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Abstract

Background: The lipocalin (LCN) family of structurally conserved hydrophobic ligand binding
proteins is represented in all major taxonomic groups from prokaryotes to primates. The
importance of lipocalins in reproduction and the similarity to known epididymal lipocalins
prompted us to characterize the novel human epididymal LCNG6.

Methods and Results: LCN6 cDNA was identified by database analysis in a comprehensive
human library sequencing program. Macaca mulatta (rhesus monkey) cDNA was obtained from an
epididymis ¢cDNA library and is 93% homologous to the human. The gene is located on
chromosome 9q34 adjacent LCN8 and LCN5. LCNé6 amino acid sequence is most closely related
to LCN5, but the LCN6 beta-barrel structure is best modeled on mouse major urinary protein |,
a pheromone binding protein. Northern blot analysis of RNAs isolated from 25 human tissues
revealed predominant expression of a 1.0 kb mRNA in the epididymis. No other transcript was
detected except for weak expression of a larger hybridizing mRNA in urinary bladder. Northern
hybridization analysis of LCN6 mRNA expression in sham-operated, castrated and testosterone
replaced rhesus monkeys suggests mRNA levels are little affected 6 days after castration.
Immunohistochemical staining revealed that LCN6 protein is abundant in the caput epithelium and
lumen. Immunofluorescent staining of human spermatozoa shows LCNé located on the head and
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tail of spermatozoa with the highest concentration of LCN6 on the post-acrosomal region of the
head, where it appeared aggregated into large patches.

Conclusions: LCNG6 is a novel lipocalin closely related to Lcn5 and Len8 and these three genes
are likely products of gene duplication events that predate rodent-primate divergence.
Predominant expression in the epididymis and location on sperm surface are consistent with a role

for LCN6 in male fertility.

Background

Sperm maturation in epididymis requires successive
sperm surface modifications that promote the develop-
ment of capacities for directional swimming and egg ferti-
lization [1]. Although numerous secreted epididymal
proteins that interact with spermatozoa have been identi-
fied and characterized, our understanding of sperm matu-
ration is far from complete [2,3]. Possible lipocalin
involvement in sperm maturation was highlighted by
recent reports describing the spermatozoon-association of
Len5 also known as mouse epididymal protein 10
(Mep10) and epididymal retinoic acid binding protein
(Erabp) [4], bull prostaglandin D synthase (PTGDS) [5],
rat androgen-regulated secretory protein B [6], lizard
lipocalin sperm binding protein [7] and mouse Lcn2/
24p3 [8]. Other lipocalins are implicated in reproductive
processes including mouse Lcn8 also known as epididy-
mal protein 17 (mEP17) [9], glycodelin also known as
pregnancy associated endometrial protein (PAEP)
[10,11], aphrodisin [12] and the rodent major urinary
proteins (Mups). Mups are pheromone carriers that medi-
ate a range of reproductive effects including accelerated
puberty [13], behavioral responses [14] and pregnancy
block [15].

The lipocalin genes have duplicated repeatedly during
evolution expanding to over 110 total known genes [16],
more than 15 reported in human. Expression of this
diverse family in all the major taxonomic groups from
prokaryotes to plants, invertebrates and vertebrates [17]
suggests that their activities are fundamental to evolution-
ary success. Lipocalins function in a broad range of sys-
tems [18] including taste and odor chemoreception and
transport, coloration, immune modulation, prostaglan-
din D synthesis, and several aspects of cell regulation
including receptor-mediated induction of apoptosis [19].
In contrast to divergent amino acid sequences and differ-
ing functions, the B-strands of different lipocalins fold to
form remarkably similar 3-dimensional basket-like struc-
tures. The B-barrel is closed at one end by amino acid side
chains and open at the opposite end permitting specific
entry and binding of retinoids, steroids, terpenoids, fatty
acids and a range of aromatic and aliphatic compounds
[18]. Ligands are often tightly bound with equilibrium
dissociation constants in the 1-100 nanomolar range [20-
22] and some in the 1-100 micomolar range [23,24]. The

rodent epididymal lipocalins, Lcn5 and Len8 bind retin-
oic acid, a vital regulatory factor in the male reproductive
tract [25]. Len5 and 8 may transport retinoic acid from the
proximal regions of the epididymis to either spermatozoa
or epithelium at more distal locations [26]. Rodent lipoc-
alins are abbreviated Lcn and human lipocalins are abbre-
viated in uppercase, LCN.

To characterize the novel lipocalin LCN6, we analyzed its
sequence, expression in epididymis and localization on
spermatozoa. We show that LCN6 expression is highly
epididymis-specific, but appears to be regulated little if at
all by androgen but may be regulated by testis factors in
corpus. We demonstrate LCN6 location on spermatozoa,
consistent with a role in fertility.

