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ABSTRACT 
 

Colleen Bove: Regional and species level responses of Scleractinian corals under global 
change within the Caribbean Sea 

(Under the direction of Karl D. Castillo) 
 

Human-induced global change has caused rapid increases in ocean temperature 

(warming) and declines in seawater pH (acidification), and are expected to have negative 

impacts on tropical reef-building corals globally. Abnormally high seawater temperatures 

disrupt the symbiosis between corals and their algal endosymbiont in a process known as 

‘coral bleaching.’ During such bleaching events, calcification rates decline and physiological 

processes deteriorate. Additionally, corals rely heavily on elevated seawater pH in order to 

support and maintain production of their calcium carbonate skeletons. Together, changes in 

ocean temperatures and seawater pH pose serious threats to coral reefs, foundational 

ecosystems that provide habitat for countless essential fisheries, while also acting as natural 

buffers from storms and providing major economic support for tropical coastal communities. 

Identifying how these global scale stressors impact Caribbean coral reefs is critical in 

understanding community composition and coral abundance on future reefs.  

This dissertation employs an interdisciplinary suite of techniques to assess the 

impacts of ocean acidification and warming on the growth and physiology of Caribbean 

corals to improve understandings of the responses of coral under projected global change, 

and provide a framework for similar future studies. Through the use of a meta-analysis 

(Chapter 1), I identified trends in coral calcification throughout the Greater Caribbean Sea in 
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response to experimental ocean acidification and warming, and performed quantitative 

assessment of experimental design effects on coral calcification rates. I then conducted a 93-

day simulated ocean acidification and warming mesocosm experiment to identify growth 

(Chapter 2, 4) and physiological (Chapter 3) responses of several species of common 

Caribbean corals. The results from this work highlight the diversity of responses of 

Caribbean corals to projected global change at individual and species levels, as well as 

between the coral host and algal endosymbiont. Overall, the variation in growth and 

physiological responses of these important Caribbean coral species under ocean acidification 

and warming is critical in predicting the future ‘winners’ and ‘losers’ of Caribbean reefs as 

global change unfolds. 
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INTRODUCTION 

 
Increasing atmospheric carbon dioxide from anthropogenic sources is of growing 

concern as global average pCO2 concentrations have now surpassed 400 μatm, and are rapidly 

approaching 410 μatm (Tans and Keeling 2017). Even with significant reductions in 

anthropogenic carbon emissions, associated atmospheric warming will likely exceed 2.0°C by 

the end of the century (Mauritsen and Pincus 2017, Raftery et al. 2017). This rapid change in 

atmospheric pCO2 has resulted in negative and often irreversible impacts on both terrestrial 

and marine ecosystems worldwide (Solomon et al. 2009, Pecl et al. 2017). In terrestrial 

ecosystems, rising surface temperatures have posed serious threats to many animals that are 

unable to cope with increasingly common and abnormally high thermal stress events (Caruso 

et al. 2014, Gunderson and Stillman 2015, Urban 2015, Pacifici et al. 2017). Similarly, marine 

ecosystems around the world are under unprecedented threats from global change stressors, 

especially ocean warming and ocean acidification (Sabine et al. 2004, Hoegh-Guldberg et al. 

2007, Doney et al. 2009, Burrows et al. 2011).  

Ocean warming is a major concern for marine organisms, especially at lower latitudes 

due to the projected loss of species richness as they migrate to higher latitudes seeking cooler 

waters (Burrows et al. 2014, Stuart-Smith et al. 2015). Reef-building corals are especially 

threatened, as they currently live within a degree of their thermal maxima (Jokiel and Coles 

1977, Kleypas et al. 1999). With increasing occurrence of record-breaking mass bleaching and 

mortality events, increasing SST will have huge consequences for the survival of corals 
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globally (Hughes et al. 2017b). Abnormally high seawater temperatures disrupt the symbiosis 

between corals and their endosymbiotic photosynthetic algal endosymbiont (Symbiodiniaceae) 

in a process known as ‘coral bleaching’ (Glynn 1991, Brown 1997). During thermal bleaching, 

calcification rates decline and physiological processes deteriorate (Jokiel and Coles 1977, 

Grottoli et al. 2006, Castillo et al. 2014, Davies et al. 2016). As a result, mortality rates increase 

due to the strong dependence of corals on their endosymbionts, which can contribute up to 

100% of their daily metabolic requirements (Muscatine et al. 1981). The breakdown of this 

important symbiosis during acute ocean warming events impacts the ability of reef-building 

corals to counter additional environmental stressors.  

Along with ocean warming, rising atmospheric pCO2 drives an increase in CO2 

dissolution into the world’s oceans, increasing bicarbonate ion concentrations [HCO3−] in 

seawater and reducing surface ocean pH, commonly referred to as ocean acidification (Orr et 

al. 2005). Calcifying marine organisms, especially reef-building corals, rely heavily on 

elevated seawater pH (relative to environmental seawater) and supersaturated aragonite 

saturation state (Ωar) at the site of calcification to precipitate their calcium carbonate (CaCO3) 

skeletons and shells (Orr et al. 2005, Schneider and Erez 2006, Doney et al. 2009). Studies 

have shown negative growth responses (Reynaud et al. 2003, Jury et al. 2010, Krief et al. 2010, 

Ries et al. 2010, Comeau et al. 2013b, Bove et al. 2019), a parabolic calcification response 

(Castillo et al. 2014), and no growth response (Reynaud et al. 2003, Jury et al. 2010, Bove et 

al. 2019) to increasing pCO2 concentrations.  

Recently, focus has shifted towards understanding how the combination of increasing 

pCO2 and temperature affect reef-building corals as these two climate stressors continue to co-

occur. In general, temperature seems to pose a greater threat to reef-building corals than pCO2 
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(Carricart-Ganivet et al. 2012, Chua et al. 2013, Castillo et al. 2014, Venti et al. 2014, Davies 

et al. 2016, Okazaki et al. 2017), however, the interaction of the two stressors may further 

complicate coral reef responses to climate change. For example, some studies have found the 

combination of pCO2 and temperature to cause a more negative growth response in corals than 

either stressor alone (Reynaud et al. 2003, Agostini et al. 2013, Horvath et al. 2016, Prada et 

al. 2017), while other studies report no interactive response (Edmunds et al. 2012, Schoepf et 

al. 2013, Okazaki et al. 2017, Bove et al. 2019). Numerous explanations have been suggested 

for the wide array of responses, including differences in heterotrophy rates or food availability 

(Edmunds 2011, Towle et al. 2015, Brown et al. 2018), evolutionary divergence and its role in 

the calcification process (Brown and Edmunds 2016), minute physiological control of the 

chemistry in the calcifying fluid (Agostini et al. 2013, Holcomb et al. 2014, Barott et al. 2015, 

Cai et al. 2016), and differences in experimental design and manipulation (Cornwall and Hurd 

2016).  

Although significant research has been performed to elucidate the response of reef-

building corals to ocean acidification and warming stress, several gaps in our knowledge still 

remain. For example, very few studies have been performed specifically on Caribbean reef-

building coral species, and often the scope of these studies is limited to a single species or 

measured response (Castillo et al. 2014, Horvath et al. 2016, Okazaki et al. 2017, Bove et al. 

2019). Additionally, fewer of these studies have measured multiple physiological and growth 

parameters in tandem (Grottoli et al. 2014, Towle et al. 2015). Understanding these studies in 

the context of one another provides the unique opportunity to identify potential regions or 

species more likely to persist under changing ocean condition, while identifying strengths or 

pitfalls in experimental design considerations. In order to fully understand the responses of 
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Caribbean reef-building corals under projected global change, it is imperative to build a region-

wide understanding of the growth responses of corals under simulated global change 

conditions through synthesis of multiple comprehensive studies. 

This PhD dissertation explores the responses of Caribbean corals under global change 

stressors, specifically ocean acidification and warming, using a variety of approaches to assess 

the future success of reef-building corals throughout the Greater Caribbean Sea. Chapter 1 

combines traditional meta-analytical techniques with additional analyses to synthesize 

previously reported Caribbean coral calcification rates in response to experimentally-induced 

ocean acidification and warming treatments. Chapter 2 quantifies skeletal growth and survival 

of four common Caribbean coral species in a 93-day ocean acidification and warming 

mesocosm experiment. Chapter 3 builds upon the previous chapter by assessing the 

physiological responses of the coral host and algal endosymbiont of three of the coral species 

included in the 93-day mesocosm experiment, and further investigating those physiological 

responses in one species through transcriptomic analyses. Finally, Chapter 4 quantifies minute 

alterations to the coral skeleton after prolonged exposure to ocean acidification and warming 

conditions in Siderastrea siderea to better understand how coral calcification is being altered 

by these global change stressors. Together, this dissertation identifies species-specific 

responses under global change, as well as the role of the coral host and algal endosymbiont in 

such responses, to understand how future Caribbean coral reefs may cope with changing ocean 

conditions.  
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CHAPTER 1: META-ANALYSIS REVEALS REDUCED CORAL CALCIFICATION 
UNDER PROJECTED OCEAN WARMING BUT NOT UNDER ACIDIFICATION 

ACROSS THE CARIBBEAN SEA1 

Introduction 

Reef-building corals provide the three-dimensional framework for tropical coral reef 

ecosystems across the globe, supporting many important ecological and economic goods and 

services (Costanza et al. 2014). However, coral reefs globally are experiencing declines in 

diversity and abundance (Pandolfi et al. 2003), raising concerns for the overall health of these 

essential ecosystems. Such changes in coral reef ecosystems are especially evident 

throughout the Caribbean Sea (Alvarez-Filip et al. 2009, Schutte et al. 2010). Declines in 

carbonate production rates (Perry et al. 2013) and reduced coral cover (Cote et al., 2005) on 

Caribbean reefs have shifted these ecosystems to less structurally complex reefs dominated 

by algae, sponges, and gorgonians (Norstrom et al. 2009). Over the past two decades, ocean 

warming and acidification have been identified as two of the primary stressors causing this 

shift and therefore there have been widespread efforts to better understand how coral reefs 

will likely respond to projected increases in these two human-induced global change stressors 

(Stoltenberg et al. , Kleypas et al. 1999, Doney et al. 2009, Enochs et al. 2016).  

The Intergovernmental Panel on Climate Change (IPCC) has projected that sea 

surface temperatures in the Caribbean region could rise between 0.6 and 3.0°C by the end of 

	
1 This chapter previously appeared as an article in Frontiers in Marine Science. The original citation is as 
follows: Bove C.B., Umbanhowar J., and Castillo K.D. “Meta-analysis reveals reduced coral calcification under 
projected ocean warming but not under acidification across the Caribbean Sea” Frontiers in Marine Science, 7, 
no. 127 (February 2020): 1–11. 
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the 21st century (ocean warming), and atmospheric pCO2 will surpass 600 μatm, causing 

surface ocean pH to decrease by 0.1–0.3 pH units (ocean acidification) (IPCC 2014). These 

projections pose significant threats to reef-building corals throughout the Caribbean, causing 

mass mortality events, reducing recruitment, deteriorating key physiological processes, and 

lowering coral calcification rates (Jokiel and Coles 1977, Grottoli et al. 2006, Davies et al. 

