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ABSTRACT 

DANIELLE O. DEAN: A discrete-time multiple event process survival mixture 

(MEPSUM) model for investigating the order and timing of multiple non-repeatable 

events 

(Under the direction of Daniel Bauer) 

Traditional survival analysis was developed to investigate both the occurrence and 

the timing of an event, but researchers have recently begun to ask questions about the 

order and timing of multiple events.  A multiple event process survival mixture model is 

developed here to analyze non-repeatable events measured in discrete-time that are not 

mutually exclusive.  The model assumes the population is composed of a finite number of 

subpopulations of individuals who are homogeneous with respect to the risk of multiple 

events over time, in order to parsimoniously describe the underlying multivariate 

distribution of hazard functions.  The model builds on both traditional univariate survival 

analysis and univariate survival mixture analysis.  The model is applied to two empirical 

data sets, one concerning transitions to adulthood and another concerning age of first use 

of a number of substances.  Promising opportunities, as well as possible limitations and 

future directions are discussed. 
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CHAPTER 1 

INTRODUCTION 

Survival analysis is a useful tool for understanding both the occurrence and the 

timing of events.  While survival analysis was originally developed to investigate the 

human lifetime, it is equally applicable to questions regarding the occurrence of any type 

of event, and there are numerous applications in the social and behavioral sciences.  For 

example, clinical psychologists investigating the occurrence of affective illnesses or 

therapy termination benefit from the survival analysis framework (e.g. Corning & 

Malofeeva, 2004), as do developmental researchers who investigate the transition from 

one developmental stage to another (e.g. Ha, Kimpo, & Sackett, 1997), and researchers 

following students’ entrance and exit from school (e.g. Bowers, 2010). 

Event history data is rather unique in it aims to analyze both “if” and “when” an 

event occurs, yet there are often individuals who do not experience the event within the 

time frame of the study.  Traditional linear and logistic regression techniques are not 

suited for this kind of missing data problem, termed censoring.  For censored individuals, 

it is unknown when they will experience the event, or in some cases whether they will 

even experience the event at all. Survival analysis techniques were formulated to analyze 

this type of data (Singer & Willett, 2003; Lee & Wang, 2003).  The basic statistical 

concepts of survival analysis depend on whether the time variable measuring the state of 

the event is assumed to be continuous or discrete.  Continuous-time survival methods 



 

2 

 

assume time can be measured exactly – thus there should be no “ties” in the dataset 

where two or more people have the same event time.  While it may be logical to think of 

time as a continuous variable, this assumption is often unrealistic in practice.  This is 

especially true for data collected in the social and behavioral sciences, as researchers 

frequently ask for the year or age of an event rather than the exact date.  Also, events can 

sometimes only occur at discrete points in time (e.g. number of therapy sessions before 

dropout).  In addition, discrete-time methods can be used to approximate the results of a 

continuous-time survival analysis (Vermunt, 1997), and are conceptually and 

computationally simpler.  As such, the remainder of the paper assumes time is measured 

on a discrete scale.
1
  

 Moving beyond traditional survival analysis, researchers have recently begun to 

ask questions about the order and timing of multiple events.  Multivariate survival models 

relax the standard requirement that all time variables are univariate and independent (see 

Hougaard, 2000).  Recurrent event models, parallel data models, and competing risks 

models are three common multivariate survival tools.  Recurrent event models are useful 

for examining the repeated occurrence of an event, such as the birth of a child, or the 

sequential occurrence of disparate events, such as children’s progress through stages of 

moral reasoning (e.g. Willett & Singer, 1995).  Parallel data models have been proposed 

to examine the lifetimes of several individuals who are related in some way, such as a 

study of an event history of twins (e.g. Hougaard, Harvald, & Holm, 1992).  Competing 

risk models account for the occurrence of mutually exclusive events; Ventura et al. 

(2000) used such a model to investigate the competing risk of psychotic exacerbation and 

                                                 
1
 For a comprehensive resource on continuous-time survival analysis methods, see Lee and Wang (2003).   
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depressive exacerbation following a major life event for individuals in the early course of 

schizophrenia. 

 While there has been great progress on the analysis of multivariate event history 

data through models such as those mentioned above, there is a demonstrated need for 

new analytic methods in investigating the order and timing of different non-repeatable 

events which are not mutually exclusive and do not necessarily occur in a sequential 

manner.  Many researchers investigating several such events have resorted to completing 

a separate survival analysis for each event, and have not directly examined the 

interdependence of the events.  For example, Schwartz et al. (2010) investigated how 

positive youth development influenced tobacco, alcohol, illicit drug, and sex initiation by 

conducting four separate survival analyses.  Similarly, Scott et al. (2010) examined the 

influence of gender and marital status on the first onset of mood, anxiety, and substance 

use disorders by conducting several survival analyses.  While analyzing each event 

separately can be useful, it gives no insight on how the events are related to each other.   

In order to investigate the interdependencies between events, several dynamic 

survival analysis approaches have been proposed for a subset of survival methods 

concerning events measured in continuous-time; in these models, the rate of change in 

one process depends on the state of another process.  One such approach, developed by 

Cox and Lewis (1972), cross classifies states on two or more events, yielding one process 

with multiple states, where the transition rates between the states are studied.  Kalbfeisch 

and Prentice (1980) developed an approach similar to this, but the multiple events need 

not be cross classified, allowing for mutual dependencies to be more easily examined.  In 
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this method, one of the event processes is the dependent variable, and is predicted by 

other time-varying event processes.   

Vermunt (1997, p.175) similarly suggested for multiple processes measured in 

discrete-time that researchers specify one of the events as the dependent variable and 

treat others as time-varying covariates.
2
  However, researchers must rotate the dependent 

variable and run multiple models in order to investigate the reciprocal relationships.  

Malone et al. (2010) used a different approach for discrete-time data called dual-process 

discrete-time survival analysis, which expands on associative latent transition analysis 

(Bray, Lanza, & Collins, 2010).  This approach models two time-to-event processes 

concurrently by linking the processes to each other, similar to a cross-lagged panel 

design.  They used the model to test the gateway drug hypothesis by using a highly 

constrained latent transition matrix to model and test the cross-links between time to 

illicit drug use and time to licit drug use.  

The discrete-time methods proposed above to investigate the interdependencies of 

multiple events require one of the event processes be specified as the dependent variable 

or are difficult to expand to more than two events.  In addressing the need for a new 

model, this paper has two main objectives. The first objective of this paper is to introduce 

a discrete-time Multiple Event Process SUrvival Mixture (MEPSUM) model, a latent 

variable approach to analyzing the interdependencies between multiple non-repeatable 

events which are measured in discrete-time.  The approach is mathematically similar to 

single-event discrete-time survival mixture analysis (Muthén, & Masyn, 2005), but is 

                                                 
2
 Often researchers use a time-lag for the independent variables to prevent reversed causation (Tuma & 

Hannan, 1984, p.268). 
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conceptually different in some ways and has several advantages in addition to 

incorporating multiple events.  

The second objective of the paper is to demonstrate the usefulness of the model 

through two empirical analyses. The first empirical example concerns the timing and 

occurrence of four different markers of adulthood: parenthood, marriage, full-time work, 

and obtaining a college degree from individuals in Wave IV of the National Longitudinal 

Study of Adolescent Health (Add Health).  The second empirical example, using data 

from the 2009 National Survey on Drug Use and Health (NSDUH), examines age of first 

use of numerous different substances such as alcohol, tobacco, marijuana, cocaine, and 

several other hard substances.  Two examples are used both to demonstrate the 

applicability of the model to different domains and to examine the performance of the 

model when different numbers of events are examined, as well as when some of the 

events have a much lower probability of occurrence. 

This paper is organized into five chapters.  In the remaining part of Chapter 1, the 

basic concepts of traditional univariate discrete-time survival analysis will be introduced, 

as well as single-event survival mixture analysis.  The fundamental concepts in these 

sections will be used in order to introduce the discrete-time multiple event process 

survival mixture model in Chapter 2.  Chapter 2 also includes a small simulation study 

simply demonstrating the ability of the model to capture population parameters from data 

generated under the model for a small number of conditions.  Chapter 3 regards the first 

empirical example – the analysis of transitions to adulthood, and Chapter 4 regards the 

second empirical example – the analysis of substance use onset.  Chapter 5 has 

concluding remarks.  
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1.1 Traditional Univariate Discrete-time Survival Analysis 

As a first step in discrete-time survival analysis, we must define several important 

concepts.  A survival process under study encompasses different states, or categories of 

the event variable, and an event is defined as the transition from one state to another.  

Univariate survival analysis was developed for situations when the event under study can 

only occur once (e.g. death), or only the first event is examined (e.g. age of first 

marriage).  This process is assumed to have only two states (event has not yet occurred; 

event has occurred).  To survive past a certain time implies that the event under study has 

not occurred.  The period that someone is at risk of an event is termed the risk period, and 

an individual is only at risk of an event if he or she has not yet experienced the event.  

Individuals who are able to experience the event at a certain point in time form the risk 

set.  An event history analysis can then be defined as the analysis of the risk set in order 

to determine the probability of event occurrence during the risk period. 

 Another important concept in survival analysis is censoring, a general term 

referring to missing data in the analysis of event histories.  An individual is censored if 

his or her event time is unknown, and a distinction can be made between whether this 

unknown event time is before or after the time period under study (left and right 

censoring, respectively).  It is more common for an individual’s unknown event time to 

be after the time period under study; this happens when the study concluded before the 

event occurred for the individual or the individual drops out from the study before the 

event occurred.  In a retrospective study, this type of censoring occurs when an individual 

– who is younger at the time of interview than the last age examined in the study – has 

not yet experienced the event.  For example, in studying the event of first marriage up to 
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age 30, an individual who is 23 years old at the time of interview is censored for all time 

points representing ages 24 – 30.  For the rest of this paper, an assumption will be made 

that all individuals are right-censored only, as right-censoring is the most common form 

of censoring in social and behavioral sciences.
3
  

 It will be assumed in this paper, as it generally is in survival analysis, that the 

censoring mechanism is noninformative.  This corresponds to the assumption of 

ignorable missingness, including both missing-completely-at-random (MCAR) and 

missing-at-random (MAR) (Little & Rubin, 1987; Enders, 2010).  If the censoring 

mechanism is independent of event times, the censored observations may be treated as 

MCAR.   If the censoring mechanism is independent of event times, conditional on the 

set of observed covariates, the censored observations may be treated as MAR.  The 

assumption of noninformative censoring is tenable if censoring is determined in advance 

by design.  This is usually the case in event history studies, as the investigator determines 

the ending time of a study in a prospective study and the last age in a retrospective study.  

The assumption of noninformative censoring is important, for we can then assume all 

non-censored individuals at each time period are representative of all individuals who 

would have remained in the study if censoring had not occurred.  This allows 

generalization to the entire data set and thus the original population. 

To formalize univariate survival analysis, let T denote the event time, and j the 

discrete time point, with j =1, 2, …, J.  There are many methods of characterizing the 

probability distribution of the event time.  The simplest way is to define the probability of 

experiencing an event at a specific time period: 

                                                 
3
 See Yamaguichi (1991) and Vermunt (1997) among others for implications of left-censoring.   
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 ( )jf P T j   (1) 

Another option is the survival function, which is defined as the probability that an 

individual survives longer than j and is denoted Sj: 

 
1

( ) 1
j

j m

m

S P T j f


     (2) 

with Sj  = 1 at j = 0.  The survival function is often used to find descriptive measures of 

the event history, such as the median lifetime: an estimate of the time period when the 

event has occurred for fifty percent of the population.  Such descriptive measures are 

important when there is censoring, as measures such as the sample mean will not be 

useful in describing the center of the distribution when the event time is not known for all 

individuals. 

 An equally useful function known as the lifetime distribution function defines the 

probability that an individual has experienced the event by time j: 

 
1

( ) 1
j

j j m

m

D P T j S f


      (3) 

Importantly, the number of individuals who experienced the event at T = j is unknown if 

there are censored individuals.  Thus, neither the survival function nor lifetime 

distribution function can be directly estimated, as fj is unknown. 

The hazard probability h is the first function that can be estimated with both 

censored and uncensored individuals.  It is the conditional probability that the event 

occurs at j given that it did not occur prior to j: 

 
( )

( | ) ( | 1)
( 1)

j

P T j
h P T j T j P T j T j

P T j


       

 
 (4) 
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The hazard for time j is estimated as the number of events that occur at j over the number 

of individuals in the risk set.  It thus tells us the unique risk of event occurrence for each 

time period among those eligible to experience the event, which is exactly what we want 

to know: whether and when events occur.  It is estimable with censored individuals as it 

is a conditional probability computed only using individuals in the risk set, and can be 

computed for every time period when event occurrence is recorded. 

It is important to note that the hazard function can be re-written in terms of fj and 

Sj, under the assumption of noninformative censoring: 

 
1 1

1
j j

j

j j

f S
h

S S 

    (5) 

This relationship is useful in obtaining an estimate of the survival function when there are 

censored individuals, as Equation (4) can be rearranged to show: 

 
1 1j j jS S h

         (6) 

Given this relationship and the fact the survival function is equal to one at j = 0 (no 

individual experienced an event before the beginning of the time variable) this leads to 

the idea that the survival probability at time period j is the product of the hazard 

probabilities for each of the earlier time points: 

  
1

1
j

j m

m

S h


   (7) 

The lifetime distribution function can similarly be estimated indirectly from the hazard 

probabilities, or by the simple relationship between Dj and Sj given in Equation (3). 

See Figure 1 for a graphic example of the relationship between the different 

survival analysis functions.  It displays the survival function, lifetime distribution 

function, and the hazard function estimated from the National Longitudinal Study of 
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Adolescent Health Wave IV data on the age of college degree.  In this case, the hazard 

represents the probability of obtaining a college degree at each age given a college degree 

had not yet been obtained.  We can thus identify that the event is most likely to occur, 

given it had not occurred at an earlier age, at age 22 for the individuals in this sample.  

The survival function and lifetime distribution function were indirectly estimated using 

the hazard function estimates.  The survival function estimates the proportion of 

individuals without a college degree at each age, and the lifetime distribution function 

estimates the proportion of individuals with a college degree at each age.  Note that the 

survival and lifetime distribution function change more rapidly in periods when the 

hazard is high, and more slowly in periods when the hazard is low. 

 

 Now that the probability distribution of the duration of an event occurrence or 

nonoccurrence has been defined, the next objective of a survival analysis is to investigate 

how covariates affect the event times.  This is achieved by modeling the probability 

distribution and adding covariates to the model to examine their influence.  As the hazard 

Figure 1: Estimated discrete-time survival analysis functions for Add Health data on age of 

college degree 
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function is the most useful way to describe event history data, given it is estimable even 

with censored individuals and reveals the risk of event occurrence at each time period, it 

is used as the dependent variable in a survival analysis model.  As hazards are conditional 

probabilities bounded by 0 and 1, the hazard is often transformed so it can be easily 

regressed on covariates and time variables; such a transformation prevents inadmissible 

predicted values.  In line with Singer and Willett (1993), a logit link function will be used 

for the remainder of the paper, but other link functions such as the complementary log-

log link are equally applicable to all of the survival methods discussed hereafter.  The 

unstructured hazard function at time j without covariates is then given by: 

 ( )
1

j

j j

j

h
logit h ln

h


 
    

 (8) 

where αj is the intercept parameter for time j.  This model represents the log-odds of 

event occurrence as a function of the time period only.  

There are almost countless ways to expand on the simple unstructured discrete-

time hazard model discussed here (e.g. Singer and Willett, 2003).  For example, instead 

of allowing an intercept for each time period which places no constraints on the shape of 

the hazard, it is possible to have a polynomial representation of time.  When the number 

of time periods is large or some time periods have very small risk sets, it can be 

advantageous to fit a more parsimonious model.  A structured hazard can also be 

advantageous for estimation purposes when the hazard is near 0 is some time periods, as 

this can result in convergence problems.  A constant hazard function results from 

restricting the intercept in the link function to be constant over time.  Without covariates, 

this is given by: 
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 ( )jlogit h   (9) 

An expanded polynomial representation of the hazard function is also common.  For 

example, a quadratic hazard function is given by: 

 
2

0 1 2( )j j jlogit h Time Time      (10) 

For simplicity purposes, the remainder of the chapter will focus on the unstructured 

hazard with a logit link function, but the equations that follow can be easily generalized 

to alternative functions as mentioned above. 

Time-invariant predictors (X1, X2, …, XQ) for person i (i = 1, 2, …, n) are often 

added to the model in Equation (8) in such a way that each parameter βQ represents a shift 

in the baseline logit hazard function for a one unit increase in the value of the predictor 

XQ, controlling for the effects of all other predictors in the model.  The model for the log-

odds of event occurrence for person i in time period j as a function of the predictor values 

represented by the Q × 1 vector Xi (X1, X2, …, XQ)' is: 

 ( )
1

ij

ij j i

ij

h
logit h ln

h


 
     

β X  (11) 

The model can be rewritten using the exponential function to be in terms of the odds of 

event occurrence:  

      
1

ij

j i j i

ij

h
exp exp exp

h
    


β X β X  (12) 

This reformulation reveals that the model invokes a proportional odds assumption, in that 

the effect of each predictor is postulated to be the same for each time period, and that a 

one unit increase in XQ increases the odds of event occurrence exp(βQ) times, compared 
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to subjects in the baseline group (i.e. X1, X2, …, XQ = 0).  The proportional odds 

assumption can be relaxed by allowing the predictor to have time-varying effects: 

 ( )ij j j ilogit h   β X  (13) 

Additionally, time-varying predictors represented by the R × 1 vector Zij may be added to 

the model: 

 ( )ij j j i j ijlogit h     β X κ Z  (14) 

The model is a simple variant of logistic regression, varying over time period: 

 
( )

1 ( )

j j i j ij

ij

j j i j ij

exp
h

exp





  


   

β X κ Z

β X κ Z
 (15) 

In aiming to understand how this model is fit to data, let yij represent the event 

history response for person i at time period j, where yij = 1 if the event occurred for 

person i at time period j and yij = 0 if the event had not yet occurred for person i at time 

period j.  Due to the conditional nature of the hazard function, individuals only contribute 

data at time period j if they experienced the event at that time period or they had not yet 

experienced the event by that time period.  Individuals also do not contribute data if they 

are censored, under the assumption of ignorable missingness as discussed earlier.  

Therefore, the number of time periods can vary across individuals ( j = 1, 2, …, Ji  where 

Ji is the time period with the last non-missing value for individual i).  For individual i 

who is uncensored (thus yij  = 1 at j = Ji), the probability of the entire event history 

response pattern represented by the vector  yi  (yi1, yi2, …, yiJi )' is given by: 

  
1

1

( | ) 1
i

i

J

i i iJ ij

j

P T J h h




  y  (16) 

For individuals who are censored, the probability of the response pattern yi is given by: 
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  
1

( | ) 1
iJ

i i ij

j

P T J h


  y  (17) 

The likelihood may be written as: 

  1

1

( | ) ( | )i i

n

i i i i

i

L P T J P T J
 



   y y  (18) 

where δi is a dummy variable with a value of one if the individual is uncensored and zero 

if censored, thus serving as a device for selecting the appropriate probability by which to 

multiply.  Substituting Equation (16) and Equation (17) into Equation (18), the likelihood 

is: 

    
1

1

1 1 1

1 1

i i
i i

i

J Jn

iJ ij ij

i j j

L h h h

 


  

    
      
     

    (19) 

which is used to find optimal parameter estimates. 

Allison (1982) and Singer and Willett (1993) note that the probability of the event 

history response pattern can be rewritten using the event history response variable yij, 

which serves a similar function as the indicator variable δi in Equation (19) in it selects 

the appropriate probability by which to multiply: 

  (1 )

1

( ) (1 )
i

ij ij

J
y y

i ij ij

j

P h h




 y  (20) 

The likelihood is then: 

  (1 )

1 1

(1 )
i

ij ij

Jn
y y

ij ij

i j

L h h


 

   (21) 

For all time periods before event occurrence (yij = 0), the function multiplies by 1 - hij, 

and for the time period when the event occurs (yij = 1), the function multiplies by hij. 



 

15 

 

Censored individuals only contribute to the likelihood through the (1 - hij) terms, as they 

do not experience the event within the time frame under study.   

As noted by Singer and Willett (1993) and Allison (1982), the likelihood function 

in Equation (21) is identical to the likelihood function for a sequence of V (V = J1 + J2 + 

… + Jn ) independent Bernoulli trials with parameters hij.  As such, we can treat the V 

dichotomous observed variables yij as a collection of independent observations with a 

hypothesized logistic relation with covariates.  In other words, the event history response 

for an individual at each discrete time period can be treated as a separate, independent 

observation.  This allows estimation via standard logistic regression procedures (e.g. 

Allison, 1999). 