Materials and Methods

DNA Sequencing and Analysis

DNA was sequenced at the UNC-CH Automated DNA
Sequencing Facility using an ABI PRISM Model 377 DNA
Sequencer (PE Applied Biosystems {ABI, Foster City,
CA}) and the ABI Prism BigDye Terminator Cycle
Sequencing Ready Reaction Kit with AmpliTaq(R)DNA
Polymerase FS. Primers were synthesized on an auto-
mated Applied Biosystems DNA synthesizer Model 394
using standard cyanoethyl phosphoramidite chemistry.
Both strands of the original clone were sequenced. Data
were initially received into Chromas, version 1.61 (Tech-
nelysium Pty. Ltd, Helensvale, Queensland, Australia)
and further analyzed using the programs contained in the
Wisconsin Package Version 10.1, Genetics Computer
Group (GCG), (Madison, Wisconsin). Chromosomal
locations were visualized using the Entrez genome Homo
sapiens Map Viewer accessible through http://
www.ncbi.nlm.nih.gov. Amino acid sequence analyses
also utilized the Proteomics Tools at http://
www.expasy.ch/, which is the ExPASy (Expert Protein
Analysis System) proteomics server of the Swiss Institute
of Bioinformatics (Geneva, Switzerland).

RNA isolation and analysis

Total RNA was isolated by the method of Chirgwin et al.
[27]. Poly A+ RNA was prepared using the Poly(A) Quik
mRNA isolation kit (Stratagene, La Jolla, CA) following
the manufacturer's recommendations or by standard
oligo dT affinity chromatography. RNAs were denatured
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using glyoxal and Northern hybridizations were per-
formed as previously described [28].

Isolation of human and monkey cDNAs by RTPCR

Total RNA (2.5 pg) isolated from Macaca mulatta epidi-
dymis was reverse transcribed using SuperScript™ reverse
transcriptase (GIBCO/BRL, Grand Island, NY) according
to the manufacturer's recommendations. The monkey
LCNG6 ¢cDNA was amplified by PCR using the forward
primer F1: CAGTGTAGACCTGGGAGGATG and the
reverse primer 13R: GCGGGTACCCTACTGTGACAG-
GAAGC at denaturing, reannealing and extension temper-
atures of 95 C, 45 C and 72 C respectively. Gel purified
187 bp cDNA products were ligated into pGEM-T-easy
(Promega) and subjected to automated sequencing using
the M13 F and R primers. Three RTPCR clones were
sequenced and the consensus reported. In addition, a
human caput cDNA library [29] was screened, clones were
isolated confirming the sequence of the original clone
from HGS. The macaque sequence was confirmed by ana-
lyzing independent cDNAs amplified using a rhesus epidi-
dymal cDNA library as template [30].

The full length monkey sequence was obtained by 3' rapid
amplification of cDNA ends (RACE). Monkey epididymal
total RNA (2 pg) was reverse transcribed using 0.5 pg
Oligo dT-adaptor primer: GACTCGAGTCGA-
CATCGA(T,;) [31] and SuperScript™ reverse transcriptase.
The 750 bp cDNAs was amplified by PCR using the adap-
tor primer: GACTCGAGTCGACATCGA as the reverse
primer and the forward primer mF2: ACTAGTGAT-
TCAACTTCA. Three clones were sequenced and the con-
sensus reported. The macaque cDNA sequence was
confirmed by sequencing independent cDNAs amplified
using a thesus cDNA library as template [29].

Tissue Sources

For analysis of androgen regulation, male rhesus monkeys
(Macaca mulatta) of similar age, weight and testicular size
underwent subcapsular orchiectomy [32] or sham opera-
tion. One orchiectomized monkey was immediately
injected im with testosterone enanthate 30 mg/kg body
weight (400 mg total), the other with vehicle. This was a
single injection of this long lasting testosterone. Epidi-
dymides were removed 6 days later and frozen in liquid
nitrogen. Serum samples for testosterone radioimmu-
noassay were taken just prior to surgery on day 0 and
again on day 6. All animals used in these studies were
maintained in accordance with the NIH Guide for the
Care and Use of Laboratory Animals. The protocol follows
accepted veterinary medical practice and was approved by
the University of North Carolina Animal Care and Use
Committee and is in compliance with the Helsinki Decla-
ration. The animals were given analgesics and were mon-
itored closely following surgery.

http://www.rbej.com/content/1/1/112

Other tissues from rhesus monkeys 10-12 years of age
with proven breeding history were provided by Dr.
Stephen Pearson, Covance Research Products Inc., Alice,
Texas and Dr. Catherine VandeVoort, California Regional
Primate Center, Davis California. Human testes and epidi-
dymides from prostate cancer patients ranging in age from
58 to 83 were made available by Dr. James L. Mohler,
Department of Urology/Surgery, University of North
Carolina at Chapel Hill. Other human tissues were
obtained from the Tissue Procurement Core Facility of the
Lineberger Comprehensive Cancer Center, University of
North Carolina at Chapel Hill. Human tissues are unac-
companied by identifying information and cannot be
traced to the donor. All human tissues were obtained after
informed consent and an institutional human research
committee approved the investigation.

Recombinant human LCNé protein used to raise antibody
in rabbit

The cDNA corresponding to the mature human LCNG6
protein (Val21 to stop) was amplified by PCR from a
human caput/corpus ¢cDNA library [27] constructed in
YZAPII (Stratagene, LaJolla, CA) using forward primer
91F: GCGGATCCGTGTGGTGGGGAAGACTG and reverse
primer 91R: GCGGTACCITCTGCAGCTGGGCCTGCTAC.
The gel purified amplification product was digested with
Bam HI and Kpn I and ligated into pQE30 (Qiagen,
Valencia, CA). The His-tagged protein was expressed and
purified according to the manufacturer's recommenda-
tions as previously reported [33]. Recombinant mature
human LCN6 (2 mg) was sent to Bethyl Laboratories,
Montgomery, Texas to raise rabbit antibodies.

