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ABSTRACT

Andrew Parker Morgan: Structural variation and the evolution of the
mouse genome

(Under the direction of Fernando Pardo-Manuel de Villena)

Genetic variation in populations is governed by four basic forces: mutation, recombination,

natural selection and genetic drift. Mutation is the source of new alleles, which are assorted among

chromosomes by recombination. Selection and drift dictate the magnitude and direction of changes

in allele frequency over time. These forces are intimately linked to meiosis, and asymmetries in

meiosis create the opportunity for intragenomic conflict: competition between selfish alleles at the

same locus for transmission to progeny. Such conflicts manifest as selection at the population level

but subvert the Darwinian concept of fitness.

The aim of this thesis is to characterize three of the four basic forces — recombination, mutation

and intragenomic conflict — using the house mouse as a model system. I focus on the role of

large segmental duplications, long tracts of repeated sequence that make up approximately 10%

of mammalian genomes and are the site of the preponderance of structural variation between

individuals. First I use two laboratory populations, the Collaborative Cross and the Diversity

Outbred, to analyze the effects of sex and genetic background on the rate of recombination. I

discover that (crossover) recombination is strongly suppressed in both sexes near large multiallelic

copy-number variants. Second I reconstruct in detail the evolution of one such variant, R2d2. I show

that R2d2 represents an ancient duplication that has been amplified to more than 100 copies in some

lineages of European mice. Alleles with high copy number (R2d2HC) are associated with suppressed

recombination but have an extremely high mutation rate. They are also selfish, having risen to

high frequency in wild and laboratory populations by meiotic drive, in spite of their deleterious

effect on reproductive fitness. Finally I perform a comprehensive survey of sequence and structural

variation on the mouse Y chromosome. I show that patterns of nucleotide and structural diversity

have been shaped by intragenomic conflict with the X chromosome.
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CHAPTER 1

Introduction I: The mammalian germline

The aim of this thesis is to characterize three basic forces governing the level and distribution of

genetic variation in populations: recombination, mutation and intragenomic conflict. In particular

I focus on the role of large structural variants in repetitive regions of the genome and the ways in

which differences between males and females influence the accumulation of mutations and create

sex-specific opportunities for the spread of selfish genetic elements.

♦ ♦ ♦

The entirety of individual’s genetic information is transmitted to the next generation by a single

cell, the gamete. In most animal species, a dedicated population of cells — the germline — is

responsible for the production of gametes. Only mutations arising in the germline are heritable.

Although mutations arising in all other (somatic) tissues may have important consequences for the

organism — for instance, cancer — they are not transmitted, and neither contribute to the genetic

diversity of the population nor are subject to natural selection.

Patterns of genetic diversity in populations are therefore intimately connected to processes

that maintain the integrity of the genome during the series of cell divisions that ultimately lead

to functional gametes. In this section I review key features of germline structure and function

from an evolutionary perspective, with special attention to differences between males and females.

Although I focus on the properties of the germline in mammals, many of these properties are deeply

conserved across multicellular eukaryotes.

1.1 Meiosis: from diploid to haploid

Mammals, like most animals, are diploid and reproduce sexually, inheriting one copy of the

genome from each parent. In order to reproduce the organism must reduce the diploid genome to

a haploid state. This is achieved by the specialized form of cell division called meiosis. Meiosis is
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ubiquitous among eukaryotic taxa and its key steps are conserved from higher organisms to the

simplest unicellular species (Figure 1.1). As the channel through which all genetic information

must flow from one generation to the next, the events of meiosis are of fundamental evolutionary

importance. Errors in meiosis are also clinically relevant, as they frequently lead to infertility and

developmental disorders.

Like mitosis, meiosis begins with a round of DNA replication in primary gametocytes which

are diploid (2N ) and have a double complement of DNA (4C). Here the program diverges from

mitosis: replication is followed by a reductive division (meiosis I), in which the two members of

each homologous chromosome pair are segregated to daughter cells. Segregation of maternal and

paternal copies occurs independently and stochastically for each chromosome pair. The daughter

cells of the reductive division, the secondary gametocytes, are haploid (1N ) and no longer genetically

equivalent, but still carry a double complement of DNA (2C). At the second, equational division

(meiosis II), sister chromatids are segregated into gametes which are both haploid (1N ) and carry a

single genome-equivalent of DNA (1C).

The segregation of homologous chromosomes during meiosis I provides the mechanistic basis

for Mendel’s two rules of inheritance: the “law of segregation”, which states that for each chro-

mosome either the maternal or the paternal copy is transmitted, but not both; and the “law of

independent assortment”, which states that this process occurs independently for each chromosome

pair. Mendel’s laws were based on empirical observations in breeding experiments long before the

details of meiosis were known, but they elegantly and accurately predicted patterns of inheritance

and formed the basis of the chromosome theory of heredity.

With few exceptions in animals, meiosis I is preceded by an extended prophase during which

some or all chromosomes undergo recombination, a tightly-regulated genetic exchange between

homologs inherited from each parent1. Recombination begins with the programmed introduction

of double-strand breaks (DSBs) at up to hundreds of sites per germ cell. One strand is enzymatically

resected at the free ends, and the resulting naked strands scan the homologous chromosome for

matching sequence. This homology search mediates chromosome pairing, a critical step of meiosis

I. A small subset (on the order of 10%) of free ends form physical connections between homologous

chromosomes called chiasmata. A chiasma holds members of the chromosome pair in tension

as they attach to the spindle apparatus and are pulled towards opposite poles. In mammals, a
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Figure 1.1: Overview of meiosis and gametogenesis. (A) General features of meiosis in eukaryotes.

A round of DNA synthesis occurs in primary gametocytes, derived from the primordial germ

cell (PGC) pool. Recombination occurs during the first meiotic prophase, followed by a reductive

division and then an equational division to produce up to four gametes per PGC. The total

chromosome number (N ) and DNA complement (C) is shown for each stage. (B) Female meiosis

and oogenesis. PGCs have begin to differentiate by 7 dpc and meiosis begins by 15 dpc. Primary

oocytes arrest after forming chiasmata, and meiosis does not resume until after puberty (upon

ovulation). The second meiotic division is triggered by fertilization. Each division produces

one functional product and one polar body; the product of meiosis II is the mature oocyte. (C)

Male meiosis and spermatogenesis. The PGC pool in males continues to divide throughout life.

Meiosis is not initiated until puberty, but once it begins, it continues in orderly waves. Secondary

spermatocytes and round spermatids may be connected as a syncytium.
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minimum of one chiasma per chromosome arm is generally required to ensure proper disjunction .

Aberrant disjunction leads to gametes with either too few or too many chromosomes (aneuploidy);

many aneuploidies are incompatible with life, and those that are not are associated with profound

developmental and reproductive defects.

Chiasmata are resolved as crossovers — reciprocal exchanges between the chromosome sege-

ments up- and downstream of the initiating DSB — during metaphase I. These crossovers enhance

the combinatorial mixing between parental genomes already induced by independent assortment.

The stochastic nature of the recombination process along chromosomes ensures that the haploid

genome of each gamete is a unique mosaic of the maternal and paternal genomes. By gener-

ating new combinations of alleles, recombination facilitates natural selection2. Variation in the

rate of recombination along the genome is an important determinant of haplotype structure in

populations3,4.

The process of recombination and its evolutionary significance is reviewed in more detail in ??.

1.2 Gametogenesis in mammals

Meiosis is embedded in the process of gametogenesis — the production of sperm or oocytes —

in higher organisms. Because gametogenesis differs between the sexes, the regulation and timing

of meiosis also differs between males and females. To understand sex differences in gametogenesis

therefore requires a brief discussion of sex determination in mammals.

1.2.1 Sex determination

Placental (eutherian) mammals — those mammals besides marsupials (such as kangaroos)

and monotremes (platypus and echidna) — have a chromosomal system of sex determination.

Individuals with two X chromosomes are genetically female, and those with an X and a Y are

genetically male. The X and Y chromosomes are together referred to as the sex chromosomes (the

remaining pairs being autosomes); they are the only chromosome pair in which the two homologs

are different in content and structure5. However, the mammalian embyro begins its development

with the potential to be anatomically and physiologically male or female: the precursors of both

male and female gonads are both present in the urogenital ridge regardless of sex chromosome

karyotype. In the absence of a Y chromosome, the gonad differentiates into an ovary. The presence

of a single factor expressed from the Y chromosome — the product of the gene Sry (sex-determining

region on the Y) — is sufficient to induce the development of the testis6. The process of primary
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sex determination is complete upon specification of the gonad by 13.5 days post-conception (dpc)

in mouse. Remaining internal and external anatomical structures characteristic of each sex then

develop under the influence of hormones secreted by somatic cells in the gonad. Experiments

using mice with abnormal sex chromosome karyotypes were instrumental in demonstrating the

distinction between primary and secondary sex determination, and the role of the Y chromosome

in the former7.

The primordial germ cells (PGCs) that will give rise to the germline differentiate very early in

embryonic development, around 8.5 dpc in mouse and 15 dpc in humans8. By 12 dpc (mouse) or 50

dpc (human) the PGCs have migrated into the developing gonad. Importantly, these steps precede

the process of primary sex determination, and indeed the eventual fate of PGCs as oocytes or sperm

depends on the sex of the somatic cells in the gonad and not the sex-chromosome karyotype of the

PGCs themselves. Once PGCs have reached the gonad the germline developmental programs of

females and males diverge.

1.2.2 Oogenesis

Female germ cells enter meiosis by 15 dpc9, having undergone a total of approximately 25

cell divisions since fertilization10. The entire pool primary oocytes — numbering in the tens of

thousands — undergoes recombination and the formation of chiasmata but arrest at the end of the

first meiotic prophase, and remain arrested until puberty (Figure 1.1B). Thereafter small cohorts of

oocytes are periodically released from meiotic arrest in synchrony with cyclic physiological changes

in the uterus (the estrous or menstrual cycle) in anticipation of pregnancy. Completion of meiosis

I is concurrent with ovulation. This division is asymmetric, producing one secondary oocyte

and a non-functional polar body. The secondary oocyte arrests again; meiosis II is triggered by

fertilization and is again asymmetric, yielding one mature oocyte and a polar body. Each primary

oocyte therefore gives rise to a single functional gamete and three non-functional products.

Two properties of mammalian oogenesis — the extended period of arrest during prophase I

and the asymmetry of both meiotic divisions — present challenges unique to females. The first is

to maintain the integrity of attachment to and alignment on the spindle apparatus for a period of

months to decades. Indeed, nearly all cases of aneuploidy in humans are of maternal origin, and the

risk of improper disjunction increases dramatically with maternal age11. Chiasmata, which allow

homologs to be held in tension perpendicular to the spindle, are thought to be critical for the stability
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of chromosomes during meiosis I: nondisjunction is associated with decreased recombination in

several human trisomies12. Strong selection against aneuploidy may be responsible for the apparent

requirement of one crossover per chromosome arm in mammals13.

The second challenge to be addressed during female meiosis is a more teleological one. The

asymmetry of both meiotic divisions leaves open the possibility of intragenomic conflict: a selfish

allele that can exploit the meiotic machinery to increase its probability of segregation to the oocyte

rather than the polar bodies can increase in frequency independent of its effect on organismal

fitness. This phenomenon of non-random segregation is called meiotic drive. True meiotic drive —

as opposed to other systems influencing the transmission ratio at a locus, such as selection against

a particular class of gametes — requires asymmetric meiotic division, an asymmetric meiotic

spindle, and functional heterozygosity at a locus that mediates interaction with the spindle14.

These requirements can be met in female but not male meiosis in mammals. The role of meiotic

drive in the evolution of a specific locus in mouse, R2d2, is the subject of Chapter 4 of this thesis.

From a practical point of view, the fact that they key events in female meiosis occur while

the female herself is an early embryo make them quite difficult to study. The study of meiosis in

general, and recombination in particular, has benefitted greatly from model systems in which all

four products of a single meiosis can be observed simultaneously as a tetrad, as is the case in many

fungi (e.g. Saccharomyces cerevisiae, Neurospora crassa) and flowering plants (e.g. Arabidopsis thaliana).

The products of mammalian meiosis are not a tetrad, and heroic technical efforts are required to

recover the closest equivalent structure — an oocyte with its corresponding polar bodies — in a

mammal15. Knowledge of mammalian meiosis and recombination is therefore somewhat biased

towards the male germline.

1.2.3 Spermatogenesis

Whereas meiosis begins in females concurrent with early embryonic and gonadal development,

male germ cells do not enter meiosis until the onset of puberty. Instead, the PGCs differentiate into

a population of self-renewing stem cells called spermatogonia that undergo a period of arrest from

16.5 dpc until the first week after birth. Thereafter they divide every 8 days for the remainder of life

(Figure 1.1C). The spermatogonia reside along the seminiferous epithelium that lines the basement

membrane of the tubules of the testis. They are nurtured by somatic cell lineages (Sertoli and

Leydig cells) that lie between the tubules.
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At puberty, spermatogonia enter meiosis in coordinated waves taking 30 − 33 days each in

mouse. The resulting primary and secondary spermatocytes migrate towards the lumen of the

tubule in an orderly fashion with clearly-defined stages16. In fact, chains of spermatogonia (and

later spermatocytes) often form physically-connected chains that share cytoplasm as a syncytium.

The products of male meiosis are round spermatids, which further differentiate into mature

spermatozoa. In contrast to female meiosis, both meiotic divisions are symmetric in males, and a

single spermatogonium gives rise to four functional gametes.

The sex chromosomes present two challenges unique to male meiosis. First, proper segregation

of the X and Y chromosomes requires that they pair and recombine despite their very different

size and structure. In most mammals, pairing and recombination are restricted to a short region of

residual homology at the tips of the sex chromosomes called the pseudoautosomal regions (PAR)5.

(The human sex chromosomes are metacentric and have a PAR on each chromosome arm; the

mouse sex chromosomes are acrocentric and have a single PAR at the end of their long arms.) The

PAR thus becomes a site of intense crossover activity: the recombination rate per unit physical

distance is 10− 50 times greater than on the autosomes.

The second challenge involves transcriptional control of the sex chromosomes during meiosis.

Expression of some Y-linked genes (including Zfy1 and Zfy2) is toxic during meiosis and leads

to infertility17. As a result, transcription from the unpaired regions of the sex chromosomes is

epigenetically suppressed from late in the first meiotic prophase until after meiosis is complete. This

meiotic sex chromosome inactivation (MSCI) is absolutely required for fertility in mouse and is a special

case of the more general process of meiotic silencing of unsynapsed chromatin (MSUC)18,19. MSUC, in

turn, is thought to have evolved as a defense against transcription from selfish genetic elements in

the germline. The unpaired regions of the X and Y chromosome co-localize in a structure referred

to as the sex body which is spatially distinct from the autosomes during late prophase and mediates

suppression of both transcription and recombination in these regions20.

Because male meiosis is symmetric with respect to cell fate, true meiotic drive cannot occur

in males. However, there are many cases of distorted transmission due to gametic selection in

heterozygous males, the prototypical example of which in mammals is the mouse t-haplotype

(reviewed in Lyon 21). These are two-component systems involving a responder locus, at which a

selfish allele is transmitted at higher than the expected Mendelian frequency of 1/2; and a distorter
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that is toxic in sperm carrying the wild-type allele22. Recombination between the responder and

distorter ablates drive; the two components are often tightly linked on a single chromosome and in

some cases held in complete linkage by an inversion23.

When transmission distortion affects the sex chromosomes it is known as sex-ratio drive and

has particular evolutionary importance. Unequal transmission of the sex chromosomes in the

heterogametic sex (males, in mammals) may distort the sex ratio in the population, eventually

reducing mean fitness, and fuel intragenomic conflict between the sex chromosomes24. Sex-ratio

drive is thought to have played an major role in shaping the gene content of the mammalian sex

chromosomes25. I return to these ideas in Chapter 6.

1.3 The nature of germline genetic variation

All heritable genetic variation arises by mutation in the germline. I briefly discuss the spectrum

of germline mutations — in increasing order of size from single-base substitutions to large-scale

rearrangements — and their relative rates, and how they differ between the male and female

germline.

1.3.1 Small-scale sequence variation

The simplest class of mutations is single-base changes (single-nucleotide variants, SNVs; or point

mutations). SNVs arise at a sex-averaged rate on the order of 10−9 − 10−8 per base per generation

(bp−1gen−1) in mammalian genomes. The current estimate for humans is 1.2 × 10−8 bp−1gen−1

and for mouse 5× 10−9 bp−1gen−1 26. This equates to approximately 30 new mutations per haploid

gamete. SNVs are therefore by far the most frequent type of new mutations and the most abundant

class of variants between individuals in the population, accounting for > 99.9% of known variants

in humans27.

Point mutations are dependent on DNA replication: they arise either as simple copying errors, or

via repair of damaged dinucleotide pairs. The rate of point mutation varies dramatically depending

on local sequence context, largely as a result of the susceptibility of different dinucleotides to DNA

damage (reviewed extensively in26). Transitions (swaps between nucleotides of the same chemical

class) are approximately two-fold more frequent than transversions (swaps between nucleotides of

different classes). Among transitions, mutations at CpG dinucleotides are approximately tenfold

more abundant than expected based on the number of CpGs in mammalian genomes. Current

evidence for context-dependence of SNVs is drawn mostly from cross-species comparisons, but
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patterns of within-population variation from recent large-scale surveys are in good agreement28.

Short insertion and deletion (indel) polymorphisms, operationally limited to polymorphisms

< 10 bp in size, are between seven- and ten-fold less abundant then SNVs in both humans27 and

mice29. However, indels at microsatellite sequences — tandemly-arrayed repeats of 1− 8 bp — arise

at a much higher rate. Mutation in microsatellites tends to occur in units of the underlying repeat

via slippage of DNA polymerase against the template strand. Mutation rate at microsatellites varies

over several orders of magnitude depending on the length of the tandem array and the size of the

repeat unit, with longer tracts of smaller repeat units being less stable in general30. Direct estimates

of microsatellite mutation rates in mouse31 and human pedigrees32 are similar, on the order 10−4.

It should be noted that SNVs are much more readily detected than indels (especially at mirosatel-

lite loci) using current technologies. Structural variants, discussed below, are more challenging still.

The consequences of this ascertainment bias are discussed in more detail in § 1.5. Existing catalogs

of sequence variation in organisms with large and complex genomes like those of mammals thus

offer an incomplete view of the true genetic diversity in populations33.

1.3.2 Sub-chromosomal structural variation

Mutations that alter the copy number, order or organization of kilobase- to megabase-sized

regions of the genome can be gathered under the umbrella of structural variants (SVs). These can be

subdivided into copy-number variants (CNVs); rearrangements in the absence of changes in copy

number; and insertions or excisions of transposable elements (TEs).

Copy-number variants (CNVs). CNVs are the best-characterized class of SVs, both in population

frequency and in de novo rates. Although the mutation rate per generation for CNVs is estimated

to be lower than for SNVs (1.2× 10−2 per haploid gamete34), CNVs affect a much larger genomic

territory. Indeed the total number of base pairs which differ between two humans is as much as

100-fold larger for CNVs than SNVs35. Because of the larger footprint of CNVs, an individual CNV

is more likely to overlap functional elements of the genome including protein-coding genes than

an individual SNV or small indel. Mutations incompatible with embryonic development and live

birth will go unobserved in pedigree- or population-based studies. It is therefore important to note

that it is more difficult to deconvolute the effects of mutation from purifying selection for CNVs

than for smaller variants.
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The mutation rate for de novo CNVs varies by orders of magnitude along the genome. The

sequence feature most strongly associated with copy-number mutation is the presence of existing

segmental duplications (SDs), operationally defined as duplications > 1 kb in size with > 90%

pairwise sequence identity34. More than half of currently-known CNVs segregating in the human

population are associated with SDs36, and SD-associated CNVs are larger and more likely to have

multiple alleles than otherwise37,38,39. The preponderance (5-10%) of SD content in mammalian

genomes and their polymorphism in populations were among the earliest and most striking

observations of the first era of genome-sequencing projects40,41,42,43. The CNV mutation rate at

some SDs in humans is high enough that similar mutations reoccur with detectable frequency

at the same loci. At least 50 such loci in the human genome are associated with developmental

or psychiatric disorders — 7q11 (Williams-Beuren syndrome), 11p15.5 (β-thalassemia), 16p11.2

(autism), 17q11.2 (neurofibromatosis type 1), 17p12 (Charcot-Marie-Tooth syndrome type 1A) —

collectively known as “genomic disorders”40.

CNVs associated with SDs are thought to arise primarily via non-allelic homologous recombination

(NAHR), that is, illegitimate recombination between duplicated sequences44. NAHR was first

proposed as mechanism for changes in copy number by Sturtevant in 1925, studying the bar locus

in Drosophila melanogaster45 and was subsequently recognized as an important mechanism in the

expansion of gene families46. Exchange may occur between duplicates on the same chromatid,

resulting in deletion; or between sister chromatids or homologous chromosomes, yielding either

deletion or duplication plus a reciprocal product (Figure 1.2). Direct estimates of the relative

contribution of intra-chromatid versus inter-chromosomal exchange in sperm suggest that inter-

chromosomal exchanges with the homologous chromosome predominate47. This indicates that,

at least at the CNV hotspots studied, SD-associated mutations are predominantly meiotic rather

than mitotic in origin. NAHR in mammals apparently requires tracts of uninterrupted sequence

similarity on the order of 100 bp in length48.

A subset of copy-number mutations are associated with SDs but are not “recurrent” in the sense

that the same breakpoints are not reused by independent mutational events. The mechanism(s)

underlying these mutations have more in common with those generating CNVs not associated

with SDs44. These non-recurrent CNVs may arise by one of a family of DNA-replication-based

mechanisms that involve synthesis of a new DNA strand in response to DNA damage49,50. These
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Figure 1.2: Formation of structural variants via non-allelic recombination between duplicate

sequences. Duplicates are colored grey and either pink (maternal chromosomes) or blue (paternal

chromosomes). All four chromatids are shown. (A) Normal recombination with crossing over

between allelic duplicates. All four products are wild-type (wt). (B) Recombination with crossing

over between non-allelic duplicates on different chromosomes. Two products are wild-type and

the other two are a deletion (del) and its reciprocal duplication (dup). (C) Recombination between

two maternal sister chromatids. Paternal chromosomes are both wild-type while the maternal are a

deletion and reciprocal duplication. (D) Intra-chromatid recombination between non-allelic copies

on one maternal chromatid. Paternal chromosomes and the unaffected maternal chromatid are all

wild-type, while the affected maternal chromatid has a deletion. Unlike cases B and C, there is

no reciprocal duplication product. Note that alternative outcomes are possible if duplicates have

inverted rather than direct orientation.
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mechanisms — and the resulting CNV alleles — may become quite complex, involving multiple

double-strand breaks and switches in the repair template. Non-recurrent CNVs arising by aberrant

replication are, by construction, mitotic rather than meiotic events.

Rearrangements. Changes in sequence organization in the absence of changes in copy number

are among the most difficult class of mutations to detect. (In fact copy-number mutations, especially

those associated with SDs, frequently also involve rearrangement44.) From the point of view of

this thesis, the most important class of rearrangement is inversion51. Crossing-over is supressed

or completely absent across an inversion in heterozygotes because of spatial constraints on chro-

mosome pairing; when an (odd number of) crossover does occur, the resulting products are one

dicentric and one acentric chromosome, typically incompatible with stable segregation to gametes.

Inversions are extremely important in the processes of karyotype evolution and speciation52, and

in particular in the evolution of sex chromosomes53. These ideas are revisited in Chapter 4 and

Chapter 6.

Transposable elements. Approximately half of both the human54 and mouse55 reference genomes

are comprised of sequence corresponding to TEs. TEs are viruses and virally-derived fragments

that were actively replicating in the host germline at some point during its evolutionary history and

have integrated into the host genome. Although the biology of TEs is fascinating and appears to

differ between mammalian lineages, a full review is beyond the scope of this thesis. It suffices to say

that more than 100, 000 polymorphic TE insertions have been identified in inbred strains of mice

and that most TE polymorphism — both insertion and excision — arises in the male germline56.

Because TEs can be collapsed onto a few ancestral sequence families, they are also called interspersed

repeats. Illegitimate recombination between TEs mediates some recurrent CNVs, although the

contribution is smaller than for SDs44.

Cytological markers. A final and class of genetic variation deserves mention: variation in

cytologically-visible markers of gross chromosome structure including centromeric heterochro-

matin57, “nucleolar organizer regions” (NORs; clusters of ribosomal RNA genes)58 and “homogeneously-

staining regions”59. Although variation in chromatin-staining patterns has been historically im-

portant in phylogeny and in the study of the mutagenic effects of environmental exposures60,
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the relationship of cytological markers to underlying sequence changes is largely unknown. The

corresponding sequences are at best incompletely represented in reference genome assemblies

of both mouse and human. Their repetitive nature makes them refractory to accurate assembly

even with significant manual effort. Yet at least some of these genomic features are associated with

important phenotypes: variation in centromeres, for instance, directly influences the fairness of

chromosome segregation in meiosis14,61.

1.3.3 Sex differences in mutation rates

The rate and spectrum of mutation differs between the males and females as a direct conse-

quences of sex differences in germline physiology. The best-characterized patterns are the increased

risk of aneuploidy in oocytes discussed earlier in this chapter and the so-called paternal-age effect on

point mutations.

It has long been known that the recurrence risk of many Mendelian disorders with autosomal

dominant inheritance pattern — including Apert syndrome, Waardenburg syndrome, osteogenesis

imperfecta, neurofibromatosis, certain types of achondroplasia and (X-linked) haemophelia A —

increases with paternal age62,63. The observation originated from two early heroes in genetics,

Wilhelm Weinberg64 and J.B.S. Haldane65. The correlation between parental ages induced by nor-

mal marriage patterns has historically made it difficult to independently estimate the contribution

of paternal versus paternal age to recurrence risk66. Furthermore, some have argued that the

paternal-age effect could be explained in part by spermatogonial selection67,68. This hypothesis is

based on the observation that tumor suppressors, growth factors or their receptors (e.g. FGFR3, a

fibroblast growth factor receptor, in achondroplasia) are overrepresented among the causative genes

for Mendelian disorders with a paternal-age effect. If a de novo mutation confers a tendency for

spermatogonia to divide more rapidly, the mutation is more likely to be transmitted and observed

recurrence risk represents a conflation of mutation rate with spermatogonial growth rate. The

spermatogonial selection hypothesis also predicts a faster-than-linear increase in mutational burden

with age, a pattern which has been observed for a subset of disorders with a paternal-age effect63.

Recent large-scale sequencing efforts in non-disease human pedigrees have demonstrated

conclusively that the average mutation rate in the male germline is three- to four-fold higher than

in the female germline69,70,28. This is consistent with estimates based on comparisons between

humans and great apes71. Furthermore, the rate of point mutations does indeed depend on paternal
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but not maternal age70,28, with an extra one to two mutations trasmitted for each extra year of

age. A similar relationship exists for microsatellites32. Age-associated mutations are not uniformly

distributed across the genome but tend to occur in early-replicating regions and near genes28 and

are thus more likely to have functional consequences.

It is less clear whether the rate of de novo structural mutation differs between the sexes or is

related to age. At least two large cohort studies of intellectual disability or developmental delay

have reported an excess of de novo CNVs of paternal origin and an increased burden of de novo

CNVs in offspring of older fathers72,73. However, a strong maternal bias has been reported for

recurrent mutations at the autism-associated 16p11.2 locus74. Only one study (the Genome of

the Netherlands Project75) has estimated the rate of de novo structural mutation in non-disease

pedigrees, and it found a two-fold excess of mutations on paternal versus maternal haplotypes. The

discrepancies between these results might be resolved by stratifying mutations according to likely

meiotic versus mitotic origin. De novo CNVs arising in or near existing segmental duplications —

perhaps by illegitimate recombination during meiosis — tend to show a more subtle paternal bias

and no age effect35. This implies that spontaneous mutations in regions of the genome susceptible

to recurrent CNVs, including loci associated with human disease, are less likely to be sex- or

age-biased. By contrast, non-recurrent mutations — presumably arising by mechanisms involving

errors of replication44 — apparently occur more frequently in the male germline and are subject to

an age effect72. However, the empirical evidence for these patterns remains thin.

Sex differences in the rate and spectrum of spontaneous mutations seem to be parsimoniously

explained by the male and female germline discussed earlier in this chapter. Whereas all oocytes

have undergone an approximately equal number of cell divisions (25 in mouse; 40− 50 in human)

between their origin in the early embryo and fertilization, the stem cells of the male germline

continue to divide throughout reproductive life. The sperm of a 45-year-old man have undergone

at least tenfold more divisions than those of a 25-year-old man, even allowing for some variation in

the rate of cell division across different subtypes of spermatogonia76. All classes of mutations that

can be attributed to errors of DNA replication in actively-dividing cells are expected to increase

linearly with paternal age.
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1.4 Genetic variation in populations

The level of genetic variation in populations is governed by four “fundamental forces:” muta-

tion, recombination, drift and selection77. So far I have discussed mutation and recombination and

their underlying biological basis at the individual level. In this section I introduce the remaining

two forces, which are population- rather than individual level processes. This discussion is not

meant to be exhaustive but rather to provide a starting point for discussion in the main chapters of

this thesis. 1

1.4.1 Genetic drift

In a population of finite size N , allele frequencies change over time due to the stochastic effects

of sampling the next generation’s alleles from the current generation’s gametes. Every new allele

that arises by mutation has initial frequency 1
2N , and in finite time it will either be lost or fixed. The

rate of drift can be summarized by the change in heterozygosity between successive generations

(δH). In a population of diploids:

δH =
1

2N

That is, genetic drift is more rapid in smaller populations. For neutral alleles, the the probability

of fixation is equal to initial frequency (pfix = 1
2N

79) and the expected time to fixation τ ≈ 4N 80.

Genetic drift is accelerated by inbreeding, or mating between individuals sharing recent genealogical

ancestors.

1.4.2 Genetic diversity and population size

In an idealized population — a population which is constant in size, randomly-mating, sealed

off from in- or out-migraiton, and either hermaphroditic or having sex ratio at parity — there exists

an equilibrium at which the entry of new alleles from mutation is balanced by the exit of existing

alleles by drift. At this equilibrium levels of standing variation are proportional to the product of

mutation rate (µ) and population size (N ). Formally, we can describe genetic diversity at a locus

1With the exception of some results of particular interest for which original references are cited, most of the material here
is summarized from 78 and can be found in any introductory text on population genetics.
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via the population-scaled mutation rate (θ)):

θ = KNµ

where K is a scaling factor. This scaling factor arises because the fundamental unit of inheritance is

the chromosome, not the individual: mutations arise on chromosomes, and they are transmitted on

chromosomes. Population size therefore depends on the number of transmissible chromosomes

at a locus. For a diploid organism with an X-Y sex chromosome system, K = 4 for autosomes,

since each sex can transmit either member of each chromosome pair); K = 3 for the X chromosome,

since females can transmit either of their two Xs and males can transmit one; and K = 1 for the

uniparentally-inherited Y chromosome and mitochondrial genome.

When a population deviates from idealized assumptions, we can replace the census population

size N by the effective population size, Ne. To a first approximation this parameter absorbs many

possibly-unknown demographic factors into a single value that allows us to describe the levels of

genetic diversity and drift we would expect if the true population were replaced by one of size Ne

that conformed to idealized assumptions81,82.

Under the “infinite-sites” assumption, mutations do not occur at the same site twice, so every

new mutation creates a new segregating site. The number S of segregating sites in a sample of

chromosomes from the population can therefore be used to estimate genetic diversity83:

θ =
S∑2N−1

i=1 1/i

Under the assumption of random mating (i.e. random union of gametes), θ is also an estimator

of H , the expected heterozygosity at a locus.

1.4.3 Effects of natural selection

Natural selection decreases genetic diversity around the selected locus. Ongoing negative

selection against deleterious alleles purges those alleles and any linked variants from the population.

Positive selection increases the frequency of a beneficial allele; as the allele increases in frequency,

so do any linked variants on the same haplotype, leading to a local reduction in diversity termed a

selective sweep84. The effect of selection — whether negative or positive — at a linked neutral locus
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is mitigated by recombination between that locus and the target of selection.

There are two notable exception to these rules. The first is so-called balancing selection, in

which selection favors the existence of multiple alleles in the population rather than any single

allele per se. This may be the case at, for example, loci important in kin recognition and mate

choice, for which diversity at the population level promotes the avoidance of inbreeding85. Loci

under balancing selection and any linked haplotypes show an excess of polymorphism relative

to neutral expectations. The second exception is meiotic drive, the transmission of alleles at non-

Mendelian frequencies. An allele subject to meiotic drive may rise in frequency and crowd out

other haplotypes, leaving a footprint indistinguishable from positive selection, while decreasing

host fitness. An example of just such a selfish sweep is discussed in Chapter 5.

1.5 Methods for characterizing genetic variation

Empirical investigation of genetic variation in populations requires techniques to identify

variant sites and genotype them in multiple individuals. In this section I briefly review some

relevant methods for characterizing genetic variation, with a focus on methods for ascertaining

variants at whole-genome scale with high throughput. I emphasize the strengths and weaknesses

of different technologies and approaches rather than the details of their implementation.

1.5.1 The role of reference genomes

A reference genome sequence, or reference assembly, is a single, haploid, linear sequence taken

to be (in some way) representative for the organism under study. Because genetic variation is

intrinsically relative, a reference sequence facilitates description of genetic variants by providing

both a common coordinate system for describing the location of alleles and a common baseline

against which to describe their sequence content. Reference genomes vary widely in quality and

completeness; the current references for mouse55 and human86 are the highest-quality references

among vertebrates. Both were constructed by capillary sequencing of 700 − 1000 bp reads from

genomic fragments cloned into bacterial or yeast vectors. These reads were assembled into contigs

on the basis of sequence, and contigs into scaffolds on the basis of orthogonal physical mapping

techniques. Scaffolds were grouped into chromosomes and ordered on the basis of physical

mapping and genetic mapping.

Although reference sequences are fundamental to the current practice of genomics, they may

also introduce bias into interpretation of experimental and population data. This bias arises from

17



several sources. First, for repetitive sequences with high copy number and high mutual similarity

— especially when the repeat period is longer than a sequencing read — there may not exist a single

optimal linear representation that can be extracted from sequencing data. High-identity repeats may

be collapsed to fewer than the true number of copies87. Second, some genomic regions segregating

in the population may be completely absent from the reference even in mature assemblies such

as human36. Third, regions that are present in the reference but have accumulated substantial

divergence from the individual(s) under study may lead to difficulties in interpreting the true level

of sequence polymorphism88. One of they main contributions of this thesis is to demonstrate that

several classes of biologically-important sequences are poorly represented in the mouse reference

assembly, and that interpreting variation in these regions requires looking beyond the reference

genome.

1.5.2 Microarrays

Genotypes can be ascertained for thousands to a few million biallelic SNVs at a time in a

single individual using oligonucleotide microarrays (“SNP chips.”) Genotyping arrays have been

used with great success in humans89 and laboratory model organisms such as mouse90,91,92, and

the increasing availability of custom-designed platforms has expanded their utility to organisms

of agricultural or ecological interest93. Although there exist several competing technologies, all

genotyping arrays exploit the specificity of binding between synthetic olignonucleotide probes

immobilized on a chip and complementary sequences in sample DNA washed over the chip’s

surface. Relative binding of DNA fragments with the two possible alleles (labelled A or B by

convention) is converted to a fluorescence readout, and offline signal-processing algorithms are

used to render one of three possible genotype calls (AA, AB, BB). Assuming that most target loci

are present in the expected diploid copy number in a sample, the relative fluorescence intensity

from the A and B alleles can be used to infer the presence of copy-number variants94. 2

Genotyping arrays are cost-effective and robust but their utility for population genetics is

2Design of microarray platforms tailored to diverse laboratory and wild mouse populations is a major research activity
in the Pardo-Manuel de Villena lab. The group participated in the design of the Affymetrix Mouse Diversity Array 92

(2008) and led the design of three versions of the Illumina Mouse Universal Genotyping Array (MUGA) 95 (2010, 2012,
2015). I contributed to the design and led the validation of the third generation of MUGA 95, and developed a software
package for exploratory analysis of data from Illumina SNP arrays 96.
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limited by the fact that they interrogate only known variants. When array content is ascertained

in a representative sample with similar ancestry to the population under study, SNP genotypes

provide an accurate estimate of haplotype diversity and are useful for assessing population structure

and relatedness. Otherwise arrays are subject to ascertainment bias that may be quite strong97,98.

Array genotypes are generally not appropriate for estimating quantities that depend on knowing

the total number of segregating sites in a population or the full site-frequency spectrum, which

includes many estimators for genetic diversity.

1.5.3 Whole-genome sequencing

Direct sequencing of unselected genomic DNA is the workhorse technique of modern genetics.

Although it is common to refer to this family of assays as “whole-genome sequencing” (WGS), it

is more accurate to describe them as re-sequencing because they sidestep the extensive assembly

and validation efforts involved in the creation of a high-quality genome sequence. The aim of

re-sequencing is inherently comparative: the end product is an alignment between the sequences

of two or more chromosomes, from which variant sites and their respective alleles can be identified.

WGS has transformed our understanding of genetic variation in the human population27 and

among mouse strains29.

The typical WGS protocol involves four steps: (1) fragmentation of chromosomes into smaller

pieces collectively known as a library; (2) generation of sequence reads from the fragments; (3)

alignment of the reads to the reference, or assembly of the fragments de novo; and (4) identification

of sequence variants between samples and/or the reference genome99. The first two steps are

experimental and the last two purely computational. Nearly all sequencing protocols take a

shotgun approach, randomly fragmenting the whole genome and and sequencing the entire library

in parallel. With sufficient redundancy at the read-generation step, coverage of the entire genome

by at least some reads can be assured to a reasonable approximation100. Redundancy between

sequence reads also mitigates the effect of sequencing errors and allows accurate identification

of heterozygous sites in diploid samples. The level of sequencing redundancy is expressed as a

coverage factor: for example, 4× coverage means that each site is covered by 4 reads, on average.

WGS protocols can be broadly divided into two classes: short-read and long-read. The dominant

short-read platform at time of writing is Illumina. These instruments are capable of generating

hundreds of millions to billions of sequencing reads in parallel, with lengths 50 − 250 bp each
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and per-base error rates on the order of 10−3. Reads may be single-end, representing one end

of a genomic fragment; or paired-end, representing opposite ends of a single fragment (with or

without unknown sequence in between). Because of their short length, individual Illumina reads

are relatively uninformative. The first step in the analysis of Illumina data is therefore to produce

alignments of reads (read pairs) to a reference sequence. Variant sites are then identified from the

read alignments of one or more individuals.

Short reads from complex, repeat-rich genomes like those of mammals have important limita-

tions. First, unambiguous alignment of a read (read pair) to a single location in the reference genome

may not be possible when the read originates from repeat sequence. The problem is exacerbated

by sequencing error and by divergence between the reference genome and the sequenced sample.

Second, even paired-end reads provide limited information about sequence organization at scales

larger than a few kilobases. Deviations from expected read depth at a locus are informative for

copy number, but more detailed characterization of the order, orientation and divergence between

individual copies of repeats is rarely possible from short reads alone.

Long-read platforms include traditional capillary sequencing (low-throughput) and high-

throughput platforms such as PacBio and Oxford Nanopore. Read lengths are not uniform and

range from 700 bp (capillary) to 20 kb (PacBio). Unfortunately read length is inversely correlated

with throughput, per-base accuracy, or both. I do not make use of long-read sequencing in this

thesis, but I note here that long reads and short reads have complimentary properties. Long reads

are extremely valuable for de novo assembly, especially in structurally-complex regions of the

genome.
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CHAPTER 2

Introduction II: The mouse as a model for genome evolution

The house mouse (Mus musculus Linnaeus 1758) — hereinafter simply “the mouse” — has been

a workhorse of both basic and applied biomedical research since the beginning of the twentieth

century. Mice have many favorable qualities for a model system: they are readily bred in captivity,

require little space, have short generation time, and are amenable to experimental manipulation.

Many aspects of mouse physiology and behavior are readily translated to humans. Mice have

been instrumental in the study of diverse physiological phenomena: transplant rejection101; self-

vs-nonself recognition in the immune system102; skin pigmentation and coat color103,104,105; sex

determination7; dosage compensation on the X chromosome of females106; resistance to oncogenic

viruses107; hormonal regulation of energy balance108,109; mutagenesis by ionizing radiation110; and

many others.

Mice have been a particularly important model system in genetics. Early crosses between

mouse stocks with different coat colors helped demonstrate that Mendel’s laws applied to animals

as well as plants and complemented ongoing work in Drosophila to demonstrate the chromosomal

theory of heredity (reviewed in111). (In fact, Mendel’s first experiments were with mice — until his

superiors deemed them unfit company for a monk112.) Establishment of the first inbred strains

in the early 1900s facilitated studies of the mechanisms of inheritance and linkage. The mouse

genome was only the second vertebrate genome to be sequenced, in 200255. Since that time an

extremely deep and continually-growing catalog of functional annotation has been overlaid on this

reference sequence113,114,115.