1.2 Univariate Discrete-time Survival Mixture Analysis 

All survival analysis models impose an assumption that there is no unobserved 

heterogeneity.  Vaupel and Yaskin (1985) famously demonstrate the potential impact of 

unobserved heterogeneity: a hazard function may seem to follow a specific form when in 

fact it does not.  The problem occurs when there are individuals with different levels of 

risk for an event – for individuals who are at highest risk of an event tend to experience 

the event first.   This phenomenon can produce event patterns for a population that are 

very different than for subpopulations of that population, such as those at high risk of the 

event.   

For example, suppose a researcher investigated the onset of depression and 

genetic risk factors were not introduced into the model.  Suppose there were two 

subpopulations of individuals – one with a high genetic risk of depression and one 

without – and within each subpopulation the risk of depression was constant over time.  
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The population hazard model in this case would not be constant; it would in fact decline 

over time.  This decline in the hazard could be correctly interpreted as the population 

average trend (Xue & Brookmeyer, 1997).  However, the decline in the hazard in this 

case would not reflect that the risk of depression for an individual decreases over time, as 

the decline in the hazard function only represents the changing composition of the risk 

set. 

Many researchers have proposed adding a latent variable to the hazard model to 

account for unobserved heterogeneity in the continuous-time framework.  Vaupel, 

Manton, and Stallard (1979) proposed including a continuous latent variable to account 

for the unobserved heterogeneity which they called “frailty.”  The continuous latent 

variable, or random effect, was assumed to have a multiplicative and proportional effect 

on the hazard rate.  The hazard rate as a function of continuous time represented by t is 

given by: 

 |t th h   (22) 

and θ was assumed to have a particular distributional form.  A gamma distribution with 

mean of 1 and variance of 1/γ was proposed by some (Vauepl, Manton, & Stallard, 1979; 

Tuma & Hannan, 1984), but many other distributional forms have been proposed (see 

Hougaard, 2000).  

Instead of a parametric characterization of θ, Heckman and Singer (1982, 1984) 

proposed a non-parametric heterogeneity model for continuous-time; their model is 

equivalent to a latent class model where the population is assumed to be composed of a 

finite number of mutually exclusive and exhaustive groups (Goodman, 1974).  With a 
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categorical latent variable C composed of K (k = 1, 2, …, K) categories, the marginal 

hazard rate at time point t can be defined as: 

 
1

K

t tk tk k

k

h h 


  (23) 

where θk  is the mean multiplicative effect on the hazard rate for latent class k and πtk  is 

the proportion of the population belonging to that class at time t (Vermunt, 1997). 

Heckman and Singer (1982) define the number of classes as the “number of mass points,” 

signifying the use of latent classes as a mathematical device for capturing unobserved 

heterogeneity. 

Non-parametric unobserved heterogeneity models have also been proposed for 

discrete-time.  Land, Nagin, and McCall (2001) introduced a multilevel model which 

incorporates nonparametric specifications of unobserved heterogeneity through a 

piecewise-constant hazard function modeled with the Poisson distribution.  Their model 

is the discrete-time equivalent to the model proposed by Heckman and Singer (1982, 

1984) with the added ability to account for clustering of data.  Another mixture model for 

discrete-time data was proposed by Steele (2003) which accounts for “long-term 

survivors”: those who are known a priori to have a zero hazard throughout the study.  The 

model is in a sense a two class model, long-term survivors or not, and uses information 

on covariates to determine the probability that censored individuals are members of the 

long-term survivor class.  

More general frameworks for accounting for unobserved heterogeneity in 

discrete-time have been proposed.  Vermunt (1997) presents a general model for discrete-

time survival analysis with latent variables in a log-linear framework.  The framework is 

also useful for many multivariate survival analyses, such as repeated measures or related 
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observations, as it can incorporate multiple correlated latent variables.  Muthén and 

Masyn (2005) also present a general framework for modeling a single event in discrete-

time, where latent classes of individuals have different hazard and thus survival 

functions.  As part of the general framework, they consider a generic multiple class 

model, a long-term-survivor model with two classes, and a multiple class model which 

combines the hazard model with a growth mixture model.  

Let us now consider a simplified version of the general multiple class discrete-

time survival model proposed by Muthén and Masyn (2005).  For person i at discrete 

time period j belonging to class k, the probability of event occurrence is given by the 

hazard model: 

 ( )ijk jk jk i jk ijlogit h     β X κ Z  (24) 

where αjk represents the intercept for time period j in class k or the log odds of event 

occurrence in class k for an individual with all predictor values equal to 0; κjk represents a 

R × 1 logit parameter vector for the effects of the time-varying covariates Zij; and βjk 

represents a Q × 1 logit parameter vector for the effects of the time-invariant covariates 

Xi that may also vary across the time periods.  If the j subscript for time is removed for 

the effects of the time-invariant predictors represented by the vector βjk, a proportional 

odds assumption is imposed, as discussed in the previous section.   

The probability of the event history response pattern represented by the vector yi 

for person i within latent class k is the same as in a traditional discrete-time model – see 

Equation (20) – only with a k subscript to note the hazard function is conditional on latent 

class: 
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  (1 )
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( | ) (1 )ij ij
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y y

i i ijk ijk

j

P C k h h




  y  (25) 

The prediction of class membership – by time-invariant covariates only – is added 

through a general multinomial logistic regression model; the probability of person i 

belonging to class k is given by: 

 0

0

1

exp( )

exp( )

k k i
ik K

w w i

w












γ X

γ X

 (26) 

where the last class is a reference class with 0 0 and 0k k  γ .  As with all latent class 

models, the probability of a specific individual’s response pattern is a weighted function 

of the probability of class membership given by Equation (26) and the probability of the 

specific event history response pattern given class membership (Equation (25)): 

  (1 )

1 1

( ) (1 )ij ij

JiK
y y

i ik ijk ijk

k j

P h h


 

 
  

 
 y  (27) 

where 
1

1
K

ikk



 . The likelihood is then: 

  (1 )

11 1

(1 )ij ij

n JiK
y y

ik ijk ijk

ki j

L h h


 

  
   

   
   (28) 

under the assumption of non-informative censoring.  When there is a single latent class 

(K = 1 and πik = 1), the likelihood simplifies to the univariate survival analysis likelihood 

in Equation (21).  As noted in the previous section, the dichotomous observed values yij 

can be treated as independent observations due to the equivalence of the likelihood 

function for a hazard model to independent Bernoulli trials with parameters hijk.  

The model in Equation (28) is a special version of a latent class model – or what 

is sometimes referred to as latent class regression (Formann, 1992) – where the 
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prevalence of the latent classes and the hazard probabilities are parameters to be 

estimated.  Important to note, traditional latent class models aim to account for the 

dependence between the observed variables through the addition of latent classes.  In this 

case, however, the observed variables yij are by definition independent.  As the observed 

variables yij are independent, a multiple class discrete-time survival model with 

unstructured hazard probabilities is not identifiable without covariates.  In other words, 

latent class models add classes in order to satisfy the condition of local independence – 

that conditional on latent class, the observed variables are independent.  But, in the 

absence of covariates, more than one class is unnecessary as the yij for the survival model 

are already independent.   

For example, in the two class long-term survivor model, a distinction between 

long-term survivors versus those who are at risk of the event can only be made based on 

covariate values (Land, Nagin, & McCall, 2001; Muthén & Masyn, 2005).  As different 

covariates may produce nontrivial differences in the formation of the latent classes, 

results may be highly dependent upon the set of covariates that are included.  This is 

clearly an undesirable feature of the univariate mixture survival model, but fortunately 

one that will not be shared by its multivariate extension, as will be discussed in Chapter 

2. 

1.3 Summary 

 As was discussed in this chapter, traditional univariate survival analysis provides 

an important conceptual and analytic framework from which to evaluate if and when 

events occur.  Extensions to the basic model, which are not discussed at length in this 

paper, include accounting for competing events and recurrent events.  One recent 
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extension that provides an important foundation for the model that will be introduced in 

the next chapter is the finite mixture survival model that was discussed in Section 2 of 

this chapter.  While the model was originally motivated from the desire to account for 

unobserved heterogeneity, in extending this model to multiple events the latent classes 

will also serve to capture the interdependencies across multiple event processes.  This 

extension to the univariate survival mixture model will be termed a multiple event 

process survival mixture model and will be introduced in the next chapter. 

 



 

 

 

 

 

 

CHAPTER 2 

A DISCRETE-TIME MULTIPLE PROCESS SURVIVAL MIXTURE MODEL 

 The discrete-time Multiple Event Process SUrvival Mixture (MEPSUM) model is 

a finite mixture model, specifically a special type of latent class model designed to 

accommodate data on the occurrence of multiple non-repeatable events.  The model 

assumes that the population is composed of a finite number of subpopulations of 

individuals who are homogeneous with respect to the risk of multiple events over time. 

The latent classes obtained through the MEPSUM model are a convenient statistical 

devise for parsimoniously describing the underlying multivariate distribution of hazard 

functions.  In other words, the model is a non-parametric way to capture associations 

between events through identification of classes of individuals with similar risk, or 

hazard, for multiple events over time.  The model is easily expanded beyond two events 

and enables researchers who aim to analyze multiple events to utilize all individuals in 

their dataset, including those with censored event times.  

Substantively, the model allows researchers to understand both the order and 

timing of the events through examination of the hazard functions both within each latent 

class and across latent classes.  Additionally, both the survival function and lifetime 

distribution function for each event can be compared between each class and across latent 

classes, as these functions may be estimated indirectly from the fitted hazard functions 

through Equation (3) and Equation (7).  Predictors can be incorporated into the model in 
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several different ways to investigate potential influences on the risk for multiple events 

over time. 

 In the sections that follow, the model is formally defined (Section 2.1) and 

software for fitting the model (Section 2.2) as well identification of the model is then 

discussed (Section 2.3).  A small simulation study is used to investigate the performance 

of the model under different conditions (Section 2.4) and a proposed model building 

approach is outlined (Section 2.5). 

2.1 Model Definition 

To reiterate points made in Chapter 1, the model focuses on discrete-time survival 

data on non-repeatable events.  Suppose the event history variable yipj for person i 

represents whether an event of type p (p = 1, 2, …, P) occurs at time period j (j = 1, 2, …, 

Jip) and the response vector yi  holds the event history variable across all time periods and 

processes       
1 211 1 21 2 1,..., , ,..., ,..., ,...,

i i iPi i J i i J iP iPJy y y y y y
 

 
.  The total number of time 

points under study for event process p is represented by Jp.  Note the flexibility of the 

model in that the number of time periods studied can vary between processes, the width 

of the time periods can vary within processes, and the length of the vector can vary 

between individuals.   

Let yipj = 0 if the event for process p did not occur for individual i at that time 

period or earlier and yipj = 1 if the event occurred at that time period.  By framing the data 

in this way, individuals only contribute data at j for process p when they are in the risk set 

at j for process p, similar to a standard univariate survival analysis.  For example, 

consider two event processes (e.g. onset of depression and onset of an anxiety disorder), 

which are both measured at each age from 10 years old to 14 years old.  An individual 
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who responds at age 15 with no history of either disorder would have the event history ( 0   

0   0   0   0 ) for each process.  In contrast, consider an individual who is measured at age 

13 who was diagnosed with an anxiety disorder at age 11.  The event history for 

depression would only include data from ages 10 to 13 ( 0   0   0   0  ), and the event 

history for anxiety would only include data from ages 10 to 11 ( 0   1 ).  Censored data is 

ignored under the assumption of ignorable missingness, as discussed in Chapter 1. 

The probability of event occurrence (yipj = 1) for event process p in time period j 

within latent class k is represented by hpjk.  Within latent class k, hpjk is modeled using a 

simple unstructured discrete-time hazard function with time-specific intercept αpjk: 

 ( )pjk pjklogit h   (29) 

As in Equation (24), both time-invariant and time-varying covariates may be added to the 

model, such that covariates can have a direct effect on the hazard functions: 

 ( )pijk pjk pjk i pjk ijlogit h     β X κ Z  (30) 

Restrictions may be placed on the influence of the covariates for parsimony.  For 

example, by dropping the j subscript on βpjk, a proportional odds assumption is invoked 

for the time-invariant predictors, and by dropping the k subscript for κpjk and/or βpjk the 

influence of the covariates can be restricted to be the same across classes.  It is also 

possible to structure the hazard function.  For example, a quadratic hazard function may 

be imposed: 

 
2

0 1 2( )pijk pk pk j pk j pjk i pjk ijlogit h Time Time        β X κ Z  (31) 

However, caution is needed before imposing such a structure – even after examining the 

shape of the sample estimated hazard function – as it is possible that the hazard function 

has a certain shape across latent classes but a different shape within latent classes.  This 
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issue will be discussed further in a recommended model building approach outlined in 

Section 2.5. 

The model assumes that the hazard functions across event processes are 

associated because the population is comprised of a finite number of subpopulations, 

where individuals have common hazard functions within latent class.  The model 

assumes that all associations between the hazard functions are captured between the 

latent classes, so that the observed hazard indicators are independent within latent class.  

This implies the probability of a specific response vector within a given latent class k can 

be obtained by simply multiplying the probability of all of the responses: 

  (1 )

1 1

( | ) (1 )ipj ipj

P Ji
y y

i i pijk pijk

p j

P C k h h


 

  y  (32) 

Similar to the yij variable in Equation (20) and Equation (25), the indicator variable yipj 

simply functions as a device for selecting the appropriate probability by which to 

multiply.  When the event occurs (yipj = 1) for process p at time period j, the model 

multiplies by hpijk, versus event nonoccurrence for process p at time period j when the 

model multiplies by (1 - hpijk).   

The overall probability of response pattern yi is a weighted average across all of 

the latent classes of the probability of being in latent class k given by πik and probability 

of yi given latent class k as defined in Equation (32): 

 
1

( ) ( | )
K

i ik i i

k

P P C k


 y y  (33) 

where πik is modeled using standard multinomial logistic regression.  With time-invariant 

predictors Xi, this is given by:  
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 0

0

1

exp( )

exp( )

k k i
ik K

w w i

w












γ X

γ X

 (34) 

where the last class is a reference class with 0 0 and 0k k  γ , and  
1

1
K

ikk



 .  This 

leaves us with the final equation for the probability of an event history response vector: 

  (1 )

1 1 1

( ) (1 )ipj ipj

P JiK
y y

i ik pijk pijk

k p j

P h h


  

 
  

 
 y  (35) 

and the likelihood function: 

  (1 )

11 1 1

(1 )ipj ipj

n P JiK
y y

ik pijk pijk

ki p j

L h h


  

  
   

   
   (36) 

which is used to find optimal parameter estimates.  In large sample surveys, individuals 

are often drawn with unequal selection probabilities and the contribution of individual i 

may be weighted by a sample weight W, which is often computed as the inverse 

probability of selection into the sample or through a function that also takes other features 

of the survey into account (Kish, 1965; Lohr, 2009).  The likelihood in this case is given 

by: 

  (1 )

11 1 1

(1 )ipj ipj

n P JiK
y y

i ik pijk pijk

ki p j

L W h h


  

  
   

   
   (37) 

where the sample weight effectively serves as a frequency weight, representing the 

number of times that each person’s individual likelihood should be replicated. 

2.2 Software 

The model may be fit using latent variable modeling software such as Mplus 

(Muthén & Muthén, 1998-2010) or Latent Gold (Vermunt & Magidson, 2005), which 

obtain maximum-likelihood model parameter estimates using an Expectation-
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Maximization (EM) algorithm.  In this algorithm, class membership is considered 

missing, and individuals’ posterior probabilities of class membership are computed in the 

E step, given the parameter estimates.  Then estimates of model parameters are updated 

given the posterior probabilities of class membership in the M step.  While the basic 

algorithm implemented in the programs is the same, these two programs differ in several 

ways, including how they address an issue that commonly arises with modeling the 

probability of a binary outcome with a logit link: the logit is undefined if the probability 

is exactly zero or one.  This could occur in time periods where there is no risk of event 

occurrence.  To address this issue, Mplus implements default bounds on the logits of ±15, 

while Latent Gold utilizes a Bayesian approach in including a Dirichlet prior for the 

latent and conditional response probabilities that serves to smooth parameter values away 

from the boundary solution.
4
  No matter what software program is selected, researchers 

should remain cognizant of the methods employed by the program to address this issue.  

Related to fitting the model, it should be noted that mixture models in general are 

susceptible to converge at local rather than global maxima.  Multiple starting values 

should be used, and the convergence pattern should be monitored (McLachlan & Peel, 

2000; Hipp & Bauer, 2006). 

2.3 Model Identification 

Identification of latent class models rests on the fulfillment of two conditions 

(Abar & Loken, 2012).  First, the data must provide more unique pieces of information 

than parameters in the model; in other words, it is necessary for the model to have 

positive degrees of freedom.  Second, the probability distributions for the possible 

                                                 
4
 By implementing such a prior, the estimation method is not truly maximum-likelihood estimation but 

instead posterior mode estimation, which can be seen as a penalized form of maximum-likelihood. 
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response patterns must be linearly independent, so that the information matrix of the 

model parameters is positive definite (McHugh, 1956).   In a traditional latent class 

analysis with K latent classes with I indicators, there are 2
I
 possible response patterns, 

and (K - 1) + K ∙ I parameters.  The degrees of freedom is then 2
I
 - ((K - 1)+ K ∙ I ) - 1 

which is the number of response patterns minus the parameters minus one for the 

restriction that the frequency counts across the response patterns must sum to the sample 

size.   

Both conditions mentioned above are necessary for identification.  For example, 

Goodman (1974) demonstrated that a three class model with four indicators has 1 degree 

of freedom, yet is not identifiable due to a non-positive definite information matrix. 

However, it is possible to identify such a model by imposing constraints on the 

parameters which limit the number of estimated parameters.  Covariates included in the 

model to predict class membership can also influence identification of the model, and 

adding a continuous covariate has been shown to improve estimation and recovery of the 

parameters as long as the covariate has some degree of predictive validity (Abar & 

Loken, 2012).  

While confirming the degrees of freedom of a model is relatively straightforward, 

establishing that the information matrix is invertible is more difficult.  Unfortunately, 

researchers cannot necessary rely on warning messages from standard software packages.  

In fact, model estimation can proceed normally in standard software, with boundary 

estimates effectively serving as a priori constraints which would have been necessary in 

order to identify the model (Abar & Loken, 2012).  This complicates the establishment of 

identification in practice.  For example, a five class, five indicator latent class model has 
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seven degrees of freedom, and some have claimed that this model is identified (Magidson 

& Vermunt, 2001) while others have said it is not (Formann, 2003).  Abar and Loken 

(2012) note that it is possible that this model is only identified when the true population 

estimates are on the boundary of the parameter space (i.e. probability of 0 or 1).  Yet 

when the boundary solutions do not represent true population parameters, the model will 

result in more classification errors than would otherwise be expected (Abar & Loken, 

2012).  

As the MEPSUM model is a special type of latent class model, the conditions 

described above which are necessary for identification of a latent class model are also 

necessary for the MEPSUM model.  However, general rules of thumb – such that 

identification should be questioned when the number of classes is equal to or greater than 

the number of indicators – are not applicable, due to the structured missingness that 

results from the unique nature of the event history response variables, which will be 

discussed further below. 

As mentioned in Chapter 1, the unstructured hazard MEPSUM model with 

multiple latent classes is not identified in the absence of covariates when simplified to the 

situation where only one event process is studied (Muthén & Masyn, 2005).  Considering 

this in more detail, suppose there are J time periods under study.  There are J + 1 possible 

response patterns: one for each of the time periods, plus one for individuals who did not 

experience the event within any of the time periods.  Note that there are less possible 

response patterns than a standard latent class analysis (which would have 2
J
 possible 

response patterns) due to the conditional nature of the data; once an individual 

experiences the event, they are no longer eligible to experience the event again.  When 
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using unstructured hazard functions, the number of parameters is however the same as a 

standard latent class analysis, and is equal to (K - 1) + K ∙ J.  The degrees of freedom are 

then equal to (J + 1) - ((K - 1) + K ∙ J) - 1.  For a one class MEPSUM model for one 

event, there would be 0 degrees of freedom and the model is just identified.  For multiple 

latent classes, the model is not identified for only one event process without covariates. 

The above generalizes to the degrees of freedom for a MEPSUM model with 

multiple events with unstructured hazard functions.  With JP time periods for event 

process p, there are  
1

1
P

pp
J


  possible response patterns and the number of 

parameters is equal to 
1

( 1)
P

pp
K K J


   . The degrees of freedom is then 

   11
1 ( 1) 1

P P

p ppp
J K K J


     .  In the situation where each event process is 

studied for the same number of time periods, this simplifies to 

     1   1    1
P

J K K P J       .  For example, a two class MEPSUM model for 

three events each measured over three time periods would result in 64 possible response 

patterns, 19 parameters, and 44 degrees of freedom.  Thus, unlike the survival mixture 

model for one event, the MEPSUM model for multiple events can have positive degrees 

of freedom for multiple classes, even with unstructured hazard functions and in the 

absence of covariates.  As can be seen above, this is due to the fact that with multiple 

event processes, the observed variables are still independent within event process, but are 

not independent across processes (resulting in more unique pieces of information than 

parameters).  The latent variable is thus able to capture independencies between the 

hazard functions of the different process through the addition of latent classes.  
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Not all possible combinations of the MEPSUM model with multiple events will 

have positive degrees of freedom.  For example, a two class model with unstructured 

hazard functions for two events, each measured over two time periods will have 9 

possible response patterns, 9 parameters, and negative degrees of freedom (-1).  