Immunohistochemical staining

Tissues for immunohistochemistry were fixed in Bouin's
solution (75 ml saturated picric acid, 5 ml glacial acetic
acid, 25 ml 37% formaldehyde) promptly after excision
and embedded in paraffin [34]. As a pre-treatment, sec-
tions were heated in a microwave oven in 0.01 M citrate
pH 6.0 [35]. Antisera raised in rabbits against recom-
binant human His-tagged mature LCNG6 were diluted
1:800 to 1:1000. Control stainings were performed using
antisera preabsorbed with recombinant protein. The dou-
ble peroxidase-antiperoxidase method [36] was used to
demonstrate immunoreactive LCN6 using diaminobenzi-
dine as chromogen resulting in a dark brown reaction
product. Photographs were taken with a SPOT Cooled
Color digital imaging system (Diagnostic Instruments,
Inc, Sterling Heights, MI) attached to a Nikon Eclipse
E600 (Southern Micro Instruments, Marietta, Georgia).
Photographs were prepared using SPOT image processing
software. Images were arranged using PhotoShop (Adobe
Systems Inc, San Jose, CA).
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Cryopreserved spermatozoa were washed in phosphate
buffered saline (PBS) (150 mM NaCl, 10 mM sodium
phosphate, pH 7.5) and fixed in 2% paraformaldehyde
for 15 minutes. Spermatozoa were washed three times in
PBS containing 50 mM glycine and were smeared on glass
slides and stored at -20 C. On the day of the staining, sper-
matozoa were rehydrated in PBS for 15 minutes followed
by blocking in 4% normal goat serum in PBS for 15 min-
utes. Spermatozoa were incubated with affinity purified
specific antibody or the same antibody preincubated over-
night with an affinity resin to remove specific antibodies
and separated using Handee Mini-Spin columns (Pierce,
Rockford, IL). These antisera were diluted 1:5 in 1% nor-
mal goat serum in PBS / 0.1% sodium azide. After wash-
ing four times in PBS, spermatozoa were incubated using
1:200 fluorescein-conjugated goat anti-rabbit IgG (Vector
Laboratories, Burlingame, CA) for 30 minutes. Spermato-
zoa were washed four times in PBS and mounted using
ProLong anti-fade kit (Molecular Probes, Eugene OR).
Spermatozoon images were taken using a Zeiss Axiophot
microscope with a Zeiss Axiocam digital camera.

Molecular modeling

Fold-recognition services based on sequence-derived
properties provided by 3D-PSSM [37], GenTHREADER
[38], Fugue profile library search [39], and the Bioinbgu
server [40] were used to predict the structure of hLCNG6.
Representative structures from the lipocalin family as
defined by the structural classification of proteins data-
base (SCOP) were evaluated as templates [41]. Of these
structures, bovine lipocalin allergen (BJ7.pdb) [42], pig
odorant binding protein (HQP.pdb) [43], and mouse
major urinary protein 1 (MUP.pdb) [12] in Protein Data
Bank [44] were structurally closest to LCNG6. The root
mean square deviations when the templates were super-
imposed ranged from 0.88 to 1.10 indicating strong struc-
tural similarity in the protein core. A model of LCN6 was
built based on MUP.pdb using the Modeler module of the
Insight II molecular modeling system from Accelrys Inc.,
(San Diego, CA and http://www.accelrys.com). The self-
compatibility score indicating compatibility of the pre-
dicted side chain environments with their natural prefer-
ences was calculated using the Profiles 3-D module of
Insight II. The overall score was 50.5, similar to the typical
score of 64.7 for a native protein of this size and well
above 29.1, a low score that would indicate an incorrect
structure. The figure was created using SPOCK [45] in the
Structural Biolnformatics Core Facility, University of
North Carolina at Chapel Hill under the direction of Dr.
Brenda Temple.

Results

To investigate novel proteins involved in sperm matura-
tion, the expressed sequence tag (EST) database of Human
Genome Sciences Inc, Rockville, MD was searched for

http://www.rbej.com/content/1/1/112

epididymis-specific cDNA clones. From more than 130
clones obtained, a ¢cDNA encoding a novel lipocalin,
LCNG6 was selected for analysis in part because of its close
relationship to two well studied rodent epididymal lipoc-
alins, Len5 and Len8. The human LCN6 gene corresponds
to the 5' half of Unigene cluster Hs.98132, LOC158062
on chromosome 9q34 next to the human orthologs of
Len5 and Len8, in a region rich in lipocalin genes (Fig. 1).
The Locus158062 and Unigene cluster information are
not shown in Fig. 1, but are available at the National
Center for Biotechnology Information (NCBI) website
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?. The
human LCN6 sequence is based on more than 10 clones
we isolated during library screening.