In addition to their merits as a laboratory organism, mice are also a valuable model for evolu-

tionary studies116. Traditional laboratory strains span relatively little genetic variation, and with

idiosyncratic distribution (discussed at length below), but wild mice and wild-derived strains

substantially expand the space of genetic and phenotypic variation available to researchers117,118,119.

The subspecies of the house mouse along with its sister taxa cover a more or less continuous
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gradient of genetic and ecological differentiation from island populations split within the past

three centuries120,121,122 to reproductively-incompatible species separated by millions of years of

evolution123.

In this chapter I outline the evolutionary history of house mice and the relationships between

wild mice and their laboratory relatives. The material reviewed here serves as a primer for

discussions in the main chapters of this thesis. 1

2.1 The mouse among rodents

Mus musculus is only one of more than 570 species of murid rodents (Old World mice and

rats124, Figure 2.1A). The subfamily Murinae is sister to gerbils and counts among its members

the Old World rats (genus Rattus) and field mice (genus Apodemus) in addition to house mice. The

genus Mus can be subdivided further into several subgenera which began to diverge approximately

9 million years ago (Mya). House mice are members of the subgenus Mus (Figure 2.1B). Their

closest relatives, with last recent common ancestor approximately 1 − 2 Mya, are a sister taxon

consisting of Mus spretus (the Algerian feral mouse), Mus spicilegus (mound-building mice), Mus

cypriacus (the Cypriot mouse) and Mus spicilegus (the Balkan short-tailed mouse)125. A clade of

Asian species including Mus caroli (the rice-field mouse) and Mus famulus (the servant mouse) is

somewhat more distantly-related, having a last common ancestor with house mice around 3− 5

Mya.

2.2 Ancestry and diversity of wild house mice

The house mouse began to diverge from its sister species approximately 1− 2 Mya. Fossil and

genetic evidence indicates that its ancestral range lay in central Asia, an area roughly corresponding

to modern-day India, Pakistan, Afghanistan and Iran126,123,127,128,129. Around 500, 000 years ago

the species began to split into three genetically- and morphologically-differentated lineages125,130:

Mus musculus domesticus, M. m. musculus and M. m. castaneus. (A fourth lineage, M. m. molossinus,

is endemic to the Japanese archipelago and is best understood as a hybrid between M. m. musculus

and M. m. castaneus131.) Within the last 50, 000 years the lineages began to disperse from their

1For this section I am indebted to an excellent review published by John Didion, a recent alumnus of the Pardo-Manuel
de Villena lab 118.
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Figure 2.1: Phylogenetic tree of selected rodent genera (A) and of the Mus genus (B). Trees are

drawn approximately to scale. Mya, millions of years ago.
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Figure 2.2: Dispersal of mouse subspecies from their ancestral range in the Near East and central

Asia. Map is colored according to the dominant ancestry of wild mice in each region; populations

in areas shaded in grey are either of uncertain taxonomic origin or significantly admixed. Adapted

from118.

ancestral range: M. m. domesticus into the Middle East, Europe and the Mediterranean basin;

M. m. musculus to eastern Europe, Scandinavia and northern Asia; and M. m. castaneus to the

Indian subcontinent and southeast Asia (Figure 2.2). During the same period house mice became

commensal with humans, and their spread was facilitated by human migration132. Mice are now

found on nearly every landmass visited by humans133.

2.2.1 Taxonomic status of mouse lineages

Morphological and biochemical similarities between the major lineages of house mice and their

close relatives have bedeviled systematists since the mid-twentieth century118. An examination of

the literature on the phylogenetic history of mice reveals a confusing web of nomenclature, with

lineages in Mus musculus alternately deemed “subspecies”, “semi-species”, full species or a “species

complex” possibly extending to Mus spretus and Mus spicilegus. In keeping with the consensus

among most authors, I refer to the three major lineages of house mice as subspecies123, but some

authors contend that the full species designation is more appropriate given reproductive barriers

between lineages134.

In any case it is clear that incomplete lineage sorting — discordance between phylogeny at a locus

and species-level relationships — is widespread across the mouse genome135,136,130, consistent with
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nearly-simultaneous divergence of the three subspecies from each other. Discordance between

matrilineal ancestry (inferred from mitochondrial DNA) and patrilineal ancestry (inferred from

Y-linked markers) supports this view137. Likewise it is clear from transects in zones of secondary

contact between subspecies that there is ongoing gene flow between subspecies138,139.

2.2.2 Speciation and hybrid zones

Pairs of subspecies have come into secondary contact in several locations around the globe

within the past several millenia, forming geographically-restricted hybrid zones. The best-studied

hybrid zone lies along a narrow (< 30 km wide) strip which meanders from Denmark through

Germany and the Czech Republic132. To the west lies the territory of M. m. domesticus, and to the

east, M. m. musculus. Moving from west to east across the hybrid zone, the average ancestry of

mice traces a smooth cline from pure domesticus to pure musculus138.

Hybrid zones provide a natural experiment for studying the basis of reproductive isolation

between incipient species. In the domesticus-musculus zone, hybrids of both sexes may have reduced

fertility140, but hybrid male sterility is the dominant mode of reproductive incompatibility141,142.

The degree of sterility is variable in the laboratory and in nature143,140,132. Its proximate cause is

defects in chromosome pairing and synapsis142,144, leading to disruption of meiotic sex chromosome

inactivation145,146, arrest late in meiotic prophase and eventually germ cell death. Dozens of loci

associated with sterility-related morphological, histological or functional phenotypes have been

mapped in laboratory crosses141,147,148,149 and wild populations150,151. The loci of largest effect are

on the X chromosome152 and on chromosome 17. The chromosome 17 locus was subsequently

mapped to a single gene, Prdm9, which also serves as a master regulator of the rate and spatial

distribution of recombination153. Links between speciation and the meiotic machinery are further

explored in Chapter 3 and Chapter 6.

2.3 Origins of laboratory mice

Laboratory mice, for all their experimental utility, are a synthetic construct with little resem-

blance to any single population that exists in nature118. Their origin is a tale of contignency

and historical accident154. Understanding this history is critical to the well-informed design of

experiments to test evolutionary hypotheses.
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2.3.1 Ancestry of classical inbred strains

The majority of inbred strains and outbred stocks of mice used in laboratory studies can be

traced to a small population of “fancy mice” propagated by hobbyist breeders in Japan and Europe

through the late 1800s155,156. Small colony sizes and selective breeding meant that fancy mice

were already fairly inbred155. These stocks formed the basis for the so-called classical inbred strains

developed by the first mouse geneticists in the early twentieth century. Genetic diversity in the

classical inbred strains is limited: over most of the genome, classical strains can be projected

onto just 5 founder haplotypes, and 97% of the genome can be explained by no more than 10

haplotypes157.

Classical laboratory mice and commercial outbred stocks have long been known to be three-

way hybrids between the three major subspecies137,158,159, but the first genome-wide studies of

polymorphism in inbred strains led to conflicting inferences on the relative contribution of each

subspecies160,161,162. That confusion was due almost entirely to faulty assumptions regarding the

purity of a few strains used as phylogenetic reference points (see below). Subsequent analyses

calibrated with data from wild-caught mice of known ancestry clearly demonstrated that classical

strains are derived primarily from M. m. domesticus (94% of the genome) with minor contributions

from M. m. musculus (5%) and M. m. castaneus (< 1%)157. Furthermore, the non-domesticus regions

are correlated across strains and represent regions inherited from Japanese M. m. molossinus and

shared identical by descent (IBD) between extant strains.

2.3.2 Wild-derived strains

In contrast to classical inbred strains, so-called wild-derived strains are generated by inbreeding

among mice trapped in a single geographic location. A wild-derived strain represents, in effect,

one haploid draw from the pool of chromosomes in a given population of wild mice. Although

some selection for docility and ease of husbandry is inevitable, wild-derived strains are much more

representative than are classical strains of the phenotypic profile of wild mice and of the level of

variation segregating within and between subspecies in nature163,164.

Wild-derived strains are an important resource for testing evolutionary hypotheses in Mus119.

However, progress in the field has been hampered by a reliance on the strong assumption that

wild-derived strains are pure representatives of a single subspecies. In fact this is rarely the case: of

62 wild-derived strains analyzed with the 600, 000-SNP Mouse Diversity Array, only 9 had pure
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Figure 2.3: Global versus local phylogenetic relationships between laboratory strains and wild

mice. (A) Phylogenetic tree for chromosome 19 showing relationships between laboratory inbred

strains (open circles) and their wild relatives (closed circles). Inbred strains are labelled by strain

name, and wild mice by their country of origin. Arrowhead points to the last common ancestor of

classical laboratory strains. Tree was constructed from genotypes at 13, 739 biallelic SNP markers

on the Mouse Diversity Array92,157 and rooted rooted using five representatives of Mus spretus as

an outgroup (not shown.). (B,C) Local trees showing evidence for gene flow or incomplete lineage

sorting. Grey arrowheads, IBD between classical inbred strains and M. m. molossinus; green and

red arrowheads, discordant samples from M. m. castaneus and M. m. musculus, respectively.
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ancestry and 35 had some contribution from all three subspecies157. Inter-subspecific introgression

in wild-derived strains — whether due to naturally-occurring gene flow or contamination in

the laboratory — confounded earlier estimates of the relative contribution of each subspecies to

classical laboratory strains161,29 and created the false impression that levels of inter-subspecific

differentiation were extremely variable along the genome165,166.

The phylogenetic relationship between classical inbred strains, wild-derived strains and a

representative sample of wild mice is illustrated in Figure 2.3. Panel A represents the maximum-

likelihood toplogy over 61 Mb of sequence from chromosome 19; at this level, the three cardinal

subspecies are readily differentiated. But at local scale, the expected relationships do not necessarily

hold. Discordance between the global and local phylogeny may arise for three reasons: (1) contami-

nation by accidental cross-breeding in the laboratory, in the case of inbred strains; (2) admixture

in the wild; or (3) incomplete sorting along subspecies lineages of haplotypes polymorphic in the

ancestral population of M. musculus.
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CHAPTER 3

Structural variation and recombination in the mouse germline

3.1 Introduction
1 Recombination — the exchange of genetic material between homologous chromosomes, which

is the essence of sex — is a ubiquitous feature of meiosis in eukaryotes. Although the origin of sex

remains one of the great mysteries (and controversies) of evolutionary biology167, it is clear from its

persistence across the tree of life that it must serve extremely important roles in individual fitness

and the maintenance of genetic diversity in populations168.

Recombination and its dual, genetic linkage, were discovered in the early twentieth century as

exceptions to the Mendelian principles of segregation and independent assortment169. William

Bateson, Reginald Punnett, T.H. Morgan and others had identified groups of traits whose inher-

itance appeared to be “coupled” to varying degrees. Morgan offered the elegant interpretation

that coupling arose because the underlying “factors” were physically located on the same chromo-

some, and proposed that the cytological phenomenon of crossing-over could explain the degree of

coupling. This and subsequent experiments by Sturtevant170 solidified the chromosome theory of

heredity and provided evidence that “factors” — what we would now call genes — are linearly

arranged. Sturtevant made the important observation that the frequency of recombination between

pairs of genetic markers could be interpreted as distance (in the metric sense) and used this fact

to construct the first linkage map, in Drosophila melanogaster170. Linkage maps have since proven

invaluable as tools for understanding genome organization.

1A portion of the results presented in this chapter are published in:

Liu EY∗, Morgan AP∗, Chesler EJ, Wang W, Churchill GA, Pardo-Manuel de Villena F. High-resolution
sex-specific linkage maps of the mouse reveal polarized distribution of crossovers in male germline.
Genetics: 197: 91–106. PMID 24578350.

Important contributions were made by Eric Yi Liu, Wei Wang and Gary Churchill.
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In most eukaryotes, the formation of crossovers between homologous chromosomes provides

mechanical support to allow the pair to orient perpendicular on the meiotic spindle and be segre-

gated properly to daughter cells at meiosis I. (There are exceptions — meiosis in male Drosophila

melanogaster is achiasmate, for example — but they are rare.) Failure to form crossovers and to

place them appropriately along chromosomes is associated with aneuploidies which are invariably

deleterious11,171. Meiotic recombination also provides an opportunity to repair accumulated dam-

age to germline DNA172. From these points of view, recombination is critical to the maintenance of

genome stability in the germline and subsequently in gametes.

But recombination also has important roles at the population level. By allowing beneficial

mutations to dissociate from linked deleterious mutations and to then associate with beneficial

mutations on other haplotypes, recombination mitigates the phenomenon known as Hill-Robertson

interference2. The net effect is to allow the population to achieve higher mean fitness. Likewise,

recombination limits the extent of selective sweeps — the loss of genetic diversity at sites linked to a

mutation under positive selection84. Recombination thus enhances both the efficiency of selection

in the present and the population’s capacity to adapt in the future.

Despite the centrality of recombination in meiosis and its evolutionary conservation in gen-

eral, the overall rate and spatial distribution of recombination vary widely between and even

within species. In mammals this variation is intimately linked to the formation of reproductive

barriers that separate species173, a process that has been characterized in detail in mouse141,147,144.

Recombination-rate variation in mouse is heritable174 and under selection175,176.

In this chapter we present a comprehensive analysis of crossover recombination in several

experimental populations of laboratory mice. Our results replicate several well-known results

regarding sexual dimorphism in the rate and distribution of crossovers in mammals. We make

several novel observations:

• Both the X and Y chromosomes harbor modifiers of the overall recombination rate with large

effect sizes that are segregating between and within mouse subspecies.

• Advanced paternal age is associated with an increase in the overall recombination rate in

multiple and diverse genetic backgrounds. The effect is independent of crossover interference.

• Crossovers are strongly suppressed around clusters of large copy-number variants (CNVs)
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that we term coldspots. Haplotypes with equal copy number at a given coldspot are only

marginally more likely to recombine than haplotypes with different copy number, suggest-

ing that these loci represent complex rearrangements and not simple changes in dosage.

Coldspots have a transcriptional and epigenetic profile in male germ cells consistent with

closed chromatin.

The remainder of this section introduces the molecular events and possible outcomes of meiotic

recombination; genetic and non-genetic factors influencing the overall rate and spatial distribution

of crossovers; and experimental approaches for studying recombination in mammals, with a focus

on the mouse populations used in the present investigation.

3.1.1 Molecular basis of recombination

Meiotic recombination begins during the earliest substage of the first meiotic prophase with the

programmed introduction of double-strand breaks (DSBs)177. (Refer to diagrams in Figure 3.1.)

These DSBs will subsequently be repaired using the homologous chromosome as a template,

leading either to a crossover (CO) — if the repair involves exchange of flanking regions of the

chromosome — or a non-crossover (NCO) if it does not. Because the repair process is not symmetric

with respect to the chromatids involved, both COs and NCOs also entail gene conversion. In mouse,

approximately 200 DSBs occur per meiosis, of which 20− 30 will lead to COs and the remainder to

NCO products1.

The key steps in recombination are synchronized with the gathering and organization of

chromosomes before the first meiotic division. DSBs occur after the pre-meiotic round of replication

but before homologous chromosomes pair; in fact, DSBs facilitate the “homology search” by which

homologs find their partners, and are required for pairing178. Before and during the formation

of DSBs, the telomeric ends of chromosomes gather into a structure known as the “bouquet” —

conserved across the eukaryotes — that anchors them to the nuclear envelope and is thought

to facilitate pairing179,180. Pairing is followed by synapsis, the formation of the proteinaceous

synaptonemal complex (SC) between the homologs (the bivalent). At this stage chromatin is

arranged in loops projecting outward from the SC. These loops are tethered to the SC by a suite of

proteins that bind to DSBs181. The SC provides a physical scaffold that facilitates repair of DSBs by

the homologous recombination machinery. (Although the fine biochemical details of recombination
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Figure 3.1: Nuclear appearance, chromatin configuration and steps in double-strand break (DSB)

formation and repair as crossovers or non-crossovers during the first meiotic prophase. Substages

are named in the center track. Orange dot marks the site of a DSB which will be processed into a

crossover or non-crossover. Figure adapted from167.

are beyond the scope of this chapter, it suffices to say that DSB repair proceeds through a “joint

molecule” that involves one or more chromatids from each member of the homologous pair.) When

DSB repair is complete the SC dissociates, and homologs are physically attached via chiasmata at

the sites of COs. Chiasmata persist until the end of the first prophase.

Because recombination occurs within the context of meiosis, male and female mammals differ

in several important respects. Whereas the primary germ cells in males (primary spermatocytes)

do not enter meiosis until the time of sexual maturity, primary germ cells in females (primary

oocytes) enter meiosis in utero. Primary oocytes arrest and enter a resting state (“dictyate”) that

is maintained until fertilization. Chiasmata thus persist for up to years in mouse or decades in
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longer-lived mammals. By contrast, male meiosis proceeds from start to finish within about 30

days in mouse. On the other hand quality-control processes are much stricter in male than female

meiosis. Failures of pairing, synapsis or recombination generally lead to arrest and germ cell death

before the end of the first prophase in spermatocytes but not oocytes1. Consequently the vast

majority of mature sperm are euploid in humans, while as many as 20% of oocytes are aneuploid182.

3.1.2 Broad-scale control of recombination

Although the existence of a true homeostatic mechanism for regulating the total number of

crossovers is still a matter of debate183, the general requirement for a minimum of one crossover

per bivalent has been apparent for decades184. In mammals, the number of chromosome arms —

not chromosomes — predicts the length of the genetic map, suggesting that there is a requirement

for one crossover per chromosome arm13. The location of the obligate crossover is important: too

near the centromere or telomere predisposes to nondisjunction171.

When multiple crossovers occur on a single chromosome (arm), they tend to occur further

apart than would be predicted if crossing-over operates as a memoryless uniform process along

chromosomes. This pattern, known as interference (strictly speaking, positive interference), fol-

lowed quickly from the first models of recombination185 but its mechanistic basis remains poorly

understood. In yeast and plants186, a minority of crossovers are exempt from interference; because

the proteins involved in their execution are conserved in vertebrates, the same is likely true in

mouse. Weaker interference in females is thought to contribute to the higher number of crossovers

observed in female meiosis in mouse187.

The overall recombination rate, as measured by the number of crossovers per meiosis (i.e. the

total length of the genetic map), is generally higher in females than in males188,189,190 — although

there are exceptions, including sheep191 and opossum192. The distribution of crossovers along

chromosome arms also differs between the sexes: crossovers in males are enriched in the distal

portion of chromosomes and depleted near the centromere in many mammal species including

human189, mouse190, dog193 and cow194.

Males face a distinct challenge in fulfilling the requirement for one chiasma per bivalent: the

sex chromosomes. Mammalian sex chromosomes are heteromorphic share homology only at the

pseudoautosomal region (PAR) at the distal tip of the long arms195. (Mice, having an afrocentric kary-

otype, have one PAR; humans have two, one for each chromosome arm on the X and Y.) Synapsis
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on the sex chromosomes is restricted to the PAR, and DSB repair in the PAR occurs later and in

a distinct nuclear domain (the sex body) from the recombination process on the autosomes20,196.

Although the sequence of the PAR in the mouse reference genome assembly is still incomplete, it is

thought to be at most a megabase in size197. Its local recombination rate per base par is thus 10− 50

times greater than the genomic average.

Recombination rate is heritable and varies between laboratory strains of mice174 and between

mouse subspecies175. Wild-derived inbred strains of predominantly M. m. musculus ancestry have

recombination rates approximately 30% higher than strains of M. m. castaneus or M. m. domesticus

ancestry. Nearly half of this variation maps to a single locus on the X chromosome in an F2 cross

between CAST/EiJ (M. m. castaneus) and PWD/PhJ (M. m. musculus)175. This finding is supported

by differences in local recombination rates on several chromosomes have been detected in reciprocal

F1 hybrids between WSB/EiJ (M. m. domesticus) and CAST/EiJ. In crosses between M. m. domesticus

and M. m. musculus wild-derived strains, surrogate phenotypes for hybrid sterility map to the same

loci as recombination rate on chromosomes 17 and X142,152,198.

3.1.3 Fine-scale control of recombination

Early models for recombination posited that crossovers arose via a continuous process along

chromosomes or segments thereof. The ability to rapidly type dense panels of genetic markers

in populations, in large pedigrees and in pools of sperm has radically altered that view over the

past decade173. Deep characterization of recombination products at single loci199 and analyses of

patterns of linkage disequilibrium (LD) in unrelated individuals200 have demonstrated that, at

killable scale, the rate of recombination is extremely heterogeneous along the genome. The vast

majority of crossovers occur in short (< 1 kb), discrete regions — hotspots — spaced tens of kilobases

apart, at least in mouse and in human. The background rate of recombination is essentially zero.

Hotspots in primates and mice are defined by a degenerate 13 bp motif (CCNCCNTNNCCNC) that

serves as the recognition sequence for PRDM9201, a meiosis-specific enzyme that trimethylates the

histone 3 lysine 4 residue (H3K4me3)202,153,203. This mark is the activation signal for a hotspot204.

The structure of PRDM9 contains a tandem array of 12 zinc finger domains whose sequences are

highly polymorphic in populations and rapidly evolving between species205. The sequences of

the zinc fingers determines the specificity of a PRDM9 allelic variant for particular sequence(s)

of the degenerate binding motif. Motifs which bind PRDM9 more avidly have higher activity for
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both COs and NCOs206,207. However, the asymmetric nature of DNA repair in meiosis leads to

degradation of the most active hotspots208, such that PRDM9 and its cognate binding sites are

locked in a cycle of repeated evolutionary turnover209. Besides PRDM9, the activity of hotspots and

their propensity for CO versus NCO outcomes may depend on sex and as-yet known modifiers in

the genetic background210,211.

In taxa that lack a functional PRDM9 ortholog — including birds212, canids (including the

domestic dog)213 and some yeasts214 — the recombination landscape is more stable over time. The

distribution of recombination is still non-uniform, but is directed towards conserved sequence

features (such as promoter regions215) rather than labile hotspot motifs.

Curiously, allelic differences in Prdm9 between M. m. musculus and M. m. doemsticus are

responsible for male sterility in hybrids216. The testes of affected males are characterized by meiotic

arrest and germ cell death late in meiotic prophase, due to defects in DSB repair, homolog pairing

and formation of the sex body141. A similar phenotype is observed in a Prdm9 knockout202. Re-

targeting PRDM9 to ancestral hotspots via engineering of its zinc-finger arrays reverses sterility217,

directly implicating the co-evolution of PRDM9 and hotspot motifs in the formation of reproductive

barriers.

3.1.4 Methods for studying recombination

Approaches to the study of recombination can be divided into three categories: genotyping

informative markers in pedigrees; observation of cytological markers for crossovers; and analyses

of linkage disequilibrium in populations of unrelated individuals. Each has advantages and

disadvantages, which we discuss briefly below.

• Pedigrees. Crossovers can be inferred from offspring genotypes when at least one parent is

heterozygous. Recombination fractions among progeny are converted to genetic distances

via a mapping function to account for interference and the possibility of multiple crossovers

between informative markers. The resolution of linkage maps constructed from pedigrees

depends on the density of the marker panel — which, in the limit, depends on the level of

segregating variation in the parents — and on the number of informative meioses. Pedigree

analyses are equally useful for male and female meiosis. However, because the segregation of

the recombinant versus non-recombinant chromatids in a four-strand bundle is a stochastic
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process, the variance of crossover counts derived from pedigrees is higher than from direct

cytological observation.

• Cytological markers. Chiasmata can be directly observed under a microscope late in the first

meiotic prophase, and can be counted in multiple germ cells per individual to improve

the precision of the estimate of recombination rate. However, these methods have limited

precision for localizing crossovers and are exceedingly difficult to apply in females due to

the developmental timing of crossing-over in the ovary. More generally, antibody pulldown

and high-throughput sequencing (ChIP-seq) of sequence fragments bound to key proteins in

the recombination process allows the characterization of the number and spatial distribution

of recombination intermediates at nucleotide resolution218. Interpretation of data from both

cytological assays and ChIP-seq relies on the assumption that the distribution of recombina-

tion intermediates is an unbiased estimator of the distribution of transmitted crossovers —

an assumption which may or may not be met219.

• Linkage disequilibrium. Given sufficient sample size and marker density, population-level poly-

morphism data can offer an extremely fine-grained view of the (relative) rate and distribution

of meiotic recombination along the genome. Polymorphism data capture many thousands

of generations of informative meioses, averaged over both sexes. However, LD patterns

are confounded with other population-genetic processes besides recombination which may

or may not act uniformly along the genome. Recombination rates estimated from LD are

fairly robust to model misspecification in simulations, but the degree of departure from their

assumptions in real data is unknown a priori219.

3.1.5 The Collaborative Cross and Diversity Outbred populations

Multiparental populations (MPPs) of model organisms are designed exploit the stochastic

nature of meiosis to perform a factorial experiment. Breeding schemes for MPPs combine diverse

founder genomes at equal frequency and, via recombination, shuffle them into a collection of

random mosaics free of population stratification. MPPs thus provides a unique opportunity to

study the rate and distribution of recombination against a randomized genetic background.

In this chapter we analyze two mouse MPPs: the Collaborative Cross (CC)220,221, a panel of

recombinant inbred lines derived from eight founder strains; and the Diversity Outbred (DO), an
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outbred stock derived from a subset of partially-inbred CC lines222. The CC and DO were originally

envisioned as platforms for high-resolution genetic mapping of loci underlying quantitative traits.

They were designed to address two important shortcomings of existing panels of inbred strains

and recombinant inbred lines: low levels of genetic diversity and long blocks of identity by descent

among classical inbred strains157, and cryptic population structure and pervasive long-range LD

arising from the idiosyncratic ancestry of these same strains223. The eight founder strains for

the CC and DO comprise five classical inbred strains of admixed but primarily M. m. domesticus

ancestry — A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ and NZO/HlLtJ — and three wild-derived

strains — CAST/EiJ (M. m. castaneus), PWK/PhJ (M. m. domesticus) and WSB/EiJ (M. m. domesticus).

The wild-derived strains contribute vast majority of segregating variants. Of note, there are four

Prdm9 alleles segregating in the CC and DO: msc (PWK/PhJ), cst (CAST/EiJ), dom2 (A/J, C57BL/6J,

129S1/SvImJ, NZO/HlLtJ) and dom3 (NOD/ShiLtJ, WSB/EiJ).

The breeding schemes for the CC and DO are shown in Figure 3.2. CC lines were initiated

using a “funnel” scheme: two generations of outcrossing, followed by 25 or more generations of

inbreeding by sibling mating. Every realization of a funnel yields a unique mosaic of the eight

founder haplotypes, but crossovers are constrained by the order of founders in the first genera-

tion. Each CC line was therefore assigned a unique funnel order to achieve full randomization,

subject to additional constraints to maintain balanced contributions on the sex chromosomes and

mitochondrial genome. A set of 144 CC lines at inbreeding generations 4 through 12 (median

5) were selected to found the DO. The DO is maintained by random mating in synchronized

generations, 175 pairs per generation, with avoidance of sibling and first-cousin matings. Each

mating pair contributes exactly two offspring to the next breeding generation; additional progeny

are distributed to investigators for experiments.

3.2 Results

3.2.1 The CC and DO provide complementary views of recombination

The breeding scheme of the Collaborative Cross ensures that every crossover arising in the first

two breeding generations can only have arisen during exactly one of six meioses (Figure 3.3). By

genotyping a sibling pair at the G2:F1 generation, the products of eight meioses can be observed

— four meioses (in G1) shared between the members of the pair, and two unique to each sibling
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Figure 3.2: Breeding schemes for the Collaborative Cross (CC) and Diversity Outbred (DO) mouse

populations. Both populations share the same set of eight founder strains, whose approximate

phylogenetic relationship is shown in the inset panel. Throughout this chapter we refer to strains

by one-letter codes for brevity. Each CC recombinant inbred line was initiated with two rounds of

outcrossing in a “funnel” scheme (left), followed by many generations of sibling-mating to reach

inbred status. The DO was seeded from 144 CC funnels early in the inbreeding process (right). It is

maintained by random mating with 175 pairs per generation.
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(in G2). Because each founder strain is represented only once among the eight G0 ancestors in

each funnel, the G1 and G2 are obligate heterozygotes and all meioses are maximally informative.

Randomization of the order of founder strains in each funnel ensures a balanced contribution

from each founder genome to the autosomes of the G2:F1 generation, and an equal number of

informative male and female meioses. Crossovers arising in G2 are always observable, provided

they are transmitted to offspring, but crossovers in G1 are only observable if they are transmitted

both at G1 and in at least one G2 meiosis. The probability that an inherited crossover on the

autosomes is transmitted through at least one G2 meioses in a given parent is 3
4 , so the expected

number of observable meioses per funnel is (34)(4G1 meioses) + 1(4G2 meioses) = 7. By a similar

logic, the expected number of observable meioses per funnel on the X chromosome is 7
2 .

We genotyped a sibling pair from each of 237 funnels for a total of 474 G2:F1 offspring (1659

meioses) and augmented these genotypes with funnel information to infer fully-phased founder

haplotypes (see § 3.5). A total of 25, 038 crossovers were identified, of which 18, 948 were singletons

and 3, 045 (all from G1) were observed twice (i.e were shared by members of a sib pair.) Among the

21, 993 distinct crossovers, 21, 368 occurred on autosomes and 625 occurred on the X chromomsome

for a sex-averaged map length of 1, 288 cM for the autosomes and 75 cM for the autosomes.

The autosomal map is 6.7% shorter than the standard genetic map for the mouse190, and the X

chromosome map 1.5% shorter.

The CC breeding scheme provides a rich set of expectations and constraints that we used to

confirm the integrity of our set of inferred crossovers. Several of these are shown in Table 3.1. In

all cases, the observed crossover counts are in close agreement with Mendelian expectations.

Although less straightforward than simply genotyping parent-offspring duos, the CC G2:F1 is

conceptually not different from a traditional pedigree study of linkage. Crossovers are inferred

directly from individual-level genotypes and can be assigned to a specific parent’s germline,

allowing the construction of sex-specific genetic maps. The resolution of the sex-averaged map — 1

crossover per 114 kb on average — is sufficient to reveal patterns of local variation in recombination

rate at the megabase scale, as discussed further below. But the map is still too sparse to examine

fine-scale patterns such as hotspot usage.

For a more fine-grained view of recombination in the same outbred background as the CC G2:F1

we turned to the Diversity Outbred (DO) population. The DO comprises (at time of this study) 21
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Figure 3.3: G2:F1 mice were bred in 237 funnels uniquely defined by the ordering of founder strains

in the parental generation. This design balances the contribution of each of the eight founder strains

through both the maternal and the paternal lineage. Using funnel order and genotypes for both

members of a sib pair, it is possible to assign crossover events inferred in members of the sib pair to

one of eight meioses occurring in the germline of a specific ancestor: in the G1 generation, maternal

grandmother (MGM), maternal grandfather (MGP), paternal grandmother (PGM), or paternal

grandfather (PGP); or in the G2 generation, mother (Mf, Mm) or father (Pf, Pm), with independent

G2 meioses contributing to each sib pair. Crossovers arising in G1 may be shared between members

of the sib pair, but crossovers at G2 are always distinct.
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Relationship Expected Observed

Observed events in G1 vs. G2 3 : 4 0.747 (p = 0.78)

Same event type from opposite half-funnels 1 : 1 1.00 (p = 1.00)

Mf vs. Mm 1.02

Pf vs. Pm 1.03

MGM vs. PGM 0.975

MGP vs. PGP 0.999

Singleton vs. shared events in G1 2 : 1 0.673 (p = 0.17)

MGM 0.678

MGP 0.672

PGM 0.675

PGP 0.668

Table 3.1: Expectations regarding autosomal recombination in G2:F1 pedigrees based on Mendelian

rules. All p-values were obtained via a χ2-test with a single degree of freedom.

generations with 175 breeding pairs (N = 350) per generation and thus provides at least tenfold

more resolution than the G2:F1. But unlike the CC G2:F1, crossovers in the DO cannot in general

be ascribed to a specific meiosis. There is no simple relationship between observed crossovers

and genetic map length in the DO. Crossovers observed in a sample of n DO mice at generation

k represent the cumulative products of up to 2N(k − 1) + 2n meioses. The expected number of

observed meioses M is much lower due to the stochastic nature of inheritance in the population

and of the sampling process, and in fact M ≈ 2n+O( 1
n) — that is, the great majority of crossovers

observed in a sample are of recent origin. (See Chapter A for derivation and discussion.) But by

sampling mice at many generations along the pedigree, we both obtain a very dense sex-averaged

map and to observe temporal patterns in the accumulation of crossovers in the population.

We aggregated genotype data from 6, 886 individuals from sixteen breeding generations of

the DO2 and identified 2, 242, 658 crossovers (see § 3.5) arising in approximately 15, 832 observed

2Credit for this effort is due to Dan Gatti (The Jackson Laboratory) and more than a dozen investigators who contributed
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meioses. As expected, the number of crossovers per genome increases linearly over time (at a

rate of 27.1 crossovers per genome per generation; Figure 3.4), and the size of haplotype blocks

decreases — although not linearly.

We used SNP genotypes from the autosomes to estimate pairwise kinship coefficients (π̂) within

generations and from these inferred close pedigree relationships. Knowledge of close relationships

is useful for discriminating crossovers shared by descent versus recurrent crossovers, and for

improving chromosome phasing. As expected, only a tiny minority of within-generation pairs

(16, 335 of 2, 605, 768; 0.63%) can be detected as relatives at a threshold of π̂ > 0.125 and the

remainder are effectively unrelated (π̂ ≈ 0). Among these, 10, 491 pairs have π̂ > 0.2 and represent

possible sibships. The distribution of estimated kinship coefficients by generation is shown in

Figure 3.5. For the generations with the large sample sizes (7, 8, 11) the distribution clearly has

two non-zero modes corresponding to relationships of degree 3 (cousins) and 2 (siblings and

double-cousins).

Chromosome segments shared identical by descent (IBD) in related pairs were used to prune

the set of 2.2 million total crossovers to a set of 749, 560 distinct crossovers (Figure 3.6). Among

distinct crossovers, 570, 113 were singletons (observed exactly once, private to an individual)

and 179, 447 were observed multiple times. To confirm the robustness of our classification of

crossovers as shared, we compared estimated kinship from SNP genotypes to the proportion of

non-singleton autosomal crossovers apparently shared between members of the same pair and

obtained reasonably close agreement (Figure 3.7). For a subset of 1, 529 mice corresponding to 508

known sibships, we compared the kinship estimate from shared crossovers to its expected value

π = 0.25. Our estimate from shared crossovers is π̂ = 0.225, or 10% below the expected value. The

degree of underestimation is related to the proportion of recombinations that are private, a value

which itself decreases with increasing sample size. This suggests that while our power to detect a

genotype data. See also

Chesler EJ, Gatti DM, Morgan AP, Strobel M, Trepanier L, Oberbeck D, McWeeney S, Hitzemann R,
Ferris M, McMullan R, Clayshultle A, Bell TA, Pardo-Manuel de Villena F, Churchill GA (2016) Diversity
Outbred Mice at 21: maintaining allelic variation in the face of selection. G3 early online publication.
PMID 27694113.
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Figure 3.4: Accumulation of crossovers in the genomes of Diversity Outbred (DO) mice. (A) Distri-

bution of the number of observed crossovers per genome as a function of generation number. The

accumulation of crossovers is linear (regression line shown in red, constrained to pass through the

origin), with rate 27.1 additional autosomal crossovers per genome per generation. (B) Distribution

of haplotype block lengths by generation Note that the decay in the size of haplotype blocks

is not linear, unlike the increase in the number of crossovers per genome, suggesting that the

recombination map is reaching saturation.

43



6 7 8 9

10 11 12 13

14 15 16 17

18 19 20 21

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
π̂SNPs

de
ns

ity

Estimated autosomal kinship within generations (truncated > 0.05)

Figure 3.5: Distribution of relatedness within generations in the DO. Kinship coefficients esti-

mated from autosomal SNP genotypes ( ˆπSNPs) were computed for all pairs of individuals from the

same generation; only values > 0.05 are shown in order to emphasize modes in the distribution

corresponding to expected values for cousins (red line; π = 0.125) and siblings (blue line; π = 0.25).
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Figure 3.6: Joint inference of DO pedigree and sharing of crossovers. A branch of the pedigree

(generations 7 and 8) inferred from SNP genotypes is shown in upper panel; filled shapes are ob-

served individuals and open shapes unobserved. Reconstructed chromosomes are shown for each

observed individual. The focal crossover shared IBD by all individuals in this pedigree is indicated

with a black arrowhead, and in-phase crossovers used to delineate IBD blocks between individuals

are indicated with grey arrowheads. Note that the focal crossover must have occurred no later than

generation 6, and that several other crossovers are also shared IBD on these chromosomes.

crossover as shared between any two individuals improves with sample size, our ability to detect it

as shared in a particular pair does not. Consequently our set of 749, 560 distinct crossovers likely

contains some duplicates that we have falsely labelled recurrent events, and these duplicates may

slightly distort the scaling from crossover counts to centimorgans.

Nonetheless, the cumulative recombination map in the DO is remarkably similar to the G2:F1

map when each is plotted in its natural scale (centimorgans for G2:F1, crossover counts for the DO;

Figure 3.8). To convert the DO map to the more interpretable centimorgan units, we smoothed the

cumulative map in 100 kb bins on each chromosome and used polynomial regression with degree 3

(see § 3.5) to estimate the relationship between cumulative crossover count and G2:F1 centimorgan

position, then used the fitted model to predict the centimorgan position of every observed crossover.

We use this rescaled map (Figure 3.9) for the remainder of the analyses presented here.
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Figure 3.7: Comparison of kinship estimates from genotypes (x-axis) versus the proportion of non-

singleton crossovers shared between individuals (y-axis). Red and blue lines represent expected

kinship coefficient for cousins and siblings, respectively. Bivariate density is rendered as colors

from purple (low) to orange (high).
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Figure 3.8: Comparison of cumulative recombination maps in CC and DO. Maps are shown as

genetic (cM) position versus physical position (Mb) for the CC G2:F1 (black), and (cumulative

crossover count/500) versus physical position for the DO (grey). The maps are remarkably consis-

tent in length and shape for the autosomes, but differ in length on the X chromosome due to the

increased proportion of female meioses contributing to the DO versus the CC map.
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Figure 3.9: Local sex-averaged recombination rates (cM/Mb), calculated in 5 Mb windows with 1

Mb offset between adjacent windows, for the CC G2:F1 and DO.

The recombination map in the DO is extremely dense: 749, 560 distinct crossovers equates to

approximately 11 crossovers expected between any two of the approximately 70, 000 consecutive

markers on the genotyping array. The absence of crossovers in any interval is therefore strong

evidence for true local variation in recombination rate rather than sampling artifact. Although

local recombination rates (cM/Mb) are broadly similar between the DO and G2:F1, the correlation

between local recombination rates decreases at finer scales (Figure 3.10).

3.2.2 Rate and distribution of crossovers differs by sex

Consistent with existing literature on recombination in mice, humans and many other mam-

mals? , we found that the rate of crossing-over is greater in females than males: the female G2:F1

map for the autosomes (1, 355 cM) is longer than the male map (1, 221 cM). There is a small but

not significant change in map length from G1 to G2 in both sexes (Table 3.2). When more than

one crossover occurs on a single chromosome (observable only in the G2 meioses), the distance

between crossovers is shorter in females: 40.7 cM (95% CI 39.9− 41.5 cM) versus 48.0 (46.9− 49.1

cM) in males (Figure 3.11A). We fit the “gamma model” of crossover interference described in224,225

and found that the strength of interference (parameter ν) is significantly greater in males (12.7

[11.5, 13.9]) than in females (8.8 [8.2, 9.4]) (Figure 3.11B). Furthermore, the proportion of multiply-

recombinant chromosomes is greater in females: 11.8% versus 6.8% (p < 10−5, Fisher’s exact test).

Together these results support the long-standing observation that the recombination rate is higher
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Figure 3.10: Correlation between DO and CC maps as a function of scale. Pearson correlation (r)

between local recombination rate (measured as cM/Mb) in the DO and CC G2:F1, with correlations

computed in windows of increasing size from 100 kb to 5 Mb. For all window sizes, rates were

smoothed by allowing adjacent windows to overlap by one-half their width.

Sex Female Male

G1 (cM) 1330 (1296, 1365) 1279 (1247, 1311)

G2 (cM) 1381 (1351, 1409) 1211 (1182, 1236)

Table 3.2: Total length of the autosomal genetic map by sex and generation in the G2:F1(). Confidence

intervals were obtained by non-parametric bootstrap with 100 replicates.

in the female than in the male germline, and that this effect is mediated in part by weaker crossover

interference in females? .

The spatial distribution of crossovers also differs markedly by sex. Crossovers in males are

enriched in the distal portion of all autosomes, while they occur more uniformly across each

chromosome in females (Figure 3.12). This effect might be a consequence of stronger crossover

interference in males: crossovers will necessarily be pushed towards chromosome ends when more

than one occurs on a single chromosome. To investigate further we divided the products of G2

meioses into single- and multiple-recombinant classes and examined the spatial distribution of
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Figure 3.11: Crossover interference differs between males and females in G2 meioses. (A) Distri-

bution of distance (on the genetic map) between adjacent crossovers on the same chromosome in

males versus females. (B) Estimates of the unitless interference parameter (ν) from the gamma

model of crossover interference224, with 95% confidence intervals, for males and female meioses.

crossovers. We found that the pattern of male-specific enrichment in subtelomeric regions remained

even after conditioning on the number of crossovers (Figure 3.13).