2016, Okazaki et al. 2017). Despite the consensus that global change will negatively affect 

Caribbean reef-building corals, the extent of these impacts vary widely by species, region, or 

measured physiological response parameter (Harvey et al. 2013). A great example of such 

variation in coral responses to ocean acidification and warming is seen in Okazaki et al. 

(2017) where some species exhibited no response to ocean acidification or warming while 

other corals in the same experiment exhibited reduced calcification under one or both 

stressors. Furthermore, a study conducted by Kenkel et al. (2015) demonstrated a variety of 

physiological responses (i.e., calcification and Symbiodiniaceae physiology) of corals under 

ocean warming even within a single species. Understanding the variability in coral responses 

depicted in previous studies under projected ocean acidification and warming will improve 

our ability to predict how coral reef ecosystems will be impacted under global change 

stressors. 

Meta-analyses are valuable tools for combining the findings from multiple studies to 

summarize results across the literature (Gurevitch and Hedges 1999). Although the use of 

meta-analyses to better understand biological responses to ocean acidification and warming 

are common (Kroeker et al. 2010, Harvey et al. 2013, Kelley and Lunden 2017), few have 

focused specifically on reef-building corals (Chan and Connolly 2013). Further, those 

analysing corals have not addressed the combined effects of ocean acidification and warming 
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(Harvey et al. 2013). Because these two stressors are not likely to act on reef-building corals 

independently from one another (Halpern et al. 2007), analyses that investigate the combined 

effects of acidification and warming provide a more realistic view of the future of tropical 

coral reefs. Caribbean coral reefs are experiencing region-wide declines more severely than 

reefs in the Red Sea and the Australian Great Barrier Reef (Pandolfi et al. 2003, Gattuso et al. 

2014), highlighting the need to study coral reefs on more local scales. Because of projected 

further declines in Caribbean coral reefs, a better understanding of how these global stressors 

are impacting reef-building corals within this ocean basin is necessary for predicting the 

future success of these important marine ecosystems.  

Here, we implement a meta-analysis approach of the peer-reviewed literature to 

investigate the impacts of experimentally induced ocean acidification, ocean warming, and 

the combination of acidification and warming on calcification responses of Caribbean corals 

under projected global change. This meta-analysis aims to address the following questions: 

(1) How do Caribbean corals respond to ocean acidification and ocean warming in isolation, 

and to the combined effects of acidification and warming? (2) How do coral calcification 

responses to these stressors vary by region within the Caribbean? In addressing these 

questions, this analysis will further the understanding of Caribbean-wide coral calcification 

responses under projected global change stressors, while providing future steps to improve 

this knowledge. 
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Methods  

Study selection 

Experimental studies conducted in the Caribbean Sea were identified using Google 

Scholar with the following search terms: "Caribbean coral," "ocean acidification," "ocean 

warming," “experiment,” “manipulation,” “control,” and “calcification.” Studies derived 

from the search were examined, and those that presented all of the following information 

were included in the meta-analysis: coral species, location of specimen collection, control 

and experimental temperature and/or control and experimental pCO2 values, method of 

experimental manipulation, duration of exposure to treatment conditions, and calcification 

rate. Studies altering ocean acidification treatments with acid additions (i.e., hydrochloric 

acid) were excluded from this meta-analysis because these do not represent ecologically 

relevant changes in carbonate chemistry. Several other studies that met these criteria not 

present in the literature search were also included in the meta-analysis. Studies were 

collected for analysis until September 2018.  

 

Data extraction and preparation  

Detailed information on the location where coral colonies were collected and 

experimental design of each study was recorded (Table S1.1). Several studies included 

multiple species, collection sites, or experimental factors. In these cases, each species and/or 

collection site was considered as a separate experiment such that multiple comparisons were 

made against the one control treatment. Although the inclusion of all species and collection 

sites could reduce independence of some data points, all possible combinations were 

included to expand the extent of species and location responses. Additionally, studies with 
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other experimental parameters outside of acidification and warming were only utilized in this 

study when these external factors were considered to be under ambient conditions to prevent 

confounding results (Chan and Connolly 2013). In studies that reported calcification over 

time, only the final growth rate was used in this analysis.  

For consistency in treatment analysis, only pCO2 concentrations were used as the 

measure of acidification manipulation because of the potentially large variation in pH scale 

based on measurement methods (Zeebe and Wolf-Gladrow 2001). The wide variety of 

reported experimental pCO2 values were categorized into one of the two categories: control 

or high. Below current-day or extreme pCO2 treatments from selected studies were not 

included in this analysis. In experiments in which more than one elevated pCO2 treatment 

was used to represent projected scenarios, the higher concentration treatment was selected for 

the meta-analysis. The pCO2 treatment considered as current-day or ambient for each 

experiment was categorized in the ‘control’ group, despite variations in pCO2 concentrations 

due to experimental design (380 – 513 μatm). Similarly, temperature treatments were 

categorized as either ‘control’ when reported to represent current-day or ambient conditions 

(26 – 30.6 °C), or as ‘elevated’ in experiments testing warming scenarios (30 – 32 °C). No 

study selected analysed the impact of multiple warming levels. 

Calcification rate was chosen as the response parameter in this meta-analysis due to 

its common use as a stress response in manipulations experiments on Caribbean corals. Mean 

calcification rate, standard error, and sample size of each experiment was extracted from all 

included studies for the desired treatments. When raw data were not reported, values were 

mined from the literature using Web Plot Digitizer for analysis 

(https://apps.automeris.io/wpd/). Two coral species exhibited net dissolution in the control 



10	
 
	
	

treatments and therefore were excluded from this analysis because of potential bias from 

additional unknown stressors.  

 

Calculation of effect size 

Calcification rates in response to independent ocean acidification and warming 

treatments were measured for each experiment using standard mean differences (SMD), or 

Hedge’s G, to establish the proportion of change between the treatment and control. SMDs 

were used in this analysis because of the presence of negative calcification rates in some 

treatments. Analyses were performed in the R (R Core Development Team 2016) package 

metafor (version 2.0–0) (Viechtbauer 2010) to calculate effect sizes (SMD) per experiment.  

The interaction strength of ocean acidification and warming was determined using 

methods for factorial meta-analysis (Crain et al. 2008, Harvey et al. 2013). Only studies that 

reported outcomes for a fully factorial experiment including acidification (YOA), warming 

(YOW), the combination of the two (Yboth), and a control (YC) were used to calculate the 

interaction effect size. The interaction strength was calculated as 

SMDboth = !
(Yboth- YOW)- (YOA- TC)

2s $ 

where Y is the mean calcification response for the denoted treatment, and s is the pooled 

standard deviation. Control values are denoted by subscript C, ocean acidification is denoted 

by subscript OA, warming is denoted by subscript OW, and the combination treatment is 

represented by subscript both. The sample variance of the effect size was calculated as 

sN 
2 (SMDboth)= 

1
NOA

 + 
1

NOW
 + 

1
Nboth

 + 
1

NC
 + 

SMDboth
2

2 (NOA+ NOW + Nboth + NC) 

where N is the sample size of the indicated treatment.  
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Statistical analyses 

A random effects model was implemented using the metafor package (function 

rma.mv) to calculate the mean effect of each treatment on calcification to account for 

variation in responses due to species and study design. To assess the effects of study design 

parameters on resulting calcification rates in either acidification or warming studies, two 

fully additive random effects models (function rma.mv) were fit with magnitude change 

between control and treatment, irradiance (µmol photons m-2 s-1), and duration (days) as 

continuous predictors, and seawater (natural versus artificial) and feeding (2 times a week, 3 

times a week, or no data) were assessed as discrete predictors. An additional model was used 

to compare effect sizes of corals by region. For this model, only corals collected from the 

Florida Keys or Belize were considered because of the larger sample sizes from these 

regions. Random intercepts of study and species within treatment were included to account 

for potential correlation among results due to these factors. When the 95% confidence 

intervals of each estimated mean do not overlap zero, the effect size is considered clear 

statistical evidence. A test of moderators (QM) was used to determine differences between 

variables (temperature and/or region). Additionally, tests for residual heterogeneity (QE) were 

performed, with QE signifying that additional moderators not considered may be impacting 

the study results (Tables S1.2, S1.3).  

To better understand the qualitative differences in calcification responses of corals 

from Florida and Belize to ocean acidification and warming, linear mixed effects models 

with observations weighted by sample size divided by standard error were fit using the lme4 

package (version 1.1–21) (Bates et al. 2015a). Using all warming studies, we compared 

models with measured calcification rates as response variable and coral collection region, 
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scaled temperature, and experiment duration as predictors with random slopes for study and 

species. We also fit a quadratic effect of temperature. Model selection using AICc was 

completed with random effects for species and study. A similar analysis was performed using 

reported aragonite saturation state (ΩArag) of each treatment to better assess ocean 

acidification on calcification rates. 

 

Results 

In total, eleven studies met the standards of this meta-analysis, including the 

responses of thirteen Caribbean coral species collected from five different countries across 

the Greater Caribbean Sea (Figure 1.1; Table S1.1). Of the studies selected, only four 

performed fully factorial ocean acidification and warming experiments, and one performed 

two independent acidification and warming experiments. The most studied coral species from 

the Caribbean region were Porites astreoides (5 studies), Acropora cervicornis (4 studies), 

and Siderastrea siderea (4 studies). Finally, the Florida Keys and Belize were the two most-

studied regions within the wider Caribbean fitting the criteria of this meta-analysis. 

 

Overall calcification response 

Meta-analysis of the dataset revealed that calcification rates of Caribbean corals were 

reduced by ocean warming but not ocean acidification (Figure 1.2; Figure S1.2). However, 

the 95% confidence interval of the combination of ocean warming and acidification 

overlapped zero, indicating no statistically clear trend towards synergistic or antagonistic 

effects of these treatments (Figure 1.2; Table S1.2). 
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Calcification response of Florida Keys versus Belize corals  

Corals from Belize only exhibited clearly reduced calcification rates under ocean 

warming (Figure 1.3A; Table S1.3), while acidification, warming, and the combination of 

both stressors did not clearly alter experimental calcification rates of corals from the Florida 

Keys (Figure 1.3B; Table S1.3). Further, the resulting QE suggests there is significant 

between-study variation (Table S1.3). 

 

Temperature and aragonite saturation state impacts on calcification rates across studies 

Secondary analysis of mean calcification rates (mg cm−2 day−1) against treatment 

temperature across all Florida and Belize studies revealed a parabolic response to 

temperature (Figure 1.4; Tables S1.4, S1.5). Similarly, mean calcification rates across ΩArag 

resulted in a nonlinear response to acidification (Figure 1.5; Tables S1.6, S1.7). Both 

nonlinear trends in response to temperature and ΩArag were a result of treatment rather than 

region (Tables S1.6, S1.7), suggesting regional differences identified in the meta-analysis 

were due to experimental designs employed to represent current regional environmental 

differences.  

