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ABSTRACT

Motivation: Next-generation (NextGen) sequencing is becoming in-

creasingly popular as an alternative for transcriptional profiling, as is

the case for micro RNAs (miRNA) profiling and classification. miRNAs

are a new class of molecules that are regulated in response to differ-

entiation, tumorigenesis or infection. Our primary motivating applica-

tion is to identify different viral infections based on the induced change

in the host miRNA profile. Statistical challenges are encountered be-

cause of special features of NextGen sequencing data: the data are

read counts that are extremely skewed and non-negative; the total

number of reads varies dramatically across samples that require ap-

propriate normalization. Statistical tools developed for microarray ex-

pression data, such as principal component analysis, are sub-optimal

for analyzing NextGen sequencing data.

Results: We propose a family of Poisson factor models that explicitly

takes into account the count nature of sequencing data and automat-

ically incorporates sample normalization through the use of offsets.

We develop an efficient algorithm for estimating the Poisson factor

model, entitled Poisson Singular Value Decomposition with Offset

(PSVDOS). The method is shown to outperform several other normal-

ization and dimension reduction methods in a simulation study.

Through analysis of an miRNA profiling experiment, we further illus-

trate that our model achieves insightful dimension reduction of the

miRNA profiles of 18 samples: the extracted factors lead to more

accurate and meaningful clustering of the cell lines.

Availability: The PSVDOS software is available on request.

Contact: ddittmer@med.unc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Gene expression profiling is at the center of targeted therapy

and rapid disease diagnosis. High-throughput or NextGen
sequencing has recently emerged as an alternative platform to
hybridization-based microarrays for the purpose of gene tran-

scription profiling. For example, Witten (2011) claims that
NextGen sequencing is ‘on track to replace microarray as the
technology of choice’ for characterizing gene expression.

NextGen sequencing data have several features that create

statistical challenges. First of all, sequencing data record the

number of reads between a sample and a particular region of

interest, which are naturally skewed non-negative counts with a

large number of zeros. Second, the nature of the sequencing ex-

periment, such as technical sequence lane capacity, can result in

different samples with dramatically different total number of

sequence reads, which suggest that the samples need to be nor-

malized in a certain way. It is well established that for high-

throughput sequencing data applications, Poisson distribution

represents an appropriate choice (Chen et al., 2008; Jiang and

Wong, 2009; Srivastava and Chen, 2010). However, the predom-

inant form of sequencing data analysis is to forcefully transform

the data and then use statistical tools that were initially de-

veloped for microarray data, which are continuous and reason-

ably modeled using normal distributions (with or without

transformation). This leads to sub-optimal results and prompted

the development of Poisson-based methods (Bullard et al., 2010;

Marioni et al., 2008; Witten, 2011).

Different from existing Poisson-based methods for analyzing

sequencing data, we focus on dimension reduction, i.e. identify-

ing low-dimensional features or factors in the data. Genetic

studies usually involve a large number of genetic markers (e.g.

thousands of genes) for a small group of samples (e.g. individ-

uals, tumor samples or virus-infected cells), which face the ‘curse-

of-dimensionality’. Dimension reduction is thus a desirable (and

sometimes necessary) pre-processing step, and the identified fea-

tures can then be used as inputs for unsupervised clustering. In

this article, we specifically take into account the Poisson nature

of NextGen expression profiling count data and develop a new

family of Poisson factor models for efficient dimension reduction

on a collection of sequencing samples. Our approach extends the

earlier work of Shen and Huang (2008) to automatically address

the issue of sample normalization through the use of unknown

offset parameters, which are simultaneously estimated along with

the underlying factors. Model identification constraints are

derived and incorporated in an efficient alternating estimation

algorithm. We also introduce Poisson factor models to sequen-

cing analysis and consider follow-up clustering analysis.
The rest of the article is organized as follows. We present our

model in Section 2 and develop a computationally efficient esti-

mation algorithm. A simulation study is reported in Section 3.1

to demonstrate the performance of our algorithm, as well as*To whom correspondence should be addressed.
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several methodological details. In Section 3.2, we then illustrate

its performance through our primary motivating application—

micro RNA (miRNA) profiling. miRNAs are a class of 21–25 nt

non-coding RNAs that are able to post-transcriptionally regulate

gene expression (O’Hara et al., 2008, 2009a, b). In addition to

being heavily skewed, miRNANextGen sequencing data are also

sparse because in a typical cell,51% of all known miRNAs are

expressed, and 99% are not. The numerical illustrations suggest

that our method results in accurate extraction of key features

from the sequencing data, which then leads to more meaningful

clustering of various experimental cell lines. We conclude the

article with some discussion of future work in Section 4.