3.2.3 Sex-linked loci have large effects on recombination rate

To the extent that recombination is implicated in reproductive isolation between subspecies,

evolutionary theory predicts that modifiers of the recombination rate should accumulate dispro-

portionately on the sex chromosomes ??. Several previous studies have identified X-linked loci

with dramatic effects on recombination rate in F2 crosses and in reciprocal F1 hybrids175,226,176.

We took advantage of the randomized design of the CC and the ability to assign each G2:F1

crossover to a specific meiosis to estimate the marginal effects of the X and Y chromosomes on

global recombination rate.

The Y chromosome present at each of the four male meioses in a funnel (MGP, PGP, Pf, Pm; Fig-

ure 3.3) can be determined without ambiguity from the funnel order because it is non-recombining

and hemizygous. The eight founder strains of the CC can be collapsed into just four distinct Y

chromosome haplogroups: the strains A/J, C57BL/6J, 129S1/SvImJ and NZO/HlLtJ share the

same Y (denoted “ABCE”); NOD/ShiLtJ and WSB/EiJ share a Y (denoted “DH”); and CAST/EiJ
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Figure 3.12: Local sex-specific recombination rates (cM/Mb), calculated in 5 Mb windows with 1

Mb offset between adjacent windows, for G1 and G2 meioses combined. Note the enrichment of

crossovers in the distal portion of all autosomes in males.

and PWK/PhJ have distinct Y haplogroups (denoted “F” and “G” respectively). (See Chapter 6

for detailed analysis of the ancestry and diversity of mouse Y chromosomes.) We found that Y

chromosome haplogroup is significantly associated with the number of crossovers per meiosis

in 948 male meioses (p = 8.8 × 10−7). Haplogroup G (PWK/PhJ) is associated with between 1.1

(95% CI 0.4− 1.7) extra crossovers per meiosis versus halpogroup ABCE and 2.4 (1.4− 3.6) extra

versus haplogroup F (CAST/EiJ). The size and direction of effect is consistent between G1 meioses

— which occur in F1 hybrids — and G2 meioses in a four-way mixed background (Figure 3.14).

To test the effect of the X chromosome on recombination rate, we used the funnel order to assign

to each meiosis a dosage of each of the eight X chromosome haplotypes and used these dosages

as predictors in a generalized linear model. Only the CAST/EiJ X chromosome had significant

association with number of crossovers per meiosis in both sexes together (p = 7.1×10−5, likelihood

ratio test with 1 df), and it is associated with an extra 0.9 (95% CI 0.5− 1.4) crossovers per meiosis.

A test for an (X chromosome) × sex interaction was not significant (p = 0.10), although Figure 3.15

suggests that the magnitude of the X effect is qualitatively greater in females than in males. These

findings are consistent with previous reports of an X-linked locus in CAST/EiJ that explains almost

50% of variation in chiasmata counts in an F2 cross175.

Both intragenomic conflict between the sex chromosomes and accumulation of allelic incompat-
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Figure 3.13: Crossovers are enriched in the distal portion of chromosomes in males. Cumulative

distribution of physical distance of crossovers from the telomeric end of the chromosome are

shown for male and female G2 meioses. The male distribution is shifted to the left (i.e. towards the

telomeric end) relative to the female distribution on single-recombinant chromosomes (p < 10−5,

Kolmogorov-Smirnov test) and for the distal-most crossover on double-recombinant chromosomes

(p < 10−5), but not for the more proximal crossover on double-recombinant chromosomes (p =

0.17).
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Figure 3.15: Predicted recombination rate, measured as count of transmitted crossovers per meiosis,

in males and females with or without a CAST/EiJ X chromosome. Points are fitted values with

95% prediction intervals from generalized linear model with Poisson response.
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in males with or without a NZO/HlLtJ X chromosome as a function of Y chromosome haplogroup.

Points are fitted values with 95% prediction intervals from generalized linear model with Poisson

response.

ibilities between subspecies could plausibly give rise to X-Y interaction effects on recombination

rate. We tested for association between X chromosome genotype (dosage) and Y chromosome

haplogroup in G1 and G2 male meioses jointly and uncovered a significant interaction between Y

chromosome and the presence of the NZO/HlLtJ X chromosome (p = 1.1×10−4 by likelihood-ratio

test with 3 df). When paired with the PWK/PhJ Y chromosome, the NZO/HlLtJ X is associated

with a dramatic decrease in the number of transmitted crossovers (Figure 3.16). However, all of the

information for the X:Y interaction estimate is derived from G2 males: the (NZO/HlLtJ×PWK/PhJ)

cross is unproductive221, and it was avoided in the design of CC funnels.

3.2.4 Advanced paternal age increases recombination rate

Incidence of most aneuploidy syndromes in humans is strongly associated with advanced

maternal age11. Classic studies of mouse oocytes noted a change in the distribution of chaismata

in older mothers227, and nondisjunction in human aneuploidies is associated with aberrations

in both the rate and spatial distribution of crossovers228,229,230. These observations have spurred
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great interest in the effect of age on the rate and distribution of recombination in the female

germline. Results of several large studies have been surprisingly mixed: evidence has been

provided for increased231,232 and decreased233 recombination with advancing age, and effects may

be confounded with population-specific demographic factors234. (It should be noted that these

pedigree-based studies measure the number of transmitted crossovers in offspring, not the number

of chiasmata in oocytes.)

By contrast, the existence and direction of a paternal age effect on recombination has received

less attention. The largest human studies have found no evidence for an age effect on the number

of transmitted crossovers231,233. The number of chiasmata in diplotene spermatocytes has been

shown to increase in aged relative to peri-pubertal male mice from several classical inbred strains235.

Although chiasmata count is a good predictor of the number of transmitted crossovers in males219, it

is possible that this correlation deteriorates with age. The effect of genetic background — especially

of large-effect modifiers of the recombination rate on the sex chromosomes — on the paternal age

effect is also unknown.

We used a set of intercross pedigrees (Figure 3.17) to simultaneously test the effect of paternal

age and the sex chromosomes on the number of crossovers transmitted to progeny.3 Briefly,

reciprocal F1 hybrid males between wild-derived strains CAST/EiJ, PWK/PhJ and WSB/EiJ were

mated at young age to a young, fertile FVB/NJ female; aged for two years; and then mated to

a new, young FVB/NJ female. Progeny were collected at genotyped at each timepoint, and the

number and location of each crossover tallied. Sample sizes are shown in Table 3.3. In total, 4, 079

autosomal crossovers from 301 informative meioses (all male) were identified.

Advanced paternal age is weakly associated with an increase in the number of autosomal

crossovers (F1,298 = 5.67, p = 0.018). Offspring of old males inherit an average of 0.7 (95% CI 0.03−

1.3) extra crossovers compared to offspring of young males (Figure 3.18A). The subspecific origin

of the X chromosome has a much stronger effect (F1,298 = 21.3, p = 5.8× 10−6): offspring of males

with a M. m. musculus X chromosome — crosses PWK/PhJ×CAST/EiJ and PWK/PhJ×WSB/EiJ

— inherit an average of 1.6 (0.9 − 2.3) extra crossovers compared to offspring of males with a

3This experiment was designed by Jim Crowley and Fernando Pardo-Manuel de Villena. Mice were bred by Jim Crowley
between 2009 and 2012.
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Figure 3.17: Pedigrees used to test paternal age effect on recombination. Reciprocal F1 hybrids were

generated for two of the three possible combinations of the wild-derived founder strains of the CC

(CAST/EiJ, PWK/PhJ and WSB/EiJ). Males were bred to a young FVB/NJ at around 3 months of

age, and then to a new FVB/NJ female at 18 months of age. X and Y chromosome configurations

are shown for the males, and carriers of a M. m. musculus X chromosomes are emphasized.

Paternal age

Cross young old

PWK/PhJ×CAST/EiJ 75 105

PWK/PhJ×WSB/EiJ 12 14

WSB/EiJ×PWK/PhJ 47 48

Table 3.3: Number of genotyped progeny by cross and paternal age.
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non-musculus X. We could not detect an age×X-chromosome interaction effect (F1,298 = 1.64,

p = 0.20). Whereas the increased recombination rate in females relative to males in the CC is

due in part to weaker crossover interference in females, we find no effect of paternal age on

the interference parameter ν under the gamma model (Figure 3.18B). Interference is lower in

crosses with a musculus X (ν = 8.6 ± 0.7) than without (ν = 11.1 ± 0.8), but the difference does

not reach significance at the α = 0.05 threshold. Instead, the increase in crossover count by

both age and X-chromosome genotype appears to be driven by an decrease in the proportion of

non-recombinant longer chromosomes (arbitrarily defined here as chromosomes 1 through 12),

or equivalently an increase in the proportion of double-recombinant chromosomes, without a

change in the number of single-recombinant chromosomes transmitted (Figure 3.18C). Among

double-recombinant chromosomes, the distance between adjacent crossovers is not different by

age (p = 0.48, Wilcoxon rank-sum test) but is marginally different (p = 0.05) by X chromosome

(Figure 3.18D).

An excess of X-Y asynapsis has been reported in aged male mice235 but not humans236. Recom-

bination in the mouse PAR has proven difficult to study237 because the PAR in classical inbred

strains is very short compared to other mammals, and composed mostly of repetitive sequences

that are difficult to assemble197. However, the Y chromosome of the CAST/EiJ strain carries an

extra 430 kb of sequence that is X-linked in other strains and just proximal to the PAR boundary238.

Our genotyping array (MegaMUGA) has several markers in this “extended PAR” informative

between CAST/EiJ and PWK/PhJ. We estimate 9.6% (95% CI 5.7− 14.3%) recombination between

the distal-most informative marker, UNC31595576 (chrX:169921994) and sex in 176 progeny of the

PWK/PhJ×CAST/EiJ cross (Figure 3.19 and Table 3.4). There is no association with paternal age

(OR = 1.07, p = 0.99 by Fisher’s exact test.) The recombination rate in the extended PAR is 1% per

44.5 kb, approximately tenfold higher than the genome-wide average of 1% per 500 kb.

3.2.5 Crossovers are enriched in known hotspots

Patterns of linkage disequilibrium in human and great ape populations219 and maps of re-

combination precursors in mouse218 have shown that essentially all crossovers in mammals occur

within recombination hotspots. Crossover positions are constrained by the position of programmed

DSBs during meiotic prophase, which are in turn dictated by affinity of the interaction between

the histone methyltransferase PRDM9 and instances of its degenerate 13 bp binding motif. Tens of
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Figure 3.18: Effect of age and X chromosome on male recombination. (A) Distribution of the

number of transmitted crossovers per meiosis by X chromosome origin and paternal age. (B)

Estimates of interference parameter ν under the gamma model (±1 SE) by X chromosome origin

and age. (C) Proportion of non-recombinant (left) and single-recombinant (right) chromosomes by

X chromosome origin, paternal age, and chromosome size. (D) Cumulative distribution of genetic

distance between adjacent crossovers on double-recombinant chromosomes, by X chromosome

origin and paternal age.
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X: 169542082

standard
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X: 169969759
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Figure 3.19: Strategy for measuring pseudoautosomal recombination in offspring of

(PWK/PhJ×CAST/EiJ)F1 males. In the absence of recombination, female progeny inherit a

PWK/PhJ X and males a CAST/EiJ Y. Recombination can be detected between sex and the distal-

most informative marker within the extended PAR of CAST/EiJ (UNC31595576).

Paternal age

Product young old Total

non-recombinant 91 (90.1%) 68 (90.7%) 159 (90.3%)

recombinant 10 (9.9%) 7 (9.3%) 17 (9.7%)

101 75 176

Table 3.4: Count of meiotic products according to recombination status in the extended pseudoau-

tosomal region (PAR) of CAST/EiJ, observed in progeny of (PWK/PhJ×CAST/EiJ)F1 males. There

is no association between the rate of crossovers in the PAR and paternal age (OR = 1.07, p = 0.99

by Fisher’s exact test.)
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thousands of hotspots have been experimentally predicted in male mice using inbred strains and

F1 hybrids. However, due to the process of “hotspot erosion,” it remains difficult to predict which

sequences will be targeted for DSBs in a mixed genetic background heterozygous for different

Prdm9 alleles. Little is known about the process through which the small subset of DSBs that will

become crossovers are distinguished from the remaining non-crossover products. Furthermore,

hotspot maps derived from recombination precursors have so far been constructed only for males

because of the difficulty of obtaining tissue at the appropriate developmental stage in females.

Crossovers in the DO can be resolved to a median interval of 29.6 kb (median absolute deviation

[MAD] 30.1 kb) on the autosomes and 66.0 kb (72.7 kb) on the X chromosome. While this resolution

is too coarse to identify hotspots de novo, the total size of the dataset allows a powerful test

for sex-averaged usage of known hotspots. We calculated the cumulative density of crossovers

(accounting for uncertainty in crossover position) within hotspots ascertained as H3K4me3 peaks in

spermatocytes of male offspring of crosses between C57BL/6J, WSB/EiJ, CAST/EiJ and PWD/PhJ

(closely related to PWK/PhJ) . Experimentally-defined hotspots overlap a median 0.18 crossovers

per kb of hotspot in the DO, versus 0.09 crossovers per kb in random genomic intervals of equal

size. The enrichment of crossovers in hotspots is similar regardless of the genetic background in

which hotspots were ascertained (Figure 3.20A). Hotspot strength, as defined by the density of the

H3K4me3 signal, is weakly correlated (Spearman’s ρ = 0.24) with crossover density (Figure 3.20A).

Surprisingly, only 48.8% (95% CI 47.8− 49.7% by non-parametric bootstrap) of crossovers on

autosomes and 47.4% (46.3− 48.3%) of crossovers on the X chromosome overlap any previously-

identified hotspot. Although the broadness of our crossover intervals relative to hotspots makes

it unlikely that crossover intervals would fail to overlap the underlying hotspot by chance, we

sought to rule out artifacts due to the distribution of informative SNP markers on our genotyping

platforms. We partitioned crossovers according to the strains at the junction and discovered that

hotspot overlap is systematically reduced among crossovers between classical inbred strains versus

crossovers involving a wild-derived strain (Figure 3.21). This suggests that the apparent lack of

overlap with hotspots may be due to a lack of precision in the definition of crossover intervals

when the strains at the junction share a haplotype identical by descent (IBD). When crossovers are

partitioned according to whether or not they occur in regions where all five classical inbred founder

strains are IBD, it is clear that hotspot overlap is reduced in IBD regions, but that IBD regions do
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Figure 3.20: Recombination hotspot usage in the DO. (A) Distribution of crossover density in

hotspots defined by H3K4me3 ChIP-seq in testes from several genotypes, versus random genomic

intervals of equal size. Crosses are denoted as (maternal strain)×(paternal strain), and strains

denoted by their one-letter codes: B = C57BL/6J, F = CAST/EiJ, G = PWD/PhJ, H = WSB/EiJ. (B)

Distribution of within-hotspot crossover density by bins of hotspot strength. Overlap is computed

separately for the autosomes (A, right) and X chromosome (X, left).
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(
8
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)
= 28 pairs of founder strains are present at the junction. Hotspot usage is shown

separately for autosomes (A, left) and the X chromosome (X, right), and pairs are sorted according

to hotspot usage on the autosomes.

not fully explain the reduction in hotspot overlap versus crossovers involving a wild-derived strain

(Figure 3.22).

3.2.6 Crossovers are suppressed near large structural variants

At the megabase scale, genetic and physical distance are well-correlated. Nonetheless, we

noticed local plateaus in the cumulative genetic maps for most chromosomes indicative of regions

with much smaller genetic than physical size. The effect was present in both the G2:F1 and DO

maps and was especially obvious on the X chromosome (Figure 3.8). Based on this observation

we used the extremely dense DO map to systematically define 105 contiguous regions of 100-fold

or more reduced recombination rate relative to the chromosome-specific background (see § 3.5).

These “coldspots” are not simply the complement of hotspots: whereas the hotspots investigated
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Figure 3.22: Proportion of crossovers overlapping a known recombination hotspot, among

crossovers falling within or outside regions shared IBD between all five classical inbred founder

strains.

above have median spacing 14.6 kb (MAD 15.9 kb), coldspots span 600 kb to 13.6 Mb. Coldspots

are found on all chromosomes but are particularly abundant on the X chromosome (accounting for

22.4% of its length.) An example is shown in Figure 3.23.

Given the approximately uniform genomic distribution of DSBs in spermatocytes, coldspots

potentially represent the downstream effect of the regulatory process(es) that designate DSBs

for crossover versus non-crossover outcomes. We therefore sought to identify the sequence,

structural or epigenetic features responsible for suppression of crossovers in coldspots. We first

used reference genome annotations and comparative genomics data to define the genomic profile

of coldspots (summarized in Table 3.5). Coldspots contain fewer protein-coding genes but more

pseudogenes than the rest of the autosomes and X chromosome. They are enriched for some classes

of transposable elements (LINEs and LTRs) but not others (SINEs). Coldspots lie in evolutionary

labile regions of the genome: they are half as likely to contain a conserved element in a 40-

way multiple sequence alignment of eutherian mammals than random genomic regions. Most

dramatically, coldpsots have 3.6-fold enrichment of segmental duplications (SDs), defined here as

duplications longer than 1 kb with > 90% mutual sequence identity.

Structural variation in populations is concentrated in and around clusters of segmental duplica-

tions42,37,239,43,36. Although in practice SDs are defined on the basis of a single reference sequence,
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Figure 3.23: Example of a recombination coldspot on chromosome 12. (A) Strain-specific local re-

combination rates (in cM/Mb) across the proximal 50 Mb of chromosome 12. Median chromosome-

wide recombination rates for each strain are marked with grey dashed lines. The coldspot is

indicated by the grey shaded region. (B) CNVs ascertained in the DO. Top line, all CNVs irre-

spective of strain distribution pattern; remaining lines, CNVs with an allele private to a single

strain.
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Feature Enrichment q-value

Reference genome annotations

Protein-coding gene 0.60 < 0.001

Pseudogene 1.98 < 0.001

LINE 1.69 < 0.001

SINE 0.69 < 0.001

LTR 1.67 < 0.001

Segmental duplications 3.66 < 0.001

Variation between species

GERP constrained elements 0.46 < 0.001

Variation within species

IBD among classical strains 0.69 < 0.001

Common CNVs in DO 3.64 < 0.001

Multiallelic CNVs in DO 4.34 < 0.001

Table 3.5: Enrichment of various genomic annotations in coldspots versus genome background.

Significance was computed over 1000 shuffles and is expressed as the q-value, proportion of tests

expected to represent false discoveries. GERP constrained elements are sequences conserved across

40 eutherian mammals as defined by the Ensembl Compara pipeline115. CNVs are defined on the

basis of whole-genome sequencing of 228 DO mice as described in the main text.
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this sequence represents just one random draw from the pool of segregating structural variants

(SVs) in the population. We posited that the extensive overlap between coldspots and SDs was

simply a proxy for an underlying association between coldspots and large SVs segregating in the

CC and DO. To test this hypothesis we used low-coverage whole-genome sequencing data from 228

male DO mice to identify copy-number variable regions and examined their overlap with coldspots

for recombination. First we calculated normalized read depth (an estimator of copy number) in 25

kb windows across the genome for each individual, and then calculated the coefficient of variation

(median / MAD) in the population for each window. In this way we identified copy-number

variable regions without attempting to assign genotypes at the individual level. The result is

striking: regions with population-level variation in copy number are nearly always coincident with

coldspots for recombination (Figure 3.24). But the reverse is not true, and suppression of crossovers

in some cases extends megabases away from the nearest copy-number variable region (e.g. central

chromosome 2, distal chromosome X).

Defects in pairing, synapsis or DSB resolution between alleles with unequal copy number

in heterozygous individuals could plausibly explain the absence of crossovers in copy-number

variable regions. To investigate the relationship between CNV allele-sharing and crossovers, we

ascertained and genotyped 1, 749 CNV loci (1, 595 on the autosomes and 154 on the X chromosome)

at least 10 kb in size. The final callset contains only CNVs with minor-allele count > 5 in the sample

of 228 individuals whose position and founder allele copy numbers could be confirmed by genetic

mapping (Figure 3.25). Overlapping loci with identical strain distribution patterns were merged

into a single locus. A majority of CNV loci (1, 227; 71%) have a minor allele private to a single

founder strain, and most of these private alleles (862; 70%) are contributed by the wild-derived

strains CAST/EiJ, PWK/PhJ and WSB/EiJ. As expected, CNVs cluster near SDs: 1, 211 CNV loci

(69%) overlap SDs, and the great majority of these (91%) are multiallelic. Coldspots are enriched in

CNVs, as expected, and the enrichment is stronger for multiallelic CNVs (Table 3.5). Figure 3.26

summarizes the properties of CNVs ascertained in the DO.

Our working model predicts that those few crossovers which occur in or near coldspots should

be biased towards some pairs of founder haplotypes — those with equal or similar copy number

— over others. To measure this bias we calculated an information score, defined as the Kullback-

Leibler divergence between the observed frequency of junctions and the expectation based on the
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Figure 3.24: Genome-wide view of copy-number variability in the DO. The coefficient of variation

(median/MAD) of normalized read depth is shown on all autosomes and the X chromosome. Grey

shaded regions are coldspots for recombination.
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Figure 3.25: Genetic mapping confirms position and allelic configuration of complex CNVs. (A)

LOD scores from single-locus QTL scan using copy number at chr7: 38.29 Mb as a quantitative trait.

(B) Founder strain means (±2 SE) at the QTL peak (chr7: 39.45 Mb), which provide a direct estimate

of founder copy number at this triallelic CNV. Note that the QTL peak is not located exactly at the

nominal position of the CNV.
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Figure 3.26: Properties of CNVs ascertained in the DO. (A) Proportion of CNV loci according to

variant type (DEL = deletion, DUP = duplication, MIXED = complex variants) and number of

alleles in the DO. (B) Cumulative distribution of nominal size of CNV loci by variant type, on log10

scale. (C) Count of variants per chromosome, by type. (D) Count of private variants (minor allele

found in exactly one founder strain) per chromosome.
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population frequency of the corresponding haplotypes, in 500 kb windows across the autosomes

and X chromosome. The score has expected value 1, and larger values indicate more extreme

departures from random joining of haplotypes according to their population frequency. The

information score clearly tends to take larger values within cold regions on both the autosomes

and the X chromsome (p < 10−5, Wilcoxon rank-sum test) (Figure 3.27A-B). Within CNV loci that

overlap cold regions, we next asked whether haplotypes with the same copy number were more

likely to recombine than haplotypes with different copy numbers. This association, measured as

the odds ratio, is shown in Figure 3.27C. The distribution of odds ratios calculated from observed

crossover frequencies and copy numbers is significantly different from that calculated over 1000

random permutations of copy numbers across founder strains (p < 10−5, Wilcoxon rank-sum test.)

Nonetheless, copy number alone appears to be at best a very weak predictor of crossover patterns

in the vicinity of coldspots. This suggests that other forms of structural variation besides simple

changes in dosage are important in shaping the landscape of recombination at megabase scales.

3.2.7 Coldspots have epigenetic features of inactive chromatin

The key signals dictating the position of DSBs and ultimately meiotic crossovers are epigenetic.

In primates and in mouse, the H3K4me3 mark established by PRDM9 designates a subset of the tens

of thousands of available hotspots for DSBs. In taxa without a functional PRDM9 homolog, such as

birds212, dogs215 and yeast214, recombination is directed towards gene promoters and CpG islands.

The mechanism for this targeting is not clear, but may be related to DNA methylation or to features

of chromatin architecture such as nucleosome spacing. We asked whether a complementary suite of

epigenetic features could be defined for coldspots, with a view towards identifying properties that

could explain the decoupling of the spatial distribution of DSBs from crossovers. Our prototype is

the sex chromsomes in male meiosis: DSBs occur on both the X and the male-specific region of the

Y, but (under normal circumstances) none of these result in crossovers.

We first examined the association between gene expression and coldspot status in male germ

cells. Because DSBs are formed during leptotene and chiasmata are established by pachytene, we

re-analzed a published RNA-seq experiment240 on leptotene/zygotene and pachytene/diplotene

spermatocytes isolated by fluorescence-activated cell sorting. Median expression of genes in

coldspots is almost ten-fold lower than genes outside coldspots (p < 10−5, Wilcoxon rank-sum

test), and the effect holds for both the autosomes and the X chromosome (Figure 3.28). This may be
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Figure 3.27: Biased distribution of crossovers across strain pairs in the vicinity of coldspots. (A)

Crossover information score, measuring departure from expected frequency of crossovers with

respect to founder strain pairs, in 500 kb windows across the genome. (B) Cumulative distribution

of the information score in cold regions (blue) versus the remainder of the genome (grey), calculated

separately for the autosomes (A) and X chromosome (X). (C) Cumulative distribution of odds ratios

for association between copy number and crossover incidence (see main text) for CNV loci in cold

regions, compared to 1000 permutations.
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Figure 3.28: Distribution of normalized expression values (transcripts per million, TPM) for

genes within (dashed lines) and outside (solid lines) coldspots, measured by RNA-seq in lep-

totene/zygotene and pachytene/diplotene spermatocytes.

due in part to meiotic silencing of unpaired chromatin (MSUC), which has begun to take hold by

late pachytene.

It has been shown that PRDM9 binding is decreased in regions with features characteristic of

heterochromatin, including the H3K9me2 mark and association with the nuclear membrane207. We

hypothesized that coldspots are depleted in crossovers in part because they are heterochromatic

or heterochromatin-like. To this end we re-analyzed two ChIP-seq experiments performed in

spermatocytes, one against the PRDM9-mediated H3K4me3 mark and one against the H3K9me2

heterochromatin mark, for evidence of enrichment or depletion in coldspots. Rather than identify

discrete methylation peaks — which are prone to technical artifacts in duplicated and repetitive se-

quence — we compared the density of ChIP-seq reads in coldspots versus random genomic intervals

of equal size (Figure 3.29). As expected, H3K4me3 signal associated with recombination hotspots

and active promoters is decreased in coldspots on both the autosomes and sex chromosomes

(p < 10−5, Wilcoxon rank-sum test.) Likewise the heterochromatin-associated H3K9me2 signal is

increased in coldspots compared to the genomic background — but only on autosomes (p < 10−5,
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Figure 3.29: Distribution of ChIP-seq signal density, measured as reads per million base pairs of

target (FPKM), for the hotspot-associated H3K4me3 mark and the heterochromatin-associated

H3K9me2 mark. Dashed lines, distribution in coldspots; solid lines, distribution in random genomic

windows having the same size distribution as coldspots. Autosomes and X chromosome are plotted

separately because DSB repair on the sex chromosomes is temporally and spatially distinct from

the autosomes during male meiosis.

Wilcoxon rank-sum test.) The discrepancy between the X chromsome signal for H3K4me3 and

H3K9me2 likely reflects the sequestering of the X chromosome into the transcriptionally-inert sex

body over the course of meiotic prophase. Taken together, levels of gene expression and these two

canonical histone marks indicate that coldspots correspond to transcriptionally-repressed, closed

chromatin during male meiosis.

3.2.8 Coldspots are not unique to the rodent lineage

Both the global rate and the fine-scale spatial distribution of recombination are rapidly evolving

in the mouse lineage . Coldspots might be a byproduct of this process rather than a common feature

of mammalian meiosis. To test the generality of coldspots we sought a second mammal for which

there exists both a high-quality reference genome assembly and a dense pedigree-based genetic

map. (Genetic maps derived from patterns of LD in populations are prone to artifacts in SDs and

other repetitive sequences where it is difficult to ascertain variants using short-read sequencing.) We
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chose the domestic dog (Canis lupus familiaris): large pedigrees are available241, and like the mouse,

the dog has an all-acrocentric karyotype, mitigating the possibility of confounding of coldspots

with the centromere effect242. More interestingly, domestic dogs and other canids apparently

lack a functional PRDM9 ortholog213, providing an opportunity to test whether coldspots are

independent of PRDM9 and therefore of a lineage-specific spatial distribution of recombination

hotspots.

We re-analyzed a published genetic map derived from a golden retriever pedigree spanning

approximately 408 effective meioses241. Local sex-specific recombination rates across the 38 dog

autosomes are shown in Figure 3.30. The dog map recapitulates the major feature of the mouse

map: elevated recombination rate in the distal portion of chromosomes in males but not females.

Applying the same strategy as we used for the sex-averaged mouse map from the DO, we identified

66 coldspots on 13 chromosomes in the sex-averaged dog map. They are larger than coldspots in

mouse — ranging in size from 400 kb to 11.4 Mb — and cover a slightly smaller fraction of the

autosomes (3.9%) as a consequence of the lower density of the dog map, and therefore lower power

to discriminate true coldspots from stochastic variation in the background recombination rate.

As with mouse, coldspots in the dog genome are 2.5-fold enriched for SDs (q < 0.001). Example

coldspots on dog chromosomes 9 and 22 are shown in Figure 3.31.

It is well-known that the broad-scale features of the recombination map are conserved across

mammals243. Similarity in the size and sequence features of coldspots between dog and mouse,

whose last common ancestor lived approximately 55 million years ago244, suggests that coldspots

associated with SDs and/or SVs are also a general feature of meiosis in mammals. They are

independent of PRDM9 and of the fine-scale distribution of DSBs.

3.3 Discussion

3.3.1 Sex differences in recombination

Two general rules seem to apply to sex-specific linkage maps from many animal taxa: the overall

recombination rate is lower in the heterogametic sex (in mammals, the male); and recombination in

the heterogamtetic sex is biased away from the centromere245,246. We have replicated this result

quite robustly in the G2:F1, and provide evidence that weaker crossover interference in females

is at least partly responsible for the differences in overall recombination rate between the sexes,
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Figure 3.30: Sex-specific recombination rates in the domestic dog. Local sex-specific recombination

rates (cM/Mb), calculated in 5 Mb windows with 1 Mb offset between adjacent windows, in a

golden retriever pedigree241. Note that the orientation of chromosomes 27 and 32 appear to be

reversed with respect to the centromere.
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Figure 3.31: Recombination coldspots in the domestic dog. Local sex-specific recombination rates

(cM/Mb), calculated in 500 kb windows, on portions of dog chromosomes 9 and 22. Coldspots

ascertained on the sex-averaged map are indicated by grey bars along the x-axis. Due to variation

in the distribution of informative markers in the pedigree, male and female maps do not necessarily

cover the same genomic territory.
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consistent with other studies187. The dramatic sex difference in spatial distribution of crossovers

remains to be explained.

We have previously argued that the tendency of males to recombine in subtelomeric regions

is a side effect of the requirement for a crossover in the pseudoautosomal region(s) at the distal

tips of the X and Y chromosomes247. That now seems unlikely. Sex-specific linkage maps from

multiple species of birds212, fish248,249 and frogs250 show sex differences similar to linkage maps in

mammals. The distally-biased pattern thus appears to be the ancestral one. If this is the case, then it

must be independent of the morphology of the sex chromosomes, which differ widely between and

within major vertebrate taxa. Redistribution of crossovers more uniformly along the chromosome

in females might be an adaptation to maintain the stability of bivalents during the extended arrest

that characterizes oogenesis. However, crossovers too near the centromere are associated with

aneuploidy12.

An alternative explanation invokes meiotic drive. Drivers closely linked to the centromere

can distort meiosis I only, while those not linked to the centromere can drive at meiosis II only14.

Population genetic models predict that alleles that modify the recombination rate can increase in

frequency by ablating meiotic drive251,252. When meiotic drive is sex-limited — as is the case for true

meiotic drive during female meiosis — selection favors sex-limited modifiers of the recombination

rate and thereby leads to differences in recombination rates between males and females. When

drive occurs at meiosis II, selection favors alleles unlinked to the drive that increase recombination

between the drive and the centromere; all other things being equal, the net effect will be a more

homogeneous distribution of crossovers along chromosome arms246.

3.3.2 Effects of paternal age on recombination

Well-powered pedigree studies in humans have shown that the paternal age effect, if one

exists at all, must be much smaller than the maternal age effect231,233. By contrast, cytological

studies of mouse spermatocytes demonstrated a robust increase in the number of chiasmata per

cell among older compared to younger males from the same strain235. The rate of asynapsis,

especially for the sex chromosomes, appeared to be elevated in older male mice during meiosis

I. Comparatively low rates of aneuploidy in meiosis II led the authors to conclude that cells with

aberrantly paired chromosomes were effectively eliminated by the end of meiosis I irrespective

of age. Our study is the first to demonstrate an effect — albeit a weak one — of paternal age on
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the number of transmitted crossovers. We show that the effect can be attributed to a mild increase

in the number of double-recombinant chromosomes rather than to any detectable change in the

strength of interference. Absence of an age effect on the recombination rate in the pseudoautosomal

region is consistent with a strict quality-control mechanism during the first meiotic prophase.

Older males could transmit more crossovers for several reasons. Expression of trans-regulators

of DSB formation such as Prdm9 might increase with age. Balance between the crossover and

non-crossover pathways might be altered such that the number of DSBs is equal between old and

young males, but more are repaired as crossovers in older males. Each of these hypotheses is

readily testable. Alternatively, epigenetic changes in the germline of older males might act in cis

to increase the rate of recombination. There is some evidence that the methylation decreases with

age around the periphery of CpG islands and in sites of nucleosome binding253. Hypomethylation

might be propagated, via changes in nucleosome affinity into increased binding avidity for PRDM9,

to net increase in the strength of recombination hotspots. If so, we would predict changes in the

fine-scale distribution of DSBs in younger versus older males.

It should be noted that, whatever the mechanism for the paternal age effect on recombination,

it is qualitatively different from the maternal age effect. Spermatogenesis occurs continuously over

the reproductive lifetime of male mammals, so sperm of aged males are the product of meioses

initiated in old age. This leaves little opportunity for selection against a class of spermatocytes with

fewer chiasmata. By contrast, eggs that complete meiosis in aged females represent the survivors

among a limited pool of primary oocytes. The kinetics of the oocyte pool remain the subject of

some controversy227,254. Nonetheless, a positive correlation between female recombination rate

and reproductive success231 argues that the maternal age effect on recombination can be attributed

at least in part to selection within the germline for oocytes with more chiasmata. This explanation

is compatible with the (strong) maternal age effect on aneuploidy.

3.3.3 Recombination-rate variation and speciation

The two hybrid sterility loci of largest effect in intersubspecific crosses — on chromosomes 17

(Prdm9153) and X (Hstx1152) — are both modifiers of the recombination rate. Important post-zygotic

reproductive barriers in mouse are thus mediated by the recombination machinery. The CC and

DO, which mix the genomes of all three subspecies, provide a unique opportunity to estimate the

effects of modifiers of the recombination rate in a fully randomized genetic background.
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Population genetic theory predicts that hybrid breakdown should first affect the heterogametic

sex — Haldane’s rule255 — and that incompatibilities between diverging taxa should accumulate

disproportionately on the sex chromosomes when partially recessive256. Most theoretical and

empirical attention has focused on the role of the X chromosome257,258,259. We confirm the presence

of an X-linked locus in CAST/EiJ that increases the rate of recombination175.

Our study is the first report of a Y-linked modifier of the recombination rate: in the G2:F1

population, the PWK/PhJ Y is associated with an extra 1.1 crossovers per meiosis relative to the Y

chromosome of classical inbred strains, and an extra 2.4 crossovers relative to the Y chromosome

of CAST/EiJ. The interpretation of these results deserves some caution, as the design of the CC

ensures that a Y chromosome is never tested against an X chromosome from the same strain. In

particular this means that the effect of the PWK/PhJ and CAST/EiJ Y chromosomes cannot be

tested in the presence of an X of the same subspecific ancestry. Given the existence of large-effect

modifiers of recombination on the X we cannot rule out the possibility that what we observe in

the G2:F1 as a marginal effect of the Y is in fact a byproduct of X-Y interactions. The role of the Y

chromosome in hybrid sterility appears to be minor260 and post-meiotic261.

We identified one X-Y interaction effect on recombination rate: for CC funnels in which an

NZO/HlLtJ X and a PWK/PhJ Y can meet inG2, the rate of recombination is reduced by nearly 30%.

A direct test in G1 is not possible because the NZO/HlLtJ×PWK/PhJ cross (but not the reciprocal

cross) produces few, if any, viable offspring, the reasons for which are unknown 4. Our result raises

the possibility that there may be general developmental defects in the (NZO/HlLtJ×PWK/PhJ)F1

due to antagonistic interactions between the sex chromosomes. These may be unmasked in G2

after being uncoupled from the autosomal background. If this is true, we would predict negative

LD between the Y and one or more loci on the X in the DO. We caution that the models fit for G2

recombination rates use expected X-chromosome dosage based on funnel order, since G2 genomes

are not directly observed. It is possible that, in the 9 funnels in which the NZO/HlLtJ X and the

PWK/PhJ Y could meet in a G2 male, the NZO/HlLtJ X was not transmitted by the G1 female.

In addition to testing hypotheses regarding genetic control of the overall recombination rate in

4Fernando Pardo-Manuel de Villena and Ginger Shaw, personal communication
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the G2:F1, we have investigated the fine-scale distribution of recombination in the DO. Despite our

limited resolution to define the exact position of crossovers, only around half of crossovers in the

DO have any overlap with known recombination hotspots. This reflects the incompleteness of our

catalog of hotspots: high-throughput analyses of DBSs via ChIP-seq have provided strong evidence

that essentially all DSBs occur in hotspots218. Our study is the first to analyze an extremely dense

recombination map constructed from crossovers rather than recombination precursors (H3K4me3

peaks, DSB sites or chiasmata) in a genetically-diverse population. It is clear that the fine-scale

landscape of recombination is distinct from crosses between two inbred strains. Four Prdm9 alleles

are segregating in the DO and most individuals will be functionally heterozygous. When two

PRDM9 variants are present in heterozygosity, the “stronger” variant acts in a dominant fashion

to activate its own cognate hotspots262, at least in F1 hybrids. Hotspot usage in a DO mouse

will thus depend on its Prdm9 diplotype as well as the frequencies of the cognate haplotypes in

the rest of the genome. In this setting we predict that most crossovers are initiated at ancestral

rather than co-evolved hotspots209,217. Given sufficient resolution on a large sample of crossovers —

for instance, using whole-genome sequence data — we could obtain the distribution of PRDM9

binding motifs and estimate which PRDM9 allele(s) are most active in the DO.

3.3.4 The relationship between structural variation and recombination

The degree of suppression of crossovers near clusters of CNVs in both the CC and DO is striking.

Some of these coldspots, such as the example on chromosome 12 shown in figure Figure 3.23, have

only one or two crossovers in the more than 15, 000 effective meioses in the DO. Overlap with

repetitive sequences makes coldspots suspect for technical artifacts: do we simply lack the power

to observe crossovers in these regions of the genome? It is the case that SNP markers on the

genotyping arrays used in this study are based away from duplications and repetitive sequences95.

However, unlike ChIP-seq based DSB maps, we require only information at flanking markers to

identify a crossover. Provided crossovers are at least a few megabases apart — as is clearly the case,

at least through generation 21 (Figure 3.4) — the probability of completely missing a crossover

is negligible. (Even for closely-spaced crossovers in successive generations, the probability that

flanking haplotypes are the same is only 1
8 .) This is the special value of genetic data and the design

of the DO. An alternative explanation for coldspots might be systematic genotyping error in and

near repetitive regions. But genotyping error tends to increase, not decrease, the number of inferred
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crossovers in the DO and other multiparental populations263.

The classical explanation for regional absence of crossovers in pedigrees is inversion51: the

reciprocal products of (odd numbers of) crossovers in inversion heterozygotes are acentric and

dicentric, respectively, and cannot be properly segregated to gametes. Inversions large enough

to by cytologically visible have been described in many species264. Besides the t-haplotype and

major histocompatibility complex (MHC) on proximal chromosome 17265, there are few reports

of inversions segregating in natural populations of mice. We hypothesize that recombination

coldspots correspond to regions of complex structural rearrangement that are highly polymorphic

within and between mouse subspecies. High-throughput sequencing with short reads, especially

at sparse coverage, is well-suited to identifying changes in copy number but not to characterizing

changes in kilobase- to megabase-scale rearrangements. The issue is further complicated by reliance

on a reference genome assembly from C57BL/6J that may bear little resemblance to the underlying

genomic organization in other strains. What we have detected as CNVs are likely, at least in part, a

proxy for more complex rearrangements; consequently, copy number alone is only a weak predictor

of crossover patterns. When different structural alleles meet at meiosis, we predict that pairing and

synapsis are disrupted. Coldspots are thus excluded from the chromosomal axes where crossovers

are formed. The qualitative result is the same as for classical inversions but at smaller scale.

Other explanations are possible. Coldspots have epigenetic features consistent with closed

chromatin, and therefore may simply not be accessible to the protein complexes that generate DSBs.

But this fails to account for the degree of overlap between coldspots and CNVs, unless CNVs

tend to be confined to closed chromatin — in which case the underlying association is again with

structural variation.