Additionally, as discussed earlier, positive degrees of freedom does not ensure 

identification.  It has been my experience that the MEPSUM model is not identified when 

only two events are studied with unstructured hazard functions, even when the implied 

degrees of freedom is positive.  This could be the result of a non-positive definite 

information matrix, or due to very near zero correlations between event history indicators 

across events, resulting in less information than that which is implied through calculation 

of the number of possible response patterns.  This could also occur because the number of 

actual observed response patterns is much smaller than the number of possible observed 

response patterns.  Small correlations between event history indicators across processes 

can also result in an information matrix that is so empirically near non-positive definite 

that the software fails to reach a solution or results in boundary estimates.  Researchers 

should carefully monitor the estimation process and parameter values that are output, and 

start values may assist in the convergence process. 

2.4 Simulation Demonstration 

2.4.1 Introduction 

The goal of this simulation is simply to demonstrate that the model can recover 

characteristics of data that are generated under the assumption that the population is truly 

comprised of a certain and finite number of latent classes.  While latent classes are 

characterized by different hazard functions, individuals within a given class are assumed 
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to have the same hazard functions.  While the conditions of the simulation that follow are 

arguably overly simplistic, the purpose is to have a contained demonstration rather than a 

thorough investigation of all aspects of the model and model building approach.  To this 

end, the number of latent classes in the population is held constant at three and only the 

three class model with unstructured hazard functions is fit in the simulation.  The 

proportion of individuals within each latent class is also held constant, with each latent 

class size equal (πk = 0.333).  The shape and level of the hazards within latent class is 

held constant.  Last, the sample size is held constant at 10,000.  While this sample size is 

much larger than is typical in psychology, it is actually smaller than both sample sizes in 

the two empirical examples that follow. 

The simulation is a 2 x 3 x 2 design, for a total of 12 conditions.  First, the number 

of events is varied to be either 4 or 8; and second, the number of time periods is varied to 

be 5, 10, or 20.  The variations in number of events and number of time periods are both 

similar to conditions in the two empirical examples that follow.  Last, the class separation 

is varied. In the first class separation condition, which is labeled “good,” the first class 

has a relatively high risk for all events over all time periods, defined as a constant risk of 

0.30.  The second class has a moderate risk for all events over all time periods, defined as 

a constant risk of 0.15, and the last class has a smaller risk for all events over all time 

periods, defined as a constant risk of 0.05.  In the second “class separation” condition, 

which is labeled “poor,” the first class and second classes are the same as above, with a 

constant risk of 0.30 and 0.15, respectively.  The third class is defined to have half of the 

events with a high risk (0.30) and half of the events with a moderate risk (0.15), and 

again for simplicity this risk remains constant over time.  Note that the hazard functions 
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are held constant, and that the lifetime distribution functions are nonlinear as a result. 

Functions for the three risk levels are displayed in Figure 2, with the size of the bubble 

indicating the relative size of the risk set (i.e. number of individuals within a latent class 

eligible to experience the event). 

 

While the risk set for the three different levels of risk is of equal size at the first time 

period, the size of the risk set for high risk events diminishes faster than the risk set for 

the medium and low risk events, as individuals with high risk are more likely to 

experience the event at each time period. 

2.4.2 Methods 

Data were generated in SAS 9.2 and the simulation was run in Mplus 6.12 with 

100 replications for each condition, totaling 1200 analyses.  Boundary values on the logit 

of ± 15 were allowed per the Mplus default.  Due to practical limitations on the amount 

of time necessary to run the model with random starting values and ensuring replication 

of the log-likelihood, the population generating values were given as starting values, so 

Figure 2: Functions for the three different levels of (constant) risk  
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random starts were not necessary.  This also assisted with the problem of label switching 

in latent class simulations, a phenomenon where the classes may be correctly captured 

but are in the incorrect order, making analysis of the results difficult.  As another check 

on this problem, a label switching algorithm was developed in SAS which ordered the 

classes based on the median of all of the logit parameters within each latent class.
5
 

The raw bias of a parameter was computed as the difference between the 

population generating value and the average value of the parameter found by the model 

across replications.  As there are 60 hazard parameters even in the condition with the 

smallest number of parameters, two different summary values for bias of the hazard were 

calculated.  The first summary value is the bias of the average of all of the parameters 

within latent class k, given by: 

  
1 1

1 ˆBias in Average Hazard, Class 
P J

pjk pk

p j

k h h
J P  

 

  

with pkh equal to the population hazard value (which was constant across time for process 

p within latent class k) and ˆ
pjkh equal to the average value across the 100 replications.  

The average absolute amount of bias in the average hazard across latent classes is then 

given by: 

 
3

1 1 1

1 ˆBias in Average Hazard
3

P J

pjk pk

k p j

h h
J P   

 
 

  

But the value above indicates the “bias in the average hazard”: only the bias in all 

of the hazard indicators averaged together. Within a latent class for instance, the model 

could underestimate the hazard for two events by 0.10 over all time periods and 

                                                 
5
 The median was taken rather than the mean due to concerns about just a few parameters – such as when a 

logit went to a boundary value when the risk of event occurrence was low – influencing a summary 

measure of the entire class. 
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overestimate the hazard for the other two events by 0.10 over all time periods, and this 

summary measure would indicate the bias in the average parameter is 0.  As such, I also 

examined the average amount of bias for each parameter separately, and took the absolute 

value when averaging across time periods and events, termed the “absolute bias in 

hazards.”  With J time periods and P events, the absolute bias in hazards in class k is 

calculated as: 

 
1 1

1 ˆAbsolute Bias in Hazards, Class 
P J

pjk pk

p j

k h h
J P  

 

  

The average across latent classes was also calculated: 

3

1 1 1

1 ˆAbsolute Bias in Hazards
3

P J

pjk pk

k p j

h h
J P   

 
 

  

The next measure of bias that was investigated was the absolute bias of the 

lifetime distribution functions, only examined through one summary measure: 

 
1 1

1 ˆAbsolute Lifetime Distribution Bias, Class 
P J

pjk pjk

p j

k D D
J P  

 

  

where pjkD is the population value for the lifetime distribution function for process p at 

time period j within latent class k and ˆ
pjkD is the average value found by the model across 

the 100 replications.  Only one summary measure is needed because the lifetime 

distribution functions are not constant over time, and thus an overall “average” across 

time periods and events is not as interpretable as the average hazard is.  The average 

amount of absolute bias across latent classes was again found by summing the bias over 

the latent classes and dividing by 3.  The final measure was bias of the class size, which 

was investigated in the probability scale, and the average amount of class size bias across 
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classes was also computed by summing the absolute value of the bias for each class and 

dividing by 3. 

  While other results – including recovery of the parameters in logit scale, standard 

deviation of the parameters,  and 95% confidence interval coverage of the logit 

parameters – are tabled in the Appendix, bias of the hazard functions, lifetime 

distribution functions, and class size will be the focus of the results section that follows. 

2.4.3 Results 

 Across all conditions, the model recovered the average of all of the hazard 

indicators well, with the difference between the population hazard and the average hazard 

less than 0.02 on average across the latent classes for the good separation condition, and 

less than 0.04 on average across the latent classes for the poor separation condition. 

Average bias was generally smallest for 10 time periods, and bias was largest when the 

number of time periods was 20, specifically because of poor recovery of the parameters 

on average in the high risk class (and similarly, the mixed class which had half of the 

events with high risk).  Bias is smaller when the number of events is larger.  See Table 1 

for the bias in the average hazard within each class and across classes for each condition, 

and Figure 3 for the bias of the average across classes for each condition. 
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While more time periods provide more information, there is more sparseness in the data 

(i.e. the risk set diminishes in size), which makes the hazards more difficult to capture at 

later time periods.  This relates to Figure 2, where we saw that the risk set grows 

especially small in the high risk set at later time periods.  We see in Table 1 that while the 

total average bias is worse with twenty time periods, this is only due to the larger bias in 

the high risk class, which is to be expected due to the small number of individuals 

contributing data in that class at later time periods. 

 Figure 3: Bias in the average hazard, weighting over latent classes 
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 Table 1: Bias in average hazard 

    

Class Separation 

    

Good 

 

Poor 

Events 

 

Time 

Periods 

 

High 

Class 

Medium 

Class 

Low 

Class 

Absolute 

Average 

 

High 

Class 

Medium 

Class 

Mixed 

Class 

Absolute 

Average 

4 

 

5 

 

-0.009 -0.005 -0.001 0.005 

 

-0.028 0.005 -0.023 0.019 

  

10 

 

-0.001 -0.001 0.000 0.001 

 

0.003 0.003 0.009 0.005 

  

20 

 

0.042 0.001 0.000 0.014 

 

0.055 0.003 0.052 0.037 

8 

 

5 

 

-0.000 0.001 0.000 0.000 

 

-0.000 -0.000 -0.001 0.001 

  

10 

 

-0.000 -0.000 0.000 0.000 

 

-0.004 -0.000 -0.006 0.004 

  

20 

 

0.006 0.001 0.000 0.002 

 

0.020 0.001 0.019 0.013 
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Next, examining the absolute bias of the hazards, the bias was again smaller for 

the good class separation condition and when the number of events was larger.  The bias 

was worse when the number of time periods was 20, again due to poor recovery on 

average in the high risk class, as to be expected due to the diminishing risk set as 

discussed above.  See Table 2 for the absolute bias in the hazard within each latent class 

and Figure 4 for the total average amount of absolute bias in the hazard across latent 

classes. 

 

 

 Figure 4: Absolute bias in the hazard, weighting over latent classes 
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 Table 2: Absolute bias in hazard 

    

Class Separation 

    

Good 

 

Poor 

Events 

 

Time 

Periods 

 

High 

Class 

Medium 

Class 

Low 

Class Average 

 

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

0.056 0.060 0.014 0.043 

 

0.0738 0.0321 0.079 0.062 

  

10 

 

0.050 0.026 0.006 0.027 

 

0.0704 0.0312 0.081 0.061 

  

20 

 

0.098 0.034 0.005 0.046 

 

0.1078 0.0445 0.090 0.081 

8 

 

5 

 

0.013 0.012 0.005 0.010 

 

0.0184 0.0106 0.020 0.016 

  

10 

 

0.022 0.010 0.004 0.012 

 

0.0347 0.0112 0.031 0.026 

  

20 

 

0.090 0.015 0.004 0.036 

 

0.1002 0.0193 0.069 0.063 
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 In the scale of the lifetime distribution functions, the trend was very clear: the bias 

was smaller with good class separation, more events, and more time periods.  The best 

recovery was in the good class separation condition with 8 events and 20 time periods, 

when the absolute difference between the population lifetime distribution function and 

the absolute average found by the model was <0.01, and worst in the poor separation 

condition with only 4 events and 5 time periods, with the average absolute value of the 

difference between the population value and the model average across the 100 

replications equal to 0.068.  See Table 3 for the average bias in the lifetime distribution 

functions within latent classes depending on condition and Figure 5 for the average bias 

in the lifetime distribution functions averaging over latent classes. 

 

 Table 3: Absolute bias in lifetime distribution functions 

    

Class Separation 

    

Good 

 

Poor 

Events 

 

Time 

Periods 

 

High 

Class 

Medium 

Class 

Low 

Class Average 

 

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

0.046 0.104 0.029 0.060 

 

0.056 0.061 0.087 0.068 

  

10 

 

0.019 0.045 0.015 0.026 

 

0.031 0.058 0.072 0.054 

  

20 

 

0.014 0.027 0.012 0.018 

 

0.024 0.039 0.051 0.038 

8 

 

5 

 

0.010 0.017 0.007 0.011 

 

0.014 0.013 0.020 0.016 

  

10 

 

0.007 0.010 0.007 0.008 

 

0.011 0.012 0.016 0.013 

  

20 

 

0.004 0.008 0.007 0.006 

 

0.008 0.011 0.013 0.011 
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This finding is important to contrast with the recovery of the hazard functions.  While the 

diminishing risk set negatively impacts recovery of the hazard (thus increasing bias with 

twenty time periods), the lifetime distribution function is a cumulative probability, and is 

not affected as much by the diminishing risk set.  For example, once the lifetime 

distribution function reaches unity (i.e. cumulative probability of event occurrence is 1), 

the value of the hazard is irrelevant, as the lifetime distribution function will remain at 

unity.  Thus, in the scale of the lifetime distribution function, the risk set diminishes in 

relation to the function growing closer to unity, which results in the influence of the 

hazard on the value of the lifetime distribution function diminishing over time, and thus 

more time periods results in better recovery on average.  

The final result that is examined here is the bias in the probability of class 

membership (i.e. class size).  The bias is smallest with more events and when the class 

separation is good.  The bias grows larger with more time periods, possibly related to the 

fact with more time periods, the risk set diminishes in size and it becomes more likely 

that a boundary value is found for the logit.  The model tends to overestimate the 

 Figure 5: Absolute bias in lifetime distribution functions, weighting over latent classes 
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proportion of the population belonging to the high risk class, while tending to 

underestimate the size of the medium risk class.  See Table 4 and Figure 6 for the average 

bias in the probability of class membership. 

 

 

Thus, it is hypothesized that increasing the number of time periods makes recovery of the 

hazard more difficult because of the diminishing risk set, which possibly negatively 

affects class size estimates.  This is consistent with the fact that the bias of the class size 

of the low risk class (i.e. “low class” in the good separation condition where the risk set 

remains large across all time periods) is small across all conditions. 

 Figure 6: Absolute average bias in the probability of class membership, weighting over 

latent classes 
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 Table 4: Average bias in the probability of class membership 

    

Class Separation 

    

Good 

 

Poor 

Events 

 

Time 

Periods 

 

High 

Class 

Medium 

Class Low Class 

Absolute 

Average 

 

High 

Class 

Medium 

Class 

Mixed 

Class 

Absolute 

Average 

4 

 

5 

 

0.004 -0.004 -0.001 0.003 

 

0.013 -0.007 -0.006 0.009 

  

10 

 

0.010 -0.012 0.002 0.008 

 

0.100 -0.060 -0.039 0.066 

  

20 

 

0.064 -0.065 0.001 0.044 

 

0.187 -0.122 -0.065 0.125 

8 

 

5 

 

0.001 0.001 -0.002 0.001 

 

0.001 0.002 -0.003 0.002 

  

10 

 

0.001 -0.001 0.000 0.001 

 

-0.002 0.006 -0.003 0.004 

  

20 

 

0.008 -0.007 -0.001 0.005 

 

0.045 -0.036 -0.009 0.030 
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2.4.4 Discussion 

Two points are clear throughout all of the results; recovery is better 1) when the 

latent classes have non-overlapping hazard functions (i.e. good class separation 

condition), and 2) when there are more events.  The effect of the number of time periods 

is not as straightforward.  This is likely due to the fact with 20 time periods, the risk set 

(i.e. number of individuals in the population eligible to experience the event) grows 

extremely small for the events with high risk.  This makes it more difficult for the model 

to correctly capture hazard parameters, and both the average bias of the hazard 

parameters and the absolute bias of the hazards is large as a result of poor recovery of the 

parameters in the high risk class.  It is interesting that increasing the number of time 

periods also negatively affects recovery of the probability of class membership, and this 

is likely related to the difficulty encountered in estimating the hazard in the high risk 

class.  

However, when examining the lifetime distribution function, the difficulty in 

capturing the hazard parameters in the high risk set is no longer an issue, as the lifetime 

distribution function is a cumulative probability and not affected as much when the 

cumulative probability is near one (when the risk set is small).  Thus in this scale, the bias 

actually decreased with an increase in the number of time periods. In sum, while the 

number of time periods, class separation, and number of events affected recovery, the 

model was able overall to capture the population parameters with minimal bias, 

especially given only 100 replications were used for each condition in this study. 

The simulation raises an interesting issue about how bias and other measures 

should be calculated when there is a large amount of structured missing data.  The bias in 
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the simulation was computed simply as the difference between the population generating 

value and the model estimated value, but it might be more appropriate to weight the bias 

based on the number of individuals able to experience the event.  By doing so, the larger 

bias found with 20 time periods would likely be smaller.  However, there would be many 

possible ways to do this – such as weighting based on the population known risk set or 

instead by the model implied risk set – and results would be influenced by the choice of 

weight, so the more straightforward calculation was used in this paper.  Also, by 

investigating the bias in different scales (i.e. hazard and lifetime distribution), the impact 

this issue has on understanding recovery of the parameters is reduced.  

2.5 Utilizing the Model in Practice 

2.5.1 Purpose of Model 

The simulation above investigated the recovery of discrete, true groups of 

individuals in the population, but mixture models are often also applied as an 

approximation of different forms of underlying heterogeneity (e.g. Heckman & Singer, 

1982).  Related to this, a distinction between indirect and direct applications of mixture 

modeling has been made in the literature (e.g. Titterington, Smith, & Makov, 1985; 

Dolan & van der Maas, 1998).  In indirect applications, the purpose of the model is to 

approximate a distribution of unknown form, and within class estimates are often 

described as a heuristic examination of local conditions of the underlying distribution 

(Nagin, 2005).  An analogy can be drawn to the “smoothing parameter” in fitting a loess 

curve to a scatter plot of data, where depending on the value of the smoothing parameter 

(similar to deciding on the number of latent classes), a different level of detail is revealed 

in examination of the distribution.  It is common for indirect applications to reference the 
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aggregate population rather than within class parameter estimates (Bauer & Curran, 2004; 

Bauer, 2007).  Direct applications instead aim to determine the absolute “true” number of 

latent classes and focus on within class parameters and the assignment of individuals to 

latent classes (Titterington, Smith, & Makov, 1985). 

This model is proposed to be an indirect application of mixture modeling, as it is 

employed as a mathematical device – a way to summarize the risk of multiple events.  

For example, without a mathematical model, describing the timing of four events 

measured over ten time periods each would be quite difficult, as there would be 14,641 

possible combinations of response patterns.  To my knowledge, there has been no other 

proposed model for summarizing this kind of data.  Thus, rather than subjectively 

classifying individuals based on their response patterns and examining the resulting 

hazard functions within those groups, the model recognizes uncertainty in group 

membership and allows the examination of predictors on latent classes (Nagin, 1999).  

Using the model in this indirect way is similar conceptually to using a finite mixture 

distribution to approximate non-linear relationships between latent variables (Bauer, 

2005).   

By suggesting the model be used as an indirect application, I am implicitly stating 

that researchers should not use this method to propose or verify theories regarding the 

existence of “true” latent subgroups in the population or take the results to suggest that a 

specific individual will follow one of the pathways described by a latent class.  It may not 

even be possible to determine whether there is truly a certain number of groups or test the 

assumption that there are a finite number of latent classes of individuals who have the 

same risk for multiple events over time.  However, the model is useful in heuristically 
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describing the heterogeneity in the multivariate distribution, and through its ability to 

investigate the influence of covariates, which will be discussed next.  

When investigating the effects of the covariates, the MEPSUM model can be 

useful in two different ways.  First, the effect of covariates on class membership can be 

examined, and second, model implied functions weighting over latent classes can be 

computed for different levels of a covariate.  For example, if gender was entered as a 

covariate to predict class membership, the model would reveal both 1) odds of being in 

one latent class compared to another depending on gender and 2) model implied 

functions for the events weighted over the latent classes separately for females and for 

males.  The second way of examining covariates can be thought of as providing an 

omnibus test of the effect of a covariate on all of the hazard functions simultaneously, 

controlling for all other covariates in the model. 

Importantly, the MEPSUM model is a data-driven method, and the inclusion of 

auxiliary information is essential to understanding the utility of the latent classes which 

are derived from the model (Petras & Masyn, 2010).  After all, as discussed in the 

literature on group-based growth mixture modeling, the number of subpopulations is not 

immutable within a sample and individuals do not belong to a single latent class where 

everyone in the latent class truly follows the same parameters (Sampson & Laub, 2005).  

The model may describe patterns of hazard functions which do not truly represent one 

“true” group of people, similar to how a growth mixture model can detect an additional 

latent class to account for non-normality in the distribution of repeated measures (Bauer 

& Curran, 2003a).  Thus, examining how the heterogeneity in classes is influenced by 

covariates should be the end focus of the analysis.  
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To conclude, the MEPSUM model is likely most useful as a hypothesis-

generating method about the influence of covariates on risk of multiple events over time 

rather than a hypothesis-testing one regarding the absolute number of latent classes of 

hazard functions.  Including covariates and considering construct validation in this 

process are essential (Bauer & Curran, 2003b).  As Nagin and Odgers (2010) argue for a 

related model, the purpose of latent groups in this model is to draw attention to 

differences in the causes and consequences of different pathways rather than to suggest 

the population is composed of literally distinct groups. 

