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ABSTRACT 

Michael Thomas Perfetti: Discovery of Small Molecule and Peptide-based Ligands for the 

Methyl-Lysine Binding Proteins 53BP1 and PHF1/PHF19 

(Under the direction of Stephen V. Frye) 

 

 

Improving the understanding of the role of chromatin regulators in the initiation, 

development, and suppression of cancer and other devastating diseases is critical, as they are 

integral players in the regulation of DNA integrity and gene expression. Developing chemical tools 

for histone binding proteins that possess cellular activity will allow for further elucidation of the 

specific function of this class of histone regulating proteins. This research specifically targeted two 

different classes of Tudor domain containing histone binding proteins that are directly involved in 

the DNA damage response and modulation of gene transcription activities. The first methyl-lysine 

binding protein targeted was 53BP1, which is a DNA damage response protein. 53BP1 uses a 

tandem tudor domain (TTD) to recognize histone H4 dimethylated on lysine 20 (H4K20me2), a 

post-translational modification (PTM) induced by double-strand DNA breaks. Through a cross-

screening approach, two different small molecule ligands were identified for the 53BP1 TTD. 

Medicinal chemistry and structure-based design techniques were used, in addition to the 

development of a fragment-based screen, toward the goal of optimizing the potency and selectivity 

of the identified small molecule ligands. The later small molecule ligand, 61 (UNC2170), was 

further optimized as a micromolar inhibitor of 53BP1, which demonstrated a 17-fold selectivity 
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for 53BP1 TTD as compared to other screened methyl-lysine (Kme) binding proteins. Structural 

studies revealed that the N-tert-butyl amine of 61 (UNC2170) anchors the compound in the Kme 

binding pocket of 53BP1 TTD, making it competitive with endogenous Kme substrates. X-ray 

crystallography demonstrated that 61 (UNC2170) bound at the interface between two tudor 

domains of a 53BP1 TTD dimer. Importantly, this compound functions as a 53BP1 antagonist in 

cellular lysates and shows cellular activity by suppressing class switch recombination, a process 

that requires a functional 53BP1 tudor domain. These results demonstrate that 61 (UNC2170) is a 

functionally active, fragment-like ligand for 53BP1 and the first selective small molecule ligand 

discovered for 53BP1 TTD.  

Additional research efforts were focused toward development of peptide-based ligands for 

the histone binding proteins PHF1 and PHF19. These proteins play an active role in the modulation 

of PRC2 activity that in turn controls various gene expression and repression outcomes. Structure-

based design techniques were used to design peptide-based inhibitors for PHF1 and PHF19. 

Research efforts were focused on conducting an initial Structure Activity Relationship (SAR) 

study to develop a short, low molecular weight peptide via truncation of the endogenous histone 3 

peptide. Structure based design techniques were used to develop a shorter 6- or 7-mer peptide that 

possessed various amino acid substitutions that specifically bound within the Tudor domain of 

PHF1 and PHF19 with emphasis on determining a quaternary amine mimic for the tri-methyl 

lysine 36 residue. These efforts proved fruitful and a 7-mer peptide (148) was developed that was 

equipotent to the endogenous histone peptide.  
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Research efforts on both of these targeted proteins demonstrates that structure based design 

and medicinal chemistry techniques can successfully facilitate the development of small molecule 

and peptide based ligands for histone binding proteins.   
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CHAPTER I 

DEVELOPMENT OF INHIBITORS FOR METHYL-LYSINE BINDING PROTEINS 

 

Background 

The processes controlling the flow of genetic information are highly regulated and made 

up of complex networks of enzymes and proteins that control cellular gene expression activities. 

It is known that every cell in an organism contains the same genetic make-up, but the manner in 

which that genetic material is manipulated during the development, growth, and maintenance of 

that organism is controlled by the precise availability of DNA and the gene transcription 

activities conducted upon it. DNA is located in the nucleus of a cell and resides in a compacted 

form known as chromatin. Chromatin is a dynamic structure that undergoes architectural 

modulations to allow for un-winding of tightly pack DNA to allow for gene transcription events 

to occur on specific sequences of DNA.[1, 2] Chromatin is made up of highly organized 

nucleosomes that are in turn made up of DNA that is wrapped around histone proteins.[3] The 

dynamic nature of chromatin architecture influences access to DNA and gene transcription.[1] 

The process of how different sequences of DNA conformationally move between these two 

states involves the writing, reading, and erasing of post-translational marks (PTMs) including 

acetylations on histone peptides and methylations on CpG islands on DNA.[4] The process of 

methylating DNA at CpG dinucleotides within transcription start sites provides a signal that can 

be interpreted by DNA binding proteins and lead to gene silencing events.[5] The understanding 
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of the overall effects and functions of DNA methylation are still be elucidated.[5] Euchromatin is 

characterized by hyper-acetylation of the histone tails of histone 3 and 4 and low levels of 

cytosine methylation on CpG islands.[1] Heterochromatin opposes this with hyper-methylated 

CpG islands and low levels of histone acetylation.[1] This dynamic process of reversible 

chemical modifications on both DNA and associated histone proteins, where the DNA sequence 

is not directly modified, allows for specific gene transcription events to occur and this overall 

process is known as epigenetics.[6] Epigenetics is defined as a genetic process where heritable 

phenotypic traits are passed onto an organism’s progeny, where those phenotypic traits are 

controlled by events that do not involve direct changes to the underlying DNA sequence of the 

organism. One mechanism that influences this dynamic process of passing on heritable 

phenotypic traits is the covalent modification, reading, and removal of PTMs on histone peptides 

by various enzymes and binding proteins. In 2000, a hypothesis known as the “histone code” was 

proposed and outlines a general way to view how histone PTMs function to modulate chromatin 

architecture.[7] This hypothesis has been expanded to gain an understanding how PTMs work to 

induce chromatin decompaction or condensation, or the recruitment of effector proteins such as 

Kme reader proteins to allow for defined gene transcription processes to occur.[8] Epigenetic 

regulation of an organism’s genetic code is thought to occur through reading of histone PTMs 

that make-up the “language” of the “histone code.”[7] Binding of specific histone PTMs, or 

binding of a specific combinations of histone PTMs have defined biological outcome due to the 

modulation of chromatin architecture and subsequent DNA transcription and silencing events. It 

has been shown that misregulation of this defined epigenetic process can occur in diseases such 

as cancer and can have devastating health outcomes.[9] It is of interest to develop chemical tools 
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that can help further understand this highly complex process and also potentially regulate 

different enzymes, or proteins within it that directly induce defined gene transcription outcomes. 

Post-Translational Modifications (PTMs) and their role in chromatin regulation 

There are several major biological processes that play a role in the regulation of gene 

expression such as the activity of transcription factors and the dynamic modulation of chromatin 

architecture.[10] A key mechanism involved chromatin modulation is the addition, recognition, 

and removal of PTMs on histone peptides and proteins by various enzymes and binding proteins. 

An example of one of the earliest PTMs to be identified was phosphorylation on residues on 

protein surfaces.[11, 12] Common forms of histone-based PTMs include phosphoryl, acetyl, 

ubiquitin, and methyl groups that are chemically installed onto specific residues, such as serine, 

threonine, and tyrosine, on histone peptides.[8] These types of chemical modifications are 

enzymatically installed, read, and removed in a dynamic process that allow for various types of 

biological processes to be initiated, enhanced, or silenced.[2, 13] Post-translational modifications 

on histones were identified in 1964 with the initial example being dynamic regulation of histone 

acetylation by the opposing actions of histone acetyltransferases (HATs) and histone 

deacetylases (HDACs).[14] It was observed that HATs enzymatically transferred an acetyl 

moiety from S-adenosyl methionine to the ϵ-NH3+ group of histone lysine residues.[15, 16] The 

acetyl group could then be removed by HDAC enzymes.[15, 16] The process of linking histone 

PTMs to gene transcription processes was further elucidated by the discovery of p55/Gcn5 and 

HDAC1/Rpd3 which were identified as a histone associated HAT and HDAC.[17, 18] From that 

point, this field of research has grown immensely to identify a large number of other forms of 

histone PTMs and the enzymes and proteins that modulate those PTMs. There are currently 



4 

 

greater than a dozen types of PTMs that have been identified on various types of histone residues 

with new forms being discovered on a regular basis.[8] Lysine residues on histone peptides are 

able to be mono-, di-, or tri-methylated by methyltransferase enzymes that are responsible for the 

chemical installation of this type of PTM. The binding of these variants of Kme PTMs have been 

observed to modulate chromatin architecture and can lead to gene expression, or silencing events 

depending on which Kme PTM is present on specific histone tails. For example, the 

trimethylation of histone 3, lysine 9 (H3K9me3) and histone 3, lysine 27 (H3K27me3) has been 

shown to lead to decreased transcription of gene loci leading to a gene silencing event.[2] 

Specifically, H3K9 is methylated by the methyltransferase Suv39h and creates a binding site for 

the Kme reader protein HP1.[19, 20] The binding of HP1 leads to the recruitment of other 

effector proteins that overall contribute to the propagation of heterochromatic subdomains in 

chromatin.[19, 20] Conversely, the trimethylation of histone 3, lysine 4 (H3K4me3) is a 

hallmark of active transcription.[2, 21, 22] These examples show that the recognition of specific 

methylated lysine residues on histone peptides by Kme binding proteins is a critical event in 

chromatin regulation.[7, 23] The binding of these types of PTMs is often associated with the 

recruitment of various types of effector proteins leading to assembly of macromolecular 

complexes that support defined gene activation and repression outcomes.[24-26] The dynamic 

process of binding histone Kme PTMs is finely controlled in healthy cells and is essential to 

critical cellular processes. Interestingly, it has been shown in diseases such as cancer that this 

process becomes highly misregulated.[27-29]  
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Classes of methyl-lysine binding proteins 

Currently there are greater than 200 identified histone Kme reader proteins and they are 

classified into three overarching classes of Kme binding proteins based upon the type of protein 

domain that they use to bind Kme PTMs on histone tails.[30] The three classes are plant 

homeodomain (PHD) zinc fingers, WD40 repeat domain proteins, and a super-family of binding 

proteins known as the Royal family of reader proteins. The Royal family consists of Tudor, 

chromodomain, Pro-Trp-Trp-Pro (PWWP) domain, and malignant brain tumor (MBT) domain 

proteins. The research described herein is focused on developing inhibitors for two members of 

the Tudor class of Royal family of reader proteins; 53BP1 and PHF1/PHF19.  

Interpretation of specific PTMs by histone methyl-lysine binding proteins 

Kme binding proteins act to continuously sample the residue sequence of chromatin, 

DNA, histone peptides, and protein surface residues to identify specific lysine PTMs that they 

are capable of binding. This sampling process works to identify a specific, or combination of 

specific, Kme PTMs on the same or multiple histone peptides through the use of a unique 

binding method. It is often the case that chromatin regulatory proteins possess multiple types of 

domains that are each individually capable of binding multiple histone PTMs on a specific 

nucleosome.[31] An example of a histone binding protein that reads multiple PTMs is BPTF.[32, 

33] This protein contains a PHD Kme binding domain and also a bromodomain which 

selectively binds acetylated lysine residues.[32, 33] Work to understand how a histone reader 

protein can engage in the reading of multiple PTMs through various domains contained within 

the binding protein has been described as “multivalency”. The methyl-lysine reader protein 

UHRF1 has been described to bind two different PTMs via use of its PHD and Tandem Tudor 
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domains.[34, 35] Kme binding proteins have evolved a unique structural motif that is utilized to 

bind to Kme PTMs. The most common manner in which methylated histone lysine residues are 

bound is through the use of an aromatic cage binding pocket. The aromatic cage consists of 3-5 

aromatic residues including phenylalanine, tyrosine, and tryptophan residues that form a cavity 

into which a methylated lysine residue can bind through cation-π and hydrophobic interactions. 

The physical structure of the Kme binding aromatic cage has been observed to sample through 

multiple conformation, but once a specific Kme PTM is recognized and bound, they primarily 

adopt  either a static aromatic cage conformation, or the cage is formed through a substrate-

induced conformational change. Examples of Kme binding proteins that possess preorganized 

aromatic Kme binding pockets include 53BP1 TTD and L3MBTL1. An example of a Kme 

binding protein that has a Kme binding pocket that forms through a substrate-induced 

conformational change is CBX7. Both types of Kme binding mechanisms act to recognize the 

positively charged ammonium cation on the methylated lysine residue on the histone peptide 

tail.[24, 25, 36] Specifically, this work focuses on a Kme domain known as the Tudor family of 

Kme binding proteins.[37]  

Tudor binding domain 

Currently there are approximately 37 different proteins that have been identified to 

contain Tudor domains; both tandem and single Tudor domains.[30, 37] This type of binding 

domain has been observed to selectively bind methylated histone lysine residues of varying 

methylation states. The Kme binding domains of these proteins have a similar conformational 

fold consisting of a β-barrel conformation that contains a series of aromatic residues that interact 

with the charged ammonium head group of the methylated lysine residue through cation-π 
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binding and hydrophobic interactions.[37] Additional hydrogen bond and hydrophobic/Van der 

Waals type interactions are also observed in structural studies to play a role in binding their 

endogenous substrate, but the key binding interaction is the binding of the methylated histone 

lysine residue.[24-26, 36] It has been observed that different Tudor domain containing Kme 

binding proteins have differing degrees of specificity for the extent of methylation present on the 

ϵ-NH3 group on histone lysine residues. For example, the Kme binding protein 53BP1 

selectively binds H4K20me2 with decreased affinity for H4K20me1, and no affinity for the non-

methylated or trimethylated H4K20 residue.[36] The two Kme binding proteins that this 

dissertation is focused on are 53BP1 and PHF1/PHF19.[24-26, 36] 53BP1 and PHF1/PHF19 are 

made up of two different types of Tudor domains.[24-26, 36] 53BP1 contains a tandem Tudor 

domain, where only one of its two Tudor domains works to bind the histone 4, lysine 20 

dimethyl (H4K20me2) PTM in a well-defined aromatic cage in combination with hydrogen 

bonds between the protein surface and endogenous peptide backbone residues.[36] PHF1 and 

PHF19 differ in that it contains a shallow, single Tudor domain that acts to bind the histone 3, 

lysine 36 trimethyl (H3K36me3) PTM in combination with hydrogen bonds between the protein 

surface and histone peptide backbone residues.[24-26] The different structural properties of these 

two types of Tudor domains may require different approaches toward development of inhibitory 

ligands. It has been shown that both of these proteins play a role in diseases such as cancer and 

development of inhibitory ligands could be used to explore whether their inhibition would lead to 

favorable biological outcomes.[38-40] 
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Hypothesized outcomes of domain inhibition 

The biological process of binding Kme PTMs on histone tails has been observed to 

induce specific gene transcription activity including gene silencing as previously described.[2, 

21] The misregulation of this highly controlled biological process is found in diseases such as 

cancer where the activity of Kme binding proteins may lead to suppression of tumor suppressor 

genes. If the PTM binding domain within a methyl-lysine binding protein could be inhibited 

through the use of a small molecule, or peptide-based ligand, then the protein would be unable to 

bind its endogenous substrate. Thus inhibition of this binding protein’s activity may allow for a 

return to normal levels of gene activation/repression found in healthy cells and lead to a 

therapeutic effect. It has been shown that small molecule inhibition of lysine methyltransferases 

has potential favorable therapeutic outcomes.[41, 42] Currently there are several 

methyltransferase inhibitors in clinical trials for treatment of various types of cancer and 

inhibitors for the histone methyltransferases Dot1L and EZH2 have successfully progressed into 

Phase 1 and Phase 2 clinical trials.[43, 44] The highly misregulated activity of these two histone 

methyltransferases in various types of cancer has been shown to lead to uncontrolled cell 

proliferation.[45-48] The development of inhibitory ligands for this class of epigenetic proteins 

speaks favorably towards development of inhibitors for histone methyl lysine binding proteins, 

as the enzymatic activity of methyltransferases provides a defined substrate that allows for 

recruitment of a Kme reader. A similar type of histone binding protein that selectively binds 

acetylation marks on histone lysine residues are bromodomain aceyl-lysine binding proteins. 

Recent inhibitor development for the BET family of bromodomain proteins has resulted in the 
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development of JQ-1 chemical probe and also variants of that compound that have been 

commercialized and entered Phase 1/ 2 clinical trials.[49-51] 

Current state of ligand development for methyl-lysine binding proteins 

Challenges toward development of inhibitory ligands for methyl-lysine binding proteins 

There are many challenges toward developing inhibitory ligands for this class of binding 

protein. An initial challenge for this process is to develop a robust screening assay that can be 

used in a high-throughput (HTS) assay format. This class of protein engages in non-enzymatic 

binding interactions. The standard screening methods for this type of interaction include 

fluorescent polarization (FP) assays, isothermal titration calorimetry (ITC), and surface plasmon 

resonance (SPR) experiments. These types of assays can prove costly in terms of time, 

instrument, and protein costs to successfully conduct a large scale screen of synthesized 

inhibitors. Histone Kme binding proteins engage their endogenous targets through low, to mid-

micromolar protein-protein binding interactions.[24-26, 36] It has proved difficult to successfully 

develop a binding assay that is reliable and robust for this range of affinities. These two initial 

challenges were overcome through the development of a HTS format of the bead-based high 

avidity AlphaScreen assay (Perkin Elmer) for Kme reader proteins in the Center for Integrative 

Chemical Biology and Drug Discovery (CICBDD).[52] This assay was optimized to allow for a 

robust HTS quality screening assay capable of measuring low affinity interactions between 

protein and inhibitory compounds for future inhibitory ligand discovery efforts. The high avidity 

nature of the AlphaScreen assay leads to a very large signal increase once a single, low affinity 

binding interaction is detected. The signal detected from one binding interaction multiplies into a 

large signal increase, compared to a FP based assay where the detected signal is only occurring 
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from a single binding event. Another difficulty in developing inhibitory ligands for this class of 

binding proteins is that there were no small molecule, or non-endogenous peptide-based ligands 

known when our efforts in the CIBDD began. Many x-ray crystal structures of Kme reader 

proteins bound to their endogenous substrate have been solved and have assisted greatly in 

structure based drug design methods that are the backbone for how inhibitory ligands are 

currently being developed for this class of binding proteins. 

Current examples of Inhibitory ligands 

Development of small molecule ligands for MBT domains were the first examples of 

Kme binding protein inhibitors. The initial development of the ligand, UNC669, for L3MBTL1 

provided evidence that small molecules were able to mimic the methylated lysine residue of its 

endogenous peptide substrate, H4K20me1.[53] L3MBTL1 has a static aromatic cage in which 

H4K20me1 residue binds in a cavity insertion manner. The chemical structure of UNC669, 

Figure 1.1, has a piperdine-pyrrolidine head group that mimics the H4K20me2 and structural 

studies have shown in docks it the same fashion as the endogenous substrate. The pyrrolidine 

head group was key to this compound’s ~5 fold greater affinity compared to the endogenous 

peptide. It was thought that the pyrrolidine head group allowed for greater affinity within the 

aromatic cage of L3BTL1 compared to endogenous substrate. The next development for 

inhibitors for the MBT family of proteins was the discovery of UNC1215.[54] This inhibitor was 

classified as a chemical probe due to its high affinity and selectivity and ability to be used in both 

in vitro and cellular based assays.[54-56] Recent work towards the development of inhibitors for 

the CBX family of chromodomain containing Kme reader proteins has produced both a small 

molecule inhibitor and a peptide-based inhibitor.[57, 58] The small molecule inhibitor, 
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MS37452, has a IC50 = 67.2 µM for CBX7 in a FP assay.[58] The peptide-based inhibitor has Kd 

= 0.20 ± 0.04 µM for CBX7 and is observed to possess a 10-fold and 400-fold selectivity over 

CBX8 and CBX1, respectively.[57]  In the WD40 class of proteins, there has been early work 

toward development of small molecule inhibitory ligands. Development of WDR-0101, WDR-

103, and Bolshan13_47 all show low nanomolar potencies for the WDR5 protein of the WD40 

family.[59, 60] Recent work for the PHD family of proteins is shown through Amiodarone and 

WAG-003 that are low micromolar inhibitors for JARID1A.[61] Figure 1.1 outlines the 

structures of the currently developed small molecule inhibitors and chemical probes for histone 

methyl lysine binding proteins. This work describes the discovery and development of a small 

molecule ligand for the 53BP1 TTD and initial work toward a peptide-based inhibitor for PHF1 

and PHF19. 
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Figure 1.1: Structures of known small molecule inhibitors and chemical probes of histone Kme 

binding proteins. 
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Use of Hit discovery techniques to discover inhibitory ligands  

Methyl-lysine binding protein biological screening methods 

As previously mentioned, the Frye research group has utilized the bead-based high 

avidity AlphaScreen assay to measure the affinity and selectivity of prepared ligands against 

defined Kme binding proteins. This assay has be modulated to work with a common method of 

screening large numbers of proteins and enzymes, known as cross-screening, in order to obtain 

selectivity and potency measurements for all synthesized analogs. The current method of cross-

screening over 12 Kme reader proteins, from all classes of Kme reader proteins, and has allowed 

for the development and optimization of UNC669 and UNC1215.[53, 54] It is hoped that future 

discoveries of inhibitory hits will be generated for other members of the Kme reader protein 

panel through the use of this method. Additionally,  once a new Kme reader protein has a 

validated AlphaScreen assay in place, it is screened for binding activity against a focused 

chemical library of putative epigenetic inhibitors and their analogs. Screening results from this 

initial focused screen are used to identify initial “hit” molecules that can be further optimized for 

potency and selectivity. 

Structure-based drug design 

Once an initial “hit” molecule has been identified for a defined target, structure-based 

drug design techniques are utilized to optimize the potency and selectivity of the compound. To 

successfully use structure-based design techniques, an X-ray or NMR structure of the target 

protein bound to its endogenous substrate or a synthetic ligand is needed. Key binding 

interactions between the protein and peptide need to be identified, such as hydrogen bonds, and 

estimations on how the “hit” molecule replicates those binding interactions can be hypothesized. 
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A technique that is helpful in initial hypothesis development is the use of in silico docking 

techniques.[62, 63] A model of how the “hit” molecule binds to the protein can be developed and 

used to predict how the hit molecule docks to the target protein. From this initial modeling and 

structural analysis process, analogs of the hit molecule can be rationally designed and 

synthesized to develop a structure-activity relationship (SAR). The prepared analogs are then 

screened against the target protein to determine if structural changes of various analogs improves 

the potency compared to the “hit” molecule. It is important that each prepared analog only 

contains a single synthetic modification compared to the “hit” molecule. This is important so that 

the potency measurements for the analog can be compared to the initial “hit” molecule to 

determine if a single functional group change increases potency. Once a functional group change 

has been identified that improves potency and affinity, it is incorporated into the structure of the 

“hit” molecule and the process is continued over several cycles in an effort to optimize the hit. 

Purpose of this work 

The purpose of this work is to discover and optimize small molecule and peptide-based 

ligands for two different chromatin binding proteins, 53BP1 and PHF1/PHF19. Both proteins 

share a common type of Tudor Kme binding domain, but do not bind the same PTM on histones. 

Medicinal chemistry efforts will utilize structure-based design techniques to improve their 

selectivity and affinity towards their intended target. Once a ligand is optimized, its ability to 

engage and modulate the biological function of its target will be characterized through structural 

based techniques (X-ray co-crystallization and protein NMR) and through in vitro and in vivo 

assays. 
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Chapter II 

Design, synthesis, and characterization of small molecule ligands for the chromatin 

methyl-lysine binder, 53BP1 

 

Discovery and biological function of 53BP1 

The chromatin methyl-lysine binding protein p53-Binding Protein 1 (53BP1) was 

discovered, in 1994, as a p53-interacting protein in a yeast two-hybrid screen through its ability 

to bind and stabilize p53 at sites of DNA damage.[64] 53BP1 is a Kme binding protein that plays 

a central role in DNA damage repair (DDR) pathways and is recruited to sites of double-strand 

breaks (DSB). This protein was first detected in a pull-down assay where it was bound to p53 at 

a specific dimethylated lysine residue. The assay was conducted by induction of DNA double-

strand break damage and showed initial evidence that 53BP1 played a role in a DNA Damage 

Repair (DDR) pathway.[64] It was found that 53BP1 was able to selectively bind three different 

dimethylated lysine residues on hyperphosphorylated p53, post DNA damage repair (DDR) 

activation. Those residues were p53 lysine 370 dimethyl (p53K370me2), p53 lysine 371 

dimethyl (p53K372me2), and p53 lysine 382 dimethyl (p53K382me2).[65] Additional histone 

peptide screening assays showed evidence that 53BP1 was able to bind histone 3, lysine 70 tri-

methyl (H3K70me3), but was later shown that histone 4, lysine 20 dimethyl (H4K20me) was the 

primary PTM in histones that it selectively binds.[65, 66] This finding was subsequently 
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supported by structural studies with a binding Kd = 19.7 ± 0.7 µM. [67] The process of how 

53BP1 is activated in DDR is dependent on the activity of Ataxia Telangiectasia mutated (ATM) 

kinase that regulates the DNA damage signaling response.[68] The surface of the protein is 

hyperphosphorylated by Ataxia Telangiectasia mutated (ATM) kinase once DDR is activated 

(Ser6, Ser25, Ser29, Ser784).[69] Recruitment of 53BP1 can lead to cell cycle arrest and DNA 

damage repair, or lack thereof, if there are defects or deficiencies present in the enzymes or 

proteins involved in this signaling cascade [69-81]. 53BP1 undergoes homo-oligomerization at 

sites of DNA double strand breaks that is necessary for efficient foci formation to occur through 

binding of its residues 1231-1277.[68] There are various domains of 53BP1 interaction with 

DNA. There are two BRCT (breast cancer 1 (BRCA1) carboxy-terminal) domains (residues 

1702-1972) that interact with the DNA binding domain of p53 (residues 94-292) and also bind 

DNA.[68, 82] Recognition of the H4K20me2 post-translational modification (PTM) is 

performed by the tandem Tudor domain (TTD) of 53BP1.[66] Only the first domain of tandem 

Tudor domain contains the Kme binding aromatic cage and binds the K4K20me2 post-

translational modification; the second BRCT domain only interacts with 1 residue (H4H18) from 

H4K20me2 peptide.[66]  

Recent evidence has shown that 53BP1 is also able to bind histone 2A, lysine 15 mono-

ubiquitin (H2AK15ub) through use of a small binding region on the protein known as the 

Ubiquitin Binding Domain.[83] It is thought to undergo multivalent binding of H4K20me2 and 

H2AK15ub in the DDR response. Additionally, the TTD of 53BP1 has been shown to bind to 

p53K382me2 and thereby increase the concentration of p53 at DNA damage sites [65]. Unlike 

H2AX phosphorylation, global levels of H4K20me2 do not increase after DNA damage; instead, 
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53BP1 recognizes histone H2A ubiquitylated at lysine 15 by RNF168 in response to DNA 

double-strand breaks [83].  53BP1 recruitment is also facilitated by RNF168 ubiquitylation-

dependent removal of L3MBTL1 and JMJD2A from H4K20me2 after DNA damage [84, 85]. 

It has been observed that cells deficient in 53BP1 prove to be viable but display a 

phenotype resembling mild ATM kinase-signaling defects due to the cell’s inability to properly 

respond to and repair DNA damage [86, 87] 53BP1 knockout mice are viable, but are growth 

retarded, immune deficient, radiation sensitive, and cancer prone [86].  In addition, these mice 

display a defect in antibody class switch recombination (CSR) which also requires 53BP1 

activity [88].  By testing different fragments of the 53BP1 gene, it has been shown that the 

region that harbors its Kme binding tandem Tudor domain (amino acids 1235-1709) is recruited 

to ionizing radiation (IR)-induced foci as efficiently as full-length, endogenous 53BP1 [64].  

DNA Repair Pathways, BRCA Mutations, and Cancer 

The process of the repair of DNA DSBs can proceed through different repair pathways. 

Non-homologous end joining (NHEJ) recombination and homologous recombination (HR) are 

the two most common repair pathways. 53BP1 acts to assist in the identification of DNA damage 

break sites through recognition of H4K20me2 and then facilitates the repair of DNA through the 

use of either activation of NHEJ or HR.[89] NHEJ is a rapid, error-prone DNA repair 

pathway.[90] It acts to ligate two broken DNA ends without the requirement of sequence 

specificity.[90] DSBs are detected by Ku70-Ku80 dimer and bind to exposed break sites.[90] 

The Ku70-Ku80 dimer then recruits DNA-dependent protein kinase (DNA-PKcs) and in turn 

XRCC4 and DNA ligase IV that act to anneal broken stands together. NHEJ is a form of V(D)J 

recombination. HR is a different DNA repair pathway that operates in a higher fidelity method to 
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repair DNA breaks.[91] HR requires sequence specificity and reliance on the sister, or non-sister 

chromatic of the homologous chromosome as a template for repair of the break. DSBs are 

detected by ATM, H2AX is phosphorylated and MDC1 is recruited to γH2AX at break sites.[92] 

MDC1 then recruits the MRN complex, in addition to exo1, CtIP, and BLM and 5’-end resection 

begins (Mre11/exo1/CtIP nuclease activity facilitated by BLM helixase).[73] As ssDNA are 

generated, they are bound by RAD51/BRCA2 and are eventually displaced by RPA. The 

generated 3’-ssDNA then begins strand invasion into sister chromatid (via RAD51 assistance) to 

generate a D-loop and a Holliday junction. Pol ζ then synthesizes new DNA off 3’ end using 

sister chromatid template. Newly synthesized ssDNA is then ligated to original broken strand by 

DNA ligase and the Holliday junction is resolved providing repaired dsDNA. The decision to 

proceed through either pathway is controlled by the presence or absence of BRCA1. BRCA1 is a 

checkpoint and a DNA damage repair gene that is required for maintenance of genomic integrity. 

When BRCA1 is present, it acts to inhibit 53BP1 and leads to the induction of the HR repair 

pathway. When BRCA1 is not present or has undergone an inactivating mutation, 53BP1 is able 

to inhibit the activity of the MRN and CtIP complex and lead to the activation of NHEJ.[93] It 

has been shown in knock-out cell lines that when 53BP1 and BRCA1 are both absent, HR is the 

predominant pathway that is activated leading to high fidelity DNA repair. 

BRCA1 is a checkpoint and DNA damage repair gene that is required for maintenance of 

genomic integrity, and the inheritance of mutated BRCA1 is a major risk factor for breast and 

ovarian cancer [94]. BRCA1 and BRCA2 defective cells (BRCA mutants) are unable to fully 

activate the HR pathway and this can lead to induction of cancer growth and metastasis.[93] 

Heavy reliance on NHEJ that can increase genomic instability caused by increased amounts of 
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mutations and improper gene rearrangements. Gene mutations predispose carriers to higher 

incidences of breast and ovarian cancer. BRCA1 knockout in mice are embryonic lethal [95], and 

conditional knockout in the mammary gland results in low frequency and long latency of 

mammary tumor formation [96].  It was recently reported that the BRCA1 knockout 

developmental phenotype is rescued when placed on a 53BP1-null background, and adult mice 

that are null for both the 53BP1 and BRCA1 genes age normally and display a very low 

incidence of tumor formation. [97]  The genomic instability in the BRCA1 knockout can be 

overcome because the homologous recombination (HR) pathway is largely restored in cells 

lacking both BRCA1 and 53BP1. [93] 

Use of medicinal chemistry techniques to discover inhibitory ligands for 53BP1 

To date there have been no inhibitor ligands developed for 53BP1. The biological role that 

53BP1 plays in cells possessing a BRCA1 mutation leading to the induction of NHEJ and error 

prone DNA repair is thought to play a deleterious role in the progression of diseases such as 

cancer.[98] Knockout models show that when both 53BP1 and BRCA1 are not present 

(analogous to an inactive BRCA1 mutation commonly found in cancer), the high fidelity HR 

DNA repair pathway is activated leading to increased genomic integrity.[86] It was hypothesized 

that a small molecule ligand that prevents Kme recognition by the 53BP1 TTD would antagonize 

its biological activity in cells possessing BRCA1 mutations and lead to rescue of their genomic 

stability by restoration of the HR pathway. Notwithstanding the clinical challenges of cancer 

prevention strategies, the discovery of a small molecule in vivo probe for 53BP1 would enable 

this hypothesis to be tested pre-clinically, and the devastating effects of BRCA1 mutations, 

including prophylactic surgical interventions [87], could perhaps be diminished. Therefore, 
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research was aimed at finding and synthesizing cell penetrant small molecules that would bind 

selectively to the tandem Tudor domain of 53BP1 using structure-based design and iterative 

medicinal chemistry. It is additionally hypothesized that 53BP1 TTD inhibitors would work in 

concert with other cancer inhibitors that are focused on BRCA1. Specifically, the use of 

inhibitors of Poly(ADP-ribose) polymerase (PARP).[99, 100] PARP rapidly co-localized at sites 

of DNA breaks and catalyzes formation of poly(ADP-ribe) polymers that induce relaxation of 

local chromatin structure.[99] PARP is necessary for efficient recruitment of MRE11-dependent 

end-resection, in concert with CtIP, Rad 50, and Nbs1 during S- and G2-phase. Inhibition of 

PARP will prevent SSB repair and lead to replication fork stalling/collapse in DSBs that are 

lethal to HR-deficient cells.[99, 100] BRCA1-deficient cells are vulnerable to poly(ADP-ribose) 

polymerase inhibitors (PARPi) due to inability to favor HR-mediated DDR as 53BP1 is not 

inhibited by CtIP due to lack of BRCA1.[99, 100] 53BP1 inhibitors will potentially re-capitulate 

the process of how CtIP is released from inhibition by 53BP1 and allow for restoration of HR 

repair. Herein, the initial results of those research efforts are reported. 

Purpose of this work 

The purpose of this work will be to identify highly selective and potent small molecule 

inhibitors for the methyl-lysine binding protein 53BP1. The molecules will focus on binding 

within the tandem Tudor domain of this protein and act to inhibit its ability to bind its 

endogenous substrates. Once initial selective small molecules are identified, a candidate will be 

chosen and optimized through the use of iterative medicinal chemistry techniques and novel 

compound synthesis to develop a Structure-Activity Relationships (SAR) study. Further, 

biological assays will be used to determine whether candidate compounds are selective and 
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potent enough to disrupt the known biological function of 53BP1 in a series of in vitro and in 

vivo assays designed to quantitatively measure proteins biological functions. 

Work on development for small molecule inhibitors of 53BP1 TTD will be outlined in 

three sections in Chapter II; UNC1554, UNC2170, and a small molecule fragment screen. 
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Benzimidazole-based small molecule ligand of 53BP1, UNC1554 

Results and discussion 

Structure based analysis of 53BP1 

Several binding interactions were observed in the X-ray co-crystallization structure of 

53BP1 TTD bound to endogenous H4K20me2 peptide. The endogenous peptide substrate binds 

in three main regions that include the Kme binding pocket (red), the Arg binding pocket (gray), 

and the Acidic/hydrophobic pocket (green), Figure 2.1 A. The acidic D1521A residue is 

highlighted in yellow, Figure 2.1 A. An additional serine (blue) and aspartic acid residue 

(orange) are highlighted as potential binding interactions that were not clearly defined in the X-

ray structural studies. The key binding interactions were a hydrogen-bond between the Kme 

basic amine and an aspartic acid (Asp1521) and a cation-π interaction between Kme2 and 

phenylalanine, tyrosine, and tryptophan residues within the aromatic binding cage (Tyr1502, 

Tyr1523, Phe1519, Trp1495), as shown in the red regions in Figure 2.1 B. An additional binding 

interaction was a cation-π bond between arginine 19 on the H4 peptide tail and a tryptophan 

residue (Trp1500), white region in Figure 2.1 C.[66]  
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Figure 2.1: Structural analysis of 53BP1 TTD binding pocket, PDB 2LVM 

 

Mutagenesis of the histone peptide had previously demonstrated that H18 also 

contributes to binding, but this interaction was not clearly defined in the X-ray crystal 

structure.[66] To develop a more complete understanding of the binding interactions of the H4 

peptide (amino acids 14-27) bound to 53BP1, isotope enriched (13C and 15N) NMR spectroscopy 

[101] was applied to determine the structure of the central residues of the H4K20me2 peptide 

bound to 53BP1 (PDB 2LVM), Figure 2.1.[102] It was observed that this central region of the 

H4 peptide corresponding to residues 15 to 22 adopts a “U-turn” conformation. Notably, in 

addition to the binding interactions with H4K20me2 and H4R19 that were detected in the crystal 

structure, further analysis revealed a pocket containing both acidic and hydrophobic residues that 

accommodates H4R17 and H4V21, green regions in Figure 2.1. It has also been shown that 

acetylation of H4K16 diminishes 53BP1 binding by disrupting a salt bridge between H4K16 and 

Glu1551.[102] Therefore, a small molecule that could occupy the methyl-lysine binding cage of 

53BP1 and interact favorably with some of the surrounding residues would be expected to block 

53BP1 binding to H4K20me2. 
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The key interactions that a small molecule inhibitor should mimic are the hydrogen-bond 

between the Kme basic amine and Asp1521 that works in combination with a cation-π 

interaction between Kme2. Additionally, it is proposed that the other key interaction to mimic 

would be the cation-π bond between Arg19 and Trp1500. The hydrophobic Val21 residue is 

bound within the acidic/hydrophobic binding pocket, but no direct binding interactions are noted 

in that region in the X-ray co-crystal structure. Initial small molecule inhibitor discovery efforts 

will focus on compounds that mimic the above mentioned binding interactions. 

Discovery of UNC1554 hit 

The process of discovering a small molecule inhibitor for the Tandem Tudor domain 

(TTD) of 53BP1 was initiated by analysis of the previously described structural characteristics of 

its Kme binding domain. It is known that the TTD binds the H4K20me2 residue on the histone 4 

peptide tail (H4K20me2) which maintains a positive charge under physiological buffer 

conditions. This cation-π binding interaction is key to the overall binding process of the histone 

peptide and should be maintained in a small molecule inhibitor. Previous in silico docking 

studies that were conducted by Dr. Cen Gao and Dr. Martin Herold (both formerly of the Center 

for Integrative Chemical Biology and Drug Discovery, CICBDD) and Dr. Lindsey Ingerman 

James (Assistant Research Professor, CICBDD) show that flexible inhibitors that contained a 

pyrrolidine residue were highly likely to bind the 53BP1 TTD with the pyrrolidine docking 

within the Kme binding pocket. This pyrrolidine structural feature was common to a small 

molecule ligand that was discovered for L3MBTL1, UNC669. This molecule contains a 

pyrrolidine functional group that docks within the L3MBTL1 Kme binding pocket and mimics 

the H4K20me2 residue that it endogenously binds. 53BP1 TTD was initially screened against a 
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focused compound library at the CICBDD known as the EpiG library was screened to obtain 

potential “hit” molecules for 53BP1 TTD. The EpiG library of compounds possesses a large 

number of known and putative small molecule inhibitors and their analogs for epigenetic-related 

enzymes and proteins. From this focused screen that was conducted using the AlphaScreen assay 

platform, a hit compound known as UNC00000522 was observed to inhibit the binding activity 

of the 53BP1 TTD by 95% when screened at 10 µM and had an IC50 = 6.3 ± 6.3 µM, Figure 2.2. 

Figure 2.2: Structure of UNC00000522 

 

From this initial “hit”, structure-based design methods and also in silico techniques were 

used in tandem to begin the process of determining how UNC00000522 found to 53BP1 TTD 

and also begin rationally designed new analogs for screening. In silico docking models to of how 

UNC00000522 binds to the 53BP1 TTD showed that the pyrrolidine functional group bound 

within the Kme binding pocket and the 5-bromo-nicotinic acid functional group bound either 

within the arginine binding pocket or in the acidic pocket. An initial set of nine UNC00000522 

analogs were synthesized to determine if potency could be improved. It was determined that the 

AlphaScreen assay conditions for the initial screening of UNC00000522 did not provide IC50’s 

with a high level of precision and improved conditions were used to screen the newly 
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synthesized analogs. From that set of synthesized analogs emerged UNC1554 with an IC50 = 

22.7 ± 6.5 µM, Figure 2.2. The benzimidazole scaffold that possessed an ethyl-pyrrolidine 

functional group was chosen as the starting point for SAR studies to discover a potent and 

selective small molecule inhibitor of the 53BP1 TTD. 

Comparison of UNC1554 to endogenous H4K20me2 chromatin peptide 

A structure-based design approach was initiated by analyzing available crystal structure 

data of 53BP1 bound to an H4K20me2 peptide (PDB 2IG0).[66] As previously described, the 

H4K20me2 residue binds within the Kme binding pocket with the Arg19 residue binding within 

a shallow pocket above the Kme2 pocket and Val21 binding in an acidic/hydrophobic pocket 

below the Kme binding site. It was hypothesized that the ethyl pyrrolidine functional group of 

UNC1554 would bind within the Kme binding site but it was uncertain how the remaining part 

of the small molecule would dock within the TTD. The compound was sent off to our 

collaborator, Prof. Georges Mer (Mayo Clinic) to undergo NMR studies in order to gain a better 

idea on how the molecule docked to the protein. Intermolecular NOEs experiments were 

conducted to determine direct interactions between UNC1554 and the 53BP1 TTD .These 

unpublished results showed that UNC1554 binds within the Kme aromatic cage of 53BP1, with 

the ethyl pyrrolidine group interacting with residues D1520, F1519, and Y1502 forming 

proposed cation-π interactions with the pyrrolidine ammonium group and D1521 in the Kme 

pocket. Additionally, the nicotinic acid functional group of UNC1554 was shown to interact with 

protein residue Tyr1500 where H4R19 binds, Figure 2.3. These interactions are noted in Figure 

2.3 A and the binding pose is shown in Figure 2.3 A. These interactions are in agreement with 

HSQC titration experiments as shown in Figure 2.3B. 
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Figure 2.3: Unpublished NMR titration study of UNC1554 bound within the 53BP1 TTD 

 

These unpublished results provided evidence that lead to a hypothesis that the nicotinic 

acid functional group of UNC1554 acted as a mimic of the H4R19 residue of the endogenous 

histone peptide substrate. These findings provided a basis to begin designing SAR experiments 

to optimize UNC1554. Additionally, NMR titration experiments show that UNC1554 has a Kd = 

66.8 ± 18.9 µM. 

Structure-activity relationship (SAR) studies 

SAR studies were focused on optimizing the potency and selectivity of UNC1554 for the 

53BP1 TTD. Medicinal chemistry efforts were primarily based on the X-ray structure of the 

53BP1 TTD bound to endogenous H4K20me2 peptide substrate. Additionally, the NMR titration 

studies of UNC1554 bound to the 53BP1 TTD provided evidence of the small molecule’s 

binding pose in a solution phase environment. This was very useful information as it allowed for 

development of a rational hypothesis of how synthetic changes of the structure of UNC1554 may 

C
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affect its ability to bind to various regions on the protein surface. These findings allowed for a 

more sound design of the small molecule SAR. 

Synthetic strategy for SAR studies 

The NMR titration studies showed direct evidence that two interactions were involved in 

how UNC1554 binds to the 53BP1 TTD. The N-ethyl pyrrolidine functional group was shown to 

bind within the Kme binding pocket. This directly mimics the H4K20me endogenous substrate 

that also binds in the same manner. The second interaction observed was how the nicotinic acid 

functional group on UNC1554 bound in proximity to the H4R19 binding pocket on 53BP1 TTD. 

This functional group is hypothesized to mimic the peptide Arg19 binding interaction. These two 

interactions provided a basis for the key focus of medicinal chemistry efforts in SAR studies on 

UNC1554. Initial medicinal chemistry efforts will explore how variation of the functional group 

size on the amine head group of UNC1554 will affect binding potency and selectivity for the 

TTD of 53BP1. It was unknown what the steric tolerance of the Kme binding pocket of 53BP1 

TTD is for the steric bulk of an amine head group of a small molecule. The next area of 

medicinal chemistry efforts explored how variations of the structural and electronic 

characteristics of the nicotinic acid functional group affect potency and selectivity. It is 

hypothesized that the nicotinic acid functional group mimics the binding activity of the H4R19 

residue. The final region of UNC1554’s structure that will be explored is how variation of the 

linker region between the N-ethyl pyrrolidine and nicotinic acid functional groups will affect 

compound potency and selectivity. These focus areas are shown in Figure 2.4. 
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Figure 2.4: Focus areas of UNC1554 SAR studies 

 

Modification of amine head group 

NMR structural data showed evidence that the N-ethyl pyrrolidine functional group of 

UNC1554 bound within the Kme binding pocket and provided in initial area of focus for SAR 

experiments. No previous studies have analyzed the steric tolerance that the Kme binding pocket 

has for amine functional groups with the exception of varying degrees of N-methylation in a 

histone peptide context. It was hypothesized that the Kme binding pocket would have a moderate 

degree of steric tolerance and be able to accept less sterically bulky amine functional groups. To 

determine the steric tolerance of the binding pocket, a small number of amine functional groups 

on the N-ethyl side chain of UNC1554 were prepared while maintaining the nicotinic acid 

functional group, Table 2.1. The smallest analog was the di-methyl N-ethyl amine, 1, and the 

largest was a di-benzyl amine, 4.  
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Table 2.1. SAR Studies and Selectivity Data of the N-ethylamine Group of 2 (UNC1554).a,b 

 

ID R 53BP1 CBX7 JARID1A L3MBTL1 L3MBTL3 MBTD1 

1 
 

>30 >30 >30 >30 4.5 ± 0.1 14.5 ± 0.7 

2 
(UN1554) 

 
22.7 ± 6.5 22.1 ± 8.4 >30 >30 10.6 ± 12.0 23.9 ± 9.2 

3 

 

>30 >30 >30 >30 >30 11.6 ± 1.1 

4 

 

>30 >30 >30 >30 >30 >30 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 30 M and compounds showing less than 50% inhibition at this 

concentration are labeled >30 M.  

