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ABSTRACT 
 

BRITTANY LYNNE MORTENSEN: Mechanisms of Francisella tularensis virulence as 
revealed by RipA and IclR  

(Under the direction of Thomas H. Kawula) 
 

 F. tularensis is a Gram-negative coccobacillus that is the etiologic agent of the 

zoonotic disease tularemia. With a low infectious dose via the inhalational route and the 

ability to cause a potentially severe disease in humans, F. tularensis is a very successful 

pathogen.  While it is known that F. tularensis depends on intracellular replication and 

immune suppression of the host, little is known about the specific mechanisms of virulence. 

Using a screen to identify genes required for intracellular replication, we identified a locus 

FTL_1914 which was subsequently named ripA. A mutant containing a deletion of ripA 

(LVS∆ripA) escaped the phagosome; however, it failed to replicate intracellularly in the 

cytoplasm of macrophages and epithelial cells and was attenuated in a mouse model of 

pulmonary tularemia. Later studies showed that RipA is a conserved cytoplasmic membrane 

protein with similarity to hypothetical proteins of unknown function in a few randomly-

distributed bacterial strains. Therefore, the function of RipA is not known. Investigation into 

protein-protein interactions involving RipA identified a putative RipA-interacting protein 

termed IclR (FTL_1364). In studies to determine the biological relevance of the RipA-IclR 

interaction, we analyzed the role of IclR to the virulence of F. tularensis. Deletion of iclR in 

F. tularensis LVS and Schu S4 suggested that unlike the non-pathogenic F. novicida, IclR 

was not required for virulence of human-virulent strains of F. tularensis and therefore, likely 

not required for RipA function. Further studies into RipA function using LVS∆ripA led to a 
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greater understanding of innate immune signaling pathways that are being suppressed by F. 

tularensis. Finally, biochemical determination of the unique topology of RipA and 

identification of functional domains revealed new insights into a potentially new family in 

proteins conserved throughout Prokaryotes. Together, not only do these studies provide 

general characterization of two F. tularensis proteins, they help elucidate mechanisms of 

virulence utilized by the highly pathogenic F. tularensis. 
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FRANCISELLA CLASSIFICATION AND EPIDEMIOLOGY 

 Francisella tularensis is a Gram-negative, coccobacillus belonging to the family 

Francisellaceae of the γ-Proteobacteria. Francisellaceae are found throughout the 

environment and commonly isolated from marine and fresh water (30, 37, 135); however, the 

environmental reservoir is not known. Additionally, Francisellaceae have been isolated from 

a wide-range of animal species. The most common mammalian hosts are lagomorphs such as 

rabbits, but Francisellaceae have been isolated from over 500 other species including rodents 

(188), birds (211), cats (238), dogs (125, 126), sheep and oxen (13), fish (214), and even 

crayfish (8). F. tularensis is also frequently recovered from arthropod vectors, mainly ticks 

(188), flies (155), and mosquitoes (86). Certain species within Francisellaceae have been 

reported to infect amoeba, including Acanthamoeba castellani (1, 85, 164, 277) and 

Hartmannella vermiformis (250) suggesting that amoeba may serve as an environmental 

reservoir; however, F. tularensis has not yet been isolated from amoeba in nature.

 F. tularensis infection in many of the animal hosts, including humans, results in the 

development of the zoonotic disease tularemia. In fact, F. tularensis was first identified as 

Bacterium tularense, the organism causing a disease in ground squirrels in Tulare County, 

California in 1911 (196, 197). Soon after, a febrile disease in humans called “deer-fly fever” 

was reported in Utah (219). Dr. Edward Francis is attributed with the identification and 

naming of Bacterium tularense as the agent causing “deer-fly fever” in the Utah patients 

(105, 106), and in 1947 the organism was renamed to Francisella tularensis in recognition of 

his contributions (215, 221). F. noatunensis (203, 204), F. philomiragia (214), and F. 

piscicida (216) species are now known as common fish pathogens, and F. philomiragia has 

caused disease in humans in a few isolated cases with immune-compromised patients or 
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near-drowning victims (107, 262, 285).  The diverse host range and geographic distribution 

of Franciselleaceae reflects the success of the organism to adapt to many environments, 

including humans. Based on the ability to infect and cause disease in so many hosts, there is 

a repertoire of animal models, including non-human primates (287), mice (27), rabbits (27), 

guinea pigs (27), rats (144, 233, 289), zebrafish (279), A. castellani (1), H. vermiformis 

(250), and Drosophila melanogaster (280), that have been used for studying the pathogenesis 

in F. tularensis infections. 

 There are three main subspecies of F. tularensis, the species that causes tularemia in 

humans: tularensis, holarctica, and mediasiastica. F. tularensis subspecies tularensis has 

only been reported in North America and is considered the most highly infectious subspecies 

for humans (269). Subspecies tularensis is also known as Type A and the primary strain used 

in research is the Schu S4 strain, which requires biosafety level 3 conditions to handle in the 

laboratory. F. tularensis subspecies holarctica is found throughout the northern hemisphere, 

and while holarctica still infects humans, this subspecies has a higher infectious dose (<1000 

organisms) and usually causes a less severe form of tularemia (269). Nonetheless, subspecies 

holarctica is a source of significant endemic disease in European countries (269). Subspecies 

holarctica was also used to generate the live vaccine strain (LVS) which is one of the 

frequently used strains in laboratories due to the ability to use this strain in under biosafety 

level 2 conditions and retained virulence for mice (269). F. tularensis subspecies 

mediasiatica has been associated with several reports of tularemia in Asia (152); however, 

not much is known about this subspecies. Finally, F. novicida is a commonly-studied species 

of Francisella due to the high genetic similarity to tularensis species and the ability to cause 

disease in mouse models of tularemia. Generally, F. novicida is considered non-pathogenic 
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for humans; however, it has been reported to cause disease, predominantly in immune-

compromised patients (29, 32, 58, 94, 135, 165, 286). The Utah 112 (U112) strain, which 

was isolated from a water sample in Utah in 1955 (161), is a frequently-used laboratory strain 

for F. novicida. Within the field, some consider F. novicida as a subspecies of F. tularensis; 

however, based on divergence realized by whole genome single-nucleotide polymorphism 

analysis as well as differences in virulence and in at least 11 metabolic processes, novicida is 

considered a separate species by others (143, 147, 152, 162, 163). Nevertheless, due to 

journal policies and the current classification debate in the field (45, 147), chapters 2-4 refer 

to F. novicida as F. tularensis subspecies novicida. 

 In humans, tularemia is manifested in several different forms depending on the route 

of transmission of F. tularensis. General symptoms can include fever, headache, chills, joint 

pain, muscle aches, cough, and diarrhea, which begin to appear usually 3-5 days post 

infection (252, 253). Regardless of the route of inoculation, inflammation and swelling of the 

lymph nodes is also typical (269). The most common transmission route is contact with F. 

tularensis through the skin either through bites from arthropod vectors or handling 

contaminated animals, tissues or indirectly through items such as tools or bedding (269).  

There have been multiple cases of tularemia resulting from scratches or bites from house 

pets, commonly cats (205, 255). Dermal contact results in the ulceroglandular form of 

tularemia and the characteristic formation of a lesion at the site of infection (269). 

Transmission via the eye is rare but results in the oculoglandular form of tularemia 

characterized by conjunctivitis and occasionally other complications (269). Ingestion of F. 

tularensis in contaminated food or water results in oropharyngeal tularemia characterized by 

pharyngitis and ulcerative-exudative stomatitis (269). Typhoidal tularemia is the term given 
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when the source of infection is not known (269). The most severe form of tularemia is 

pneumonic tularemia that can be a result of complications from another form of tularemia or 

from inhalation of aerosolized bacteria. Often aerosols are generated by disruption of 

materials such as hay, soil, or grass contaminated with F. tularensis and therefore farmers 

and lawncare workers are often infected in this way (269). A famous set of cases in the 

United States occurred in Martha’s Vineyard where multiple lawn care workers were 

diagnosed with pneumonic tularemia (95, 273). There have also been at least two cases of 

pneumonic tularemia resulting from transmission by dogs (241, 263). Historically, lab 

workers were infected via inhalation, although these incidences have decreased due to 

increased biosafety in handling the organism. Surprisingly, there is no evidence that F. 

tularensis is transmitted human to human (269). 

 F. tularensis subspecies tularensis has a very low infectious dose via the inhalational 

route, with as few as 10 organisms sufficient to cause disease (252, 253), and pneumonic 

tularemia has a mortality rate as high as 60% if left untreated (80). Infection can be 

controlled with prompt antibiotic treatment, and there is partial protection by previous 

vaccination using LVS (80). Due to the lack of knowledge on why LVS is attenuated, only 

being partially protective as a vaccine, and the inability to vaccinate immune-compromised 

individuals with a live strain, LVS is not licensed in the United States. The preferred 

antibiotics for treating tularemia patients are streptomycin or gentamicin, though alternative 

antibiotics can be used such as doxycycline, chloramphenicol, or ciprofloxacin (80). During 

the Cold War, several countries, including the former Soviet Union and the United States, 

stockpiled antibiotic-resistant strains of F. tularensis (5, 217, 254). This fact combined with 

the ease of aerosolization, the low infectious dose via the inhalational route, and the high 
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mortality rate after pulmonary infection, F. tularensis subspecies tularensis is designated as a 

Select Agent by the Centers for Disease Control (80). 

 

PATHOGENESIS AND INTRACELLULAR LIFECYCLE 

 In a pulmonary infection, once in the lung, F. tularensis travels to the alveolus where 

it infects a number of cell types including macrophages, dendritic cells (DCs), neutrophils, 

and Type II alveolar epithelial cells (21, 36, 129, 130). The distribution of infected cells 

changes over the course of infection and among subspecies (130). F. tularensis has also been 

reported to infect erythrocytes (140), fibroblasts (108), kidney epithelial cells (138), and 

hepatocytes (68), cell types that could presumably be infected in systemic disease. Through 

the use of a uracil biosynthesis mutant (∆pyrF), it has been suggested that intracellular 

replication in non-macrophage cells is sufficient to cause infection (139). There is also 

evidence that F. tularensis undergoes an extracellular phase during an infection (21, 99, 292). 

Overall, the ability to infect and manipulate so many cell types reflects the success of F. 

tularensis as a pathogen.  

 Central to F. tularensis virulence is its ability to replicate to high numbers within the 

cytoplasm of host cells. The ability of the bacteria to reach the cytoplasm is dependent on 

both the opsonization of the bacteria and whether the bacteria can escape the phagosome. 

First, in serum-opsonizing conditions, F. tularensis is taken up by looping phagocytosis 

through interaction with complement receptor C3 and actin microfilaments (60). Other 

receptors that may be involved in macrophage uptake under opsonizing conditions are Fcγ 

receptors, surfactant protein A, class A scavenger receptors, and nucleolin (17, 20, 115, 223, 

258). Under non-opsonizing conditions, bacterial phagocytosis is mediated by the mannose 



7 
 

receptor with additional contributions by class A scavenger receptors and nucleolin (20, 115, 

223, 258). After phagocytosis, F. tularensis escapes the phagosome as early as 20 minutes 

post invasion, and by approximately 1 hour, begins replicating within the cytoplasm. The 

kinetics of phagosomal escape depends on opsonization status of the bacteria. when 

compared to non-opsonizing conditions, serum opsonization of bacteria delays phagosomal 

escape and thereby impairs intracellular growth (115).  

 After uptake of bacteria and  prior to phagosomal escape, the phagosome undergoes a 

maturation process in which the phagosome acquires early endosomal markers such as EEA1 

and late endosomal markers such as CD63, LAMP-1, and LAMP-2 (59, 119). Studies using 

lysosomotropic agents revealed that these late-stage phagosomes are not acidified, even by 3 

hours post infection (59). On the other hand, additional studies demonstrated that there is an 

initial, transient acidification as well as acquisition of the vacuolar ATPase that drops by 1 

hour post infection, and escape is delayed if acidification is blocked (57, 102, 247). In 

contrast, another study suggests that phagosomal acidification is not required for phagosomal 

escape or intracellular replication (61). Therefore, the requirement for phagosomal 

acidification for phagosomal escape by the bacteria remains under debate. Once in the 

cytoplasm, F. tularensis can replicate up to several logs by 24 hours post infection (10). At 

this point, some bacteria are located in a membranous vacuole shown to be autophagic 

vacuoles, as is discussed below, and it is not yet clear how bacteria exit host cells to spread 

and infect other host cells. 

The mechanisms by which other cell types take up F. tularensis and the lifecycle 

within these other cell types are not as well understood. Epithelial cells take up both viable 

and nonviable F. tularensis bacteria with similar kinetics, suggesting that there is a bacterial 
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surface ligand required for entry, but the host cell receptors involved are not known (75). 

Entry into epithelial cells also requires actin polymerization, microtubule rearrangement, and 

associated upstream signaling by phosphatidylinositol 3-kinase (PI3K) and tyrosine kinase 

pathways (75). Once inside the epithelial cell, F. tularensis escapes the phagosome to 

replicate within the cytoplasm following the same endocytic pathway and with similar 

kinetics as in the macrophage (75). DCs are thought to engulf F. tularensis via a mechanism 

that is dependent on serum opsonization of bacteria and the DC integrins CR3 and CR4 (28). 

Like DCs, neutrophils also take up F. tularensis in a serum-dependent manner (177, 227). 

After entry, F. tularensis bacteria escape the phagosome to persist in the cytoplasm, though 

no reports demonstrate any intracellular replication in neutrophils (194). In fact, F. tularensis 

has been shown to actively recruit neutrophils to the lung at least in part through the activity 

of matrix metalloproteinase-9, suggesting that neutrophils may provide an additional in vivo 

niche for F. tularensis (186). Finally, both complement-dependent and independent 

mechanisms are involved in uptake into erythrocytes, but nothing else is known about the 

lifecycle of F. tularensis in this cell type (140). We still have much to learn about the life 

cycle of F. tularensis within non-macrophage cell types. 

 As noted above, after approximately 24 hours post infection, F. tularensis can be 

observed within multi-membranous vacuoles termed Francisella-containing vacuoles or 

FCVs (54). The study initially characterizing FCVs showed that these vacuoles are 

juxtanuclear and fused with lysosomes, yet there are intact Schu S4 bacteria within. 

Furthermore, FCVs acquired the protein LC3, accumulated monodansylcadaverine, and 

formation was inhibited by 3-methyladenine, together suggesting that the FCV represents an 

autophagosome. Subsequent studies have expanded on the autophagy concept by showing 
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that FCV formation also occurs with LVS and that other autophagy-associated molecules 

such as cathepsin D, phosphatase and tensin homolog (PTEN), and p53 may have altered 

expression in infected cells (141). Finally, microarray studies at 24 hours post infection 

demonstrated that infection with Schu S4 or U112 results in decreased expression of other 

autophagic response proteins and the autophagy-related PI3K signaling pathway (46, 76). 

This suggests that Francisella may be suppressing and thereby delaying the autophagic 

response to infection; however, it is not known what bacterial effectors may be involved. 

 Related to this, some host cell death is induced by F. tularensis, even with bacteria-

mediated suppression of the process. Several reports have shown that F. tularensis induces 

caspase-3 activation and cell death in macrophages and in vivo using F. novicida, LVS, and 

Type A strains KU49 and KU54 (33, 159, 230, 251, 288). To build on this idea, in two 

studies using F. novicida, it was demonstrated that caspase-3 activation and cell death are 

downregulated at early time points as a result of activation of Ras signaling pathways and 

that although there is eventually upregulation of caspase-3, apoptosis is delayed further, 

potentially as a result of anti-apoptotic signaling (6, 251). Therefore, although apoptotic 

pathways are eventually activated, the delayed kinetics suggest the possibility that the 

bacteria are downregulating these apoptotic pathways, yet the specifics of caspase-3 and 

apoptosis signaling pathways during F. tularensis infections are not completely clear. 

 

HOST IMMUNE RESPONSE TO FRANCISELLA INFECTION 

Innate immune response 

 Another pathogenic strategy of F. tularensis is to suppress the host pro-inflammatory 

immune response. This is one important difference between novicida and the more virulent 
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holarctica and tularensis subspecies. Whereas F. novicida stimulates the innate immune 

system, F. tularensis subspecies holarctica and tularensis does so to a much lesser extent and 

in a delayed manner due to active suppression on the part of these organisms (9, 35, 36, 46, 

53, 176, 270, 271). In fact, it has also been reported that both LVS and Schu S4 upregulate 

expression of the immunosuppressive cytokine TGF-β (35, 36). The pathways involved in 

response to F. tularensis, and which F. tularensis is suppresses, have only been partially 

elucidated. In terms of extracellular recognition, unlike many other Gram-negative bacteria, 

F. tularensis lipopolysaccharide (LPS) does not stimulate the host cell sensor protein toll-like 

receptor (TLR) 4 (2, 62, 128, 270). This low stimulatory effect is likely due in part to 

changes in lipid A, specifically the lack of a 4’-phosphate, which is removed by LpxF, and 

hypoacylation of the fatty acid chains (222, 278, 281, 282). There has been a fair bit of 

controversy on the exact structure of lipid A between the strains of Francisella (25, 222, 261, 

278, 282). Despite the inability of F. tularensis LPS to activate the host response, F. 

tularensis does stimulate TLR2, which recognizes lipoproteins, and whether this recognition 

is specific to TLR1/TLR2 or TLR6/TLR2 heterodimers is not clear, but F. tularensis may 

possibly stimulate both heterodimers with different ligands (2, 150, 168, 187, 274). 

Following stimulation of TLR2, several downstream pathways are required for immune 

activation. Overall, signaling occurs through MyD88 with a partial contribution of the 

MyD88 adaptor molecule TIRAP (2, 63, 65, 66, 199). This leads to downstream activation at 

least p38 and ERK1/2 MAPK, which presumably leads to activation of NF-κB and AP-1 

transcription factors for several pro-inflammatory cytokines, most notably pro-IL-1β (142, 

199, 270). LVS-infected cells display a TLR2- and MyD88-independent activation of PI3K 

that corresponded to a downregulation of p38 and ERK1/2, suggesting that PI3K and MAPK 
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signaling pathways may be involved in the suppression of the immune response observed for 

F. tularensis (199) . The specific downstream signaling pathways involved in suppression of 

pro-IL-1β transcription need further elucidation. 

 Processing of pro-IL-1β to mature IL-1β for secretion requires a two-step process. 

First, there must be transcription and synthesis of pro-IL-1β as described above. A second 

signal is required for processing into mature IL-1β in which a cytoplasmic sensor molecule 

recognizes a pathogen and then recruits additional protein components to form a complex 

called the inflammasome. The most well-characterized families of cytoplasmic sensors are 

the nucleotide binding domain leucine rich repeats containing proteins (NLRs) (145); 

however, there are reports of inflammasomes containing the cytoplasmic sensors absent in 

melanoma 2 (AIM2) or retinoic acid-inducible gene 2 (RIG-I) (44, 96, 97, 137, 225, 239). 

The respective sensor molecule will recruit procaspase-1, and then depending on the sensor 

molecule involved, also recruit the adaptor protein PYCARD/ASC (Pyrin-CARD/apoptotic 

speck-containing protein with a CARD) (71, 193). The formation of the complete 

inflammasome complex results in the auto-catalytic cleavage of pro-caspase-1 into caspase-

1, which can then process pro-IL-1β into mature IL-1β for secretion. 

 In terms of Francisella, ASC and caspase-1 are involved in detection of cytoplasmic 

Francisella bacteria (64, 113, 191). A recent study demonstrates that TLR2 and MyD88 are 

also required for inflammasome activation and assembly, but the mechanism is not clear 

(148). Once in the cytoplasm, F. tularensis stimulates the inflammasome via an unknown 

cytoplasmic receptor, although we know that F. tularensis does not stimulate the well-

characterized NLRP3 or NLRC4 (190, 191). There is some evidence that pyrin, a non-NLR 

cytoplasmic sensor, is required for inflammasome activation in response to F. novicida (114). 
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Several groups have published that a non-NLR sensor AIM2 recognizes F. tularensis DNA, 

which leads to inflammasome activation (97, 149, 232, 276); however, it is likely that this is 

not the only mechanism in play, and whether AIM2 is important for recognition by human 

cells is not clear. Type I interferon (IFN-α/β) is secreted in response to F. tularensis in a 

TLR-independent, interferon regulatory factor (IRF) 3-dependent manner and is necessary 

for caspase-1 processing, macrophage cell death, and IL-1β secretion (133). While Type I 

interferon secretion does not require the AIM2 inflammasome activation, Type I interferon 

and IRF-3 are required for activation of the AIM2 inflammasome in response to F. tularensis 

infection (97, 149). In contrast to these studies, another report argues that IFN-β is not 

required for inflammasome activation in DC’s or control of replication in this cell type but 

rather is important for the production of IL-12p40 (24). There is still a lot to learn about the 

inflammasome pathways activated in response to F. tularensis infection, and if and how F. 

tularensis is suppressing this arm of the pro-inflammatory pathway is not completely clear. 

 Many immunological studies with F. tularensis have been done in vivo or in 

macrophages, but several studies have addressed the specific roles of other cell types to the 

host innate immune response to F. tularensis infection. Interestingly, mast cells are recruited 

to the lymph nodes and lungs during pulmonary infection with F. tularensis LVS, and inhibit 

F. tularensis uptake and growth in macrophages as well as provide protection in a mouse 

model (153). The role of mast cells to control F. tularensis infection requires the cytokine IL-

4 and involves increased ATP production and phagosomal acidification of infected cells 

(153, 240). In endothelial cells, F. tularensis does not induce secretion of significant levels of 

pro-inflammatory chemokines and cytokines, specifically CCL2, MCP-1 and IL-8 by this 

cell type, and although neutrophil recruitment was involved, the neutrophils displayed 
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blunted responsiveness (98, 210).  The above data demonstrating downregulation of 

cytokines and chemokines makes sense in light of a study showing that both LVS and Schu 

S4 actively suppress the pro-inflammatory response of endothelial cells by acting through the 

anti-inflammatory endothelial protein C receptor (EPCR) (41). Type II epithelial cells 

exposed to F. tularensis secrete several cytokines and chemokines including IL-8, MCP-1, 

and GRO-α, and this secretion is NF-κB-dependent and promotes recruitment of neutrophils 

(116). Overall, these studies support the idea that F. tularensis also modulates the pro-

inflammatory response by altering chemokine release, leukocyte adhesion molecule 

expression, and subsequent recruitment of neutrophils, albeit less successfully. 

  

Adaptive immune response 

 The adaptive immune response to F. tularensis is largely a T-cell-mediated response 

and several T-cell populations are essential for resolution of infection (70, 72, 73, 89, 90, 

237). Interferon gamma (IFN-γ) was first shown to be required for an effective response to F. 

tularensis infection (103), with contribution of TNF-α that is thought to activate natural killer 

cells to secrete IFN-γ (166, 180). B-cells also play a minor role in protection against F. 

tularensis, and this B-cell response is independent of antibodies (77, 87). Not surprisingly, 

the immune response is dependent on the route of infection. Specifically, while IFN-γ is 

important in controlling infection following an intradermal inoculation, after intranasal 

inoculation during the subsequent infection in the lung, IFN-γ is not as important. Although 

T-cells are still involved, the composition and kinetics of the T-cell response in the lung is 

different than that of an intradermal infection (66, 67, 290). Instead, a role for Th17 cells has 

been shown following intranasal inoculation (290). Finally, there have been several F. 
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tularensis T-cell epitopes identified, with the most prominent epitope being a peptide from 

the outer membrane protein Tul4 (104, 120, 264, 265). 

 In addition to suppressing the innate immune response, Francisella also modulates 

the adaptive immune response to promote infection. As mentioned above, F. tularensis has 

been shown to suppress IFN-γ secretion (218). Another mechanism of suppression is through 

the induction of infected macrophages to secrete prostaglandin E2 (PGE2), which skews the 

T-cell response to an anti-inflammatory, Th2-like response by increasing IL-5 production 

(291). PGE2 has also been shown to be important in vivo following intranasal inoculation 

where it delays production of IFN-γ-positive T-cells and promotes IL-17 secretion and Th17 

cell production (74, 192, 290). Blocking IL-12 and producing IL-23, both of which result in 

an increase of Th17 cells, are also important in pulmonary infections of F. tularensis (47, 82, 

88). 

 

FRANCISELLA RESPONSE TO THE HOST 

 Despite the fact that F. tularensis is a successful pathogen, there is still a lot to learn 

about its virulence mechanisms, in part, because many of the classic virulence factors present 

in other bacterial pathogens have not been identified in F. tularensis (163). Furthermore, only 

recently have the genetic systems for large mutagenesis screens and generation of mutant 

libraries of F. tularensis been possible (23, 43, 112, 151, 168, 175, 184). In order to identify 

F. tularensis virulence factors, several genome-wide screens have been completed focusing 

either on intracellular replication, host cell cytotoxicity, phagosome biogenesis, or in vivo (3, 

4, 15, 156, 158, 183, 212, 228, 259, 267, 272, 284). From these screens, as well as in silico 

analyses, F. tularensis has been shown to have a capsule, Type IV pili, several proteases, iron 
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acquisition systems, and the Francisella Pathogenicity Island (FPI), all of which are 

discussed below. Other Francisella virulence factors include mviN (276), citrulline ureidase 

(182), a potassium uptake protein TrkH (7), minD (11), valAB (198), an alanine racemase 

(123), a purine biosynthetic enzyme with homology to glutamine 

phosphoribosylpyrophosphate amidotransferases (123), purMCD (220), purF (229), an AcrB 

RND efflux pump (31), OppB oligopeptide transporter (40), and FTL_0200 encoding a 

putative AAA+ ATPase of the MoxR subfamily (81). Finally, numerous hypothetical 

proteins were identified as virulence factors in the screens mentioned above and remain to be 

characterized. 