2.5.2 Introduction to Model Building 

As mentioned in Section 2.5.1, the utility of the model rests in large part on the 

conclusions that can be drawn from the inclusion of covariates.  The discrete-time 

MEPSUM model presented in this chapter allows for covariates to enter the model in 

several ways.  For example, covariates may predict class membership through the 

multinomial logistic regression as in Equation (34), or they may have a direct effect on 

the hazard functions as in Equation (30).  To further complicate matters, direct effects of 

the covariates on the hazard functions can vary not only over event process, but over time 

period as well as latent class.  Another possibility would be to estimate a multiple group 

model, allowing the hazard functions within latent classes to differ depending on 

observed group membership.  

While there are clear advantages to having such a flexible model, the number of 

possible specific models that could be explored is quite large when investigating the 

influence of a number of covariates.  This is complicated by the fact that the optimal 

number of classes could differ depending on whether and how covariates are entered in 
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the model.  Additionally, these models may require substantial computational time to 

ensure a global maximum to the likelihood is found, limiting the practical number of 

models that a researcher could estimate.  Fortunately, one can draw insight from related 

literature on latent class analysis and growth mixture modeling to formulate an 

appropriate model building strategy (e.g. Petras & Masyn, 2010; Bandeen-Roche, 

Miglioretti, Zeger, & Rathouz, 1997; Collins & Lanza, 2010).  While the approach 

outlined below may serve as a guide, note that a different model building strategy may be 

warranted based on the substantive theory or purpose of the analysis. 

2.5.3 Model Comparison 

Before discussing the proposed model building strategy in more detail, it is first 

useful to note different strategies for comparing models.  Models may be evaluated and 

compared using information criteria such as Akaike information criterion (AIC), 

Bayesian information criterion (BIC), and sample-size adjusted BIC (SABIC) as well as 

classification indices measuring the degree of uncertainty of classification or separation 

of the clusters (Akaike, 1974; Akaike, 1987; Schwarz, 1978; Bozdogan, 1987; Fraley, & 

Raftery, 1998; Celeux, Biernacki, & Govaert, 1997; Vermunt & Magidson, 2002).  The 

Lo-Mendell-Rubin likelihood ratio test and parametric bootstrap likelihood ratio test are 

other common approaches to selecting the number of classes and evaluating model fit 

(Lo, Mendell, & Rubin, 2001; McLachlan, & Peel, 2000; Nylund, Asparouhov, & 

Muthén, 2007).   Researchers may also examine the results to determine whether a class 

is redundant or whether the probability of belonging to a class is very small, as parameter 

estimates in a low probability class may not be stable due to the small number of 

individuals contributing data to that class.   
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The traditional likelihood ratio chi-squared statistic, which assesses the extent to 

which the expected cell frequencies differ from the observed cell frequencies, will not be 

appropriate for most, if not all, applications of the proposed model.  This is due to the 

nature of examining multiple events over time, as the multi-way frequency table will be 

large relative to sample size, and the statistic would not be well approximated.  A 

likelihood ratio chi-square test for comparing a k class model to a k + 1 class model is 

also not an appropriate tool for deciding on the appropriate number of classes as class 

probabilities in the k + 1 class would have to be restricted to be 0, which is a boundary 

value, violating the regularity conditions necessary for a likelihood ratio chi-square test 

for nested models (Bishop, Fienberg, & Holland, 1975).  However, the likelihood ratio 

chi-square test may be used to test different models with the same number of classes that 

differ based on the set of covariates entered into the model or based on restrictions placed 

on the parameters (e.g. proportional odds assumption).  

One model selection step that may aid a researcher in this process – especially 

when structured hazard functions are used – is to compare the sample observed functions 

with the model implied functions weighting over latent classes.  The aggregate model 

implied lifetime distribution function for process p is found by weighting the within-class 

function by the probability of class membership ˆ
k : 

 
1

ˆ ˆˆ
K

pj k pjk

k

D D


  (38) 

The average absolute residual lifetime distribution probability can be then be computed 

across all event processes.  With P event process, each with JP events, this is given by: 
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where pjD is the sample observed lifetime distribution function for process p.  

Computing the model implied hazard functions weighting over latent classes is 

not as straightforward, as the number of people eligible to experience the event in each 

class will decrease unevenly due to differential risk of event occurrence.  Therefore, the 

population average hazard functions must be computed by weighting the within-class 

hazard functions not only by the probability of event occurrence, but also by the number 

eligible to experience the event at time j within a latent class k.  The number eligible to 

experience the event is equal to the survival probability at time j – 1, and the model 

implied hazard function weighting over latent classes is then given by: 
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 (40) 

The average absolute residual hazard function across all event process is given by: 

 
1 1
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


 (41) 

where pjh  is equal to the sample observed hazard function for process p.  Ideally, the 

average residual hazard and lifetime distribution functions would be very close to 0, 

which is likely when the form of the hazard functions is left unstructured. 
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Researchers in practice should not rely on one measure or test to determine the 

number of classes, but rather should use a combination to determine the most appropriate 

number for their particular research goals.  It is important to note that none of the indices 

or methods mentioned above has been studied in the context of the MEPSUM model, and 

they should thus be used as guides rather than rules in selecting the model.  Also, 

simulation studies of these indices and methods are often completed under an assumption 

that there is a true number of latent classes rather than from the viewpoint of an indirect 

application of mixture modeling.  The most important step a researcher can take is to 

carefully inspect each solution to ensure plausible parameter values as well as 

interpretability of the overall solution.  The final number of classes or range of number of 

classes should be as small as possible while still allowing heterogeneity in the risk for 

multiple events over time to be effectively described.   

2.5.4 Suggested Model Building Strategy 

Step 1: Fit the model with unstructured hazard functions and no covariates 

First, I suggest that a researcher fit the MEPSUM model with an increasing 

number of latent classes, without covariates in the model and with the shape of all hazard 

functions left unstructured.  In selecting an appropriate number or range of number of 

classes, there must a balance between the need for a model that fits the data well with a 

desire for parsimony.  I would recommend using the indices and methods discussed in 

Section 2.5.3 as a way to narrow the possible number of classes that will be examined 

more carefully, but then to examine the hazard and/or lifetime distribution functions from 

the model.  In selecting the final number of classes, researchers must weigh two aspects 

of the model: 1) that without enough latent classes, the local independence assumption 
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will be violated in that the model will not completely account for the association between 

the hazard indicators, and 2) with too many classes, the model will lose its function as a 

parsimonious description of the underlying process.  One way to do this would be to 

determine whether the addition of a latent class is substantively meaningful in effectively 

describing the heterogeneity in the hazard functions. 

Step 2: Determine if structured hazards are necessary 

As the unstructured hazard function is the most flexible and general form, I have 

suggested that it should be used first for an increasing number of classes in order to 

examine the hazard functions with latent classes when no shape is imposed.  However, if 

the number of time periods is large or some of the events have a very low risk of 

occurrence, a parametric form of the hazard function may be considered next.  Caution is 

needed before imposing such a structure, as the shape of the hazard function may differ 

between latent classes, and each event should be considered separately as the hazard 

functions for the different events may have radically different shapes.  Additionally, it is 

possible that the number of classes influences the shape of the hazard functions; for 

example, the shape of the hazard functions when examining a two class solution may be 

different than the shape of the hazard functions when a five class solution is examined.  

However, the solution found with unstructured hazard functions can serve as a guide to 

the form of the functions within a certain number of latent classes. 

Step 3: Add covariates to predict class membership 

Once the form of the hazard functions and an appropriate number or range of 

number of classes has been chosen, covariates can be incorporated directly into the model 

to predict class membership, as in Equation (34).  The model built in this way implicitly 
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assumes that the covariates are independent of the hazard functions conditional on the 

latent class variable. In other words, the model assumes that covariates only influence the 

probability of belonging to one latent class over another, but that the hazard functions 

within latent class are the same regardless of observed covariates.  All effects of 

covariates on the risk of event occurrence are transmitted through the latent class variable 

and thus latent class membership is assumed to be sufficient to describe the risk of the 

events occurring over time: 

 ( | , ) ( | )pijk i pijkE h C k E h C k  X  (42) 

This assumption would be violated if the hazard functions within latent class were 

dependent upon an observed covariate.  

For example, suppose a researcher was examining the risk of four events, one of 

which was the onset of depression, and suppose that men had a higher risk of depression 

across all time periods.  If the hazard functions within latent classes for men and women 

were the same except that the hazard function for depression for men was higher across 

all time periods in each class (within-class differences), this would be a violation of the 

assumption.  However, if there was a high risk of depression class, and the probability of 

belonging to that class was higher for men, it is possible that the differences between men 

and women in the risk of depression could be captured without violation of the 

assumption (between-class differences).  

Step 4: Determine stability of the model with covariates 

The solution obtained without covariates should then be compared to the solution 

obtained with covariates influencing class membership.  As the covariates are assumed to 

affect only class membership, the substantive meaning and size of the clusters should 
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remain unbiased by the inclusion or exclusion of the covariates (Petras & Masyn, 2010).   

If the substantive interpretation of the classes changes, this may indicate that the 

assumption that the covariates only influence class membership is violated (Marsh, 

Lüdtke, Trautwein, & Morin, 2009).  In this case, direct effects of covariates on the 

hazard functions should be explored, or the number of latent classes should be 

reevaluated.  Another possibility would be to estimate a multiple group model at this 

stage, if sample size warranted and there was reason to believe the hazard functions 

within latent classes would differ based on observed group membership.  Thus, including 

covariates in the model after selecting an appropriate number of classes can serve as a 

verification tool of the stability of the model and to explore whether direct effects are 

necessary or a multiple group model should be considered. The ability to test the model 

in this way is an advantage over the single event version of the MEPSUM model, which 

is not identified in the absence of covariates. 

Note that adding direct effects of covariates on the hazard functions substantially 

increases the complexity and interpretability of the model.  If necessary, direct effects 

should initially be entered as class-invariant, as any parameter that varies over latent 

classes provides information to identify and discriminate the latent classes (Petras & 

Masyn, 2010).  For example, including class-varying direct effects of a covariate on the 

hazard functions results in latent classes defined both by heterogeneity in the hazard 

functions and by heterogeneity in the effect of the covariate on the hazard functions.  

Also, if covariates are allowed to have both between-group effects in influencing class 

membership and within class effects through direct effects on the hazard functions, a 
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multiple-group model would not be necessary as the model would already capture the 

between-group differences (Muthén, 2001).  

However, a multiple-group model – where the grouping variable defines known 

subpopulations – might be preferred instead of including direct effects for substantive 

interpretation purposes.  A multiple-group model can be used to relax the assumption that 

the hazard functions within latent class are the same for different known groups, and this 

model also allows the grouping variable to moderate the effect of each predictor on class 

membership (see Collins & Lanza, 2010).  Another way to test whether the effect of a 

covariate differs among a known group would be to include an interaction term between 

the covariate and the group in the model. 

The strategy outlined above assumes the researcher will include the predictors 

directly in the model rather than testing the effects of the covariates after classification 

has taken place.  It has been shown that examining the effects of predictors in a two-step 

fashion, by first estimating the latent classes and then separately examining the effects of 

the covariates by the assigning individuals to a latent class by modal posterior 

probabilities results in significant biases in the estimation of the model parameters 

(Clogg, 1995; Hagenaars, 1993; Clark & Muthén, 2009).  The simultaneous approach is 

also recommended over a pseudo class draw technique, which aims to account for the 

variability in the posterior probabilities (Wang, Brown, & Bandeen-Roche, 2005).  

However, this all assumes that the researcher is examining the effects of predictors on the 

latent classes; when distal outcomes are of interest, pseudo class draws may be the most 

appropriate strategy, or researchers may even include the outcome in the formation of the 

latent classes, depending on the purpose of the analysis (see Petras & Masyn, 2010). 
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Step 5: Explore influence of covariates 

As the last step, the effects of covariates entered into the model to predict class 

membership can be explored in two ways: 1) through the odds of class membership in 

one latent class in relation to another latent class and 2) through the model implied hazard 

and lifetime distribution functions for the events, weighted over latent class.  When 

covariates influence only group membership, the probability of class membership can be 

computed simply through Equation (34), and then Equation (38) and (40) above may be 

used to find aggregate model implied functions for a specific level of a covariate.  These 

functions allow researchers to compare the effect of different covariates, controlling for 

other covariates in the model.  

With ample sample size and a small number of categorical covariates, model 

implied hazard functions for different levels of a covariate can be compared to stratified 

sample observed hazard functions to obtain residual hazard functions, as will be 

demonstrated in Chapter 3.  Ample sample size also permits the possibility of a split 

sample validation, where the researcher estimates the MEPSUM in one random half of 

the sample and then compares results found in the second half of the sample, as will be 

demonstrated in Chapter 4.  The method and strategies for model building introduced in 

this chapter will now be demonstrated in the two chapters that follow. 



 

 

 

 

 

 

CHAPTER 3 

EMPIRICAL EXAMPLE 1 – TRANSITIONS TO ADULTHOOD 

The aim of the first empirical example is to examine the order and timing of 

different transitions into adulthood.  Researchers have long established that the events 

that occur over an individual’s life are interdependent.   For example, individuals may 

make decisions on whether they would like to continue their education based on their 

family status, such as whether they are married and have children (Marini, 1984).  Early 

parenthood may lead an individual to postpone educational goals or start full-time work 

earlier than he or she would have otherwise.  In contrast, a person’s family behavior may 

depend on educational goals, such as an individual postponing parenthood based on 

whether he or she is currently in school or not (Hofferth & Moore, 1979).   

Life course research is guided by the notion that an individual’s development 

involves the order and timing of multiple social roles over time where the meaning of a 

given social role is dependent upon the presence or absence of other roles.  Elder (1985) 

notes that the dynamics involved in the life course can be conceptualized through the 

notions of role trajectories and transitions, which are interdependent over time.  

Trajectories index the timing of social roles over time, such as an individual’s path 

through schooling, employment, marriage, and parenthood; transitions mark changes in a 

role status, such as having a child (Macmillan & Copher, 2005).  Transitions are given 

meaning and form depending on the trajectory in which they are embedded (Elder, 
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Johnson, & Crosnoe, 2003).  The interconnectedness of trajectories and transitions 

identify pathways through the life course that mark the general structures of the life 

course (Macmillan & Eliason, 2003).  These pathways are greatly shaped by social 

institutions and historical forces (Shanahan, 2000; Shanahan, Miech, & Elder, 1998). 

 As Macmillan and Eliason (2003) note, the phenomenon of the life course as a 

whole, characterized as interlocked pathways of social roles over time, has seldom been 

the object of research.  This is likely due to the fact that without an appropriate statistical 

model, a researcher who aims to examine the order and timing of numerous social roles 

would be confronted with hundreds or thousands of possible combinations of movement 

into social roles over time (Hogan, 1978).  Instead of investigating the multidimensional 

nature of the life course, researchers typically focus on one aspect of the life course, such 

as timing of an individual’s first child; then they examine this event in isolation from 

other life course events using traditional methods such as linear and logit regression and 

univariate event history models.  However, as the significance of a role depends on the 

role configuration, dissecting the life course in such a way limits our understanding of the 

life course as a dynamic phenomenon (Macmillan and Eliason, 2003).  

In aiming to understand the dynamic, multidimensional nature of the life course, 

the MEPSUM model proposed in Chapter 2 was applied to the timing of four transitions: 

marriage, parenthood, college degree, and the beginning of full-time work.  The purpose 

of this analysis is both to demonstrate the model’s applicability to life course theory and 

to build on prior research by examining the latent classes which reveal pathways to 

adulthood, or patterns of the events over time.  The life course pathways found from this 

model are not expected to be the only pathways through the life course nor are they 
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expected to reveal true groups of people, but they provide a glimpse at the underlying 

multivariate distribution of pathways, of which there are likely thousands of possibilities.  

Additionally, this example is useful in examining the ability of the model to detect 

differences in pathways taken by different social groups.  

A key concern in life course theory is how membership in different social groups 

can influence the life course pathway of an individual, and to this end, several predictors 

were added to the model to examine their influence on the probability of belonging to a 

certain pathway, or latent class.  In other words, the model is useful in understanding the 

mechanisms leading to different pathways through the life course.  In particular, the 

influence of gender, race, and parent education was examined.  Consistent with prior 

literature, it is hypothesized that all three predictors have a significant influence on 

heterogeneity in the hazard functions over time (e.g. Mahaffy, 2003).   Only a small 

number of categorical covariates were examined so that model implied functions could be 

compared to sample observed functions of the sample stratified by the different levels of 

the covariates, in order to investigate the ability of the model to detect group differences. 

3.1 Methods 

3.1.1 Data 

 The data for this example come from Wave I and Wave IV of the National 

Longitudinal Study of Adolescent Health (Add Health; Harris et al., 2009).  Add Health 

began in the 1994-1995 school year with a nationally representative sample of 

adolescents from 80 high schools and 52 middle schools in the United States selected 

with unequal probability of selection.  The individuals were then followed from 

adolescence into adulthood through four in-home interviews.  Parental interviews were 
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also completed during the first wave.  The last interview, Wave IV, was completed in 

2008, when the majority of the sample was twenty-four to thirty-two years old (see Table 

5).  At each wave, information was gathered on respondents’ social, economic, 

psychological, and physical well-being.  Wave IV in-home interviews were completed 

for 15,701 individuals.  

 

3.1.2 Measures 

 Four role status variables were examined: marriage, college graduation, full-time 

work, and parenthood.  For each age from 18-30, a binary variable for each status was 

created indicating whether the individual occupied the status for the first time at that age 

(coded 1), or had not occupied the status by that age (coded 0).  Once the individual 

occupied one of the role statues, they no longer contribute data for the remaining ages 

(coded as missing).  See Table 6 for the extent of missing data, including censoring.  To 

account for the fact that a small percentage of individuals occupied one of the roles 

before they were eighteen years old, the binary variable for age 18 will represent whether 

the individual occupied the status for the first time at age 18 or younger.  In essence, this 

Table 5: Age at time of interview for individuals sampled in Wave IV Add Health 

Age Frequency Cumulative Percent 

24 30 0.19 

25 665 4.43 

26 1808 15.94 

27 2273 30.42 

28 2822 48.39 

29 2959 67.24 

30 2885 85.61 

31 1857 97.44 

32 347 99.65 

33 50 99.97 

34 5 100.00 
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is structuring the first time period to be wider (from birth to age 18) than any of the other 

time periods, which all represent one year. 

 

 The role status variables were taken from the Wave IV Add Health interview.  

The month and year of the individual’s first marriage was used to find the age of the 

respondent when they first married.  The year of the respondent’s first degree (associate's 

degree, bachelor's degree, or graduate degree) after high school was used to determine the 

age at which the first post-high school degree was obtained, by using the age the 

respondent was for the majority of that year.  The date of birth of the respondent’s oldest 

child was used to determine the age at which the respondent first became a parent.  The 

age when the person first began full-time work was directly measured in the Add Health 

interview.  The sample observed hazard probabilities for each event process are listed in 

Table 7 and displayed in Figure 7.  The sample observed lifetime distribution function for 

each event process is also displayed in Figure 7. 

Table 6: Number of individuals with missing data in Add Health 

Event 

Number  

Uncensored (%) 

Number  

Censored (%) 

Number  

Missing (%) 

Parent 7664 (48.68%) 8000 (50.95%) 57 (0.34%) 

Marriage 7648 (48.71%) 7912 (50.39%) 141 (0.90%) 

College Graduation 6207 (39.53%) 9487 (60.42%) 7 (0.04%) 

Full-time Work 14795 (94.23%) 860 (5.48%) 46 (0.29%) 
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Table 7: Number of event occurrences and sample estimated hazard probabilities in 

Add Health 

 Parent  Marriage  College Graduation  Full-time work 

Age Event Hazard  Event Hazard  Event Hazard  Event Hazard 

18 1227 0.08  536 0.03  12 0.00  6229 0.40 

19 712 0.05  534 0.04  95 0.01  1809 0.19 

20 723 0.06  597 0.04  313 0.02  1166 0.15 

21 685 0.06  678 0.05  905 0.06  1362 0.21 

22 660 0.06  766 0.06  1697 0.13  1692 0.33 

23 641 0.06  858 0.07  1103 0.10  1033 0.30 

24 614 0.06  816 0.08  605 0.06  655 0.28 

25 578 0.06  810 0.08  433 0.04  417 0.24 

26 567 0.06  677 0.08  351 0.04  208 0.17 

27 444 0.06  538 0.08  275 0.03  128 0.14 

28 375 0.07  415 0.08  191 0.03  67 0.10 

29 254 0.07  254 0.07  125 0.02  28 0.06 

30 135 0.06  131 0.06  67 0.02  14 0.06 
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 Three predictors were examined, each of which was assessed during Add Health 

Wave I: gender, race, and parental education.  Gender was measured as a two-category 

item of male (46.83%) and female (53.17%).  The measurement of race was simplified to 

a four category item of Caucasian (52.87%), African-American (20.62%), Hispanic 

(15.92%), and other (10.59%).  Parent education was measured as the highest level of 

education achieved by either parent on a three point scale of less than high school 

(12.85%), high school degree (25.33%), or any schooling beyond high school (61.82%). 