The IC50 values and protein selectivity for these four analogs was measured by 

AlphaScreen assay against a panel of Kme binding proteins that consisted of tandem tudor, 

chromo, and MBT binding domains. It was observed that only analog 2 (UNC1554) had affinity 

for 53BP1 TTD with an IC50 = 22.7 ± 6.5 µM while the other three analogs had IC50 values >30 

µM. The selectivity across a panel of Kme binding proteins showed that the N-ethylpyrrolidine 

head group provided a measure of selectivity for 53BP1 TTD, but in turn was also moderately 

potent for the other Kme reader proteins. It was also observed that as the N-ethyl amine head 

group increased in steric bulk, the selectivity and affinity of the analogs for the aromatic binding 

cage of 53BP1 TTD decreased. The di-benzyl analog, 4, had no affinity for any of the screened 

Kme reader proteins. The small set of analogs showed that the Kme binding pocket was unable 

to bind sterically bulky amine functional groups, and was only able to successfully accommodate 
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a smaller group as shown with compound 2. Further exploration of the steric tolerance of the 

Kme binding pocket was explored through SAR experiments where the nicotinic acid functional 

group was modified. 

Modification of linker region 

The next region of the UNC1554 structure to be modified through SAR experiments was 

the linker region between the benzimidazole core and nicotinic acid aromatic ring. In UNC1554, 

this linker was an amide bond. The NMR structure of UNC1554 bound to the 53BP1 TTD did 

not show any direct hydrogen bonds between the amide carbonyl group and the protein’s surface 

residues. A clear hypothesis of whether the amide bond was necessary was not able to be 

generated and therefore a series of different linker groups were substituted in place of the amide 

bond to determine if modification affected potency and selectivity of the prepared analogs. A 

series of analogs was prepared that modified the amide bond into several different linkers, Table 

2.2. Additional analogs were prepared where the amine functional group was modified from the 

N-ethyl pyrrolidine found on 2 (UNC1554). The types of linkers included a carbon-carbon bond 

between the benzimidazole ring and the aromatic ring, inclusion of a methylene spacer to that 

bond, and a N-benzyl functional group directly off the benzimidazole core. 
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Table 2.2 . SAR Studies and Selectivity Data for the Linker Group for 2 (UNC1554).a,b 

 

ID R1 R2 53BP1 CBX7 JARID1A L3MBTL1 L3MBTL3 MBTD1 

5 
  

22.5 ± 7.1 >30 >30 >30 >30 >30 

6 

  
>30 >30 >30 >30 >30 >30 

7 
  

>30 >30 >30 >30 >30 >30 

8 
  

>30 >30 >30 >30 >30 >30 

9 

  
 

>30 
5.3 ± 

0.7 
>30 >30 >30 >30 

10 

 
 

 

>30 
12.3 ± 

0.6 
>30 >30 >30 >30 

11 
  

>30 >30 >30 26.3 ± 3.1 >30 >30 

12 
  

>30 >30 >30 >30 >30 >30 

13 
  

>30 >30 >30 20.0 ± 0.1 >30 >30 

14 
  

>30 >30 >30 >30 >30 >30 

15 

   
>30 >30 >30 18.9 ± 6.8 >30 >30 

16 

  
>30 >30 >30 >30 >30 >30 

17 
  

>30 >30 >30 >30 >30 >30 

18 
  

>30 >30 >30 13.0 ± 1.7 >30 >30 

19 

  

>30 >30 >30 20.1 ± 8.6 >30 >30 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 30 M and compounds showing less than 50% inhibition at this 

concentration are labeled >30 M.  
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The IC50 values and protein selectivity for these three analogs types were measured by 

AlphaScreen assay against a panel of Kme binding proteins. It was shown that only a single 

analog, 5, provided any affinity for 53BP1 TTD with an IC50 = 22.5 ± 7.1 µM. The majority of 

the linker analogs proved to be inactive regardless of the N-ethylamine head group or the type of 

modified linker that the analog possessed. Several of the analogs were shown to provide some 

affinity for CBX7 and L3MBTL1, analogs 9 and 10, and analogs 11, 13, 15, 18, and 19, 

respectively. The overall findings from this set of analogs were surprising as it showed that when 

the linker was modified from an amide bond, as found in 2, the affinity and selectivity of the 

compound changed significantly. Regardless of whether the linker was rigidified as shown 

through analogs 5 - 16, or made to be more flexible as in analogs 17 – 19, the affinity for 53BP1 

TTD did not increase with the exception of analog 5. Additionally, the nicotinic acid head group 

was modified on a number of these analogs and only analog 5 was selective while retaining 

modest affinity for 53BP1 TTD. The aryl, morpholino functional group of 5 is proposed to 

mimic the aromatic and basic nitrogen properties found in the nicotinic acid of 2 (UNC1554). 

Overall, the modification of the linker region was found to be unsuccessful and the use of an 

amide bond was maintained in further SAR studies. 

Modification of benzimidazole aromatic ring 

Synthetic modifications of the N-ethyl amine functional group and the linker region did 

not provide an improvement in the potency and selectivity of 2 (UNC1554). The final region 

where SAR experiments were conducted was the aromatic nicotinic acid head group. The NMR 

studies of 2 (UNC1554) bound to 53BP1 TTD showed that the nicotinic acid functional group 

resides above the R19 binding pocket. It was hypothesized that substitution of different 
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functional groups at this position would increase the affinity of the compound for 53BP1 TTD by 

mimicking the R19 – Y1500 cation – π interactions of the endogenous peptide substrate. A large 

number of analogs were prepared in this series, Table 2.3, where the nicotinic acid was 

synthetically modified with functional groups that possessed varying degrees of steric bulk and 

different electronic characteristics. Modifications included substitution of the nicotinic acid by 

aromatic, non-aromatic, lactones, and sterically bulky acyl-acetamide analogs. 

Table 2.3. SAR Studies of the Nicotinic Acid Head Group of 2 (UNC1554). a,b 

 

ID R1 R2 53BP1 CBX7 JARID1A L3MBTL1 L3MBTL3 MBTD1 

20  
 

>30 >30 >30 >30 >30 >30 

21 
  

21.3 ± 9.1 >30 >30 >30 17.4 ± 11.5 >30 

22 

  
>30 >30 >30 >30 >30 >30 

23 

  
>30 >30 >30 >30 22.5 ± 13.0 >30 

24 

 
 

>30 >30 >30 >30 >30 >30 

25 
  

27 ± 5.2 >30 >30 >30 >30 13.7 ± 3.8 

26   
>30 >30 >30 >30 >30 >30 

27 

  
>30 >30 >30 >30 >30 >30 

28 

  
>30 >30 >30 >30 >30 >30 

29 

 
 

>30 >30 >30 >30 >30 >30 
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30 
  

>30 >30 >30 >30 >30 >30 

31 
  

>30 
24.7 ± 

9.2 
>30 >30 7.2  ± 0.9 >30 

32  
 

>30 
20.6 ± 

0.6 
>30 >30 14.8 ± 10.2 >30 

33 

  
>30 >30 >30 >30 >30 >30 

34 

  
>30 >30 >30 >30 >30 >30 

35   
>30 >30 >30 >30 >30 >30 

36 
  

>30 >30 >30 >30 23.5 ± 9.2 >30 

37 

 
 

>30 >30 >30 >30 >30 >30 

38 
 

 

>30 >30 >30 >30 >30 >30 

39  

 

27.3 ± 4.3 
24.7 ± 

5.8 
>30 >30 17.2 ± 12.0 26.2 ± 4.3 

40 

  

>30 >30 >30 >30 >30 >30 

41 
 

 

>30 >30 >30 >30 >30 >30 

42 
 

 

>30 >30 >30 >30 >30 >30 

43  

 

>30 >30 >30 >30 >30 >30 

44 

 
 

>30 >30 >30 >30 >30 >30 
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45 
  

>30 >30 >30 >30 23.7 ± 5.7 >30 

46 
  

>30 >30 >30 >30 9.8 ± 6.6 >30 

47 
 

 

23.7 ± 7.4 >30 >30 >30 14.4 ± 14.2 >30 

48  

 

21.3 ± 7.7 
22.5 ± 

8.3 
>30 >30 16.9 ± 14.3 22.5 ± 8.2 

49 
 

 

>30 >30 >30 >30 4.9 ± 0.1 25.5 ± 0.7 

50 
  

>30 >30 >30 >30 8.3 ± 1.4 >30 

51 
  >30 >30 >30 >30 7.6 ± 0.8 >30 

52 
  

>30 >30 >30 >30 6.4 ± 0.7 >30 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 30 M and compounds showing less than 50% inhibition at this 

concentration are labeled >30 M. 

The IC50 values and selectivity for these three analogs was measured by AlphaScreen 

assay against a panel of Kme binding proteins. It was observed that five different analogs had 

affinity for 53BP1 TTD, but unfortunately were not selective. Analogs 21, 25, 39, 47, and 48 

were equipotent for 53BP1 TTD compared to 2. The functional groups that were substituted for 

nicotinic acid were a phenyl, an isonicotic acid, a hydroxyl quinolone, and two modified γ-

lactones. It was proposed that the phenyl and isonicotinic acid groups would participate in a 

similar binding mode as the nicotinic acid in 2. It was uncertain on how the hydroxyl quinolone 

and γ-lactones would mimic the binding action of the nicotinic acid in 2. It was hypothesized that 

these three analogs may adopt a different binding pose than 2. It was hypothesized that the N-

ethylpyrrolidine or N-ethyldimethylamine head group was thought to maintain its binding 

position within the aromatic cage, but the nicotinic acid mimics may rotate their binding position 
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to interact within the acidic/hydrophobic pocket of 53BP1 TTD. This type of binding mode 

would be reasonable for the γ-lactones that possessed a large hydrophobic heptane ring of the γ-

lactone’s amide group. This large and flexible hydrophobic group has the potential to bind in the 

acidic/hydrophobic pocket via hydrophobic and Van der Waals interactions. An additional 

structural characteristics of these analogs is that analogs 39 and 48 possessed an N-

ethyldimethylamine head group and analogs 21, 25, and 49 possessed the N-ethylpyrrolidine 

head group. Overall this final SAR series showed only five analogs that possessed equipotent 

affinity for 53BP1 TTD.  

Conclusions 

A large number of analogs were prepared with different degrees of conformational 

rigidity, flexibility, and electronic characteristics in an effort to increase binding interactions 

based on structural data provided from NMR binding studies of 2 (UNC1554) bound to 53BP1 

TTD. It was observed that over three SAR series, focused on different parts of the molecule, that 

the potency and affinity of 2 (UNC1554) was not improved. Synthetic modifications at three 

different position on the molecule; the N-ethyl amine head group, the linker region, and nicotinic 

acid region; were shown to be ineffective. During the final SAR series, the author of this work 

was introduced to the experimental methods of isothermal titration calorimetry (ITC) and upon 

conducting an ITC experiment using 2 (UNC1554) and 53BP1 TTD, it was found that no 

measureable binding was observed, Figure 2.5. An additional ITC experiment was conducted 

with the 53BP1 TTD D1521A inactive mutant and also found to provide no binding, Figure 2.5. 
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Figure 2.5: ITC binding data for 2 (UNC1554) against wt and D1521A inactive 53BP1 TTD 

 

This binding data unfortunately showed that the key molecule of this set of SAR 

experiments provided no measureable binding data against 53BP1 TTD. The protein NMR 

binding data and NMR titration data counter this ITC observation. A potential explanation for 

why there was no measured binding is that the ΔH cancel each other out. The practice of 

validating the binding potency of any future “hit” molecules for 53BP1 TTD via the use of ITC 

was formally adopted. This binding data provided evidence of the intractable SAR efforts that 

were outlines above. The high avidity of the AlphaScreen bead-based assay has been known to 

be highly sensitive and can provide a more potent affinity measurement than other assay 

methods, however, it can also be prone to false positives.  
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Experimental section 

General Procedure for Chemical Synthesis 

Analytical LCMS data for all compounds were acquired using an Agilent 6110 series 

system with the UV detector set to 220 and 254 nm. Samples were injected (<10 µL) onto an 

Agilent Eclipse Plus 4.6 × 50 mm, 1.8 µm, C18 column at room temperature.  A mobile phase of 

A (H2O + 0.1% acetic acid) and B (MeOH + 0.1% acetic acid) was used with a linear gradient 

from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a 

flow rate of 1.0 mL/min.  Mass spectra data were acquired in positive ion mode using an Agilent 

6110 single quadrupole mass spectrometer with an electrospray ionization source.  Nuclear 

Magnetic Resonance (NMR) spectra were recorded on a Varian Mercury spectrometer at 400 

MHz for proton (1H NMR) and 100 MHz for carbon (13C NMR); chemical shifts are reported in 

ppm (δ). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 F254, 0.25 

mm pre-coated TLC plates, generally using a 10% MeOH in DCM solvent system. TLC plates 

were visualized using UV254, I2 impregnated silica gel, potassium permanganate with charring, 

and phosphomolybdic acid with charring. Reverse phase chromatography was used to purify 

reaction mixtures to obtain final products using a Teledyne Isco CombiFlash Rf 200 

chromatography unit equipped with the UV detector set to 220 nm and 254 nm.  Samples were 

injected onto a RediSep Rf 30g C18 high performance Gold column at room temperature and 

collected at the previously mentioned wavelengths.  Mobile phases of A (H2O + 0.1% TFA) and 

B (MeOH) were used with a flow rate of 30 mL/min.  A general gradient was used consisting of 

0-2 minutes at 5% B, 5-15 minutes increasing from 5 to 100% B, and a 100% B flush for another 

3 minutes.  Small variations in this purification method were made as needed to achieve ideal 
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separation for each compound.  All compounds that were evaluated in biochemical and 

biophysical assays had >95% purity as determined by 1HNMR and LCMS. 

Small molecule synthesis and analytical and structural characterization (LC-MS and NMR) 

 

N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (1): A solution of 

50 mg (0.41 mmol) isonicotinic acid, 169 mg (0.53 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU) , and 169 mL (1.22 mmol) triethylamine was 

stirred at rt for 15 min. Then 100 mg (0.41 mmol) 57 was added and the mixture was stirred 

overnight. The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x 

with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated 

and dried onto silica. The product was purified by normal phase Teledyne Isco automated 

column system to afford 62 mg (60.3% yield) of pure product as a pale orange solid. 1H NMR 

(400 MHz, cdcl3) δ 8.70 (dd, J = 4.4, 1.6 Hz, 2H), 8.08 (dd, J = 4.4, 1.6 Hz, 2H), 7.35 – 7.16 (m, 

4H), 4.35 (t, J = 7.1 Hz, 2H), 2.75 (t, J = 7.1 Hz, 2H), 2.34 (s, 6H). LC-MS (λ = 254 nm): 99%, 

tR = 2.6 min. MS (ESI+): 310.2 [M+H]+.  
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (2, UNC1554): 

UNC1554 was previously prepared by Dr. Lindesy J. Ingerman (CICBDD) and this sample was 

used as a standard throughout all screening assays. 1H NMR (400 MHz, cdcl3) δ 8.87 (dd, J = 

3.6, 1.6 Hz, 2H), 8.57 (dd, J = 3.1, 1.4 Hz, 2H), 7.62 – 7.58 (m, 2H), 7.45 – 7.36 (m, 2H), 4.38 (t, 

J = 6.3 Hz,  2H), 3.81 (t, J = 7.3 Hz,  4H), 3.26 (s, 2H), 2.12 (s, 2H), 1.93 (s, 2H). LC-MS (λ = 

254 nm): 99%, tR = 2.9 min. MS (ESI+): 337.2 [M+H]+. 

 

 

 

N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (3): A solution 

of 39 mg (0.32 mmol) isonicotinic acid, 132 mg (0.41 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU), and 132 mL (0.95 mmol) triethylamine was 
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stirred at rt for 15 min. Then 100 mg (0.28 mmol) 58 was added and the mixture was stirred 

overnight. The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x 

with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated 

and dried onto silica. The product was purified by normal phase Teledyne Isco automated 

column system to afford 68 mg (58.6% yield) of pure product as a pale yellow solid. 1H NMR 

(400 MHz, cdcl3) δ 8.70 (dd, J = 4.5, 1.6 Hz, 2H), 8.10 (dd, J = 4.4, 1.6 Hz, 2H), 7.34 – 7.18 (m, 

4H), 4.24 – 4.15 (m, 2H), 3.05 (dt, J = 12.9, 6.5 Hz, 2H), 2.87 – 2.77 (m, 2H), 0.98 (d, J = 6.5 

Hz, 12H). LC-MS (λ = 254 nm): 99%, tR = 3.2 min. MS (ESI+): 367.3 [M+H]+.  

 

N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (4): A solution of 

28 mg (0.23 mmol) isonicotinic acid, 95 mg (0.30 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU) , and 95 mL (0.68 mmol) triethylamine was stirred 

at rt for 15 min. Then 100 mg (0.28 mmol) 60 was added and the mixture was stirred overnight. 

The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM 

(10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated and dried 

onto silica. The product was purified by normal phase Teledyne Isco automated column system 

to afford 21 mg (20.1% yield) of pure product as a clear, yellow oil. 1H NMR (400 MHz, cdcl3) δ 
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8.66 (dd, J = 4.4, 1.6 Hz, 2H), 7.94 (dd, J = 4.4, 1.6 Hz, 2H), 7.32 (d, J = 7.8 Hz, 1H), 7.23 (td, J 

= 7.8, 1.0 Hz, 1H), 7.20 – 7.15 (m, 4H), 7.15 – 7.10 (m, 6H), 6.87 (d, J = 8.0 Hz, 1H), 4.31 (t, J 

= 6.5 Hz, 2H), 3.70 (s, 4H), 2.94 (t, J = 6.5 Hz, 2H), 1.74 (s, 1H). LC-MS (λ = 254 nm): 99%, tR 

= 6.1 min. MS (ESI+): 462.3 [M+H]+.  

 

4-(4-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)phenyl)morpholine (5): To a 

solution of 53 (103 mg, 0.50 mmol) and 104 mg (1 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 96 mg (0.50 mmol) 4-

morpholinobenzaldehyde was slowly added over 2 min to the reaction.  This mixture was then 

stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 78 mg (43.1% yield) 

of pure product as a pale orange solid. 1H NMR (400 MHz, cd3od) δ 7.69 – 7.62 (m, 3H), 7.60 – 

7.54 (m, 1H), 7.30 (dqd, J = 14.7, 7.3, 1.3 Hz, 2H), 7.13 (dd, J = 9.3, 2.4 Hz, 2H), 4.51 – 4.41 

(m, 2H), 3.91 – 3.82 (m, 4H), 3.30 – 3.26 (m, 4H), 2.86 – 2.80 (m, 2H), 2.50 – 2.39 (m, 4H), 

1.79 – 1.67 (m, 4H).LC-MS (λ = 254 nm): 99%, tR = 2.8 min. MS (ESI+): 378.3 [M+2H]+.  
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N-isopropyl-N-(2-(2-(4-morpholinophenyl)-1H-benzo[d]imidazol-1-yl)ethyl)propan-2-

amine (6): To a solution of 55 (108 mg, 0.46 mmol) and 0.104 g (1 mmol) sodium bisulfite in 3 

mL dimethylacetamide was stirred at 100°C for 2 hr. Then 0.089 g (0.47 mmol) 4-

morpholinobenzaldehyde was slowly added over 2 min to the reaction.  This mixture was then 

stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 75 mg (42.1% yield) 

of pure product as a pale orange solid. 1H NMR (400 MHz, cd3od) δ 7.71 – 7.62 (m, 3H), 7.51 

(d, J = 7.3 Hz, 1H), 7.34 – 7.23 (m, 2H), 7.14 – 7.07 (m, 2H), 4.29 (t, J = 6.8 Hz, 2H), 3.88 – 

3.81 (m, 4H), 3.28 – 3.22 (m, 4H), 2.84 (hept, J = 6.6 Hz, 2H), 2.65 (t, J = 6.8 Hz, 2H), 0.76 (d, J 

= 6.6 Hz, 12H).LC-MS (λ = 254 nm): 99%, tR = 3.3 min. MS (ESI+): 408.3 [M+2H]+.  
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2-(4-(benzyloxy)-3-methoxyphenyl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (7): 

To a solution of 53 (149 mg, 0.73 mmol) and 151 mg (1.45 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 176 mg (0.73 mmol) 4-(benzyloxy)-3-

methoxybenzaldehyde was slowly added over 2 min to the reaction.  This mixture was then 

stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 90 mg (29.0% yield) 

of pure product as a clear, yellow oil. 1H NMR (400 MHz, cdcl3) δ 7.80 – 7.73 (m, 1H), 7.45 – 

7.15 (m, 11H), 6.95 (d, J = 8.3 Hz, 1H), 5.18 (s, 2H), 4.40 – 4.30 (m, 2H), 3.95 – 3.89 (m, 3H), 

2.88 – 2.80 (m, 2H), 2.43 (s, 4H), 1.76 – 1.64 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.9 min. 

MS (ESI+): 429.3 [M+H]+.  
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2-(2-(4-(benzyloxy)-3-methoxyphenyl)-1H-benzo[d]imidazol-1-yl)-N,N-dimethylethan-1-

amine (8): To a solution of 54 (70 mg, 0.39 mmol) and 81 mg (0.78 mmol) sodium bisulfite in 3 

mL dimethylacetamide was stirred at 100°C for 2 hr. Then 95 mg (0.39 mmol) 4-(benzyloxy)-3-

methoxybenzaldehyde was slowly added over 2 min to the reaction.  This mixture was then 

stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 102 mg (65.3% 

yield) of pure product as a clear, orange oil. 1H NMR (400 MHz, cdcl3) δ 7.82 – 7.77 (m, 1H), 

7.44 (d, J = 1.3 Hz, 2H), 7.42 – 7.33 (m, 4H), 7.33 – 7.11 (m, 5H), 6.98 (d, J = 8.5 Hz, 2H), 5.21 

(s, 2H), 4.31 (t, J = 9.1 Hz, 2H),3.95 (s, 3H), 2.69 (t, J = 9.5 Hz, 2H), 2.91 (s, 6H). LC-MS (λ = 

254 nm): 99%, tR = 3.9 min. MS (ESI+): 403.3 [M+H]+.  
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2-(1-(pyrimidin-2-yl)-1H-imidazol-4-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole 

(9): To a solution of 53 (150 mg, 0.73 mmol) and 151 mg (1.45 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 126 mg (0.72 mmol) 1-(pyrimidin-2-yl)-

1H-imidazole-4-carbaldehyde was slowly added over 2 min to the reaction.  This mixture was 

then stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched 

using sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase 

was combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 93 mg (35.6% yield) 

of pure product as a pale white solid. 1H NMR (400 MHz, cdcl3) δ 8.75 (dd, J = 8.3, 3.1 Hz, 3H), 

8.70 (d, J = 1.4 Hz, 1H), 7.78 (ddd, J = 4.2, 2.7, 0.7 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.31 – 7.26 

(m, 2H), 7.25 (s, 0H), 5.04 – 4.91 (m, 2H), 2.97 (dd, J = 8.8, 7.1 Hz, 2H), 2.66 (s, 4H), 1.88 – 

1.77 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 361.2 [M+H]+.  
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N,N-dimethyl-2-(2-(1-(pyrimidin-2-yl)-1H-imidazol-4-yl)-1H-benzo[d]imidazol-1-yl)ethan-

1-amine (10): To a solution of 55 (70 mg, 0.39 mmol) and 81 mg (0.78 mmol) sodium bisulfite 

in 3 mL dimethylacetamide was stirred at 100°C for 2 hr. Then 68 mg (0.39 mmol) 1-(pyrimidin-

2-yl)-1H-imidazole-4-carbaldehyde was slowly added over 2 min to the reaction. This mixture 

was then stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was 

quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the 

organic phase was combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The 

product was purified by normal phase Teledyne Isco automated column system to afford 68 mg 

(52.3% yield) of pure product as a pale white solid. 1H NMR (400 MHz, cdcl3) δ 8.72 (d, J = 1.3 

Hz, 1H), 8.70 – 8.63 (m, 3H), 7.74 (m, 1H), 7.41 (m, 1H), 7.28 – 7.22 (m, 2H), 7.18 (t, J = 4.8 

Hz, 1H), 4.96 – 4.86 (m, 2H), 2.81 – 2.69 (m, 2H), 2.33 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 

3.2 min. MS (ESI+): 335.2 [M+H]+.  

 

2-(pyridin-3-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (11): To a solution of 53 

(149 mg, 0.73 mmol) and 151 mg (1.45 mmol) sodium bisulfite in 3 mL dimethylacetamide was 

stirred at 100°C for 2 hr. Then 0.07 mL (0.72 mmol) nicotinaldehyde was slowly added over 2 

min to the reaction.  This mixture was then stirred at 100°C for 2 hr and cooled to room 

temperature (rt). The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 
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3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 145 mg (68.4% yield) of pure product as a clear, yellow oil. 

1H NMR (400 MHz, cdcl3) δ 9.00 (dd, J = 2.3, 0.9 Hz, 1H), 8.67 (dd, J = 4.9, 1.7 Hz, 1H), 8.09 

(m, 1H), 7.82 – 7.74 (m, 1H), 7.43 – 7.35 (m, 2H), 7.30 – 7.22 (m, 2H), 4.28 (t, J = 7.1 Hz, 2H), 

2.88 – 2.77 (m, 2H), 2.42 – 2.29 (m, 4H), 1.64 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 1.9 min. 

MS (ESI+): 293.2 [M+H]+.  

 

N,N-dimethyl-2-(2-(pyridin-3-yl)-1H-benzo[d]imidazol-1-yl)ethan-1-amine (12): To a 

solution of 54 (100 mg, 0.56 mmol) and 116 mg (1.1 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 0.05 mL (0.55 mmol) nicotinaldehyde 

was slowly added over 2 min to the reaction.  This mixture was then stirred at 100°C for 2 hr and 

cooled to room temperature (rt). The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 135 mg (93.1% yield) of pure product as a 

clear oil. 1H NMR (400 MHz, cdcl3) δ 8.95 (dd, J = 2.2, 0.7 Hz, 1H), 8.64 (dd, J = 4.9, 1.7 Hz, 

1H), 8.04 (m, 1H), 7.75 (m, 1H), 7.35 (m, 2H), 7.23 (m, 2H), 4.20 (t, J = 7.0 Hz, 2H), 2.58 (t, J = 
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7.0 Hz, 2H), 2.06 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 1.9 min. MS (ESI+): 268.2 [M+H]+. 

UNC2561A, MTP00140-27-1 

 

2-(2-methyl-1H-imidazol-4-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (13): To a 

solution of 53 (149 mg, 0.73 mmol) and 151 mg (1.45 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 79 mg (0.72 mmol) 2-methyl-1H-

imidazole-4-carbaldehyde was slowly added over 2 min to the reaction.  This mixture was then 

stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 125 mg (58.4% 

yield) of pure product as a pale white solid. 1H NMR (400 MHz, cdcl3) δ 7.69 – 7.64 (m, 1H), 

7.60 (s, 1H), 7.44 – 7.39 (m, 1H), 7.30 – 7.22 (m, 2H), 4.74 (s, 2H), 3.00 (t, J = 7.3 Hz, 2H), 2.70 

– 2.60 (m, 4H), 2.40 (s, 3H), 1.87 – 1.72 (m, 4H).LC-MS (λ = 254 nm): 99%, tR = 2.2 min. MS 

(ESI+): 297.3 [M+H]+.  
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N,N-dimethyl-2-(2-(2-methyl-1H-imidazol-4-yl)-1H-benzo[d]imidazol-1-yl)ethan-1-amine 

(14): To a solution of 54 (100 mg, 0.56 mmol) and 116 mg (1.1 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 0.06 mg (0.55 mmol) 2-methyl-1H-

imidazole-4-carbaldehyde was slowly added over 2 min to the reaction.  This mixture was then 

stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 106 mg (70.7% 

yield) of pure product as a white solid. 1H NMR (400 MHz, cdcl3) δ 7.36 – 7.30 (m, 1H), 7.26 (s, 

1H), 7.10 – 7.05 (m, 1H), 6.96 – 6.88 (m, 2H), 4.57 – 4.38 (m, 2H), 2.54 – 2.41 (m, 2H), 2.04 (s, 

3H), 2.02 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 1.3 min. MS (ESI+): 271.2 [M+H]+.  
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2-(6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-2-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-

benzo[d]imidazole (15): To a solution of 53 (62 mg, 0.30 mmol) and 63 mg (0.61 mmol) 

sodium bisulfite in 3 mL dimethylacetamide was stirred at 100°C for 2 hr. Then 41 mg (0.30 

mmol) 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole-2-carbaldehydewas slowly added over 2 min to 

the reaction. This mixture was then stirred at 100°C for 2 hr and cooled to room temperature (rt). 

The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM 

(10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated and dried 

onto silica. The product was purified by normal phase Teledyne Isco automated column system 

to afford 34 mg (35.0% yield) of pure product as a pale white solid. 1H NMR (400 MHz, cdcl3) δ 

7.47 – 7.38 (m, 3H), 7.16 – 7.09 (m, 1H), 7.01 – 6.91 (m, 3H), 4.71 – 4.61 (m, 3H), 3.80 – 3.72 

(m, 3H), 2.69 – 2.56 (m, 6H), 2.51 (s, 1H), 2.51 – 2.26 (m, 11H), 1.62 – 1.42 (m, 6H), 2.41 – 

2.31 (m, 8H), 1.58 – 1.45 (m, 6H), 3.81 – 3.72 (m, 3H), 2.70 – 2.59 (m, 6H), 0.00 (s, 1H), 0.00 

(ddd, J = 3.6, 3.2, 0.6 Hz, 1H), 4.73 – 4.59 (m, 3H), 7.16 – 7.10 (m, 1H), 6.98 – 6.92 (m, 3H). 

LC-MS (λ = 254 nm): 99%, tR = 2.6 min. MS (ESI+): 322.2 [M+H]+.  

 

N-(2-(2-(6-chloropyridin-3-yl)-1H-benzo[d]imidazol-1-yl)ethyl)-N-isopropylpropan-2-

amine (16): To a solution of 55 (80 mg, 0.34 mmol) and 0.071 g (0.68 mmol) sodium bisulfite in 

3 mL dimethylacetamide was stirred at 100°C for 2 hr. Then 0.048 g (0.34 mmol) 6-

chloronicotinaldehyde was slowly added over 2 min to the reaction.  This mixture was then 
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stirred at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 67 mg (55.4% yield) 

of pure product as a clear yellow oil. 1H NMR (400 MHz, cdcl3) δ 8.91 (dd, J = 2.5, 0.7 Hz, 1H), 

8.21 (dd, J = 8.3, 2.5 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.47 (dd, J = 8.2, 0.7 Hz, 1H), 7.45 – 7.40 

(m, 1H), 7.36 – 7.28 (m, 2H), 4.20 (t, J = 6.5 Hz, 2H), 2.92 – 2.80 (m, 3H), 2.75 (t, J = 6.5 Hz, 

2H), 0.79 (d, J = 6.6 Hz, 12H). LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 357.2 

[M+H]+.  

 

N-benzyl-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-amine (17): To a solution of 56 

(0.1 g, 0.43 mmol) in 5 mL MeOH was added 0.08 mL (0.65 mmol) benzyl bromide and 0.24 

mL (1.74 mmol) triethylamine and the solution was stirred overnight at rt. The crude reaction 

was dried to residue, dissolved in DCM and dried onto silica and purified by normal phase 

Teledyne Isco automated column system to afford 41 mg (29.5% yield) of pure product as a 

orange solid. 1H NMR (400 MHz, cdcl3) δ 8.16 (s, 1H), 7.49 (dd, J = 7.6, 0.9 Hz, 1H), 7.41 (dd, 

J = 7.8, 1.1 Hz, 2H), 7.36 – 7.21 (m, 3H), 7.08 (ddd, J = 7.8, 7.1, 1.6 Hz, 1H), 7.05 – 6.95 (m, 

2H), 4.62 (d, J = 4.8 Hz, 2H), 3.98 – 3.91 (m, 2H), 2.87 – 2.78 (m, 2H), 2.52 – 2.41 (m, 2H), 

1.41 – 1.28 (m, 2H). LC-MS (λ = 254 nm): 99%, tR = 2.4 min. MS (ESI+): 321.2 [M+H]+.  
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2-benzyl-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (18): To a solution of 53 (214 

mg, 1.04 mmol) and 108 mg (1.04 mmol) sodium bisulfite in 3 mL dimethylacetamide was 

stirred at 100°C for 2 hr. Then 0.12 mL (1.04 mmol) 2-phenylacetaldehyde was slowly added 

over 2 min to the reaction.  This mixture was then stirred at 100°C for 2 hr and cooled to room 

temperature (rt). The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 

3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 110 mg (35.0% yield) of pure product as a pale yellow solid. 

1H NMR (400 MHz, cdcl3) δ 7.80 – 7.74 (m, 1H), 7.34 – 7.20 (m, 9H), 4.35 (s, 2H), 4.17 – 4.11 

(m, 2H), 2.57 – 2.50 (m, 2H), 2.50 – 2.42 (m, 4H), 1.81 – 1.71 (m, 4H), 1.66 (s, 2H). LC-MS (λ 

= 254 nm): 99%, tR = 2.9 min. MS (ESI+): 306.3 [M+H]+.  

 

N-(2-(2-benzyl-1H-benzo[d]imidazol-1-yl)ethyl)-N-isopropylpropan-2-amine (19): To a 

solution of 55 (79 mg, 0.34 mmol) and 69 mg (0.66 mmol) sodium bisulfite in 3 mL 

dimethylacetamide was stirred at 100°C for 2 hr. Then 0.039 mL (0.33 mmol) 2-
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phenylacetaldehyde was slowly added over 2 min to the reaction.  This mixture was then stirred 

at 100°C for 2 hr and cooled to room temperature (rt). The reaction was quenched using sat. 

aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 58 mg (51.2% yield) 

of pure product as a clear yellow oil. 1H NMR (400 MHz, cd3od) δ 7.66 – 7.60 (m, 1H), 7.45 – 

7.40 (m, 1H), 7.32 – 7.17 (m, 7H), 4.03 (t, J = 6.5 Hz, 2H), 3.00 – 2.87 (m, 2H), 2.61 (t, J = 6.5 

Hz, 2H), 0.84 (d, J = 6.6 Hz, 12H).LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 336.3 

[M+H]+.  

 

N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (20): A solution of 57 

(28 mg, 0.23 mmol) benzoic acid, 95 mg (0.30 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU), and 96 mL (0.68 mmol) triethylamine was stirred 

at rt for 15 min. Then 57 mg (0.28 mmol) 59 was added and the mixture was stirred overnight. 

The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM 

(10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated and dried 

onto silica. The product was purified by normal phase Teledyne Isco automated column system 

to afford 37 mg (43.0 % yield) of pure product as a pale white solid. 1H NMR (400 MHz, cdcl3) 
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δ 8.34 (d, J = 6.8 Hz, 2H), 7.44 (m, 3H), 7.33 – 7.16 (m, 4H), 4.41 – 4.33 (m, 2H), 2.82 – 2.73 

(m, 2H), 2.37 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 310.2 [M+H]+.  

 

N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (21): To a solution of 

56 (119 mg, 0.52 mmol) in 6 mL DMF was added 0.08 mL (0.62 mmol) benzoyl chloride and 

the reaction was stirred at rt. The reaction was quenched using sat. aqueous sodium bicarbonate 

and extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, 

filtered, concentrated and dried onto silica. The product was purified by normal phase Teledyne 

Isco automated column system to afford 14 mg (7.9% yield) of pure product as a white solid. 1H 

NMR (400 MHz, cdcl3) δ 8.41 – 8.31 (m, 2H), 7.54 – 7.41 (m, 3H), 7.36 – 7.18 (m, 5H), 4.47 – 

4.37 (m, 2H), 3.00 – 2.91 (m, 2H), 2.77 – 2.64 (m, 4H), 1.82 (td, J = 6.4, 3.1 Hz, 4H), 1.72 (s, 

1H). LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 335.3 [M+H]+.   

 

N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (22): To a solution 

of 58 (85 mg, 0.33 mmol) in 6 mL DMF was added 0.5 mL (0.39 mmol) benzoyl chloride and 

the reaction was stirred at rt. The reaction was quenched using sat. aqueous sodium bicarbonate 
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and extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, 

filtered, concentrated and dried onto silica. The product was purified by normal phase Teledyne 

Isco automated column system to afford 21 mg (17.7% yield) of pure product as a clear oil. 1H 

NMR (400 MHz, cdcl3) δ 8.39 – 8.32 (m, 2H), 7.53 – 7.36 (m, 3H), 7.33 – 7.18 (m, 4H), 4.26 – 

4.15 (m, 2H), 3.09 (dt, J = 13.0, 6.5 Hz, 2H), 2.91 – 2.83 (m, 2H), 1.04 (d, J = 6.5 Hz, 12H). LC-

MS (λ = 254 nm): 99%, tR = 3.7 min. MS (ESI+): 365.3 [M+H]+.   

 

N-(1-((1-methylpiperidin-2-yl)methyl)-1H-benzo[d]imidazol-2-yl)benzamide (23): A 

solution of 59 (42 mg, 0.34 mmol) benzoic acid, 144 mg (0.45 mmol) O-(Benzotriazol-1-yl)-

N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) , and 144 mL (1.03 mmol) 

triethylamine was stirred at rt for 15 min. Then 100 mg (0.41 mmol) 61 was added and the 

mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium bicarbonate 

and extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, 

filtered, concentrated and dried onto silica. The product was purified by normal phase Teledyne 

Isco automated column system to afford 45 mg (37.8% yield) of pure product as a white solid. 

1H NMR (400 MHz, cdcl3) δ 8.19 – 8.08 (m, 2H), 7.34 – 7.15 (m, 3H), 7.14 – 6.94 (m, 4H), 4.38 

(dd, J = 13.7, 4.2 Hz, 1H), 3.91 (dd, J = 13.7, 9.7 Hz, 1H), 2.76 – 2.66 (m, 1H), 2.43 (tt, J = 9.8, 

3.7 Hz, 1H), 2.37 (s, 3H), 2.04 – 1.94 (m, 1H), 1.52 – 1.36 (m, 3H), 1.31 – 1.12 (m, 2H), 1.03 – 

0.86 (m, 1H).LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 350.2 [M+H]+.  
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N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (24): A solution of 60 

(75 mg, 0.61 mmol) benzoic acid, 256 mg (0.79 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU), and 257 mL (1.8 mmol) triethylamine was stirred 

at rt for 15 min. Then 262 mg (0.73 mmol) 62 was added and the mixture was stirred overnight. 

The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM 

(10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated and dried 

onto silica. The product was purified by normal phase Teledyne Isco automated column system 

to afford 84 mg (29.7% yield) of pure product as a yellow solid. 1H NMR (400 MHz, cd3od) δ 

8.16 – 8.09 (m, 2H), 7.36 – 7.23 (m, 3H), 7.15 – 7.07 (m, 5H), 7.07 – 6.99 (m, 7H), 6.94 (td, J = 

7.9, 0.9 Hz, 1H), 6.68 (d, J = 7.9 Hz, 1H), 4.16 (t, J = 6.7 Hz, 2H), 3.58 (s, 4H), 2.81 (t, J = 6.7 

Hz, 2H). LC-MS (λ = 254 nm): 99%, tR = 6.5 min. MS (ESI+): 463.2 [M+H]+.  
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (25): A solution of 

56 (50 mg, 0.41 mmol) nicotinic acid, 169 mg (0.53 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU), and 169 mL (1.2 mmol) triethylamine was stirred 

at rt for 15 min. Then 112 mg (0.49 mmol) 59 was added and the mixture was stirred overnight. 

The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM 

(10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated and dried 

onto silica. The product was purified by normal phase Teledyne Isco automated column system 

to afford 70 mg (51.5 % yield) of pure product as a pale yellow solid. 1H NMR (400 MHz, cdcl3) 

δ 9.51 (dd, J = 2.1, 0.8 Hz, 1H), 8.65 (dd, J = 4.8, 1.8 Hz, 1H), 8.50 (dt, J = 7.9, 1.9 Hz, 1H), 

7.36 – 7.13 (m, 5H), 4.42 – 4.29 (m, 2H), 2.89 (dd, J = 8.8, 6.1 Hz, 2H), 2.69 – 2.56 (m, 4H), 

1.82 – 1.69 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.0 min. MS (ESI+): 337.2 [M+H]+.  

 

6-chloro-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (26): A 

solution of 57 (100 mg, 0.63 mmol) 6-chloronicotinic acid, 265 mg (0.83 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 265 mL (1.9 

mmol) triethylamine was stirred at rt for 15 min. Then 156 mg (0.76 mmol) 60 was added and 

the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 
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Teledyne Isco automated column system to afford 132 mg (60.5 % yield) of pure product as a 

pale orange solid. 1H NMR (400 MHz, cdcl3) δ 9.29 (dd, J = 2.3, 0.7 Hz, 1H), 8.46 (dd, J = 8.3, 

2.3 Hz, 1H), 7.37 (dd, J = 8.2, 0.6 Hz, 1H), 7.35 – 7.22 (m, 4H), 4.35 (t, J = 7.1 Hz, 2H), 2.75 (t, 

J = 7.1 Hz, 2H), 2.35 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 346.2 

[M+H]+.  

 
6-chloro-N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (27): A 

solution of 58 (102 mg, 0.64 mmol) 6-chloronicotinic acid, 265 mg (0.82 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 265 mL (1.9 

mmol) triethylamine was stirred at rt for 15 min. Then 198 mg (0.76 mmol) 58 was added and 

the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 171 mg (67.3 % yield) of pure product as a 

pale yellow solid. 1H NMR (400 MHz, cdcl3) δ 9.28 (dd, J = 2.3, 0.7 Hz, 1H), 8.47 (dd, J = 8.3, 

2.3 Hz, 1H), 7.33 (dd, J = 8.3, 0.6 Hz, 1H), 7.29 – 7.16 (m, 4H), 4.17 (dd, J = 8.1, 6.7 Hz, 2H), 

3.12 – 2.96 (m, 2H), 2.80 (dd, J = 12.7, 5.4 Hz, 2H), 0.97 (d, J = 6.6 Hz, 12H). LC-MS (λ = 254 

nm): 99%, tR = 3.8 min. MS (ESI+): 402.2 [M+H]+.  
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6-chloro-N-(1-((1-methylpiperidin-2-yl)methyl)-1H-benzo[d]imidazol-2-yl)nicotinamide 

(28): To a solution of 59 (56 mg, 0.23 mmol) in 6 mL DMF was added 48 g (0.27 mmol) 6-

chloronicotinoyl chloride and the reaction was stirred at rt. The reaction was quenched using sat. 

aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 19 mg (21.5% yield) 

of pure product as a pale yellow solid. 1H NMR (400 MHz, cdcl3) δ 9.31 (d, J = 2.3 Hz, 1H), 

8.48 (dd, J = 8.2, 2.3 Hz, 1H), 7.78 (d, J = 6.1 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.35 – 7.29 (m, 

1H), 7.29 – 7.22 (m, 2H), 5.17 (s, 1H), 3.26 (s, 1H), 2.91 (dd, J = 13.8, 5.1 Hz, 1H), 2.78 (dd, J = 

11.1, 6.3 Hz, 1H), 2.68 (d, J = 9.3 Hz, 1H), 2.43 (d, J = 14.0 Hz, 4H), 2.08 – 1.97 (m, 1H), 1.97 

– 1.88 (m, 2H), 1.87 – 1.74 (m, 1H), 1.70 (dd, J = 15.5, 5.4 Hz, 2H). LC-MS (λ = 254 nm): 99%, 

tR = 4.1 min. MS (ESI+): 385.2 [M+H]+.   

 

6-chloro-N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (29): To a 

solution of 60 (358 mg, 1 mmol) in 6 mL DMF was added 211 g (1.2 mmol) 6-chloronicotinoyl 
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chloride and the reaction was stirred at rt. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 150 mg (30.1% yield) of pure product as a 

pale yellow solid. 1H NMR (400 MHz, cdcl3) δ 9.12 (d, J = 2.2 Hz, 1H), 8.29 (dd, J = 8.3, 2.3 

Hz, 1H), 7.31 (dd, J = 16.7, 8.1 Hz, 2H), 7.22 (d, J = 7.2 Hz, 1H), 7.19 – 7.06 (m, 11H), 6.87 (d, 

J = 8.0 Hz, 1H), 4.29 (t, J = 6.4 Hz, 2H), 3.68 (s, 4H), 2.93 (t, J = 6.4 Hz, 2H). LC-MS (λ = 254 

nm): 99%, tR = 6.4 min. MS (ESI+): 497.3 [M+H]+.  

 
4-chloro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (30): A 

solution of 50 mg (0.32 mmol) 4-chlorobenzoic acid, 133 mg (0.41 mmol) O-(Benzotriazol-1-

yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 133 mL (0.95 mmol) 

triethylamine was stirred at rt for 15 min. Then 88 mg (0.38 mmol) 56 was added and the 

mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium bicarbonate 

and extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, 

filtered, concentrated and dried onto silica. The product was purified by normal phase Teledyne 

Isco automated column system to afford 36 mg (30.5 % yield) of pure product as a white solid. 

1H NMR (400 MHz, cdcl3) δ 8.27 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.32 – 7.18 (m, 
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4H), 4.38 (t, J = 7.4 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H), 2.67 (m, 4H), 1.80 (m, 4H). LC-MS (λ = 

254 nm): 99%, tR = 4.2 min. MS (ESI+): 371.2 [M+H]+.  

 

3-chloro-2-nitro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (31): 

To a solution of 3-chloro-2-nitrobenzoic acid (250 mg, 1.24 mmol) and a catalytic amount of 

DMF (2 drops) in 6.5 mL DCM added 0.13 mL (1.49 mmol) oxalyl dichloride and stirred at rt 

for 2 hr. The reaction was then dried to residue as the crude acyl chloride intermediate and 

moved directly forward. 

