sampled data has been standardized such that m ◦ xj = 0, and
‖m ◦ xj‖2 =

√
n0, where n0 is the size of the sampled data. If the copy number and the intercept

have not been standardized, the conclusion still holds with ‖m ◦ xj‖2 assumed to be in the order

of
√
n0.

[
XTdiag (m)X

]
becomes diag (n0, n0). The inverse is diag

(
n−10 , n−10

)
and the L∞ norm

is n−10 = O(n−1).

We study ‖ξ‖∞ from probability perspective. We first define the event E =
{
‖ξ‖∞ ≤ c−1/2

√
n0 log n0

}
,

where
√
n0 is the L2 norm of vector m ◦ xj. [5] proves the following proposition,

Proposition 1.2. P
(
|aTY − aTb′ (θ0)| > ‖a‖2ε

)
≤ ψ (ε),

where a ∈ Rn, ε ∈ (0, ‖a‖2/‖a‖∞], c = 1/(2v0 + 2M) for some M,v0 ∈ (0,∞) such that Y , M , v0,

and b′ (θ0) satisfy the moment condition (20) in [5], and ψ (ε) = 2 exp−cε
2

. Using the proposition,
the probability that event E happens could be calculated as

P (E) ≥ 1−
p∑
j=1

P
(
|ξj | ≥ c−1/2

√
n0 log n0

)
≥ 1− 2[pn−10 ],

where a corresponds to m ◦ xj, and ε = c−1/2
√

log n0. The probability goes to 1 when n0 goes to

∞. Thus the event E holds when n0 goes to ∞. Thus ‖ξ‖∞ ≤ c−1/2
√
n0 log n0 = O(n1/2

√
log n).

When Condition 1.1 is ensured, and given ‖ξ‖∞ = O(n1/2
√

log n), we have

‖u‖∞ ≤ ‖
[
XTdiag (m)X

]−1 ‖∞(‖ξ‖∞ + ‖r‖∞)

= O(n−1/2
√

log n),

so ‖u‖∞ = o(n−γ0
√

log n) for some γ0 ∈ (0, 1/2). Since for any δ ∈ N , we have ‖δ‖∞ ≥ ‖β0‖∞−dn,
where dn ≡ 2−1 min1≤j≤p{|β0j |} = O(n−γ0(log n)1/2) for some γ0 ∈ (0, 1/2). Therefore we have

min
j=1,...,p

‖δj‖ ≥ min
j=1,...,p

‖β0j‖ − dn = dn.
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For a constant C > 0 and sufficiently large n, if δj − βj = Cn−γ0
√

log n, f̄j(δ) ≥ Cn−γ0
√

log n −
‖u‖∞ ≥ 0. And if δj − βj = −Cn−γ0

√
log n, f̄j(δ) ≤ −Cn−γ0

√
log n + ‖u‖∞ ≤ 0. Because the

continuity of function f̄(δ) = (f̄1(δ), ..., f̄p(δ)), and Miranda’s existence theorem, there is a solution

β̂ for f(δ) = 0 in N , i.e., there is a solution for Equation 3 in N . Thus Theorem 1 holds.

2. GENSENG CNV Detection Framework

GENSENG’s analytic protocol comprises three steps: 1. Input data preparation (including read
quality control and Computation of read-depth and covariate values); 2. HMM inference of copy
number while correcting for biases; 3. Post-segmentation processing. We introduced each step in
the following sections.

2.1. Data Preparation. We first applied the following steps to control the quality of the raw
sequencing reads. 1. Remove any read that fails platform/vendor quality checks, or either a PCR
duplicate or an optical duplicate. 2. Extract all single-end reads and properly paired paired-end
reads. 3. Extract confidently aligned reads with MAPQ ≥ a specified threshold. In this study, we
use MAPQ ≥10, which was empirically determined.

We then divided the genome into consecutive windows. In selection of window size, we used a
sliding window approach of 200bps non-overlapping windows. The size of the window was empiri-
cally determined.

Finally we obtained the read-depth in each window by counting the number of reads in each
window. Each read (e.g. 36-mer or 51-mer from the 1000 Genomes Project data[1, 7]) is represented
by its middle base pair. A fragment is counted where read mapping information is available.