Sampling weights given by Add Health accounting for the unequal probability of 

selection are used. Individuals with missing data on any of the covariates (<1.5%) or 

sample weights (<1 %) are excluded from the analysis, resulting in a final analysis 

sample of N = 14,557. 

Figure 7: Add Health sample observed functions 
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3.1.3 Analysis 

The discrete-time MEPSUM model proposed in Chapter 2 was fit to the data 

using the robust maximum likelihood estimator (MLR) accounting for sample weights in 

Mplus 6.12.  The first model was run on the four event processes across the thirteen time 

points, without covariates, from one to six latent classes with unstructured hazard 

functions.  To ensure a global maximum likelihood solution, at least 1,000 random sets of 

starting values were used for each model, with the best 500 retained for final 

optimization, and the resulting solutions monitored to ensure the final loglikelihood was 

replicated.  The number of classes was chosen based on a combination of information 

criteria, classification indices, interpretability (e.g. no clusters are redundant or small 

enough to warrant concern about the stability of parameter estimates), and parsimony.  

The resulting hazard functions were then used to indirectly estimate the lifetime 

distribution functions for each process within each latent class through Equations (3) and 

(7); these results were used to describe prototypical pathways of the events over time.  

 As discussed earlier, life course theory is built on the notion that there are 

interdependent trajectories over time, but is also concerned with how membership in 

different social groups can influence the likelihood that an individual follows one 

pathway over another.  After the class enumeration process was complete, the next model 

included the covariates as predictors of class membership, as in Equation (34). Including 

covariates after selecting the number of classes allows for verification of the stability of 

the model (Petras & Masyn, 2010).   

Finally, model implied lifetime distribution functions weighting over latent 

classes were computed to investigate the fit of the model and ability to detect group 
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differences.  I purposefully only examined a small number of categorical covariates so 

that model implied lifetime distribution functions could be compared to observed lifetime 

distribution functions from the sample stratified by the different levels of the covariates.  

This is only reasonable due to the extremely large sample size and small number of 

categorical covariates, allowing stratification and computation of hazard and lifetime 

distribution functions by gender, race, and parental education.  In practice, it will likely 

only be possible to compute model implied functions for certain levels of the covariates 

rather than being able to empirically compare the model implied and sample observed 

functions. 

3.2 Results 

The MEPSUM model was fit with an increasing number of latent classes with 

unstructured hazard functions.  Information criteria suggested solutions with at least six 

classes were optimal, while entropy suggested misclassifications were smallest for the 

two and four class solutions (Table 8).  The shape of the hazard functions was different 

across latent classes and the unstructured hazards form of the MEPSUM model was 

deemed optimal.  Examining the hazard and lifetime distribution functions more carefully 

for each of the solutions revealed a five class solution was optimal; the five class solution 

was able to more effectively describe heterogeneity in the risk of the events over time 

than the four class solution but the same was not true when increasing from a five class to 

a six class solution.  The five class solution will first be described, and will then be 

compared to the six class solution to describe why the five class solution was chosen. 



 

65 

 

 

   In the five class solution, the first class ( 1̂  = 0.168) is characterized by high early 

risk of work ( 18ĥ  = 0.63), followed by an increasing risk of transition into family roles. 

The risk of marriage starts low ( 18ĥ  = 0.03) and increases rapidly to a high risk of 0.80 at 

age 29.  The median event time for marriage is in between ages 21 and 22, with nearly a 

1.00 cumulative probability of marriage by age 30.  The risk of parenthood also starts low 

( 18ĥ < 0.01), and increases in a linear fashion, though the risk is never as high as that for 

marriage for any specific age (e.g. 28ĥ  = 0.24).  By age 30, the model implied probability 

of being a parent is 0.86 for this class, with the median parenthood age between ages 24 

and 25.  The risk of college graduation is low throughout all of the time periods 

(maximum is 29ĥ
 
= 0.03), with a small cumulative probability of graduating college by 

age 30 ( 30D̂  = 0.17).  This first class will be labeled a “work then family” pathway (WF).  

The second class ( 2̂  
= 0.102) is characterized by a moderate risk of transitioning 

into both college and work roles in the mid-twenties, followed by an increasing risk of 

transitioning into parent and marriage roles in the later twenties.  Specifically, the risk of 

college peaks around ages 22 ( 22ĥ  = 0.42) and the risk of work also peaks around ages 22 

to 24 ( 22ĥ  = 0.43, 24ĥ  =  0.45).  The median age for both beginning full-time work and for 

Table 8: Model fit to Add Health data 

Latent Classes -2LL 

Number of Free 

Parameters BIC AIC 

Smallest 

Class Entropy 

1 -102521.76 52 205541.99 205147.53 N/A N/A 

2 -98444.65 105 197895.81 197099.29 0.33 0.79 

3 -97481.09 158 196476.75 195278.19 0.26 0.74 

4 -96784.46 211 195591.54 193990.93 0.11 0.76 

5 -96425.50 264 195381.66 193379.00 0.10 0.71 

6 -96087.98 317 195214.68 192809.97 0.09 0.72 
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college graduation is between ages 21 and 22.  The risk of transitioning into marriage is 

relatively low in the early twenties ( 22ĥ  = 0.15) but increases into the late twenties ( 27ĥ  = 

0.58).  Risk of parenthood similarly is low in the early twenties ( 22ĥ  = 0.04), but steadily 

increases throughout the twenties ( 30ĥ  = 0.41).  The median age of marriage is between 

23 and 24 with nearly a 1.00 probability of marriage by age 30, and the median age of 

parenthood is between 26 and 27, with high probability of parenthood by age 30 ( 30D̂ = 

0.88).  This second class will be labeled a “college then family” pathway (CF). 

The third latent class ( 3̂  = 0.217) is characterized by moderate risk of college 

and work in the mid-twenties, similar to the CF pathway mentioned previously, only the 

risk of transitioning into any family role is low throughout the entire period under study.  

The risk of college is moderate, at least above 0.20, for all ages after 21.  The risk is 

especially high at age 22 ( 22ĥ  = 0.42) and age 30 ( 30ĥ  = 0.61).  The median college 

graduation age is between 21 and 22, with a 0.99 probability of graduating college by age 

30.  The risk of work is similarly moderate for all time periods after age 21 (e.g. 22ĥ  = 

0.37,  30ĥ  = 0.36), with a 0.98 probability of transitioning into full-time work by age 30.  

The risk of transitioning into a parent role is less than 0.03 for all ages, and the risk of 

marriage is similarly low, peaking at 0.11 at age 28.  By age 30, there is a 0.38 

cumulative probability of transitioning into marriage and only a 0.09 cumulative 

probability of transitioning into parenthood.  This will be labeled a “college and work” 

pathway (CW). 
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The hazard functions for the fourth latent class ( 4̂  = 0.222) look remarkably 

different than the other classes, in the risk for all events decreases over time and the risk 

of transitioning into a parent role is especially high at early ages.  At age 18, the risk of 

beginning full-time work is 0.59 and the risk of parenthood is 0.35.  The median age for 

beginning full-time work is less than age 18, with a cumulative probability of beginning 

full-time work of 0.95 by age 30.  While decreasing in magnitude, the risk of parenthood 

remains high in comparison to the other latent classes (e.g. 22ĥ  = 0.30 compared to 22ĥ  = 

0.13 in the WF pathway).   The cumulatively probability of becoming a parent is 0.70 as 

early as age 20 and reaches 0.90 by age 24.  The risk of marriage is also the highest at age 

18 ( 18ĥ  = 0.15) and decreases throughout the time period under study ( 30ĥ  = 0.05), with 

the median marriage time between ages 24 and 25.  The risk of college graduation is very 

low throughout the entire time period (maximum 26ĥ  = 0.02), with a small cumulative 

probability of graduating college by age 30 ( 30D̂  = 0.13).  This class will be labeled 

“early parenthood” pathway (EP). 

In the fifth class ( 5̂  = 0.291), the risk for transitioning into family roles as well 

as the risk of college is extremely low throughout all of the time periods, and the risk of 

work is highest at early ages and then decreases.  The risk of work is 0.54 at age 18, and 

quickly and steadily decreases, with a risk of less than 0.10 of beginning full-time work 

for each age after 23.  The median age for transitioning into full-time work is less than 

age 18, with a 0.90 cumulative probability by age 30. The risk of marriage is never higher 

than 0.05 for any age, nor is the risk of parenthood or college graduation.  The 

cumulative probability of transitioning into marriage is 0.23 by age 30, and is 0.26 for 
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parenthood.  The cumulative probability of graduating college by age 30 is 0.13.  As this 

class is characterized almost completely by the transition into a work role only, this class 

will be labeled “work” (W). 

Hazard functions for the 5 class solution, representing the unique risk of event 

occurrence at a given age or the probability of event occurrence given the event had not 

yet occurred are displayed in Figure 8. The lifetime distribution functions, displaying the 

cumulative probability of event occurrence by a given age, are shown in Figure 9. The 

median event time for an event process within a latent class occurs when the lifetime 

distribution function is equal to 0.50 (Table 9). 
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Figure 8: Add Health hazard functions for five class solution 
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Figure 9: Add Health lifetime distribution functions for five class solution 
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Examining results for the six class solution revealed a substantively redundant 

latent class, resulting in the five class solution being selected as the final solution.  In the 

six class solution, the main difference is that the third class from the five class solution – 

the “college and work” pathway – split into two separate classes.  The other classes 

remain virtually identical to the five class solution.  The lifetime distribution function 

reveals the difference in the cumulative probability of marriage for any age for the two 

classes is smaller than 0.06.  Similarly, the lifetime distribution functions reveal that the 

cumulative probability of parenthood by any age for the first redundant class is within 

0.09 of the cumulative probability of parenthood by any age for the second redundant 

class.  The main difference between the two classes is that the hazard or risk of college at 

age 22 is high for one class (0.78) while low for the other (0.09), yet this difference is 

only at that specific age.  Both classes have a 0.99 cumulative probability of graduating 

college by age 30 and 0.98 cumulative probability of work by age 30.  The lifetime 

distribution functions of these two classes are displayed in Figure 10.  

Table 9: Add Health median event time within latent classes 

Class Label Work Marriage Parent College 

1 WF <18 22.5 24.5 - 

2 CF 21.5 23.5 26.5 21.5 

3 CW 21.5 - - 21.5 

4 EP <18 24.5 18.5 - 

5 W <18 - - - 
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   Thus, the increase in complexity from a five to a six class solution is not 

warranted in that it does not substantially increase our ability to describe heterogeneity in 

the hazard functions.  The five class solution is selected at this stage as the optimal 

number of classes, and covariates are now entered into the model to predict class 

membership (Figure 11).  By selecting the number of classes without covariates and then 

comparing the solution to that obtained with covariates predicting class membership, the 

stability of the model can be investigated. 

Figure 10: Add Health lifetime distribution functions for redundant classes found in 

six class solution 
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The size of the classes as well as the parameter estimates remained relatively 

stable even after the covariates were entered into the model.  The correlation between the 

hazard for all of the events across all of the ages in all of the latent classes between the 

model estimated without covariates and the model estimated with covariates was 0.87.  A 

plot of all individual hazards in the model estimated with covariates versus the model 

estimated without covariates is displayed in Figure 12.  Note there are a few outliers in 

the plot.  However, we must remember that the hazard function at later ages is less stable, 

as the number of individuals who remain eligible to experience the event grows smaller. 

In fact, many of the outliers that are found in this plot are at later ages and if we estimate 

the correlation between hazard indicators for all events between the model estimated 

without covariates and the model estimated with covariates excluding just age 30, the 

correlation increases to 0.94.  Additionally, in the scale of the lifetime distribution 

function, the correlation between the cumulative probabilities for all events between the 

model estimated without covariates and the model estimated with covariates is 0.99. 

These results imply that the assumption of independence between the covariates and the 

hazard functions conditional on latent class has not been violated.   

Figure 11: Add Health simple path diagram of model with covariates 
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As another check on the model, if we compare the aggregate model implied 

lifetime distribution functions and the sample observed lifetime distribution functions, we 

find that the average difference between the two sets of functions is small, ARD < 0.001. 

The difference between the aggregate model implied hazard functions and sample 

observed hazard functions is also small, ARH = 0.001.  Thus, the model is capturing the 

observed overall risk of event occurrence well, as is expected with unstructured hazard 

functions. 

Covariates in the final model were entered solely to predict class membership.  As 

such, the model reveals the odds of being in one latent class compared to another 

depending on the level of a covariate.  A complete list of all possible odds ratios is given 

in Table 10, with confidence intervals listed below the estimate, computed with a 

Bonferroni correction for multiple comparisons with α = 0.05.  This table reveals that 

gender, race, and parental education all significantly influence latent class membership, 

as several confidence intervals do not include 1 for each group of predictors. 

Figure 12: Add health hazard indicators across all ages and events found in model 

without covariates compared to model with covariates 
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Examining the influence of gender, we see that the odds of females being in either 

college pathway compared to the work pathway is over two times as great as the odds for 

males. Similarly, the odds for females being in the early parenthood pathway compared 

to the work pathway is 4.94 times as great as that for males.  The odds of females being 

in the early parenthood pathway compared to the work then family pathway or the 

college then family pathway are also larger than the odds for males (2.94 and 2.08, 

respectively).  Comparing the two college pathways, females are more likely to be in the 

college and family pathway than the college and work pathway compared to males.  

Generalizing over all of these findings, females are generally more likely to be in the 

early parenthood pathway, and males are generally more likely to be in the work 

pathway. 

The odds for African Americans being in the work pathway compared to either 

college pathway or the work then family pathway are larger than the odds for Caucasians. 

The odds of African Americans being in the work then family pathway compared to the 

early parenthood pathway are smaller than the odds for Caucasians, as well as the odds of 

being in the college then family pathway compared to the early parenthood pathway 

(0.23).  Overall, the model implies that African-Americans are generally more likely to 

be in the work pathway and the early parenthood pathway than Caucasians. Similarly, 

Hispanics are more likely to be in the work pathway and the early parenthood pathway 

than the college then family pathway than Caucasians.  No differences between those of 

other races and Caucasians were found in terms of predicting class membership. 

Parental education had an extremely consistent effect, in that the odds for 

individuals who had at least one parent with a college degree of being in a college 
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pathway compared to any other pathway were significantly higher than for individuals 

who had a parent with a high school degree only.  For example, the odds of being in the 

college then family pathway compared to the early parenthood pathway were 4.49 times 

as great for those individuals who had a parent with a college degree than those 

individuals who had a parent with a high school degree only.  Significant differences 

were also found between those individuals who had neither parent graduate high school 

and those individuals who had at least one parent receive a high school degree only. 

Specifically, individuals who had neither parent graduate high school are more likely to 

be in the early parenthood and the work then family pathway versus the college and work 

pathway than individuals who had at least one parent receive a high school degree only. 

In the spirit of an indirect application, the influence of covariates will also be 

examined by comparing aggregate model implied lifetime distribution functions 

weighting over latent classes for different levels of the covariates in the model.  In order 

to compute the model implied hazard or lifetime distribution functions, the predicted 

probabilities of class membership can be found using only Equation (34) in this case, as 

covariates only affect the probability of class membership.  For example, Caucasian 

females with a parent with a high school degree have a predicted probability of 0.21 of 

being in class 1 (“work then family” pathway), versus Caucasian males with a parent 

with a high school degree who have a predicted probability of 0.27 of being in that class.  

Once predicted probabilities have been computed for all of the classes, the model implied 

lifetime distribution functions can be found by weighting the within class lifetime 

distribution functions by the predicted probability of belonging to that class and then 

summing across latent classes, as in Equation (38). 
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Model implied lifetime distribution functions are computed for males and for 

females, holding race constant at Caucasian and parental education constant at high 

school degree (second row of Figure 13).  The model implied lifetime distribution 

functions for work are consistent across gender for each age, with the cumulative 

probability of work by age 30 almost reaching unity ( 30D̂  = 0.94 for males and 30D̂  = 

0.95 for females).  The model implies that females are more likely to be a parent by each 

age, such that by age 30, the cumulative probability of parenthood for males is 0.53 

versus 0.67 for females.  The model also implies a higher probability of becoming 

married by each age for females, with the median age of marriage between 25 and 26 for 

females versus between 28 and 29 for males.  The cumulative probability of obtaining a 

college degree is slightly higher for females as implied by the model, with 26D̂  = 0.26 for 

females and 26D̂  = 0.21 for males. 

The Add Health sample itself was then stratified by gender, dropping individuals 

who are not Caucasian and those whose parent has either no degree or a college degree in 

order to compute sample observed lifetime distribution functions with which to compare.  

This results in a sample size of 944 for males and 1,116 for females.  Sample estimated 

lifetime distribution functions are displayed in the first row of Figure 13.  Residual 

lifetime distribution functions are then calculated as the difference between the sample 

observed functions and the model implied functions and are displayed in the last row of 

Figure 13.  The average difference between the sample observed and model implied 

lifetime distribution functions is quite small on average, ARD = 0.02, for both males and 

females.   
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Figure 13: Add Health lifetime distribution functions depending on gender 
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The model is worst at capturing the lifetime distribution function of full-time 

work for males, as it predicts males have a 0.50 probability of beginning work at age 18 

or earlier while the sample observed function reveals the probability is 0.62.  For females, 

the difference between the model implied lifetime distribution functions and sample 

observed functions is largest for marriage, with the model slightly underestimating the 

cumulative probability of marriage by each age (e.g. model implies 22D̂ = 0.29 while 

sample estimated is 22D  = 0.36). 

However, the model is able to correctly capture many differences between the 

male and female lifetime distribution functions.  For example, it captured that females are 

more likely at each age from eighteen to thirty to be a parent than males (holding race 

constant at Caucasian and parent education constant at high school degree).  Specifically, 

for females, the model implied cumulative probability of parenthood by age 30 is 30D̂  = 

0.69, sample observed 30D  = 0.67; for males, the model implied cumulative probability 

of parenthood is 30D̂  = 0.53, sample observed 30D  = 0.53. Similarly, the sample observed 

functions concur with the trend implied by the model that females are more likely to 

graduate college by each age than males (e.g. sample observed 26D = 0.28 for females 

and 26D  = 0.19 for males) and that females are more likely to be married by age 30 than 

males (sample observed 30D  = 0.67 for females and 30D = 0.58 for males).   

Model implied lifetime distribution functions were also computed across the 

different races, keeping gender constant at male and parent education constant at high 

school degree (second row of Figure 14 and second row of Figure 15).  The model 

implies that African-Americans and Hispanics have a higher probability of becoming a 
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parent at early ages ( 21D̂  = 0.25 21D̂  = 0.20, respectively) compared to Caucasians and 

those of other races (both 21D̂  = 0.17).  However, the model implies the cumulative 

probability of becoming a parent by age 30 is relatively constant across races, all around 

0.50.  The model also implies that the lifetime distribution functions for full-time work 

are relatively constant across races.  In contrast, the model implied cumulative probability 

of entering into marriage by age 30 is smaller for African-Americans ( 30D̂  = 0.40) than 

Caucasians   ( 30D̂  = 0.54), Hispanics ( 30D̂  = 0.47), or those of other races ( 30D̂  = 0.50).  

The model also implied the cumulative probability of college by age 30 was higher for 

Caucasians    ( 30D̂  = 0.26) and for other races ( 30D̂  = 0.28) than for African-Americans    

( 30D̂  = 0.20) or Hispanics ( 30D̂  = 0.21). 

The sample observed lifetime distribution functions were computed across races 

and compared to the model implied functions to assess fit (first row of Figure 14 and first 

row of Figure 15).  Examining only males with a parent with a high school degree for 

comparison purposes resulted in sample size of 944 for Caucasians, 341 for African-

Americans, 257 for Hispanics, and 143 for those of other races. The same trends for 

parenthood discussed above were found in the sample observed functions, in that African 

Americans and Hispanics were more likely to be a parent at an earlier age and that the 

cumulative probability of parenthood was relatively constant across races by age 30.  The 

overall conclusions about differences between races on the cumulative probability of 

event occurrence across time were most different in the lifetime distribution function of 

beginning full-time work.  As mentioned above and can be seen in the four different 

graphs, the model implied cumulative probability of beginning full-time work by any age 
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was virtually identical across the different races; however, the sample observed functions 

revealed that African-Americans were much less likely to have begun full-time work at 

early ages (e.g. 18D  = 0.42) than other races (Caucasians 18D  = 0.62; Hispanics 18D = 

0.60; other races 18D = 0.54), but that these differences decreased over time.  