The crude intermediate was dissolved in 2 mL DMF and 0.15 g (0.65 mmol) 56 and stirred 

overnight at 85C. The reaction was quenched using sat. aqueous sodium bicarbonate and 

extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 59 mg (16.5% yield) of pure product as a white solid. 1H 

NMR (400 MHz, cdcl3) δ 8.25 (dd, J = 7.9, 1.4 Hz, 1H), 7.60 (dd, J = 8.0, 1.4 Hz, 1H), 7.48 (t, J 

= 7.9 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.33 – 7.26 (m, 3H), 4.33 (t, J = 8.7, 2H), 2.96 (t, J = 9.0, 

2H), 2.74 – 2.66 (m, 4H), 1.86 – 1.79 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.9 min. MS 

(ESI+): 415.2 [M+H]+.  
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3-chloro-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-nitrobenzamide (32): 

A solution of 100 mg (0.45 mmol) 3-chloro-2-nitrobenzoic acid, 189 mg (0.59 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 190 mL (1.35 

mmol) triethylamine was stirred at rt for 15 min. Then 111 mg (0.54 mmol) 57 was added and 

the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 158 mg (89.2% yield) of pure product as a 

clear oil. 1H NMR (400 MHz, cdcl3) δ 8.17 (dd, J = 7.9, 1.4 Hz, 1H), 7.51 (dd, J = 8.0, 1.4 Hz, 

1H), 7.39 (t, J = 7.9 Hz, 1H), 7.28 – 7.12 (m, 4H), 4.20 (t, J = 7.1 Hz, 2H), 2.66 (t, J = 7.1 Hz, 

2H), 2.31 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.9 min. MS (ESI+): 390.2 [M+H]+.  
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3-chloro-N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-nitrobenzamide 

(33): A solution of 58 (75 mg, 0.34 mmol) 3-chloro-2-nitrobenzoic acid, 142 mg (0.44 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 143 mL 

(1.02 mmol) triethylamine was stirred at rt for 15 min. Then 106 mg (0.41 mmol) 58 was added 

and the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 40 mg (26.5% yield) of pure product as a pale 

brown solid. 1H NMR (400 MHz, cdcl3) δ 8.27 (dd, J = 7.9, 1.4 Hz, 1H), 7.56 (dd, J = 8.0, 1.4 

Hz, 1H), 7.44 (t, J = 7.9 Hz, 1H), 7.34 – 7.20 (m, 3H), 4.11 (t, J = 6.6 Hz, 2H), 3.09 – 2.94 (m, 

2H), 2.84 (t, J = 6.6 Hz, 2H), 0.91 (d, J = 6.6 Hz, 12H). LC-MS (λ = 254 nm): 99%, tR = 4.2 min. 

MS (ESI+): 446.2 [M+H]+.  

 

3-chloro-N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-nitrobenzamide (34): 

A solution of 75 mg (0.34 mmol) 3-chloro-2-nitrobenzoic acid, 142 mg (0.44 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) , and 146 mL (1.0 

mmol) triethylamine was stirred at rt for 15 min. Then 146 mg (0.41 mmol) 60 was added and 
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the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 196 mg (61.9% yield) of pure product as a 

yellow solid. 1H NMR (400 MHz, cdcl3) δ 8.08 (dd, J = 7.9, 1.4 Hz, 1H), 7.53 (dd, J = 8.0, 1.4 

Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.29 – 7.08 (m, 13H), 6.82 (d, J = 8.0 Hz, 1H), 4.20 (t, J = 6.4 

Hz, 2H), 3.68 (s, 4H), 2.90 (t, J = 6.4 Hz, 2H). LC-MS (λ = 254 nm): 99%, tR = 6.6 min. MS 

(ESI+): 542.2 [M+H]+.  

 
N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)cyclohexanecarboxamide (35): A 

solution of 50 mg (0.39 mmol) cyclohexanecarboxylic acid, 163 mg (0.51 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 163 mL (1.2 

mmol) triethylamine was stirred at rt for 15 min. Then 95 mg (0.46 mmol) 57 was added and the 

mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium bicarbonate 

and extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, 

filtered, concentrated and dried onto silica. The product was purified by normal phase Teledyne 

Isco automated column system to afford 52 mg (42.1 % yield) of pure product as a red solid. 1H 

NMR (400 MHz, cdcl3) δ 7.20 (m, 38H), 4.22 (m, 18H), 3.04 (dd, J = 19.2, 13.1 Hz, 15H), 2.34 

(s, 3H), 2.29 (m, 89H), 2.03 (s, 1H), 2.00 (m, 50H), 1.91 (dd, J = 22.4, 8.0 Hz, 36H), 1.70 (m, 
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35H), 1.56 (s, 5H), 1.51 (m, 16H), 1.26 (m, 26H), 1.09 (s, 1H), 0.86 (m, 2H). LC-MS (λ = 254 

nm): 99%, tR = 3.7 min. MS (ESI+): 316.3 [M+H]+.  

 
N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)cyclohexanecarboxamide (36): A 

solution of 50 mg (0.39 mmol) cyclohexanecarboxylic acid, 163 mg (0.51 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 154 mL (1.2 

mmol) triethylamine was stirred at rt for 15 min. Then 107 mg (0.46 mmol) 56 was added and 

the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 60 mg (44.7 % yield) of pure product as a pale 

yellow solid. 1H NMR (400 MHz, cdcl3) δ 7.20 (m, 38H), 4.22 (m, 18H), 3.04 (dd, J = 19.2, 13.1 

Hz, 15H), 2.34 (s, 3H), 2.29 (m, 89H), 2.03 (s, 1H), 2.00 (m, 50H), 1.91 (dd, J = 22.4, 8.0 Hz, 

36H), 1.70 (m, 35H), 1.56 (s, 5H), 1.51 (m, 16H), 1.26 (m, 26H), 1.09 (s, 1H), 0.86 (m, 2H). LC-

MS (λ = 254 nm): 99%, tR = 3.9 min. MS (ESI+): 342.2 [M+H]+.  
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N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)cyclohexanecarboxamide (37): To 

a solution of 60 (106 mg, 0.30 mmol) in 6 mL DMF was added 0.05 mL (0.49 mmol) 

cyclohexanecarbonyl chloride and the reaction was stirred at rt. The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 57 mg (41.0% yield) 

of pure product as a pale yellow solid. 1H NMR (400 MHz, cdcl3) δ 7.33 (d, J = 6.8 Hz, 1H), 

7.26 (s, 10H), 7.24 – 7.18 (m, 2H), 7.14 – 7.07 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H), 4.25 (t, J = 6.6 

Hz, 2H), 3.74 (s, 4H), 2.92 (t, J = 6.6 Hz, 2H), 2.37 – 2.27 (m, 1H), 1.94 (d, J = 12.9 Hz, 2H), 

1.86 – 1.76 (m, 2H), 1.71 (d, J = 9.1 Hz, 1H), 1.55 – 1.21 (m, 7H). LC-MS (λ = 254 nm): 99%, 

tR = 6.3 min. MS (ESI+): 467.3 [M+H]+.  
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2-hydroxy-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)quinoline-4-

carboxamide (38): To a solution of 2-hydroxyquinoline-4-carboxylic acid (250 mg, 1.32 mmol) 

and a catalytic amount of DMF (2 drops) in 6.5 mL DCM added 0.85 mL (1.58 mmol) oxalyl 

dichloride and stirred at rt for 2 hr. The reaction was then dried to residue as the crude acyl 

chloride intermediate and moved directly forward. 

The crude intermediate was dissolved in 2 mL DMF and 0.15 g (0.65 mmol) 56 and stirred 

overnight at 85C. The reaction was quenched using sat. aqueous sodium bicarbonate and 

extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 34 mg (13.0% yield) of pure product as a white solid. 1H 

NMR (400 MHz, cdcl3) δ 8.94 (dd, J = 8.5, 0.8 Hz, 1H), 8.08 – 8.03 (m, 1H), 8.02 (s, 1H), 7.72 

(dd, J = 8.4, 1.4 Hz, 1H), 7.62 – 7.52 (m, 1H), 7.40 – 7.23 (m, 5H), 4.38 (t, J = 7.3 Hz, 2H), 2.99 

– 2.90 (m, 2H), 2.72 – 2.58 (m, 4H), 1.85 – 1.73 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.9 

min. MS (ESI+): 422.2 [(M+H)+Na]+.  

 

 

2-hydroxy-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)quinoline-4-

carboxamide (39): To a solution of 2-hydroxyquinoline-4-carboxylic acid (250 mg, 1.32 mmol) 
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and a catalytic amount of DMF (2 drops) in 6.5 mL DCM added 0.85 mL (1.58 mmol) oxalyl 

dichloride and stirred at rt for 2 hr. The reaction was then dried to residue as the crude acyl 

chloride intermediate and moved directly forward. 

The crude intermediate was dissolved in 2 mL DMF and 0.23 g (1.1 mmol) 57 and stirred 

overnight at 85C. The reaction was quenched using sat. aqueous sodium bicarbonate and 

extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 30 mg (7.2% yield) of pure product as a white solid.1H NMR 

(400 MHz, cdcl3) δ 8.93 (dd, J = 8.6, 1.0 Hz, 1H), 8.08 – 7.98 (m, 2H), 7.71 (ddd, J = 8.4, 6.9, 

1.4 Hz, 1H), 7.55 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.34 – 7.24 (m, 3H), 7.23 – 7.17 (m, 1H), 4.32 

(t, J = 7.0 Hz, 2H), 2.75 (t, J = 7.0 Hz, 2H), 2.33 (s, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.4 

min. MS (ESI+): 376.2 [M+H]+.  

 

N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-hydroxyquinoline-3-

carboxamide (40): A solution of 50 mg (0.26 mmol) 2-hydroxyquinoline-3-carboxylic acid, 110 

mg (0.34 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) 

, and 0.11 mL (0.79 mmol) triethylamine was stirred at rt for 15 min. Then 113 mg (0.32 mmol) 
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60 was added and the mixture was stirred overnight. The reaction was quenched using sat. 

aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 82 mg (58.9% yield) 

of pure product as a yellow solid. 1H NMR (400 MHz, cdcl3) δ 8.41 – 8.34 (m, 1H), 7.52 – 7.39 

(m, 3H), 7.30 – 6.97 (m, 14H), 6.94 (d, J = 8.0 Hz, 1H), 4.25 (t, J = 6.2 Hz, 2H), 3.66 (s, 4H), 

2.93 (t, J = 6.2 Hz, 2H). LC-MS (λ = 254 nm): 99%, tR = 6.1 min. MS (ESI+): 529.3 [M+H]+.  

 

4-hydroxy-8-methoxy-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)quinoline-

3-carboxamide (41): A solution of 75 mg (0.34 mmol) 4-hydroxy-8-methoxyquinoline-3-

carboxylic acid, 143 mg (0.44 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 

tetrafluoroborate (TBTU), and 143 mL (1.03 mmol) triethylamine was stirred at rt for 15 min. 

Then 94 mg (0.41 mmol) 56 was added and the mixture was stirred overnight. The reaction was 

quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the 

organic phase was combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The 

product was purified by normal phase Teledyne Isco automated column system to afford 89 mg 

(60.5% yield) of pure product as a pale yellow solid. 1H NMR (400 MHz, cdcl3) δ 9.57 (s, 1H), 
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8.58 – 8.51 (m, 1H), 8.25 (dd, J = 8.3, 1.2 Hz, 1H), 7.42 (ddd, J = 12.7, 5.2, 2.7 Hz, 2H), 7.37 – 

7.27 (m, 2H), 6.96 (dd, J = 7.9, 1.0 Hz, 1H), 4.45 (t, J = 7.0 Hz, 2H), 3.98 (s, 3H), 2.97 (t, J = 7.0 

Hz, 2H), 2.74 – 2.60 (m, 4H), 1.81 – 1.68 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS 

(ESI+): 415.2 [M+H]+.  

 

5-chloro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzofuran-2-

carboxamide (42): To a solution of 5-chlorobenzofuran-2-carboxylic acid (250 mg, 1.27 mmol) 

and a catalytic amount of DMF (2 drops) in 6.5 mL DCM added 0.13 mL (1.53 mmol) oxalyl 

dichloride and stirred at rt for 2 hr. The reaction was then dried to residue as the crude acyl 

chloride intermediate and moved directly forward. 

The crude intermediate was dissolved in 2 mL DMF and 0.15 g (0.65 mmol) 56 and stirred 

overnight at 85C. The reaction was quenched using sat. aqueous sodium bicarbonate and 

extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 40 mg (16.5% yield) of pure product as a white solid. 1H 

NMR (400 MHz, cdcl3) δ 7.66 – 7.64 (m, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.50 (d, J = 0.9 Hz, 1H), 
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7.41 – 7.27 (m, 5H), 4.46 – 4.37 (m, 2H), 3.01 – 2.90 (m, 2H), 2.74 – 2.65 (m, 4H), 1.87 – 1.77 

(m, 4H), 1.57 (s, 5H). LC-MS (λ = 254 nm): 99%, tR = 4.4 min. MS (ESI+): 410.2 [M+H]+.  

 

5-chloro-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzofuran-2-

carboxamide (43): A solution of 100 mg (0.49 mmol) 5-chlorobenzofuran-2-carboxylic acid, 

204 mg (0.63 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate 

(TBTU) , and 204 mL (1.47 mmol) triethylamine was stirred at rt for 15 min. Then 115 mg (0.58 

mmol) 57 was added and the mixture was stirred overnight. The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 100 mg (53.4% 

yield) of pure product as a white solid. 1H NMR (400 MHz, MeoD) δ 12.40 (s, 0H), 7.57 (dd, J = 

2.2, 0.4 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.30 – 7.23 (m, 3H), 7.15 (dd, J = 8.8, 2.3 Hz, 1H), 6.96 

(pd, J = 7.4, 1.4 Hz, 2H), 4.08 (t, J = 6.4 Hz, 2H), 2.41 (t, J = 6.0 Hz, 2H), 1.94 (s, 6H). LC-MS 

(λ = 254 nm): 99%, tR = 4.3 min. MS (ESI+): 384.2 [M+H]+.  
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5-chloro-N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzofuran-2-

carboxamide (44): A solution of 49 mg (0.25 mmol) 5-chlorobenzofuran-2-carboxylic acid, 104 

mg (0.32 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) 

, and 104 mL (0.76 mmol) triethylamine was stirred at rt for 15 min. Then 78 mg (0.3 mmol) 58 

was added and the mixture was stirred overnight. The reaction was quenched using sat. aqueous 

sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried 

over Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal 

phase Teledyne Isco automated column system to afford 33 mg (30.2 % yield) of pure product as 

a white solid. 1H NMR (400 MHz, cdcl3) δ 7.64 – 7.61 (m, 1H), 7.51 – 7.46 (m, 1H), 7.44 (d, J = 

0.9 Hz, 1H), 7.39 (dt, J = 7.3, 1.1 Hz, 1H), 7.32 (d, J = 2.2 Hz, 1H), 7.31 – 7.21 (m, 4H), 4.18 

(dd, J = 8.3, 6.8 Hz, 2H), 3.15 – 3.02 (m, 2H), 2.88 – 2.79 (m, 2H), 1.03 (d, J = 6.5 Hz, 12H). 

LC-MS (λ = 254 nm): 99%, tR = 4.5 min. MS (ESI+): 441.2 [M+H]+.  
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6-chloro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)-7,7a-

dihydroimidazo[2,1-b]thiazole-5-carboxamide (45): A solution of 73 mg (0.36 mmol) 6-

chloro-7,7a-dihydroimidazo[2,1-b]thiazole-5-carboxylic acid, 150 mg (0.47 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) , and 151 mL 

(1.08 mmol) triethylamine was stirred at rt for 15 min. Then 100 mg (0.43 mmol) 56 was added 

and the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 118 mg (78.7% yield) of pure product as a 

yellow solid.1H NMR (400 MHz, dmso) δ 12.73 (s, 1H), 8.55 (d, J = 4.4 Hz, 1H), 7.56 – 7.49 

(m, 3H), 7.31 – 7.19 (m, 2H), 4.37 (t, J = 6.8 Hz, 2H), 2.86 (t, J = 6.4 Hz, 2H), 2.54 (s, 4H), 1.64 

(t, J = 3.3 Hz, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 417.3 [M+H]+. 
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)chromane-3-carboxamide (46): A 

solution of 70 mg (0.39 mmol) chromane-3-carboxylic acid, 165 mg (0.51 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) , and 164 mL 

(1.18 mmol) triethylamine was stirred at rt for 15 min. Then 108 mg (0.47 mmol) 56 was added 

and the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 118 mg (77.1% yield) of pure product as a 

pale yellow solid.1H NMR (400 MHz, cd3od) δ 7.50 – 7.42 (m, 2H), 7.33 – 7.22 (m, 2H), 7.12 – 

7.01 (m, 2H), 6.83 (td, J = 7.4, 1.2 Hz, 1H), 6.75 (dd, J = 8.2, 1.0 Hz, 1H), 4.54 – 4.48 (m, 1H), 

4.33 (t, J = 6.9 Hz, 2H), 4.20 (dd, J = 10.6, 9.0 Hz, 1H), 3.25 – 3.13 (m, 1H), 3.03 (dd, J = 10.4, 

7.4 Hz, 1H), 2.91 (t, J = 7.0 Hz, 2H), 2.81 (s, 0H), 2.74 – 2.61 (m, 4H), 1.88 – 1.75 (m, 4H). LC-

MS (λ = 254 nm): 99%, tR = 4.1 min. MS (ESI+): 391.2 [M+H]+. UNC2373A 
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1-cycloheptyl-5-oxo-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)pyrrolidine-

3-carboxamide (47): A solution of 70 mg (0.31 mmol) 1-cycloheptyl-5-oxopyrrolidine-3-

carboxylic acid, 129 mg (0.40 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 

tetrafluoroborate (TBTU) , and 129 mL (0.93 mmol) triethylamine was stirred at rt for 15 min. 

Then 86 mg (0.37 mmol) 56 was added and the mixture was stirred overnight. The reaction was 

quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the 

organic phase was combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The 

product was purified by normal phase Teledyne Isco automated column system to afford 130 mg 

(92.8% yield) of pure product as a pale orange solid.1H NMR (400 MHz, dmso) δ 12.47 (s, 1H), 

7.51 – 7.39 (m, 2H), 7.24 – 7.12 (m, 2H), 4.20 (dd, J = 6.5, 4.5 Hz, 2H), 3.97 – 3.85 (m, 1H), 

3.64 – 3.50 (m, 2H), 3.14 (d, J = 5.0 Hz, 1H), 2.77 (d, J = 5.8 Hz, 2H), 2.52 (d, J = 10.5 Hz, 4H), 

1.72 – 1.32 (m, 17H). LC-MS (λ = 254 nm): 99%, tR = 4.1 min. MS (ESI+): 439.3 [M+H]+.  
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1-cycloheptyl-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-5-oxopyrrolidine-

3-carboxamide (48): A solution of 75 mg (0.33 mmol) 1-cycloheptyl-5-oxopyrrolidine-3-

carboxylic acid, 139 mg (0.43 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 

tetrafluoroborate (TBTU), and 139 mL (1.0 mmol) triethylamine was stirred at rt for 15 min. 

Then 81 mg (0.39 mmol) 57 was added and the mixture was stirred overnight. The reaction was 

quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the 

organic phase was combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The 

product was purified by normal phase Teledyne Isco automated column system to afford 66 mg 

(45.5% yield) of pure product as a red oil. 1H NMR (400 MHz, cdcl3) δ 7.31 – 7.17 (m, 4H), 4.21 

(t, J = 6.9 Hz, 2H), 4.15 (d, J = 4.4 Hz, 1H), 3.70 (dd, J = 9.7, 6.3 Hz, 1H), 3.65 – 3.55 (m, 1H), 

3.25 (d, J = 5.9 Hz, 1H), 3.01 (s, 1H), 2.86 (dd, J = 16.9, 7.2 Hz, 1H), 2.67 (td, J = 7.0, 3.3 Hz, 

3H), 2.31 (s, 6H), 1.82 – 1.73 (m, 2H), 1.73 – 1.55 (m, 6H), 1.55 – 1.43 (m, 4H). LC-MS (λ = 

254 nm): 99%, tR = 4.1 min. MS (ESI+): 413.3 [M+H]+.  
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1-(tert-butyl)-5-oxo-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)pyrrolidine-

3-carboxamide (49): A solution of 100 mg (0.54 mmol) 1-(tert-butyl)-5-oxopyrrolidine-3-

carboxylic acid, 225 mg (0.70 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 

tetrafluoroborate (TBTU), and 225 mL (1.6 mmol) triethylamine was stirred at rt for 15 min. 

Then 149 mg (0.65 mmol) 56 was added and the mixture was stirred overnight. The reaction was 

quenched using sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the 

organic phase was combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The 

product was purified by normal phase Teledyne Isco automated column system to afford 78 mg 

(30.3% yield) of pure product as a red oil. 1H NMR (400 MHz, cdcl3) δ 7.31 – 7.17 (m, 4H), 4.21 

(t, J = 6.9 Hz, 2H), 4.15 (d, J = 4.4 Hz, 1H), 3.70 (dd, J = 9.7, 6.3 Hz, 1H), 3.65 – 3.55 (m, 1H), 

3.25 (d, J = 5.9 Hz, 1H), 3.01 (s, 1H), 2.86 (dd, J = 16.9, 7.2 Hz, 1H), 2.67 (td, J = 7.0, 3.3 Hz, 

3H), 2.31 (s, 6H), 1.82 – 1.73 (m, 2H), 1.73 – 1.55 (m, 6H), 1.55 – 1.43 (m, 4H). LC-MS (λ = 

254 nm): 99%, tR = 3.6 min. MS (ESI+): 399.3 [M+H]+.  
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1-acetamido-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)cyclopentane-1-

carboxamide (50): A solution of 71 mg (0.41 mmol) 1-acetamidocyclopentane-1-carboxylic 

acid, 171 mg (0.53 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate 

(TBTU) , and 171 mL (1.23 mmol) triethylamine was stirred at rt for 15 min. Then 113 mg (0.49 

mmol) 56 was added and the mixture was stirred overnight. The reaction was quenched using 

sat. aqueous sodium bicarbonate and extracted 3x with DCM (10 mL), the organic phase was 

combined, dried over Na2SO4, filtered, concentrated and dried onto silica. The product was 

purified by normal phase Teledyne Isco automated column system to afford 16 mg (10.2% yield) 

of pure product as a white solid.1H NMR (400 MHz, cd3od) δ 7.45 (dd, J = 10.8, 8.1 Hz, 2H), 

7.34 – 7.19 (m, 2H), 4.31 (t, J = 7.2 Hz, 2H), 3.01 – 2.85 (m, 3H), 2.74 – 2.63 (m, 4H), 2.43 – 

2.31 (m, 2H), 2.07 – 2.00 (m, 2H), 1.99 (s, 3H), 1.90 – 1.73 (m, 9H). LC-MS (λ = 254 nm): 99%, 

tR = 3.3 min. MS (ESI+): 385.2 [M+H]+.  
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)acrylamide (51): A solution of 75 

mg (0.87 mmol) acrylic acid, 364 mg (1.13 mmol) O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium tetrafluoroborate (TBTU), and 364 mL (2.61 mmol) triethylamine was 

stirred at rt for 15 min. Then 241 mg (1.05 mmol) 56 was added and the mixture was stirred 

overnight. The reaction was quenched using sat. aqueous sodium bicarbonate and extracted 3x 

with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, concentrated 

and dried onto silica. The product was purified by normal phase Teledyne Isco automated 

column system to afford 51 mg (20.5% yield) of pure product as a white solid. 1H NMR (400 

MHz, cd3od) δ 7.42 (ddd, J = 16.1, 7.2, 1.5 Hz, 2H), 7.34 – 7.17 (m, 2H), 6.18 (dd, J = 2.2, 0.9 

Hz, 1H), 5.50 – 5.42 (m, 1H), 4.89 (s, 2H), 4.34 (t, J = 7.0 Hz, 2H), 2.95 (t, J = 7.0 Hz, 2H), 2.79 

– 2.64 (m, 4H), 1.88 – 1.75 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 3.2 min. MS (ESI+): 300.2 

[M+H]+.  
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)-2-(trifluoromethyl)acrylamide 

(52): A solution of 50 mg (0.36 mmol) 2-(trifluoromethyl)acrylic acid, 149 mg (0.46 mmol) O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), and 150 mL 

(1.07 mmol) triethylamine was stirred at rt for 15 min. Then 98 mg (0.43 mmol) 56 was added 

and the mixture was stirred overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 56 mg (44.4% yield) of pure product as a 

yellow oil. 1H NMR (400 MHz, cdcl3) δ 7.29 – 7.08 (m, 4H), 4.33 – 4.23 (m, 2H), 4.20 (dd, J = 

14.3, 7.4 Hz, 2H), 3.54 – 3.41 (m, 1H), 2.88 (td, J = 6.7, 3.5 Hz, 2H), 2.59 (d, J = 5.5 Hz, 4H), 

1.76 – 1.64 (m, 4H). LC-MS (λ = 254 nm): 99%, tR = 2.8 min. MS (ESI+): 354.2 [M+H]+.  

 

Intermediates: 

 

N1-(2-(pyrrolidin-1-yl)ethyl)benzene-1,2-diamine (53): To a solution of benzene-1,2-diamine 

(2 g, 18.49 mmol) in 6 mL THF was added 0.37 g ( 2.78 mmol) 1-(2-chloroethyl)pyrrolidine and 

1.2 mL ( (9.25 mmol) triethylamine and the solution was stirred overnight at rt. The crude 

reaction was dried to residue, dissolved in DCM and dried onto silica and purified by normal 

phase Teledyne Isco automated column system to afford 103 mg (21.7% yield) of pure product 
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as a dark yellow oil. This intermediate was found to not be stable after 1 day and quickly oxidize 

to a black residue; needs to be used the same day after purification. 

 

N1-(2-(dimethylamino)ethyl)benzene-1,2-diamine (54): To a solution of benzene-1,2-diamine 

(0.5 g, 4.63 mmol) in 6 mL THF was added 0.59 g (5.54 mmol) 2-chloro-N,N-dimethylethan-1-

amine and 2.6 mL (18.48 mmol) triethylamine and the solution was stirred overnight at rt. The 

crude reaction was dried to residue, dissolved in DCM and dried onto silica and purified by 

normal phase Teledyne Isco automated column system to afford 100 mg (12.1% yield) of pure 

product as a dark yellow oil. This intermediate was found to not be stable after 1 day and quickly 

oxidize to a black residue; needs to be used the same day after purification.  

 

N1-(2-(diisopropylamino)ethyl)benzene-1,2-diamine (55): To a solution of benzene-1,2-

diamine (0.5 g, 4.63 mmol) in 6 mL THF was added 0.91 g (5.56 mmol) N-(2-chloroethyl)-N-

isopropylpropan-2-amine and 2.6 mL (18.48 mmol) triethylamine and the solution was stirred 

overnight at rt. The crude reaction was dried to residue, dissolved in DCM and dried onto silica 

and purified by normal phase Teledyne Isco automated column system to afford 702 mg (64.3% 
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yield) of pure product as a dark yellow oil. This intermediate was found to not be stable after 1 

day and quickly oxidize to a black residue; needs to be used the same day after purification.  

 

1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-amine (56): To a solution of 1H-

benzo[d]imidazol-2-amine (2g, 14.1 mmol) and 1.2g (21.2 mmol) potassium hydroxide (KOH) 

in 6 mL EtOH was added 2.8 g (20.9 mmol) 1-(2-chloroethyl)pyrrolidine and the reaction was 

stirred at 60°C overnight. The reaction was quenched using sat. aqueous sodium bicarbonate and 

extracted 3x with DCM (10 mL), the organic phase was combined, dried over Na2SO4, filtered, 

concentrated and dried onto silica. The product was purified by normal phase Teledyne Isco 

automated column system to afford 1.5 g (46.1% yield) of pure product as a pale yellow solid.  

1H NMR (400 MHz, dmso) δ 7.14 – 7.06 (m, 2H), 6.95 – 6.85 (m, 4H), 6.39 (s, 2H), 4.06 (t, J = 

7.9, 2H), 2.69 (t, J = 7.4, 2H), 2.54 – 2.47 (m, 4H), 1.68 – 1.62 (m, 4H). LC-MS (λ = 254 nm): 

99%, tR = 1.3 min. MS (ESI+): 231.2 [M+H]+.  MTP00047-154-2 

 

1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-amine (57): To a solution of 1H-

benzo[d]imidazol-2-amine (2g, 14.1 mmol) and 1.2g (21.2 mmol) potassium hydroxide (KOH) 

in 6 mL EtOH was added 2.8 g (21.2 mmol) 2-chloro-N,N-dimethylethan-1-amine and the 
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reaction was stirred at 60°C overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 1.15 g (39.9% yield) of pure product as a pale 

pink solid. 1H NMR (400 MHz, cdcl3) δ 7.45 – 7.38 (m, 1H), 7.10 (ddd, J = 7.8, 6.4, 2.2 Hz, 1H), 

7.03 (ddd, J = 4.9, 2.8, 1.0 Hz, 2H), 6.00 (s, 2H), 4.04 – 3.95 (m, 2H), 2.72 – 2.66 (m, 2H), 2.32 

(s, 6H). LC-MS (λ = 254 nm): 99%, tR = 0.6 min. MS (ESI+): 205.2 [M+H]+.   

 

1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-amine (58): To a solution of 1H-

benzo[d]imidazol-2-amine (0.5g, 3.5 mmol) and 0.3 g (5.2 mmol) potassium hydroxide (KOH) 

in 6 mL EtOH was added 1.1 g (5.3 mmol) N-(2-chloroethyl)-N-isopropylpropan-2-amine and 

the reaction was stirred at 60°C overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 0.21 g (22.9% yield) of pure product as a pale 

pink solid. No proton NMR was obtained for this intermediate. LC-MS (λ = 254 nm): 99%, tR = 

2.9 min. MS (ESI+): 236.2 [M+H]+.   
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1-((1-methylpiperidin-2-yl)methyl)-1H-benzo[d]imidazol-2-amine (59): To a solution of 1H-

benzo[d]imidazol-2-amine (350 mg, 2.47 mmol) and 209 mg (3.7 mmol) potassium hydroxide 

(KOH) in 6 mL EtOH was added 682 mg (3.7 mmol) 2-(chloromethyl)-1-methylpiperidine and 

the reaction was stirred at 60°C overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 208 mg (34.4% yield) of pure product as a 

pale yellow solid. *a clean proton NMR was not obtained for this intermediate.  

 

 

1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-amine (60): To a solution of 1H-

benzo[d]imidazol-2-amine (501 mg, 3.54 mmol) and 297 mg (5.29 mmol) potassium hydroxide 

(KOH) in 6 mL EtOH was added 1.34 g (5.15 mmol) N,N-dibenzyl-2-chloroethan-1-amine and 
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the reaction was stirred at 60°C overnight. The reaction was quenched using sat. aqueous sodium 

bicarbonate and extracted 3x with DCM (10 mL), the organic phase was combined, dried over 

Na2SO4, filtered, concentrated and dried onto silica. The product was purified by normal phase 

Teledyne Isco automated column system to afford 833 mg (66.1% yield) of pure product as a 

yellow solid. 1H NMR (400 MHz, dmso) δ 7.27 – 7.15 (m, 10H), 7.11 (d, J = 7.4, 1H), 6.92 – 

6.85 (m, 2H), 6.76 – 6.69 (m, 2H), 6.29 (s, 2H), 4.1 (t, J = 7.6, 2H.  

AlphaScreen assay method 

The Alphascreen assay was performed as described elsewhere.[103, 104]  In brief, 

compound plates (1 µl at 30 mM highest concentration) were diluted in 1X assay buffer (20 mM 

TRIS pH 8.0, 25 mM NaCl, 2 mM DTT and 0.05% Tween-20) over 2 steps using a Multimek 

robotic pipettor (Nanoscreen) and 1 µl was spotted into the wells of 384-well assay Proxiplates 

(PerkinElmer). To these plates 9 µl of protein- peptide mix in 1X assay buffer was added by 

Multidrop (Thermo) and incubated for 30 min at room temperature. At this point 2 uL of 

streptavidine- conjugate donor and nickel-chelate acceptor beads (45 µg/mL in 1X assay buffer) 

were added, the plates were allowed to incubate for an additional 30 min in the dark at room 

temperature. After incubation the plates were read on EnVision mulilabel reader equipped with 

HTS alpha screen laser (Perkin Elmer).  The screens reported are performed up to 30 µM, and 

therefore it should be noted that those compounds referred to as inactive are indeed inactive only 

within the concentration range tested  

Isothermal titration calorimetry binding experiments 

All ITC measurements were recorded at 25°C with an AutoITC200 microcalorimeter 

(MicroCal Inc.). All protein and compound stock samples were prepared in the target buffer (25 
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mM Tris-HCl, pH 8, 150 mM NaCl, and 2 mM β-mercaptoethanol), and then diluted in the same 

buffer to achieve the desired concentrations: 90 µM protein and 1 mM compound depending on 

the expected dissociation constant. The concentration of protein stock solutions were established 

using the Edelhoch method, whereas 10 mM compound stock solutions were prepared 

gravimetrically based on molecular weight. A typical experiment included a single 0.2 µL 

compound injection into a 200 µL cell filled with protein, followed by 25 subsequent 1.5 µL 

injections of compound. Injections were performed with a spacing of 180 seconds and a 

reference power of 8 µcal/sec. The titration data was analyzed using Origin Software (MicroCal 

Inc.) by non-linear least squares, fitting the heats of binding as a function of the 

compound:protein ratio. The data were fit based on a one set of sites model. ITC experiments of 

remaining peptides are shown below. 

Future work 

Currently there are no current plans to continue synthetic efforts on the UNC1554 

benzimidazole scaffold. The initial NMR protein binding studies (Figure 2.3 A & B) and NMR 

titration data (Figure 2.3 C) show evidence that UNC1554 interacts with the 53BP1 TTD and the 

N-ethyl pyrrolidine functional group mimics the endogenous H4K20me2 residue. Additional 

NMR titration data show that this is modest affinity for UNC1554 against 53BP1 TTD. 

Unfortunately, ITC experiments failed to show binding interactions. These contradictory pieces 

of data may potentially be explained by the thermodynamics of binding of UNC1554 in the ITC 

experiments where the measured ΔH and ΔS of binding may cancel each other out and provide 

no detectable binding measurement. Additionally, the lack of tractable SAR lead to the overall 

decision to no longer pursue future medicinal chemistry efforts on UNC1554. It should be noted 
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that all future medicinal chemistry efforts always included ITC measurements against any potent 

small molecule hits that were discovered to validate true binding interactions prior to initiation of 

chemistry efforts.  

It is worth mentioning that one of the compounds that was synthesized during the SAR 

efforts became a hit for a different screening project within the Center for Integrative Chemical 

Biology and Drug Discovery (CICBDD). Compound 42 was shown in unpublished work to be 

capable of facilitating release of endosome-trapped siRNA oligomers. This molecule and others 

have been licensed by an UNC start-up firm for future therapeutic discovery efforts. 
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Benzamide -based small molecule inhibitors of 53BP1, UNC2170 

Results and discussion 

Discovery of UNC2170 hit 

The Frye research group efforts utilize a comprehensive structure-based design and cross-

screening approach in order to evaluate all synthesized ligands against a panel of Kme reader 

domains. The Kme reader panel consists of 10 reader proteins from four different families: 

Tudor domains (53BP1, UHRF1, PHF1, PHF19), chromodomains (CBX7), MBT domains 

(L3MBTL1, L3MBTL3, MBTD1), and PHD fingers (JARID1A, PHF23, UHRF1). These 

proteins were chosen largely based on available structural information, reader family 

representation, and biological relevance. Previously, the Frye research group reported an HTS 

optimized format for the AlphaScreen bead-based proximity assay (Perkin-Elmer) for Kme 

readers [105] and this screening tool was employed to initially assess 53BP1 binding. 61 

(UNC2170), Table 1, emerged as a preliminary 53BP1 hit from these cross-screening efforts. 

Because of the modest affinity of 61 (UNC2170) (29 ± 7.4 μM), and its fragment-like nature 

(MW = 313.24, ligand efficiency = 0.35, lipophilic ligand efficiency = 1.5)[106, 107], 61 

(UNC2170) was profiled at concentrations up to 500 µM versus the Kme reader reader panel to 

better ascertain its selectivity, as this was of paramount importance for chemical probe 

development[56].  This approach revealed promising levels of selectivity within this small but 

diverse sampling of Kme reader proteins, as 61 (UNC2170) showed no affinity within the 

concentrations tested against any other members of the panel, including other tudor domain-

containing proteins and other readers of methylated H4K20. Additionally, isothermal titration 

calorimetry (ITC) experiments confirmed ligand binding, revealing a Kd of 22 ± 2.5 μM for 
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UNC2170 against the 53BP1 TTD, Figure 2.8. Overall, through a cross-screening approach 61 

was identified (UNC2170) as a micromolar ligand of 53BP1, which demonstrates at least 17-fold 

selectivity for 53BP1 as compared to other methyl-lysine (Kme) binding proteins tested. 

Comparison to endogenous H4K20me2 chromatin peptide tail 

A structure-based design approach was initiated by analyzing available crystal structure 

data of 53BP1 bound to an H4K20me2 peptide (PDB 2IG0) [66]. The key interactions noted in 

this structure were a hydrogen-bond between the Kme basic amine and an aspartic acid 

(Asp1521), cation-π interactions between Kme2 and phenylalanine, tyrosine, and tryptophan 

residues within the aromatic binding cage (Tyr1502, Tyr1523, Phe1519, Trp1495), and a cation-

π interaction between Arg19 on the H4 peptide tail and a tryptophan residue (Trp1500) [66].  

Mutagenesis of the histone peptide had previously demonstrated that H18 also contributes to 

binding, but this interaction was not clearly defined in the X-ray crystal structure [66]. To 

develop a more complete understanding of the binding interactions of the H4 peptide (amino 

acids 14-27) bound to 53BP1, isotope enriched (13C and 15N) NMR spectroscopy [101] was 

applied to determine the structure of the central residues of the H4K20me2 peptide bound to 

53BP1 (PDB 2LVM) [102]. It was observed that this central region of the H4 peptide 

corresponding to residues 15 to 22 adopts a “U-turn” conformation. Notably, in addition to the 

binding interactions with H4K20me2 and H4R19 that were detected in the crystal structure, 

further analysis revealed a pocket containing both acidic and hydrophobic residues that 

accommodates H4R17 and H4V21. It has also been shown that acetylation of H4K16 diminishes 

53BP1 binding by disrupting a salt bridge between H4K16 and Glu1551 [102].  Therefore, a 

small molecule that could occupy the methyl-lysine binding cage of 53BP1 and interact 
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favorably with some of the surrounding residues would be expected to block 53BP1 binding to 

H4K20me2. 

Structure-activity relationship studies 

Structure activity studies began by analysis of the structure of 61 (UNC2170). There were 

three focus areas that were identified for synthetic modification, Figure 2.6. The Kme2 head 

group, the linker region and the aromatic head group. 

Figure 2.6: Region of synthetic modification on 61 (UNC2170) 

 

Initial synthetic efforts were conducted without knowledge of the defined binding pose of 

the ligand upon the 53BP1 TTD binding domain. It was hypothesized that the Kme2 head group 

would dock within the aromatic cage, but it was uncertain where the 3-bromo aromatic head 

group would bind. Use of structure based design efforts through study of the x-ray co-crystal 

structure of 53BP1 TTD bound to the endogenous H4K20me2 peptide (PDB 2LVM) was used as 

a primary source of inspiration for synthetic modifications. Synthetic efforts are outlined below. 

Synthetic strategy for SAR studies 

Modification of amine head group 

It was hypothesized that the basic amine head group of UNC2170 would bind within the 

Kme binding pocket of 53BP1, similar to the endogenous dimethyl-lysine substrate. In silico 



93 

 

docking models conducted by Dr. Bradley Dickson (CICBDD) showed the N-tert-butyl amine 

head group bound within the aromatic head group in an analogous fashion as H4K20me2 and 

that the 3-bromo aromatic head group was docked within the acidic/hydrophobic binding pocket, 

Figure 2.7. 

Figure 2.7: In silico docking model of 61 (UNC2170) bound to 53BP1 TTD 

 

This docking pose differed from that proposed binding mode of 2 (UNC1554) in that the 

aromatic head group was docked in the acidic/hydrophobic binding pocket rather than the R19 

binding pocket. This computer-based docking analysis provided an initial basis to begin a SAR 

study of how modifications in the amine head group affect the binding potency and selectivity of 

61 (UNC2170) analogs within the aromatic cage of 53BP1. 

It was hypothesized that the aromatic binding cage would possess a defined degree of 

steric tolerance for amine head groups as shown through work with 2 (UNC1554). Findings from 

that SAR study were used to design new analogues as shown in Table 2.4. 
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Table 2.4. Selectivity Data For 61 (UNC2170) and SAR Studies of the Terminal Amine Group.a,b 

 

ID R 53BP1 
CBX

7 

JARID1

A 
PHF1 

PHF1

9 

PHF2

3 

UHRF

1 

L3MBT

L1 

L3MBT

L3 
MBTD1 

61c 
(UNC2170)  

29 ± 

7.4 
> 500 > 500 > 500 > 500 > 500 > 500 > 500 > 500 > 500 

62  
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

63 

 

> 100 > 100 > 100 82 ± 13 
61 ± 

0.9 
> 100 > 100 > 100 > 100 > 100 

64 
(UNC2892) 

 

> 500 > 500 > 500 > 500 > 500 > 500 > 500 > 500 > 500 > 500 

65 

 

 

> 100 
93 (1) 
>100 

(3) 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

66 

 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

67 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

68 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 37 ± 12 > 100 78 ± 16 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. cCompound 61 and 64 were tested at higher concentrations (500 M) against 

the panel to further evaluate selectivity. 

It was observed that variation of the size of the amine head group and also the 

substitution state of the amine (secondary vs. tertiary) had an effect on the affinity for 53BP1 

TTD. Exploration of the steric tolerance of the basic amine began by replacement of the 

secondary N-tert-butyl amine group with dimethyl amine, 62, to more closely mimic the 

endogenous H4K20me2 substrate. Interestingly, this compound showed no binding activity by 

AlphaScreen and this finding was confirmed by ITC, Figure 2.8. This result led to the hypothesis 

that the 53BP1 Kme binding pocket may have a preference for secondary amines over tertiary 
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amines in the context of the 61 (UNC2170) framework, in contrast to its preference for 

dimethylated versus monomethylated lysine in histone peptides [66]. Preparation of the isopropyl 

amino compound, 63, showed no activity against 53BP1 TTD but interestingly, it was weakly 

active against some of the other tudor domain containing proteins in the panel, Table 2.4. 

Incorporation of other tertiary amines as in compounds 65 - 66, where the secondary amine of 

as measured by AlphaScreen, Table 2.4. ITC studies further confirmed that 64 has no measurable 

affinity for 53BP1 TTD, and therefore compound 64 (UNC2892) was selected as a negative 

control compound due to its inactivity and structural similarity to 61 (UNC2170). These analogs 

were prepared to determine if a basic amine was necessary for binding within the aromatic cage 

and it was shown that analog 6 had no affinity or selectivity for any of the assayed Kme reader 

proteins. A separate investigation was made to determine whether 53BP1 TTD had similar Kme 

mimetic preferences as the MBT containing protein, L3MBTL1, as both bind the H4K20me2 

mark. Compounds incorporating pyrrolidine amine head groups have been shown to serve as 

effective ligands for such MBT domain containing proteins [53, 63, 108, 109]. To test this, a 

pyrrolidine amine group was introduced to give compound 68 and it was found that this 

modification did not improve affinity towards 53BP1 TTD, confirming that Kme readers of the 

same histone mark do not necessarily have similar small molecule ligand preferences. Overall, 

this SAR exploration of the basic amine of 61 (UNC2170) showed that a sterically bulky, 

lipophilic secondary amine is preferred for binding in the Kme pocket of 53BP1 TTD. 

Prior to expanding SAR studies to other portions of the molecule, confirmation that the 

N-tert-butyl amine of 61 (UNC2170) was binding within the aromatic bind cage was necessary. 

It was hypothesized that a specific binding interaction between a basic head group and the 
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Asp1521 within the binding pocket was essential. To test this hypothesis, an active site mutant of 

53BP1 (D1521A) was prepared that no longer binds H4K20me2 due to loss of a salt bridge and 

hydrogen bonding with Kme2 [66].  ITC demonstrated that binding of 61 (UNC2170) was 

abrogated by the 53BP1 D1521A mutant, Figure 2.8 and Table 2.5, which is consistent with the 

basic amine of 61 (UNC2170) occupying the Kme reader pocket. 

Figure 2.8: ITC analysis of prepared analogs against wt and inactive D1521A 53BP1 TTD 

mutant 

 

Table 2.5. Thermodynamic data from ITC experiments 

Compound Kd (μM) ΔH kcal/mol TΔS 

kcal/mol 

N 

61 
(UNC2170) 

24.6 ± 0.7 -13776.7 ± 

496.5 

-7.5 ± 0.5 0.6 

64 No binding - - - 

 

The AlphaScreen and ITC experiments showed that there was a defined preference for 

secondary amine head groups over tertiary head groups. These findings are in contrast to 

previously conducted ITC experiments on endogenous histone 4 peptides where the K20 amine 
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head group was varied from 0-3 methyl groups. Those findings showed a preference for tertiary 

(Kme2) over secondary (tert-butyl) amine head groups. This was an interesting finding and 

overall, the SAR exploration of the basic amine of 61 (UNC2170) showed that a sterically bulky, 

lipophilic secondary amine is preferred for binding in the Kme pocket of 53BP1 TTD. 

Interestingly, the N-value for 61 (UNC2170) show that there is a less than 1 to 1 binding ratio of 

protein to ligand. 

Modification of linker region 

Once an optimal amine head group was determined, modifications of the linker region 

UNC2170 that affected binding activity were explored. There were two components of the linker 

region that were explored that included modification of the amide bond of UNC2170 into other 

type of linker analogs and also modification of the aliphatic propyl chain to determine the 

optimal distance and flexibility that was necessary between the basic amine of UNC2170 and the 

aromatic functional group to maintain/increase binding affinity. It was uncertain whether the 

amide bond present in 61 was involved in any necessary binding interactions with the surface of 

53BP1 TTD since an x-ray crystal structure or NMR binding pose was not available. It was 

hypothesized that modification of the amide bond to other types of linkers would allow for 

increased binding interactions. Additionally it was uncertain whether the flexible propyl linker of 

61 was necessary to maintain binding. To explore this region of compound 61, several 

conformationally rigid and also shortened and extended analogs were prepared. The findings are 

discussed below in Table 2.6. 
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Table 2.6. SAR Studies of Modifying the Linker of 61 (UNC2170).a,b 

 

ID R 53BP1 CBX7 
JARI

D1A 
PHF1 PHF19 PHF23 

UHR

F1 

L3MBT

L1 

L3MBT

L3 

MBT

D1 

69 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

70  
 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 > 100 > 100 

71 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

72 
 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 > 100 > 100 

73 

 
> 1007 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

74 

 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

75 

 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

76 

 
 

> 100 > 100 > 100 NA NA FP > 100 > 100 FP > 100 

77 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

78 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

79 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

80 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

81 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. FP: FP designates assay plates that failed assay controls with Z’ < 0.5. NA: NA 

designates runs where the screened protein was not available for screening due; PHF1 and PHF19 were not 

validated for screening until after several analogs were synthesized. 