The relative positions of LCNG6 and representative related
genes are indicated in Fig. 1 in a 9 megabase section of
chromosome 9q34 located one megabase from the tel-
omere. The LCNG gene spans 4.5 kilobases and contains 7
exons (Figs. 1 &2) which is a highly conserved gene struc-
ture in the lipocalin family [46]. LCNG6 introns generally
do not interrupt the coding sequence of beta strands but
instead interrupt coding for connecting loops, another
conserved feature of lipocalin gene structure [46,47] (Figs.
2, 3 and 4). Based on the human genome Build 34, Ver-
sion 1 the gene adjacent to LCNG, 5 kb toward the tel-
omere at LOC138307, Unigene Hs.32991 is similar to the
mouse Lcn8 gene [9]. An additional 2.0 kb farther is tran-
scription unit Hs.413902, similar to the rodent Lcn5 gene
[26]. Approximately 180 kb toward the telomere from
LCNG, is the gene encoding the complement C8 gamma
subunit (C8G), and the prostaglandin D2 synthase
(PTGDS) gene [48] is located another 30 kb beyond C8G.
One megabase (Mb) closer to the centromere than LCN6
are the genes for PAEP [49], odorant binding protein 2A
(OBP2A) [50] and LCN1 (tear lipocalin). Another 7 meg-
abases beyond LCN1 closer to the centromere is the LCN2
[51] gene, also known as neutrophil gelatinase-associated
lipocalin (NGAL) or in mouse, 24p3. All of these lipocalin
genes are expressed in the male reproductive tract
[8,10,12,23,50,52]. The mouse orthologue of each of
these genes is located on mouse chromosome 2.

The open reading frame of human LCNG encodes a pro-
tein of 163 amino acids with a predicted cleavage site
releasing a 20 amino acid N-terminal signal peptide [53]
(Figs. 2 and 3) and a mature protein with a predicted
molecular weight of 16.0 kDa. The three element lipocalin
signature motif, GXWY, TDYXXY and R is conserved in
rhesus monkey, but R120 is replaced by L120 in human.
A ProSite search [54] revealed a consensus cAMP/cGMP-
dependent protein kinase phosphorylation site at human
and rhesus Ser73, three casein kinase II phosphorylation
sites at Ser64, Thr101 and Ser118. No glycosylation sites
were predicted. The rhesus LCNG6 is 93% identical to the
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Human LCN6 gene location on chromosome 9q34 A, Ideogram of chromosome 9. Filled triangle near the long arm telomere
indicates the location of the lipocalin-rich region containing LCN6. B, Arrangement of lipocalin genes from 126 to |36 mega-
bases from the telomere of the short arm (not to scale). Arrows indicate direction of transcription of each gene. LCN5 and
LCN8 indicate uncharacterized genes similar to mouse Len5 and 8. Positions were taken from MapView at the The National
Center for Biotechnology Information (NCBI) website Human Genome Build 34, Version |. C, Intron-exon structure of LCN6
gene. Black boxes indicate translated regions and white boxes indicate untranslated regions of exons.

human and includes a 17 amino acid C-terminal exten-
sion containing the second cysteine found in many lipoc-
alins, but lacking in the human LCNG6 due to the early stop
codon position. This stop codon is present in the human
genome database (Fig. 2) and was further verified by
sequencing several independent RTPCR products derived
from different human donors (data not shown). Human
LCNG protein is 40% similar to rat Lcn5 protein [6,26],
34% to 36% similar to mouse Lcn5 and to human PTGDS
[55] and 30% to 32% similar to human LCN2/NGAL [51]
and mouse Mupl1 [14].

Thus, the similarity of the LCN6 amino acid sequence to
other lipocalins is low, nevertheless strong conservation
of the lipocalin 3-dimensional structure is predicted by
computer analyses. Based on the similarity of the pre-
dicted human LCNG6 structure to that of mouse Mup1 pre-
viously determined by X-ray diffraction [14], a model of
the human LCN6 was calculated (Fig. 4). The predicted
basket-like B-barrel structure of LCNG6 closely matches that
of Mupl, however the relatively short C-terminus of

human LCNG6 lacks the region that in Mup1 contains the
cysteine that forms a disulfide bond with a cysteine in the
B-strand B. The conserved lipocalin signature amino acids
are located close to each other at the closed end of the B-
barrels in LCN6 and Mup1. These signature amino acids
were proposed to form a receptor-interacting domain
[18].

To determine whether LCNG6 expression is predominantly
in the epididymis as reported for Lcn5 and Len8, total
RNAs from epididymis and 25 other human tissues and 4
cell lines were analyzed by Northern blot hybridization
(Fig. 5). A strongly hybridizing 1.0 kb species was detected
only in RNA from epididymis. In addition, an approxi-
mately 2.0 kb weakly hybridizing RNA in urinary bladder
was near the limits of detection. This larger mRNA in uri-
nary bladder may represent an alternative transcript con-
taining a partial intron or C-terminal extension similar to
LCNG6 ESTs BI828733 from brain medulla or BG256703
from a testis embryonal carcinoma cell line. These two
ESTs are variants that do not correctly encode LCNG6.
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Figure 2