(1) If two ends of a pair fall in two windows, assign 1/2 to each window where the ends fall;
(2) If both ends of a pair fall in the same window, assign 1 to the window;
(3) If paired-ended but only one-end present, assign 1/2 to the window where the ends fall;
(4) If single-end, always assign 1 to the window where the end falls.

Covariates were calculated as a quantitative measurement of bias at each window. In this study,
the set of covariates include GC content and mappability score. GC content is computed as in the
following steps. (1) Calculate the proportion of G or C bases in each window from a given reference
genome.(2) Apply a cubic spline smoothing and then transform the GC proportion based on the
fitted curve so that the transformed GC proportion and logarithm of the read-depth are linearly
correlated. (3) The transformed GC proportion is median-centered and is referred to as GC content
hereafter. Mappability score is computed as in the following steps. (1) Align the K-mers starting
at each base position back to reference genome using a desired aligner, e.g. BWA [6]. (2) Identify
base positions where the corresponding K-mers are correctly aligned (i.e. there is a unique best
hit and it is the true position of the K-mer). (3) Compute mappability score as the proportion of
correctly-aligned bases (a.k.a. mappable bases) in a given window.

In summary, the input data is a triplet for each window represent by
{O,G,L} = {o1......oT , g1......gT , l1.....lT }, where T is the total number of windows of a chromosome,
ot denotes the read-depth, gt denotes the GC content, and lt denotes the mappability score of the
tth window.

2.2. HMM setup. We use a time-homogeneous discrete hidden Markov model (HMM) to segment
the genome to regions of same copy number. In our HMM, time represents the sliding windows
tiled along a chromosome, denoted by t.
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• The state represents the underlying copy number (CN). The state variable qt = CNt is
hidden and discrete with N possible values, (0, 1, ..., N − 1), where N , is derived from the
data. A particular sequence of the states is described by q = (q1, ..., qT ), where T is the
total number of sliding windows of a chromosome. Let πj be the initial state probability,
the probability that the state of the first window is state j. The underlying hidden Markov
chain is defined by state transitions P (qt|qt−1) and is represented by a time-independent
stochastic transition matrix A = {ajz} = P (qt = z|qt−1 = j).

• Each copy number state emits an observation, the read-depth. The observation variable,
Ot, is a discrete count variable. A particular sequence of the observations is described by
o = (o1, ..., oT ). The emission probability of a particular observation at a particular time
t for state j is described by e(t, j) = P (Ot = ot|qt = j). For a detailed description of the
emission probability, see Section 2.3.

• We use the Baum-Welch algorithm [2] to find the maximum likelihood estimates (MLE)
of the HMM parameters. Following Bilmes [3], we define the complete-date likelihood and
solve the Q function in order to find the maximum likelihood estimates (MLE) of the HMM
parameters.

2.3. Emission probability. The emission probability of the read-depth, e(t, j) = P (Ot = ot|qt =
j), is modeled as a mixture of a uniform distribution and a negative binomial distribution.

e(t, j) = c/Rm + (1− c)eNB(t, j)(4)

where c is the proportion of the random uniform component and is fixed as constant for each state;
and Rm is the largest read-depth among all windows and thus 1/Rm is the uniform density.

To describe the negative binomially distributed component, eNB(t, j), we first explain the re-
lationship between the Poisson and the negative binomial distributions. The Poisson distribution
imposes that the variance equals to the mean. The negative binomial distribution allows overdis-
persion. Specifically, if O follows a Poisson distribution with mean µ, and µ follows a gamma
distribution, the resulting distribution for O is a negative binomial distribution. The variance
of negative binomial distribution is µt + φµ2

t , where φµ2
t is the overdispersion part of the vari-

ance. As φ → 0, fNB(ot;µt, φ) reduces to a Poisson distribution with mean µt and variance µt.

fP (ot;µt) =
exp(−µt)µ

ot
t

ot!
.

Next, the mean value of the negative binomially distributed component is expressed as a function
of a set of covariates to account for confounders.

µtj = α0 ∗ (CNt)
β1 ∗ (lt)

β2 ∗ (gt)
β3(5)

where t denotes the tth window, j is the index of the copy number state, j emphasizes the depen-
dency of the mean µt on the copy number CNt, lt is the mappability score, gt is the GC content.
For computational convenience, we set CNt = 0.5 when j = 0, and set CNt = j when j > 0.