 

Francisella pathogenicity island 

 The FPI is an approximately 30 kb region consisting of 17 genes and located between 

inverted repeat sequences in the F. tularensis genome (213). Furthermore, the FPI is present 

in all F. novicida and F. tularensis strains, but while there is only one copy in F. novicida, 

the FPI is duplicated in F. tularensis (213). There are other differences in this region between 

strains. One major difference is found in the 3’ end of the FPI where holarctica strains are 

missing pdpD and anmK, and F. novicida encodes an additional 48 amino acids in PdpD 

(181, 213). The anmK gene has stop codon(s) inserted, differing on location and number 

between subspecies and clades, and the specific role for anmK in virulence is not clear (181). 

Before discovery of the FPI, one its component genes, iglC, was identified as encoding a 23 

kD protein that was upregulated during intracellular growth (121) and soon after, both iglC 

and iglABCD, one of the putative operons within the FPI, was shown to be required for 

intracellular growth (123, 157). Other individual genes within the FPI have been shown to be 



16 
 

required for virulence including pdpD (181, 213), pdpA (213, 256, 257), iglA and iglB (78), 

iglD (248),  pmcA/anmK (181), FTT_1347 (22), iglI (22, 38), and iglG (38). Interestingly, 

PdpE is not required for virulence (38). Of the FPI proteins, at least IglC (34, 170, 249), 

PdpA (256), IglD (34), IglG (38) and IglI (38), are important for phagosomal biogenesis 

and/or escape. Additionally, IglA and IglB have been shown to interact (78), but otherwise, 

the function of the FPI proteins are unknown.  

 There is some evidence that the FPI may encode a secretion system that is distantly 

related to the Type VI secretion system (T6SS) found in several other bacterial species (22, 

78). One study in F. novicida shows that the VgrG homolog (FTT_1347), is secreted into 

macrophages and in culture supernatants as observed for VgrG in other T6SS; however, 

unlike other T6SS, secretion of VgrG is independent of the known FPI T6SS homologs (22). 

Also unlike other characterized T6SS, the Hcp-homolog PdpE is not secreted in F. novicida 

(22). Curiously, using deletion mutants of either the FPI, vgrG, or the icmF homolog pdpB in 

F. novicida, it was shown that IglI is secreted and that this secretion is dependent on the FPI, 

VgrG, and PdpB (22). Overall, the studies on the FPI suggest that the proteins are part of a 

secretion system, potentially a novel secretion system similar but distinct from the T6SS. 

 

Regulation of virulence factors 

 Regulation of virulence factors in F. tularensis has been largely focused on the FPI 

genes. MglA is one of the key regulators of FPI gene transcription as well as at least 100 

other genes, including ones encoding secreted proteins PepO and BglX and genes involved in 

oxidative and general stress response (40, 124). MglA is also required for phagosomal 

escape, intracellular replication, and virulence in vivo (23, 34, 164, 249) and for replication in 
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mosquito and D. melanogaster cells (235, 246). In order to function as a transcriptional 

regulator, MglA binds to the RNA polymerase (RNAP) to direct transcription of the subset of 

genes mentioned above (52). This interaction with RNAP is dependent on MglA first binding 

to a protein called SspA and the MglA-SspA heterodimer then binding to RNAP; thus, the 

SspA regulon overlaps with that of MglA (52). Another regulator, MigR, regulates the FPI 

and other genes in the MglA/SspA regulon (39). FevR (also called PigR) has also been 

shown to regulate both FPI genes and other genes, and this regulation involves the small 

alarmone guanosine-tetraphosphate (ppGpp) which promotes the interaction between FevR 

and MglA to coordinate regulation of the same set of genes (42, 51).  

 Another distinctive aspect of F. tularensis is that the genome does not appear to 

encode any classic paired two-component regulatory systems, but does contain orphaned 

members (163). The orphan response regulator PmrA has been shown regulate the FPI as 

well as numerous other virulence genes and is required for both intracellular replication and 

in vivo pathogenesis (207, 244). More recently it was shown that PmrA is phosphorylated by 

a kinase KdpD and may interact with MglA and SspA (26). QseC is another orphan two-

component system member, which its partner, QseB, was only recently identified, and both 

genes were required for biofilm formation, typical of QseBC in other bacteria (84).  

 Another important F. tularensis regulator is Hfq, which traditionally acts as a post-

transcriptional regulator that facilitates the interaction between small non-coding RNAs in 

and RNA transcripts, which in turn decreases or enhances translation of the RNA transcripts. 

Hfq is not only valuable as a global regulator for stress tolerance, but also for its contribution 

to the regulation of virulence genes, including some genes found in the FPI (50, 200). 

Additionally, recent in silico and experimental analyses suggest that F. tularensis has several 
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non-coding small RNAs that are involved in gene regulation, although interactions with Hfq 

were not determined (226). In addition to virulence regulators, F. tularensis encodes the 

major sigma-70 factor (σ
70

), as well as a σ
32

 factor RpoH that regulates numerous genes 

required for heat-shock response (122).  

 Regulation of both gene and protein expression occurs in response to numerous 

environmental stimuli including inside the host macrophage (121, 283), different culture 

medias (43, 132, 293), heat shock (91, 122), osmotic and membrane stress (200), starvation 

and oxidative stress (91, 124, 167), mammalian body temperature (91, 138), iron limitation 

(79, 167), and glucose (138). A surprising result from a recent study demonstrated that F. 

tularensis alters gene expression in response to spermine and that this gene regulation is 

largely mediated through adjacent insertion sequence elements (48). 

 

Iron acquisition 

 As mentioned, F. tularensis gene expression changes in response to iron levels, which 

is not unexpected considering the iron is an essential metal that bacteria require for normal 

metabolism and is actively sequestered from pathogens by the host. The role of iron in F. 

tularensis infection was first observed in the context of iron acquisition upon phagosomal 

acidification in F. tularensis-infected cells (102). A common mechanism of iron uptake by 

bacteria is the use of siderophores, secreted iron-binding molecules. In F. tularensis, the 

fslABCDEF operon, is required for production of a siderophore similar to the 

polycarboxylate siderophore rhizoferrin and is required for iron acquisition and for growth in 

iron-limiting conditions (79, 154, 268). A highly conserved transcriptional regulator required 

during iron-limiting conditions is the ferric uptake regulator Fur, and F. tularensis encodes a 
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Fur protein that regulates genes involved in iron acquisition (79, 92, 93, 131). Later, fslE was 

also shown to be required for siderophore utilization, growth in iron-limiting conditions, and 

was under control of the Fur promoter as part of the fsl operon in Schu S4 (231). 

Interestingly, the F. tularensis genome does not appear to have tonB, exbB, or exbD, three 

genes encoding proteins that are typically required for siderophore uptake (163). Another 

protein recently described as being involved in both siderophore-dependent and -independent 

iron uptake by Schu S4 is FupA (FTT_0918) (171). In LVS, the FupA homolog (FTL_0439), 

which is a fusion protein of two adjacent genes in Schu S4, FupA/B, is required for 

siderophore-mediated iron uptake, and unlike Schu S4, FslE in LVS is considered a 

secondary player in siderophore-mediated iron uptake (260). FupA is required for virulence 

for both LVS and Schu S4 (171, 260, 275). These studies display some differences in iron 

uptake between Francisella strains, and both these differences as well as specific 

mechanisms of iron uptake need to be explained. 

  

Protection from oxidative stress  

 Oxidative stress can also induce the expression of iron uptake genes through 

activation of Fur as well as the regulator OxyR (294). In fact, F. tularensis subspecies 

tularensis displays decreased susceptibility to hydrogen peroxide killing that is associated 

with decreased intracellular iron content (172).  The role of reactive oxygen and nitrogen 

species in controlling intracellular bacterial infections in general is well understood. F. 

tularensis was first shown to be killed by nitric oxide in IFN-γ-activated macrophages and 

soon after,  host nitric oxide production was shown to be correlated with increased resistance 

to F. tularensis infection in vivo in a mouse model (103, 134). Using both peritoneal exudate 
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cells and mice deficient for production of reactive nitrogen and oxygen species, another 

group demonstrated more definitively that there are distinctive roles of reactive nitrogen and 

oxygen species to controlling both F. tularensis replication in host cells and an infection in 

vivo (170, 174)   Macrophages infected with F. tularensis have also been shown to 

upregulate proteins involved in the oxidative stress response of the macrophage (9, 283). 

Despite this host response, F. tularensis replicates within macrophages, as discussed above. 

In neutrophils, F. tularensis survives intracellularly, at least in part due to blocking the 

oxidative response through prevention of the nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase formation and gp91/p22
phox

 or p47/p67
phox

 acquisition on the phagosome, 

and this blockage leads to a failure to control infection in vivo as well (83, 178, 179, 194, 

227).  

 F. tularensis encodes for several proteins involved in the response to oxidative stress 

common to other bacteria, though not many have been well-characterized. The superoxide 

dismutase SodB is required for virulence and for resistance to redox cycling agents paraquat 

and hydrogen peroxide (16). KatG, the catalase present in F. tularensis, is also required for 

resistance to the oxidative burst as well as for inhibition of pro-inflammatory signaling 

pathways, likely through PTEN, which is activated in oxidative conditions (173, 201). 

Finally, an attenuated strain of F. tularensis expressing a highly active form of AcpA was 

purified and shown to specifically inhibit the superoxide formation in neutrophils (236). 

AcpA in F. novicida was also shown to function as a phosphatase required for phagosomal 

escape (206). Later it was demonstrated that all four acid phosphatases, AcpABC and Hap, in 

F. novicida are required for the inactivation of the NADPH oxidase, resistance to phagocyte 

oxidative burst, and virulence in vivo (208, 209). Notably, in F. tularensis subspecies 
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tularensis and holarctica, AcpA is not required for inhibition of the oxidative burst, and 

AcpABC proteins are not required for Schu S4 virulence in vitro or in vivo (56, 195). 

Together these studies highlight a key difference between the human-virulent F. tularensis 

species and F. novicida.  

  

The capsule 

 A polysaccharide capsule is one common virulence factor found on many but not all 

pathogenic bacteria, likely including Francisella. The presence and type of capsule expressed 

by F. tularensis is a subject of debate. F. tularensis was originally shown to have a capsule-

like substance surrounding the bacterium over thirty years ago (55, 60, 136, 245). Mutants 

lacking this capsule structure demonstrate increased sensitivity to serum but reduced 

sensitivity to killing by neutrophils and are also avirulent in mouse models of tularemia (19, 

55, 245, 266). Furthermore, the composition and expression of the capsule can change 

depending on the growth conditions (55, 293). The F. tularensis capBCA locus has partial 

homology to the cap locus in B. anthracis that encodes for proteins needed to synthesize the 

poly-D-glutamic acid capsule (163, 185). Interestingly, while F. tularensis capBCA is 

required for intracellular growth and in mouse models of tularemia for both Schu S4 and 

LVS (69, 146, 202, 267), F. tularensis capsule has not been reported to consist of poly-D-

glutamic acid (202, 234). Early studies suggest that the capsule consists of carbohydrates, 

including mannose, rhamnose, and two other unidentified sugars, amino acids, and fatty acids 

(136). A more recent study found that the F. tularensis capsule is made up of O-antigen 

capsular polysaccharide and its production is dependent on the wbt O-antigen 

glycosyltransferases gene cluster (12). Three additional genes, FTT1236-1238 are also 
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required for O-antigen and/or O-antigen capsule formation (169). Besides the O-antigen 

capsular polysaccharide, higher molecular weight carbohydrate complex has also been 

identified in isolated capsule and consists of glucose, galactose, mannose, as well as 

Proteinase K-resistant protein, and this complex synthesis is dependent on the 

glycosyltransferase genes FTT_1422 and FTT_1423 (19). So although it is largely accepted 

that Francisella has a capsule, the composition, biosynthesis, and regulation of the capsule 

are not well defined. 

  

Type IV Pili 

 The use of type IV pili is a common way bacteria adhereto host cells and/or use for 

motility, yet the presence, composition, and function of type IV pili in Francisella are also 

subjects of debate. Type IV pili-like structures were first observed on LVS using microscopy 

(117) and later observed on F. novicida (117, 295) and Schu S4 (14). Pili formation in LVS 

and F. novicida is dependent on both the assembly ATPase PilB as well as the disassembly 

ATPase PilT (49, 295).  Surprisingly, in F. novicida pili formation is not dependent on PilC 

or PilQ, which are proteins typically required for pilus assembly in other bacteria, though it 

has yet to be determined whether this is the case for other Francisella strains (295).  

 In terms of pilus composition, PilA is typically the pilin subunit that makes up the 

pilus in Gram-negative bacteria; however, Francisella encodes six different pilin genes, 

pilA/pilE1, pilE/pilE2, pilV/pilE3, pilE4, pilE5, and pilE6. F. tularensis subspecies 

holarctica is the most divergent in the putative pilin genes. In several holarctica strains 

including LVS, pilA is absent from the genome, there are non-sense mutations in pilE/pilE2 

and pilV/pilE3, and the pilE4 sequence longer in length (163, 243). In F. tularensis 
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subspecies tularensis and holarctica and F. novicida strains that do encode for PilA, the only 

difference is found in the 3’ end of pilA in F. novicida (295). The role of these individual 

proteins in pilus composition has yet to be determined, and there are differences between 

subspecies. There is some evidence that the major pilin for F. novicida is PilE/PilE2 (295). 

Using heterologous expression of Schu S4 and F. novicida pilA in Neisseria gonnorhea, 

another group suggested that pilA is sufficient for pilus formation (242). Another recent study 

showed that in both LVS and Schu S4, pilE4 was required for pilus formation (14). 

Interestingly, pilE4 was not required for virulence; however, pilE5 and pilE6 were not 

required for pilus formation but were required for virulence in LVS only, again highlighting 

subspecies and species differences (14).   

 The role of the pil genes and pili formation to virulence is also different between 

strains. In terms of Schu S4, only recently was it demonstrated that pilA, pilE5, pilE6, 

pilC/pilG and pilQ are required for virulence in vivo, while pilT and pilE4 are not (14, 101). 

As explained above, of these, only pilE4 has been shown to be involved in formation of pili. 

For LVS, pilE5 and pilE6 were shown to be important for virulence in vivo, yet in two other 

holarctica strains, pilA was required for virulence in vivo (100). Finally, in F. novicida, the 

roles of pilA/pilE1 and pilE4 in virulence in vivo are variable between studies (127, 295).  

These discrepancies in a role for pili formation and the pil genes to virulence as well as 

among strains of Francisella only further complicate elucidation of the function of type IV 

pili. Some have ascribed virulence differences to a role for pili in Type II secretion, as 

discussed below. 
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Protein secretion 

 To date, all bacteria have (or are predicted to have/encode) mechanisms for secretion 

of effector molecules and proteins into the environment in order to support survival and 

replication, and Francisella is no exception. Although no toxins or other well-characterized 

secreted effectors have been identified in Francisella, several secreted proteases have been 

identified including ClpB heat shock protease (123), FTT1209c metallopeptidase family M13 

protein (40), PepO zinc protease (127), BglX beta-glucosidase (127), and hemolysins (160). 

Unlike many other pathogens, Francisella does not encode any classic Type III, Type IV, or 

Type V secretion system; however, there are Type I and Type II secretion systems as well as 

the cytoplasmic membrane Sec translocon (163, 189). For Type I secretion, TolC is the 

prototypical outer membrane efflux pump that interacts with inner membrane ATPases for 

secretion of toxic products. F. tularensis encodes a functional TolC protein involved with 

multidrug resistance and is required for intracellular replication and virulence in vivo (118, 

224). Francisella also encodes a putative secretion system in the FPI, as described above. 

 The Type II secretion system in Francisella is thought to be synonymous with Type 

IV pili encoded by the pil genes. The key difference is the use of GspC, GspL, and GspM as 

well as several periplasmic proteins in Type II secretion; however, Francisella does not 

encode GspC, GspL, and GspM, so it’s possible that the Type IV pili system is sufficient. 

Evidence of Type II secretion being functional in Francisella was determined by the 

observation that secretion of seven F. novicida proteins was dependent on pilA/pilE1, 

pilB/pilF, pilC/pilG, and pilQ, although these genes were not required for intracellular 

replication, they were important in vivo (127, 128, 295). Furthermore, pilE4, which is 

required for pilus formation in F. novicida, is not required for secretion (295). In LVS, pilE5 
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and pilE6 were not required for pilus formation but were required for virulence and the 

authors suggest a role for these proteins in secretion (14). Clearly, much remains to be 

elucidated in regards to mechanism and secreted effectors of Type II secretion as well as its 

relation to type IV pili and virulence. 

  

DISCOVERY AND INITIAL CHARACTERIZATION OF RIPA 

 Using a LVS transposon mutant library screen for intracellular replication in 

epithelial cells, our lab identified the locus FTL_1914. Deletion of this locus via allelic 

exchange resulted in an LVS mutant (LVS∆ripA) that is deficient for intracellular replication 

in both epithelial cells and macrophages and therefore was named ripA, required for 

intracellular proliferation, factor A (110).  Interestingly, LVS∆ripA escapes the phagosome 

and re-enters the autophagosome-like vacuoles with the same kinetics as wild-type (110). 

Both ripA gene expression and RipA protein expression are upregulated at higher pH 7.5 and 

ripA expression is also upregulated upon host cell infection, especially between 1-6 hours 

post invasion when bacteria have begun to enter the cytoplasm and replicate (111). 

Furthermore, deletion of the FPI transcriptional regulators mglA and sspA in LVS results in 

increased ripA expression, suggesting that these regulators inhibit ripA transcription. 

LVS∆ripA is also attenuated in a mouse model of pulmonary tularemia (110). A ∆ripA 

mutant in the highly virulent Schu S4 strain is also attenuated in a pulmonary mouse model 

and defective for intracellular replication (our unpublished results). Altogether these data 

suggest that ripA is required for virulence of F. tularensis. 

 RipA is a cytoplasmic membrane protein of 179 amino acids and approximately 17 

kD (110). While BLASTp analysis of the RipA protein sequence did not identify any 
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functional motifs or homologs with known functions, it revealed that there are RipA-like 

proteins found in select strains of a few randomly-distributed bacterial species (110). None of 

these RipA-like proteins have any known function. Interestingly, in a recent study RipA was 

identified as a glycosylated protein in a screen using lectin affinity chromatography (18). 

However, despite the importance of ripA to F. tularensis pathogenesis, the function of this 

protein is unknown. To address the question of RipA function, our lab began a search for 

RipA-interacting proteins. Since RipA was predicted to have two large cytoplasmic domains, 

we hypothesized that RipA likely interacts with cytoplasmic proteins. The search for RipA-

interacting proteins was initiated by means of immunoprecipitation using HA-tagged RipA 

and LVS lysates (109). These studies revealed a list of putative RipA-interacting proteins, 

one of which was confirmed using reciprocal pull-down experiments (109). This RipA-

interacting protein was named IclR due to its homology to the IclR family of transcriptional 

regulators (109). The F. novicida U112 IclR homolog had previously been described as being 

required for F. novicida virulence (284). Due to the role of IclR for the virulence of F. 

novicida and our results demonstrating an interaction with RipA, we considered that its role 

in virulence may be at least in part through its interactions with RipA.   

 Therefore, as described in chapter 2, we investigated the biological relevance of the 

IclR-RipA interactions through characterization of F. tularensis strains lacking iclR. In 

chapter 3, through the use of the ripA deletion mutant, we uncover a role for RipA in 

suppression of the immune response and elucidate pathways suppressed by wild-type F. 

tularensis. Finally, chapter 4 details work that characterizes RipA at the molecular and 

biochemical level in order to determine topology and to identify functional domains. 
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Together these studies help to elucidate RipA’s role in virulence and function, as well as 

reveal insights into the overall pathogenesis of F. tularensis. 
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ABSTRACT 

 Francisella tularensis is a highly virulent Gram-negative bacterium and is the 

etiological agent of the disease tularemia. IclR, a presumed transcriptional regulator, is 

required for full virulence of the animal pathogen, F. tularensis subspecies novicida U112 

(53). In this study, we investigated the contribution of IclR to the intracellular growth, 

virulence and gene regulation of human pathogenic F. tularensis subspecies. Deletion of iclR 

from the Live Vaccine and SchuS4 strains of F. tularensis subspecies holarctica and 

tularensis, respectively, did not affect their ability to replicate within macrophages or 

epithelial cells. In contrast to F. tularensis subspecies novicida iclR mutants, LVS and 

SchuS4 ∆iclR strains were equally virulent as their wild-type parental strains in intranasal 

inoculation mouse models of tularemia. Furthermore, wild-type LVS and LVS∆iclR were 

equally cytotoxic and induced equivalent levels of IL-1β expression by infected bone 

marrow-derived macrophages. Microarray analysis revealed that the relative expression of a 

limited number of genes differed significantly between LVS wild-type and iclR strains. 

Interestingly, many of the identified genes were disrupted in LVS and SchuS4 but not in their 

corresponding novicida U112 homologs. Thus, in spite of the impact of iclR deletion on gene 

expression, and in contrast to the effects of iclR deletion on F. tularensis subsp. novicida 

virulence, IclR does not contribute significantly to the virulence or pathogenesis of F. 

tularensis  
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INTRODUCTION 

 Francisella tularensis is a Gram-negative bacterium and the etiological agent of 

tularemia or “rabbit fever”. While zoonotic hosts include small mammals such as rabbits and 

voles, F. tularensis is also found in ticks, mosquitoes, and flies, and can replicate within 

amoebae as well (29). Human infection with F. tularensis can occur by several routes 

including bites by arthropod vectors (4, 5, 34), contact with contaminated tissues, ingestion 

of contaminated food or water (28, 43), or inhalation of aerosolized bacteria (18, 48). F. 

tularensis is considered a Select Agent by the Centers for Disease Control due to its low 

infectious dose (as few as 10 organisms) via the pulmonary route and its potential as a 

biological threat agent (15, 46). 

 There are two F. tularensis subspecies most commonly associated with disease in 

humans: F. tularensis subspecies tularensis (Type A) and F. tularensis subsp. holarctica 

(Type B). The Live Vaccine Strain (LVS) of subsp. holarctica is a useful model for studying 

the virulent F. tularensis subspecies, because it causes disease in mice, is attenuated in 

humans (19), and shares genomic and proteomic similarity with F. tularensis subsp. 

holarctica and tularensis (51). F. tularensis subsp. novicida, which does not cause disease in 

healthy humans, has significant similarity with subsp. holarctica and tularensis and is also 

used as model organism for studying F. tularensis pathogenesis. Although there are reports 

of subsp. novicida causing disease, these cases are commonly associated with 

immunocompromised individuals (2, 9, 24, 32). However, subsp. novicida does cause a 

severe disease in in vivo mouse models (40). 

 Francisella is known to predominately infect and replicate within macrophages but 

also infects and replicates within neutrophils (37), dendritic cells (3) and Type II alveolar 
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epithelial cells (23). After phagocytosis, F. tularensis escapes the phagosome and replicates 

within the cytoplasm of host cells (1, 10). Numerous in vitro and in vivo screens have 

identified virulence factors required for this intracellular life cycle (13, 14, 27, 30, 35, 41, 47, 

49, 53); however, many of the identified virulence factors have little or no similarity to 

known proteins of other bacteria and their functions remain, for the most part, unknown. 

 Weiss et al. recently identified a locus (FTN_0720) in F. tularensis subsp. novicida 

U112 that is important for virulence in mice as determined by an in vivo competition assay 

between a FTN_0720 deletion mutant and wild-type U112 (53). FTN_0720 encodes a protein 

with homology to the IclR family of transcriptional regulators. IclR family members activate 

and repress genes in a wide range of bacteria including genes involved in sporulation, 

metabolism, drug-efflux pumps and organic solvent tolerance, and phytopathogenicity (39). 

Given the close genetic relationship among the F. tularensis subspecies, the phenotype of the 

subsp. novicida iclR deletion strain suggests that IclR may be involved in the pathogenicity 

of the holarctica and tularensis subspecies. We investigated the contribution of IclR 

homologs in the pathogenicity of subsp. holarctica and tularensis by evaluating the role of 

IclR in gene expression, host cell interactions and virulence of F. tularensis subsp. holarctica 

LVS (FTL_1364) and subsp. tularensis SchuS4 (FTT_0748) strains. 

 

MATERIALS AND METHODS 

Bacterial strains.  

F. tularensis subsp. holarctica LVS was obtained from the CDC, Atlanta, GA. F. 

tularensis subsp. tularensis SchuS4 was obtained from BEI Resources. F. tularensis subsp. 

novicida U112 was obtained from the American Type Culture 88 Collection (ATCC). An 



59 

 

iclR transposon mutant was one of two mutants from the transposon mutant library (21) and 

was received as a gift from Colin Manoil. All strains were maintained on chocolate agar 

supplemented with 1% IsoVitaleX (Becton-Dickson), brain heart infusion (BHI) broth 

supplemented with 1% IsoVitaleX or Chamberlain’s defined medium (CDM) (6). 