The sample observed functions for marriage were consistent with the model 

implied functions in they indicated African-Americans were less likely to be married by 

age 30 than other races; however, the model actually overestimated the rate of marriage 

for African-Americans (model implied 30D̂  = 0.40; sample estimated 30D  = 0.28).  The 

sample-estimated functions for college were also consistent with the trend found in the 

model implied estimates in that African-Americans and Hispanics were less likely to 

have graduated college by age 30 than Caucasians or those of other races.  Again, 

however, the model actually underestimated the differences, in that it overestimated the 

cumulative probability of college by age 30 for African-Americans and Hispanics 

(African Americans model implied 30D̂  = 0.20 and sample observed 30D  = 0.15; 

Hispanics model implied 30D̂  = 0.21 and sample observed 30D  = 0.16). Overall, the 

average amount of discrepancy between the sample observed lifetime distribution 

functions and model implied lifetime distribution functions across the four race 

categories was small, ARD =0.04 (Caucasian ARD = 0.02, African-American ARD=0.08, 

Hispanic ARD = 0.02, other race ARD =0.04). 
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Figure 14: Add Health lifetime distribution functions depending on race (Caucasian and African-

American) 
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Figure 15: Add Health lifetime distribution functions depending on race (Hispanic and other race) 
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The last set of model implied lifetime distribution functions was computed across 

different levels of parental education, holding gender constant at male and race constant 

at Caucasian (Figure 16).  The most dramatic difference between these functions is in 

terms of the cumulative probability of graduating college; individuals with a parent with 

a college degree have a much higher probability of graduating college by age 30 ( 30D̂  = 

0.48) than individuals with a parent with a high school degree ( 30D̂  = 0.26) or no parent 

completing a high school degree ( 30D̂  = 0.20) as implied by the model.  Related, the 

model predicts individuals who have a parent with a college degree have a smaller 

probability of beginning full-time work at earlier ages (e.g. 18D̂  = 0.37) than individuals 

who have a parent with a high school degree ( 18D̂  = 0.50) or no degree ( 18D̂  = 0.54), but 

that there are no virtually no differences after age 24.  The model implies that individuals 

who have a parent with a college degree also have a smaller risk of parenthood across all 

ages, and a smaller risk of marriage at earlier ages, but that the cumulative probability of 

marriage by age 30 is similar across parental education groups (range for 30D̂  = 0.54-

0.55). 

Stratifying the Add Health sample by parent education and examining only 

Caucasian males for comparison purposes resulted in a sample size of 222 for neither 

parent with a high school degree, 944 for at least one parent with a high school degree 

only, and 2,536 for at least one parent with a college degree.  The trends described by the 

model implied functions were found in the stratified sample observed functions in that 

those who had a parent with a college degree were much more likely to graduate college  

( 30D  = 0.50) than for individuals who had neither parent graduate high school or at least 



 

86 

 

one parent graduate high school but who had no further education ( 30D  = 0.07 and 30D  = 

0.22, respectively).   

Note, however, that the model underestimated differences between these groups 

in that it overestimated the probability of graduating college for those with neither parent 

graduating high school (model implied 30D̂  = 0.20; sample estimated 30D  = 0.07).  The 

trend was also consistent between the model implied and sample observed functions for 

work, with individuals with a parent with a college degree having a delay in the transition 

to full-time work ( 18D  = 0.39 versus parent with a high school degree 18D  = 0.62).  Also 

as implied by the model, individuals with a parent with a college degree had a smaller 

probability of parenthood across all ages as well as a smaller probability of marriage at 

early ages.  Overall, the average difference between the model implied functions and the 

sample observed functions across the three parental educations categories was small, 

ARD = 0.03. 
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Figure 16: Add Health lifetime distribution functions depending on parental education 
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 It is unclear whether the differences found between the sample observed lifetime 

distribution functions and the model implied functions weighting over latent classes are 

due to utilizing relatively few classes to capture the multivariate distribution of events, or 

due to possible minor misspecifications in the inclusion of covariates only in the 

multinomial model for class membership, as well as the fact interactions between 

covariates were not investigated.  However, considering the small number of covariates 

included in the model, the mo del appears to be relatively stable and to be reproducing 

the observed patterns well. 

3.3 Discussion 

A five class solution was chosen for optimally describing heterogeneity in the 

hazard functions over time.  The first class of the five class solution can be described as a 

work then family pathway, as it is characterized by transition into full-time work in the 

early twenties, followed by a high probability of transition into marriage and parenthood 

roles.  Graduating college and transitioning into full-time work in the mid-twenties and 

then later transitioning into family roles characterize the second class, labeled a college 

then family pathway.  The third class is also characterized by graduating college and 

transitioning into full-time work, but has a much lower probability of transitioning into 

marriage and parenthood roles by age 30, and is labeled a college and work pathway.  

The fourth class is characterized by a large probability of transitioning into parenthood by 

the early twenties, versus the last class, which is characterized by a large probability of 

transitioning into full-time work with a very low probability of transitioning into any 

other role.  
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These latent pathways capture heterogeneity in the risk for transitioning into 

multiple adulthood roles over time, and capture interdependence between the events 

through the delineation of latent classes.  While useful in this way, we must be mindful 

that these pathways do not determine that there are truly only five transitions into 

adulthood.  Rather, the pathways identified are prototypical pathways that heuristically 

and parsimoniously summarize the multivariate distribution of hazard functions for these 

measures.   

The small number of covariates that were examined limits the substantive 

conclusions that can be drawn from this analysis, as there are certainly other variables 

that influence the probability of being assigned to one latent class over another.  

Additionally, interactions between gender, race, and parental education in predicting 

class membership may be of interest for future studies.  However, the purpose of this 

empirical demonstration was to highlight the potential usefulness of the model for future 

research and also to investigate the ability of the model to detect group differences in the 

pathways over time.  To this end, the limited number of covariates allowed empirical 

comparisons between the model implied lifetime distribution functions weighting over 

latent classes and sample observed functions in order to investigate the ability of the 

model to detect group differences in the risk of the events over time. 

Considering the small number of covariates in the model, there is general 

consistency between the model implied and sample observed functions in the overall 

conclusions that were drawn, and the model does well at capturing overall differences in 

event occurrence across the ages examined.  In terms of gender, the model detected that 

females are more likely to marry at earlier ages than males, as well as more likely to 
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become a parent at earlier ages than males.  This is consistent with previous literature on 

the transition into marriage and parenthood (e.g. Mahaffy, 2003; Martin et al. 2011). 

Additionally, the model implied that females are slightly more likely to earn a college 

degree consistent with other literature (e.g. Snyder & Dillow, 2011).  The model also 

gives a larger picture into gender differences for all the events simultaneously by 

examining how females and males differ in the probability of taking one pathway over 

time versus another.  The model generally predicted females are more likely to take an 

early parenthood pathway compared to most other pathways than males, and that females 

are more likely to belong to either of the identified college pathways versus the work-

only pathway than males. 

The model found African-Americans were less likely to enter into marriage and 

less likely to earn a college degree by age 30 than Caucasians.  The model also implied 

African Americans were more likely to be in the early parenthood pathway as well as the 

work only pathway compared to Caucasians.  Similarly, Hispanics were found to be more 

likely to be in the early parenthood pathway or work only pathway compared to the 

college with family pathway than Caucasians.  It again should be noted that a very small 

number of covariates were entered into this model, and that racial differences found are 

not controlling for factors other than gender and parental education.  For example, 

Ahituv, Tienda, and Hotz (2000) found that controlling for covariates such as income, 

test scores, parent education, and family structure, racial differences in school and work 

choices in the transition to adulthood largely disappear, and may even reverse direction.  

However, the results found are consistent with literature on racial differences in the 
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transition to adulthood, without controlling for other factors (e.g. Snyder & Dillow, 2011; 

Ahituv et al., 2000). 

The last predictor, parental education, had a consistent effect on the risk of class 

membership in that individuals with at least one parent with a college degree were more 

likely to take pathways involving college graduation and were more likely to have a 

delayed transition into full-time work.  The cumulative probability of marriage by age 30 

was similar across levels of parental education, but individuals with at least one parent 

with a college degree had a smaller probability of marriage at earlier ages, which could 

reflect postponement due to higher education. 

 While the influence of covariates here was found to be consistent with previous 

literature, examining predictors using the MEPSUM model is consistent with life course 

theory and the need to consider multiple life course roles simultaneously.  The 

significance of a role depends on the role configuration, and the model avoids dissecting 

the life course in order to apply more traditional methods such as a univariate survival 

analysis.  Also, by examining the multidimensional nature of the life course, the model 

gives insight into the possible mechanisms leading to differences in life course pathways.  

It is possible that a covariate influences the multivariate distribution of the risk of 

multiple events in a way that does not lend itself to be discovered by traditional methods 

that analyze events one at a time. For example, a covariate might increase the risk of 

transitioning into family roles for those who do not pursue college education but decrease 

the risk of transitioning into family roles for those pursuing a college education.  Thus, 

the added complexity of the MEPSUM model has potential to increase our understanding 

of multiple transitions over time.



 

 

 

 

 

 

CHAPTER 4 

EMPIRICAL EXAMPLE 2 – SUBSTANCE USE ONSET 

 Similar to the example in Chapter 4 where previous research has shown that the 

transition into different adulthood roles is interrelated, research on drug use is founded on 

the notion that the initiation of different substances are related to each other.  This is 

conceptualized in the literature through the hypothesized existence of patterns of drug 

use, where the use of one drug is thought to be related to the subsequent use of another 

drug (Yamaguchi & Kandel, 1984).  One popular theory, termed the gateway drug 

hypothesis, posits that the use of “softer” licit drugs leads to “harder” illicit drugs 

(Hamburg, Kraemer, & Jahnke, 1975).  Alcohol, tobacco, and marijuana are commonly 

cited “gateway” drugs.  For example, Wagner and Anthony (2002) found that tobacco 

and alcohol users were more likely to try marijuana than non-users, and likewise that 

marijuana users were more likely to try cocaine than non-marijuana users.  They 

attributed the relationship in part to the “exposure opportunity” that occurs during the use 

of one drug, in that users of a drug are more likely to be offered a chance to try another 

drug. 

The validity of the gateway drug hypothesis is still a point of contention (Golub 

and Johnson, 2001; Fergusson, Boden, & Horwood, 2006), but most researchers agree 

that the use of different drugs occur in clusters, and thus that the use of different drugs is 

related (Yamaguchi & Kandel, 1984; Hamburg, Kraemer, & Jahnke, 1975).  Research 

has also focused on whether patterns of drug use vary over gender and racial groups.  For 
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example, Kandel and Logan (1984) found that overall patterns of drug use were similar 

for men and women, but that men were more likely to initiate all drugs.  Vaughn, 

Wallace, Perron, Copeland, and Howard (2008) found that African-Americans were 

significantly more likely to initiate marijuana use before cigarettes compared to other 

ethnic groups, implying the patterns of drug use may differ depending on race. 

The purpose of this example is to apply the discrete-time multiple event processes 

mixture model to drug use data to delineate patterns of drug use over time.  The method 

is a novel way to examine a common research question in the drug use literature.  While 

not a direct test of the gateway drug hypothesis, the MEPSUM model is useful 

substantively as a hypothesis generating method regarding the mechanisms leading to 

different patterns of drug use.  This example will also be useful methodologically in 

investigating the utility of the model when numerous event processes are being studied 

and also when some of the event processes have a low hazard rate over all of the time 

periods.  Other contrasts to the example in Chapter 3 are that these data necessitate the 

use of parametric hazard functions and that the larger sample size allows illustration of 

potential cross-validation procedures. 

4.1 Methods 

4.1.1 Data 

The data for this example come from the 2009 National Survey on Drug Use and 

Health (NSDUH).  The NSDUH is an annual survey providing national and state-level 

data on mental health and the use of both licit and illicit substances on randomly selected 

individuals twelve years of age or older.  The data is available publicly through the 

Substance Abuse and Mental Health Data Archive (SAMHDA). The survey has four 
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main objectives: 1) provide data on the patterns of substance use; 2) track trends in the 

use of various substances; 3) assess the consequences of substance use; and 4) identify 

groups at high risk for drug abuse (United States Department of Health and Human 

Services, 2010).  The 2009 NSDUH recorded data from 55,772 individuals and includes 

information on the age of first use as well as lifetime, annual, and past-month usage for 

nine classes of substances: alcohol, cocaine, hallucinogens, heroin, inhalants, marijuana, 

non-medical use of prescription drugs (NMUP), stimulants, and tobacco.  See Table 10 

for a listing of the substances included in each class of drugs.  

 

4.1.2 Measures 

Age at time of interview was measured as a categorical variable, with categories 

representing each age from 12 years old to 21 years old, and categories of increasing 

width for 22 years of age and older.  Individuals will be assigned the lowest age of the 

category to which they belong, and will be considered as censored for all ages after.
6
    

                                                 
6
 If any age other than the lowest age of the category was used, it would be implicitly assumed for anyone 

who was actually censored (had age been measured in integer values) that the event did not occur at all 

time periods, which could introduce a negative bias in the hazard probabilities.  For example, if individuals 

in age category 24-25 were assigned the age of 25, the 25 year olds would have their data correctly 

measured, but the 24 year olds who had not experienced the event by age 24 would be assumed not to have 

Table 10: Substances included in each class of drugs in NSDUH 

Class Included Substances 

Alcohol Beer, wine, and liquor 

Cocaine/Crack Cocaine powder, "crack," free base, and coca paste 

Hallucinogens LSD, PCP, peyote, mescaline, psilocybin, and ecstasy 

Heroin Heroin 

Inhalants Amyl nitrete, gasoline, glue, halothane, lighter gas, spray paints 

Marijuana Marijuana and hashish (also known as pot or grass) 

NMUP Nonmedical use of pain relievers, tranquilizers, sedatives 

Stimulants Methamphetamine, desoxyn, and methedrine 

Tobacco Cigarettes, chewing tobacco, snuff, cigars, and pipe tobacco 
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See Table 11 for the number of individuals in each age category.  While there are many 

individuals who are older than thirty in the study, the events will only be examined to that 

age, as onset becomes increasingly less likely later in life. 

 

For each of the nine classes of drugs mentioned above, the variable that will be 

utilized is the age of first use of any of the substances included in the class.  Thus there 

are nine event processes under study: time to first use of each class of substances.  A 

summary of missing data, including the number of individuals with censored event times 

for each event process, is listed in Table 12.  A binary variable was created for each of 

the nine event processes across ages 10 to 30 indicating whether the event had not yet 

occurred by that age (coded as 0), occurred at that age (coded as 1), and missing 

                                                                                                                                                 
an event occurrence at age 25 when in reality they are just censored and thus should not have a value for 

that age. 

Table 11: Age at time of interview for individuals sampled in 2009 NSDUH 

Age Frequency Cumulative Percent 

12 2561 4.59 

13 2775 9.57 

14 2930 14.82 

15 3134 20.44 

16 3128 26.05 

17 3177 31.75 

18 2716 36.62 

19 2554 41.19 

20 2344 45.40 

21 2351 49.61 

22-23 4591 57.84 

24-25 4452 65.83 

26-29 2702 70.67 

30-34 2928 75.92 

35-49 7863 90.02 

50-64 3461 96.23 

65+ 2105 100.00 
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otherwise.  To account for the fact some individuals experience each event before the age 

of ten, the binary variable at age ten will represent whether the event occurred at that age, 

or any earlier age.  The sample observed hazard and lifetime distribution functions are 

displayed in Figure 17. 

 

 

Figure 17: NSDUH sample observed hazard and lifetime distribution functions 
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Table 12: Number of individuals with missing data - NSDUH 

Class 

Number  

Uncensored (%) 

Number  

Censored (%) 

Number  

Missing (%) 

Alcohol 39595 (70.99%) 15553 (27.89%) 624 (1.12%) 

Cocaine/Crack 6620 (11.87%) 49120 (88.07%) 32 (0.06%) 

Hallucinogens 7721 (13.84%) 48019 (86.10%) 32 (0.06%) 

Heroin 783 (1.40%) 54955 (98.54%) 34 (0.06%) 

Inhalants 5299 (9.50%) 50081 (89.80%) 392 (0.70%) 

Marijuana 22009 (39.46%) 33560 (60.17%) 203 (0.36%) 

NMUP 10229 (18.34%) 45523 (81.62%) 20 (0.04%) 

Stimulants 3998 (7.17%) 51692 (92.68%) 82 (0.15%) 

Tobacco 32114 (57.58%) 23648 (42.40%) 10 (0.02%) 
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  Race and gender are the only covariates included in the model.
7
   The sample 

consists of 26,744 males (47.95%) and 29,028 females (52.05%).  Race is measured as a 

seven category item but will be recoded for parsimony into a four category item of 1) 

White (61.93%), 2) African-American (12.80%), 3) Hispanic (16.24%), and 4) Other 

(9.03%), as the race categories Native American, Native Pacific Islands, Asian, or more 

than one race each compose less than five percent of the sample.  

4.1.3 Analysis 

 The sample was split randomly in half into an evaluation sample and validation 

sample (N = 27,886 for each).  The discrete-time MEPSUM model proposed in Chapter 2 

was fit to the evaluation sample using the robust maximum likelihood estimator (MLR) 

in Mplus 6.12.  As a first step, a model was fit to the data on the nine event processes, 

without covariates and with unstructured hazard functions.  Yet even for a one class 

model, the number of parameters for an unstructured discrete-time MEPSUM model in 

this empirical example is quite large at 189, due to the large number of time periods and 

events under study.  This is magnified for each increase in the number of latent classes; 

for example, a five class model would have 949 parameters.  Additionally, several of the 

events have a low risk of occurrence, which can result in convergence issues as 

mentioned in Chapter 1.  Therefore, a parametric form for the hazard functions was 

considered next, but only after examining results when the unstructured form of the 

                                                 
7
 Demographic variables including education, marital, and work status assessed at the time of interview are 

available as well as mental health status at the time of interview, but these variables will not be utilized in 

this analysis as the age range of individuals sampled in the survey make it difficult to compare across these 

categories, using them as a time-invariant predictor.  Also, as these variables are assessed at the time of 

interview, they would not be true predictors of the latent classes, and also are not traditional time-varying 

covariates as they are only available at one point in time.  In the future, a possible extension would be to 

address the prediction of distal outcomes by the latent classes. 
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hazard functions was used in order to determine whether the shape is constant between 

classes.  

 Models were then fit with quadratic parametric hazard functions with an 

increasing number of latent classes, up to six classes.  Time was scaled in decades rather 

than years for estimation purposes.  Without any constraints on the parameters, the model 

had trouble estimating for three or more classes, as the risk of at least one event was so 

low that the parameters could not be identified without Mplus imposing automatic 

constraints.  Following the default Mplus places on the boundary value of logits, the 

intercept factors were constrained to be greater than -15.   

This could be considered an empirical under-identification problem due to the fact 

the logit scale is unbounded.  For example, the following two sets of parameters would 

both imply the cumulative risk of event occurrence over 20 time periods is less than 

0.001: 1) intercept = -20, slope = 0, quadratic = 0 and 2) intercept = -9, slope = 2, 

quadratic = -5.  This under-identification may also be an issue in identifying the 

parameters when the risk of an event is very large at early time periods, as the number of 

people able to experience the event at later time periods grows smaller.  

However, while this is an issue in identifying the parameters of the model, as long 

as reasonable constraints are imposed, this will not influence the hazard functions in a 

probability scale.  Due to the fact the hazard function is being modeled and the 

transformed parameters cumulate to calculate the lifetime distribution function, a 

conservatively low lower bound should be used.  Note that the reasonableness of this 

value may depend on the number of time periods.  For instance, constraining the intercept 

to be greater than -5 and with a slope and quadratic function of 0 results in a cumulative 
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lifetime distribution of 0.05 for 7 time periods, which may be fine for some applications, 

but is also equal to a cumulative probability of 0.13 for 20 time periods, which may be 

too large for other applications.  In the empirical example in Chapter 4, a much lower 

value such as -15 was needed due to the fact several of the events had a very low risk of 

occurrence.  Constraining the intercept in this example to be at least -15 still allowed the 

possibility of a cumulative lifetime distribution of effectively 0 by age 30.  

 Each model was first run with at least 100 random sets of starting values.  The 

solution found was then used as starting values for another set of replications with at least 

500 sets of random starting values, constraining the slope and quadratic factors to 0 for 

each event within a latent class where the risk of the event was less than or equal to 0.001 

across time periods.  This greatly increased the estimation time of the model, allowing 

more replications to ensure a global solution to the likelihood.  The final solution found, 

including the constraints on the slope and quadratic factors for low risk events, were used 

as starting values for the next analysis with an additional latent class.
8
 

A model was then fit where race and gender were used as predictors of class 

membership.  The size and parameters of the classes were monitored for change when the 

predictors were added to the model to investigate the stability of the model.  The final 

model was then fit to the validation sample with all parameters constrained to the solution 

found in the evaluation sample.  Measures of discrepancy – ARD and ARH – between the 

model imposed functions weighting over latent classes and the validation sample 

observed functions were computed to cross-validate the model.  Finally, the MEPSUM 

                                                 
8
 Sensitivity analyses indicated no difference between constraining the low risk events from the beginning 

and starting with no constraints.  
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model was also fit independently in the validation sample and parameter estimates were 

then compared between the evaluation and validation sample. 