Enrichment of SDs and CNVs in coldspots presents a paradox: SDs are thought to be sites of

recurrent rearrangement because they are prone to non-allelic homologous recombination (NAHR)

between paralogous copies of a repeated sequence, yet we have shown that recombination is

suppressed across SDs. How, then, does the structural complexity of coldspots arise? We offer

two hypotheses to resolve the paradox that are not mutually exclusive. First, recombination in

coldspots may be biased towards non-crossover outcomes. In the presence of duplicated sequences,

non-homologous exchanges can occur between sister chromatids or within the same chromatid,

and some of the products will be mutations47. Defects in pairing between homologous sequence in
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heterozygotes or hemizygotes for different structural alleles may also predispose to mutation, as

on the human Y chromosome266. Second, mutations in coldspots may be associated with errors of

DNA replication rather than meiosis. This class of mechanisms is triggered either by DNA damage

or stalling of replication forks and can give rise to novel alleles of arbitrary complexity44. That

SVs in human have predominantly paternal origin also suggests that they are disproportionately

associated with replication75. Replication-based mutations cannot explain the congregation of

new SVs near existing duplications. In any case, the structural mutation rate in coldspots must

be quite high and the resulting alleles not too deleterious: mutliallelic SVs are common in both

mouse43,267,268 and human populations39,36. We show evidence for an elevated mutation rate at

one large SV in mouse, R2d2, in Chapter 4.

3.4 Conclusions and future directions

Detailed characterization of the sequence and organization of highly polymorphic, structurally

complex duplication clusters would shed light on the nature of recombination coldspots. This

will require a combination of third-generation sequencing using longer reads and more traditional

molecular biology. We predict that these analyses will reveal a level of polymorphism that dwarfs

the variability of unique sequence33. Without reasonably complete sequence of a representative

panel of alleles, our inferences regarding their evolution and functional relevance will be limited.

The combination of genetic mapping with whole-genome sequencing (WGS) in a segregating

population like the DO is a powerful approach for learning about genome organization. Genetic

data has special value in that it is robust to many of the artifacts to which high-throughput

sequencing is vulnerable. Alignment of sequencing reads implies a strong assumption regarding

the correctness of the reference genome assembly, as well as its collinearity with the haplotypes

segregating in the population under study. Genetic mapping provides orthogonal proof of the

location of variants detected by sequencing. We have used genetic mapping to confirm the position

of CNVs and to overcome noise in assignment of copy number at loci overlapping segmental

duplications. This approach could be extended to any variant that is (1) detectable in sequencing

reads, with or without alignment to a reference; and (2) polymorphic in the population. For

example, the mouse reference genome includes 44 contigs or scaffolds not placed in the main

assembly path, mostly corresponding to clusters of large segmental duplications. If these have

variable copy number among the DO founder strains, as is likely, the DO WGS data could be used
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to localize them. The same could apply to sequence families that are completely unrepresented in

the reference assembly such as telomeric and pericentromeric satellite repeats.

These prospects underscore the enduring utility of classical genetic data for studying the

structure of the genome and the basic biology of the germline.

3.5 Materials and methods

3.5.1 Mice

Collaborative Cross G2:F1 population. The G2:F1 mice used in this study were bred at Oak Ridge

National Laboratory (ORNL) beginning in 2005 as described in detail elsewhere269,221.

Diversity Outbred population. Breeding and maintenance of the DO at the Jackson Laboratory is

described elsewhere222,270.

Aged male pedigrees. Intercrosses used to test for the effect of advanced paternal age on recombi-

nation were generated beginning in 2009 at the University of North Carolina (UNC). Briefly, all

possible reciprocal crosses were performed between CAST/EiJ, PWK/PhJ and WSB/EiJ. Male F1s

were singly housed and bred at approximately 8− 12 weeks of age and again at > 18 months of

age to young, fertile FVB/NJ females. Progeny were sacrificed at birth by cervical dislocation.

All mice were treated in accordance with the recommendations of the Institutional Animal Care

and Use Committee of ORNL, the Jackson Laboratory, and UNC, respectively.

3.5.2 DNA preparation

High molecular weight DNA from G2:F1 mice was extracted from tail tissue at UNC with a

standard phenol-chloroform method . For intercross and DO mice, low molecular weight DNA

was extracted by many different investigators using several standard methods as described in270.

3.5.3 Genotyping

G2:F1 mice were genotyped at the Jackson Laboratory using the Mouse Diversity Array92. DO

mice were genotyped on either the MegaMUGA (77,808 markers) or GigaMUGA (143, 259 markers

arrays95 by the commercial service of Neogen/Geneseek, Inc (Linclon, NE). Genotypes for DO

mice were generously contributed by many investigators and curated at the Jackson Laboratory as

described in270. Samples with > 10% missing calls were excluded.
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3.5.4 Haplotype reconstruction

Analyses of recombination in multiparental populations depend on haplotype reconstruction —

inference of the mosaic structure of individual genomes in terms of the founder individuals. In

the G2:F1 all individuals are obligate heterozygotes, so there exist 8choose2 = 28 possible diploid

genotype (diplotype) states. For the DO an additional 8 homogzygous states are possible. We used

hidden Markov models (HMMs) to estimate the posterior probability of each of the 28 (G2:F1) or 36

(DO) possible diplotype states for each individual, given that individual’s observed genotypes and

the observed genotypes of multiple biological replicates of founder strains and F1s. The most likely

founder mosaic was obtained by selecting the diplotype state with the highest posterior probability

at each marker. Diplotypes were phased to haploid chromosomes using pedigree information in

the G2:F1 or a heuristic in the DO (see below). Junctions between haplotype blocks in this phased

mosaic represent crossovers. Each crossover in our dataset is represented as the interval between

the last informative marker in the proximal haplotype block and the first informative marker in the

distal haplotype block.

Collaborative Cross G2:F1 population. The funnel breeding scheme of the CC imposes a rich set

of constraints on the possible diploid genotypes at the G2:F1 generation. The software GAIN271

exploits these constraints to infer fully phased haplotypes given genotypes for a pair of G2:F1

siblings and the funnel order at G0. The inference procedure was split into two steps: a first pass

using only 121, 504 markers successfully typed in > 99% of individuals; and a second pass using

an additional 549, 595 markers to refine crossover boundaries.

Diversity Outbred. Haplotypes for DO mice were reconstructed using the HMM module of

DOQTL263 with genotypes from MegaMUGA (68, 268 QC-passing markers) or GigaMUGA (120, 789

QC-passing markers) as input. Diplotypes were “pseudo-phased” using a greedy algorithm:

moving left to right along each chromosome, choose the configuration that minimizes the total

number of crossovers. In sibships identified based on kinship estimates from SNP genotypes, we

attempted to improve phasing using a dynamic programming algorithm. For a given chromosome

pair (e.g chromosome 1), there are 2k chromosomes in a group of k siblings. An individuals

chromosomes can have at most two phasing configurations (only one when homozygous), so there

are 2k possible configurations in the sibship. We used a scoring function that gives equal weight

to every crossover and used dynamic programming to choose the state path that minimizes the
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total number of crossovers in a chromosome pair across the k siblings. Only 0.5% more crossovers

were shared between siblings after phasing improvement. We concluded that greedy phasing is an

acceptable heuristic for our purposes.

3.5.5 Pedigree reconstruction in the DO

Kinship coefficients were estimated for all individuals within generations from SNP genotypes

using KING v1.4272. Markers with > 10% missing data or < 5% minor allele frequency were

removed. Unlike some other kinship estimators, the estimator π̂ implemented in KING does not

require that markers be in linkage equilibrium and its sampling variance decreases as the number

of markers increases. Approximately 66, 000 autosomal SNPs were used at each generation. We

used π̂ > 0.15 as a cutoff for siblings (relationship degree 2) and π̂ > 0.10 as a cutoff for cousins

(relationship degree 3), based on inspection of the distribution of pairwise kinship coefficients

across all generations.

3.5.6 Estimation of genetic maps in the G2:F1

Cumulative genetic maps for the CC funnels were computed directly from the interval rep-

resentation of crossovers by integration across each chromosome to account for uncertainty in

localization of crossovers. Maps were obtained separately across several slices of the data — males

versus females, G1 versus G2 — in addition to the overall sex-averaged map. Crossover counts

were converted to centimorgans using the formula

cM = 100×
(

number of crossovers
number of meioses× number of funnels

)

The effective number of meioses varies over different slices of the data. At G2, for example, all four

meioses in the funnel are fully observed, but only an average of three G1 meioses can be observed

per funnel.

3.5.7 Estimation of genetic maps in the DO

Estimation of the genetic map in the G2:F1 is far more challenging than in the G2:F1. Traditional

approaches to the construction of linkage maps in pedigrees assume that every crossover is

distinct and can be attributed to at most two specific meiosis (in the case of unknown phase.)

In the DO, however, crossovers cannot be uniquely assigned to a specific meiosis; the number

of effective meiosis is unknown; and the same crossover may be observed multiple times if it is
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shared IBD between two or more individuals. We first sought to reduce our total dataset of 2.2

million crossovers to a set of distinct crossovers. To do so, we identified crossovers with the same

haplotypes at the junction (e.g. HF) and overlapping coordinates in overlapping windows of two

generations (Gn−1,Gn). For each overlap, we identified the individual chromosomes on which the

crossovers were identified, and tested whether the next crossover or the previous crossover on

the same chromosomes were also shared. If at least one other neighboring crossover was shared

between the chromosomes, we considered the entire set of crossovers — both the focal pair and the

neighboring pair(s) — as shared. (See Figure 3.6 for an example.) After performing this analysis in

adjacent generations, we constructed a graph of shared crossovers across all generations (4− 21).

Nodes in the graph are individual crossovers, and edges represent sharing between chromosomes.

Connected components in the graph correspond to distinct crossovers transmitted over multiple

generations; nodes with no incoming or outgoing edges correspond to singletons that are by

definition distinct

Next we constructed a cumulative map by integrating across all distinct crossovers on each

chromosome. We noticed that the shape of this cumulative map was remarkably similar to the

shape of the sex-averaged cumulative map in the G2:F1. The two populations share the same eight

founders at the same expected allele frequencies, so we reasoned that the G2:F1 map could be

used as a scaffold for approximating the relationship between centimorgans and distinct crossover

counts in the DO. To obtain this approximation we fit polynomial regressions of degree k (using

least squares) each chromosome as follows:

cMG2:F1 = 0 + xDOβ1 + x2DOβ2 + · · ·+ xkDOβk + ε

where xDO is cumulative crossover count in the DO. (Note that the model lacks an intercept term

because the genetic map must begin at zero.) The fitted values from this regression were taken as

the centimorgan positions on the DO map. We found that rescaling with polynomials of even k or

k = 1 overestimated map length on every chromosome. Polynomials of odd degree could better

accommodate the enrichment of crossovers in subtelomeric regions. For parsimony we chose k = 3.

Note that it is possible to obtain a non-monotone function from these regressions, which violates a

fundamental property of the genetic map, that it be non-decreasing. We confirmed that none of
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the fitted models showed any evidence for violation of this property. Strain-specific maps were

estimated similarly. Every distinct crossover contributes to two strain-specific maps, corresponding

to the two haplotypes at the junction.

If all crossovers in our dataset were truly distinct, then the appropriate scaling would be linear,

and the slope would provide an estimate of the number of effective meioses we can observe in our

cross-section of the DO. We view the higher-order terms in the polynomial as correction factors

for the inclusion of cryptic duplicate crossovers in the map. In practice, however, the linear term

dominates: its median value across chromosomes is 1.4× 10−3, while the quadratic and cubic terms

are O(10−8) and O(10−13) respectively. Assuming all crossovers can be observed and ignoring

interference, the map function is linear and we can define genetic distance as

cM = 100×
(

number of crossovers
number of meioses

)

And in the rescaled DO map

cM ≈ β1x

where x is the number of observed crossovers. By substitution and elimination of terms we obtain

number of meioses ≈ 100

β1
≈ 67× 103

3.5.8 Estimation of genetic maps in intercrosses

Genotype data from the intercrosses used to investigate the paternal age effect were analyzed

using R/qtl and treated as a backcross, since only one parent (the sire) was segregating. The

number of informative markers differed by cross (13, 355 for CAST/EiJ×PWK/PhJ; 12, 510 for

PWK/PhJ×WSB/EiJ) but far exceeded saturation for a cross of this size. Genotyping errors were

identified and removed using the cleanGeno() function, and the positions of crossovers identified

using findXO(). Crossovers in the pseudoautosomal region were identified by manual inspection.

3.5.9 Models for crossover interference

Although several statistical models of the crossover interference process have been proposed,

we chose to fit the gamma model as described in224. This model has a single parameter ν for which

larger values correspond to stronger positive interference. Briefly, chiasmata are modelled as
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arising by a stationary renewal process. The increment (in morgans) between adjacent chiasmata

on the same chromosome is distributed as Γ(ν, 2ν); the expected increment is 1
2 , or 50 cM. We fit the

gamma model to crossover-location data from G2 and intercross meioses using the xoi package

for R225.

3.5.10 Models for recombination rates

Tests for the effect of X chromosome, Y chromosome and sex on recombination rate in the G2:F1

were performed using Poisson regression — a generalized linear model with Poisson-distributed

response — with crossover count per meiosis as the dependent variable. Model comparisons were

performed by the likelihood-ratio test, and confidence intervals obtained from profile likelihoods.

For testing X-chromosome and age effects on intercross meioses, we first fit a linear mixed model to

account for repeated measures on the same sire. The variance component attached to the random

effect was not different from zero, so we fell back to a simple linear model. (For the intercross data,

the linear model and Poisson regression gave a very similar distribution of residuals.)

3.5.11 Identification of recombination coldspots

We identified cold regions using a one-dimensional dynamic programming algorithm to identify

regions with 10- old reduction in frequency of crossovers via a generic scoring scheme273. Briefly,

we first compute local crossover density ρi in windows of 500 kb with 100 kb offset between

adjacent windows. Those densities are converted to an excursion score ei as follows:

ei = λ(1− θ) + ρi log θ

where λ is the mean crossover density per chromosome and θ is a pre-specified enrichment or

depletion factor. (Tenfold reduction corresponds to θ = 10−1.) Then a forward pass is made over

the excursion scores to calculate the final score Ei

Ei = max {0, Ei + ei+1}

with E0 ≡ 0. Coldspots are finally extracted by performing a traceback over the Ei. This method

avoids the need for a fixed-size sliding window.
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3.5.12 Whole-genome sequencing in the DO

Whole-genome sequencing of 228 male DO mice from generations 12− 17 was performed at the

Wellcome Trust Sanger Institute (Hinxton, Cambridge, UK).5 Barcoded libraries were prepared from

fragmented genomic DNA using the Illumina TruSeq kit and pooled. Paired-end reads (2× 125 bp)

were generated using 14 lanes of an Illumina HiSeq 2500 instrument, for an approximate coverage

of 4× per sample. Integrity of raw reads was confirmed using FastQC. Reads for each sample

were realigned to the mm10 reference using bwa-mem v0.7.12 with default parameters274. Optical

duplicates were removed with samblaster275.

3.5.13 Discovery and genotyping of CNVs

Multisample CNV discovery and genotyping was performed with GenomeSTRiP276. Briefly,

this software uses depth of coverage and paired-end mapping patterns in multiple samples to

identify candidate CNV regions and infer alternate copy-number allele(s) which are then genotyped

in each individual sample. We used the CNVDiscoveryPipeline module with default settings

except as follows: window size 10 kb for initial discovery of candidate variants; minimum mapping

quality (MQ) = 0 at both the discovery and genotyping stages; and MQ> 10 at for refining

candidate CNV boundaries. These MQ settings are much more permissive than the defaults and

permit discovery of CNVs over SDs with high pairwise identity, over which few or no reads align

with MQ> 0.

CNV discovery in a natural population is complicated by the fact that most novel alleles are rare.

The only means of control of the false discovery rate is to apply strict filters for genotype quality

— filters which naturally create bias against novel alleles overlying the regions of the genome

most prone to structural mutation. We therefore took as our initial CNV callset the output of the

penultimate stage of the pipeline, prior to the application of filters for missingness and genotype

quality.

Ultimate we sought to assign copy numbers to the eight founder alleles of the DO, not to

individual samples. (De novo CNVs were beyond the scope of the present investigation.) Using

5Samples for whole-genome sequencing were provided by Allan Pack, John Miclot Professor of Medicine at the Perelman
School of Medicine of the University of Pennsylvania. Sequencing was performed on behalf of Richard Mott, a principal
investigator at the Wellcome Trust Centre for Human Genetics and the University of Oxford. Data was generously
made available via a collaboration with Gary Churchill of the Jackson Laboratory.
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the copy number assigned to each sample by GenomeSTRiP as a quantitative trait, we genetically

mapped all candidate CNVs using R/qtl2 and estimated the founder strain copy numbers as the

best unbiased linear predictors (BLUPs) at the QTL peak. CNVs mapping with LOD score < 10 or

minor allele count < 5 were excluded as likely false positives or rare variants. Next we merged

CNVs with overlapping coordinates and identical strain distribution pattern into single loci. This

yielded a final set of 1, 749 CNVs segregating in the DO.

3.5.14 Analyses of ChIP-seq data

ChIP-seq data for the H3K4me3 mark of active recombination hotspots was obtained from the

NCBI Short Read Archive, accession #SRP045879209, and for the H3K9me2 mark of heterochromatin,

accession #SRP059590. Reads for each sample were realigned to the mm10 reference using bwa-mem

v0.7.12 with default parameters274. Optical duplicates were removed with samblaster275.

3.5.15 Test for enrichment of sequence features

We used the GenomicAssociationTester package for Python277 to test for enrichment of

various sequence features (i.e. genes, conserved elements, repeat elements) in defined intervals (i.e.

coldspots.) GAT estimates enrichment by comparing observed overlap to overlap between defined

intervals and randomly-sampled intervals from the genome having the same size distribution as the

query intervals. Annotations for repeat elements (LINE, SINE, LTR) were obtained from the UCSC

Genome Browser (http://genome.ucsc.edu/). Gene annotations were obtained from En-

sembl v86 (ftp://ftp.ensembl.org/pub/release-86/gff3/mus_musculus/), and evo-

lutionarily constrained elements from the alignment of 40 eutherian mammal genomes gen-

erated by the Ensembl Compara team (ftp://ftp.ensembl.org/pub/release-86/maf/

ensembl-compara/). Tracts of IBD in classical inbred strains were obtained from the UNC

Mouse Phylogeny Viewer (http://msub.csbio.unc.edu).
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CHAPTER 4

Evolutionary fates of a large segmental duplication in Mus

4.1 Introduction
1 Duplication is an important force shaping the evolution of plant and animal genomes: it

provides a substrate for evolution that is, by right of being redundant, transiently free from selective

constraint278. Segmental duplications (SDs), defined as contiguous sequences which map to more

than one physical position239, are a common feature of eukaryotic genomes and particularly those

of vertebrates.

Like any sequence variant, a duplication first arises in a single individual in a population. The

distinction between such copy-number variants (CNVs) and SDs is fluid and somewhat arbitrary:

tracts of SDs are highly polymorphic in populations in species from Drosophila279 to mouse43 to

human239. Studies of parent-offspring transmissions have shown that SDs are prone to recurrent de

novo mutations including some implicated in human disease (reviewed in280). Bursts of segmental

duplication have preceded dramatic species radiations in primates, and more broadly, blocks of

conserved synteny in mammals frequently terminate at SDs281,239. This suggests that SDs could

mediate the chromosomal rearrangements through which karyotypes diverge and reproductive

barriers arise.

Notwithstanding their evolutionary importance, SDs are difficult to analyze. Repeated se-

quences with period longer than the insert size in a sequencing library and high pairwise similarity

1The results presented in this chapter are published in:

Morgan AP, Holt JM, McMullan RC, Bell TA, Clayshulte AM, Didion JP, Yadgary L, Thybert D, Odom
DT, Flicek P, McMillan L, Pardo-Manuel de Villena F (2016) The evolutionary fates of a large segmental
duplication in mouse. Genetics: 204: 267–285. PMID 27371833.

Important contributions were made by John Didion, Rachel McMullan, Matt Holt, Leonard McMillan, Tim Bell, Amelia
Clayshulte and Liran Yadgary. Whole-genome sequence data from M. caroli was generously shared before publication
by David Thybert, Duncan Odom and Paul Flicek.
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are likely to be collapsed into a single sequence during genome assembly. Efficient and sensitive

alignment of high-throughput sequencing reads to duplicated sequence remains challenging87.

Genotyping of sites within SDs is difficult because variants between copies (paralogous variants)

are easily confounded with variants within copies between individuals at a given copy (allelic

variants). Latent paralogous variation may bias interpretations of sequence diversity and haplotype

structure282.

Paralogy also complicates phylogenetic inference. Ancestral duplication followed by differential

losses along separate lineages may yield a local phylogeny that is discordant with the genome-wide

phylogeny283. Within each duplicate copy, local phylogenies for adjacent intervals may also be

discordant due to non-allelic gene conversion between copies284,285.

In this chapter we present a detailed analysis of a segmental duplication, R2d, in the house

mouse (Mus musculus). R2d is a 127 kbp unit which contains the protein-coding gene Cwc22 and

flanking intergenic sequence. Although the C57BL/6J reference strain and other classical laboratory

strains have a single haploid copy of the R2d sequence (in the R2d1 locus), the wild-derived

CAST/EiJ, ZALENDE/EiJ, and WSB/EiJ strains have an additional 1, 16 and 33 haploid copies

respectively in the R2d2 locus. R2d2 is the responder locus in a recently-described meiotic drive

system on mouse chromosome 2 but is absent from the mouse reference genome55,286. We draw on a

collection of species from the genus Mus sampled from around the globe to reconstruct the sequence

of events giving rise to the locus’ present structure (Figure 4.1). Using novel computational tools

built around indexes of raw high-throughput sequencing reads, we perform local de novo assembly

of phased haplotypes and explore patterns of sequence diversity within and between copies of R2d.

Both phylogenetic analyses and estimation of mutation rate in laboratory mouse populations

reveal that R2d2 and its surrounding region on chromosome 2 are unstable in copy number. Cycles

of duplication, deletion and non-allelic gene conversion have led to complex phylogenetic patterns

discordant with species-level relationships within Mus which cannot be explained by known

patterns of introgression between Mus species136,157.
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4.2 Results

4.2.1 Duplication of R2d in Mus ancestor

In order to determine when the R2d CNV arose, we used quantitative PCR and/or depth

of coverage in whole-genome sequencing to assay R2d copy number in a collection of samples

spanning the phylogeny of the genus Mus. Samples were classified as having diploid copy number

2 (two chromosomes each with a single copy of R2d) or > 2 (at least one chromosome with an R2d

duplication).

We find evidence for > 2 diploid copies in representatives of all mouse taxa tested from the

Palearctic clade125 (Figure 4.1): 236 of 525 Mus musculus, 1 of 1 M. macedonicus, 1 of 1 M. spicilegus,

1 of 1 M. cypriacus and 8 of 8 M. spretus samples. However, we find no evidence of duplication in

species from the southeast Asian clade, which is an outgroup to Palearctic mice: 0 of 2 M. famulus,

0 of 2 M. fragilicauda, 0 of 1 M. cervicolor, 0 of 1 M. cookii and 0 of 1 M. caroli samples. Outside

the subgenus Mus, we found evidence for > 2 diploid copies in none of the 9 samples tested

from subgenus Pyromys. We concluded that the R2d duplication most likely occurred between

the divergence of southeast Asian from Palearctic mice (∼ 3.5 million years ago [Mya]) and the

divergence of M. musculus from M. spretus (∼ 2 Mya)125,287, along the highlighted branch of the

phylogeny in Figure 4.1A. If the R2d duplication was fixed in the ancestor of M. musculus, then

extant lineages of house mice which have only 2 diploid copies of R2d — including the reference

strain C57BL/6J (of predominantly M. musculus domesticus origin162) — represent subsequent losses

of an R2d copy. Alternatively, the R2d duplication may have been polymorphic in the ancestor of

M. musculus and then continued to segregate in M. musculs and M. spretus.

Duplication of the ancestral R2d sequence resulted in two paralogs residing in loci which we

denote R2d1 and R2d2 (Figure 4.1B). Only one of these is present in the mouse reference genome,

at chr2: 77.87 Mbp; the other copy maps approximately 6 Mbp distal286, as we describe in more

detail below. The more proximal copy, R2d1, lies in a region of conserved synteny with rat, rabbit,

chimpanzee and human288 (Figure 4.2); we conclude that it is the ancestral copy.

The sequence of the R2d2 paralog was assembled de novo from whole-genome sequence reads29

from the strain WSB/EiJ (of pure M. m. domesticus origin157), which has haploid R2d copy number

∼ 34286. We exploited the difference in depth of coverage for R2d1 (1 haploid copy) and R2d2 (33
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Figure 4.1: Origin and age of the R2d2 duplication. (A) R2d copy number across the phylogeny

of the genus Mus. Each dot represents one individual; grey dots indicate diploid copy number 2

and black dots copy number >2. The duplication event giving rise to R2d1 and R2d2 most likely

occurred on the highlighted branch. Approximate divergence times (REF: Suzuki 2004) are given in

millions of years ago (Mya) at internal nodes. (B) Schematic structure of the R2d1-R2d2 locus. The

mouse reference genome (strain C57BL/6J, M. m. domesticus) contains a single copy of R2d at R2d1.

Wild-derived inbred strains vary in haploid copy number from 1 (PWK/PhJ, M. m. musculus) to 2

(CAST/EiJ, M. m. castaneus) to 33 (WSB/EiJ, M. m. domesticus). R2d1 is located at approximately 77.9

Mbp and R2d2 at 83.8 Mbp. (C) Concatenated tree constructed from R2d1 (reference genome) and

de novo assembled R2d2 and M. caroli sequences assuming a strict molecular clock. The duplication

node is indicated with a grey dot. (D) Relationship between observed R2d copy-number states

and inferred structure of the R2d1-R2d2 locus. The configuration of the M. spretus – M. musculus

common ancestor (4 diploid copies) is boxed in black. We have yet to identify samples with diploid

copy number 2 but no R2d1 (grey shaded box).
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Figure 4.2: Conservation of synteny between mouse and four other mammals around Cwc22R2d1

(upper panel) indicates that the R2d1 sequence remains in its ancestral position. Chevrons represent

genes, alternating white and grey, and are oriented according to the strand on which the gene is

encoded. Cwc22R2d2 is novel in the mouse but its position relative to genes with conserved order is

shown in the lower panel. Note that synteny is disrupted in mouse and rat distal to R2d2.
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Sequence Start End Strand Type Family

R2d2 45011 45166 + LTR/ERVK RLTR10

R2d1 1881 3074 + LINE L1Md_T

73374 73896 - LINE MT2_Mm

82227 89459 - LINE L1Md_A

94179 100406 - LINE L1Md_F2

126201 127206 + LINE L1Md_F2

127995 134405 + LINE L1Md_Gf

143125 150112 + LINE L1Md_A

Table 4.1: Transposable-element insertions private to R2d1 or R2d2. Coordinates are offsets with

respect to the start position of R2d (for R2d1: chr2: 77, 869, 657 in the reference genome; for R2d2:

the beginning of the de novo assembled contig.)

haploid copies) to assign variants to R2d1 or R2d2 (Figure 4.3). Pairwise alignment of the R2d2

contig against R2d1 is shown in Figure 4.4. The paralogs differ by at least 8 transposable-element

(TE) insertions: 7 LINE elements specific to R2d1 and 1 endogenous retroviral element (ERV) specific

to R2d2 (Table 4.1). (Due to the inherent limitations of assembling repetitive elements from short

reads, it is likely that we have underestimated the number of young TEs in R2d2.) The R2d1-specific

LINEs are all < 2% diverged from the consensus for their respective families in the RepeatMasker

database (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker), consistent with

insertion within the last 2 My. The oldest R2d2-specific ERV we could detect is 0.7% diverged

from its family consensus. TE insertions occurring since the ancestral R2d duplication are almost

certainly independent, so these data are consistent with duplication < 2 Mya. The R2d unit, minus

paralog-specific TE insertions, is 127 kbp in size. R2d units in the R2d2 locus are capped on both

ends by (CTCC)n microsatellite sequences, and no read pairs spanning the breakpoint between R2d2

and flanking sequence were identified.

In order to obtain a more precise estimate of the molecular age of the duplication event we

assembled de novo an additional of 16.9 kbp of intergenic and intronic sequence in 8 regions across

the R2d unit from diverse samples and constructed phylogenetic trees. The trees cover 17 R2d1

or R2d2 haplotypes, 13 from inbred strains and 4 from wild mice. The sequence of Mus caroli

(diploid copy number 2) is used as an outgroup. A concatenated tree is shown in Figure 4.1C.
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Figure 4.3: Targeted de novo assembly using the multi-string Burrows-Wheeler Transform (msBWT).

(A) The msBWT and its associated FM-index implicitly represent a suffix array of sequencing

reads, such that read suffixes sharing a k-mer prefix are adjacent in the data structure. This allows

rapid construction of a local de Bruijn graph starting from a k-mer seed (dark blue) and extending

by successive k-mers (light blue) containing the (k − 1)-length suffix of the previous k-mer. A

(k − 1)-length prefix with more than one possible suffix (red and orange) creates a branch point.

Adjacent nodes in the graph with in-degree and out-degree one can be collapsed into a single node,

yielding a simplified graph, which can then be traversed to obtain linear contig(s). (B) Paralogs of

R2d can be disentangled using the local de Bruijn graph by exploiting differences in copy number.

Edges in the graph are weighted by read count, and linear contigs for the R2d1 and R2d2 paralogs

obtained by traversing the graph in a manner that minimizes the variance in edge weights along

possible paths. Phase-informative reads (those overlapping multiple paralogous variants) provide

a second source of evidence.
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Figure 4.4: Pairwise alignment of R2d2 contig (top) to the R2d1 reference sequence (bottom).

Dark boxes show position of repetitive elements present in both sequences; syntenic positions are

connected by grey anchors, and blank space represents aligned bases in both sequences. Orange

boxes indicate position of repetitive elements present in the R2d1 sequence but not detected in

R2d2; blue boxes indicate position of elements in R2d2 but not R2d1. Cwc22 transcripts are shown

below the alignment.
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Using 5.0± 1.0 million years before present (Mya) as the estimated divergence date for M. caroli

and M. musculus125,287, Bayesian phylogenetic analysis with BEAST v1.8289 yields 1.6 Mya (95%

HPD 0.7 − 5.1 Mya) as the estimated age of the duplication event that gave rise to R2d1 and

R2d2. Although the assumption of a uniform molecular clock may not be strictly fulfilled for R2d1

and R2d2, the totality of evidence — from presence/absence data across the mouse phylogeny,

paralog-specific TE insertions, and sequence divergence between paralogs — strongly supports

the conclusion that R2d was first duplicated within the last 2 My in the common ancestor of M.

musculus and M. spretus.

For clarity, Figure 4.1D illustrates diploid copy number states that will be referenced in the

remainder of the manuscript. Hereafter we refer to diploid copy numbers except when discussing

inbred strains (which are effectively haploid).

4.2.2 Copy number polymorphism at R2d2

We previously demonstrated that haploid copy number of R2d ranges from 1 in the reference

strain C57BL/6J and classical inbred strains A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ; to 2 in

the wild-derived strain CAST/EiJ; to 34 in the wild-derived strain WSB/EiJ. Using linkage map-

ping in two multiparental genetic reference populations, the Collaborative Cross? and Diversity

Outbred222, we showed that, for the two strains with haploid copy number > 1, one of the copies

maps to R2d1 while all extra copies map to the R2d2 locus at chr2: 83 Mbp286. Cwc22 was recently

reported to have diploid copy number as high as 83 in wild M. m. domesticus268. In whole-genome

sequence data from more than 60 mice from both laboratory stocks and natural populations, we

have observed no instances in which the R2d copy in R2d1 is lost. We conclude that diploid copy

number > 2 indicates at least one copy of R2d is present in R2d2 (Figure 4.1D).

In order to understand the evolutionary dynamics of copy-number variation at R2d2, we

investigated the relationship between copy number and the local phylogeny in the R2d2 candidate

region. In particular, we sought evidence for or against a single common origin for each of the

copy-number states at R2d2 which are derived with respect to the M. spretus – M. musculus common

ancestor (Figure 4.1D). If a derived copy-number state has a single recent origin, it should be

associated with a single haplotype at R2d2. If a derived copy-number state arises by recurrent

mutation, the same copy number should be associated with multiple haplotype backgrounds and

possibly in multiple populations.
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The extent of R2d copy-number variation in M. musculus, as estimated on a continuous scale by

qPCR, is shown in Figure 4.5A. (Note that the qPCR readout is proportional to copy number on the

log scale. Extrapolation to integer copy number is increasingly noisy for copy numbers greater than

> 6.) We confirmed that R2d2 maps to chr2: 83 Mbp by performing association mapping between

SNP genotypes from the MegaMUGA array95 and the qPCR readout (Figure 4.5B).

We performed a similar analysis to test the hypothesis that R2d2 alleles with high copy number

(diploid copy number> 4, Figure 4.1D; hereafter “R2d2HC”) have a single origin. First we observed

that R2d2HC alleles are confined with few exceptions to M. m. domesticus (Table 4.2). The best-

associated SNP on the MegaMUGA array (JAX00494952) only weakly tags copy number (r2 =

0.137), but severe ascertainment bias on the MUGA platform95 makes local LD patterns difficult

to interpret. To examine further, we constructed a neighbor-joining phylogenetic tree for the

region containing R2d2 (chr2: 83 – 84 Mb) using genotypes from the 600, 00-SNP Mouse Diversity

Array92,157. We restricted our attention to inbred strains or wild mice with homozygous, non-

recombinant haplotypes in the target region. Twelve samples with R2d2HC alleles, both wild mice

and laboratory stocks, cluster in a single clade (Figure 4.5C). (A single M. spretus strain, SPRET/EiJ,

also carries an R2d2HC allele, but see § 4.3).

Next we expanded the analysis to include an additional 11 samples with R2d2HC alleles and

evidence of heterozygosity around R2d2. The total set of 24 samples includes 7 wild-derived

laboratory strains (DDO, RBA/DnJ, RBB/DnJ, RBF/DnJ, WSB/EiJ, ZALENDE/EiJ and SPRET/EiJ),

4 classical inbred strains (ALS/LtJ, ALR/LtJ, CHMU/LeJ and NU/J), a line derived from the

ICR:HsD outbred stock (HR8290) and 12 wild-caught mice. All 24 samples with R2d2HC alleles share

an identical haplotype across a single 21 kbp interval, chr2: 83,896,447 – 83,917,565 (GRCm38/mm10

coordinates) (Figure 4.5D). These analyses support a single origin for R2d2HC alleles within M. m.

domesticus.

To test the hypothesis that losses of R2d2 (diploid copy number < 4; at least one chromosome

with zero copies in R2d2, Figure 4.1D) have a single origin, we examined their distribution across

the three well-differentiated subspecies of M. musculus. Losses of R2d2 occur in all subspecies of M.

musculus, in populations that span its geographic range (Table 4.2). Based on this distribution and

our previous observation that no common haplotype is shared in samples with low copy number

in M. m. domesticus286, we reject the hypothesis of single origin and conclude that R2d2 has been
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Figure 4.5: Copy-number variation of R2d in mouse populations worldwide. A) Copy-number

variation as measured by quantitative PCR. The normalized ∆Ct value is proportional to

log copy number. Samples are classified as having 2 diploid copies, > 2 copies or > 4 copies

of R2d using linear discriminant analysis (LDA). (B) Fine-mapping the location of R2d2 in 83

samples genotyped on the Mouse Diversity Array (MDA). Grey points give nominal p-values for

association between R2d copy number and genotype; red points show a smoothed fit through

the underlying points. The candidate interval for R2d2 from286, shown as an orange shaded box,

coincides with the association peak. (C) Local phylogeny at chr2: 83-84 Mbp in 62 wild-caught

mice and laboratory strains. Tips are colored by subspecies of origin: M. m. domesticus, blue; M. m.

musculus, red; M. m. castaneus, green; M. m. molossinus, maroon; outgroup taxa, grey. Individuals

with > 4 diploid copies of R2d are shown as open circles. (D) Haplotypes of laboratory strains and

wild mice sharing a high-copy allele at R2d2. All samples share a haplotype over the region shaded

in orange.
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R2d copy number

Subspecies Region 2 copies > 2 copies > 4 copies

domesticus Americas 106 23 13

Asia 7 2 1

Europe/Med 131 59 54

244 84 68

musculus Americas 0 0 0

Asia 0 1 0

Europe/Med 3 4 0

3 5 0

castaneus Americas 0 0 0

Asia 3 34 2

Europe/Med 0 0 0

3 34 2

Table 4.2: Frequency table of copy-number status by geographic origin for wild-caught and

wild-derived Mus musculus individuals used in this study, stratified by subspecies. “Eu-

rope/Mediterranean” includes continental Europe, the United Kingdom and countries in the

Mediterranean basin (Tunisia, Cyprus, Israel). “Asia” includes Asia, the Middle East and countries

in the Indian Ocean basin (Madagascar).
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Name Generation Copy number Type

UNC_DO_G16_107F G16 9.9 (1.7) LOSS

UNC_DO_G13_044F G13 8.3 (3.2) LOSS

UNC_DO_G16_015F G16 14.2 (6.7) LOSS

UNC_DO_G16_125F G16 17.4 (3.5) LOSS

JDO-17 G19 18.8 (4.0) LOSS

DO-G19-015 G19 21.2 (8.4) LOSS

UNC_DO_G16_116F G16 19.2 (2.4) LOSS

UNC_DO_G16_096F G16 37.8 (3.5) GAIN

Table 4.3: Individuals from the DO population carrying de novo copy-number mutations at R2d2.

Copy numbers were estimated by qPCR in progeny; standard errors shown in parentheses. Each

was expected to be heterozygous for the WSB/EiJ allele (33 haploid copies).

lost multiple times on independent lineages in each subspecies.

Alternatively, we could posit that the R2d duplication never fixed in the ancestor of M. musculus

and that both duplicated and un-duplicated alleles have bene maintained for 2 My as balanced poly-

morphisms in the major lineages in the Palearctic clade of Mus. We find this a less-likely scenario

given current estimates of effective population size (Ne) in house mice (50, 000− 250, 000125,291,292)

and the expected fixation time of a neutral allele (≈ 4Ne
80).

4.2.3 Sequence and structural diversity near R2d2

The extent of copy-number polymorphism involving R2d2 suggests that it is prone to recurrent

mutation. Consistent with these observations, we find that the rate of de novo copy-number changes

at R2d2 is extremely high in laboratory populations (Figure 4.6). In 183 mice sampled from the

DO population we identified and confirmed through segregation analysis 8 new alleles, each with

distinct copy number and each occurring in an unrelated haplotype (Table 4.3). Without complete

pedigrees and genetic material from breeders a direct estimate of the mutation rate in the DO is not

straightforward to obtain. However, since the population size is known, we can make an analogy

to microsatellite loci293 and estimate the mutation rate via the variance in allele sizes: 3.2 mutations

per 100 transmissions (3.2%; 95% bootstrap CI 1.1%− 6.0%).

Structural instability in this region of chromosome 2 extends outside the R2d2 locus itself. Less

than 200 kbp distal to R2d2 is another duplication (Figure 4.7B grey shaded region) — containing a
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Figure 4.6: Estimates of per-generation mutation rate for CNVs at R2d2 (±1 bootstrap SE) in the

DO population; among wild M. m. domesticus; and among wild M. m. castaneus. For comparison,

mutation rates are shown for the CNV with the highest rate of recurrence in a C57BL/6J pedigree294

and for a microsatellite whose mutation rate was estimated in the BXD panel31.
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retrotransposed copy of Cwc22 — that is present in 7 tandem copies in the reference genome. That

region, plus a further 80 kbp immediately distal to it, is copy-number polymorphic in wild M. m.

domesticus and wild M. m. castaneus (Figure 4.7B). Instability of the region over a longer time-scale

is demonstrated by the disruption, just distal to the aforementioned segmental duplication, of a

syntenic block conserved across all other mammals (Figure 4.3).

Despite the high mutation rate for structural variants involving R2d2 and nearby sequences,

sequence diversity at the nucleotide level is modestly reduced relative to diversity in R2d1 and

relative to the genome-wide average in M. m. domesticus. In a 200 kbp region containing the R2d2

insertion site at its proximal end, π̂ (an estimator of average heterozygosity) in M. m. domesticus

reduced by at least a factor of two from the local average of approximately 0.3% (which is compara-

ble to previous reports in this subspecies291) (Figure 4.7B). Divergence between M. musculus and

M. caroli is similar to its genome-wide average of ∼ 2.5% over the same region.

Estimation of diversity within a duplicated sequence such as R2d is complicated by the difficulty

of distinguishing allelic from paralogous variation. To circumvent this problem we split our sample

of 26 wild M. m. domesticus into two groups: those having R2d1 sequences only, and those having

both R2d1 and R2d2 sequences. Within each group we counted the number of segregating sites

among all R2d2 copies, using nearby fixed differences between R2d1 and R2d2 to phase sites to

R2d2 (see § 4.5 for details), and used Watterson’s estimator to calculate nucleotide diversity per

site. Among R2d1 sequences, θ̂ = 0.09%± 0.03% versus θ̂ = 0.04%± 0.02% among R2d2 sequences

(Figure 4.7C) and θ̂ = 0.13%± 0.04% among R2d2 sequences in M. m. castaneus.