Escherichia coli TOP10 (Invitrogen) were used for cloning purposes. E. coli was propagated 

in Luria broth supplemented with hygromycin at 200 μg/ml or kanamycin at 20 μg/ml as 

necessary for antibiotic selection. All cultures were grown at 37°C. 

 

Cell Culture.  

J774A.1 (ATCC TIB-67) cells are a macrophage-like cell line derived from mouse 

sarcoma reticulum cells and were cultured in Dulbecco’s minimal essential medium with 4.5 

g/L glucose, 10% fetal bovine serum, and 2 mM L-glutamine. TC-1 (ATCC CRL-2785) cells 

are a tumor cell line derived from mouse primary lung epithelial cells and were cultured in 

RPMI 1640 supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 1.5 g/L sodium 

bicarbonate, 10 mM HEPES and 0.1 mM nonessential amino acids. Bone marrow-derived 

macrophages were generated by flushing bone marrow cells from C57BL/6 mouse femurs 

and recovered cells were incubated for 6 days on 15 cm
2
 non-tissue culture-treated dishes in 

L929 cell-conditioned DMEM. Nonadherent cells were removed by washing with phosphate-

buffered saline (PBS) and bone marrow-derived macrophages were recovered from the dish 

using 1 mM EDTA in PBS. 
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Molecular techniques and allelic exchange.  

For both LVS and SchuS4 the iclR deletion was generated by splice overlap extension 

(SOE) PCR using primers designed to amplify the 5’ and 3’ regions of the iclR locus, which 

were then annealed to their complementary, homologous genomic DNA tags (20, 25). The 

subsequent deletion left only the first six amino acids and the stop codon of iclR. Each 

construct was cloned into the pCR-Blunt II TOPO vector (Invitrogen), verified by DNA 

sequence analysis, and subsequently cloned into pMP590 (sacB Kan
r
) using BamHI and NotI 

restriction sites (20, 33). For allelic exchange, plasmids were electroporated into LVS or 

SchuS4 and integrants were selected on chocolate agar containing kanamycin (10 μg/ml). 

Kan
r
 strains were grown overnight and plated on 10% sucrose for counterselection (loss of 

plasmid) (20, 33). Both the LVS and SchuS4 iclR deletion strains were confirmed for loss of 

iclR by PCR. For complementation of the iclR deletion in LVS, iclR and its predicted 

promoter were PCR-amplified and subcloned into the pCR-Blunt II TOPO vector 

(Invitrogen). After a MluI/EcoRV restriction digest, the construct was ligated into the 

pMP633 low-copy Francisella shuttle vector (20) and electroporated into LVSΔiclR. 

Complementation was determined by detection of iclR in the complementation strain via 

PCR as well as demonstration of increased iclR transcript levels via microarray analysis (data 

not shown). 

 

Gentamicin protection assays.  

Gentamicin protection assays were performed as described (20, 23). Briefly, J774A.1 

murine macrophages, TC-1 murine lung epithelial cells, or bone marrow-derived 

macrophages were infected with LVS or SchuS4 at an MOI 100. Cells were incubated with 
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the bacterial inoculum for 2 hr (J774A.1 and bone marrow-derived macrophages) or 4 hr 

(TC-1) and then incubated with media containing 25 μg/ml gentamicin for an additional 2 hr 

to kill extracellular bacteria. At time points of 4 hr (or 6 hr for TC-1) and 24 hr, medium was 

removed, cells were washed with PBS and then scraped from the dish, and the bacteria 

serially diluted and plated to determine the number of viable bacteria. 

 

Mouse infections.  

6- to 8-week-old C57BL/6 mice were anesthetized intraperitoneally (i.p) with avertin 

and then inoculated intranasally (i.n.) with bacteria suspended in 50 μl PBS by application to 

the nares of each mouse or inoculated intradermally (i.d.) by injection into the tail using the 

same volume. Concentrations of LVS and U112 were determined by klett and concentrations 

of SchuS4 by spectrophotometer (OD600), and inocula were serially diluted and plated on 

chocolate agar to confirm the CFU administered. At the designated time points, mice were 

euthanized and the lungs, liver and spleen of each mouse were removed and homogenized. 

Serial dilutions of the homogenates were plated on chocolate agar to enumerate the bacterial 

organ burdens. Statistical significance between strains in each organ and at each time point 

was determined by the Mann-Whitney nonparametric test using GraphPad Prism v.5 

software. All animal experiments were performed according to the animal care and use 

guidelines as established by IACUC-approved protocols. 

 

IL-1β ELISAs and cytotoxicity assays.  

Bone marrow-derived macrophages were seeded in 12-well dishes at 1x10
6
 cells per 

well, and infected with bacteria at an MOI 500 in a final volume of 1 ml medium per well 



62 

 

and incubated at 37°C. After 24 hr, the supernatants from each well were collected, 

centrifuged to pellet cellular debris, and stored at -20°C. The IL-1β ELISA was performed 

using the BD OptEIA mouse IL-1β ELISA kit (BD Biosciences) according to the 

manufacturer’s protocol. The OD450 was read using a TECAN Infinite M200 and analyzed 

using Magellan v6 software. Cytotoxicity assays were performed using the ToxiLight® 

BioAssay kit (Lonza) following the manufacturer’s protocol for cytokine detection from 

supernatants, and the luminescence was read using a TECAN Infinite M200 and analyzed 

using Magellan v6 software. Statistical significance between each strain was determined by 

the student’s t-test using GraphPad Prism v.5 software. 

 

Microarrays.  

RNA was obtained using the RiboPure-Bacteria kit (Ambion) according to the 

manufacturer’s protocol. Briefly, bacteria were grown to early mid-log phase in CDM and 

pelleted. Cells were disrupted by suspension in Trizol and vortexing with 0.1 mm glass 

beads. Purified RNA was recovered by chloroform extraction followed by treatment with 

DNase I to remove DNA. Microarray analysis was performed following the guidelines 

provided by the Venter Institute for Genomic Research (SOP#M007, M008). Briefly, 

aminoallyl labeled cDNA was generated from 2 μg total RNA using SuperScript III reverse 

transcriptase (Invitrogen), random hexamers, and dNTPs containing aa-UTP. After removal 

of unincorporated aa-dUTP and free amines, labeled cDNA was coupled to Cy3 or Cy5 

mono-reactive dye (GE Healthcare). The Francisella microarray slides (Pathogen Functional 

Genomics Resource Center; PFGRC) contained 2331 70mer oligonucleotides in 

quadruplicates of the F. tularensis SchuS4 genome and several LVS genes as well as 
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quadruplicates of 70mer oligonucleotides for 500 Arabidopsis thaliana genes as controls. 

Slides were prehybridized in 5x SSC, 10% SDS and 1% BSA, washed and then hybridized 

with cDNA probes at 42°C. After post-hybridization washes, the slides were scanned using 

the GenePix 4000B scanner and GenePix Pro v6.0 software. The microarray data were 

normalized using the TIGR MIDAS v2.22 and analyzed using the TIGR Multiexperiment 

Viewer v 4.2.1 (MeV) as part of the TM4 Suite software (45). In MeV, pooled, normalized 

Cy5/Cy3 intensities from wild-type LVS control arrays were compared to pooled, normalized 

Cy5/Cy3 intensities from LVS∆iclR arrays. This list was filtered by statistical significance 

using Significance Analysis for Microarrays (SAM) provided on MeV after 179 an 80% cut-

off filter and using a false discovery rate of 5%. 

 

Quantitative RT-PCR.  

Quantitative RT-PCR was performed in a 96-well format using the SensiMix™ 

SYBR & Fluorescein One-Step kit (Bioline) following the manufacturer’s protocol. Briefly, 

50 ng of RNA isolated from wild-type or iclR mutant strains was mixed with SensiMix™ 

SYBR & Fluorescein, RNase inhibitors, and designated primers in a 20 μl volume. A 

genomic DNA ladder and a no reverse transcriptase control were analyzed using the 

SensiMix™ SYBR & Fluorescein kit following the manufacturer’s protocol with primers to 

gyrA. Thermocycling and detection was performed using the iCycler Thermal Cycler (Bio-

Rad). All starting quantity (SQ) values were normalized to the mean SQ value for gyrA. 
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Antibiotic sensitivity assays.  

F. tularensis LVS was grown to mid-log phase in BHI broth supplemented with 1% 

IsoVitaleX, the bacterial suspension was spread onto chocolate agar plates, and antibiotic-

containing filter paper discs were placed in the center of each plate. The rafampin (5μg), 

tetracycline (30μg), and colistin (10μg) were purchased pre-loaded from Becton Dickinson. 

The ampicillin and polymixin B discs were self-prepared by adding a 10 μl or 20 μl volume 

of antibiotic per disc at 10 μg ampicillin or 20 μg polymixin B. Bacteria were grown for 36 

hr and the diameter of the zone of inhibition was measured. 

 

Microarray data accession numbers.  

The raw and normalized microarray 199 data is available on the GEO database under 

the following accession numbers: GSM574374, GSM574375, GSM574376, GSM574377, 

GSM574379, GSM574380, and GSE23454. 

 

RESULTS 

Comparison of iclR alleles among F. tularensis subspecies and construction of iclR 

deletion mutants. 

The locus FTL_1364 is annotated as a hypothetical protein in NCBI; however, some 

of its homologs in other Francisella species are annotated as proteins belonging to the IclR 

family of transcriptional regulators. A search for conserved domains found within FTL_1364 

resulted in several related hits including a helix-turn-helix (HTH) domain conserved among 

IclR family members. Additionally, Francisella IclR has a C-terminal domain with high 

similarity to the IclR family profile Pfam01614. A recent publication describes a highly 
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specific IclR family member profile that lies outside the HTH domain and covers less than 

100 amino acids in the central region towards the C-terminal end (31). These authors classify 

current Pfam01614 members as belonging to the IclR family based on the new profile. 

Furthermore, BLASTp analysis of F. tularensis LVS or SchuS4 IclR reveals high similarity 

to IclR family proteins found across many bacterial species. F. tularensis IclR proteins share 

considerable amino acid identity (30-40%) and amino acid similarity (60%) with non-

Francisella IclR family proteins. Overall, the bioinformatic analysis strongly suggests that 

Francisella FTL_1364 and its homologous loci in other Francisella species encode a protein 

belonging to the IclR family of transcriptional regulators. 

 Using NCBI and the Francisella genome browser (www.francisella.org) for 

annotations and synteny analysis, we found that the iclR locus has shared characteristics 

among F. tularensis subsp. novicida U112, F. tularensis subsp. holarctica LVS, and F. 

tularensis subsp. tularensis SchuS4 strains (FTN_0720, FTL_1364 and FTT_0748, 

respectively), (Figure 1A). On one side of iclR in each strain is a gene encoding a predicted 

protein with similarity to an esterase lipase (FTL_1363, FTN_0721, and FTT_0749). On the 

other side of iclR is a gene encoding a predicted protein with similarity to the multidrug 

efflux protein EmrA (FTL_1365-66, FTN_0718, and FTT_0747). One difference is that 

EmrA is divided into two ORFs in LVS. There are other differences in the length and coding 

sequences of this genetic region, including an additional open reading frame in U112 that 

encodes a predicted protein of unknown function FTN_0719. Nevertheless, in each strain, 

iclR is located in a similar region of the genome. 

 Additionally, iclR itself is highly conserved among the three F. tularensis strains 

U112, LVS and SchuS4. SchuS4 iclR has three nucleotide differences compared to iclR from 
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LVS that translate into two amino acid differences, S22G and H78Y, between LVS and 

SchuS4 IclR. U112 iclR has 95 nucleotide differences compared to LVS iclR and 94 

nucleotide changes compared to SchuS4 iclR. Although this results in a three nucleotide 

truncation of U112 iclR, there is 80% amino acid identity between U112 IclR and SchuS4 

and LVS IclR proteins (Figure 1B). While these similarities suggest that IclR is conserved 

among the U112, LVS, and SchuS4, there are a sufficient number of differences to account 

for possible functional deviations between these strains as well. Due to genetic similarity and 

the contribution of IclR to the virulence for F. tularensis subsp. novicida, we investigated the 

potential contribution of IclR to the virulence of F. tularensis subspecies holarctica and 

tularensis. To do this, we made a clean deletion of the iclR gene in the F. tularensis 

subspecies holarctica LVS (LVSΔiclR) and tularensis SchuS4 (SchuS4ΔiclR) using SOE 

PCR and allelic exchange in LVS (FTL_1364). We also generated an iclR complementation 

strain by expression of iclR on a low-copy shuttle vector. 

 

LVS and SchuS4 iclR deletion mutants are competent for intracellular replication. 

 One method to assess the contribution of IclR to F. tularensis virulence is to 

determine what role IclR plays in intracellular replication. We used gentamicin protection 

assays in the J774A.1 murine macrophage-like cell line and the TC-1 murine lung epithelial 

cell-like cell line to assess intracellular replication by iclR deletion mutant strains. Both 

LVSΔiclR and wild-type LVS replicated approximately two logs by 24 hr in both J774A.1 

and TC-1 cells (Figure 2A-B). We also performed these assays in bone marrow-derived 

macrophages, and both wild-type LVS and LVSΔiclR replicated intracellularly in these cells 

(Figure 2C). Similarly, the intracellular replication of SchuS4ΔiclR was similar to wild-type 
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SchuS4 in J774A.1 cells (Figure 2D). These results demonstrate that IclR is not required for 

intracellular replication of LVS or SchuS4 in these cell types. 

 

LVSΔiclR is not attenuated following intranasal or intradermal inoculation of mice. 

 Properties other than intracellular replication contribute to F. tularensis pathogenesis. 

We therefore determined whether IclR was required for LVS virulence in vivo. To test this, 

we used a mouse model of pulmonary tularemia in which we inoculated C57BL/6 mice i.n. 

with a lethal dose (1x10
5
 CFU) of LVS or LVSΔiclR. At 1, 3, 7 and 8 days post inoculation 

the lungs, liver and spleen were harvested to enumerate the bacterial organ burdens (Figure 

3A). These initial experiments revealed that there were no differences in the organ burdens at 

1 or 3 days post inoculation. At day 7, there appeared to be slight differences in the organ 

burdens in the liver and spleen, and by day 8 the organ burdens in the liver and spleen had 

not increased. These initial experiments suggested that LVSΔiclR may demonstrate enhanced 

clearance in the mouse. This would correlate with previously published data demonstrating a 

decrease in competitive index in the spleen at 48 hr for the subsp. novicida U112 iclR 

deletion mutant compared to wild-type novicida U112 (53). 

 To further investigate the possibility of a more subtle phenotype of enhanced 

clearance, we used a low dose (1x10
3
 CFU) i.n. inoculation of groups of six wild-type 

C57BL/6 mice with LVS or LVSΔiclR. At days 1, 3, 7 and 10 post inoculation, we again 

harvested the lungs, liver and spleen to calculate the bacterial organ burdens. There were no 

significant differences between the bacterial organ burdens of LVSΔiclR or wild-type LVS at 

any time point (Figure 3B). This suggests that LVSΔiclR is not attenuated in a mouse model 

of pulmonary tularemia. 
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 Since the experiments with subsp. novicida U112 iclR deletion mutant were 

performed using subcutaneous (s.c.) and i.p. inoculation, we investigated whether a role for 

iclR in pathogenesis may be route-specific. Groups of 6 to 7 wild-type C57BL/6 mice were 

infected i.d. with 3x10
5
 CFU of LVS or LVSΔiclR. The i.d. route has a comparable LD50 

dose and is similar in nature to the s.c. route (17). At 1, 3, and 7 days post inoculation, we 

again harvested the lungs, liver and spleen and determined bacterial organ burdens. At each 

time point and in each organ, there was no significant difference in the bacterial burdens 

comparing LVS and LVSΔiclR (Figure 3C). These data indicate that in LVS, iclR is not 

required for pathogenesis in the mouse via the i.n. or i.d. route. 

 

SchuS4ΔiclR is not attenuated following intranasal inoculation of mice. 

 Although iclR does not appear to be required for LVS pathogenesis, it is possible that 

iclR plays a role in SchuS4 pathogenesis. We inoculated groups of four wild-type C57BL/6 

mice i.n. with a lethal dose (100 CFU) of wild-type SchuS4 or SchuS4ΔiclR. At 1 and 3 days 

post inoculation, the lungs, liver and spleen were harvested to enumerate the bacterial organ 

burdens of infected mice (Figure 4). At both time points and in each organ, there were no 

differences in bacterial burden between wild-type SchuS4 and SchuS4ΔiclR. These data 

suggest that IclR does not play a role in the in vivo virulence of SchuS4 when assessed by the 

mouse model of pulmonary tularemia. 
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A subsp. novicida U112 iclR transposon mutant is attenuated following intranasal 

inoculation of mice. 

 As noted above, an iclR deletion mutant in subsp. novicida U112 displays decreased 

competitive index in the spleen following s.c. and i.p inoculation of mice (53). Therefore, we 

wanted to determine whether iclR is required for subsp. novicida U112 pathogenesis in a 

pulmonary mouse model. We inoculated groups of six wild-type C57BL/6 mice i.n. with a 

dose of approximately 10 CFU of wild-type U112 or a U112 iclR transposon mutant. At 1 

and 5 days post inoculation, the lungs, liver and spleen were harvested and the bacterial 

organ burdens were enumerated. Each organ had reduced burdens of the iclR transposon 

mutant compared to wild-type U112, and at day 5 these differences were statistically 

significant in the liver and spleen (Figure 5). These data suggest that iclR is required for 

U112 pathogenesis via the i.n. route and correlates with the previously published data using 

the s.c. and i.p. routes. 

 

Deletion of iclR does not affect IL-1β expression or cytotoxicity of infected cells. 

 To determine if there is an altered cellular response to LVSΔiclR compared to wild-

type LVS, we measured the production of pro-inflammatory cytokines by infected cells. 

Bone marrow-derived macrophages were infected at an MOI 500 with LVS or LVSΔiclR and 

the supernatants were analyzed for IL-1β at 24 hr post infection (Figure 6A). The levels IL-

1β measured in the supernatants of LVSΔiclR-infected cells was similar to that of cells 

infected with wild-type LVS, and no differences between strains were statistically 

significant. 
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 F. tularensis is also reported to induce cytotoxicity of infected macrophages. To 

determine whether there was a change in cytotoxicity induced by LVSΔiclR, we infected 

murine bone marrow-derived macrophages with LVS or LVSΔiclR at an MOI 500 and 

performed cytotoxicity assays on supernatants collected at 24 hr post infection. As shown in 

Figure 6B, LVSΔiclR induces cytotoxicity in infected cells to a level similar to that of wild-

type LVS, and no differences between strains were statistically significant. 

 

The effects of IclR on gene expression. 

 Due to its homology to transcriptional regulators, we used microarray analysis to 

determine what genes in LVS were affected by IclR by comparing gene expression between 

the LVSΔiclR mutant and wild-type LVS. We grew LVS and LVSΔiclR to mid-log phase to 

harvest RNA for reverse transcription and amino-allyl labeling of cDNA, and the labeled 

cDNA was hybridized to microarray slides. The slides are printed for every annotated ORF 

for SchuS4, plus LVS alleles that are either not present or are variant in SchuS4, but they are 

not tailored to F. tularensis subsp. novicida. Three separate microarrays from independent 

RNA samples were pooled and statistically significant gene expression differences between 

LVSΔiclR and wild-type LVS were determined by SAM (Table 1). Genes exhibiting 

significant changes in expression are listed by the provided locus annotations, LVS or 

SchuS4, as printed on the slides. 

 Using the above criteria, we identified 13 downregulated and 4 upregulated genes in 

LVSΔiclR. The list of genes identified comprises diverse functional groups suggesting that 

IclR does not impact expression of one specific functional group of proteins. There were 

several IclR-affected genes annotated as encoding hypothetical proteins. To get a better idea 
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of what types of proteins these genes may be encoding and possibly obtain insight on IclR 

function, we performed BLASTp analyses. Many of the proteins were only conserved in 

Francisella with no similarity to proteins or conserved domains in other bacteria. However, 

there were several with similarity to known proteins in other bacteria and these are described 

in Table 1. Although most of the genes were represented exclusively by the SchuS4 allele, 

there were two cases where the SchuS4 and LVS homologs were both printed on the 

microarray slide and also appeared on the gene list as having significant expression changes 

in the absence of IclR. FTT_0741c and its FTL_1373 homolog were both upregulated in 

LVSΔiclR, and both FTL_0388 and its homolog FTT_0885 were downregulated in 

LVSΔiclR. Overall, although further studies need to be performed to demonstrate a function 

of IclR, both bioinformatic and microarray data suggest that Francisella IclR could function 

as a transcriptional regulator. 

 

Comparison of IclR-regulated genes between LVS, SchuS4 and U112. 

 One explanation for the phenotypic differences observed for iclR mutants among the 

F. tularensis U112, LVS and SchuS4 strains could be due to differences in the genes affected 

by IclR among the strains. To address this we performed a more detailed examination of the 

genes on our microarray list. First, we performed synteny analysis using the genome synteny 

tool at www.francisella.org to determine whether each gene was annotated in SchuS4, LVS 

and U112. We observed that there were a few genes that were not annotated or not present in 

all three strains, as shown in Table 1. Secondly, we generated alignments and protein 

translations of the genes using Vector NTI software based on the NCBI annotation or the 

putative loci of non-annotated genes from the synteny analysis, if they were found. For 
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example, sequence alignments revealed that in LVS there is an unannotated ORF between 

FTL_1120 and FTL_1121 bearing homology to FTT_1082. Nearly half of the genes were 

similarly annotated and encoded one intact open reading frame (ORF) in SchuS4, LVS and 

U112. However, a significant percentage of genes displayed considerable sequence 

differences between strains as described in Table 1. 

 Of these genes, many were not intact in the virulent strains LVS and/or SchuS4, 

whereas the homologous genes in U112 were intact. For example, FTL_1506 and FTL_1507 

are pseudogenes because they encode two ORFs while their SchuS4 (FTT_0723c) and U112 

(FTN_0634) encode only one ORF. One special case is FTT0715, which along with its LVS 

homolog FTL_1521, has two large deletions, 131bp (119bp in LVS) and 197bp, when 

compared to the U112 homolog FTN_0627. The significance of these deletions cannot be 

inferred, and though these genes are not pseudogenes, the fact that these large deletions are 

present only in SchuS4 and LVS is noteworthy. This also highlights the fact that many of the 

intact genes on the microarray list have greater overall sequence differences between U112 

and LVS or SchuS4 when compared to that of the differences between LVS and SchuS4. 

  We next wanted to determine whether the set of genes that were changed in 

expression in LVSΔiclR were also changed in the absence of IclR in U112. First, we 

performed quantitative RT-PCR on six genes that were differentially-regulated in the 

microarray for LVS versus LVSΔiclR (Figure 7A) and normalized to the housekeeping gene 

gyrA. We also included iclR. As expected, we detected a dramatic decrease in iclR transcript 

in LVSΔiclR and negligible change in gyrA. Of the six genes analyzed, four repeated the 

trend seen in the microarray analysis. For the two genes that did not, the primers appeared to 

amplify with similar efficiencies to other primers (data not shown). Overall, the qRT-PCR 
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data supports the fact that the genes identified in our microarray are changed in expression in 

the absence of IclR using a different method. We then tested the same set of gene homologs 

on RNA isolated from wild-type U112 and the U112 iclR transposon mutant (Figure 7B). 

Quantitative RT-PCR first verified that iclR transcripts were substantially lower in the 

transposon mutant. Overall, the six selected genes appear to be changed similarly to their 

LVS homologs, suggesting a similar set of genes affected by IclR in U112. These analyses 

do not account for any additional genes affected by U112 IclR that were not affected by LVS 

IclR as detected by microarray. Furthermore, these analyses alone are not sufficient to 

extrapolate any correlations in terms of IclR function or which of the IclR-affected genes are 

likewise impacted at the protein level or functional. 

 

The effects of IclR on antibiotic resistance. 

  Other IclR family proteins are known to be involved in the regulation of multi-drug 

efflux pumps (39). In all three F. tularensis subspecies, iclR is located near ORFs encoding 

hypothetical proteins that have homology to the EmrA multidrug efflux pump. In LVS, the 

two ORFs encoding proteins with EmrA homology that are found upstream of iclR were not 

changed in expression as determined by our microarray analysis. Nevertheless, the 

microarray data for LVSΔiclR showed increased expression of a gene encoding a protein 

with homology to organic solvent tolerance proteins, suggesting that IclR may be involved in 

repression of some genes involved in drug efflux. Organic solvent tolerance is often 

associated with multi-drug efflux pumps, most notably in Escherichia coli and Pseudomonas 

putida (42). Furthermore, our BLASTp analyses of hypothetical genes that appear in the 

LVSΔiclR microarray gene list also reveal proteins with homology to other transporter 



74 

 

proteins. To determine whether iclR is involved with drug efflux, we performed disc 

diffusion assays using a panel of antibiotics. Antibiotics selected for analysis were chosen as 

representatives from several classes of antibiotics targeting cell wall synthesis, protein 

synthesis, nucleic acid synthesis, and cell membrane integrity. There was no difference in 

antibiotic sensitivity between wild-type LVS and LVSΔiclR using this method (Figure 8). 