2 METHODS

We first review standard factor models that can be used to analyze

NextGen sequencing data, and then propose our Poisson factor model.

Consider an n�m sequencing data matrix Y ¼ ðyijÞ where the n rows

correspond to samples (cell lines), the m columns correspond to the dif-

ferent genetic markers (e.g. miRNAs) and the entry yij records the read

count of the jth miRNA from the ith cell line. Denote the ith row of Y as

y>ðiÞ ¼ ðyi1, . . . , yimÞ, referred to as the count profile of the ith sample.

2.1 Standard factor models

Consider the following K-factor model on the count profiles yðiÞ:

yðiÞ ¼ �i1f1 þ . . .þ �ikfk þ . . .þ �iKfK þ �ðiÞ, ð1Þ

where fk is the kth factor and �ik is the corresponding score. For model

identifiability, the factors are assumed to be orthonormal.

The factor model can be estimated through either principal component

analysis (PCA) of Y or equivalently its singular value decomposition

(SVD). PCA is a classical non-parametric linear dimension reduction

technique that can be used for estimating the factor models, and the

outcomes of PCA are often considered as inputs to unsupervised cluster-

ing analysis. PCA seeks to lower dimensions to a smaller number of

components that capture most of the relevant structure in the data. It

is particularly useful in identifying clusters of related samples, e.g. tumor

subtypes based on gene expression levels, or in identifying clusters of

co-regulated genes in a collection of different samples.

Not surprisingly, many investigations use PCA/SVD-based

approaches in genetic studies to infer significant population or genetic

structures (Holter et al., 2000; Lee et al., 2010; Liu et al., 2003; Patterson

et al., 2006; Price et al., 2006; Simon et al., 2004; Witten et al., 2010).

Most of genetics modalities, such as microarray data, include systematic

variations caused by non-biological sources, e.g. instrument error. For

PCA to be more effectively, normalization or transformation is a

common pre-processing step to reduce the non-biological variation

(Bowtell and Sambrook, 2003; Cui et al., 2003). Previous studies have

used other variants of PCA for non-normal data, such as generalized

PCA for exponential family (Collins et al., 2002; Roy and Gordon,

2002) and sparse non-negative generalized PCA (Allen and

Maletić-Savatić, 2011). We show that our approach augments the reper-

toire of tools for the analysis of extremely sparse multi-dimensional count

data, such as those encountered in RNA and miRNA sequencing

experiments.

Note that the raw RNAseq counts are often skewed. Hence, in prac-

tice, PCA/SVD is usually applied to transformed RNAseq data. For ex-

ample, one option is to first normalize the data through the following

cube-root transformation (Gentleman, 2005):

eyðiÞ ¼
ffiffiffi
y3
p
ðiÞ
�medianð

ffiffiffi
y3
p
ðiÞ
Þ

IQRð
ffiffiffi
y3
p
ðiÞ
Þ=1:349

, ð2Þ

where IQR stands for the inter-quartile range. One can also use relative

frequency profiles of miRNA-seq data where the miRNA count profile of

each sample is divided by the total number of hit counts across all

miRNA targets for that sample, i.e. the row count, and then apply

SVD to the centered relative frequency data. Alternatively, one can

apply quantile normalization (Bolstad et al., 2003) before SVD. We

refer to these methods as SVD-Cuberoot, RSVD and QN-SVD, respect-

ively. Although their implementations are fairly straightforward, such

transformations ignore the distributional nature of the data, and

potentially can lose important features of the data (Witten, 2011). Our

numerical comparisons (Section 3) show that they perform inferiorly to

our proposed Poisson Singular Value Decomposition with Offset

(PSVDOS) method.