4.2.4 R2d contains the essential gene Cwc22

The R2d unit encompasses one protein-coding gene, Cwc22, which encodes an essential mes-

senger RNA (mRNA) splicing factor295. The gene is conserved across eukaryotes and is present

in a single copy in most non-rodent species represented in the TreeFam database (http://www.

treefam.org/family/TF300510296). Five groups of Cwc22 paralogs are present in mouse

genomes: the copies in R2d1 (Cwc22R2d1) and R2d2 (Cwc22R2d2) plus retrotransposed copies in one

locus at chr2: 83.9 Mbp and at two loci on the X chromosome (Figure 4.8A).

The three retrotransposed copies are located in regions with no sequence similarity to each

other, indicating that each represents an independent retrotransposition event. The copy on chr2

was subsequently expanded by further duplication and now exists (in the reference genome) in 7
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Figure 4.7: (A) Geographic origin of wild mice used in this study, color-coded by subspecies (blue,

M. m. domesticus; red, M. m. musculus; green, M. m. castaneus). Diploid copy number of the R2d

unit is shown for wild samples for which integer copy-number estimates are available: 26 M. m.

domesticus and 10 M. m. castaneus with whole-genome sequencing data, and representatives from M.

m. molossinus and M. m. musculus for comparison. Schematic shows the R2d1/R2d2 configurations

corresponding to diploid copy numbers of 2 and 4. (B) Profiles of read depth (first two panels),

average sequence divergence to outgroup species M. caroli (dxy, third panel), number of segregating

sites per base (S/L, fourth panel) and within-population average heterozygosity (π, fifth and sixth

panels). The region shown is 500 kbp in size; the insertion site of R2d2 is indicated by the red dashed

line. Grey boxes along baseline show positions of repetitive elements (from UCSC RepeatMasker

track); black boxes show non-recombining haplotype blocks. Blue bars indicate the position of 7

tandem duplications in the mm10 reference sequence with > 99% mutual identity, each containing

a copy of retro-Cwc22. Grey shaded region indicates duplicate sequence absent from M. caroli. (C)

Estimated per-site nucleotide diversity within M. m. domesticus R2d1, M. m. domesticus R2d2 and M.

m. castaneus R2d2.
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Figure 4.8: Cwc22 paralogs in the mouse genome. (A) Location and organization of Cwc22 gene

copies present in mouse genomes. The intact coding sequence of Cwc22 exists in in both R2d1 (grey

shapes) and R2d2 (black shapes). Retrotransposed copies (empty shapes) exist in two loci on chrX

and one locus on chr2, immediately adjacent R2d2. Among the retrotransposed copies, coding

sequence is intact only in the copy on chr2. Exon numbers are shown in grey above transcript

models. (B) Alternate transcript forms of Cwc22, using different 3’ exons. Coding exons shown in

blue and untranslated regions in black. All Ensembl annotated transcripts are shown in the lower

panel (from UCSC Genome Browser.)
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copies with > 99.9% mutual similarity. The two retrotransposed copies on chrX are substantially

diverged from the parent gene (< 90% sequence similarity), lack intact open reading frames

(ORFs), have minimal evidence of expression among GenBank cDNAs, and are annotated as likely

pseudogenes297. We therefore restricted our analyses to the remaining three groups of Cwc22

sequences, all on chr2.

The canonical transcript of Cwc22R2d1 (Ensembl transcript ID ENSMUST00000065889115) is

encoded by 21 exons on the negative strand. The coding sequence begins in the third exon and ends

in the terminal exon (Figure 4.8B). Six of the seven protein-coding Cwc22R2d1 transcripts in Ensembl

v83115 use this terminal exon, while one transcript (ENSMUST0000011824) uses an alternative

terminal exon. Alignment of the retrogene sequence (ENSMUST00000178960) to the reference

genome demonstrates that the retrogene captures the last 19 exons of the canonical transcript —

that is, the 19 exons corresponding to the full coding sequence of the parent gene.

4.2.5 Expression patterns of Cwc22 paralogs

To identify the coding sequence of Cwc22R2d2 we first aligned the annotated transcript sequences

of Cwc22R2d1 from Ensembl to our R2d2 contig. All 21 exons present in R2d1 are present in R2d2.

We created a multiple sequence alignment and phylogenetic tree of Cwc22 cDNAs and predicted

amino acid sequences from Cwc22R2d1, Cwc22R2d2, retro-Cwc22, and CWC22 orthologs in 19 other

placental mammals, plus opossum, platypus and finally chicken as an outgroup (Figure 4.9). An

open reading frame (ORF) is maintained in all three Cwc22 loci in mouse, including the retrogene.

Information content of each column along the alignment (Figure 4.10) reveals that sequence is most

conserved in two predicted conserved domains, MIF4G and MA3, required for Cwc22’s function in

mRNA processing295.

Next we examined public RNA-seq data from adult brain and testis in inbred strains with one

or more copies of R2d2 for evidence of transcription of each Cwc22 family member. We identified

several novel transcript isoforms specific to R2d2 arising from two intron-retention events and one

novel 3’ exon (Figure 4.11A). The 18th intron is frequently retained in Cwc22R2d2 transcripts, most

likely due to an A→ G mutation at the 5’ splice donor site of exon 17 in Cwc22R2d2. The 12th intron

is also frequently retained. While we could not identify any splice-region variants near this intron,

it contains an ERV insertion that may interfere with splicing (Figure 4.11A). Both intron-retention

events would create an early stop codon. Finally, we find evidence for a novel 3’ exon that extends
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to the boundary of the R2d unit and is used exclusively by Cwc22R2d2 (Figure 4.11A).

We estimated the expression of the various isoforms of Cwc22R2d1, Cwc22R2d2 and retro-Cwc22

in adult brain and testis. For brain we obtained reads from 8 replicates (representing both sexes) on

3 inbred strains298, and for testis a single replicate on 23 inbred strains299 and estimated transcript

abundance using the kallisto package300. Briefly, kallisto uses an expectation-maximization

(EM) algorithm to accurately estimate the abundance of a set of transcripts by distributing the

“weight” of each read across all isoforms with whose sequence it is compatible. Cwc22 is clearly

expressed from all three paralogs in both brain and testis (Figure 4.11B). However, both the total

expression and the pattern of isoform usage differ by tissue and copy number.

Maintenance of an ORF in all Cwc22 paralogs for> 2 My is strong evidence of negative selection

against disrupting mutations in the coding sequence, but long branches within the rodent clade in

Figure 4.9 suggest that Cwc22 may also be under relaxed purifying selection or positive selection

in rodents. The rate of evolution of Cwc22 sequences in mouse is faster than in the rest of the tree

(χ2 = 4.33, df = 1, p = 0.037 by likelihood ratio test).

109



transcripts

0

4

8

12

77.87 77.89 77.91 77.93 77.95

0

4

8

12

position (Mb)

0

4

8

12

* *

C
AST/EiJ

PW
K/PhJ

W
SB/EiJ

co
ve

ra
ge

 (r
ea

ds
 p

er
 1

0 
m

illi
on

)

transcripts testis brain

Cwc22_R2d2_long

Cwc22_R2d2_long_retained_introns

Cwc22_R2d2_retained_introns

ENSMUST00000065889

ENSMUST00000111818

ENSMUST00000111819

ENSMUST00000111821

ENSMUST00000111824

ENSMUST00000127289

ENSMUST00000127351

ENSMUST00000128963

ENSMUST00000137494

ENSMUST00000144727

ENSMUST00000149012

ENSMUST00000156863

BZ
O

M
PL

C
AR

O
LI

Ei
J

C
IM

M
PL

C
ZE

C
H

IIE
iJ

M
D

G
M

PL
PW

KP
hJ

SP
R

ET
Ei

J

C
AS

TE
iJ

PW
KP

hJ
W

SB
Ei

J

1

100

TPM

B

A

Figure 4.11: Expression of Cwc22 isoforms. (A) Read coverage and splicing patterns in Cwc22 in

adult mouse brain from three wild-derived inbred strains. Swoops below x-axis indicate splicing

events supported by 5 or more split-read alignments. Known transcripts of Cwc22R2d1 (grey, from

Ensembl), inferred transcripts from Cwc22R2d2 (black) and the sequence of retro-Cwc22 mapped

back to the parent gene (blue) are shown in the lower panel. Red stars indicate retained introns;

red arrow indicates insertion site of an ERV in R2d2. (B) Estimated relative expression of Cwc22

isoforms (y-axis) in adult mouse brain and testis in wild-derived inbred strains (x-axis). TPM,

transcripts per million, on log10 scale.
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4.2.6 Non-allelic gene conversion between R2d1 and R2d2

The topology of trees across R2d is generally consistent: a long branch separating the single M.

caroli sequence from the M. musculus sequences, and two clades corresponding to R2d1- and R2d2-

like sequences. However, we observed that the affinities of some R2d paralogs change along the

sequence (Figure 4.12A), a signature of non-allelic (i.e. inter-locus) gene conversion. In this context,

we use “gene conversion” to describe a non-reciprocal “copy-and-paste” transfer of sequence

from one donor locus into a different, homologous receptor locus, without reference to a specific

molecular mechanism301.

To investigate further, we inspected patterns of sequence variation in whole-genome sequencing

data from 15 wild-caught mice, 2 wild-derived inbred strains, and 22 classical inbred strains of mice

with diploid R2d copy number 2. We first defined 1, 411 pairwise single-nucleotide differences (1

per 89 bp; Ti:Tv = 1.85) between R2d2 and R2d1 for which R2d2 has the derived allele with respect

to M. caroli. Then we tested for the presence of the derived allele, ancestral allele or both at each site

in each sample. Finally we identified conversion tracts by manual inspection as clusters of derived

variants shared with R2d2.

This analysis revealed non-allelic gene conversion tracts on at least 9 chromosomes out of the

small sample of 54 chromosomes examined (Figure 4.12B). The conversion tracts range in size from

approximately 1.2 kbp to 119 kbp. The boundaries of several tracts are shared within populations,

suggesting that the tracts are shared by descent. We excluded the possibility of complementary

losses from R2d1 and R2d2 — which would leave similar patterns of sequence variation — by

finding read pairs spanning the boundary between R2d1 and flanking sequence, and between

R2d1-like and R2d2-like tracts on the same chromosome (examples shown in Figure 4.13).

The conversion tracts we detected are orders of magnitude longer than the 15 to 750 bp reported

in recent studies of allelic gene conversion at recombination hotspots in mouse meiosis210,302. We

require the presence of R2d2-diagnostic alleles at two or more consecutive variants to declare a

conversion event, and these variants occur at a rate of approximately 1 per 100 bp, so the smallest

conversion tracts we could theoretically detect are on the order of 200 bp in size. Even if we require

only a single variant to define a conversion tract, all samples without a long conversion tract share

fewer than 55 and most fewer than 10 derived alleles (of 1, 411 total sites) with R2d2, of which all

are also shared by multiple other samples from different populations. This pattern indicates that
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Figure 4.12: Signatures of non-allelic gene conversion between R2d1 and R2d2. (A) Phylogenetic

trees for three representative intervals across R2d. Sequences are labeled according to their sub-

species of origin using the same color scheme as in Figure ??; open circles are R2d1-like sequences

and closed circles are R2d2-like. Trees are drawn so that M. caroli, the outgroup species used to

root the trees, is always positioned at the top. The changing affinities of PWK/PhJ (red) and

CAST/EiJ (green) along R2d are evidence of non-allelic gene conversion. (B) R2d sequences from

20 wild-caught mice and 5 laboratory inbred strains. Each track represents a single chromosome;

grey regions are classified as R2d1-like based on manual inspection of sequence variants, and

black-regions R2d2-like. Upper panel shows sequences from samples with a single copy of R2d,

residing in R2d1. Lower panel shows representative R2d2 sequences for comparison. Asterisks

indicate samples for which read alignments are shown in Figure 4.13.
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Figure 4.13: Physical linkage at boundaries of non-allelic gene conversion tracts. (A) Paired-end

read alignments (visualized with IGV) across the proximal boundary (dashed line) of R2d1 in a

sample with a conversion tract extending to the boundary. Positions of derived variants shared

with R2d2 are indicated by black dots. (B) Read alignments across the boundary of a non-allelic

gene conversion tract. R2d1 sequence from a single chromosome is a mosaic of R2d1-like (grey)

and R2d2-like (black) segments. A magnified view of read pairs in the 3.8 kbp surrounding the

proximal boundary of the tract shows read pairs spanning the junction. Black dots indicate the

position of derived alleles diagnostic for R2d2. The precise breakpoint lies somewhere in the yellow

shaded region between the last R2d1-specific variant and the first R2d2-specific variant.
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those sites in fact represent either artifacts (from mis-assignment of ancestral and derived alleles)

or recurrent mutations rather than short gene conversions.

Four conversion tracts partially overlap the Cwc22 gene to create a sequence that is a mosaic

of R2d1- and R2d2-like exons (Figure 4.12B). Recovery of Cwc22 mRNA in an inbred strain with a

mosaic sequence (PWK/PhJ, see § 4.2.5) indicates that its exons are intact, adjacent and properly

oriented in cis to permit transcription. The presence of both R2d1- and R2d2-like sequence in

extant M. musculus lineages with 2 diploid copies of R2d further reinforces our conclusion that the

duplication is indeed ancestral to the divergence of M. musculus.

In addition to exchanges between R2d1 and R2d2, we identified an instance of exchange between

R2d2 and the nearby retrotransposed copy of Cwc22 in a single M. m. domesticus individual from

Iran (IR:AHZ_STND:015; Figure 4.14). This individual carries a rearrangement that has inserted a

30 kbp fragment corresponding to the 3’ half of Cwc22R2d2 into the retro-Cwc22 locus, apparently

mediated by ∼ 100 bp of homology between the exons of Cwc22R2d2 and retro-Cwc22.

4.2.7 High copy number at R2d2 suppresses meiotic recombination

The difficulty of fine-mapping R2d2 in standard crosses286 suggested that recombination is

suppressed around R2d2. Based on our observation that recombination is suppressed around

large structural variants (see Chapter 3), we tested whether the region around R2d2 has lower

recombination when an R2d2HC allele is present. Understanding patterns of recombination at R2d2

is important for interpreting levels of sequence and haplotype diversity in the surrounding region.

First we analyzed local recombination rate in the DO population. Figure 4.15A shows the cu-

mulative distribution of 2, 917 recombination events on central chromosome 2, stratified according

to R2d2 copy number of the participating haplotypes. The recombination map has a pronounced

plateau in the region between R2d1 and approximately 1 Mb distal to R2d2 (dashed lines) for

R2d2HC haplotypes, but not R2d2LC haplotypes. As a result, R2d2HC haplotype blocks overlapping

R2d2 are significantly longer than R2d2LC haplotype blocks (p < 0.01 by Wilcoxon rank-sum tests

with Bonferroni correction) in 8 of the 10 generations sampled (Figure 4.15B). The difference arose

early in the breeding of the DO and persists through the most recent generation for which the

randomized breeding scheme was maintained270.

Second we re-examined genotype data from 11 published crosses in which at least one parent

was segregating for an R2d2HC allele. Whereas in the DO we used haplotype block length as
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on both chromosomes but only a fragment of R2d2 remains on one chromosome, and it has been

transposed into the retro-Cwc22 array. (B) Normalized depth of coverage (2 = normal diploid level)

across R2d. Regions in grey represent reads from R2d1 alone, while region in black captures reads

from R2d1 and R2d2, as shown by arrows from panel A. (C) Position of read pairs (red; not drawn to

scale) with soft-clipped alignments to R2d1. The proximal read aligns in the 3’ UTR of Cwc22, and

the distal read across an exon-intron boundary within the gene body. Note the “outward”-facing

direction of the alignments. (D) Positions of the mates of the reads in panel C. Note that the x-axis

is reversed so that the exons of retro-Cwc22 (encoded on the plus strand) parallel those of Cwc22

(encoded on the minus strand). The 3’ read maps across the boundary of th 3’ UTR of Cwc22 and

the ERV mediating the retrotransposition event. The 5’ read maps across two exon-exon boundaries

in retro-Cwc22, so there is no ambiguity regarding its alignment to the retro-transposed copy. (E)

Inferred structure of Cwc22 paralogs in this sample. Note that one of the copies of retro-Cwc22 is

now a mosaic of retrotransposed and Cwc22R2d2-derived sequence.
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Figure 4.15: Suppression of crossing-over around R2d2 in the DO. (A) Cumulative number of

unique recombination events in the middle region of chr2 in genomes of 4,640 Diversity Outbred

mice. Recombination events involving the high-copy-number WSB/EiJ haplotype are shown in

purple and all other events in grey. Dashed vertical lines indicate the position of R2d1 (left) and

R2d2 (right). (B) Distribution of haplotype block sizes at R2d2 in selected generations of the DO, for

R2d2HC (WSB/EiJ, purple) versus R2d2LC (the other seven founder haplotypes, grey). Asterisks

indicate generations in which the length distributions are significantly different by Wilcoxon

rank-sum test.
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Figure 4.16: Difference between expected and observed recombination fraction between markers

flanking R2d2 in experimental crosses in which at least one parent is segregating for a high-copy

allele of R2d2. Thick and thin vertical bars show 90% and 95% confidence bounds, respectively,

obtained by non-parametric bootstrap.

a proxy for recombination rate, in these F2 and backcross designs we can directly estimate the

recombination fraction across R2d2 and compare it to its expected value in the absence of an R2d2HC

allele (Figure 4.16). In 9 of 11 crosses examined, the observed recombination fraction is lower than

the expected (p < 0.032, one-sided binomial test).

4.3 Discussion

In this manuscript we have reconstructed in detail the evolution of a multi-megabase segmental

duplication (SD) in mouse, R2d2. Our findings illustrate the challenges involved in accurately

interpreting patterns of polymorphism and divergence within duplicated sequence.

SDs are among the most dynamic loci in mammalian genomes. They are foci for copy-number

variation in populations, but the sequences of individual duplicates beyond those present in the

reference genome are often poorly resolved. Obtaining the sequence of this “missing genome,” as

we have done for R2d2, is an important prerequisite to understanding the evolution of duplicated

loci. Since each paralog follows a partially independent evolutionary trajectory, individuals in a

population may vary both quantitatively (in the number of copies) and qualitatively (in which
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copies are retained). Cycles of duplication and loss may furthermore lead to the fixation of

different paralogs along different lineages. This “genomic revolving door”303 leaves a signature of

polymorphism far in excess of the genome-wide background, due to coalescence between alleles

originating from distinct paralogs.

Accurate deconvolution of recent duplications remains a difficult task that requires painstaking

manual effort. Clone-based and/or single-molecule long-read sequencing remain the gold standard

techniques. But short reads at sufficient depth nonetheless contain a great deal of information.

We exploited the specific properties of R2d2 in the WSB/EiJ mouse strain — many highly-similar

copies of R2d2 relative to R2d1, with informative paralogous variants every ∼ 100 bp — to obtain

a nearly complete assembly of R2d2 from short reads (Figure 4.3). With the sequence of both the

R2d1 and R2d2 paralogs in hand, we were able to recognize several remarkable features of R2d2

that are discussed in detail below.

4.3.1 Long-tract gene conversion

Previous studies of non-allelic gene conversion in mouse and human have focused either on

relatively small (< 5 kbp) recombination hotspots within species, or have applied phylogenetic

methods to multiple paralogs from a single reference genome304. This study is the first, to our

knowledge, with the power to resolve large (> 5 kbp) non-allelic gene conversion events on an

autosome in a population sample. We identify conversion tracts up to 119 kbp in length, orders

of magnitude longer than tracts arising from allelic conversion events during meiosis. Gene

conversion at this scale can rapidly and dramatically alter paralogous sequences, including — as

shown in Figure 4.12 — the sequences of essential protein-coding genes. This process has been

implicated as a source of disease alleles in humans301.

Importantly, we were able to identify non-allelic exchanges in R2d1 as such only because we

were aware of the existence of R2d2 in other lineages. In this case the transfer of paralogous R2d2

sequence into R2d1 creates the appearance of deep coalescence among R2d1 sequences. Ignoring

the effect of gene conversion would cause us to overestimate the degree of polymorphism at R2d1

by an order of magnitude, and would bias any related estimates of population-genetic parameters

(for instance, of effective population size).

Our data are not sufficient to estimate the rate of non-allelic gene conversion between R2d2 and

homologous loci. At minimum we have observed two distinct events: one from R2d2 into R2d1, and
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a second from R2d2 into retro-Cwc22. From a single conversion event replacing most of R2d1 with

R2d2-like sequence, the remaining shorter conversion tracts could be generated by recombination

with R2d1 sequences. Because we find converted haplotypes in both M. m. musculus and M. m.

domesticus, the single conversion event would have had to occur prior to the divergence of the three

M. musculus subspecies and subsequently remain polymorphic in the diverged populations. We

note that all conversion tracts we observed are polarized: R2d2 is always the donor.

The other possibility is that non-allelic gene conversion between R2d sequences is recurrent.

Recurrent gene conversion homogenizes duplicate sequences, coupling their evolutionary trajecto-

ries (so-called concerted evolution284). The absolute sequence divergence (∼ 2%) between R2d1 and

R2d2 (Figure 4.1B) argues against the hypothesis that gene conversion has occurred at a uniformly

high rate throughout their history. However, we cannot rule out a role for gene conversion in

maintaining sequence identity between multiple copies of R2d located in R2d2. This would help

explain the reduced diversity within R2d2 versus R2d1 (Figure 4.7C). There is some direct evidence

that the rate of gene conversion is positively correlated with copy number and negatively correlated

with physical distance between duplicates305, so we might expect it to be highest for R2d2HC alleles.

In this respect R2d2 may be similar to the male-specific region of the Y chromosome in mouse306

and human307. The large palindromic repeats on chrY are homogenized by frequent non-allelic

gene conversion307,266 such that they have retained > 99% sequence identity to each other even

after millions of years of evolution. Frequent non-allelic gene conversion has also been docu-

mented in arrays of U2 snRNA genes in human308, and in rRNA gene clusters309 and centromeric

sequences310,311 in several species.

4.3.2 Pervasive copy-number variation

Clusters of segmental duplications have long been known to be hotspots of copy-number

variation in populations239,43 and de novo mutations in pedigrees294,47,34. Recent large-scale se-

quencing efforts have revealed the existence of thousands of multiallelic CNVs segregating in

human populations39.

We have surveyed R2d2 copy number in a large and diverse sample of laboratory and wild mice,

and have shown that it varies from 0 to > 80 in certain M. m. domesticus populations (Figure 4.7A).

In a cohort of outbred mice expected to be hemizygous for an R2d2HC allele from WSB/EiJ (33

diploid copies) we estimate that large deletions, > 2 Mbp in size, occur at a rate of 3.2% (95%
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bootstrap CI 1.1% − 6.0%) per generation. This estimate of the mutation rate for CNVs at R2d2

should be regarded as a lower bound. The power of our copy-number assay to discriminate

between copy numbers above ∼ 25 is low, so that the assay is much more sensitive to losses than to

gains. Even our lower-bound mutation rate exceeds that of the most common recurrent deletions

in human (∼ 1 per 7000 live births)47 and is an order of magnitude higher than the most active

CNV hotspots described to date in the mouse294.

However, the structural mutation rate appears to depend strongly on the diplotype configu-

ration at R2d2. As Figure 4.1D shows, individuals heterozygous for an R2d2HC haplotype and

an R2d2-null haplotype are in fact hemizygous for several megabases of DNA in R2d2. This has

important consequences. High mutation rates are observed only in the context of populations in

which hemizygosity for R2d2HC is common (Figure 4.6): highest in the DO, and to a lesser extent in

wild M. m. domesticus populations harboring both R2d2HC and R2d2-null alleles. Homozygosity

for R2d2HC is not associated with mutability: in 8 recombinant inbred lines from the Collaborative

Cross which are homozygous for an R2d2HC haplotype, we observed zero new mutations in at least

400 meioses, through both the male and female germline (8 lines ×2 meioses/generation ×25 or

more generations of inbreeding). Sex also appears to have a role in determining the mutation rate

at R2d2: in a pedigree in which all females were hemizygous for R2d2HC, zero new mutations were

observed in 1256 meioses (data not shown).

Taken together, these observations hint at a common structural or epigenetic mechanism af-

fecting the resolution of double-strand breaks in large tracts of unpaired (i.e. hemizygous) DNA

during male meiosis. At least one other study in mouse has hinted that hemizygous SDs on the sex

chromosomes are unstable in inter-subspecific hybrids312. Both the obligate-hemizygous sex chro-

mosomes and large unpaired segments on autosomes are epigenetically marked for transcriptional

silencing during male meiotic prophase313,314, and are physically sequestered into the sex body144.

Repair of double-strand breaks within the sex body is delayed relative to the autosomes178 and

involves a different suite of proteins315. We hypothesize that these male-specific pathway(s) are

generally error-prone in the presence of non-allelic homologous sequences.

However, we cannot exclude the possibility that large-scale rearrangement (such as an inversion)

associated with copy-number expansion at R2d2 contributes to its instability. Physical mapping of
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the R2d2 locus in WSB/EiJ is in progress 2 and will shed light on this question.

4.3.3 Origin and distribution of an allele subject to meiotic drive

Females heterozygous for a high- and low-copy allele at R2d2 preferentially transmit the high-

copy allele to progeny via meiotic drive286. Meiotic drive can rapidly alter allele frequencies

in laboratory and natural populations316, and we show in ?? thatR2d2HC alleles sweep through

laboratory and natural populations despite reducing the fitness of heterozygous females. These

“selfish sweeps” account, at least in part, for the marked reduction in within-population diversity

in the vicinity of R2d2 (Figure 4.7B).

The present study sheds additional light on the age, origins and fate of R2d2HC alleles. We find

that R2d2HC alleles have a single origin in M. m. domesticus. They are present in several different

“chromosomal races” — populations fixed for specific Robertsonian translocations between which

gene flow is limited317 — indicating that they were likely present at intermediate frequency prior

to the origin of the chromosomal races within the past 6, 000 to 10, 000 years318 and were dispersed

through Europe as mice colonized the continent from the south and east123. The presence of R2d2HC

in a non-M. m. domesticus sample (SPRET/EiJ, M. spretus from Cadiz, Spain) is best explained by

recent introgression following secondary contact with M. m. domesticus136,157.

4.3.4 Additional members of the CWC22 family

The duplication that gave rise to R2d2 also created a new copy of Cwc22. Based on our assembly

of the R2d2 sequence, the open reading frame of Cwc22R2d2 is intact and encodes a nearly full-length

predicted protein that retains the two key functional domains characteristic of the Cwc22 family.

Inspection of RNA-seq data from samples with high copy number at R2d2 reveals several novel

transcript isoforms whose expression appears to be copy-number- and tissue-dependent. In testis,

the most abundant isoform retains an intron containing an ERV insertion (red arrow in Figure 4.11),

consistent with the well-known transcriptional promiscuity in this tissue. The most abundant

isoforms in adult brain is unusual in that its stop codon is in an internal exon which is followed by

a 7 kbp 3’ UTR in the terminal exon. Transcripts with a stop codon in an internal exon are generally

subject to nonsense-mediated decay (NMD) triggered by the presence of exon-junction complexes

2Thomas Keane, personal communication
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downstream the stop codon. Curiously, Cwc22 is itself a member of the exon-junction complex319.

That an essential gene involved in such a central biochemical pathway should both escape NMD

and be overexpressed more than tenfold is surprising. Preliminary data from the Diversity Outbred

population shows that the R2d2HC allele is associated with elevated levels of both Cwc22 transcripts

and protein in adult liver320. Further studies will be required to determine the distribution of

transcription and translation of Cwc22 across isoforms, tissues and developmental stages.

4.4 Conclusions and future directions

Our detailed analysis of the evolutionary trajectory of R2d2 provides insight into the fate of

duplicated sequences over short (within-species) timescales. The exceptionally high mutation rate

and low recombination associated specifically with hemizygous R2d2HC alleles motivate hypotheses

regarding the biochemical mechanisms which contribute to observed patterns of polymorphism at

this and similar loci. Finally, the birth of a new member of the deeply conserved Cwc22 gene family

in R2d2 provides an opportunity to test predictions regarding the evolution of young duplicate

gene pairs.

4.5 Materials and methods

4.5.1 Mice

Wild M. musculus mice used in this study were trapped at a large number of sites across Europe,

the United States, the Middle East, northern India and Taiwan. Trapping was carried out in

accordance with local regulations and with the approval of all relevant regulatory bodies for each

locality and institution.

Tissue samples from the progenitors of the wild-derived inbred strains ZALENDE/EiJ (M.

m. domesticus), TIRANO/EiJ (M. m. domesticus) and SPRET/EiJ (M. spretus) were provided by

Muriel Davisson (The Jackson Lab). Tissue samples from the high running (HR) selection and

intercross lines were obtained from Ted Garland (University of California - Riverside). Further

details regarding these samples are provided in ??.

Female Diversity Outbred mice used for estimating mutation rates at R2d2 were obtained from

the Jackson Laboratory and housed with a single FVB/NJ male. Progeny were sacrificed at birth by

cervical dislocation in order to obtain tissue for genotyping.

All live laboratory mice were handled in accordance with the IACUC protocols of the University
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of North Carolina at Chapel Hill.

4.5.2 DNA preparation

High molecular weight DNA. High molecular weight DNA was obtained for samples genotyped

with the Mouse Diversity Array or subject to whole-genome sequencing. Genomic DNA was ex-

tracted from tail, liver or spleen using a standard phenol-chloroform procedure321. High molecular

weight DNA for most inbred strains was obtained from the Jackson Laboratory, and the remainder

as a generous gift from Francois Bonhomme and the University of Montpellier Wild Mouse Genetic

Repository.

Low molecular weight DNA. Low molecular weight DNA was obtained for samples to be geno-

typed on the MegaMUGA array (see below). Genomic DNA was isolated from tail, liver, muscle or

spleen using Qiagen Gentra Puregene or DNeasy Blood & Tissue kits according to the manufac-

turer’s instructions.

4.5.3 Whole-genome sequencing and variant discovery

Inbred strains. Sequencing data for inbred strains of mice except ZALENDE/EiJ and LEWES/EiJ

was obtained from the Sanger Mouse Genomes Project website (ftp://ftp-mouse.sanger.

ac.uk/current_bams) as aligned BAM files. Details of the sequencing pipeline are given in29.

Coverage ranged from approximately 25× to 50× per sample.

The strains LEWES/EiJ and ZALENDE/EiJ were sequenced at the University of North Carolina

High-Throughput Sequencing Facility. Libraries were prepared from high molecular weight DNA

using the Illumina TruSeq kit and insert size approximately 250 bp, and 2 × 100 bp paired-end

reads were generated on an Illumina HiSeq 2000 instrument. LEWES/EiJ was sequenced to

approximately 12× coverage and ZALENDE/EiJ to approximately 18×322.

Wild mice. Whole-genome sequencing data from 26 wild M. m. domesticus individuals described

in268 was downloaded from ENA under accession #PRJEB9450. Coverage ranged from approxi-

mately 12× to 25× per sample. An additional two wild M. m. domesticus individuals, IT175 and

ES446, were sequenced at the University of North Carolina to approximate coverage 8× each. Raw

reads from an additional 10 wild M. m. castaneus described in292, sequenced to approximately 20×

each, were downloaded from ENA under accession #PRJEB2176. Reads for a single Mus caroli

individual sequenced to approximately 40×were obtained from ENA under accession #PRJEB2188.

Reads for each sample were realigned to the mm10 reference using bwa-mem v0.7.12 with default

123

ftp://ftp-mouse.sanger.ac.uk/current_bams
ftp://ftp-mouse.sanger.ac.uk/current_bams


parameters274. Optical duplicates were removed with samblaster275.

Variant discovery. Polymorphic sites on chromosome 2 in the vicinity of R2d2 were called

using freebayes v0.9.21-19-gc003c1e323 with parameters -standard-filters using the Sanger

Mouse Genomes Project VCF files as a list of known sites (parameter -@). Raw calls were filtered to

have quality score > 30, root mean square mapping quality > 20 (for both reference and alternate

allele calls) and at most 2 alternate alleles.

4.5.4 Copy-number estimation

R2d copy number was estimated using qPCR as described in286. Briefly, we used commer-

cial TaqMan assays against intron-exon boundaries in Cwc22 (Life Technologies assay numbers

Mm00644079_cn and Mm00053048_cn) to determine copy number relative to reference genes Tert

(cat. #4458368, for target Mm00644079_cn) or Tfrc (cat. #4458366, for target Mm00053048_cn). Cycle

thresholds for Cwc22 relative to the reference gene were normalized across assay batches using lin-

ear mixed models with batch and target-reference pair treated as random effects. Control samples

with known haploid R2d copy numbers of 1 (C57BL/6J), 2 (CAST/EiJ), 17 (WSB/EiJ×C57BL/6J)F1

and 34 (WSB/EiJ) were included in each batch.

Samples were classified as having 1, 2 > 2 haploid copies of R2d using linear discriminant

analysis. The classifier was trained on the normalized cycle thresholds of the control samples from

each plate, whose precise integer copy number is known, and applied to the remaining samples.

4.5.5 De novo assembly of R2d2

Raw whole-genome sequencing reads for WSB/EiJ from the Sanger Mouse Genomes Project

were converted to a multi-string Burrows-Wheeler transform and associated FM-index (msBWT)324

using the msbwt v0.1.4 Python package (https://pypi.python.org/pypi/msbwt). The ms-

BWT and FM-index implicitly represent a suffix array of sequencing to provide efficient queries

over arbitrarily large string sets. Given a seed k-mer present in that string set, this property can

be exploited to rapidly construct a de Bruijn graph which can in turn be used for local de novo

assembly of a target sequence (Figure 4.3A). The edges in that graph can be assigned a weight

(corresponding to the number of reads containing the (k + 1)-mer implied by the edge) which can

be used to evaluate candidate paths when the graph branches (Figure 4.3B).

R2d2 was seeded with the 31 bp sequence (TCTAGAGCATGAGCCTCATTTATCATGCCT) at the

proximal boundary of R2d1 in the GRCm38/mm10 reference genome. A single linear contig was
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assembled by “walking” through the local de Bruijn graph. Because WSB/EiJ has 33 copies of R2d2

and a single copy of R2d1, any branch point in the graph which represents a paralogous variant

should having outgoing edges with weights differing by a factor of approximately 33. Furthermore,

when two (or more) branch points occur within less than the length of a read, it should be possible to

“phase” the underlying variants by following single reads through both branch points (Figure 4.3B).

We used these heuristics to assemble the sequence of R2d2 (corresponding to the higher-weight

path through the graph) specifically.

After assembling a chunk of approximately 500 bp the contig was checked for colinearity with

the reference sequence (R2d1) using BLAT and CLUSTAL-W2 (using the EMBL-EBI web server:

http://www.ebi.ac.uk/Tools/msa/clustalw2/).

Repetitive elements such as retroviruses are refractory to assembly with our method. Upon

traversing into a repetitive element, the total edge weight (total number of reads) and number

of branch points (representing possible linear assembled sequences) in the graph become large.

It was sometimes possible to assemble a fragment of a repetitive element at its junction with

unique sequence but not to assemble unambiguously across the repeat. Regions of unassembleable

sequence were marked with blocks of Ns, and assembly re-seeded using a nearby k-mer from the

reference sequence.

The final contig was checked against its source msBWT by confirming that each 31-mer in the

contig which did not contain an N was supported by at least 60 reads. A total of 16 additional

haplotypes in 8 regions of R2d totaling 16.9 kbp (Table 4.4) were assembled in a similar fashion,

using the WSB R2d2 contig and the R2d1 reference sequence as guides.

4.5.6 Sequence analysis of R2d2 contig

Pairwise alignment of R2d paralogs. The reference R2d1 sequence and our R2d2 contig were

aligned using LASTZ v1.03.54 (http://www.bx.psu.edu/~rsharris/lastz/) with parame-

ters -step=10 -seed=match12 -notransition -exact=20 -notrim -identity=95.

Transposable element (TE) content. The R2d2 contig was screened for TE insertions using the

RepeatMaskerweb server (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker)

with species set to “mouse” and default settings otherwise. As noted previously, we could not as-

semble full-length repeats, but the fragments we could assemble at junctions with unique sequence

allowed identification of some candidate TEs to the family level. R2d1-specific TEs were defined
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Start End Label

77869657 77870807 A

77879768 77880997 B

77908401 77910062 C

77914268 77915817 D

77919218 77920466 E

77920467 77920996 F

77945777 77949523 G

77949564 77950925 H

77979000 77980657 I

77980658 77981322 J

78010326 78011760 K

78011761 78012421 L

Table 4.4: Regions of R2d targeted for de novo assembly in inbred strains. Coordinates are on

chromosome 2 in the mm10 reference assembly.

as TEs annotated in the RepeatMasker track at the UCSC Genome Browser with no evidence (no

homologous sequence, and no Ns) at the corresponding position in the R2d2 contig. Candidate

R2d2-specific TEs were defined as gaps ≥ 100 bp in size in the alignment to R2d1 for which the

corresponding R2d2 sequence was flagged by RepeatMasker.

Gene conversion tracts. To unambiguously define gene conversion events without confounding

from paralogous sequence, we examined 15 wild M. m. domesticus samples and 37 laboratory

strains with evidence of 2 diploid copies of R2d. We confirmed that these copies of R2d were located

at R2d1 by finding read pairs spanning the junction between R2d1 and neighboring sequence. Gene

conversion tracts were delineated as clusters of derived alleles shared with R2d2. Using a pairwise

of alignment of R2d2 and R2d1 we identified single-nucleotide variants between the two sequences,

and queried those sites in aligned reads for Mus caroli. If the Mus caroli and R2d1 shared an allele,

we recorded the site as a derived allele informative for the presence of R2d2. We used the resulting

list of 1, 411 informative sites to query aligned reads for the samples of interest and recorded,

for each site and each sample, whether the derived allele (R2d2), ancestral allele (R2d1) or both

alleles were present. Conversion tracts were then identified by manual inspection. Boundaries of

conversion tracts were defined at approximately the midpoint between the first R2d1- (or R2d2-)
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specific variant and the last R2d2- (or R2d1-) specific variant.

Sequence diversity in R2d1 and R2d2. Assembling individual repeat units within R2d2 is infeasible

in high-copy samples. Instead we treated each R2d unit as an independent sequence and used

the number of segregating sites to estimate sequence diversity. Segregating sites were defined as

positions in a collection of alignments (BAM files) with evidence of an alternate allele. To identify

segregating sites we used freebayes with parameters -ui -Kp 20 -use-best-n-alleles

2 -m 8. These parameters treat each sample as having ploidy up to 20, impose an uninformative

prior on genotype frequencies, and limit the algorithm to the discovery of atomic variants (SNVs or

short indels, not multinucleotide polymorphisms or other complex events) with at most 2 alleles at

each segregating site. Sites in low-complexity sequence (defined as Shannon entropy < 1.6 in the

30 bp window centered on the site) or within 10 bp of another variant site were further masked,

to minimize spurious calls due to ambiguous alignment of indels and microsatellite variants. To

avoid confounding with the retrocopies of Cwc22 outside R2d, coding exons of Cwc22 were masked.

Finally, sites corresponding to an unaligned or gap position in the pairwise alignment between

R2d1 and R2d2 were masked.

To compute diversity in R2d1 we counted segregating sites in 12 wild M. m. domesticus samples

with 2 diploid copies of R2d (total of 24 sequences), confirmed to be in R2d1 by the presence of read

pairs spanning the junction between R2d1 and neighboring sequence. To compute diversity in R2d2,

we counted segregating sites in 14 wild M. m. domesticus samples with > 2 diploid copies of R2d

(range 3−83 per sample; total of 406 sequences) but excluded sites corresponding to variants among

R2d1 sequences. Remaining sites were phased to R2d2 by checking for the presence of a 31-mer

containing the site and the nearest R2d1-vs-R2d2 difference in the raw reads for each sample using

the corresponding msBWT. Sequence diversity was then computed using Watterson’s estimator83,

dividing by the number of alignable bases (128, 973) to yield a per-site estimate. Standard errors

were estimated by 100 rounds of resampling over the columns in the R2d1-vs-R2d2 alignment.

4.5.7 Microarray genotyping

Genome-wide genotyping was performed using MegaMUGA, the second version of the Mouse

Universal Genotyping Array platform (Neogen/GeneSeek, Lincoln, NE)95. Genotypes were called

using the GenCall algorithm implemented in the Illumina BeadStudio software (Illumina Inc,

Carlsbad, CA). For quality control we computed, for each marker i on the array: Si = Xi + Yi,
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where Xi and Yi are the normalized hybridization intensities for the two alleles. The expected

distribution of Si was computed from a large set of reference samples. We excluded arrays for

which the distribution of Si was substantially shifted from this reference; in practice, failed arrays

can be trivially identified in this manner95. Additional genotypes for inbred strains and wild mice

from the Mouse Diversity Array were obtained from157.