 

DISCUSSION 

 Herein we investigated the contribution of the putative transcriptional regulator IclR 

to F. tularensis pathogenicity. In this study, we found that the LVSΔiclR was not attenuated 

for intracellular replication in J774A.1 macrophage-like cells, TC-1 epithelial cells, or bone 

marrow-derived macrophages. Similarly, SchuS4ΔiclR was not attenuated for replication in 

J774A.1 cells. These data are consistent with published data by Weiss et al. for the novicida 

U112 iclR deletion mutant strain in bone-marrow derived macrophages (53). 

  When compared to wild-type LVS, LVSΔiclR did not impact IL-1β induction or 

cytotoxicity of infected cells, which is different from that of the published novicida studies 

(53). It is important to note that the methods used for these analyses were different between 

the two studies. The levels of IL-1β that we reported in this study are near but not below the 

limit of detection for the ELISA. The fact that the levels of IL-1β induced are low is 

consistent with other studies evidencing that LVS suppresses the inflammatory response (26, 

50). Furthermore, Weiss et al. used pre-stimulated bone marrow-derived macrophages, 

whereas we used naïve bone marrow-derived macrophages. Macrophages pre-treated with 

LPS or heat-killed F. tularensis subp. novicida as well as thioglycolate-elicited macrophages 

produce higher levels of IL-1β in response to infection (11, 12, 36, 52). Another possibility is 
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that there are strain-specific differences in the role of IclR, as evidenced by the results of the 

in vivo studies discussed below. 

  Unlike the novicida iclR deletion mutant, neither LVSΔiclR nor SchuS4ΔiclR were 

attenuated in mice following i.n. inoculation. There were differences in the experimental 

design between our studies and the novicida study. We initially inoculated mice i.n. and 

monitored lung, liver, and spleen over several days post infection. Weiss et al. used s.c. and 

i.p. inoculations in competition assays examining the spleen at 2 days post infection. It is 

possible that inoculation route may have an impact on the importance of IclR on establishing 

infection. To address the possibility that the phenotype is route-specific, we performed a 

reciprocal analysis by evaluating the virulence of LVS and U112 iclR mutants in i.d. and i.n. 

infection models, respectively. The results confirmed that the Francisella virulence-specific 

properties of IclR are restricted to subspecies novicida. 

  It is not clear why IclR is required for virulence in U112 but not LVS and SchuS4. 

Based on our microarray analysis, the subspecies-specific sequence differences among IclR-

affected genes could contribute to the functional differences we observe for IclR between 

subspecies. Many of the genes are intact in U112, but in LVS and/or SchuS4, the 

homologous genes are pseudogenes or displayed significant sequence variation (e.g. two 

large deletions in FTT0715/FTL_1521). The virulent subspecies of F. tularensis are noted for 

their genome decay as characterized by smaller genomes as well as increased numbers of 

pseudogenes, transposases and gene rearrangements (51). Genome-wide analyses of 

Francisella strains support this idea and many of the genes changed in LVSΔiclR that we 

identified to be pseudogenes correlate with those found in other studies (7, 44). It is possible 

that IclR in subspecies novicida exerts its effects on genes that are intact whereas in LVS and 
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SchuS4, IclR affects genes that are similar those in novicida but because of disruptions or 

changes to the ORFs, many of these genes are transcribed but do not encode functional 

proteins. We must also consider that there are two genes in the list that are absent in U112 

that are present in LVS and SchuS4, and the absence of a gene affected by IclR in novicida 

could also contribute to the different phenotypes. Overall, analysis of the genes identified in 

our microarray suggest that the majority of genes affected by IclR have differences in 

sequence between the three subspecies and that this variation could contribute to the 

phenotypic disparities observed. 

  Taken together, our data suggest that IclR contributes to the virulence of U112 but 

not to that of LVS or SchuS4, highlighting the fact that there are significant differences 

among these strains. Another example of differences among strains is seen in the conserved 

acid phosphatases AcpA, AcpB, and AcpC. These proteins were shown to be required for the 

virulence of subsp. novicida, but not for the virulence of SchuS4 (8, 38). Even though IclR 

may not play a major role in SchuS4 or LVS virulence, there are other potential roles that 

IclR could be have as a functional transcriptional regulator. Quite a few of the microarray-

identified genes encode hypothetical proteins, but there are others that encode proteins with 

known functions or are homologous to proteins with known functions. Investigation into 

these proteins may provide an additional understanding of the function of IclR in F. 

tularensis. For example, in Pseudomonas putida, the IclR family proteins TtgT and TtgV 

regulate operons encoding genes that form efflux pumps for organic solvent extrusion (16, 

22). Although our antibiotic sensitivity assays showed no role for IclR in drug efflux by 

LVS, we cannot rule out the involvement of IclR in the regulation of a system specific for 

organic solvent efflux or the role of IclR in drug efflux in other F. tularensis subspecies. 
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Finally, direct comparison of the complete transcriptional profiles of subspecies novicida, 

tularensis and holarctica iclR deletion strains might reveal some clues to the properties that 

are responsible for the phenotypic differences. Unfortunately, the currently available 

microarrays do not contain targets for genes found exclusively in subspecies novicida. 
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FIGURES 

 

 

 

 

 
 

 

Figure 1. Comparison of iclR in three Francisella strains. (A) Synteny diagram of the 

genomic organization of the iclR locus in F. tularensis subspecies novicida U112 

(FTN_0720), F. tularensis subspecies holarctica LVS (FTL_1364), and F. tularensis 

subspecies tularensis SchuS4 (FTT_0748). (B) Amino acid sequence alignment of F. 

tularensis subspecies novicida U112, F. tularensis subspecies holarctica LVS, and F. 

tularensis subspecies tularensis SchuS4 IclR. Alignment was created using VectorNTI 

software and iclR sequences uploaded from NCBI annotated genomes of each strain and 

translated using VectorNTI. Red letters highlight residues conserved between all three 

strains. Blue letters highlight the residues conserved between two strains. 
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Figure 2. Intracellular replication of LVS∆iclR and SchuS4∆iclR in murine 

macrophages or lung epithelial cells. Gentamicin protection assays were performed by 

infecting (A) J774A.1 murine macrophages, (B) TC-1 murine lung epithelial cells, and (C) 

bone marrow-derived macrophages with wild-type LVS or LVS∆iclR at an MOI 100. (D) 

Gentamicin protection assay was performed using J774A.1 cells infected with wild-type 

SchuS4 or SchuS4∆iclR. Bars represent the standard deviation of three replicate wells and 

each graph is representative of two separate experiments. 
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Figure 3. Recovery of LVS∆iclR mutant in mice following i.n. or i.d. inoculation. 

C57BL/6 mice were inoculated with either wild-type LVS (circles) or LVS∆iclR (triangles) 

i.n. at (A) a lethal dose of ~1x10
5 

CFU or (B) a low dose of ~1x10
3
 CFU. (C) C57BL/6 mice 

were inoculated with either wild-type LVS (circles) or LVS∆iclR (triangles) i.d. at a dose of 

~3x10
5
 CFU. Each symbol represents data from a single mouse. There were no significant 

differences in recovery of mutant versus wild-type organisms from any organ at any time 

point as determined by the Mann-Whitney nonparametric test in the low dose (B) and i.d. (C) 

experiments. 

 

 

 

 

 

 

 

 



81 

 

 

 
 

 

 

Figure 4. Recovery of SchuS4∆iclR mutant in mice following i.n. inoculation. C57BL/6 

mice were inoculated with either wild-type SchuS4 (circles) or SchuS4∆iclR (triangles) i.n. at 

a dose of ~100 CFU. No differences in recovery of mutant versus wild-type organisms from 

any organ at any time point were significant using the Mann-Whitney nonparametric test. 
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Figure 5. Recovery of U112 iclR transposon mutant in mice following i.n. inoculation. 

C57BL/6 mice were inoculated with either wild-type U112 (circles) or U112 iclR mutant 

(triangles) i.n. at a dose of ~10 CFU. Differences in recovery of mutant versus wild-type 

organisms at day 5 for the liver and spleen were significant using the Mann-Whitney 

nonparametric test. 
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Figure 6. IL-1β release and cytotoxicity in murine bone marrow-derived macrophages 

infection with LVS∆iclR. Infections were carried out at an MOI 500 for wild-type LVS, 

LVS∆iclR, and LVS∆iclR + IclR (complementation). (A) IL-1β was quantified via ELISA 

and (B) cytotoxicity was quantified via ToxiLight bioassay (Lonza), both at 24 hr post 

infection. Graphs are representative of at least three separate experiments, with duplicate or 

triplicate wells for each strain per experiment. No differences were significant by any strain 

comparison using the student’s t-test. 
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Figure 7. Transcript levels of genes found significantly changed in microarray analysis 

comparing LVS and LVSΔiclR. RNA was isolated from (A) wild-type F. tularensis subsp. 

holarctica LVS and LVSΔiclR or (B) wild-type F. tularensis subspecies novicida U112 and a 

U112 iclR transposon mutant and used in qRT-PCR analysis for several genes that were 

significantly changed in the microarray. Data is presented as relative expression of log 

change in wild-type over the respective iclR mutant after normalization to gyrA. Graph is 

representative of two or three experiments. 
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Figure 8. Antibiotic sensitivity of LVS∆iclR. Wild-type LVS and LVS∆iclR were grown to 

mid-log phase, bacteria spread on chocolate agar, and an antibiotic-containing paper disc was 

added to the center. Bacteria were grown for 36 hr and the diameter of the zone of inhibition 

was measured. Experiment was performed in triplicate and the averages and standard 

deviations were calculated. 
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ABSTRACT 

Francisella tularensis is a facultative intracellular pathogen and potential biothreat 

agent. Evasion of the immune response contributes to the extraordinary virulence of this 

organism although the mechanism is unclear.  While wild type strains induced low levels of 

cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of 

IL-1β, IL-18 and TNF-α by resting macrophages. IL-1β and IL-18 secretion was dependent 

on inflammasome components PYCARD/ASC and Caspase-1, while the TLR/IL-1R 

signaling molecule, MyD88, was required for inflammatory cytokine synthesis. 

Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. 

Similar findings were observed in a human monocytic line. The presence of ripA nearly 

eliminated activation of MAP kinases including ERK1/2, JNK and p38 while pharmacologic 

inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected 

with LVSΔripA mounted a stronger IL-1β and TNF-α response than mice infected with wild 

type LVS. This analysis revealed novel immune evasive mechanisms of F. tularensis.     
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INTRODUCTION 

Francisella tularensis is a Gram-negative, facultative intracellular pathogen that is 

the causative agent of the zoonotic disease tularemia. The organism can be transmitted to a 

host through insect bites, handling of infected carcasses, and inhalation of aerosolized 

bacteria (1-3). F. tularensis is a potential agent of biological warfare classified as a Select 

Agent by the Center for Disease Control (CDC) due to its highly infectious nature; roughly 

50% mortality is caused by an infectious dose of as few as 10 bacteria via inhalation (4). 

During the Cold War, both the former Soviet Union and the United States of America 

weaponized and stockpiled F. tularensis in their biological weapons programs (5). The 

World Health Organization (WHO) has estimated that a 50 kilogram release of F. tularensis 

over a 5 million metropolis would cause 250,000 incapacitating casualties and 19,000 deaths 

(WHO 1970). The CDC also estimated that a F. tularensis attack would cost 5.4 billion to the 

society for every 100,000 infected individuals (6). Four subspecies of F. tularensis exist, 

including tularensis, holarctica, mediasiatica, and novicida (7). The most virulent subspecies 

for humans is the subsp. tularensis which is found primarily in North America. Subsp. 

holarctica is less virulent and was used to generate a live vaccine strain (LVS). LVS is 

attenuated in humans but remains highly virulent for mice making LVS a useful model to 

study F. tularensis pathogenesis.  

Since exposure to the respiratory tract results in the most aggressive form of 

tularemia, several laboratories have developed mouse models of pulmonary tularemia to 

study this mode of infection (8-10). Using an intranasal delivery model, the median lethal 

dose (LD50) of LVS is 10
3 

CFU (9). By comparison, the LD100 for the highly virulent F. 

tularensis subsp. tularensis strain SchuS4 is less than 20 CFU (11). Upon inhalation, the 
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bacteria are restricted to the lung for approximately 36 to 48 hours where the organism 

persists and multiplies (12). During this time, little host immune response occurs as 

evidenced by the lack of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and IFN-γ (13). 2-4 

days post infection, inflammatory cells infiltrate the lung and pro-inflammatory cytokines 

can be detected in vivo. By this time, bacteria have overwhelmed the lung and disseminated 

to other organs such as the spleen and liver. Mice eventually succumb to infection 5-7 days 

post inoculation. How F. tularensis circumvents the host immune response is not well 

understood. 

F. tularensis is found in vivo within alveolar macrophages, dendritic cells (DC) and 

lung epithelial cells (9). Following entry into host cells, F. tularensis escapes the phagosome 

and enters the cytosol where it replicates. This process is apparently unhindered by innate 

immune defenses that typically detect and facilitate a response to eliminate foreign microbes. 

IFN-γ, TNF-α, and IL-1β are critical mediators of an effective defense against Francisella 

infection (14, 15). SchuS4 suppresses pro-inflammatory cytokine induction in mouse lung 

resident DCs in early stages of the disease (13). Similarly, LVS dampens intracellular 

signaling and TNF-α in human monocytes and mouse macrophages (16). Administration of 

anti-IFN-γ, and anti-TNF-α antibodies greatly reduces the LD50 of LVS in an intradermal 

mouse model of mouse tularemia (17). IL-1β also is critical in innate defense against F. 

tularensis subsp. novicida (14). Disrupting the signaling pathway that leads to IL-1β 

processing greatly enhances host susceptibility to subsp. novicida infection.  

 IL-1β, one of the more potent pro-inflammatory cytokines, is tightly regulated by a 

two-step signaling process. The first step requires the transcriptional activation of pro-IL-1β 

followed by the translation of the pro-protein.  This is achieved by engagement of the toll-
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like receptors (TLR) and subsequent activation of MyD88-dependent signaling pathways, 

leading to NF-κB and MAP kinase induction. This leads to translocation of the NF-κB 

subunit p65 from the cytosol to the nucleus and activation of the MAP kinase 

phosphorylation cascade to cause the transcription of pro-IL-1β message. A second and 

separate signal is required after pro-IL-1β protein is produced, and this occurs in the cytosol, 

leading to the assembly of an inflammasome complex.  There are several types of 

inflammasomes, including those which contain an NLR (nucleotide binding domain-leucine 

rich repeats containing) component, and those which contain a non-NLR component, such as 

AIM2 (absent in melanoma 2) or RIG-I (retinoic acid-inducible gene 2) (18-22). Procaspase-

1 is a requisite member of the complex, while the adaptor PYCARD/ASC/TMS1 (Pyrin-

CARD, apoptotic speck-containing protein with a CARD, or target of methylation-induced 

silencing) is found in most inflammasome complexes (23, 24).  Upon inflammasome 

formation, procaspase-1 undergoes auto-catalytic cleavage into an active, mature form which 

subsequently cleaves pro-IL-1β and pro-IL-18 into their active forms. 

NLR family members share a conserved structure, with most of the members bearing 

an N-terminal Pyrin or CARD (caspase recruitment domain) domain followed by an NBD 

domain; and a C-terminal LRR domain that is homologous to those found in TLRs (25). A 

current working hypothesis is that, upon induction, the NLR recruits PYCARD via a Pyrin-

Pyrin homotypic interaction. PYCARD possesses its own CARD domain which recruits 

Caspase-1 into the inflammasome complex for IL-1β processing. Several NLRs that 

contribute to pathogen induced IL-1β release in macrophages have been identified (26). The 

absence of NLRs or their adaptors renders hosts more susceptible to a variety of pathogens. 

The NLRP3 inflammasome senses a wide variety of intracellular pathogens including Gram-
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positive and Gram-negative bacteria, RNA viruses, DNA viruses, yeast, microbial toxins and 

a host of damage-associated molecular patterns such as silica, asbestos and alum (27-29). 

The NLRC4/Ipaf inflammasome responds to bacterial virulence factors from the type III and 

IV secretion systems from bacteria such as Salmonella typhi, Burkholderia pseudomallei, 

Escherichia coli (30-32) and Pseudomonas aeruginosa (33).  

Unlike most Gram-negative bacterial pathogens, F. tularensis subspecies tularensis 

and holarctica do not provoke a substantial initial inflammatory response in vitro or in vivo 

(13, 33, 34).  F. tularensis LPS does not stimulate significant signaling through TLR4 (35), 

but this property alone does not account for the muted host response to infection.  The goal of 

this study was to identify mechanisms by which F. tularensis actively suppresses the host 

innate immune response.  To achieve this goal, we used an attenuated F. tularensis mutant 

that elicited a robust inflammatory response to reveal signaling pathways that are normally 

suppressed by wild type organisms and that dampen IL-1β, IL-18, and TNF-α responses to 

infection. 

 

MATERIALS AND METHODS 

Cell lines and Reagents 

Bone marrow derived macrophages were harvested from 6-8 week old mice and 

cultured for 7 days in 30% M-CSF conditioned media. THP-1 cells (ATCC) were cultured as 

described (36). Anti-IL-1β antibody was obtained from R&D Systems; anti-IκBα, phospho-

p65, phospho-ERK1/2, phospho-JNK, phospho-p38 from Cell Signaling; and anti-GAPDH 

from Santa Cruz Biotechnology. Detailed methods for preparation of retroviral shuttle 
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vectors, transduction and sorting to generate THP-1 cell lines stably expressing shRNA have 

been described (36). 

 

Western blotting and ELISA 

Western blots were performed as described (37, 38). Quantification of western blots 

by densitometry was performed using Adobe Photoshop. For ELISAs, mouse and human cell 

supernatants were collected 24 hours post-infection and assayed with BD OptEIA Mouse IL-

1β, IL-18, and TNF-α ELISA Sets (BD Biosciences). 

 

Cytotoxicity assays 

Cytotoxicity assays were performed using the ToxiLight® BioAssay kit (Lonza) 

following the manufacturer’s protocol for detection from supernatants. The luminescence 

was read using a TECAN Infinite M200 and analyzed using Magellan v6 software. 

 

Experimental Animals 

All studies were conducted in accordance with the National Institutes of Health 

Guidelines for the care and use of Laboratory Animals and the Institutional Animal Care and 

Use Committee guidelines of University of North Carolina, Chapel Hill. The generation of 

mice lacking functional Nlrp3, Nlrc4, Pycard, Caspase-1, and MyD88 has been previously 

described (38). C57BL/6 mice were purchased from Jackson Laboratories (Maine). 
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Bacteria Preparation 

F. tularensis LVS was obtained from the CDC, Atlanta, GA.  F. tularensis subsp. 

novicida U112 was obtained from ATCC. The LVS∆ripA strain has been described (12). All 

Francisella strains were maintained on chocolate agar supplemented with 1% IsoVitaleX 

(BD Biosciences) and grown in Chamberlain’s defined media (39). Other bacteria were 

grown in lysogeny broth (LB) medium or brain-heart infusion (BHI) medium. LVS and 

LVSΔripA were killed
 
by incubation for 5 minutes at room temperature in 1 ml of 2% 

paraformaldehyde
 
in PBS, washed three times with PBS, and suspended in DMEM, 10% 

PBS. All cultures were grown at 37°C. 

 

Francisella infection of mouse primary macrophages and human monocytic cell lines 

LVS and LVS∆ripA were grown overnight in Chamberlain’s defined media prior to 

infection, and U112 was grown overnight on chocolate agar prior to infection. 

Concentrations of bacteria were determined by klett reading, and cells were exposed to the 

designated Francisella strain at the indicated MOI. Infected cells were incubated at 37
o
C and 

supernatants were harvested at select time points for cytokine analysis. For pharmacological 

assessments, cells were treated with Y-VAD-fmk (10 µM), U0126, SP-600125, and SB-

202190 (0.5 – 25 µM) as described (36). 

 

In vivo F. tularensis infection 

F. tularensis LVS from an overnight culture in Chamberlain’s media was centrifuged, 

and the pellet was suspended in PBS. These suspensions were enumerated by klett reading 

and diluted in Dubecco’s phosphate buffered saline (DPBS) for the inoculums. Wild-type 8- 
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to 10-week-old female C57BL/6 mice were anesthetized with avertin, as determined by 

insensitivity to a toe pinch, and were then infected intranasally with bacterial inoculums in a 

50 μl volume in DPBS. Mice were monitored for recovery from anesthesia. 

 

Statistical Analysis 

Statistical significance in Figures 1A-H, 2A-C, 3A-D, 5B-D was determined by two-

way analysis of variance (ANOVA) followed by a Tukey post-hoc test using Graph Pad 

Software (La Jolla, CA). Statistical significance in Figure 6 was determined by two-tailed 

Mann-Whitney U tests using Graph Pad Software (La Jolla, CA). The p values < 0.05 were 

considered statistically significant. Unless otherwise specified, data are presented as the 

mean ± standard deviation (s.d.). 

 

RESULTS 

F. tularensis LVSΔripA fails to suppress the release of pro-inflammatory cytokines IL-

1β, IL-18 and TNF-α by mouse primary macrophages. 

In response to foreign microbes, macrophages secrete pro-inflammatory cytokines 

including IL-1β, IL-18 and TNF-α which activate neutrophils, fibroblasts and endothelial 

cells to mount an anti-microbial response. F. tularensis can actively down-regulate host 

immune cytokine production in vivo and in vitro (7, 15). To assess the ability of F. tularensis 

to induce pro-inflammatory cytokines, we first compared the induction profile for the 

cytokine IL-1β in response to various bacterial pathogens in macrophages. We selected IL-1β 

due to its central role in initiating a variety of host immune defense cascades (40). When 
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compared to Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri, mouse primary 

macrophages exposed to F. tularensis LVS released significantly less IL-1β (Figure 1A) 

suggesting that F. tularensis LVS represses this particular inflammatory response. One 

possible source of this difference is the LPS. LPS from S. typhi, K. pneumoniae, and S. 

flexneri may be more immune-stimulatory than F. tularensis LPS as described by another 

report (33).   

RipA (required for intracellular proliferation, factor A; FTL_1914) is a cytoplasmic 

membrane protein that is conserved among Francisella species and is required for adaptation 

of the bacteria to the host cell cytoplasm. Mutants lacking ripA (ΔripA strains) enter 

macrophages and escape from the phagosome at the same frequency and kinetics as wild type 

F. tularensis but fail to replicate intracellularly in the host cell (12). In that study, we 

demonstrated that LVSΔripA was unable to replicate intracellularly in host epithelial cells or 

macrophages. We considered that ΔripA strains might also be affected in their ability to 

suppress host cell immune responses. To test this possibility, we monitored IL-1β release by 

macrophages infected with wild type or LVSΔripA strains. Over a range of MOI, LVSΔripA 

induced roughly 5-10 fold higher levels of IL-1β, than wild type- infected macrophages 

(Figure 1B). Suppression of IL-1β was restored to LVSΔripA by in trans complementation 

with a ripA containing construct, pripA (Figure 1B), demonstrating a direct but inverse 

cause-and-effect relationship between F. tularensis RipA expression and IL-1β response. 

We next asked whether the effect of RipA on cytokine expression was widespread or 

limited to IL-1β. IL-18 production was measured since the inflammasome is also involved in 

processing and release of this cytokine. Increased levels of IL-18 similar to that of IL-1β 

were released by the LVSΔripA stimulated macrophages, and complementation reduced 
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induction nearly to wild type levels (Figure 1C). Since F. tularensis-induced TNF-α is not 

regulated by inflammasome components (14) but is regulated by MyD88 (35), we sought to 

test whether these findings hold true for LVSΔripA-induced TNF-α release. LVSΔripA 

induced 2-3 fold more TNF-α than wild type LVS (Figure 1D). The magnitude of the 

difference between LVS and LVSΔripA induced TNF-α release by macrophages was less 

than that of IL-1β. This suggests that ripA affects F. tularensis suppression of both 

inflammasome and non-inflammasome cytokines, but that the impact on inflammasome 

cytokines is more significant. Neither paraformaldehyde (PFA)-fixed wild type LVS or 

LVSΔripA mutant strains provoked significant levels of IL-1β (Figure 1E) demonstrating 

that the observed impact of RipA on cytokine expression was not due simply to lack of 

intracellular replication by the deletion mutant strain.  

One possible mechanism for the different levels of IL-1β induced by LVS versus 

LVSΔripA is that the former might cause more cell death, thus interfering with IL-1β 

production and processing. To assess cell viability differences between LVS and LVSΔripA, 

we measured cytotoxicity of primary mouse macrophages after infection with LVS, 

LVSΔripA, or the LVS ripA complementation strain. As shown in Figure 1F, infection with 

LVSΔripA resulted in increased cytotoxicity when compared to cells infected with wild type 

LVS or the ripA complementation strain. These data together suggest that LVSΔripA is both 

hyper-inflammatory and hyper-cytotoxic compared to wild type LVS. These results are 

consistent with the frequent association of inflammasome activation and cell death (41) as 

shown here for LVSΔripA, but inconsistent with the possibility that LVS causes more cell 

death which interferes with IL-1β production and release. 
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To further address the potential contribution of MOI to the observed phenotypes, 

primary mouse macrophages were exposed to wild type LVS at MOI 10, 50, or 500 and IL-

1β secretion was assayed by ELISA at 24 hours post infection. As shown in Figure 1G, IL-1β 

production increased with MOI; however, the levels of IL-1β produced at the lower MOI of 

10 was near the limit of detection. Therefore, for the subsequent LVS infections in primary 

mouse macrophages, MOI 50 or 500 was used.  

