Co-scheduling Real-time Tasks and Non Real-time Tasksg.smpirical Probability Distribution of
Execution Time Requirements

Abhishek Singh

A dissertation submitted to the faculty of the UniversityNadrth Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Doctor of Philosophy éiepartment of Computer Science.

Chapel Hill
2009

Approved by:

Kevin Jeffay, Advisor
Sanjoy Baruah, Reader
Ketan Mayer-Patel, Reader

Alan Burns, Reader

Don Smith, Reader

© 2009
Abhishek Singh
ALL RIGHTS RESERVED

ABSTRACT

ABHISHEK SINGH: Co-scheduling Real-time Tasks and Non Riaé Tasks Using
Empirical Probability Distribution of Execution Time Reigegments.
(Under the direction of Kevin Jeffay)

We present a novel co-scheduling algorithm for real-timg)(@&hd non real-time response time sensitive (TS)
tasks. Previous co-scheduling algorithms focussed onigirayisolation to the tasks without considering the
impact of scheduling of the RT tasks on the response timdwedf § tasks. To best utilize the available processing
capacity, the number of jobs qualifying for acceptable pemnance should be maximized. A good scheduling
algorithm would reduce the deadline overrun times for sefltime tasks and the response times for the TS
tasks, while meeting deadline guarantees for the RT tasksphasent a formulation of optimal co-scheduling
algorithm and show that such an algorithm would minimize eélkpected processor share of RT tasks at any
instant. We propose Stochastic Processor Sharing (SRS8)thig that uses the empirical probability distribution
of execution times of the RT tasks to schedule the RT tasks that their maximum expected processor share
at any instant is minimized. We show theoretically and erogily that SPS provideds significant performance

benefits in terms of reducing response times of TS jobs oueentico-scheduling algorithms.

LIST OF TABLES vii
LIST OF FIGURES viii
1 Introduction 1
1.1 Motivation e 1
1.2 Execution Time Variability 2
1.3 A Novel Approach - Smart, Adaptive and Learning Schedule. 4
1.4 The Co-SchedulingProblem 6
141 TaskModel e 6
142 s(t)andA(t) . . . o o 7
1.5 Performance Gains e e e 12
1.6 Scheduler Evolution - From Simple Deadline Driven EDtelligent SPS 15
1.6.1 Scheduling Network Flows with Bandwidth Guarantees 15
1.7 Organization. e e 16
2 Literature Survey 17
2.1 Real-Time Scheduling e e 17
2.2 Earliest Deadlineas LateasPossible oL 18
2.3 Generalized ProcessorSharing e e e e 19
2.3.1 Constant Bandwidth Server and Total Bandwidth Server. 19
2.3.2 SlackReclamation e 20
2.4 Modeling Task Criticalness e e 21
2.4.1 TUFsandImprecise Computation iiei v o 22
2.5 Predicting Execution Requirement e e 24
2.6 Feedback Scheduling L e 25

Table of Contents

2.7 Probabilistic Analysis vs Probabilistic Scheduling

2.8 Requirement Variability and Dynamic Voltage Scaling

Coscheduling Real-time and Response Time Sensitive Tasks

3.1 Motivation - Single RT Media Decoding Task System
311 Definings(t) oo
3.1.2 Understanding A(t), s(t)andg(.) e e
3.1.3 Problemwith Priority e
3.1.4 Problemwith EDL e e

3.2 Probability and Scheduling - Stochastic Processorigpar.
3.2.1 Calculating;_Proposed(.) fora Single RT Task System
3.2.2 Schedule lllustration - Media Decoding Task Example
3.2.3 HandlingMultipleRTTasks,

3.3 Performance Comparison e

3.4 Quantum-Based Scheduler e e
3.4.1 TheAlgorithm e
3.4.2 SimulationResults

3.5 SumMmMary ..o e e e e e e

Soft Real-time Scheduling

41 SRTTasks e
42 TSTasks. o o e
4.3 What makes a Good Co-Scheduling Algorithm? oo L
4.4 TS Job Size and Impacton Response Time i wwu v v i i v
45 The SPS Scheduler e
4.6 Measuring and Reporting Response-tim&é$.J Function
4.7 Online Profiling - Constructingrr« . o 0 o o e e e
4.8 LeAININGYRT - - « « « v o e e e e e e e
4.9 Putting All the Pieces Together - Design of a PracticlleSaler

49.1 Periodsand Reservation i i e e e e

4.10 Possible Application Scenarios L 62
4.10.1 Server System Supporting Large NumberofClients 62

4.10.2 Supporting Bandwidth Reservations on a Network Node. 66
411 SUMMAIY . . o e e e e e e e e e e e 70
5 Experimental Setup 71
5.1 ExperimentParameters e e 71
5.1.1 SRT Tasks Generation i 72
5.1.2 TS Tasks Generation i e 73
5.2 Simulation Platform e 73
5.3 Typical Experiment e 79
5.4 Experimentsand Observations e e 84
5.4.1 Impactof SRT Utilizationon SRT Overruns 84

5.4.2 Impact of SRT Utilizationon TS Response Times 88

5.4.3 Impact of SRT Requirement Variability 93

5.4.4 Impactof Mean TS Utilization, 95

545 ImpactofSizeof SRTJobs. 97

5.4.6 ImpactofSizeof TSjobs. e 99

6 Conclusion 101
6.1 Co-scheduling Algorithm Performance o 101
6.2 Contributions e e 105
6.3 Limitationsand Future Work 107
6.4 Workload Consolidation and Power Savings coive v oo 109
6.5 CoNnClUSIONS e 110
BIBLIOGRAPHY 112

Vi

11

2.1

4.1
4.2

51
5.2

6.1
6.2
6.3
6.4
6.5

LIST OF TABLES

Notation summary e e e e e e 6
Task SBIUP o e e e e e e e e e e 23
Summary statistics folN,,..=1,U,,-,=0.30,R=0.65V,,=1000/;3=0.40) 63
Summary statistics for\,,,=100[/,,,=0.65,R=0.8QV;,=20U;s=0.15) 67
Summary statistics foN,,..=50U,,+=0.50,R=0.65V,s=50U;s=0.35) 79
Experimentsets e 84
Very lightly loaded processor e e 102
Lightly loaded processor e e 103
Moderately loaded processor e e 103
Overloaded proCessor o e e e e e e 104
Variation with TS jobssizes 105

vii

LIST OF FIGURES

1.1 Executiontimevariation e 3
1.2 Prioritys(t) . . . o o 9
1.3 GPSS(E) . o oo e e e e 10
14 EDLS(E) © v v ot e e e e 10
1.5 s()andExpecteds(t) e e 12
1.6 A(L) © o e 13
17 Samplab(L) . . . o 14
3.1 g()functions e 31
3.2 g(Hands(.)functions 37

3.3 Schedule for a task with period 40ms, worst case executioa fiéquirement of 24ms and mean execution

time requirement of 12ms. The execution time is assumedunifsemly distributed between 0 and 24ms.

The quantum sizeisassumedtobe Ims. e 45
4.1 SRT Executiontime variation e e 48
4.2 NAIVEXRT -+« o o e e e e e e e 56
4.3 Naive TSresponse timi(.) 57
4.4 ygrrdiscountingidle allocation e 58
4.5 TSresponse tim&(.) after discounting idle allocation 58
4.6 ygprdiscountingidletime 59
4.7 TSresponse tim®(.) after discountingidletime 60
4.8 Online profiling to CONStrUCtRrT - -« -+« o o o o o e e 60
4.9 (Ns=1U,+=0.30,R=0.659V,;,=1000/;5=0.40) execution time requirement distribution 64
4.10 (N4p+=1U4+=0.30,R=0.65V;,=100[/;,=0.40)d(.) values for SRTand TStasks 64
4.11 (Ng=1U,-+=0.30,R=0.65YV;,=1000/;s=0.40) g(.) functions for the four schemes 65

4.12 (N4-=1000,,..=0.65,R=0.8QV;s=20,s=0.15) execution time requirement distribution 68

4.13 (N,+=1000,,,=0.65,R=0.8QV;,=20/,s=0.15)®(.) values for SRT and TStasks 68
4.14 (Ns-+=1000,,+=0.65,R=0.8QV;,=20;,=0.15) g(.) functions for the four schemes 69
5.1 Java GUIlinputform e 73

viii

5.2 Java GUI summary statistics at the end of simulation. 75

5.3 Java GUI RT requirementdistribution 76
5.4 Java GUI(.)functions 77
55 JavaGUR(.)functions 78
5.6 (Ns+=50U,,.:=0.50,R=0.65YV;,=50;,=0.35) execution time requirement distribution 81
5.7 (Ne+=50U,-+=0.50,R=0.65V,,=50,U/;,=0.35)®(.) values for SRT and TStasks 82
5.8 (Ns+=50U4,+=0.50,R=0.65Y¥,,=50/;,=0.35) g(.) functions for the four schemes 83
5.9 Cumulative SRT utilization histogram and RT requiretrdistribution 85
5.10 Overruntimesangl.) forSPS 86
5.11 SPg(.) and RT requirementdistribution 87
5.12 Low utilization system, TS response tide) and SPS(.) 88
5.13 Medium utilization systeng,(.) function L L 89
5.14 Medium utilization system, TS response time and SRTromeime®(.) 90

5.15 SPSy(.) trend from EDL like for low overall system utilization to GR&e for high overall
system utilization L e 91

5.16 High utilization system, TS response time and SRT oveime®(.). TS jobs may be starved. . 92

5.17 Impact of difference betweén,. andR on TSresponsetimes 94
5.18 Impactof TSWorkload e 95
5.19 Impact of Number of SRT Tasks on TSresponsetimes 97
5.20 Impact of size of TS jobson TSresponsetimes 99

CHAPTER 1
Introduction

Scheduling real-time (RT) tasks is a well studied probleor.éxample, Earliest Deadline First (EDF) is known
to be optimal scheduling algorithm for uniprocessor systefior the Liu and Layland periodic task model where
task deadlines same as their period. If the cumulative waarseé utilization of the task set is not greater than
1 then the task set is schedulable [LL02]. While this schieduinodel is suitable for task sets composed of
just hard RT tasks, many practical task sets are composeasks with varying timeliness requirements. For
example, a General Purpose Operating System (GPOS) rurtearaiety of tasks with different response time

sensitivities —
e Interrupts that require “instant” service (a response tohe few us to a few ms)

e Media playback, computer games, interactive tasks likeidwnt editing that require response times in

the range of 30-200ms.

e Web servers or databases servicing a large number of camtwlients, whose performance depend on

the response time of the service.

e Large response time tasks that are not sensitive to slighdtian in response times. These tasks include
tasks submitted to grid systems, media encoding, scieptibiclem solving tasks, downloading large files

etc.

The scheduling problem for such task sets is neither purehdline based nor one of response time min-
imization. The goal is to schedule tasks so that the resptimes are reduced by a factor of 2-3 times as

compared to current predominant scheduling algorithms aweide range of practical scenarios.

1.1 Motivation

A solution to the problem of GPOS scheduling would requirasktmodel where the tasks may have deadlines

(RT tasks) or response time constraints. (time sensitiviesotasks). The goal of the scheduler would then be to

provide deadline guarantees to RT tasks while minimizisgoase times of TS tasks.

However, realizing such a scheduler in a GPOS is difficult. sMmurrent GPOS are based on multilevel
feedback queue schedulers which give preference to shobgiand i/o jobs over compute intensive jobs. Mul-
tilevel feedback queues fall in the category of best effonesluling, where there are no scheduling guarantees
provided, but the average response times for the jobs aterilean using scheduling schemes like FIFO or pure
round-robin.

Most GPOS provide mechanisms to assign priorities to takkthis setup, RT tasks can be given priority
over the non-RT tasks. But this is the worst possible way teawedule RT and non-RT tasks because the
non-RT tasks are blocked whenever any RT task is active,eneray experience unnecessary long response
times.

This raises an important question why current GPOS suppiontfy based schedulers, even though it is the

worst possible way to co-schedule RT and non-RT TS tasks.€Tdre two main reasons for this —
e A lack of suitable schedulers for co-scheduling RT and raspdime sensitive non-RT tasks
e No pressing need for new schedulers

For underutilized systems, the scheduling algorithm héle impact on the response times because there
are enough computing resources for all the tasks to finishimvieasonable time. Problems arise when there is
resource contention. When the processor utilization ofdkk set is high, inefficient scheduling may lead to RT

tasks missing their deadlines and non-RT tasks gettingydeélannecessarily.

1.2 Execution Time Variability

Current real-time schedulers, though appropriate fordulieg tasks with constant execution time requirements,
do not handle variable requirement RT tasks well. In factythchedule variable requirement RT tasks by
assuming that each job may require its worst case executn@requirement, which is not efficient.

For example, consider a MPEG playback task. The frame degdiines have large variation. For example,
it is not uncommon for the maximum decoding time to be mora théimes the minimum decoding time). Even
the variation between the decoding time from one frame tdhaavas very large (Fig 1.1).

The deadlines for decoding a frame are not hard. Thus, ifradnmisses its deadline by a small amount then

it may not lead to any performance degradation at all. Troeegfeach job of the MPEG decoding task can be

22 A ———— ‘ 16 : ‘ ‘ ‘ ‘
+ Execution requirement * R CPU CyC|ES (mi”iOUS) +
20 + q
(%]
0 2
Q [
&)
£ 5
s E
2 L L L L L
0 2000 4000 6000 8000 10000 12000
#frame . #frame) .
(a) MPEG frame decoding (b) Quake software rendering times

Figure 1.1: Execution time variation for an MPEG frame dengdask and Quake | software rendering task.
The frame decoding times for a StarWars trailer using mpleg are reported. Note that the minimum execution
time frame requires around 5 million cycles, some framesiregnent more than 20 million cycles. Some frames
require more than 20 million cycles. Even from frame to frathe execution time variation is significant. For

Quake | software rendering task, though frame to frame ei@ttime variation is not as substantial as MPEG
decoding task and the execution time between adjacent fr&@rsémilar, the overall execution time variation is

large, with mean requirement of around 5M cycles and maximmtimore than 15 M cycles.

allocated less than its worst case execution time requingraad if a job requires more than what it is allocated,
then its the duty of the scheduler to keep the deadline ome¢ime small to avoid performance degradation.

For task sets composed of many soft real-time (SRT) tasks) é\the cumulative worst case utilization is
greater than 1, the task set may be schedulable with acdegtaiformance. For example, consider a task set
with 3 tasks, each with worst case utilization of 0.5 and me#lization of 0.2. Now, while the cumulative
worst case utilization is 1.5, the cumulative mean utilats just 0.6. Also, the probability of ever reaching
the theoretical worst case utilization may be very low. @atrscheduling algorithms would call for reserving
less than the worst case utilization for each job of the t§§k898a], [APLWO02], [RH95]), but in that case
some jobs may miss their deadlines and in this case the deamllerrun time determines the performance of the
algorithm.

Broadly, the scheduling algorithm’s responsibilities are

e Determining the amount of execution time that is guaranteezhch job (the reservation), which may be

less than the worst case execution time requirement
e Minimizing deadline overrun times in case of deadline miss.

While many solutions have been proposed for the first prolflémfeedback control [APLW02] [LSSTO02]),

few solutions, if any, exists for the second problem.

As mentioned earlier, for underutilized systems, any raabte scheduling algorithm (like multilevel feed-
back queues) provides decent performance. This is becheseis no actual resource contention and all tasks
can finish within reasonable time frame. Though a schedi@rgpriority to RT tasks over non-RT tasks may
be highly inefficient even for underloaded systems. For glanctonsider a task set with single RT task with
period 100 ms and constant execution time requirement of £0The utilization is 0.5. Now, suppose a very
small requirement non-RT job arrives every 100 ms. The REjalso arrive every 100 ms. So each of the
non-RT job has to wait for 50 ms, before it is serviced. Th@oase time of each of the non-RT job is at least
50 ms, even though the processor utilization is just 50%s Phdblem becomes more serious as the processor
utilization increases, and the non-RT jobs are delayed pwae due to the RT jobs.

In the following sections, we introduce a co-schedulingétym that provides hard deadline guarantees to

the RT tasks while minimizing response times of the non-RKkda

1.3 A Novel Approach - Smart, Adaptive and Learning Schedule

We focus on the problem of co-scheduling RT and TS tasks sw@hRT tasks meet their deadlines while
reducing response time of TS tasks. This is an importantlerolwith significant practical implications. For
example, for a task set with a large number of variable reguént SRT tasks, the cumulative utilization of the
tasks at any instant is not very variable (due to statisticaltiplexing), and hence the reservation required is
significantly less than the cumulative worst case requirgroéthe task system. But if the task set is allocated
less processing time as compared to its worst case requitethen there may be deadline overruns in some
cases when the cumulative processing time requiremenedbsk set is greater than what is allocated to them.
For example, suppose the cumulative mean utilization of &RHKs is 0.8, cumulative worst case utilization is 3
and suppose one of the constituent tasks has mean utihizatti@d.1 and worst case utilization of 0.2. Suppose
the task gets a reservation of 0.12. Then any job of this tagk gveater utilization than 0.12 may potentially
miss its deadline. But as mentioned earlier, the cumulatiean utilization of all tasks is 0.8, so on average
there is 0.2 processor utilization which is free to be usediyof the tasks. If this free utilization is distributed
properly and in a timely manner to the overrun jobs then themital deadline misses may be avoided. Also, if
there are non-RT tasks in the system, then the RT jobs canléagediesuch that they do not miss their deadline,
but this delaying of RT jobs significantly improves the noh4Rsponse times.

The RT jobs can only be delayed by certain amount withoutimgstheir deadlines. Whenever RT jobs

are active they compete for processor time with the othdsstaBut if the processor has enough idle time such
that all the RT jobs can finish using just the idle processuetithen the RT jobs can be scheduled at lowest
priority and still they would meet all their deadlines witktanterfering with the execution of other tasks. If the
processor is busy on the other hand, then the RT jobs wowdféme and compete for resources with the jobs
of other tasks in the system. For practical task sets, theoB$ nay get some part of their allocation as idle
allocation and the remaining because of the schedulingitlign. Also, the actual execution time requirements
of the RT jobs may be variable, so some jobs may require vesyd&ecution time, while other jobs may require
their worst case execution time. An algorithm can proadfitake into account this execution time variability

of RT jobs and ensure that the lesser requirement jobs atettaifferently from the jobs that require greater
execution time, can provide performance benefits to therdétsés in the system. But the execution time of the
RT jobs may not be available beforehand, and guessing tloeigae time is not an option because that may lead
to deadline misses. To gracefully handle the variabilitgxecution time requirement of the RT jobs we propose
varying the processor share of RT jobs such that the RT joba lpgver processor share in the beginning but this
processor share progressively increases, but the ingeofdligher processor share are rarely reached because
most jobs would finish before reaching that phase of execufio achieve this kind of behavior, the probability
distribution information of the RT requirements would beeded to ensure that the higher processor share phase
of RT jobs is reached only rarely.

Note that our goal is not to find what reservation utilizatisrrequired for attaining certain performance
level, instead, the goal is to minimize the TS response tiwlgke providing reservation guarantees to the RT
jobs, whatever they may be. This formulation of the problesmseful as well as practical because the problem
of finding the reservation requirement for SRT task has beenessed before but the problem of co-scheduling
RT and non-RT tasks efficiently for given reservations f& 8RT tasks has largely been unaddressed.

The way our work fits in practical systems is as follows. Aitluns like feedback-control focus on deter-
mining the minimum reservation required for SRT tasks taiatacceptable performance. Using our scheduling
algorithm would yield the minimum reservation (calculatebugh feedback-control) required for the SRT tasks
to attain given performance in terms of jobs finishing witb@mtain response time. So while the feedback-control
loop remains the same, the internal scheduling is changesktour algorithm that provides RT guarantees while
minimizing response times. In the next section we preseatradl definition of the problem we are addressing

along with key contributions and results.

Notation Meaning

RT Task Real-time task with a deadline.

non-RT Task Non real-time task.

SRT Soft real-time, task with non-critical deadline. In caseleadline miss,
deadline overrun time determines performance.

TS Time sensitive task, response time determines performance

EDL Earliest Deadline as Late as Possible

GPS Generalized Processor Sharing

GPOS General Purpose Operating System

SPS Stochastic Processor Sharing

WCET Worst-Case Execution Time Requirement for a job of a task

Worst-case utilization WCET divided by task period

Mean utilization Mean execution time requirement divided by task period

Cumulative worst-case uti- Sum of worst-case utilizations of all the tasks

lization

Cumulative mean utilization Sum of mean utilizations of all the tasks. This may be conalolg less
than the cumulative worst case requirement.

Task reservation utilization | Execution time requested by each job of the task divided$pétiod.
The scheduler has to guarantee this execution time to edcbfjthe
task. The reservation utilization is usually between thamatilization
and the worst case utilization of the task.

Cumulative reservation utit Sum of reservation utilizations of all the tasks.

lization
Scaled response-time Response time of a job of a task divided by its period.
Scaled overrun-time Overrun time of a job of a task divided by its period.

Table 1.1: Notation summary

1.4 The Co-Scheduling Problem

Table 1.1 briefly describes the notation.

1.4.1 Task Model

A task is represented as the tuglg, x;, C;, R;), whereP; is the period (jobs arrive ever¥; time units),x;
is the random variable representing the execution timeirement of a job of this task}; is the worst case
execution time requirement of this task (WCET) and any jothefSRT task should receive; execution time
before its deadline. We cal; the reservation of the SRT task. Our scheduling algorithhedales the SRT
tasks in the best possible manner such that the each SRTidagkaranteed its allocation &; execution time
by its deadline P; time units), while minimizing the response times of TS tasks

A task with R; < Cj;, is a SRT task and some jobs of this task may miss their deadlid the goal of

the scheduling algorithm is to minimize the deadline oveiime for jobs missing their deadline. A task with

R; = C; is RT task where no job should miss its deadline. A task ilth= 0 is a TS task with no deadline,
rather the performance is determined by its response tinesp&se time is defined as the difference between
the job finish time and its arrival time. Overrun time for a SJRD is the difference between its response time
and its period. If a SRT job finishes before its deadline, ikeaverrun time is considered to be 0.

A SRT job of taski arriving at timet is guaranteed; execution time during the intervg, ¢t + P;]. If the
job does not finish after it has received its allocation studirg;, then this job is scheduled as a TS job for the
remaining duration of its execution.

The goal of scheduler is to allocaf execution time to each job of taglbefore its deadliné;, and do so
while minimizing the response times of TS jobs.

We assume that the only information available to schedsldra period?; and reservatio®; for each SRT
task in the system. The execution time of any job of a task ian@em variable, denoted as, that is the
scheduler has no information about the actual executioa tequirement of any job (non clairvoyance). For a
clairvoyant scheduler, the optimal schedule would be déffiethan that given by proposed approach. Assuming
non clairvoyance is very useful , because for most practigsiems, the actual execution time requirements of
a jobs are neither known nor easily available. The usual wayet around this problem is that the scheduler
fixes the reservation valui; for each SRT task, and the scheduling is done assuming edcfoBRequiresR;
execution time units, neglecting the variability in exéanottime requirement. This is a serious flaw with current
schedulers, and we will show through this work that sub&hperformance gains are possible if the execution
time distribution is accounted for by the scheduling alomi.

This brings us to the thesis statement.

The empirical probability distribution of execution time requirements of tasks can be effectively used by
an online scheduling algorithm to improve response-times of the non real-time tasks while meeting deadlines

for the real-time tasks.

1.4.2 s(t)and A(t)

The goal of our scheduling algorithm is to minimize the TS@sse times. For doing that, we first need to know
what are the best possible response times for the TS joblse [T$ jobs are scheduled in FIFO order, then the
scheduling algorithm that provides optimal response timé&smown [RCGF97]. But FIFO is not a good policy

to schedule TS jobs if the job sizes are variable. ShortdésEirst (SJF) minimizes the mean response time if the

execution time requirements for the jobs are known befardhheast Attained Service first (LAS) minimizes

the mean response time if the execution time requiremeatsarknown beforehand.

Now the TS jobs share the processor with RT jobs. Ag} denote the cumulative allocation to the TS jobs as
a function of time. Now depending upon the co-schedulingrlgm the value ofA(¢) may vary. The algorithm
that schedules the TS jobs gets a cumulative allocatiofi(of by time ¢, and this allocation is dependent upon
the co-scheduling algorithm and independent of the allgoriised to schedule the TS jobs.

A co-scheduling algorithm that gives greatéft) by timet, in general can provide better response times to
the TS jobs.

But A(t) alone does not characterize the TS response times fullye¥ample, consider a task set with a
single RT task with period 100 ms and constant execution teneirement of 50 ms. Now suppose there is a
very large execution time requirement TS job that arrivaga 0, and a very small execution time requirement
TS job arrives every 100 time units starting at time= 50. Now the co-scheduling algorithm that maximizes
A(t) is one that maximally delays the RT jobs. So the RT job argahtime 0, is scheduled at time= 50ms,
and RT job arriving at time¢ = 100ms is scheduled at timé = 150ms and so on. The problem with this
co-scheduling algorithm is that any TS job arriving at titne 50ms ort = 150ms is delayed folb0ms before
it gets any service. This is because, the RT jobs needs taex&om timet = 50 till time ¢ = 100 and from
timet = 150 to ¢t = 200 in order to meet their deadlines. On the other hand, givingdR§ priority over the TS
jobs would give a schedule where the RT jobs are scheduledtiroet = 0 till time ¢t = 50, and from¢ = 100
till time ¢ = 150 and so on. So the small requirement TS jobs arriving at tiree50, t = 150 and so on, get
serviced as soon as they arrive.

This example shows that to provide better TS response tilhesmall TS jobs should not be made to wait.
To model this requirement we introduce the measi{t¢ which represents the processor share of RT jobs at
timet. So, at timet, the TS jobs get a processor shard bf- s(¢)). The valueE[s(t)] represents the expected
processor share of RT jobs at tirheand keeping this value small rather thdn) is more useful. This is because
if the intervals whens(t) is high are rare, then their performance impact is less. Ailis particularly useful,
if having s(t) high (though rarely), reduces the values¢f) for more probable cases.

Formally,

e s(t) is a number in the rangé, 1] and denotes the cumulative RT processor share atttir@errespond-

ingly (1 — s(t)) denotes the cumulative processor share available to TS tdshknet.

e While (1 — s(t)) is the instantaneous processor share available to TS tasks—= fot(l — s(t))dt is the

cumulative allocation to TS tasks in the interi@|t].

d(.) for Priority

W g()
1.00
o 080
2
& 060
2 040
8
S 020
o
0.00
| |
080 1.00

Time

Figure 1.2:s(t) for a job with requirement equal to the worst case execuiime requirement under Priority
scheduling. Note that the RT job gets the full processomdytie time it is active. We label this curve &5).
The reasons for this will be explained in the later chapteus for now understanding the shape of the curve is
sufficient.

To understand the meaning €ft), let us work through some simple examples. Consider a testkisywith
a single unit period RT task with mean requirement of 0.3 stvoase requirement of 0.65. Suppose all the other
tasks in the system are non-RT. The goal of the schedulirgyithgn is to finish each job of the RT task before
its deadline (which is same as period and equal to one tintg iiere are many ways to achieve this. What we
are looking for is the way that best benefits the non-RT taskisdé system.

Now the most straightforward way to guarantee no deadlingses to the RT task is to give the RT jobs
priority over the non-RT jobs in the system. That is, whemékere is an RT job in the system, it preempts all
other non-RT jobs and executes on the processor until iti@sisClearly, such a schedule guarantees that all the
RT jobs meet their deadlines. Figure 1.2 shows the procedkmation to the RT job requiring its worst case
execution time requirement as function of time since it&zalr We call this thePriority scheduling approach.
The height of the shaded region is the valug (@}, and the area of the shaded region is the allocation to the RT
job.

Another way to schedule the RT job is to give the RT job a carigieocessor share of 0.65. Clearly, even in
this case no RT job misses its deadline. But this is a bettargssor allocation scheme than before, because in
this case the non-RT jobs may get some processor allocatemvwehen the RT job is active, which gives better
A(t). This schedule is shown in the Fig 1.3. We call this@feSscheduling approach, where GPS is short form
for Generalized Processor Sharing model [PG93].