 

Experimental design impacts on coral calcification rate in studies 

Quantification of experimental design parameters within warming studies identified 

that magnitude of treatment, irradiance, seawater type used, and feeding frequency all clearly 

impacted calcification rates ( 

Table 1.1). Specifically, studies that utilized natural seawater and those with a larger 

difference between the control and treatment temperatures within a study exhibited higher 
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effect sizes, suggesting a less negative effect of treatment. Studies that employed higher 

irradiance levels in their systems demonstrated more negative effects of treatment light level. 

Finally, studies that reported feeding their corals twice a week were less impacted by 

warming treatment than those feeding three times a week, however, studies with no data on 

feeding were the least affected by treatment. Duration of experiment was deemed redundant 

in the model and was thus dropped. 

Within the acidification studies, irradiance, seawater type used, feeding frequency, 

duration, and the interaction of duration with treatment magnitude impacted effect sizes, 

while magnitude alone was not clearly different ( 

Table 1.1). Studies using natural seawater, employing higher irradiance levels, and 

those with longer durations resulted in great effect sizes, suggesting they lessened the effects 

of acidification treatment on calcification responses. Similar to warming studies, acidification 

studies in which feeding corals was conducted twice a week exhibited less negative 

responses to treatment than those feeding three times a week, with studies reporting no 

feeding data exhibiting the least negative responses to treatment. Finally, coral calcification 

responses were less impacted by acidification in studies with longer duration of exposure and 

a greater pCO2 change.  

 

Discussion 

The current study utilized a meta-analytical approach to analyse the effects of ocean 

acidification, warming, and the combination of the two stressors on calcification rates of 

Caribbean corals. The two most-studied regions within the Greater Caribbean, the Florida 
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Keys and Belize, were further assessed for differences in calcification responses to ocean 

acidification, warming, and the combination of both stressors.  

 

Ocean warming, but not acidification, independently impairs calcification of Caribbean reef-
building corals 
	

Ocean warming alone induced an overall adverse effect on calcification rates of the 

Caribbean corals analysed in this meta-analysis, contrasting a previous meta-analysis 

assessing coral calcification rates from multiple ocean basins (Harvey et al. 2013). However, 

increased bleaching, mortality, and declines in coral growth in response to warming is well-

documented throughout the Caribbean Sea in field studies and reviews (Hughes et al. 2003, 

Hoegh-Guldberg et al. 2007, Carricart-Ganivet et al. 2012), supporting the overall reduced 

calcification rates to warming observed in the current meta-analysis. While there is evidence 

that suggests coral calcification rates, along with other physiological processes, increase 

along with warming seawater temperatures (Lough and Barnes 2000), the physiological 

advantages of warmer waters diminish when a thermal maxima is reached (Bahr et al. 2018, 

Silbiger et al. 2019). Ocean warming has also been closely associated with coral bleaching 

(Brown 1997) and since corals receive a significant proportion of their energetic need from 

their algal endosymbionts (Muscatine et al. 1981), it is likely that the loss of algal 

endosymbionts diminished energy reserves utilized in calcification. Thus, a significant 

number of corals in warming treatments from the included studies also likely exhibited signs 

of bleaching (i.e., reduced algal endosymbiont density) under elevated temperature, although 

bleaching was not assessed as a response variable in this meta-analysis due to low reporting 

and the diversity of bleaching metrics reported in the studies examined.  
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Ocean acidification did not clearly reduce calcification rates of Caribbean corals, 

contradictory to the findings of previous meta-analyses that have investigated the 

calcification response of tropical corals to ocean acidification from various other ocean 

basins (Kroeker et al. 2010, Chan and Connolly 2013, Harvey et al. 2013, Kroeker et al. 

2013). Coral calcification is influenced by the ΩArag of seawater, with higher ΩArag (lower 

pCO2) often promoting faster calcification rates (Langdon and Atkinson 2005). This 

aragonite-calcification relationship is most likely driven by corals’ ability to control ΩArag at 

their calcification site by pumping Ca2+ into the calcifying fluid from the surrounding 

seawater, removing two protons (H+) in the process, finally converting HCO3− to CO32− 

(Cohen and McConnaughey 2003, Allemand et al. 2010, Ries 2011, Von Euw et al. 2017). 

Thus, even under low aragonite saturation (high pCO2 ) corals that are able to elicit strong 

control over this process are likely to be more resilient against the effects of ocean 

acidification, although it may be energetically costly (Davies et al. 2016) and may impair 

other physiological processes. It is therefore likely that corals included in this meta-analysis 

that did not exhibit reduced calcification rates in association with simulated ocean 

acidification may have stronger control of their calcifying fluid to maintain comparable 

growth rates. Overall, corals from the studies included in the current meta-analysis exhibited 

variable responses under experimental seawater acidification, highlighting the diversity of 

responses to stress on the individual and species levels (Comeau et al. 2014, Okazaki et al. 

2017, Bove et al. 2019). 

Although ocean warming caused reduced calcification of Caribbean corals in the 

included studies, the combination of acidification with warming was not clearly different 

from the two independent stressors (Crain et al. 2008). Because only four studies tested the 
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combination of acidification and warming (Towle et al. 2015, Horvath et al. 2016, Okazaki et 

al. 2017, Bove et al. 2019), however, the sample size for the interaction term was very low. 

With this small samples size in conjunction with only about 17% of Caribbean reef-building 

coral species analysed in the current study, the potential for synergistic or additive effects 

should not be ignored. Because synergistic relationships can be unpredictable, especially 

when additional stressors are introduced (Harvey et al. 2013), it is important that additional 

combined stressor experiments be conducted to better understand the response of Caribbean 

reef-building corals to these interrelated stressors. 

 

Calcification responses to global change stressors vary by region within the Caribbean 

Coral calcification responses to ocean acidification, warming, and the combination of 

the two stressors varied between corals collected from the Florida Keys and those collected 

from Belize. Corals from the Florida Keys did not exhibit clearly reduced calcification rates 

under independent ocean acidification and warming, or the combination of ocean 

acidification and warming. However, corals from Belize reduced calcification rates from 

ocean warming treatments. This regional difference is likely due in part to adaptation of the 

corals in each region to their local environmental conditions (Oliver and Palumbi 2011, 

Putnam et al. 2017). Corals found off the coast of Belize experience a much narrower range 

of annual sea surface temperatures (ca 24–32°C) than corals located off the southern coast of 

Florida (ca 18–31°C) (Castillo and Lima 2010, Okazaki et al. 2017), resulting in a higher 

annual mean temperature in Belize than the Florida Keys. This difference in annual 

temperature variability has likely led to the adaptation of the corals in Florida to more 

extreme temperatures, resulting in different thermal susceptibilities than corals in Belize 
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(Marshall and Baird 2000, Guest et al. 2012) and may act as a potential pathways of 

adaptation or acclimatization to projected global change. Although statistically clear effect 

sizes may be due to variations in natal environments, differences in experimental treatment 

levels may also confound these results. Indeed, further analysis studies identified that 

treatment level predominately drove resulting calcification rates, not specifically collection 

region. Further, the resulting model fit to the calcification rates across temperature exhibited 

a quadratic fit, similar to what would be expected for a thermal performance curve (Portner et 

al. 2006). Reef-building corals generally exhibit a threshold response to ocean warming when 

a particularly high temperature or prolonged exposure to warming water causes bleaching, 

reduced growth rates, and mortality (Glynn 1996, Brown 1997). However, the treatment 

temperatures used in the Florida and Belize experiments represent warming scenarios 

specific to the corresponding region, highlighting already-present warming patterns of these 

regions. Indeed, elevated temperatures employed in studies using Belize corals were 1–2 °C 

higher than the elevated temperatures used in Florida experiments (31–32 versus 30 °C), 

reflecting differences in annual mean temperatures (Castillo and Lima 2010, Okazaki et al. 

2017). Additionally, the temperatures employed in the Florida Keys studies were 

representative of the bleaching threshold for the region (Manzello et al. 2007), while the 

Belize studies used end-of-century projections. Corals are known to live within a narrow 

thermal range (Kleypas et al. 1999) and the Florida studies tested the upper end of that 

threshold, while the Belize studies pushed beyond that limit. Consequently, the clear effect of 

temperature on Belize corals is due largely to the selected treatment temperature employed in 

each study, although this is likely indicative of differing warming patterns between these 

regions.  
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Overall coral calcification rates in response to region and treatment ΩArag across 

ocean acidification studies was also assessed, again resulting in a nonlinear response to 

changing seawater chemistry. Because response of corals to ocean acidification is heavily 

dependent on extent of seawater chemistry change, duration, and individual colony 

susceptibility (Orr et al. 2005, Ries et al. 2010, Schoepf et al. 2017), it is not surprising that 

the nonlinear response quantified in the present meta-analysis is not as dramatic as the 

temperature response. Although studies based their acidification treatments on projected end-

of-century concentrations relevant for the environment from which the corals were collected, 

this resulted in a wide range of experimental pCO2 concentrations (Belize 600–900 μatm 

versus 750–1340 μatm Florida Keys). While the exact relationship between calcification and 

pCO2 (or ΩArag) varies, the general relationship suggests increased pCO2 reduces coral 

calcification (Langdon and Atkinson 2005, Chan and Connolly 2013). Indeed, calcification 

rates of Caribbean corals exhibit a general decline in response to reduced ΩArag, similar to the 

15% decline in calcification reported by Chan and Connolly (2013) for every unit decrease in 

ΩArag. Although this is a significant decline in skeletal growth in terms of maintaining reef 

production, this reduction is much less dramatic than that of the measured calcification 

decline associated in the included ocean warming studies. This difference in threshold 

responses suggests that while acidification is going to be a chronic stressor continually 

impacting carbonate production and maintenance on coral reefs, increasing warming events 

will pose a more immediate and dramatic threat on the future of tropical coral reefs.  
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Experimental design considerations and recommendations for future research 

With such variation in study implementation and lingering gaps in the literature, 

results from this meta-analysis may not capture all underlying causes of calcification 

responses to ocean acidification, warming, and the combination of stressors. Several gaps in 

simulated global change studies using corals were identified in this meta-analysis including 

coral collection sites, variety of species included, and experimental design differences. 

Although corals from the Florida Keys and Belize were heavily represented in the meta-

analysis, only a single study collected corals from reefs south of Belize (Jury et al. 2010) and 

in the Eastern Caribbean (Bedwell-Ivers et al. 2017). This scattered sampling leaves much of 

the Caribbean understudied in regards to how coral reefs may respond to ocean acidification 

and warming as the two stressors continue to co-occur. Additionally, only about 17% of 

Caribbean coral diversity was represented, leaving out a significant percentage of coral 

species from the region, including several dominant reef-building species. Without having a 

better understanding of the calcification responses of other species within the Caribbean, 

meta-analyses like this will not be able to accurately predict potential reef-wide responses to 

global change. Future studies should consider what regions and species within the Caribbean 

have been extensively studied in similar ocean acidification and warming experiments and 

aim to expand outside of these regions and/or species in designing experiments.  