4.5.8 Analyses of Cwc22 expression

RNA-seq read alignment. Expression of Cwc22 was examined in adult whole brain using data

from298, SRA accession #SRP056236. Paired-end reads (2× 100 bp) were obtained from 8 replicates

each of 3 inbred strains: CAST/EiJ, PWK/PhJ and WSB/EiJ. Raw reads were aligned to the mm10

reference using STAR v2.4.2a325 with default parameters for paired-end reads. Alignments were

merged into a single file per strain for further analysis. Expression in adult testis was examined in

23 wild-derived inbred strains from299, SRA accession #PRJNA252743. Single-end reads (76 bp)

were aligned to the mm10 genome with STAR using default parameters for single-end, non-strand-

specific reads.

Transcript assembly. Read alignments were manually inspected to assess support for Cwc22

isoforms in the Ensembl v83 annotation. To identify novel isoforms in R2d2, we applied the

Trinity v0.2.6 pipeline326 to the subset of reads from WSB/EiJ which could be aligned to R2d1

plus their mates (a set which represents a mixture of Cwc22R2d1 and Cwc22R2d2 reads). De novo

transcripts were aligned both to the mm10 reference and to the R2d2 contig using BLAT, and were

assigned to R2d1 or R2d2 based on sequence similarity. Because expression from R2d2 is high in

WSB/EiJ, R2d2-derived transcripts dominated the assembled set. Both manual inspection and

the Trinity assembly indicated the presence of retained introns and an extra 3’ exon, as described

in the Results. To obtain a full set of Cwc22 transcripts including those of both R2d1 and R2d2

origin, we supplemented the Cwc22 transcripts in Ensembl v83 with their paralogs from R2d2

as determined by a strict BLAT search against the R2d2 contig. We manually created additional

transcripts reflecting intron-retention and 3’ extension events described above, and obtained their

sequence from the R2d2 contig.

Abundance estimation. Relative abundance of Cwc22 paralogs was estimated using kallisto

v0.42.3300 with parameters -bias (to estimate and correct library-specific sequence-composition

biases). The transcript index used for pseudoalignment and quantification included only the Cwc22
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targets.

4.5.9 Phylogenetic analyses

Tree for R2d. Multiple sequence alignments for sub-regions of R2d were generated using

MUSCLE327 with default parameters. The resulting alignments were manually trimmed and consec-

utive gaps removed. Phylogenetic trees were inferred with RAxML v8.1.9328 using the GTR+gamma

model with 4 rate categories and M. caroli as an outgroup. Uncertainty of tree topologies was

evaluated using 100 bootstrap replicates.

Divergence time. The time of the split between R2d1 and R2d2 was estimated using the Bayesian

method implemented in BEAST v1.8.1r6542289. We assumed a divergence time for M. caroli of 5 Mya

and a strict molecular clock, and analyzed the concatenated alignment for our de novo assembled

regions under the GTR+gamma model with 4 rate categories and allowance for a proportion of

invariant sites. The chain was run for 1× 107 iterations with trees sampled every 1000 iterations.

Local phylogeny around R2d2. Genotypes for 173 SNPs in the region surrounding R2d2 (chr2: 83

— 84 Mb) were obtained for 90 individuals representing both laboratory and wild mice genotyped

with the Mouse Diversity Array157. Individuals with evidence of heterozygosity (> 3 heterozygous

calls) were excluded to avoid ambiguity in phylogenetic inference. A distance matrix for the

remaining 62 samples was created by computing the proportion of alleles shared identical by state

between each pair of samples. A neighbor-joining tree was inferred from the distance matrix and

rooted at the most recent common ancestor of the M. musculus- and non-M. musculus samples.

Cwc22 coding sequences. To create the tree of Cwc22 coding sequences, we first obtained the

sequences of all its paralogs in mouse. The coding sequence of Cwc22R2d1 (RefSeq transcript

NM_030560.5) was obtained from the UCSC Genome Browser and aligned to our R2d2 contig with

BLAT to extract the exons of Cwc22R2d2. The coding sequence of retro-Cwc22 (genomic sequence

corresponding to GenBank cDNA AK145290) was obtained from the UCSC Genome Browser.

Coding and protein sequences of Cwc22 homologs from non-M. musculus species were obtained

from Ensembl115. The sequences were aligned with MUSCLE and manually trimmed, and a

phylogenetic tree estimated as described above.

We observed that the branches in the rodent clade of the Cwc22 tree appeared to be longer than

branches for other taxa. We used PAML115 to test the hypothesis that Cwc22 is under relaxed puri-

fying selection in rodents using the branch-site model (null model model = 2, NSsites = 2,

129



fix_omega = 1; alternative model model = 2, NSsites = 2, omega = 1, fix_omega

= 1) as described in the PAML manual. This is a test of difference in evolutionary rate on a “fore-

ground” branch (ω1) — in our case, the rodent clade — relative to the tree-wide “background” rate

(ω0), with H0 : ω0 = ω1 and Ha : ω0 < ω1. The distribution of the test statistic is an even mixture

of a χ2 distribution with 1 df and a point mass at zero; to obtain the p-value, we calculated the

quantile of the χ2 distribution with 1 df and divided by 2.

4.5.10 Analyses of recombination rate at R2d2

To test the effect of R2d2 copy number on local recombination rate examined recombination

events accumulated during the first 16 generations of breeding of the DO population, in which

the high-copy R2d2 allele from WSB/EiJ is segregating. Founder haplotype reconstructions were

obtained for 4, 640 DO individuals (a subset of those in Chapter 3), and recombination events

were identified as junctions between founder haplotypes. We compared the frequency of junctions

involving a WSB/EiJ haplotype to junctions not involving a WSB/EiJ haplotype over the region chr2:

75-90 Mb. Within each generation we also tested for differences in the lengths of haplotype blocks

overlapping R2d2 using one-sided Wilcoxon rank-sum tests (alternative hypothesis: WSB/EiJ

haplotypes longer than others). Resulting p-values were subject to Bonferroni correction: for

nominal significance level alpha = 0.01, the corrected threshold is p = 0.01
12 = 8.3× 10−4.

We also estimated the difference between observed and expected recombination fraction in

11 experimental crosses in which one of the parental lines was segregating for a high-copy al-

lele at R2d2. We obtained expected recombination fractions from the standard mouse genetic

map190, which was constructed from crosses between strains lacking R2d2HC alleles. Geno-

type data was obtained from The Jackson Laboratory’s Mouse Phenome Database QTL Archive

(http://phenome.jax.org/db/q?rtn=qtl/home). Recombination fractions were calculated

using R/qtl (http://rqtl.org/). Confidence intervals for difference between observed and

expected recombination fractions were calculated by 100 iterations of nonparametric bootstrapping

over individuals in each dataset.
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CHAPTER 5

Selfish selection on a structural variant

5.1 Introduction
1 Population-level sequencing data have enabled analyses of positive selection in many species,

including mice329 and humans330,331,332. These studies seek to identify genetic elements, such as

single nucleotide variants (SNVs) and copy number variants (CNVs), that are associated with

phenotypic differences between populations that share a common origin333,334. A marked differ-

ence in local genetic diversity between closely related taxa might indicate that one lineage has

undergone a sweep. During a sweep, a variant under strong positive selection rises in frequency

and carries with it linked genetic variation (“genetic hitch-hiking”), thereby reducing local hap-

lotype diversity84,335. In genomic scans for sweeps, it is typically assumed that the driving allele

will have a strong positive effect on organismal fitness. Prominent examples of sweeps for which

this assumption holds true (i.e. classic selective sweeps) include alleles at the Vkorc1 locus, which

confers rodenticide resistance in the brown rat336, and enhancer polymorphisms conferring lactase

persistence — the ability to digest milk into adulthood — in human beings337. However, we and

others have suggested that selfish alleles that strongly promote their own transmission irrespective

of their effects on overall fitness could give rise to genomic signatures indistinguishable from those

of classic selective sweeps338,339,340,341,342,246.

Suggestive evidence that sweeps may be driven by selfish alleles comes from studies in

1The results presented in this chapter are published in:

Didion JP∗, Morgan AP∗, Yadgary L et al. (2016) R2d2 drives selfish sweeps in the house mouse. Mol Biol
Evol 33:1381–1395. PMID 26882987.

This project was a joint effort of John Didion, Liran Yadgary and the author, with additional important contributions
from Tim Bell, Lydia Ortiz de Solorzano, Rachel McMullan, and a large network of collaborators who contributed DNA
samples from wild mice. Ted Garland contributed DNA samples and whole-genome sequence data from HR selection
lines.
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Drosophila. Incomplete sweeps have been identified at the Segregation Distorter (SD) locus343 and in

at least three X-chromosome systems344,345,346,347, all of which drive through the male germline. In

addition, genomic conflict has been proposed as a possible driver of two nearly complete sweeps

in D. mauritiana348. Incomplete sweeps were also detected in natural populations of Mimulus

(monkeyflower); the cause was identified as female meiotic drive of the centromeric D locus349.

The fact that all evidence of selfish sweeps derives from two genera is to some extent reflective

of a observational bias, but may also indicate a difference in the incidence or effect of selfish

alleles between these taxa and equally well-studied mammalian species (e.g. humans and mice).

Furthermore, the lack of completed selfish sweeps reported in the literature may be due to an

unexpected strength of balancing selection, in which the deleterious effects of selfish alleles prevent

them from driving to fixation, or due to insufficient methods of detection.

Here, we investigate whether a selfish allele can sweep in natural and laboratory populations

of the house mouse, M. m. domesticus. The R2d2 locus is introduced and described in detail in

Chapter 4. Briefly, R2d2 is a copy number gain of a 127 kb core element that contains a single

protein-coding gene, Cwc22 (a member of the mRNA-splicing complex.) Females heterozygous for

R2d2 preferentially transmit to their offspring an allele with high copy number (R2d2HC) relative to

an allele with low copy number (R2d2LC), where “high copy number” is the minimum copy number

with evidence of distorted transmission in existing experiments — approximately 7 units of the core

element. In contrast to many meiotic drive systems, in which the component elements are tightly

linked, the action of R2d2HC is dependent on unlinked modifier loci whose frequencies, modes of

action, and effect sizes are unknown286. These modifier loci modulate the degree of transmission

distortion; as a result, distorted transmission is present in some laboratory crosses segregating

for R2d2HC alleles, but absent in others350,351,290,352,353,354. In this chapter we show that R2d2HC

genotype is either uncorrelated or negatively correlated with litter size — a major component of

absolute fitness in mice — depending on the presence of meiotic drive. R2d2HC therefore behaves

as a selfish genetic element. In the We provide evidence of a recent “selfish selective sweep” at

R2d2HC in wild M. m. domesticus mice and show that R2d2HC has repeatedly driven selfish sweeps

in closed-breeding mouse populations.
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Population Freq 2N

BE 0.50 6

CH 0.32 28

CY 0.00 14

DE 0.67 6

DK 0.06 18

EC 0.00 24

ES 0.22 18

FR 0.15 26

GR 0.08 106

IT 0.09 34

LB 0.25 8

PT 0.13 54

TN 0.00 4

UK 0.00 6

USE 0.21 102

USW 0.00 24

Table 5.1: Table 1. R2d2HC allele frequencies in wild M. m. domesticus populations. Populations are

given as ISO country codes, except for USE (US East Coast - Maryland) and USW (US West Coast -

Farallon Island).

5.2 Results

5.2.1 Evidence for a selfish sweep in wild mouse populations

As described in Chapter 4, copy number at R2d2 varies from 0 to > 60 in wild mice. Here we

analyzed copy number by population Figure 5.1 and found that R2d2HC alleles are segregating at a

wide range of frequencies in natural populations (0.00− 0.67; Table 5.1).

To test for a selfish sweep at R2d2HC, we genotyped the wild-caught mice on the MegaMUGA

array95 and examined patterns of haplotype diversity on chromosome 2. In the case of strong

positive selection, unrelated individuals are more likely to share extended segments that are

identical by descent in the vicinity of the selected locus355 compared with a population subject only

to genetic drift. Consistent with this prediction, we observed an extreme excess of shared identity

by descent (IBD) across populations around R2d2 (Figure 5.2A): R2d2 falls in the top 0.25% of
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Figure 5.1: Wild mouse populations tested for R2d2 status. (A) Geographic distribution of samples

used in this study. Samples are colored by taxonomic origin: blue for M. m. domesticus, green for

M. m. castaneus. Those with standard karyotype (2n = 40) are indicated by closed circles; samples

with Robertsonian fusion karyotypes (2n < 40) are indicated by open circles. Populations from

Floreana Island (Galapagos Islands, Ecuador; “EC”), Farallon Island (off the coast of San Francisco,

California, United States; “USW”), and Maryland, United States (“USE”) are not shown. (B,C)

Multidimensional scaling (MDS) (k = 3 dimensions) reveals population stratification consistent

with geography. M. m. domesticus populations are labeled by country of origin. Outgroup samples

of M. m. castaneus origin cluster together (“cas”). (D) Population graph estimated from autosomal

allele frequencies by TreeMix. Black edges indicate ancestry, while colored edges indicate gene

flow by migration or admixture (with yellow to red indicating increasing probability of migration).

Topography of the population graph is consistent with MDS result and with the geographic origins

of the samples.
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Chr Start (Mb) End (Mb) Locus Score

2 79.75 85.75 R2d2 0.108

4 3.25 7.75 0.051

4 149 149.5 0.045

5 113 113.5 0.045

7 35 36 0.049

7 132.75 137.25 Vkorc1 0.154 *

8 116.5 118 0.076

10 86.25 89 0.098

13 70 71.75 0.068

17 26.75 27.75 MHC; t-hap. 0.05 *

18 12.5 13.75 0.049

18 33 35.5 0.216

Table 5.2: The 12 loci above the 99th percentile of IBD-sharing scores. Chromosome locations

are given based on mouse genome build GRCm38/mm10. Loci identified as targets of positive

selection are named and candidate targets of selection identified in wild mice in a previous study329

are marked with an asterisk.

IBD-sharing scores across the autosomes. In all cases, the shared haplotype has high copy number

and this haplotype appears to have a single origin in European mice (Figure 5.4 and Chapter 4).

Strong signatures of selection are also evident at a previously identified target of positive selection,

the Vkorc1 locus (distal chromosome 7)356. The 12 loci in the top 1% of IBD-sharing scores are

shown in Table 5.2.

In principle, the strength and age of a sweep can be estimated from the extent of loss of

genetic diversity around the locus under selection. From the SNP data, we identified a ∼ 1 Mb

haplotype with significantly greater identity between individuals with R2d2HC alleles compared to

the surrounding sequence. We used published sequencing data from 26 wild mice268 to measure

local haplotype diversity around R2d2 and found that the haplotypes associated with R2d2HC alleles

are longer than those associated with R2d2LC (Figure 5.2B-C). This pattern of extended haplotype

homozygosity is consistent with positive selection over an evolutionary timescale as short as 450

generations (see § 5.5). However, due to the extremely low rate of recombination in the vicinity of

R2d2 (see Chapter 4), this is most likely an underestimate of the true age of the mutation. The fact
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Figure 5.2: Haplotype-sharing at R2d2 provides evidence of a selective sweep in wild mice of

European origin. (A) Weighted haplotype-sharing score (see § 5.5) computed in 500 kb bins across

autosomes, within which individuals are drawn from the same population (lower panel) or differ-

ent populations (upper panel). Peaks of interest overlay R2d2 (chromosome 2; see Figure 5.3 for

zoomed-in view) and Vkorc1 (distal chromosome 7). The position of the closely linked t-haplotype

and major histocompatibility (MHC) loci is also marked. (B) Decay of extended haplotype homozy-

gosity (EHH)357 on the R2d2HC-associated (blue) versus the R2d2LC-associated (red) haplotype.

EHH is measured outward from the index SNP at chr2:83,790,275 and is bounded between 0 and 1.

(C) Haplotype bifurcation diagrams for the R2d2HC (top panel, blue) and R2d2LC (bottom panel,

red) haplotypes at the index SNP (open circle). Darker colors and thicker lines indicate higher

haplotype frequencies. Haplotypes are truncated 100 sites in each direction from the index SNP.
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This panel is a magnified view of Figure 5.2. (B) Cumulative distribution of IBD-sharing probability
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indicate value at R2d2.
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Figure 5.4: Local phylogeny at R2d2. Neighbor-joining tree constructed from genotypes at 39 SNPs

in the interval chr2: 82 – 85 Mb. To avoid phase uncertainty, only the 80 individuals homozygous

across the entire region are included. Names are abbreviated to country and locality code. The

node marked in red is the most recent common ancestor of all R2d2HC haplotypes except one M.

m. castaneus sample (TW:MEI) from an admixed population whose R2d2HC allele likely represents

either genotyping error or an introgression event.
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that the allele is widespread in Europe and the Americas as well as in mice from multiple locations

in Iran argues in favor of less recent origin — at least 10, 000 years ago, before M. m. domesticus

spread out of the near East132.

It is important to note that the excess IBD we observe at R2d2 (Figure 5.2A) arises from segments

shared between geographically distinct populations (Figure 5.1). When considering sharing within

populations only (Figure 5.3), R2d2 is no longer an outlier. Therefore, it was unsurprising that we

failed to detect a sweep around R2d2 using statistics that are designed to identify population-specific

differences in selection, like hapFLK 358, or selection in aggregate, like iHS 359 (Figure 5.5).

5.2.2 A selfish sweep in the Diversity Outbred population

We validated the ability of R2d2HC to drive a selfish sweep by examining R2d2 allele frequencies

in multiple closed-breeding laboratory populations for which we had access to samples from

the founder populations. The Diversity Outbred (DO) is a randomized outbreeding population

derived from eight inbred mouse strains that is maintained under conditions designed to minimize

the effects of both selection and genetic drift222. Expected time to fixation or loss of an allele

present in the founder generation (with initial frequency of 1/8) is approximately 900 generations.

The WSB/EiJ founder strain contributed an R2d2HC allele which underwent more than a three-

fold increase (from 0.18 to 0.62) in 13 generations (p < 0.001 by simulation with drift only; range

0.03−0.26 after 13 generations in 1000 simulation runs) (Figure 5.6A), accompanied by significantly

distorted allele frequencies (p < 0.001 by simulation) across a 100 Mb region linked to the allele

(Figure 5.6B-C).

5.2.3 R2d2HC has an underdominant effect on fitness

The fate of a selfish sweep depends on the fitness costs associated with the different genotypic

classes at the selfish genetic element. For example, maintenance of intermediate frequencies of the

M. musculus t-complex360 and Drosophila SD361 chromosomes in natural populations is thought to

result from decreased fecundity associated with those selfish elements.

To assess the fitness consequences of R2d2HC, we treated litter size as a proxy for absolute fitness

(Figure 5.7A). We determined whether each female had distorted transmission of R2d2 using a

one-sided exact binomial test for deviation from the expected Mendelian genotype frequencies in

her progeny. Average litter size among DO females homozygous for R2d2LC (“LL” in Figure 5.7A:

8.1; 95% CI 7.8− 8.3; N = 339) is not different from females homozygous for R2d2HC (“HH”: 8.1;
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Figure 5.5: Tests for selection based on population differentiation and haplotype length do not

detect sweeps at R2d2. (A) Plot of hapFLK statistic along chromosome 2, for a range of values of the

model parameter K (number of local haplotype clusters). (B) Cumulative distribution of hapFLK

across autosomes, for a range of values of K. Value of the statistic at R2d2 is indicated by open

circle. (C) Plot of standardized iHS score along chromosome 2 after phasing with fastPHASE, for

a range of values of K. (D) Cumulative distribution of standardized iHS scores across autosomes

after fastPHASE with K = 12. Value of the statistic at R2d2 is indicated by open circle.
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Figure 5.7: R2d2HC has underdominant effect on fitness in females. (A) Mean litter size among DO

females according to R2d2 genotype: LL, R2d2LC/LC; LH – TRD, R2d2LC/HC without transmission

ratio distortion; LH + TRD, R2d2LC/HC with transmission ratio distortion; HH, R2d2HC/HC. Circle

sizes reflect number of females tested; error bars are 95% confidence intervals from a linear mixed

model which accounts for parity and repeated measures on the same female (see § 5.5.) (B) Mean

absolute number of R2d2HC alleles transmitted in each litter by heterozygous females with (LL +

TRD) or without (LL – TRD) transmission ratio distortion. LL + TRD females transmit more R2d2HC

alleles despite their significantly reduced litter size.

95% CI 7.4 − 8.7; N = 47) or heterozygous females without distorted transmission of R2d2HC

(“LH-TRD”: 8.1; 95% CI 7.7− 8.5; N = 89). However, in the presence of meiotic drive, litter size is

markedly reduced (“LH+TRD”: 6.5; 95% CI 5.9− 7.2; N = 38; p = 3.7× 10−5 for test of difference

versus all other classes). The relative fitness of heterozygous females with distorted transmission is

w = 0.81, resulting in a selection coefficient of s = 1 − w = 0.19 (95% CI 0.10 − 0.23) against the

heterozygote. Despite this underdominant effect, the absolute number of R2d2HC alleles transmitted

by heterozygous females in each litter is significantly higher in the presence of meiotic drive than

its absence (p = 0.032; Figure 5.7B). The rising frequency of R2d2HC in the DO thus represents a

truly selfish sweep.

5.2.4 Selfish sweeps in other laboratory populations

We also observed selfish sweeps in selection lines derived from the ICR:Hsd outbred popu-

lation290 in which R2d2HC alleles are segregating. Three of four lines selectively bred for high
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voluntary wheel-running (HR lines) and two of four control lines (10 breeding pairs per line per

generation in both conditions) went from starting R2d2HC frequencies of ∼ 0.75 to fixation in 60

generations or less — two lines were fixed by generation 20, and three more by generation 60

(Figure 5.8A). In simulations mimicking this breeding design and assuming normal Mendelian

transmission (Figure 5.8B), median time to fixation was 46 generations (5th percentile: 9 gener-

ations). Although the R2d2HC allele would be expected to eventually fix by drift in 6 of 8 lines

given its high starting frequency, the observed rates of fixation were more rapid than expected

(p = 0.003 in 1000 simulation runs). In a related advanced intercross segregating for high and

low copy number alleles at R2d2 (HR8×C57BL/6J354), we observed that R2d2HC increased from

a frequency of 0.5 to 0.85 in just 10 generations and fixed by 15 generations (Figure 5.8C) versus

a median 184 generations in simulations (p < 0.001; Figure 5.8D). The increase in R2d2HC allele

frequency in the DO and advanced intercross populations occurred at least an order of magnitude

faster than would have been predicted by drift alone.

Using archival tissue samples, we were able to determine R2d2 allele frequencies in the original

founder populations of 6 (out of∼ 60) wild-derived inbred strains currently available for laboratory

use118. In four strains — WSB/EiJ, WSA/EiJ, ZALENDE/EiJ, and SPRET/EiJ — R2d2HC alleles

were segregating in the founders and are now fixed in the inbred populations. In the other two

strains, LEWES/EiJ and TIRANO/EiJ, the founders were not segregating for R2d2 copy number and

the inbred populations are fixed, as expected, for R2d2LC (Figure 5.9). This trend in wild-derived

strains is additional evidence of the tendency for R2d2HC to go to fixation in closed breeding

populations.

5.3 Discussion

5.3.1 Why has the R2d2HC allele not fixed?

Considering the degree of transmission distortion in favor of R2d2HC (up to 95%286) and that

R2d2HC repeatedly goes to fixation in laboratory populations, the moderate frequency of R2d2HC

in the wild (0.14 worldwide, 5.1) is initially surprising. We find no obvious association between

geography and R2d2HC allele frequency that might indicate the mutation’s precise origin or its

pattern of gene flow (Table 5.1 and Figure 5.1).

Several observations may explain these results. First, our sampling was geographically sparse
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Figure 5.8: R2d2HC alleles rapidly increase in frequency in ICR:Hsd-derived laboratory populations.

(A) R2d2HC allele frequency during breeding of 4 HR selection lines and 4 control lines. Trajectories

are colored by their fate: blue, R2d2HC fixed by generation 20; red, R2d2HC fixed by generation 60;

grey, R2d2HC not fixed. Circle sizes reflect number of chromosomes (2N ) genotyped. (B) Cumulative

distribution of time to fixation (blue) or loss (grey) of the focal allele in 1,000 simulations of an

intercross line mimicking the HR breeding scheme. Dotted line indicates median fixation time. (C)

R2d2HC allele frequency during breeding of an (HR8×C57BL/6J) advanced intercross line (AIL).

Circle sizes reflect number of chromosomes (2N ) genotyped. (D) Cumulative distribution of time

to fixation (blue) or loss (grey) of the focal allele in 1,000 simulations of an advanced intercross line

mimicking the AIL. Dotted line indicates median fixation time.
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Figure 5.9: Multiple wild-derived inbred lines have fixed R2d2HC alleles that were segregating

in founder populations. (A) R2d2 genotype frequencies in available ancestors of wild-derived

inbred lines, determined by qPCR (see § 5.5). (B) Genotypes at markers on the MegaMUGA array

in the region chromosome 2: 80 Mb – 90 Mb for founder individuals of the SPRE/EiJ (brown),

ZALENDE/EiJ (blue), LEWES/EiJ (orange) or TIRANO/EiJ (red) inbred lines. For WSB/EiJ

(purple), genotypes are from present-day wild individuals from the township of Centreville,

Maryland. Genotypes are coded by identity-by-state (IBS) to the respective inbred line: dark circles,

homozygous for allele fixed in inbred line; light circles, heterozygous; open circles, homozygous for

alternative allele. Region containing R2d2 indicated by grey shaded box. This panel demonstrates

that R2d2HC was most likely not yet fixed in the early breeding generations of these lines.
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and non-uniform; our allele frequency estimates may differ substantially from the true population

allele frequencies at R2d2. Second, the reduction in litter size associated with R2d2HC may have a

greater impact on R2d2 allele frequency in a natural population than in the controlled laboratory

populations we studied. In our breeding schemes each mating pair contributes the same number

of offspring to the next generation so that most fitness differences are effectively erased. Third,

R2d2HC alleles may be unstable and lose the ability to drive upon reverting to low copy number, as

discussed in Chapter 4.

Fourth — and perhaps most importantly — meiotic drive at R2d2 depends on at least two

unlinked modifier loci whose effect sizes and allele frequencies are unknown.

5.3.2 Population dynamics of meiotic drive

In an infinitely-large and randomly-mating population, the dynamics of an underdominant

meiotic drive allele are only dependent on the relationship between the degree of transmission

distortion (m) and the strength of selection against heterozygotes (s)362 2. This relationship can

be expressed by the quantity q (see ??), for which q > 1 implies eventual fixation of the driving

allele, q < 1 implies that the allele will be purged, and q ≈ 1 leads to maintenance of the allele at an

(unstable) equilibrium frequency362. The fate of the driving allele in a finite population additionally

depends on the population size — the smaller the population, the greater the likelihood that genetic

drift will fix a mutation with q < 1 by chance (Figure 5.10A-B). We note that R2d2HC appears to

exist close to the q ≈ 1 boundary (s ≈ 0.2, m ≈ 0.7, and thus q ≈ 0.96).

The simplified model described in above ignores the fact that the action of R2d2HC is dependent

on unlinked modifier loci. Because the number and effect size of these modifiers is unknown,

it is difficult to predict their influence on the fate of R2d2HC alleles in the wild. To gain some

qualitative insight on the problem, we used forward-in-time simulations to explore the effect of

a single unlinked modifier locus on fixation probability of a driving allele. Under an additive

model of drive (m = 0.80 for modifier genotype AA, 0.65 for genotype Aa and 0.50 for genotype

aa), fixation probability is reduced and time to fixation is increased by the presence of the modifier

locus (Figure 5.10C-D). As the modifier allele becomes more rare, fixation probability approaches

2While this is not the standard interpretation of the selection coefficient s, we chose it to be consistent with the notation
of Hedrick Hedrick 362
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the neutral expectation ( 1
2N , where N is population size). Importantly, the driving allele tends to

sweep until the modifier allele is lost, and then drifts either to fixation or loss (Figure 5.10E). Drift

at modifier loci thus creates a situation akin to selection in a varying environment — one outcome

of which is balancing selection78. This is consistent with the maintenance of R2d2HC at intermediate

frequencies in multiple populations separated by space and time, as we observe in wild mice.

5.4 Conclusions and future directions

Most analyses of positive selection in the literature assume that the likelihood of a newly

arising mutation becoming established, increasing in frequency and even going to fixation within

a population is positively correlated with its effect on organismal fitness. Here, we have shown

that a selfish genetic element has repeatedly driven sweeps in which the change in allele frequency

and the effect on organismal fitness are decoupled. Our results suggest that evolutionary studies

should employ independent evidence to determine whether loci implicated as drivers of selective

sweeps are adaptive or selfish.

Although a selfish sweep has clear implications for such experimental populations as the DO

and the Collaborative Cross, the larger evolutionary implications of selfish sweeps are less obvious.

On the one hand, sweeps may be relatively rare, as appears to be the case for classic selective

sweeps in recent human history363. On the other hand, theory and comparative studies indicate

that selfish genetic elements may be a potent force during speciation339,362,342,340,246. With the

growing appreciation for the potential importance of non-Mendelian genetics in evolution and the

increasing tractability of population-scale genetic analyses, we anticipate that the effects of selfish

elements such as R2d2 in natural populations, including their contributions to events of positive

selection, will soon be elucidated.

5.5 Materials and methods

5.5.1 Mice

Wild M. m. domesticus were trapped at a large number of sites across Europe and the Americas

(5.1A, upper panel) for a total sample size of 471. A set of 29 additional M. m. castaneus mice

trapped in northern India and Taiwan (Figure 5.1A, lower panel) were included as an outgroup157.

Trapping was carried out in concordance with local laws and either did not require approval or

was carried out with the approval of the relevant regulatory bodies (depending on the locality and
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Figure 5.10: Population dynamics of a meiotic drive allele. (A) Phase diagram for a meiotic

drive system like R2d2 with respect to transmission ratio (m) and selection coefficient against the

heterozygote (s). Regions of the parameter space for which there is directional selection for the

driving allele are shown in black; regions in which there are unstable equilibria or directional

selection against the driving allele are shown in grey. (B) Probability of fixing the driving allele

as a function of m, s and population size (N ). Notice that, in the area corresponding to the grey

region of panel A, fixation probability declines rapidly as population size increases. (C) Probability

of fixing the driving allele in simulations of meiotic drive dependent on no modifier (light gray)

or a single modifier locus (dark gray) with varying allele frequency; N = 100, s = 0.2, maximum

m = 0.8, initial driver frequency = 1/2N . Estimates are given ±2 SE. Grey dashed line corresponds

to fixation probability for a neutral allele (1/2N). (D) Time to fixation of the driving allele. Values

represent 100 fixation events in each condition. (E) Example allele-frequency trajectories from a

“collapsed” selfish sweep. Although the modifier allele is present at intermediate frequency, the

driving allele sweeps to a frequency of approximately 0.75. After the modifier allele is lost, the

driver drifts out of the population as well.
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institution).

All DO mice were bred at The Jackson Laboratory. Litter sizes were counted within 24 hours of

birth. Individual investigators purchased mice for unrelated studies and contributed either tissue

samples or genotype data to this study.

“High-running” (HR) selection lines and related advanced intercrosses were developed as

previously described290,353,354,364. Mouse tails were archived from 3 generations of the HR selection

lines (−2, +22, and +61) and from every generation of the HR8×C57BL/6J advanced intercross.

Progenitors of wild-derived strains have various origins (see below), and were sent to Eva M.

Eicher at The Jackson Laboratory for inbreeding in the early 1980s. Frozen tissues from animals

in the founder populations were maintained at The Jackson Laboratory by Muriel Davidson until

2014, when they were transferred to the Pardo-Manuel de Villena laboratory at the University of

North Carolina at Chapel Hill.

All laboratory mice were handled in accordance with the IACUC protocols of the investigators’

respective institutions.

5.5.2 Progenitors of wild-derived inbred lines

Details of the origins of wild-derived inbred strains are taken from155. Founder mice for the

strain Watkins Star Lines A and B (WSA and WSB, respectively) were trapped near the town of

Centreville, Maryland by Michael Potter (working at the National Cancer Institute) in 1976. WSA

and WSB were selected for dark agouti coat color with white head blaze. In 1986 breeders were

sent to Eva M. Eicher at The Jackson Laboratory, where the lines have been maintained since as

WSA/EiJ and WSB/EiJ. The LEWES/EiJ strain is descended from wild mice trapped by Potter near

Lewes, Delaware in 1981. Breeders were sent to Eicher at the Jackson Laboratory in 1995, where the

line has been maintained since. The ZALENDE/EiJ and TIRANO/EiJ inbred strains are descended

from mice trapped by Richard D. Sage near the villages of Zalende, Switzerland and Tirano, Italy

respectively, in the vicinity of the Poschiavo Valley at the Swiss-Italian border. Mice from SageÕs

colony were transferred to Potter in 1981. A single breeding pair for each strain was transferred

to Eicher at The Jackson Laboratory in 1982. The SPRET/EiJ inbred strain was derived from wild

Mus spretus mice trapped near Puerto Real, Cadiz province, Spain by Sage in 1978. The Jackson

LaboratoryÕs colony was initiated by Eicher from breeders transferred via Potter in 1983.
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5.5.3 Microarray genotyping

Whole-genomic DNA was isolated from tail, liver, muscle or spleen using Qiagen Gentra

Puregene or DNeasy Blood & Tissue kits according to the manufacturer’s instructions. All genome-

wide genotyping was performed using the Mouse Universal Genotyping Array (MUGA) and its

successor, MegaMUGA (GeneSeek, Lincoln, NE)95. Genotype quality control was performed as

described in Chapter 4.

5.5.4 PCR genotyping

Primers were design to amplify two regions predicted to be in close linkage (< 0.1cM ) to

R2d2. Primer Set A targets a 318 bp region with two distinct haplotypes in linkage with either

the R2d2LC allele or the R2d2HC allele: 5’-CCAGCAGTGATGAGTTGCCATCTTG-3’ (forward) and 5’-

TGTCACCAAGGTTTTCTTCCAAAGGGAA-3’ (reverse). Primer Set B amplifies a 518 bp region; the

amplicon is predicted, based on whole-genome sequencing, to contain a 169 bp deletion in HR8

relative to the C57BL/6J reference genome: 5’-GAGATTTGGATTTGCCATCAA-3’ (forward) and 5’-

GGTCTACAAGGACTAGAAACAG-3’ (reverse). Primers were designed using IDT PrimerQuest (https:

//www.idtdna.com/Primerquest/Home/Index).

Crude whole-genomic DNA for PCR reactions was extracted from mouse tails. The tissues

were heated in 100 µl of 25 mM NaOH + 0.2 mM EDTA at 95°C for 60 minutes followed by the

addition of 100 µl of 40 mM Tris-HCl. The mixture was then centrifuged at 2000× g for 10 minutes

and the supernatant used as PCR template. PCR reactions were performed in a 10 µl volume and

contained 0.25 mM dNTPs, 0.3 mM of each primer, and 0.5 units of GoTaq polymerase (Promega).

Cycling conditions were 95°C, 2− 5 min; 35 cycles at 95°C, 55°C and 72°C for 30 sec each; with a

final extension at 72°C for 7 min.

For Primer Set A, products were sequenced at the University of North Carolina Genome Analysis

Facility on an Applied Biosystems 3730XL Genetic Analyzer. Chromatograms were analyzed with

the Sequencher software package (Gene Codes Corporation, Ann Arbor, Michigan, United States).

For Primer Set B, products were visualized and scored on 2% agarose gels. Assignment to haplotypes

was validated by comparing the results to qPCR assays for the single protein-coding gene within

R2d2, Cwc22 (see below). For generation +61, haplotypes were assigned based on MegaMUGA

genotypes and validated by the normalized per-base read depth from whole-genome sequencing

(see below), calculated with samtools mpileup365. The concordance between qPCR, read depth,
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and haplotypes assigned by MegaMUGA or Sanger sequencing is shown in 5.11.

HR selection lines were genotyped at three generations, one before (−2) and two during (+22,

+61) artificial selection was initiated. We genotyped 185 randomly selected individuals from

generation −2 and 157 individuals from generation +22 using Primer Set A. An additional 80

individuals from generation +61 were genotyped with the MegaMUGA array, as noted above. The

HR8×C57BL/6J advanced intercross line was genotyped with Primer Set B in tissues from breeding

stock at generations 3, 5, 8, 9, 10, 11, 12, 13, 14 and 15.

5.5.5 Copy-number assays and assignment of R2d2 status

Copy-number at R2d2 was determined by qPCR for Cwc22 as previously described (Chapter 4).

Estimation of integer diploid copy numbers ≥ 3 by qPCR is infeasible without many technical and

biological replicates, especially in the heterozygous state. We took advantage of R2d2 diploid copy-

number estimates from whole-genome sequencing for the inbred strains C57BL/6J (0), CAST/EiJ

(2) and WSB/EiJ (66), and the (WSB/EiJ×C57BL/6J)F1 (33) to establish a threshold for declaring

a sample “high-copy.” For each of the two target-reference pairs we calculated the sample mean

(µ̂) and standard deviation (σ̂) of the normalized ∆Ct among CAST/EiJ controls and wild M. m.

castaneus individuals together. We designated as “high-copy” any individual with normalized Ct

greater than µ̂+ 2σ̂, i.e. any individual with approximately > 95% probability of having diploid

copy number > 2 at R2d2. Individuals with high copy number and evidence of local heterozygosity

(a heterozygous call at any of the 13 markers in the vicinity of R2d2) were declared heterozygous

R2d2HC/LC, and those with high copy number and no heterozygous calls in the candidate interval

were declared homozygous R2d2HC/HC.

5.5.6 Exploration of population structure in wild mice

Scans for signatures of positive selection based on patterns of haplotype-sharing assume that

individuals are unrelated. We identified pairs of related individuals using the IBS2* ratio366,

defined as HETHET / (HOMHOM + HETHET), where HETHET and HOMHOM are the count

of non-missing markers for which both individuals are heterozygous (share two alleles) and

homozygous for opposite alleles (share zero alleles), respectively. Pairs with IBS2* < 0.75 were

considered unrelated. Among individuals who were a member of one or more unrelated pairs,

we iteratively removed one sample at a time until no related pairs remained, and additionally

excluded markers with minor-allele frequency < 0.05 or missingness > 0.10. The resulting dataset
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Figure 5.11: Characterization of Cwc22 qPCR assays. (A) Concordance between local haplotype and

qPCR in HR lines. Normalized ∆Ct from qPCR assay against Cwc22 versus local haplotype at chr2:

83 Mb (A = R2d2LC, B = R2d2HC) in HR generation +61 individuals. Error bars represent mean ±1

SD over technical replicates, when present. (B) Normalized read depth at R2d2 in whole-genome

sequencing versus local haplotype. (C) R2d2 copy number of wild-derived inbred mouse lines

and available ancestors, estimated by qPCR. Samples listed as “control” are included as internal

calibration points. For inbred strains that have been sequenced (CAST/EiJ, SPRET/EiJ, WSB/EiJ,

ZALENDE/EiJ, LEWES/EiJ) copy numbers estimated from depth of coverage are indicated in

parentheses.
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contained genotypes for 396 mice at 58, 283 markers.

Several of our analyses required that samples be assigned to populations. Because mice in the

wild breed in localized demes and disperse only over short distances (on the order of hundreds of

meters)367, it seems reasonable to delineate populations on the basis of geography. We assigned

samples to populations based on the country in which they were trapped. To confirm that these

population labels correspond to genetically-differentiated clusters we performed two exploratory

analyses of population structure. First, classical multidimensional scaling (MDS) of autosomal geno-

types was performed with PLINK (options -mdsplot -autosome)368. The result is presented

in Figure 5.1B-C, in which samples are colored by population. Second, we used TreeMix369 to

generate a population tree allowing for gene flow using the set of unrelated individuals. Autosomal

markers were first pruned to reach a set in approximate linkage equilibrium (plink -indep 25

1). TreeMix was run on the resulting set using the M. m. castaneus samples as an outgroup and

allowing up to 10 gene-flow edges (treemix -root "cas" -k 10) (Figure 5.1D). The cluster-

ing of samples by population evident by MDS and the absence of long-branch attraction in the

population tree together indicate that our choices of population labels are biologically reasonable.

5.5.7 Scans for selection in wild mice

Two complementary statistics, hapFLK 358 and allele-frequency-standardized iHS score359,

were used to examine wild mouse genotypes for signatures of selection surrounding R2d2. The

hapFLK statistic is a test of differentiation of local haplotype frequencies between hierarchically-

structured populations. It can be interpreted as a generalization of Wright’s Fst to a graph and

additionally exploits local LD. Its model for haplotypes is that of fastPHASE370 and requires a

user-specified value for the parameter K, the number of local haplotype clusters. We computed

hapFLK in the set of unrelated individuals, using M. m. castaneus samples as an outgroup, for K ∈

{4, 8, 12, 16, 20, 24, 28, 32} (hapflk -outgroup "cas" -k K) and default settings otherwise.