Still another way to schedule the RT job is to delay its executintil the latest time such that it still meets

g(.) for GPS

M g()
1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

Figure 1.3: s(t) for a job with requirement equal to the worst case executio® trequirement under GPS
scheduling. Note that the RT job gets the processor shaia &mjits worst case utilization during the time it is
active.

g(.) for EDL

Mg
1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

Time

Figure 1.4: s(t) for a job with requirement equal to the worst case executioe trequirement under EDL
scheduling. Note that the RT job gets the full processoresktarting from time 0.35 till its deadline of 1 time
unit. Since the RT job is delayed maximally, 4¢¢) is maximum for this scheme for any valuetof

its deadline in the worst case execution time requiremesg.cln particular, a RT job arriving at time 0, is not
scheduled until time 0.35. And once it is scheduled at tin3® (it alone gets the entire processor. Also, it can
be seen that no RT job misses its deadline in this case alsbtsischedule has the added advantage of giving
the best possiblel(¢) function, because delaying the RT job any more may lead tdlaesoverruns. Fig 1.4
shows such a schedule. We call this the EDL scheduling appreéere EDL stands for thearliest Deadline

as Late as possiblecheduling algorithm, because this algorithm is based @ndiion of delaying the execution
of the RT job by as much as possible, thereby giving bettezliirallocation to the non-RT jobs. In fact, this will
be the optimal algorithm if the TS jobs are scheduled in Flk@eo

Sois EDL the best solution ? No! This is because of two maisars. First, note that a non-RT job arriving

10

when the RT job is scheduled is blocked for the entire dunadiaring which the RT job is active under EDL. In
this scenario, EDL performs as badly as Priority schedylavgn though EDL has bettel(¢) than Priority. In
fact, EDL may lead to arbitrary long intervals when non-Rbgare blocked. For example, consider a task set
with a single RT task with period 100 seconds and constargiaan time requirement of 50 seconds. Suppose
there is a constant streams of TS jobs arriving, then undér &8ss of algorithms, from time = 0 till ¢ = 50
seconds non-RT jobs are scheduled while RT job waits. Frorati= 50 seconds tilk = 100 seconds, the RT
job is scheduled and non-RT jobs arriving during this time l@locked. In worst case, a very small requirement
(and probably highly response time sensitive) non-RT jolviag at time¢ = 50 seconds is blocked for 50
seconds (front = 50 until ¢ = 100). In such a scenario, a GPS based schedule would provide besponse
times to small TS jobs. Second, note that even though thetwase execution time requirement of the job is
0.65, as we mentioned before the mean requirement is jusfTii& above three scheduling algorithms plainly
neglect this information, and schedule irrespective of it.

This is where we enter. We propose a scheduling algorithnigiwive call Stochastic Processor Sharing or
SPS, and this scheduling algorithm provides guaranteé®tBT tasks while taking into account their execution
time requirement variability to provide better responseets to the non-RT tasks in the system. How can it do
that ? Figures (Fig 1.5) give a general idea on what actualg 8oes, and in the following chapters, SPS is
explained in detail. Note that SPS continuously varies tloegssor share allocated to the RT job with progress
(the shape of the function is determined by the probabiliggrithution of the execution time requirement of
the RT job). Under SPS, the RT job starts with a lesser pracedsare as compared to GPS, and gets the
full processor share near its deadline. And the shape ofuthetibns(¢) is such that the maximum expected
processor share of the RT jobs at any titneepresented ag[s(¢)] is minimized.

In terms of theA(t) functions, the algorithms fare as shown in the figure Fig A§.can be seen from the
figure, EDL performs the best in terms dft), followed by SPS, GPS and Priority in that order. In fact,mggy
priority to the RT jobs over the non-RT jobs in the system &sworst possible way to schedule RT jobs from the
point of view of non-RT jobs, and still it remains the most eligimplemented scheduling algorithm in current

General Purpose Operating Systems (GPOS).

11

d(.) for Priority d(.) for GPS

m
ma

1.00 1.00

0.80 0.80
0.60 0.60
0.40 0.40

0.20

Processor Share
Processor Share

0.00 0.00

Time Time

(a) Priority (b) GPS

g(.) for EDL d(.) for SPS

1.00 1.00

0.80 0.80
0.60 0.60

0.40 0.40

Processor Share
Processor Share

0.20 0.20

0.00 0.00

0.40 0.60 0.80 1.00

Time Time

(c) EDL (d) SPs

Figure 1.5: This figure shows th€t) function for the worst case requirement job (as before) fmheof the
scheduling algorithms (Priority, GPS, EDL and SPS), ants@ ahows the expected processor share as a function
of time. Note that under EDL and Priority, the maximum expelgprocessor share of RT job may be 1, while
under SPS it is 0.4 (mean is 0.3 and worst case is 0.65). Téusgaves insight into the shape &f.) for SPS.
Basically, for SPS, the shape gf) is such that the maximum expected processor share of RT jomimized.

1.5 Performance Gains

All that said and done, the performance gains should be liéangr quantifiable. Now, what we are doing is to
improve response times of non-RT or TS jobs while meetingltiees for the RT jobs. So the obvious measure
of performance is the response times of the non-RT jobs.

We started with the definition of(t) and A(t) which give a good theoretical model to compare performance
of various algorithms in terms of these measures withoutyitog about the actual non-RT workload and its
scheduling. In the following chapters we present thecagticoofs that SPS performs better than GPS and
Priority in terms of the measuré(t), and better than all three (EDL, GPS and Priority) in termthefmaximum
value of E[s(t)].

To translate these results, which are in terms(@f and A(t), into actual measurements, more groundwork

12

A(t)

W Priority
M GPS
0.35
0.28
0.21
Z o014
0.07
0.00
T T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Figure 1.6: This figure show4(t) for a job with requirement equal to the worst case executina tequirement
under the four scheduling schemes. Note that EfJt) is the maximum , followed by SPS, GPS and Priority in
that order. In fact, Priority gives the worst possiblét) for any scheduling schemes because under Priority the
non-RT jobs are blocked by RT jobs.

needs to be done. First, note that measuring improvemergsiponse times of non-RT jobs is a very open

problem. For example, what kind of non-RT workload shouldibed to measure performance upon. Once the
workload is decided, what should be measured — the meannsspione perhaps. But the mean response time
may be strongly biased in the favor of jobs with large respaitaes. Also, the mean response time is just a
number and it does not give information about how actuakyrsponse times are distributed.

To understand this consider a MPEG decoding applicatioyineat 30 frames per second. Now, a frame
needs to be decoded every 33 ms. If a frame takes 35 or 38 msadelethe impact on perceived performance
is minimal. For frames taking say 50 ms to 100 ms, the is someeped delay but not serious performance
degradation. For frames taking more than say 200 ms to detfselenpact is visible and there is little difference
if the decoding time is 150 ms or 170 ms. In particular, jobthwesponse time close to the period have
little performance impact, while jobs with considerablegter response time all have negative impact on the
performance.

Thus, there is a need to formulate a measure that can quantifgompare performance of scheduling algo-
rithms that combine hard deadlines with softer ones. Thaugtks like Time Utility Functions (TUFs) [JLT85]
tie response time to performance. We use a much simpler megaghich is easy to understand and can provide
important understanding and insights into the scheduldéopeance. Basically, to properly express the behavior
of scheduling algorithms, we propose tireneasure, wher@(x) denotes the number of jobs whose response
time scaled by their period is greater than And instead of reporting one value, a cur®@éz) for z > 0 is

reported, which gives the distribution of response timesfothe TS jobs.

13

TS response times

W Priority
M GPS
32250
—
25918 |
19587
@ —
Q
S 13255 |
3 —
6924
592
I I | | |
0.1 0.7 1.3 1.8 2.4 3.0

Response Times scaled by respective periods

Figure 1.7: This figure show®(.) function for a task set with 50 SRT tasks and 50 TS tasks. Theutative
mean utilization of SRT tasks is 0.50 and their cumulatigereation is 0.65, and the cumulative mean utilization
of the TS tasks is 0.35. The execution time requirement fothal tasks are normally distributed. Note that
EDL/SPS perform nearly equally while outperforming GPS Wigicior of 2 and Priority by a factor of 3.

Fig 1.7 shows the response tindé.) function for a task set with 50 SRT tasks with cumulative metn
lization of 0.50 and cumulative reservation of 0.65. Theee%0 TS tasks in the system, with cumulative mean
utilization of 0.35. Also, all the tasks have normally distited execution time requirements. To understand
this graph, note that the lesser the valueb¢f:) for given value ofx, the better the performance of scheduling
algorithm in terms of TS response times. ABQr) is a decreasing function. Becaubér) denotes the number
of jobs with scaled response time greater thharlso, note that we plot the values for x from 0.1 to 3.0, tlsis i
because, all TS jobs will have their scaled response timestgrthan 0, s&(0) would report the number of TS
jobs for all the scheduling algorithms.

For SRT tasks®(x) represents the scaled overrun time. &0.4) represents the number of SRT jobs with
their deadline overrun times greater than 0.4 times thajpeetive periods. The usefulness of thg) measure
is that even if®(x) is high for small values of (say0 < x < 0.4), the performance may be acceptable if few
RT job have their deadline overrun time greater than sayiddg their period®(0.4) is the number of such RT

jobs).

14

1.6 Scheduler Evolution - From Simple Deadline Driven EDF tdntelli-
gent SPS

EDF has been known to be optimal RT scheduling algorithm flamg time now. But current workloads are
complex and their timeliness requirements are not plailiis@abased but a mixture of fuzzy deadline and re-
sponse time sensitiveness. These workloads require sitngdigorithms that specifically address these issues.
SPS not only handles these issues, but does so intelligeitiyminimal information about the task workload.
The only information it requires is the periods and the resgons for the SRT jobs, and it finds the best sched-
ule automatically by constantly profiling the executiondimequirements of the SRT jobs. It does not rely on
schemes predicting execution time requirement or fancglfaek mechanism to adapt to changing execution
times of the application.

Most current GPOS are based on quantum based scheduleiss aredwill show in later chapters, SPS can
be easily mapped to quantum based schedulers. But the quai#e on current GPOS is large (around 10 ms).
Though over the years, the scheduling quantum has come domrnlfoOms to 10ms or less, still for an efficient
SPS implementation the quantum size should be in the ranfigvahs if the minimum SRT periods are in the
range of 20ms. A positive development in this regard is thigalrof parallel hyper-threaded processors. Hyper-
threaded processors can service multiple tasks conclyyramid this model of processor service is closer to
GPS and hence more suited to SPS than the sequential sislglpraxessing model. SPS formulation requires
just two tasks to be run concurrently on the processor (ongoRTwith processor sharg(t) and one TS job
with the remaining processor share). While current promessan run multiple tasks concurrently (as in hyper-
threading), this is neither true parallel service modeldames it allow tasks to given a fraction of processor. Still,
it is a positive development, and probably soon in futureepssors may support weighted concurrent sharing by

multiple tasks.

1.6.1 Scheduling Network Flows with Bandwidth Guarantees

Though the analysis done in this document is based on opgraystem task model, it can be easily applied to
the case of scheduling variable requirement network flovtk vndwidth guarantees while providing smaller
response times to other flows. This scenario may arise irsdésebooking network bandwidth for video con-
ferencing application, or supporting massively multiygaonline video games. In such a setup, the bandwidth

booking would be useful on the bottleneck network node. Tdrestituent TCP flows can be considered as SRT

15

tasks with their periods depending on the RTT (actually imeout value for the individual connections). If we
define the response time for a packet as the time spent by thetpan the network node then the network node
should limit the response time of packets on it belonginghtoreserved bandwidth flows, while keeping the
response times for packets of other flows small. It shoulddiechthat GPS as a concept was introduced in the
domain of network bandwidth sharing, and SPS is closelyedlto GPS, barring the fact that it does not assign
fixed share to the tasks (or flows), instead their share maywih progress/time. In the following chapters we
present examples on how SPS can be used to schedule vargatdeidth requirement flows with bandwidth

guarantees on network nodes.

1.7 Organization

The organization of this thesis is as follows. We start withr@ad literature survey of RT scheduling algorithms
and SRT scheduling algorithms. The scheduling approacto@f is significantly different from the current
RT scheduling algorithms, so that makes direct comparisfiicwdt. Still, the problem of co-scheduling has
been frequently addressed, and we hope to provide the redites broad perspective on the approaches used.
In the next chapter we present the theoretical framewort e this as the basis for proofs that SPS has good
performance in terms of the measurd$) and A(t), as compared to current scheduling algorithms. In this
chapter, we show how a quantum based scheduler can sup@rirsthe next chapter we expand the domain
of SPS to SRT tasks and also bring about the importance ofipgpfhe RT requirements correctly. Since the
s(t), function is directly dependent upon the RT requiremerititistion, hence measuring them reasonably well
is the key factor impacting the performance. In particuleg, show that taking into account the processor idle
time is very useful to get good performance using SPS. Indhépter we also formally introduce and explain
the notion of®(x) measure and present some preliminary results to underbtamdo interpret it. Finally, the

conclusions, limitations and future work are presented.

16

CHAPTER 2
Literature Survey

2.1 Real-Time Scheduling

In real-time scheduling, tasks are required to finish bedie@dline. For a non clairvoyant scheduler, this implies
that every job is allocated for Worst Case requirement. Theduling is concerned with allocating such that all
jobs of all the real time tasks meet their deadline.

For periodic task systems, where jobs arrive periodic#lflg, cumulative system utilization should be less
than one for schedulability. Considét represents the period ofh task andiW; its worst case requirement,
then, for schedulability,

W;
> 5 <1

Static priority scheduling like Rate Monotonic [LLO2], pide deadline guarantees if the cumulative worst
case system utilization is less than 0.69.

Commercial real-time systems often use frame based sdhgd{iHor74], which is again based on worst
case requirements.

Though allocating for worst case is essential for real-tiasks, this may cause serious system underutiliza-
tion. For example consider a two task system, where botls tagke unit period, and the mean utilization of the
tasks is0.2 and0.3 respectively, while the worst case utilizationi$ and0.5. Thus, on average onk0% of
computing resources are used, but since the worst casersysitezation is 1, hence no more real-time tasks can
be supported.

In classic real-time scheduling theory, the remaining 50%ystem utilization goes to waste on average.
Note that this is not problem of knowing the execution reguoient, but a more basic problem due to requirement
variability. That is even if the exact execution requiretreme known, no more tasks can be added to this system
because the worst case utilization with the two tasks is 108étce, if more workload is added to this system

then there is a risk of missing deadline.

Now, often missing deadlines may not be serious if the deadiiiss time is small. It may be the case that the
task does not have a clear deadline but a range of acceptbksyso while some jobs may miss deadline, they
may still finish within acceptable time, and hence not countis deadline miss. Another scenario is when real-
time tasks are composed of multiple steps. If the deadlingssed by a small amount in one step, the task may
still finish on time if it finishes early enough in followingegis or stages. Thus alongwith providing deadline
guarantees, minimizing response time in case of deadlise micritical in minimizing resources required to
build real-time systems. For general tasks like media diexcpetc, the deadline is not a clear value instead it is a
range of values which may be viewer dependent. That is som@@enay notice even slight frame decode time
variation, while others may not notice small variationslatEhus keeping response time close to deadline leads
to better perceived performance for these tasks, whileimgeatl deadlines is not necessary. Through this work
we address these issues and provide solutions for them.

And the goal of scheduling is to minimize the deadline ovetime, so that even in case of deadline miss,
the likelihood of having response time within acceptablegeis maximized. Thus task reservations may be
significantly smaller than the worst case values, with joissing deadline having high likelihood of not causing

performance degradation.

2.2 Earliest Deadline as Late as Possible

The problem of response time minimization while maintagnofeadline guarantees for RT tasks have been
addressed before. If the response time sensitive taskslaeesled in FIFO order, then either Earliest Deadline
as Late as possible (EDL) [CC89] or aperiodic deadline assant [BS99] provides optimal solution. Both
are based on the notion of delaying RT jobs to the latest blesgistant such that they can still be scheduled
without missing their deadlines. Dual priority [DW95] ertis this notion of delaying RT jobs to static priority
systems. By delaying RT jobs, the other jobs (TS jobs) in yistesn get allocated earlier thereby reducing their
response times. But the drawback with this approach is thhaeiFIFO restriction on response time sensitive
tasks is removed, then delaying RT jobs for any responsegéensitive job is no longer optimal. In particular, it
may happen that a relatively response time insensitiverteskdelay the RT jobs, and a more sensitive task may
be blocked by RT jobs which cannot be preempted because theyraady maximally delayed. In this scenario,
the more sensitive TS job is blocked for the duration in whHdhjobs are active. Also this blocking time may be

arbitrarily long. While actual EDL schedule is calculated hyper-period based on worst case execution time

18

requirement estimate, we use a coarse approximation to Ebédule, which would be described in the next
chapter. From hereon, EDL would refer to this approximation

In the following sections we look at how current work in reimhe scheduling handles requirement variability.
But first we begin by giving a brief introduction to GeneraliRrocessor Sharing (GPS) [PG93] model, because

in the following sections we would use this model of procesb@ring to analytically analyze our proposals.

2.3 Generalized Processor Sharing

GPS [PG93] is resource sharing model which is frequently iiseetwork flow scheduling. The basic idea is
that the tasks which are referred to as flows, can be condiyr@iocated a fraction of processing capacity as
if they were executing on a separate processor with thatoigp&o for example, consider two tasks. Each is
given half fraction of the processor. So it is as if, both cfrthwere executing on a different processor with
processing capacity half of the original processor.

On sequential processors, GPS can be optimally invoked ugiantum based algorithms like Earliest Eligi-
ble Virtual Deadline First (EEVDF) algorithm [SAW®6]. In EEVDF, each task is characterized by a positive
integerw;, called its weight, and get% fraction of processing capacity at any timg; w; represents the
sum of weights of all active tasks. EEVDF guarantees thattlueation to task with weightv;, lies within
fg Zjejimwldt =+ g, whereg is the quantum size. Heté(t) represents the set of active tasks at tigand it is
assumed that taskwas active in the interval from O titl.

If the set of active tasks is constant, and the sum of weighdaé, then the relation can be expressed simply
by saying that allocation till timeis betweenu; x t + q. Each task is allocated a quantymanits of computation
at a time, and EEVDF determines the order in which the jobseaezuted, giving the allocation guarantees

mentioned above.

2.3.1 Constant Bandwidth Server and Total Bandwidth Server

Constant bandwidth server (CBS) proposed by Abeni et al @d9is characterized by budget and a tuple
(Qi,T:), where@); represents the maximum budget @fidepresents the time period. The server utilizatign
is given byQ; /T;.

Whenever a job arrives it is assigned deadline equal to threruserver deadline. And is run till its budget

does not run out. When the server runs out of its budget, ie¢harged to the maximum valdg;, and its

19

deadline is advanced &}, in effect maintaining utilization of/; over any interval. At any moment the server
with the earliest deadline is executed.

A constant bandwidth server decouples the notion of jobsrasdrvation. That is, the task is provided a
constant reservation @f;, and the allocation granularity is determined by the sepeegiod P;. If the task period
is equal to the server period, then CBS is similar to a petitaik with periodP; and worst case requirement
Q;. In case of mismatch, the allocation guarantees are praatieveryP; time units, that is during firsP;
time units the task is guaranteed cumulative allocatio ofomputation units and so on. The smaller the server
period P;, the better the allocation guarantee.

A Total Bandwidth server (TBS) proposed by [SBS95] is difierfrom a constant bandwidth server in the
following way. Suppose a job arrives for a TBS, then it is gged deadline which is maximum of previous job
response time and previous server deadline plus thedgfth, wherec; is the worst case execution requirement
of arriving job andU; is the TBS bandwidth. Note that if a job requires greater thanomputation units
than it gets allocated at rate higher thidn This is because, it misses deadline and then becomes tiesear
deadline task with its deadline in the past. CBS overconiegtioblem by allocating the task at a constant rate
irrespective of other factors.

But both of them suffer from the problem that they allocatetfe Worst case requirement. That is, even
though most of jobs may require substantially less comjmrtathey are allocated at rate which is determined
by the worst case requirement. So for example, considetkanhich requirese units of computation 99% of
time and2z units of computation for the remainings of jobs, still it is allocated at ratez/ P, whereP is the

period. Thus, over-allocating by twice for 99% of the jobs.

2.3.2 Slack Reclamation

If the task’s requirement are variable then frequently jalmaild finish without consuming the full allocation
provided to them, leading to slack. Then, it is the job of tbleexluler to distribute this extra available computa-
tion time amongst the other jobs in the system. Many slaclaneation schemes have been proposed [LBOQ],
[BBBO4] etc. Slack reclamation is a passive scheme, thaiise the slack appears the scheduler distributes it.
In this work we do not address the issue of handling slackeatswe address the issue of pro-actively adjusting
task schedule according to the probability distributiontefexecution requirement such that other tasks in the
system get greater processor share while the variablersgant real-time task is still active.

The goals of our approach are similar to that of dual pricsitiieduling discussed in next section.

20

2.4 Modeling Task Criticalness

The prevalent measure of criticalness of a task is deadliiss matio. For example, a task with acceptable
deadline miss ratip of 0.01 implies 1% of deadline may be missed. Note that ugtiadire is no specification of
the scheduling behavior in case of deadline miss. More eddbguarantees, like in ayconsecutive deadlines
atmostm deadline may be missed have been proposed [RH95].

While these schemes reduce the utilization requiremeiaistdst, by allowing some jobs to miss deadline. The
scheduling is still done for the boundary case value. Thatdasider a task with 90% probability of requiring
X computation units and 9% probability of requirifg computation units and 1% probability of requiriBg
computation units.

Now to attain a deadline miss ratio of 1%, each job would ha\eetallocated atlea®t: units of computation.
Thus even though 90% of the time the computation requireisentnits, each job is allocated far: units of
computation. Thus even though the reservation requirefettte task is decreased, jobs are still overallocated
in most cases.

Usually, the response time of jobs missing deadline are onsidered. Why is response time important ?
As discussed earlier, to increase average utilization gfséesn containing variable requirement tasks, implies
overloading. That is there may be intervals where jobs méssltine. But by keeping these intervals rare, the
likelihood of any serious performance loss can be minimized

Consider a sensor network, where information of certaimeweeds to reach a monitoring station. Now
there may be a critical deadline, which gives the monitostagion enough time to provide the best response for
the event. But what if the event notification process misgeslline. In that scenario, the earliest the notification
reaches the monitoring system, the better.

Or consider a media playback application, there is no clehrevof deadline, instead a range of response
times which may be acceptable. That is a frame missing deably 1-5 ms does not deteriorate performance,
and may not even be noticed by a user. Note that at frame r&&fp$, frames are shown at 40ms interval. So if
a frame is shown 45ms after previous frame there is littlégperance loss if any. Also note that even if 50% of
frames miss deadline and finish by say 41ms, there is litttBopaance loss. So deadline miss ratio is a useful

performance indicator but the response time in case of deadiiss is also an important factor.

21

2.4.1 TUFs and Imprecise Computation

While for hard real-time tasks, even a single deadline miay be critical, there is a large class of tasks for
which occasional deadline misses are not critical. A gdrveas to cover the task deadline characteristics is to
use Time Utility Functions (TUF) proposed by Jensen et al88]. The basic idea behind TUF is to specify
the utility of finishing by certain time for a job for all posdée response times. Hard real-time task can then
be represented as having maximum utility for response tiegsthan deadline and maximum negative utility
otherwise. Non critical tasks may have different utilitynfions where there may be some positive utility for
response times greater than deadline.

While this is a general approach, practically it is not easgdsociate utility with tasks. Consider for example
a multimedia task. Specifying a utility function for frameabding task deadline is not easy. Even if some such
function is specified, it is not clear how this will comparelhwitility function of rest of the tasks. For example,
consider a media decoding task and a web-server task. Tharedingle right way to assign TUF to these two
different tasks. In some cases, the user might desire goalibnpdayback at expense of web-server task. In
other cases, the user might want to strike a balance betwedwo tasks, but expressing this in terms of utility
functions is not straightforward.

Jane Liu et al [LLS91] considered imprecise computation or reward based stingdnodel. A task is
characterized by a mandatory part denotedhizyand optional part denoted hy. The scheduling goal is to
finish the mandatory part before deadline and finish maximan @f the optional computation. Reward is
associated with the amount of optional computation donat) the optional computation done for a job may
be any value between 0 ang whereo; is the maximum computation requirement of optional paristhodel
is different from Time Utility Functions (TUF) in the sendeat the optional part has no concept of response
time associated with it. That is the reward is just a functéiow much of the optional part is done. This
simplifies the analysis for maximizing rewards and for someard functions it can be easily calculated by
solving a linear optimization problem. This solution wasposed by Aydin et al [AMMMAOQ1]. The solution
requires knowledge of amount of slack available in hypeiqoe{LCM of all task periods) interval. For variable
requirement tasks this value is not known. Because the slackyperperiod is not a discrete value but a random
variable, thus probability is attached to each value.

The other and more significant difference of our work from iegse computation model is that, for us the

response time of job is important and not the amount of coatjmrt done for the optional part. That is, in

22

Task Worst Case Uti- Average Case Boundary value p at Boundary
lization Utilization value

A 0.7 0.3 0.5 5%

B 0.7 0.3 0.5 5%

Cumulative 1.4 0.6 1.0 10%

Table 2.1:Task setup

imprecise model of computation the optional part can be dongime to obtain reward, but in our model the
goal is to minimize response time of optional computatiotsaAn our model the optional computation is not
exactly optional rather it has low priority than the comgiaia of jobs whose deadline is in future.

The following discussion explains our model. To maximizerage processor utilization, variable require-
ment resilient tasks would often have worst case procedimation greater than 1. Now the performance of
resilient tasks is not only determined by number of deadliméssed but also by the amount of time by which
deadlines are missed. So minimizing the deadline miss tewetnes an unimportant performance criterion and
indicator. Current scheduling schemes focus on provideagptine guarantees and no action is taken to minimize
response time in case of deadline misses. The following plaitustrates this problem.

Consider two tasks tasks A and B with variable executioniregquent and unit period. Let both have worst
case requirement of 0.7 and mean requirement of 0.3. ThiBémpumulative worst case utilization(s7/1 +
0.7/1 = 1.4 (since period is 1). And cumulative mean utilization is 0@early, running a single task on the
processor leads to gross underutilization of resourcesvt&d can be done ?

Suppose the minimum requirement of these tasks 0.5 coniputatits, which gives a deadline miss ratio of
5%. So both these tasks can be scheduled concurrently vealeiecurring 5% deadline misses.

Let j* represent thé'” job of A andj? represent theé'" job of B. Consider the following scenario. At
time 0,j{* and;# arrive with requirement 0.6 and 0.5 respectively. Sincegéigod is 1 time unit, so on unit
speed processor only 1 unit of computation is finished titletil. Since both tasks are allocated 0.5 fraction of
processing power hengé has 0.1 unit of computation remaining and suffers a deadiiiss.

Now at time 1,j3' and;Z arrive say with execution requirement 0.3 each. Now the agkg together reserve
0.5+ 0.5 = 1 full fraction of processor capacity so the pending 0.1 uoftg® would have to wait for either of
45t or 58 to finish. This is because if it is serviced before the new jibies the new jobs may miss deadline even
if both the new jobs required less than 0.5 computation atiioy) the deadline guarantee. Now at 0.5 processor
share, 0.3 requirement job finishesiir3 /0.5 = 0.6 time units. Thus; misses deadline by 0.7 time units.

But if the job requirementg;' andj# are known in advance then two things can be done. One appi®ach

23

the dual priority approach which would run the second jobtheftasks starting at time 1.4 with full priority,
which would let them finish on deadline, and from time 1.0ttiie 1.4 the jobs are run at lowest priority, so the
pending computation of® gets serviced between time 1.0 and 1.1 giving deadline rinigsdf 0.1 units.

Another approach is to allocate 0.6 fraction of processdhéoreal-time tasks, thereby giving the pending
computation of jolj 0.4 fraction of processor. This impligg misses deadline by.1/0.4 = 0.25 time units.

While the dual priority approach gives the best solutioreit@ssitates a priori information of exact execution
requirement information, which may not be available. Theeoissues with dual priority scheduling have also
been pointed out. Basically, in dual priority schedulingréhare periods when real-time tasks run at lowest
priority and periods when they run at highest priority, thius service time is dependent upon arrival time. Also
in case of unaligned periods and large number of tasks, ledilcg the time at which real-time tasks have to be
promoted becomes complicated and would require timingyaigl This leaves us with the solution of running
the real-time tasks at reservation rate such that they fimistieadline. Using this approach the real-time tasks
can be treated independently and simple utilization basasilbility analysis determines schedulability.

But to attain this solution, the knowledge of execution iegment is required beforehand, which is hard to

come by. In the following sections we look at problems witegiction execution requirement.

2.5 Predicting Execution Requirement

Predicting execution requirement of a piece of code is acdiffiproblem. First, for arbitrary piece of code it is
not possible (Halting problem). Second, even for relayiv@inple code, the actual execution path information
(if conditions), and time spent in loops may not be predigdieforehand. Though, upper bounds may be used,
but they give the worst case values, which is not what we setbdind out.

Even for straight line piece of code, the actual executioreton modern processor depends on a host of
factors like cache state, pipeline state, branch predist&ic. This makes the problem of predicting execution
requirement difficult for applications.