4.2 Results 

First, the unstructured hazard function form of the MEPSUM model was fit to the 

data with an increasing number of latent classes and model fit information is listed in 

Table 13.  Model estimation began to break down at 5 classes, as the loglikehood was not 

replicated even after several thousand random sets of starting values, and Mplus gave a 

warning of a possible non-positive definite information matrix.  This is likely due to the 

large number of time periods and event processes, as well as the fact the risk of event 

occurrence for several of the events is quite low. 

 

The shape of the hazard functions in the one to four class solutions consistently 

indicated that all of the hazard functions followed a quadratic form even within classes.  

For parsimony and to determine whether more latent classes are necessary to effectively 

describe heterogeneity in the hazard functions, a MEPSUM model with quadratic form 

for all of the hazard functions was then fit with one to six latent classes (Table 14). 

Across all solutions, the model with quadratic hazard functions aggregated back to the 

sample observed functions well, ARH < 0.02, ARD < 0.01. 

Table 13: NSDUH model fit with unstructured hazard functions 

Latent 

Classes -2LL 

Number of Free 

Parameters BIC AIC 

Smallest 

Class Entropy 

1 -243380.78 189 488696.15 487139.57 N/A N/A 

2 -222525.20 379 448929.80 445808.40 0.29 0.80 

3 -217680.64 569 441185.51 436499.29 0.12 0.75 

4 -215563.32 759 438895.67 432644.64 0.09 0.69 
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 Information criteria suggested the model with least six classes was optimal, while 

entropy continued to decrease indicating classification errors increased with the addition 

of latent classes.  Examining the hazard and lifetime distribution functions more 

carefully, there was not one clear optimal number of classes.  Thus, in the spirit of an 

indirect application, the four to six latent classes solutions are now described, as it is 

useful both to examine the progression of including more latent classes as well as the 

impact of the selection of the number of classes on the substantive conclusions about the 

risk of multiple events over time. 

 The first class (“relative abstainers,” 1 = 0.382) in the four class solution is 

characterized by a small risk of initiating alcohol use peaking at age 21 (
21ĥ = 0.14) with a 

relatively moderate cumulative probability of initiating alcohol use ( 30D̂ = 0.74) and 

tobacco ( 30D̂ = 0.40) by age 30. The median event time for initiating alcohol use is 

between age 20 and 21.  The cumulative probability of initiating any substance other than 

alcohol or tobacco is near 0 by age 30.  For the remaining three latent classes, the 

cumulative risk of alcohol use by age 30 is 1.00.  

Table 14: NSDUH model fit with quadratic hazard functions 

Latent 

Classes "-2LL" 

Number of Free 

Parameters BIC AIC 

Smallest 

Class Entropy 

1 -219814.6 27 494859.2 494636.9 N/A N/A 

2 -226663.5 55 453890.0 453437.1 0.29 0.80 

3 -221771.0 71 444268.7 443684.0 0.14 0.73 

4 -219857.6 99 440728.5 439913.2 0.09 0.67 

5 -218232.9 125 437745.3 436715.8 0.07 0.66 

6 -217353.4 151 436252.4 435008.8 0.06 0.66 
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The second class (“soft drug users,” 2 = 0.375) has a high cumulative probability 

of tobacco use (
30D̂ = 0.94) and moderate cumulative probability of marijuana use (

30D̂ = 

0.65).  The risk of tobacco and marijuana use peaks around age 19, and the median event 

time is between age 15 and 16 for alcohol and tobacco, and between 19 and 20 for 

marijuana use.  The risk of non-medical use of prescription drugs (NMUP) is larger than 

the first class but still relatively small (
30D̂ = 0.17) and the risk of all other drug use is 

likewise small across all the time periods, with the cumulative probability less than 0.10 

for all other drugs.  

The third latent class (“later hard drug users,” 3 = 0.154) is characterized by a 

peak in alcohol, tobacco, and marijuana use around 18, with a greater than 0.90 

cumulative probability of initiating each of these substances by that age.  The median 

event time for alcohol and tobacco is between 14 and 15, and the median event time for 

marijuana is between 15 and 16.  The risk of the remaining substances all peak around 

age 21, with a 0.65-0.75 cumulative probability of having used cocaine, NMUP, and 

hallucinogens by age 30, and around a 0.35 cumulative probability of inhalant and 

stimulant use, and 0.05 cumulative probability of heroin use by age 30.  The median 

event time for hallucinogens is between 19 and 20, for cocaine is between 20 and 21, and 

for NMUP is between 21 and 22. 

The final class (“early hard drug users,” 4 = 0.089) similarly has a high risk of 

alcohol, tobacco, and marijuana use, beginning even earlier than the third latent class as 

the cumulative probability reaches above 0.95 by age 14 for each of these substances. 

The median event time for alcohol and tobacco is between age 11 and 12, and for 
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marijuana between age 12 and 13.  The risk of first use of the other substances also peaks 

earlier than the third latent class, generally around age 18, and the cumulative probability 

of using each substance is likewise larger than the third class, with around 0.80 

cumulative probability of cocaine, NMUP, and hallucinogens, around 0.50 cumulative 

probability of inhalant and stimulant use, and 0.18 cumulative probability of heroin use. 

The median event time for hallucinogens and NMUP is between age 16 and 17, followed 

by cocaine between age 17 and 19, and inhalants between age 19 and 20. 

The pattern of the fourth class is thus very similar to the third, only that the 

probability of beginning substance use is higher at earlier ages in the fourth class and the 

cumulative probability of initiating use of each of the substances is higher across all time 

periods in the fourth class.  However, one interesting difference in pattern is NMUP has 

an earlier median event time in relation to other substances in the early hard drug users 

class, compared to the median event time of NMUP in the later hard drug users class, 

where the median event time for cocaine and hallucinogens preceded it.  The median 

event time for each event process within each latent class is listed in Table 15.  See 

Figure 18 for the hazard functions and Figure 19 for the lifetime distribution functions for 

the four class solution.  In all hazard function graphs that follow, the hazard functions are 

only graphed during time periods when the cumulative probability is less than 1, because 

the hazard is irrelevant once the cumulative probability reaches 1 (no one is eligible to 

experience the event) and this would be solely an extrapolation of the model beyond what 

the data reveals. 
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Table 15: NSDUH median event time within each latent class for four class solution 

Event 

Relative 

Abstainer 

Soft Drug 

Use 

Later Hard 

Drug Use 

Early Hard 

Drug Use 

Alcohol 20.5 15.5 14.5 11.5 

Cocaine - - 20.5 17.5 

Hallu. - - 19.5 16.5 

Heroin - - - - 

Inhalant - - - 19.5 

Marijuana - 19.5 15.5 12.5 

NMUP - - 21.5 16.5 

Stimulant - - - - 

Tobacco - 15.5 14.5 11.5 
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Figure 18: NSDUH hazard functions for the four class solution 
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 In the five class solution, the first class (“relative abstainers,” 1 = 0.345) again 

remained a class where the risk of ever trying alcohol by age 30 was relatively moderate  

( 30D̂ = 0.72), as was tobacco ( 30D̂ = 0.35), with the risk of all other drug use less than 0.01 

at any age.  The second class of the five class solution (“soft drug users,” 2 = 0.308) was 

also similar to the second class of the four class solution, with a small cumulative 

Figure 19: NSDUH lifetime distribution functions for the four class solution 
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probability of trying any substance other than alcohol (
30D̂ = 0.99), tobacco (

30D̂  = 0.91), 

or marijuana (
30D̂ = 0.55) by age 30.  In comparison to the four class solution, the risk of 

marijuana use in this latent class was lower and the overall risk of all events had a more 

peaked shape rather than a more linear shape which would have indicated similar risk 

across all of the time periods.  The median event time for alcohol (between age 16 and 

17), tobacco (between age 16 and 17), and marijuana (between age 20 and 21) were all 

one year later than the “soft drug users” class in the four class solution. 

The third class (“mainly soft drug users,” 3 = 0.138) is unique to the five class 

solution, with a more flat hazard function across the age ranges.  While the risk is spread 

out over time, the cumulative probability of alcohol or tobacco use by age 30 is nearly 1, 

and the cumulative probability of marijuana use is also high (
30D̂ = 0.82).  The risk of 

using other substances is small at any individual age, but the cumulative probability for 

these other substances by age 30 is higher than the first two classes (e.g. cumulative 

probability of cocaine use is 
30D̂ = 0.28).  The median event time for alcohol, tobacco, 

and marijuana is much earlier than the median event time for these substances in the “soft 

drug users” class (13.5, 12.5, and 16.5, respectively). 

The fourth (“later hard drug users,” 4  
= 0.142) and fifth class (“early hard drug 

users,” 5 = 0.067) from the five class solution are very similar to the third and fourth 

class from the four class solution.  These classes start with a high risk of alcohol, tobacco, 

and marijuana use, and at a later age have a peak in the risk for first use of other 

substances.  The fifth class has a higher risk of all substances at earlier ages than the 

fourth class and has especially high cumulative probabilities of ever trying other 
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substances (e.g. probability of cocaine use is 
30D̂ = 0.90).  See Figure 20 and Figure 21 

for hazard and lifetime distribution functions for the five class solution, respectively and 

Table 16 for the median event time within each class. 

 

    

Table 16: NSDUH median event time within each latent class for five class solution 

Event 

Relative 

Abstainer 

Soft Drug 

Use 

Mainly Soft 

Drug Use 

Later Hard 

Drug Use 

Early Hard 

Drug Use 

Alcohol 20.5 16.5 13.5 14.5 12.5 

Cocaine - - - 21.5 16.5 

Hallu. - - - 19.5 15.5 

Heroin - - - - - 

Inhalant - - - - 17.5 

Marijuana - 20.5 16.5 15.5 12.5 

NMUP - - - 20.5 15.5 

Stimulant - - - - 19.5 

Tobacco - 16.5 12.5 14.5 11.5 
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Figure 20: NSDUH hazard functions for the five class solution 
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Figure 21: NSDUH lifetime distribution functions for the five class solution 
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 The main difference in the six class solution was that there were now two classes 

(class 2 and 3) which could be characterized as “soft drug users.”   Class 2 (“early soft 

drug users,” 2 = 0.121) has earlier median event times for alcohol (14.5), tobacco (13.5), 

and marijuana (16.5) than class 3 (“later soft drug users,” 3 = 0.267) which had median 

event times of 16.5, 17.5, and 20.5, respectively.  The “early soft drug users” also had 

overall higher cumulative probability of marijuana use 
30D̂  = 0.69 versus 

30D̂  = 0.60. 

Note that while the differences were mainly in age and level, there was a slight difference 

in pattern in that the “early soft drug users” were more likely to initiate tobacco use at an 

earlier age than alcohol, versus the “later soft drug users” which had about the same risk 

for alcohol and tobacco initiation at early ages.  

Class 4 (“mainly soft drug users,” 4 = 0.082) was also slightly different from the 

five class solution in that the cumulative probability of initiating hard drug use by age 30 

was higher (e.g. cocaine 
30D̂ =0.48 versus four class solution where 

30D̂ = 0.28).  The 

characteristic more linear risk for the events in this class remained the same as the five 

class solution. Class 1 (“relative abstainer,” 1 = 357), class 5 (“later hard drug users,” 5

= 0.109), and class 6 (“early hard drug users,” 6 = 0.063) remain virtually identical to 

the classes 1, 4 and 5 in the five class solution.  See Table 17 for the median event times, 

Figure 22 for the hazard functions, and Figure 23 for the lifetime distribution functions 

within each latent class. 
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Table 17: NSDUH median event time within each latent class for six class solution 

Event 

Relative 

Abstainer 

Early Soft 

Drug Use 

Later Soft 

Drug Use 

Mainly Soft 

Drug Use 

Later Hard 

Drug Use 

Early Hard 

Drug Use 

Alcohol 20.5 14.5 16.5 13.5 14.5 12.5 

Cocaine - - - - 20.5 16.5 

Hallu. - - - - 18.5 15.5 

Heroin - - - - - - 

Inhalant - - - - - 17.5 

Marijuana - 16.5 20.5 16.5 15.5 12.5 

NMUP - - - - 19.5 15.5 

Stimulant - - - - - 19.5 

Tobacco - 13.5 17.5 12.5 14.5 11.5 
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Figure 22: NSDUH hazard functions for the six class solution 
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Figure 23: NSDUH lifetime distribution functions for the six class solution 
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Examining the four to six class solutions, we mainly find differences in the age at 

which risk is highest as well as the overall level of risk (e.g. large similarities between 

“early soft drug use” class and “later soft drug use class”), rather than large differences in 

the pattern of drug use.  Depending on the end goal of the analysis, different solutions 

discussed above could easily be justified.  It is argued here that the four class solution is 

the most clear and interpretable from a policy and intervention viewpoint; for example, 

being able to establish differences between early and later soft drug use might not warrant 

the added complexity of additional latent classes, as the pattern is similar between the 

two classes and the risk of hard drug use is small across all time periods.  Instead, it 

might be useful to establish differences between the two classes of hard drug use as well 

as the differences between these classes and classes with a lower risk over time, and the 

four class solution allows us to parsimoniously investigate this. 

Thus, covariates will be investigated with four classes only in order to keep this 

empirical example tractable. Additionally, with the small number of covariates in this 

analysis, the general conclusions drawn in the four class solution were similar for the five 

to six class solutions.  The influence of covariates was again investigated both in terms of 

how covariates influence the probability of class membership and  through the model 

implied population functions weighted over latent classes.  Before doing so, however, the 

parameter estimates were compared from the solution with covariates influencing class 

membership (for a path diagram, see Figure 24) to the solution without covariates to 

check the stability of the hazard functions within latent class and the size of the latent 

classes. 
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The number of parameters is greatly reduced in comparison to the Add Health 

example in Chapter 3 due to the structured hazard functions.  Therefore, in comparing the 

hazard functions from the model without covariates to the model found with covariates, it 

is reasonable in this case to directly compare the logit parameters (Table 18).

Figure 24: NSDUH simple path diagram of model with covariates 
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Table 18: NSDUH logit parameters from model with covariates compared to  

model without covariates 

  Latent classes with covariates 
 

Latent classes without covariates 

Event Param. 1 2 3 4 
 

1 2 3 4 

Alcohol α0 -6.80 -4.29 -6.17 -1.64 
 

-6.83 -4.24 -6.15 -1.62 

 α1 9.12 6.17 16.76 1.66 
 

9.38 6.19 16.74 1.55 

 α2 -4.19 -1.30 -10.95 6.58 
 

-4.35 -1.31 -10.97 6.91 
Cocaine α0 -8.86 -10.41 -9.88 -6.96 

 
-8.95 -10.30 -9.97 -6.95 

 α1 0* 6.69 13.64 13.19 
 

0* 6.80 13.95 13.19 

 α2 0* -1.98 -5.72 -7.67 
 

0* -2.04 -5.88 -7.70 
Hall. α0 -8.79 -8.88 -9.61 -6.29 

 
-8.84 -8.77 -9.78 -6.27 

 α1 0* 5.56 16.07 14.11 
 

0* 5.69 16.62 14.09 

 α2 0* -2.07 -7.97 -9.56 
 

0* -2.14 -8.29 -9.59 
Heroin α0 -10.33 -10.83 -11.09 -7.41 

 
-10.37 -10.72 -11.04 -7.39 

 α1 0* 0* 9.13 6.84 
 

0* 0* 9.20 6.80 

 α2 0* 0* -3.54 -3.32 
 

0* 0* -3.58 -3.30 
Inhalants α0 -7.38 -5.25 -5.99 -3.91 

 
-7.40 -5.21 -5.99 -3.89 

 α1 0* 0.12 6.15 5.89 
 

0* 0.21 6.27 5.88 

 α2 0* -0.69 -3.37 -5.22 
 

0* -0.71 -3.45 -5.24 
Marijuana α0 -7.60 -6.10 -7.58 -3.09 

 
-7.76 -6.14 -7.56 -3.07 

 α1 3.13 9.28 18.52 10.20 
 

3.41 9.61 18.60 10.15 

 α2 -1.06 -5.29 -11.07 -7.74 
 

-1.15 -5.47 -11.14 -7.71 
NMUP α0 -6.39 -6.55 -6.28 -4.23 

 
-6.49 -6.54 -6.24 -4.21 

 α1 1.45 3.85 8.08 6.95 
 

1.56 3.99 8.10 6.91 

 α2 -0.74 -1.67 -3.91 -4.56 
 

-0.77 -1.73 -3.94 -4.56 
Stimulant α0 -8.31 -8.29 -7.93 -5.48 

 
-8.33 -8.30 -7.93 -5.47 

 α1 0* 4.33 9.36 8.84 
 

0* 4.57 9.48 8.86 

 α2 0* -1.79 -4.47 -6.21 
 

0* -1.89 -4.56 -6.26 
Tobacco α0 -5.20 -3.68 -4.48 -1.21 

 
-5.08 -3.66 -4.52 -1.19 

 α1 4.14 5.72 10.44 -0.75 
 

4.24 5.76 10.59 -0.86 

 α2 -2.18 -3.23 -6.66 11.52 
 

-2.28 -3.29 -6.78 12.00 
* = Parameter constrained 
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As can be seen, the parameters remain stable with the inclusion of covariates. Indeed, the 

correlation between the two sets of parameter values rounds to 1.00, implying the 

assumption that covariates only influence the probability of class membership had not 

been violated. 

The odds ratios for class membership are displayed in Table 19, computed with a 

Bonferroni correction for multiple comparisons with α = 0.05.  The odds of females being 

assigned to the any of the soft or hard drug use classes in comparison to the relative 

abstainers class is smaller than the odds for males.  The odds of females being in the early 

hard drug use compared to the soft drug use are likewise smaller than the odds for males. 

We find that the odds for Caucasians to be in any of the drug use classes in comparison to 

the relative abstainers class is larger than the odds for African-Americans, Hispanics, or 

those of other races.  Likewise, we find that the odds for Caucasians to be in either of the 

hard drug classes in comparison to the soft drug class is higher than the odds for African-

Americans. However, the odds for those of other races to be in the early hard drug class 

in comparison to the soft drug class is higher for those of other races than Caucasians. 

Interestingly, neither gender nor race significantly influence the probability of assignment 

to early hard drug use compared to late hard drug use. 
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Next, the model implied lifetime distribution functions weighting over latent 

classes were computed depending on gender, with race kept constant at Caucasian 

(Figure 25).  There seems to be almost no difference between the aggregate functions 

between males and females, other than males overall have a slightly higher risk for all of 

the events.  This is consistent with the odds ratios that found the odds for males being in 

the soft drug use class as well as hard drug use classes in comparison to the relative 

abstainers class was higher than the odds for females.  The average residual lifetime 

distribution probability between the functions for males and the functions for females is 

0.02. The largest difference is in the lifetime distribution function for marijuana, with the 

cumulative probability at age 30 equal to 0.62 for males and 0.56 for females.

Table 19: NSDUH odds ratios for class membership in four class solution 

  

Gender  Race 

Class Intercept Female  Black Hispanic Other 

2 v. 1 1.85 0.59  0.63 0.49 0.49 

 
(1.51,2.27) (0.52,0.67)  (0.52,0.76) (0.41,0.59) (0.39,0.62) 

3 v. 1 0.87 0.55  0.23 0.43 0.5 

 

(0.67,1.12) (0.47,0.64)  (0.17,0.33) (0.35,0.54) (0.39,0.65) 

4 v. 1 0.49 0.50  0.24 0.48 0.72 

 
(0.37,0.64) (0.42,0.59)  (0.17,0.33) (0.38,0.61) (0.55,0.93) 

   

 

   3 v. 2 0.47 0.94  0.37 0.88 1.02 

 
(0.40,0.54) (0.79,1.11)  (0.25,0.56) (0.69,1.13) (0.75,1.37) 

4 v. 2 0.26 0.84  0.38 0.98 1.46 

 
(0.22,0.32) (0.72,0.99)  (0.26,0.54) (0.77,1.23) (1.12,1.90) 

   

 

   4 v. 3 0.57 0.90  1.01 1.10 1.43 

 
(0.45,0.70) (0.73,1.11)  (0.60,1.69) (0.82,1.49) (1.03,1.99) 
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Finally, model implied lifetime distribution functions were computed depending 

on race, with gender kept constant at male.  The overall pattern again seemed to be 

similar across races, as implied by the model, but there were differences in level, with 

Caucasians having a higher lifetime distribution functions for all the events across all 

ages.  In the scale of the lifetime distribution function, Caucasians were on average 0.03 

higher than all other races.  

Figure 25: NSDUH four class model implied lifetime distribution functions depending 

on gender 
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The last step was to attempt to cross-validate the model, specifically looking to 

examine whether this final solution would fit the validation sample well and whether the 

same conclusions would be drawn in terms of the effects of covariates on the onset of 

different substances.  First, the four class model without covariates was fit to the 

validation sample with all parameters constrained to the solution found in the evaluation 

sample.  Measures of discrepancy – ARD and ARH – between the model imposed 

Figure 26: NSDUH four class model implied lifetime distribution functions depending on race 
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functions weighting over latent classes and the validation sample observed functions 

were computed to cross-validate the model in terms of recovery of the aggregate 

population functions (Cudeck & Browne, 1983).  The model fit the validation sample 

nearly as well (compare evaluation sample ARH = 0.019, ARD = 0.005 with validation 

sample ARH = 0.019, ARD = 0.007).  This speaks to the general consistency in the hazard 

and lifetime distribution functions between the two samples, but only references the 

ability of the latent classes to aggregate back to the population. 