In contrast to the relatively low levels of IL-1 that we observe for wild type LVS, 

several studies have shown that infection with subsp. novicida result in high levels of IL-1β 

secretion and cell death, albeit the Mariathasan et al. study used LPS-pre-treated, 

thioglycolate-elicited peritoneal macrophages (14, 42). To determine if the differences in IL-

1β secretion are strain-specific, we infected resting BMDM with F. tularensis subsp. 

novicida U112 at MOI 10, 100, or 500 and assayed for IL-1β secretion at 24 hours post 

infection (Figure 1H). Similar to the results of Henry et al. (42) for subsp. novicida-induced 

IL-1β secretion in bone marrow-derived macrophages, our data shows that subsp. novicida 

strain U112 induced higher levels of IL-1β secretion by primary mouse macrophages (Figure 

1H).  

 

LVSΔripA-induced IL-1β is PYCARD, Caspase-1 and MyD88 dependent. 

In the regulation of IL-1β release by macrophages, bacterial-derived pathogen- or 

microbe-associated molecular patterns (PAMPs or MAMPs) first activate the TLR signaling 

pathway, thereby promoting the synthesis of pro-IL-1β transcript and later protein. A second 

signal initiates assembly of the inflammasome to process pro-IL-1β into IL-1β for release. To 

determine the level at which IL-1β release is regulated upon infection, we tested whether 
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disruption of either TLR or NLR/inflammasome signaling pathways can abrogate LVSΔripA 

induced IL-1β release. MyD88 was chosen for TLR signaling due to its central role in 

TLR/IL-1R pathways. To disrupt inflammasome formation, mice deficient in either Pycard 

or Caspase-1 were used since these two gene products are critical in subsp. novicida-induced 

IL-1β release by mouse macrophages and the ulceroglandular form of tularemia (14). 

Furthermore, two commonly interacting NLRs, NLRP3 and NLRC4 were tested because 

they are critical in the detection and response to several pathogens (26). In the absence of 

Pycard, Caspase-1 and MyD88, macrophages did not release IL-1β upon LVS or LVSΔripA 

exposure (Figure 2A). However, absence of Nlpr3 or Nlrc4 did not impair the LVSΔripA-

induced release of IL-1β suggesting that these NLRs are not involved in the sensing of F. 

tularensis. 

Similar to IL-1β release, PYCARD, Caspase-1, and MyD88 but not NLRP3 or 

NLRC4 were required for LVSΔripA induced IL-18 release by macrophages, further 

confirming effects on an additional inflammasome cytokine (Figure 2B).  As expected, 

MyD88 but not PYCARD, Caspase-1, NLRP3 or NLRC4 is required for LVSΔripA-induced 

release of the non-inflammasome cytokine TNF-α by primary mouse macrophages (Figure 

2C). Taken together, LVSΔripA induced IL-1β production is mediated by PYCARD, 

Caspase-1 and MyD88 which suggests that F. tularensis LVS may target the 

PYCARD/Caspase-1 axis as well as other TLR-dependent signaling pathways to suppress 

IL-1β release by macrophages. 
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F. tularensis LVSΔripA fails to suppress pro-inflammatory cytokine response by human 

monocytic THP-1 cells. 

To determine if the observed effects are also applicable to human cells, we measured 

cytokine expression by the human monocytic cell line, THP-1, in response to wild type LVS 

and LVSΔripA. THP-1 cells exposed to LVS∆ripA released 10-fold more IL-1β (Figure 3A) 

and 2-3 fold more TNF-α (Figure 3B) than cells exposed to wild type LVS, which is 

consistent with the mouse primary macrophage response. Also consistent, the difference in 

amount of TNF-α induced between LVS and LVSΔripA is of smaller magnitude than that of 

IL-1β. 

We next investigated whether PYCARD/ASC was required for LVS∆ripA induced 

IL-1β release by THP-1 cells using cells stably expressing either a control scramble 

PYCARD retroviral ShRNA vector (Sh-Ctrl) that does not confer knock down, a specific 

PYCARD retroviral ShRNA vector (Sh-PYCARD) to knock down PYCARD, or a specific 

NLRP3 retroviral ShRNA vector (Sh-NLRP3) to knock down NLRP3 (36). In our previous 

studies, all pathogens investigated induced IL-1β in a PYCARD dependent manner in a 

system where PYCARD expression was reduced by shRNA (36). Cells were infected with 

LVS and LVS∆ripA, and IL-1β was monitored. 24 hours post infection, Sh-PYCARD-

bearing THP-1 cells treated with either LVS or LVS∆ripA did not release detectable IL-1β 

(Figure 3C). In contrast, induction of IL-1β release was similar in sh-NLRP3-bearing cells 

and Sh-Ctrl-bearing cells. This is consistent with our studies using gene-deficient mouse 

primary macrophages. To determine whether caspase-1 is required for LVS∆ripA induced 

IL-1β release by THP-1 cells, THP-1 cells were pretreated with a specific Caspase-1 inhibitor 

(10 μM Y-VAD-fmk). Porphyromonas gingivalis, which induces a Caspase-1-dependent IL-
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1β release in THP-1 cells (37), served as control. Y-VAD blocked IL-1β release in response 

to infection with P. gingivalis, and also with LVS and LVSΔripA (Figure 3D). Based on this 

data, we concluded that PYCARD and Caspase-1 are required in LVSΔripA-induced IL-1β 

release by human monocytic THP-1 cells. 

 

F. tularensis LVSΔripA fails to suppress the processing and synthesis of IL-1β. 

To elucidate the mechanisms by which F. tularensis suppresses host macrophage 

release of pro-inflammatory cytokines, we first sought to determine kinetics of intracellular 

IL-1β synthesis and processing using western blot analysis to detect pro-IL-1β (33KD) and 

processed IL-1β (17KD) present in LVSΔripA-infected mouse macrophages over a time 

course following inoculation. Pro-IL-1β levels increased starting at 30 minutes post 

LVSΔripA exposure (Figure 4A), a time corresponding with the kinetics of phagosome 

escape by both wild type F. tularensis and LVSΔripA (12). IL-1β processing occurred 30-45 

minutes post infection, and processed IL-1β accumulated over several hours (Figure 4A). By 

24 hours post infection, the intracellular level of processed IL-1β decreased, likely due to 

release of IL-1β into the extracellular space and death of macrophages. To determine whether 

the response to LVS and LVSΔripA differs in the synthesis and processing of IL-1β by 

macrophages, we repeated a time course of infection. By 60 minutes, LVS induced the 

synthesis of pro-IL-1β, and no processed IL-1β was evident. Pro-IL-1β increased 

significantly 120 minutes post-inoculation with LVS; however, only a small fraction of the 

pro-protein was processed to mature IL-1β at this point as shown by western blotting for pro-

IL-1β and processed IL-1β (Figure 4B) and quantification of processed IL-1β by 

densitometry (Figure 4C). In contrast, pro-IL-1β was present in LVSΔripA-infected 
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macrophages by 60 minutes post infection, with the majority processed to mature IL-1β. Pro- 

IL-1β continued to increase by 120 minutes post-inoculation, with half of the pro-protein 

processed to mature IL-1β. 

Next, we sought to determine if F. tularensis LVS also disrupted of the synthesis of 

pro- IL-1β. To accomplish this objective, we exposed Pycard
-/-

 mouse primary macrophages 

to LVS and LVSΔripA and monitored the synthesis of pro-IL-1β. Since the absence of 

PYCARD abolishes the processing of pro-IL1β into mature IL-1β, we can directly compare 

the macrophage synthesis of pro-IL-1β. In the absence of IL-1β processing, LVSΔripA-

infected macrophages induced significantly more pro-IL-1β than LVS as shown by western 

blot (Figure 4D) and quantified by densitometry in Figure 4E. Only pro-IL-1β is observed in 

LVS and LVSΔripA-infected Pycard
-/-

 BMDM, because the absence of PYCARD prevents 

processing of IL-1β. Thus, F. tularensis LVS disrupts both the synthesis and processing of 

pro-IL-1β by macrophages. Collectively, these data suggest that the removal of RipA 

affected signaling pathways required for both the synthesis and processing of pro-IL-1β. 

The effect of RipA on both pro- IL-1β and TNF-α synthesis led us to test the effect of 

RipA on pathways that can affect the production of both cytokines. Since NF-κB is a master 

transcriptional regulator that controls a wide range of host immune responses, including 

cytokine production, we sought to determine if F. tularensis LVS interfered with NF-κB 

signaling in macrophages. Degradation of IκBα and phosphorylation of p65 were monitored 

because both events are involved in NF-κB activation. Degradation of IκBα allows 

phosphorylation and translocation of p65 into nucleus which subsequently binds to promoters 

of pro-inflammatory genes. LVS and LVSΔripA each induced degradation of IκBα 30-60 

minutes post infection, and phosphorylation of p-65 15-30 minutes post infection (Figure 
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4F). LVSΔripA appeared to induce slightly faster degradation of IκBα and phosphorylation 

of p65; however, these small differences alone are unlikely to account for the significant 

differences between LVSΔripA and LVS in the induction of TNF-α and pro-IL-1β.  

 

F. tularensis LVSΔripA fails to dampen the activation of MAP kinase pathways. 

Another common group of signaling pathways that contributes to cytokine activation 

by bacteria and bacterial components are the MAP kinase pathways. F. tularensis LVS 

initially activates MAP kinase signaling pathways but subsequently down-regulates their 

activity (43). To determine whether the difference between the cytokine activation by LVS 

and LVSΔripA might be explained by differences in the induction of MAP kinases, we 

profiled the phosphorylation of ERK1/2, JNK and p38 in macrophages following infection. 

LVS induced modest levels of ERK1/2 and p38 phosphorylation which peaked at 30 and 60 

minutes, but induced very little JNK activation (Figure 5A). In contrast, LVSΔripA induced 

dramatic levels of ERK1/2 phosphorylation at 15-30 minutes, and of JNK and p38 at 30-60 

minutes post inoculation. These data suggest that LVS dampened the induction of MAP 

kinase signaling pathways by a mechanism that is missing or ineffective in the ΔripA mutant 

strain. 

To determine whether differences in MAP kinase activation might explain the 

increased inflammatory nature of LVSΔripA, we abrogated MAP kinase activity in ΔripA 

infected cells with pharmacological inhibitors of ERK, JNK and p38 signaling pathways. 

Primary mouse macrophages were treated with U0126, SP-600125 or SB-202190 to prevent 

the phosphorylation of ERK1/2, JNK and p38, respectively. These cells were subsequently 

exposed to either LVS or LVSΔripA, and IL-1β release was measured 24 hours post 
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infection. Both U0126 and SP-600125 reduced the release of IL-1β by macrophages by 1.5-2 

fold following infection with LVSΔripA over a range of doses (Figure 5B). Thus, ERK and 

JNK pathways each partially contribute to IL-1β activation in ΔripA-infected cells. The 

addition of U0126 or SP-600125 also reduced the release of TNF-α by macrophages upon 

exposure to LVS and LVSΔripA (Figure 5C). Finally, the combination of ERK, JNK and p38 

inhibitors blocked LVSΔripA-induced IL-1β release by macrophages more effectively than 

each inhibitor alone (Figure 5D). Taken together, these data demonstrate that wild type F. 

tularensis LVS interferes with the activation of multiple MAP kinase signaling pathways that 

are important for release of cytokines following infection.  

 

F. tularensis LVSΔripA fails to suppress pro-inflammatory cytokine responses in vivo. 

Our previous study showed that LVSΔripA is attenuated in mice as evidenced by a 

reduction in organ burden at days 1, 3 and 7 post intranasal infection when compared to LVS 

(12). In this study we confirm and expand this finding by monitoring mice morbidity, 

mortality and cytokine responses post infection. Mice were intranasally inoculated with LVS, 

LVSΔripA and mock/PBS, and weight loss was monitored among the three experimental 

groups. When using a LD100 dose of LVS (10
5
), LVS-inoculated animals exhibited severe 

weight loss, a measure of the severity of respiratory tularemia, and eventually succumbed to 

the disease (Figure 6A). In contrast, LVSΔripA-inoculated animals only showed a modest 

weight loss when compared to mock/PBS treated animals. We also measured the bacterial 

burdens in the lungs of mice during the early stages of the disease (6 and 24 hours post 

infection). Similar lung burdens were observed 6 hours post infection when comparing LVS 

and LVSΔripA, indicating that the initial bacterial loads of LVS and LVSΔripA are 
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indistinguishable (Figure 6B). By 24 hours post inoculation, LVS lung burdens rose to 10
6
 

CFU/organ. In contrast, the lung burden of LVSΔripA inoculated animals did not increase 

beyond that of the 6 hour time point. In our previous report, the ripA complementation strain 

of LVSΔripA inoculated animals exhibited similar lung, spleen, and liver burdens when 

compared to LVS inoculated animals (12).  

The in vitro analyses shown earlier indicate that LVSΔripA failed to suppress the 

release of IL-1β, IL-18 and TNF-α by primary mouse macrophages and human THP-1 cells. 

To determine if the absence of ripA similarly affected cytokine responses in vivo, we 

measured IL-1β and TNF-α in the lungs of infected mice. After testing multiple doses of 

LVS∆ripA to determine the amount required to detect IL-1β and TNF-α in the lung (Figure 

6C), we found that mice inoculated with 10
10

 CFU of LVS∆ripA expressed on average 5-10 

fold more IL-1β than animals inoculated with the same number of wild type LVS (Figure 

6D). Interestingly, at that dose of bacteria, IL-1 levels in the BALF of animals infected with 

wild type LVS was indistinguishable from mock/PBS-treated mice. We next examined levels 

of TNF-α in mouse lungs of mock/PBS, LVS and LVS∆ripA-inoculated animals. LVS∆ripA 

induced more TNF-α than LVS, but the difference was not as significant as that of IL-1β 

(Figure 6E). These results are consistent with the in vitro results obtained with mouse and 

human cells (Figures 1D, 3B) and support the effects of ripA deletion on both inflammasome 

and non-inflammasome mediated cytokines. Taken together, these data suggest that the 

expression of ripA in LVS suppresses macrophage pro-inflammatory cytokine production 

during an infection both in vitro and in vivo. 
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DISCUSSION 

 The innate immune response is indispensible to eradicate the invasion of microbial 

pathogens, and monocytes/macrophages are major arsenals in combating infectious diseases. 

Proper release of cytokines and chemokines by these cells is critical in the migration of 

polymorphonuclear (PMN) cells and other effector cells to the site of infection. To establish 

a successful infection, a pathogen must either evade immune surveillance or modulate host 

anti-microbial response. Over time, pathogens have developed sophisticated strategies to 

manipulate host immune responses to their advantage. In this study, we demonstrated that F. 

tularensis actively suppresses the release of pro-inflammatory cytokines, and that the F. 

tularensis gene ripA is critical in this process. In response to F. tularensis LVSΔripA, 

macrophages are able to mount an effective initial response by releasing higher amounts of 

IL-1β, IL-18 and TNF-α when compared to LVS. This observation is also seen in vivo, which 

correlates with the reduced morbidity caused by LVSΔripA. These data suggest that ripA 

contributes to effective suppression of host immunity, and hence F. tularensis survival. Of 

equal importance is the role of IFN-γ and IFN-β during host response to F. tularensis, and it 

would be interesting to test whether the IFN-β and IFN-γ responses are altered in LVS∆ripA-

treated cells and animals during an infection. 

An emerging theme in the literature is that a variety of pathogens can suppress IL-1β 

release by macrophages. Pseudomonas aeruginosa induces the release of IL-1β by 

macrophages in a NLRC4 dependent manner (32). A subset of P. aeruginosa expresses the 

effector molecule ExoU, and this molecule inhibits Caspase-1 activation thereby preventing 

the release IL-1β and IL-18 by macrophages. Mycobacterium tuberculosis (Mtb) circumvents 

both innate and adaptive immune responses. Similar to our observations with F. tularensis, 
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the Mtb gene product zmp1 prevents the activation of the inflammasome to inhibit IL-1β 

processing (44). Among viruses, Myxoma virus (MYXV) inhibits release of pro-

inflammatory cytokines IL-1β, IL-18, TNF-α, IL-6 and MCP-1. MYXV encodes a pyrin 

containing protein m103 which has been shown to bind to PYCARD and thereby disrupt the 

activation of inflammasome (45). The m103 protein also binds NF-κB which suppresses the 

degradation of IκBα and phosphorylation of IKK. Cowpox virus, via gene crmA, directly 

inhibits Caspase-1 activity, and suppresses IL-1β response to infection (46). Our study with 

F. tularensis LVS and LVSΔripA together with these and other reports exemplifies the 

multiple strategies employed by pathogens to disrupt host immune activation of the 

production of IL-1β and other cytokines by innate immune cells. 

 To elucidate the pathways by which LVS suppresses the IL-1β release by 

macrophages, we have identified PYCARD, Caspase-1 and MyD88 mediated signaling that 

the LVS strain can disrupt. Mariathasan and coworkers have shown that PYCARD and 

Caspase-1 mediated host IL-1β production is key in combating subsp. novicida infection 

(14). In their study, mice lacking Pycard or Caspase-1 were far more susceptible to challenge 

by F. tularensis subsp. novicida. Moreover, mice intraperitoneally injected with IL-18 and 

IL-1β neutralization antibody prior to subsp. novicida challenge exhibited higher organ 

burdens than those treated with isotype control, further suggesting the importance of IL-1β 

and IL-18 in tularemia. Recently, AIM2 has been identified as candidate proteins required in 

F. tularensis induced inflammasome formation and subsequent IL-1β release (19, 47, 48). 

Thus far, TLR2, MyD88 and type I Interferon β have been implicated in F. tularensis 

induced host cytokine response, including IL-1β by macrophages (14, 35, 49-51). Our data 
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suggest that F. tularensis LVSΔripA induced IL-1β is PYCARD, Caspase-1 and MyD88 

dependent and that LVS disrupts these signaling pathways. 

 In macrophages and epithelial cells, PAMPs or MAMPs activate NF-κB and MAP 

kinase pathways to initiate the pro-inflammatory responses. There are three major families of 

MAP kinase including the extracellular signal-regulated protein kinases (ERK), the c-Jun 

NH2-terminal kinases (JNK) and the p38 kinases (52). Many pathogens have developed 

strategies to disrupt the MAP kinase pathway to subvert the immune response. Arbibe and 

coworkers demonstrated that Shigella flexneri virulence factor OspF inactivates ERK1/2 and 

p38 by preventing their phosphorylation (53). YopJ, a type III effector protein of Yersinia 

species has been shown to acetylate the serine and threonine residues on MAP kinase kinase 

(MAPKK) thereby interrupting the downstream MAP kinase phosphorylation (54). Telepnev 

and coworkers have demonstrated that LVS may interfere with MAP kinase signaling 

pathways and that iglC is critical in this process (43). Our data suggest that LVS may be able 

to interfere with both the synthesis and processing of IL-1β at multiple points and that ripA is 

critical in these processes. The degradation of IκBα and phosphorylation of p65 is not likely 

the major mechanism by which ripA mediates immune suppression. However, LVSΔripA 

induced a significant increase in phosphorylation of these three MAP kinases when compared 

to wild-type LVS. Moreover, our studies showed that the LVSΔripA induced IL-1β and 

TNF-α release can be partially reduced by pre-treating cells with inhibitors of ERK, JNK and 

p38 alone, while the use of all three inhibitors resulted in an additive reduction of cytokine 

production that approaches the lower level caused by LVS infection. These results further 

validate that ripA contributes to the MAP kinase suppressive nature of F. tularensis. LVS 
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synergistically down-regulates the synthesis of pro-IL1β, and prevents the processing of IL-

1β, thereby resulting in strong suppression of IL-1β release by macrophages. 

 A specific function for RipA protein has not yet been identified. Our experiments 

using PFA-killed LVS and LVS∆ripA demonstrated that RipA-mediated suppression of the 

induction of IL-1β by LVS-infected host cells is an active process. In other words, the 

induction is not solely the result of gross morphological change in the bacterial cell or a cell 

surface marker that is present in LVS∆ripA regardless of the bacterial viability. Preliminary 

data from our lab also indicates that the outer membrane profile and LPS profile of 

LVS∆ripA is unchanged. Furthermore, our previous study demonstrated that RipA is 

localized to the cytoplasmic membrane of F. tularensis (12). This finding suggests that RipA 

does not mediate immune response suppression by directly interfering with or binding to 

innate immune receptors or sensors. More likely RipA is interacting with another protein or 

proteins that interfere with the pro-inflammatory signaling pathways.   

Others have also found that infection of macrophages with LVS blocks TLR-induced 

signaling (43); however, there are seemingly conflicting reports that F. tularensis subsp. 

novicida or LVS is a potent inducer of pro-inflammatory cytokines (14, 33, 55, 56). These 

apparent contradictions may be due to variations in the experimental designs, such as the 

differences in MOI, the activation state of the cell population used, or the different 

subspecies used. Ulland et al. reported nanogram levels of IL-1β secretion from LPS-pre-

stimulated BMDM that were subsequently infected with LVS (56), whereas we infected 

naïve BMDM. We also have found that following pre-stimulation of BMDM cells with E. 

coli LPS, LVS induced high levels of IL-1β (data not shown). Thus, the activation state of 

the cell likely affects the cytokine levels produced in response to F. tularensis. Consistent 
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with this possibility, Cole et al (55) found substantial LVS-induced IL-1 response by 

thioglycolate-elicited peritoneal macrophages.  We believe that the use of non-stimulated 

macrophages, as in our study, might better reflect the host response during a primary 

infection.  

An additional difference between our study and the latter is that our study primarily 

used LVS at MOIs of 50 to 500, while the paper by Cole and colleagues used MOI of 5-10 

(55).  We found that infection of resting macrophages with a low MOI of LVS induced little 

IL-1and the increased MOI is therefore unlikely to explain the difference in cytokine 

induction levels. Furthermore, the fact that LVSΔripA is both hyper-inflammatory and hyper-

cytotoxic compared to wild type LVS, suggests that differences in cell death induction in 

LVS cannot explain the differences in IL-1 production and release (Fig. 1F). Finally, it is 

possible that these differences are due to infection by different subspecies. F. tularensis 

subsp. novicida, a less virulent subspecies, caused substantial IL-1β and IL-18 production 

and caspase-1-dependent cell death at the low MOI (14). Likewise, we found that a similar 

range of doses of subsp. novicida U112 caused a significant amount of IL-1 release in 

resting BMDM (Fig. 1H) whereas LVS did not (Fig. 1G).  This suggests that the high levels 

of IL-1 in other studies relative to ours might also be explained by the use of different F. 

tularensis subspecies. While we acknowledge that LVS may induce various levels of 

cytokines depending on the methods of preparing primary mouse macrophages, it is clear that 

the deletion of ripA alleviated the immuno-suppressive nature of LVS with respect to IL-1β 

and TNF-α.  

In conclusion, we elucidated a mechanism by which F. tularensis actively evades host 

immune response by an analysis of the attenuated LVSΔripA strain. These results indicate 
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that the ripA gene product functions by targeting two prominent innate immune circuits: the 

circumvention of the host inflammasome response and the dampening of the activation of 

MAP kinase signaling pathways.  During the review of this paper, there was a report of 

another immune evasion gene in LVS that when removed, resulted in elevated IL-1 and cell 

death accompanied by reduced in vivo bacterial replication (56). Thus, the phenomenon 

described herein might be a common pathway for immune evasion by F. tularensis. 
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Figure 1. F. tularensis LVSΔripA fails to suppress pro-inflammatory cytokine release by 

primary mouse macrophages. (A) IL-1β secretion levels in mouse macrophages following 

exposure to F. tularensis LVS, Salmonella typhi, Klebsiella pneumoniae, or Shigella flexneri 

at MOI 50 for 24 hours as determined by ELISA. Data represent mean ± s.d. for at least three 

independent experiments performed in triplicate. A representative experiment is shown. *, p 

< 0.05 (B) IL-1β secretion levels in mouse macrophages exposed to LVS, LVSΔripA, or 

LVSΔripA complementation strain at MOI 50 and 500 for 24 hours. Data represent mean ± 

s.d. for at least three independent experiments performed in triplicate. A representative 

experiment is shown. *, p < 0.05 (C) IL-18 secretion levels in mouse macrophages exposed 

to LVS, LVSΔripA, or LVSΔripA complementation strain at MOI 50 and 500 for 24 hours. 

Data represent mean ± s.d. for at least three independent experiments performed in triplicate.  