Here it is important to mention that there exists some h#asigor specific applications, specifically MPG
decoding. MPEG stream is composed of Intra (1), PredictgdERlirectional (B) frames. | frames are most
computationally intensive, P frames lesser and B frameddhst. These frames usually occur in a pattern
like IBBPBB called Group of Pictures (GOP). Bavier et. al. MB98] showed that there is a high degree of

correlation between frame size and decoding time for earhdrtypes. That is, the frame size and computation

24

time required for | frames have a linear relation and samelhér P and B frames too. But this approach
is highly encoding dependent and may not hold for differemdogling standards. Also, to implement such a
scheme, the applications would need to be changed to apgielgrcommunicate the execution requirement to
the operating system.

But the prime problem is that for most other applicationgréhare no such heuristics available. This leads
us to explore other ways to handle requirement variabilipe of the more discussed about ways is feedback-

control scheduling, which is discussed in next section.

2.6 Feedback Scheduling

As the name suggests feedback scheduling is a reactive misghthat responds to changesoibserved value
throughactuator, which permits to apply feedback action. So for example taimize reservation for any
job, theobserved valués actual reservation required, which is available aftérgompletes execution and the
actuatorcontrols the reservation provided for the next job. Mostdtesck theory is based on linear relation
between actuator and observed value. Non linear feedbaaket is not a well understood problem. Thus the
feedback-control mechanism relies trends in execution cost. That is, if there is an increase in executi
requirement for the latest job, then feedback would predictease in execution requirement for the next job
and so on. How much increase is predicted is dependent upmoechf feedback function. The underlying
theory relies on convergence (usually exponential), thaticcessive approximations yield better results. But
this underlying assumption does not hold for predicting sysignal like execution cost, where there is little
linear trend in execution cost variation.

This approach has the following major drawbacks. Firstyahie an assumption that the job execution
requirements are dependent. Second, for feedback coitimhssumed that the dependence can be expressed
in terms of linear transfer functions. This is because rinadr feedback control is cumbersome, and closed
form solutions may not exist. Third, even if the job requiests are assumed to be dependent, feedback control
does not provide a way to capture that dependence, but agliad hoc selection of feedback control function to
model the relation.

In MPEG decoding there are frequent computation spikes altieet MPEG encoding structure containing
I,B and P frames, occurring ihB ... BPB... B order, i.e. | and P frames are surrounded by multiple B

frames. | frames have substantially larger computatiomiregnent than B or P frames. To decode | frames

25

before deadline, a reactive mechanism like feedback woale to allocate for them always, because linear
feedback-control cannot predict/accommodate spikesnmpeation requirement.

In this regard, Abeni et al [APLWO02] analyzed performancésgidback-control scheduling for MPEG task.
They came up with the notion of fast and slow feedback-cdletrahich basically determines the reaction speed
of feedback. Thus a fast controller reacts quickly to changhkile a slow controller reacts slowly. As pointed
out earlier, reacting fast does not help in case of noisyadigh slow controller works much less same as worst
case reservation, but over reserves for low requirenieframes and under-allocates fbframes. In fact there
is a trade-off, that is if the feedback controller tries tdiopze for B frames (i.e. it needs to react fast to decrease
in execution cost), it loses out dnframes, the execution spike followirfg frames. And a feedback controller
that optimizes forl frame (i.e. react slowly to the multiple low requirement ttignous B frames), ends up
over-allocating for theB frames.

In this work, we show that without requiring dependence leetvexecution requirement of jobs, the reser-
vation rate requirement can be minimized nearly to thatead by an ideal clairvoyant scheduler, by just using

the probability distribution of execution requirements.

2.7 Probabilistic Analysis vs Probabilistic Scheduling

But before discussing that, we bring to attention the fieldrobabilistic analysis of schedule of variable require-
ment tasks. The probabilistic analysis approach entaitgyugell known algorithms like Rate Monotonic (RM)
or EDF and estimate system performance like deadline misisafility and the response time distribution of
variable requirement tasks under the given algorithm. Epeasentative example of this approach is Real Time
Queuing Theory [Leh97]. The goal of this approach is to philsically quantify performance of algorithms
like FIFO and EDF. In this work, we use the probability distrion information to construct schedule that sat-
isfies certain constraints, like guaranteeing boundedloheaghiss ratio and minimizing response time in case of
deadline miss.

Tia et al [TDS95] proposed semi-periodic task model for scheduling tagksse jobs have highly varying
execution times. They extended time demand analysis [L${d8Static priority systems to consider execution
times as random variables instead of fixed values. In suckmasio, the cumulative execution requirement of
random variables in not their sum but a convolution. Thisisduse the probability distribution of sum of random

variables is their convolution. By calculating this conviibn, the distribution of response time of jobs can be

26

calculated and using this probability distribution, thelpability that a job will miss deadline can be calculated.
Diaz et al [DGK"02] proposed using Discrete Time Markov Chains (DTMC), tadeigriority based systems
with variable requirement tasks. They showed that the mesptime distribution can be determined by analyzing
this DTMC. Stochastic Rate Monotonic Scheduling (SRMS)psed by Atlas and Bestavros (1998) [AB98b]
provides statistical deadline guarantees to schedulegtiefiasks using Rate Monotonic (RM) algorithm. It uses
approach similar to timing analysis to bound the amount trference that a task at prioritycan receive from

all the higher priority tasks. By finding the cumulative dexdalistribution of higher priority tasks and task
the probability that demand exceeds the capacity can belagdd. This probability gives the probability that
task: misses deadline. To provide statistical guarantees, tlie wd allocation needed to limit the deadline miss
probability to a given value can be calculated. For everl the minimum such value is calculated. Thus each
task reserves for minimum utilization that would guararg®en deadline miss probability.

The goal of these approaches is again to probabilisticatintjfy performance of algorithms like Rate Mono-
tonic (RM) which are essentially based on boundary or wasewalues. Thatis the reservation or the utilization
value chosen for a task is basically the boundary value tioaldwive guarantee that deadline miss probability
is not greater than the specified value. But choosing thisibary value still leaves space for improvement.
For example, the average requirement of a job may be subEtpméss than the chosen boundary value, and

scheduling should use this fact to improve performancertik@mizing response time of tasks.

2.8 Requirement Variability and Dynamic Voltage Scaling

Processor power consumption is proportional to square kkdige multiplied by frequency i.e2 o« V2 x f. Also

the processor frequency is proportional to voltage, givihg f. So the energy consumption rate of a processor
can be written af = K f2, whereK is a constant of proportionality. To finishunits of computation, the
processor consumes = -/ f energy, which from the derived relation is equalftox x.

For variable requirement tasks, running the processor airstant speed such that the task finishes on
deadline in worst case, is not efficient. For example, if titerequired half of its worst case requirement, then
running it at half the worst case speed is sufficient to mezttmdline and in that case, energy consumption is
reduced by 1/4.

The problem of processor energy consumption has receivegh mttention but we focus on a specific ap-

proach proposed by Lorch et al [LS04] called Processor Agatibn to Conserve Energy (PACE). The basic

27

idea behind this approach is that instead of predicting @@t requirement of job, the schedule is calculated
based on the probability distribution of execution requient such that the expected energy consumption is min-
imized. Though this approach was proposed for a system icdmgaa single task, subsequently heuristics were
proposed for extending this approach to multiple task sgst¢YNO04] [YNO3]. The extension to multiple task
system is done by dividing the execution time amongst tHestimsthe ratio of their worst case requirement. And
then schedule is calculated for each task independentiythg isingle task case proposed by Lorch et al [LS04].

For this work, we do not go into details of Dynamic Voltage [Bapand processor energy considerations.
Instead our focus is on the approach of using probabilityridigtion to minimize the expected value of energy
consumed. Note that the nothing is assumed about the acugdlpexecution requirement except for the fact
that the jobs’ execution requirement has the same distoibutvhich is a pretty general assumption. So this
approach does not suffer from the drawbacks of predictiheses like feedback which rely on knowledge of
interdependence between execution requirement of jobs.

This is an important concept. The probability distributiminexecution requirement is a information which
can be easily made available in practical systems. Its Ursefg has already been shown in processor energy
conservation schemes. Through this work, we hope to bririghmiusefulness of probability distribution of
execution requirement in real-time scheduling of variablguirement tasks.

Specifically, we assume a task model where deadline missgaotdead to total performance loss, instead
if the response time is withing some acceptable range, therthere is little or no performance loss. This
task model allows for specifying the worst performance llesad then optimizing for the average case system
performance. The importance of our work lies in the fact thatreal-time scheduling of variable requirement
tasks has largely been based on worst case or boundary vaitlesut taking the actual variability into account.
So while the system is designed for worst case guarantegggtage case performance is not optimized for. But
this was not required in task models which assumed that ngs$éadlines is critical. As we move into task
model, where deadlines are no longer concrete instead ftadmgs, that is under some circumstances, deadline
miss by small amount may be accommodated by the systemrddibt® deadline miss time become important
performance criterion. And using the probability distiiioun information of execution requirement is a practical
and effective choice to guide efficient scheduling of vdgatequirement tasks. In the following sections the

approach is explained.

28

CHAPTER 3
Coscheduling Real-time and Response Time Sensitive Tasks

3.1 Motivation - Single RT Media Decoding Task System

We start our discussion of SPS with an example. Considertarsywith one variable requirement periodic RT
task, and other non-RT tasks. Assume that at any instarasttd@e non-RT task is active.

A periodic RT taskr is characterized by perioff and a new job arrives evety time units. Any job may
have a worst case execution time requiremerdt pivhich is referred to as its WCET. Lgtbe a random variable
denoting the execution time of a job.

For example, for a MPEG decoding task, the peridds 40ms (25 fps), the WCET is 24ms and the
average execution time requiremétity] is 10ms. These values were obtained by counting CPU cydiesresl
to decode the frames in Star Wars movie trailer usingg_play. As can be seen the execution time requirement
for the media decoding task is highly variable, with the woese requiremerdt being more than twice the mean
requirement ofE’[y].

We look at following scheduling approaches to scheduleRfisask.
e Priority - The RT task gets priority over non-RT tasks.

e GPS - This algorithm is derived from Generalized ProcessariBg (GPS) [PG93]. The RT task gets a

constant processor share given by its worst case utilizatio

e EDL - Earliest Deadline as Late as possible (EDL) [CC89]. Rietask is delayed as much as possible

such that it still finishes by its deadline.
We compare these algorithms using the measd(ésands(¢).
e s(t) denotes the processor share of a RT task as a function of time

e A(t) is the cumulative allocation to other tasks in the systeni tinte ¢ (in the interval [0,t], assuming

RT tasks arrived at time 0), and is given fy— f(f s(t)dt).

3.1.1 Definings(t)

The s(t) function is defined in terms of a functigy{.) which represents the processor share for a job of the
corresponding RT task as a function of time duration sineejoi’s arrival. So functiory(z) is defined for
0 <z < P. Also sinceg(.) represents processor share, its value lies between 0 and 1.
Formally,
Definition
g(t— | 5]P) if task active

0 otherwise

Note that for a RT task arriving at time 0 and with peri&d (¢t — [+ P) represents the time duration since
arrival of the job active at timé. From hereon we would represent the arrival time of job &céivtimet asa(t)

anda(t) = || P. Furthermore function(.) should satisfy the following property,

/0 g > C

That is, the job should finish C execution time units on or befts deadline which is time units after its

arrival.

The function g(t) where (t is between 0 and P) for the abovetimead scheduling algorithms can be written
as follows. We represent thg.) function for a particular scheduling algorithm @sfollowed by the scheduling
algorithm name to differentiate between various scheduigorithms. Figure 3.1 illustrates tlg¢.) functions
for Priority GPS and EDL algorithms as well as the Proposgdrithm. The shaded area represent the allocation
to the RT job, while the height of the shaded area represketdtual processor share of the RT job at that time.
The curveg_Proposed(.) is unigue in the sense that it is continuously varying andhvénfollowing sections we

see how to determine the shape of cugvEroposed(.) based upon given optimization criterion.

e Priority
g-Priority(t) =1

o GPS
g-GPS(t)=C/P

30

g(t) /3 g(t) /=

1 T 1
0.8 1 0.8
[[
IS IS
% 06 % 06
S S
@ @
2 04 2 04
< <
a o
0.2 1 0.2
0 L L L 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time in ms (period 40 ms) Time in ms (period 40 ms)
(a) Priority Schedule (g(t) =gpriority(t)) (b) GPS Schedule (g(t) =6PS(t))
g(t) /= g(t) /=
1
0.8 -
() ()
IS IS
S 06f S
<] <]
123 123
1% 1
L 04Ff 8
< <
a a
0.2 + 0.2
0 L L L 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time in ms (period 40 ms) Time in ms (period 40 ms)
(c) EDL Schedule (g(t) = dEDL(t)) (d) Proposed Schedule (g(t) =Rroposed(t))

Figure 3.1:These figures show a job schedule for MPEG task with periocds48WCET 24 ms and mean requirement of
10ms. The filled curves g(t) shows the processor share of @jgklR The shaded area represents the allocation to the RT job
as function of the time duration since its arrival. The heighcurveg(t) represents the actual processor share of the RT job
as a function of its time since arrival. The total work donelemneach scheduling policy is equal to the WCET (24ms). While
the Priority, GPS and EDL g(t) functions are constant, thegmsed g(.) functiong(Proposed(.)) varies with job progress.

In the following sections we describe hguProposed(.) is calculated and its properties.

e EDL

1 ift>P-C
g-EDL(t) =

0 otherwise

Lemma 3.1.1 For any given t between 0 and P,

t t t
/ g-EDL(t)dt S/ g-GPS(t)dt S/ g-Priority(t)dt
0 0 0

Proof Under Priority, the RT job is scheduled as soon as it arrimelsggiven the full processor shareRgiority(t)=1)

31

until it finishes. Under GPS, the RT job is given a constantessor share of C/P(1) from its arrival un-
til it finishes. Hencefot g-GPS(t)dt < fot g-Priority(t)dt. Under EDL, the RT job starts getting allocation
only when the time remaining is just enough to finish the jokdeadline under its worst case execution time

requirement. Hencef;) g EDL(t)dt < [} g-GPS(t)dt O

Lemma 3.1.2 For anyt,

Priority A(t) < GPS A(t)

IN

EDL A(t)

Proof By definition, for a single RT media task and a set of non-Rk4as

Alt) =t — /Ots(t)dt

Break this integral until the arrival time of latest job (tetdeadline of the latest job finished),

a(t)
A(t) = (alt) — /O s(t)dt)

H((t = a(t)) - / o0

Now the cumulative allocation to the RT task until the arritime of latest joba(t) is same under any
scheduling algorithm where all jobs meet their deadlinedeghe first term is same for Priority, GPS and EDL.

The difference is caused by the second term. Now note thendgean can be written as
t
((t=a) - [st

The negative terr[f(f(t) s(t)dt represents the allocation to the RT job as function of timenFLemma 3.1.1,
the allocation to RT job as a function of time since its alrigagreatest under Priority, lesser under GPS and
least under EDL. So the cumulative tefitt — a(t)) — fat(t) s(t)dt) is least under Priority, greater under GPS

and greatest under EDL]

32

Lemma 3.1.3 For any RT job, let max s(.) denote the maximum value of s(t).

GPS maxs(.) < Priority maxs(.), EDL maxs(.)

Proof Note that under GPS, the maximum value@f) is (C/P < 1), whileitis 1 under Priority and EDL. This
is because under EDL and Priority scheduling, the RT jobssga®d full processor share when it is scheduled.

O

3.1.2 Understanding A(t), s(t) and g(.)

Both A(t) and s(t) are important because whilé(¢) denotes the cumulative allocation to other tasks in the
system in the intervdD, ¢], (1 — s(¢)) denotes the instantaneous processor share availableaotatiks in the
system at time t.

As pointed out earlierA(t) is same for all scheduling algorithms on job deadlines bgedloe allocation to
RT task by any the deadline is same under any schedulingitdgor The variation is caused when the job is
active. EDL delays the RT job such that the other tasks inyhtem get scheduled before the RT task, and hence
maximizesA(t).

s(t) is the processor share of RT task with time. A good schedwalggrithm would be one for which the
value ofs(t) is small for all values of t. GPS keeps the values@f) constant at the worst case utilization of the
RT task whenever it is active. Under EDL and Priorityt) is 1 while the RT job is active.

s(t) is based on functiog(.) which gives the processor share for a RT job as a functionne tiluration
since its arrival (for RT task arriving at time 0 and job aimig every P time units; — a(t¢)). The g(.) function is

dependent upon the scheduling algorithm used.

3.1.3 Problem with Priority

If an RT task is given priority over other tasks in the systémen the other tasks are blocked whenever the RT
task is active. This gives the worst value 4ft) (minimum) amongst all algorithms guaranteeing that the RT
task does not miss any deadline. Also, the valuélof s(t)) is O while the RT task is active and hence this

algorithm does not perform well on both measures.

33

3.1.4 Problem with EDL

Even thoughA(¢) is maximized by EDL, the value dfl — s(¢)) may be 0 while the RT job is active, that is
the other tasks arriving when RT job is active are blocked &t job finishes as in Priority. Furthermore, this
blocking time may be arbitrarily long.

For example, consider a RT task with period 1000ms and eiectitne requirement of 500ms. Let there
be non-RT tasks active at any time. In such a scenario, unaiti?and EDL, the RT task is active for 500ms,
thereby blocking all non-RT tasks for the entire duratiorb60ms. The period of the RT task can be chosen

arbitrarily long, thereby leading to blocking of non-RT ktador arbitrarily long intervals.

3.1.5 Problem with GPS

The advantage of GPS is that the processor share availabtdeotasks in the system is at ledst— C/P)

at any time. The problem with GPS is that the processor igvedebased on the worst case execution time
requirement of the RT task. Thus, even though on average #tgandecoding task requires just under 10ms of
execution time, any job is given a processor share of 24/4®~vthich is more than twice the mean processor

share requirement of 10/40 = 0.25.

3.2 Probability and Scheduling - Stochastic Processor Shieng

In this section, we start with discussion for a system wittgke RT task.

As pointed out above, variability in execution time requient of RT tasks poses unique challenges. First,
the scheduling algorithm should provide deadline/allmraguarantees to the RT tasks. Second, to provide
guarantees, a non clairvoyant scheduler schedules eadf fhie RT task assuming that it would require its
worst case execution time.

In this section we describe how the variability in executtone requirement can be efficiently handled.
We first introduce the notion of expected processor sh&fe(t)]. This is the key notion in our analysis. Its
importance lies in the fact that for variable requirementt®3ks, the valug(t) is dependent upon whether the
RT job has finished or not. If the RT job has finished then it doatsrequire any processor share, but if it is
active then it is allocated processor share given by itsesponding;(.) function. So, while the value(t) at a
timet can be thought of as a random variable which may be eithey0. bdepending on whether the RT job has

finished or not. If the probability distribution of the exeitun time requirement of the RT task is known, then the

34

probability that RT job is active after it has finishedinits of execution time can be written Bs[x > z], where
X is the random variable denoting the execution time requarinThus,E[s(¢)] can be expressed in terms of

theg(.) function and the probability distribution of the randomiedte. Next, we formally defind[s(t)].

Definition E[s(t)] represents the expected values¢f) for the RT task at time. Formally,

t—a(t)
Els()] = g(t — a(t)) * Prlx > / g(x)dal

That is, E[s(t)] at timet is the probability that the RT job is active at timenultiplied by the processor share

given by its corresponding(.) function.

Let max E[s(.)] denote the maximum expected values@f) at any timet.
In this paper, we propose the novel notion of choosing thetfan g(.) (now we would refer to the(.)
function asg_Proposed(.)) for a RT task such that it satisfies the following key projgettFor anyt, wheret is

the time duration since arrival of RT job andies between 0 and P:
. fOP g-Proposed(z)dx > C , whereC is the WCET

e g_Proposed(.) is chosen such thatax F[s(.)] is minimized

3.2.1 Calculatingg-Proposed(.) for a Single RT Task System

In this section we show hoy Proposed(.) can be calculated which satisfies the above mentioned prepésr
a system containing single a RT task. At any time some noraBR it assumed to be active.

Suppose we want to calculate a schedule whigegt)] < K for anyt. SinceE|[s(t)] is a periodic function
with period P, it is sufficient to enforce this relation in the interyal P).

Fort¢ betweerd and P, E[s(t)] can be written ag_Proposed(t)Pr[x > fot g-Proposed(z)dz]. Thus the

constraints can be expressed as,
t
g-Proposed(t)Pr[x >/ g-Proposed(z)dz] < K
0

and,

P
/ g-Proposed(t)dt > C
0

35

This constraint enforces the fact that any job should fintsogtC' execution time by its deadline.

In this section assunte< ¢ < P. Now, a schedule witt[s(¢)] at mostK would do maximum work by any
timet¢ if E[s(t)] = K foranyt. This is because if/[s(t)] < K for some time, the the functiory_Proposed(t)
can be increased at that timéhereby leading to greater processor share to the RT task.

The first solution to functiog_Proposed(.) can then be written recursively as

g-Proposed(0) = K/Pr[x > 0]
K

_Proposed(t + §t) =
I () Pr[x > fot g-Proposed(x)dz]

But this may lead tgy_Propose(t) outside the rangf), 1] (specifically as the probability approaches 0,

g-Proposed(.) approachesinfinity). So we limit the vajluBroposed(.), which gives the solution tg_Proposed|.)

as,
g-Proposed(0) = K/Pr[x > 0]
K
g-Proposed(t 4+ 6t) = min(1, -)
Pr[x > [, g-Proposed(x)dz]
. . R & .
Note that ifg_Proposed(t) is reduced thé becaus\.Pr[X> 7o Proposed(yaa] | greater than 1, theR'[s(¢)]

is less thank.

So now the functiog_Proposed(.) is defined in terms of a constaRt which represents the maximum value
of E[s(t)] for this schedule at any time What remains is to find the minimudd for which a job of this RT

tasks meets its deadline under worst case execution tinugreaeent ofC, i.e.
P
minimum K s.t. / g-Proposed(t)dt > C
0

Now the value ofK (the maximum expected processor share) lies between 0 aAd fhe value ofK is
increased from 0, the execution time allocation to the RTijmbeases. Therefore a reasonable approximation

to K can be efficiently calculated using binary search on theevafu< in the interval0, 1].

36

3.2.2 Schedule Illustration - Media Decoding Task Example

Here we present the application of proposed approach on¢ldéandecoding task example. The processor cycles
used to decode Star Wars trailer using mypéay were calculated on a FreeBSD 4.8 machine with 800 MHd Int
Pentium Il processor. The worst case execution time reguént was found to be 24ms and the mean execution
time requirement was 10ms. To run the movie at 25fps, franeesino be decoded every 40ms. Thus the RT
task has a period of 40ms, worst case utilization if 24/46=d mean utilization of 10/40=0.25.

The K calculated for this RT task was 0.34 which is near the medizatibn 0.25 and nearly half the worst

case utilization of 0.6 (Refer Fig 3.2).

[g ——— E[s(t)] === pt) - [g) —— E[s(t)] === [0 -

1

2)
T o8 3
Qo Qo
[[
[a [a
3 0.6 3
[[
< <
2 04 2
[=} [=}
1A 1A
[0} [0}
g 02 g
T T
0 ‘ ‘ ‘ 0
0O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
Time in ms (period 40ms) Time in ms (period 40ms)
(a) Priority Schedule (g(t) g’rlonty(t)) (b) GPS Schedule (g(t) =6PS(t))
[gl —— E[s(t)] === pt) - [gl ——— E[s(t)] === [0 D —

1

2 2
5 o8y g
Q Q
< [
[a N [2 N
B 067 ®
5] 5]
< <
2 04t 2
o o
0 0
1% 1%
8 8
] 0.2 8
o o
0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Time in ms (period 40ms) Time in ms (period 40ms)
(c) EDL Schedule (g(t) = dEDL(t)) (d) Proposed Schedule (g(t) =Ryoposed(t))

Figure 3.2:Figure showing job schedules for a MPEG task with period 40WMSET 24 ms and mean requirement of 10ms.
The filled curvesy(t) and E[s(t)] represent the fraction of processor share given to the RTal function of the time
duration since its arrival. Whilg(¢) curve shows the processor share function correspondinQetmd:heduIing algorithm,
E[s(t)] curve shows the expected values @) for a job (E[s(t)] = g(t)Pr[x > fo x)dz], for tin the range[0, P], where

x is the random variable representing job execution times.

37

3.2.3 Handling Multiple RT Tasks

The analysis so far considered a system with only a singleaBH. tn this section we extend the above methodol-
ogy to a system with multiple RT tasks. But this extensionaistrivial. The primary reason being that schedule
of one RT task impacts the schedule of other RT tasks. Thitagpb of RT task: is allocated processor share
given by functions;(¢), then for a different RT task, its corresponding processor share functig(t) cannot

be independent of the value sf(¢) since the total processor share available to all RT jobsnwst 1 (full
utilization).

For the case when all tasks have same period and arrival tiraenalysis as done for a single task system
can be used, the only difference being the random varigbhéll now be """ x; wherey; is the random
variable for the execution time of taskand there are tasks in the system.

If the tasks have different periods then the problem getgheu Calculating:;(.) are dependent because
they are constrained by the relatidn,’_, s;(¢) < 1.

Though this is a serious problem, we propose a novel andegifisblution.

Consider a sef” of RT tasks withn tasks. Let task; € 7 has periodP;, , worst case execution time
requirement of”; andy; the random variable representing job execution time.

We form a virtual taskr,;-+,q; With period as 1 time unit, worst case execution time requaet ofU =
>, Ci/P;, and the random variable representing the execution timpeirement of ajob ag = >, x:/P;.

The schedule minimizing the maximum expected processaeshacalculated for this virtual task. Let
Jvirtual (-) DE the resulting job function which is defined in the inter@all | andfo1 Guirtual (t)dt = U.

Now the tasks are scheduled as follows. The functidn) for taskr; is defined as

*az‘(t))

t .)
gvirtual(T if T active

si(t) =
0 otherwise
Note that the functio.;,+.q:(.) is such that for a task; with period P;, the cumulative allocation available to
RT tasks while a job of task; is active isfop" Gvirtual (L) P;)dt = P; * fol Gvirtuat(x)dz = P; x U (note the
integral was transformed by the substitutioa P; = t).
At any moment the RT tasks are given a processor shat& pf= maxi <<, s;(t), and this processor share
is allocated to the earliest deadline active job.

The intuition behind this approach is as follows. Supposet#éisks are given a constant processor share of

38

U when activeU = Y7, C;/P;). Then all jobs meet their deadline. And in the worst case g jotay finish
exactly on its deadline. In this scenario, the cumulatil@caltion to RT tasks from the time of arrival gfuntil
its deadline isU = P; where P, is the period of task corresponding task for jpb So, in this scenario if the
cumulative allocation available to RT tasks from the airivigjob j until its deadline idJ x P;, then the joby
does not miss its deadline.

Next we formally show that using the proposed scheduling@ggh all RT jobs meet their deadlines.

Lemma 3.2.1 Consider a sef” of RT tasks with tasks. Let task; € 7 has periodP;, worst case requirement
C; andy; be the random variable denoting the execution time requergrof a job. Ley(.) be an an increasing
function such thafo1 g(t)dt = U, whereU = ", C;/P;. The jobs are scheduled using preemptive EDF and
the processor share at timds given bys(t) = maxj<i<p, si(t) , where

g(lmatt)

i if T active

S (t) =
0 otherwise

All jobs meet their deadline.

Proof For this proof, we would assume that all the RT tasks are seltat time 0, and SRT taskreleases a
job everyP; time units.

If the tasks were given a constant processor shatg tifen all jobs meet their deadline (preemptive EDF
schedulability). Suppose all tasks are scheduled in EDErcadd the processor share at time t is given by

g(EEDyie. s(t) = g(a®).

Now consider task;. It can be easily seen thatdft) = g(#) then all jobs ofr; meet their deadline.

/Okpi s(t)dt — /Om g _;:(t))dt

[swa= [g hars s [g EEEZ D
0 0 i (i

k—1)P;

To see this consider at tinie?;,

This gives,

/M st = (S Ry /PP + -+ (S Ry /PP

/ st = (3" Ry/Py)kP;

Thusfokp" s(t)dt is same as what GPS allocation for integer valuek.dFhis implies all jobs ofr; meet their

39

deadlines (remember jobs are scheduled in EDF order) witile ¢f other tasks may miss their deadlines.

t—am

Similarly, usings(t) = g(Tn’(“) would lead to all jobs of-,, meeting their deadlines. Now, if(t) =
max; <;<n g(“=% %), then all RT jobs meet their deadlines.
Once a RT job is finished, it no longer requires processoreskiirnext job of this task arrives. Thus,

s(t) = maxi<;<n s;(t) would imply that all the RT jobs meet their deadlings.

Lemma 3.2.2If gyirtuai(.) is used as thg(.) function, then the maximum valueBfs(t)] for any timet is K,

whereK is the maximum expected processor share,9f ;-

Proof Consider at some timg job j of taskr; has maximuns; (¢).

Now job j is scheduled using preemptive EDF, so jobs with deadlindigethan; are scheduled before it.
From the arrival of jobyj until it finishes, the maximum execution time required by B3Ks isU « P;, wherelU
is the cumulative worst case utilization afglis period of taskr;.