The next validation step that was taken was to again fit the four class model to the 

validation sample with all parameters constrained to the solution found in the evaluation 

sample, only allowing the effects of the covariates to be freely estimated on the 

probability of class membership.  This was done in order to determine whether the 

covariates would have similar effects in the validation sample if the hazard functions 

within latent classes were equal to those found in the evaluation sample.  Overall, the 

effects of the covariates were found to be equal in the validation sample.  Predicted 

probabilities of class membership based on gender (holding race constant at Caucasian) 

and race (holding gender constant at male) are displayed in Table 20.  The correlation 

between the predicted probabilities between the evaluation and validation sample is 0.99.



 

 

 

 

Table 20: Predicted probabilities of class membership in NSDUH 

evaluation and validation sample depending on covariates 
 

 Evaluation Sample 

 Gender  Race 

Latent 

Class Males Females 
 African-

American Hispanic Other 

Relative 

Abstainers 0.24 0.36 
 

0.40 0.40 0.37 

       Soft Drug 

Use 0.44 0.39 
 

0.47 0.36 0.34 

       Later Hard 

Drug Use 0.21 0.17 
 

0.08 0.15 0.16 

       Early Hard 

Drug Use 0.12 0.09 
 

0.05 0.09 0.13 
 

 

Validation Sample 

  Gender  Race 

Latent 

Class Males Females 
 African-

American Hispanic Other 

Relative 

Abstainers 0.25 0.37 
 

0.41 0.42 0.40 

       Soft Drug 

Use 0.45 0.38 
 

0.47 0.36 0.34 

       Later Hard 

Drug Use 0.19 0.16 
 

0.08 0.14 0.15 

       Early Hard 

Drug Use 0.11 0.09 
 

0.04 0.09 0.11 
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In order to evaluate the within-class estimates, the MEPSUM model with 

covariates affecting class membership was also fit independently in the validation 

sample.  The only constraints that were placed in this final validation analysis were the 

ones that were placed in the evaluation sample (i.e. constraining the slope and quadratic 

function to be 0 for low risk events within a class), rather than fixing the measurement of 

hazard functions within latent classes.  See Table 21 for the validation sample logit 

parameter estimates.  The validation sample parameter estimates correlated 0.97 with the 

evaluation sample estimates, which were listed above in Table 18. 
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Additionally, the effects of the covariates on class membership were highly 

correlated between the evaluation sample and validation sample, even when the only 

constraints were fixing the slope and quadratic factor to 0 for low risk events rather than 

constraining the hazard functions within class to be equal to the evaluation sample.  With 

the last class as a referent, the multinomial logit parameters are given below in Table 22. 

Table 21: NSDUH validation sample logit parameter estimates 

  Latent classes with covariates 

Event Parameter 1 2 3 4 

Alcohol α0 -7.03 -4.07 -6.70 -1.60 

 α1 10.09 6.28 18.30 -0.44 

 α2 -4.78 -1.76 -11.99 12.35 
Cocaine α0 -9.48 -9.75 -10.72 -6.43 

 α1 0* 6.63 16.28 11.11 

 α2 0* -2.05 -7.36 -6.13 
Hallu. α0 -8.50 -8.95 -10.38 -6.05 

 α1 0* 7.04 18.60 13.21 

 α2 0* -2.80 -9.62 -8.88 
Heroin α0 -10.78 -9.27 -10.19 -7.03 

 α1 0* 0* 7.59 6.60 

 α2 0* 0* -2.75 -3.44 
Inhalants α0 -7.42 -4.99 -6.30 -3.84 

 α1 0* -0.16 7.62 5.41 

 α2 0* -0.51 -4.40 -4.75 
Marijuana α0 -8.23 -5.87 -8.02 -2.65 

 α1 4.45 9.43 19.69 5.03 

 α2 -1.54 -5.40 -11.69 3.67 
NMUP α0 -6.29 -6.01 -7.09 -4.19 

 α1 0.94 2.91 10.75 6.80 

 α2 -0.44 -1.15 -5.54 -4.48 
Stimulant α0 -8.54 -8.25 -8.50 -5.17 

 α1 0* 4.33 11.33 7.42 

 α2 0* -1.65 -5.74 -5.11 
Tobacco α0 -5.15 -3.45 -4.94 -1.28 

 α1 4.77 5.23 12.39 0.02 
  α2 -2.63 -2.98 -8.16 8.18 

* = Parameter constraint 
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The only different substantive conclusion drawn was that the odds for females being in 

the early hard drug class in comparison to the soft drug class was not significantly 

different than the odds for males, while the same odds for females in the evaluation 

sample was significantly smaller than the odds for males.  However, all other conclusions 

remain the same, and the correlation between the parameters in the evaluation sample and 

validation sample with the last class as a referent is 0.98. 

 Thus, the model cross-validated well in the second half of the NSDUH sample, as 

the hazard functions within latent class were found to be very similar between the two 

subsamples, as was the effects of covariates on membership in the latent classes. It is 

important to note, however, that the sample size was very large in both the evaluation and 

the validation sample. The large sample size likely influenced the validation procedure, 

and the cross-validation results may not have been as strong at a more modest sample 

size. 

4.3 Discussion 

The risk for first use of the different substances was modeled using quadratic 

hazard functions within class, and there was not one clear optimal solution for the 

number of classes.  This analysis provides an example of how – in an indirect application 

Table 22: NSDUH multinomial logit parameters for class membership in evaluation and 

validation sample, with last class “early hard drug users” as a referent 

 

Sample Latent Class Intercept Female Black Hispanic Other Race 

Evaluation Relative Abstainers 0.71 0.70 1.44 0.74 0.33 

 
Soft Drug Use 1.33 0.17 0.98 0.02 -0.38 

 
Later Hard Drug 0.57 0.11 -0.01 -0.10 -0.36 

       Validation Relative Abstainers 0.95 0.58 1.47 0.64 0.36 

 
Soft Drug Use 1.40 0.03 1.13 -0.04 -0.29 

 
Later Hard Drug 0.47 0.06 -0.01 -0.17 -0.39 
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of mixture modeling –  the end goal is description of the underlying multivariate 

distribution rather than deciding on the “true” number of subpopulations of individuals in 

terms of risk for initiating different substances.  While covariates were investigated in the 

four class solution only to keep the scope of the example tractable, it would also be 

possible to compare model implied functions found using different number of classes and 

to compare substantive conclusions depending on the number of classes.  Indeed, these 

analysis steps could even be used to determine the most appropriate number of classes to 

effectively describe the underlying multivariate distribution and the influence of 

covariates on this distribution.  

In the four class solution, the first class represented relative abstainers with a 

relatively low cumulative probability of initiating alcohol and tobacco use, and near zero 

risk for all other substances.  The second class of hazard functions could be described as 

soft drug users, with a high risk of initiating alcohol and tobacco, and a moderate risk of 

marijuana use.  The third and fourth classes had a higher cumulative probability of 

initiating all drugs. In the third and fourth class, the hazard functions for alcohol, tobacco, 

and marijuana were found to be higher at earlier ages than the hazard functions for other 

harder substances, consistent with the gateway drug hypothesis.  The five class solution 

was similar, only with a class emerging with a more linear risk of initiating substance use 

across the age range, which also had a small – rather than near zero like the other soft 

drug use class – cumulative probability of hard drug use by age 30.  In the six class 

solution, the previous class of “soft drug users” was divided, with one class having a 

delayed risk of initiating substance use in comparison to the other.  Gender and race were 

found to significantly predict class membership, and males and Caucasians were 
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generally more likely to be in the soft and hard drug use classes in comparison to the 

relative abstainers class. 

One interesting finding was that across all solutions, when comparing classes with 

similar patterns which differed in the age of peak risk and overall cumulative probability, 

the classes with earlier risk had higher overall cumulative probabilities of initiating drug 

use.  For example, “later hard drug users” in the four class solution had smaller overall 

cumulative probabilities of initiating all substances than the “early hard drug users.” 

Similarly, the “later soft drug users” class in the six class solution had a smaller 

cumulative probability of using the different substances than the “early soft drug users.” 

This suggests that the age of initiating drug use is related to the probability of initiating 

subsequent drugs.  

The differences found between the latent classes were mainly differences in the 

age of peak risk and the overall level, rather than large differences in the pattern.  For 

example, no classes emerged that had higher earlier risk of a hard drug and later high risk 

of tobacco, alcohol, or marijuana.  However, there were subtle differences, such as higher 

risk of tobacco at earlier ages in comparison to alcohol in the “early soft drug users” class 

in comparison to the “later soft drug users” class where the risk of alcohol and tobacco 

were similar at early ages.  The latent classes were cross-validated in a split sample 

analysis.  The hazard functions within latent class, as well as the effect of covariates on 

class membership, were found to be extremely similar in the evaluation and validation 

sample.  However, this is limited somewhat in that the data were drawn from the same 

NSDUH sample; future work should look to cross-validate in an independent sample and 

to investigate the influence of other covariates on patterns found. 
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Related to cross-validation of the effects of covariates and on patterns of risk for 

substance use over time, it is interesting to note that the patterns of first use of substances 

are highly dependent on the time measure for the age of first use.  In this example, data 

were collected retrospectively and the timing was measured to the nearest age.  In almost 

all of the latent classes, the risk for alcohol, tobacco, and marijuana peaked at or close to 

the same age within a latent class.  Similarly, the risk for other harder substances tended 

to peak around the same age within a latent class.  Another study might find different 

patterns if the age range was narrowed, allowing a more detailed level of analysis of the 

risk for the events over time.  This again relates to why the MEPSUM model should be 

used as a parsimonious description of the underlying distribution rather than a tool to 

discover the “true” number of subpopulations with similar risk for the events over time. 



 

 

 

 

 

 

CHAPTER 5 

DISCUSSION 

 A discrete-time multiple event process survival mixture (MEPSUM) model was 

introduced in this paper, which allows researchers to investigate the order and timing of 

multiple non-repeatable events that can occur at the same point in time.  Both to be 

consistent with psychological and sociological theories, as well as to understand how the 

events are related to each other, it is important to consider the relationship between the 

hazard functions rather than to dissect the events in order to apply more traditional 

methods.  A small simulation study was conducted and the MEPSUM model was applied 

in two empirical examples, and general conclusions, limitations, and areas for future 

research will now be discussed. 

5.1 Simulation Study  

A small simulation study was used in Chapter 2 to demonstrate the ability of the 

model to recover parameters from data generated under the assumption there are a finite 

number of subpopulations with the same risk for multiple events over time.  The 

simulation found minimal bias in recovering the overall average of the hazard 

parameters, and recovery was best when the class separation was better and there were 

more events under study.  The number of time periods had an interesting effect, in that 

bias was actually worse in the scale of the hazard, due to poor recovery in the high risk 
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class, due to the diminishing risk set.  However, in the scale of the lifetime distribution 

function, the bias on average decreased as the number of time periods increased.  

The simulation was purposely small in scope, and many future directions are 

possible.  First, the number of latent classes could be varied and models with different 

numbers of latent classes could be fit to investigate both optimal methods of model 

selection and influence of the selection on recovery.  Additionally, the shape of the 

hazards could be varied and other forms of hazard functions could be investigated.  The 

role of covariates and sample size are two other important aspects of the model that 

should be investigated further.  

One important issue with the simulation is that the population was generated 

under the assumption there is truly a small number of latent groups with the same risk for 

multiple events over time, as is common in mixture modeling simulations (e.g. Lubke, & 

Neale, 2006; Lubke & Muthén, 2007).  This simplified the process of analyzing recovery 

of the population parameters, and the goal of the simulation was just to demonstrate it 

could recover these parameters from data generated under the model.  Yet as was 

discussed in Chapter 2, the purpose of the model is to approximate a complicated, but 

likely continuous, underlying multivariate distribution of hazard functions.  The results 

from the simulation are thus limited in that they do not address a fundamental question of 

how the model could recover the population structure when there is not truly a small and 

finite number of latent groups.  Thinking about the model in this way creates many new 

and interesting questions for future simulation research. 
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5.2 Empirical Examples 

In Chapter 3, the MEPSUM model was used to capture heterogeneity in the 

hazard functions for multiple life course events and it found that gender, race, and 

parental education all significantly influenced latent class membership.  A small number 

of categorical covariates was investigated, and a large sample size allowed stratification 

of the sample by different levels of covariates and comparison of model implied 

functions to sample estimated functions.  Overall, there was general consistency in the 

functions implied by the model and the sample observed functions, such as females 

having a larger probability of parenthood at earlier ages than males.  

While the model captured many trends exhibited by the sample-estimated hazard 

functions, the group differences were actually more exaggerated in the sample than in the 

model implied lifetime distribution functions.  For example, the model implied those with 

neither parent earning a high school degree were less likely to obtain a college degree 

than others, yet this difference was larger in the sample than implied in the model.  The 

statistical power of the model to detect differences in the simultaneous risk of multiple 

events over time should be investigated in future research, especially how model 

selection could possibly influence substantive conclusions and the power to detect the 

influence of covariates. 

In Chapter 4, the MEPSUM model was used to investigate the risk for first use of 

nine substances, and a quadratic form of the hazard functions was determined to be 

optimal.  This example was useful in examining model performance when there are many 

events, especially when some of the events have a very low risk of occurrence.  It was 

found to be necessary to constrain the intercepts of the quadratic functions to be greater 
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than a certain value in order to identify the parameters of the model.  The model found 

that gender and race both significantly influenced heterogeneity in the risk for the events 

over time, and the model cross-validated well in a split sample validation.  Results 

suggested that the age of first use is related to subsequent use, and that males and 

Caucasians are at particularly high risk for initiating hard drug use. 

One important assumption that was made in this analysis was that the latent 

classes were equivalent across different cohorts of individuals.  However, it is possible, 

even likely, that the risk of first use of different substances and the patterns of risk for 

multiple events over time has evolved over time.  The range of ages in NSDUH is wide, 

and one interesting future research project would be to conduct a cohort analysis to 

examine the influence this might have on measuring the multivariate distribution of risk 

for multiple events, especially given that the large sample size in this data set can likely 

support such analysis.  

5.3 Other Limitations and Future Directions 

One limitation of this research project was that both empirical examples that were 

considered had a very large sample size.  It is likely that a fairly large sample size is 

necessary for this model, as the model aims to determine patterns of risk for the events 

over time simply using binary variables on the timing of each event, but what exactly 

constitutes a “fairly large sample size” is unclear.  This is an area for future research, but 

it is likely that the sample size necessary will depend in large part on the specifics of the 

data, such as the number of events, sample risk for the events, and number of time 

periods considered.  A final limitation is that in both examples only a small number of 

covariates were examined, and neither a multiple group model nor direct effects were 
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deemed necessary, as the model appeared stable after entering covariates.  How the 

model performs with numerous covariates and with more complicated inclusions of 

covariates is yet to be seen. 

 This research should be extended to other situations common in the social and 

behavioral sciences, such as repeatable events.  Combining the model with other 

frameworks might also be an interesting future direction, for situations when some of the 

variables in questions are appropriate for the MEPSUM model while others have more 

information (such as a continuous outcome measured over time).  Additionally, how to 

model outcomes of patterns found, and how to consider mediation in this context is an 

area for future research.  While there are many possible future directions, the model 

proposed in this paper provides an important framework from which to evaluate the 

interdependencies of multiple events which may occur at the same point in discrete-time. 
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APPENDIX 

Table 23: Average estimated standard deviation of all of the hazard parameters  

    

Class Separation 

    

Good 

 

Poor 

Events   

Time 

Periods   

High 

Class 

Medium 

Class 

Low 

Class Average   

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

0.451 0.583 0.950 0.661 

 

0.217 0.975 1.376 0.856 

  

10 

 

0.506 0.621 0.205 0.444 

 

0.414 0.852 1.672 0.980 

  

20 

 

1.229 0.443 0.155 0.609 

 

1.985 0.689 1.562 1.412 

8 

 

5 

 

0.080 0.119 0.127 0.109 

 

0.098 0.130 0.164 0.131 

  

10 

 

0.133 0.103 0.107 0.114 

 

0.174 0.125 0.387 0.229 

  

20 

 

0.898 0.154 0.112 0.388 

 

0.875 0.208 0.893 0.659 

 

Table 24: Empirical average standard deviation of all of the hazard parameters over the 

100 replications 

    

Class Separation 

    

Good 

 

Poor 

Events   

Time 

Periods   

High 

Class 

Medium 

Class 

Low 

Class Average   

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

1.039 1.915 1.834 1.596 

 

0.507 2.199 2.197 1.634 

  

10 

 

0.652 0.354 0.181 0.396 

 

0.632 1.586 2.758 1.659 

  

20 

 

2.258 0.678 0.144 1.027 

 

2.903 2.415 2.686 2.668 

8 

 

5 

 

0.075 0.119 0.119 0.105 

 

0.092 0.122 0.151 0.122 

  

10 

 

0.134 0.100 0.104 0.113 

 

0.176 0.115 0.336 0.209 

  

20 

 

2.134 0.154 0.112 0.800 

 

2.458 0.379 1.746 1.528 

 

Table 25: Ratio of estimated average standard deviation of hazard parameters to 

empirical average standard deviation of all of the hazard parameters over 100 

replications  

    

Class Separation 

    

Good 

 

Poor 

Events   

Time 

Periods   

High 

Class 

Medium 

Class 

Low 

Class Average   

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

0.435 0.305 0.518 0.419 

 

0.428 0.443 0.626 0.499 

  

10 

 

0.776 1.755 1.133 1.221 

 

0.655 0.537 0.606 0.600 

  

20 

 

0.544 0.653 1.071 0.756 

 

0.684 0.285 0.582 0.517 

8 

 

5 

 

1.067 0.999 1.069 1.045 

 

1.057 1.064 1.086 1.069 

  

10 

 

0.991 1.029 1.025 1.015 

 

0.988 1.082 1.152 1.074 

  

20 

 

0.421 1.002 0.999 0.807 

 

0.356 0.549 0.512 0.472 
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Table 26: Bias in average logit 

    

Class Separation 

    

Good 

 

Poor 

Events   

Time 

Periods   

High 

Class 

Medium 

Class 

Low 

Class 

Absolute 

Average   

High 

Class 

Medium 

Class 

Mixed 

Class 

Absolute 

Average 

4 

 

5 

 

-0.047 0.264 0.322 0.211 

 

-0.301 0.327 0.037 0.222 

  

10 

 

0.037 0.031 0.010 0.026 

 

0.040 0.248 0.355 0.214 

  

20 

 

0.933 0.098 0.006 0.346 

 

1.232 0.467 1.203 0.967 

8 

 

5 

 

0.003 0.009 0.011 0.008 

 

0.001 0.007 0.003 0.004 

  

10 

 

0.004 0.006 0.006 0.005 

 

-0.014 0.005 -0.023 0.014 

  

20 

 

0.657 0.015 0.008 0.227 

 

0.915 0.032 0.728 0.559 

 

Table 27: Absolute bias in logit  

    

Class Separation 

    

Good 

 

Poor 

Events   

Time 

Periods   

High 

Class 

Medium 

Class 

Low 

Class Average   

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

0.409 0.721 0.589 0.573 

 

0.636 0.522 0.985 0.714 

  

10 

 

0.326 0.221 0.132 0.226 

 

0.618 0.442 1.059 0.706 

  

20 

 

1.483 0.329 0.113 0.642 

 

1.794 0.752 1.551 1.365 

8 

 

5 

 

0.064 0.093 0.097 0.084 

 

0.088 0.084 0.118 0.097 

  

10 

 

0.105 0.081 0.084 0.090 

 

0.184 0.089 0.201 0.158 

  

20 

 

1.420 0.121 0.089 0.543 

 

1.685 0.165 1.205 1.019 

 

Table 28: Proportion of 95% confidence interval coverage of logit parameters 

    

Class Separation 

    

Good 

 

Poor 

Events   

Time 

Periods   

High 

Class 

Medium 

Class 

Low 

Class Average   

High 

Class 

Medium 

Class 

Mixed 

Class Average 

4 

 

5 

 

0.766 0.647 0.818 0.744 

 

0.812 0.881 0.786 0.826 

  

10 

 

0.938 0.951 0.959 0.949 

 

0.811 0.918 0.830 0.853 

  

20 

 

0.870 0.982 0.963 0.938 

 

0.769 0.902 0.831 0.834 

8 

 

5 

 

0.958 0.958 0.959 0.958 

 

0.961 0.960 0.969 0.963 

  

10 

 

0.953 0.957 0.954 0.954 

 

0.969 0.961 0.972 0.968 

  

20 

 

0.897 0.959 0.954 0.937 

 

0.886 0.967 0.921 0.925 
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