We then employ a log link function to acknowledge the fact that µtj > 0 and obtain:

log(µtj) = β0 + β1 ∗ log(CNt) + β2 ∗ log(lt) + β3 ∗ log(gt)(6)

β0, β1, β2, β3 are the regression coefficients. Specifically, β0 = log(α0), is the intercept parameter
and is interpreted as the average level of read-depth signal when all covariates are equal to zero. β1
is the amount of increase of read-depth for every unit increase of copy number, CN. β2 is the amount
of increase of read-depth for every unit increase of the mappability score, l. β3 is the amount of
increase of read-depth for every unit increase of the GC content, g.
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Thus, given the above regression model for the mean, the negative binomial probability distri-
bution function is expressed as the following:

eNB(t, j) = fNB(ot;µtj , φj) =
Γ(ot + 1/φj)

ot!Γ(1/φj)

(
1

1 + φjµtj

)1/φj
(

φjµtj
1 + φjµtj

)ot
(7)

The complete emission probability is then expressed as the following:

e(t, j) = c/Rm + (1− c)Γ(ot + 1/φj)

ot!Γ(1/φj)

(
1

1 + φjµtj

)1/φj
(

φjµtj
1 + φjµtj

)ot
(8)

2.4. The Program Flow of HMM inference. A time-homogeneous HMM has been imple-
mented in C++.

• HMM input: {O,G,L} and Λ0. Here {O} is the read-depth, {G} is the GC content, and
{L} is the mappability score computed for each sliding window. Λ0 is either the initial
values of the HMM parameters or the parameter estimates from the previous iteration.
The HMM parameters include the state parameters and the emission parameters.

• HMM output: The estimated HMM parameters Λ1. The log likelihood from each iteration,
log(p(O|Λ)).

• A one-step update of the Baum-Welch algorithm [2] is illustrated below. The expectation
(E-step) and the maximization (M-step) procedures iterate until the convergence criterion
(smaller than 10−6 change in the log-likelihood) is reached.

• Most of the computations are carried out in log scale to avoid underflow or overflow. A
utility function logsumexp is used to facilitate the computation. Specifically, it is defined

as logsumexpj(v) = log
(∑

j exp(vj)
)

, where v = {vj} is a vector.

• For efficient implementation, we estimate the log(µtj) directly using the IRLS method.
Alternative approach could be estimating the regression coefficients.

Below we give details about Model Initialization steps:
(a) The number of states:

N is found from the data. Here we assume N=7, for CN = 0,1,2,3,4,5,6+.
(b) Initial state probability, πj :

For state CN = 2: 0.9995; for other states: (1-0.9995)/(N-1).
(c) Initial state transition probability, ajz:

Self-transition probability: for state CN = 2: 0.9995; for other states: 0.995;
Transition probability to other states, i.e. ajz when z 6= j:

Transiting from CN = 2 to CN < 2: (1-0.9995)/3; from CN = 2 to CN > 2: (1-0.9995)/12;
Transiting from CN < 2 to CN = 2: (1-0.995)/9; from CN < 2 to CN < 2: (1-0.995)/90;

from CN < 2 to CN > 2: (1-0.995)/400;
Transiting from CN > 2 to CN < 2: (1-0.995)/40; from CN > 2 to CN = 2: (1-0.995)/1.25;

from CN > 2 to CN > 2: (1-0.995)/20;

(d) Initial mean values of the negative binomially distributed component, log(µtj):
Assume normal copy number (CN=2) for all windows.
Set β3 = 0.5. β3 is the coefficient for GC content. 0.5 is the empirically determined value.
intercept=log(median(O))− log(2)−median(log(L))− β3median(G).
for j = 0, offset = log(0.5) + log(lt).
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for j = 1..N − 1, offset = log(j) + log(lt).
log(µtj) = intercept + offset + β3gt.

(e) Initial overdispersion parameters, φj :
In this study, we have one overdispersion parameter φ for different states jointly through setting
φj = φ. And set φ = 1 for initialization.

(f) Initial mixing probability, c:
c = 0.01. The mixing probability is the same for the normal state and the other states.