A representative experiment is shown. *, p < 0.05 (D) TNF-α secretion levels in mouse 

macrophages exposed to LVS, LVSΔripA, or LVSΔripA complementation strain at MOI 50 

and 500 for 24 hours. Data represent mean ± s.d. for at least three independent experiments 

performed in triplicate. A representative experiment is shown. *, p < 0.05 (E) IL-1β secretion 

levels in mouse macrophages exposed to live and PFA-treated LVS and LVSΔripA at MOI 

50 and 500 for 24 hours. Data represent mean ± s.d. for at least three independent 

experiments performed in triplicate. A representative experiment is shown. *, p < 0.05 (F) 

Cytotoxicity of mouse macrophages exposed to LVS, LVSΔripA, or LVSΔripA 

complementation strain at MOI 500 for 24 hours as measured by luminescence.  Data 

represent mean± s.d. for at least three independent experiments performed in duplicate or 

triplicate. A representative experiment is shown. *, p < 0.05 (G) IL-1β secretion levels in 

mouse macrophages exposed to LVS at MOIs 10, 50, 500 for 24 hours. Data represent mean 

± s.d. for at least three independent experiments performed in triplicate. A representative 

experiment is shown. (H) IL-1β secretion levels in mouse macrophages exposed to U112 at 

MOIs 10, 100, 500 for 24 hours. Data represent mean ± s.d. for at least three independent 

experiments performed in triplicate. A representative experiment is shown. 
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Figure 2. LVSΔripA induced pro-inflammatory cytokines are regulated by 

inflammasome components and MyD88. (A) IL-1β secretion levels in mouse macrophages 

derived from Wt, Pycard
-/-

, Caspase-1
-/-

, MyD88
-/-

, Nlrp3
-/-

, and Nlrc4
-/-

 mice exposed to 

LVS and LVSΔripA at MOI 500 for 24 hours as assessed by ELISA of cell supernatants. 

Data represent mean ± s.d. for at least three independent experiments performed in triplicate. 

A representative experiment is shown. *, p < 0.05 (B) IL-18 secretion levels in macrophages 

derived from Wt, Pycard
-/-

, Caspase-1
-/-

, MyD88
-/-

, Nlrp3
-/-

, and Nlrc4
-/-

 mice exposed to 

LVS and LVSΔripA at MOI 500 for 24 hours. Data represent mean ± s.d. for at least three 

independent experiments performed in triplicate. A representative experiment is shown. *, p 

< 0.05 (C) TNF-α secretion levels in mouse macrophages derived from Wt, Pycard
-/-

, 

Caspase-1
-/-

, MyD88
-/-

, Nlrp3
-/-

, Nlrc4
-/-

 exposed to LVS and LVSΔripA at MOI 500 for 24 

hours. Data represent mean ± s.d. for at least three independent experiments performed in 

triplicate. A representative experiment is shown. *, p < 0.05 
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Figure 3. LVS ripA is necessary for suppression of pro-inflammatory cytokine release 

by human THP-1 cells. (A) IL-1β secretion levels in THP-1 cells exposed to LVS and 

LVSΔripA at MOI 500 for 24 hours. Data represent mean ± s.d. for at least three independent 

experiments performed in triplicate. A representative experiment is shown. *, p < 0.05 (B) 

TNF-α secretion levels in THP-1 cells exposed to LVS and LVSΔripA at MOI 500 for 24 

hours. Data represent mean ± s.d. for at least three independent experiments performed in 

triplicate. A representative experiment is shown. *, p < 0.05 (C) IL-1β secretion levels in 

THP-1 cells expressing stable Sh-Ctrl, Sh-PYCARD and Sh-NLRP3 exposed to LVS and 

LVSΔripA at MOI 500 for 24 hours. Data represent mean ± s.d. for at least three independent 

experiments performed in triplicate. A representative experiment is shown. *, p < 0.05 (D) 

IL-1β secretion levels in mock pre-treated THP-1 cells and cells pre-treated with Y-VAD and 

exposed to LVS and LVSΔripA at MOI 500 for 24 hours. Data represent mean ± s.d. for at 

least three independent experiments performed in triplicate.  A representative experiment is 

shown. *, p < 0.05  
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Figure 4. F. tularensis LVS suppresses IL-1β response in macrophages by interfering 

with IL-1β synthesis and processing. (A) Western blot analysis of IL-1β expression in 

mouse macrophages exposed to LVSΔripA at MOI 500 for 0, 5, 15, 20, 30, 45, 60, 120, 180 

minutes and 24 hours. At least three independent experiments were performed. A 

representative western blot is shown. (B) Western blot analysis of IL-1β expression in mouse 

macrophages exposed to LVS and LVSΔripA at MOI 500 for 0, 15, 30, 60 and 120 minutes. 

At least three independent experiments were performed. A representative western blot is 

shown. (C) Densitometric quantification of the bands for processed IL-1β (17KD) is shown 

in B. (D) Western blot analysis of IL-1β expression in macrophages derived from Pycard
-/-

 

mice following exposure to LVS and LVSΔripA at MOI 500 for 0, 30, 60 and 120 minutes. 

At least three independent experiments were performed. A representative western blot is 

shown. (E) Densitometric quantification of the bands for pro-IL-1β (33KD) shown in D. F. 

Western blot analysis of IκBα and phospho-p65 in mouse macrophages exposed to LVS and 

LVSΔripA at MOI 500 for 0, 15, 30 and 60 minutes. At least three independent experiments 

were performed. A representative western blot is shown. 
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Figure 5. F. tularensis LVS suppresses pro-inflammatory cytokine release by disrupting 

MAP kinase signaling pathways. (A) Western blot analysis of phospho-ERK1/2, phospho-

JNK, phospho-p38 and GAPDH in mouse macrophages exposed to LVS and LVSΔripA at 

MOI 500 for 0, 15, 30 and 60 minutes. At least three independent experiments were 

performed. A representative western blot is shown. (B) IL-1β secretion levels in mouse 

macrophages pre-treated with ERK inhibitor U0126 and JNK inhibitor SP-600125 and 

exposed to LVS and LVSΔripA at MOI 500 for 24 hours. Data represent mean ± s.d. for at 

least three independent experiments performed in triplicate. A representative experiment is 

shown. *, p < 0.05. (C) TNF-α secretion levels in mouse macrophages pre-treated with 

U0126 or SP-600125 and exposed to LVS or LVSΔripA at MOI for 24 hours. Data represent 

mean ± s.d. for at least three independent experiments performed in triplicate. A 

representative experiment is shown. *, p < 0.05 (D) IL-1β secretion levels in mouse 

macrophages pre-treated with, U0126, SP-600125, p38 inhibitor SB-202190 or a 

combination of U0126, SP-600125 and SB-202190 and exposed to LVS or LVSΔripA at 

MOI 500 for 24 hours. Data represent mean ± s.d. for at least three independent experiments 

performed in triplicate. A representative experiment is shown. *, p < 0.05 
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Figure 6. LVSΔripA fails to suppress pro-inflammatory cytokine responses in a mouse 

respiratory tularemia model. (A) Body weights of mice intranasally (i.n.) exposed to mock, 

LVS and LVSΔripA at dose of 10
5
 for 1-10 days. At least two independent experiments with 

7 animals per experimental condition (PBS, LVS, and LVSΔripA) were performed. A 

representative experiment is shown. (B) Lung organ burdens of mice i.n. exposed to LVS and 

LVSΔripA at a dose of 10
5
 for 6 and 24 hours. At least three in, p ndent experiments with 

more than 4 animals per group were performed. Each symbol represents one animal. A 

representative experiment is shown. (C) IL-1β levels in mouse bronchoalveolar lavage fluid 

(BALF) following i.n. exposure to LVSΔripA at increasing doses for 24 hours. Data 

represent mean ± s.d. for at least two independent experiments with more than 3 animals per 

group. Each symbol represents one animal. A representative experiment is shown. (D) IL-1β 

levels in mouse BALF following mock treatment or i.n. exposure to LVS or LVSΔripA (10
10 

bacteria per animal for both LVS and LVSΔripA) for 24 hours. Data represent mean ± s.d. 

for at three independent experiments with more than 6 animals per group. Each symbol 

represents one animal. All data are shown. *, p < 0.05 (E) TNF-α levels in mouse BALF 

following mock treatment or i.n. exposure LVS or LVSΔripA (10
10 

bacteria per animal for 

both LVS and LVSΔripA) for 24 hours. Data represent mean ± s.d. for at least three two 

independent experiments with more than 6 animals per group. Each symbol represents one 

animal. All data are shown. 
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ABSTRACT 

 Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of 

the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for 

Francisella replication within macrophages and other cell types; however, the function of 

this protein remains unknown. RipA is conserved among all sequenced Francisella species, 

and RipA-like proteins are present in a number of individual strains of a wide variety of 

species scattered throughout the prokaryotic kingdom. Crosslinking studies revealed that 

RipA forms homoligomers. Using a panel of RipA-GFP and RipA-PhoA fusion constructs, 

we determined that RipA has a unique topology within the cytoplasmic membrane with the 

N- and C- termini in the cytoplasm and periplasm, respectively. RipA has two significant 

cytoplasmic domains, one comprised roughly of amino acids 1 – 50, and the second flanked 

by the second and third transmembrane domains and comprising amino acids 104 – 152. 

RipA functional domains were identified by measuring the effects of deletion mutations, 

amino acid substitution mutations and spontaneously arising intragenic suppressor mutations 

on intracellular replication, induction of IL-1β secretion by infected macrophages, and 

oligomer formation.  Result from these experiments demonstrated that each of the 

cytoplasmic domains and specific amino acids within these domains were required for RipA 

function. 
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INTRODUCTION 

 Francisella tularensis is a Gram-negative coccobacillus that is the etiological agent of 

the zoonotic disease tularemia. F. tularensis infects a wide range of hosts, which includes 

humans, but predominately infects small mammals such as rabbits, voles, and squirrels (24). 

F. tularensis has also been isolated from arthropod vectors such as ticks (29, 34), mosquitoes 

(28, 43), and deerflies (24), which are also a source of transmission to humans (5, 6). 

Additional modes of transmission to humans include contact with infected animals (30, 31, 

36), ingestion of contaminated food or water (23, 25), and inhalation of aerosolized bacteria 

(37, 42). There are four main subspecies of F. tularensis that differ in their virulence for 

humans: novicida, mediasiatica, holarctica, and tularensis. Subspecies novicida is not 

generally considered pathogenic for humans; however, there have been a few cases reported 

(1, 9, 20, 26). Subspecies mediasiatica is also associated with human disease in Asia, though 

less is understood about its pathogenesis (24). Subspecies holarctica and tularensis are most 

commonly associated with disease in humans with the latter being associated with the lowest 

infectious dose and most severe disease. For subspecies tularensis, transmission to humans 

via the inhalational route can occur at an infectious dose of as few as ten organisms (35). The 

ease of aerosolization and low infectious dose resulted in the designation of F. tularensis 

subspecies tularensis a select agent by the Centers for Disease Control, especially 

considering the historical development of F. tularensis bioweapons by several countries 

during the Cold War (13).  

 Within the lung, F. tularensis travels to the alveoli where it infects a wide range of 

cell types including alveolar macrophages, neutrophils, dendritic cells, monocytes, and 

alveolar Type II epithelial cells (2, 18, 19). F. tularensis is taken up by host cells via looping 
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phagocytosis, and after internalization, the bacteria escape the phagosome to replicate to high 

numbers in the cytoplasm (10, 11). In addition to the ability to replicate intracellularly, F. 

tularensis is able to suppress the pro-inflammatory immune response (2, 3, 8, 22, 40, 41). 

Several F. tularensis proteins have been reported as virulence factors that are required for 

this intracellular lifecycle; however, many of the identified virulence factors have little or no 

similarity to known proteins of other bacteria and their functions remain, for the most part, 

unknown. 

 Previously we identified a locus called ripA that is required for F. tularensis 

virulence. More specifically, deletion of this locus in the live vaccine strain (LVS) resulted in 

a mutant (LVS∆ripA) that escapes the phagosome but is defective for intracellular replication 

(17) and fails to suppress the pro-inflammatory immune response (22). Not surprisingly, 

LVS∆ripA is also attenuated in a pulmonary mouse model of tularemia (17). Deletion of ripA 

in the highly virulent F. tularensis Schu S4 strain results in a mutant that is defective for 

intracellular replication and attenuated in a mouse model as well, suggesting that RipA is 

required for virulence in the highly pathogenic F. tularensis subspecies tularensis (our 

unpublished results). 

 RipA is a cytoplasmic membrane protein that is conserved among Francisella species 

(17). Interestingly, bioinformatic analyses by our lab show that there is sporadic 

representation of RipA-like proteins among Prokaryotes, where RipA-like proteins are found 

in only specific strains of a given bacterial species. Similar to RipA, these other proteins are 

annotated as hypothetical proteins with no known functions or conserved domains; thus, the 

function of RipA remains unknown. RipA is a small protein (17 kD) with three 

transmembrane domains and has a single cysteine found within the second membrane-
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spanning domain, which are unusual properties for a membrane protein, and examples of 

similar proteins in the literature are sparse. The unusual biochemical properties, combined 

with RipA’s random distribution but obvious conservation within Prokaryotes, led us to 

study RipA for its potential for providing insight into what may be a novel class of proteins 

and/or for revealing a novel virulence mechanism employed by F. tularensis.   

 In this report, we address the question of RipA function by analyzing RipA at the 

biochemical and molecular level. Our results confirm a predicted topology model of RipA in 

the cytoplasmic membrane and show that RipA forms homoligomers. Using the topology 

model and alignments to other RipA-like proteins, amino acid substitutions were generated at 

conserved amino acids and the two individual cytoplasmic domains were deleted within 

RipA. These amino acid substitution and domain deletion mutants were analyzed for their 

ability to replicate intracellularly, suppress the immune response, and to form RipA 

oligomers. We also identified and analyzed an intragenic suppressor mutant. Using the 

suppressor mutant as well as the substitution and deletion mutants of RipA, we showed that 

both cytoplasmic domains and at least four amino acids are required for RipA function. 

 

MATERIALS AND METHODS 

Bacterial strains.  

 Francisella tularensis subsp. holarctica live vaccine strain (LVS) was obtained from 

the CDC, Atlanta, GA. All Francisella strains were maintained on chocolate agar 

supplemented with 1% IsoVitaleX (Becton-Dickson) and when applicable, 10 μg ml
-1

 

kanamycin (Kan10) for selection. For growth of bacteria for infection or monitoring in vitro 

growth, strains were propagated in Chamberlain’s defined medium (7).  Escherichia coli 
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TOP10 (Invitrogen) or DH10b (Invitrogen) were used for cloning purposes. E. coli CC118 or 

BL21 (DE3)pLysS were used for expression of topology fusion reporter proteins.  E. coli was 

propagated in Luria broth supplemented with ampicillin at 100 μg ml
-1

 (Amp100) or 

kanamycin at 50 μg ml
-1

 (Kan50) as necessary for antibiotic selection.  All cultures were 

grown at 37°C with aeration. 

 

Cell culture.  

 TC-1 (ATCC CRL-2785) cells are a tumor cell line derived from mouse primary lung 

epithelial cells and were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 

2 mM L-glutamine, 1.5 g L
-1

 sodium bicarbonate, 10 mM HEPES and 0.1 mM nonessential 

amino acids.  J774A.1 (ATCC TIB-67) cells are a macrophage-like cell line derived from 

mouse sarcoma reticulum cells and were cultured in Dulbecco’s minimal essential medium 

with 4.5 L
-1

 glucose, 10% fetal bovine serum, and 2 mM L-glutamine. Bone marrow-derived 

macrophages were generated by flushing C57BL/6 mouse femurs and recovered cells were 

incubated for 6 days on 15 cm
2
 non-tissue culture-treated dishes in L929 cell-conditioned 

DMEM. Nonadherent cells were removed by washing with phosphate-buffered saline (PBS) 

and bone marrow-derived macrophages were recovered from the dish using 10 mM EDTA in 

PBS. For experiments, BMMs were maintained in DMEM plus 10% FBS.  

 

Molecular techniques and mutagenesis.  

 To generate constructs for RipA fusion protein expression, using the Phusion 

polymerase (New England Biosciences) we PCR-amplified ripA from LVS genomic DNA 

using primers that introduced XhoI and BamHI restriction sites directly before the start 



136 

 

codon and in place of the stop codon of ripA, respectively. For cloning of truncated ripA 

constructs, the reverse primer introduced a BamHI restriction site at the respective locations 

in ripA sequence but used the same forward primer. These constructs were first cloned into 

the pCR-Blunt II TOPO vector (Invitrogen) and subsequently subcloned using BamHI and 

XhoI restriction digest and ligation into pWaldo-TEV-GFPe and pHA-4 (33) to generate the 

fusion protein expression constructs. For expression of fusion proteins, the plasmids were 

transformed into E. coli CC118 (pHA-4) or E. coli BL21 (DE3)pLysS (pGFPe) by 

electroporation with selection on ampicillin at 100 μg ml
-1

 (pHA-4) or kanamycin at 50 μg 

ml
-1

 (pGFPe). 

 The cytoplasmic loop deletions in ripA were generated by gene synthesis of ripA 

containing the designated nucleotide deletions (corresponding to amino acids 4-47 or 105-

151) and linker sequence insertion while maintaining the integrity of the flanking regions 

(Blue Heron). Each construct was PCR-amplified from the synthesis vector and cloned into 

the pCR-Blunt II TOPO vector (Invitrogen), verified by DNA sequence analysis, and 

subsequently subcloned into pMP590 (sacB Kan
r
) using the BamHI and NotI restriction sites 

(27). For allelic exchange, plasmids were electroporated into LVS and integrants were 

selected on chocolate agar containing kanamycin (10 μg ml
-1

).  Kan
r
 strains were grown 

overnight and plated on 10% sucrose for counterselection (loss of plasmid) (17). Deletions 

were confirmed by PCR analysis of genomic DNA using primers external to deleted regions. 

The strategy for generation of the ripA deletion in LVS and for complementation of the ripA 

deletion has been described (17).   

 Single amino acid changes in RipA were generated by introducing 1-2 bp changes in 

the respective codon of the ripA DNA sequence using QuikChange II Site-directed 
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Mutagenesis kit (Stratagene) following the manufacturer’s protocol. The plasmid used for 

mutagenesis was the multi-copy Francisella shuttle vector pKKMCS that expressed ripA 

under its native promoter and containing both 5’ and 3’ flanking regions. After DNA 

sequence confirmation of the mutations within ripA, the plasmids were each transformed into 

the LVS∆ripA strain by electroporation and selection on chocolate agar Kan10. 

 To generate HA-tagged ripA, a fusion construct was made by splice overlap extension 

(21) with primers that introduced the HA tag in-frame to the C-terminus of the coding 

sequence of ripA and including a glycine linker sequence between the end of the coding 

sequence and the HA tag. This construct was sequenced before use and then cloned into 

pMP590 suicide vector and used for allelic exchange to generate a chromosomally-expressed 

HA-tagged protein. Clones were screened using one primer specific to the tag and the second 

specific to sequence on the chromosome. Additionally, this same construct was cloned into 

pKKMCS to generate a plasmid-expressed HA-tagged protein. Integrity of the sequence was 

confirmed by DNA sequence analysis.  

 

GFP fluorescence and alkaline phosphatase activity assays.  

 Procedures for protein expression, GFP fluorescence and PhoA activity were adapted 

from published protocols (12, 15, 33). For expression of the GFP fusion proteins, E. coli 

BL21(DE3)pLysS containing each construct was grown in 1ml LB Kan50 overnight at 37°C 

and then diluted 1:50 into 500 μl LB Kan50 per well of a 48-well plate and grown at 37°C, 

250 rpm to OD600= 0.3-0.4. Expression was then induced by addition of 0.4 mM IPTG and 

growth to a final OD600=0.6-0.8. Cell pellets were resuspended in 200 μl of buffer containing 

50 mM Tris-HCl (pH 8.0), 200 mM NaCl, and 15 mM EDTA and incubated for 30 minutes 
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at room temperature. Samples were then transferred to a black 96-well plate (Nunclone) and 

analyzed for GFP fluorescence using an excitation filter of 485 nm, emission filter of 512 

nm, and a cutoff of 495 nm with the TECAN Infinite M200 and analyzed using Magellan v6 

software. For calculated GFP fluorescence, after subtraction of background cells-only 

fluorescence, GFP emission was normalized against the OD600 of the culture. 

 For expression of the PhoA fusion proteins, E. coli CC118 with each construct was 

grown in 1 ml LB Amp100 overnight at 37°C and then diluted 1:50 into 500 μl LB Amp100 

per well of a 48-well plate and grown at 37°C, 250 rpm to OD600=0.13-0.18. Arabinose was 

added to a final concentration of 0.2% and bacteria were grown to OD600 0.3-0.6. To prevent 

spontaneous PhoA activation, 1 mM iodoacetamide was added 10 minutes prior to harvesting 

and to all subsequent buffers. Samples were washed once in cold 10 mM Tris-HCl, pH 8.0 

containing 10 mM MgSO4 and resuspended in 1 ml cold 1 M Tris-HCl, pH 8.0. Then, 100 μl 

of each sample was added to 900 μl 1M Tris-HCl, pH 8.0 containing 1 mM ZnCl2 and an 

OD600 measurement was taken on the remaining sample. We next added 50 μl 0.1% SDS and 

50 μl chloroform, vortexed for 15 seconds, and incubated at 37°C for 5 minutes to 

permeabilize cells, then placed on ice for 5 minutes to cool. Finally, 100 μl of 0.4% p-

nitrophenyl phosphate (in 1 M Tris-HCl, pH 8.0) was added and incubated at 37°C. The 

tubes were monitored until each turned pale yellow, and then 120 μl of 1:5 0.5 M EDTA, pH 

8.0 containing 1 M KH2PO4 was added to stop the reaction. For each sample, the OD550 and 

OD420 were determined and to calculate the activity, the following equation was used: Units 

Activity= ((OD420 - (1.75 x OD550))*1000)/ (time (min) x OD600 x volume cells (ml)). 
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Protein crosslinking.  

 Overnight cultures of LVS were grown in CDM pH 6.3 and used either for 

crosslinking or re-seeded to grow to mid-log (Klett 150). Each culture was aliquoted into 

250-500 μl samples, washed once in 1X PBS, and then resuspended in the same buffer. 

Crosslinker was added to samples at a final concentration of 0.5% for formaldehyde or 0.5 

mM for dithiobis (succinimidyl propionate) (DSP). Samples were incubated at room 

temperature for 30 minutes. For DSP-treated samples, 100 mM Tris-HCl (pH 7.4) was added 

to quench the reaction. All formaldehyde-treated samples were then washed once in ice-cold 

1X PBS and resuspended in 200 μl SDS-PAGE loading buffer plus β-mercaptoethanol 

(βME) and heated at 60°C for 10 minutes (to maintain crosslinking) or at 100°C for at least 

20 minutes (to cleave crosslinking). All DSP-treated samples were resuspended in SDS-

PAGE buffer without βME (to maintain crosslinking) or with βME (to cleave crosslinking) 

and heated at 100˚C for 10 minutes. All samples were analyzed by SDS-PAGE and Western 

blotting as described below. 

 

Membrane fractionations. 

 LVS was grown overnight in 15 ml cultures in CDM pH 6.3 at 37°C, pelleted, and 

washed once in lysis buffer (150 mM NaCl, 10 mM Tris, pH 7.5). Cells were lysed in Lysis 

Matrix B tubes (MP Biomedicals) and beating in a Mini-Beadbeater (Biospec Products) for 

45 seconds twice at 4°C. Cell lysates were collected after the beads settled and clarified by 

centrifugation at 12,000 x g for 3 minutes. Crude membrane fractions were separated from 

cytoplasmic fractions by ultracentrifugation at 100,000 x g for 90 minutes, with the 

cytoplasmic fraction being in the supernatant. The remaining crude membrane fraction pellet 
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was solubilized in lysis buffer containing a final concentration of 0.5% sarkosyl and 

incubated at room temperature with shaking for 30 minutes. Insoluble outer membrane 

components were isolated from the cytoplasmic membrane fractions (supernatant) by 

centrifugation at 100,000 x g for 60 minutes (17). Protein concentrations for each fraction 

were determined using a standard BCA Assay (Thermo Scientific). 

 

SDS-PAGE and Western blotting.  

 Either 4-20% or 12% Pierce Precise™ protein gels (Thermo Scientific) were loaded 

with the designated samples at equal concentrations as determined by BCA Assay and run 

using BupH Tris-HEPES-SDS running buffer at 120 V. To determine molecular weights, 

either Benchmark™ Pre-stained Protein Ladder (Invitrogen) or PageRuler™ Plus Prestained 

Ladder (Fermentas) was used. For Western blotting, gels were transferred to nitrocellulose 

membranes at 400 mA for 45 minutes and then blocked overnight in 1% BSA in PBST. All 

antibodies were incubated at room temperature with rocking for 1 hr with PBST washes 

between incubations. Primary antibodies used were rabbit anti-RipAaa1-19 (described 

below) or mouse anti-HA monoclonal (Sigma), and secondary antibodies used were goat 

anti-rabbit IgG IRDye 680 or goat anti-mouse IgG IRDye 800CW. Protein was detected by 

near infrared fluorescence at 700 nm or 800 nm using the Odyssey Infrared Imaging System 

(LI-COR Biosciences).  

 

Generation of affinity purified antibodies against RipA peptides.  

 Two RipA peptide sequences corresponding to amino acids 1-19 and amino acids 

112-128 were synthesized by YenZyme Antibodies, LLC for the production of each peptide 



141 

 

and then rabbit antiserum and affinity purification of antibodies against each peptide. Pre-

immune sera were also collected from the rabbits and used during initial tests of the 

antibodies for reactivity and specificity in Western blots of LVS lysates.  