Now the cumulative utilization of RT tasks is represented asndom variablg. The cumulative allocation
to RT tasks from arrival of joly until its deadline can be approximated by this random végigh This is
because, joly is scheduled after all earlier deadline jobs and in the woase all the active jobs may have a
deadline earlier than jol, in which case joly is scheduled last. In general, lgtbe the arrival time ofi and

Lo
ty its finish time, then the cumulative utilization of RT tashksthis interval is at least ‘j,j’/(t)dt

(since during
some intervals;(.) may not be maximum). This utilization is approximately uppeunded by the cumulative
utilization of all active tasks during the interv@al,, ¢] which we already represent gs

Coming back to the functios;(t), the expected processor shdfgs; (t)] is given as,

t— a; (t)
B

fgiai(t) gvirtual(x/Pi)dx]

E[Sl(t)] = gvirtual() * Pl"[X > P,

which gives,

t—a;(t)

t—a;(t i
T()) * PI‘[X > / gq)irtun,l(y)dy]
7 0

Elsi(t)] = guirtua(
The RHS can be simply written @8 uai(2) * Pr[x > [o guirtuar(y)dy]. And as explained before, for
a single task system with task;,;..; With unit period,y as execution time, antl’ as worst case utilization
requirement, the minimum value &f (maximum expected processor share) is calculated suchthat.; (=) *
Prlx > [Guirtuar(y)dy] < K and [} goirtuar(y)dy > U.
HenceE|[s;(t)] < K.

40

3.3 Performance Comparison

In this section we theoretically compare the performanceusfalgorithm to Priority, GPS and EDL in terms of
the measured(t) ands(t). A(t) represents the cumulative allocation to non-RT tasks bg tiand is given by
fg(l — s(t))dt. An algorithm with greaterd(t) for any¢ provides better response time to large non-RT tasks,
while an algorithm with lower maximum expected valuesof) for any ¢ provides better instant service and
hence improves responsiveness of shorter non-RT tasks.

The processor share functions for Priority, GPS, EDL angBsed algorithm for a multiple RT task system
are approximated by following(.) functions. Note that as before, we representghé function for certain
algorithm by prefixingy - before the algorithm name. SaPriority(.) represents the(.) function for Priority
algorithm.

Note that0 < ¢ < 1, sinceg(.) functions are assumed to be defined for unit period task. resas
before we have: RT tasks, where thé" task is represented as and its period, worst case requirement and
execution time requirement are represente®as’; andy; respectively. Forfeasibilit)E?:1 C;/P; < 1. Let
U= ", Ci/P.Letxy =" xi/P; which is the random variable representing the combineéatibn of

all RT tasks.
e Priority, g_Priority(t) = 1
e GPS,g.GPS(t)=U

1 ift>1-U
e EDL, g_EDL(t) =

0 otherwise

e Proposedyg_Proposed(t) = min(1, K/p(t)), wherep(t) is the probability that the cumulative RT uti-

lization is greater tha[fot g_Proposed(t)dt.

Note that for all these algorithm%1 g(t) > Y7, Ci/P; and theg(.)'s are increasing functions. So from
Lemma 3.2.1, all these algorithms correctly schedule argéet of RT tasks. Thus all can schedule set of RT
tasks.

For the GPS processor share functind:PS(t) = U is an approximation since processor share of cumu-

lative worst case utilizations of just the active RT tasksufficient to correctly schedule the RT tasks. But the

41

simpler formulation is assumed to simplify the proof, thbugpenalizes GPS in terms of the measur@).
Note that the maximum expected valuesgft) remains unchanged.

For the EDL processor share function, a simplified approfiomds again used. This approximation reduces
A(t) (the cumulative allocation to non-RT tasks in the systemilmet) as compared to the(¢) attainable
using the true EDL scheme (as in Chetto and Chetto [CC89revthe schedule calculation is done offline for
the hyper-period. Despite this simpler EDL formulation, IE&)ill achieves betteri(¢) than the the other three
algorithms (so the simpler formulation does not skew theltes Again, the maximum expected valuesgft)

for any task remains unchanged.

Lemma 3.3.1 For any givert between 0 and 1,

¢
/gEDL t)dt < /gProposed t)dt
0 0

t
/gGPS t)dt < /ngomty t)dt
0 0

Proof First, note that[ot g_Proposed(t)dt < fot g-GPS(t)dt. This is because Proposed(t) is a non decreas-
ing function andg_GPS(t) is a constant function. Ang,f0 g-Proposed(t)dt = fo g-GPS(t)dt = U. This
implies thatfot g_Proposed(t)dt < fo g-GPS(t)dt fort < 1.

For [/ g.EDL(t)dt < [} g-Proposed(t)dt, note that while gEDL(t) is O for t less than (1-U), while
g-Proposed(t) is non zero during the interval.

Thus the RT task execution is delayed for the maximum amouBDL. However, as pointed out earlier,
this leads to blocking of non-RT tasks when RT tasks are sdbhdd Under the proposed algorithm, RT tasks
are delayed lesser than in EDL but their schedule is detenay the execution time requirement probability

distribution, thereby reducing blocking of non-RT tasksk.

Lemma 3.3.2

Proposedmax E[s(.)] < GPSmax E[s(.)]

< EDL/Prioritymax E[s(.)]

Proof The maximum value of2[s(.)] for Priority and EDL isl x Pr[xy > 0] = Pr[x > 0] and for GPS, it is

42

U = Pr[x > 0], where U is the worst case cumulative utilization of RT taskhis is attained when a RT job
begins execution. As proved earlier in Lemma 3.2.2, Propasex E[s(.)] is K.

What remains to show is thaf < U x Pr[y > 0]. To see this note thag, Proposed(0) < g-GPS(0). This
is because whilg_GPS(.) is constant and equal 14, g_Proposed(t) is a non decreasing function, so it can
start with processor share less thHarwhile still finishing U execution time in a unit sized interval. This gives,

g-Proposed(0) * Pr[xy > 0] = K < g_.GPS(0) = Pr[x > 0]. O

Lemma 3.3.3 The cumulative allocation to non-RT tasks follows the feilhg relation -

Priority A(t) < GPS A(t) < Proposed A(t)

< EDL A(t)

Proof Under Priority, the RT tasks get full processor share whenaetive and the non-RT tasks are blocked
while RT tasks are active, giving the worst valueAift). Under EDL RT tasks are maximally delayed so EDL
has the maximuma(¢) value for anyt.

What remains to show is the order between GPS and proposedambp For a single task system, the
proposed approach clearly provides largét) for any¢. For multiple RT task system, under GPS the RT tasks
always get a constant processor shar& afhenever active. Under the proposed approach, the RT taglgeta
a smaller value of processor share during some intervairigdo delayed RT task execution thereby increasing

A(t). O

In summary the proposed scheme delays execution of RT tasksrease allocation to non-RT tasks by any
time ¢, but at the same time it maintains the maximum expected psoceshare of RT tasks at any time to be
bounded by its minimum value. Thus, under the proposed sehkanger non-RT tasks get better response times
(due to betterd(t) than GPS and priority), and smaller non-RT tasks get bettgvanse time because of low

maximum expected value eft) at any timet.

3.4 Quantum-Based Scheduler

Here we propose a generic approach to schedule RT taskssfthfinction is given.
In particular, we want the allocation to approximate) over reasonably long intervals, while over shorter

intervals the allocation may be off by some value.

43

We propose a quantum-based algorithm that keeps the alodat RT tasks within one quantum of the
allocation given by the functior(t). As the quantum size is decreased, the allocation accurecgdses.
Making the quantum size too small is not efficient becausaeh guantum boundary, the tasks are switched
which may lead to cache flushes and reading for the new task fn@mory, which is a slow process. Also,
context-switch overhead is encountered on every task Bw@crrent GPOS have quantum size in the range of
10ms. Older systems had quantum size in the range of 100mshiBothe current quantum size is still larger

than what we would like for our algorithm, but it is decreagin

3.4.1 The Algorithm

Consider a system with RT tassand the functions(t), that is the cumulative processor share of RT tasks is
known.

The following approach is then used to map this schedule teatgm based scheduler. First, the RT tasks
are allocated execution time in discrete units each of sieguantum og.

Each quantum allocation unit to RT tasks is characterizeitsbgrrival time and deadline. The arrival time
of a quantum is the deadline of previous quantum. The deadfia quantum arriving at timg, is calculated as
follows. Find the value of\ for which the cumulative allocation to RT tasks in the in&@iv,, ¢, + A] is g time
units.

Formally, findA such that the following equation holds.

t,,,—l—A
/ s(t)dt > g
t

a

Then the deadline of this quanturpis given byt, + A.

Lemma 3.4.1 The allocation error that is the difference between alldmato RT tasks under the quantum based
schedule and under a schedule which can allocate a shi@jeof the processor to RT tasks at tithis at mosty

at any timet, whereg is the quantum size.

Proof As can be seen from the algorithm formalization, the all@ratinder both schedules matches at any

guantum deadline. And for any time in between, the allocediifference can be at mogtthe quantum size.]

Lemma 3.4.2 If the worst case requirement of all RT tasks is a multiplg, ¢éfie quantum size, then all deadlines

are met.

44

Proof Since the RT tasks are allocated in discrete quantum exctitne units, and the allocation at quantum

boundaries is equal te), s(¢)dt for anyt such that is a quantum deadlinél

3.4.2 Simulation Results

1
0.8
0.6
0.4
0.2

0

0 5 10 15 20 25 30 35 40

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)
(a) Priority Schedule

Expected quantum utilization

1
0.8
0.6
0.4
0.2

0

0 5 10 15 20 25 30 35 40

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)
(b) GPS Schedule

Expected quantum utilization

1
0.8
0.6
0.4
0.2

0

0 5 10 15 20 25 30 35 40

Quantum slots (total 40, Period = 40ms, Quantum = 1ms, Worst Case Requirement = 24 slots)
(c) Proposed Schedule

Expected quantum utilization

Figure 3.3:Schedule for a task with period 40ms, worst case executios fizquirement of 24ms and mean execution time
requirement of 12ms. The execution time is assumed to barmhjfdistributed between 0 and 24ms. The quantum size is
assumed to be 1ms.

45

Fig 3.3 shows the quantum based schedule for a task whoseammegumt is uniformly distributed between 0
and 0.024. The period is assumed to be 0.040 seconds andaheiqusize idms.

The first schedule is for the case when this task is given Isigbrgority. In this case the task executes until
completion when it arrives. The second schedule is for tlse eghen the task is allocated at constant worst
case rate, that i%f% = 0.6 for all quanta. Note that the mean requirement of task is@).0he last schedule
represent the quantum based schedule for the proposedatiserscheme. Note that initially the quanta are
more spaced and towards the end they are closer togethedarkehade represents the probability that the task
would actually require that quantum and not finish beforendsétween it. Thus, though the proposed schedule
has closer quanta towards the schedule end, the probatfiligquiring them is very small, given by the low

height of the dark shaded region.

3.5 Summary

In this work we proposed the novel notion of varying the psswe share of the RT tasks with their progress.
What this achieves is that the RT job starts off requiringéeprocessor share than its worst case utilization, and
its processor share increases as the RT job progresses) dogsthe probability that the RT job will finish. So
while some RT jobs which require execution time requirenmeyar the WCET may end up consuming greater
processor share near their deadline, the probability thiatdcenario arises is less. And the functidn) is
calculated using the probability distribution of executtome of RT task obtained through online profiling such
that the maximum expected valuegt) for any timet is minimized.

In this work we assumed the GPS model of processor sharirg RTHobs get a shargt), and the non-RT
tasks get the remaining processor sh@dre- s(t)). Most current processors execute tasks sequentially aad us
a quantum based scheduler to schedule multiple tasks aemtiyr Our proposed scheduling algorithm can be
adapted to a quantum-based scheduler, and the quantumaite determine the allocation accuracy. Smaller
the quantum size better the allocation accuracy.

While current scheduling algorithms like Priority, EDL oPS may perform arbitrarily in terms of response
time to non-RT tasks, the proposed scheduling algorithmks/arell for both measured(t) and (1 — s(¢)).

Our work opens new doors in the area of scheduling varialgairement RT tasks and we believe that many
more exciting applications are possible using this apgro&eom hereon we would refer to this algorithm as

Stochastic Processor Sharing or SPS.

46

CHAPTER 4
Soft Real-time Scheduling

In the previous chapter we addressed the problem of schmgpudiriable requirement RT jobs while providing
better timely allocation to the non-RT tasks in the system.td&&k model is useful for critical applications like
medical instruments, space missions etc., but frequehtiytasks encountered in a GPOS are not exactly time
critical, even though they may have a notion of deadline. Aangple of such a task is media (audio/video)
playback, and other examples are computer games and anyf sotgractive application. Though, these tasks
can be assigned deadline (based on frame rate for medisgalagind animation, and based on human sensitivity
to response time for interactive jobs), but the performaacmt affected by response times in close vicinity of
the deadline. This means that SRT tasks need not be allobatsdl on their worst case requirement values
(which is required for critical RT tasks), and they may bergnéeed a smaller allocation for each job (which we
would call its reservation) and the burden falls upon theedciter to provide good response times for the SRT
jobs that require greater execution time than their redemwa

One of the common approaches used in scheduling SRT tas&sbisund their deadline miss ratios. In
this approach, only a certain fraction of jobs are allowedies their deadline (say 1%), and no assumption is
made about the response times of thE&eof jobs. Now, consider the execution time requirement itistion
for MPEG decoding and Quake | software frame rendering (Flg.4~or the MPEG decoding task, giving 14
Million cycles to each job leads to around 2% deadline missebstill most frames may require less than 11
Million cycles. The other important observation here i thdeadline miss ratio of 2% means that approximately
one frame in every fifty frames misses its deadline. At 25 fime frame every 2 seconds misses its deadline by
an unspecified amount of time. In the worst case, each of thesaline misses may contribute to performance
degradation.

This brings out the importance of taking into considering tiverrun times of the SRT jobs. For example,
even if the deadline miss ratio is 10%, if 99% of the jobs miggheir deadlines finish within reasonable times,
then the performance degradation may not be visible. Antiesame time the processor share committed to

the task is reduced drastically (by allocating just enoumkhst 90% jobs are guaranteed to finish before their

22

LT Ex‘ecution‘requirehent ‘ 16 CPU‘CycIes (fnillior)s) T,
20 b *
18 | N X
L P . i 8
RTINS e Ty et . =
9 w ¥ ,.’o‘”:o + :.*3 AP . >
[VN A I .,.,‘N,",e AT AA +
2 R LIRS TSR RS SR >
2 l* o ‘“g&:‘ twtt RAES SRV RE S g
BT TN T AN
2 S ST ST =
S 10 RPN Y, =
0'33 ¢ S Lot =
8 : '. < \",'{‘ e o
o i
6 st PRy 2 X
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 2000 4000 6000 8000 10000 12000
#frame . #frame) .
(a) MPEG frame decoding (b) Quake software rendering times

Figure 4.1: Execution time variation for an MPEG frame dengdask and Quake | software rendering task.
The frame decoding times for a StarWars trailer using mpleg are reported. Note that the minimum execution
time frame requires around 5 million cycles, some framesiregne more than 20 million cycles. Some frames
require more than 20 million cycles. Even from frame to frathe execution time variation is significant. For

Quake | software rendering task, though frame to frame ei@ttime variation is not as substantial as MPEG
decoding task and the execution time between adjacent fr&@rsémilar, the overall execution time variation is

large, with mean requirement of around 5M cycles and maximmtimore than 15 M cycles.

deadline). But to achieve these gains, the 99% of the 10%midésing deadline should have small overrun time.
And current scheduling algorithms do not address this pmoblSPS does exactly that. The goal of SPS is to
guarantee allocation to RT jobs while minimizing resporises of the non-RT jobs. Thus irrespective of the
value of reservation chosen, using SPS to guarantee tratagi®n would provide smaller overrun times to the
non-RT jobs in the system.

In the following sections, we formally describe the task mioidr SRT tasks and show how SPS can be

adopted to better handle SRT tasks.

4.1 SRT Tasks

We address the problem of scheduling overrun time sensitivieable requirement soft real-time (SRT) tasks.
We break each job of the SRT task into two parts, real-time) @@Mmponent and non-RT time sensitive (TS)
component. The goal of scheduling is to provide timely altmn guarantees to the RT component while re-
ducing response times for the TS components. The respanseofia SRT job is the time when its RT and TS
component both have finished execution. The deadline avéime for a SRT job is defined as its response time
minus its period.

Formally, a SRT task; is represented by the tupl&;, x;, C;, R;).

48

P; is the period. Jobs af; arrive everyP; time units.

X IS the random variable representing the execution timeiregquent of a job of this task

C; is the worst case execution time requirement of this task EW)C

R; is the reservation, that is any job of the SRT task shouldivede; execution time before its deadline.

For schedulabilityZz,N:1 R;/P; < 1, whereN is the number of tasks in the system. Note tﬁ;ﬁil C;/P;
may be greater than 1, i.e. the system may be overloaded.

Any SRT job starts as a RT job. If the SRT job does not finishrafteeiving R; execution time, then it is
scheduled as a TS job for its remaining duration. The SRT jabHes when the RT as well as the TS component
(if any) have finished. SRT jobs requiring not greater tliarexecution time are guaranteed to finish witliin
time units of their arrival. Jobs requiring greater thianexecution time may miss their deadline, and the goal of
scheduling is to reduce their deadline overrun time.

The question of howR; is chosen is left openk; may be prespecified or adaptively determined using algo-
rithms like feedback-control [APLWO02] [LSSTO02]. The preloh we are addressing is that the RT component
may require execution time anywhere between 0 @ndand this variability can be leveraged to provide better
response times to the TS components, thereby reducing $i8Tdeadline overrun times.

We found that giving RT jobs higher priority over other jobglne system is very inefficient, yet most current
General Purpose Operating System (GPOS) rely on priorggdachedulers. Reserving processor share for RT
jobs (Generalized Processor Sharing (GPS)) or delayingoB3 (Earliest Deadline as Late as possible (EDL))
provides smaller overrun times to SRT jobs in some scen&ibsnay perform badly in others (as explained
in next Section). We propose Stochastic Processor Sh&BiR§) algorithm that uses the empirical probability
distribution of execution time requirements of the SRT jabdetermine the processor share of the RT jobs as a
function of time. In particular, the RT jobs start with a lesprocessor share than they would in GPS, but may
end up using greater processor share as they approach dagilirte. The probability distribution of execution
time requirement is used to determine how the processoe shareases with progress, in particular, the higher
processor share requirement phases are rare. That is, abssfipish while in the smaller processor share
phase. We show that our algorithm consistently providedisaarrun times to SRT jobs, closely matching (or

outperforming) the best performing algorithm (out of GP®LEor Priority) in any given scenario.

49

4.2 TS Tasks

Practical systems would consist of non-RT response timsitdentasks, which we call Time Sensitive (TS)
tasks, along with SRT tasks. While these tasks do not requiyeallocation guarantees, their performance
depends upon their response times. In a system containing af 8RT tasks and TS tasks, the response times
of TS tasks would be dependent upon how the SRT tasks areldeddabcause the SRT tasks require guaranteed
allocation by their deadline.

To evaluate the impact of SRT scheduling on response timeSafasks, we consider a system containing
mixed task seti.e. SRT and TS tasks. The SRT tasks have a Rjocemt and a TS component, as defined in
previous section. The RT components are scheduled in EDt orkile getting processor share of at lea@?
at timet. The TS (overrun) components if any, are scheduled in LA®woré. the TS job which has received
the least service till a given time gets allocated beforeoWs jobs. This selected TS job is scheduled for at
most one quantum time, after which again the TS job with lescstived allocation is selected.

When scheduling SRT and TS tasks together, there are two tivaySRT overrun jobs and TS jobs can be
scheduled. One way is that the SRT overrun jobs are treatgdratith the other TS jobs. The other scenario
is when the SRT overrun jobs are given priority over the TSjdlVe assumed a system where the SRT overrun
jobs are given priority over the other TS jobs in the systemisTs because the SRT overrun jobs may actually
end up finishing before their deadline in this scenario wiéttuces the number of deadline misses. Thus, lesser
RT reservation would achieve the desired deadline miss, rasicompared to the scenario when SRT overrun are
treated at par with other TS tasks.

One important area that needs more work is to come up with éire@us priority range between SRT
overrun and other TS tasks. This may be dependent upon thiesif each of the tasks, and scheduling would
be based on these utility functions, on the lines of thosp@sed by Jensen et. al. [JLT85]. Thisis an important
problem because if the SRT overrun jobs require a lot of cdatmn on average, then scheduling them at higher
priority than TS jobs may not be efficient, because the SRTramgobs would block the TS jobs and themselves

not benefit much.

4.3 What makes a Good Co-Scheduling Algorithm?

The notion of optimality in co-scheduling algorithm is diffilt to define in a general sense. Task sets can be

constructed such that any one of Priority, GPS, or EDL majoper better than the others.

50

For example, consider a single RT task with periotime unit, and utilization of 0.5. Now, assume that
there are two TS tasks — one very large requirement TS taskweity large period and the other a very small
requirement TS task with period 1 time unit. Now, dependipgruthe arrival time of the small requirement TS
task, either Priority or EDL or GPS may be optimal. For exaejiflthe small requirement TS task arrives at
time 0, then EDL is optimal. If the the small requirement TSktarrives at time 0.5 then Priority is optimal. If
the small requirement TS task arrives at time 0-0.5, then @®B®@des better response times than Priority, and if
the small requirement task arrives at time 0.5-1, then GP8iges better response times than EDL.

One way to define optimality would be to define the worst caspaase time distribution for a very small
requirement TS task with period equal to hyper-period oftek-set over all possible arrival times between
0 and hyper-period. The optimal scheduling algorithm thexuld be the one that minimizes the maximum
expected processor share of RT tasks at any instant. Anchfoother scheduling algorithm, there would be
intervals during hyper-period where the expected procestsare of RT task is higher than that under the optimal
algorithm. And choosing any of these intervals as arrivaktior the very small requirement TS task with period
equal to hyper-period would give worst response times uttteiother algorithm as compared to the optimal
algorithm.

Now, for a single RT task system, with no idle allocation tojBs, the SPS schedule is the optimal schedule.
Note that idle allocation i.e. allocation received by the jBiis outside of their RT share, impacts the expected
value of processor share. This is because the fungtignis calculated assuming the only allocation available
to RT jobs is the one obtained through RT sh&fg. To see this note thak[s(t)] is defined as(t) * Pr[y >

Ji7*® g(z)dz]. If the RT jobs getidle allocation then

t—a(t)
E[s(t)] = s(t) x Pr[x > (idle allocation + /0 g(x)dx)]

For a system with multiple tasks, minimizing the maximum ecqed processor share of RT jobs may be
costly. For example, consider a two task system. When otectampletes, the distribution of execution time
requirements is no longer the sum of the execution time requént distributions of the two tasks, rather it is
the execution time requirement distribution of the actieskt So thegy(.) function minimizing the maximum
expected processor share of RT jobs is different now. As timaber of tasks increases, for each unique set
of active tasks, the cumulative execution time requirengiésttibution may be different, and hence the optimal

¢(.) function would be different in each of these cases. Maimagiseparate(.) function for each possible

51

combination of active tasks may not be feasible. This, comdbwith RT jobs getting idle allocation makes the
problem more complicated. Part of the problem here is aiigsd changing requirement distribution (due to
idle allocation or job completions).

It is important to note here that algorithms other than SP& liatervals when thé”[s(t)] is smaller than
that in SPS, so the TS jobs arriving during these intervatsbgéter response times. But, reducifs(t)]
during some intervals meardgs(t)] is higher in some other intervals. And having higtgg(¢)] has a two-fold
negative impact. First, during the interval whéis(¢)] is high, the TS jobs get lesser processor share. And
second, during these intervals, the TS jobs may get queuddarging to greater delays and during the intervals
whenE[s(t)] is small, these queued up TS jobs compete with the fresh TS jbbreby diluting the impact of

intervals whenE[s(t)] is small.

4.4 TS Job Size and Impact on Response Time

At this point it is important to mention that the responsedibenefits are greater for tasks that operate at smaller
time scales (small period or small requirement) and deeragshe time scale increases (large requirement tasks).
To understand this consider the following example.

Consider a task system with one RT task. Suppose the peribid ifask is 1 time unit, mean requirementis
0.3 time units and worst case requirement is 0.6 time unigt L represent the execution time requirement of
job i of this task.

Now suppose this RT task and a TS job enter the system at tihet@he requirement of TS job be y time
units. Now, under Priority scheduling the TS job finishesinigithek*" job of RT task wheré: is the minimum

integer for which,
k
Z zi+y<k
=1

That is the cumulative execution time requirement &&T jobs (Zf:l x,—1) and the TS joly, should be at
most the total execution time available, whiclkis

Now consider for the jol: — 1 of the RT task (assumie> 1). From the discussion above,
k—1
Z ri+y>k—1

i=1

Becausé: is the minimum integer for which the execution time requiegtofk RT jobs plus the execution time

52

requirement for the TS job is not greater than

This is important because irrespective of the scheduliggrithm used to schedule the RT task (i.e. irrespec-
tive of choice ofs(t)), the TS job finishes during thié” RT job. The RT scheduling algorithm dictates when
actually during the*” RT job will the TS job finish. The TS job would finish the eartiesider EDL, later in
SPS, still later under GPS and latest under Priority schiegul

Thus, the response time benefit is most visible for TS jobsfthish within the period of the RT job that is
active on their arrival (which is the caseiif<< 0.3, where 0.3 is the mean execution time requirement of the
RT job).

In general, small TS jobs see greater benefits dependingthpomay RT tasks are scheduled. For our case,
we will focus on task systems with a large number of tasksh(B&RT and TS), so the individual job requirements
are small, hence the benefits seen are large.

In the later sections we discuss the case when the systemelatigaly large requirement TS jobs, in which

case, all scheduling algorithms perform equally.

45 The SPS Scheduler

The scheduler has the following key components -
e EDF ordered queue of RT jobs
e LAS ordered queue of SRT Overrun jobs
e LAS ordered queue of TS jobs

e SPSShare functions(t),

s(t) = 1<iE N, ®)

This choice ofs(t) ensures that the allocation requirements for the SRT taskgwaranteed always, as

proved in previous chapter.

We assume a GPS capable processor. The scheduling is dime isté¢ps ofA (for simulations we assumed
A = 1ms). At the end of each time step, the RT shafg (O(N,,.)) is calculated. The RT jobs are allocated
s(t) = A execution time in EDF order. The remaining allocation, vihis A(1 — s(t)) plus any allocation

remaining from thes(t) x A (if all RT jobs finish without consuming all the availableadhtion), is allocated

53

first to the overrun jobs in LAS order and then to the TS jobs ASLorder. If the overrun and TS jobs do not
consume the allocation available to them (all overrun andgobS have finished), then the remaining allocation

is given to RT jobs in EDF order and this allocation is itle allocation.

4.6 Measuring and Reporting Response-times®(.) Function

Quantifying the scheduler performance is not an easy pnobleecause there are too many variable that can

impact the performance. The response times depend on theiiof factors —
e Choice of SRT workload
e Choice of TS workload

As proved theoretically in the previous chapter, irresppecdf what the RT task set is, SPS minimizes the
maximum expected RT processor share at any instant. Whatrtbans that our problem is not to quantify
scenarios where SPS works and where it does not work, thisdgause SPS provides a better RT schedule
irrespective of the RT task set characteristics in termshefmeasure€/[s(¢)] and A(t). The problem we
address is what is the performance benefits that can be achiesing SPS. In some cases, the performance
benefits would be less and more in other cases. And our gaatwrtduct a broad enough range of experiments
to give a good understanding so as to when SPS would provigiéfisant performance benefits and when it
would perform at par with other algorithms.

For the SRT task set, for simulations we assumed normaltyildlised execution time requirement SRT jobs
with random mean utilizations and periods randomly distiiol between 30 and 200 time units. The cumulative
mean SRT utilization is specified as a parameter and a tagkthdarge number of SRT tasks is generat&dlif
our case). The reason of choosing large number of SRT taflecause, as the number of SRT tasks increases,
their cumulative distribution approached normal disttibn and hence the simulations are of greater practical
relevance to actual workloads.