Synthetic modification of the amide bond component of the linker region for SAR efforts 

began with the substitution of a sulfonamide linker for the amide bond to give compounds 69 and 

70. These analogs showed a complete loss of binding affinity for all assayed Kme reader proteins 
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including 53BP1 TTD. Conversion of the amide into a benzylamine, 71, showed similarly 

abrogated binding affinities. It was hypothesized that the urea and thiourea linkers would provide 

additional hydrogen bonding interactions with the protein surface. A series of five urea and 

thiourea analogs were prepared, 72 – 76, and unfortunately showed no binding affinity for any of 

the screened Kme reader proteins. When the linker region between the amide bond and the basic 

nitrogen was rigidified using two different cyclic variants, analogs 77 and 78, all affinity was 

again lost. Additionally, lengthening the aliphatic chain between the amide bond and the amine 

as in analogs 79 and 80 resulted in inactivity, and shortening the linker, 81, had a similar effect. 

These findings show that modification of the amide bond to these linkers results in complete lack 

of affinity and selectivity for all Kme reader proteins assayed. Additionally, the lengthening or 

shortening of the initial propyl linker of 61 (UNC2170) also showed complete loss of affinity 

and selectivity for all assayed Kme reader proteins. Within this series, the amide bond linker and 

propyl alkyl chain in 61 (UNC2170) was found to be optimal.  The results showed that a certain 

degree of flexibility and the inherent electronic characteristics of the linker region are necessary 

to maintain binding affinity for 53BP1 TTD. 

Modification of aromatic ring 

The next region explored in SAR studies was the aromatic ring of 61 (UNC2170). Initial 

synthetic efforts were made by determining the contribution of the bromine to binding. It was 

uncertain whether the large bromine group was involved in any Van der Waals interactions or 

whether its large steric bulk was necessary for binding. Removal of the bromine from the 

aromatic ring as shown in analog 82 was observed to abolish all binding affinity, Table 2.7. It 

was uncertain whether the position of the bromine functional group on the aromatic ring provides 
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specific contributions to binding. Movement of the bromine to the 2- and 4-positions on the 

aromatic ring via preparation of analogs 83 and 84 showed no measurable binding to 53BP1 

TTD. The inactivity of both the bromine regioisomers suggested that the bromine of 61 

(UNC2170) at the 3-position of the aromatic ring is making a specific interaction with 53BP1-

TTD and that the large size of bromine make unfavorable interactions at the 2- and 4-positions. 

A halogen scan was then conducted via preparation of analogs 85, 86, and 87. These analogs 

demonstrated that chlorine (85) and fluorine (86) provided no improvement in affinity, but 

replacement of the bromine with iodine was well tolerated (87, IC50 = 13 ± 4.8 μM). Consistent 

with this, it was found that binding affinity was maintained when an isopropyl group (89) or a 

trifluoromethyl substituent (91) occupied the 3-position, suggesting that larger, more lipophilic 

substituents were preferred. The binding of 91 to 53BP1 was further confirmed by ITC 

(Experimental, ITC section), which resulted in a Kd that correlated well with the AlphaScreen 

results (Kd = 10 ± 1.0 μM). While the 3-trifluoromethyl analog was roughly equipotent to 61 

(UNC2170), activity was also specific to this regioisomer, as compound 92 with CF3 para to the 

amide is inactive. Surprisingly, a single methyl group at this position did not provide as high 

affinity, 88, nor an ethyl group at the 4-position, 90, which further underscores the importance of 

functional group placement at the 3-position. Replacement of the Br of 61 (UNC2170) with a 

various other functional groups including nitro, amine, napthylene, and branched aromatic 

groups at the 3-position (93 - 97) also resulted in a loss in potency. Two different pyridine 

derivatives, 98 and 99 did not provide any affinity. 
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Table 2.7. SAR Studies of the Aromatic Head Group of 61 (UNC2170). a,b 

 

ID R 53BP1 
CBX

7 

JARID1

A 
PHF1 PHF19 PHF23 

UHRF

1 

L3MBTL

1 

L3MBTL

3 

MBTD

1 

82 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

83 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

84 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

85 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

86 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

87 

 

13 ± 

4.8 
> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

88 

 

91.6 ± 

18.8 
> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

89 

 

14 ± 

7.6 
> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

90 

 
 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

91 

 

22 ± 14 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

92 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

93 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

94 

 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

95 

 
 

>33 (1) 

>100 

(3) 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

96 

 
 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

97 

  > 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 
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98 

  
> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

99 

  
> 100 > 100 > 100 > 100 > 100 > 100 > 100 

>33 (1) 

>100 (4) 
> 100 > 100 

100 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

101 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. FP: FP designates assay plates that failed assay controls with Z’ < 0.5. NA: NA 

designates runs where the screened protein was not available for screening due; PHF1 and PHF19 were not 

validated for screening until after several analogs were synthesized. 

It was hypothesized that the halogenated 4-substituted pyridine derivatives, compounds 

100 and 101, would increase the positive charge of the σ-hole of the bromine in 61 (UNC2170) 

in turn increasing the likelihood of a halogen-hydrogen bond with the protein and improving 

binding [110]. These pyridine analogs resulted in a decrease in potency relative to their phenyl 

counterparts, suggesting that a potential halogen bond with 53BP1 is unlikely and instead 

favorable hydrophobic interactions are contributing to binding. 

Disubstituted aromatic analogs of 61 (UNC2170) 

Synthetic efforts to this point had focused on preparing analogs that had one or two 

functional groups present in the aromatic ring. In this way, electronic and steric effects 

associated with various functional groups were tested at various positions on the ring to 

determine their effect on overall potency. It was hypothesized that additional functional groups 

would be necessary to pick up further binding interactions to increase potency. Several analogs 

were prepared that maintained a bromine group at the 3-position of the aromatic ring and 

additional functional groups were added at the 4-, 5-, and 6-positions of the ring, Table 2.8. The 

goal of these analogs was to gain new hydrogen-bond or Van der Waals interactions with 

residues in the acidic/hydrophobic binding pocket.  
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Table 2.8: SAR Studies of Disubstituted aromatic analogs of 61 (UNC2170). a,b 

 

ID R 53BP1 
CBX

7 

JARID1

A 
PHF1 PHF19 PHF23 

UHRF

1 

L3MBTL

1 

L3MBTL

3 

MBTD

1 

102 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

103 

 
> 100 > 100 > 100 > 100 > 100 > 100 > 100 

>33 (1) 
>100 (5) 

> 100 > 100 

104 

 

22 (1) 
>100 

(1) 

> 100 > 100 > 100 NA > 100 > 100 > 100 FP > 100 

105 

 

77.3 ± 
24.8 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 
94.0 ± 
13.4 

106 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

107 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

108 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

109 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

110 

 

59 (1) > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. FP: FP designates assay plates that failed assay controls with Z’ < 0.5. NA: NA 

designates runs where the screened protein was not available for screening due; PHF1 and PHF19 were not 

validated for screening until after several analogs were synthesized. 

The series of disubstituted aromatic analogs explored the placement of amine and 

hydroxyl group at the 2- and 5-positions of the ring while maintaining the 3-bromo functional 

group. It was hypothesized that these functional group would allow for increased hydrogen 

bonding interactions. It was observed that only 105 showed any affinity for 53BP1 TTD. A small 

series of other bi-functionalized analogs, 102 – 110, were also prepared to test the above 
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hypothesis, but unfortunately provide no increase in affinity. This SAR series provided evidence 

that different, functionalized, non-phenyl ring based analogs would potentially have improved 

binding characteristics compared to the previously prepared and screened analogs. 

Non-phenyl ring based analogs 

The findings from the initial exploration of the aromatic ring showed that the 3-position 

on an aromatic ring is important to maintaining binding interactions. The aromatic ring of 61 

(UNC2170) was proposed to dock within the acidic/hydrophobic pocket of 53BP1 TTD. It was 

uncertain whether the substituted phenyl ring could be modified into a non-phenyl ring 

functional group. It was hypothesized that non-aromatic rings, or functional group of different 

steric bulk and possessing different functional groups may provide increased binding interactions 

within the acidic/hydrophobic pocket. To test this hypothesis, a number of additional analogs 

were prepared, Table 2.9. 

 

Table 2.9. SAR Studies of the Non-Phenyl Ring Head Groups of 61 (UNC2170). a,b 

 

ID R 53BP1 
CBX

7 

JARID1

A 
PHF1 PHF19 PHF23 

UHRF

1 

L3MBTL

1 

L3MBTL

3 

MBTD

1 

111 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

112 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

113 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

114 

 

32 (1) 
>100 

(3) 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

115  > 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 
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116 
 

> 100 > 100 > 100 NA NA 
90.7 ± 

16.2 
> 100 > 100 FP > 100 

117 

 

40 (1) 
>100 

(3) 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

118 
 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

119 

 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

120 
 

38 (1) 

>100 

(3) 

> 100 > 100 > 100 > 100 > 100 > 100 
>33 (1) 

>100 (4) 
> 100 > 100 

121 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 

>33 (1), 

62 (1), 

>100 (3) 

> 100 > 100 

122 

 
> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

123 
 

> 100 > 100 > 100 NA NA > 100 > 100 > 100 FP > 100 

124 
 

52 (1) 
>100 

(5) 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

125 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

126 
 

57 (1),  

70 (1), 
>100 

(2) 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

127 
 

> 100 > 100 > 100 NA NA FP > 100 > 100 FP > 100 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. FP: FP designates assay plates that failed assay controls with Z’ < 0.5. NA: NA 

designates runs where the screened protein was not available for screening due; PHF1 and PHF19 were not 

validated for screening until after several analogs were synthesized. 

This series of non-phenyl ring analogs explored a large diversity of structures that would 

re-place the 3-bromo benzoic acid ring in 61 (UNC2170). Analogs 111 – 113 tested bicyclic 

nitrogen containing rings that showed no affinity for any of the screened Kme reader proteins. 

Two functionalized furan analogs, 114 and 115, were prepared and it was observed that neither 

were active, versus the Kme reader panel. Three analogs that possessed 1 or 2 methylene spacers 

between the aromatic ring and the amide bond were prepared, 116 – 118. These unfortunately 
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also showed little activity against the Kme reader panel. Analogs 119 – 127, were prepared that 

contained functionalized triazole, thiazole, benzofuran, thiofuran, 1,2,3,4-tetrahydronaphthalene, 

chromane, and γ-lactone groups and also showed no activity. This series was surprising as the 

large diversity of functional groups screened provided no evidence of increased binding 

interactions against 53BP1 TTD. Findings from this series of analogs suggested that 3-position 

functionalized aromatic rings were necessary to maintain potency. 

Tri-coordinate analogs 

SAR efforts focusing on mono-substituted aromatic rings showed some promise in their 

ability for additional interactions on the protein surface outside of the Kme binding pocket. As a 

consequence of this observation, a series of di-substituted aromatic analogs that focused on 

adding a functional group to the aromatic ring at the 2- position while maintain the 5-CF3 

functional group were prepared and tested, Table 2.10. These analogs were created by an 

aromatic ring displacement of a fluorine group that was para to an electron withdrawing group 

such as a CF3 functional group. It was hypothesized that these disubstituted analogs would be 

able to pick up binding interactions in both the acidic/hydrophobic pocket, via CF3 binding 

interactions, maintain the N-tert-butyl amine interactions in the Kme binding pocket, and pick up 

an additional binding interaction of the additional functional group within the arginine binding 

pocket. It was proposed that these analogs would act in a tri-coordinate manner to bind the three 

binding pockets simultaneously.  
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Table 2.10: SAR Studies of 2-, 5-functionalized aromatic analogs of 61 (UNC2170). a,b 

 

ID R 53BP1 
CBX

7 

JARID1

A 
PHF1 PHF19 PHF23 

UHRF

1 

L3MBTL

1 

L3MBTL

3 

MBTD

1 

128 
 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

129 

 
> 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

130 

 

79.0 ± 

24.6 
> 100 > 100 > 100 > 100 > 100 > 100 34.5 ± 9.5 > 100 > 100 

131 

 

> 100 > 100 > 100 > 100 > 100 > 100 > 100 29.0 ± 7.8 > 100 > 100 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. 

It was observed that only one of the analogs in this series, 130, provided any affinity for 

53BP1 TTD. Interestingly, two of the analogs, 130 and 131, were observed to provide modest 

affinity for L3MBTL1. It is uncertain why this set of compounds did not increase affinity for 

53BP1 TTD, but it is proposed that the position of the functional groups that are located on the 

2-position of the aromatic ring did conform to a proper geometry to allow for binding into the 

Arg19 binding pocket. Findings from this series were used in development of a different set of 

tri-coordinate analogs that were synthesized using a different type of synthetic reaction. It was 

hoped that placement of the third functional group, proposed to bind within the Arg19 binding 

pocket, would allow for a different conformation geometry to allow for better binding properties 

to all three binding pockets. 
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Ugi analogs 

Synthetic efforts to this point had focused on preparing analogs that had one or two 

functional groups present upon an aromatic, or a non-aromatic ring. It was hypothesized that 

functional groups at different locations other than the aromatic ring of 61 (UNC2170) would be 

necessary to pick up additional binding interactions for increase potency. Three analogs were 

prepared that maintained a bromine group at the 3-position of the aromatic ring and a functional 

group off of the nitrogen on the amide bond with the goal of gaining new hydrogen-bond or Van 

der Waals interactions. The core structure of these analogs would possess the back-bone 

structure of 61 (UNC2170), but would include a third functional group located on the amide 

bond. To prepare these analogs, an Ugi multicomponent reaction was used to synthesize amide-

nitrogen functionalized analogs. The goal of this series was to gain new binding interactions with 

the arginine binding pocket from addition of the third functional group while maintaining the 

previously discovered 3-bromo position and N-propyl, N-tert-butyl amine functional groups of 

61 (UNC2170). These variants differed from the UNC2170 core structure in that the aliphatic 

propyl linker between the amide bond and amine head group was not modified to α-methyl N-

functionalized amide, Table 2.11. 

Table 2.11: SAR Studies of Ugi analogs of 61 (UNC2170). a,b 

ID R 53BP1 
CBX

7 

JARI

D1A 
PHF1 PHF19 

PHF

23 

UHR

F1 

L3MBT

L1 

L3MBT

L3 

MBT

D1 

132 

 

> 100 > 100 > 100 > 100 > 100 
> 

100 
> 100 > 100 > 100 > 100 

133 

 

> 100 > 100 > 100 > 100 > 100 
> 

100 
> 100 > 100 > 100 > 100 

134 

 

> 100 > 100 > 100 > 100 > 100 
> 

100 
> 100 > 100 > 100 > 100 



109 

 

aIC50 values are the average of at least 3 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. 

It was unfortunately found that all of these analogs were inactive versus the screened 

Kme reader proteins. It is proposed that the altered structure of these molecules that possessed an 

α-methyl N-functionalized amide were not able to obtain an optimal conformation to all three 

binding pockets simultaneously.  

At this point in the medicinal chemistry efforts, it was shown that a large number of 

synthetic modifications on all of the focus regions of 61 (UNC2170) did not provide an increase 

in the potency of the molecule. It was therefore decided to stop medicinal chemistry efforts and 

further characterize the 61 (UNC2170) to define how it bound to 53BP1 TTD and to also 

determine whether it possessed the ability to inhibit the biological activity and function of 53BP1 

TTD in both in vitro and in vivo assays. 

Structural Binding Analysis 

X-Ray co-crystallization experiments 

To better understand the structural basis for UNC2170 binding, efforts to co-crystallize 

the 53BP1 tandem Tudor domain with 61 (UNC2170) were conducted. A crystal was 

successfully obtained by our collaborators at SGC Toronto (Dr. Cheryl Arrowsmith, Dr. Aiping 

Dong, and Dr. Pavel   Made), and its structure was re-solved by X-ray crystallography at 1.5 Å 

resolution (PDB 4RG2). Interestingly, it was found that under these conditions 61 (UNC2170) 

was bound to a 53BP1 TTD dimer, making distinct interactions with both Tudor domains, Figure 

2.9.  
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Figure 2.9: X-ray co-crystallization structure of 61 (UNC2170) bound to 53BP1 TTD dimer 

 

The images in Figure 2.9 show a 2:1 dimer of 53BP1 TTD to 61 (UNC2170). This 

correlates well with the molar ratio observed by ITC (Figure 2.8), which consistently produced 

an N value less than 1, suggesting a 2:1 ratio of protein to ligand. The structure revealed that the 

N-tert-butyl amine of 61 (UNC2170) was buried in the Kme binding pocket of one tudor 

domain.  It is proposed that this binding interaction was driven largely by van der Waals 

interactions, hydrogen bonds, and electrostatic interactions. Due to the fact that the aromatic 

residues of both Kme pockets were greater than 5 Å from the amine, it was anticipated that 

cation-π interactions are a minor contribution to binding relative to the hydrogen bonds formed 

between the ligand and protein. The basic amine of 61 (UNC2170) was about equidistant from 

D1521 in each protein binding pocket (2.8 Å and 2.6 Å), and was well positioned to interact with 

and make a critical hydrogen bond to D1521 in both proteins. The importance of this interaction 

was consistent with ITC data that showed that the Kme pocket mutant, D1521A, does not bind to 

61 (UNC2170). Additionally, the amide nitrogen is also within hydrogen bonding distance of the 

D1521 residue of one tudor domain, which is likely to further facilitate binding. The distance 

between the amine and the amide of 61 (UNC2170), therefore, appears to be quite important in 

enabling a number of key interactions, and this sheds light on why changing the length of the 
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aliphatic linker (analogs 79 – 81) impairs binding. The aliphatic linker and aromatic ring of 

UNC2170 is also nicely sandwiched between the dimer interfaces, packing against the surface of 

each protein unit. 

The co-crystal structure greatly assisted in understanding why there was a very 

constrained SAR in the studies described above, as the interaction of 61 (UNC2170) with the 

53BP1 dimer reveals that the ligand is encircled by both proteins and that there is limited space 

for modification. This is in contrast to our preliminary structural predictions based on 61 

(UNC2170) bound to a single 53BP1 Tudor domain. Interestingly, this is the second example of 

how Kme binding proteins have been observed to dimerize around a small molecule ligand; the 

other example being the small molecule chemical probe UNC1215 that binds via L3MBTL3 

protein dimerization around the molecule. It is uncertain at this time whether this is a property of 

this type of binding protein or an artifact of X-ray and NMR coordination studies. 

Additionally, the binding interactions of 61 (UNC2170) and the 53BP1 TTD dimer were 

modeled by Dr. Bradley Dickson and showed a large number of the predicted binding 

interactions, Figure 2.10. 
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Figure 2.10: Key interactions between 61 (UNC2170) and the 53BP1 Tandem Tudor domains. 

 

 

These interactions were determined by the modeling program MOE based on the 61 

(UNC2170) co-crystal structure (PDB 4RG2). The residues from one Tudor domain are labeled 

as A, and the residues from the second Tudor domain are labeled as B.  The N-tert-butyl group is 

buried in the Kme pocket of Tudor B.  

Protein NMR binding experiment 

In addition to the X-ray structure, a 1H-15N HSQC NMR correlation spectrum of the 

53BP1 TTD was also obtained in the absence and presence of a 10-fold excess of 61 

(UNC2170). This assay was conducted by our collaborator, Prof. Georges Mer (Mayo Clinic). 

Extensive changes in chemical shifts were observed, Figure 2.11, further confirming specific 

binding interactions of the ligand to 53BP1 TTD. Exchange between the bound and unbound 
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state was observed to be slow on the NMR chemical shift time scale which is surprising given 

the low measured affinity of 61 (UNC2170). 

Figure 2.11: NMR structural analysis of 61 (UNC2170) binding to 53BP1 TTD 

 

This NMR coordination study showed that there were two populations of NMR signals 

present for the 53BP1 TTD residues and also signify the potential presence of a protein dimer. 

Unfortunately, the exact residue coordination was not properly identified, nor was titration of 61 

(UNC2170) conducted, so a NMR measurement of a Kd value was not obtained. Both of these 

structural studies support the existence of a dimeric inhibitor/53BP1 interaction and provide 

direct evidence that the small molecule ligand directly engages the 53BP1 TTD through a series 

of well-defined binding interactions. 
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In Vitro and Cellular Assay Characterization 

Competitive In-solution Peptide Pulldown Assays 

To further evaluate whether 61 (UNC2170) was able to compete with endogenous Kme2 

peptide substrates for binding, H4K20me2 and p53K382me2 peptide pull down assays were 

conducted. This assay was conducted by our collaborator, Dr. Scott Rothbart (Strahl lab, UNC-

CH). 61 (UNC2170) was observed to successfully displace the tandem Tudor domain of a His-

53BP1 fusion protein from both H4K20me2 and p53K382me2 peptides, Figure 2.12.  

Additionally, 61 (UNC2170) displaces His-53BP1 TTD from immobilized p53K382me2 in a 

dose dependent fashion, resulting in an apparent IC50 of about 30 µM which is consistent with 

the results from other in vitro assays described above. 

Figure 2.12: Competitive in-solution peptide pulldown assay 
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Competitive Chromatin Fractionation Assay 

To further study whether 61 (UNC2170) was able to competitively bind 53BP1 TTD, 

chromatin release assays were conducted in HEK293 cell lysates to determine if UNC2170 could 

influence the amount of endogenous 53BP1 bound to chromatin. This assay was conducted by 

our collaborator, Prof. Kevin McBride (MD Anderson). Purification of chromatin from HEK293 

cells was followed by compound treatment for two hours at room temperature and subsequent 

separation of the solubilized proteins from those remaining on chromatin. Western blot analysis 

revealed that treatment with 61 (UNC2170) (500 µM) resulted in a significant increase in soluble 

53BP1 as compared to untreated lysates or lysates treated with 64 (UNC2892), the negative 

control compound, Figure 2.13.   

Figure 2.13: Chromatin fractionation assay 

 

This effect was found to be concentration dependent, as an increase in soluble 53BP1 was 

observed with increasing concentrations of 61 (UNC2170), and partial release of 53BP1 was 

detected at concentrations as low as 10 µM. This result is consistent with 61 (UNC2170) 

antagonizing the interaction between the Tudor domain of full-length 53BP1 and chromatin. 
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Cell permeability and cell toxicity assays 

After conducting several in vitro assays, it was necessary to evaluate the potential of 61 

(UNC2170) to engage 53BP1 TTD in a cellular context. The low molecular weight (313.24 

g/mol) and clogP (~3.27) of the small molecule ligand suggested a priori that 61 (UNC2170) 

would be cell permeant. To confirm this and assess the suitability of the compound for cellular 

studies, the cell permeability of 61 (UNC2170) was conducted by an external lab (Absorption 

Systems, Exton, PA). It was observed that 61 (UNC2170) was indeed highly cell permeant with 

no significant measureable cellular efflux (efflux ratio = 1.2) as determined by a bi-directional 

Caco-2 cell permeability assay {Smart, 2011 #160}. Once cell permeability was determined, the 

toxicity of the compound was measured using a CellTiter-Glo luminescent cell viability assay. 

This assay was conducted with the assistance of Dr. Nancy Cheng (CICBDD). It was observed 

that 61 (UNC2170) had no measurable toxicity within the desired concentrations for cellular 

experiments, with cell toxicity only beginning to take effect at >10 mM, Figure 2.14. 

 

Figure 2.14: CellTiter-Glo luminescent cell viability assay for 61 (UNC2170) and 64 

(UNC2892) 
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Foci Formation Assay 

It is known that DNA double-strand (dsDNA) breaks occur after treatment with ionizing 

radiation (IR), and the functional tandem Tudor domain of 53BP1 is required for foci formation 

at those break sites [64]. Foci are denoted as oligomerized 53BP1 at break sites in response to 

identification of DNA double strand breaks. It was hypothesized that treatment with cell 

permeant and non-toxic 61 (UNC2170) would impair the ability of 53BP1 TTD to form foci at 

IR-induced DNA double strand break sites. To test this hypothesis, our collaborator Prof. Mark 

Bedford (MD Anderson) pretreated U2OS cells that were transfected with GFP-tagged full 

length 53BP1 with 61 (UNC2170) (1 hour, 100 – 300 µM). Once the treatment period was over, 

the cells were irradiated with 5 Gy irradiation, followed by analysis of the extent of foci 

formation in cell culture and also the number of foci formed in each cell. Unfortunately, it was 

observed that treatment with 61 (UNC2170) did not significantly decrease the extent of 

endogenous 53BP1 foci formed following 5 Gy irradiation, and similar results were observed 

with the negative control analog 64 (UNC2982), Figure 2.15. An additional aspect of this 

experiment was to measure the formation of γH2AX foci at break sites and they were quantified 

in parallel after compound treatment and no changes were observed.  

Figure 2.15: Foci formation assay 
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Fluorescence recovery after photobleaching assay 

This assay was used as a follow-up to the foci formation assay that was proposed to 

determine whether the biological activity of the Tudor domain of 53BP1 was affected upon 

inhibition by treatment with 61 (UNC2170). The FRAP assay is based on measuring the kinetics 

of how a system responds to photobleaching of a defined region of the cell that contains a GFP-

tagged protein. The region of interest that contains the GFP-tagged protein, i.e. the GFP-tagged 

isolated 53BP1 TTD, is photobleached using a high power laser on a confocal microscope 

leaving a “photobleached region” where there is no GFP activity. The confocal microscope is 

then used to monitor how quickly unbleached GFP-tagged 53BP1 TTD can respond to this event 

via the movement of non-photobleached GFP-tagged protein into that photobleached region. It 

was hypothesized that mobility of the GFP-53BP1 isolated Tudor domain would be increased 

upon treatment with 61 (UNC2170) as the Tudor domain would be unable to bind its endogenous 

target; H4K20me2 PTMs at the sites of dsDNA breaks; and be more mobile within the nucleus 

and better able to diffuse and recover the fluorescence at the photobleached site of damage. 

These experiments were conducted by transfecting U2OS cells with a GFP-tagged isolated 

53BP1 TTD and then treating with 1 mM of 61 (UNC2170) with 15 min incubation, then 

irradiating the cells over a range of different IR doses (0, 2, 5, and 10 Gy). The concentration of 

61 (UNC2170) was chosen as it was well above the in vitro IC50 and it was uncertain how much 

was necessary to induce a cellular response and also that concentration was well within the a 

non-toxic concentration range for U2OS cells. After IR treatment, the cells were incubated for 1 

hr to allow for foci formation. These DNA damaged cells were then exposed to defined regions 

of photobleaching (405 nm wavelength at 100% power, 10 flashes at 1 sec intervals) in their 
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nucleus (3 – 5 photobleached foci /nucleus, with 3-5 cells tested per irradiation condition) using 

a Zeiss LSM 700 confocal microscope. Initial IR dosing experiments without inhibitor treatment 

showed that 2 Gy did not lead to measurable foci formation and that 5 and 10 Gy were optimal. 

Additional treatment both with and without IR (10 Gy) and with and without 1 mM treatment 

with 61 (UNC2170) showed the following regarding foci formation, Figure 2.16. 

Figure 2.16: Initial dose range for FRAP experiments 

 

From these initial findings, a series of inhibitor experiments were conducted that varied 

the concentration (30 µM, 300 µM, 1 mM, 3 mM). Additionally, the treatment of the negative 

control analog 61 (UNC2892) at 3 mM showed highly inconsistent results in the presence of IR 

treatment, Figure 2.17. It was noted that the IR treatment often led to drastic cell morphology 

changes compared to non-IR treated cells. 

 

 

Vehicle, No IR
(transfection control)

Vehicle, IR (10 Gy)
UNC2170 (1 mM)

No IR
UNC2170 (1 mM)

IR (10 Gy)

Condition Number of 
Foci/nucleus

Vehicle, No IR n.d.

UNC2170 (1 mM), No IR 64.6 ± 34.0

Vehicle, IR (10 Gy) 45.6 ± 9.3

UNC2170 (1 mM), IR (10 Gy) 40.0 ± 11.4
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Figure 2.17: Variation of concentration of 61 (UNC2170) at 10 Gy IR 

 

A different approach was conducted that did not include the use of IR treatments. This 

approach was based on a previous literature example of how a GFP-tagged inactive Y1487L 

mutant 53BP1 TTD was exposed to FRAP study using the same conditions and showed that the 

mutant has a higher degree of mobility than wild type GFP-tagged 53BP1 TTD.[77] It was 

hypothesized that treatment of 61 (UNC2170) would mimic the inactive form Y1487L 53BP1 

used in that study as the small molecule ligand would bind to the TTD and lead to its inability to 

bind chromatin. This hypothesis was tested by transfecting U2OS cells with a GFP-tagged 

isolated 53BP1 TTD and then incubation these cells overnight with various concentrations of 61 

(UNC2170). Post incubation, the cells were washed with fresh media and then FRAP 

experiments were conducted on both non-inhibitor treated cells and treated cells. A 

representative image of the recovery process is shown in figure 2.18. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

F
lu

o
re

sc
n

ce
 I

n
te

n
si

ty
 (

%
)

Time (s)

FRAP analysis - % Fluorescence vs time (s)

0.03 mM UNC2170

0.3 mM UNC2170

1 mM UNC2170

3 mM UNC2170

3 mM UNC2892

Vehicle (no cmpd)



121 

 

Figure 2.18: Representative image of treated and untreated U2OS cell transfected with GFP-

tagged isolated 53BP1 TTD response to photobleaching 

 

Using these new conditions in the absence of IR treatment, experiments were conducted 

that varied the concentration of 61 (UNC2170) over a 24 hr incubation period, followed by 

FRAP. The concentrations tested were 30 µM, 500 µM, and 1 mM 61 (UNC2170), along with a 

3 mM 64 (UNC2892) as a negative control. It was observed that cell morphology changed and 

there was increased toxicity as the concentration of 61 (UNC2170) increased. Additionally, with 

high concentrations of UNC2170, photobleached regions do not fully recover (~85-90%), or 

recover at all (by visual inspection). The negative control compound unfortunately did not 

replicate the no-treatment control (vehicle). Interestingly, it was observed that low doses of 61 

(UNC2170 (30 and 500 uM) appear to have slow recovery after photobleaching, but the high 

dose (1 mM) acted like the Y1487L mutant, Figure 2.19. 

 

 

 

T = 10 sec T = 11 sec T = 13 sec T = 15 sec T = 17 sec T = 25 sec T = 50 sec T = 100 sec

U2OS cells – No UNC2170 Treatment, No IR

T = 10 sec T = 13 sec T = 17 sec T = 100 sec

U2OS cells – 30 uM UNC2170 Treatment, No IR
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Figure 2.19: FRAP experiments without IR 

 

Unfortunately, the two different forms of FRAP experiments that were conducted failed 

to show any consistent affect that 61 (UNC2170) has upon GFP-tagged isolated 53BP1 TTD 

after photobleaching. It is hypothesized that the modest potency of the inhibitor is not sufficient 

to induce the desired effect of preventing 53BP1 TTD from binding its defined target. A more 

rapid recovery after photobleaching was anticipated, due to more rapid diffusion of non-

chromatin bound 53BP1 TTD, since it would itself be bound by 61 (UNC2170) and free to move 

to photobleached regions. 

A different approach that was not utilized to determine whether NHEJ or HR was being 

either up- or down-regulated would be the use of a novel genome engineering reporter 

system.[111] This system known as 'traffic light' uses a construct containing two fluorescent 

protein sequences that are opposing expressed upon nucleosome activity in response to DDR 

activation, in conjunction with flow-cytometry, to determine which specific DDR pathway is 
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active.[111] Use of this quantitative DDR analysis system would provide a different method to 

analyze whether UNC2170 has any specific effect upon modulation of the selection of either HR 

or NHEJ. 

Class Switch Recombination Assay 

Efficient B cell antibody class switch recombination (CSR) requires 53BP1 to have an 

active tudor domain (48). It has been observed that 53BP1 knockout mice are severely impaired 

in their ability to undergo CSR [112, 113] and this led to the hypothesis that treatment of naïve 

B-cells with 61 (UNC2170) would induce this same defect. This hypothesis was tested through 

the use of naïve IgM+ B cells that were stimulated to undergo isotype switching from IgM to 

IgG1 via use of LPS and Il-4 in combination with treatment of either UNC2170, UNC2892, or 

vehicle. Relative switching to IgG1 was then determined by FACS analysis 3.5 days after 

compound treatment. B cells treated with UNC2170 (75 μM) underwent CSR 64% as effectively 

as untreated cells, while treatment with UNC2892 had a much less significant inhibitory effect 

on CSR (89%), Figure 2.20. 
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Figure 2.20: CSR effects upon treatment with 61 (UNC2170) 

 

Although slightly higher and lower doses were tested (100 μM and 30 μM, respectively), 

treatment at 75 μM appears to be optimal in that the effects observed are specific to the 53BP1 

active compound. Attempts to probe the effect on CSR upon treatment with 300 μM of 

UNC2170 were unsuccessful, as this resulted in a reduction in cell viability. However, this effect 

could be mechanism related as UNC2892 does not have the same anti-proliferative effects, and B 

cells undergoing CSR endure a high rate of DNA damage while proliferating rapidly, and 

therefore, represent a particularly sensitive cell subset. It has been reported previously that B 

cells stimulated from mice bearing a single 53BP1 D1518R amino acid substitution (this mutant 

is equivalent to D1521R in humans) switch at about 10% of wild type levels [112]. While the 

effect of UNC2170 is not as pronounced, the treatment with UNC2170 clearly phenocopies the 

reduction in CSR seen in 53BP1 mutant B cells.   

Analysis of CSR to IgG1 switching in wildtype splenocytes cultured with LPS and IL-4 

and incubated with indicated compounds for 3.5 days was conducted. Treatment with UNC2170 

decreased the number of cells that underwent isotope switching to IgG1, whereas UNC2892 did 

not have the same effect. CSR was measured by IgG1+ cell surface expression and plotted versus 
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forward size scatter (FSC). The percentage of IgG1+ cells is indicated on the top right of each 

graph, Figure 2.21. 

 

Figure 2.21: FACS analysis of CSR assay cells 3.5 post treatment 

 

 

Conclusions 

It was demonstrated that the small molecule 53BP1 TTD ligand 61 (UNC2170) possesses 

modest potency and a 17-fold selectivity for 53BP1 TTD as compared to nine other Kme reader 

proteins. The binding of 61 (UNC2170) was also dependent upon a functional tandem tudor 

domain as demonstrated by site directed mutagenesis and ITC studies. A co-crystal structure 

revealed that the small molecule ligand binds within the same Kme binding pocket as 
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endogenous Kme peptides. However, distinct from Kme peptide ligands, 61 (UNC2170) engages 

the binding pockets of two 53BP1 tudor domains. This simple, relatively non-toxic ligand also 

exhibits modest activity as a 53BP1 TTD antagonist in cellular lysates and has functional 

consequences in CSR assays consistent with its weak in vitro activity. Unfortunately, no 

biological consequences of 61 (UNC2170) were observed in the cellular foci formation assay, 

nor in the kinetics of the proteins in two different FRAP studies. These findings suggest that 61 

(UNC2170) may not be potent enough to exhibit biological outcomes in these two cellular assay 

platforms. A closely related negative control compound, 64 (UNC2892), lacks both in vitro and 

cellular effects, suggesting that the results observed with 61 (UNC2170) are indeed due to the 

inhibition of 53BP1 TTD. Thus, 61 (UNC2170) is a novel small molecule ligand of 53BP1 TTD, 

a Kme reader protein that has gained much attention recently due to its integral role in DNA 

damage repair and its link to BRCA1. Our SAR studies revealed only modest improvements in 

potency, and further exploitation of the structural data should facilitate the development of a 

high-quality chemical probe for 53BP1. This work also aids in demonstrating the potential for 

Kme readers to be modulated via small molecule intervention, despite the limited research in this 

field to date.  

 

Experimental section 

General Procedure for Chemical Synthesis 

Analytical LCMS data for all compounds were acquired using an Agilent 6110 series 

system with the UV detector set to 220 and 254 nm. Samples were injected (<10 µL) onto an 

Agilent Eclipse Plus 4.6 × 50 mm, 1.8 µm, C18 column at room temperature.  A mobile phase of 
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A (H2O + 0.1% acetic acid) and B (MeOH + 0.1% acetic acid) was used with a linear gradient 

from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a 

flow rate of 1.0 mL/min.  Mass spectra data were acquired in positive ion mode using an Agilent 

6110 single quadrupole mass spectrometer with an electrospray ionization source.  Nuclear 

Magnetic Resonance (NMR) spectra were recorded on a Varian Mercury spectrometer at 400 

MHz for proton (1H NMR) and 100 MHz for carbon (13C NMR); chemical shifts are reported in 

ppm (δ). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 F254, 0.25 

mm pre-coated TLC plates, generally using a 10% MeOH in DCM solvent system. TLC plates 

were visualized using UV254, I2 impregnated silica gel, potassium permanganate with charring, 

and phosphomolybdic acid with charring. Reverse phase chromatography was used to purify 

reaction mixtures to obtain final products using a Teledyne Isco CombiFlash Rf 200 

chromatography unit equipped with the UV detector set to 220 nm and 254 nm.  Samples were 

injected onto a RediSep Rf 30g C18 high performance Gold column at room temperature and 

collected at the previously mentioned wavelengths.  Mobile phases of A (H2O + 0.1% TFA) and 

B (MeOH) were used with a flow rate of 30 mL/min.  A general gradient was used consisting of 

0-2 minutes at 5% B, 5-15 minutes increasing from 5 to 100% B, and a 100% B flush for another 

3 minutes.  Small variations in this purification method were made as needed to achieve ideal 

separation for each compound.  All compounds that were evaluated in biochemical and 

biophysical assays had >95% purity as determined by 1HNMR and LCMS. 
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Small molecule synthesis 

 

3-Bromo-N-(3-(tert-butylamino)propyl)benzamide (61, UNC2170): To a solution of 400 mg 

(1.98 mmol) of 3-bromobenzoic acid in 2 mL of DMF was added 831 mg (2.6 mmol) of TBTU 

and the mixture was stirred for 5 min at rt.  Upon complete dissolution, 387 mg (2.4 mmol) of N-

(tert-butyl)propane-1,3-diamine and 0.6 mL of Et3N (6 mmol) was added and the solution was 

stirred at rt overnight.  The reaction was quenched by addition of 10 mL of sat. aq NaHCO3 and 

diluted with 15 mL of CH2Cl2. The aqueous phase was extracted with CH2Cl2 (4 × 15 mL). The 

combined organic extracts were washed with brine, dried over Na2SO4 and filtered.  The solvent 

was evaporated and the crude product was dissolved in 8 mL of CH2Cl2 followed by the addition 

of silica gel.  The solvent was again removed by rotary evaporation and the crude material was 

purified by reverse phase column chromatography using an automated Teledyne Isco 

chromatography unit to afford 117 mg (69%) of the TFA salt as a yellow, waxy solid. 1H NMR 

(400 MHz, CD3OD) δ 8.02 (t, J = 1.8 Hz, 1H), 7.82 (m, 1H), 7.73 (m, 1H), 7.42 (t, J = 7.9 Hz, 

1H), 3.51 (t, J = 6.5 Hz, 2H), 3.08 – 3.00 (m, 2H), 2.03 – 1.92 (m, 2H), 1.40 (s, 9H). 13C NMR 

(101 MHz, CD3OD) δ 169.4, 137.1, 135.9, 131.6, 131.5, 127.1, 123.6, 58.0, 39.9, 37.7, 28.3, 

25.9. LC-MS (λ = 254 nm): 100%, tR = 3.7 min. HRMS calculated for C14H20N2OBr - H: 

311.0759; found: 311.0762 [M-H]-. 
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3-Bromo-N-(3-(dimethylamino)propyl)benzamide (62): Compound 62 was prepared from 3-

bromobenzoic acid (0.15 g, 0.75 mmol) and N,N-dimethylpropane-1,3-diamine (0.12 g, 1.1 

mmol) by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(112 mg, 38%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.02 (s, 1H), 

7.82 (d, J = 7.0 Hz, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 3.48 (t, J = 6.6 Hz,  

2H), 3.19 (t, J = 8.1 Hz, 2H), 2.90 (s, 6H), 2.13 – 1.96 (m, 2H). LC-MS (λ = 254 nm): 99%, tR = 

3.1 min. MS (ESI+): 285.1 +287.1 [M+H]+. 

 

3-Bromo-N-(3-(isopropylamino)propyl)benzamide (63): Compound 63 was prepared from 3-

bromobenzoic acid (0.15 g, 0.75 mmol) and N-isopropylpropane-1,3-diamine (0.10 g, 0.90 

mmol) by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(113 mg, 37%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.01 (t, J = 1.8 

Hz, 1H), 7.84 – 7.79 (m, 1H), 7.70 (ddd, J = 8.0, 1.9, 0.8 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 3.50 

(t, J = 6.5 Hz, 2H), 3.36 (m, 1H), 3.06 (t, J = 7.4 Hz, 2H), 2.04 – 1.93 (m, 2H), 1.34 (d, J = 6.6 

Hz, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.5 min. MS (ESI+): 299.1 + 301.1 [M+H]+. 

 

3-Bromo-N-(3-(tert-butyl(methyl)amino)propyl)benzamide (64, UNC2892): To a solution of 

61 (84 mg, 0.27 mmol) in 4 mL of MeOH was added 33 µl (0.44 mmol) formaldehyde solution 

(37% wt in H2O), 101 mg (1.6 mmol) sodium cyanoborohydride, and 77 µl (1.3 mmol) acetic 
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acid, and the mixture was stirred overnight at rt.  The reaction was monitored by LC-MS until 

completion and then dried to residue. The crude material was dissolved  in 1 mL of DCM on 

silica and purified by reverse phase column chromatography using the Teledyne Isco automated 

column system to afford 106 mg (90% yield) as the TFA salt as a cream white solid. 1H NMR 

(400 MHz, CD3OD) δ 8.02 (t, J = 1.8 Hz, 1H), 7.82 (m, 1H), 7.71 (m, 1H), 7.40 (t, J = 7.9 Hz, 

1H), 3.58 – 3.40 (m, 3H), 2.95 (ddd, J = 15.2, 13.4, 6.9 Hz, 1H), 2.83 (s, 3H), 2.22 – 2.07 (m, 

1H), 2.07 – 1.92 (m, 1H), 1.43 (s, 9H). 13C NMR (101 MHz, CD3OD) δ 169.0, 137.2, 135.8, 

131.5, 131.4, 127.1, 123.6, 65.3, 50.0, 38.0, 35.1, 27.0, 24.6. LC-MS (λ = 254 nm): 99%, tR = 3.4 

min. HRMS calculated for C15H22N2OBr - H: 325.0916; Found: 325.0921 [M-H]-. 

 

3-bromo-N-(3-(tert-butyl(ethyl)amino)propyl)benzamide (65): To a solution of 61 (130 mg, 

0.42 mmol) in 4 mL of MeOH was added 102 µl (1.8 mmol) acetaldehyde 156 mg (2.5 mmol) 

sodium cyanoborohydride, and 120 µl (2.1 mmol) acetic acid, and the mixture was stirred 

overnight at rt.  The reaction was monitored by LC-MS until completion and then dried to 

residue. The crude material was dissolved  in 1 mL of DCM on silica and purified by reverse 

phase column chromatography using the Teledyne Isco automated column system to afford 

15.3 mg (10.8 % yield) as the TFA salt as a clear yellow oil. 1H NMR (400 MHz, cd3od) δ 8.01 

(t, J = 1.8 Hz, 1H), 7.84 – 7.77 (m, 1H), 7.72 (m, 1H), 7.41 (t, J = 7.9 Hz, 1H), 3.47 (m, 5H), 

3.16 – 2.98 (m, 3H), 2.22 – 1.95 (m, 3H), 1.47 – 1.34 (m, 13H), 0.00 (t, J = 7.9, 7.9 Hz, 1H), 
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0.00 (s, 9H), 7.83 – 7.79 (m, 1H), 2.09 – 1.95 (m, 2H), 3.15 – 3.02 (m, 2H), 2.21 – 2.09 (m, 1H). 

LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 342.3 [M+H]+.  

 

3-bromo-N-(3-(isopropyl(methyl)amino)propyl)benzamide (66): To a solution of 63 (36 mg, 

0.12 mmol) in 4 mL of MeOH was added 15 µl (0.67 mmol) formaldehyde solution (37% wt in 

H2O), 45 mg (0.72 mmol) sodium cyanoborohydride, and 35 µl (0.60 mmol) acetic acid, and the 

mixture was stirred overnight at rt.  The reaction was monitored by LC-MS until completion and 

then dried to residue. The crude material was dissolved  in 1 mL of DCM on silica and purified 

by reverse phase column chromatography using the Teledyne Isco automated column system to 

afford 35 mg (94.5% yield) as the TFA salt as a clear oil. 1H NMR (400 MHz, cd3od) δ 8.01 (t, J 

= 1.8 Hz, 1H), 7.84 – 7.79 (m, 1H), 7.70 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 3.50 (t, J = 6.5 Hz, 

2H), 3.40 – 3.32 (m, 1H), 3.06 (t, J = 7.4 Hz, 2H), 2.04 – 1.93 (m, 2H), 1.34 (d, J = 6.6 Hz, 6H). 

LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 316.1 [M+Na]+. 