EXON 1

EXON 2

EXON 3

EXON 4

EXON 5

EXON 6

EXON 7

tagtgccacccacacggagaaattcagagccatataaacgggtctccagggecctggaggg

M G G L L L

MetGlyGlyLeuLeulLeu
acTGCACATCCTGGGCCTGCGGCGCAGTGTAGACCTGGGAGGATGGGCGGCCTGCTGCTG
A A F L ALV S VP RAJQAV WL G R L
AlaAlaPhelLeuAlaLeuValSerValProArgAlaGlnAlaValTrpLeuGlyArgLeu
GCTGCTTTTCTGGCTTTGGTCTCGGTGCCCAGGGCCCAGGCCGTGTGGTTGGGAAGACTG

D P E O
AspProGluGln
GACCCTGAGCAGgtacagtcctcctgggggtggggagagctggtcctcgggggeccagecce

ttggaggctggaggctggaggctggagggctggecggecctaacgggagecgectcaatge

L L. 66 P WYV L AV A S REK G F A M E
LeuLeuGlyProTrpTyrVallLeuAlaValAlaSerArgGluLysGlyPheAlaMetG
agCTTCTTGGGCCCTGGTACGTGCTTGCGGTGGCCTCCCGGGAAAAGGGCTTTGCCATGG

K b M KNV V GV VYV TTL T P E N N L R
luLysAspMetLysAsnValValGlyValValValThrLeuThrProGluAsnAsnLeuA
AGAAGGACATGAAGAACGTCGTGGGGGTGGTGGTGACCCTCACTCCAGAAAACAACCTGC

T L S S Q H G
rgThrLeuSerSerGlnHisGl
GGACGCTGTCCTCTCAGCACGGgtgagtgggcgggtecctgeccaggecttecccgecaggecag

gctggcctggectggactcecctgagectcececgtcectectectcaccgggecccggggtecttgace

L G G ¢ b Q s VvV M D
yLeuGlyGlyCysAspGlnSerValMetA
ctgagtgggtgacaggccccttcttttccagGCTGGGAGGGTGTGACCAGAGTGTCATGG

L I K R N S G W V F E N P S
spLeulleLysArgAsnSerGlyTrpValPheGluAsnProS
ACCTGATAAAGCGAAACTCCGGATGGGTGTTTGAGAATCCCTgtgagtctgacggccacyg

gctcagcggcccecctggatggatacagcagectgeccteccecctgaggeggggggttttgttt

I G v L E L WV L A TN F R D Y A I
erIleGlyValleuGluLeuTrpValLeuAlaThrAsnPheArgAspTyrAlaIl
cctagCAATAGGCGTGCTGGAGCTCTGGGTGCTGGCCACCAACTTCAGAGACTATGCCAT

I ¥ T Q L E F G D E P F N T V E L Y S
ellePheThrGlnLeuGluPheGlyAspGluProPheAsnThrValGluLeuTyrSe
CATCTTCACTCAGCTGGAGTTCGGGGACGAGCCCTTCAACACCGTGGAGCTGTACAGgta

cccctcececccggeccecctecccagetcectcagaggttgettececececctgecactgeecctggtgece

L T E T A S Q E A M G L F T K W S R
rLeuThrGluThrAlaSerGlnGluAlaMetGlyLeuPheThrLysTrpSerAr
cccaggTCTGACGGAGACAGCCAGCCAGGAGGCCATGGGGCTCTTCACCAAGTGGAGCAG

s L G F L S Q *
gSerLeuGlyPheLeuSerGlnEnd
GAGCCTGGGCTTCCTGTCACAGTAGCAGGCCCAGCTGCAGAAGGACCgtgagtgtccace

ccagtcttgcctcececttctagTCACCTGTGCTCACAAGATCCTTCTGgtaagecgecat
cctgagectcaccctgggetcetettgggggaagggggtgggggaggecaccctacgecaca

tcagTGAGTGCTGCGTCCCCAGTAGGGATGGCGCCCACAGGGTCCTGTGACCTCGGCCAG
TGTCCACCCACCTCGCTCAGCGGCTCCCGGGGCCCAGCACCAGCTCAGAATAAAGCGATT
CCACAGCAaccaaggatgcttttgactgggggccageccggggaattgecggggaggatgge
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(6)
180

(10)
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(30)
1080

(50)
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(57)
1200
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(67)
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(81)
2760
//
3300

(99)
3360

(118)

3420
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3900

(143)
3960

4260
4320

4500
4560 polyA
4620

Human chromosomal sequence aligned with LCN6 mRNA and amino acid sequences. The predicted TATA box and polyA
addition sites are underlined. Exons are in upper case letters, introns in lower case. The # indicates the predicted transcription
start site. The amino acids are indicated in single letter and three letter abbreviations. The signal peptide amino acids are
brown, bold and italicized. Numbers in parentheses indicate amino acids of the mature protein. The lipocalin signature amino
acids are red and bold. The gene sequence was extracted from GenBank accession number AL355987. The human cDNA
sequence is available at accession number AF303084 and at EST BU502206.
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1 v A B
humLCN6 MGGLLLAAFLALVSVPRAQA"VWLGRLDPEQ LLGPWYVLAV ASRE ME KDMKNVVGVV
rhesLCN6 MGGLLLAALLALVAVPRAQA®MWLGRLDPKQ LLGPWYVLAV ASREKSFAVE KDMKNVAGVV
ratlLcnb MENIMPFALLGLCVGLAAGTEGA"VVKDFDISK. FLGFWYEIAF ASKMGTPGLA HKEEKMGAMV
mouseLcn8  MEARLLSNVCGFFLVFLLQA“ESTRVELVPEK. IAGFWKEVAV ASDQK..LVL KAQRRVEGLF
mouseMupl MKMLLLLCLGLTLVCVHA“EEASSTGRNEN NGEWHTIIL ASDK ED NGNFRLFLEQ