While choice of SRT task set (and their requirement distridn) is one problem, the choice of TS task
set is another similar problem. But, the choice of TS tasksskmited by remembering that the performance
benefits are most visible when the TS jobs are small requinéjpés and they finish within the duration in
which currently active RT jobs are still active. This is basa, irrespective of the scheduling algorithm used,

the cumulative RT and TS allocation at RT job deadline is enuzase of single RT task system, and nearly the

54

same in case of multiple RT task system. The only differend@T allocation is because SPS/EDL delay the
currently active RT job. For TS tasks with large executiongiwhose execution lasts over several periods of RT
jobs is not impacted by SPS and their response time disioibig just slightly improved by using SPS/EDL as
compared to GPS/Priority. Thus, for our case we would focu3 8 task set with small jobs. The TS tasks are
generated exactly like the SRT tasks, and the only differénthat the TS tasks have zero reservation while the
SRT tasks have a cumulative reservatiorRof

Now that we have the SRT task set and the TS task set, whatrreiisao present the simulation results such
that they can be easily visualized and understood. Now, wieaare optimizing is for the TS response times
while providing RT guarantees. So, it is natural that we regfee SRT overrun times and the TS jobs response
times to quantify the performance of the various algoritEBL, Priority, GPS, SPS). Now, the most natural
measure is to report the mean response times, but this nedasiiased in favor of jobs requiring large response
times. Also, the impact of response time of a job can be thbafjas being dependent upon its period. So
we chose to report the response times scaled by their resp@etriod. Note that in this model, TS tasks with
smaller period are more sensitive to response time thandKS taith greater period. But the scaling is essential
to find common ground to compare all the results. Even the SRfron times are scaled by their respective
period.

So we report the mean scaled SRT overrun time and mean sc@legsponse time. But this does not give the
complete picture. This is because for SRT overrun jobs,ahe yith small overrun time (less than say 0.3 times
their period) may not actually incur any performance degtih. So, it would be nice to have a quantification
which tells how many SRT jobs missed their deadline by moae tay 0.3 times their period. We represent this
measure as th@(xz) measure.®(z) denotes the number of jobs with response time greater thanesttheir
respective period. So for the discussion above SRT ovebi(@3) would give the number (or percentage) of
SRT jobs with overrun time greater than 0.3 times their respe period.

Now we have most things in place to get into presenting asinallation results. But before that there is an

important topic which needs attention and that is how toyggt.

4.7 Online Profiling - Constructing x gr

As pointed out earliery g is tightly coupled with the SPS scheduling algorithm. Thenalative execution

time distribution which is represented g forms the eyes of SPS algorithm in determining the apprtpria

55

g(.) function.

Now, the simplest interpretation qfz would be
_ Xi
XRT = E E

To construct this distribution using online profiling, wélév the following approach. Attime 0, we assume
that the previous (hypothetical) job of each RT task reqlite respective reservatioR; amount of execution
time. Now whenever a RT job finishes, its utilization is ugadhand the sum of the utilizations of all the RT
tasks in the system is taken as a value in histogram for lligtan of y z. As time progresses, the histogram
becomes a better approximationgf .

To understand the impact gfzr on the actual performance, lets run through an actual exampl

Suppose we have a task sé,[,.=50U,,=0.40,R=0.65Yy,;=50;s=0.30]. Now assuming that thegr is

calculated as mentioned above (sum of distributions o¥iddal RT tasks), the schedule looks as in Fig 4.2.

1:CDF g(.) for SPS
IS W Priority o)
g M GPs W E[s()]
= 1.00 1.00
g _
g 080 o 080
@ T s
.E 0.60 | “,\ U_) 0.60
§ o040 | | 2 040
= \ Q
2 020 3 020
;r:(f — o
= 0.00 R 0.00
= T T T I I
E 000 020 040 060 080 1.00 000 020 040 060 080 1.00
[<} e " .
& Utilization Time
(a) (1-CDF) forxrr (b) g(.) for SPS

Figure 4.2: These figures show ther obtained using just summing the individual SRT task distitms. We
call this the naive version of g the reasons for which will become clear in the next figure.

All looks well and good, the(.) function for SPS has a nice shape, starting with lesser psateshare and
increasing its processor share with progress. Now lets &iagke TS response time distribution. Figure 4.3
shows thed(.) function for the four scheduling algorithms. As can be s&db, is significantly better than the
other three scheduling algorithms. The reason for thisastte cumulative mean system utilization is just 0.30
+ 0.30 = 0.60. Hence there is lot of idle time, so while the Rinponent jobs of the SRT tasks are waiting for
execution under EDL, they get idle allocation and henceHinighout requiring any RT allocation. While under
SPS, the RT jobs start with certain processor share andshare keeps increasing with progress. Hence, even

though SPS performs better than GPS, because the RT jobsftaith lesser processor share, it gets beaten

56

well by EDL.

TS response times

B Priority
B GPS
22601
18088
13575
12}
Qo
S 9062 |
+H
4549 :I
36
= —

I I I 0 T
0.1 0.7 1.3 1.8 24 3.0
Response Times scaled by respective periods

Figure 4.3: TS response tim(.). As can be seen from the figure, EDL outperforms the otherrdlgo by
significant margin. So why does SPS not perform well ?

Is this it for SPS ? Well not actually. Note that, if there imagh idle time in the system, the the RT jobs may
not require any RT allocation at all. That is there is no alatead for an RT scheduling algorithm if the RT jobs
can finish before their deadline even if they are schedulest &fS jobs (though in EDF order). How can this
fact be incorporated in SPS. Well, its not that difficult afi#. Note that SPS scheduling algorithm would give a
schedule like EDL (RT jobs wait for maximum possible timefhié requirement distributiony(z) is such that
there is very high probability that the RT job requires 0 exéan time and insignificantly small probability that
the RT job requires? execution time. Since SPS needs to guarante®taeecution time, hence, it would come
up with a schedule that looks like EDL. The RT job starts witimimal processor share, and as in EDL, it gets
full processor share later in the schedule to ensure thaflnolRmisses its deadline.

This raises the question so as to what needs to change in dfibngrto account for the idle time in the
system. The first avenue for improvement comes from the sdbedNote that the way we defined the SPS
scheduler, it first allocategt) x ¢ execution time to the RT jobs and then allocdtes- s(t)) * ¢ time to the TS
jobs and if there is some execution time still remaining ttlenremaining execution time is allocated to the RT
jobs as idle allocation. Now, we change thgr distribution construction as follows. When a RT job finishes
instead of using the sum of utilizations of all the RT jobs aake of xzr, we use the sum of RT allocation
divided by the respective periods for the finished RT jobdas/alue to be used for constructingr.

What does it mean to leave out the idle allocation to RT jobsdnstruction theyzr schedule? Well,

intuitively it means, that if the RT job actually requiredipthe RT allocation worth of computation, and rest of

57

the computation was available to it as idle allocation so do@s not need to be included in the RT requirement

of the RT job.

So what does this buy us ?

-
(2]
o
m

1.00
0.80
0.60
0.40
0.20

0.00

Probability that utilization is greater than x3

d(.) for SPS
B Priority
M GPS
S M EDL 1.00
| ° 0.80
2
| & 060
2 040
] 8
S 020
— o
0.00
T T T T
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Utilization Time
(a) (1-CDF) forxrr (b) g(.) for SPS

Figure 4.4: These figures show ther obtained after discounting the idle allocation to the RTsjabconstruct-
ing x rr histogram. Their is a slight change in the schedule from dieenapproach discussed before.

TS response times

#Jobs

B Priority
M GPS
22601 B EDL
18088
13575
9062
4549
36
= —>

o I I I
0.1 0.7 1.3 1.8 24 3.0
Response Times scaled by respective periods

Figure 4.5: TS response tindg.). As can be seen from the figure, EDL still outperforms the o#gorithm by
significant margin. SPS improves, but slightly.

Fig 4.4 and Fig 4.5 show the impact of discounting idle altmsain construction ofy zr. Though, there is

slight improvementin SPS performance but it is too smalldooaint for anything significant. The reason for this

is that SPS is not able to capture the idle time fully. Thisdsduse, under SPS, the RT jobs start off with certain

processor share and even after discounting the idle aitogahe RT jobs usually finish quickly. And once the

RT jobs are finished, the idle time in the system goes unmbtigeSPS. On the other hand, EDL delays RT

jobs maximally, hence they are active for the greatest durand hence they have increased chance of finishing

while using idle time.

58

So how can we account for the idle time in the system when ne &b active. Well, to do this we just
maintain the total duration of time during which the proaess idle. This duration divided by the total elapsed

time give the mean idle time in the system. And ther now approximately equals

XRT =~ Z% - (]- - Usrt _Uts)

whereUs, is the mean SRT utilization and,, is the mean TS utilization and hente— Us,; — Uy,) is the
mean idle system utilization. What this means is that weeattively assign the mean idle utilization to the RT
jobs, assuming that they used it and hence we subtract thett oiilization from their cumulative utilization
to construct the histogram forrr. Note that this technique of retroactively assigning cotapan to job has
use in other scenarios, specifically for slack reclamatiodeu static priority systems where it is referred to as
history rewriting [BBB04].

Does this help ? Actually very much. Fig 4.6 and Fig 4.7 show ithpact of discounting idle time in
construction ofy gr. Note that now SPS and EDL perform at par, outperforming ®R&\ity by considerable
margin. From this point on, therr distribution will be calculated discounting the idle aldion and idle time
in the system, which gives

XRT =~ Z% - (]- - Usrt _Uts)

1>:CDF g(.) for SPS

< W Priority

< M GPS

5 1.00 1.00

g]

S 080 | , 080

-5 0.60 (2 0.60

T 040 2 040

= (o]

2 020 S 020

g o

2 000 0.00

% T 1 T T

S 0.00 0.20 0.40 0.60 0.80 1.00

o) I .

& Utilization Time
(a) (1-CDF) forxrr (b) g(.) for SPS

Figure 4.6: These figures show ther obtained after discounting the idle time in constructing- histogram.
Note that they(.) function nearly resembles EDL which is what was needed.

59

TS response times

P H Priority
22601 W cps
W EDL
—
18088
13575
P _|
S 9062
H —
4549
36
—>

I I I I I
0.1 0.7 1.3 1.8 24 3.0
Response Times scaled by respective periods

Figure 4.7: TS response tim®(.). As can be seen from the figure, SPS now matches EDL, whichtis no
surprising since the SP&.) function closely matches that of EDL.

4.8 Learning xgr

Fig 4.8 shows the impact of continuous online profiling onghape of;(.) function for SPS.

() for SPS () for SPS 4() for SPS.
W)
s

1.00 B 1.00 1.00

0.80 0.80 080

& os0 & os0 060

0.40 0.40 040

020 020 020

Processor Share

0.00 0.00 0.00

000 020 040 060 080 1.00 000 020 040 060 080 100 000 020 040 060 080 1.00
Time. Time. Time

(a) g(.) after 65 RT jobs, calcugb) g(.) after 142 RT jobs, calcuc) ¢(.) after 194 RT jobs, calcu-
lated once at t=0 lated at t=100 lated at t=200

() for SPS () for SPS g() for SPS.

1.00 1.00 1.00

080 o 080 080

& os0 & os0 060
040

040 040

Processor Share

020 020 020

0.00 0.00 0.00

000 020 040 060 080 100 000 020 040 060 080 1.0 000 020 040 060 080 1.00
Time. Time. Time

(d) g(.) after 248 RT jobs, calcute) g(.) after 602 RT jobs, calcuf) g(.) after 57953 RT jobs, cal-
lated at t=300 lated at t=1000 culated at t=100000

Figure 4.8: These figures show thg;r obtained through online profiling as time progresses fok teest

(Nsr=50Us,+=0.50,R=0.65Y;,=50U;:=0.35). They(.) function is recalculated every 100 time units. As the
histogram becomes richer and more accurategthefunction becomes nearly constant.

60

4.9 Putting All the Pieces Together - Design of a Practical $eduler

Our claim is that SPS is a practical algorithm that can prepérformance gains in actual systems. In this
chapter, we address this problem in detail. We start witrsautision of how our scheduling model of specifying
¢(.) function and using it to schedule RT jobs in EDF order can beped onto actual practical systems. In
particular, they(.) function may vary continuously, so there needs to be a mappiechanism to map thg.)
function to sequential processors. Second, there aresisegarding how to find the period boundaries of a task.
in particular, current applications do not inform the OS wizejob finishes, instead they might just call sleep
function. But in order to provide timeliness guaranteess itequired that the job arrival time and deadline be
known. Third, for systems with very large number of taskise web servers, the periodic task model for each
task may not be applicable. Because on these servers, theenofractive tasks at any instant may be variable.
So, itis required that we come up with a scheduling model ystesns with a large number of tasks, where the
number of tasks may be variable. Fourth, large scale p2parksmare useful architectures with wide application
domain from content distribution to massively multi-play&leo games. Our scheduling model handles systems

with cooperative tasks well.

4.9.1 Periods and Reservation

The only information that is required of the SRT jobs is thpriods and reservation. Though minimal, these re-
qguirements are still difficult to meet in current applicatso For example, most applications do not communicate
their job arrival time and deadline to the OS. There are twygsathat can be used to get around this problem.
First, for applications like media decoding, animationitigean implicit notion of period if the frames displayed
per second is known. For interactive applications, theaasp time range of 50-200 ms is usually considered
good. In a similar fashion, the time sensitivities of vas@pplications can be approximated.

This leaves us with two problems —
e The actual arrival times and deadlines may still be unabkdla
e We still need to figure out the value of reservation

But this kind of problem has already been addressed for fdsksnedia playback (Abeni et. al. [AB98a]
[APLWO02]), where the Constant Bandwidth Server (CBS) isduseconjunction with feedback scheduling to

provide predictable service to media playback tasks.

61

For our purpose, the only thing that needs to change is thetinagllocation is guaranteed. So while the
remaining system components remain the same — a feedbaticldoop to determine the reservation required
using deadline miss ratio or frame decoding time as the obwarriable — instead of using CBS, SPS is used to
guarantee the reservation to the RT component of the SRTanpdalyback jobs.

While this is one possible path that can be taken, there hex ppssibly better ways to address this problem.
For example, instead of using just the deadline miss raticoatrolling the frame decoding time to be equal
to the period as in [APLWO02], the reservation may be deteealinsing the entire response time distribution
(®(.)) function to check if the performance requirement of thel@pgion are satisfied. But this would require
the application programmers to provide a metric for theplagations acceptable performance response times.
The feedback-control loop design methodology proposedibgtLal. [LSST02] can then be used to determine
the actual reservation required by the application to faitis performance requirements.

These are important problems and should be addressed foedlization of a practical system using SPS
scheduler. And this becomes one of the important compoméiotsr future work.

In the following sections we look at some possible applaragcenarios.

4.10 Possible Application Scenarios

To understand how SPS would fit into practical systems, wekwoough two examples — one of a server (like
web-server) supporting large number of concurrent clieantsl the second scenario is a network node supporting

large number of flows with bandwidth guarantees.

4.10.1 Server System Supporting Large Number of Clients

We consider a simple model, there is a set of premium cliehts pay greater money for the service and require
assured service rates and then there is a set of normallidrd do not pay as much (or may not pay at all)
and get the remaining execution time. Now, the goal of theduating algorithm is to keep the paying customers
satisfied while supporting as many of the less paying custeasepossible.

Suppose through some magic or oracle, we come up with 0.6teasimulative reservation provided to the
premium customers as a whole. Now Let the mean cumulatilieation of the premium customers be 0.30.
Thatis, due to variation in number of premium clients andé#sés they do, their cumulative utilization may vary

but the mean is 0.30 and suppose that the actual cumulatiiztibn of the premium customers is normally

62

distributed with mean 0.30 and standard deviation of 0.0bfiis means that probability that the cumulative
utilization of premium customers is greater than 0.30 + B50.= 0.47 is less than 0.15%. Hence no premium
customers miss their deadline.

Assume that the premium customers are scheduled togetlzesiagle task, with a period of 150ms, so if
premium customers arrive only on this period boundary thay tare guaranteed a response time of at most
150ms. Now suppose there are 100 non premium customers éhatowld like to support (since the mean
utilization of the system with premium customers is jusf))0\®e model these customers are 100 TS tasks with
periods uniformly distributed in the range 30-200 ms andl afob arrives every period time units and the job
requirements are normally distributed and their cumuéathean utilization is 0.40.

The Table 4.1 shows the summary of simulation results fon sutask system.

Stats Scheduler

Priority GPS EDL Proposed
Simulation time 100002 100002 100002 100002
SRT jobs completed 667 667 667 667
SRT job overruns 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Mean scaled overrun time 0.0000 0.0000 0.0000 0.0000
Overrun®(0.0) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Overrun®(0.10) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Overrun®(0.20) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Overrun®(0.40) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Overrun®(0.80) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Overrun®(1.6) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
TS jobs completed 117472 117472 117472 117472
Mean scaled TS response time | 0.2134 0.0854 0.0560 0.0363
TS response timé(0.10) 43357 (36.91%) | 20451 (17.41%) | 15529 (13.22%) | 9428 (8.03%)
TS response timé(0.20) 35599 (30.30%) | 12359 (10.52%) | 8962 (7.63%) 3462 (2.95%)
TS response timé(0.40) 22690 (19.32%) | 6429 (5.47%) 3793 (3.23%) 960 (0.82%)
TS response timé(0.80) 9157 (7.80%) 2181 (1.86%) 771 (0.66%) 185 (0.16%)
TS response timé(1.6) 1389 (1.18%) 426 (0.36%) 35 (0.03%) 25 (0.02%)

Table 4.1: Summary statistics favg,;=1,U,,+=0.30,R=0.69YV;,=100{/;,=0.40).

As expected, there are no deadline overruns using any skthgailgorithm. But note the significant impact
on the TS response times. In terms of mean scaled TS respomsg tSPS reduces it by a factor of 6 as
compared to Priority and a factor of 2 as compared to GPS., Aisder SPS, less thd¥ of the non premium
customers have response time greater than 0.4 times tpictve job periods. On the other hand, nearly 20%
under Priority, 5% under GPS and 4% under EDL have respomsstjjreater than 0.4 times their respective job
periods. If this was a performance threshold then SPS si88% of the non premium customers and Priority

satisfies only 80% of those. Note that all algorithms guaanihat the premium customers do not suffer any

63

performance loss.

Actual Histogram 1;CDF
S W Priority
£ /F B GPs
0.07 = 1.00
— 9 L
» ©
3 0.06 2 0.80
g 2
é 004 | é 0.60
5 0.03 8 o040
5 I El
£ 001 = 020
& - E
* 0.00 S 0.00
1 | | | = T I ﬁ—ﬁ
0.00 020 040 060 080 1.00 3 000 020 040 060 080 1.00
Utilization e Utilization
(a) Cumulative SRT utilization histogram (b) Cumulative RT utilization (1-cdf)

Figure 4.9: (V4+=1,U,-+=0.30,R=0.65V,;,=100[/;,=0.40) execution time requirement distribution.

Fig 4.9 shows the execution time requirement distributibime histogram represents the actual requirement
histogram of RT task, while the (1-CDF) curve representgptiodability that a RT job may have RT utilization
greater than the value on X-axis. Note that under EDL, the fization is the least, which means that the RT

task gets the largest amount of idle allocation as comparether algorithms.

Overrun Times for all schemes TS response times
B Priority B Priority
M GPS M GPS
1.00 43357
- %
0.80 34686
0.60 26015
1723 — [} —
Qo e
S 040 S 17345
3 — +* —
0.20 8674
0.00 3
1 I I I I T 1 I I I I I
0.0 0.6 1.2 1.8 24 3.0 0.1 0.7 1.3 1.8 24 3.0
Deadline overrun time scaled by respective periods Response Times scaled by respective periods
(a) SRT overrunb(.) (b) TS response time®(.)

Figure 4.10: (V,,+=1,U,,+=0.30,R=0.65V;,=100[/;,=0.40)®(.) values for SRT and TS tasks

64

d(.) for Priority

m &)
1.00
0.80
0.60

0.40

Processor Share

0.20
0.00

Time
(a) g(.) for Priority

g(.) for EDL

Hg()
1.00 W E[s()]
0.80
0.60
0.40

0.20

Processor Share

0.00

Time

(c) g(.) for EDL

g(.) for GPS

1.00
0.80
0.60

0.40

Processor Share

0.20

0.00

Time
(b) g(.) for GPS
d(.) for SPS

1.00
0.80
0.60
0.40

0.20

Processor Share

0.00

Time

(d) g(.) for SPS

Figure 4.11: (V,+=1,U,,+=0.30,R=0.65V;,=100[/;5=0.40) g(.) functions for the four schemes. T¢{e) func-
tions for the four scheduling algorithms. Note that SPS hagpected value of(t) nearly 0.3, which is the
mean utilization of the RT task. Hence, SPS does a good jothiedsiling the RT task.

65

4.10.2 Supporting Bandwidth Reservations on a Network Node

Now consider another scenario. Suppose there are 100<lhérd pay and get bandwidth reservation for them-
selves. Let the cumulative mean requirement of these slie@t.65 fraction of available bandwidth. Suppose,
the oracle comes up with the figure 0.80 as the fraction of Wt to be reserved for these clients. Now
since there is 35% idle capacity, the network owner decidesupport 20 more clients with cumulative mean
bandwidth utilization of at most 0.15 who pay based on thdityuaf service they receive. And the acceptable
performance for the paying 100 clients is that the probttitiat the packet spends more than the respective pe-
riod time at the network node should not be more than 1%. Thiegefor the premium clients may be chosen
based on the timeout values for their congestion contraiomal (TCP). So the packets with deadline overrun
may actually be considered lost by TCP leading to decreaaadviidth. Also, the non paying customers only
pay for packets that are serviced within 0.4 times theireetipe period. That is fo®(0.4) packets (or TS jobs)
do not pay.

The way the presence of TS jobs impacts the schedule of RTigabst a fraction of the idle allocation is
consumed by the TS jobs. This has a negative impact on GPSgeliddules where now there are longer periods
with high expected value of processor share of RT tagKs({)]). SPS on the other hand adapts to the available
idle time, coming up with a schedule for the RT jobs such thaytencounter fewer deadline misses, while the
TS jobs also get smaller response times. So this is a win-iviaton.

Let us construct the task set for this scenario. The 100 pagiients are represented as 100 SRT tasks.
Each SRT task has a mean utilizatidfy and reservation utilizatio®;. And let, > M; = U+ = 0.65 and
> R, = R = 0.80. The 20 other customers are represented as TS tasks, withlaiime mean bandwidth
requirement of 0.15 of available capacity. Afd0.4) jobs do not pay for the service. Table 4.2 summarizes the
results.

Note that EDL performs significantly better than the othgoaithms in terms of the measures TS response
time ®(0.10) and®(0.20), SPS nearly catches up with EDL®¢0.40). But in terms of deadline overruns for the
paying customers, EDL has nearly 0.2% deadline misses,hwfitwice more than SPS (0.1%). As compared
to Priority and GPS though, EDL and SPS reduce the numberropaging packets by nearly 3 times.

The important thing to note here is there may be a possiliditsnprove TS response tini#(0.1) and®(0.2)
for SPS in this scenario by more aggressively assigningtidie to the RT jobs, so that the SBE) function

resembles EDL more. But that would come with a price, in teoftmore deadline overruns for the SRT tasks.

66

Overrun®(0.0)

Overrun®(0.10)
Overrun®(0.20)
Overrun®(0.40)
Overrun®(0.80)

Overrun®(1.6)

TS jobs completed

Mean scaled TS response time
TS response timé(0.10)

TS response timé(0.20)
TS response timé(0.40)
TS response timé(0.80)
TS response timé(1.6)

A~~~

329 (0.28%)
274 (0.23%)
235 (0.20%)
186 (0.16%)
121 (0.10%)

81 (0.07%)
22342

0.4802

15533 (69.52%)
11725 (52.48%)
7392 (33.09%)
3265 (14.61%)
1063 (4.76%)

221 (0.19%)
192 (0.16%)
169 (0.14%)
138 (0.12%)
100 (0.09%)

73 (0.06%)
22343

0.4623

14789 (66.19%)
11126 (49.80%)
7043 (31.52%)
3123 (13.98%)
1021 (4.57%)

223 (0.19%)
192 (0.16%)
168 (0.14%)
137 (0.12%)
107 (0.09%)
72 (0.06%)
22346

0.1830

4981 (22.29%)
3503 (15.68%)
1946 (8.71%)
800 (3.58%)
314 (1.41%)

Stats Scheduler

Priority GPS EDL Proposed
Simulation time 100002 100002 100002 100002
SRT jobs completed 117469 117470 117467 117469
SRT job overruns 329 (0.28%) 221 (0.19%) 223 (0.19%) 118 (0.10%)
Mean scaled overrun time 0.0042 0.0034 0.0032 0.0026

118 (0.10%)
114 (0.10%)
109 (0.09%)
100 (0.09%)
88 (0.07%)

61 (0.05%)
22342

0.2583

9195 (41.16%)
5625 (25.18%)
2838 (12.70%)
1115 (4.99%)
421 (1.88%)

Table 4.2: Summary statistics faiv(,..=100[/,,;=0.65,R=0.8QV;,=20,;,=0.15).

There is no clear way to handle this trade-off. And this is amenue for future work.

Note that EDL performs significantly better in terms®{0.1) and ®(0.2) as compared to SPS. But SPS
catches up with EDL at arounil(0.4). EDL pays the price for this performance in encounteringerdeadline
overruns. Now SPS schedule can be made to resemble EDL detmdioetter accounting of idle times. But is
this required ? The reason why EDL performs better for in teaf®(0.1) and®(0.2) is because when the RT
jobs are waiting under EDL, the TS jobs get serviced at afaate. While under SPS, the RT jobs take a certain
share of processor. It would be interesting to know if the &§ponse times can be further improved under SPS

without incurring additional SRT deadline overruns. Andwiauld like to address this problem in future.

67

Actual Histogram

o}
o
9

x
= W Priority
< B GPS
0.04 | 5 1.00 | B EDL
P ©
o 0.03 2 0.80
o — [S) —]
5 @
% 0.03 = 0.60
=] S —
G 0.02 5 040
5 B g]
g 0.01 | = 0.20 |
n £
& 0.00 > 000 \
1 = T T B "I—IH
0.00 0.20 0.40 0.60 0.80 1.00 § 0.00 0.20 0.40 0.60 0.80 1.00
Utilization g Utilization
(a) Cumulative SRT utilization histogram (b) Cumulative RT utilization (1-cdf)
Figure 4.12: (V,,+=100[/,,+=0.65,R=0.8QV;,=20,U;,=0.15) execution time requirement distribution
Overrun Times for all schemes TS response times
W Priority W Priority
B GPS B GPS
329 | W EDL 15533 M EDL
2711 | 12465
213 9398
0 — [}
a 2 i
S 155 S 6330
3 — 3+
97 | 3263
39 195
T T T T T I T I R I T
0.0 0.6 1.2 1.8 2.4 3.0 0.1 0.7 1.3 1.8 24 3.0
Deadline overrun time scaled by respective periods Response Times scaled by respective periods
(a) SRT overrund(.) (b) TS response time®(.)

Figure 4.13: (V,,+=1000/,+=0.65,R=0.8QV;,=20,U;,=0.15)®(.) values for SRT and TS tasks

68

d(.) for Priority

()
B E[s()]

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

Time

(a) g(.) for Priority

g(.) for EDL
Hg()

1.00 B Efs()]
0.80
0.60
0.40

0.20

Processor Share

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Time

(c) g(.) for EDL

d(.) for GPS

1.00
0.80
0.60
0.40

0.20

Processor Share

0.00

Time
(b) g(.) for GPS
d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

Time

(d) g(.) for SPS

Figure 4.14: {V,,.,=100[/,,.,.=0.65,R=0.8QY,,=20,U;,=0.15) g(.) functions for the four schemes

69

4.11 Summary

We propose a scheduling framework for variable requiren8RiT tasks, where a SRT job has two execution
phases. In the first phase it is scheduled as a RT job with ti@rement to finish certain executio®{ or
reservation) before its deadline. If the RT job is still getafter?; RT allocation, then the SRT job is scheduled
as a TS job for the remainder of its execution time.

We examined four scheduling algorithms to schedule the SBXst- Priority which gives priority to RT jobs
over TS jobs,GPS which reserves constant processor shareif/ P; for the RT jobs, modified EDL which
delays RT jobs while still meeting their deadlines and treppsed SPS algorithm.

70

CHAPTER 5
Experimental Setup

In the previous sections we presented the theoretical sisalyhich establishes the usefulness of SPS, but given
the unconventional nature of SPS and probabilities plagimgnportant part in scheduling, it is difficult to form

a good intuitive understanding of how, why and by how muchsd8ES improve scheduling performance as
compared to current algorithms. To build this understaggivhich is not only useful to build familiarity with
SPS but also to get insights into the factors determiningrggponse times while guaranteeing allocation to
RT jobs, we present a wide range of experiments, along withilde discussion on why the experiments were
conducted and what were the performance benefits.

In this chapter, the simulation results are presented forde mange of scenarios. We have a Java testbed
which is automated to run and document the results for therxents. The experimental report contains
all relevant information about the experiment, and showddehsy to follow once familiarity is built with the
reporting mechanism.

In the following sections, we first explain the experimesetup and the SPS scheduling algorithm. This is
followed by a in-depth discussion of the experiment repgrformat by running through an example. This sec-
tion should build familiarity with the figures and tables &dp in detail the factors impacting the performance of
SPS through relevant set of experiments. Finally, we ptedetiailed experiment reports for all the experiments

discussed in this section.