 

3-Bromo-N-(3-(tert-butoxy)propyl)benzamide (67): Compound 67 was prepared from 3-

bromobenzoic acid (0.10 g, 0.50 mmol) and 3-(tert-butoxy)propan-1-amine HCl (0.10 g, 0.60 

mmol)  by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(146 mg, 69%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.96 (t, J = 1.8 

Hz, 1H), 7.77 (m, 1H), 7.67 (m, 1H), 7.37 (t, J = 7.9 Hz, 1H), 3.49 (t, J = 6.4 Hz, 2H), 3.45 (t, J 
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= 7.3 Hz, 2H), 1.87 – 1.78 (m, 2H), 1.19 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 5.8 min. MS 

(ESI+): 336.1 + 338.1 [M+Na]+. 

 

3-Bromo-N-(3-(pyrrolidin-1-yl)propyl)benzamide (68): Compound 68 was prepared from 3-

bromobenzoic acid (0.5 g, 2.5 mmol) and 3-(pyrrolidin-1-yl)propan-1-amine (0.38 g, 3.0 mmol) 

by the same procedure as compound 61. The product was obtained as a yellow oil (657 mg, 

85%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.97 (t, J = 1.8 Hz, 1H), 

7.81 – 7.75 (m, 1H), 7.69 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 3.43 (t, J = 6.9 

Hz, 2H), 2.68 – 2.58 (m, 6H), 1.84 (m, 6H). LC-MS (λ = 254 nm): 99%, tR = 2.7 min. MS 

(ESI+): 311.1 + 313.1 [M+H]+. 

 

 

3-Bromo-N-(3-(tert-butylamino)propyl)benzenesulfonamide (69): To a solution of 3-

bromobenzenesulfonyl chloride (0.12 g, 0.47 mmol) in dichloromethane at 0°C was slowly 

added N-(tert-butyl)propane-1,3-diamine (0.063 g, 0.48 mmol). The reaction was stirred at 0°C 

for 30 min and then allowed to warm to room temperature. The reaction was monitored by TLC 

until it had gone to completion, and then diluted with MeOH, concentrated down, re-suspended 

in methanol and dried onto silica. The reaction mixture was purified by reverse phase column 

chromatography using a Teledyne Isco reverse phase chromatography column. The product was 

obtained as a white solid (147 mg, 68%) after purification as the TFA salt. 1H NMR (400 MHz, 
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CD3OD) δ 8.00 (s, 1H), 7.81 (m, 2H), 7.51 (t, J = 7.9 Hz, 1H), 3.02 (dd, J = 10.8, 5.1 Hz, 4H), 

1.93 – 1.79 (m, 2H), 1.35 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 349.1 + 

351.10 [M+H]+. 

 

4-bromo-N-(3-(tert-butylamino)propyl)benzenesulfonamide (70): To a solution of 3-

bromobenzenesulfonyl chloride (0.12 g, 0.47 mmol) in dichloromethane at 0°C was slowly 

added N-(tert-butyl)propane-1,3-diamine (0.063 g, 0.48 mmol). The reaction was stirred at 0°C 

for 30 min and then allowed to warm to room temperature. The reaction was monitored by TLC 

until it had gone to completion, and then diluted with MeOH, concentrated down, re-suspended 

in methanol and dried onto silica. The reaction mixture was purified by reverse phase column 

chromatography using a Teledyne Isco reverse phase chromatography column. The product was 

obtained as a white solid (320.7 mg, 91.4%) after purification as the TFA salt. 1H NMR (400 

MHz, cd3od) δ 7.85 – 7.66 (m, 4H), 3.00 (t, J = 6.7 Hz, 4H), 1.92 – 1.79 (m, 2H), 1.34 (s, 

9H).LC-MS (λ = 254 nm): 99%, tR = 3.7 min. MS (ESI+): 349.1 + 351.10 [M+H]+. 

 

N1-(3-Bromobenzyl)-N3-(tert-butyl)propane-1,3-diamine (71): To a solution of 1-bromo-3-

(bromomethyl)benzene (0.23 g, 0.92 mmol) and triethylamine (0.233 g, 2.3 mmol) in 2 mL 

dimethylformamide at room temperature was slowly added N-(tert-butyl)propane-1,3-diamine 

(0.1 g, 0.77 mmol) and the reaction was stirred overnight. Once the reaction had gone to 
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completion via TLC analysis, the reaction mixture was diluted with MeOH, concentrated down 

to a residue, re-suspended in methanol, and dried onto silica. The reaction mixture was purified 

by reverse phase column chromatography using a Teledyne Isco reverse phase chromatography 

column. The product was obtained as a clear yellow oil (37 mg, 11%) after purification as the 

TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.73 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.7 

Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 4.23 (s, 2H), 3.20 (t, J = 7.6 Hz, 2H), 3.10 (dd, J = 9.2, 8.3 Hz 

2H), 2.12 (dt, J = 15.5, 7.9 Hz, 2H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 1.8 min. MS 

(ESI+): 299.2 + 301.2 [M+H]+. 

 

1-(3-(tert-butylamino)propyl)-3-phenylurea (72): To a solution of N-(tert-butyl)propane-1,3-

diamine (0.131 g, 1.0 mmol) in 4 mL diethyl ether was added isocyanatobenzene (0.1 g, 0.84 

mmol) drop-wise and the reaction was stirred for 4 hr. Once the reaction had gone to completion 

via TLC analysis, the reaction mixture was diluted with MeOH, concentrated down to a residue, 

re-suspended in methanol, and dried onto silica. The reaction mixture was purified by reverse 

phase column chromatography using a Teledyne Isco reverse phase chromatography column. 

The product was obtained as a clear oil (289 mg, 91.3%) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 7.39 (m, 2H), 7.24 (m, 2H), 6.97 (m, 1H), 3.31 (m, 2H), 2.99 (t, J = 

7.2 Hz, 2H), 1.88 (m, 2H), 1.34 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.5 min. MS (ESI+): 

251.2[M+H]+. 
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1-(3-(tert-butylamino)propyl)-3-(o-tolyl)urea (73): To a solution of N-(tert-butyl)propane-1,3-

diamine (0.117 g, 0.89 mmol) in 4 mL diethyl ether was added 1-isocyanato-3-methylbenzene 

(0.1 g, 0.75 mmol) drop-wise and the reaction was stirred for 4 hr. Once the reaction had gone to 

completion via TLC analysis, the reaction mixture was diluted with MeOH, concentrated down 

to a residue, re-suspended in methanol, and dried onto silica. The reaction mixture was purified 

by reverse phase column chromatography using a Teledyne Isco reverse phase chromatography 

column. The product was obtained as a clear oil (276 mg, 48.5%) after purification as the TFA 

salt. 1H NMR (400 MHz, cdcl3) δ 7.42 (dd, J = 7.9, 0.9 Hz, 1H), 7.11 (m, 2H), 6.98 (td, J = 7.4, 

1.2 Hz, 1H), 3.27 (m, 2H), 2.96 (t, J = 7.3 Hz, 2H), 2.20 (s, 3H), 1.83 (m, 2H), 1.30 (s, 9H).LC-

MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 265.3 [M+H]+. 

 

1-(3-(tert-butylamino)propyl)-3-(o-tolyl)thiourea (74): To a solution of N-(tert-butyl)propane-

1,3-diamine (0.104 g, 0.79 mmol) in 4 mL diethyl ether was added 1-isothiocyanato-3-

methylbenzene (0.1 g, 0.67 mmol) drop-wise and the reaction was stirred for 4 hr. Once the 

reaction had gone to completion via TLC analysis, the reaction mixture was diluted with MeOH, 

concentrated down to a residue, re-suspended in methanol, and dried onto silica. The reaction 

mixture was purified by reverse phase column chromatography using a Teledyne Isco reverse 

phase chromatography column. The product was obtained as a clear oil (254 mg, 96.5%) after 
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purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.26 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 

8.7 Hz, 2H), 7.05 (d, J = 7.6 Hz, 1H), 3.75 (t, J = 6.4 Hz, 2H), 3.02 (t, J = 7.3 Hz, 2H), 2.34 (s, 

3H), 1.98 (m, 2H), 1.38 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.5 min. MS (ESI+): 281.2 

[M+H]+. 

 

1-benzyl-3-(3-(tert-butylamino)propyl)urea (75): To a solution of N-(tert-butyl)propane-1,3-

diamine (0.117 g, 0.89 mmol) in 4 mL diethyl ether was added (isocyanatomethyl)benzene (0.1 

g, 0.75 mmol) drop-wise and the reaction was stirred for 4 hr. Once the reaction had gone to 

completion via TLC analysis, the reaction mixture was diluted with MeOH, concentrated down 

to a residue, re-suspended in methanol, and dried onto silica. The reaction mixture was purified 

by reverse phase column chromatography using a Teledyne Isco reverse phase chromatography 

column. The product was obtained as a clear oil (259 mg, 82.4%) after purification as the TFA 

salt. 1H NMR (400 MHz, cd3od) δ 7.26 (m, 5H), 4.31 (s, 2H), 3.27 (m, 2H), 2.93 (t, J = 7.0 Hz, 

2H), 1.83 (m, 2H), 1.28 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 265.2 

[M+H]+. 

 

1-benzyl-3-(3-(tert-butylamino)propyl)thiourea (76): To a solution of N-(tert-butyl)propane-

1,3-diamine (0.105 g, 0.81 mmol) in 4 mL diethyl ether was added 

(isothiocyanatomethyl)benzene (0.1 g, 0.67 mmol) drop-wise and the reaction was stirred for 4 
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hr. Once the reaction had gone to completion via TLC analysis, the reaction mixture was diluted 

with MeOH, concentrated down to a residue, re-suspended in methanol, and dried onto silica. 

The reaction mixture was purified by reverse phase column chromatography using a Teledyne 

Isco reverse phase chromatography column. The product was obtained as a clear oil (235 mg, 

88.7%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.27 (m, 5H), 4.70 (s, 

2H), 3.72 (t, J = 5.5 Hz, 2H), 2.96 (s, 2H), 1.94 (m, 2H), 1.33 (s, 9H).LC-MS (λ = 254 nm): 

99%, tR = 3.8 min. MS (ESI+): 281.2 [M+H]+. 

 

(3-Bromophenyl)(3-(tert-butyl)imidazolidin-1-yl)methanone (77): Compound 77 was 

prepared from 3-bromobenzoic acid (0.10 g, 0.50 mmol) and 1-(tert-butyl)pyrrolidin-3-amine 

(0.09 g, 0.63 mmol) by the same procedure as compound 61. The product was obtained as a clear 

yellow oil (158 mg, 73%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.03 

(d, J = 1.6 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.39 (m, 1H), 4.73 – 4.58 (m, 

1H), 3.82 (m, 1H), 3.73 – 3.61 (m, 1H), 3.54 (m, 1H), 3.46 – 3.25 (m, 1H), 2.58 – 2.36 (m, 1H), 

2.22 (m, 1H), 1.42 (s, 9H). LC-MS (λ = 254 nm): 97%, tR = 3.7 min. MS (ESI+): 325.1 + 327.1 

[M+H]+. 

 

(3-Bromophenyl)(4-(tert-butyl)piperazin-1-yl)methanone (78): Compound 78 was prepared 

from 3-bromobenzoic acid (0.10 g, 0.50 mmol) and 1-(tert-butyl)piperazine (0.09 g, 0.63 mmol)  

by the same procedure as compound 61. The product was obtained as a clear yellow oil (201 mg, 
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92%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.70 (m, 1H), 7.67 (m, 

1H), 7.47 (dt, J = 7.7, 1.3 Hz, 1H), 7.40 (m, 1H), 4.71 (m, 1H), 4.23 – 3.25 (m, 5H), 3.17 (m, 

2H), 1.43 (s, 9H). LC-MS (λ = 254 nm): 95%, tR = 3.4 min. MS (ESI+): 325.1 + 327.1 [M+H]+. 

 

3-Bromo-N-(4-(tert-butylamino)butyl)benzamide (79): Compound 79 was prepared from 3-

bromobenzoic acid (40 mg, 0.19 mmol) and 136 (34 mg, 0.091 mmol)  by the same procedure as 

compound 61. The product was obtained as a clear yellow oil (23 mg, 57%) after purification as 

the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.99 (t, J = 1.7 Hz, 1H), 7.80 (m, 1H), 7.71 (m, 

1H), 7.40 (t, J = 7.9 Hz, 1H), 3.45 (t, J = 6.4 Hz, 2H), 3.07 – 2.99 (m, 2H), 1.79 – 1.67 (m, 4H), 

1.37 (s, 9H). LC-MS (λ = 254 nm): 95%, tR = 4.2 min. MS (ESI+): 327.1 + 329.1 [M+H]+. 

 

3-Bromo-N-(5-(tert-butylamino)pentyl)benzamide (80): Compound 80 was prepared from 3-

bromobenzoic acid (0.075 g, 0.37 mmol) and 139 (0.071 g, 0.18 mmol) by the same procedure as 

compound 61. The product was obtained as a clear yellow oil (47 mg, 57%) after purification as 

the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.99 (t, J = 1.8 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.70 

(m, 1H), 7.40 (t, J = 7.9 Hz, 1H), 3.41 (t, J = 7.0 Hz, 2H), 3.01 – 2.94 (m, 2H), 1.71 (m, 4H), 

1.54 – 1.43 (m, 2H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 4.3 min. MS (ESI+): 341.3 + 

343.1 [M+H]+. 
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3-Bromo-N-(2-(tert-butylamino)ethyl)benzamide (81): Compound 81 was prepared from 3-

bromobenzoic acid (0.10 g, 0.50 mmol) and N-(tert-butyl)ethane-1,2-diamine (0.07 g, 0.59 

mmol) by the same procedure as compound 61. The product was obtained as a white solid 

(119 mg, 58%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.05 (m, 1H), 

7.85 (m, 1H), 7.74 – 7.68 (m, 1H), 7.40 (t, J = 7.9 Hz, 1H), 3.70 (t, J = 6.2 Hz, 2H), 3.24 (t, J = 

6.2 Hz, 2H), 1.39 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 299.1 + 301.1 

[M+H]+. 

 

N-(3-(Tert-butylamino)propyl)benzamide (82): Compound 82 was prepared from benzoic acid 

(0.10 g, 0.82 mmol) and N-(tert-butyl)propane-1,3-diamine (0.13 g, 0.98 mmol) by the same 

procedure as compound 61. The product was obtained as a clear oil (192 mg, 67%) after 

purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.85 (m, 2H), 7.59 – 7.54 (m, 1H), 

7.51 – 7.45 (m, 2H), 3.53 (t, J = 6.5 Hz, 2H), 3.04 (t, J = 7.3 Hz, 2H), 2.05 – 1.92 (m, 2H), 1.39 

(s, 9H). LC-MS (λ = 254 nm): 96%, tR = 3.4 min. MS (ESI+): 235.2 [M+H]+. 

 

4-Bromo-N-(3-(tert-butylamino)propyl)benzamide (83): Compound 83 was prepared from 4-

bromobenzoic acid (0.10 g, 0.50 mmol) and N-(tert-butyl)propane-1,3-diamine (0.10 g, 0.74 

mmol)  by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(120 mg, 56%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.76 (d, J = 8.6 

Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 3.50 (t, J = 6.5 Hz, 2H), 3.03 (t, J = 7.4 Hz, 2H), 2.04 – 1.93 
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(m, 2H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.7 min. MS (ESI+): 313.1 + 315.1 

[M+H]+. 

 

2-Bromo-N-(3-(tert-butylamino)propyl)benzamide (84): Compound 84 was prepared from 2-

bromobenzoic acid (0.10 g, 0.50 mmol) and N-(tert-butyl)propane-1,3-diamine (0.08 g, 0.60 

mmol) by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(191 mg, 55%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.64 (m, 1H), 

7.45 – 7.40 (m, 2H), 7.36 (m, 1H), 3.50 (t, J = 6.2 Hz, 2H), 3.17 – 3.07 (m, 2H), 2.06 – 1.95 (m, 

2H), 1.38 (s, 9H). LC-MS (λ = 254 nm): 95%, tR = 3.3 min. MS (ESI+): 313.1 + 315.1 [M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-3-chlorobenzamide (85): Compound 85 was prepared from 3-

chlorobenzoic acid (0.10 g, 0.64 mmol) and N-(tert-butyl)propane-1,3-diamine (0.10 g, 0.76 

mmol) by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(115 mg, 47%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.86 (m, 1H), 

7.77 (m, 1H), 7.55 – 7.51 (m, 1H), 7.44 (m, 1H), 3.51 (t, J = 6.5 Hz, 2H), 3.03 (t, J = 7.4 Hz, 

2H), 2.05 – 1.94 (m, 2H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 

269.2 [M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-3-fluorobenzamide (86): Compound 86 was prepared from 3-

fluorobenzoic acid (0.10 g, 0.71 mmol) and N-(tert-butyl)propane-1,3-diamine (0.11 g, 0.85 
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mmol) by the same procedure as compound 61.  The product was obtained as a clear yellow oil 

(68 mg, 26%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.68 (d, J = 7.8 

Hz, 1H), 7.61 – 7.56 (m, 1H), 7.49 (td, J = 8.0, 5.7 Hz, 1H), 7.29 (td, J = 8.4, 2.5 Hz, 1H), 3.52 

(t, J = 6.5 Hz, 2H), 3.04 (t, J = 7.4 Hz, 2H), 2.06 – 1.94 (m, 2H), 1.38 (s, 9H). LC-MS (λ = 254 

nm): 99%, tR = 3.1 min. MS (ESI+): 253.2 [M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-3-iodobenzamide (87): Compound 87 was prepared from 3-

iodobenzoic acid (0.10 g, 0.40 mmol) and N-(tert-butyl)propane-1,3-diamine (0.06 g, 0.99 

mmol) by the same procedure as compound 61. The product was obtained as a clear yellow oil 

(90 mg, 47%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.20 (t, J = 1.6 

Hz, 1H), 7.91 – 7.81 (m, 2H), 7.23 (t, J = 7.8 Hz, 1H), 3.50 (t, J = 6.5 Hz, 2H), 3.03 (t, J = 7.4 

Hz, 2H), 2.04 – 1.93 (m, 2H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 

361.1 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-3-methylbenzamide (86): Compound 86 was prepared from 3-

methylbenzoic acid (0.10 g, 0.73 mmol) and N-(tert-butyl)propane-1,3-diamine (0.114 g, 0.88 

mmol) by the same procedure as compound 61.  The product was obtained as a pale yellow solid 

(216 mg, 57.7%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.69 – 7.66 (m, 

1H), 7.64 (m, 1H), 7.37 – 7.30 (m, 2H), 3.51 (t, J = 6.5 Hz, 2H), 3.03 (t, J = 7.4 Hz, 2H), 2.38 (s, 

3H), 2.00 (dd, J = 7.3, 6.3 Hz, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.7 min. MS 

(ESI+): 250.2 [M+H]+. 
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N-(3-(Tert-butylamino)propyl)-3-isopropylbenzamide (89): Compound 89 was prepared from 

3-isopropylbenzoic acid (95 mg, 0.58 mmol) and N-(tert-butyl)propane-1,3-diamine (0.1 g, 0.73 

mmol) by the same procedure as compound 61. The product was obtained as a clear oil (171 mg, 

76%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 7.75 (t, J = 1.8 Hz, 1H), 

7.67 (dt, J = 7.4, 1.6 Hz, 1H), 7.42 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 3.53 (t, J = 6.5 Hz, 2H), 

3.04 (t, J = 7.3 Hz, 2H), 2.95 (m, 1H), 2.07 – 1.95 (m, 2H), 1.38 (s, 9H), 1.26 (d, J = 6.9 Hz, 

6H). LC-MS (λ = 254 nm): 99%, tR = 4.2 min. MS (ESI+): 277.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-4-ethylbenzamide (90): Compound 90 was prepared from 4-

ethylbenzoic acid (0.104 g, 0.69 mmol) and N-(tert-butyl)propane-1,3-diamine (0.108 g, 0.83 

mmol) by the same procedure as compound 61.  The product was obtained as a yellow solid 

(230 mg, 97.1%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.78 (m, 2H), 

7.29 (d, J = 8.4 Hz, 2H), 3.52 (t, J = 6.4 Hz, 2H), 3.02 (t, J = 7.3 Hz, 2H), 2.68 (q, J = 7.6 Hz, 

2H), 2.00 (m, 2H), 1.37 (s, 9H), 1.23 (t, J = 7.6 Hz, 3H).LC-MS (λ = 254 nm): 99%, tR = 3.9 

min. MS (ESI+): 264.2 [M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-3-(trifluoromethyl)benzamide (91): Compound 91 was 

prepared from 3-(trifluoromethyl)benzoic acid (0.10 g, 0.48 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.08 g, 0.63 mmol) by the same procedure as compound 61. The product was 
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obtained as a clear oil (193 mg, 97%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD) δ 8.17 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.68 (t, J = 7.8 Hz, 

1H), 3.55 (t, J = 6.5 Hz ,2H), 3.06 (t, J = 7.5 Hz, 2H), 2.02 (m, 2H), 1.40 (s, 9H). LC-MS (λ = 

254 nm): 99%, tR = 4.1 min. MS (ESI+): 303.2 [M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-4-(trifluoromethyl)benzamide (92): Compound 92 was 

prepared from 4-(trifluoromethyl)benzoic acid (0.10 g, 0.48 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.09 g, 0.72 mmol) by the same procedure as compound 61. The product was 

obtained as a clear oil (128 mg, 64%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD) δ 8.03 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 3.54 (t, J = 6.6 Hz, 2H), 3.06 (t, J = 

7.5 Hz, 2H), 2.02 (m, 2H), 1.39 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 4.1 min.MS (ESI+): 

303.2 [M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-3-nitrobenzamide (93): Compound 93 was prepared from 3-

nitrobenzoic acid (0.10 g, 0.6 mmol) and N-(tert-butyl)propane-1,3-diamine (0.09 g, 0.73 mmol) 

by the same procedure as compound 61. The product was obtained as a yellow solid (43 mg, 

18%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.71 (t, J = 2.0 Hz, 1H), 

8.41 (m, 1H), 8.25 (m, 1H), 7.75 (t, J = 8.0 Hz, 1H), 3.56 (t, J = 6.6 Hz, 2H), 3.11 – 3.04 (m, 

2H), 2.02 (m, 2H), 1.39 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.5 min. MS (ESI+): 280.2 

[M+H]+. 
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3-amino-N-(3-(tert-butylamino)propyl)benzamide (94): To a solution of 93 (129 mg, -.46 

mmol) in 10 mL MeOH was added 0.146 g (2.3 mmol) ammonium formate and ~0.02 g of 

Pd/carbon. The reaction was stirred overnight at rt, then filtered and purfied at compound 61.  

1H NMR (400 MHz, cd3od) δ 7.88 (m, 2H), 7.61 (m, 1H), 7.54 (m, 1H), 3.54 (t, J = 6.5 Hz, 2H), 

3.05 (t, J = 7.5 Hz, 2H), 2.01 (m, 2H), 1.38 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 2.7 min. MS 

(ESI+): 251.2 [M+H]+. 

 

 

N-(3-(tert-butylamino)propyl)-3-methoxybenzamide (95): Compound 95 was prepared from 

3-methoxybenzoic acid (0.10 g, 0.65 mmol) and N-(tert-butyl)propane-1,3-diamine (0.103 g, 

0.79 mmol) by the same procedure as compound 61. The product was obtained as a pale yellow 

oil (184 mg, 61.3%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.41 (m, 

2H), 7.37 (dd, J = 11.7, 4.0 Hz, 1H), 7.09 (m, 1H), 3.82 (s, 3H), 3.51 (t, J = 6.5 Hz, 2H), 3.03 (t, 

J = 7.4 Hz, 2H), 2.05 – 1.95 (m, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS 

(ESI+): 266.2 [M+H]+. 

 

3-benzoyl-N-(3-(tert-butylamino)propyl)benzamide (96): Compound 96 was prepared from 3-

benzoylbenzoic acid (0.10 g, 0.43 mmol) and N-(tert-butyl)propane-1,3-diamine (0.069 g, 0.52 

mmol) by the same procedure as compound 61. The product was obtained as a clear oil (72 mg, 
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34%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.17 (s, 1H), 8.12 (d, J = 

7.9 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 3.55 (t, J = 6.5 Hz ,2H), 3.06 (t, J 

= 7.5 Hz, 2H), 2.02 (m, 2H), 1.40 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 4.2 min. MS (ESI+): 

340.2 [M+H]+.  

 

N-(3-(tert-butylamino)propyl)-2-naphthamide (97): Compound 97 was prepared from 2-

naphthoic acid (0.10 g, 0.58 mmol) and N-(tert-butyl)propane-1,3-diamine (0.091 g, 0.69 mmol) 

by the same procedure as compound 61. The product was obtained as a yellow solid (232 mg, 

98.7%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.40 (d, J = 0.8 Hz, 1H), 

7.89 (m, 4H), 7.54 (m, 2H), 3.57 (t, J = 6.5 Hz, 2H), 3.04 (t, J = 7.3 Hz, 2H), 2.03 (m, 2H), 1.36 

(s, 9H).LC-MS (λ = 254 nm): 99%, tR = 4.2 min. MS (ESI+): 286.2 [M+H]+.  

 

N-(3-(tert-butylamino)propyl)picolinamide (98): Compound 98 was prepared from nicotinic 

acid (0.10 g, 0.81 mmol) and N-(tert-butyl)propane-1,3-diamine (0.16 g, 0.97 mmol) by the same 

procedure as compound 61. The product was obtained as a clear yellow oil (68 mg, 35.6%) after 

purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.93 (d, J = 6.0 Hz, 2H), 8.24 (d, J = 

6.3 Hz, 2H), 3.56 (t, J = 6.6 Hz, 2H), 3.12 – 3.04 (m, 2H), 2.08 – 1.96 (m, 2H), 1.37 (s, 9H).LC-

MS (λ = 254 nm): 99%, tR = 2.2 min. MS (ESI+): 237.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)picolinamide (99): Compound 99 was prepared from picolinic 

acid (0.10 g, 0.81 mmol) and N-(tert-butyl)propane-1,3-diamine (0.127 g, 0.97 mmol) by the 
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same procedure as compound 61. The product was obtained as a clear yellow oil (232 mg, 

65.7%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.64 (m, 1H), 8.11 (d, J 

= 7.8 Hz, 1H), 7.98 (m, 1H), 7.57 (m, 1H), 3.56 (t, J = 6.5 Hz, 2H), 3.05 (t, J = 7.5 Hz, 2H), 2.02 

(td, J = 13.2, 6.9 Hz, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 2.9 min. MS (ESI+): 

237.2 [M+H]+.  

 

4-Bromo-N-(3-(tert-butylamino)propyl)picolinamide (100): Compound 100 was prepared 

from 4-bromopicolinic acid (0.13 g, 0.65 mmol) and N-(tert-butyl)propane-1,3-diamine (0.1 g, 

0.78 mmol) by the same procedure as compound 61. The product was obtained as a yellow solid 

(43 mg, 14%) after purification as the TFA salt. 1H NMR (400 MHz, CD3OD) δ 8.92 (d, J = 5.4 

Hz, 1H), 8.34 (s, 1H), 7.89 (d, J = 4.9 Hz, 1H), 3.58 (t, J = 6.5 Hz, 2H), 3.04 (t, J = 7.5 Hz, 2H), 

2.02 (m, 2H), 1.38 (s, 9H). LC-MS (λ = 254 nm): 98%, tR = 3.6 min. MS (ESI+): 314.1 + 316.1 

[M+H]+. 

 

N-(3-(Tert-butylamino)propyl)-4-(trifluoromethyl)picolinamide (101): Compound 101 was 

prepared from 4-(trifluoromethyl)picolinic acid (0.10 g, 0.52 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.08 g, 0.63 mmol) by the same procedure as compound 61.  The product was 

obtained as a yellow solid (40 mg, 18%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD) δ 8.91 (d, J = 5.0 Hz, 1H), 8.33 (s, 1H), 7.89 (d, J = 5.0, 1H), 3.58 (t, J = 6.5 Hz, 2H), 

3.11 – 3.02 (m, 2H), 2.07 – 1.96 (m, 2H), 1.38 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.9 min. 

MS (ESI+): 304.2 [M+H]+. 
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2-amino-3-bromo-N-(3-(tert-butylamino)propyl)benzamide (102): Compound 102 was 

prepared from 2-amino-3-bromobenzoic acid (0.15 g, 0.69 mmol) and N-(tert-butyl)propane-1,3-

diamine (0.108 g, 0.83 mmol) by the same procedure as compound 61. The product was obtained 

as a clear red oil (53 mg, 17.4%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

0.00 (t, J = 7.4, 7.4 Hz, 2H), 0.00 (d, J = 6.2 Hz, 9H), 0.00 (t, J = 6.5, 6.5 Hz, 2H), 2.02 – 1.92 

(m, 2H), 0.00 (dd, J = 7.9, 1.4 Hz, 1H), 0.00 (dd, J = 7.8, 1.4 Hz, 1H), 0.00 (t, J = 7.9, 7.9 Hz, 

1H).LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 229.2 [M+H]+. 

 

4-amino-3-bromo-N-(3-(tert-butylamino)propyl)benzamide (103): Compound 103 was 

prepared from 4-amino-3-bromobenzoic acid (0.1 g, 0.46 mmol) and N-(tert-butyl)propane-1,3-

diamine (0.072 g, 0.55 mmol) by the same procedure as compound 61. The product was obtained 

as a clear orange oil (37 mg, 18.1 %) after purification as the TFA salt. 1H NMR (400 MHz, 

cd3od) δ 7.93 (d, J = 2.1 Hz, 1H), 7.61 (dd, J = 8.5, 2.1 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 3.47 (t, 

J = 6.4 Hz, 2H), 3.00 (t, J = 7.2 Hz, 2H), 2.01 – 1.90 (m, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 

99%, tR = 3.3 min. MS (ESI+): 329.2 [M+H]+. 
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3-amino-5-bromo-N-(3-(tert-butylamino)propyl)benzamide (104): Compound 104 was 

prepared from 3-amino-5-bromobenzoic acid (0.4 g, 1.8 mmol) and N-(tert-butyl)propane-1,3-

diamine (0.352 g, 2.7 mmol) by the same procedure as compound 61. The product was obtained 

as a tan oil (260 mg, 42.7 %) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

7.13 (t, J = 1.5 Hz, 1H), 7.01 (m, 1H), 6.96 (t, J = 1.9 Hz, 1H), 3.41 (t, J = 6.7 Hz, 2H), 2.61 (t, J 

= 7.2 Hz, 2H), 1.76 (m, 2H), 1.12 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.3 min. MS (ESI+): 

331.0 [M+H]+. 

 

3-bromo-N-(3-(tert-butylamino)propyl)-5-hydroxybenzamide (105): Compound 105 was 

prepared from 3-bromo-5-hydroxybenzoic acid (0.15 g, 0.69 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.108 g, 0.83 mmol) by the same procedure as compound 61. The product was 

obtained as a white solid (86.2 mg, 42.2 %) after purification as the TFA salt. 1H NMR (400 

MHz, cd3od) δ 7.44 – 7.42 (m, 1H), 7.24 – 7.21 (m, 1H), 7.14 – 7.11 ( m, 1H), 3.48 (t, J = 7.1 

Hz, 2H), 3.02 (t, J = 8.3 Hz, 2H), 1.97 (m, 2H), 1.37 (2, 9H). LC-MS (λ = 254 nm): 99%, tR = 

3.6 min. MS (ESI+): 332.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-4-fluoro-3-methoxybenzamide (106): Compound 106 was 

prepared from 4-fluoro-3-methoxybenzoic acid (0.1 g, 0.58 mmol) and N-(tert-butyl)propane-
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1,3-diamine (0.092 g, 0.71 mmol) by the same procedure as compound 61. The product was 

obtained as a clear oil (87 mg, 37.3 %) after purification as the TFA salt. 1H NMR (400 MHz, 

cd3od) δ 7.95 (dd, J = 8.7, 6.9 Hz, 1H), 6.95 (dd, J = 11.0, 2.4 Hz, 1H), 6.80 (m, 1H), 3.97 (s, 

3H), 3.54 (m, 2H), 3.03 (t, J = 7.2 Hz, 2H), 1.99 (m, 2H), 1.38 (s, 9H).LC-MS (λ = 254 nm): 

99%, tR = 3.6 min. MS (ESI+): 284.2 [M+H]+. 

 

4-bromo-N-(3-(tert-butylamino)propyl)-2-fluorobenzamide (107): Compound 107 was 

prepared from 4-bromo-2-fluorobenzoic acid (0.1 g, 0.46 mmol) and N-(tert-butyl)propane-1,3-

diamine (0.071 g, 0.54 mmol) by the same procedure as compound 61. The product was obtained 

as a pale yellow solid (183 mg, 89.2 %) after purification as the TFA salt. 1H NMR (400 MHz, 

cd3od) δ 7.64 (dd, J = 11.1, 5.3 Hz, 1H), 7.47 (m, 2H), 3.52 (t, J = 6.5 Hz, 2H), 3.06 (m, 2H), 

2.00 (tt, J = 13.3, 6.8 Hz, 2H), 1.38 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 

334.1 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-3,5-bis(trifluoromethyl)benzamide (108): Compound 108 was 

prepared from 3,5-bis(trifluoromethyl)benzoic acid (0.1 g, 0.39 mmol) and N-(tert-

butyl)propane-1,3-diamine (0.074 g, 0.57 mmol) by the same procedure as compound 61. The 

product was obtained as a clear oil (76 mg, 40.6 %) after purification as the TFA salt. 1H NMR 

(400 MHz, CD3OD) δ 8.46 (s, 2H), 8.19 (s, 1H), 3.56 (t, J = 6.1 Hz, 1H), 3.08 (t, J = 8.9 Hz, 
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2H), 2.01 (m, 2H), 1.39 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 4.4 min. MS (ESI+): 372.0 

[M+H]+. 

 

3-(tert-butyl)-N-(3-(tert-butylamino)propyl)-4-hydroxybenzamide (109): Compound 109 

was prepared from 3-(tert-butyl)-4-hydroxybenzoic acid (0.1 g, 0.51 mmol) and N-(tert-

butyl)propane-1,3-diamine (0.080 g, 0.61 mmol) by the same procedure as compound 61. The 

product was obtained as a clear oil (209 mg, 76.3 %) after purification as the TFA salt. 1H NMR 

(400 MHz, cd3od) δ 7.60 (d, J = 2.3 Hz, 1H), 7.39 (dd, J = 8.4, 2.3 Hz, 1H), 6.63 (d, J = 8.4 Hz, 

1H), 3.33 (t, J = 6.4 Hz, 2H), 2.84 (t, J = 7.1 Hz, 2H), 1.82 (m, 2H), 1.22 (d, J = 10.9 Hz, 

18H).LC-MS (λ = 254 nm): 99%, tR = 4.3 min. MS (ESI+): 308.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-2-fluoro-5-(trifluoromethyl)benzamide (110): Compound 110 

was prepared from 2-fluoro-5-(trifluoromethyl)benzoic acid (0.3 g, 1.4 mmol) and N-(tert-

butyl)propane-1,3-diamine (0.23 g, 1.7 mmol) by the same procedure as compound 61. The 

product was obtained as a clear yellow oil (276mg, 63.5 %) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 8.03 (dd, J = 6.4, 2.4 Hz, 1H), 7.86 (m, 1H), 7.43 (m, 1H), 3.55 (t, J = 

6.5 Hz, 2H), 3.08 (m, 2H), 2.02 (tt, J = 13.2, 6.7 Hz, 2H), 1.40 (d, J = 11.7 Hz, 9H).. LC-MS (λ 

= 254 nm): 99%, tR = 3.9 min. MS (ESI+): 322.2 [M+H]+. 
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N1-(tert-butyl)-N3-(4-chloro-6,7-dimethoxyquinazolin-2-yl)propane-1,3-diamine (111): To a 

solution of 2,4-dichloro-6,7-dimethoxyquinazoline (0.15 g, 0.58 mmol) and triethylamine (0.064 

g, 0.63 mmol) in 2 mL dimethylformamide at room temperature was slowly added N-(tert-

butyl)propane-1,3-diamine (0.075 g, 0.58 mmol) and the reaction was stirred overnight. Once the 

reaction had gone to completion via TLC analysis, the reaction mixture was diluted with MeOH, 

concentrated down to a residue, re-suspended in methanol, and dried onto silica. The reaction 

mixture was purified by reverse phase column chromatography using a Teledyne Isco reverse 

phase chromatography column. The product was obtained as a clear yellow oil (133 mg, 49.2%) 

after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.48 (s, 1H), 7.04 (s, 1H), 3.97 

(d, J = 2.0 Hz, 7H), 3.75 (t, J = 6.8 Hz, 2H), 3.19 – 3.08 (m, 2H), 2.18 – 2.03 (m, 2H), 1.39 (s, 

9H).LC-MS (λ = 254 nm): 99%, tR = 3.8 min. MS (ESI+): 355.1 [M+H]+. 

 

N1-(tert-butyl)-N3-(4-chlorofuro[3,2-d]pyrimidin-2-yl)propane-1,3-diamine (112): To a 

solution of 2,4-dichlorofuro[3,2-d]pyrimidine (0.15 g, 0.79 mmol) and triethylamine (0.241 g, 

2.3 mmol) in 2 mL dimethylformamide at room temperature was slowly added N-(tert-

butyl)propane-1,3-diamine (0.103 g, 0.79 mmol) and the reaction was stirred overnight. Once the 

reaction had gone to completion via TLC analysis, the reaction mixture was diluted with MeOH, 
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concentrated down to a residue, re-suspended in methanol, and dried onto silica. The reaction 

mixture was purified by reverse phase column chromatography using a Teledyne Isco reverse 

phase chromatography column. The product was obtained as a yellow solid (237 mg, 49.2%) 

after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.0 (s, 1H), 6.77 (d, J = 1.7 Hz, 

1H), 3.17 – 3.05 (m, 2H), 3.69 (t, J = 5.8, 5.8 Hz, 2H), 2.17 – 2.02 (m, 2H), 1.36 (s, 9H).LC-MS 

(λ = 254 nm): 99%, tR = 3.1 min. MS (ESI+): 283,2 [M+H]+. 

 

N1-(tert-butyl)-N3-(4-chloro-5H-pyrrolo[3,2-d]pyrimidin-2-yl)propane-1,3-diamine (113): 

To a solution of 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine (0.15 g, 0.79 mmol) and 

triethylamine (0.242 g, 2.3 mmol) in 2 mL dimethylformamide at room temperature was slowly 

added N-(tert-butyl)propane-1,3-diamine (0.104 g, 0.79 mmol) and the reaction was stirred 

overnight. Once the reaction had gone to completion via TLC analysis, the reaction mixture was 

diluted with MeOH, concentrated down to a residue, re-suspended in methanol, and dried onto 

silica. The reaction mixture was purified by reverse phase column chromatography using a 

Teledyne Isco reverse phase chromatography column. The product was obtained as a white solid 

(80 mg, 25.3%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.63 (d, J = 3.0 

Hz, 1H), 6.45 (d, J = 3.0 Hz, 1H), 3.80 (t, J = 6.7, 6.7 Hz, 2H), 3.15 (dd, J = 15.2, 7.2 Hz, 2H), 

2.09 – 2.15 (m, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.1 min. MS (ESI+): 284.2 

[M+H]+. 
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5-bromo-N-(3-(tert-butylamino)propyl)furan-2-carboxamide (114): Compound 114 was 

prepared from 5-bromofuran-2-carboxylic acid (0.1 g, 0.52 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.082 g, 0.63 mmol) by the same procedure as compound 61. The product was 

obtained as a pale yellow solid (99 mg, 46.4 %) after purification as the TFA salt. 1H NMR (400 

MHz, cd3od) δ 7.12 (d, J = 3.6 Hz, 1H), 6.60 (d, J = 3.6 Hz, 1H), 3.46 (t, J = 6.5 Hz, 2H), 3.02 

(m, 2H), 1.96 (m, 2H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 3.5 min. MS (ESI+): 306.1 

[M+H]+. 

 

N-(3-(tert-butylamino)propyl)-5-phenylfuran-2-carboxamide (115): Compound 115 was 

prepared from 5-phenylfuran-2-carboxylic acid (0.1 g, 0.53 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.083 g, 0.63 mmol) by the same procedure as compound 61. The product was 

obtained as a clear yellow oil (180 mg, 81.8 %) after purification as the TFA salt. 1H NMR (400 

MHz, cd3od) δ 7.84 (m, 2H), 7.41 (m, 2H), 7.33 (m, 1H), 7.21 (d, J = 3.6 Hz, 1H), 6.90 (d, J = 

3.6 Hz, 1H), 3.52 (t, J = 6.5 Hz, 2H), 3.04 (t, J = 7.4 Hz, 2H), 2.01 (m, 2H), 1.36 (s, 9H).LC-MS 

(λ = 254 nm): 99%, tR = 4.3 min. MS (ESI+): 302.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-2-phenylacetamide (116): Compound 116 was prepared from 

2-phenylacetic acid (0.1 g, 0.65 mmol) and N-(tert-butyl)propane-1,3-diamine (0.084 g, 0.63 
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mmol) by the same procedure as compound 61. The product was obtained as a clear oil (80 mg, 

35.5 %) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.26 (m, 5H), 3.52 (d, J 

= 2.7 Hz, 2H), 3.30 (m, 2H), 2.84 (t, J = 7.4 Hz, 2H), 1.84 (td, J = 13.1, 7.1 Hz, 2H), 1.25 (s, 

9H).LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 250.2 [M+H]+. 

 

2-(3-bromophenyl)-N-(3-(tert-butylamino)propyl)acetamide (117): Compound 117 was 

prepared from 2-(3-bromophenyl)acetic acid (0.1 g, 0.46 mmol) and N-(tert-butyl)propane-1,3-

diamine (0.073 g, 0.56 mmol) by the same procedure as compound 61. The product was obtained 

as a clear oil (85 mg, 41.5 %) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

7.51 (t, J = 1.7 Hz, 1H), 7.41 (m, 1H), 7.29 (dt, J = 7.7, 1.3 Hz, 1H), 7.23 (t, J = 7.7 Hz, 1H), 

3.52 (s, 2H), 3.31 (m, 3H), 2.87 (t, J = 7.4 Hz, 2H), 1.86 (td, J = 13.2, 7.0 Hz, 2H), 1.28 (s, 

9H).LC-MS (λ = 254 nm): 99%, tR = 3.9 min. MS (ESI+): 330.2 [M+H]+. 

 

3-(4-bromophenyl)-N-(3-(tert-butylamino)propyl)propanamide (118): Compound 118 was 

prepared from 3-(4-bromophenyl)propanoic acid (0.1 g, 0.43 mmol) and N-(tert-butyl)propane-

1,3-diamine (0.068 g, 0.52 mmol) by the same procedure as compound 61. The product was 

obtained as a yellow solid (201 mg, 98.5 %) after purification as the TFA salt. 1H NMR (400 

MHz, cd3od) δ 7.40 (m, 2H), 7.14 (m, 2H), 3.25 (t, J = 6.5 Hz, 2H), 2.87 (m, 4H), 2.53 (t, J = 7.5 
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Hz, 2H), 1.82 (m, 2H), 1.32 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 4.3 min. MS (ESI+): 344.2 

[M+H]+. 

 

N-(3-(tert-butylamino)propyl)-1-phenyl-1H-1,2,3-triazole-5-carboxamide (119): Compound 

119 was prepared from 1-phenyl-1H-1,2,3-triazole-5-carboxylic acid (0.1 g, 0.52 mmol) and N-

(tert-butyl)propane-1,3-diamine (0.083 g, 0.63 mmol) by the same procedure as compound 61. 

The product was obtained as a white solid (37 mg, 16.8 %) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 8.20 (s, 1H), 7.54 (m, 5H), 3.43 (t, J = 6.7 Hz, 2H), 2.98 (m, 2H), 1.93 

(m, 2H), 1.30 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.4 min. MS (ESI+): 303.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-2-(phenylamino)thiazole-4-carboxamide (120): Compound 

120 was prepared from 2-(phenylamino)thiazole-4-carboxylic acid (0.1 g, 0.45 mmol) and N-

(tert-butyl)propane-1,3-diamine (0.071 g, 0.54 mmol) by the same procedure as compound 61. 

The product was obtained as a white solid (73 mg, 36.0 %) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 7.62 (m, 2H), 7.50 (s, 1H), 7.33 (m, 2H), 7.01 (m, 1H), 3.53 (t, J = 6.4 

Hz, 2H), 3.02 (t, J = 7.3 Hz, 2H), 1.99 (m, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 4.1 

min. MS (ESI+): 334.2 [M+H]+. 
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4-bromo-N-(3-(tert-butylamino)propyl)benzofuran-2-carboxamide (121): Compound 121 

was prepared from 4-bromobenzofuran-2-carboxylic acid (0.1 g, 0.41 mmol) and N-(tert-

butyl)propane-1,3-diamine (0.065 g, 0.50 mmol) by the same procedure as compound 61. The 

product was obtained as a yellow solid (122 mg, 63.2 %) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 7.58 (dt, J = 8.4, 0.8 Hz, 1H), 7.48 (m, 2H), 7.36 (m, 1H), 3.55 (t, J = 

6.6 Hz, 2H), 3.07 (m, 2H), 2.02 (dd, J = 8.0, 6.9 Hz, 2H), 1.38 (s, 9H).LC-MS (λ = 254 nm): 

99%, tR = 4.4 min. MS (ESI+): 356.1 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)benzo[b]thiophene-2-carboxamide (122): Compound 122 was 

prepared from benzo[b]thiophene-2-carboxylic acid (0.1 g, 0.56 mmol) and N-(tert-

butyl)propane-1,3-diamine (0.087 g, 0.66 mmol) by the same procedure as compound 61. The 

product was obtained as a white solid (168 mg, 74.3 %) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 7.97 (s, 1H), 7.88 (m, 2H), 7.42 (m, 2H), 3.53 (t, J = 6.5 Hz, 2H), 3.05 

(t, J = 7.4 Hz, 2H), 2.01 (dt, J = 13.5, 6.9 Hz, 2H), 1.37 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 

3.9 min. MS (ESI+): 292.2 [M+H]+. 
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N-(3-(tert-butylamino)propyl)benzo[b]thiophene-2-carboxamide (123): Compound 123 was 

prepared from 4-(pyrrolidin-1-yl)benzoic acid (0.1 g, 0.52 mmol) and N-(tert-butyl)propane-1,3-

diamine (0.082 g, 0.62 mmol) by the same procedure as compound 61. The product was obtained 

as a brown solid (173 mg, 79.3 %) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) 

δ 7.72 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 9.0 Hz, 2H), 3.48 (m, 2H), 3.29 (m, 4H), 2.98 (t, J = 7.0 

Hz, 2H), 1.98 (m, 6H), 1.36 (s, 8H).LC-MS (λ = 254 nm): 99%, tR = 4.2 min. MS (ESI+): 305.3 

[M+H]+. 