41 C v D E v F G
humLCN6 VTLTPENNLR TLSSQHGLGG CDQSVMDLIK RNSGWVFENP SI.GVLELWV LATNFRDYAII
rhesLCN6  VTLTPENNLR LLSSQHGLQG CSQSVTELLK RNSGWVFENP SI.GVLELRV LATNFRDYAII
ratLenb VELK.ENLLA LTTTYYSEDH CVLEKVTATE GDGPAKFQVT RLSGKKEVVV EATDYLTYAII
mouseLcn8  LTFSGGNVTV .KAVYNSSGS CVTESSLGSE RDTVGEFAFP GNREIHVL.. .DTDYERYTIL
mouseMupl IHVL.ENSLV LKFHTVRDEE CSELSMVADK TEKAGEYSV. TYDGENTFTI PKTDYDNEFLMA

100 H v I 159
humLCN6 FTQLEFGDE PENTVELYSL T.ETAS LG FLSQ
rhesLCN6 FTQLEFGDE PFNTVELYSR R.EAASQEAMG LFTKWSRGLG FLSQQQAQLQ KDLTCAHKIL S
ratlLcnb DITSLVAGA VHRTMKLYSR SLDDN HG FSETDLYILK HDLTC SRP
mouseLcn8  KLTLLWQGR NFHVLKYFTR SLENEDEPGEW LFREMTADQG .. ... LYMLA RHGRCAELLK EGLV
mouseMupl  HLINEKDGE TFQLMGLYGR EPDLS LCEKHG ILRENIIDLS NANRCLQARE
Figure 3

Amino acid alignment of mature LCN6 and related lipocalins. Lipocalin signature amino acids are in red and cysteines in orange.
The predicted casein kinase Il phosphorylation sites at S64, TI0| and S| 18 are indicated by dotted underline. Predicted protein
kinase A phosphorylation site at Ser73 is magenta and double underlined. Predicted protein kinase C phophorylation sites at
S53 and S118 are magenta and single underlined (solid underline for S53 and dotted for S118). Amino acids known to form
alpha helices in mouse Mupl and rat Len5 and predicted in LCN6 are green. Beta strands are blue and underlined and labeled
A to | corresponding to the B-strands in Fig. 4. The rhesus LCN6 (rhesLCN®6) sequence is available at GenBank accession
number AF303085. Rat Lcn5 sequence is from accession number X59832 and structural information from |EPA.pdb and (61).
Mouse Lcn8 accession number is NM_033145. Mouse major urinary protein | (Mupl) is from M16355. Intron locations in
human LCNG6 are indicated by the filled triangles ( ¥). Numbering refers to LCN6 amino acid positions in the mature protein.

Currently more than 30 ESTs derived from LOC158062
indicate expression in many organs. However many of
these fail to encode LCNG6 either because they are splicing
variants or they originate from the 3', nonLCNG6 half of
this locus and thus do not indicate LCN6 expression in
those tissues.

To determine if LCNG is regulated by testosterone as
reported for Len5 in the mouse [56] or testis factors as
reported for mouse Lcn8, RNA was obtained from caput,
corpus and cauda epididymis of rhesus monkeys that were
sham operated, castrated 6 days and castrated but given a
single injection of 400 mg testosterone enanthate imme-
diately following testis removal (Fig. 6). The concentra-
tion of LCN6 mRNA in caput total RNA samples appeared
little affected following 6 days castration and testosterone
replacement. Low level mRNA expression in the corpus of
the sham operated animal was abolished by castration
and not maintained in the testosterone replaced animal

suggesting regulation by testis factors other than andro-
gen. This maintenance of similar LCN6 mRNA concentra-
tions under the three treatment conditions contrasts with
the androgen regulation of human epididymal (HE) pro-
tein 2 [29], epididymis specific clone (ESC) 42 [30] and
cystatin (CST) 11 [57] we previously reported in this same
experiment. Morning serum testosterone levels prior to
testis removal in sham-operated, castrated and castrated-
androgen-replaced were 3.0, 3.8 and 1.4 ng/ml respec-
tively. Six days after surgery, morning serum testosterone
levels were 2.0, 0.15 and 64.9 ng/ml respectively. Previ-
ously reported testosterone levels in rhesus macaques
ranged from 5 ng/ml in the morning to 18 ng/ml during
the nocturnal surge [58].