The iHS score (and its allele-frequency-standardized form) is a measure of extended homozy-

gosity on a derived haplotype relative to an ancestral one. It requires phased genotypes. For

consistency with the hapFLK analysis, we used fastPHASE on the same genotypes over the same

range of K with 10 random starts and 25 iterations of expectation-maximization (fastphase

-KK -T10 -C25) to obtain phased genotypes. We then used selscan371 to compute raw

iHS scores (selscan --ihs) and standardized the scores in 25 equally-sized frequency bins

153



(selscan-norm -bins 25).

Values in the upper tail of the genome-wide distribution of hapFLK or iHS represent candidates

for regions under selection. We used percentile ranks directly and did not attempt to calculate

approximate or empirical p-values.

5.5.8 Detection of identity-by-descent in wild mice

As an alternative test for selection, we computed density of IBD-sharing using the RefinedIBD

algorithm of BEAGLE v4.0-r1399372, applying it to the full set of 500 individuals. The haplotype

model implemented in BEAGLE uses a tuning parameter (the “scale” parameter) to control model

complexity — larger values enforce a model with fewer local haplotype clusters, increasing sensi-

tivity for detecting IBD and decreasing computational cost at the expense of accuracy. The authors

recommend a value of 2.0 for human data. We increased the scale parameter to 5.0 to increase

detection power given our much sparser marker set and the relatively weaker local LD in mouse

versus human populations373. We trimmed one marker from the ends of candidate IBD segments

to reduce edge effects (java -jar beagle.jar ibd=true ibdscale=5 ibdtrim=1). We

retained those IBD segments shared between individuals in the set of 396 unrelated mice. In order

to limit noise from false-positive IBD segments, we further removed segments with LOD score

< 5.0 or width < 0.5 cM.

An empirical IBD-sharing score was computed in 500 kb bins (with 250 kb overlap) as:

fn =

∑
n sijpij
wij

where the sum in the numerator is taken over all IBD segments overlapping bin n and sij is an

indicator variable which takes the value 1 if individuals i, j share a haplotype IBD in bin n and 0

otherwise. The weighting factor wij is defined as

wij = 0.001×
(nanb
W

) 1
2

with

W = max(na, nb)
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where na and nb are the number of unrelated individuals in the population to which individuals

i and j belong, respectively. This weighting scheme accounts for the fact that we oversample some

geographic regions (for instance, Portugal and Maryland) relative to others. To explore differences

in haplotype-sharing within versus between populations, we introduce an additional indicator pij .

Within-population sharing is computed by setting pij = 1 if individuals i, j are drawn from the

same population and pij = 0 otherwise. Between-population sharing is computed by reversing the

values of pij . The result is displayed in Figure 5.2.

5.5.9 Analysis of local sequence diversity in whole-genome sequence

Whole-genome sequence data for wild mice was obtained and aligned as previously described

(Chapter 4). Single-nucleotide variants (SNVs) relative to the reference sequence of chromosome

2 were called using samtools mpileup v0.1.19-44428cd with maximum per-sample depth of

200. Genotype calls with root-mean-square mapping quality < 30 or genotype quality < 20 were

treated as missing. Sites were used for phasing if they had a minor-allele count > 2 and at most

2 missing calls. Phasing and imputation were was performed with BEAGLE, using 20 iterations

for phasing and default settings otherwise (java -jar beagle.jar phasing-its=20). Sites

were assigned a genetic position by linear interpolation the genetic map described in Chapter 3247.

We note that, unlike for humans, a large panel of reference haplotypes does not exist for mice. Using

sample haplotypes as templates for phasing results in higher rates of switching errors, especially

when the sample size is small. Switching errors introduce bias towards the null hypothesis in

EHH- and iHS-type tests, which compare the length of haplotypes linked to the derived versus

the ancestral allele at a specific locus359.

The R2d2 critical interval spans positions 83,790,939 – 84,701,151 in the mm10 reference sequence.

We used as the R2d2HC index variant the site with strongest nominal association with R2d2 copy

number and located within 1 kb of the proximal boundary of the candidate interval. That variant is

chr2:83,790,275T→C. The C allele is associated with high copy number and is therefore presumed

to be the derived allele. We computed the extended haplotype homozygosity (EHH) statistic357 in

the phased dataset over a 1 Mb window on each side of the index site using selscan (selscan

-ehh -ehh-win 1000000). The result is presented in Figure 5.2B. Decay of haplotypes away

from the index variant was visualized as a bifurcation diagram (Figure 5.2C) using code adapted

from the R package rehh (https://cran.r-project.org/package=rehh).
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5.5.10 Estimation of age of R2d2HC alleles

To obtain a lower bound for the age of R2d2HC and its associated haplotype, we used the method

from Stephens et al.374. Briefly, this method approximates the probability P that a haplotype is

broken by recombination or mutation during the G generations since its origin as

P = e−G(−µ+r)

where µ and r are the per-generation rates of mutation and recombination, respectively. Assum-

ing µ� r and, taking P ′ (the observed number of intact haplotypes) in a sample, as an estimator

of P , obtain the following expression for G:

G ≈ −
(
logP ′

)
/r

We enumerated haplotypes in our sample of 52 chromosomes at 3 SNPs spanning the R2d2 criti-

cal interval. The most proximal SNP is the index variant for the EHH analyses (chr2:83,790,275T→C);

the most distal SNP is the SNP most associated with copy number within 1 kbp of the boundary

of the candidate interval (chr2:84,668,280T→C); and the middle SNP was randomly-chosen to fall

approximately halfway between (chr2:84,079,970C→T). The three SNPs span genetic distance 0.154

cM (corresponding to r ≈ 0.00154). The most common haplotype among samples with high copy

number was assumed to be the non-recombined haplotype. Among 52 chromosomes, 22 carried at

least part of the R2d2HC-associated haplotype; of those, 11 were ancestral and 11 recombinant. This

gives an estimated age of 450 generations for R2d2HC.

We note that the approximations underlying this model assume constant population size and

the absence of selection. To the extent that haplotype homozygosity decays more slowly on a

positively- (or selfishly-) selected haplotype, we will underestimate the true age of R2d2HC. The

matter is further complicated by the assumption that the recombination rate per meiosis (although

not the population-scaled rate) is not genotype-dependent — which is clearly not the case for R2d2

(Chapter 4).

5.5.11 Analyses of fitness effects of R2d2HC in the DO

To assess the consequences of R2d2HC for organismal fitness, we treated litter size as a proxy

for absolute fitness. Using breeding data from 475 females from DO generations 13, 16, 18 and 19,
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we estimated mean litter size in four genotype groups: R2d2LC/LC homozygous females; R2d2HC/LC

heterozygous females with transmission ratio distortion (TRD) in favor of the R2d2HC allele;

R2d2HC/LC heterozygous females without TRD; and R2d2HC/HC homozygous females. Group means

were estimated using a linear mixed model with parity and genotype as fixed effects and a random

effect for each female using the lme4 package for R. Confidence intervals were obtained by

likelihood profiling and post-hoc comparisons were performed via F-tests, using the Kenward-

Roger approximation for the effective degrees of freedom. The mean number of R2d2HC alleles

transmitted per litter by heterozygous females with and without TRD was estimated using a

weighted linear model, with the total number of offspring per female as weights.

5.5.12 Whole-genome sequencing of HR selection lines

Ten individuals from generation +61 of each of the eight HR selection lines were subject to

whole-genome sequencing. Briefly, high-molecular-weight genomic DNA was extracted using a

standard phenol/chloroform procedure. Illumina TruSeq libraries were constructed using 0.5 µg

starting material, with fragment sizes between 300 and 500 bp. Each library was sequenced on one

lane of an Illumina HiSeq2000 flowcell in a single 2× 100 bp paired-end run.

5.5.13 Null simulations of closed breeding populations

Widespread fixation of alleles due to drift is expected in small, closed populations such as the

HR lines or the HR8xC57BL/6J advanced intercross line. But even in these scenarios, an allele

under positive selection is expected to fix (1) more often than expected by drift alone in repeated

breeding experiments using the same genetic backgrounds and (2) more rapidly than expected by

drift alone. We used the R package simcross (https://github.com/kbroman/simcross)

to obtain the null distribution of fixation times and fixation probabilities for an HR line under

Mendelian transmission.

We assume that the artificial selection applied for voluntary exercise in the HR lines (described

in290) was independent of R2d2 genotype. This assumption is justified for two reasons. First, 3 of

4 selection lines and 2 of 4 control (unselected) lines fixed R2d2HC. Second, at generations 4 and

10 of the HR8×C57BL/6J advanced intercross, no quantitative trait loci (QTL) associated with the

selection criteria (total distance run on days 5 and 6 of a 6-day trial) were found on chromosome

2. QTL for peak and average running speed were identified at positions linked to R2d2; however,

HR8 alleles at those QTL were associated with decreased, not increased, running speed354,364.

157

https://github.com/kbroman/simcross


Without artificial selection, an HR line reduces to an advanced intercross line maintained by

avoidance of sibling mating. We therefore simulated 100 replicates of an advanced intercross with

10 breeding pairs and initial focal allele frequency of 0.75. Trajectories were followed until the focal

allele was fixed or lost. As a validation, we confirmed that the focal allele was fixed in 754 of 1000

runs, which is not different from the expected 750 (p = 0.62, binomial test). Simulated trajectories

and the distribution of sojourn times are presented in Figure 5.8.

The HR8×C57BL/6J advanced intercross line was simulated as a standard biparental AIL

with initial focal allele frequency of 0.5. Again, 1000 replicates of an AIL with 20 breeding pairs

were simulated and trajectories were followed until the focal allele was fixed or lost. The result is

presented in Figure 5.8.

5.5.14 Investigation of population dynamics of meiotic drive

We used two approaches to investigate the population dynamics of a female-limited meiotic

drive system with selection against the heterozygote. First, we evaluated the fixation probability of a

driving allele in relationship to transmission ratio (m), selection coefficient against the heterozygote

(s) and population size (N ) by modeling the population as a discrete-time Markov chain whose

states are possible counts of the driving allele. Following362:

pt+1 =
(1− s) (1 + 2m) pt (1− pt) + 2 (1− pt)2

2 [1− 2spt (1− pt)]

where pt+1 is the expected frequency of the driving allele in generation t+ 1 given its frequency

in the previous generation (pt). In an infinite population, the equilibrium behavior of the system is

governed by the quantity q:

q =
1

2
(1− s) (1 + 2m)

When q > 1, the driving allele always increases in frequency. For values of q ≈ 1 and smaller,

the driving allele is either lost or reaches an unstable equilibrium frequency determined m and s.

Let M be the matrix of transition probabilities for the Markov chain with 2N + 1 states corre-

sponding to possible counts of the driving allele in the population (0, . . . , 2N ). The entries mij of

M are
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mij =

(
2N

i

)
(1− pt+1)

2N−i (pt+1)
i

Given a vector p0 of starting probabilities, the probability distribution at generation t is obtained

by iteration:

pt = p0M
t

We initiated the chain with a single copy of the driving allele. Since this Markov chain has

absorbing states (namely allele counts 0 and 2N ), we approximated steady-state probabilities by

iterating the chain until the change in probabilities between successive generations was < 10−4.

Fixation probability is given by the value of the entry pt [2N ] at convergence. We evaluated all

possible combinations of 0.5 ≤ m ≤ 1.0 (in steps of 0.1) and 0 ≤ s ≤ 0.3 (in steps of 0.05).

To investigate the effects of modifier loci on the frequency trajectory of a driving allele, we

implemented in Python forward-in-time simulations under a Wright-Fisher model with selection.

Simulations assumed a constant population size of 2N = 200 chromosomes, each 100 cM long,

with balanced sex ratio. At the beginning of each run a driving allele was introduced (at 50 cM)

on a single, randomly chosen chromosome. Modifier alleles were introduced into the population

independently at a specified frequency, at position 0.5 cM (i.e. unlinked to the driving allele).

To draw the next generation, an equal number of male and female parents were selected (with

replacement) from the previous generation according to their fitness. Among females heterozygous

for the driving allele, transmission ratio (m) was calculated according to genotype at the modifier

loci (if any). For males and homozygous females, m = 0.5. Individuals were assigned a relative

fitness of w = 1 if m = 0.5 and w = 0.8 if m > 0.5. Recombination was simulated under the

Haldane model (i.e. a Poisson process along chromosomes with no crossover interference). Finally,

for each individual in the next generation, one chromosome was randomly chosen from each parent

with probability m.

Simulation runs were restarted when the driving allele was fixed or lost, until 100 fixation

events were observed in each condition of interest. Probability of fixation was estimated using the

waiting time before each fixation event, assuming a geometric distribution of waiting times, using

the fitdistr() function in the R package MASS.
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CHAPTER 6

Sequence and structural diversity of mouse Y chromosomes

6.1 Introduction

The sex chromosomes are the only heteromorphic chromosome pair in mammals. In the vast

majority of mammal species, one member of the pair — the Y chromosome — is sex-determining.

Presence of the Y-encoded protein SRY is sufficient to initiate the male developmental program6.

Since their divergence from the ancestral X chromosome approximately 180 million years ago

(Mya)5, mammal Y chromosomes have lost nearly all of their ancestral gene content. Although

these losses have occurred independently along different lineages within the mammals, the small

subset of genes that are retained in each linage tend to be dosage-sensitive and have housekeeping

functions in core cellular processes such as transcription and protein degradation375,376. In addition,

Y chromosomes have acquired — via transposition from autosomes — a small number of genes that

are often present in many copies and are highly specialized for function in the male germline377,306.

Several lines of evidence suggest that, at least in mouse, the evolution of the acquired genes is

driven by intragenomic conflict with the X chromosome for transmission to progeny378,379.

The repetitive content of mammal Y chromosomes makes them difficult to sequence, assemble

and annotate accurately even with considerable manual effort. This has hampered efforts to

understand Y-linked variation. Because the Y chromosome is passed only through the male

germline and is obligately transmitted from fathers to sons without recombination, it provides a

rich view into male-specific mutational, selective and demographic processes. We therefore took

advantage of a recent high-quality assembly of the mouse Y306 to perform a systematic survey of

a diverse sample of Y chromosomes using published whole-genome sequencing datasets. In this

chapter we characterize both sequence and structural variation in Mus, and use complementary

gene expression data from testis to explore proximate functional consequences of this variation. We

find that:
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• Sequence diversity of Y chromosomes is < 10% that on autosomes and the site frequency

spectrum is skewed towards low-frequency alleles. These patterns are best explained by a

recent population bottleneck.

• Copy number of Y-acquired genes is extremely variable in Mus: wild M. m. domesticus have,

on average, three times as many copies as wild M. spretus. X-linked homologs of Y-acquired

genes are also variable in copy number, but only one family — Slx/Slxl1 and Sly — have

correlated copy number between the sex chromosomes.

• The expresssion pattern of Y-linked genes in the testis is differentiated between Y-chromosome

lineages. In hybrids between subspecies, the expression of Y-acquired genes is governed by

Y chromosome genotype independent of the X chromosome. The direction of the effect is

opposite of copy number.

• Both the population-genetic and functional evidence provide limited support for the hypoth-

esis that intragenomic conflict between the sex chromosomes has a major role in shaping

diversity on either the X or the Y chromosome within Mus musculus.

In the remainder of this section we introduce important themes in the evolution of sex chromo-

somes, restricting our attention to mammals unless otherwise stated.

6.1.1 Origins of sex chromosomes

Sex chromosomes have emerged many times in independent plant and animal lineages. Al-

though the morphology and content of extant sex chromosomes is extremely diverse, the evolution

of a new sex-chromosome pair generally follows a recognizable pattern (Figure 6.1). First, a

sex-determining allele arises on an autosome. Theory predicts that sexually-antagonistic and

male-advantageous mutations — those conferring advantage to only one sex — should be favored

to the extent that they are in linkage disequilibrium with the sex-determining allele. This in turn

favors mutations that suppress recombination between the proto-sex chromosomes380,381. Once

recombination has ceased, the proto-sex chromosomes begin to diverge by independent accumula-

tion of mutations. The sex-limited chromosome (in mammals, the Y) loses most of its functional

content and the expression patterns of those genes that remain become specialized for function in

the germline of the heterogametic sex (in mammals, the male)382. The other chromosome (the X)
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Figure 6.1: Evolution of heteromorphic sex chromosomes.

can still recombine in the homogametic sex (in mammals, the female) and so retains more of its

ancestral identity.

Contrary to rather dramatic predictions that the mammalian Y chromosome is bound for

extinction382, empirical studies Y chromosomes have demonstrated that most gene loss occurs

in early proto-sex chromosomes, and that older sex chromosomes like those of mammals are

more stable375. The evolutionary diversity of Y chromosomes in mammals arises from the set of

Y-acquired genes, which make up a small fraction of some Y chromosomes and a much larger

fraction in others — from 5% in rhesus to 45% in human5 (Figure 6.2).

6.1.2 The mouse Y chromosome

Early molecular studies of the mouse Y chromosome hinted that it consisted of repetitive

sequences, with copy number in the hundreds, and that it was evolving rapidly383,384. Unlike

other mammalian Y chromosomes, which are dominated by large blocks of heterochromatin5, the

mouse Y was also known to be large and almost entirely euchromatic? . Spontaneous mutations in

laboratory stocks allowed the mapping of male-specific tissue antigens and the sex-determining

factor Sry to the short arm of the chromosome (Yp)385, while lesions on the long arm (Yq) were

associated with infertility and defects in spermatogenesis386,387.

Sequencing of the mouse Y in the reference strain C57BL/6J was finally completed in 2014

after more than a decade of painstaking effort306. The long arm of the chromosome was shown to

consist of approximately 200 copies of a 500 kb unit containing the acquired genes Sly, Ssty1, Ssty2

and Srsy (Figure 6.3). The copies retain 98 − 99.99% mutual sequence identity. Ancestral genes

are restricted to the short arm. Analysis of BAC clones three additional strains (AKR/J, CAST/EiJ
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Figure 6.2: Y chromosomes of mammals. The Y chromosome of therian mammals, characterized

by the sex-determining factor SRY, diverged from the mammal X approximately 180 Mya. (The

monotremata have a different sex-determining factor, AMH, and an idiosyncratic five-pair sex

chromosome system.) Y chromosome sizes and the fraction of sequence occupied by multicopy,

Y-acquired genes are shown at the tips of the tree.
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and SPRET/EiJ) showed that the other Ys have similar sequence content but possibly different

organization and copy number.

6.1.3 Intragenomic conflict between the sex chromosomes

The dramatic co-amplification of genes on the X and Y chromosomes is thought to be a byprod-

uct of competition between the X and Y for transmission to the next generation. The current

consensus favors an unidentified X-linked sex-ratio distorter whose action is suppressed by one or

more Y-linked factors378. Consistent with this hypothesis, the Sly and Slx families act in opposing

directions to maintain or relieve transcriptional silencing of the sex chromosomes during and after

meiosis (meiotic sex chromosome inactivation, MSCI)388,379. Overexpression of Sly (via knockdown

of Sly) in the testis results in sex ratio distortion in favor of males; the reverse is true for overexertion

of Slx. Disruption of MSCI is also associated with male sterility in inter-subspecific hybrids between

M. m. domesticus and M. m .musculus146, and sperm morphology defects map to the Y chromosome

in some crosses260. Together these observations suggest that the intragenomic conflict between the

sex chromosomes in mouse is played out in post-meiotic spermatids and may have mechanistic

overlap with hybrid male sterility.

6.2 Results

6.2.1 A catalog of Y-linked sequence variation in mouse

Whole-genome sequence data for 68 male mice was collected from published sources. The final

set consisted of 42 wild-caught mice; 20 classical inbred strains; 1 laboratory mouse derived from

an outbred stocks; and 5 wild-derived inbred strains (Table 6.1). All three cardinal subspecies of

M. musculus (domesticus, musculus and castaneus) are represented. Mus spretus and Mus spicilegus

served as close outgroups for analyses of the Y chromosome, and a female Mus caroli individual

was used as a more distant outgroup in analyses of the mitochondrial genome. We restricted our

attention to 1.6 Mb of sequence on the short arm of the Y accessible to alignment of short reads.

SNVs and small indels were ascertained in jointly in all samples and assigned ancestral or

derived status based on the consensus call among the M. spretus samples. We identified 27, 715 high-

confidence SNVs (transitions:transversions = 1.72) and 3, 009 high-confidence indels segregating

in M. musculus after applying stringent filters for genotype quality (see § 6.5). Of these 286 (0.9%)

fall in protein-coding genes, and only 161 are predicted to impact protein function.
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Figure 6.3: Structure of the mouse X and Y chromosomes in the C57BL/6J reference strain. (A) The

short arm of the Y (Yq) consists primarily of genes shared the X and retained since the X and Y

diverged from the ancestral autosome pair. These genes are interspersed with blocks of segmental

duplications (light grey). The sex-determining factor Sry is encoded on the short arm. The long arm

(Yq) consists of approximately 200 copies of a 500 kb repeating unit containing the acquired genes

Sly, Ssty1, Ssty2 and Srsy. The sequence in the repeat unit can be roughly divided into three families

“red,” “yellow” and “blue” following306. (B) The X choromosome, unlike the Y, is acrocentric.

Homologs of the acquired genes from the Y (Slx, Slxl1, Sstx and Srsx; shown above using colored

blocks as on the Y) are present in high copy number but are arranged in tandem chunks, rather

than intermingled as on the Y.
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Type Population Locality N

wild M. m. domesticus DE 8

FR 8

IR 8

M. m. musculus CZ 2

KZ 3

AF 5

M. m. castaneus IN 3

M. spretus ES 4

M. spicilegus HU 1

wild-derived M. m. domesticus CH 1 ZALENDE/EiJ

US 1 LEWES/EiJ

M. m. musculus CZ 1 PWK/PhJ

M. m. castaneus TH 1 CAST/EiJ

M. spretus ES 1 SPRET/EiJ

lab - - 21

Table 6.1: Wild and laboratory mice used for Y chromosome analyses.

One group of inbred strains in our dataset — C57BL/6J, C57BL/10J, C57L/J and C57BR/cdJ —

have a known common ancestor in the year 1929. We used this fact to obtain a direct estimate of the

male-specific point mutation rate: 5.4×10−9−8.1×10−9 bp-1 generation-1, assuming an average of

three generations per year. This interval just contains the sex-averaged autosomal rate of 5.4× 10−9

bp-1 generation-1 recently estimated from whole-genome sequencing of mutation-accumulation

lines389. Using the ratio between paternal to maternal mutations in mouse (2.78) estimated in the

classic studies from Russell and colleagues10, we obtain a male-specific autosomal rate of 7.9×10−9

bp-1 generation-1, in good agreement with our estimate from the Y chromosome.

6.2.2 Phylogeography of Y chromosomes

A phylogenetic tree for the Y chromosome and mitochondrial genome were constructed with

BEAST (Figure 6.4). The approximate time to most recent common ancestor (MRCA) of M. m.

musculus Y chromosomes is 275, 000 (95% highest posterior density interval [HPDI] 267, 000 −

282, 000) years ago. Within M. musculus, the musculus subspecies diverges first, although the

internal branch separating it from the MRCA of domesticus and castaneus is very short. Consistent
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Figure 6.4: Phylogenetic trees for Y chromosomes (left) and complete mitochondrial genomes (right)

of wild and laboratory mice. Wild mice are colored according to their taxonomic origin: blue, M.

m. domesticus; red, M. m. musculus; green, M. m. castaneus; dark grey, M. m. spretus; and light grey,

classical laboratory strains.

with several previous studies, we find that the “old” classical inbred strains share a single Y

haplogroup within M. m. musculus. This haplogroup is distinct from that of European and central

Asian wild mice and is probably of east Asian origin137,390. Strains related to “Swiss” outbred stocks

(FVB/NJ, NOD/ShiLtJ, HR8) and those of less certain American origin (AKR/J, BUB/BnJ)155 have

Y chromosomes with affinity to western European populations. M. m. castaneus harbors two distinct

paraphyletic lineages: one corresponding to the Indian subcontinent and another represented only

by the wild-derived inbred strain CAST/EiJ (from Thailand.) The latter haplogroup probably

corresponds to the southeast Asian lineage identified in previous reports130,157.

The Y-chromosome tree otherwise shows perfect concordance between clades and geographic

locations. Within the M. m. domesticus lineage we can recognize two distinct haplogroups corre-

sponding roughly to western Europe and Iran and the Mediterranean basin, respectively. Similarly,

within M. m. musculus, the eastern European mice (from Bavaria, Czech Republic) are well-

separated from the central Asian mice (Kazakhstan and Afghanistan). Relationships between

geographic origins and phylogenetic affinity are considerably looser for the mitochondrial genome.
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We even found evidence for inter-subspecific introgression: one nominally M. spretus individual

from central Spain (SP36) carries a M. spretus Y but a M. m. domesticus mitochondrial genome

(arrowhead in Figure 6.4).

6.2.3 Sequence diversity and tests for selection

We estimated nucleotide diversity within subspecies directly from genotype likelihoods391,

rather than from called genotypes at variable sites. The rank ordering of subspecies by Y chromo-

some diversity parallels what has previously been shown for autosomes: castaneus >> domesticus

> musculus (Table 6.2). Our estimates of diversity at Y-linked sites (πdom = 0.029% ± 0.001%,

πmus = 0.037%± 0.001%, πcas = 0.177%± 0.003%) are in line with previous reports291,130. To pro-

vide context for observed levels of Y-linked variation, we compared relative diversity in pairwise

combinations of the autosomes, X and Y chromosomes within subspecies to neutral expectations

(Table 6.3). We found a deficit of variation on both sex chromosomes relative to the autosomes.

The effect is stronger on the X (approximately 80% lower nucleotide diversity than expected) than

the Y chromosome (40%), and is stronger in domesticus and musculus than in castaneus.

Levels of population differentiation, measured byFst, are also increased on the sex chromosomes

relative to autosomal loci. Here the effect is strongest for the Y chromosome (Table 6.4), with Fst

values ranging from 0.62 (musculus-castaneus) to 0.71 (domesticus-castaneus).

To investigate possible causes of reduction in diversity on the Y chromosome, we used two

complementary families of tests: the Hudson-Kreitman-Aguade (HKA) test392 and variations on

Tajima’s D statistic393. The HKA test compares the ratio of polymorphisms to fixed substitutions

at two or more unlinked loci. Under the null hypothesis, the rate of fixation of neutral alleles is

equal across loci even if locus-specific mutation rates are not. We compared the Y chromosomes to

the mitochondria and to X chromosome separately in domesticus, musculus and castaneus. The null

hypothesis is rejected for domesticus (p = 8.9× 10−5) and musculus (p = 0.04) but not for castaneus

(p = 0.76) in the Y-mitochondria comparison. In both musculus and domesticus, the Y chromosome

shows a deficit of polymorphism relative to the mitochondria (Table 6.5). No excess of divergence

relative to polymorphism was detected in the Y-X comparison.

The second family of tests is typified by Tajima’s D statistic. These statistics represent stan-

dardized differences between two different estimators of the population-scaled mutation rate

and capture departures from neutrality in different portions of the site frequency spectrum (SFS).
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Locus Pop L N S θw θπ D DFL F Y

A dom 235019 52 3961 0.373 (0.006) 0.339 (0.006) −0.33 2.35 1.47 −0.42

mus 20 3875 0.465 (0.008) 0.409 (0.008) −0.51 1.72 1.16 −0.40

cas 6 4496 0.838 (0.013) 0.786 (0.013) −0.40 1.87 1.57 −0.15

X dom 77654 26 349 0.118 (0.008) 0.056 (0.005) −2.09 −5.11 −4.92 −0.89

mus 10 263 0.120 (0.009) 0.073 (0.005) −1.97 −3.51 −3.77 −0.53

cas 4 485 0.341 (0.017) 0.315 (0.015) −0.80 −1.80 −1.91 −0.073

Y dom 995467 26 2199 0.058 (0.001) 0.029 (0.001) −1.97 −4.86 −4.66 −0.84

mus 10 1613 0.057 (0.001) 0.037 (0.001) −1.78 −3.12 −3.35 −0.49

cas 4 3493 0.191 (0.003) 0.177 (0.003) −0.79 −1.24 −1.37 −0.07

M dom 979 26 18 0.482 (0.177) 0.142 (0.052) −2.45 −4.82 −4.87 −1.21

mus 10 9 0.335 (0.169) 0.190 (0.096) −1.83 −1.51 −1.91 −0.65

cas 4 3 0.141 (0.111) 0.130 (0.101) −0.63 −1.14 −1.21 −0.09

Table 6.2: Sequence diversity statistics for autosomes, X and Y chromosomes and mitochondrial

genome, by population. L, total sizes; S, segregating sites; θw, Watterson’s θ; θπ, Tajima’s pairwise

θ; D, Tajima’s D; DFL, Fu and Li’s D; F , Fu and Li’s F ; Y , Achaz’s Y . Both estimators of θ are

expressed as percentages with bootstrap standard errors in parentheses.

Population

Comparison Expected dom mus cas

X:A 3/4 0.163 (0.012) 0.176 (0.013) 0.399 (0.026)

Y:A 1/4 0.0868 (0.0028) 0.0909 (0.0030) 0.225 (0.005)

Y:X 1/3 0.531 (0.047) 0.5120 (0.0392) 0.5640 (0.0294)

Table 6.3: Diversity ratios between pairs of chromosome types. Bootstrap standard errors are shown

in parentheses. Rightmost column shows expected values under neutral model with equal sex

ratios.
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Population

Locus dom mus cas

A dom - 0.275 (0.0031) 0.388 (0.0033)

mus 0.822 (0.013) - 0.284 (0.0028)

cas 0.91 (0.015) 0.847 (0.011) -

X dom - 0.622 (0.012) 0.681 (0.0094)

mus 0.165 (0.011) - 0.567 (0.0098)

cas 0.231 (0.011) 0.238 (0.01) -

Y dom - 0.68 (0.0034) 0.71 (0.0026)

mus 0.165 (0.0031) - 0.616 (0.0033)

cas 0.191 (0.0029) 0.171 (0.0029) -

M dom - 0.65 (0.12) 0.87 (0.054)

mus 0.52 (0.19) - 0.529 (0.14)

cas 0.566 (0.21) 0.289 (0.11) -

Table 6.4: Population differentiation (Fst, above diagonal) and divergence per site (dxy as percentage,

below diagonal) for autosomes and sex chromosomes. Bootstrap standard errors in parentheses.

Population

Loci dom mus cas

Y vs X 0.79 (0.374) 0.45 (0.502) 0.03 (0.853)

Y vs M *15.35 (8.9× 10−5) *4.42 (0.0356) 0.10 (0.755)

X vs M *8.36 (3.8× 10−3) 2.10 (0.148) 0.20 (0.653)

Table 6.5: Hudson-Kreitman-Aguadé (HKA) tests for neutral evolution of Y chromosomes compared

to X-linked or mitochondrial loci. Entries in the table are the χ2 statistic from the HKA test with

p-values in parentheses. Comparisons for which the null hypothesis is rejected are marked with

asterisks (*).
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Negative values indicate a skew in the SFS towards low-frequency alleles; significance thresholds

are established with coalescent simulations. Tajima’s D, Fu and Li’s D and F 394 and Achaz’s Y 395

all take significantly negative values on the Y chromosome in domesticus and musculus but not

castaneus (Table 6.2).

6.2.4 Demography of male lineages

Because it is inherited only through the male line and does not undergo recombination, the Y

chromosome is a sensitive marker for the male-specific demographic history of populations. We

used an approximate Bayesian computation (ABC)396,397 strategy to evaluate models for patrilineal

demography against our Y chromosome dataset. Neutral coalescent simulations were carried out

under several demographic scenarios (Figure 6.5A). Simulated and observed polymorphism data

at putatively neutral sites were compared using summaries over the joint SFS across domesticus,

musculus and castaneus (see Methods). In the ABC scheme, a subset of simulations yielding

summary statistics “close” to the observed values are treated as a sample from the marginal

posterior distribution over demographic model parameters398.

We evaluated eight families of demographic models of increasing complexity and used Bayes

factors for model selection (Figure 6.5). Models with gene flow (I – IV) generally provided better fit

to the data than models without gene flow (V – VIII). The best-fitting model (model VII) includes

a bottleneck shared by domesticus and musculus but not castaneus. It captures the key features of

the observed data: reduced diversity in domesticus and musculus; excess of low-frequency alleles

in domesticus and musculus; and approximately equal Fst between all population pairs (Figure ??).

Under this model, Ne for castaneus is approximately 1.5-fold higher than in domesticus or musculus

and the three Y chromosome lineages began to diverge 636, 000 generations in the past (Figure 6.6

and Table 6.6). The inferred bottleneck is sharp, reducing Ne by 89% (50% HPDI 2 − 13%). Its

timing (19, 700 generations in the past) is consistent with fossil and genetic evidence that Eurasian

mammal populations experienced a sharp contraction around the time of the last glacial maximum

10, 000− 25, 000 years ago399,400,132. The demographic parameters we estimate from our relatively

small sample of Y chromosomes is in good agreement with previous estimates from a much

larger sample but under a more restrictive family of models130. Importantly, they offer a plausible

alternative to selection to explain the high differentiation and low diversity of Y chromosomes in

M. musculus.
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of eight three-population scenarios used in the simulation step of the ABC procedure. (B) Pairwise
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Figure 6.6: Marginal posterior distributions of key demographic parameters, shown as posterior

median and 50% HPDI. Notation follows Figure 6.5.

6.2.5 Modes of copy-number variation on the Y

We examined copy number along Yp using depth of coverage. Approximately 779 kb (24%)

of Yq consists of segmental duplications or gaps in the reference assembly (Figure 6.3); for these

regions we scaled the normalized read depth by the genomic copy number in the reference sequence

to arrive at a final copy-number estimate for each individual. All of the known duplications on

Yp are polymorphic in laboratory and natural populations (Figure 6.7). The distribution of CNV

alleles follows the SNV-based phylogenetic tree. Only one region, at the centromeric end of Yq,

contains a known protein-coding gene (Rbmy). Consistent with a previous report378, we find that

musculus Y chromosomes have more copies of Rbmy than domesticus or castaneus chromosomes.

We identified one additional CNV overlapping a gene: the wild-derived inbred strain LEWES/EiJ

(from Delaware; M. m. domesticus ancestry) carries an 82 kb duplication containing Eif2s3y.

The highly repetitive content of Yq precludes a similarly detailed characterization of copy-

number variation on this chromosome arm. However, by aggregating the reads aligning to the

fundamental ampliconic units it is possible to assess the total size and proportional composition

of Yq. We counted the total number of reads mapping to the interdigitated “red”, “blue” and

“yellow” sequence families (as defined in306 and shown in Figure 6.3), divided by the total number

of mapped reads, to estimate the composition and size of Yq in each sample. Consistent with the

hypothesis that Yq expands and contracts by gain or loss of copies of the ampliconic unit, we find
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Figure 6.7: Schematic view of structural variation on the Y chromosome short arm (Yq), superposed

on SNV-based phylogenetic tree. Copy-number variable regions are indicated with colored blocks

and invariant regions with grey blocks. All CNVs shown overlap a segmental duplication in

the reference sequence. Only two CNVs overlap protein-coding genes: a duplication in North

American mice encompassing Eif2s3y (purple) and an expansion of the ampliconic Rbmy cluster

(green) in M. m. musculus. Color scheme for Mus taxa follows Figure 6.4.
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that the proportional composition of Yq is very similar across taxa (Figure 6.8A). However, the

total size of Yq varies dramatically within Mus (Figure 6.8B: from a median 19 Mb in M. spretus to

61 Mb in M. m. domesticus.

The hypothesis of X-Y intragenomic conflict predicts that, if expression levels are at least

roughly proportional to copy number, amplification of gene families on Yq should be countered

by amplification of their antagonistic homologs on the X. We tested this hypothesis by comparing

the copy number of X- and Y-linked homologs of the Slx/y, Sstx/y and Srsx/y families in wild mice.

Figure 6.9 shows that copy number on X and Y are correlated only for Slx/y; within that family,

the M. m. musculus form an outlying clusetr. The relationship between Slx-family and Sly-family

copy number is almost exactly linear if M. m. musculus samples are excluded (slope = 1.1 [95% CI

0.9− 1.2]; R2 = 0.84). This supports previous evidence that conflict between X and Y, if it exists, is

mediated primarily through expression of Slx and Sly379.

The intragenomic conflict hypothesis also predicts selection for copy number of co-amplified

regions on the X chromosome. This should reduce nucleotide diversity at sites closely linked to

the co-amplified regions relative to sites further away. We calculated nucleotide diversity (θπ) and

Tajima’s D in 100 kb windows across the X chromosome in same samples for which we estimated

copy number on Yq. Notwithstanding the X-chromosome-wide deficit in nucleotide diversity

relative to autosomes, we observed neither additional reduction in diversity in the vicinity of

co-amplified regions nor a skew towards low-frequency variants (Figure 6.10). Tests for a linear

relationship between diversity and distance from the nearest co-amplified region, or for an ordinal

trend across bins of distance, were not significant in any population.

6.2.6 Differentiation of Y-linked gene expression during spermatogenesis

The gene complement of the Y chromosome is specialized for function in the male germline. To

understand functional differences between Y chromosome haplogroups we therefore focused on

expression of Y-linked genes in testis. To isolate the effect of the Y chromosome in cis from trans

effects of genetic background (and in particular the X chromosome), we re-analyzed expression

data from two published studies in intersubspecific hybrids between M. m. domesticus and M. m.

domesticus.

In the first study151, gene expression was measured by microarray in whole testes of 175 age-

matched, laboratory-reared males that were first-generation offspring of parents trapped in the
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Figure 6.8: Structural variation on the Y chromosome long arm (Yq). (A) Proportional composi-

tion of Yq from wild mice and selected laboratory strains of all three subspecies plus M. spretus,

according to “red,” “yellow” and “blue” and “other” sequence families defined in306. Each column

corresponds to a single sample; sample names are prefaced by country of origin. (B) Estimated

total size of Yq for the samples shown in panel A. Dashed lines indicate within-subspecies median.
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Figure 6.10: Sequence diversity across the X chromosome. (A) Within-population sequence diversity

across the X chromosome, measured by Tajima’s pairwise estimator θπ. Dark grey boxes below the

x-axis show locations of co-amplified regions; light grey boxes show all segmental duplications > 1

kb in size. (B) As above, but showing Tajima’s D.
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domesticus-musculus hybrid zone in southern Germany. This experimental design allowed us to eval-

uate the marginal differences in expression between the domesticus and musuclus Y chromosomes

against autosomal and X-chromosome backgrounds with varying degrees of intersubspecific admix-

ture. We first assessed global patterns of Y-linked expression variation using principal components

analysis (PCA) (Figure 6.11A). The first principal component, accounting for 32% of expression

variance, clearly separates individuals by Y-chromosome haplogroup. The association between

PC1 and Y haplogroup remains strong even after accounting for possible effects of admixture on

the autosomes and X-chromosome (F1,173 = 269.3, p < 10−10). Surprisingly, the effect is magnified

by domesticus ancestry on the X chromosome (F1,173 = 5.4, p = 0.02), implicating X-Y interactions

in the regulation of Y-linked genes.

Of 21, 139 genes assayed by the microarray platform, 9, 559 (45%) were differentially-expressed

according to Y chromosome haplogroup at false discovery rate (FDR) < 0.05; of those, 373 (2%)

had an expression difference of two-fold or greater. Among 19 Y-linked genes 16 (84%) were

differentially-expressed (Figure 6.11B), but only one — Sly — had fold-difference greater than two.

Sly has 2.4-fold (95% CI 2.1− 2.8) higher expression from musculus than domesticus Y chromosomes.

A second study401 measured gene expression by RNA-seq in the testes of reciprocal F1 hybrids

between the wild-derived inbred strains LEWES/EiJ (from Delaware; M. m. domesticus ancestry)

and PWK/PhJ (from the Czech Republic; primarily M. m. musculus ancestry). We re-analyzed the

RNA-seq data using an improved transcript annotation which includes a comprehensive set of

transcript models for co-amplified genes on Yq and the X chromosome in addition to transcript

models in the public Ensembl annotation (see § 6.5). Expression was estimated at the transcript level,

and these estimates were aggreaged to gene level for analysis. PCA on expression of Y-linked genes

separates F1s according to the paternal strain (Figure 6.12A). Of 19 Y-linked genes with coding

potential, 9 (47%) are differentially-expressed according to Y chromosome genotype (Figure 6.12B).

Two genes on Yp show expression differences consistent in direction with a difference in DNA copy

number. Eif2s3y (copy gain in LEWES/EiJ) has 2.3-fold (95% CI 1.4−3.6) increased expression from

the LEWES/EiJ Y chromosome, and Rbmy (copy gain in PWK/PhJ) has 2.0-fold (95% CI 1.3− 2.8)

increased expression from the PWK/PhJ Y chromosome. As in mice from the hybrid zone, Sly is

2.2-fold (95% CI 1.2− 4.0) higher expressed from the musculus Y chromosome.

Because dosage imbalance between X- and Y-linked co-amplified genes causes infertility and

179



! !

!

!

!

!

!
!

!

!

!

!

!!!

!
!

!
! !

!
!

!

! !

!!

!
!

!

!

!!

!

!

!
! !

!

!

!
!

!

!
!

!

!