 

N-(3-(tert-butylamino)propyl)-1,2,3,4-tetrahydronaphthalene-2-carboxamide (124): 

Compound 124 was prepared from 1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (0.1 g, 0.56 

mmol) and N-(tert-butyl)propane-1,3-diamine (0.088 g, 0.67 mmol) by the same procedure as 

compound 61. The product was obtained as a yellow solid (205 mg, 89.9 %) after purification as 

the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.05 (s, 4H), 3.35 (t, J = 6.5 Hz, 2H), 2.97 (dd, J = 

12.5, 5.3 Hz, 3H), 2.90 (m, 1H), 2.84 (m, 2H), 2.63 (m, 1H), 2.05 (m, 1H), 1.90 (m, 2H), 1.83 

(m, 1H), 1.36 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.9 min. MS (ESI+): 290.3 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)chromane-3-carboxamide (125): Compound 125 was prepared 

from chromane-3-carboxylic acid (0.1 g, 0.56 mmol) and N-(tert-butyl)propane-1,3-diamine 

(0.088 g, 0.67 mmol) by the same procedure as compound 61. The product was obtained as a 

yellow oil (217 mg, 95.6 %) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.01 
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- 7.08 (m, 2H), 6.83 (td, J = 7.4, 1.2 Hz, 1H), 6.74 (dd, J = 8.1, 1.0 Hz, 1H), 4.31 (ddd, J = 10.8, 

3.2, 1.8 Hz, 1H), 4.09 (dd, J = 10.7, 8.3 Hz, 1H), 3.33 (m, 2H), 3.06 (dd, J = 17.4, 10.5 Hz, 1H), 

2.92 (m, 4H), 1.88 (m, 2H), 1.33 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.7 min. MS (ESI+): 

292.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-1-(3-fluorophenyl)-2-oxopyrrolidine-3-carboxamide (126): 

Compound 126 was prepared from 1-(3-fluorophenyl)-2-oxopyrrolidine-3-carboxylic acid (0.1 g, 

0.44 mmol) and N-(tert-butyl)propane-1,3-diamine (0.070 g, 0.53 mmol) by the same procedure 

as compound 61. The product was obtained as a clear oil (60 mg, 20.1 %) after purification as 

the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.38 (m, 2H), 7.23 (m, 2H), 3.87 (dt, J = 9.5, 5.1 Hz, 

2H), 3.59 (m, 2H), 3.25 (dt, J = 14.2, 5.8 Hz, 1H), 3.03 (m, 2H), 2.60 (dq, J = 12.8, 8.4 Hz, 1H), 

2.42 (m, 1H), 1.91 (m, 2H), 1.34 (s, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 

337.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-3-(furan-2-yl)benzamide (127): Compound 127 was prepared 

from 3-(furan-2-yl)benzoic acid (0.11 g, 0.59 mmol) and N-(tert-butyl)propane-1,3-diamine 

(0.092 g, 0.713 mmol) by the same procedure as compound 61. The product was obtained as a 

yellow oil (177 mg, 80.4 %) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.18 

(t, J = 1.6 Hz, 1H), 7.83 (ddd, J = 7.8, 1.6, 1.1 Hz, 1H), 7.74 (ddd, J = 7.8, 1.7, 1.1 Hz, 1H), 7.57 

(dd, J = 1.8, 0.6 Hz, 1H), 7.48 (m, 1H), 6.84 (dd, J = 3.4, 0.6 Hz, 1H), 6.52 (dd, J = 3.4, 1.8 Hz, 
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1H), 3.53 (t, J = 6.5 Hz, 2H), 3.03 (t, J = 7.4 Hz, 2H), 2.01 (m, 2H), 1.36 (s, 9H).LC-MS (λ = 

254 nm): 99%, tR = 4.2 min. MS (ESI+): 302.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-2-((2-cyclopentylethyl)amino)-5-(trifluoromethyl)benzamide 

(128): To a solution of 110 (0.051 g, 0.16 mmol) in 4 mL DMSO at room temperature was 

slowly added 2-cyclopentylethan-1-amine (0.019 g, 0.17 mmol) and the reaction was stirred 

overnight. Once the reaction had gone to completion via TLC analysis, the reaction mixture was 

diluted with MeOH, concentrated down to a residue, re-suspended in methanol, and dried onto 

silica. The reaction mixture was purified by reverse phase column chromatography using a 

Teledyne Isco reverse phase chromatography column. The product was obtained as a clear 

yellow oil (45 mg, 27.2%) after purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.82 

(d, J = 1.3 Hz, 1H), 7.53 (dd, J = 8.9, 2.1 Hz, 1H), 6.82 (d, J = 8.9 Hz, 1H), 3.47 (t, J = 6.5 Hz, 

2H), 3.22 (t, J = 7.1 Hz, 2H), 3.04 (t, J = 7.4 Hz, 2H), 1.97 (dt, J = 14.9, 7.4 Hz, 3H), 1.85 (m, 

2H), 1.62 (m, 6H), 1.38 (s, 9H), 1.19 (ddd, J = 8.0, 6.0, 3.3 Hz, 2H).LC-MS (λ = 254 nm): 99%, 

tR = 5.0 min. MS (ESI+): 415.2 [M+H]+. 
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N-(3-(tert-butylamino)propyl)-2-(((1-cyclopentylpiperidin-4-yl)methyl)amino)-5-

(trifluoromethyl)benzamide (129): To a solution of 110 (0.041 g, 0.13 mmol) in 4 mL DMSO 

at room temperature was slowly added (1-cyclopentylpiperidin-4-yl)methanamine (0.026 g, 0.14 

mmol) and the reaction was stirred overnight. Once the reaction had gone to completion via TLC 

analysis, the reaction mixture was diluted with MeOH, concentrated down to a residue, re-

suspended in methanol, and dried onto silica. The reaction mixture was purified by reverse phase 

column chromatography using a Teledyne Isco reverse phase chromatography column. The 

product was obtained as a dark yellow oil (65 mg, 85.5%) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 7.83 (d, J = 1.3 Hz, 1H), 7.54 (dd, J = 8.9, 2.0 Hz, 1H), 6.89 (d, J = 

8.9 Hz, 1H), 3.65 (d, J = 12.5 Hz, 2H), 3.48 (m, 3H), 3.34 (m, 1H), 3.23 (t, J = 7.2 Hz, 2H), 3.00 

(ddd, J = 15.0, 14.2, 4.8 Hz, 4H), 2.14 (m, 4H), 1.99 (m, 3H), 1.82 (dd, J = 9.8, 5.5 Hz, 2H), 1.65 

(m, 6H), 1.40 (m, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.6 min. MS (ESI+): 484.3 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-2-((4-(pyrrolidin-1-yl)butyl)amino)-5-

(trifluoromethyl)benzamide (130): To a solution of 110 (0.071 g, 0.22 mmol) in 4 mL DMSO 

at room temperature was slowly added 4-(pyrrolidin-1-yl)butan-1-amine (0.035 g, 0.24 mmol) 

and the reaction was stirred overnight. Once the reaction had gone to completion via TLC 

analysis, the reaction mixture was diluted with MeOH, concentrated down to a residue, re-
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suspended in methanol, and dried onto silica. The reaction mixture was purified by reverse phase 

column chromatography using a Teledyne Isco reverse phase chromatography column. The 

product was obtained as a red oil (63 mg, 51.2%) after purification as the TFA salt. 1H NMR 

(400 MHz, cd3od) δ 7.81 (d, J = 1.3 Hz, 1H), 7.54 (dd, J = 8.9, 1.9 Hz, 1H), 6.86 (d, J = 8.9 Hz, 

1H), 3.66 (m, 2H), 3.60 (m, 4H), 3.47 (t, J = 6.6 Hz, 2H), 3.31 (ddd, J = 8.7, 5.2, 3.6 Hz, 3H), 

3.24 (dd, J = 9.2, 6.8 Hz, 2H), 3.21 (m, 9H), 3.07 (dt, J = 20.8, 7.8 Hz, 4H), 2.13 (dt, J = 11.3, 

6.5 Hz, 2H), 2.01 (m, 4H), 1.95 (m, 10H), 1.86 (ddd, J = 10.8, 9.4, 5.9 Hz, 2H), 1.75 (dt, J = 

14.4, 7.1 Hz, 2H), 1.37 (d, J = 8.5 Hz, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.7 min. MS (ESI+): 

443.3 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-2-((5-(pyrrolidin-1-yl)pentyl)amino)-5-

(trifluoromethyl)benzamide (131): To a solution of 110 (0.054 g, 0.17 mmol) in 4 mL DMSO 

at room temperature was slowly added 5-(pyrrolidin-1-yl)pentan-1-amine (0.032 g, 0.19 mmol) 

and the reaction was stirred overnight. Once the reaction had gone to completion via TLC 

analysis, the reaction mixture was diluted with MeOH, concentrated down to a residue, re-

suspended in methanol, and dried onto silica. The reaction mixture was purified by reverse phase 

column chromatography using a Teledyne Isco reverse phase chromatography column. The 

product was obtained as a red oil (92 mg, 95.8%) after purification as the TFA salt. 1H NMR 
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(400 MHz, cd3od) δ 7.81 (d, J = 1.2 Hz, 1H), 7.53 (dd, J = 8.9, 1.9 Hz, 1H), 6.84 (d, J = 8.9 Hz, 

1H), 3.65 (d, J = 5.2 Hz, 2H), 3.47 (t, J = 6.5 Hz, 2H), 3.26 (t, J = 6.9 Hz, 2H), 3.19 (m, 2H), 

3.06 (dd, J = 16.7, 9.2 Hz, 4H), 2.14 (m, 2H), 2.00 (m, 4H), 1.76 (m, 4H), 1.54 (dd, J = 15.2, 7.9 

Hz, 2H), 1.37 (d, J = 9.2 Hz, 9H).LC-MS (λ = 254 nm): 99%, tR = 3.9 min. MS (ESI+): 457.3 

[M+H]+. 

 

3-bromo-N-(3-(tert-butylamino)propyl)-N-(1-(cyclohexylamino)-1-oxopropan-2-

yl)benzamide (132): To a solution of 3-bromobenzoic acid (0.1 g, 0.49 mmol) in 4 mL DMSO 

at room temperature was slowly added N1-(tert-butyl)propane-1,3-diamine (0.07 g, 0.52 mmol), 

acetaldehyde (0.03 mL, 0.49 mmol), and lastly cyclohexyl isocyanide (0.06 mL, 0.49 mmol) the 

reaction was stirred overnight. Once the reaction had gone to completion via TLC analysis, the 

reaction mixture was diluted with MeOH, concentrated down to a residue, re-suspended in 

methanol, and dried onto silica. The reaction mixture was purified by reverse phase column 

chromatography using a Teledyne Isco reverse phase chromatography column. The product was 

obtained as a clear yellow oil (161 mg, 69.3%) after purification as the TFA salt. 1H NMR (400 

MHz, cd3od) δ 7.65 (m, 1H), 7.39 (m, 3H), 4.30 (s, 1H), 3.64 (d, J = 37.6 Hz, 3H), 3.12 (s, 2H), 

2.11 (d, J = 21.4 Hz, 2H), 1.43 (m, 24H).LC-MS (λ = 254 nm): 99%, tR = 4.5 min. MS (ESI+): 

470.2 [M+H]+. 
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N-(3-(tert-butylamino)propyl)-N-(1-(cyclohexylamino)-1-oxopropan-2-yl)-3-

iodobenzamidebenzamide (133): To a solution of 3-iodobenzoic acid (0.1 g, 0.49 mmol) in 4 

mL DMSO at room temperature was slowly added N1-(tert-butyl)propane-1,3-diamine (0.07 g, 

0.52 mmol), acetaldehyde (0.03 mL, 0.49 mmol), and lastly cyclohexyl isocyanide (0.06 mL, 

0.49 mmol) the reaction was stirred overnight. Once the reaction had gone to completion via 

TLC analysis, the reaction mixture was diluted with MeOH, concentrated down to a residue, re-

suspended in methanol, and dried onto silica. The reaction mixture was purified by reverse phase 

column chromatography using a Teledyne Isco reverse phase chromatography column. The 

product was obtained as a clear yellow oil (130 mg, 54.3%) after purification as the TFA salt. 1H 

NMR (400 MHz, cd3od) δ 7.85 (ddd, J = 7.9, 1.6, 1.2 Hz, 1H), 7.66 (s, 1H), 7.35 (d, J = 7.3 Hz, 

1H), 7.24 (t, J = 7.8 Hz, 1H), 4.30 (s, 1H), 3.63 (d, J = 32.9 Hz, 3H), 3.11 (s, 2H), 2.07 (m, 2H), 

1.75 (ddd, J = 53.4, 44.7, 11.5 Hz, 5H), 1.37 (m, 14H), 1.19 (s, 3H).LC-MS (λ = 254 nm): 99%, 

tR = 4.7 min. MS (ESI+): 515.2 [M+H]+. 

 

N-(3-(tert-butylamino)propyl)-N-(1-(cyclohexylamino)-1-oxopropan-2-yl)-3-

(trifluoromethyl)benzamide (134): To a solution of 3-(trifluoromethyl)benzoic acid (0.1 g, 0.49 



164 

 

mmol) in 4 mL DMSO at room temperature was slowly added N1-(tert-butyl)propane-1,3-

diamine (0.07 g, 0.52 mmol), acetaldehyde (0.03 mL, 0.49 mmol), and lastly cyclohexyl 

isocyanide (0.06 mL, 0.49 mmol) the reaction was stirred overnight. Once the reaction had gone 

to completion via TLC analysis, the reaction mixture was diluted with MeOH, concentrated 

down to a residue, re-suspended in methanol, and dried onto silica. The reaction mixture was 

purified by reverse phase column chromatography using a Teledyne Isco reverse phase 

chromatography column. The product was obtained as a clear yellow oil (130 mg, 54.3%) after 

purification as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.81 (d, J = 7.7 Hz, 1H), 7.67 (dd, J = 

17.2, 9.5 Hz, 3H), 4.29 (s, 1H), 3.64 (d, J = 49.7 Hz, 3H), 3.13 (s, 2H), 2.09 (m, 2H), 1.74 (d, J = 

13.0 Hz, 4H), 1.63 (d, J = 12.7 Hz, 1H), 1.50 (d, J = 6.0 Hz, 3H), 1.33 (m, 12H), 1.20 (dd, J = 

26.2, 9.5 Hz, 3H).LC-MS (λ = 254 nm): 99%, tR = 4.7 min. MS (ESI+): 458.3 [M+H]+. 

 

2-(4-(Tert-butylamino)butyl)isoindoline-1,3-dione (135): To a solution of 2-(4-

bromobutyl)isoindoline-1,3-dione (0.40 g, 1.43 mmol) in acetonitrile (10 ml) was added N-tert-

butylamine (0.14 ml, 1.34 mmol), potassium carbonate (0.39 g, 2.84 mmol), and sodium iodide 

(0.43 g, 2.83 mmol) and the reaction was stirred overnight at 80°C. After 24 hrs the reaction was 

cooled to room temperature, dried down to a crude residue, dissolved in water (10 ml), and then 

extracted with dichloromethane 3 times.  The organic layers were combined, dried over Na2SO4, 

and filtered.  The crude material was dried onto silica and purified by reverse phase column 

chromatography using a Teledyne Isco reverse phase chromatography column. The product was 
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obtained as a white solid (117 mg, 22%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD)δ 7.85 – 7.78 (m, 4H), 3.74 (t, J = 6.7 Hz, 2H), 3.06 - 3.02 (m, 2H), 1.84 - 1.78 (m, 2H), 

1.73 - 1.65 (s, 2H), 1.36 (s, 9H).  LC-MS (λ = 254 nm): 99%, tR = 3.6 min.  MS (ESI+): 275.2 

[M+H]+. 

 

N-(Tert-butyl)butane-1,4-diamine (136): To a solution of 135 (0.12 g, 0.31 mmol) in 10 mL of 

ethanol was added hydrazine monohydrate (0.03 ml, 0.61 mmol) and stirred for 2 hrs at 80°C.  

The reaction was cooled, dried to a residue, dissolved in chloroform, and filtered. The resulting 

solution was dried onto silica and purified by reverse phase column chromatography using a 

Teledyne Isco reverse phase chromatography column and an ELSD detector. The product was 

obtained as a white solid (34 mg, 29%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD) δ 3.03 – 2.97 (m, 4H), 1.81 – 1.71 (m, 4H), 1.37 (s, 9H). LC-MS (λ = 254 nm): 99%, tR 

= 0.6 min.  MS (ESI+): 145.3 [M+H]+. 

 

 

2-(5-(Tert-butylamino)pentyl)isoindoline-1,3-dione (137): To a solution of 2-(5-

bromopentyl)isoindoline-1,3-dione (0.41 g, 1.37 mmol) in acetonitrile (10 ml) was added N-tert-

butylamine (0.14 ml, 1.34 mmol), potassium carbonate (0.39 g, 2.70 mmol), and sodium iodide 

(0.41 g, 2.74 mmol) and the reaction was stirred overnight at 80°C. After 24 hrs the reaction was 

cooled to room temperature, dried down to a crude residue, dissolved in water (10 ml), and then 

extracted with dichloromethane 3 times.  The organic layers were combined, dried over Na2SO4, 
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and filtered.  The crude material was dried onto silica and purified by reverse phase column 

chromatography using a Teledyne Isco reverse phase chromatography column. The product was 

obtained as a white solid (156 mg, 29%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD) δ 7.85 – 7.78 (m, 4H), 3.70 (t, J = 8.1 Hz, 2H), 2.98 – 2.94 (m, 2H), 1.78 - 1.68 (m, 

4H), 1.52 - 1.42 (m, 2H), 1.36 (s, 9H). LC-MS (λ = 254 nm): 99%, tR = 4.0 min. MS (ESI+): 

289.2 [M+H]+. 

 

N-(Tert-butyl)pentane-1,5-diamine (138): To a solution of 137 (0.16 g, 0.40 mmol) in 10 mL 

of ethanol was added hydrazine monohydrate (0.07 ml, 1.43 mmol) and stirred for 2 hrs at 80°C.  

The reaction was cooled, dried to a residue, dissolved in chloroform, and filtered. The resulting 

solution was dried onto silica and purified by reverse phase column chromatography using a 

Teledyne Isco reverse phase chromatography column and an ELSD detector. The product was 

obtained as a white solid (71 mg, 47%) after purification as the TFA salt. 1H NMR (400 MHz, 

CD3OD) δ 2.99 – 2.92 (m, 4H), 1.75 – 1.67 (m, 4H), 1.53 – 1.46 (m, 2H), 1.37 (s, 9H). LC-MS 

(λ = 254 nm): 99%, tR = 0.6 min. MS (ESI+): 159.2 [M+H]+. 

 

Analytical and structural characterization (LC-MS and NMR) 

Analytical LCMS data for all compounds were acquired using an Agilent 6110 series 

system with the UV detector set to 220 and 254 nm. Samples were injected (<10 µL) onto an 

Agilent Eclipse Plus 4.6 × 50 mm, 1.8 µm, C18 column at room temperature. A mobile phase of 

A (H2O + 0.1% acetic acid) and B (MeOH + 0.1% acetic acid) was used with a linear gradient 

from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a 
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flow rate of 1.0 mL/min. Mass spectra data were acquired in positive ion mode using an Agilent 

6110 single quadrupole mass spectrometer with an electrospray ionization source. Nuclear 

Magnetic Resonance (NMR) spectra were recorded on a Varian Mercury spectrometer at 400 

MHz for proton (1H NMR) and 100 MHz for carbon (13C NMR); chemical shifts are reported in 

ppm (δ). All synthesized peptides were dissolved in deuterated MeOH. 

Protein Expression and Purification 

53BP1, L3MBTL1, L3MBTL3, CBX7, MBTD1, and UHRF1 (tandem tudor-PHD 

construct) were expressed and purified as previously described.[53, 105] The proteins constructs 

for the aforementioned proteins were provided by the Structural Genomics Consortium. PHF1, 

PHF19, PHF23, and JARID1A protein constructs were provided by Greg Wang (UNC) and 

prepared in the same manner. The construct for the 53BP1 D1521A mutant (residues 1484 -

1603) was obtained from George Mer (Mayo Clinic) and was expressed and purified in the same 

manner as 53BP1.[66, 105]  

AlphaScreen assay of synthesized ligands 

The AlphaScreen assay was generally performed as previously described.[105] The 

general method for screening synthesized peptide ligands is as follows. Peptides were weighed 

out as solids and then dissolved in de-ionized water to a concentration of 10 mM. Compounds 

plates were then prepared using an automated liquid handling system. Compound plates (1 µL at 

10 mM highest concentration; 3-fold, 10-point dilutions in DMSO) were then diluted in 1X assay 

buffer (20 mM TRIS pH 8.0, 25 mM NaCl, 2 mM DTT and 0.05% Tween-20) to 1 mM using a 

Multimek robotic pipettor (Nanoscreen) and 1 µL was spotted into the wells of 384-well low-

volume Proxiplates (PerkinElmer). To these plates 9 µL of protein-peptide mix in 1X assay 
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buffer was added by Multidrop (Thermo) to bring the final compound concentration to 100 µM 

and incubated for 30 min at room temperature. Next, 2 µL of a 1:1 mixture of streptavidin-

conjugate donor and nickel-chelate acceptor beads (45 µg/mL in 1X assay buffer) were added 

and the plates were allowed to incubate for an additional 30 min in the dark at room temperature. 

After incubation, the plates were read on an EnVision multi-label reader equipped with an HTS 

AlphaScreen laser (Perkin Elmer). The IC50 values reported are the average of at least 2 values ± 

the standard deviation.  When IC50 values for a single compound were not all active (< 100 µM) 

or inactive (> 100 µM), the IC50 values were calculated using 4-paramter curve fitting (GraphPad 

Prism 5) from replicate runs using averaged response values for each compound concentration. 

Averaged Alphascreening binding curves for UNC2170 (61) and UNC2892 (64) against 

53BP1. The average IC50 for UNC2170 is 28.48 ± 7.44 µM. 

 

 

UNC2170 (61) and UNC2892 (64) selectivity data against the Kme panel.  Both 

compounds were inactive against every panel member up to 500 µM. 



169 

 

 

  

  

 

AlphaScreen proteins and their corresponding peptide substrates. 
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Protein Peptide Peptide sequence 

53BP1 H4K20Me2  Biotin-AHX-KGGAKRHRK(Me2)VLRDNIQ-OH 

L3MBTL1 H4K20Me1  Biotin-AHA-KGGAKRHRK(Me1)VLRDNIQ-OH 

L3MBTL3 H4K20Me2  Biotin-AHX-KGGAKRHRK(Me2)VLRDNIQ-OH 

MBTD1 H4K20Me1 Biotin-AHA-KGGAKRHRK(Me1)VLRDNIQ-OH 

CBX7 H3K9Me3 ARTKQTARK(Me3)STGGKAPRKQL-K(Biotin)-NH2   

UHRF1 H3K9Me3  ARTKQTARK(Me3)STGGKAPRKQL-K(Biotin)-NH2   

PHF23 H3K4Me3 ARTK(Me3)QTARKSTGGKAPRKQYT-K(Biotin)-NH2   

JARID1A H3K4Me3 ARTK(Me3)QTARKSTGGKAPRKQYT-K(Biotin)-NH2   

PHF1 H3K36me3 KSAPSTGGVK(Me3)KPHRYRPGTV-K(biotin)-NH2 

PHF19 H3K36me3 KSAPSTGGVK(Me3)KPHRYRPGTV-K(biotin)-NH2 

 

Isothermal titration calorimetry binding experiments 

All ITC measurements were recorded at 25 °C with an AutoITC200 microcalorimeter 

(MicroCal Inc.). All protein and compound stock samples were prepared in the target buffer (25 

mM Tris-HCl, pH 8, 150 mM NaCl, and 2 mM β-mercaptoethanol), and then diluted in the same 

buffer to achieve the desired concentrations: 90 – 200 µM protein and 1 – 2 mM compound 

depending on the expected dissociation constant. The concentration of protein stock solutions 

were established using the Edelhoch method, whereas 10 mM compound stock solutions were 

prepared gravimetrically based on molecular weight. A typical experiment included a single 0.2 

µL compound injection into a 200 µL cell filled with protein, followed by 25 subsequent 1.5 µL 

injections of compound. Injections were performed with a spacing of 180 seconds and a 

reference power of 8 µcal/sec. The titration data was analyzed using Origin Software (MicroCal 

Inc.) by non-linear least squares, fitting the heats of binding as a function of the 

compound:protein ratio. The data were fit based on a one set of sites model. 
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Competitive In-solution Peptide Pulldown Assays 

A 5 μL slurry of streptavidin magnetic beads (Pierce) was equilibrated in binding buffer 

containing 50 mM Tris-HCl (pH 8.0), 300 mM NaCl, and 0.1% NP-40 before being saturated 

with 500 pmoles of biotinylated peptide for 1 h at room temperature with rotation. Unbound 

peptide was washed with binding buffer.  To pre-complex protein with inhibitor, an 80 pmol 

solution of His-53BP1 TTD (residues 1485-1611) in binding buffer containing 0.5% BSA was 

incubated with rotation at 4C with the indicated concentration of UNC2170 or vehicle (H2O). 

The pre-complex was combined with peptide-saturated resin and incubated for 3 h at 4 °C with 

rotation. Unbound protein was collected and bound protein was washed with binding buffer 

before being eluted from beads by boiling in 1x SDS loading buffer. Proteins were detected with 

α-His antibody (Bethyl). 

Fluorescence recovery after photobleaching assay 

FRAP techniques 
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FRAP experiments were conducted based on literature procedures[77, 83, 114, 115], 

using a Zeiss CLSM 700 confocal laser scanning microscope equipped with a 20x oil objective 

and Bioptechs open dish live cell imaging system (maintained at 37°C with low CO2 

atmosphere). FRAP experiments were conducted 24hr after transfection with GFP-tagged 

plasmid. Time-lapse image acquisition was performed on cell nuclei containing GFP-53BP1 

tudor domain. Initially 53BP1 foci were scanned for 10 cycles at a 1 sec time interval and then 

photobleached for 20 iterations using a 405 ʎ laser set at 100% power and then scanned for 200 

additional iterations after photobleaching. All confocal and FRAP experimental data and images 

were acquired and processed using Zess ZEN2011 software package with the recovery time 

obtained by fitting a single exponential equation. Each data point for recovery measurements was 

derived from the mean intensities of 3-4 different foci measurements from 3-5 different cells per 

experimental condition. 

Cell culture 

Human U2OS were seeded onto 25-mm round cover-slips at ~9x105 cell/mL and cultured 

overnight at 39.5°C, 5% CO2 in McCoy’s medium with 10% FBS. The cells were then 

transiently transfected with a GFP-tagged 53BP1 tudor domain containing residues 1146 – 1709 

which also encompasses the UDR, Accession #: NP_001135452.1 provided by the Bedford lab 

(MD Anderson); approximately 1 µg using Lipofectamine® 2000 (Life Technologies) and 

incubated overnight with or without treatment of 61 (UNC2170) at varying concentrations. After 

24 hrs post transfection and compound treatment, the media was changed and then the cells were 

subjected to FRAP experiments. 
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Ionizing radiation dosing experiments 

All IR treatments were conducted using a Rad Source Technology RS2000 X-ray unit 

located in the UNC-CH Lineberger Comprehensive Cancer Center. U2OS cell cultures that were 

dosed with either 2, 5, or 10 Gy of IR for instrument calibrated periods of time under standard X-

ray safety conditions. Once IR-treatment was completed inside of the RS200), IR-damaged cell 

cultures were then incubated 1 hr prior to FRAP experiments using confocal microscopy. 

Protein NMR experiments 

All NMR spectra were recorded at 298 K using a Bruker Avance III 700 MHz 

spectrometer equipped with a cryoprobe. The 53BP1-Tudor samples were in 25 mM sodium 

phosphate buffer at pH 7.5, 90% H2O/10% D2O, 0.3 mM 4,4-dimethyl-4-silapentane-1-sulfonic 

acid (DSS), 1.5 mM NaN3. 
1H-15N HSQC-based NMR titrations were conducted by gradual 

addition of 10 mM UNC2170 to 15N-labeled 53BP1-tudor prepared at a starting concentration of 

0.3 mM. The NMR spectra were processed and analyzed using NMRPipe and NMRView.[116, 

117] 

X-ray co-crystallization 

Protein Expression and Purification 

The expression construct for 53BP1 tudor domain (residues 1438 – 1603) in pET28-MHL 

vector was transformed into BL21(DE3)-V2R-pRARE2 cells. The cells were incubated in 

Terrific Broth medium (TB) in the presence of 50 µg/mL kanamycin and 34 µg/mL 

chloramphenicol at 37 °C. When the OD600 reached 1.5, the overexpression of 53BP1 was 

induced by addition of isopropyl-1-thio-D-galactopyranoside (IPTG), final concentration 0.5 



174 

 

mM, and incubated overnight at 16 °C. Next day, the cells were harvested by centrifugation at 

12,227 × g (10 min, 4C) and the cell pellets were flash frozen in liquid N2 and stored at -80°C. 

The cell pellet (18.8 g) was thawed and resuspended in 190 mL of lysis buffer (20 mM 

HEPES, pH 7.5, 500 mM NaCl, 5 mM imidazole, 0.5 mM TCEP, and 5% glycerol). The cell 

suspension was supplemented with 0.5% (w/v) CHAPS, 5 µl of benzonase (EMD Millipore, cat. 

no. 70746), protease inhibitor cocktail (Roche) and the cells were sonicated on ice for 5 min total 

(10 s pulses with 5s interruptions). The lysate was clarified by centrifugation at 20,000 × g, 4°C, 

60 min and the resulting supernatant was filtered through 0.45 µm filter and applied onto 5 mL 

HisTrap HP column (GE). The column was washed with 10 CV of wash buffer (20 mM HEPES, 

pH 7.5, 500 mM NaCl, 40 mM imidazole, 0.5 mM TCEP, and 5% glycerol) and the protein was 

eluted using elution buffer (20 mM HEPES, pH 7.5, 500 mM NaCl, 250 mM imidazole, 0.5 mM 

TCEP, and 5% glycerol). TEV protease was added to the eluted protein (at ratio of 1 mg of TEV 

protease per 50 mg protein), and incubated overnight at 4°C during dialysis against 20 mM 

HEPES, pH 7.5, 500 mM NaCl, 0.5 mM TCEP, and 5% glycerol. The uncleaved protein (and 

His-tagged TEV protease) were removed by passing through 1 mL HisTrap HP column (GE). 

The cleaved protein was collected in the flow-through fraction. As the final purification step, the 

cleaved protein was applied on 16/600 Superdex 200 (GE) column equilibrated with 20 mM 

HEPES, pH 7.5, 150 mM NaCl, 0.5 mM TCEP. Final purification yield was 25 mg of protein per 

1 L of culture and the purity of the protein was over 95%. The MW (14,103.9 Da) of the purified 

construct was confirmed by LC/MSD TOF (Agilent). 

Crystallization 

Purified 53BP1 (42 mg/mL) in 20 mM HEPES, pH 7.5, 150 mM NaCl, 0.5 mM TCEP 

was pre-incubated with 10 mM UNC2170 (dissolved in water) and the best crystals were 
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obtained by vapor diffusion technique at 20°C in sitting drops by mixing 1 µL of protein solution 

with 1 µL of reservoir solution containing 19% PEG3350, 150 mM DL-malic acid pH 7.2. For 

cryoprotection, the crystals were soaked in the reservoir solution supplemented with 15% 

ethylene glycol (v/v) for 60 s before flash freezing in liquid N2. 

X-ray Data Collection and Structure Determination 

X-ray diffraction data for 53BP1 + UNC2170 was collected at 100K at beam line 19ID of 

Advanced Photon Source (APS), Argonne National Laboratory. Data sets were processed using 

the HKL-3000 suite[118]. The structures of 53BP1 + UNC2170 was solved by molecular 

replacement using PHASER[119] with PDB entry 2G3R as the search template. REFMAC[120] 

and MOLPROBITY[93] were used for structure refinement. Geometry constraints for the 

compound refinement were prepared with GRADE{Smart, 2011 #160} developed at Global 

Phasing Ltd. Graphics program COOT[121] was used for model building and visualization.  

Crystallography data and refinement statistics 

 53BP1+UNC2170  

PDB Code  4RG2  
DATA COLLECTION   
Space group C2221  
Cell dimensions   
     a, b, c (Å) 73.5, 100.5, 83.3  

     α, β, γ ()  90.0,90.0,90.0  

Resolution (Å) (highest resolution shell) 50.00-1.50(1.53-1.50)  

Measured reflections 377996  

Unique reflections 48740  

Rmerge 4.9(67.0)  
I/Σi 45.0  
Completeness(%) 98.1(82.9)  
Redundancy 7.8(5.8)  
REFINEMENT   
Resolution (Å) 50.0-1.50  
No. reflections (test set) 47270(1433)  
Rwork/ Rfree (%) 22.3/19.8  
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No. atoms   
     Protein 2064  
     Ligand 36  
     Water 199  
B-factors (Å2)   
     Protein 29.0  
     Ligand 21.1  
     Water 35.9  
RMSD   
     Bond lengths (Å)  0.009  
     Bond angles (º) 1.350  
Ramachandran plot % residues   
     Favored 98.2  
     Additional allowed 1.8  
     Generously allowed 0  
     Disallowed 0  

 

Class-Switch Recombination assay 

Mice and Cells: B cell isolation and culture have been previously described [122]. In 

brief, primary naïve B-lymphocytes from WT C57/BL6 mouse spleens were purified by negative 

selection with anti-CD43 beads (Miltenyi Biotec) and cultured in RPMI 1640, 1 mM sodium 

pyruvate, 10% fetal bovine serum (Atlanta Biologicals,), 50 uM 2-mercaptoethanol, 25 μg/ml 

Lipopolysaccharide(LPS) and 5 ng/ml IL-4 (Sigma-Aldrich). Inhibitors were added at 12 hours 

culture and cells were analyzed 72 hours later.  

Class switch recombination assay: Cultured splenocytes were stained with anti–mouse IgG1 

antibodies (BD). Dead cells were excluded on the basis of forward-side scatter and propidium 

iodide staining. Cells were analyzed on a LSRFortessa (BD) and data was analyzed with FloJo 

software.  Data is the summary of triplicate culture analysis of 100uM (n=4), 75uM (n=3) and 

30uM (n=3) independent experiments. Statistical significance was determined by a two-tailed 

Student's t test assuming unequal variance, p values indicated. 
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Chromatin fractionation assay 

Chromatin was isolated from HEK293 cells.  Cells were lysed in EBC-1 buffer (Tris pH 

7.5, 100mM NaCl, 0.5% NP-40, 1mM EDTA), nuclear pellets were collected, washed in EBC-1 

and resuspended in EBC-2 (Tris pH7.5, 300mM NaCl, 5mM CaCl2) for 30 minutes.  The 

insoluble chromatin was pelleted and resuspended in EBC-2 for use in the release assay.  This 

chromatin was incubated with the indicated concentration of compounds for 2 hrs at RT.  The 

supernatant was collected and analyzed as the soluble fraction while the remaining pellet was 

resuspended in loading buffer, sonicated, and analyzed as the chromatin bound fraction. Anti-

53BP1 (Sigma B4436) and anti-histone 3 (loading control) were used in western blots. 

Foci formation assay 

U2OS cells were seeded on a cover-slip 24 h prior to the experiment. Cells were pre-

treated with 100 μM of the compound for 1h and then exposed to 5 Gy of ionizing radiation (IR) 

using a RS-2000 Biological Irradiator (Rad Source), or not treated. Cells were rinsed with cold 

PBS at the indicated times after IR and fixed with 3% formaldehyde (Sigma), followed by 

permeabilization with 0.5% Triton X-100 (Sigma) and blocking with 10% FCS (Hyclone). The 

foci staining was performed in 10% FCS in PBS (anti-γH2AX from Millipore #05-636 and anti-

53BP1 from Bethyl Labs #A300-272A at a 1:1000 dilution) for 1h at room temperature followed 

by 3 washes with PBS. Cells were incubated with secondary antibodies conjugated to AlexaFluor 

488 (Invitrogen) for green and to Alexa Fluor 596 (Invitrogen) for red foci staining. Secondary 

antibodies were diluted 1:500 in 10% FCS in PBS and the coverslips were incubated for 1 h at 

room temperature. Coverslips were washed 3 times with PBS and air-dried. After drying, the 

coverslips were mounted on glass slides using ProLong Gold with DAPI (Invitrogen) and 
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pictures were taken using a Zeiss LSM510 META confocal microscope (63x oil objective). Foci 

quantification was performed using ImageJ software and at least 150 cells per time point were 

analyzed per experiment for the calculation. 

Cell permeability 

Bi-directional Caco-2 Cell Permeability Assay: This cellular permeability assay was 

conducted by Absorption Systems (Exton, PA). Assay parameters are available through their 

website at http://www.absorption.com . The assay results for UNC2170 (1) for the bi-directional 

assay are below, where A is the top aqueous cellular layer and B is lower cellular layer. 

 

Test 

Article 

Direction Recovery 

(%) 

Papp (10-6 cm/s) Efflux 

Ratio 

Permeability 

Classification 

Significant 

Efflux R1 R2 AVG 

UNC2170 A-to-B 93 19.3 17.5 18.4  

1.2 

 

High 

 

No B-toA 92 20.6 22.0 21.3 

 
Interpretation and Advancement Potential: 
Permeability classification:   (Papp A-B) < 1.0 x 10-6 cm/s: Low 
          (Papp B-A) ≥ 1.0 x 10-6 cm/s: High 
Significant Efflux:         Efflux ration ≥ 2.0 and (Papp B-A) ≥ 1.0 x 1.0 x 10-6 cm/s 
Overall: 
 

 

Cell toxicity 

The effect of 61 (UNC2170) and negative control analog 64 (UNC2892) on cell viability 

was determined using a CellTiter-Glo ATP detection system (Promega #7573).  Ten-point, 1:3 

dilution curves of compounds starting at 100 µM final concentration were diluted to 5X final 

concentration in PBS (vehicle control) and then 5 µL were added to 384-well white, clear bottom 

Compound Permeability Classification Significant Efflux 

UNC2170 High No 

http://www.absorption.com/
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tissue culture plates (Corning #3707) with a Multimek automated liquid handling device 

(Nanoscreen, Charleston, SC).  Twenty µl of low passage, subconfluent HEK293T (ATCC CRL-

11268) grown in Dulbecco’s Modified Eagle’s Medium without phenol red (Gibco #31053) and 

supplemented with 10% Fetal Bovine Serum (GIBCO #26140) were immediately added at a 

density of 2,500 cells per well using a Multidrop 384 (Thermo-Fisher ).  Cell plates were 

incubated for 48 hours at 37°C and 5% CO2, and then lysed with 25 µl of CellTiter-GloTM 

reagent.  Luminescence was measured on an Envision platereader (Perkin Elmer) after 15 

minutes at room temperature. 

Future Work 

The findings described above show that development of a small molecule inhibitor for 

the 53BP1 TTD has proven challenging. Future efforts towards inhibitor optimization will need 

to take into account the protein dimerization effect that was observed in both X-ray co-

crystallization and suggested by protein NMR studies. It would be optimal to develop an 

inhibitor that bound in a 2:1 protein to ligand ratio. The two described approaches below may 

allow for such an inhibitor to be obtained as their unique structural properties would potentially 

have the ability to prevent protein dimerization. 

A small molecule/peptide like inhibitor as described in Figure 2.22 would incorporate 61 

(UNC2170) with the addition of an amino acid residue. It has been shown that the N-tert butyl 

group of incorporate 61 (UNC2170) mimics the H4K20me2 residue of the endogenous peptide 

and it is proposed that the large 3-bromo group mimics the H4V21 residue. An analog that could 

synthetically incorporate a leucine residue off of the aromatic ring may have the potential to 

further mimic the H4L22 residue on the endogenous peptide substrate. Such an inhibitor would 
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have the potential to prevent protein dimerization by fully engaging the acidic/hydrophobic 

pocket and possess enough steric bulk to prevent a second 53BP1 TTD protein from dimerizing. 

A second approach would focus on the aliphatic propyl chain of 61 (UNC2170). It was 

observed that the propyl chain is sandwiched between the two proteins in the dimer. If an 

aliphatic or hydrogen bond donor group could be introduced into that chain at the 2-position, 

then dimerization could be prevented. Use of an oxirane containing pthalamide starting material 

would allow for two different routes to be approached to obtain the final aliphatic functionalized 

inhibitor. 
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Figure 2.22: Future proposed 53BP1 TTD inhibitors 
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Fragment Based Screen for Improvement of 53BP1 Ligands 

Rationale 

Early structure-based drug design efforts towards development of a small molecule 

inhibitor of 53BP1 TTD unfortunately did not provide a highly potent molecule (Chapter 2, 

sections B and C). Efforts were successful in increasing the potency of the known fragment-like 

small molecule ligand (UNC2170), yet a more potent molecule was desired. Alternative methods 

toward discovering a more potent molecule, or discovering an additional molecular fragment that 

could be coupled to UNC2170 were desired. These efforts were conducted in parallel with on-

going UNC2170 SAR efforts and it was decided to use a known small molecule ligand of 53BP1 

TTD as a basis for this new small molecule fragment screen. Initially, when this fragment-based 

screen was developed, an x-ray co-crystal of UNC2170 and the 53BP1 TTD was not solved and 

the true binding pose of the small molecule ligand was unknown.  Because of the modest affinity 

of UNC2170 (29 ± 7.4 μM) and its fragment-like nature (MW = 313.24, ligand efficiency = 0.35, 

lipophilic ligand efficiency = 1.5)[106, 107], it was hypothesized that it could be used in a 

fragment screen to identify other small molecule fragments that worked in a synergistic manner 

to further inhibit 53BP1 TTD.  Initial assay validation methods showed low precision and 

reproducibility of IC50 values for UNC2170. Therefore it was decided that a previously 

discovered small molecule chemical probe, UNC1215, be used that possessed potency against 

53BP1 TTD, but that had consistent AlphaScreen IC50 values.  

The existing fragment screening methods were modified by incorporating UNC1215 into 

the fragment screening process. The overall goal of this method was to initially screen a 

fragment collection, provided by SGC Toronto, for their single fragment potency against 53BP1 
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TTD, followed by a screen where each individual fragment was combined with UNC1215 to 

discover fragments that might bind in a synergistic manner to increase their combined potency 

against 53BP1. That work will be described below. 

Current Fragment-based Screening Methods 

The concept of discovering and then synthetically combining small molecule fragments 

with weak affinity toward a defined enzyme/protein target to create a high affinity inhibitor was 

first proposed in the early 1980s. This idea was formulated by Prof. William Jencks and 

generally stated that the total binding energy of an inhibitory ligand (generated by synthetically 

combining small molecule fragments) is composed of the combined binding energies of its 

component fragments and their interactions with the target. This concept was further improved in 

both academia and in industry and the process of fragment-based drug design (FBDD) was 

coined in the early 1990s. FBDD was eventually shown to be a proven inhibitor discovery 

technique in 1996 when scientists at the Abbott Laboratories successfully created a highly 

selective potent inhibitor for BCL-2/BCL-XL. Their efforts incorporated drug discovery 

screening methods including high-throughput screening (HTS) technologies, X-ray co-

crystallization, and primarily NMR screening of fragments bound to the target protein. The 

combined use of these screening and spectroscopic techniques quickly identified small molecule 

fragments and determined their defined binding pose within BCL-2. Synthetic chemistry 

methods were then used to modify and eventually combine these fragments to create the highly 

selective and potent inhibitor ABT-737. The process of FBDD has been widely accepted in the 

therapeutic development arena and has allowed for the creation of highly selective and potent 

inhibitors for various enzyme and protein targets including kinases, metalloproteinases, and 
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polymerases. Each of these screening discoveries is based on the process of discovering small 

molecule fragments that possess low mM to high µM potency for a defined target, determining 

their binding pose, and then synthetically combining or ‘growing’ the fragments to create a 

highly selective and potent inhibitor. 

There are several fragment based screening methods that are commonly used in FBDD 

efforts to determine binding potency of fragments and their binding locations on an 

enzyme/protein target. The most commonly used technique is target-based NMR spectroscopy; 

also known as SAR by NMR. This technique screens the protein target that is isotopically 

labeled (C13 and N15 isotopes) in combination with “pooled” fragments to identify sets of 

fragments that possess affinity for the target. The “pool” of fragments is then decovoluted to 

determine sets of those fragments than provide affinity and then a binding pose of the fragments 

when bound to target. This technique provides highly detailed structural data of the binding 

interactions between fragments and target and is very useful for later medicinal chemistry efforts. 

Another common technique is X-ray co-crystallization.[123-126] This technique also provides 

highly detailed structural information on fragment-enzyme/protein interactions. Two techniques 

that provide measures of binding kinetics and thermodynamic information include surface 

plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two techniques 

unfortunately do not provide structural information and require either immobilization of target or 

fragment and high protein concentrations. Another technique that is known as high concentration 

screening uses high concentration of fragments and screens for inhibition of the biochemical 

activity of a defined enzyme/protein target. This technique requires a validated biochemical 

assay for the target and high concentrations of fragment. Other methods include mass-
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spectrometry to show evidence of fragment binding to target and virtual screening of fragment 

collections by in silico docking programs. Combinations of these techniques are used in the 

overall process of FBDD as they each have their own strengths and weaknesses and provide 

different types of structural and binding data.  