LCNG6 protein is most abundant in late stage efferent ducts
and caput epithelium in human (Fig. 7). LCNG is also
present in the lumen in association with spermatozoa,
consistent with secretion from epithelial cells as suggested
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Figure 4

Lipocalin models. A, Human LCNé. B, Mouse Mup| derived from the Protein Data Bank file IMUP.pdb. Alpha helices are
green, beta strands are blue with white letter designations (A-l), unstructured loops are red. The conserved lipocalin signature
amino acids are indicated in red. The disulfide bond in MUPI is indicated as S-S in yellow in the upper left region of the

molecule.

by the presence of a predicted hydrophobic signal pep-
tide. The protein was also detected at lower levels in
corpus and cauda (data not shown). Labeling of human
ejaculate spermatozoa with affinity-purified anti-LCN6
demonstrated that LCN6 was present on all spermatozoa
(Fig. 8). LCNG6 was localized on the head and tail of sper-
matozoa with the highest concentration of LCN6 seen on
the postacrosomal region of the head, where it appeared
aggregated into large patches. Along the tail smaller more
discrete focal points of LCNG6 were observed. Interestingly,
the large patches in the postacrosomal region of the head
appear in the region of the spermatozoon thought to fuse
with the oocyte plasma membrane. The LCN6 protein on
spermatozoa is not likely to originate in the testis since the
mRNA was not detected by Northern blot analysis in testis
RNA (Fig. 5).

Discussion
LCNG is the first human member to be described of a gene
cluster that includes LCN5 and LCNS8 in a lipocalin-rich

region of chromosome 9q34. The similar gene clusters on
mouse chromosome 2A3 and on rat 3p13 indicate that
these genes diverged from a common ancestor prior to the
separation of rodent and primate evolutionary lines. The
mouse and rat Lcn5 and mouse Len8 are the only genes in
these conserved clusters previously described. They are
exclusively expressed in the epididymis as judged by
Northern blot analysis. Our Northern results showing
epididymis-specific expression of fully processed LCN6
mRNA might appear to be contradicted by the ESTs
derived from LOC158062 that were isolated from librar-
ies from many other organs. This locus represents a fusion
of two GenomeScan-predicted models, LCN6 and an
adjacent lipocalin-like gene based on BG256703, a bridg-
ing EST derived from a testis embryonal carcinoma cell
line. However, our results indicate that the LCN6 gene can
function independently of the 3' half of the locus, at least
in the epididymis. Separate orthologs of LCN6 and of the
adjacent gene are predicted in mouse and rat and we iso-
lated the rat Lcn6 as an independently expressed sequence
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Figure 5

LCNG6 expression is highly epididymis-specific. Total RNAs were isolated from human urinary bladder, kidney, cerebrum,
hypothalamus, pituitary, adrenal, stomach, small intestine, colon, pancreas, heart, lung, liver, spleen, retina, tonsil, epididymis,
testis, prostate, seminal vesicle, ovary, oviduct, cervix, uterus, salivary gland and the cell lines CVI, LNCaP, PC3 and DU 145
and analyzed by Northern hybridization to 32P-labeled LCNG6 full length cDNA.

(data not shown). Most of the ESTs listed from this com-
bined locus are derived from the 3' lipocalin-like adjacent
gene. The LCNG6-specific GenBank ESTs are all from epidi-
dymis, "whole testis" which includes epididymis, or dif-
ferent cell lines, thus are consistent with our Northern
blot tissue distribution analysis. In addition, GenBank
contains LCNG6 splicing variant ESTs from brain medulla
and prostate. These splicing variants may not be trans-
lated, a mechanism previously reported that restricts
GnRH expression to the hypothalamus [59].

Expression of LCNG6 in distal efferent ducts and caput
epididymis and localization of the protein on the surface
of spermatozoa are consistent with a role in spermatozoa
maturation. That role could be to carry ligands from the
proximal epididymis to receptors on distal epithelial cells,
a mechanism suggested for Lcn5 transport of retinoic acid
[26]. A similar model was proposed to explain the regula-
tion of proenkephalin gene expression in the rat caput by

an unidentified spermatozoa-associated factor [60].
Moreover, the ligand might be delivered to receptors in
the female tract. Delivery of ligand could result in changes
in gene expression in the recipient cells.

The ligand(s) of LCN6 have not been identified, but may
be similar to retinoic acid which is a known ligand bound
by Len5. The Len5 and LCNG proteins have diverged sub-
stantially in linear sequence, yet the amino acids known
and predicted to line the binding pocket and entrance of
LCNG6 and rat Len5 [6] are more closely related than the
40% similarity of the whole proteins. Of the 23 amino
acids that form the ligand binding cavity in rat Lcn5 [61],
9 or 39% are identical in LCN6 and six others are similar
for a total of 65% similarity in the ligand binding cavity.
Furthermore, 3 of the 5 aromatic amino acids that are
deepest in the binding cavity, forming a semicircle sur-
rounding the B-ionone ring of the retinoic acid in the
holo-Lcn5, are identical in LCNG. The other two amino
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Figure 6

Androgen regulation of LCN6 mRNA Macaca mulatta were
sham operated, castrated, or castrated and androgen
replaced with immediate injection of testosterone enanthate.
Epididymides were removed 6 days post-castration. Upper
Panel Total RNAs (10 pg/lane) from the indicated epididymal
regions were analyzed by Northern hybridization to 32P-
labeled LCNG full length cDNA. Lower Panel The same blot
was hybridized to 32P-labeled 18S ribosomal RNA ¢cDNA.

acids, Phe6 and Phel1 in Lcn5 are replaced by leucine in
LCNG. At the entrance to the binding cavity in Len5 are
charged amino acids Glul7, Glu63, Arg80, Lys85 and
Lys115. These are replaced in LCN6 by Val/Ile, Ser, Ser,
Leu and Glu respectively. The effects of these amino acid
differences remain to be evaluated by ligand binding stud-
ies and X-ray diffraction but presumably the range of
ligand structures that can be accommodated in the cavities
and their orientations with respect to the amino acids lin-
ing the cavity are probably different in LCN6 and Lcn5.