In addition to ensuring that experimental treatments (temperature and pCO2) represent 

ecologically relevant conditions, it is important to consider how experimental design dictates 

resulting coral calcification responses. For example, within all included studies in this meta-

analysis experimental duration ranged from two hours (Jury et al. 2010) up to 95 days 

(Castillo et al. 2014), with additional variation in seawater type used, irradiance, and how 
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corals received nutrition throughout the experiments (see Table 1.1; Table S1.1). Upon 

further inspection of these design differences in both warming and acidification studies, the 

use of natural seawater was associated with higher effect sizes, suggesting less negative 

responses to treatment than when using artificial seawater, likely due to the different 

buffering capacity of natural seawater compared to many artificial seawater products 

(Atkinson and Bingman 1997). By using natural seawater, especially taken from 

experimental corals’ native reef environments, mesocosm studies may also be able to 

accommodate more difficult to rear species to expand the range of species used in such 

experiments. However, the benefits of using artificial seawater (i.e., potential for more 

consistent results between studies) should also be weighed in the planning of mesocosm 

experiments. Additionally, reported feeding across both acidification and warming studies 

played a significant role in resulting coral calcification rates, with studies feeding corals 

twice weekly exhibiting less negative effects of treatment than in studies feeding three times. 

Although increased heterotrophy may alleviate stress associated with increasing temperatures 

and decreasing ΩArag (Towle et al. 2015, Brown et al. 2018), the higher nutrient load on the 

experimental systems as a result of increased feeding may harm physiological processes in 

the corals, reducing overall growth rates (D'Angelo and Wiedenmann 2014). Of the studies 

that did not report feeding frequency, all utilized natural seawater in their experimental 

systems, thus is it likely that the authors relied on natural nutrients and plankton abundances 

that were more beneficial for the corals. Efforts should be made to establish and report 

reasonable feeding practices (i.e., quantity, frequency, type of food) based on coral species, 

collection depth, and collection location for each study to reduce the impacts of starvation or 

overeating on measured coral responses. 
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Interestingly, the present meta-analysis identified that higher irradiance levels in 

warming studies were associated with more negative effects of warming on calcification 

rates, while higher irradiance in acidification studies potentially acted as a rescue effect in 

response to treatment, contrary to Chan and Connolly (2013). These results suggest that the 

combination of high light levels with warming seawater temperatures may exacerbate 

bleaching-associated reduced growth rates (Brown 1997), while higher light levels may 

alleviate the negative impacts of ocean acidification by stimulating photosynthesis of the 

coral algal endosymbionts (Suggett et al. 2013). In addition to different responses to 

irradiance between the two study types, experimental duration did not play a role in warming 

studies while longer acidification experiments exhibited slightly less negative responses to 

treatment, differing from the meta-analysis performed by Chan and Connolly (2013). 

However, longer acidification experiments with greater treatment magnitude exhibited more 

negative responses to treatment, likely indicative of ocean acidification being a chronic 

stressor while ocean warming is generally associated with acute stress events (Hoegh-

Guldberg et al. 2007). As further experiments are designed, care should be taken to use 

ecologically-relevant experimental durations that appropriately address questions being 

addressed. In order to understand how corals respond under chronic acidification and acute 

warming stress, future experiments should consider conducting such research on the scale of 

months to years as possible. The recommendations put forth in this study should be 

considered when designing future Caribbean coral global change studies, even those outside 

acidification and warming treatments, along with other previously suggested (Widdicombe et 

al. 2010) to improve the overall understanding of Caribbean corals under projected global 

change.  
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Conclusions  

Overall, results from this meta-analysis suggest the sensitivity of Caribbean corals to 

ocean warming, while also identifying several current knowledge gaps and potential 

opportunities for future research. Specifically, this analysis highlights the need for further 

studies including the combination of ocean acidification and warming, as well as expanding 

the research to additional Caribbean reef-building coral species and regions. Furthermore, 

although differences in calcification responses between the Florida Keys and Belize were 

detected in this meta-analysis, further analysis determined this difference was largely 

attributed to the treatments employed, highlighting the significance of experimental protocols 

in measured results. The studies reviewed in the current analysis exhibit a wide range of 

experimental designs, including variations in duration, feeding, irradiance, treatment levels, 

and even seawater. These variations in experimental implementation play a major role in the 

results of the current meta-analysis and suggest that consideration of previous experimental 

designs should be made when designing new experiments to make the results more 

comparable. Additionally, future meta-analyses of Caribbean corals should include additional 

parameters outside of calcification, such as bleaching, metabolism, and survival. The 

inclusion of additional responses will improve the overall understanding of how corals within 

the wider Caribbean may respond under projected ocean acidification and warming. Because 

ecosystem level experiments are difficult to conduct, meta-analyses are important tools for 

understanding the responses of a wide variety of species to projected global change stressors. 

This analysis provides valuable insight into the calcification response of corals throughout 

the Caribbean; however, further experiments must be conducted to expand understanding 

beyond the small selection of species and regions included in this meta-analysis.  
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Figure 1.1 Map of meta-analysis study sites 
Coral collection sites of all included studies with experimental study represented by colour 
and treatments represented by shape: acidification only (circle), warming only (triangle), and 
the combination of acidification and warming (square). The lower left insert displays close-
up of the Belize collection sites and the upper right insert displays the Florida Keys 
collection sites.  
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Figure 1.2 Global effect size of meta-analysis treatments 

Mean effect (standard mean difference) and 95% confidence interval of ocean acidification, 
warming, and the combination of acidification and warming on calcification rate for all 
studies in the meta-analysis. Grey circles indicate the effect size of each individual study and 
the size of each circle represents the weight of each study (1/SE). Clear statistical evidence of 
a treatment effect is identified when the 95% confidence interval does not overlap zero.  
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Figure 1.3 Regional effect size of meta-analysis treatments 

Mean effect (standard mean difference) and 95% confidence interval of ocean acidification, 
warming, and the combination of acidification and warming on calcification rate for (A) 
Belize corals and (B) Florida Keys corals. Grey circles indicate the effect size of each 
individual study and the size of each circle represents the weight of each study (1/SE). Clear 
statistical evidence of a treatment effect is identified when the 95% confidence interval does 
not overlap zero. 
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Figure 1.4 Magnitude analysis of temperature on calcification rates 

Mean calcification rate (mg cm−2 day−1) of corals from each warming study by treatment 
temperature (°C) with the linear mixed effects model quadratic fit by region and 
experimental duration (mean duration = 59.8 days). Shape and colour of each point denotes 
study region (blue circle = Belize; brown square = Florida) and size of shape represents the 
weight (1/SE) of study. 
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Figure 1.5 Magnitude analysis of aragonite saturation state on calcification rates 

Mean calcification rate (mg cm−2 day−1) of corals from each acidification study by treatment 
aragonite saturation state (ΩArag) with the linear mixed effects model quadratic fit by region 
and experimental duration (mean duration = 66.5 days). Shape and colour of each point 
denote study region (blue circle = Belize; brown square = Florida Keys) and size of shape 
represents the weight (1/SE) of study. 
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  Estimate Lower 95% CI Upper 95% CI 
Warming Experiments    

Intercept -29.39 -39.56 -19.22 
Magnitude (°C) * 10.34 5.58 15.1 
Irradiance * -0.24 -0.34 -0.14 
Seawater (natural) * 29.77 19.72 39.82 
Feeding (3x) * -3.54 -4.97 -2.12 
Feeding (N.D.) * 87.16 49.69 124.64 

 
   

Acidification Experiments 
Intercept -2.03 -2.78 -1.28 
Magnitude (µatm pCO2) 0.000 -0.003 0.003 
Irradiance * 0.009 0.004 0.014 
Seawater (natural) * 2.39 1.14 3.64 
Feeding (3x) * -15.04 -22.61 -7.48 
Feeding (N.D.) * 3.61 0.28 6.94 
Duration * 0.21 0.09 0.32 
Magnitude x days * -0.0005 -0.0007 -0.0003 

 

Table 1.1 Experimental design effect sizes 

Effect size estimate and 95% confidence intervals of experimental design parameters 
calculated for all warming and acidification experiments. Non-overlapping 95% confidence 
intervals of each design parameter were interpreted to indicate a significant influence on 
measured coral calcification response to treatment. Magnitude (difference between control 
and treatment condition), irradiance (mmol photons m-2 s-1), and duration (days) were 
evaluated as continuous predictors, while seawater (natural versus artificial) and feeding (2 
times a week, 3 times a week, or no data) were assessed as factors. Parameters denoted with 
an asterisk (*) was determined to clearly impact calcification response to treatment. 
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CHAPTER 2: COMMON CARIBBEAN CORALS EXHIBIT HIGHLY VARIABLE 
RESPONSES TO FUTURE ACIDIFICATION AND WARMING2 

Introduction 

Increasing carbon dioxide (CO2) from anthropogenic sources is of growing concern as 

global average atmospheric pCO2 has now increased from a pre-industrial level of 280 μatm 

to 410 μatm (Tans and Keeling 2017). This rapid change has resulted in negative and often 

irreversible impacts on both terrestrial and marine ecosystems (Solomon et al. 2009, Pecl et 

al. 2017). In terrestrial ecosystems, rising surface temperatures pose serious threats to 

animals and plants that are unable to cope with hotter, longer, and more frequent thermal 

stress events (Fitter and Fitter 2002, Caruso et al. 2014). Marine ecosystems are under 

similarly intense pressure from ocean warming and acidification (Hoegh-Guldberg et al. 

2007), affecting everything from biogeochemical cycling to habitat and population structure 

(Hoegh-Guldberg and Bruno 2010). 

Ocean warming is a major concern for marine organisms, especially at lower latitudes 

where sea surface temperature is predicted by the Intergovernmental Panel on Climate 

Change (IPCC) to rise between 0.6 and 3.0°C by the end of the 21st century (Stocker et al. 

2013). Reef-building corals in these low-latitude regions, including the Caribbean, are 

already living within a degree of their thermal maxima (Jokiel and Coles 1977) and are 

therefore considered to be at particular risk (Somero 2010). Abnormally high seawater 

	
2 This chapter previously appeared as an article in Proceedings of the Royal Society B – Biological Sciences. 
The original citation is as follows: Bove C.B., Ries J.B., Davies S.W., Westfield I.T., Umbanhowar J., and 
Castillo K.D.  “Common Caribbean corals exhibit highly variable responses to future acidification and 
warming” Proceedings of the Royal Society B – Biological Sciences, 286, no. 1900 (April 2019): 1–9. 
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temperatures disrupt the symbiosis between the coral animal and its algal endosymbiont 

(Symbiodiniaceae) (LaJeunesse et al. 2018) through a process known as ‘coral bleaching’ 

(Glynn 1991), resulting in deterioration of corals’ physiological processes (Jokiel and Coles 

1977, Grottoli et al. 2006, Castillo et al. 2014). Mortality rates increase due to the strong 

dependence of corals on their endosymbionts, which contribute up to 100% of their daily 

metabolic requirements (Muscatine et al. 1981), impacting the corals’ ability to withstand 

additional environmental stress.  