 

Gentamicin protection assays.  

 TC-1 epithelial cells or J774A.1 macrophages were inoculated with LVS at MOI 100 

after determining bacterial concentrations via Klett. All LVS strains were grown overnight in 

CDM pH 6.3 prior to inoculation. The cells were incubated with the bacterial inoculum for 2 

hr (J774A.1) or 4 hr (TC-1), and then incubated with media containing 25 μg ml
-1

 gentamicin 

for an additional 2 hr to kill the extracellular bacteria.  At 4 hr (J774A.1) or 6 hr (TC-1) and 

24 hr post infection, medium was removed, cells were washed with PBS and then scraped 

from the dish, and the bacteria serially diluted and plated to determine the number of viable 

bacteria. 

 

IL-1β ELISAs. 

 Bone marrow-derived macrophages were prepared as described above and seeded in 

12-well dishes at 1x10
6
 cells per well the same day as infection. One to two hours after 

plating, cells were then inoculated with bacteria at an MOI 500 and incubated at 37°C. After 

24 hr, the supernatants from each well were collected and centrifuged to pellet cellular 

debris.  The IL-1β ELISA was performed using the BD OptEIA mouse IL-1β ELISA kit (BD 

Biosciences) according to the manufacturer’s protocol.  The OD450 was read using a TECAN 

Infinite M200 and analyzed using Magellan v6 software.   
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Statistical analysis 

 For intracellular replication assay data, the differences for total CFU values at the 24 

hr time point for each strain was analyzed for significance using the unpaired, two-tailed 

student’s t-test. For IL-1β ELISA data, significance was determined using the repeat 

measures one-way ANOVA with a Dunnett multiple comparison post-test. Other details and 

the p-values are included in the figure legends.  All statistical values were calculated using 

GraphPad Prism v.5 software (GraphPad).   

 

RESULTS 

Mapping RipA topology of RipA using carboxyl-terminal fusion reporter proteins. 

 RipA is a 179 amino acid cytoplasmic membrane protein estimated to be 

approximately 17 kD (17). Using the annotated amino acid sequence for RipA and the 

TMHMM software (38), the topology of RipA was predicted. The data output was used in 

TMRPres2D (39) to generate the image depicted in Figure 1A. This model predicted that 

RipA has three membrane-spanning domains (amino acids 51-71, 83-103, and 152-172) with 

the amino terminus (N-terminus) in the cytoplasm and the carboxyl terminus (C-terminus) in 

the periplasm. Also predicted are two large cytoplasmic domains (amino acids 1-50 and 104-

151) and two smaller periplasmic domains within RipA (amino acids 72-82 and 173-179). It 

is rare for a protein to have only three transmembrane domains with this orientation, and very 

few such proteins have been thoroughly characterized.  

 Considering the value of validating such a unique topology for RipA, we made use of 

a fusion reporter protein system that has been used to map Escherichia coli cytoplasmic 

membrane proteins (12, 15, 33). In this system, either GFP or alkaline phosphatase (PhoA) 
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was fused at the C-terminal end of recombinant proteins or peptides, expressed in E. coli, and 

assayed for GFP fluorescence and PhoA activity. GFP is only fluorescent in the cytoplasm 

and PhoA is only active in the oxidizing environment of the periplasm (14). Thus, by fusing 

GFP and PhoA to a protein, one can determine the cytoplasmic or periplasmic location for 

the C-terminus of the protein. GFP or PhoA was fused at the C-terminus of RipA and at four 

locations predicted to be near transmembrane junctions of RipA thereby generating fusion 

proteins expressing amino acids 1-47, 1-80, 1-106, 1-148, and 1-179 (full length RipA). C-

terminal fusion proteins of DcuB and GlpT, two E. coli proteins that have been identified as 

having C-termini with periplasmic and cytoplasmic locations, respectively, were included as 

controls (12). The GFP fusion proteins were expressed in BL21 (DE3)pLysS E. coli and 

PhoA fusion proteins were expressed in phoA
-
 CC118 E. coli. GFP fluorescence or PhoA 

activity was measured for each construct, and graphed as a ratio of PhoA to GFP (Figure 1B). 

As expected, the control DcuB fusion protein had high PhoA to GFP ratio designating 

periplasmic location, and the control GlpT fusion protein had a low PhoA to GFP ratio 

designating a cytoplasmic location. In terms of RipA, fusion proteins for amino acids 1-47, 

1-106, and 1-148 had a low PhoA to GFP ratio (i.e. high GFP fluorescence) corresponding to 

a cytoplasmic location for RipA at amino acids 47, 106, and 148. Constructs for amino acids 

1-80 and 1-179 had a higher PhoA to GFP ratio (i.e. high PhoA activity) corresponding to a 

periplasmic location at amino acids 80 and 179. Thus, the fusion protein reporter system 

supports that the predicted RipA topology is correct.  
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RipA forms homoligomers as revealed by in vivo crosslinking in LVS. 

 As a small, integral cytoplasmic membrane protein, it is possible that RipA interacts 

with itself and/or other proteins. Additionally, under non-reducing conditions, higher 

molecular weight (MW) bands have been observed on Western blots probed with anti-RipA 

aa1-19 antibody. For example (Figure 2A), under non-reducing conditions (i.e. no addition of 

β-mercaptoethanol (βME)), there are at least three higher MW bands, whereas there is only 

one higher MW band in reducing conditions. This result hints that RipA may be interacting 

with itself as a homoligomer. In order to capture potential RipA oligomerization in vivo, two 

different bifunctional, reversible chemical crosslinkers, formaldehyde and DSP, were used to 

treat LVS grown in chemically-defined media. Formaldehyde was added to cells at 

concentrations ranging from 0.1-1% with the optimal percentage being 0.5%, which was 

used for subsequent experiments. Cleavage of formaldehyde-mediated protein interactions is 

accomplished by boiling samples. DSP was added to cells at concentrations ranging from 

0.5-1 mM with the optimal concentration being 0.5 mM, which was used for subsequent 

experiments. DSP-mediated interactions are reversed by the addition of βME. Crosslinking 

with either formaldehyde or DSP revealed that RipA formed 2-4 higher molecular weight 

bands of 40 kD, 55 kD, 70 kD, and sometimes 100 kD that disappear upon cleavage of the 

crosslinker (Figure 2B). These higher molecular weight bands likely represent a range of 

oligomeric states for RipA. 

 To determine whether the higher MW complexes correspond to RipA interacting with 

itself as opposed to other proteins, crosslinking experiments were performed on two 

complementary strains: HA-tagged ripA expressed on a plasmid in wild-type LVS and 

chromosomally-expressed HA-tagged ripA with wild-type ripA on a plasmid. For each strain, 
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both native and HA-tagged RipA were expressed by the ripA promoter on the same multi-

copy plasmid backbone. Each of these strains as well as wild-type LVS were crosslinked 

with formaldehyde and analyzed via Western blot using antibodies against both RipA aa1-19 

and against the HA tag. Secondary antibodies conjugated to different wavelength infrared 

dyes allowed for differential labeling of native and HA-tagged RipA (RipA-HA), and the HA 

tag allowed for differentiation by size. Due to the lower resolution of the higher MW bands, 

we focused on the ~40 kD band that corresponded to a potential RipA dimer. As expected, in 

place of a single band, there were three bands differing by only a few kD in the two strains 

containing HA-tagged and wild-type ripA. The lowest MW band corresponds to RipA/RipA 

dimers, the middle MW band to RipA/RipA-HA dimers, and the highest MW band to RipA-

HA/RipA-HA dimers (Figure 2C). These data suggest that RipA interacts with itself and 

forms a homodimer and possibly higher number homoligomers. Work to identify whether 

RipA also interacts with other proteins is underway. 

 

The cytoplasmic domains of RipA are important for RipA function. 

 Having determined the topology of RipA in the cytoplasmic membrane, we set out to 

identify which domains of RipA were required for function. Since protein-protein 

interactions often occur in the cytoplasm and because there are two large domains within 

RipA in the cytoplasm, the two cytoplasmic domains were targeted for analysis as putative 

functional domains using intracellular replication, induction of IL-1β secretion by infected 

macrophages, and RipA oligomer formation as functional read-outs. Independent deletions of 

each domain corresponding to amino acids 4-47 and 105-151 were constructed by 

replacement with a 15 amino acid linker sequence rich in glycines and serines and also two 
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prolines for flexibility. This resulted in two LVS mutants designated LVS ripA∆aa4-47 and 

LVS ripA∆aa105-151. These mutants were analyzed for intracellular replication in J774A.1 

murine macrophages (Figure 3A) and TC-1 epithelial cells (Figure 3B). The results 

demonstrate that LVS ripA∆aa4-47 and LVS ripA∆aa105-151 are both defective for 

intracellular replication in each cell type, similar to LVS∆ripA. Each mutant was also tested 

for the ability to induce IL-1β secretion as measured by ELISA on supernatants from infected 

bone marrow-derived macrophages (BMMs) (Figure 3C). Similar to what is seen for 

LVS∆ripA, LVS ripA∆aa4-47 and LVS ripA∆aa105-151 both induced increased levels of IL-

1β by infected BMMs. To validate that each protein was expressed in the proper location, 

cytoplasmic membrane fractions of each mutant were analyzed via Western blot using 

antibodies against RipA aa1-19 or RipA aa112-128 (Figure 3D). Deletion of amino acids 4-

47 and 105-151 resulted in RipA proteins that are expressed in the correct location, though at 

a slightly lower level. The apparent reduction in membrane-localized protein could contribute 

to or even account for the observed phenotypes for this mutant. Finally, to determine the role 

of each domain to the ability of RipA to oligomerize, we performed in vivo crosslinking with 

formaldehyde or DSP as described above, excluding the first deletion mutant, whose protein 

expression was too low to detect any crosslinking (Figure 3E). Unlike LVS, which again 

displayed several higher molecular weight complexes, no RipA oligomer formation was 

observed for LVS ripA∆aa105-151, suggesting that the second cytoplasmic domain is 

required for binding. Together, these data suggest that both cytoplasmic domains, 

corresponding to amino acids 4-47 and 105-151 are required for RipA function, and that at 

least the second cytoplasmic domain is required for RipA oligomerization. 
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At least four amino acids within RipA are required for intracellular replication and 

suppression of the pro-inflammatory response. 

 Analysis of the results from a BLASTp search using the protein sequence of RipA 

revealed a relatively short list of RipA-like proteins that have E-values below zero. 

Moreover, these proteins are found only in individual strains of a given species, which seem 

to be randomly distributed across Prokaryotes (Table S1). Thirteen amino acids are identical 

or highly conserved among the 15 RipA-like proteins with E-values less than 10
-3

. As an 

additional approach to identifying regions required for RipA function, mutants expressing 

alanine substitutions were made at each of these 13 conserved amino acids found among the 

RipA-like proteins discussed above, as well as the single cysteine, totaling 14 amino acid 

substitution mutants. Site-directed mutagenesis was performed on a plasmid containing ripA 

and the mutated plasmid was transformed into LVS∆ripA.  Each mutant was screened for 

expression of RipA in the cytoplasmic membrane using the anti-RipAaa1-19 antibody via 

Western blot on lysates of cytoplasmic membrane fractions (Figure 4A). To determine 

whether any mutant could trans-complement LVS∆ripA, each strain was analyzed for the 

ability to replicate intracellularly in J774A.1 macrophages (Figure 4B) or TC-1 epithelial 

cells (Figure 4C) and for induction of IL-1β secretion by infected BMMs (Figure 4D). The 

mutants S46A, R48A, R49A, N53A, F55A, N60A, C97A, and E134A trans-complemented 

LVS∆ripA in all assays, therefore suggesting that none of these residues are required for 

RipA function. Of the remaining mutants, W100A and P154A had variable or intermediate 

phenotypes; however, mutants Y35A, K114A, E122A and E150A did not trans-complement 

LVS∆ripA in any of the assays. Thus, at least these four respective amino acids, Y35, K114, 
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E122 and E150, are required for RipA function and corroborates with the data for the domain 

deletion mutants that both cytoplasmic domains are required for RipA function. 

 

Conservative and charge reversal amino acid changes confirm a role for K114, E122, 

and E150 in RipA function.  

 Due to their location in the second cytoplasmic domain and to further investigate the 

importance of K114, E122 and E150 to RipA function, both conservative and charge reversal 

substitutions were made at each amino acid. The substitution mutations were again generated 

using site-directed mutagenesis and the mutants assessed for intracellular replication (Figure 

5A, B) and induction of IL-1β secretion (Figure 5C). For conservative changes, E122D and 

E150D, each mutant trans-complemented the LVS∆ripA phenotype, whereas the respective 

charge reversal substitution mutants, E122R and E150R, did not. These data not only confirm 

a role of E122 and E150 in RipA function, they suggest that the charge at these sites is also 

important. For K114R, the conservative change mutant, an intermediate phenotype was 

observed, or partial trans-complementation. For K114E, the charge reversal mutant, there 

was no trans-complementation observed. Based on these data, we conclude that K114 is 

important for RipA function, but cannot determine whether the charge is responsible for its 

function. To verify that each mutant was expressed in the cytoplasmic membrane, protein 

expression was determined via membrane fractionations and Western blot using anti-

RipAaa1-19 as described above (Figure 5D). Lastly, crosslinking experiments were 

performed with K114A, E122A, and E150A to determine whether any of these amino acids 

were required for RipA oligomerization (Figure 5E, 6D). Interestingly, each mutant was still 

able to form RipA oligomers, suggesting either that these amino acids are not involved in 
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oligomerization or that there are multiple amino acids mediating the binding such that 

changing one amino acid is not sufficient to eliminate the interaction. 

 

Identification of an intragenic suppressor mutant supports a role for the first 

cytoplasmic domain in RipA function. 

 During the course of experiments with the alanine point mutants, the plasmids from 

LVS were repeatedly sequenced to verify the integrity of the ripA sequence and the desired 

mutations within RipA. In this process for K114A, E122A and E150A, we frequently 

observed mutations that resulted in a frameshift, loss of the alanine substitution mutation 

(rare), or single amino acid changes within ripA. Due to the relatively high frequency of 

mutations found within RipA-E150A, of the single amino acid changes identified, one was 

selected for further characterization, E150A with an additional V39A change, which was 

designated E150A/V39A. Assays for intracellular replication (Figures 6A, B) and also for IL-

1β secretion (Figure 6C) revealed that this mutant trans-complemented LVS∆ripA, 

suggesting that this new mutation was an intragenic suppressor. To confirm that the 

phenotype was the result of the intragenic mutation, and not the result of an extragenic 

mutation, the plasmid containing RipA E150A/V39A was isolated and re-transformed into 

LVS∆ripA three independent times. Each of these new E150A/V39A transformants was 

assayed for intracellular replication and for IL-1β secretion and displayed the same 

phenotype as the original suppressor mutant, confirming that the V39A substitution was 

responsible for trans-complementation. After formaldehyde crosslinking, the E150A/V39A 

mutant also displayed the same higher MW bands as wild-type and E150A, suggesting that 

this trans-complementation was not a result of altered oligomeric complex formation (Figure 
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6D). Of note, a mutant containing only the V39A substitution in LVS∆ripA deletion 

background did not display a defect in intracellular replication (data not shown). Overall, 

when considering the intragenic suppressor data, one can infer that the two cytoplasmic 

domains may be interacting with each other or alternatively with another protein or molecule. 

 

DISCUSSION 

 F. tularensis is a highly successful pathogen; however, many of the known virulence 

factors still have no identified function. RipA is a virulence factor that was previously shown 

to be required in vivo in a pulmonary mouse model of tularemia, likely in part due to its 

inability to suppress the pro-inflammatory response like wild-type F. tularensis LVS or Schu 

S4 (17, 22, unpublished observations). Furthermore, RipA is required for F. tularensis 

intracellular replication in both macrophages and epithelial cells (17).  However, LVS∆ripA 

escapes the phagosome with similar kinetics to wild-type F. tularensis (17). This phenotype 

suggests that a lack of RipA results in a strain unable to adapt to the environment of the host 

cell cytoplasm. Not surprisingly, LVS∆ripA grows poorly in vitro at higher pH and both ripA 

transcript and RipA protein expression are upregulated at higher pH and between 1 and 6 

hours post infection of host cells, all correlating with a role for RipA in adapting to the 

cytoplasm (16).  

 This study addresses the question of RipA function at the biochemical and molecular 

level. Preceding studies demonstrated that RipA localizes to the cytoplasmic membrane of F. 

tularensis (17). Here, the topology of RipA within the cytoplasmic membrane was 

determined in terms of orientation and subcellular location of functional domains. RipA has 

three transmembrane domains, two large cytoplasmic domains and two smaller periplasmic 
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domains with the N-terminus in the cytoplasm and the C-terminus in the periplasm. 

Additionally, RipA was shown to form homoligomers in the membrane using in vivo 

crosslinking with either formaldehyde or DSP, and even in the absence of protein 

crosslinkers, the protein can exist in higher order forms. The first of several higher MW 

bands appears to correspond to at least a dimer size (~40 kD), suggesting that RipA forms a 

homodimer. RipA homodimerization was confirmed by the experiments using strains 

expressing both RipA and RipA-HA where in place of the single 40 kD band there were 3 

bands corresponding to RipA-RipA dimers, RipA/RipA-HA dimers and RipA-HA/RipA-HA 

dimers. Due to the lack of resolution for the higher bands in these experiments and since 

these bands are not exactly trimer, tetramer, etc. in size, we cannot definitively say whether 

or not these bands are solely RipA or RipA crosslinked to another protein; however, based on 

the characteristic banding pattern, we suspect that these forms represent homoligomers as 

well. We are in the process of determining whether or not RipA interacts with any other F. 

tularensis proteins. Further insight into RipA topology, structure, and ultimately function, 

could be gained through biochemical experiments such as size exclusion chromatography 

and solving the crystal structure. 

 Francisella RipA proteins and some of the other RipA-like proteins have only a 

single cysteine found in the second transmembrane domain, which is uncommon. The highly 

reactive thiol group of a cysteine is known to be involved in several biological functions, 

most prominently the formation of disulfide bonds with other cysteine residues. These 

disulfide bonds can occur within the same protein to maintain tertiary structure or with a 

cysteine from another protein to mediate intermolecular complex formation, making unpaired 

cysteines quite rare. Due to the high reactivity of the thiol group, cysteine is not usually 
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found in isolation, and proteins with a single cysteine form oligomers or bind metals or other 

molecules via this amino acid. The fact that the RipA C97A mutant still formed oligomers 

(data not shown), was not attenuated for intracellular growth, and did not induce IL-1β 

secretion by infected macrophages suggests that this is not the case for RipA. Thus, the role 

of this single cysteine in RipA function remains unknown. One explanation is that there is no 

specific role for C97 in RipA function, especially considering that the cysteine is not 

completely conserved in all RipA-like proteins and that in some RipA-like proteins there is 

more than one cysteine present. Alternatively, the cysteine has a function unique to only 

Francisella RipA or a subset of RipA-like proteins. An interesting possibility is that the 

cysteine is involved in conformational changes of the RipA protein or binds to a small 

molecule as opposed to directly binding to protein partners.  

 Employing the topology model of RipA, we targeted specific domains for assessment 

of their role in RipA function. Using domain deletion mutants we found that each 

cytoplasmic domain was required for RipA function in terms of intracellular replication in 

macrophages and epithelial cells and suppression of the pro-inflammatory immune response 

and that at least the second cytoplasmic domain was required for RipA oligomer formation. 

This is further supported by analysis of the Y35, K114, E122, and E150 substitution mutants, 

each of which is within the cytoplasmic domains, and showed that these amino acids were 

also required for intracellular replication in both macrophages and epithelial cells as well as 

for suppression of the pro-inflammatory immune response. Unlike the RipA ∆aa105-151 

cytoplasmic domain deletion mutant, the single amino acid changes were not sufficient to 

prevent RipA oligomerization, suggesting that the interactions are mediated by multiple 

amino acids or that the individual amino acids are involved in some other aspect of RipA 
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function.  In terms of the first cytoplasmic domain, the inability to determine the involvement 

of aa4-47 to RipA oligomer formation was due to RipA∆aa4-47 decreased cytoplasmic 

membrane expression. Nevertheless, there is a possibility that the first cytoplasmic domain is 

involved in formation of RipA oligomers and even that the two cytoplasmic domains interact. 

The intragenic suppressor mutation V39A in the E150A mutant restores the ability of the 

E150A mutant to replicate intracellularly and suppress the IL-1β response. Considering that 

V39 and E150 are in the first and second cytoplasmic domain, respectively, suggests that the 

two cytoplasmic domains interact with each other or alternatively with another shared 

substrate. Overall, our data show that both cytoplasmic domains, and even certain amino 

acids within each domain are important for RipA function. 

 The fact that there are other RipA-like proteins in a wide range of mainly less-studied 

species, including pathogenic, non-pathogenic, Gram-positive, Gram-negative, 

Mycobacteria, soil-dwelling, marine-dwelling, freshwater-dwelling and even one Archaea 

member is intriguing. Stranger still is that there have only been RipA proteins identified in 

select strains of a given species with the exception being Francisella, in which RipA is 

conserved among all sequenced species and strains. This could be due in part to a lack of 

genome sequences for a given species, or RipA could truly be a rare protein, or one for which 

there are functional homologs that share little protein sequence homology. So far RipA-like 

proteins have been identified in only four strains of pathogenic bacterial species: 

Mycobacterium avium, which can cause disease in birds as well as children, elderly and the 

immune-compromised, Streptomyces scabiei, which causes disease in plants, and Aeromonas 

caviae, which is a cause of gastrointestinal disease in humans, and Actinomyces 

odontolyticus, which is an opportunistic pathogen causing invasive disease in elderly or 
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immune-compromised patients with advanced dental cavities. Whether or not these RipA-

like proteins play a role in pathogenesis is not known. Since we know that RipA is an 

important virulence factor for F. tularensis, it is possible that the function of RipA will 

represent a conserved virulence mechanism among pathogenic bacteria. Alternatively, and 

equally exciting would be that RipA functions as a novel virulence mechanism unique to 

Francisella. Being that the bacteria in which other RipA-like proteins are found are so varied 

in classification, it will be interesting to determine if there are differences in function of RipA 

among the pathogenic and non-pathogenic strains. The fact that a virulence gene homolog is 

found in environmental bacteria is not unfounded. A recent in silico analysis of marine 

bacteria genomes for virulence factors revealed that there was an abundance of well-

characterized virulence genes, including pathogenicity islands and genes encoding secretion 

systems and toxins, represented among the analyzed strains (32). Genes encoding virulence 

factors are also widely distributed among soil bacteria as well (4). Perhaps RipA belongs to a 

novel family of proteins that will be revealed as more strains are sequenced and deposited 

into NCBI resulting in more RipA-like proteins being identified. Overall, determining the 

function of RipA is relevant not only for understanding the virulence of F. tularensis, but 

also perhaps for understanding the function of a potential class of proteins distributed 

throughout the Prokaryotes. 
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Figure 1. Mapping of RipA within the cytoplasmic membrane using C-terminal fusion 

reporter proteins in Escherichia coli. (A) The predicted topology model for RipA was 

determined using TMHMM and the image made using TMRPres2D. The yellow tags label 

the 13 amino acids that are conserved among RipA-like proteins in other bacterial strains as 

well as the single cysteine found within Francisella RipA. The colors designate electrostatic 

potential with red highlighting negatively-charged amino acids and blue highlighting 

positively-charged amino acids. (B) RipA C-terminal fusion proteins were expressed in E. 

coli alongside GlpT and DcuB C-terminal fusion proteins as GFP and PhoA positive 

controls, respectively. Each strain was assayed for PhoA activity or GFP fluorescence as 

appropriate. Data are represented as PhoA to GFP ratio consolidated from at least three 

experiments for each construct performed in triplicate. Error bars represent the standard 

deviation of the PhoA to GFP ratio values composite from all experiments. 

 



156 

 

 

 

Figure 2. In vivo protein crosslinking of RipA.  (A) Western blot of LVS lysates probed 

with anti-RipAaa1-19 after SDS-PAGE under non-reducing conditions (no βME) in Lane 1 

and under reducing conditions in Lane 2. (B) LVS treatment either with 0.5 mM DSP or 

0.5% formaldehyde (Form.) and analyzed by Western blot using anti-RipAaa1-19. 

Incubation of samples at 100°C (formaldehyde) or addition of βME (DSP) cleaved selected 

samples as designated. (C) LVS (Lanes 1-3), LVS with plasmid-expressed RipA-HA (Lanes 

4-6), and LVS with chromosomally-expressed RipA-HA plus plasmid-expressed wild-type 

RipA (Lanes 7-9) were grown overnight and incubated with 0.5% formaldehyde and 

analyzed by Western blot probed with anti-RipAaa1-19 (red) and anti-HA (green). Lane 1, 4, 

7- untreated; Lanes 2, 6, 8- 0.5% formaldehyde; Lanes 3, 7, 9- 0.5% formaldehyde plus 

100°C. The images below each panel of the Western blot are cropped and enlarged from the 

Western blot to focus on the bands of interest. Although from the same blot, the panel 

containing lanes 7-9 was exposed at a lower intensity in the red channel in order to 

distinguish the fainter upper band (green channel) and this results in the upper band 

appearing more green than the expected yellow as seen in lanes 4-6. All data shown are 

representative of at least three experiments. 