2.2 Poisson factor models with offset

As discussed earlier, NextGen sequencing data exhibit special features

that are not seen in hybridization microarray data, which create statistical

challenges that need to be addressed. Later in the text we propose a new

class of Poisson factor models with offsets to explicitly incorporate the

special features: the Poisson count nature, the abundance of zero reads

and the need for sample normalization.

2.2.1 Model We consider Poisson factor models within the generalized

linear model framework and simultaneously incorporate normalization

and dimension reduction. We assume that the read count yij is a Poisson

random variable with rate �ij, and let , ¼ ð�ijÞ denote the n�m hidden

Poisson rate matrix. Specifically, we consider the following Poisson factor

model:

yij � Poissonð�ijÞ, i ¼ 1, . . . , n, j ¼ 1, . . . ,m,
�ij ¼ Ti pij,
log �ij
� �
¼ log Tið Þ þ �i1fj1 þ . . .þ �iKfjK,

8<
: ð3Þ

where the scalar Ti is the offset parameter for the ith sample, pij is the

normalized proportion of the jth miRNA in the ith rate profile

�>ðiÞ ¼ ð�i1, . . . , �imÞ, logð�Þ is the canonical link function for Poisson vari-

ables used in generalized linear model, �ik is the kth factor score for the

ith rate profile and fk ¼ ðf1k, . . . , fmkÞ
> is the kth factor. For the iden-

tifiability of Model (3), the factors need to satisfy some constraints as

discussed in the Supplementary Material.

2.2.2 Maximum-likelihood estimation To estimate Model (3), we

propose to maximize the corresponding Poisson likelihood. The offset

parameters, the factors and their scores are all unknown, which makes

direct likelihood maximization over all the unknown parameters

challenging. Hence, we consider an alternating maximum-likelihood

algorithm to estimate the parameters.

Assuming that the factors fk are known, for each row i, we can esti-

mate the offset parameter Ti and the factor scores �ik by fitting a

log-linear Poisson regression model with the ith count profile yi as the

response, the factors fk as the covariates and the offset parameter Ti as

the intercept. The parameters are estimated via iteratively re-weighted

least squares (IRLS), which has nice convergence properties

(McCullagh and Nelder, 1989). Then, given Ti and the factor scores

�ik, we estimate the factors fk by fitting a log-linear Poisson regression

model with the jth column count profile yj ¼ ðy1j, . . . , ynjÞ
> as the re-

sponse, Ti as the fixed offset and the factor scores as the covariates. The

identifiability constraints on the factors are incorporated into the IRLS

algorithm.

The previous discussion suggests the following iterative algorithm for

estimating the Poisson factor Model (3). We refer to the algorithm as

PSVDOS, in the sense that the algorithm extends the SVD algorithm for

fitting the standard factor Model (1) to incorporate Poisson distributions

with offset parameters. Note that, although PCA and SVD make no

distributional assumptions of the data Y, there exist some theoretical
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justifications for using PCA and SVD when the data are approximately

normally distributed: the SVD estimates then are in fact the maximum-

likelihood estimates of Model (1) (Gabriel and Zamir, 1979). The alter-

nating algorithm increases the likelihood function at each iteration and is

guaranteed to converge because of the convexity of the optimization cri-

terion at every step. At the end of each iteration, we apply SVD to BF>,

where B ¼ f�ikgi¼1, ...,N, k¼1, ...,K and F ¼ f1, � � � , fKð Þ. This process ensures

the uniqueness and the orthogonality of the updated components. The

code is written in R (Chambers et al., 1992), using the built-in glm func-

tion. In our numerical studies, the algorithm converges within 30 iter-

ations on average.