Rising atmospheric pCO2 is not only warming surface seawater, but also causing 

more CO2 to dissolve into oceans, reducing carbonate ion concentration [CO3−2], pH, and 

aragonite saturation state (ΩA) of seawater—a process known as ocean acidification (Orr et 

al. 2005). The IPCC projects that atmospheric pCO2 will surpass 600 μatm by 2100, which 

would cause surface ocean pH to decrease by 0.1 – 0.3 (Stocker et al. 2013). Scleractinian 

corals rely heavily on elevated pH and ΩA at their site of calcification to form calcium 

carbonate skeletons (Al-Horani et al. 2003, Cohen and McConnaughey 2003, Ries 2011, 

Venn et al. 2013), making it harder for some species to maintain conditions within these sites 

that are supportive of skeletal formation under acidification (McCulloch et al. 2012). 

However, previous research has revealed inconsistencies in scleractinian corals’ response to 

acidification (Ries et al. 2009, Comeau et al. 2013a). Simulations of past (Albright et al. 

2016) and future (Albright et al. 2018) pCO2 conditions in a natural reef system on the Great 

Barrier Reef revealed a decrease in net community calcification with increasing pCO2, while 

ex situ experiments demonstrated negative (Reynaud et al. 2003, Jury et al. 2010, Comeau et 

al. 2013a), threshold (Ries et al. 2010), parabolic (Castillo et al. 2014), and no significant 

(Reynaud et al. 2003, Jury et al. 2010) response of corals to increased pCO2. Numerous 
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explanations for the wide array of responses include differences in experimental design 

(Cornwall and Hurd 2016), evolutionary divergence amongst corals with respect to 

mechanisms of calcification and/or resilience to acidification (Brown and Edmunds 2016), 

and differences amongst coral species’ physiological control of calcifying fluid chemistry 

(Ries 2011, Agostini et al. 2013, Holcomb et al. 2014, Barott et al. 2015). Moreover, 

although studies have investigated the effects of increasing pCO2 on coral calcification and 

health, fewer have investigated the combined effects of temperature and pCO2.  

In isolation, warming has been shown to more negatively impact coral calcification 

than pCO2 (Carricart-Ganivet et al. 2012, Castillo et al. 2014, Venti et al. 2014, Davies et al. 

2016, Okazaki et al. 2017). However, numerous studies have observed that the combination 

of pCO2 and temperature causes a more severe negative response in corals than either 

stressor alone (Edmunds et al. 2012, Agostini et al. 2013, Schoepf et al. 2013, Horvath et al. 

2016, Okazaki et al. 2017), although few studies report a truly synergistic interaction 

between warming and acidification. This highlights the importance of studying the response 

of multiple coral species to global change scenarios under a common suite of conditions. 

Using multiple species in the same experiment minimizes differential outcomes that arise 

from differences in experimental design, allowing for direct comparison among species. The 

few studies that have investigated multiple coral species have yielded important insights into 

reef-community-level responses to acidification and warming, including projecting rates of 

whole-reef accretion under future IPCC scenarios (Okazaki et al. 2017).  

Here we investigate the independent and combined effects of ocean acidification and 

warming on four abundant and widespread Caribbean scleractinian coral 

species―Siderastrea siderea, Pseudodiploria strigosa, Porites astreoides, and Undaria 
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tenuifolia―in a 93-day laboratory experiment. These four species were selected because they 

span a range of skeletal morphologies (foliate—domical), possess similar life history 

strategies (Szmant 1986), and occupy similar depth and geographic ranges (Veron 2000). 

Corals collected from the Belize Mesoamerican Barrier Reef System (MBRS) were reared 

under projected temperature and pCO2 stress with the aim of characterizing the effects of 

future global change on a suite of genetically and morphologically diverse Caribbean coral 

species. 

 

Materials and methods 

Experimental design  

Six colonies of S. siderea, P. strigosa, P. astreoides, and U. tenuifolia were collected 

from inshore and offshore reef environments along the southern portion of the Belize MBRS 

(see Appendix 2 for details of coral collection, Figure S2.1). Forty-eight coral colonies were 

transported to Northeastern University’s Marine Science Centre in Nahant, Massachusetts, 

and sectioned into eight comparably sized fragments, and placed into aquaria for a recovery 

period of 23 days. After recovery, temperature and pCO2 was adjusted gradually over a 20-

day interval until target experimental conditions were approximately achieved for each 

treatment (temperature: 28 and 31°C; pCO2: 280, 400, 700, 2800 µatm). Coral fragments 

were acclimated to treatment conditions for 30 days and then maintained in each 

experimental treatment for 93 days. Four pCO2 treatments corresponding to pre-industrial 

(311/288 μatm), present-day (pCO2 control; 405/447 μatm), end-of-century (701/673 μatm), 

and an extreme (3309/3285 μatm) pCO2 were maintained at two temperatures corresponding 

to the corals’ approximate present day mean annual temperature (28°C; determined by over 
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10 years of in situ records (Castillo and Lima 2010, Castillo et al. 2012, Baumann et al. 

2016)) and projected end-of-century annual mean temperature (31°C) (Stocker et al. 2013). 

The extreme pCO2 treatment was formulated at a value approaching that predicted for year 

2500 (Stocker et al. 2013), and was selected to push the corals closer to their physiological 

limits. Experimental tanks were illuminated on a 10:14 h light:dark cycle with 

photosynthetically active radiation of ca. 300 μmol photons m–2 s–1 (see Appendix 2 for 

detailed experimental conditions and maintenance; Figures S2.2, S2.3). 

 

Measured and calculated parameters 

Temperature, salinity, and pH were measured every other day throughout the 

experiment (Table 2.1). Water samples were obtained every ten days for measurement of 

total alkalinity (TA) and dissolved inorganic carbon (DIC) and analysed with a VINDTA 3C 

(Marianda Corporation, Kiel, Germany). Temperature, salinity, TA, and DIC were used to 

calculate carbonate parameters using CO2SYS (Pierrot et al. 2006) with Roy et al. (1993) 

carbonic acid constants K1 and K2 (Roy et al. 1993), Mucci’s (1983) value for the 

stoichiometric aragonite solubility product (Mucci 1983), and an atmospheric pressure of 

1.015 atm (Table 2.1; Figure S2.4; Tables S2.2, S2.3). The two temperatures at a given pCO2 

level exhibited slight differences in carbonate chemistry because the solubility of CO2 in 

seawater varies with temperature. 

 

Quantification of calcification and linear extension 

Net calcification rates were estimated from surviving coral fragments using a buoyant 

weight method (Davies 1989) performed at the beginning of the pre-acclimation period and 
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every 30 days throughout the experiment (see Appendix 2 for empirical derivation of 

buoyant weight–dry weight relationships for all four coral species and for survivorship; 

Figures S2.5, S2.6).  

Extension was quantified from vertical cross sections of the corals as the total area of 

skeleton above the calcein dye line incorporated into coral skeletons at the beginning of the 

experiment, divided by the length of the region of active growth (see Appendix 2 for detailed 

methodology; Figure S2.7). Linear extension was not quantified for U. tenuifolia or P. 

strigosa because their irregular skeletal morphologies rendered the method too inaccurate. 

 

Colony-level effects of basal calcification rate on calcification response to stress 

Recent work has shown that coral species that calcify faster are generally more 

vulnerable to the effects of ocean acidification than slower calcifying species (Comeau et al. 

2014)—raising the possibility that similar trends exist within species amongst colonies with 

differing calcification rates. Colony-specific relationships between basal calcification rate 

and response to pCO2 and thermal stress were investigated by assessing correlation between 

the random effect of colony on each colony’s calcification rate within the control treatment 

(pre-industrial pCO2 at 28°C) versus each colony’s calcification response to pCO2 or thermal 

stress (i.e., change in calcification rate between the control treatment and the stress 

treatments). Small sample size prevented fitting a frequentist model to estimate these colony 

level effects, so a Bayesian hierarchical regression model was fit to calculate credible 

intervals of the corresponding extracted correlation coefficient using R package brms 

(version 2.7.0) with default priors (Bürkner 2017). Random effects relating colony-specific 

relationships between basal calcification rate and response to pCO2 and thermal stress were 
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calculated for all species together, as the study lacked the statistical power to assess this 

correlation within individual species. 

 

Statistical analyses 

Three-way mixed-model analyses of variance selected using AIC (Table S2.4) were 

used to assess impacts of pCO2 and temperature on calcification and linear extension (lme4 

(1.1-12)) (Bates et al. 2015b). Parametric bootstraps were performed to model 95% 

confidence intervals with 1500 iterations (Wilcox 2010). Significant differences between 

treatments were defined as non-overlapping 95% confidence intervals. Because reef 

environment was not a significant predictor of any parameter, colonies were pooled across 

reef environments and these effects were not further addressed (see Appendix 2 for detailed 

analyses; Tables S2.12, S2.13). To further evaluate the effects of acidification and warming 

on U. tenuifolia, survival rates were assessed using a Kaplan-Meier estimate of survival 

(survfit, survival, 2.39-5) (Therneau 2015b). Cox proportional hazard models, with colony 

nested within tank as a random effect, were performed using coxme (2.2-5) (Therneau 

2015a). 

	

Results 

Calcification rates  

 All four coral species exhibited nonlinear declines in calcification rate with increasing 

pCO2 (Figure 2.1). Notably, S. siderea maintained positive net calcification across all 

temperature and pCO2 treatments (Figure 2.1A), while the other species exhibited net 

dissolution in at least one treatment. Pseudodiploria strigosa maintained net calcification at 

28°C, but exhibited net dissolution in all but pre-industrial pCO2 at 31°C (Figure 2.1B). 
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Porites astreoides yielded negligible net calcification or net dissolution in all treatments 

except under pre-industrial pCO2 at 31°C (Figure 2.1C), and U. tenuifolia exhibited net 

calcification in all treatments except under the extreme pCO2 treatment (Figure 2.1D). 

Temperature had no significant effect on S. siderea or P. astreoides calcification rates; 

however, elevated temperature significantly reduced calcification rate in P. strigosa under all 

pCO2 conditions (Figure 2.1; Tables S2.5, S2.6). The effect of temperature on calcification 

rates of U. tenuifolia could not be quantified due to low survival in the elevated temperature 

treatments.  

 

Colony-level calcification response to stress 

A negative slope of the correlation between random effects of colony on calcification 

rate in the control treatment (pre-industrial pCO2 at 28°C) versus those in the stress 

treatments (Figure 2.2) would support the hypothesis that faster calcifying colonies (relative 

to the treatment mean) under control conditions calcify slower (relative to the treatment 

mean) under pCO2 and thermal stress (Figure 2.2). While the best estimates of these 

correlations were negative, only the 75% credible intervals, and not the 95% credible 

intervals, did not always overlap zero (Figure S2.8)--suggesting that the results of the current 

experiment provide weak evidence for the inverse correlations between basal calcification 

rate and calcification response to pCO2 and thermal stress. However, the current study likely 

lacked the statistical power to confirm the statistical significance of this correlation owing to 

a combination of low within-colony replication and high mortality rate.  
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Linear extension 

Siderastrea siderea and P. astreoides exhibited positive linear extension rates in all 

treatments. Neither temperature, nor pCO2, nor their interaction had a significant impact on 

linear extension rates of S. siderea or P. astreoides (Figure 2.3; Tables S2.7, S2.8). 