  



157 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 

 

Figure 3. Characterization of two RipA cytoplasmic domain deletion mutants. (A) 

Intracellular replication of wild-type LVS, LVS∆ripA, LVS ripA∆aa4-47, and LVS 

ripA∆aa105-151 was assessed within J774A.1 macrophages (A) and within TC-1 epithelial 

cells (B) as determined by gentamicin protection assay. Each graph is representative of one 

of three experiments each performed in triplicate, and the error bars signify standard 

deviation between triplicates. (C) Secretion of IL-1β by BMMs at 24 hr as measured by 

ELISA on supernatants of cells left untreated or incubated with LVS, LVS∆ripA, LVS 

ripA∆aa4-47, or LVS ripA∆aa105-151. The graph represents the results from one of at least 

three experiments performed in triplicate with error bars representing the standard deviation 

between replicates. (D) Protein expression of LVS, LVS∆ripA, LVS ripA∆aa4-47, and LVS 

ripA∆aa105-151 in LVS cytoplasmic membrane fractions was determined by Western blot 

probed with anti-RipAaa1-19. (E) In vivo crosslinking on wild-type LVS (lanes 1-5) and 

LVS ripA∆aa105-151 (lanes 5-10) was performed by treatment with 0.5% formaldehyde or 

0.5 mM DSP. For some samples, cleavage was achieved by addition of βME (DSP) or 

incubation at 100°C (formaldehyde) as designated. Crosslinking was followed by Western 

blot analysis probed with anti-RipAaa1-19. The Western blots shown are representative of at 

least three experiments. Statistical significance was determined by comparing the values for 

each respective mutant to the values for LVS∆ripA. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Figure 4. Characterization of RipA alanine substitution mutants RipA for intracellular 

replication and suppression of the pro-inflammatory response. (A) The 14 RipA alanine 

substitution mutants were expressed in LVS∆ripA and analyzed for protein expression in the 

cytoplasmic membrane fractions of LVS by Western blot probed with anti-RipAaa1-19. Each 

mutant was assessed for intracellular replication in J774A.1 macrophages (B) and TC-1 

epithelial cells (C) as measured by gentamicin protection assay. The graphs represent a 

consolidation of data for each mutant from a representative of at least two experiments 

performed in triplicate with the error bars signify standard deviation between triplicates. (D) 

Each mutant was analyzed for induction of IL-1β secretion by infected BMMs at 24 hr as 

measured by ELISA. The graph represents a consolidation of data for each mutant from a 

representative of at least two experiments performed in duplicate or triplicate, and the error 

bars signify standard deviation between replicates. Statistical significance was determined by 

comparing the values for each respective mutant to the values for LVS∆ripA + ripA since this 

strain has the backbone plasmid on which the mutants were made. *, p < 0.05; ***, p < 

0.001. 
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Figure 5. Further analysis of amino acids K114, E122 and E150 to RipA function. The 

charge reversal and conservative amino acid substitution mutants for K114, E122, and E150 

were assessed for intracellular replication within J774A.1 macrophages (A) and within TC-1 

cells (B) using gentamicin protection assays. The graphs represent a consolidation of data for 

each mutant from a representative of at least two experiments performed in triplicate, and the 

error bars signify standard deviation between triplicates. (C) Each mutant was analyzed for 

induction of IL-1β secretion by BMMs at 24 hr as measured by ELISA on supernatants of 

infected cells. The graph represents a consolidation of data for each mutant from a 

representative of at least two experiments performed in duplicate or triplicate, and the error 

bars signify standard deviation between replicates. (D) Each mutant was assessed for protein 

expression in the cytoplasmic membrane fraction of LVS by Western blot analysis probed 

with anti-RipAaa1-19. (E) Wild-type LVS and the K114A and E122A mutants were 

crosslinked with 0.5% formaldehyde and analyzed by Western blot probed with anti-

RipAaa1-19. Statistical significance was determined by comparing values for each respective 

mutant to the values for LVS∆ripA + ripA. **, p < 0.01; ***, p < 0.001. 
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Figure 6. Identification and characterization of an intragenic suppressor mutation in 

RipA E150A. A spontaneous V39A suppressor mutation appeared in the E150A mutant 

(E150A/V39A), and this plasmid was used to re-transform three LVS∆ripA strains and 

generate E150A/V39A-R1, R2, R3. Wild-type LVS, LVS∆ripA, LVS∆ripA + ripA, the 

E150A mutant, E150A/V39A, and E150A/V39AR1-3 were assessed for intracellular 

replication within J774A.1 macrophages (A) and within TC-1 epithelial cells (B) as 

determined by gentamicin protection assay. The graphs represent a consolidation of data for 

each mutant from a representative of at least two experiments performed in triplicate with the 

error bars signify standard deviation between triplicates. (C) Secretion of IL-1β by 

macrophages at 24 hr as measured by ELISA on supernatants of infected cells. The graph 

shows a representative of at least two experiments performed in duplicate or triplicate, and 

the error bars signify standard deviation between replicates. (D) Wild-type LVS, the E150A 

mutant, and the E150A/V39A mutant were crosslinked using 0.5% formaldehyde and 

analyzed by Western blot probed with anti-RipAaa1-19. The Western blot shown is 

representative of at least two experiments. Statistical significance was determined by 

comparing the values for each respective mutant to the values for LVS∆ripA + ripA. *, p < 

0.05; **, p < 0.01; ***, p < 0.001. 
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Bacterial Strain Accession # E-value Description of strain/species 

Acidovorax 

delafieldii 2AN 

Alicycliphilus 

denitrificans K601  

ZP_04761593.1 

YP_004388625 

 2x10
-14

 

Gram-negative, β-Proteobacteria, 

aerobic, water-dwelling  

Gram-negative, β-Proteobacteria, 

aerobic, de-nitrifying, breaks 

down cholates, soil 

Thermomonospora 

curvata DSM43183  

YP_003299058.

1 4x10
-14

 

Gram-positive, Actinobacteria, 

aerobic, cellulolytic thermophile, 

isolated from straw compost 

Hylemonella gracilis 

ATCC 19624  

ZP_08407204.1 

1x10
-13

 

Gram-negative, β-Proteobacteria, 

aerobic, spirillum-shaped, 

isolated from pond water, 

stagnant or still freshwater  

Streptomyces 

lividans TK24  

ZP_05525530.1 

2x10
-13

 

Gram-positive, Actinobacteria, 

aerobic, producer of small 

molecule natural products 

Streptomyces 

cattleya NRRL 8057 

CCB74526.1 
4x10

-13
 

Gram-positive, Actinobacteria, 

aerobic, fluorinase producer 

Aeromonas caviae 

Ae398  

ZP_08522295.1 

4x10
-13

 

Gram-negative, γ-Proteobacteria,  

facultative anaerobe, cause of 

gastrointestinal diseases 

Streptomyces 

coelicolor A3(2)  

NP_627504.1 

2x10
-12

 

Gram-positive, Actinobacteria, 

aerobic, soil-dwelling, lifecycle 

involving mycelial growth and 

spore formation 

Beggiatoa sp. PS  ZP_02000104.1 

4x10
-12

 

Gram-negative,  γ-

Proteobacteria, aerobic, 

filamentous, marine 

environment, chemosynthesizer, 

isolated originally from the 

German coast of the Baltic Sea, 

one of the largest Prokaryotes 

Nocardioidaceae 

bacterium Broad-1  

ZP_08194929.1 

2x10
-11

 

Gram-positive, Actinobacteria, 

contaminant during the assembly 

of Coccidioides genomes 

Moritella sp. PE36  ZP_01896445.1 

3x10
-11

 

Gram-negative, γ-Proteobacteria, 

aerobic, deep-sea piezophile 

heterotroph, adapted to high 

pressure, cryophilic 

Streptomyces scabiei  

87.22  

YP_003490655.

1 
4x10

-10
 

Gram-positive, Actinobacteria, 

aerobic, mesophilic, motile, soil-

dwelling, causes scab diseases
 
of 

potatoes and other root crops 

Mycobacterium 

avium subsp. avium 

ATCC 25291  

ZP_05215248.1 

3x10
-8

 

Mycobacteria/Gram-positive, 

Actinobacteria, aerobic,  

mesophilic, isolated from the 

http://www.ncbi.nlm.nih.gov/protein/241763541?report=genbank&log$=prottop&blast_rank=9&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/269125688?report=genbank&log$=prottop&blast_rank=10&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/269125688?report=genbank&log$=prottop&blast_rank=10&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/332531291?report=genbank&log$=prottop&blast_rank=11&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/256787099?report=genbank&log$=prottop&blast_rank=12&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/337765817?report=genbank&log$=prottop&blast_rank=13&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/334706429?report=genbank&log$=prottop&blast_rank=14&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/21221725?report=genbank&log$=prottop&blast_rank=15&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/153870777?report=genbank&log$=prottop&blast_rank=16&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/326328589?report=genbank&log$=prottop&blast_rank=17&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/149907698?report=genbank&log$=prottop&blast_rank=18&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/290959473?report=genbank&log$=prottop&blast_rank=19&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/290959473?report=genbank&log$=prottop&blast_rank=19&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/254773732?report=genbank&log$=prottop&blast_rank=20&RID=3Y22RN02012
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Table 4.1  List of bacterial strains (other than those belonging to the Francisella genus) that 

have a RipA-like protein, as identified by BLASTp to Francisella RipA at the time of 

manuscript submission. Descriptive information was obtained from NCBI. 

  

liver of a hen and causes disease 

in birds as well as children, 

elderly and immune-

compromised 

Desulfobacterium 

autotrophicum 

HRM2  

YP_002602733.

1 

4x10
-8

 

Gram-negative, δ-Proteobacteria, 

anaerobic, mesophilic, found in 

marine sediments, sulfate-

reducing, isolated from 

Mediterranean Sea 

Actinomyces 

odontolyticus F0309  

ZP_06609016.1 

1x10
-6

 

Gram-positive, Actinobacteria, 

aerobic, mesophilic, non-motile  

oral bacterium isolated from 

dental caries, can cause systemic 

disease in elderly and immune-

compromised humans with 

advanced dental cavities 

Archaeoglobus 

profundus DSM 

5631  

YP_003401486.

1 
3x10

-6
 

Archaea,  Euryarchaeota, 

anaerobic, hyperthermophilic, 

motile, isolated from a deep sea 

hydrothermal vent,  

Actinomyces sp. oral 

taxon 178 str. F0338  

ZP_08026401.1 
1x10

-5
 

Gram-positive, Actinobacteria, 

oral bacterium 

http://www.ncbi.nlm.nih.gov/protein/224368570?report=genbank&log$=prottop&blast_rank=21&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/224368570?report=genbank&log$=prottop&blast_rank=21&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/293190854?report=genbank&log$=prottop&blast_rank=22&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/284162863?report=genbank&log$=prottop&blast_rank=23&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/284162863?report=genbank&log$=prottop&blast_rank=23&RID=3Y22RN02012
http://www.ncbi.nlm.nih.gov/protein/320094640?report=genbank&log$=prottop&blast_rank=24&RID=3Y22RN02012
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SUMMARY AND FUTURE DIRECTIONS 

 F. tularensis has a low infectious dose and causes the potentially fatal disease 

tularemia, but despite the knowledge of F. tularensis being such a successful pathogen, not 

much is known about its mechanisms of virulence. Part of the struggle to understanding F. 

tularensis virulence is the seeming lack of typical virulence factors employed by other 

pathogenic bacteria such as toxins or the Type III, IV, or V secretion systems. In fact, 

approximately 30% of the F. tularensis genome encodes hypothetical proteins, many of 

which have little or no homology to other characterized proteins (16). Another factor 

contributing to the relative lack of knowledge on F. tularensis virulence mechanisms is that 

only recently have the necessary genetic tools become available. Within the last decade, as 

these means have been utilized, numerous screens have been performed and through which, a 

significant number of proteins that contribute to F. tularensis pathogenesis were revealed  (1-

3, 14, 15, 18, 21, 24-26, 29, 31). Nonetheless, many of the studies remain descriptive in 

nature, and therefore, the functions of the majority of these virulence factors remain 

unknown. 

 In a search for proteins that were required for intracellular replication within the host 

lung epithelial cell, our lab identified the locus FTL_1914, which we called ripA (required 

for intracellular proliferation factor A). Deletion of ripA in LVS resulted in a mutant 

(LVS∆ripA) that was defective for intracellular replication in both epithelial cells and 

macrophages (12). Interestingly, unlike many of the previously described mutants, 

LVS∆ripA escapes the phagosome with the same kinetics as wild-type LVS, and therefore, 

the decreased replication is not the result of an inability to escape the phagosome (12). 

Furthermore, at later time points post-infection, like wild-type LVS, LVS∆ripA is reported to 
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re-enter the FCV (12). Deletion of ripA in the highly virulent Schu S4 strain (Schu S4∆ripA), 

results in a mutant that is defective for intracellular replication as well (our unpublished 

results, Dr. Sharon Taft-Benz). In addition, both ripA gene expression and RipA protein 

expression are upregulated at a higher pH and within macrophages during the first several 

hours of infection, and LVS∆ripA grows poorly in broth media cultures at a high pH (13). All 

of this data suggest LVS∆ripA is unable to adapt to the host cytoplasmic environment, 

although the specific reasons are not clear. 

 Further evidence to a role for RipA to F. tularensis virulence was shown through the 

studies described in chapter 3, in which we demonstrated the inability of LVS∆ripA and Schu 

S4∆ripA to suppress the pro-inflammatory immune response. Using PFA-killed LVS and 

LVS∆ripA, we found that the suppression of the immune response is an active process, i.e. 

the reason for the increased LVS∆ripA-mediated immune induction cannot be only due to 

gross morphological changes in the bacterial cell surface or to a cell surface protein that is 

present in LVS∆ripA regardless of bacterial viability. Moreover, mixed infections with LVS 

and LVS∆ripA, led to a loss in IL-1β induction, suggesting that the presence of wild-type 

bacteria can suppress the immune response induced by LVS∆ripA (our unpublished results). 

Active suppression of the immune response by wild-type F. tularensis is further supported by 

other studies (5-7, 9, 17, 27, 28). 

 Since RipA is an inner membrane protein, it is probable that the effects on the 

immune response are indirect and that RipA does not directly interfere with or bind to host 

immune receptors. RipA could either be interacting with other proteins that interfere with the 

pro-inflammatory signaling pathways or alternatively, the loss of RipA be altering the 

bacterial membrane in such a way to expose other immune-interacting proteins or molecules, 
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in a manner that requires viable bacteria. Additional studies in our lab also indicate that the 

outer membrane, LPS, and lipid A profiles of LVS∆ripA are unchanged and that LVS∆ripA 

LPS does not stimulate IL-1β or TNF-α secretion by infected macrophages (our unpublished 

results, Cheryl N. Miller). Therefore, further studies are needed to determine if a more subtle 

or specific change is the source of the enhanced induction of the pro-inflammatory response 

in the absence of ripA. Significantly, these studies helped to provide further insight into the 

pathways that are being suppressed by wild-type F. tularensis, most notably the role for the 

MAP kinases ERK1/2, JNK, and p38. Future studies will include further dissection of the 

signaling pathways targeted by F. tularensis and activated by LVS∆ripA with a priority on 

the identification of cytoplasmic sensors upstream of inflammasome activation. Identification 

of the protein that is responsible for sensing LVS∆ripA, as well as other specific downstream 

pathways and proteins, could be useful in determining RipA function. In general, 

understanding the mechanisms by which F. tularensis modulates the host response to 

infection is principal in prophylactic and vaccine development not only in accounting for 

host responses but also for identification of bacterial drug targets. 

 For a small inner membrane protein of 17 kD, RipA has an unusual topology. More 

specifically, with a large cytoplasmic N-terminus, two transmembrane alpha-helices linked 

by a short periplasmic domain, a second large cytoplasmic domain, a third transmembrane 

domain, and a short periplasmic C-terminus. What’s more, RipA contains only a single 

cysteine residue found within the second transmembrane domain. Cysteines contain a highly 

reactive thiol group that is usually involved in forming intramolecular disulfide bonds and 

occasionally binding to metals or other molecules. This reactivity makes unpaired cysteines 

quite rare; however, such cases often involve the cysteine binding to a cysteine from another 
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protein to mediate an intermolecular complex formation. With this in mind, we tested RipA 

for the ability to form oligomers using crosslinking agents, formaldehyde and DSP, and 

through this we learned that RipA forms homodimers. The characteristic banding pattern 

observed when crosslinking RipA suggests that RipA may be forming trimers, tetramers, and 

pentamers as well. Surprisingly, the cysteine in RipA was not required for oligomer 

formation nor for F. tularensis intracellular replication or suppression of IL-1β, so the role of 

RipA’s single cysteine remains unknown.  

 Nevertheless, further experiments are required to clarify whether these higher MW 

complexes represent homo-oligomers and/or RipA interacting with another protein(s). Mass 

spectrophotometry on crosslinked RipA complexes as well as size exclusion chromatography 

on RipA-containing inner membrane fractions are currently being performed in pursuit of 

further defining the composition of RipA complexes. Localization studies using electron 

microscopy or immunofluorescence would also be useful in determining the distribution of 

RipA within the inner membrane of the bacterium. Future experiments also include further 

characterization of the role of various amino acids and domains to RipA function. We have 

already established that the two cytoplasmic domains are required for virulence and RipA 

oligomer formation. We would like to address the possibility that these two domains interact, 

for example, by FRET, yeast two-hybrid, or immunoprecipitation. By targeting additional 

amino acids or groups of amino acids by mutagenesis we can hope to narrow down regions 

of RipA that are mediating oligomerization and potentially binding to other proteins. Finally, 

as discussed in chapter 1, RipA was identified in a screen looking for glycosylated proteins, 

so we also plan to determine whether or not RipA is glycosylated at a predicted glycosylation 

site within the N-terminal cytoplasmic domain (4). Overall, additional biochemical 
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experiments will be beneficial to understanding RipA topology, oligomer formation, and 

eventually, RipA function. 

 Since RipA has two large cytoplasmic domains, RipA likely interacts with 

cytoplasmic proteins. The search for RipA-interacting proteins was initiated by means of 

immunoprecipitation using HA-tagged RipA and LVS lysates (11). These studies revealed a 

list of putative RipA-interacting proteins, one of which was confirmed using reciprocal pull-

down experiments. This RipA-interacting protein (FTL_1364) had significant homology to 

proteins within the IclR family of transcriptional regulators, and therefore, we named this 

protein IclR. The homologous locus in F. novicida (FTN_0720) had previously been 

described as being required in vivo in the mouse after subcutaneous or intraperitoneal 

inoculation, for suppression of the pro-inflammatory response and cytotoxicity (31). 

Interestingly, the novicida iclR mutant was still able to replicate intracellularly in 

macrophages (31). Despite this, the other data in the study suggested that IclR contributes to 

virulence, and that its role may be at least in part through its interactions with RipA.  

 Therefore, we deleted the gene encoding IclR in the more highly pathogenic LVS 

(FTL_1364) and in Schu S4 (FTT_0748), and analyzed these mutants for intracellular 

replication, ability to induce IL-1β secretion and cytotoxicity in infected macrophages, and in 

vivo in the mouse following intranasal or intradermal inoculation. Surprisingly, all of the iclR 

deletion mutants behaved like wild-type strains in all assays; however, our examination of a 

F. novicida iclR transposon mutant confirmed the previously published results that iclR is 

required for F. novicida virulence in vivo. Microarray studies and subsequent synteny 

analysis of the results show that loss of IclR results in expression changes in genes that are 

disrupted in LVS and Schu S4, but not in F. novicida U112. These data suggest that in spite 
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of the changes in gene expression in all of the iclR mutants, the loss or disruption of affected 

genes in LVS and Schu S4 may at least partially account for why iclR is not required for 

virulence in these virulent strains. The precedence for this conclusion is also supported by the 

fact that the tularensis and holarctica species are noted for their genome decay. For example, 

both tularensis and holarctica genomes have a few hundred pseudogenes, while the F. 

novicida U112 genome has only fourteen (16, 30).  The tularensis and holarctica genomes 

are also distinguished from the U112 genome in the increased presence of transposase 

sequences and gene rearrangements (16, 23, 30). Therefore, it’s possible that IclR affects a 

similar set of genes shared among the species of Francisella, but due to the genome decay in 

the virulent strains, many of the transcripts are unable to be translated into functional 

proteins. Moreover, as discussed in chapters 1 and 2, the acid phosphatases AcpABC are 

required for the virulence of U112, but not for Schu S4 (10, 19, 20). Overall, combined with 

the different pathogenicity of each species for humans, these studies highlight differences 

between the Francisella species.  

 Even though IclR does not appear to be required for virulence of F. tularensis, the 

fact that expression of limited numbers of transcripts were significantly changed between 

LVS wild-type and ΔiclR strains suggest that IclR may in fact be a transcriptional regulator. 

Future studies with IclR include characterizing IclR as a transcriptional regulator by means 

of DNA binding assays, mutagenesis, and more detailed transcriptional studies in novicida. 

We would like to investigate further the microarray-identified genes to help us gain further 

insight into the function of IclR in Francisella. It is possible that IclR still plays an important 

role for Francisella survival in the environment or other hosts. Finally, we plan to further 

investigate the IclR-RipA interaction and whether or not this interaction is biologically 



178 
 

relevant. To do this, we would need to first validate the in vitro interaction with other assays, 

e.g. microscopy, FRET, or the crosslinking with mass spectrophotometry studies mentioned 

above, as a true interaction could provide insight into RipA function. Preliminary studies 

suggest that there is no overlap in gene expression changes identified by microarray for 

LVSΔiclR compared to LVSΔripA, which goes against the hypothesis that the IclR-RipA 

interaction is related to the putative transcriptional activity of IclR. 

 The original immunoprecipitation studies with RipA identified multiple putative 

RipA-interactors, so there are more proteins that we can investigate that may help elucidate 

RipA function. One promising contender is the protein LpxA, which we have since 

confirmed the interaction with RipA using reciprocal pull-downs with tagged proteins (our 

unpublished results, Cheryl N. Miller). Spontaneous extragenic suppressor mutations of 

LVS∆ripA were also identified within lpxA and glmU, both genes involved in lipid A 

biosynthesis, which complemented the LVS∆ripA intracellular growth defect (our 

unpublished results, Cheryl N. Miller). These data suggest that RipA may be involved in LPS 

biosynthesis and/or membrane biogenesis. Studies looking at membrane permeability suggest 

that there are only mild differences between LVS and LVS∆ripA susceptibility to antibiotics 

and other compounds, and more detailed studies exploring this phenotype are underway (our 

unpublished results, James R. Fuller, Cheryl N. Miller and myself). Changes to the 

membrane also would correspond with the LVS∆ripA inability to suppress the immune 

response as such changes could uncover epitopes that could be recognized by the host, 

although other mechanisms could account for the lack of immune suppression by LVS∆ripA. 

 The ripA gene is conserved among the species of Francisella, suggesting that the 

RipA protein functions the same among Francisella. To substantiate this observation, we 
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have also found that plasmid-expressed F. novicida ripA can functionally complement 

LVS∆ripA for intracellular replication in both macrophages and epithelial cells as well as for 

suppression of the IL-1β secretion by infected cells (our unpublished results). While we have 

not investigated the role of ripA to virulence in F. novicida, we expect that based on the 

above data and gene conservation, that ripA is also required for the virulence of F. novicida 

as well as other pathogenic species of Francisella. Alignments of the genomic regions that 

immediately surround ripA show that there are some sequence differences in the 5’ and 3’ 

regions among the three strains, most notably in U112. Therefore, it’s possible that the 

differences in this region could result in differences in the role of RipA to the virulence of F. 

novicida, and future studies could include investigation into these differences.  

 Along those lines, we have observed that there are other RipA-like proteins in strains 

of several Prokaryotic species. The fact that there are RipA-like proteins in such a randomly-

distributed group of Prokaryotes, including mainly non-pathogens, is intriguing. As discussed 

in chapter 4, to date there are only four pathogenic bacteria known have a RipA-like protein, 

and whether or not these RipA-like proteins play a role in pathogenesis is not known. There 

is the possibility that RipA is a conserved virulence protein, but on the other hand, RipA may 

function as a novel virulence factor unique to Francisella. Future studies could include 

investigating whether the loss of the RipA-like protein in these organisms result in decreased 

virulence, and if so, whether F. tularensis RipA can complement the observed attenuated 

phenotype. It will also be worthwhile to establish if there are differences in RipA function 

among the pathogenic and non-pathogenic organisms, as many non-pathogenic bacteria 

encode virulence factors in their genomes (8, 22). It is exciting to speculate that RipA 

belongs to a novel family of proteins. To that end, future experiments could include 
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complementation studies in which RipA-like proteins from other Prokaryotes are expressed 

in F. tularensis ripA deletion mutants to see if they complement the deletion mutant 

phenotypes. Though the current list is small, as more strains are sequenced and deposited into 

public databases, more RipA-like proteins may be identified that will contribute to our 

determining RipA function. In the end, determining the function of RipA will not only help 

understand the function of perhaps a widely-distributed, larger class of proteins, but also 

bring a better understanding of the virulence of the highly-infectious and successful pathogen 

F. tularensis. 
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