5.1 Experiment Parameters

The task set was generated based on the following parameters
e N —number of SRT tasks
e U, —mean cumulative utilization of SRT tasks

e R — cumulative reservation utilization of SRT tasks

e N;; —number of TS tasks

e U;s — mean cumulative utilization of TS tasks

Pi, — minimum period of any task (30 ms)
e P, —maximum period of any task (200 ms)

The tuple (V,,.+=50U,,+=0.50R=0.65)V;,=50,U;,=0.35) describes an experiment, whéfg is the number
of SRT tasks[/,; is average cumulative SRT utilizatioR,is the cumulativeV;, is the number of TS tasks and
Uy, is the cumulative TS utilization.

The task set is generated using,.;, Us,¢, R, Nys andU;,. Each SRT and TS task is assumed to have nor-
mally distributed execution time requirement (bell shagedribution). The reason for this choice of workload
is that normal distribution has the properties where moktesare near mean and there are fewer values away
from the mean. This kind of variability has he most scope fiopiiovement since allocating for values greater
than mean may be necessary to provide allocation guaratmigtsa most cases, the values are near the mean.

The other reason for considering normal distribution ist iace for SPS, we require the cumulative re-
quirement of RT tasks rather than their individual requiesrts, and from Central Limit Theorem, the sum of a
large number of random variables follows normal distribotsince the constituent random variables cancel out
each others variability. So, for large number of independasks, their cumulative execution time requirement

distribution is most likely to be normal.

5.1.1 SRT Tasks Generation

The mean utilizations of SRT tasks were chosen td/he random numbers (normal distribution) with their sum
equalsU,,.;. Denote the mean utilization for taskas M;. Then)_ M; = U,,;. The periods were chosen as
uniformly distributed integers in the range [8), 200].

The individual reservations for SRT tasks were chosen d@fsl Suppose SRT task has mean utilization
of M;. Then its reservatio®; is given byM; « (R/Ug¢).

Note that,
> M;
Usrt

ZRz:ZM7*(R/UGTt):R =R

72

5.1.2 TS Tasks Generation

The mean utilizations of TS tasks were chosen tadWpgrandom numbers (normal distribution) with their sum

equaldl;s. The periods were chosen as uniformly distributed integetise range o0f30, 200].

5.2 Simulation Platform

2 Schedule Plotter

Wﬁéogram Response Times | Schedule | Log Expﬁiﬁm

Configuration Summary Statistics

#3RT tasks [s0 '

Curnulative Mean SRT Utilization (%) iSU Number of SRT tasks 0

| Curnulative SRT Resarvation (%) IES | Mean SRT Utilization 0.0

.#TS il — | | Reservation Utilization 0.0

Ii.{ Worst Case Utilization 0o

_Cumu\atwe Mean TS Utilization (%) 535 | overload probability 0.000

.:Mm SRT Period '7 Number of TS tasks (]

i - | | Mean TS Utilization 0.0

b SRT Perind u s .

| Min TS Period | SRT Job overruns/Jobs Completed for Priority 00 {0.00%)

e IF TS Phi(0.1) Priority 0.00%

T - '7 Mean scaled SRT overrun time Priority 0.0000

e 100000 |||l hean Scaiad 7S responsatima briosity 0.0000

Start SRT .Job overruns/Jobs Completed for GPS 00 (0.00%)

TS Phi{0.1) GPS 0.00%
Mean scaled SRT overrun time GPS 0.0000
Mean Scaled TS response time GPS 0.0000
SRT Job overruns/Jobs Completed for EDL 0/0 {0.00%)
TS Phii0.1) EDL 0.00%
Mean scaled SRT overrun time EDL 0.0000
Mean Scaled TS response time EDL 0.0000
SRT .Job overruns/Jobs Completed for SPS 00 (0.00%)
TS Phi{0.1) SPS 0.00%
Mean scaled SRT overrun time SPS 0.0000
Mean Scaled TS response time SPS 0.0000
Quantum 1.0

Figure 5.1: Java GUI input form

We implemented a Java based GUI to simulate task sets wibhitlyriGPS, EDL and SPS schedulers. The

interface looks like this Fig 5.1. The input parameters are -

e N, —Number of SRT tasks

Us,+ — Cumulative mean utilization of SRT tasks

R — Cumulative reservation utilization of SRT tasks

e N;s — Number of TS tasks

73

e U;s — Cumulative mean utilization of the TS tasks

e min Ps,.; — Minimum SRT period

e max Ps,.; — Maximum SRT period

e min P, — Minimum TS period

e max P;; — Maximum TS period

e Simulation time — This is the duration in time units for whitte simulation is run.

As can be seen in Fig 5.1, the right panel shows summarytstatfer the experiment. The last entry in
summary statistics is the allocation quantum size. We fikégito be 1. This value represents the allocation
granularity for emulating GPS. The quantum size of 1 meaatsahthe end of each quantum, the processor time

allocated to each task is what an ideal GPS schedule woutdldilmcated.

74

E% Schedule Plotier

Config Histogram | Response Times | Schedule | Log | Export Graphs

Configuration Summary Statistics

—
#ERT tagks |50
Cumulative Mean SRT Utilization (%) a0 | || Number of SRT tasks 50

| Curnulative SRT Reservation (%) I41] | Mean SRT Utilization 050

I | | Reservation Utilization 0.65
#T35 tasks a0

L = | | Worst Case Utilization 1.9
Curmulative Mean TE Utilization (%) a5 Overload probahility 0.000

hin SRT Period || numberor TS tasks 50

i Mean TS Utilization 0.35

MaxSRI Penod 200 | s S
Min TS Period i | | SRT Job overruns/Jobs Completed for Priority 20157963 (0.03%)
e —— = TS Phi(0.1) Priority 58.12%

Mean scaled SRT overrun time Priority 0.0002

= = — —
“Slmulatmn Time _5_1 0ooao 1| | Mean Scaled TS response time Priority 04142
SRT Job overruns/Jobs Completed for GPS 4/57962 (0.01%)

T8 Phi(0.1) GPS 50.68%

Mean scaled SRT overrun time GPS 0.0000

Mean Scaled TS response time GPS 0.3759

SRT .Job overruns/Jobs Completed for EDL T2/57956 (0.12%)
TS Phi{0.1) EDL 27.49%

Mean scaled SRT overrun time EDL 0.0003

Mean Scaled TS response time EDL 0.2168

SRT Job overruns/Jobs Completed for SPS 0/57954 (0.00%)
TS Phi(0.1) SPS 30.45%

Mean scaled SRT overrun time SPS 0.0000

Mean Scaled TS response time SPS 0.2139
Quantum 1.0

Figure 5.2: Java GUI summary statistics at the end of sinwrat

Fig 5.2 shows the summary statistics after the experimemtés. Along with these statistics, the other tabs
show the distribution of RT requirements, tf€.) functions for RT overruns and TS response times and the
¢g(.) functions for all the four scheduling algorithms. Thesepi®are dynamically updated as the simulation

progresses. There are also multiple tabs which show dynpenformance graphs as the simulation progresses.

75

4 Schedule Plotter

["config | Histogram | Response Times | Schedule Loy |~ Export Graphs

RT Histogram 1,CDF
e M Priority = ! M Priority
| Graph ‘ o GFS = Graph o GPs

Ly e HEDL z 100 mED|
g _ EDL

o

& oo £ o080 |

2 @

g &0 g 080 |

S 040 T 04n

5 £ —

g 020 % oz |

Eogon | < 000

i L s I = 1 Ty T T
000 013 026 040 03 0GR e 000 020 040 DED 080 100
5
&

Ltilization LHilization

Profiled Histogram Actual Histogram

Graph Graph
0.06 ‘j 008 p—‘

[IRIES 0.4

0oz oo
0oz 0.0z

o.o1 0.01

Fraction of instances
Fraction of Instances

o.on 0.00

T T e T T T T T I, L T
000 020 D40 OBOD 080 100 000 020 040 0BD 080 1.00
Utilization Hilization

Figure 5.3: Java GUI RT requirement distribution

Fig 5.3 shows the RT requirement distribution for the founestuling algorithms, as well as the profiled
and actual cumulative RT requirement histogram. The RTireqent distribution is the amount probability
of the amount of cumulative RT allocation that is requiredtfie RT jobs. Note that the RT jobs can get idle
allocation, and this idle allocation does not count as Rdcallion. In particular, note that the RT requirement
histogram for SPS and EDL shows that there is higher proiatilat the cumulative RT requirement of the RT
jobs is lower as compared to that for GPS/Priority. This isdaese under EDL/SPS, the RT jobs get more idle
allocation (because they are active longer and hence haaegrchances of claiming idle time), hence there
RT requirements are lesser under EDL/SPS. The lower pairagfits is just for verification purposes to visually

verify that the profiled SRT requirements match the actdadtetical) cumulative requirement distribution.

76

E4 Schedule Plotter

Config Response Times | Schedule [Log |"Export Graphs

Overrun Times for all schemes
M Priority

s j\ EGPs

W EDL
87,6
43.2
PR}
144

#lohs

0o :
| O} T T
{iki} 0.6 1.2 148 24 an
Deadling overrun fime scaled by respective periods

TS response times

I gl T T T
01 07 14 48 24 30
Response Times scaled by respective periods

Fig 5.4 shows the SRT overrun tindg.) functions and the TS overrun tini(.) functions. Note that for
given z, higher the value ofb(x) means there are greater number of jobs with their scalensgptime or
overrun time greater than Thus, lower values ob(.) are better. Also, we maintain and show the) function

over the rang€0, 3]. This is not just for information, rather th&(.) measure would be useful in checking

Figure 5.4: Java GU®(.) functions

whether the performance requirements of the applicatiomset or not.

77

= bchedule Plotter
i/ Config | Histogram | Response Times !/Scheuule | Leg [Export Graphs
9.} for Priority (. for GPS
ral E[s() Fa| E[s(]
1.00 B 6] el p ()
& 080 | \ o 080 |
& &
& UE0 | i & 060 | >
@040 3 o040 -5
@ = @]
2) 2
S 00 \ S 0w s
o] o =1
0.on \ oon \’\,_
I 1 I I T | [1
000 020 040 060 080 10D 0. 020 040 08D 080 .00
Time Time
9.} for EDL a(.) for SPS
: ae
Els(]
1.00 100 | =
» U080 » 080
= & n
= 080 & 080 |
040 3040
& 4 L
4 2
= 020 = 020
o o]
000 oo
I |
000 020 0. 020 040 0BD 080 100
Time

Figure 5.5: Java GU{(.) functions

Fig 5.5 shows the(.) functions for the four scheduling algorithms, as well as¢ixpected value of(¢).
This is the key graph showing the difference between thedgorithms. Understanding this graph is the key to
understanding all the results. The lighter shaded regidimeig(.) function for a unit period job with execution
requirement distribution same as the cumulative RT utiliraof all the RT jobs. The darker region shows the
expected cumulative processor share of the RT jobs. Theeshfd®P Sy (.) function lies in between that of GPS
and EDL, matching EDL when the processor is under-loaded=#8 when the processor is heavily loaded. For
intermediate values, the SR&) function is hybrid between the ED4(.) function and the GPg(.) function,
with maximum expected processor share of RT jobs lessertibtm

Our Java platform not only reports these dynamic graphslbatgenerates a latex report for the experiment.

In the following section we look at the generated report fpic¢al experiment.

78

5.3 Typical Experiment

A typical experiment is reported as follows.
The tuple {V,,.=50U,,,=0.50,R=0.65Y,,=50/;,=0.35) represents the parameters for the experiment as

described in previous section.

Stats Scheduler

Priority GPS EDL Proposed
Simulation time 100002 100002 100002 100002
SRT jobs completed 57963 57962 57951 57953
SRT job overruns 20 (0.03%) 4 (0.01%) 67 (0.12%) 0 (0.00%)
Mean scaled overrun time 0.0002 0.0000 0.0002 0.0000
Overrun®(0.0) 20 (0.03%) 4 (0.01%) 67 (0.12%) 0 (0.00%)
Overrun®(0.10) 16 (0.03%) 2 (0.00%) 34 (0.06%) 0 (0.00%)
Overrun®(0.20) 13 (0.02%) 0 (0.00%) 24 (0.04%) 0 (0.00%)
Overrun®(0.40) 9 (0.02%) 0 (0.00%) 11 (0.02%) 0 (0.00%)
Overrun®(0.80) 7 (0.01%) 0 (0.00%) 1 (0.00%) 0 (0.00%)
Overrun®(1.6) 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
TS jobs completed 57939 57943 57952 57955
Mean scaled TS response time | 0.4180 0.3775 0.2243 0.2143
TS response timé(0.10) 33417 (57.68%) | 28904 (49.88%) | 15911 (27.46%) | 17272 (29.80%)
TS response timé(0.20) 23635 (40.79%) | 20202 (34.87%) | 10951 (18.90%) | 9738 (16.80%)
TS response timé(0.40) 14255 (24.60%) | 12345 (21.31%) | 6624 (11.43%) 4787 (8.26%)
TS response timé(0.80) 6667 (11.51%) 5863 (10.12%) 3143 (5.42%) 2214 (3.82%)
TS response timé(1.6) 2612 (4.51%) 2359 (4.07%) 1323 (2.28%) 1118 (1.93%)

Table 5.1: Summary statistics fawv(,;=50U,.;=0.50,R=0.65YV;,=50U;:=0.35)

Table 5.1 presents the summary statistics for the expetimen
e Simulation time - The time for which the simulation was run.

e SRT jobs completed - The number of SRT jobs completed undér eithe scheduling algorithms. This
may differ between the scheduling algorithms, becauseavthéd RT components of all the SRT tasks finish
by their deadline, the overrun TS components have differespponse times under different scheduling

algorithms.

e SRT job overruns - The number of SRT jobs missing their deadINote that all the RT components meet
their deadline. But if the job requirement is greater thamréservation then it may miss its deadline, and

this is the number of SRT jobs missing their deadline undeh @ the four scheduling algorithms.

e Mean scaled overrun time - This is the mean of overrun timeslldhe jobs divided by their respective

periods. Note that SRT jobs finishing on or before their dieadhave overrun time of 0.

79

e Overrun®(x) - This is the number (and percentage) of SRT jobs with scaledron time greater than
z. Note that SRT jobs with scaled overrun time between 0-0.¥ ma& have significant impact on perfor-

mance.

e TS jobs completed - The number of TS jobs completed undenelidur algorithms. It may differ between

the four algorithms.

e Mean scaled TS response time - The mean of scaled resporesedinall the TS jobs. Smaller value is

better.

e TS Response tim&(z) - This is the number (and percentage) of all TS jobs with teealed response

time greater tham.

This table provides the summary of key results, but it doggprmvide any explanation on the performance.
The next set of figures provide that explanation. This tabtges to highlight the results, and provides a single
place where all the performance aspects of the experimera\ailable.

Note that smaller response time values are better, andesmvallues ofd(.) functions are better. It should
also be noted that the response times are measured from tiamegl @t time 0, the SPS schedule is like the GPS
schedule. In the absence of any information, the SPS soheskgmbles that of GPS, because the SPS schedule
is calculated assuming constant execution time requiremieRR; for the SRT task. As time progresses, the
probability distributiony,; is constructed and the shape of SPS changes according twiit.cases where GPS
does not perform well, SPS is at a disadvantage becauset# efaas GPS. These experiments do not ignore
any response time values. So in steady state, the SPS parfoemvould be better than what is reported here
because in steady state, SPS would have a more or less dorigidonction.

The reason why scaled response times are compared is behausés no straightforward way to directly
compare response times of jobs with varying job sizes. So weenthe implicit assumption that the response
time sensitiveness of tasks is proportional to their peridtiat is, smaller period tasks are more sensitive to
their response time as compared to tasks with greater pefibi$ is a reasonable assumption if the tasks are
assigned periods based upon their time sensitiveness, thkse is little meaning to period of TS tasks, but for
our simulations we assumed that TS jobs arrive as periobi, joist like SRT jobs with the only difference that
the TS tasks have 0 reservation and hence no RT componerttuial aystems, the TS task time sensitiveness

may not be directly proportional to their period and alsoTi®gobs may not arrive periodically. But by choosing

80

periods randomly for the TS tasks we insure that the TS taskeaandomly and hence create a random arrival

time scenario, while arriving at fixed rates.

0.00

I T 1 I I
0.00 0.20 0.40 0.60 0.80 1.00

Utilization

0.00 0.20 0.40 0.60 0.80 1.00
Utilization

Actual Histogram 1>;CDF
c M Priority
©
< M GPS
0.05 5 1.00
@ B ©]
o 0.04 2 0.80
o —] (o2} —]
g @
£ 003 — 0.60
£ - S —
5 0.02 § o040
5 7 = 7
£ 0.01 2 020
g g
= >
=
[
Q
[
a

(a) Cumulative SRT utilization histogram (b) Cumulative RT utilization (1-cdf)

Figure 5.6: (V4-+=50U,,+=0.50,R=0.69V,;,=50,U;,=0.35) execution time requirement distribution

The first set of figures (Fig 5.6) shows the cumulative utfl@adistribution histogram for the SRT tasks.
Note that since we generate SRT workload using normal Higidn hence the cumulative histogram is also
normal. Also note that while the cumulative worst casezdiiion requirement may be considerably greater than
the mean utilization requirement the probability that tbual cumulative execution requirement is greater than
the mean decreases as the number of jobs in the system iasedieThe second graph shows the tail distribution
of cumulative RT utilization of the RT components of the SR$ks. Remember that the allocation to the RT
component of the SRT job is given by the processor time recey this job due to its RT share. If the RT job
receives any idle allocation then that does not count tosvasscRT allocation.

Also for given value of utilization on th& -axis, the height of the curve represents the probability the
cumulative RT utilization of the RT components of the SRTsjebll be greater than that value of Note that
for EDL, the probability distribution is such that the curative RT component finishes has greater probability
to use lesser utilization. This is because, under EDL, thgoR$ get maximum possible idle allocation which
does not count towards RT allocation. Thus, under EDL thedR§ jequire minimum RT allocation. And hence
the shape of the distribution.

The reason why SPS resembles EDL is because for SPS we agethisioumulative RT requirement distri-
bution given by EDL. The actual cumulative RT requirememt$3&S would be a curve which will lie between
the EDL and GPS curves. That is under SPS, the RT jobs getegiidé allocation as compared to GPS, but

lesser as compared to EDL. Idle allocation is the the allonatvailable to RT job outside its processor share if

81

there are no active TS jobs present.

Overrun Times for all schemes TS response times
B Priority M Priority
B GPS B GPS
67.0 33417
[1
53.6 26861 |
40.2 20306
172} [} |
Q Qo
S 268 S 13750
3 3+ —
134 7195
0.0 T—_ 639
1 I I T T T > — I 1 T
0.0 0.6 1.2 1.8 2.4 3.0 0.1 0.7 1.3 1.8 24 3.0
Deadline overrun time scaled by respective periods Response Times scaled by respective periods
(a) SRT overrunb(.) (b) TS response time®(.)

Figure 5.7: (V4,+=50U,,+=0.50,R=0.65V;,=50,U;,=0.35)®(.) values for SRT and TS tasks

Fig 5.7 graphically shows th&(.) function for SRT overrun times as well as TS response timbas.réason
these two are considered separately is because under theudicly algorithm we used for simulation the SRT
overrun TS jobs are given priority over normal TS jobs. Thibased on the assumption that the SRT overrun jobs
would usually be very small, and finishing them early is monpartant than TS response times. In comparison
to the approach of treating the SRT overrun jobs at par witleioT S jobs, this approach provides much smaller
SRT overrun times. Also this formalization helps to bringpabthe problem with EDL scheduling where the
SRT deadline misses are increased if the mean processpatitih is high. If all the TS jobs are treated equally,
then this impact is diluted.

The other thing to note is that SPS provides response timefiteoverx as high as 1, which is important,
because the jobs with scaled response time greater tharo@ld vave greater performance impact as compared
to jobs with their scaled response time in the range 0 to Ohls iB because, tasks may not be very sensitive
to small increase in response times. Although, smalleraesp times may be better for some tasks, and as we
would show through the experiments, SPS performs the besirins of (0 — 0.4) measures, so that is no
problem.

Fig 5.8 shows the(.) and E[s(.)] functions for the four scheduling algorithms. This is they Kigure
representing the differences between the four schedulgmithms. The first thing to note is that under SPS
the expected processor share of the RT jobs is nearly cdnatashlesser as compared to any of the other three
algorithms. While under SPS, the processor share of RT jodg vary with progress, under the other three
scheduling algorithms it is a constant value or 0. The SREfunction also shows that the higher processor

share for RT jobs is reached only rarely, as seen by the expeetue of processor share for the interval when

82

g(.) for Priority d(.) for GPS

1.00 1.00
o 080 o 080
- s
5 060 5 060
3 040 2 040
8 8
S 020 S 020
o o

0.00 0.00

Time Time
(a) g(.) for Priority (b) g(.) for GPS

g(.) for EDL g(.) for SPS

1.00 | 1.00
o 080 | o 080
- -
&5 060 | 5 060
2 040 | 3 040
8 8
S 020 S 020
o — o

0.00 0.00

0.00 . 040 060 080 1.00
Time Time
(c) g(.) for EDL (d) g(.) for SPS

Figure 5.8: {V,,.=50,,,=0.50,R=0.65YV,,=50;s=0.35) g(.) functions for the four schemes

theg(.) function value is high. This is the novelty of our approacintiLthow, the scheduling algorithms focused
on giving the RT jobs a constant processor share, but thisoapp though appropriate for constant requirement
RT jobs, does not perform well with variable requirement Bibg. And varying processor share of RT jobs is an

effective tool in handling requirement variability.

83

5.4 Experiments and Observations

Experiments were conducted to study SPS performance mwoih setups (Table 5.2).

Name

Description

Impact of SRT utilization on
SRT overrun times

Measure the impact of SRT overrun time with respect to cutivela
mean utilization of SRT tasks. It is assumed that there arEStasks
in the system.

Impact of SRT utilizationon T
response times

Measure the impact of cumulative mean SRT utilization ondsponse
times.

Impact of SRT requiremen
variability on TS response
times

L

Measure the impact of SRT reservation (for given SRT medizafiion)
on TS response times

Impact of TS utilization in TS
response Time

Measure the impact of TS workload on TS response times (f@mgi
SRT mean and reservation utilization)

Impact of size of RT jobs on TS

Measure the impact of size of SRT jobs on TS response times.

response Times
Impact of size of TS jobs on TS
response Times

Measure the impact of size of TS jobs on TS response times.

Table 5.2: Experiment sets

5.4.1 Impact of SRT Utilization on SRT Overruns

e For cumulative mean SRT utilization of 0.30, 0.40 and 0.5, frobability that the system utilization is
greater than 1 is nominal (Fig 5.9). So while the cumulat&gervation is 0.35, 0.45 and 0.55 respec-
tively, the SRT overruns finish before deadline, since theaiaing processor share (after allocating the

reservation) is considerable.

Also not that EDL and SPS schedules are very similar, thiseisabse RT jobs finish using just idle
allocation under both the schemes. So the probability tiajoBs require any RT allocation is nominal

under EDL or SPS, as seen in the tail distribution (1-cdf)whalative RT requirements (Fig 5.9)

For cumulative mean SRT utilization between 0.6 and 0.8p#réormance benefits of EDL and SPS be-
come evident over Priority and GPS (Fig 5.10). This is beeausler EDL and SPS, the RT job execution

is delayed (Fig 5.10), giving better response times to thegrow jobs.

For cumulative mean SRT utilization 0.9 or more, nearlylad schemes perform equally. This is because
the processor is busy most of the time with the RT jobs (whigkgsimilarg(.) functions under all the

four schemes). Also note that the cumulative RT requirendgsitibution is nearly same under all the

84

Actual Histogram

0.08
0.07
0.05
0.03
0.02

Fraction of Instances

0.00

T T T
0.00 0.20 0.40 0.60 0.80 1.00

Utilization

(@) (Nsrt=50Us,:=0.30,R=0.35V;,=0,U;+=0.0)
Actual Histogram

0.06
0.05
0.04
0.02
0.01

Fraction of Instances

0.00

I I T
0.00 0.20 0.40 0.60 0.80 1.00

Utilization

(C) (Ns'rtzsoyUsrt=0-407R=0-45yts =01Ut5 =00)
Actual Histogram

0.05
0.04
0.03
0.02
0.01

Fraction of Instances

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Utilization

(e) (Nsrt=50Usr+=0.50,R=0.58Vs=0,U+s=0.0)

-
:
(2]
=]
5

Probability that utilization is greater than x

0.00

T
0.20

W Priority
B GPS
EDL

T T T T
0.40 0.60 0.80 1.00

Utilization

(b) (Nsrt=50Usr+=0.30,R=0.39V;5=0,U;5=0.0)

-
T
Q
=]
1

Probability that utilization is greater than x

1.00
0.80
0.60
0.40
0.20
0.00

0.00

|
0.20

B Priority
B GPS
EDL

T T
0.40 0.60 0.80 1.00
Utilization

(d) (Nert=5004¢+=0.40,R=0.45V;,=0;+=0.0)

-
T
Q
=]
1

Probability that utilization is greater than x

1.00
0.80
0.60
0.40
0.20

0.00

0.00

|
0.20

B Priority
B GPS
EDL

[T
0.40 0.60 0.80 1.00
Utilization

(f) (Nsrt=50Usr+=0.50,R=0.58Vs=0,U;s=0.0)

Figure 5.9: This figure shows the cumulative SRT utilizatigstogram and RT requirement distribution for low
to medium loaded system. Note that under SPS/EDL, the piiitigdbat the RT jobs require any RT allocation

is nominal.

schemes (Fig 5.11) , and the processor is busy with RT jobm&pority of time, leaving little time for the

overruns under any scheme.

85

Overrun Times for all schemes

W Priority
W GPS
89.0 | M EDL
712 |
53.4
” _
Q
S 356
2 _
17.8
00 o
R S ‘%

T T T
0.0 0.6 1.2 1.8 2.4 3.0
Deadline overrun time scaled by respective periods

(8) (Nsrt=50Usr+=0.60,R=0.68Vs=0,Uts=0.0)

Overrun Times for all schemes

W Priority
W GPS
370 | M EDL
296 |
222
” _
Q
S 148
2 |
74
T
0 ——

T T | [!
0.0 0.6 1.2 1.8 2.4 3.0
Deadline overrun time scaled by respective periods

(C) (N.s'rtzsoyUsrtzo-7oyR=0-75yvts=01Ut5=0-0)

Overrun Times for all schemes

B Priority
B GPS
1422 W EDL

1149
876

#Jobs

604
331

58

T T T I i
0.0 0.6 1.2 1.8 24 3.0

Deadline overrun time scaled by respective periods

(e) (Nsrt=50Usr+=0.80,R=0.85Vs=0,Uts=0.0)

g(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

—4
0.00 0.20 0.40 0.60 0.80 1.00
Time

(b) (Nsrt=50Usr+=0.60,R=0.68V+s=0,Us=0.0)
g(.) for SPS

1.00
0.80
0.60
0.40

Processor Share

0.20

000 |

0.00 0.20 0.40 0.60 0.80 1.00
Time

(d) (Nsrt=50Us¢=0.70,R=0.75V;s=0,U;5=0.0)
d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

Time

(f) (Nsrt=50Usr+=0.80,R=0.85V;s=0,U;s=0.0)

Figure 5.10: Overrun times ang.) for SPS

86

g(.) for SPS 1x-CDF
Hg() = W Priority
M E[s(.)] £ W GPS
1.00 5 1.00 B EDL
g |
o 080 g 080 |
g A
5 060 c 060 |
3 040 T 040
(0] = p—
S 020 2 020
T S —
0.00 S 0.0
£ T T T T
0.00 020 040 060 080 1.00 3 000 020 040 060 080 1.00
Time & Utilization
(a) (NSTFSO,USTFO.QO,R:O.95,\%=O,Ut5=0.0) (b) (NsrtZSO,USTtZO.go,R=0.95,Vt5:0,UtS:0.0)

Figure 5.11: SP$(.) and RT requirement distribution

87

5.4.2 Impact of SRT Utilization on TS Response Times

While in the previous section we looked at a system with nodsR4, in this section we look at a system which
has a mix of SRT and TS tasks. SRT overrun tasks are schedittethe TS tasks in LAS order.

The aim of this set of experiments is to understand the imp8RT utilization on TS response times. To
do this we fix the numbew,,.. = 50, N;s = 50 andU;s; = 0.35, and varyU,,; (while choosing R¥/,.; + 0.05).

This will enable us to understand how much is the effect of 8fization on the response times of TS tasks.