 

Discussion 

Caribbean corals exhibit nonlinear calcification responses to pCO2 and temperature 

All four coral species exhibited nonlinear calcification responses to pCO2 driven 

primarily by stability in calcification rates across the three lowest pCO2 treatments, and 

major declines under extreme pCO2 (Figure 2.1). One exception to this trend was P. strigosa, 

which exhibited an abrupt decline in calcification rate at present-day pCO2. Similar nonlinear 

calcification responses have been reported in previous studies for several temperate (Ries et 

al. 2010, Rodolfo-Metalpa et al. 2010) and tropical corals (Jury et al. 2010, Castillo et al. 

2014, Okazaki et al. 2017), indicating that such pCO2 thresholds exist for a diverse range of 

coral species. Interspecific differences in corals’ calcification responses to pCO2 may be 

influenced by differences in a coral’s ability to control ΩA at their calcification site (Cohen 

and McConnaughey 2003, Ries 2011). It has been proposed that corals transport Ca2+ into the 

calcifying fluid from the surrounding seawater in exchange for two protons using the enzyme 

Ca2+-ATPase (Cohen and McConnaughey 2003), increasing the ΩA by elevating [Ca2+] and 

by converting HCO3− to CO32− (Cohen and McConnaughey 2003, Ries 2011, Von Euw et al. 

2017). However, this process requires energy (1 mole ATP consumed per mole of Ca2+-

ATPase (Al-Horani et al. 2003)), which should increase under more acidic conditions as 

more protons must be removed to deprotonate HCO3−. This suggests that the threshold pCO2 
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for maintaining stable rates of calcification is determined, at least in part, by the energetic 

costs of regulating ionic concentrations at the coral’s site of calcification (Ries 2011, Davies 

et al. 2016, Von Euw et al. 2017).  

Increased temperature had no significant effect on calcification rates of either S. 

siderea or P. astreoides (Figures 2.1A, 2.1C). Similarly, in a prior study, S. siderea from the 

Florida Keys demonstrated stability in calcification rates with a temperature increase from 

27°C to 30.3°C (Okazaki et al. 2017). However, two studies on S. siderea from the Belize 

MBRS reported reduced calcification rates with a temperature increase from 28°C to 32°C 

(Castillo et al. 2014, Horvath et al. 2016). Other studies have also reported reduced 

calcification for P. astreoides under thermal stress (Kenkel et al. 2013a, Okazaki et al. 2017), 

although the present study found that an increase in temperature from 28°C to 31°C did not 

significantly impact calcification rate of this species. These apparent discrepancies in coral 

species’ calcification responses to warming may arise from evaluating temperature effects 

across different portions of these species’ thermal performance curves. Rates of biological 

processes, including calcification, are known to increase with increasing temperature to a 

maximum before declining with continued temperature increases, resulting in a thermal 

performance curve (Portner et al. 2006), which are typically parabolic in shape. It is possible 

that the two temperatures investigated in the present experiment are symmetrically 

distributed about this species’ optimal temperature, resulting in equivalent calcifications rates 

at both temperatures.  

Notably, only P. strigosa exhibited reduced calcification rates under thermal stress 

(Figure 2.1B), contrasting previous work on this species showing no calcification response to 

thermal stress (Okazaki et al. 2017). Again, this discrepancy between studies may result from 
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assessing temperature effects across different portions of this species’ thermal performance 

curve (28 – 31°C versus 27.0 – 30.3°C in prior study). Differences in populations may also 

contribute to these discrepancies amongst studies with respect to a species’ calcification 

responses to temperature (Marshall and Baird 2000) and pCO2 (Manzello et al. 2012, 

Melendez and Salisbury 2017).  

The effect of temperature on U. tenuifolia calcification rate could not be fully 

evaluated due to low survival at 31°C, although these results highlight the thermal sensitivity 

of this species—as previously observed on the Belize MBRS after thermal bleaching events 

(Aronson et al. 2000, Aronson et al. 2002) (Figure S2.6D, Tables S2.9, S2.10, S2.11). 

Previous studies suggest that the susceptibility of U. tenuifolia to thermal stress arises from 

lack of compensatory stress responses (Lesser 1997, Feder and Hofmann 1999, Robbart et al. 

2004, Seemann et al. 2012), including insufficient production of heat shock proteins to 

protect against thermal events (Robbart et al. 2004) and reduced endosymbiont 

photosynthesis due to oxidative stress induced by warming (Lesser 1997). Owing to its 

reliance on endosymbiont photosynthesis over heterotrophy for energy (Seemann et al. 

2012), oxidative bleaching may effectively starve this species of nutrition.  

The interaction between pCO2 and temperature did not significantly impact 

calcification rates for any of the coral species. Absence of an interactive effect of pCO2 and 

temperature on coral calcification rate is relatively common and has been observed for multiple 

species (Muehllehner and Edmunds 2008, Schoepf et al. 2013, Okazaki et al. 2017). A previous 

study that exposed S. siderea to elevated temperature (32°C), elevated pCO2 (~900 μatm), and 

the combination of these two stressors found calcification rates were most negatively affected 

by the combined high-pCO2/high-temperature treatment, resulting in additive, but not 
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synergistic, effects on calcification rates (Horvath et al. 2016). Thus, the evidence to date 

suggests that scleractinian corals exposed to both pCO2 and thermal stress rarely experience 

effects that are truly synergistic. Finally, calcification rates in the present study were generally 

comparable to those reported for corals from the Florida Keys (Okazaki et al. 2017) and Belize 

(Horvath et al. 2016). 

 

Faster-growing colonies may be more vulnerable to pCO2 and thermal stress 

Colonies that exhibited faster calcification in the control treatment (pre-industrial 

pCO2 at 28°C) tended to exhibit slower calcification in the elevated-pCO2 and elevated-

temperature treatments, suggesting a trade-off in which faster calcifying colonies may be 

more vulnerable to the negative impacts of pCO2 and thermal stress on calcification. 

Unsurprisingly, this correlation was weakest when comparing pre-industrial to present-day 

pCO2 treatments—the two most similar treatments. This variation in calcification rates was 

evident across the four coral species, which is consistent with previous literature suggesting 

that divergent calcification strategies exist across populations (Szmant and Gassman 1990, 

Rinkevich 1996, Metcalfe and Monaghan 2001, Arnott et al. 2006, Leong and Pawlik 2010).  

Our analysis provides preliminary support for two end-member strategies of calcification: (1) 

fast calcifying colonies that divert more energy towards flourishing during favourable 

environmental regimes but flounder during periods of environmental stress (potentially due 

to lack of energetic reserves) and (2) slower calcifying colonies that store more energy during 

environmentally favourable conditions, yet are able to continue calcifying under 

environmentally stressful conditions (potentially due to their ability to tap energy stored 

during environmentally favourable times).  
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These divergent calcification strategies within coral populations may confer stability 

to populations faced with environmental stress over both short and long timescales. Over 

short timescales, these strategies increase the probability that at least some colonies (faster 

calcifiers) flourish when conditions are favourable, while ensuring that there are also 

survivors (slower calcifiers) during unfavourable times that allow populations to persist 

(Conover and Schultz 1995). Over longer timescales, these divergent strategies may provide 

a high-degree of genotypic variability upon which natural selection can act, thereby 

facilitating the evolution of the population toward optimal weightings of these calcification 

strategies (Arnott et al. 2006), depending on the magnitude and duration of the environmental 

perturbation [e.g., short-term anthropogenic cycles (Hughes et al. 2003) vs. medium-term 

glacial cycles (Daly 1915) vs. longer-term secular trends in pCO2 trends associated with 

tectonics (Honisch et al. 2012)]. Although populations of coral species that exhibit these 

divergent calcification strategies could become more tolerant of anthropogenic stressors in 

the future, they would also become slower growing through time. Although our current study 

was not designed to specifically address colony-level calcification responses, our analysis 

demonstrates a potential trade-off within species that may allow populations to persist under 

projected global change. This apparent relationship between a colony’s basal calcification 

rate and its response to pCO2 and thermal stress merits further investigation given its 

potentially far-reaching implications for corals’ response to global change. 

 

All coral species, except S. siderea, exhibited net skeletal dissolution under the highest pCO2  

Specimens of S. siderea maintained positive net calcification under all treatments 

(Figure 2.1A), suggesting greater resilience to pCO2 and thermal stress compared to the other 
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species examined (Ries et al. 2010, Agostini et al. 2013, Von Euw et al. 2017). Indeed, 

correcting net calcification rates with empirically derived gross dissolution rates (Ries et al. 

2016) yields high rates of gross calcification for S. siderea even in undersaturated seawater 

conditions (Figure S2.9a), providing support for the assertion that S. siderea is able to 

maintain conditions supportive of aragonite precipitation at its site of calcification, despite 

external seawater supporting dissolution of its aragonite skeleton (Castillo et al. 2014, 

Horvath et al. 2016, Okazaki et al. 2017). The combination of resilient calcification 

responses to thermal and pCO2 stress with the high survival exhibited by S. siderea in the 

present study (Figure S2.6A, Tables S2.9, S2.10, S2.11), as well as in prior studies (Castillo 

et al. 2014, Horvath et al. 2016, Okazaki et al. 2017), suggests that S. siderea possesses 

unique physiological mechanisms for maintaining basic life processes under pCO2 and 

thermal stress, and may contribute to its abundant distribution on reefs throughout the 

Caribbean (Alemu and Clement 2014). 

Specimens of P. strigosa, P. astreoides, and U. tenuifolia exhibited net skeletal 

dissolution in at least one pCO2–temperature treatment, with the greatest net dissolution 

observed under the highest pCO2 treatment (Figure 2.1; Figure S2.9B-D). Pseudodiploria 

strigosa exhibited the highest rates of net dissolution at the elevated temperature, likely 

owing, at least in part, to the loss of algal symbionts (i.e., partial bleaching; Figure S2.10) 

from which corals obtain a significant portion of their energy (Muscatine et al. 1981). Thus, 

under thermal stress, reduced symbiont densities may lead to diminished photosynthate, 

reducing energy available for calcification, and eventually leading to thermally-induced 

mortality as observed in the present study (Figure S2.6B, Tables S2.9, S2.10, S2.11) and 

previous experiments on juvenile corals (Bassim and Sammarco 2003). Under these 
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conditions, corals may be unable to produce enough new skeleton to counter the effects of 

skeletal dissolution in undersaturated conditions (Ries et al. 2016).  

 

Siderastrea siderea and P. astreoides maintain constant rates of linear extension under pCO2 
and thermal stress 
	

Increasing pCO2 had no significant effect on linear extension rates of either S. siderea 

or P. astreoides (Figure 2.3), providing support for prior assertions that symbiotic corals 

exert strong control over the chemical milieu at their site of calcification (Cohen and 

McConnaughey 2003, Ries 2011, McCulloch et al. 2012, Venn et al. 2013). This constant 

rate of extension (i.e., volume addition) combined with the threshold decrease in net 

calcification (i.e., mass addition) with increasing pCO2 suggests that both species produce 

less dense skeletons and/or that the gain in skeletal mass associated with the new linear 

extension is offset by the loss of previously formed skeletal mass via dissolution under 

extreme pCO2 (Figure 2.3; Figure S2.9A). Additionally, the observation that P. astreoides 

exhibited net dissolution at both temperatures under several pCO2 treatments, yet maintained 

constant rates of linear extension, suggests that dissolution, rather than decreasing skeletal 

density, is driving the decline in calcification rate of this species under increasing pCO2—as 

the addition of new, less-dense skeleton alone could not cause a net decrease in skeletal mass 

(i.e., net dissolution).  