Fragment-based Screening Platform Design 

Exploration of existing fragment-based drug discovery methods that have been used to 

discover an initial fragment hit, or a combination of fragments that could be combined into a 

single molecule provided inspiration for this modified fragment-based screening assay. The 

hypothesis for undertaking this modified fragment-based screening assay is a follows. The assay 

will use the AlphaScreen bead-based avidity assay platform where inhibition of protein-histone 

peptide interaction by fragments results in a decrease in the chemiluminescence read-out to 

provide a measure of fragment’s potency. Since an NMR structure of UNC2170 bound to 53BP1 

TTD was not solved when we initiated this approach, traditional NMR fragment screening 

techniques could not be used. However, there was an existing AlphaScreen assay for 53BP1 

TTD in place that used low concentrations with an adequate level of precision and robustness 

that would allow for easy incorporation into a fragment based screen. The overall screen was 

conducted both in the presence and absence of UNC1215. The reason behind screening in the 

absence of UNC1215 is that it will allow for a comparison of IC50 values as a means to 

determine if a fragment is bound in a competitive or non-competitive manner to UNC1215. If 

there is non-competitive binding, then there might be synergy. If not, there might be no 

improvement in potency. The initial screen where UNC1215 is absent will also help to determine 

new types of fragments that may provide varying degrees of potency. In the assay, where 
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UNC1215 is present, each fragment will be screened at 150 µM in the presence of UNC1215 (at 

its EC20 concentration of 10 µM) in order to determine if there is an additive effect between the 

two compounds to provide an increase in inhibition of 53BP1 TTD. Once a fragment or 

combination of fragments is discovered that shows increased potency compared to UNC1215 

alone, then determination of their binding pose will be conducted using X-ray co-crystallization. 

If a defined binding pose of the fragment(s) in combination with UNC1215 can be resolved, then 

synthetic chemistry efforts will be used to combine the fragment(s) to UNC1215 to create a 

higher potency inhibitor. 

Description of Structural Genomics Consortium (SGC) fragment library 

A small molecule fragment library composed of 2500 fragments with molecular weights 

below 300 g/mol at 15 mM concentration in DMSO was provided by the SGC Toronto group. 

This library has fragments of varying molecule weights and was composed of acids, bases, 

hydrophobic, aromatic, and hydrophilic fragments that are all commercially available. Each 

fragment in the library possesses functional groups that allow for chemical modification to be 

achieved through straightforward synthetic methods such as amide bond coupling, metal-

catalyzed aromatic ring substitutions, and SN2 reactions.  

Results and discussion 

Overall, 1846 compounds from the fragment collection were screened in duplicate in two 

different assays. The initial assay screened the fragments alone against the 53BP1 TTD and the 

second assay screened a combination of a single fragment and UNC1215 to determine if there 

was any synergy between the two compounds. The remaining 654 fragments were unable to be 
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screened due to solubility issues with the biological assay due to the low DMSO tolerance of 

53BP1. 

Validation of assay method 

The fragment screen was conducted using a modified form of the existing 53BP1 TTD 

AlphaScreen assay. This fragment screening assay was validated for high through-put screen 

(HTS) quality through the use of two different assay controls. DMSO served as the negative 

control that provided a high signal and a positive control used biotin. The solution based biotin 

binds to the streptavatin linked donor bead in the assay and prevents binding of the biotin-

conjugated target peptide sequence to the Kme bindng protein. Additionally, a standard curve for 

UNC1215 was generated on each plate to verify that an accurate IC50 measurement for 

UNC1215 was obtained in order to confirm that UNC1215’s IC50 values were consistent across 

allow screen fragment plates. The fragment based screen was setup on plates as outlined in 

Figure 2.23. 
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Figure 2.23: Plate Map of Fragment Based Screen 

 

This plate setup was used for the fragment-only screen with the absence of UNC1215 in 

columns 1-20, 22, and 24. It was also used in a counterscreen assay where no protein was added 

to any of the columns so as to verify that the fragments did not interfere with the components of 

the assay. The counterscreens were run in duplicate and provided Z’ values of 0.86 and 0.73. 

These Z’ values are well within the measure of a robust HTS assay where the generally accepted 

minimum Z’ value is ~0.5. The Z’ value for the UNC1215 + fragment assays were 0.74 and 0.81 

and the counterscreen assay showed no fragments that interfered with the assay components. 

Initial hits from screen of SGC fragment library 

The initial fragment-only screen on the SGC fragment library provided 30 compounds 

that showed 100% inhibition of 53BP1 activity at 150 µM. The chemical structures of these 

initial hits were visually screened to determine if there were any chemically promiscuous 

functional groups present or known non-selective binders present, Figure 2.24. 
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Figure 2.24: Initial Fragment Hits 

 

Of the initial 30 hits, 24 fragments (Figure 2.24) were selected to conduct dose-response 

analysis for their inhibition of 53BP1 +/- UNC1215. The other 6 fragments were excluded as 

they possessed functional groups that were potentially problematic in biological assays; theses 

functional groups included quinones, Michael acceptors, or highly electrophilic centers that 

might be susceptible to nucleophilic attack by either protein or other assay components which 

could lead to a false-positive assay signal. 

The 24 selected fragments were assayed in the absence of UNC1215in a dose-response 

assay using the AlphaScreen to gain a true measure of their IC50 values. Two of the fragments 

were observed to possess very high potency again 53BP1 TTD, Figure 2.25.  
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Figure 2.25: Representative IC50 curves and ITC curves of high potency fragment “Hits” 

 

A modified pyran fragment, UNC10110457, had an IC50 = 0.78 ± 0.55 µM and a 

pyrrolle-containing fragment, UNC10111103, had an IC50 = 0.30 ± 0.07 µM. ITC measurements 

were taken for these two fragments against the 53BP1 TTD and unfortunately showed no binding 

activity for either fragment, Figure 2.25. It is uncertain why the ITC measurements disagreed 

with the AlphaScreen assay values. It was noted that UNC10111103 was not active in the 

counterscreen and therefore did not interfere with the assay. Unfortunately, UNC10110457 was 

active in the counterscreen with a IC50 = 29 µM. It is predicted that the high bead avidity 

properties of the AlphaScreen assay is more sensitive to binding interactions than other types of 

screening assays. Therefore, a compound that shows very high potency in AlphaScreen may not 

show the same degree of potency as in other assays such as ITC.  The other 22 fragments showed 

modest potency values, while UNC1215 and UNC2170 provided potency measurements in 

agreement with their known IC50 values against 53BP1 TTD. 
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Outcome of assay upon addition of UNC1215 

The next step in this assay was to determine if there was any synergistic activity between 

any of the identified fragment “hits” and a known inhibitor of 53BP1 TTD. Once the IC50 values 

for each of the initial 24 fragments was measured, an additional assay was run in combination 

with UNC1215. The concentration of UNC1215 was held at 10 µM and each fragment was 

assayed at 150 µM. The fragment screening concentration was 15-fold higher than that of 

UNC1215 to allow for identification of any synergistic active hits. Once this combination assay 

was run, it was observed that there was unfortunately no combined synergistic activity between 

the any of the identified fragments and UNC1215. 

Conclusions 

Overall, this fragment screen provided two interesting fragments that showed high 

potency levels against the 53BP1 TTD in the AlphaScreen assay, but unfortunately did not 

confirm that potency in ITC. Unfortunately, the goal of identifying a fragment that worked in 

synergy with a previously identified 53BP1 TTD inhibitor proved unsuccessful. This screening 

assay was validated and was shown to possess high efficiency given the Z’ values obtained 

during assay optimization experiments. It is believed that the assay has promise in aiding in the 

process of discovering new fragments that could be combined with ligands that are in the process 

of compound optimization. 
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Experimental section 

Preparation of fragment-only and fragment + UNC1215 IC50 plates for AlphaScreen assay 

Preparation of fragment plates for the screening assay began by preparing dilution plates 

from the parent fragment plates received from SGC Toronto. Dilution plates were prepared using 

a Nano-drop instrument (ThermoScientific) to stamp out 1 µL of fragments from the parent 

fragment plates (at 15 mM in DMSO) into columns 1 – 20 in XC50 plates, followed by addition 

of 9 µL of buffer (150 mM NaCl, 25 mM TRIS, 2 mM DTT) to the same columns to provide a 

fragment concentration of 1.5 mM. Into column 21 was added 10 µL of biotin control (150 mM 

NaCl, 25 mM TRIS, 2 mM DTT, 1 mM DMSO), into column 24 was added 10 µL of DMSO 

control (150 mM NaCl, 25 mM TRIS, 2 mM DTT, 1 mM DMSO, 0.1 mM biotin). In column 22 

was added 10 µL of DMSO and 10 µL of UNC1215 at 10 µM, and in column 23 was added 10 

µL of a freshly prepared UNC1215 standard curve (2-fold dilution from 10 mM in distilled 

water). The plates were placed onto a centrifudge and spun for 2 min at 2000 rpm. Then 1 µL 

from these dilution plates was transferred to a Proxi plate (performed in duplicate). In screening 

runs in the absence of UNC1215, to columns 1 - 24 were added 9 µL of a prepared 53BP1 TTD 

+ H4 peptide solution (0.13 µM 53BP1 TTD, 0.2 µM peptide P565 in buffer). For the screens 

that included UNC1215, a final concentration of 10 uM was pre-incubated with 53BP1 TTD + 

H4 peptide solution for 30 min prior and added to the proxy plates in the same manner as 

described above. The prepared plate was incubated at room temperature for 30 min and then 2 

µL of a prepared AlphaScreen bead mixture (final concentration 7.5 µg/µL donor bead + 7.5 

µg/µL acceptor bead in buffer) was added to all columns. The plate was then incubated in the 

dark for 20 min. After incubation, the plates for both experiments were read on an EnVision 
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multi-label reader equipped with an HTS AlphaScreen laser (Perkin Elmer). The IC50 values 

reported are the average of at least 2 values ± the standard deviation.  When IC50 values for a 

single compound were not all active (< 100 µM) or inactive (> 100 µM), the IC50 values were 

calculated using 4-paramter curve fitting (GraphPad Prism 5) from replicate runs using averaged 

response values for each compound concentration. A representative heat map of a fragment assay 

plate that passed all controls, Figure 2.26. 

Figure 2.26: Representative image of fragment screen plate map and IC50 curves of hit 

compounds 

 

 

Isothermal titration calorimetry (ITC) binding experiments 

All ITC measurements were recorded at 25°C with an AutoITC200 microcalorimeter 

(MicroCal Inc.). All protein and compound stock samples were prepared in the target buffer (25 

mM Tris-HCl, pH 8, 150 mM NaCl, and 2 mM β-mercaptoethanol), and then diluted in the same 
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buffer to achieve the desired concentrations: 90 µM protein and 1 mM compound depending on 

the expected dissociation constant. The concentration of protein stock solutions were established 

using the Edelhoch method, whereas 10 mM compound stock solutions were prepared 

gravimetrically based on molecular weight. A typical experiment included a single 0.2 µL 

compound injection into a 200 µL cell filled with protein, followed by 25 subsequent 1.5 µL 

injections of compound. Injections were performed with a spacing of 180 seconds and a 

reference power of 8 µcal/sec. The titration data was analyzed using Origin Software (MicroCal 

Inc.) by non-linear least squares, fitting the heats of binding as a function of the 

compound:protein ratio. The data were fit based on a one set of sites model. 

Future Directions 

This fragment-based screening approach shows promise, in that; it was able to identify 

unique fragments that were able to show inhibitory activity against the 53BP1 TTD, But were 

inactive by ITC. Unfortunately, it was unable to show any synergistic activity in combination 

with a known inhibitor of the 53BP1 TTD. There are several possible explanations for these 

findings. One explanation for the lack of synergistic activity was that the 53BP1 TTD is shown 

to form a 2:1 protein to inhibitor dimer around at least one known small molecule ligand, 

UNC2170. This dimerization property of the protein target was unknown when this assay was 

designed and conducted. Unfortunately, there is no x-ray co-crystal structure of UNC1215 bound 

to 53BP1 TTD. An in silico model could be used to dock UNC1215 onto 53BP1 TTD and 

predict whether it binds in a similar manner to UNC2170. If UNC1215 binds to 53BP1 TTD in a 

manner similar to UNC2170, then protein dimerization could be occurring with UNC1215. If 

dimerization does occur in this fragment screen, then this would present a problem for the 
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AlphaScreen assay platform. This assay is currently setup to predict a 1:1 binding ratio of protein 

to inhibitor and protein dimerization would lead to inaccurate inhibitory measurements. If 

docking models show that UNC1215 binds in the same manner as UNC2170, then ITC 

measurements of UNC1215 against 53BP1 TTD would provide additional evidence of protein 

stoichiometry. Another potential explanation for the lack of synergistic activity is that the 

fragments bind competitively with UNC1215 for 53BP1. If the fragments bound in a non-

competitive manner with UNC1215, then increased inhibitory measurements might have been 

observed. Under optimal assay conditions, it would have been favorable to use the smaller 

inhibitory ligand UNC2170 as its smaller size would potentially have allowed for binding of 

fragments to other locations within the 53BP1 TTD binding site; within the acidic/hydrophobic 

pocket or Arg19 binding pocket. Future efforts with this assay should try to modulate it to use 

UNC2170 and re-screen with the same fragment collection to obtain fragments that bind in 

different locations on the protein. If fragments are identified with this modified assay, then X-ray 

co-crystallization experiments with UNC2170 and the fragment should be conducted to 

determine the binding pose and location of each. Once a binding pose for each is determined, 

then synthetic chemistry methods could then be utilized to insert a linker region between the two 

inhibitory components to develop an improved inhibitor small molecule. An additional method 

that could be incorporated is the use of NMR fragment screening techniques. Now that a NMR 

structure of UNC2170 bound to 53BP1 TTD has been developed, a NMR screen of UNC2170 

combined with the identified fragments and others from the SGC fragment library could be 

conducted.  
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Chapter III: 

Design, Synthesis, and Characterization of Peptide-based Inhibitors for the Methyl-

lysine Binders, PHF1 and PHF19 

 

Biology and Clinical Significance of PHF1 and PHF19 

Biological Function of PHF1 and PHF19 

The active expression and repression of genes is a highly regulated process that is in part 

modulated through the writing, reading, and erasing of post-translational modifications (PTMs) 

on chromatin. Different PTMs are associated with active transcription such as H3K4me3 and 

H3K36me3, and also with repressed chromatin, such as H3K27me3.[2, 21, 127] These PTMs are 

written, read, or erased by larger protein complexes such as Polycomb repressive complex 2 

(PRC2). PRC2 has a tetrameric core of proteins consisting of the catalytic Enhancer of zeste 

homolog 2 (EZH2), Suppressor of zeste 12 (SUZ12), Embryonic ectoderm development (EED), 

and the histone binding proteins RBAP46 and NURF55 (NURF55/RbAp48).[25, 26, 128-132] 

This core set of proteins works to actively write and maintain the H3K27me3 repressive mark on 

chromatin leading to gene silencing. The PRC2 complex is assisted by a small number of 

associating proteins including JARID2, AEBP2, PHF1, and PHF19.[24, 26, 128] These 

associating proteins are not always present in PRC2, but assist in modulating its ability to 
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identify and target active chromatin, induce movement of this complex into a gene locus that is 

being actively transcribed, and then act to tether the complex at that location until a repressive 

PTM is written and established. PHF1 and PHF19 play central roles in these functions through 

the use of a common Tudor domain that is able to read and bind the H3K36me3 PTM.[24-26, 

129] This binding event recruits the PRC2 complex into the active locus and allows for the 

methyltransferase activity of SUZ1 and EZH2 to trimethylate H3K27.[25] Further enzymatic 

activity and instillation of this repressive mark leads to the removal of the H3K36me3 mark and 

an overall gene-silencing event. Both PHF1 and PHF19 act to identify H3K36me3, assist in 

insertion of the PRC2 complex, participate in anchoring its associated proteins within gene loci 

undergoing active transcription and allows for the PRC2 complex to install a repressive PTM 

within that region at H2K27me3, resulting in a gene silencing event.[24-26] Interestingly, even 

though PHF1 and PHF19 share a very high degree of structural similarity, they are not found 

together in the same PRC2 complex and differ in that PHF1 is associated with PRC2 complexes 

that have JARID2. PHF19 is only found in PRC2 complexes that lack JARID2.[24] Additionally, 

PHF1 has been shown to be active in NHEJ through the binding the broken ends of DNA double 

strand breaks.[26] However, its roles in the repair of double strand DNA breaks and in the 

maintenance of genomic stability is not thorough understood. 

Clinical significance of PHF1 and PHF19 

PHF1 and PHF19 play an active role in the modulation of PRC2 activity that in turn 

controls various gene expression and repression outcomes. Active PRC2 can induce gene-

silencing events that have the potential to increase the expression of deleterious genes directly 

related to various diseases. This is caused by PRC2’s repression of other genes, such as 
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repression of tumor-suppressing gene that lead to up-regulation of deleterious genes. It has been 

shown that in various types of human tumors there is an increased level of both PHF1 and 

PHF19 present.[38, 39] These increased levels may be leading to increased levels of PRC2 

activity, and in turn increased levels of H3K27me3 PTMs on essential tumor suppressing gene 

loci. Increased levels of repression of these tumor-suppressing genes can lead to increased tumor 

growth and potentially downstream metastasis events. The core biological function of both PHF1 

and PHF19; i.e. the binding of their Tudor domain to H3K36me3 on transcriptionally active 

chromatin; represents a potential target for the development of novel cancer therapeutics. It has 

been shown that knockdown of either PHF1 or PHF19 in various cell lines leads to global 

decrease in the amount of the H3K27me3.[24] Inhibitors of the Tudor domain of either of these 

proteins would provide a chemical tool to test whether their inhibitory characteristics could lead 

to a favorable therapeutic outcome in the treatment of tumors. 

Purpose of this work 

The purpose of this work is to develop a low molecular weight, peptide ligand for the 

methyl-lysine binding proteins PHF1 and PHF19 based upon the co-crystal structure of their 

endogenous chromatin histone peptide binding substrate. This work focuses on conducting an 

initial Structure Activity Relationship (SAR) study to develop a short, low molecular weight 

peptide via truncating the endogenous histone 3 peptide into a shorter 6- or 7-mer peptide that 

binds specifically within the Tudor domain of PHF1 and PHF19 with emphasis on determining a 

quaternary amine mimic for the tri-methyl lysine 36 residue. 
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Development of peptide-based inhibitors 

Results and discussion 

Structure based analysis of the Tudor domain of PHF1 and PHF19 

The methyl-lysine binding protein PHF1 is a ~50 kDa protein that contains two plant 

homeodomain (PHD) fingers and a single Tudor domain. A thorough structural analysis of the 

Tudor domain bound to an H3K36Kme2 peptide conducted by Musselman et al provided deeper 

understanding into the key structural elements of the Tudor domain.[26] The domain is made up 

of three unique regions that work in tandem to selectively bind its endogenous peptide substrate. 

The regions are shown in Figure 3.1 and are an aromatic methyl-lysine binding cage (orange), a 

hydrophobic path (green), and an acidic groove (blue). The Tudor domain adopts a five-stranded 

β-barrel conformation providing a defined binding pocket for the trimethylated H3K36 residue 

within the aromatic cage. The aromatic cage is located between the acidic and hydrophobic 

regions of this domain and is highly selective for the trimethylated H3K36 residue. The Tudor 

domain binds the histone peptide in an extended conformation with C-terminal portion of the 

peptide interacting with the hydrophobic patch, the trimethylated K36 residue bound within the 

aromatic cage, and the N-terminal sequence interacting with the acidic groove. The aromatic 

cage consists of the Tyr47, Trp41, Phe65, and Phe71 residues that work together in binding the 

K36me3 residue through cation-π and hydrophobic interactions. Structural studies contrasting 

the bound and unbound Tudor domain show that the aromatic cage is not preformed, but adopts 

its conformation upon binding peptide substrate. The hydrophobic patch consists of a group of 

four leucine residues (Leu38, Leu45, Leu46, and Leu48) and forms a hydrophobic “wall” that 

allows for hydrophobic interactions between peptide substrate and protein. The crystal structure 
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shows an intermolecular hydrogen bond between the backbone NH bond of His39 and the 

carbonyl group of Leu46. The acidic groove consists of Glu66, Asp67, and Asp68. The peptide 

residues Thr32, Gly33, and Gly34 bind within this groove and an intermolecular hydrogen bond 

was observed between the NH bond of Val35 and one of the oxygen of the carboxylate of Glu66. 

This Glu66 residue also form a salt bridge via its other carboxylate oxygen group with the 

ammonium group of Lsy37 of the histone peptide. The Arg34 peptide residue is shown to point 

away from the hydrophobic patch and is solvent exposed. These initial binding interactions 

provide a basis for the rationale behind amino acid substitutions in the peptide SAR.  

Figure 3.1: Binding regions of PHF1 with endogenous H3K36me3 peptide substrate bound, 

PDB 4HCZ 

 

The PHF19 structure is very similar to PHF1 and binds the H3 peptide in the same 

fashion with all of the same binding interactions. Peptide-based inhibitors for both targets will be 

developed using a single core peptide structure. Given that both proteins bind the same 

endogenous peptide sequence, it is hypothesized that a single core peptide sequence that is 

specific for both proteins is achievable through structure-based design techniques. 
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Design of peptide ligands for PHF1 and PHF19 

Structure-based techniques were used to design peptide-based inhibitors for PHF1 and 

PHF19. Therefore, the high degree of structural similarity between these two proteins was used 

to an advantage. As described previously, a single core peptide structure can selectively bind the 

Tudor domains of both proteins. Secondly, medicinal chemistry efforts were conducted through 

analysis of the core section of the H3 histone peptide that PHF1 and PHF19 are known to bind. 

Key peptide residue interactions with the protein’s surface were maintained with specific amino 

acid substitutions that were hypothesized to increase the affinity of the peptide to the Tudor 

domain. An additional goal of the peptide SAR was to discover an appropriate quaternary amine 

mimic to replace the K36me3 residue which maintains a permanent cationic charge. This 

cationic residue is a barrier to cell membrane permeability, therefore efforts were made to 

replace it with a tertiary amine mimic that was highly selective for binding within the aromatic 

cage of the Tudor domain. A final goal was to truncate the large histone peptide into a shorter 6- 

or 7-mer peptide sequence with high affinity and selectivity for the Tudor domain of PHF1 and 

PHF19. Medicinal chemistry efforts toward achieving these goals are described below. 

Analysis of endogenous H3K36Kme3 chromatin peptide and protein binding pocket 

residues 

Initial medicinal chemistry efforts focused on the analysis of the endogenous histone 

peptide substrate of PHF1 and PHF19. Both targets are known to bind the H3K36me3 and this 

shared histone peptide substrate provided an initial core residue sequence for inhibitor 

development. Previously conducted experiments determined the binding specificity, specific 

peptide-protein binding interactions, and ligand affinity for the protein target using several H3 
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peptide sequences of varying amino acid sequence lengths and peptide regions. These 

experiments were conducted on the purified Tudor domain of PHF1 that were produced from 

different plasmid constructs of varying residue lengths. Peptide pull down assays used a Tudor 

domain containing residues 14-87, the X-ray co-crystallization structures, data from isothermal 

titration calorimetry (ITC) experiments, data from nuclear magnetic resonance (NMR) titration 

experiments contained from residues 28-87, and IC50 measurements from the AlphaScreen assay 

used on a Tudor domain with residues 26-87. These varying domain sizes may have caused 

slight variations in the affinity measurements, but overall, the core aromatic cage, and the acidic 

and hydrophobic patches of the domain were present. Experiments conducted on PHF19 used 

Tudor domain residues 37-95 for the same set of experiments. Additionally, the H3 histone 

peptide sequence lengths and sequence regions used in these experiments also varied. The NMR 

titration and X-ray co-crystallization experiments for PHF1 used peptide residues 31-40. 

However, the pull down assays used peptide residues 21-44, while ITC measurements used 

peptide residues 27-46. Overall analysis of the peptide sequences used in the above studies 

demonstrates how the core peptide region shown to bind within the Tudor domain consisted of 

peptide residues 35-41. The N-terminal Val35 residue was shown to bind within the acidic 

groove of the Tudor domain, Lys36me3 within the aromatic cage, and Lys37, Pro38, His39 

bound within the hydrophobic pocket. Arg40 does not directly interact with the protein’s surface 

but is solvent exposed in the x-ray co-crystal. Try41 was not clearly evident in the x-ray, but was 

included to provide a UV-active residue, allowing for increased ease in peptide purification. 

Additional key peptide-protein residue interactions that were noted where a salt bridge between 

peptide Lys37 and protein Glu66 and H-bonds that exist between the peptide backbone amide N-

H of His39 and Val35 with protein carbonyl oxygen.  
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An alanine scan of the H3 peptide sequence was conducted to determine which residues 

play an essential role in binding to the Tudor domain of PHF1. (Kycia et al) A Celluspot peptide 

array was used where individual peptide residues between 30-44 were separately mutated to an 

alanine in individual peptides via a traditional alanine scan, all while maintaining the remaining 

endogenous residue sequence.[129] These prepared peptide sequences were then used in a PHF1 

pull down assay to determine how Tudor domain binding affinity varied for each peptide 

depending on which amino acid was mutated. This study showed four residues; outside of 

K36me3; were essential in the peptide sequence allowing for PHF1 binding. These residues were 

Pro38, Thr32, Val35, and His39, with Pro38 providing the greatest role when influencing 

binding. Lastly, when Arg40 was mutated to alanine, there was no effect on binding.[129] This 

result agrees with the x-ray co-crystal structure that shows that Arg40 is solvent exposed. All but 

one of these residues, Tyr41, is included in the core peptide inhibitor sequence used to begin 

peptide SAR studies. 

Analysis of endogenous histone substrate binding affinity 

The identification of the endogenous histone peptide substrate for both PHF1 and PHF19 

was previously conducted in two different studies by using histone peptide microarrays.[25, 26] 

Both studies showed the target of both proteins was H3K36me3. The PHF1 study showed that 

the Tudor domain was essential for binding that mark through the use of an inactive Tudor 

domain mutant, Y47A.[25] Additionally, it was shown that both PHF1 and PHF19 showed a 

distinct preference for H3K36me3 over the di- and monomethyl-lysine peptides and no binding 

for non-methylated lysine.[25] It was observed that the Tudor domain of PHF1 bound a 12-mer 

peptide sequence containing the H3K36me3 mark with a Kd = 36 ± 4 µM, H3K36me2 with a Kd 
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= 167 ± 34 µM, and had no affinity for the non-methylated peptide.[26] These values were 

confirmed with a 19-mer peptide containing the same marks. The Tudor domain of PHF19 was 

shown in ITC experiments to bind a 19-mer H3K36me3 peptide with a Kd = 6.2 ± 0.6 µM and 

provided no binding for either H3K36me1 and non-methylated H3K36.[25] These qualitative 

peptide binding studies were validated for both proteins by NMR titration measurements.  

Structure-Activity Relationship (SAR) studies 

The structural properties and endogenous peptide binding characteristics for both 

proteins, PHF1 and PHF19, were primarily based on X-ray structure of PHF1 bound to 

endogenous H3K36me3 peptide substrate.[26] Additionally, an NMR titration studies showing 

key the interactions in a solution phase environment. Additionally, work based on an alanine 

scan of the H3K36 histone peptide using a Celluspot peptide array assay provided additional 

evidence on the various residues that PHF1 would tolerate substitutions for within the H3 histone 

tail. These findings allowed for a more sound design of the peptide SAR. 

Preparation of Non-natural H3K36me3 Mimetics 

Analysis of both the X-ray co-crystallization of the H3K36me3 peptide with the Tudor 

domain of PHF1 (PDB 4HCZ) and the apo crystal structure (PDB 2E5P) of the PHF1 Tudor 

domain showed that the aromatic cage Kme binding pocket is not static, but instead undergoes a 

substrate-induced conformational change upon binding the peptide ligand.[26] Within the 

aromatic pocket, there are cation–π and hydrophobic interactions, as previously outlined. 

Because this pocket undergoes a conformational change when binding a peptide substrate, it was 

hypothesized that the aromatic Kme binding pocket would be an initial area to target and to 

determine if the positively charged K36me3 residue could be substituted for an alternative non-
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cationic quaternary amine functional group. Ultimately, this functional group should mimic the 

trimethyl-lysine residue while maintaining peptide binding affinity. Experiments were planned to 

determine the steric tolerance of the Kme binding pocket by synthesizing a small series of four 

different K36me3 analogs, Figure 3.2. These analogs were prepared from N-α-Fmoc-Lysine via 

standard medicinal chemistry techniques such as N-methylations and reductive aminations as 

shown in Figure 3.2.  

Figure 3.2: Preparation of Non-natural H3K36me3 Mimetics 

 

Each N-α-Fmoc protected analog was prepared, purified, and characterized prior to 

incorporation into the various peptides of the two peptide SAR series that were synthesized. 

Initial SAR round of peptide ligand amino acid substitutions 

The first round of peptide SAR studies was designed to identify key focus areas on the 

core peptide substrate as shown in Figure 3.3. Focus areas of this series included the K36 

quaternary amine mimics (green), K37 substitutions (black), His39 substitutions (blue), and 

Arg40(Lys40) substitutions (red). 
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Figure 3.3: Focus areas of Peptide SAR Series I 

 

Two peptides were prepared containing a 6-mer (145) and 7-mer peptide (146) sequences 

of the endogenous H3 peptide possessing the residues Lys36-Tyr41 and Val35-Tyr41, 

respectively. The lysine residue was substituted for the Arg40 residue to assist in SPPS 

chemistry. It has been shown that arginine residues can undergo an intramolecular rearrangement 

during the coupling phase to the resin. The sequence of 145 consisted of Tyr-Lys-His-Pro-Lys-

Lys(Kme3) and the sequence of 146 was identical with the addition of a Val residue following 

K36me3. These initial two peptides were screened for IC50 values in AlphaScreen and validated 

by ITC measurements. Peptide 145 provided an IC50 of >100 µM for both PHF1 and PHF19 with 

Kd measurements of 124.5 µM (black) and 251.1 (blue), Figure 3.4  
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Figure 3.4: ITC of Series I Peptide SAR ITC 

 

Peptide 146 provided IC50 measurements of 56.0 ± 4.2 µM for PHF1 and 37.5 ± 2.1 µM 

for PHF19.  Kd measurements by ITC were 49.6 µM for PHF1(black) and 151.1 µM for PHF19 

(blue). From these initial two peptides, it was decided to proceed forward with the remaining 

initial set of peptides as 7-mer peptides. The valine residue appears to increase affinity of the 7-

mer peptide which is likely due to the N-H amide bond of the valine amide forming a hydrogen 

bond with a protein surface residue as was observed in the X-ray co-crystal structure. 

The next set of peptides were synthesized to determine how amino acid substitutions at 

various locations on the 7mer sequence would affect binding affinity. Peptide 147 was prepared 

with a substitution of ornithine for Lys37. It was observed in the crystal structure that the peptide 

residue Lys37 had constrained conformation in its aliphatic chain that cause it to be bent outward 

from the protein surface. It was proposed that shortening this aliphatic chain would decrease this 

conformational strain in the aliphatic section of the residue and lead to increased affinity while 

maintaining the salt bridge with Glu66 on PHF1. This substitution was observed to be equipotent 

0.0 0.5 1.0 1.5 2.0

-6.0

-4.0

-2.0

-0.80

-0.60

-0.40

-0.20

0.00

0 10 20 30 40 50 60 70 80

Time (min)

µ
c
a

l/
s
e

c

Molar Ratio

k
c
a

l 
m

o
l-1

 o
f 

in
je

c
ta

n
t

6-mer peptide

0.0 0.5 1.0 1.5 2.0

-4.0

-2.0

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 10 20 30 40 50 60 70 80

Time (min)

µ
c
a

l/
s
e

c

Molar Ratio

k
c
a

l 
m

o
l-1

 o
f 

in
je

c
ta

n
t

7-mer peptide

0.0 0.5 1.0 1.5 2.0

-4.0

-2.0

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 10 20 30 40 50 60 70 80

Time (min)

µ
c
a

l/
s
e

c

Molar Ratio

k
c
a

l 
m

o
l-1

 o
f 

in
je

c
ta

n
t

Phe peptide



208 

 

to 146 with an IC50 of 34 ± 9.9 µM for PHF1 and 47 ± 22.6 µM for PHF19 in the AlphaScreen 

assay. The next amino acid substitution was at His38 and was aimed at determining if His38 

substitutions were tolerated. This residue was believed to be essential for binding based on the 

Celluspot assay results. A phenylalanine was substituted for His38 in peptide 148 to maintain an 

aromatic residue at this location. It was shown to have an IC50 of 14.0 ± 0.0 µM for PHF1 and 

7.0 ± 1.4 µM for PHF19 in AlphaScreen. Measured Kd values provide 10.9 µM for PHF1 (black) 

and 33.5 µM for PHF19 (blue), Figure 3.4. Comparison of this analog to 146 shows a ~5 fold 

improvement in Kd for both PHF1 and PHF19. It is proposed that increasing the hydrophobic 

character of the amino acid at this location increased the overall hydrophobic interactions 

between the peptide and tetra-leucine side wall of the protein where this peptide residue 

interacts. Substitutions were then begun at the Arg40 (Lys40) position to determine if a 

positively charged residue was necessary at this position and to determine if a hydrophobic 

residue would increase peptide affinity. Arg40 also binds within the tetra-leucine side wall, but 

the positively charged arginine head group was shown in the crystal structure to be solvent 

exposed pointing away from the protein’s surface. It was hypothesized that by removing the 

positive charge, while increasing the hydrophobic nature of the residue by substituting it for a 

leucine that it would result in increased peptide affinity. Peptide 149 was shown to have an IC50 

of >100 µM for PHF1 and 32 ± 2.1 µM for PHF19 in AlphaScreen and Kd values of 52.3 µM 

and 336.9 µM respectively. This modification did not prove advantageous for increased potency 

for either protein. Another experiment was conducted to determine whether a double mutant, 

His39Phe and Lys40Phe, could affect peptide potency. The double mutant peptide, 150, was 

shown to be equipotent to peptide 148 and had Kd values of 14.6 µM and 21.5 µM, respectively. 
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The phenylalanine substitution appears to have the strongest effect on increasing affinity for both 

PHF1 and PHF19.  

The final set of experiments on peptide modifications was to determine the steric 

tolerance within the aromatic binding pocket by modulating the steric bulk of the Lys36 head 

group. Two different head groups were prepared, a N’,N’-diethyl amine (152) and a more bulky 

N’-methyl, N’-norbornyl amine (151), see Figure 3.2 for head group structure. These two bulkier 

amine head groups were successfully applied in a peptide SAR project for a different Kme 

binding protein CBX7 (Jake Stuckey, unpublished results). Peptide 152 was shown to have an 

IC50 of 90 ± 14 µM for PHF1, and 94.5 ± 7.8 µM for PHF19 in AlphaScreen. Peptide 151 was 

shown to have an IC50 of >100 µM for both PHF1 and PHF19 in AlphaScreen. These two 

peptides provide evidence that there is a defined degree of steric tolerance within the aromatic 

cage and larger R-groups on the lysine amine are not well tolerated. The findings of this initial 

set of peptides were used to design a second series of analogs. 

Second SAR round of peptide ligand amino acid substitutions 

A second series of peptides was designed based upon the the key finding that the 

phenylalanine substitution for Arg40 (Lys40) provided an increase in peptide affinity as shown 

in 150. This second series continued to explore the steric tolerance of the Kme aromatic cage, to 

determine whether substitutions at Val35 would allow for increased interactions and to determine 

if Tyr41 was essential for peptide binding, Figure 3.5. The focus areas of the series II peptide 

SAR experiments included continued exploration of quaternary amine mimetics for K36 (green), 

substitution of Val35 (black), and truncation of Tyr41 (red). 
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Figure 3.5: Focus Areas of Peptide SAR Series II 

 

It was hypothesized that the Kme aromatic cage would not tolerate large, sterically bulky 

functional groups on the amine head group of Lys36 based on the findings that the initial two 

amine heads groups showed poor binding affinity. We therefore decided to prepare two 

additional Lys36 analogs that possessed less bulky functional groups. The initial N’-ethyl, N’-

methyl lysine analog, 153, provided Kd values of 74.4 µM PHF1 and was not determined for 

PHF19 due to synthetic difficulty to preparation large quantities of peptide. The N’,N’-dimethyl 

lysine analog, 154, provided Kd values of 112 µM and 1.33 mM for PHF1 and PHF19, 

respectively. It is observed from these two analogs that there does appear to be a size preference 

for the Lys36 functional groups, however those most appropriate to increase affinity have not yet 

been discovered. 

The next residue explored in the series II peptide SAR was Val35. This residue is known 

to make an amide N-H hydrogen bond with the surface of the protein. It was hypothesized that 

additional hydrogen bonding could be introduced at this residue site with the protein residue 

Glu66 by modifying the Val35 residue for either a threonine or serine residue. The Thr35 analog, 
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155, provided Kd values of 22.8 µM and 40.9 µM for PHF1 and PHF19 respectively. The Ser35 

analog, 156, provided Kd values of 16.1 µM and 40.9 µM for PHF1 and PHF19 respectively. 

These two modifications did not appear to directly increase peptide affinity for the target, but 

were equipotent compared to the phenylalanine analog in series I. 

The final region that was explored was the Tyr41 residue. As previously mentioned, this 

residue was included to simplify peptide purification by providing a UV active residue. An 

experiment was planned to determine whether this residue was essential for peptide binding, 

therefore a truncated analog that deleted the Try41 residue, peptide 157 was prepared. This 

peptide provided Kd values of 24.1 µM and 241 µM for PHF1 and PHF19 respectively. This 

final analog for the series II peptide SAR experiments shows that the Try41 residue does not play 

a major role peptide affinity for the target as it is equipotent to the phenylalanine mutant analog.  

Conclusions 

Work toward development of a highly potent and selective peptide-based inhibitor for 

PHF1 and PHF19 has thus far shown initial promise. The series I peptide SAR shows that it is 

possible to decrease the length of the histone peptide fragment from a large 12- or 19-mer 

sequence into a 7-mer peptide that is equipotent for the Tudor domain of PHF1 and PHF19 

compared to the larger 12-mer and 19-mer peptide sequences. This represents a very large 

increase in ligand efficiency for the initial peptide inhibitor. 

Efforts toward discovery of a quaternary amine mimetic for the Lys36Kme3 residues 

proved difficult. Four different Lys36 analogs that possessed amine functional groups of varying 

steric bulk were prepared within two peptide SAR series, Table 3.1. These analogs showed that 

the Tudor domain appears to have a low degree of steric tolerance for the size and steric bulk of 
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the lysine’s amine functional groups within the Kme aromatic pocket of the Tudor domains of 

PHF1 and PHF19. The two larger analogs, 151 and 152, showed very little affinity for the 

domain. It is proposed that this low affinity is due to the small volume of the Kme aromatic cage. 

Analysis of the co-crystal structure of the H3K36me3 peptide bound to PHF1’s Tudor domain 

shows that the pocket is ~4Å in depth 

Table 3.1: SAR of synthesized peptides for PHF1 and PHF19a, b, c 

 

ID R1 

R2 R3 R4 R5 

R6 

PHF1 

IC50 

(µM) 

PHF19 

IC50 

(µM) 

PHF1 

Kd 

(µM) 

PHF19 

Kd (µM) 

145 - 
 

Lys His Lys 
Tyr 

>100 >100 
124.5 

251.1 

146 Val 
 

Lys His Lys 
Tyr 

56.0 ± 

4.2 

37.5 ± 

2.1 49.6 
151.1 

147 Val 
 

Orn His Lys 
Tyr 

34.0 ± 

9.9 

47.0 ± 

22.6 

ND ND 

148 Val 
 

Lys Phe Lys 
Tyr 

14.0 ± 

0.0 

7.0 ± 1.4 
10.9 

33.5 

149 Val 
 

Lys His Leu 
Tyr 

>100 32.0 ± 

2.1 52.3 
336.9 

150 Val 
 

Lys Phe Leu 
Tyr 

ND ND 
14.6 

21.5 

151 Val 

 

Lys His Lys 

Tyr 

32.0 ± 

2.1 

32.0 ± 

2.1 ND 

ND 

152 Val 
 

Lys His Lys 
Tyr 

90.0 ± 

14.0 

94.5 ± 

7.8 

ND ND 

153 Val 
 

Lys Phe Lys 
Tyr 

ND ND 
74.4 

ND 

154 Val  

Lys Phe Lys 
Tyr 

ND ND 
112 

1330.0 
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155 Thr  

Lys Phe Lys 
Tyr 

ND ND 
22.8 

40.9 

156 Ser  

Lys Phe Lys 
Tyr 

ND ND 
16.1 

40.9 

157 Val  

Lys Phe Lys 
- 

ND ND 
24.1 

241.0 

aIC50 values are the average of at least 2 values ± the standard deviation as determined by AlphaScreen. bThe 

maximum concentration in the assay was 100 M and compounds showing less than 50% inhibition at this 

concentration are labeled >100 M. cKd values are determined by ITC. ND: no determined. 

 

Two additional Kme3 analogs of slightly decreased steric bulk were prepared to 

determine if the substrate-induced protein conformational change would allow for binding of the 

small functional groups. The IC50 and ITC binding data showed otherwise. The two smaller 

H3K36 analogs, 153 and 154, also showed poor affinity for the Tudor domain. The di-methyl 

analog, 154, was expected to have lower affinity as compared to previous endogenous peptide 

studies that showed the Tudor domain selects for Kme3 over Kme2 lysine residues. The N’-

ethyl,N’-mehtyl analog, 153, showed a small increase in potency, but overall had a weaker 

affinity compared to the Kme3 analog, 146. Future synthetic efforts toward discovery of an 

H3K36me3 mimetic will need to take these findings into account. 

Exploration of the ability to mutate specific residues from the endogenous peptide 

sequence in the 7-mer core peptide (residues Val35-Tyr41) showed how analysis of the protein 

surface/peptide binding interactions allows for an increase in peptide affinity. The specific 

mutation of Arg40 for phenylalanine provide a large increase in peptide potency for the Tudor 

domains of PHF1 and PHF19. This substitution was chosen as the area where the Arg bound on 

the protein consisted of a large hydrophobic patch of four leucine residues. It was hypothesized 

that increasing the hydrophobic character of the peptide residue in this area would potentially 

increase peptide affinity. This substitution proved successful in increasing peptide affinity and 
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was maintained into series II peptide SAR. Unfortunately, no additional peptide amino acid 

substitutions provided any additional affinity for the target. It is curious to note that the 

truncation of Tyr41 provided an equipotent peptide compared to as the phenylalanine mutant. 

This is a promising finding as it provides a 6-mer peptide sequence. Future work on additional 

series of peptide SAR should focus on developing new Lys36Kme3 analogs to determine 

whether additional amino acid substitutions for hydrophobic residues that bind within the 

protein’s hydrophobic patch can provide an increase in peptide affinity; specifically Pro38. 

 

Experimental section  

General Procedure for Chemical Synthesis 

Analytical LCMS data for all compounds were acquired using an Agilent 6110 series 

system with the UV detector set to 220 and 254 nm. Samples were injected (<10 µL) onto an 

Agilent Eclipse Plus 4.6 × 50 mm, 1.8 µm, C18 column at room temperature.  A mobile phase of 

A (H2O + 0.1% acetic acid) and B (MeOH + 0.1% acetic acid) was used with a linear gradient 

from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a 

flow rate of 1.0 mL/min.  Mass spectra data were acquired in positive ion mode using an Agilent 

6110 single quadrupole mass spectrometer with an electrospray ionization source.  Nuclear 

Magnetic Resonance (NMR) spectra were recorded on a Varian Mercury spectrometer at 400 

MHz for proton (1H NMR) and 100 MHz for carbon (13C NMR); chemical shifts are reported in 

ppm (δ). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 F254, 0.25 

mm pre-coated TLC plates, generally using a 10% MeOH in DCM solvent system. TLC plates 

were visualized using UV254, I2 impregnated silica gel, potassium permanganate with charring, 
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and phosphomolybdic acid with charring. Reverse phase chromatography was used to purify 

reaction mixtures to obtain final products using a Teledyne Isco CombiFlash Rf 200 

chromatography unit equipped with the UV detector set to 220 nm and 254 nm.  Samples were 

injected onto a RediSep Rf 30g C18 high performance Gold column at room temperature and 

collected at the previously mentioned wavelengths.  Mobile phases of A (H2O + 0.1% TFA) and 

B (MeOH) were used with a flow rate of 30 mL/min.  A general gradient was used consisting of 

0-2 minutes at 5% B, 5-15 minutes increasing from 5 to 100% B, and a 100% B flush for another 

3 minutes.  Small variations in this purification method were made as needed to achieve ideal 

separation for each compound.  All compounds that were evaluated in biochemical and 

biophysical assays had >95% purity as determined by 1HNMR and LCMS. 

Non-natural trimethyl-lysine Fmoc protected monomer synthesis 

Several non-natural trimethyl-lysine N-α-Fmoc protected amino acid monomers were 

synthesized. These monomers were prepared primarily from Fmoc-protected lysine HCl. 

Synthetic methods focused on reductive aminations under acidic conditions and N-methylations 

to prepare di- and tri-substituted analogs. A general method is described for each below. 

 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6,N6-dimethyl-L-lysine TFA (139): A solution of 

Fmoc-lysince HCl (0.30 g, 0.81 mmol), 0.30 ml (4.1 mmol) formaldehyde solution (37% wt in 
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H2O), and 0.23 mL acetic acid (4.1 mmol) was stirred at 0°C for 30 min in 3 mL of 1,4-dioxane . 

Then 277 mg (7.3 mmol) sodium borohydride was slowly added in portions at 0°C until half was 

added to the reaction. Then another 0.30 ml (4.1 mmol) formaldehyde solution (37% wt in H2O) 

was added followed by the remaining sodium borohydride being slowly added in portions at 0°C. 

The mixture was slowly warmed to room temperature and stirred overnight. The reaction was 

monitored by LC-MS until completion and then dried to residue. The crude material was 

dissolved in 0.250 mL of ACN and purified by reverse phase HPLC using the Teledyne Isco 

automated column system to afford 0.29 mg (90% yield) as the TFA salt as a white foam.  

1H NMR (400 MHz, CD3OD) δ 7.74 (d, J = 7.9 Hz, 2H), 7.63 (t, J = 7.3 Hz, 2H), 7.35 (t, J = 8.1 

Hz, 2H), 7.28 (t, J = 9.5 Hz, 2H), 4.41 – 4.27 (m, 2H), 4.16 (t, J = 7.8 Hz, 2H), 3.02 (t, J = 7.3 

Hz, 2H), 2.9 (s, 6H), 1.95 – 1.84 (m, 1H), 1.79 – 1.56 (m, 3H), 1.51 – 1.35 (m, 2H). LC-MS (λ = 

254 nm): 99%, tR = 4.6 min. MS (ESI+): 397.2 [M+H]+.  