The PSVDOS algorithm

Initialize

� Apply SVD to the row-centered logðYÞ to obtain the first K right

singular vectors: vk, k ¼ 1, . . . ,K; Set foldk ¼ vk;

Iterate

(1) Fit n log-linear Poisson regression models with yðiÞ as the response

and foldk ðk ¼ 1, . . . ,KÞ as the covariates to obtain the estimates for

Ti and the factor scores �ik, denoted as Tnew
i and �newik ; denote

B ¼ ð�new1 , � � � , �newK Þ with �
new
k ¼ ð�

new
1k , . . . ,�newnk Þ

>;

(2) Fit m log-linear Poisson regressions with yj as the response, T
new
i as

the fixed offset and �newk ðk ¼ 1, . . . ,KÞ as the covariates to obtain

the updated estimates for fk, denoted as fnewk ; denote

F ¼ ðfnew1 , � � � , fnewK Þ;

(3) Center each row of the matrix BF> and apply SVD to the

row-centered matrix to obtain the first K left singular vectors vk;

Set fnewk ¼ vk;

(4) Repeat from Step 1 with foldk ¼ fnewk until convergence.

We make three comments regarding the offset parameters and selec-

tion of the number of factors. First, the row-centering in Step 3 enforces

the identifiability of the offset parameters. See Supplementary Materials

for details. Second, sometimes it makes sense to assume the offsets as

known from a priori knowledge. For example, one can treat the total read

count of a sample as the offset. In that case, there is no need to update or

estimate the offsets as part of the aforementioned PSVDOS algorithm.

Finally, in practice, the number of factors K needs to be selected in a

data-driven fashion. We propose to use the deviance reduction-based

approach suggested by Shen and Huang (2008). More details are given

in Section 3.1.

3 RESULTS

We illustrate the performance of our proposed PSVDOS method

through a simulation study (Section 3.1) and an analysis of an

miRNA-sequencing dataset (Section 3.2). We compare PSVDOS

with five other SVD-based methods:

� SVD-Raw: first subtract each entry by the mean of each

row, and then apply SVD to the row centered raw data;

� SVD-Cuberoot: first apply the transformation (2) to take

cube-root of each entry, and then apply SVD to the trans-

formed data;

� RSVD: first divide each entry by total count of each row,

and then apply SVD to the obtained relative frequency data

matrix;

� QN-SVD: first apply quantile normalization (Bolstad et al.,

2003) to each row, and then apply SVD to the obtained

normalized data matrix after row-centering;

� PSVD: apply Poisson SVD of Shen and Huang (2008) to the

raw data, which ignores the existence of offsets.

The comparison will illustrate the shortcomings of ignoring

the Poisson count nature of the data, as well as the necessity

of incorporating sample-specific scaling effect through offsets.

Both numerical studies suggest that PSVDOS performs the

best. We also show that our data-driven approach can select

the number of underlying factors accurately and stably, and

that the PSVDOS algorithm can estimate the offset parameters

accurately.

3.1 Simulation study

Data generation We generate a synthetic miRNA-seq dataset
according to Model (3). The Poisson rate matrix , follows

logð,Þ ¼ logðTÞ þ logðPÞ ¼ logðTÞ þUSV>,

where the offset matrix T ¼ ðT1, . . . ,TnÞ
>
� 1>m, and the propor-

tion matrix P (in log-scale) follows a four-factor SVD model,

with the n� 4 left singular vector matrix U, the m� 4 right sin-

gular vector matrix V and the 4� 4 diagonal singular value

matrix S containing the four positive singular values as its diag-

onal entries.