TS response times g(.) for SPS
W Priority Hg)
W GPS W E[s(.)]
4409 1.00
3527 o 0.80 |
©
" 2645 & 060 |
.8 5
2 1764 ?) 0.40 |
882 | 8 020
| & _
0 0.00
> T T T T

T T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(@) (Ns74=50U4+=0.10,R=0.15V}s=50/;s=0.30)

Time

(b) (Nsrt=5017,4+=0.10,R=0.15Y; ,=50/;5=0.35)

TS response times d(.) for SPS
B Priority Hg()
M GPS M Es()]
9590 1.00
7672 o 0.80 |
©
» 5754 & 060 |
o <]
S 3836 2 040
e @ —
1918 S 020
T —
0 0.00
T T T T

I T T T T
0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(¢) (Nsrt=50Usr¢=0.20,R=0.25V;s=50,U;s=0.35)

Time

(d) (Nsrt=50Us¢=0.20,R=0.29V;+s=50U;+=0.35)

TS response times g(.) for SPS
W Priority Hg)
M GPs B E[s()]
16458 1.00
13166 o 0.80 |
[0
" 9875 i 0.60 |
) <]
S 6583 2 0.40
2 —
3292 S 020
& —]
0 0.00
—>

1 T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(€) (Nsr+=50U4y+=0.30,R=0.35V}s=50/;+=0.35)

Time

() (Nsrt=5004,¢+=0.30,R=0.35\}s=50/;s=0.35)

Figure 5.12: Low utilization system, TS response tifne) and SPS(.)

88

Following are the key observations —

e Evenforverylow (0.1-0.3) cumulative SRT task utilizatj¢ime impact on TS response time is significant.
and independent of scheduling algorithm used. This is mrao matter how small cumulative mean
utilization of SRT tasks be, the execution of RT job compdsehSRT tasks interferes with the execution
of TS jobs, more so under Priority and GPS as compared to S#ERh. This can be seen from th.)
functions (Fig 5.12). Under SPS, thé) function resembles the ED4(.) function i.e. the RT allocation
is delayed maximally, thereby giving preference to TS tagkih is evident from the TS response time
®(.) functions. Note that with high probability, the RT alloatiis not actually required and the RT jobs
finish using just idle allocation.

g(.) for SPS g(.) for SPS
Hg()

| |
1.00 W ElsC) 1.00 "
0.80 0.80
0.60 0.60

0.40 0.40

Processor Share
Processor Share

0.20 0.20

0.00 0.00

0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Time Time

0.00

(8) (Nsrt=50Usr¢=0.40,R=0.45V;s=50,U;s=0.35) (b) (Nsrt=50Us¢=0.60,R=0.69YV;+s=50U;+=0.35)

Figure 5.13: Medium utilization systery(.) function

e Forcumulative mean SRT utilization 0.4, 0.5 and 0.6, thewative mean overall utilization of the system
(SRT and TS) is 0.75, 0.85 and 0.95 respectively. Due to thie tmiean overall utilization, the RT jobs get
lesser idle allocation under all schemes. The effect ofdhisbe seen on thg.) function for proposed
algorithm (Fig 5.13). Note that their is a greater probapithat the RT job requires its allocation, as

compared to the previous low utilization scenarios wheeeRT jobs finished using just the idle allocation.

Also, some SRT jobs miss their deadline under EDL and SPS.i$hiecause under these two algorithms,
the RT execution is delayed, hence the RT jobs finish lateoagpared to under Priority and GPS. Thus,
the SRT overrun component is available later as compareditoitl? and GPS, and it has to compete
with the (nearly always present) TS jobs for processor. Tthege is a higher probability of missing SRT
deadline under EDL. SPS provides TS response times conlpamBEDL scheme while keeping SRT

deadline misses substantially smaller. This is becausethfunction under SPS is a cross between GPS

89

and EDL, so while the RT allocation is delayed, it is not dethyy too much. As the overall system

utilization increases the SRf.) function morphs from being like that of EDL to being like tletGPS.

TS response times

W Priority
B GPS
24594 W EDL
19684
14775
[
Q
S 9865
H
4956
46

T T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(8) (Nsrt=50Usr¢=0.40,R=0.45V;s=50,U;s=0.35)

TS response times

W Priority
33417 mers
- W EDL
26829
20241
” _
Q
S 13653
2 _
7065 |

477 ¥ —~
T T N I T

0.1 0.7 1.3 1.8 2.4 3.0

Response Times scaled by respective periods

(©) (Nsrt=50U47+=0.50,R=0.55V}s=50/;s=0.35)

TS response times

B Priority
38287 mers
_ W EDL
31568
24849
” —
Qo
S 18131
2 _
11412
4693
I T I |

T
0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(e) (Nsrt=50Usr+=0.60,R=0.65V;s=50,U;s=0.35)

Overrun Times for all schemes

W Priority
B GPS
10.0 a M EDL
8.0
6.0
@ —
Qo
S 40
$H —
20
0.0

T T T T T
0.0 0.6 1.2 1.8 24 3.0
Deadline overrun time scaled by respective periods

(b) (Nsrt=50Us¢=0.40,R=0.49YV;s=50U;+=0.35)

Overrun Times for all schemes

W Priority
610 B GPS
. B EDL
—
48.8
36.6
@ —
Qo
S 244
HH —
12.2
00 |

l [T T T
0.0 0.6 1.2 1.8 24 3.0
Deadline overrun time scaled by respective periods

(d) (Nert=5017,4+=0.50,R=0.55Y; ,=50/;5=0.35)

Overrun Times for all schemes

B Priority
421 B GPS
— B EDL
337
253
@ —
Qo
S 168
3 —
84
O e ————

| | | |
0.0 0.6 1.2 1.8 24 3.0
Deadline overrun time scaled by respective periods

() (Nsrt=50Usr:=0.60,R=0.69V;s=50U;+=0.35)

Figure 5.14: Medium utilization system, TS response timeé 8RT overrun timed(.)

e For high cumulative mean SRT utilization (¢,0.6), the curtivdamean system utilization is (¢,1). Hence

there is little idle time in the system. This impacts g{e) function, and SPJ(.) increasingly resembles

GPSgy(.). This trend can be seen in the Fig 5.15.

Also, note in the TS response tink€.) function that a bulk of TS jobs have response time greaterttheir

90

g(.) for SPS d(.) for SPS

:g(-) =g(.)

100 | Els0] 1.00 Els()]
o 080 | o 080
(1] [0
& 060 | » 060
2 0.40 2 040
8] &
8 020 s 020
o — o

0.00 0.00

000 020 040 060 080 1.00 000 020 040 060 080 1.00
Time Time
() (Nert=50U4r+=0.10,R=0.15Y; =50/} s=0.35) (b) (Nsr4=507+=0.90,R=0.95¥,=50/;s=0.35)

Figure 5.15: SPg(.) trend from EDL like for low overall system utilization to GFi&e for high overall system
utilization

period. In fact, many TS jobs are perpetually queued bectugseare starved (new smaller requirement
TS jobs keep coming in). Thus it is important to keep the cating mean system utilization to be less

than 1 (Fig 5.16).

91

TS response times

W Priority
B GPS
30782 W EDL
26076
21370
2 |
S 16663
H —]
11957
7251

T T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

() (Nsrt=50Ur¢=0.70,R=0.75V;s=50/;s=0.35)

TS response times

W Priority
B GPS
16563 W EDL
14839
13116
® \
Qo
S 11392 N
H
9669
7945

1 T T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(C) (NsrtZSO,USTtZOBO,R=0.85,Vt5:50,Ut5=0.35)

TS response times

B Priority
B GPS
2757 H EDL
2675
2593
@ |
Qo
S 2512
ETS —
2430
2348

T T T T T
0.1 0.7 1.3 1.8 24 3.0
Response Times scaled by respective periods

(€) (Nsr=50U+=0.90,R=0.95Y; ;=50 s=0.35)

Figure 5.16: High utilization system, TS response time aRdl 8verrun timed(.). TS jobs may be starved.

Overrun Times for all schemes

W Priority
1007 B GPS
— B EDL
806
605
2]
S 405
$H —
204
3
1 I I T
0.0 0.6 1.2 1.8 24 3.0

Deadline overrun time scaled by respective periods

(b) (Nsrt=50Us¢=0.70,R=0.79V;s=50U;+=0.35)

Overrun Times for all schemes

W Priority
2052 B GPS
— B EDL
1656
1260
@]
Q
S 863
$H —
467
71

T T T [T
0.0 0.6 1.2 1.8 24 3.0
Deadline overrun time scaled by respective periods

(d) (Nsrt=50,Usrt=0.80,R=O.85,\7ts =50Uts:0-35)

Overrun Times for all schemes

B Priority
B GPS
4906 M EDL
4187
3467
0 |
Qo
S 2748
3 —
2028
1309 e

T T T T T
0.0 0.6 1.2 1.8 24 3.0
Deadline overrun time scaled by respective periods

() (Nsrt=50Usr:=0.90,R=0.99V;s=50U;+=0.35)

92

5.4.3 Impact of SRT Requirement Variability

The difference between SRT reservation and mean utilizaticectly impacts the allocation to TS jobs. The
choice of reservation may depend upon a variety of factkegierceived performance, response time distribution
etc. In this set of experiments we do not figure out how to chdbe value of reservation, rather given a set
of RT tasks with given cumulative mean utilization, how dokseice of reservation impact the response time of
TS tasks. Task sets with reservation considerably grelagertheir mean SRT utilization are task sets with high
variability in their execution time requirement.

To do this we run experiments for a system with 50 SRT taskB with cumulative SRT reservation fixed
at 0.65, and cumulative TS utilization of 0.40 and 40 TS ta¥¥s vary the cumulative mean utilization of SRT
tasks from0.10 to 0.60 in steps 0.1, and observe its impact on the response time distributiorSofasks.

From the Fig 5.17 it can be seen that as difference betweenlative mean SRT utilization and cumulative
SRT reservation utilization decreases, so does the adyamttiusing SPS or EDL. This is understandable,
because it/ is nearly equal ta?, then the cumulative RT requirement of RT jobs is pretty memhstant and
equal to the mean requirement. Note that if there is idle imtbe system, then EDL and SPS will outperform
Priority or GPS, since RT jobs would use this idle time anddbg reduce their interference with TS jobs, as can
be seen from previous set of experiments detailing the itnpll,.; on SRT overrun and TS response times.

But if there is no idle time in the system, then all the schepreside near similar performance.

93

TS response times
W Priority
B GPS

5758 W EDL

4606
3455
2303

#Jobs

1152

= T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(8) (Nsrt=50Usr¢=0.10,R=0.65V;s=50,U;s=0.40)

TS response times

B Priority
B GPS
M EDL

#Jobs

—>

I 1 T T T
0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(©) (Nsrt=50U47+=0.30,R=0.65V}s=50/;s=0.40)

TS response times

B Priority
35517 mers
— W EDL
29355
23192
» _
Qo
S 17030
e} _
10867
4705

T T T I !
0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(e) (Nsrt=50Usr+=0.60,R=0.65V;s=50,U;s=0.40)

d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

—4
0.00 0.20 0.40 0.60 0.80 1.00
Time

(b) (Nsrt=50[r+=0.10,R=0.68Y; s =50,/;5=0.40)

d(.) for SPS

1.00
0.80
0.60
0.40

Processor Share

0.20

0.00

—
0.00 0.20 0.40 0.60 0.80 1.00
Time

(d) (Nsrt=50Usy+=0.30,R=0.65V;s=50,/; s=0.40)
d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

Time

() (Nsrt=50Usr:=0.60,R=0.69V;s=50U;+=0.40)

Figure 5.17: Impact of difference betwe&np,; andR on TS response times

94

5.4.4 Impact of Mean TS Utilization
TS response times
B Priority
22521 mors
— B EDL
18017]
» 13513 |
é 9009 |
4505 |
! L I I I I \%

0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(@) (Nsrt=50Usr+=0.5,R=0.64N¢s=50,U+s=0.10)

TS response times

W Priority
W GPS
31472 B EDL
25216
18960
2
S 12705
H*
6449
193

—
T] T T

0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(¢) (Nsrt=50Usr¢=0.50,R=0.64V;s=50,U;s=0.30)

TS response times

B Priority
W GPS
28566 W EDL
23562
18558
1723
Qo
S 13554
H*
8550
3546

I T T T | |
0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(€) (Nsr+=50U4+=0.50,R=0.64N}s=50/;s=0.60)

d(.) for SPS

1.00 |
0.80
0.60
0.40

Processor Share

0.20

0.00

0.00 0.20 . 0.60 0.80 1.00
Time

(b) (Nsrt=50s+=0.50,R=0.64N;s=50,U;s=0.10)
g(.) for SPS

1.00
0.80
0.60

0.40

Processor Share

0.20

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Time

(d) (Nsrt=50Usr+=0.50,R=0.64N¢s=50U+s=0.30)
d(.) for SPS

1.00
0.80
0.60
0.40

0.20

Processor Share

0.00

Time

(f) (Nsrt=5004,¢+=0.50,R=0.64N}s=50s=0.60)

Figure 5.18: Impact of TS Workload

While in the previous set of experiments, we looked at thesiohpf SRT utilization on TS response times

and SRT overrun times, in this section we look at the impadi®iitilization on TS response times (Fig 5.18).

To do this we fix the number of SRT tasks to Ng,.; = 50, their mean utilizatior/,,., = 0.5, their reservation

R = 0.65, and the number of TS taské;; = 50 and vary the mean TS utilizatidy.

e For small cumulative TS utilization (0.1-0.3), EDL and SP&fprm significantly better than GPS or

95

Priority in terms of TS response times, widi0.1) for SPS and EDL being more than 10 times smaller
than those for GPS/Priority. The reason for such huge pedioce benefit is twofold. First, due to small
TS utilization, the idle allocation to RT jobs is high (herd®Ejobs under EDL and SPS can take advantage
of this fact by starting RT jobs with very low processor sh@mall E[s(¢)]). Second, for 50 TS tasks with
cumulative utilization of just (0.1-0.3), the individualy requirements are very small. Thus, the TS jobs
usually finish when they are scheduled. Under EDL/SPS theagd value of RT processor share is very
small for any time, and hence the small TS jobs get nearhairigervice without any interference from
the RT jobs. Thus the key factor impacting the response toh@s tasks is the measufgs(t)]. As can

be seen frong(.) function for SPS (which resembles that of EDE)s(t)] is an insignificant value at any

instant. Hence the drastic performance benefit over GPSianitiyrschemes.

As the cumulative TS utilization increases(0.3-0.5), ¢hare two things happening. First, the idle alloca-
tion to RT jobs is decreasing leading to more and more RT jelsiring their RT allocation (increasing
E[s(t)]). Second, the average requirement of TS jobs is higher andehthe TS jobs may not finish
whenever they are scheduled. Thus, there is greater piapabat a TS job may encounter instances of

higher value ofE[s(t)] leading to larger response times.

For TS utilization of 0.6, the system is overloaded on aveagean utilization i9.5 + 0.6 = 1.1, leading
to accumulation of high requirement TS jobs (which are siditvy the small requirement TS jobs). Hence

nearly all schemes perform equally, since there is littkgpscfor improvement.

96

5.4.5 Impact of Size of SRT Jobs

TS response times

B Priority
W GPS
32726
26181
19636
1723
Qo
S 13090
3+
6545
0
N —

I T I
0.1 0.7 1.3 1.8 24 3.0

Response Times scaled by respective periods

(@) (Nsrt=5Us7¢=0.50,R=0.65\} =50/ +=0.35)

TS response times
W Priority
B GPS
30893

—
24714

18536

#Jobs

12357

6179

0

1 1 T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(¢) (Nsrt=30Usr¢=0.50,R=0.65V;s=50,U;s=0.35)

TS response times

W Priority

B GPS

25797
—

20638 |

15478

#Jobs

10319

5159 |

0

- I T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(€) (Nsr+=1000/4,-+=0.50,R=0.65\} =50} s=0.35)

d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Time

(b) (Nsrt=5Us1=0.50,R=0.65V;s=50,U;5=0.35)
g(.) for SPS

1.00
0.80
0.60

0.40

Processor Share

0.20

0.00
—

0.00 0.20 0.40 0.60 0.80 1.00
Time

(d) (Nsrt=30Us¢=0.50,R=0.69V;+s=50U;+=0.35)

g(.) for SPS

1.00
0.80
0.60
0.40
0.20

0.00

—4
0.00 0.20 0.40 0.60 0.80 1.00
Time

Processor Share

(f) (Nert=10004,-=0.50,R=0.65N; =50+ s=0.35)

Figure 5.19: Impact of Number of SRT Tasks on TS responsestime

97

In this section we look at the impact of size of SRT jobs on tBadsponse times.

To do this we vary the number of SRT tasks,;, while keeping mean SRT utilization to bg,., = 0.5, SRT
reservation to bé& = 0.65, the number of TS tasks to bé,; = 50 and mean TS utilization to bié,; = 0.35.

If number of SRT tasks is small (5-10), the duration of timeinly which a RT job is active is longer as
compared to the case when there are many SRT tasks in thensgstethe SRT jobs have lesser execution time
requirement. The way longer RT jobs impact the performaricESjobs is that during the interval when RT
jobs are active TS jobs get processor shar@ ef s(¢)), and if this processor share is small then the TS jobs may
get queued up and even small requirement TS jobs may haveito M longer the duration of such interval
where RT jobs are active, the greater the queuing of TS jodsarrespondingly higher delays for them. On the
other hand, if RT jobs are small, then there may be intenlevovalue of s(t) when a RT job finishes, giving
greater processor share to the TS jobs under SPS/EDL. Astktliils to improvements in TS response times.

Also, as the requirements of individual SRT jobs become namhller, then EDL performance becomes
better than SPS. This is because, under EDL the RT jobs waitmadly and even when they are scheduled they
last for small duration thereby minimally impacting the T8$, on the other hand under SPS, the RT jobs are not
delayed as much as in EDL. For EDL to perform better than SRSetshould be a large number of SRT tasks
and also the processor should have enough idle time so thabbRT jobs can finish using just the idle time.

If there is no idle processor time then EDL performance safésd EDL gives greater SRT deadline overruns
than all the other three scheduling algorithms.

On the other hand, SPS adjusts and adapts according to tiebévédle time, changing from EDL like to
GPS like as idle processor time decreases. But this adaptatay lead to EDL performing better than SPS by
small margins under certain scenarios specifically wheretieeprocessor idle time and the SRT job sizes are
small.

Note that SPS can be made more aggressive in delaying theld®T(joore EDL like) by accounting for
the number of tasks in the system, but this will not be a gdmsetation, and the performance benefits are also
marginal and not very significant. Also EDL is unstable irstetenario, in the sense that if a large requirement
TS job arrives leading to transient system overload, theh B2y incur greater SRT deadline overruns and also

increased TS response times. On the other hand SPS is mueh@boist and stable to transient overloads.

98

TS response times
W Priority

B GPS
3763
—

3010

2258

#Jobs

1505

753

0

i T T T T
0.1 0.7 1.3 1.8 2.4 3.0
Response Times scaled by respective periods

(@) (Nsrt=50Usr+=0.50,R=0.68Vs=5,Uts=0.35)

TS response times

B Priority
B GPS
18450
14760
11070
1723
Qo
S 7380
I+
3690
0
—>

| | | | |
0.1 0.7 1.3 1.8 24 3.0
Response Times scaled by respective periods

(©) (Nsr4=50+-4=0.50,R=0.65N; =30+ +=0.35)

TS response times
B Priority
B GPS
46291

—
37033

27776 |

#Jobs

18518 |
9261

3

— i T T T]
0.1 0.7 1.3 1.8 24 3.0
Response Times scaled by respective periods

(e) (Nsrt=50Usr+=0.50,R=0.65V;s=1000/;s=0.35)

g(.) for SPS

1.00
0.80
0.60
0.40

0.20

Processor Share

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Time

(b) (Nsrt=50Usr+=0.50,R=0.65V¢s=5,U+s=0.35)
d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

0.40 0.60 0.80 1.00
Time

(d) (Nspr¢=50Us,4=0.50,R=0.65V;s=30/;5=0.35)
d(.) for SPS

1.00
0.80
0.60
0.40
0.20

Processor Share

0.00

0.40 0.60 0.80 1.00
Time

) (Nsrt=50Us,t=0.50,R=0.69V;s=100[J;5s=0.35)

Figure 5.20: Impact of size of TS jobs on TS response times

5.4.6 Impact of Size of TS jobs

While in the previous section we looked at the impact of thenber of SRT tasks on the system performance,

in this section we fix rest of the parameters and just vary tivalver of TS tasks to describe the impact of size

of TS jobs on the system performance.

If the number of TS tasks is small, then the execution requémg of individual TS job is high. Large

requirement TS jobs have greater response times, and thisidhes the response time benefits seen, because

99

SPS is most beneficial for small requirement TS jobs. Theoreagor this have been explained before, but
we would briefly explain them here again. The RT schedulimgp@thm impact the performance of TS jobs
only in terms of currently active RT jobs. That is, until theepious deadlines of all the active RT jobs, all the
RT scheduling algorithm have equal cumulative allocatmthe TS tasks. So the allocation difference comes
on time scale which is of the order of mean period of SRT tagkso, if a TS job finishes quickly then its
performance is impacted by instantanedtfs(¢)], which is minimized under SPS. A TS job that is active for
a longer duration sees reduction in the available procestsanme as the active RT jobs progress and hence the
difference in response time between SPS and GPS/Prioiitgdses. Same line of reasoning also explains EDL
performance, which is just like SPS.

As the number of TS tasks is increased, the individual TS fmdaome small. With smaller TS jobs, the
TS jobs finish once scheduled and hence their response tienfuigction of(1 — F[s(t)]), and as can be seen
E[s(t)] is nearly O for SPS/EDL.

In the next chapter, conclusions and future work is presknte

100

CHAPTER 6
Conclusion

Managing resources is an important problem faced by operatistems. Processor is one of the key resources
that is shared amongst multiple tasks, and properly magagean bring significant performance benefits. The
tasks may have different timeliness requirements, for gptarsome tasks may have deadlines and others may
have response time constraints. Through this work we addinesproblem of co-scheduling tasks with deadlines
and tasks whose response times need to be minimized. Thieprobproviding hard guarantees like deadlines
and minimizing response times have either been considarelation (for example, the real-time scheduling
is considered independent of the non-RT tasks in the systaB98a] [RH95] [APLWO02]) or in restricted
scenarios, for example EDL provides optimal response timése non-RT tasks if the jobs of the non-RT tasks
are scheduled in FIFO order.

In this work, we focused on task sets with RT tasks and regptime sensitive TS tasks. The goal of the
scheduling algorithm is to provide deadline guaranteeledRT tasks while reducing response times of the TS
tasks. The performance of the scheduling algorithm is nreddn terms of scaled response times of the SRT job
overruns and TS jobs. The goal is to reduce the number of TS(mbSRT job overruns) with scaled response
time (or SRT deadline overrun time) greater than any givaotionz. This value is represented @gx). For
example, if the number of SRT overrun jobs with scaled deaddverrun time greater than say 0.4 leads to
performance degradation then the scheduling algorithrh lgést SRT overru®(0.4) would be the best. For
TS jobs, a scheduling algorithm that keeps the responsedfii& jobs smaller is better. In terms of the TS

response timé(.) function, the scheduling algorithm with smalk&fx) for any value ofx would be better.

6.1 Co-scheduling Algorithm Performance

We present a summary of the factors that most heavily impacperformance of a co-scheduling algorithm.

e Minimizing expected RT processor share - This is one of thefketors impacting the performance of

co-scheduling algorithms. If there is enough idle time st@t all the RT jobs finish no later than their

Measure Scheduling Algorithm

Priority | GPS | EDL | SPS
(Nsrt=50Us,+=0.30,R=0.68V;s=50U;+s=0.40)
SRT job overruns 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Mean scaled overrun time 0.0000 0.0000 0.0000 0.0000
Mean scaled TS response time 0.1113 0.1002 0.0357 0.0377

TS response tim@(0.10) | 18398 (31.74%)| 16280 (28.09%)| 3617 (6.24%)| 4036 (6.96%)
TS response timé(0.20) 9101 (15.70%) | 7954 (13.72%) | 1155 (1.99%)| 1077 (1.86%)

Table 6.1: Performance numbers for a very lightly loadeapssor.

deadlines, then the RT jobs do not actually require any peefe instead the RT jobs can be scheduled at

the lowest priority, and in this case the RT jobs do not imexfat all with the TS jobs.

Also, the RT jobs may have variable execution time, and soyni@njobs may require less than their
reservation execution time. The RT share can be calculaiehl that the expected processor share of RT
jobs is minimized.

So the RT execution time variability is the combined effefcthe execution time variability and the idle
allocation that the RT jobs get. The RT execution time forkaifothe actual execution time requirement

minus the idle allocation to this job. Both these factorstbgr impact the co-scheduling performance.

Task set Vs,+=50U,.+=0.30,R=0.65V,;,=50/;,=0.40) shown in Table 6.1 represents a scenario where
the mean SRT utilization is equal to the mean idle utilizatid the processor. To see this note that the
mean SRT utilization plus the mean TS utilizatior®i80 + 0.40 = 0.70, so on average 0.30 fraction of
time, the processor is idle. EDL/SPS perform significangitér than GPS/Priority in this scenario, which
follows from the fact that the expected RT processor shadeuBDL/SPS is nearly 0. That is, with high
probability the RT jobs finish using just the idle processoret without interfering with the jobs of TS

tasks.

Task set{V,,+=50,;=0.40,R=0.45V,,=50;,=0.35) and {V,,+=50 U,;=0.50,R=0.64V,,=50/;,=0.20)
shown in Table 6.2 have substantial idle processor timeldsser than the previous task set. SPS/EDL
take advantage of the idle time by delaying the RT jobs, hamreasing the chances of RT jobs getting
idle allocation. GPS/Priority do not take advantage of tai and its impact can be seen on the response

times of TS jobs.

Task set Vs,-+=50U,,+=0.50,R=0.65V;,=50U,;,=0.35) shown in Table 6.3 has little idle time, and as
before SPS/EDL take advantage of this idle time whereasiB¥iGPS do not. The difference in the

TS response time distribution is not as significant as in tle@ipus cases, but still the mean scaled TS

102

TS response timé(0.20)

14415 (24.87%)

9386 (16.20%)

Measure Scheduling Algorithm
Priority | GPS | EDL | SPS
(Nsrt=50Us,+=0.40,R=0.49V;s=50U;+s=0.35)
SRT job overruns 10 (0.02%) 0 (0.00%) 6 (0.01%) 0 (0.00%)
Mean scaled overrun time 0.0001 0.0000 0.0000 0.0000
Mean scaled TS response time 0.1714 0.1220 0.0337 0.0382
TS response timé(0.10) 24594 (42.44%)| 17008 (29.35%)| 2331 (4.02%)| 3331 (5.75%)

545 (0.94%)

695 (1.20%)

(Vs

+t=50Us-+=0.50,R

=0.64V;s=50U;,=0.20)

TS response timé(0.10)
TS response timé(0.20)

27234 (46.99%)

19418 (33.50%)

16417 (28.33%)

11393 (19.66%)

SRT job overruns 20 (0.03%) 4 (0.01%) 17 (0.03%) 0 (0.00%)
Mean scaled overrun time 0.0002 0.0000 0.0001 0.0000
Mean scaled TS response time 0.1998 0.1461 0.0279 0.0280

1265 (2.18%)
589 (1.02%)

1500 (2.59%)
563 (0.97%)

Table 6.2: Performance numbers for a lightly loaded pramess

Measure Scheduling Algorithm
Priority | GPS | EDL | SPS
(Nsrt=50Us,+=0.50,R=0.68V;s=50U;+s=0.35)
SRT job overruns 20 (0.03%) 4 (0.01%) 67 (0.12%) 0 (0.00%)
Mean scaled overrun time 0.0002 0.0000 0.0002 0.0000
Mean scaled TS response time ~ 0.4180 0.3775 0.2243 0.2143

TS response tim&(0.10)
TS response tim&(0.20)

33417 (57.68%)
23635 (40.79%)

28904 (49.88%)
20202 (34.87%)

15911 (27.46%)
10951 (18.90%)

17272 (29.80%)
9738 (16.80%)

Table 6.3: Performance numbers for a moderately loadecegsns.

response time for Priority and GPS is 0.4180 and 0.3775 otisp/ and for EDL and SPS, the mean

scaled TS response time is 0.2243 and 0.2143 respectively.

For task set¥,,,=50Us,+=0.80,R=0.89V;,=0,U;s=0.0) shown in Table 6.4, the cumulative SRT utiliza-
tion is high. The number of SRT job overruns is high under EBDlthis scenario as compared to SPS,
though EDL/SPS perform better as compared to GPS/Prigritgrims of mean scaled overrun times. For
task set {V,,+=50U,,+=0.80,R=0.85V;,=50,U;,=0.35), the system is overloaded. EDL performance suf-
fers in this case as compared to SPS in terms of SRT overruressedpected processor RT share is high

under EDL for overloaded systems because delaying RT jobs dot bring much performance benefit if

the RT execution time variability is small.