 

 

(S)-5-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-carboxy-N,N,N-trimethylpentan-1-

aminium TFA (140): To a solution of 139 (0.2 g, 0.82 mmol) in 4 mL of H2O was added 0.32 

mL (5.1 mmol) MeI, and (0.21 g, 1.5 mmol) K2CO3, and the mixture was stirred at 40°C 

overnight in a heat bath. The reaction was monitored by LC-MS until completion and then dried 

to residue. The crude material was dissolved in 0.250 mL of ACN and purified by reverse phase 

HPLC using the Teledyne Isco automated column system to afford 160 mg (77 % yield) as the 

TFA salt as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.77 (d, J = 6.9 Hz, 2H), 7.64 (t, J = 
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8.8 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 4.33 (d, J = 5.2 Hz,  2H), 4.8 (t, J 

= 8.6 Hz, 1H), 4.02 (d, J = 7.8 Hz,  2H), 3.02 (m, 2H),  3.06 (s, 9H), 1.94 – 1.22 (m, 6H). LC-

MS (λ = 254 nm): 99%, tR = 4.6 min. MS (ESI+): 411.3 [M+H]+. LC-MS (λ = 254 nm): 99%, tR 

= 4.6 min. MS (ESI+): 411.3 [M+H]+.  

 

 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6,N6-diethyl-L-lysine TFA(141): A solution of 

Fmoc-lysince HCl (0.31 g, 0.77 mmol), 0.12 ml (2.2 mmol) acetaldehyde, and 0.14 mL(3.7 

mmol) acetic acid were stirred at room temperature for 2 hr in 2 mL of MeOH. Then 139 mg (2.2 

mmol) sodium cyanoborohydride was added in portions and the mixture was stirred for 

overnight at room temperature (rt). The reaction was monitored by LC-MS until completion and 

then dried to residue. The crude material was dissolved in 0.250 mL of ACN and purified by 

reverse phase HPLC using the Teledyne Isco automated column system to afford 307 mg (98 

yield) as the TFA salt as a clear oil. 1H NMR (400 MHz, CD3OD) δ 7.81 (d, J = 6.8 Hz, 2H), 

7.67 (t, J = 9.7 Hz, 2H), 7.4 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.7 Hz, 2H), 4.42 (dd, J = 10.1, 6.9 

Hz, 1H), 4.32 (dd, J = 7.0, 6.9 Hz, 1H),4.23 (t, J = 7.4 Hz, 1H), 4.18 (dd, J = 9.3, 4.8 Hz, 1H), 

3.2 (q, J = 14.9, 7.1 Hz, 4H), 3.14 – 3.02 (m, 2H), 3.14 – 3.02 (m, 1H), 2.0 – 1.87 (m, 4H), 1.81 

– 1.63 (m, 2H), 1.29 (t, J = 8.2, 6H). LC-MS (λ = 254 nm): 99%, tR = 4.7 min. MS (ESI+): 425.3 

[M+H]+.  
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N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(bicyclo[2.2.1]heptan-2-yl)-L-lysine TFA 

(142): A solution of Fmoc-Lysince HCl (0.40 g, 0.99 mmol), 0.87 g (2.2 mmol) 2-

Norbornanone, and 0.32 mL (4.9 mmol) acetic acid were stirred at room temperature for 2 hr in 

2 mL of MeOH. Then 186 mg (3.0 mmol) sodium cyanoborohydride was added in portions and 

the mixture was stirred for overnight at rt. The reaction was monitored by LC-MS until 

completion and then dried to residue. The crude material was dissolved in 0.250 mL of ACN and 

purified by reverse phase HPLC using the Teledyne Isco automated column system to afford 

406  mg (89% yield) as the TFA salt as a clear oil. 1H NMR (400 MHz, CD3OD) δ 7.81 (d, J = 

7.0 Hz, 2H), 7.67 (t, J = 9.5 Hz, 2H), 7.4 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.9 Hz, 2H), 4.42 (dd, J 

= 9.9, 6.5 Hz, 1H), 4.34 (dd, J = 9.4, 7.1 Hz, 1H),4.24 (t, J = 7.6 Hz, 1H), 4.18 (dd, J = 9.9, 4.7 

Hz, 1H), 3.49 – 3.41 (m, 1H), 3.0 – 2.88 (m, 2H), 2.54 (t, J = 4.8, 1H), 2.33 (t, J = 5.1, 1H), 2.12- 

2.02 (m, 1H), 1.97 – 1.86 (m, 1H), 1.85 – 1.56 (m, 6H), 1.55 – 1.44 (m, 4H), 1.43 – 1.35 (m, 

1H), 1.1 – 1.02 (m, 1H). LC-MS (λ = 254 nm): 99%, tR = 4.9 min. MS (ESI+): 463.2 [M+H]+.  
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N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(bicyclo[2.2.1]heptan-2-yl)-N6-methyl-L-

lysinelysine TFA (143): A solution of 142 (0.154 g, 0.33 mmol), 0.13  ml (1.7  mmol) 

formaldehyde solution (37% wt in H2O), and 0.09 mL acetic acid (1.7 mmol) was stirred at room 

temperature for 30 min in 4 mL of 1,4-dioxane . Then 113 mg (2.9 mmol) sodium borohydride 

was slowly added in portions. The mixture was stirred at room temperature overnight. The 

reaction was monitored by LC-MS until completion and then dried to residue. The crude material 

was dissolved in 0.250 mL of ACN and purified by reverse phase HPLC using the Teledyne Isco 

automated column system to afford 91 mg (57% yield) as the TFA salt as a clear oil. 1H NMR 

(400 MHz, CD3OD) δ 7.79 (d, J = 7.3 Hz, 2H), 7.66 (t, J = 9.2 Hz, 2H), 7.39 (t, J = 7.9 Hz, 2H), 

7.30 (t, J = 7.6 Hz, 2H), 4.42 – 4.39 (m, 2H), 4.25 – 4.15 (m, 2H), 3.45 – 3.37 (m, 1H), 3.24 – 

3.06 (m, 1H), 3.04 – 2.88 (m, 1H), 2.8 (s, 3H), 2.58 (t, J = 6.1, 1H), 2.31 (t, J = 7.6, 1H), 2.1- 2.0 

(m, 1H), 1.9 – 1.0 (m, 13H), 1.21 – 1.1 (m, 1H). LC-MS (λ = 254 nm): 99%, tR = 4.89 min. MS 

(ESI+): 477.3 [M+H]+.  

 

 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-ethyl-N6-methyl-L-lysine HCl (144). To a 

solution of N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(tert-butoxycarbonyl)-N6-methyl-L-

lysine (0.53 g, 0.58 mmol) in 10 mL of TFA and was stirred for 1 hr at room temperature. The 

solvent was then removed by rotovaporation to provide a viscous yellow oil. This crude material 

was moved directly forward by dissolving it in 20 mL EtOH added 0.31 mL (5.5 mmol) 
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acetaldehyde solution and the mixture was stirred for 30 min a room temperature. Then 0.206 g 

(3.3 mmol) sodium cyanoborohydride and the mixture was stirred overnight at rt. The reaction 

was monitored by LC-MS until completion and then dried to residue. Once complete, the 

reaction was acidified by addition of 10 mL of 6N HCl to provide a white solid. The solid was 

filtered out to afford 263 g (59% yield) of the HCl salt as a white solid. 1H NMR (400 MHz, 

dmso) δ 7.90 (d, J = 7.6 Hz, 2H), 7.72 (dd, J = 7.3, 3.8 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.42 (t, 

J = 7.2 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 4.33 – 4.19 (m, 3H), 3.98 – 3.90 (m, 1H), 3.15 – 2.88 

(m, 4H), 2.66 (d, J = 4.9 Hz, 3H), 1.79 – 1.57 (m, 4H), 1.41 – 1.29 (m, 2H), 1.20 (t, J = 7.2 Hz, 

3H). LC-MS (λ = 254 nm): 98%, tR = 4.9 min. MS (ESI+): 411.2 [M+H]+.  

 

Solid-Phase Peptide Synthesis (SPPS) of Designed Peptides 

Structure-based drug design methods were used to design two series of peptides as 

inhibitors of PHF1 and PHF19. All synthesized peptides were prepared through standard SPPS 

methods using N-α-Fmoc protected L-amino acids (AnaSpec Inc., Chem-Impex Int’l), HBTU 

and HOAt coupling reagents (AnaSpec Inc., CreoSalus Life Science Co.) in DMF solvent, and 

DIPEA (Sigma) as base. Rink amide MBHA resin (AnaSpec Inc) with 0.6 mmol/g loading was 

used as the solid phase support and coupling was conducted as described through the following 

general procedure. A small 25 mL disposable pipette was fitted with a silica wafer to allow for a 

convenient SPPS synthesis container. To this synthesis vessel was added 0.15 g of Rink amide 

MBHA resin. The resin was then swollen in DCM (4 mL, 2 x 5 min), followed by DMF (4 mL, 2 

x 5 min) with gentle shaking during each step by placing the pipette on a shaking plate. DIPEA 

(5 mL, 2 x 5 min) was then used to deprotect the swollen resin, followed by washing cleaved 

resign by DMF (4 mL, 2 x 5 min), MeOH (4 mL, 2 x 5 min), DMF (4 mL, 2 x 5 min). During 



221 

 

this washing step, the initial N-α-Fmoc protected L-amino acid was pre-activated by dissolved in 

DMF (3 mL) with HBTU (2 equiv), HOAt (2 equiv), and DIPEA (4 equiv) in a scintillation vial 

that was placed on a shaking plate. After the deprotection and washing of the resin was complete, 

the activated initial N-α-Fmoc protected L-amino acid was introduced onto the deprotected resin 

and coupled for 1 hr with gentle shaking. This coupling was repeated one additional time, 

followed by washing with DMF (4 mL, 2 x 1 min), MeOH (4 mL, 2 x 1 min), DMF (4 mL, 2 x 1 

min). The completion of the coupling was confirmed using a Chloronil test to determine if there 

were any uncoupled amine groups remaining on the resin. If so, an additional coupling was 

conducted to fully saturate the resin with the initial amino acid. Once the initial coupling was 

completed and the resin was fully saturated, the N-α-Fmoc group on that amino acid was then 

deprotected was conducted over two steps using a 20% solution of piperidine in DMF (4 mL, 1 x 

10 min, followed by 1 x 20 min) followed by three-part washing step as previously described to 

provide an active amine group upon which to couple the next amino acid. The next amino acid 

was then coupled following the same pre-activation and coupling procedure. This process was 

repeated until all desired amino acids were coupled in succession. Non-natural amino acids were 

incorporated using 3 equiv of amino acid with the above described standard coupling reagents 

and sequence. The coupling agent N,N′-diisopropylcarbodiimide (DIC) was used to only couple 

residues following proline; here 3 equiv DIC was used, 2 equiv HOAt, and 4 equiv DIPEA in 4 

mL DMF for two iterations of 1 hr couplings. After all amino acids have been successfully 

coupled, the N-α-Fmoc group on the last amino acid was deprotected using the standard 20% 

piperidine in DMF solution, followed by the three-part wash step, and then the peptide was 

cleaved from the resin using a 95:2.5:2.5 TFA/TIPS/H2O solution (5 mL) over a three hour 

period. The cleaved solution was concentrated to an oily residue and then dissolved in 0.5 mL 
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ACN and then run on semi-prep HPLC. Eluted peaks were analyzed by LC-MS to identify 

desired product peak(s). The desired peaks were combined, concentrated to residue, and then 

lyophilized overnight to provide a white peptide residue. 

145: Peptide 145 was prepared and purified using 

the general peptide synthesis procedure described above. Synthesis was started from 300 mg of 

Rink amide MBHA resin, 25 mg (17% yield) white solid as the TFA salt. 1H NMR (400 MHz, 

cd3od) δ 8.71 (d, J = 1.4 Hz, 1H), 7.35 (d, J = 1.3, 1H), 7.07 (d, J = 9.1 Hz, 2H), 6.68 (d, J = 8.7 

Hz, 2H), 4.71 – 4.47 (m, 3H), 4.47 – 4.30 (m, , 1H), 4.30 – 4.12 (m, 1H), 4.06 – 3.92 (m, 1H), 

3.92 – 3.77 (m, 1H), 3.77 – 3.52 (m, 1H), 3.23 – 3.19 (m, 1H), 3.12 - 3.07 (m, 11H), 3.03 (dd, J 

= 13.9, 5.7 Hz, 2H), 2.95 – 2.82 (m, 6H), 2.31 – 1.14 (m, 28H). LC-MS (λ = 254 nm): 99%, tR = 

0.73 min. MS (ESI+): C41H69N12O7
+ Calculated m/z 841.5, found 841.8. 

 

 146: Peptide 146 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 300 mg of Rink amide 
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MBHA resin, 44 mg (26% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.74 

(d, J = 1.4 Hz, 1H), 7.35 (d, J = 1.2 Hz, 1H), 7.10 (d,J = 8.1Hz, 2H), 6.70 (d, J = 8.4Hz, 2H), 

4.71 – 4.60 (m, 2H), 4.56 (dd, J = 8.8, 5.6 Hz, 1H), 4.49 – 4.36 (m, 2H), 4.25 (t, J = 7.1 Hz, 1H), 

3.88 – 3.61 (m, 1H), 3.26 (dd, J = 15.2, 5.2 Hz, 1H), 3.18 – 3.07 (m, 14H), 3.05 (dd, J = 5.5 Hz, 

1H), 2.98 – 2.87 (m, 7H), 2.27 – 2.14 (m, 1H), 2.10 – 1.27 (m, 24H), 1.05 (dd, J = 8.4, 7.0 Hz, 

7H). LC-MS (λ = 254 nm): 99%, tR = 0.74 min. MS (ESI+): C46H78N13O8
+ Calculated m/z 940.6, 

found 941.6 (M+H). 

 

 147: Peptide 147 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 100 mg of Rink amide 

MBHA resin, 3.45 mg (6.0% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

8.73 (d, J = 12.6 Hz, 1H), 7.37 (d, J = 9.5 Hz, 1H), 7.09 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 8.5 Hz, 

2H), 4.75 – 4.63 (m, 3H), 4.61 – 4.52 (m, 1H), 4.47 – 4.37 (m, 2H), 4.31 – 4.19 (m, 1H), 3.97 – 

3.86 (m, 1H), 3.86 – 3.78 (m, 1H), 3.75 (t, J = 7.2 Hz, 1H), 3.72 – 3.62 (m, 1H), 3.28 – 3.19 (m, 

1H), 3.19 – 3.02 (m, 7H), 3.02 – 2.82 (m, 6H), 2.30 – 2.12 (m, 2H), 2.12 – 1.17 (m, 21H), 1.11 – 

0.98 (m, 6H). LC-MS (λ = 254 nm): 99%, tR = 0.68 min. MS (ESI+): C45H76N13O8
+ Calculated 

m/z 926.6, found 926.6. 
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 148: Peptide 148 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 100 mg of Rink amide 

MBHA resin, 3.45 mg (6.1% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

7.30 – 7.16 (m, 5H), 7.08 (d, J = 7.9 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H), 4.60 – 4.48 (m, 8H), 4.44 

– 4.37 (m, 4H), 4.23 (dd, J = 12.3, 6.8 Hz, 2H), 3.86 – 3.76 (m, 2H), 3.73 (d, J = 5.8 Hz, 2H), 

3.65 – 3.56 (m, 2H), 3.15 – 3.12 (m, 1H), 3.10 (s, 9H), 3.09 – 3.00 (m, 2H), 2.99 – 2.87 (m, 6H), 

2.86 – 2.81 (m, 1H), 2.24 – 2.11 (m, 3H), 1.99 – 1.39 (m, 24H), 1.35 – 1.23 (m, 3H), 1.05 (dd, J 

= 8.9, 6.9 Hz, 6H). LC-MS (λ = 254 nm): 99%, tR = 0.64 min. MS (ESI+): C49H80N11O8
+ 

Calculated m/z 950.6, found 951.5 (M+H). 

 

 149: Peptide 149 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 100 mg of Rink amide 

MBHA resin, 6.2 mg (11% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 8.71 

(d, J = 1.4 Hz, 1H), 7.97 (s, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 8.6 Hz, 2H), 4.68 - 4.58 
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(m, 2H), 4.57 – 4.27 (m, 2H), 3.91 - 3.78 (s, 1H), 3.77 - 3.60 (m, 2H), 3.27 – 3.01 (m, 11H), 2.99 

– 2.87 (m, 3H), 2.3 - 2.11 (m, 2H), 2.11 – 1.93 (m, 3H), 1.94 - 1.36 (m, 16H), 1.06 (dd, J = 8.7, 

7.0 Hz, 6H), 0.91 (dd, J = 18.3, 6.4 Hz, 6H). LC-MS (λ = 254 nm): 99%, tR = 0.65 min. MS 

(ESI+): C46H77N12O8
+ Calculated m/z 925.6, found 926.5. 

 

 150: Peptide 150 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 150 mg of Rink amide 

MBHA resin, 14 mg (17% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.32 

– 7.17 (m, 5H), 7.05 (d, J = 8.6 Hz, 2H), 6.70 (d, J = 8.6 Hz, 2H), 4.62 – 4.46 (m, 3H), 4.46 – 

4.39 (m, 1H), 4.36 (dd, J = 8.4, 4.8 Hz, 1H), 4.32 – 4.24 (m, 1H), 3.85 – 3.76 (m, 1H), 3.73 (d, J 

= 5.8 Hz, 1H), 3.66 – 3.58 (m, 1H), 3.18 – 3.08 (m, 10H), 3.08 – 2.91 (m, 4H), 2.91 – 2.80 (m, 

1H), 2.25 – 2.08 (m, 2H), 2.01 – 1.62 (m, 11H), 1.58 – 1.37 (m, 7H), 1.03 (ddd, J = 12.4, 9.3, 7.0 

Hz, 6H), 0.89 (dd, J = 18.0, 6.2 Hz, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.29 min. MS (ESI+): 

C49H79N10O8
+ Calculated m/z 935.6, found 936.5 (M+H). 
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 151: Peptide 151 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 100 mg of Rink amide 

MBHA resin, 1.8 mg (3.0% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

8.73 (d, J = 12.6 Hz, 1H), 7.37 (d, J = 9.5 Hz, 1H), 7.09 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 8.5 Hz, 

2H), 4.75 – 4.63 (m, 3H), 4.61 – 4.52 (m, 1H), 4.47 – 4.37 (m, 2H), 4.31 – 4.19 (m, 1H), 3.97 – 

3.86 (m, 1H), 3.86 – 3.78 (m, 1H), 3.75 (t, J = 7.2 Hz, 1H), 3.72 – 3.62 (m, 1H), 3.28 – 3.19 (m, 

1H), 3.19 – 3.02 (m, 7H), 3.02 – 2.82 (m, 6H), 2.30 – 2.12 (m, 2H), 2.12 – 1.17 (m, 21H), 1.11 – 

0.98 (m, 6H). LC-MS (λ = 254 nm): 99%, tR = 0.65 min. MS (ESI+):  C51H83N13O8
+ Calculated 

m/z 1005.7 (M), 502.8 (M+2), 335.2 (M+3), 251.4 (M+4), found M (ND), 503.9 ((M+2)+H), 

336.3 ((M+3)+H), 252.5 ((M+4)+H). 

 

 152: Peptide 152 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 100 mg of Rink amide 

MBHA resin, 3.5 mg (6.1% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 
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8.78 - 8.71 (m, 1H), 7.35 (s, 1H), 7.10 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 8.5 Hz, 2H), 4.72 – 4.50 

(m, 4H), 4.46 – 4.35 (m, 2H), 4.25 (t, J = 7.0 Hz, 1H), 3.90 – 3.76 (m, 1H), 3.76 - 3.61 (m, 2H), 

3.27 – 3.17 (m, 5H), 3.17 – 3.02 (m, 4H), 2.98 – 2.87 (m, 5H), 2.28 - 2.14 (m, 2H), 2.10 – 1.80 

(m, 6H), 1.80 - 1.58 (m, 10H), 1.58 – 1.40 (m, 5H), 1.37 (dd, J = 6.6, 3.5 Hz, 4H), 1.34 - 1.26 

(m, 6H), 1.18 – 0.94 (m, 6H). LC-MS (λ = 254 nm): 99%, tR = 0.64 min. MS (ESI+): 

C47H79N13O8
+ Calculated m/z 953.6(M), 476.8 (M+2), 317.9 (M+3), 238.4 (M+4), found M 

(ND), 477.9 ((M+2)+H), 319.0 ((M+3)+H), 239.5 ((M+4)+H). 

 

 153: Peptide 153 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 50 mg of Rink amide 

MBHA resin, 2.5 mg (8.8% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 

7.29 - 7.16 (m 5H), 7.08 (dd, J = 8.5, 1.9 Hz, 2H), 6.71 (d, J = 8.0 Hz, 2H), 4.62 – 4.45 (m, 5H), 

4.45 - 4.33 (m, 2H), 4.27 - 4.19 (m, 1H), 3.88 - 3.76 (m, 1H), 3.70 (dd, J = 12.6, 6.0 Hz, 1H), 

3.67 3. 57 (m, 2H), 3.22 – 2.78 (m, 15H), 2.24 - 2.09 (m, 2H), 2.01 – 1.58 (m, 21H), 1.55 - 1.38 

(m, 5H), 1.36 - 1.25 (m, 5H), 1.09 – 0.97 (m, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.25 min. 

MS (ESI+):  C49H79N11O8
+ Calculated m/z 949.6 (M), 474.8 (M+2), 316.5 (M+3), 237.4 (M+4), 

found M (ND), 475.9 ((M+2)+H), 317.7 ((M+3)+H), 238.6 ((M+4)+H). 
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 154: Peptide 154 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 50 mg of Rink amide 

MBHA resin, 5.2 mg (19% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.31 

- 7.16 (m, 5H), 7.08 (dd, J = 8.4, 2.1 Hz, 2H), 6.71 (d, J = 8.3 Hz, 2H), 4.613 – 4.47 (m, 4H), 

4.45 – 4.33 (m, 2H), 4.26 – 4.18 (m, 2H), 3.86 – 3.75 (m, 1H), 3.71 (dd, J = 13.4, 5.9 Hz, 2H), 

3.67 – 3.57 (m, 1H), 3.17 – 3.0 (m, 5H), 2.94 – 2.84 (m, 13H), 2.24 – 2.08 (m, 1H), 2.0 – 1.57 

(m, 20H), 1.56 – 1.23 (m, 7H),  1.10 – 0.97 (m, 6H). LC-MS (λ = 254 nm): 99%, tR = 3.11 min. 

MS (ESI+): C48H77N11O8
+ Calculated m/z 935.6 (M), 467.8 (M+2), 311.9 (M+3), 233.9 (M+4), 

found M (ND), 468.9 ((M+2)+H), 313.0 ((M+3)+H), 235.0 ((M+4)+H). 

 

 155: Peptide 155 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 25 mg of Rink amide 

MBHA resin, 4.2 mg (29% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.31 

– 7.17 (m, 5H), 7.08 (d, J = 8.8 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 4.61 – 4.46 (m, 3H), 4.46 - 
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4.36 (m, 2H), 4.22 (t, J = 7.0 Hz, 1H), 4.07 (dd, J = 12.6, 6.3 Hz, 1H), 3.87 -3.73 (m, 2H), 3.67 – 

3.57 (m, 1H), 3.17 – 3.06 (m, 9H), 3.06 – 2.80 (m, 7H), 2.22 -2.08 (m, 1H), 2.02 – 1.56 (m, 

15H), 1.56 – 1.39 (m, 4H), 1.38 – 1.22 (m, 5H). LC-MS (λ = 254 nm): 99%, tR = 2.9 min. MS 

(ESI+): C48H78N11O9
+ Calculated m/z 952.6 (M), 476.3 (M+2),317.5 (M+3), 238.2 (M+4), found 

M (ND), 476.9 ((M+2)+H), 318.4 ((M+3)+H), 239.5 ((M+4)+H). 

 

 156: Peptide 156 was prepared and purified 

using the same procedure as for peptide 145. Synthesis was started from 25 mg of Rink amide 

MBHA resin, 3.6 mg (26% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.24 

(t, J = 7.1 Hz, 5H), 7.08 (t, J = 8.4, 2H), 6.71 (t, J = 8.5, 2H), 4.61 – 4.35 (m, 6H), 4.23 (t, J = 7.0 

Hz, 1H), 4.10 – 3.99 (m, 1H), 3.99 – 3.86 (m, 3H), 3.85 -3.69 (m, 2H), 3.67 - 3.54 (m, 1H), 3.16 

– 3.06 (m, 10H), 3.06 – 2.77 (m, 8H), 2.22 - 2.07(m, 2H), 1.99 – 1.56 (m, 18H), 1.56 -1.39 (m, 

5H), 1.39 - 1.22 (m, 3H). LC-MS (λ = 254 nm): 99%, tR = 3.1 min. MS (ESI+): C47H76N11O9
+ 

Calculated m/z 938.6, found 938.5 (M+H). 

 



230 

 

 157: Peptide 157 was prepared and purified using 

the same procedure as for peptide 145. Synthesis was started from 150 mg of Rink amide MBHA 

resin, 5.6 mg (7.9% yield) white solid as the TFA salt. 1H NMR (400 MHz, cd3od) δ 7.35 – 7.20 

(m, 5H), 4.63 – 4.48 (m, 3H), 4.47 - 4.36 (m, 2H), 4.30 -4.24 (m, 1H), 3.86 - 3.76 (m, 1H), 3.73 

(d, J = 6.4 Hz, 1H), 3.69 – 3.57 (m, 1H), 3.15 – 3.10 (m, 5H), 2.93 (m, 4H), 2.27 – 2.08 (m, 2H), 

2.07 – 1.89 (m, 4H), 1.89 - 1.76 (m, 6H), 1.76 – 1.59 (m, 8H), 1.59 – 1.32 (m, 7H), 1.12 – 0.97 

(m, 6H). LC-MS (λ = 254 nm): 99%, tR = 2.6 min. MS (ESI+): C40H71N10O6
+ Calculated m/z 

787.6, found 787.5 (M). 

 

Analytical and structural characterization (LC-MS and NMR) 

Analytical LCMS data for all compounds were acquired using an Agilent 6110 series 

system with the UV detector set to 220 and 254 nm. Samples were injected (<10 µL) onto an 

Agilent Eclipse Plus 4.6 × 50 mm, 1.8 µm, C18 column at room temperature. A mobile phase of 

A (H2O + 0.1% acetic acid) and B (MeOH + 0.1% acetic acid) was used with a linear gradient 

from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a 

flow rate of 1.0 mL/min. Mass spectra data were acquired in positive ion mode using an Agilent 

6110 single quadrupole mass spectrometer with an electrospray ionization source. Nuclear 

Magnetic Resonance (NMR) spectra were recorded on a Varian Mercury spectrometer at 
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400 MHz for proton (1H NMR) and 100 MHz for carbon (13C NMR); chemical shifts are 

reported in ppm (δ). All synthesized peptides were dissolved in deuterated MeOH. 

AlphaScreen assay of synthesized peptide ligands 

The AlphaScreen assay was generally performed as previously described.[105] The 

general method for screening synthesized peptide ligands is as follows. Peptides were weighed 

out as solids and then dissolved in de-ionized water to a concentration of 10 mM. Compounds 

plates were then prepared using an automated liquid handling system (Tecan, Freedom Evo). 

Compound plates (1 µL at 10 mM highest concentration; 3-fold, 10-point dilutions in DMSO) 

were then diluted in 1X assay buffer (20 mM TRIS pH 8.0, 25 mM NaCl, 2 mM DTT and 0.05% 

Tween-20) to 1 mM using a Multimek robotic pipettor (Nanoscreen) and 1 µL was spotted into 

the wells of 384-well low-volume Proxiplates (PerkinElmer). To these plates 9 µL of protein-

peptide mix in 1X assay buffer was added by Multidrop (Thermo) to bring the final compound 

concentration to 100 µM and incubated for 30 min at room temperature. Next, 2 µL of a 1:1 

mixture of streptavidin-conjugate donor and nickel-chelate acceptor beads (45 µg/mL in 1X 

assay buffer) were added and the plates were allowed to incubate for an additional 30 min in the 

dark at room temperature. After incubation, the plates were read on an EnVision multi-label 

reader equipped with an HTS AlphaScreen laser (Perkin Elmer). The IC50 values reported are the 

average of at least 2 values ± the standard deviation.  When IC50 values for a single compound 

were not all active (< 100 µM) or inactive (> 100 µM), the IC50 values were calculated using 4-

paramter curve fitting (GraphPad Prism 5) from replicate runs using averaged response values 

for each compound concentration. 
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Isothermal titration calorimetry binding experiments 

All ITC measurements were recorded at 25 °C with an AutoITC200 microcalorimeter 

(MicroCal Inc.). All protein and compound stock samples were prepared in the target buffer 

(25 mM Tris-HCl, pH 8, 150 mM NaCl, and 2 mM β-mercaptoethanol), and then diluted in the 

same buffer to achieve the desired concentrations: 90 µM protein and 1 mM compound 

depending on the expected dissociation constant. The concentration of protein stock solutions 

were established using the Edelhoch method, whereas 10 mM compound stock solutions were 

prepared gravimetrically based on molecular weight. A typical experiment included a single 0.2 

µL compound injection into a 200 µL cell filled with protein, followed by 25 subsequent 1.5 µL 

injections of compound. Injections were performed with a spacing of 180 seconds and a 

reference power of 8 µcal/sec. The titration data was analyzed using Origin Software (MicroCal 

Inc.) by non-linear least squares, fitting the heats of binding as a function of the 

compound:protein ratio. The data were fit based on a one set of sites model. 

ITC experiments of remaining peptides are shown below. In the figure, the black curve 

represents PHF1 binding and the blue line represents PHF19 binding. 
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Future work 

Current efforts toward developing a highly potent and selective peptide ligand for PHF1 

and PHF19 have provided a micromolar ligand for PHF1 and PHF19. This ligand (148) is a 7-

mer peptide that has a single amino acid substitution of a phenylalanine for His39 residue 

position on the peptide. Efforts toward discovering a mimic of the trimethyl-lysine residue has so 

far proven unsuccessful and that will be a key focus of future research efforts. It has been shown 

that the methyl-lysine binding pocket has a limited tolerance for the steric bulk of the trimethyl-

lysine mimetic. Both the N’,N’-di-ethyl and N’-methyl, N’-norbornyl derivatives appear to be too 

large to successfully bind within the pocket. Additionally, the N’-methyl, N’-ethyl and N’,N’-di-

methyl analogs are respectively 17 and 7 times less potent than the phenylalanine mutant peptide 

that contains Kme3. Future efforts should consider synthesizing trimethyl-lysine analogs that 

utilize a substituted ornithine residue as the decreased residue length may assist in docking 

within the aromatic binding pocket. An additional functional group to try would be an azetidine 

head group. 

Another quaternary amine mimetic forH3K36me3 was suggested by Prof. Dmitri Kireev 

(Director of Computational Biophysics and Molecular Design, Center for Integrative Chemical 

Biology and Drug Discovery) and takes a different approach than efforts conducted so far. Prof. 

Kireev docked the N’,N’-methyl, ethyl analog and noted that only the methyl functional group 

was bound within the aromatic cage. Further comparison of this analog to the endogenously 

bound trimethyl-lysine peptide shows a similar binding pattern with only a single methyl group 

bound within the pocket. Additionally, he noted that outside of the aromatic pocket was an acidic 

residue (Asp67) that may be of use to gain addition hydrogen bonding. With these observations, 

Prof. Kireev proposed a lysine analog that possess a single N-methyl group and an N-acetamide 
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functional group. The acetamide functional group would potentially be able to gain 1 – 2 new 

hydrogen bonds with the acidic residues outside of the aromatic pocket while the methyl group 

would be bound within the aromatic pocket, Figure 3.6. 

Figure 3.6: Proposed Acetamide quaternary amine mimetic bound within Tudor domain 

 

Initial efforts to synthesize this unique analog have so far proven unsuccessful, Figure 

3.7. 

Figure 3.7: Synthesis of N’-Acetamide, N’-methyl N-α-Fmoc-Lysine 

 

 

An additional area of the peptide to continue SAR exploration would be to synthesize 

additional Arg40 analogs that are in combination with the phenylalanine mutant. The initial SAR 

series showed that that a positively charged residue at this position was not necessary for binding 

activity. Additionally, when the lysine was mutated to a leucine it was observed that this peptide 

was an equipotent peptide compared to the endogenous 7-mer. The double mutant (Phe and Leu) 
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was observed to be slightly less potent than the single phenylalanine mutant. Since it is 

hypothesized that the phenylalanine and leucine residues are increasing the hydrophobic 

interactions with the 4 leucine residues within the protein’s hydrophobic pocket, a double mutant 

that contained the observed phenylalanine for histidine and phenylalanine for lysine substitutions 

may increase binding affinity. Another residue to try at this double mutant would be isoleucine. 

A final area where amino acid substitutions may prove beneficial would be at the Pro38 position. 

This residue was shown to be important for Tudor domain binding in the Celluspot assay and 

substitution of a phenylalanine or tyrosine at this position may pick up addition hydrophobic 

interactions with the tetra-leucine wall in the protein’s hydrophobic patch, Figure 3.8. 

Figure 3.8: Double Mutant Analogs of Arg40 and Pro38 amino Acid Substitutions 
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Appendix I 

NMR Spectra for Chapters II and III 

N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (1) 
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (2, UNC1554) 

 

 

N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (3) 
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N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)isonicotinamide (4) 

 

4-(4-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)phenyl)morpholine (5)  
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N-isopropyl-N-(2-(2-(4-morpholinophenyl)-1H-benzo[d]imidazol-1-yl)ethyl)propan-2-amine (6) 

 

2-(4-(benzyloxy)-3-methoxyphenyl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (7) 
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2-(2-(4-(benzyloxy)-3-methoxyphenyl)-1H-benzo[d]imidazol-1-yl)-N,N-dimethylethan-1-amine (8)  

 

 

2-(1-(pyrimidin-2-yl)-1H-imidazol-4-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (9) 
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N,N-dimethyl-2-(2-(1-(pyrimidin-2-yl)-1H-imidazol-4-yl)-1H-benzo[d]imidazol-1-yl)ethan-1-amine (10) 

 

 

2-(pyridin-3-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (11) 
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N,N-dimethyl-2-(2-(pyridin-3-yl)-1H-benzo[d]imidazol-1-yl)ethan-1-amine (12) 

 

2-(2-methyl-1H-imidazol-4-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (13) 
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N,N-dimethyl-2-(2-(2-methyl-1H-imidazol-4-yl)-1H-benzo[d]imidazol-1-yl)ethan-1-amine (14) 

 

2-(6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-2-yl)-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (15)  
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N-(2-(2-(6-chloropyridin-3-yl)-1H-benzo[d]imidazol-1-yl)ethyl)-N-isopropylpropan-2-amine (16)  

 

N-benzyl-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-amine (17)  
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2-benzyl-1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazole (18)  

 

 

N-(2-(2-benzyl-1H-benzo[d]imidazol-1-yl)ethyl)-N-isopropylpropan-2-amine (19)  

 

 



247 

 

N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (20) 

 

N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (21) 
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N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (22) 

 

N-(1-((1-methylpiperidin-2-yl)methyl)-1H-benzo[d]imidazol-2-yl)benzamide (23) 
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N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (24) 

 

 

N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (25) 
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6-chloro-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (26) 

 

6-chloro-N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (27) 
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6-chloro-N-(1-((1-methylpiperidin-2-yl)methyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (28) 

 

6-chloro-N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)nicotinamide (29)  
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4-chloro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (30) 

 

3-chloro-2-nitro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzamide (31) 
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3-chloro-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-nitrobenzamide (32) 

 

3-chloro-N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-nitrobenzamide (33) 
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3-chloro-N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-nitrobenzamide (34) 

 

N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)cyclohexanecarboxamide (35) 

 

 

 



255 

 

N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)cyclohexanecarboxamide (36) 

 

N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)cyclohexanecarboxamide (37)  
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2-hydroxy-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)quinoline-4-carboxamide (38) 

 

 

2-hydroxy-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)quinoline-4-carboxamide (39) 
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N-(1-(2-(dibenzylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-2-hydroxyquinoline-3-carboxamide (40)  

 

4-hydroxy-8-methoxy-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)quinoline-3-

carboxamide (41) 
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5-chloro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)benzofuran-2-carboxamide (42)  

 

5-chloro-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzofuran-2-carboxamide (43)  
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5-chloro-N-(1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-2-yl)benzofuran-2-carboxamide (44) 

 

6-chloro-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)-7,7a-dihydroimidazo[2,1-b]thiazole-

5-carboxamide (45)  
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)chromane-3-carboxamide (46)  

 

1-cycloheptyl-5-oxo-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)pyrrolidine-3-

carboxamide (47)  
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1-cycloheptyl-N-(1-(2-(dimethylamino)ethyl)-1H-benzo[d]imidazol-2-yl)-5-oxopyrrolidine-3-

carboxamide (48) 

 

1-(tert-butyl)-5-oxo-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)pyrrolidine-

3-carboxamide (49) 
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1-acetamido-N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)cyclopentane-1-carboxamide 

(50) 

 

N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)acrylamide (51) 
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N-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)-2-(trifluoromethyl)acrylamide (52) 

 

3-Bromo-N-(3-(tert-butylamino)propyl)benzamide (61, UNC2170) 
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3-Bromo-N-(3-(dimethylamino)propyl)benzamide (62) 
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3-Bromo-N-(3-(isopropylamino)propyl)benzamide (63) 

 

3-Bromo-N-(3-(tert-butyl(methyl)amino)propyl)benzamide (64, UNC2892) 
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3-bromo-N-(3-(tert-butyl(ethyl)amino)propyl)benzamide (65) 
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3-bromo-N-(3-(isopropyl(methyl)amino)propyl)benzamide (66) 

 

3-Bromo-N-(3-(tert-butoxy)propyl)benzamide (67) 
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3-Bromo-N-(3-(pyrrolidin-1-yl)propyl)benzamide (68) 

 

3-Bromo-N-(3-(tert-butylamino)propyl)benzenesulfonamide (69) 
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4-bromo-N-(3-(tert-butylamino)propyl)benzenesulfonamide (70) 

 

N1-(3-Bromobenzyl)-N3-(tert-butyl)propane-1,3-diamine (71) 
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1-(3-(tert-butylamino)propyl)-3-phenylurea (72) 

 

1-(3-(tert-butylamino)propyl)-3-(o-tolyl)urea (73) 
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1-(3-(tert-butylamino)propyl)-3-(o-tolyl)thiourea (74) 

 

1-benzyl-3-(3-(tert-butylamino)propyl)urea (75) 
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1-benzyl-3-(3-(tert-butylamino)propyl)thiourea (76) 

 

(3-Bromophenyl)(3-(tert-butyl)imidazolidin-1-yl)methanone (77) 
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(3-Bromophenyl)(4-(tert-butyl)piperazin-1-yl)methanone (78) 

 

3-Bromo-N-(4-(tert-butylamino)butyl)benzamide (79) 
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3-Bromo-N-(5-(tert-butylamino)pentyl)benzamide (80) 

 

3-Bromo-N-(2-(tert-butylamino)ethyl)benzamide (81) 
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N-(3-(Tert-butylamino)propyl)benzamide (82) 

 

4-Bromo-N-(3-(tert-butylamino)propyl)benzamide (83) 
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2-Bromo-N-(3-(tert-butylamino)propyl)benzamide (84) 

 

N-(3-(Tert-butylamino)propyl)-3-chlorobenzamide (85) 
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N-(3-(Tert-butylamino)propyl)-3-fluorobenzamide (86) 

 

N-(3-(Tert-butylamino)propyl)-3-iodobenzamide (87) 
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N-(3-(tert-butylamino)propyl)-3-methylbenzamide (88) 

 

N-(3-(Tert-butylamino)propyl)-3-isopropylbenzamide (89) 
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N-(3-(tert-butylamino)propyl)-4-ethylbenzamide (90) 

 

N-(3-(Tert-butylamino)propyl)-3-(trifluoromethyl)benzamide (91) 
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N-(3-(Tert-butylamino)propyl)-4-(trifluoromethyl)benzamide (92) 

 

N-(3-(Tert-butylamino)propyl)-3-nitrobenzamide (93) 
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3-amino-N-(3-(tert-butylamino)propyl)benzamide (94) 

 

N-(3-(tert-butylamino)propyl)-3-methoxybenzamide (95) 
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3-benzoyl-N-(3-(tert-butylamino)propyl)benzamide (96) 

 

N-(3-(tert-butylamino)propyl)-2-naphthamide (97) 
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N-(3-(tert-butylamino)propyl)picolinamide (98) 

 

N-(3-(tert-butylamino)propyl)picolinamide (99) 
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4-Bromo-N-(3-(tert-butylamino)propyl)picolinamide (100) 

 

N-(3-(Tert-butylamino)propyl)-4-(trifluoromethyl)picolinamide (101) 
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2-amino-3-bromo-N-(3-(tert-butylamino)propyl)benzamide (102) 

 

 

4-amino-3-bromo-N-(3-(tert-butylamino)propyl)benzamide (103) 
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3-amino-5-bromo-N-(3-(tert-butylamino)propyl)benzamide (104) 

 

3-bromo-N-(3-(tert-butylamino)propyl)-5-hydroxybenzamide (105) 
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N-(3-(tert-butylamino)propyl)-4-fluoro-3-methoxybenzamide (106) 

 

4-bromo-N-(3-(tert-butylamino)propyl)-2-fluorobenzamide (107) 
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N-(3-(tert-butylamino)propyl)-3,5-bis(trifluoromethyl)benzamide (108) 

 

3-(tert-butyl)-N-(3-(tert-butylamino)propyl)-4-hydroxybenzamide (109) 
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N-(3-(tert-butylamino)propyl)-2-fluoro-5-(trifluoromethyl)benzamide (110) 

 

N1-(tert-butyl)-N3-(4-chloro-6,7-dimethoxyquinazolin-2-yl)propane-1,3-diamine (111) 
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N1-(tert-butyl)-N3-(4-chlorofuro[3,2-d]pyrimidin-2-yl)propane-1,3-diamine (112) 

 

N1-(tert-butyl)-N3-(4-chloro-5H-pyrrolo[3,2-d]pyrimidin-2-yl)propane-1,3-diamine (113) 
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5-bromo-N-(3-(tert-butylamino)propyl)furan-2-carboxamide (114) 

 

N-(3-(tert-butylamino)propyl)-5-phenylfuran-2-carboxamide (115) 
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N-(3-(tert-butylamino)propyl)-2-phenylacetamide (116) 

 

2-(3-bromophenyl)-N-(3-(tert-butylamino)propyl)acetamide (117) 
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3-(4-bromophenyl)-N-(3-(tert-butylamino)propyl)propanamide (118) 

 

N-(3-(tert-butylamino)propyl)-1-phenyl-1H-1,2,3-triazole-5-carboxamide (119) 
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N-(3-(tert-butylamino)propyl)-2-(phenylamino)thiazole-4-carboxamide (120) 

 

4-bromo-N-(3-(tert-butylamino)propyl)benzofuran-2-carboxamide (121) 
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N-(3-(tert-butylamino)propyl)benzo[b]thiophene-2-carboxamide (122) 

 

N-(3-(tert-butylamino)propyl)benzo[b]thiophene-2-carboxamide (123) 
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N-(3-(tert-butylamino)propyl)-1,2,3,4-tetrahydronaphthalene-2-carboxamide (124) 

 

N-(3-(tert-butylamino)propyl)chromane-3-carboxamide (125) 
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N-(3-(tert-butylamino)propyl)-1-(3-fluorophenyl)-2-oxopyrrolidine-3-carboxamide (126) 

 

N-(3-(tert-butylamino)propyl)-3-(furan-2-yl)benzamide (127) 
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N-(3-(tert-butylamino)propyl)-2-((2-cyclopentylethyl)amino)-5-(trifluoromethyl)benzamide 

(128) 

 

N-(3-(tert-butylamino)propyl)-2-(((1-cyclopentylpiperidin-4-yl)methyl)amino)-5-

(trifluoromethyl)benzamide (129) 
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N-(3-(tert-butylamino)propyl)-2-((4-(pyrrolidin-1-yl)butyl)amino)-5-

(trifluoromethyl)benzamide (130) 

 

N-(3-(tert-butylamino)propyl)-2-((5-(pyrrolidin-1-yl)pentyl)amino)-5-

(trifluoromethyl)benzamide (131) 
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3-bromo-N-(3-(tert-butylamino)propyl)-N-(1-(cyclohexylamino)-1-oxopropan-2-

yl)benzamide (132) 

 

N-(3-(tert-butylamino)propyl)-N-(1-(cyclohexylamino)-1-oxopropan-2-yl)-3-

iodobenzamidebenzamide (133) 
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N-(3-(tert-butylamino)propyl)-N-(1-(cyclohexylamino)-1-oxopropan-2-yl)-3-

(trifluoromethyl)benzamide (134) 

 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6,N6-dimethyl-L-lysine TFA (139)  

He  
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(S)-5-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-carboxy-N,N,N-trimethylpentan-1-

aminium TFA (140) 

 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6,N6-diethyl-L-lysine TFA(141) 
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N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(bicyclo[2.2.1]heptan-2-yl)-L-lysine TFA(142): 

 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(bicyclo[2.2.1]heptan-2-yl)-N6-methyl-L-

lysinelysine TFA (143) 
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N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-ethyl-N6-methyl-L-lysine HCl (144) 

 

6-mer peptide (145) 
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7-mer peptide (147) 

 

 

Orn peptide (148) 
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Phe analog (149) 

 

Leu Analog (150) 
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Phe + Leu analog (151) 

 

Norb, Meth analog (152) 
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DiEthyl analog (153) 

 

Methyl, Ethyl analog (154) 
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Dimethyl analog (155) 

 

Thr analog (156) 
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Ser analog (157) 

 

Tyr truncation (158) 
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