We simulate n ¼ 40 different samples measured on m ¼ 200

miRNAs. Figure 1a displays the true offsets in the log-scale,

which are generated as follows: in the log-scale, they fall into

six clusters with distinct cluster means (gray dotted lines) and

are uniformly distributed around the cluster mean within each

cluster; the overall mean across the clusters is 4 (solid line). Each

offset’s cluster membership is displayed with different colors and

markers.
The four diagonal elements of S, i.e. the singular values, are

s1 ¼ 70, s2 ¼ 25, s3 ¼ 15, s4 ¼ 1. The four columns of U and V,

i.e. the left and right singular vectors, are plotted in the col-

umns of Figure 1b and c, respectively. Each row in Figure 1b

corresponds to one sample, which depicts four different cluster-

ing patterns in the samples. Figure 1c shows the heat map of

the right singular vectors in the 200� 4 matrix V or the

miRNA factor profiles, embedded with certain clustering

patterns. Each column indicates one miRNA factor profile,

and each row corresponds to one miRNA. Additional details re-

garding the data generation can be found in the Supplementary

Materials.
Figure 2a displays the true logðPÞ used in the simulation using

a blue (negative)–red (positive) color coding. The color bar on

the left side of the heat map shows the clustering membership of

the rows, which fall into six clusters as indicated by the six colors

(red, cyan, green, blue, magenta and yellow). The clustering pat-

tern is obtained by applying the complete linkage hierarchical

clustering analysis on the rows (Eisen et al., 1998; Wilkinson

and Friendly, 2009). Similarly, the color bar above the heat

map shows the cluster membership of the miRNAs, as repre-

sented by the color coding and the corresponding clustering den-

drogram plot.
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Low-rank approximation and clustering All six methods are
applied to the synthetic data to extract the first four SVD com-

ponents, which result in best-rank-four approximation for the

underlying signal, as plotted in Panels b–g of Figure 2. We super-

impose the hierarchical clustering results based on the rows and

columns, respectively, of the estimated signal matrices. To better

illustrate the accuracy of the clustering, we use the ordinal cluster

membership contained in logðPÞ to color code the rows and the

columns in the dendrogram plots. PSVDOS (Panel b) offers the

best approximation to the true signal, and it gives the most ac-

curate clustering result, which is as expected, as the dataset was

designed in a way that takes advantage of the unique features of

PSVDOS.
Figure 2c shows that PSVD incorrectly separates red and

purple clusters, and it cannot separate the blue and green clus-

ters. As the original PSVD algorithm does not take into account

abundance sequence depth, the variation of the total number

of reads was reflected in the first components. SVD-Raw in

Figure 2d performs badly overall, as it is driven by absolute

abundance. As the data were generated from Poisson distribu-

tion, exponential relationship is naturally imposed. Thus, in the

absence of any normalizing previous transformation, SVD

cannot recover the underlying pattern. SVD-Cuberoot in

Figure 2e improves on SVD-Raw by reducing the influence of

estimated sample/miRNAs, but the clustering result of the rows
differs significantly from the truth signal. RSVD (Fig. 2f) fails to

separate the blue and green clusters. QN-SVN in Figure 2g per-

forms well for bi-clustering, but worse than the PSVDOS. This

indicates that quantile normalization is not sufficient to over-

come the extreme differences in sequence depth, even though it

does take into account abundance to improve the clustering re-

sults. Heatmaps of the estimated singular vectors can be found in

the supplementary document.

Selection of number of factors and offset parameter

estimation We use the deviance reduction plot as suggested
by Shen and Huang (2008) to choose the number of underlying

factors, which is a likelihood-based extension of the screen plot.

Figure 3a displays the deviance reduction by the number of

factors for one particular simulated dataset (dotted line), which

shows how much additional data ‘variability’ can be explained

by every extra factor. The elbow of the deviance reduction plot

suggests that four factors are sufficient for modeling the data. To

better illustrate the ignorable contribution of the additional fac-

tors, a zoomed-in version of the plot is included in the

Supplementary Material.

This way of selecting the number of factors is stable. We re-

peated the simulation 100 times and obtained the deviance re-

duction plot for each simulation run. The horizontal gray lines

represent the pointwise 95% intervals of the 100 obtained devi-

ance reduction plots (gray lines) by the numbers of factors. The

deviance reduction plots all have an elbow when the model in-

cludes four factors.

We now demonstrate that PSVDOS can accurately estimate

the offset parameters, the Ti’s and their overall mean (in log-

scale). For each of the 100 simulation runs, we applied

PSVDOS with four factors (as suggested by the deviance reduc-

tion plot) to obtain the estimates for logðTiÞ. For each

i ¼ 1, . . . , 40, we calculated the 2.5 and 97.5% quantiles of

logðT̂iÞ � logðTiÞ, which provide the empirical 95% confidence

intervals (CI) for the differences, as depicted by the vertical lines

Fig. 2. Heatmaps of the truth and various estimates: (a) True logðPÞ; (b)

PSVDOS; (c) PSVD; (d) SVD-Raw; (e) SVD-Cuberoot; (f) RSVD; and

(g) QN-SVD. Hierarchical clustering is performed on the rows (or sam-

ples) and the column (or miRNAs) separately. The color bars next to the

rows (or columns) represent the original clustering membership of each

row (or column). PSVDOS performs best in approximating the true

signal and clustering

Fig. 1. Plots of simulation parameters. (a) True offsets in the log-scale,

forming six clusters. (b) True left singular vectors U, indicating sample

clusters. (c) True right singular vectors V, indicating miRNA clusters

S.Lee et al.
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of Figure 3b. All CIs contain the value zero (the dotted line).