(g) Initial parameter for the uniform distribution, Rm:
Rm=max(O).
The details about the E-step of the EM procedures were as follows:

Given the current parameter estimates Λ0, we efficiently compute the desired quantities.

2.4.1. The Emission Probability.

e(t, j) = c/Rm + (1− c)Γ(ot + 1/φj)

ot!Γ(1/φj)

(
1

1 + φjµtj

)1/φz
(

φjµtj
1 + φjµtj

)ot
(9)

2.4.2. The Forward Probability.

f(t, j) = P (o1, o2, ...ot, qt = j ends at t|Λ0)(10)

Algorithm

(1) Initialization:

f(1, j) = πze(1, j)(11)

log(f(1, j)) = log(πj) + log(e(1, j))(12)

(2) Recursion, for t ∈ (2 : T ) and for j ∈ (1 : N),

f(t, j) = e(t, j)
∑
j

f(t− 1, j)at(z, j)(13)

log(f(t, j)) = log(e(t, j)) + logsumexpj [log(f(t− 1, j)) + log(at(j, z))](14)

(3) Termination: computation of the overall likelihood log(p(O|Λ0))

p(O|Λ0) =
∑
z

f(T, z)(15)

log(p(O|Λ0)) = logsumexpz log(f(T, z))(16)

2.4.3. The Backward Probability.

b(t, z) = P (ot+1, ot+2, ...oT |qt = z ends at t|Λ0)(17)

Algorithm

(1) Initialization:

b(T, z) = 1(18)

log(b(T, z)) = 0(19)
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(2) Recursion, for t ∈ (T : 2) and for z ∈ (1 : N),

b(t− 1, z) =
∑
j

[at(z, j)e(t, j)b(t, j)](20)

log(b(t− 1, z)) = logsumexp [log(at(z, j)) + log(e(t, j)) + log(b(t, j))](21)

2.4.4. The Posterior Probability.

γ(t, j) = P (qt = j|O,Λ0)(22)

Algorithm

γ(t, j) =
f(t, j)b(t, j)

p(O|Λ0)
(23)

log(γ(t, j)) = log(f(t, j)) + log(b(t, j))− log(p(O|Λ0))(24)

The details about the M-step of the EM procedure were given below:

2.4.5. Estimate the initial state probability πj. The initial probability πj is simply the posterior
probability of being state j at position 1, therefore the new estimate of πj , denoted by πj , is com-
puted as the following:

πj =
f(1, j)b(1, j)

p(O|Λ0)
,(25)

log(πj) = log(f(1, j)) + log(b(1, j))− log(p(O|Λ0)).(26)

2.4.6. Estimate the transition probability ajz. The estimated ajz is denoted by ajz, for j 6= z, and
is computed as the following:

ζ(t, j, z) = f(t, j)e(t+ 1, z)b(t+ 1, z)(27)

log(ζ(t, j, z)) = log(f(t, j)) + log(e(t+ 1, z)) + log(b(t+ 1, z))(28)

ajz =

∑T−1
t=1 ζ(t, j, z)∑T−1
t=1 γ(t, j)

(29)

2.4.7. Estimate the emission parameters, an overview: Because we fix c and Rm as constant, pa-
rameter estimation will only concern the negative binomially distributed component.

To estimate the negative binomial parameters, a weighted GLM function is implemented in C++.
The argument of this function include “family”, “observation”, “covariate”, “offset”, and “prior”.
The argument “family” means either Poisson or negative binomial. The argument “prior” means
the probability that each observation belongs to the negative binomially distributed component.
For the tth window and state j, the “prior” is denoted by pt,j and is computed as the following:

pt,j =
(1− c)eNB(t, j)γ(t, j)

c/Rm + (1− c)eNB(t, j)
(30)

Following the implementation function MASS/glm.nb in R [9], we use an alternating iterative
estimation procedure to obtain the new estimate of log(µtj), denoted by log(µtj), and the new

estimate of φ, denoted by φ.
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• First, we fix φ and compute log(µtj) by fitting weighted GLM using the iteratively reweighted
least squares (IRLS) method. For details, see Section 2.4.8.

• Then, we fix log(µtj) and compute φ using the Newton-Raphson method with weight. For
details, see Section 2.4.8.

• The above two steps alternated until convergence.