Ligand binding properties of human LCNG may be
affected by the lack of the cysteine near the C-terminus
that is strongly conserved in lipocalins. Where present,
this cysteine forms a disulfide bridge with a cysteine
located in B-strand D and anchors the C-terminus to the
B-barrel (Fig 4B). In studies on LCN1, the corresponding
intact disulfide bond diminishes the affinity for retinol
and restricts the displacement of native lipids by retinol
probably by conferring rigidity on the barrel structure and
restricting movement of the aromatic side chains involved
in ligand binding [62]. Disulfide reduction in LCN1 was
accompanied by alteration in  ligand-induced
conformational changes. The absence of this disulfide
bridge in human LCN6 may similarly allow a broader

http://www.rbej.com/content/1/1/112

range of ligands to fit into the human pocket than can fit
into the monkey form.

The molecular basis of LCNG6 interaction with spermato-
zoa is unknown, but its presence on spermatozoa in
discrete patches raises the possibility of interaction with
specific receptors. Each known spermatozoon surface
lipocalin is distributed according to a particular pattern
suggesting a specific molecular interaction. The location
of LCN6 generally on post-acrosomal human spermato-
zoa contrasts with 24p3 on mouse spermatozoa which is
predominantly on the anterior acrosomal region [8]. On
bull spermatozoa, PTGDS is concentrated on the apical
ridge of the acrosomal cap [5]. On surfaces of cell types
other than spermatozoa, several lipocalins interact with
cell surface receptors [63]. Cellular responses were dem-
onstrated for 24p3/Lcn2 protein which induced apoptosis
by a receptor-mediated pathway in murine FL5.12 12 pro-
B lymphocytic cell line [64] and Lcn-1 was internalized
after binding a specific receptor on human NT2
embryonal carcinoma cells [65]. Whether internal
responses are generated in spermatozoa after lipocalin
binding has not been reported.

Regional differences in expression site and differences in
the influence of the testis on expression of Lcn5, Len8 and
LCN6 may be factors driving the evolutionary
maintenance in rodent and human of this gene cluster
that is derived by gene duplication [9]. The LCN6 expres-
sion in distal efferent ducts, initial segment and proximal
caput is similar to that of rat Lcn5 [66] and mouse Len8
[67] but differs from the mouse Lcn5 which is expressed
in distal caput and corpus and accumulates in caudal fluid
[4,26]. The more distal expression of mouse Lcn5 posi-
tions it to affect sperm maturation downstream of where
Lcn8 becomes available to spermatozoa in the lumen.
Unlike the rodent Lcn5, monkey LCNG6 mRNA levels
appear to be little regulated by androgen and unlike
mouse Lcn8, monkey LCNG6 regulation by other testis fac-
tors, appears minimal 6 days after testis removal. This is a
surprising result for an epididymal protein associated
with spermatozoa since spermatogenesis and sperm mat-
uration in the epididymis both depend on androgen. The
lack of androgen regulation of LCNG expression may
reflect functions apart from sperm maturation such as
maintenance of healthy epididymal epithelium under
changing physiological conditions. Since a number of
lipocalins have demonstrated roles in host defense [68]
and the C-terminus of the monkey LCNG6 protein is cati-
onic, we tested recombinant human and monkey LCN6
for antibacterial activity and found they had little or no
effect on E. coli [33] suggesting that killing bacteria is not
a likely role for LCNG6.
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LCNG6 protein in human efferent ducts and caput. Panels A and B human efferent ducts from an 83 yr old donor. A, LCN6 pro-
tein appears brown, distinct from the toluidine blue counterstain. B, A control staining for which antibody was preincubated
with | mg/ml recombinant human LCN6 protein. Panels C and D human caput. C, LCN6 appears brown. D, Antibody preincu-
bated with 100 pg/ml human LCN6. Photographs were taken using a 20% objective.

Conclusions

LCNG is a novel lipocalin closely related to Lcn5 and Len8.
The LCN5,6 and 8 genes are likely products of ancient
gene duplication events that predate rodent-primate
divergence. Predominant expression in the epididymis
and location on sperm surface are consistent with a role
for LCNG in male fertility.
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Localization of LCN6 on human spermatozoa Panel A, Immunofluorescent staining of spermatozoa with anti-LCN6 Panel B,
Control immunofluorescent staining of spermatozoa with anti-LCN6 preincubated with LCN6 protein attached to affinity resin
to remove specific antibodies. Original images were taken using a 63% objective.
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