Similar 95% CI is plotted for the overall mean in the

Supplementary Materials.

We also investigated how the bias of the offset estimates de-

pends on the number of factors K included in the model. As

shown in the Supplementary Materials, the estimates seem to

be biased when K is under-estimated, i.e.54, whereas the esti-

mates become less biased as K increases; eventually when K is

�4, the offset estimates do not have any bias.

3.2 Analysis of miRNA-sequencing data

We first illustrate the application of PSVDOS to NextGen-based

miRNA expression profiles of different virus-infected samples

(the validity of our approach will be further established through

a simulation study in Section 3.1.). The miRNA-sequencing data

were collected on a series of samples that were infected with

human and non-human primate herpesviruses. One such virus,

the monkey B virus, is fatal to humans, whereas its relative, the

human herpes simplex virus, only causes cold sores in 99% of the

infections. These experiments (to be described elsewhere) were

designed to identify novel biomarkers that can differentiate be-

tween harmless and fatal exposures. Because viral infection is

deduced based on the transcription profile of hot miRNA, this

indirect approach is particularly useful if the infecting virus is not

known or even entirely novel.
In this particular application, we want to test the hypothesis (i)

that the cells are infected by a virus of the family �-herpesviruses,
and (ii) does the infecting virus have biological consequences

similar to herpes simplex virus, in which case, the patient de-

velops minor skin ulcerations, i.e. cold sores, or to monkey B

virus, in which case the patient dies within 7 days. PSVDOS

sensitively revealed meaningful clusterings among the samples,

as well as the corresponding miRNA markers that can be poten-

tially used to differentiate the samples.
A key characteristic of this dataset is the even greater sparsity

of the data and more limited depth of the count data compared

with the simulated dataset in Section 3.1 because of the expense

associated with comprehensive NextGen sequencing. This makes

for an important practical role. PSVDOS outperformed other

methods under generous experimental constraints. The ratio of

samples to targets was 40:200 or 1:5. Under those experimental

parameters, PSVDOS recovered the ‘true’ data structure. As

there are42000 human miRNAs, a corresponding experiment

would require at least 400 samples. Such large number of

samples can be obtained and sequenced only by large consortia,

e.g. Hudson et al. (2010). Most published studies use 1:50 ratios,

for which we expect the practical benefit of PSVDOS compared

with previous methods to be even more pronounced.

Data description Briefly, the Illumina small RNA kit v1.5 was

used to establish cDNA libraries of small RNAs from human

fibroblasts infected with either human or non-human primate �-
herpesviruses. These were the human herpes simplex virus 1 and

2 (HSV-1, HSV-2) and their homologous primate viruses for

baboons, squirrel monkeys and macaques. The small RNAs

libraries were then sequenced using the Illumina platform for

single-end sequencing. As additional known controls, we used

HUVEC and CHME cells, which were either mock infected or

infected with an irrelevant, widely divergent virus, namely, West

Nile virus (WNV). We used a slightly different method of isola-

tion and purification for each cDNA library of small RNAs, as

we tried different versions of the manufacturer’s kit. This is

clearly not an ideal experimental design, as it introduces add-

itional technical variation, but one that is typical for experimen-

tal science. Further samples were lymphoma (PEL), human

tonsil and another cell line. The resulting reads for each sample

were aligned to a human miRNA database (Kozomara and

Griffiths-Jones, 2011).

The read counts for each of 398 miRNAs were obtained for

each sample of cells infected with human and non-human pri-

mate �-herpesviruses (HSV-1, HSV-2, HVP2, SQHV, BV, SA8

and ChHV) and other control and infected cell lines and tissues

(PEL-A, PEL-B, fibroblasts, tonsil, Control1, Control2,

Control3, CHMEinfected, CHME5mock, HUVECinfected and

HUVECmock). As the dataset was sparse indeed, in that many

miRNAs have zero or small number of reads, only miRNAs with

the total count over all the cell lines 415 are included in the

analysis, which means that 265 miRNAs are used in the analysis

reported later in the text.