Linear extension of S. siderea and P. astreoides did not differ significantly across 

temperatures (Figure 2.3). This contrasts previous reports linking historical ocean warming to 

reductions in extension of wild specimens of S. siderea, although this decrease was observed 

only for forereef colonies along the southern MBRS (Castillo et al. 2012). Extension rates of 

S. siderea observed in the present study were generally comparable to those reported for wild 
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specimens in Belize (Castillo et al. 2012). Conversely, the lack of temperature effect on 

extension of P. astreoides is consistent with the measured calcification response, supporting 

prior observations that rates of net calcification within this species is driven by rate of linear 

extension, rather than by changes in skeletal density (Elizalde-Rendon et al. 2010, Carricart-

Ganivet et al. 2012). 

  

Experiments reveal corals’ differential resilience to future oceanic change 

 Diverse responses to pCO2 and warming exhibited by the corals investigated here 

reveal a spectrum of resilience to future global oceanic change. We confirm the relatively 

high resilience of S. siderea to thermal and pCO2 stress (Okazaki et al. 2017), the moderate 

sensitivity of P. astreoides, and the relatively high sensitivity of P. strigosa (Alemu and 

Clement 2014, Pratte and Richardson 2014) and U. tenuifolia (Lesser 1997, Aronson et al. 

2000, Robbart et al. 2004). The results also highlight the relative resilience of the 

investigated species (excluding P. strigosa) to moderate pCO2 stress, while revealing their 

high sensitivity to extreme pCO2. Faster-growing colonies tended to exhibit increased 

vulnerability to pCO2 and thermal stress, suggesting variability in tolerance of pCO2 and 

thermal stress within populations of these corals—a potential pathway for evolutionary 

resilience. Collectively, these results reveal the wide spectrum of responses exhibited by four 

common Caribbean corals in response to changes in ocean pH and temperature, a necessary 

step in understanding and forecasting the response of coral reef systems to future global 

change.  

 

  



46	
 
	
	

 

Figure 2.1 Net coral calcification rates 

Net calcification rates (mg cm−2 day−1) for S. siderea (A), P. strigosa (B), P. astreoides (C), 
and U. tenuifolia (D) cultured over a range of pCO2 and temperature conditions. Blue circles 
represent net calcification rates for fragments in the 28°C treatments and orange triangles 
represent net calcification rates for fragments in the 31°C treatments. Blue and orange 
vertical bars represent modelled 95% confidence intervals for each pCO2 treatment at 28°C 
and 31°C, respectively. 
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Figure 2.2 Colony-level calcification response to treatment  

Estimated random effects and 95% credible intervals of colony on calcification rate of all 
four species under the control treatment (pre-industrial pCO2 at 28°C) versus random effects 
of colony on calcification rate under stress treatments of present-day pCO2 at 28°C (A), end-
of-century pCO2 at 28°C (B), and pre-industrial pCO2 at 31°C (C). 
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Figure 2.3 Coral linear extension rates  

Linear extension rates (mm day−1) for S. siderea (A) and P. astreoides (B) cultured over a 
range of pCO2 and temperature conditions. Blue circles represent extension rates for 
fragments in the 28°C treatments and orange triangles represent extension rates for fragments 
in the 31°C treatments. Blue and orange vertical bars represent modelled 95% confidence 
intervals for each pCO2 treatment at 28°C and 31°C, respectively. 
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Treatment T (°C) pCO2 (µatm) pH TA (µM) DIC (µM) ΩA Salinity 
1 27.9±0.04 311±18 8.30±0.01 2052±8 1708±15 4.0±0.1 31.7±0.02 
2 28.0±0.04 405±17 8.20±0.01 2081±3 1788±10 3.4±0.1 31.8±0.02 
3 28.1±0.05 701±17 8.01±0.03 2092±7 1901±8 2.4±0.1 31.7±0.02 
4 28.1±0.02 3309±76 7.31±0.01 2131±5 2156±6 0.7±0.1 31.8±0.02 
5 31.0±0.04 288±12 8.34±0.01 2101±6 1710±11 4.6±0.1 31.7±0.02 
6 31.1±0.05 447±28 8.21±0.01 2077±6 1773±15 3.6±0.1 31.7±0.02 
7 30.9±0.03 673±19 8.00±0.01 2082±6 1865±8 2.7±0.1 31.7±0.02 
8 31.0±0.05 3285±99 7.29±0.01 2123±4 2135±5 0.8±0.1 31.7±0.02 
 
Table 2.1 Average experimental treatment conditions 

Treatment conditions measured either every other day (T, pH, salinity) or every ten days 
(pCO2, TA, DIC, ΩA). 
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CHAPTER 3: GLOBAL CHANGE ALTERS CORAL HOLOBIONT PHYSIOLOGY 
AND SUGGESTS FUTURE SHIFTS IN CARIBBEAN CORAL REEF DIVERSITY  

Introduction 

Human-induced global change is driving unprecedented variations in global 

ecosystems function, from increases in terrestrial dryness (Greve et al. 2018) and severe 

storm activity across lower latitudes (Hoegh-Guldberg et al. 2018), to reduced species ranges 

globally (Hoegh-Guldberg et al. 2019). Coral reefs are a prime example of an ecosystem 

heavily impacted by changing climate conditions and associated stressors, particularly by 

ocean acidification and warming (Knowlton 2001, Hoegh-Guldberg et al. 2007). Ocean 

acidification and warming are predicted to alter many marine ecosystems via 

oversimplification of ecosystem structure and function, especially for organisms with longer 

generational times and thus with fewer opportunities to adapt to changing conditions 

(Nagelkerken and Connell 2015). Thus, understanding the diversity of responses of tropical 

reef-building corals at both the species and individual levels is critical to predict the success 

of future populations.  

Quantification of calcification rates of corals (i.e., rate of skeletal production) is an 

informative and common tool used to assess the overall health of corals under stress in both 

field and laboratory experiments (Allemand et al. 2010, Ries et al. 2010, Comeau et al. 

2013b, Crook et al. 2013, Enochs et al. 2014, Kenkel et al. 2015). Understanding changes in 

calcification rates of corals is critical in evaluating how coral reefs will respond under global 

change due to the importance of production of new reef structure for the entire ecosystem to 
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thrive. Previous work quantifying coral calcification rates under global change stressors has 

demonstrated a diversity of growth responses under stress, including both maintained and 

suppressed calcification rates (Comeau et al. 2013b, Castillo et al. 2014, Horvath et al. 2016, 

Okazaki et al. 2017, Bove et al. 2019). Corals that are able to maintain calcification rates 

under stress are thought to accomplish this at a cost to other metabolic processes in order to 

continue skeletal growth (Cohen and Holcomb 2009, Davies et al. 2016, Von Euw et al. 

2017). Although calcification rates are a valuable measure of coral response to stress, they do 

not provide insight into how the individual components of the coral holobiont (i.e., animal 

host versus dinoflagellate endosymbionts) respond to projected global change stressors. In 

order to address this gap, many studies are now quantifying physiological responses of the 

coral host and algal endosymbionts under stress in an attempt to understand coral responses 

more thoroughly (Rodolfo-Metalpa et al. 2010, Schoepf et al. 2013, Kenkel et al. 2015).  

Coral tissue biomass and energy reserves (i.e., lipid, protein, carbohydrate) are 

important aspects of overall coral health (Rodrigues and Grottoli 2007, Schoepf et al. 2013) 

that provide insight into resilience and recovery capacity in response to environmental 

stressors (Rodrigues and Grottoli 2007). While energy reserves are extremely important in 

understanding the coral host response to stress, few studies have looked into how the 

combination of ocean acidification and warming influence these parameters (Schoepf et al. 

2013, Towle et al. 2015). Coral tissue biomass is reliant on the equilibrium between energy 

sources and expenditures, thus corals with already low biomass (i.e., energy reserves) may 

experience heightened vulnerability under environmental stress (Thornhill et al. 2011) and 

may explain the variation of physiological responses to stress within and between species 

(Okazaki et al. 2017, Bove et al. 2019). However, recent studies have demonstrated that 
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corals do not consume energy reserves under environmental stress (Schoepf et al. 2013), nor 

do corals increase metabolic processes (Edmunds 2012). This suggests that corals may utilise 

other physiological mechanisms as coping tools to maintain growth and host energy reserves, 

such as relying more heavily on their associated algal endosymbionts for their metabolic 

needs. 

Tropical reef-building corals rely heavily on the maintenance of an endosymbiotic 

relationship with photosynthetic dinoflagellates (family Symbiodiniaceae) for a significant 

portion of their energetic needs (Muscatine et al. 1981). However, this relationship often 

breaks down under times of severe or prolonged stress, especially with increasing seawater 

temperatures, resulting in the phenomenon referred to as ‘coral bleaching’ (Glynn 1996, 

Brown 1997, Anthony et al. 2008). As corals bleach in response to ocean acidification and 

especially warming, physiological processes, including calcification (De'ath et al. 2009, 

Cantin et al. 2010) and gametogenesis (Szmant and Gassman 1990), deteriorate. Thus, as the 

symbiosis between the coral host and algal endosymbiont breaks down, both components of 

the holobiont are likely to exhibit closely tied physiologies. Indeed, the highest measured 

coral tissue biomass values in several Caribbean reef-building coral species occurred 

immediately after the highest measured symbiont density and chlorophyll a content (Fitt et al. 

2000), highlighting the importance of algal endosymbiont contribution of energy to the coral 

host. 

Countless studies have been conducted to assess the impacts of current and future 

ocean acidification and warming on tropical coral reefs, however, the consensus of these 

studies suggests that responses to these stressors will be highly variable (Chan and Connolly 

2013, Comeau et al. 2014, Albright et al. 2016, Bahr et al. 2018, Kornder et al. 2018). 
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Indeed, Barshis et al. (2013) identified potential frontloading of genes (i.e., genes less 

upregulated under stress than in control conditions) in heat-tolerant colonies of Acropora 

hyacinthus compared to heat-stressed colonies of the same species, identifying a potential 

explanation for within-species divergent physiological responses. Additionally, previous 

work has identified divergent gene expression profiles between the coral host and algal 

endosymbiont community in response to ocean acidification and warming, suggesting that 

the algal endosymbionts may be more susceptible to these stressors at the larval stage (Rivest 

et al. 2018), while the host may be more impacted in mature colonies (Leggat et al. 2011, 

Davies et al. 2018). These differences in transcriptomic responses of the different 

components of the coral holobiont are also likely highly species-specific, however, overall 

responses to these stressors appear to be similar across studies (Kaniewska et al. 2012, Moya 

et al. 2012, Davies et al. 2016). Specifically, corals may divert cellular energy toward 

processes that promote survival and recovery post-stress events, such as increased respiration 

and metabolism, at the expense of other physiological processes (Maor-Landaw et al. 2014, 

Davies et al. 2016). Understanding the molecular mechanisms underpinning the calcification 

and physiological responses of coral holobionts under projected global change may provide 

valuable insights into why such variation between species and individuals exist.  