2.4.8. Estimation of log(µtj) using the IRLS method. Step 1. Define the necessary variables for
estimating log(µtj), where t = 1...T , CNt = qt = 0...j..(N − 1).

• “Prior”
pt = {pt,0, ..., pt,j , ..., pt,N−1}
p = {p1, ...pt, .., pT }

• “Observation”
yt = {ot, ...ot, ...ot} (ot repeats for N times)
y = {y1, ...yt, .., yT }

• “Covariates”
Let cov denote covariates and let M denote the number of covariates.
If GC content (G) is the only covariate, M = 1 and define the covariate vector as:

xt = {gt, ...gt, .., gt} (gt repeats for N times)
x = {x1, ...xt, .., xT }

If M > 1, each covariate will be inserted into x like G
covt = {covt,0, covt,1, ..., covt,N−1}
cov = {cov1, ...covt, .., covT }
x = {cov1, ..., covM}

• “Offset”
offsett = {[log(CNt = 0.5)+log(lt)], [log(CNt = 1)+log(lt)], ...[log(CNt = j)+log(lt)], .., [log(CNt =

N − 1) + log(lt)]}
offset = {offset1, ...offsett, .., offsetT }

• “The weighted log-likelihood function”

(31) Lm =

T∑
t=1

N∑
j=0

[
log (Γ(ot + 1/φ))−

(
1

φ
+ ot

)
log(

1

φ
+ µtj) + log(ot + 1.0) + ot log(µtj)

]
ptj

Step 2. Fit a weighted Poisson regression model using the IRLS procedure.

Step 3. Perform a score test
The score test [4] is used to test whether the overdispersion parameter, φ, is significantly greater
than 0. If the score test is significant, we

• Estimate φ using the Newton-Raphson method as described in Section 2.4.9.
• Proceed to Step 4.

Step 4. Fit a weighted negative binomial regression model using the IRLS method.

2.4.9. Estimation of overdispersion using the Newton-Raphson method. Given log(µtj), we use the
Newton-Raphson method to estimate the overdispersion parameter, φ. In this study, we estimate
one overdispersion parameter φ jointly for all states, and set φj = φ for j = 0..N − 1.
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The following weighted log-likelihood and its first, second derivatives are used in the Newton-
Raphson method to estimate φ. The weighted log-likelihood is the same as Equation 31.

Lm =

T∑
t=1

N∑
j=0

[
log (Γ(ot + 1/φ))−

(
1

φ
+ ot

)
log(

1

φ
+ µtj) + log(ot + 1.0) + ot log(µtj)

]
ptj

It is computationally slightly easier to estimate ϕ = 1/φ. Then,

Lm =

T∑
t=1

N∑
j=0

[log (Γ(ot + ϕ))− (ϕ+ ot) log(ϕ+ µtj) + log(ot + 1.0) + ot log(µtj)] ptj

Thus the score function is

Score(ϕ) =
∂Lm

∂ϕ
=

T∑
t=1

N−1∑
j=0

[
Ψ(ot + ϕ)−Ψ(ϕ)− ϕ+ ot

ϕ+ µtj
− log(ϕ+ µtj) + 1 + log(ϕ)

]
ptj

where Ψ(x) = ∂ log Γ(x)/∂x, the digamma function. The observed Fisher information is

Info(ϕ) = −∂
2Lm

∂ϕ2
=

T∑
t=1

N−1∑
j=0

[
−ψ(ot + ϕ) + ψ(ϕ) +

µtj − ot
(ϕ+ µtj)2

+
1

ϕ+ µtj
− 1

ϕ

]
ptj

where ψ(x) = ∂2 log Γ(x)/∂x2, the trigamma function.

We use the Newton-Raphson method given the score function and the fisher information. Initialize

ϕ =
∑T

t=1

∑N−1
j=0 ptj∑T

t=1

∑N−1
j=0 ptj(ot−µtj)2

WHILE (ABS(Dev) > Toleration) {
Dev = Score(ϕ)

Info(ϕ)

ϕ = ϕ+Dev
}

2.5. Post-segmentation Processing. Following the discovery in [8], it is crucial to merge CNV
calls and filter false positives. We applied the same procedure to merge CNV calls. In addition, we
used a combination of read-depth accessible (RDA) filter and confidence score as used in [8] as the
filter to remove low confidence calls.
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