For these 265 miRNAs, the total counts of each cell line are

displayed in Table 1, along with the number (%) of miRNAs

with zero reads. Note that 50% of miRNAs had zero counts.

This is typical for the biology of miRNA expression. The group

of HSV-infected cells have �3000–4000 total counts, the cells in

the other group have mildly varying total counts,�30000–80000

and others have total counts4900000. The heterogeneity among

the total counts, i.e. wide spread, is one of the features that

PSVDOS is designed to accommodate.

Dimension reduction and clustering As suggested by the devi-
ance reduction plot (not shown here, also see Section 3.1), we

extracted three factors using the methods except PSVD, which

could only produce estimates for the first two factors. The legend

in Figure 4 lists the cell lines numbered and colored according to

their correct grouping. Panels (af) then display the scatter plots

of the extracted factor scores for each method, respectively, using

the corresponding numbers and colors provided in the legend.

We then applied complete linkage hierarchical clustering (Eisen

et al., 1998; Wilkinson and Friendly, 2009) to the cell lines based

on the dimension reduced data, setting the number of clusters as

six. The dendrograms plots are displayed on top of the corres-

ponding scatter plots, where the leaves are colored according to

the clustering results, whereas the labels are colored according to

Fig. 3. Simulation study. (a) Deviance reduction by the number of fac-

tors, suggesting four factors; (b) 95% CI of logðT̂iÞ � logðTiÞ

Poisson factor models
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the legend, i.e. the correct grouping. Hence, a miss match be-

tween the colors of the leaf and the label would mean wrong

clustering.

The plots suggest that PSVDOS correctly clusters all the HSV-

infected cells together and groups the other cells according to their

true subtypes. The fibroblasts sample is clustered with the HSV-

infected samples. This actually represents the expected biological

results, as the HSV samples represent fibroblasts that were in-

fected with the different herpes simplex viruses, whereas the

other samples stem from different tissues of origin. This is also

apparent from the similarity in terms of the numerical summaries

in Table 1 between the HSV samples and the fibroblasts sample.

Generally, miRNA profiles tend to be linked to tissue of origin.
By contrast, the other five methods give inferior clustering

results for these samples. PSVD (Panel b) gives the second best

clustering performance; however, it groups one control sample

together with the tonsil sample. SVD-Raw (Panel c) lacks clear

clustering. SVD-Cuberoot (Panel d), RSVD (Panel e) and

QN-SVD (Panel f) split the control group samples into different

clusters; in addition, the HUVEC and CHME5 cells that are

infected with the same virus are not clustered together using

the RSVD method. Taken together, these clustering results

reveal that PSVDOS outperforms the other methods and reveals

more accurate hierarchical clustering results from different

sample groups of NextGen sequencing data.
Furthermore, we applied a separate cluster analysis to the

eight HSV-infected cells, including the seven herpesvirus and

the one fibroblast samples. The clustering results are included

in Figure 4 of the Supplementary Material, which show that

(i) PSVDOS and PSVD separate fibroblast from the other

cells, whereas the other methods place fibroblast close to HSV

samples; (ii) all approaches, except RSVD and QN-SVD, con-

firm the finding of Ohsawa et al. (1999) that HVP2 is more

similar to BV than to HSV1 or HSV2.

4 DISCUSSION

NextGen sequencing-based mRNA and miRNA expression pro-

filing is rapidly gaining popularity and may eventually replace

other methods; however, it yields a completely different data

structure, compared with hybridization-based microarray experi-

ments. Microarray-based expression profiling data can, with

some difficulty, be transformed into a dataset that has a

normal distribution and is amenable to statistical tools for pat-

tern discovery and classification; NextGen sequencing-based

expression data cannot.