!

!
!!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!

!!

!

!

!

!
!

!

!
!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!
!

!

!
!

!

!

!

!
! !

!

!

!

!

!

!
!

!

!
!!

!

!

!
!

!

!!

!!
!

!
!

!

! !

!!
!!

!

!

!

!
!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5

PC1 (32.2%)

PC
2 

(1
4.

5%
)

!

!

Ydom

Ymus

A

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Mid1
Usp9y
Zfy2
Zfy1
Ssty1

Rbm31y
Kdm5d
Eif2s3y
Ddx3y

Uty
Uba1y

Sry
Sts

Rmi1
Pisd−ps3

Ssty2
Erdr1
Rbmy
Sly

−1.0 −0.5 0.0 0.5 1.0 1.5

log2(fold change)

!

!

Ydom higher
Ymus higher

B

Figure 6.11: Y-linked gene expression in testes of mice from the domesticus-musculus hybrid zone in

Bavaria. (A) Principal components analysis (PCA) on expression of Y-linked genes in 175 male mice.

Points are colored according to Y chromosome haplogroup and sized according to testis weight, a

surrogate phenotype for hybrid sterility. (B) Test for differential expression of Y-linked genes by

Y chromosome haplogroup. Closed circles, significant difference at FDR < 0.05; open circles, no

significant difference. Effect size is represented as log2 (fold difference) with corresponding 95%

CI.
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Figure 6.12: Y-linked gene expression in testes of intra-subspecific and reciprocal inter-subspecific

F1 hybrids between wild-derived strains of M. m. domesticus and M. m. musculus origin. (A)

Principal components analysis (PCA) on expression of Y-linked genes in 10 male mice. Points

are colored according to ancestry of X- and Y-chromosomes (blue, M. m. domesticus; red, M. m.

musculus.) (B) Test for differential expression of Y-linked genes by Y chromosome haplogroup.

Closed circles, significant difference at FDR < 0.05; open circles, no significant difference. Effect

size is represented as log2 (fold difference) with corresponding 95% CI.
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Figure 6.13: X vs Y expression balance in testis for co-amplified gene families. (A) Experimental

design: intra-subspecific (top panel) and reciprocal inter-subspecific (bottom panel) F1 hybrids

between wild-derived strains. M. m. domesticus shown in blue and M. m. musculus in red. (B)

Expression score (see § 6.5), measuring relative expression from X- and Y-linked members of

co-amplified gene families in testes of males from the crosses shown in panel A.

sperm abnormalities, we also examined the X:Y expression ratio for each gene family (Figure 6.13).

Expression of Y-linked copies (versus X-linked homologs) of Sly and Srsy is lower from the domesti-

cus than the musculus Y chromosome, independent of X chromosome origin. The pattern for Ssty1

and Ssty2 relative to Sstx is more complex: expression balance for these genes appears to depend

on an X-Y interaction.

6.3 Discussion

6.3.1 Phylogeography of mouse Y chromosomes

We confirm the long-standing observation that at least two Y haplogroups are present in classical

laboratory strains and related outbred stocks137,390. One haplogroup falls within the M. m. musculus

clade almost certainly originated in Japan and represents part of the M. m. molossinus contribution

to classical inbred strains162,157. The last common ancestor of Y chromosomes in this haplogroup
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was recent: within the last 550 years. The other two haplogroups are of M. m. domesticus origin.

One is present in “Swiss” mice such as NOD/ShiLtJ and FVB/NJ and has closest affinity to Y

chromosomes found in present-day northern and central Germany, while the other is found in

American strains and is not clearly associated with a sampled European lineage (Figure 6.4).

Among Y chromosomes from wild mice, phylogenetic affinity mirrors geography. The same

cannot be said for the mitochondria, which are both more genetically diverse within populations

and less differentiated between them: see Figure 6.14. The correlation between geographic origin

and phylogenetic distance is ρ = 0.24 (95% CI 0.21 − 0.27) for the Y chromosome but only ρ =

0.10 (95% CI 0.08 − 0.13) for the mitochondrial genome. We found one case of inter-specific

introgression involving a M. spretus female and a M. m. domesticus male. Taken together, these

observations indicate that the degree of genetic mixing is greater for female than male lineages.

Several explanations are possible. First, dispersal behavior may differ between sexes. There is

little evidence to support the conjecture that female mice disperse more readily than males; if

anything, the opposite is true402,403,367. But females are generally more successful at integrating

into a new group than males404,367. Second, genetic incompatibilities may accumulate more rapidly

on the Y chromosome and serve as a barrier to gene flow. Studies of the domesticus-musculus hybrid

zone in eastern Europe have consistently shown that allele-frequency clines are narrower and

steeper for Y-linked than autosomal loci138,405, and hybrid male sterility constitutes the primary

reproductive barrier between mouse subspecies141. However, it is seems unlikely that genetic

incompatibilies would arise within 5, 000− 10, 000 generations between local populations of the

same subspecies (e.g in France and Germany). Finally, the lack of apparent geographic mixing

between male lineages may simply be a consequence of the low diversity of Y chromosomes. If one

or two lineages dominate in each locality, it is not surprising that we should observe little sharing

between localities.

6.3.2 What explains the deficit of Y-linked sequence variation?

In the absence of selection and assuming equal mutation rates at all loci, genetic diversity is

proportional to the (effective) number of chromosomes in the population81. Expected diversity on

the Y chromosome, which is hemizygous and only passed through the male germline, is therefore

only one-fourth that of the autosomes, which are diploid and passed through both sexes, in a

population with sex ratio at parity256. Departures from these ratios can be a signal of (1) unequal sex
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Figure 6.14: Phylogenetic versus geographical relationships for Y chromosomes (top) compared to

mitochondria (bottom). Phylogenetic trees and color scheme follow Figure 6.4. Heatmaps at right

are incidence matrices of samples onto countries (shown as two-letter country codes). More block

structure indicates greater clustering of samples by geography.
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ratio; (2) sex differences in mutation rate; (3) population size changes; or (4) selection406. Although

the selection imposed by intragenomic conflict on the sex chromosomes would reduce genetic

diversity relative to the autosomes, we sought to rule out other more pedestrian explanations.

An excess of males versus females in the population increases Y:A and decreases X:A relative to

the neutral expectation; an excess of females has the reverse effect256. This pattern is not consistent

with our data: we observe marked reduction in both X:A and Y:A (Table 6.3). We observed Y:X

diversity ratios of approximately 0.53± 0.05 in M. m. domesticus and M. m. domesticus, significantly

greater than the expected value of 1
3 . This discrepancy can be explained in part by the quite

strong reduction in diversity across the entire X chromosome relative to the autosomes (Table 6.3).

Differences in germline mutation rate also likely contribute: in mammals, the mutation rate is

generally higher in males than females (although the details of the relationship α depend on life

history26). The Y:X diversity ratio we observe is consistent with α ≈ 3406, in good agreement with

the empirical estimate of α = 2.7810.

Sex chromosomes, because of their smaller effective population sizes, are more sensitive to the

effects of population growth and contraction than autosomes. Both X:A and Y:A decline during

a bottleneck407. In addition to decreasing nucleotide diversity, bottlenecks are also predicted to

leave behind an excess of low-frequency alleles that can be detected by statistics of the form of

Tajima’s D 393. This is exactly what we observe in M. m. domesticus and M. m. musculus for both sex

chromosomes (Table 6.2). The demographic models we fit to Y chromosome SFS via ABC support

a strong bottleneck in M. m. domesticus and M. m. musculus, the populations with the greatest

reductions in X:A and Y:A diversity (Figure 6.5). A bottleneck is thus a parsimonious, neutral

explanation for the deficit of nucleotide diversity we observe on both sex chromosomes.

Nonetheless, several caveats apply. First, defining a single population for each subspecies

obscures further substructure which is certainly present in the data. Sample size outside M. m.

domesticus was not sufficient to divide the populations further but this deserves attention in future

work. Second, model choice for ABC is subjective. We chose a panel of population-genetic scenarios

that represent plausible histories of house mouse populations based on the literature. Many other

scenarios are possible and our power to discriminate between them is limited given our quite

modest sample size. Finally, we cannot exclude a role for background selection — a decrease

in diversity at sites linked to targets of purifying selection408 — on sex chromosome diversity,
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particularly on the Y chromosome.

6.3.3 Mutational mechanisms on the Y chromsome

The Y chromosome provides a direct view of the mutational spectrum of the male germline. We

exploited this fact to estimate the male-specific point mutation rate in mouse (5.4×10−9−8.1×10−9

bp-1 generation-1). The mutation rate for large structural variants, especially on Yq, must be much

higher: the Yq has more than tripled in size in less than 2 My between the divergnce of M. spretus

and M. m. domesticus (Figure 6.8). Clusters of duplicated sequences are often assumed to be

especially mutable because they are prone to non-allelic homologous recombination44. But this is

trivially not the case for the male-specific portion of the Y chromosome, which has no homologous

partner with which to pair or recombine. Structural variation on the Y must therefore arise via

errors of replication during mitosis or by intrachromosomal recombination. In humans and other

great apes, exchange between duplicated sequences on opposite arms of the metacentric primate

Y chromosome appears to be common307,409,266. We propose that a similar process drives the

expansion and contraction of Yq amplicons in mouse. This provides further evidence for an idea

discussed at length elsewhere in this thesis: unpaired sequences are prone to structural mutation in

male meiosis. If that is true, we predict that expansion of X-linked ampliconic families also occurs

primarily via mutation in the male germline.

6.3.4 Equivocal support for hypothesis of X-Y intragenomic conflict

The sequence content of all mammal Y chromosomes studied to date can be divided into two

classes: ancestral genes with X-linked homologs and broad tissue expression patterns, and acquired

genes expressed only during spermatogenesis5. The acquired genes are lineage-specific and often

have X-linked homologs, and both the X- and Y-linked members of the pair exist in many copies410.

This has led several authors to conclude that the evolution of mammalian sex chromosomes

is driven by recurrent intragenomic conflicts whose principal actors are members of the “co-

amplified” gene families. Over long evolutionary timescales — between species — intragenomic

conflict should result in correlated evolution of X- and Y-linked gene families. Previous studies

comparative analyses of the mouse and rat X25 and Y306 supported this idea: multicopy, lineage-

specific genes on the X all have Y-linked homologs. One pair of co-amplified families, Slx and Sly,

have opposing actions in post-meiotic spermatids and appear to promote the transmission of their

own chromosome388,411,379.
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The hypothesis of X-Y intragenomic conflict in mouse has not been tested over short (within-

species) evolutionary timescales. In this chapter we use newly-available whole-genome sequence

data from wild mice to and published gene expression data from experimental crosses to test for

signatures of intragenomic conflict. We found a linear and almost exactly one-to-one relationship

between the (estimated) copy number of Slx and Sly across 2 My of evolution in M. spretus, M. m.

castaneus and M. m. domesticus, consistent with the conflict hypothesis (Figure 6.9). M m. musculus

is an outlier due to copy number gains on the X rather than the Y chromosome. However, in

inter-subspecific crosses between strains of M. m. domesticus and M. m. musculus origin, Sly is more

highly expressed from the musculus than the domesticus Y chromosome in the testis — opposite from

the predicted direction of effect based on copy number — and the relative expression of Slx versus

Sly is independent of X chromosome genotype (Figure 6.13). These observations demonstrate that

the relationship between DNA copy number and transcript abundance is not so simple as predicted

by the conflict hypothesis. Nor do we detect any local reduction in X-linked diversity in the vicinity

of co-amplified gene families as would be predicted if they are targets of recent strong selection.

Several biases are possible in these analyses. Quantification of DNA copy number is based

on alignment to a reference sequence assembled from C57L/6J (M. m. musculus Y chromosome

and predominantly M. m. domesticus X chromosome). To the extent that sequence differences

between reads and reference may hamper alignment, we might underestimate copy number in

samples more diverged from the reference sequence. At least for the Slx and Sly families, this bias is

minimal: we obtain a tight linear relationship from M. spretus (average divergence 1− 2%) through

M. m. domesticus (average divergence < 0.3%), and none of the samples under consideration

are phylogenetically close to classical inbred strains (see Chapter 2). Moreover, our results are

qualitatively similar to direct cytological observations in wild M. spretus and M. musculus412. It is

equally unlikely that estimates of gene expression are biased by sequence divergence: members

of the Slx and Sly have pairwise identity approximately 90% on average306, and our results of all

expression analyses were robust to the choice of k-mer size in the quantification algorithm (not

shown, but see § 6.5.)

Taken together, our population-genetic and functional analyses provide at best weak support for

the idea that the X and Y chromosomes in Mus are engaged in ongoing intragenomic conflict. Others

have reported deviations in the census sex ratio in favor of males in areas of the M. m. domesticus-
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M. m. musculus hybrid zone where musculus Y chromosomes have introgressed into domesticus

territory405 but not in analogous laboratory crosses143. We cannot exclude the possibility that some

level of X-Y conflict persists — in fact, this seems likely to have shaped the sex chromosomes along

the rodent lineage — but it must be mediated by factors other than simply copy number in house

mice. Neutral demographic factors are sufficient to explain reductions in sex chromosome diversity

relative to autosomes. Nonetheless, the correlation in copy number of X- and Y-linked families

(excepting M. m. musculus) is difficult to explain by neutral processes and remains mysterious.

6.4 Conclusions and future directions

In this chapter we have presented the first comprehensive survey of Y-linked sequence variation

in the house mouse. We find that sequence diversity is markedly reduced not only on the Y but

also on the X chromosome relative to autosomes and detect a skew in the site-frequency spectrum

towards rare alleles. Demographic modelling and theory point to a strong population bottleneck as

the likely cause. Mouse sex chromosomes vary widely in copy number of ampliconic genes with

roles in spermiogenesis, but we find limited evidence for intragenomic conflict at the level of copy

number or gene expression in the testis.

Although we have documented large variation in copy number of ampliconic, mouse-specific

gene families on Yq in natural mouse populations, we can say little about their higher-order

organization. Nor can we determine how many gene copies in each family retain coding potential.

Addressing these questions will require alternative sequencing technologies that provide longer

reads and long-range physical linkage information. Which of the many copies of ampliconic gene

families on X and Y are functionally equivalent, and the consequences of sequence and structural

variation of particular copies for male reproductive traits, remain open questions.

The deeper evolutionary origins of ampliconic gene families in mouse also remain to be inves-

tigated. The oldest of the ampliconic families, Sstx/y, was present as a gametologous pair in the

common ancestor of mouse and rat378, but the Slx/y and Srsx/y arose since the divergence from rat.

A broader survey of rodent Y chromosomes would provide valuable context for the evolutionary

trajectory of the mouse Y. Finding multiple additional examples of co-amplification of X- and

Y-linked sequence would bolster the argument that intragenomic conflict has a prominent role in

the evolution of mammalian sex chromosomes.
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6.5 Materials and methods

6.5.1 Alignment and variant-calling

Whole-genome sequencing reads were aligned to the mm10 reference sequence using bwa mem

v0.7.15-r1140274 with default parameters. Optical duplicates were marked using samblaster and

excluded from downstream analyses. Regions of the Y chromosome accessible for variant calling

were identified using the CallableLoci tool in the GATK v3.3-0-g37228af413. To be declared

“callable” within a single sample, sites were required to have depth consistent with a single haploid

copy (3 < depth < 50) and < 25% of overlapping reads having mapping quality (MQ) zero. The

analysis was restricted to Yp. The final set of callable sites was defined as any site counted as

callable within > 10 samples. In total, 2 289 336 bp (77% of the non-gap length of Yp) were deemed

callable.

SNVs and short indels in callable regions were identified using freebayes v1.0.2323. Variants

were called in all samples jointly. Reads with MQ < 10, basecall quality < 13 and > 9 mismatches

(to the reference sequence) were excluded. Candidate variant sites were required to have read

depth > 3 and at most 3 alleles. The raw call set was filtered to have quality score > 30 and

per-sample depth > 3, all heterozygous genotypes were treated as missing to reflect the haploid

nature of the Y.

Filtered variants were normalized to their atomic SNV or indel representation using vcflib.

Functional consequences were predicted using SnpEff414 using the most recent annotation data-

base available (GRCm38/Ensembl 82).

6.5.2 Size estimation of co-amplified regions of Yq and X

The tandem repeats of Yq remain incompletely represented in the mm10 reference genome.

To obtain the best possible quantification of sequencing coverage on Yq, all unmapped reads and

reads mapping to mm10 Y were re-aligned to the Y chromosome contig of306 using bwa mem

with default parameters. Coverage was estimated over all reads, regardless of mapping quality,

in each of the “red”, “yellow”, “blue” and “grey” blocks in Figure 3 and Table S4 of306. Read

counts were normalized against a region of the X chromosome (chrX: 68.6− 68.7 Mb, containing

the gene Fmr1) known to be present in a single haploid copy in all samples in the study. (This

normalization implicitly accounts for mapping biases due to divergence between the target sample
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and the reference genome, provided the X and Y chromosomes diverge at roughly equal rates.)

To estimate the total size of co-amplified regions of Yq we simply calculated the weighted sum of

normalized coverage in the “red”, “yellow” and “blue” blocks.

Copy number for X-linked ampliconic genes was estimated in similar fashion. The regions of the

X chromosome for each sequence family was taken from25 (lifted over to mm10) and boundaries

were trimmed by manual inspection against segmental duplications identified in the mm10 X

sequence. Using BLAST searches we identified the Spin2 family – with members in several clusters

on the proximal X chromosome – as Sstx, and included X-linked Spin2 paralogs in our abundance

estimates for Sstx.

6.5.3 Estimation of site frequency spectra

Site frequency spectra (SFS) for the Y chromosome were calculated from genotype likelihoods

at callable sites using ANGSD v0.910-133-g68dd0f2391. Genotype likelihoods for the Y chromosome

were calculated under the GATK haploid model after applying base alignment quality (BAQ)

recalibration with the recommended settings for bwa alignments (-baq 1 -c 50). Only reads

with MQ > 20 and bases with call quality > 13 were considered. Sites were filtered to have

per-individual coverage consistent with the presence of a single haploid copy (3 < depth < 40),

and to be non-missing in at least 3 individuals per population. Site-wise allele frequencies were

computed within each population separately, and the joint SFS across the three populations was

estimated from these frequencies. The consensus genotype over 5 M. spretus males was used as

the ancestral sequence to polarize alleles as ancestral or derived. For estimating uncertainties in

diversity statistics, 100 bootstrap replicates were obtained for the joint SFS.

SFS for the X chromosome were estimated using the same parameters but with the consensus

haploid genotype from a single M. caroli female as the ancestral sequence. For the mitochondria,

different filtering criteria were used (10 < depth < 1000) to reflect differences in expected coverage

for this organellar genome. M. caroli was again used as the ancestral sequence. For estimating

the autosomal SFS we used sequence from chromosome 1 and used a diploid rather than haploid

model for genotype likelihoods.

Some inconsistencies may arise due to the use of different outgroup species, at different evolu-

tionary distances, for the autosomes, X, Y and mitochondria. We unfortunately did not have access

to whole-genome sequence from a male more divergent than M. spretus to use as an outgroup for
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the Y. However, because hybrid offspring of a M. musculus dam and a M. spretus sire are generally

sterile132, there is little change of introgression of a M. spretus Y chromosome into M. musculus. Nor

did we find evidence for incomplete lineage sorting of Y chromosomes between M. spretus and M.

musculus in our dataset.

6.5.4 Diversity statistics

Diversity statistics and neutrality tests were calculated from joint SFS using the R pack-

age sfsr (http://github.com/andrewparkermorgan/sfsr)1. Hudson-Kreitman-Aguade

(HKA) tests were performed with sfsr and p-values obtained from the χ2 distribution with a

single degree of freedom as suggested in392. (Results were checked against the HKA software from

Jody Hey, in which significance thresholds are set via coalescent simulations; all significant tests

were significant under both methods.)

6.5.5 Demographic inference

Possible demographic scenarios for male lineages in M. musculus were explored using approxi-

mate Bayesian computation (ABC). All scenarios modelled three populations (corresponding to M.

m. domesticus, M. m. musculus and M. m. castaneus) derived from a single ancestral population. The

order of population splits was (castaneus,(musculus,domesticus)) — reflecting the phylogeny in

Figure 6.4 — and was kept fixed across all scenarios. Eight scenarios were tested: (I) constant popu-

lation size, no migration; (II) recent bottleneck shared by M. m. domesticus and M. m. musculus; (III)

recent bottleneck, followed by exponential growth; (IV) distant bottleneck, followed by exponential

growth; (V) constant population size, with migration; (VI) exponential growth at independent rates,

no migration; (VII) recent bottleneck, with migration; (VIII) exponential growth, with migration.

Briefly, 100, 000 simulations were performed for each model using parameter values drawn

from uninformative or weakly-informative prior distributions. Fifteen summary statistics were

calculated from the joint SFS generated by each simulation: number of segregating sites in each

population (3); Tajima’s D, Fu and Li’s D and F in each population (9); and Fst between all

population pairs (3). The same set of statistics was computed for the observed joint SFS. The 0.1%

of simulations with smallest Euclidean distance to the observed summary statistics were retained.

1I am the sole author of the sfsr package, which may eventually be described in more detail elsewhere.
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Posterior distributions were computed via kernel smoothing over the parameter values of the

retained simulations using the R package abc415.

Models were compared via their Bayes factors, calculated using the postpr() function in

the abc packge. To confirm the fidelity of the best-fitting model, summary statistics for pseudo-

observed datasets (i.e. simulations from the posterior disributions) were checked against the

observed summary statistics.

6.5.6 Analyses of gene expression

Hybrid zone mice. Turner et al.151 measured gene expression in whole testes of 175 hybrid mice

using the Agilent 4x44k Whole Mouse Genome Microarray. Raw hybridization data was obtained

from NCBI Gene Expression Omnibus (GSE61417). Arrays were pre-processed using the R package

Agi4x44PreProcess and companion annotation package mgug4122a.db. Because the array

was designed prior to incorporation of most of the Y chromosome sequence into the reference

genome, we re-mapped all probe sequences to the current reference genome (mm10) using blat to

identify Y-linked probes. A total of 23 probes were mapped to the Y. These probes were assigned

to their overlapping genes in Ensembl 85115. Genes targeted by probes but listed as “predicted”

(with symbols “GmXXXX”) were gathered into one of the co-amplified gene families on the Y via

the “mmusculus_paralog_ensembl_gene” field in the “mmusculus_gene_ensembl” table of the

Ensembl Biomart.

Mice in this study were genotyped using the Mouse Diversity Array. Y chromosome hap-

logroups (musculus or domesticus) were assigned by performing PCA on 35 Y-linked probes.

To test for differential gene expression between Y haplogroups we used the empirical Bayes

procedure implemented in the R package limma416. False discovery rates were calculated using

the Benjaimini-Hochberg method417.

Reciprocal F1 hybrids. Mack et al.401 measured gene expression in whole testes of three males from

each of fourF1 crosses — CZECHII/EiJ×PWK/PhJ; LEWES/EiJ×PWK/PhJ; PWK/PhJ×LEWES/EiJ;

and WSB/EiJ×LEWES/EiJ — using RNA-seq. Reads were retrieved from NCBI Short Read Archive

(PRJNA286765). Transcript-level expression was estimated using kallisto300 using the Ensembl

85 transcript catatlog augmented with all Slx/y, Sstx/y and Srsx/y transcripts identified in306. In

the presence of redundant transcripts (i.e. from multiple copies of a co-amplified gene family),

kallisto uses an expectation-maximization algorithm to distribute the “weight” of each read
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across transcripts without double-counting. Transcript-level expression estimates were aggregated

to the gene level for differential expression testing using the R package tximport. As for the mi-

croarray data, “predicted” genes (with symbols “GmXXXX”) on the Y chromosome were assigned

to a co-amplified family where possible using Ensembl Biomart.

Gene-level expression estimates were transformed to log scale and gene-wise dispersion param-

eters estimated using the voom() function in the R package limma. Genes with total normalized

abundance (length-scaled transcripts per million, TPM) < 10 in aggregate across all samples were

excluded. Differential expression testing was performed in the same way as for the microarray

data.

To compare the relative expression levels of X- and Y-linked members of co-amplified gene

families, we defined the “expression ratio” z = y
(x+y) and transformed it to a log-odds “expression

score” R:

R = log
z

1− z

The standard error of this quantity was calculated within each cross and within each gene

family by the delta method418 as implemented in the deltamethod()function of R package msm.
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CHAPTER 7

Concluding remarks

In this thesis I have described several lines of investigation into three basic forces govern-

ing the level and distribution of genetic variation in populations: recombination, mutation and

intragenomic conflict.

When I began my graduate studies, I was originally interested in the role of paternal age in

genomic instability and its potential contribution to offspring risk for psychiatric disease in humans.

Large epidemiological studies had demonstrated modest but robust correlation between incidence

of psychiatric diseases and advanced paternal age419,420,421,422. Case-control and pedigree studies

had established rare and de novo mutations, especially CNVs, as a risk factor for schizophrenia,

autism and developmental delay423,424,425,426,427. This raised the possibility that an age-related

increase in the burden of mutations transmitted by older fathers might provide the casual link

between paternal age and offspring risk for polygenic diseases in addition to Mendelian syndromes

with a firmly-established age effect66,70. However, the accumulating evidence from pedigrees,

twin studies and population-based association studies no longer supports this hypothesis428.

The narrow-sense heritability of diseases such as schizophrenia (h2 ≈ 0.7) alone constrains the

fraction of cases that can be attributed to de novo mutations in the absence of underlying inherited

liability. Given empirical estimates of disease prevalence and fecundity of affected men, age-related

mutations are expected to contribute only about 10% of disease risk even if the mutation rate is

high and the resulting alleles have high penetrance. Excess risk in offspring of older fathers is best

explained by a genetic correlation between liability to psychiatric disease and late fatherhood428.

It is fortunate, then, that my early interest in the effects of paternal age on mutation motivated a

more general inquiry into variation in the rates of mutation and recombination along the genome,

and how that variation is influenced by functional differences between the male and female

germline. Sex effects on the point mutation rate and some aspects of recombination have received

much theoretical attention and are well known in humans and other primates26,76. However,
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most analyses — especially those that rely on high-throughput sequencing — have been restricted

to “well-behaved” unique genomic sequence. The approximately 10% of mammalian genomes

occupied by segmental duplications and other repetitive sequences is more poorly characterized

but is also the most polymorphic within and between species. I chose to focus on that portion of the

genome and to use the unique resources available for the house mouse — a well-annotated genome

assembly; numerous inbred strains; randomized mapping populations like the Collaborative Cross

and Diversity Outbred; and a diverse collection of wild mice from around the globe — to overcome

technical obstacles that hamper studies of duplicated sequences in humans. I have been exceedingly

fortunate to collaborate with many generous students, postdocs and senior scientists, without

whom little of this work would have been possible.

In this concluding chapter I summarize the key findings from these studies in the context of our

understanding of genome evolution in mammals. Many of these topics are treated in greater depth

in previous chatpers; the reader is directed to those pages for further details.

7.1 Recombination in the male germline

In Chapter 3 I used the CC and DO to replicate well-known differences between the overall

rate and genomic distribution of (crossover) recombination between males and females. Although

the excess of recombination near the telomeric end of chromosomes in the male germline has been

observed repeatedly, our study is, to my knowledge, the first to connect this pattern to the temporal

ordering of events in male meiosis. We observed that recombinant chromosomes tend to have a

crossover near the distal end regardless of the total number of crossovers on the chromosome. We

conclude that the position of this crossover is regulated. Since chromosome pairing and synapsis

proceed from the telomere towards the centromere in males, beginning with the tethering of

telomeres to the nuclear envelope early in the first meiotic prophase (the “bouquet”), we predict

that crossovers — whose formation is dependent on the scaffold provided by the synaptonemal

complex — are formed telomeric-end first also. Crossover patterns in other species suggest that

this is the ancestral program and that the more uniform distribution of crossovers in female meiosis

evolved along with the lengthening of female prophase.

Two other findings are completely novel. The first is the discovery of one or more modifiers of

the male recombination rate on the Y chromosome. The presence of recombination modifiers on
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both the X and Y chromosomes emphasizes the importance of the sex chromosomes in the function

of the male germline and is further evidence of the close link between recombination and speciation.

Although it is well-known that hybrid incompatibilities accumulate faster on sex chromosomes

than autosomes, most attention to date has focused on the X chromosome. Y chromosomes have

an important role in hybrid incompatibility in Drosophila429 but their contribution in mouse is less

clear260. Theory predicts that male-advantageous alleles should be preferentially Y-linked. How

changes in the overall rate of recombination might be related to male fitness remains to be seen.

The second novel finding is that crossovers are strongly suppressed near large structural

variants. We observed the effect first in mouse but showed that it applies in dogs as well, and likely

is a general feature of mammalian meiosis. Although simple copy-number variation is useful as a

proxy for coldspots, copy number alone is a surprisingly weak predictor of crossover patterns at

any given CNV locus. We hypothesize that what we observe as CNVs are in fact more complex

structural rearrangements. In the same way that crossovers are suppressed within cytologically-

visible inversions, megabase-sized structural variants are likely an obstacle to normal pairing and

synapsis430. But this leads to a paradox: the same regions that are coldspots for recombination are

thought to sprout new alleles by illegitimate recombination. We predict that DSBs in coldspots

are preferentially repaired either from paralogous sequence on the same chromatid, or from the

sister chromatid, rather than from the homolog. Erroneous intrachromatid or sister-chromatid

recombination has a broader mutational spectrum than recombination with the homolog but never

produces crossovers.

Further study will be required to understand the population-genetic significance of coldspots.

In theory, coldspots might promote the formation of selfish elements such as segregation distorters.

Background selection is expected to be somewhat stronger in the vicinity of coldspots, and genetic

diversity should consequently be diminished. On the other hand, the net result of these forces —

a reduction in local effective population size — should hasten the loss of structural alleles at the

coldspot itself. If coldspots are cold because of structural heterozygosity, they may be prone to lose

their “coldness” by drift.

7.2 Structural variation and the “last frontier” of mammalian genomes

The preponderance of long duplicated sequences (segmental duplications, SDs) in mammalian

genomes was one of the first and most striking observations of the genome-sequencing era86,41. It
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was recognized almost immediately that these regions are also much more variable in populations

than the rest of the genome42,43. But, owing to the technical challenges of studying repeated

sequences, especially using high-throughput shotgun methods, SDs and their associated structural

variants remain poorly characterized. There are exceptions: the human HLA locus (formally the

“major histocompatibility complex”, MHC) is highly polymorhpic but has been analyzed in detail

because of its importance for susceptibility to dozens of common and rare diseases431. The idea

that most SDs are neutral genomic flotsam has been challenged by careful studies of several loci

in humans432,433,434,33. These studies have consistently revealed more structural complexity and

higher levels of both sequence and structural polymorphism than what was estimated from shotgun

sequencing. I have shown in Chapter 3, Chapter 4 and Chapter 6 that large structural variants and

the genes they may carry have important effects on meiosis and gametogenesis in mouse. The work

of characterizing these loci will benefit greatly from continued improvements in “third-generation”

sequencing technologies that yield reads in the 10 − 100 kb range and from the application of

high-throughput physical mapping of megabase-sized fragments.

Deeper understanding of structural variation will also benefit interpretations of other classes

of variation. Loci that have experienced cycles of duplication and loss — the “genomic revolving

door” discussed in Chapter 4 — have idiosyncratic patterns of polymorphism if diverged copies

of an ancestral sequence have fixed along different lineages. The resulting excess of variation

may be falsely interpreted as evidence for balancing selection, population differentiation or other

non-neutral processes.

Even for intensively-studied organisms such mouse and human there remain portions of the

genome whose sequence and structure are almost completely unknown. Cytological studies in

mouse from the era before genome sequencing identified a number of gross chromatin features that

are variable in populations and useful for phylogeny but have no direct relationship to a specific

locus in a reference assembly435,59,436,58. The most prominent example is centromeres: mammalian

centromeres, unlike those of yeast, are defined by their functional properties rather than their

sequence. Kinetochore proteins assemble into centromeres at large tracts of so-called “satellite

sequences,” tandem arrays of hundreds to thousands of copies of 50 − 60 bp repeating unit437.

Centromeric sequences are heterochromatic438 but clearly not functionally inert, as they mediate

faithful segregation of chromosomes during both mitosis and meiosis. Although the degree of
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population-level sequence variation in centromeric satellite arrays is little understood in mouse,

human or any other vertebrate, variation in centromere “strength” influences segregation ratios in

females61. Characterizing the landscape of centromeric sequence variation in a tractable model

system such as mouse would be a major step forward in understanding karyotype evolution.

The combination of whole-genome sequencing with a segregating population like the CC or

DO is a powerful approach for mapping repetitive sequences. Provided a locus is variable in

some way that can be detected in WGS reads, QTL mapping can be applied to determine both its

physical location(s) and the founder strains in which it is present. As proof of principle, I show in

Figure 7.1 that a satellite repeat motif identified by de novo assembly of CAST/EiJ sequence 1 is

found exclusively in DO mice that inherit proximal chromosome 2 from CAST/EiJ. I have mapped

more than 2, 000 satellite repeat motifs (not necessarily independent) in this way and have found

that about half are variable in copy number among the CC founders, and 15% are private to a single

strain. Those that can be assigned to a chromosome are differentiated by population in wild mice

(data not shown.) Further investigation is warranted to identify chromosome- or lineage-specific

centromeric satellites and to characterize their higher-order organization.

7.3 Genetic conflict, structural variation and the sex chromosomes

Two types of genetic conflict have been discussed in this thesis: hybrid incompatibilities

between loci that lead to speciation (such as the recombination-modifing Prdm9 and Hstx1 loci in

mouse, Chapter 3) and intragenomic conflict between selfish alleles competing for transmission at

meiosis (Chapter 5 and Chapter 6). Several authors have proposed that the former type of conflict

and its ultimate consequence, reproductive isolation, are a side effect of the latter439. The sex

chromosomes are uniquely vulnerable to intragenomic conflict because they are heteromorphic

and non-recombining. But sex-ratio drive should prompt the rapid increase of suppressors440. If

these suppressors have pleitropic effects on reproduction, the result should be hybrid sterility in

the heterogametic sex (Haldane’s rule255) and an excess of sex-linked sterility loci. Both predictions

are fulfilled in the mouse and the mechanistic basis of male hybrid infertility has been studied in

detail142. No active sex-ratio driver has been identified in mouse, but traces of one may exist on the

1Thomas Keane, personal communication

198



0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

chromosome

LO
D 

sc
or

e
CAST_EiJ.GSAT_MM.00092

chr2: 2.4 cM

!
!

!

!
!

!

!

!0

10

20

30

40

A B C D E F G H
strain

ab
un

da
nc

e 
(F

PK
M

)

strain
!

!

!

!

!

!

!

!

A

B

C

D

E

F

G

H

Figure 7.1: A strain-specific centromeric repeat in CAST/EiJ. Abundance of a short sequence

from the mouse γ-satellite family was quantified in WGS reads from 228 DO mice. Variation in

abundance maps exclusively to the centromeric end of chromosome 2 (top panel); the sequence is

only present in mice inheriting that region from CAST/EiJ.
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X and Y chromosomes — discussed at length in Chapter 6.

Both autosomal and X-linked transmission distorters tend to be two-component systems in

which a trans-acting distorter influences transmission at a second responder locus that may be

sensitive or resistant. The system is most successful, in the Darwinian sense, if the distorter and

(resistant) responder are tightly linked. Recombination is an important defense against such systems,

and so it is perhaps not surprising that modifiers of the rate and distribution of recombination have

a central role in hybrid sterility.

Meiotic drive would appear to be an exception to the above rules since it is limited in mammals

to the homogametic sex (i.e. females) — but somewhat counterintuitively, theory predicts that the

male germline should evolve to promote fairness in female meiosis too441. The work presented in

Chapter 5 is one of few examples of transmission distorters in mammals, and (to my knowledge) is

the only example of a meiotic drive allele that can sweep to fixation despite strong effect on fitness

in the heterozygote. The rise of R2d2HC alleles is indistinguishable from a true selective sweep on a

beneficial mutation, and without the tightly-controlled breeding scheme of the DO we would have

been unlikely to unmask it as a selfish allele. This urges caution in the interpretation of scans for

selection in population samples. There is no reason to believe a priori that intragenomic conflict

should be any more rare than true positive selection.

Heterochromatin is a recurring theme in selfish systems across the tree of life442. Failure to

properly maintain or segregate heterocrhomatic regions underlies the homogeneously-staining

region (HSR) meiotic drive locus in M. m. domesticus443, knobs in maize444,445 and multiple sex-ratio

drivers in Drosophila446. The rodent-specific genes on the long arm of the mouse Y chromosome

(Chapter 6) and their X-gametologs all function in maintaining the heterochromatin-like state of

meiotic sex chromosome inactivation (MSCI)411,17,447. MSCI and its more general form, meiotic

silencing of unsynapsed chromatin, have analogs in other taxa448, suggesting that they may be an

important defense against transcription from selfish elements of many kinds — from transmission

distorters to transposons — in the germline.

♦ ♦ ♦

Taken together, the work presented in this thesis underscores the ways in which the content and
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organization of mammalian genomes is influenced by the biology of the male and female germlines,

and the pervasive influence of intragenomic conflict in shaping genetic variation in populations.
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APPENDIX A

On the number of observable meioses in the Diversity Outbred

A.1 On the number of observable meioses in the Diversity Outbred

Consider a randomly-mating diploid population of size N propagated in k non-overlapping

generations. At generation k, there exist 2Nk meioses in the history of the population: one

representing each of the two gametes giving rise to each individual. Define a meiosis in generation

1 ≤ j ≤ k to be observable at generation t if one of its products is segregating in the population at

generation j ≤ t ≤ k. Define a meiosis to be observed at generation t if it is observable at generation

t and is present in a sample of nt individuals drawn randomly and with replacement from the

population at generation t. Finally, let a meiosis be uniquely observed at generation t if it is observed

at generation t but not at generation i ≤ t, given sample sizes nj , . . . , nt−1.

The set of meioses uniquely observed at each t ∈ j, . . . , k are clearly independent. Let Ujt be

the probability that a meiosis at generation j is uniquely observed at generation t ≤ k. Then the

probability Pjk that it is observed by generation k is

Pjk = Ujk

k−1∏
t=j

1− Ujt

That is, Pjk is the probability that a meiosis at generation j is not observed until generation k.

The quantities U above arise via two independent stochastic processes: the inheritance process

and the process of randomly sampling chromosomes at each generation. We model inheritance as a

first-order Markov chain using the standard Wright-Fisher process. The chain has 2N + 1 states

representing allele counts 0, . . . , 2N ; the first and last of these are absorbing states representing

loss and fixation, respectively. Let ft be a vector of size 2N + 1 representing the state occupancy

distribution at time t. The chain’s transition matrix A has entries aqr of the form

aqr =

(
2N

r

)
(ftq)

r (1− ftq)2N−r

where q ∈ 0, . . . 2N represents the state at time t and r the state at time t+ 1.

The chain is initialized at fj = (0, 1, . . . , 0) since a (product of) meiosis enters the population in



a single copy. The state distribution at generation k is then

fk = fjA
k−j

The sampling process is independent of the inheritance process. Let Wjt be the probability of

not observing a (product of) meiosis arising at generation j at generation j ≤ t ≤ k, conditional on

its frequency at generation t and the sample size nt:

Wjt =

2N∑
i=0

fti(1− fti)nt

Now, because samples drawn from different generations are independent, we can obtain the

value of Ujt:

Ujt = Wjt

t−1∏
i=j

1−Wji

and, hence, finally, the value of Pjk.

Because meiosis is independent across generations, the Pjk are disjoint for all 1 ≤ j ≤ k. We can

therefore estimate the number of observed meioses M in a multi-generational sample with sizes

n = (nj , . . . , nk) as

M = 2N
k∑
i=j

Pji + 2
k∑
i=j

ni

where the first term gives the expected number of observed meioses inherited from the main

pedigree, and the second term gives the two fully-observed meioses in each sampled individual.

In practice, the second term in the sum dominates. Figure A.1 plots values of Pjk against (j−k),

given the population size of the DO (N = 350) and the empirical sample sizes at each generation.

The rate of decay is approximately 95% per generation. Note that this does not imply that the

majority of observed crossovers are unique: products of meioses in later generations transmit more

inherited crossovers relative to new crossovers, as we see in the next section.

A.2 On the accumulation of recombination events in the Diversity Outbred

Every individual is the product of exactly two meioses (for the autosomes). Each meiotic product

transits r new crossovers, plus one-half of any inherited crossovers. We can write the following
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recursion for the expected number of crossovers Ct per genome as a function of generation t:

Ct = 2r +
1

2
p1 +

1

2
p2

where p1 and p2 are the number of inherited crossovers in the genomes of an individuals two

parents. For simplicity assume that p1 = p2 = Ct−1 and that the recombination rate r is constant in

time and uniform across the population. Then

Ct = 2r + Ct−1

and we can take C0 = 0, since the founders of the DO were inbred strains and we measure

crossovers with respect to these founder haplotypes. Hence

Ct = 2r + (2r + (2r + . . . )) = 2rt

and the expected number of crossovers per genome is just a linear function of generation.
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