The performance benefits are more pronounced for smalleoB<$rpther than bigger ones. The difference
between the co-scheduling algorithms is only at RT jobsiquertime scales. So, if a TS job has large ex-
ecution time then the TS job may have a response time extgogir a few periods of RT jobs. Therefore

the response time benefit is only seen due to the allocatfterelice amongst the various algorithms for

1

03

Measure

Scheduling Algorithm

Priority

GPS

EDL

SPS

(Nsrt=50U,,:=0.80,R=0.89V;5=0,U;+=0.0)

SRT job overruns
Mean scaled overrun time

Overrun®(0.20)

Overrun®(0.80)

1422 (2.45%)
0.0228
1087 (1.88%)
426 (0.74%)

1032 (1.78%)
0.0198
807 (1.39%)
366 (0.63%)

651 (1.12%)
0.0119
447 (0.77%)
201 (0.35%)

332 (0.57%)
0.0103
275 (0.47%)
168 (0.29%)

(NsrtzsoU.s'rt :080

,R=0.88YV;,=50U;5=0.35)

SRT job overruns
Mean scaled overrun time
Overrun®(0.20)
Overrun®(0.80)
Mean scaled TS response time
TS response timé(0.10)
TS response tim&(0.20)

1422 (2.45%)
0.0228
1087 (1.88%)
426 (0.74%)
34.6884
16563 (88.93%)
15448 (82.94%)

1092 (1.88%)
0.0207
851 (1.47%)
383 (0.66%)
33.1181
16249 (86.93%)
15173 (81.18%)

2052 (3.54%)
0.0262
1430 (2.47%)
515 (0.89%)
31.6116
16226 (86.32%)
15373 (81.78%)

638 (1.10%)
0.0145
495 (0.85%)
253 (0.44%)
37.9978
16126 (83.23%)
15026 (77.55%)

Table 6.4: Performance numbers for a loaded and overloaated ¢

the RT job during whose execution the TS job finishes exenufitie following Table 6.5 shows the vari-
ation in performance benefits with the size of TS jobs. In sieisof experiments, the mean TS utilization
is kept constant at 0.35, and the number of TS tasks is inede&reater the number of TS tasks, smaller
the TS job sizes. As can be seen, the mean scaled TS respoesgeitreases and the difference between

the performance of SPS/EDL and Priority/GPS increasesdadatiteasing TS job sizes.

The results in Table 6.5 are explained using our theorefiiaadework as follows. If the TS jobs’ execu-
tions span over several jobs of the same RT tasks, then theumeed(.) better determines the response
time difference under the four scheduling algorithms. Tikibecause, when the TS jobs finishes, most
of the active RT jobs saw this TS job as already active whey d@neved and hencel(.) would represent
the allocation to the TS job as a function of time. EDL maxiesiz(.) so the best response times are
seen under EDL, followed by SPS, GPS and Priority. As theamyeel S jobs sizes decrease with increas-
ing number of TS tasks making up the same mean cumulativeatiiin, the response time benefits with
EDL/SPS increase. This is because, the smaller TS jobs hraateg probability of finishing before the
active RT jobs. So, the response time is determined morg(by- s(¢))dt rather than justi(.) because
the allocation received during the time when the RT job isvadliffers between the four algorithms. SPS
provides the most unbiased allocation, that is on averagd $job get similar allocation irrespective of
their arrival times. The performance of other algorithmgeleds upon the idle processor time. If there
the processor is idle for a large fraction of time then EDLfpens better, and GPS performs better if the

processor idle time is small. SPS on the other hand adaptktitsthe available idle time, changing from

104

Measure Scheduling Algorithm

Priority | GPS | EDL | SPS
(Nort=50Usr+=0.50,R=0.65V;s=5,U:s=0.35)
Mean scaled TS response time ~ 0.3008 0.2783 0.1302 0.1438

TS response tim@(0.10) 3763 (83.11%) | 3694 (81.58%) | 2823 (62.33%)| 2986 (65.93%)
TS response timé(0.20) 2769 (61.15%) | 2687 (59.34%) | 815 (18.00%) | 1122 (24.77%)
TS response timé(0.40) 1311 (28.95%) | 1122 (24.78%) | 105 (2.32%) | 76 (1.68%)
(0.80)

TS response timé&(0.80 121 (2.67%) 81 (1.79%) 4 (0.09%) 3 (0.07%)
(NsrtZSOUsT‘t:O-SOxRzo-BWtS:lOUtszo.:gS)
Mean scaled TS response time ~ 0.2073 0.1808 0.0550 0.0631

TS response timé(0.10) 6523 (63.07%) | 5947 (57.50%) | 1289 (12.46%)| 1702 (16.45%)
TS response timé(0.20) 4011 (38.78%) | 3356 (32.45%) | 210 (2.03%) | 327 (3.16%)
TS response timé(0.40) 1575 (15.23%) | 1239 (11.98%) | 25 (0.24%) 29 (0.28%)
(0.80)

TS response timé(0.80 100 (0.97%) 64 (0.62%) 6 (0.06%) 8 (0.08%)
(Ns'r‘t:50U8r1:0-501R=0-65yts:lOOUtS:0.35)
Mean scaled TS response time 0.1464 0.0907 0.0151 0.0176

TS response tim@(0.10) | 46291 (39.41%)| 25209 (21.46%)| 1577 (1.34%) | 1959 (1.67%)
TS response tim@(0.20) | 24575 (20.92%)| 12946 (11.02%)| 257 (0.22%) | 328 (0.28%)
TS response tim@(0.40) 9967 (8.48%) | 5413 (4.61%) | 94(0.08%) | 109 (0.09%)
TS response timé(0.80) 2669 (2.27%) | 1655 (1.41%) | 50 (0.04%) 67 (0.06%)

Table 6.5: Performance numbers for varying TS jobs sizeg. niimber of TS tasks is varied while keeping the
cumulative mean TS utilization constant. As the number otds&s increases, the individual tasks have lesser
mean execution time requirement.

being EDL like when there is large idle processor time to GR&SWwhen there is little or no idle time. In
this particular scenario, there is some idle time, and EDdbi to take advantage of this fact giving the
best performance with SPS closely following it. Prioritf?& are not suited for this scenario and hence

their performance suffers.

6.2 Contributions

The key contributions are enumerated below —

e Current GPOS scheduling algorithms use multi-level feelllspeues along with task priorities to sched-
ule the workloads. Through this work we have shown that a&3fR@©S move from best-effort to assured
service systems with guarantees, the scheduler would hereelgto provide more than just best-effort
service. We have exposed the inadequacies of current siamga@lgorithms in dealing with workloads
with varying timeliness requirements. In particular, gipriority to RT jobs over non-RT jobs, which is
the most widely available scheduling option, is grossly-epimal. In fact, it is the worst possible way
to co-schedule RT and non-RT tasks and tremendous gaingsséfe by migrating to better scheduling

algorithms.

105

The prime reason why current GPOS still rely on giving Pties to RT jobs is because the systems are
usually underutilized and hence the problems with Pricsitieduling are not exposed. As the attention
is shifting towards power efficiency and heat reductionsitiésirable to have higher system utilization.
This implies that there will be shift from underutilized $gms to nearly fully utilized systems. And it
is in this scenario that task scheduling will become thelsimgost important factor determining system

performance. And this is the scenario we address througiwbik.

e We propose Stochastic Processor Sharing (SPS) as a plaefficaent and smart scheduling algorithm,
that adapts itself based on the actual RT requirement#aliston (obtained through online profiling), such
that the RT guarantees are maintained while the responss tifnthe non-RT jobs are reduced. In fact,
under SPS the maximum expected utilization of the RT taskswtime instant is minimized. This gives
an unbiased schedule and non-RT jobs get nearly same edsertéce rate irrespective of other factors
like their arrival times. In a way this is an optimal schedidecause any slight variation to this schedule
would give intervals during which the expected processareiof the RT jobs is greater than that ever
reached under SPS, and other intervals during which it & l&ss during the times of higher expected
processor share of RT jobs that the TS jobs would suffer apeoad to SPS. It finishes if it is scheduled.
Under SPS, there is nearly equal probability of this jobiggtscheduled at any instant, while under any
scheduling algorithm other than SPS, there are intervalghich the probability is higher and others in

which it is lower, and this is not conducive for good respatises to the non-RT jobs.

¢ We evaluated SPS performance both analytically and enafliri@and showed that it performs significantly
better than the current algorithms under a wide range of comsgenarios under reasonable assumptions.
The extensive empirical analysis not only shows the perémre gains achievable but it also provides
good understanding on the working of SPS algorithm, and hdwdheduling algorithms should behave

when they are co-scheduled with response time sensitive@uotation.

e The RT allocation guarantees are upheld irrespective gbtbleability distribution (RT allocation guaran-
tee is provided on the basis &fand does not depend upgi Thus, any reasonable approximation to the
RT execution time requirement probability distributioropides smaller response times to the TS jobs. In
fact, in the beginning (at time 0) it is assumed that the etiectime requirement is of RT jobs is constant

and equal taRk. As time progresses, the execution time probability distiibn is created empirically.

e SPSis an intelligent algorithm, and it evolves and adaptsgathers more information about the work-

106

load. It is independent of the application, and requiresiméh information about the task set, basically
only the period and reservation information about each RK.te&Current scheduling algorithms on the
other hand are fixed based on the task set parameters oraegsign of appropriate application dependent
feedback-control loop or other heuristics to handle woakl®with variable execution time requirements.

All these advantages make SPS a good choice for practidaiegs

6.3 Limitations and Future Work

e The primary limitation of SPS is that it is based on GPS pregesharing model. The accuracy of
emulation of GPS on a sequential processor is determindtebyutantum size. Smaller quantum size gives
better allocation accuracy but increases the time spentrtegt switches ([Reg02]). Current GPOSes
have time quantum in the range of 10 ms, while the averagegefiRT tasks (interactive, media playback
, computer games) is in the range of (20ms - 200ms). ldeakywauld like the quantum size to be at
least less than the RT task period. Quantum size of 1ms wawddhgod performance, but it may lead to
significant context switch overhead. This problems will hetencountered by systems with a lot of tasks
(100 or more). This is because in such a scenario most jobgvbeuwery small requirement and would
finish once scheduled and in less than 1ms (given 100 task@ihs period and mean utilization of 0.8,

the mean utilization is 0.008 and the mean job requiremehtiss).

e While SPS requires only the peridgl and reservatioik; information for the SRT task, the choice &f
is left open.R; can be chosen using a feedback-control loop as describdd38T02] [APLWO02]. But a
better way would be to use a feedback-control loop basede®) function, that is, the entire response
time distribution rather than focusing on a threshold valiut this would require information about
acceptable response time distributions for applicatiatéch may vary considerably from application to
application. This kind of problem has been addressed béfpdensen et. al. [JLT85] in 1985, and later.
The primary difference from the approach followed by the$hwurs is that, Jensen et. al. looked at a
very general form of the problem where the utility functionay be arbitrary and the scheduling problem
is then to maximize the utility. In our case we focus on theéopgm of guaranteeing allocation to certain job
while providing timely allocation to the non-RT jobs in thgstem. Note that the constraints SPS handles
are more focused and simpler than maximizing utility. Intf&PS focuses exclusively on how to schedule

the variable requirement RT jobs, and the scheduling of dreRT jobs can be done in arbitrary fashion

107

(we used Least Attained Service First (LAS) scheduling Wwhitnimizes expected response times) based
on utility functions. The problem of utility arises in calating the value of reservatioR; for a RT task,
which would be the primary focus of our future work. And it st be noted that given any value &f,

SPS provides better response times to the non-RT jobs asarethfp any other algorithm.

An optimal co-scheduling algorithm would minimize the egfesl processor share of RT tasks at any
time. Though SPS minimizes the maximum expected procebsoe ®f RT tasks, during some intervals
the processor share of RT tasks may be greater than whatiamabptgorithm can achieve. Currently, this
gap may be wide but it will shrink once slack reclamation orporated in SPS. For example, consider a
two RT task system with one very large requirement TS taskardttime, atmost two RT jobs are active,
one belonging to each of the two RT tasks. During the intsrdlen only one RT job is active, thg.)
function which determines the processor share of the RTstag&rallocates because the) function was
defined such that the allocation in a unit interval would beagtp the cumulative reservation of all the RT
tasks presentin the system. But, if only one RT task is aatiearly using thig(.) function is overkill. To
find a schedule that minimizes the expected processor shRfetasks would require the exact probability
distribution of execution time requirement known at anyams. Now, this distribution would depend upon
the active RT tasks. Maintaining probability distributifior all possible combinations of active RT tasks
would be highly inefficient because for a task set witliasks, it would requir@™ different execution
time distributions. Another avenue for improvement is wittee RT tasks get idle allocation. If a RT job
receives greater allocation than required by ghe function by timet, then it can appropriately reduce its
processor share for its remaining time while still meeting &llocation guarantees. A RT job may receive
greater allocation than that given by ii6.) function because it may get allocation when the processor is

idle.

Though incorporating these optimizations in SPS is notakjithe complexity of the optimal solution

does not rule out the existence of efficient approximatibas tan match the performance of the optimal
solution without the associated computation complexitg. &ke currently working on a slack reclamation
scheme for SPS that would take into account the active RE askvell as idle allocation to compute the

processor share for RT tasks.

One more avenue for optimization is treating very large neguent TS jobs separately. The performance

impact of co-scheduling algorithm would be minimal on TSgalthose execution spans several jobs of

108

the active RT tasks and these TS jobs can be scheduled atgbleitgblowest priority, without incurring
performance loss. But handling large TS jobs like this wontdease the probability of the RT jobs getting

idle allocation, thereby reducing the real-time executiore requirement for the RT jobs.

e We considered LAS (Least Attained Service time first) dikogto schedule TS jobs. This algorithm
gives optimal mean response time for the TS tasks if the giettime requirements of the TS jobs are not
known in advance. In practical systems, other schedulitigips for TS jobs may be more appropriate.
For example, some TS tasks may be given priority over ott@rsnore elaborate measures like TUF
[JLT85] may be used to schedule the TS jobs. Even for thesadsting algorithms, SPS would provide
performance benefits because it performs well on bott) and F[s(t)] measure, but quantifying them

would be essential for wide scale acceptance of SPS.

e This work addresses task set with independent tasks arnesisike task inter-dependency and parallelism
are not addressed. Addressing these issues would be impfatavide applicability of SPS. Simple share
transfer technique may work well, but this is just a conjegt@and it needs to be verified. This would be

one avenue which requires further research in future.

6.4 Workload Consolidation and Power Savings

Power is becoming a significant resource in server instaliat Big companies like Google are seeing a massive
increase in their energy bills [BDHO3] [Bar05]. For any sarthat needs to support a large number of clients,
optimizing the system performance for power is becomingmeissl.

At the other hand of computing spectrum, for handheld devaggerating on limited battery life, minimal
power consumption is essential to provide longer servives.

Datacenters are moving towards workload consolidationis Thnsolidation would require the operating
system to support allocation guarantees like processing gjuarantees to the tasks. Also, frequently the tasks
would require variable execution time and this variabitign be effectively accommodated using a scheduling
algorithm like SPS. These workloads do not fall into hard-teae category, rather the allocation guarantee
requirements are soft. If the response times fall within sgredefined reasonable range then the performance
can be considered acceptable. Our modeling allows to talekke kinds of problems where the performance is

dependent upon the response time distribution rather tikad fileadlines.

109

There is a whole research area on varying processor speeveoesergy and reduce heat generation, in
particular the work done by Lorch et. al. [LS04] and GruianryGl]. The theoretically optimal way to
schedule variable requirement RT tasks on a DVS capableepsoc is to continuously vary its speed with job
progress. Such a schedule minimizes the expected energymeua by the processor. This approach applies
to task system with single RT task [LS04] or to each task iedejently for multiple task systems [YNO3].
Second, in case of deadline overrun, the job missing itsldesai$ serviced at full processor speed [YNO3].
Instead of varying processor speed, we propose varyingepsme share of the tasks to maintain their allocation

guarantees. Our approach better suits the problem regeimesand warrants further study in this direction.

6.5 Conclusions

From application to research, to entertainment and gansimgputers have established themselves as an integral
part of the day to day lives of many. With the rich set of fuantlity that computers are providing today, their
performance is also becoming important. For example, fdv servers the response times are important, for
hand-held devices power is important, for embedded devieeing deadline is essential etc.

While there is a large body of works addressing the issuesTaddReduling and those addressing response
time minimization problems, a fusion of the these two workgequired to provide an effective solution to
the scheduling problems faced by current operating syst&iisscheduling focuses on the worst case values,
providing deadline guarantees assuming the worst casaigoeResponse time minimization approaches on the
other hand focus on the mean values and neglect the worsvahses which may be too rare to be taken into
account.

Domains which are purely RT and those which are purely nore&Tbe found, but there is a large area in
between, where the task sets are composed of a mix of RT (Inardadt) and non-RT (and probably response
time sensitive) tasks. The co-scheduling of RT and non-BRstéhus becomes an important problem.

The main difficulty faced by practical systems is the requieat variability in RT jobs and non-RT jobs.
Allocating for worst case may be essential in some scen&iost may be overkill in others. Ideal scenario
would be when the processor is nearly fully utilized on agerahile delivering acceptable performance (meeting
deadlines and keeping TS response times small). In this werlpropose a novel scheduling algorithm that
achieves precisely this goal. SPS automatically reachetaate between GPS (constant processor share to RT

jobs) and EDL (delaying RT jobs), to achieve better perfarogathan both GPS and EDL. The fact that SPS is

110

intelligent enough to reach this point, makes it stand dpam all the current scheduling algorithms.

One of the prime applications of SPS would be in the area ofggneavings for task sets composed of
RT and non-RT tasks. As we have shown theoretically and éraflir, SPS provides guaranteed allocation
to RT tasks while significantly improving response times oh+RT tasks as compared to current algorithms.
For energy efficiency, the processor needs to be run at mmispeed to satisfy the performance requirements
of the given task set. Given processor running at certaied@ad servicing a given task set, by switching
to SPS scheduling algorithm, the overall system perforraamproves significantly while keeping the power
consumption constant. Most current GPOSes support justifrscheduling, and as we have shown through
experiments, priority scheduling is very inefficient perfong significantly badly as compared to SPS, and

substantial benefits can be reaped by switching to SPS Higuri

111

BIBLIOGRAPHY

[AAAO06] Eitan Altman, Konstantin Avrachenkov, and Urtzi Agta. A survey on discriminatory processor
sharing.Queueing Syst53(1-2):53-63, 2006.

[AABNO4] Konstantin Avrachenkov, Urtzi Ayesta, Patrick@vn, and Eeva Nyberg. Differentiation between
short and long tcp flows: Predictability of the response titmdNFOCOM, 2004.

[AANOO04] Samuli Aalto, Urtzi Ayesta, and Eeva Nyberg-Oksan Two-level processor-sharing scheduling
disciplines: mean delay analysis. \GMETRICSpages 97-105, 2004.

[AB98a] Luca Abeni and Giorgio C. Buttazzo. Integrating tmakedia applications in hard real-time systems.
In IEEE Real-Time Systems Symposipages 4-13, 1998.

[AB98h] Alia Atlas and Azer Bestavros. Statistical rate otomic scheduling. IREEE Real-Time Systems
Symposiuppages 123—, 1998.

[AMMMAO1] Hakan Aydin, Rami G. Melhem, Daniel Mossé, anddPe Mejia-Alvarez. Optimal
reward-based scheduling for periodic real-time task&E Trans. Computer$0(2):111-130, 2001.

[AMMMAO4] Hakan Aydin, Rami G. Melhem, Daniel Mossé, anddPe Mejia-Alvarez. Power-aware
scheduling for periodic real-time task&EE Trans. Computer$3(5):584-600, 2004.

[APLWO02] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, andnhthan Walpole. Analysis of a
reservation-based feedback scheduletEIBE Real-Time Systems Symposipages 71-80, 2002.

[Bar05] Luiz André Barroso. The price of performan@CM Queue3(7):48-53, 2005.

[BBBO04] Guillem Bernat, lan Broster, and Alan Burns. Rewgt history to exploit gain time. IRTSSpages
328-335, 2004.

[BCM98] Michael A. Bender, Soumen Chakrabarti, and S. Mutfahnan. Flow and stretch metrics for
scheduling continuous job streams.S@DA '98: Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithmsages 270-279, Philadelphia, PA, USA, 1998. Society foustrial
and Applied Mathematics.

[BDHO3] Luiz André Barroso, Jeffrey Dean, and Urs HolZleb search for a planet: The google cluster
architecture IEEE Micro, 23(2):22-28, 2003.

[BMP98] Andy C. Bavier, Allen Brady Montz, and Larry L. Pesen. Predicting mpeg execution times. In
SIGMETRICSpages 131-140, 1998.

[BS99] Giorgio C. Buttazzo and Fabrizio Sensini. Optimahdine assignment for scheduling soft aperiodic
tasks in hard real-time environmentEEE Trans. Computer48(10):1035-1052, 1999.

[BZ96] Jon C. R. Bennett and Hui Zhang. @vlf Worst-case fair weighted fair queueing.INFOCOM, pages
120-128, 1996.

[CC89] Houssine Chetto and Maryline Chetto. Some resulte@garliest deadline scheduling algorithm.
IEEE Trans. Software Engl5(10):1261-1269, 1989.

[Che98] Ludmila Cherkasova. Scheduling strategy to impr@sponse time for web applications.HRCN
Europe 1998: Proceedings of the International Conferenu Bxhibition on High-Performance
Computing and Networkingrages 305-314, London, UK, 1998. Springer-Verlag.

112

[CKR96] Ludmila Cherkasova, Vadim E. Kotov, and Tomas Rkki@he impact of message scheduling on a
packet switching interconnect fabric. HHCSS (1) 1996.

[CKZ01] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Alpons for minimizing weighted flow time. In
STOC '01: Proceedings of the thirty-third annual ACM symiposon Theory of computingages
84-93, New York, NY, USA, 2001. ACM Press.

[DGK1T02] José Luis Diaz, Daniel F. Garcia, Kanghee Kim, Ch&mng-Lee, Lucia Lo Bello, José Maria
Loépez, Sang Lyul Min, and Orazio Mirabella. Stochasticlgsia of periodic real-time systems. IREE
Real-Time Systems Symposjpages 289—, 2002.

[DKS89] Alan J. Demers, Srinivasan Keshav, and Scott Shesielysis and simulation of a fair queueing
algorithm. INSIGCOMM pages 1-12, 1989.

[DW95] Robert Davis and Andy J. Wellings. Dual priority schding. InIEEE Real-Time Systems
Symposiunpages 100-109, 1995.

[FHO3] Eric J. Friedman and Shane G. Henderson. Fairnessféinéncy in web server protocols. In
SIGMETRICS '03: Proceedings of the 2003 ACM SIGMETRICSnat®nal conference on
Measurement and modeling of computer sysigrages 229-237, New York, NY, USA, 2003. ACM
Press.

[GCW9I5] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Cormggalgorithm for dynamic speed-setting
of a low-power cpu. IrMobiCom '95: Proceedings of the 1st annual internationatfemence on Mobile
computing and networkingages 13—-25. ACM Press, 1995.

[GLINOO] Dirk Grunwald, Philip Levis, Charles B. Morrey lland Michael Neufeld. Policies for dynamic
clock schedulingOSDI 2000 2000.

[Gru01] Flavius Gruian. Hard real-time scheduling for l@nergy using stochastic data and dvs processors. In
ISLPED '01: Proceedings of the 2001 international sympsan Low power electronics and desjgn
pages 46-51, New York, NY, USA, 2001. ACM Press.

[GVC97] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Stiane fair queueing: a scheduling algorithm
for integrated services packet switching netwollEEE/ACM Trans. Netw5(5):690-704, 1997.

[Hor74] W A Horn. Some simple scheduling algorithndaval Research Log. Qur21, 1974.

[JLT85] E. Douglas Jensen, C. Douglas Locke, and Hideyukud@la. A time-driven scheduling model for
real-time operating systems. IBEE Real-Time Systems Symposipages 112—-122, 1985.

[LBOO] Giuseppe Lipari and Sanjoy Baruah. Greedy reclaamatif unused bandwidth in constant-bandwidth
servers.ecrts 00:193, 2000.

[Leh97] John P. Lehoczky. Real-time queueing network thelorIEEE Real-Time Systems Symposipages
58-67, 1997.

[LLO2] C. L. Liuand James W. Layland. Scheduling algorithfmsmultiprogramming in a hard-real-time
environment. pages 179-194, 2002.

[LLST91] Jane W.-S. Liu, Kwei-Jay Lin, Wei Kuan Shih, Albert Chgati Yu, Jen-Yao Chung, and Wei
Zhao. Algorithms for scheduling imprecise computatioli=EE Computer24(5):58-68, 1991.

[LS04] Jacob R. Lorch and Alan Jay Smith. Pace: A new approadignamic voltage scalindEEE Trans.
Computers53(7):856—-869, 2004.

113

[LSD89] John P. Lehoczky, Lui Sha, and Y. Ding. The rate monat scheduling algorithm: Exact
characterization and average case behavidEEE Real-Time Systems Symposipages 166-171,
1989.

[LSSTO2] Chenyang Lu, John A. Stankovic, Sang Hyuk Son, aadgGlao. Feedback control real-time
scheduling: Framework, modeling, and algorithrReal-Time System23(1-2):85-126, 2002.

[MTO03] Malena Mesarina and Yoshio Turner. Reduced energpdimg of mpeg stream&/ultimedia Syst.
9(2):202-213, 2003.

[PG93] Abhay K. Parekh and Robert G. Gallager. A generalpredessor sharing approach to flow control in
integrated services networks: The multiple node caséNFOCOM, pages 521-530, 1993.

[PS01] Padmanabhan Pillai and Kang G. Shin. Real-time dignanitage scaling for low-power embedded
operating systems. IBOSP '01: Proceedings of the eighteenth ACM symposium ora@pgesystems
principles pages 89-102. ACM Press, 2001.

[RCGF97] Ismael Ripoll, Alfons Crespo, and Ana Garciasfem. An optimal algorithm for scheduling soft
aperiodic tasks in dynamic-priority preemptive systetiBEE Trans. Software Eng3(6):388—400,
1997.

[Reg02] John Regehr. Inferring scheduling behavior withrgtass. INUSENIX Annual Technical Conference,
FREENIX Trackpages 143-156, 2002.
http://www.usenix.org/publications/library/proceads/usenix02/tech/freenix/regehr.html.

[RH95] Parameswaran Ramanathan and Moncef Hamdaoui. Antdgrmaiority assignment technique for
streams with (m, k)-firm deadlinelEEE Trans. Comput44(12):1443-1451, 1995.

[SAWJT96] lon Stoica, Hussein M. Abdel-Wahab, Kevin Jeffay, Sar§oBaruah, Johannes Gehrke, and
C. Greg Plaxton. A proportional share resource allocatlgorithm for real-time, time-shared systems.
In IEEE Real-Time Systems Symposipages 288-299, 1996.
http://computer.org/proceedings/rtss/7689/76890B83dm.

[SBAT01] Tajana Simunic, Luca Benini, Andrea Acquaviva, Petgm@| and Giovanni De Micheli. Dynamic
voltage scaling and power management for portable systBni3AC '01: Proceedings of the 38th
conference on Design automatigrages 524-529. ACM Press, 2001.

[SBS95] Marco Spuri, Giorgio C. Buttazzo, and Fabrizio Seingkobust aperiodic scheduling under dynamic
priority systems. IHEEE Real-Time Systems Symposipages 210-221, 1995.

[SJO7] Abhishek Singh and Kevin Jeffay. Co-schedulingalale execution time requirement real-time tasks
and non real-time tasks. BCRTS2007.

00-Seng Tia, Zhong Deng, Mallikarjun Shankar, M. n Sun, L.-C. Wu, and Jane W.-S.

[TDS™95] Too-S Tia, Zh D Mallikarjun Shankar, M. Stotun Sun, L.-C. Wi dJ W.-S
Liu. Probabilistic performance guarantee for real-timgksawith varying computation times. IREE
Real Time Technology and Applications Sympospages 164—-173, 1995.

[USRO02] Bhuvan Urgaonkar, Prashant J. Shenoy, and Timotisg®&e. Resource overbooking and application
profiling in shared hosting platforms. @SDI, 2002.
http://www.usenix.org/events/osdi02/tech/urgaoriitarl.

[WWDS94] Mark Weiser, Brent Welch, Alan J. Demers, and S&bienker. Scheduling for reduced CPU
energy. InOperating Systems Design and Implementafages 13-23, 1994.

114

[XXMMO04] Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel MosBractical pace for embedded systems.
In EMSOFT '04: Proceedings of the fourth ACM international fevance on Embedded softwapages
54-63. ACM Press, 2004.

[YNO3] Wanghong Yuan and Klara Nahrstedt. Energy-efficgoft real-time cpu scheduling for mobile
multimedia systems. IBOSR pages 149-163, 2003.

[YNO4] Wanghong Yuan and Klara Nahrstedt. Practical vadtagaling for mobile multimedia devices. In
ACM Multimedia pages 924-931, 2004.

115