Expression patterns of miRNAs represent examples of the

most skewed expression data that are encountered in the

Fig. 4. Analysis of miRNA-seq data: scatter plots of the leading factor

scores. PSVDOS clusters the different cell line groups perfectly

Table 1. Total counts of 18 samples and the numbers of miRNAs with

zero counts

Group ID Total countsa No. of miRNAs

with 0 counts

HSV 1. HSV-1 3736 128 (48.30%)

2. HSV-2 4621 135 (50.94%)

3. HVP2 2526 149 (56.23%)

4. SQHV 3266 127 (47.92%)

5. BV 3031 154 (58.11%)

6. SA8 2580 136 (51.32%)

7. ChHV 3083 142 (53.58%)

Other 8. CHMEinfectedb 2 217495 74 (27.92%)

9. CHME5mockb 4 379718 73 (27.55%)

10. PEL-A 77494 116 (43.77%)

11. PEL-B 61041 130 (49.06%)

12. HUVECinfectedb 908 577 101 (38.11%)

13. HUVECmockb 1 564148 97 (36.60%)

14. Fibroblasts 1973 143 (53.96%)

15. Tonsil 35263 125 (47.17%)

16. Contol1 41807 125 (47.17%)

17. Control2 46819 137 (51.70%)

18. Control3 35185 137 (51.70%)

aTotal counts also represent sequence depths. bSamples that were prepared using the

Illumina small RNA library preparation kit v1.0 (versus kit v1.5). Herpes virus

sample abbreviations are HSV-1 (human herpesvirus 1), HSV-2 (human herpesvirus

2), HVP2 (herpesvirus papio 2), SQHV (squirrel monkey herpesvirus), BV (macaque

herpes B virus), SA8 (simian agent 8), ChHV (chimpanzee herpesvirus).
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biological literature. The reasons for this extreme distortion are

both technical and biological, as only a handful of miRNAs tend

to dominate the miRNA population within cells. It offers a prac-

tical justification to develop statistical methods for extreme data.

Profiling miRNAs is a novel approach to query cell status and to

classify samples, in our case, different viral infections. Hence,

there exists an urgent need to develop appropriate clustering

and classification approaches that take into account the particu-

lars of these data structures.
PSVD is a factorization method to perform dimension reduc-

tion, specifically for Poisson count data. It has been applied for

data dimension reduction in non-biological applications, such as

call center data (Shen and Huang, 2008). In this article, we pro-

posed an extended approach (PSVDOS) to improve unsuper-

vised clustering of RNAseq data by incorporating offset

parameters, so that necessary normalization of miRNA sequen-

cing data can be automatically accounted for.
Using simulated data, as well as an even sparser experimental

example set, that highlights variation and limitations of

real-world NextGen sequencing data, we show that PSVDOS

was superior to other approaches that separate normalization

from dimension reduction, such as SVD on cube-rooted or rela-

tive frequency or the raw counts. Those normalization methods

are commonly used to eliminate variation because of technical

imperfection. PSVDOS correctly clustered samples on the basis

of NextGen-derived miRNA expression profiles. This new ap-

proach should help the analysis of NextGen-based RNAseq data

in general and miRNA-based classification of experimental and

clinical samples in particular.
There are several future research directions worth pursuing.

The current Poisson factor Model (3) uses row-specific (or cell

line-specific) offset parameters Ti to normalize the cell lines.

More generally, the offset parameters can be allowed to

depend on both the cell line and the miRNA, e.g. denoted as

Tij for the ith cell line and the jth miRNA. One can then impose

some two-way analysis of variance model on the offsets to model

effects of cell lines and miRNAs, such as

logðTijÞ ¼ �þ �i þ �j,

subject to some identifiability constraints, such as
P

i �i ¼P
j �j ¼ 0. Interaction terms can also be included if necessary.
Our framework makes use of the Poisson distributional nature

of the sequencing data through the Poisson likelihood function.

The likelihood approach is general and flexible enough that it

can be extended to model other distributions. For example, re-

searchers have noticed that some sequencing count data exhibit

overdispersion with respect to Poisson distribution and propose

to use negative-binomial distribution instead. See, among others,

Anders and Huber (2010) and Robinson and Oshlack (2010) in

the context of supervised clustering. An interesting direction for

future research is to develop an appropriate factor model to

address the overdispersion.
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