To assess the physiological responses of Caribbean coral holobionts to independent 

and combined ocean acidification (280–3200 μatm) and warming (28, 31 °C), we conducted 

a 93-day common-garden experiment on 3 species of corals (Siderastrea siderea, 

Pseudodiploria strigosa, and Porites astreoides) and quantified coral host energy reserves 

(total protein, carbohydrate, lipid), algal endosymbiont physiology (cell density and 

chlorophyll a concentration), and gene expression (S. siderea only). Based on previous 
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similar work, we hypothesized that 1) coral hosts would be more susceptible to acidification 

and warming stress than the associated algal endosymbionts, 2) coral holobionts will be more 

susceptible to thermal stress than acidification, and 3) physiological responses will be highly 

species-specific. Our results underline the diversity of physiological responses of Caribbean 

corals and identify varying susceptibilities of the studied species to projected global change 

that will drive changes in species abundance. 

 

Methods 

Experimental design 

The experimental design and implementation is described in detail in Bove et al. 

(2019) and the specific details of the experimental treatments are included in Appendix 2. 

Briefly, in June 2015 six colonies each of four Caribbean reef-building corals (Siderastrea 

siderea, Pseudodiploria strigosa, Porites astreoides, Undaria tenuifolia) were collected from 

inshore and offshore reef environments from the southern portion of the Belize 

Mesoamerican Barrier Reef System. Corals were immediately transported to Northeastern 

University’s Marine Science Center. Colonies were sectioned into eight equally-sized 

fragments and maintained in one of eight experimental treatments (three replicate tanks per 

treatment) for 93 days. The eight treatments encompassed four pCO2 treatments 

corresponding to pre-industrial, current-day (pCO2 control), end-of-century, and an extreme 

pCO2 level and two temperatures corresponding to the corals’ approximate present day mean 

(28°C) and projected next-century warming (31°C). These pCO2-temperature combinations 

resulted in eight triplicate (24 tanks total) treatments: 311 (±96), 405 (±91), 701 (±94), 3309 

(±414) µatm at 28°C (±0.4); and 288 (±65), 447 (±152), 673 (±104), 3285 (±484) µatm at 
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31.0°C (±0.4). At the completion of the experimental period, corals were immediately flash-

frozen in liquid nitrogen and transported back to the University of North Carolina at Chapel 

Hill. Coral tissue was removed from the skeleton with an airbrush and stored in 50 mL 

conical tubes at −80°C until further processing. Due to reduced survivorship of U. tenuifolia 

in response to stress treatments (Bove et al. 2019) (see Appendix 2), this species was not 

further assessed for physiological analyses in this study. 

 

Host and symbiont physiological measurements 

Preserved tissue slurries were homogenized with a tissue tearor (BioSpec Products; 

Bartlesville, Oklahoma, USA) for several minutes and vortexed for 5 seconds, after which, 

1.0 mL of slurry was aliquoted for algal endosymbiont density analysis. Algal endosymbiont 

aliquots were dyed with 200 μL of a 1:1 Lugol’s iodine and formalin solution and cell 

densities were quantified by performing at least 3 replicate counts of 10 μL samples using a 

hemocytometer (1 x 1 mm; Hausser Scientific, Horsham, Pennsylvania, USA) and a 

compound microscope. Algal endosymbiont densities were standardized to total tissue 

volume and previously measured coral surface area (106 cells per cm2) (Bove et al. 2019). 

Remaining tissue slurry was centrifuged at 4400 rpm for 3 minutes to separate the 

coral host and algal endosymbiont fractions, and the host fraction was poured off from the 

endosymbiont pellet. Chlorophyll a pigment was extracted from the algal pellet by adding 40 

mL of 90% acetone to the conical tube at −20°C for 24 hours. Samples were diluted by 

adding 0.1 mL of extracted chlorophyll a sample to 1.9 mL of 90% acetone. If samples were 

too high or too low to read on the fluorometer, samples were reanalysed by either diluting or 

concentrating the sample, respectively. Extracted chlorophyll a content was measured using a 
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Turner Design 10-AU fluorometer with the acidification method (Parsons et al. 1984) and 

expressed as the μg of pigment per cm2 of coral tissue surface area. 

Coral host supernatant was aliquoted (1 mL each) for total protein, carbohydrate, and 

lipid analysis, and stored at −80 °C. Glass beads were added to total protein aliquots, 

vortexed for 15 minutes, and centrifuged for 3 minutes at 4000 rpm. Duplicate samples were 

prepared with 235 μL of seawater, 15 μL of protein aliquot, and 250 μL of Bradford reagent 

(Thermo Scientific) and left for ca. 20 minutes. Coral host total protein samples were read at 

562 nm on a spectrophotometer (Eppendorf BioSpectrometer® basic; Hamburg, Germany) in 

duplicates and were expressed as mg per cm2 coral tissue surface area. For coral host 

carbohydrate, 25 μL of phenol was added to 1000 μL of diluted coral host slurry and 

vortexed for 3 seconds before immediately adding 2.5 mL concentrated sulphuric acid 

(H2SO4). Samples were incubated at room temperature for 1 minute and then transferred to a 

room temperature water bath for 30 minutes (Masuko et al. 2005). Finally, 200 μL of each 

standard and sample was pipetted into a 96-well plate in triplicate and red on a 

spectrophotometer at 485nm (BMG LABTECH POLARstart Omega; Cary, North Carolina, 

USA). Total carbohydrate was expressed as mg per cm2 coral tissue surface area. Finally, 

coral host lipids were extracted following the Folch Method (Folch et al. 1956) by adding 

600 μL of chloroform (CHCl3) and methanol (CH3OH) in a 2:1 ratio to 600 μL of host slurry 

and placed on a plate shaker for 20 minutes before adding 160 μL of 0.05M sodium chloride 

(NaCl). Tubes were inverted twice and then centrifuged at 3000 rpm for 5 minutes. Finally, 

the lipid layer was removed and 100 μL was pipetted in triplicate into a 96-well plate for 

colorimetric assay. The lipid assay was performed by adding 50 μL of CH3OH to each well 

before evaporating the solvent at 90 °C for 10 minutes. Next, 100 μL of H2SO4 was added to 
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every well, incubated at 90 °C for 20 minutes, and cooled on ice for 2 minutes before 

transferring 75 μL of each sample into a new 96-well plate. Background absorbance of the 

new plate was read at 540 nm on a spectrophotometer before adding 34.5 μL of 0.2 mg/mL 

vanillin in 17% phosphoric acid to each well. The plate was read again at 540 nm and coral 

host lipid concentrations were normalised to coral surface area (mg per cm2) (Cheng et al. 

2011). 

 

Statistical analysis of coral holobiont physiology  

Three separate three-way mixed-model analyses of variance selected using Akaike 

information criterion were used to construct modelled 95% confidence intervals of the T0 

coral holobiont physiologies and to assess impacts of pCO2 (factor) and temperature (factor) 

on total host energy reserves, algal endosymbiont densities, and algal endosymbiont 

chlorophyll a content for each species after 93 days in the experimental conditions (lme4 

(1.1-21)) (Bates et al. 2015a). Parametric bootstraps were performed to model 95% 

confidence intervals with 2000 iterations (Wilcox 2010). Significant differences between 

treatments were defined as non-overlapping 95% confidence intervals (see Appendix 3; 

Tables S3.1 – S3.6). Because reef environment was not a significant predictor of any 

parameter, colonies were pooled across reef environments and these effects were not further 

addressed. Principal component analyses (PCA) (function prcomp) of scaled and centered 

physiological parameters (calcification rates are those reported previously for the same 

samples in Bove et al. (2019)), host carbohydrate, host lipid, host protein, algal 

endosymbiont chlorophyll a, algal endosymbiont cell density) were employed to further 

assess the relationship between physiological parameters and treatment conditions for each 



58	
 
	
	

species. Main effects (temperature, pCO2, and the combination of temperature with pCO2) 

were evaluated using the adonis function (see Appendix 3; Tables S3.7 – S3.9). All statistical 

analyses were performed in R (version 3.5.2) (R Core Development Team 2016). 

 

Siderastrea siderea transcriptome preparation and differential gene expression analysis 

A subset of 42 S. siderea fragments was selected for transcriptomic analysis at the 

completion of the experiment. These fragments were selected to represent all treatments and 

both reef environments to better understand how this species responds under independent and 

combined ocean acidification and warming (Table 1.1). Coral RNA was isolated with the 

RNAqueous-Micro Total RNA Isolation Kit (Invitrogen) following the manufacturer’s 

protocols with some additional steps. Prior to RNA isolation, samples were thawed on ice 

and placed in a bead beater for 1 min with a small number of beads and 150 μL of lysis 

buffer before proceeding with the manufacturer’s protocol. Trace DNA contamination was 

eliminated with DNase I (Invitrogen) digestion for 20 min at 37°C. Total RNA was 

transcribed into first-strand cDNA and the complementary DNA was PCR amplified. Each 

library received an individual barcode adapter through a secondary PCR and samples were 

sequenced across two lanes of Illumina HiSeq 2500 at Tufts Genomics, which yielded pair-

ended (PE) 50 base pair (bp) reads.  

Total raw reads across libraries ranged from 17,481 to 15,746,927 PE 50 bp 

sequences (Table 3.1). Quality filtered reads (filtered using Fastx_toolkit) were mapped to 

the coral holobiont transcriptome (S. siderea combined with Symbiodinium goreaui). Mapped 

reads were then subset as either coral host or algal endosymbiont for downstream analysis, 

and ranged from 664 to 791,604 in the coral host and 233 to 382,453 in the algal 
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endosymbiont (Table 3.1). Differential gene expression analysis was performed on the 

separated coral host and algal endosymbiont counts with DESeq2 [1.22.2; (Love et al. 2014)] 

in R (R Core Development Team 2016) by treatment (each temperature crossed with pCO2 

treatments). Because sampling across reef environments was uneven, samples were pooled 

by reef environment for all downstream analyses. Raw counts were vst (variance stabilizing 

transformation) transformed and then normalised for size factor differences using the median 

ratio method. A principal component analysis (prcomp function) and the adonis function 

were employed to test for overall expression differences across treatments. Pairwise Wald 

tests were conducted for each of the seven treatments through comparison to the control 

treatment (400 µatm; 28 °C). The number of differentially expressed genes (DEGs) identified 

in each pairwise comparison were corrected for false positives using the Benjamini and 

Hochberg false discovery rate (FDR) correction for multiple testing (Benjamini and 

Hochberg 1995). A contig was considered significantly differentially expressed if it met a 

FDR adjusted P < 0.05. 

 

Weighted gene co-expression network analysis and module gene ontology enrichment 

Correlation structure within the transformed gene expression and physiological data 

was examined using a Weighted Gene Co-expression Network Analysis (WGCNA) 

(Langfelder and Horvath 2008) to identify groups of genes (“modules”) that are co-regulated 

within temperature and pCO2 treatments across S. siderea samples. Expression of genes 

within each module is summarized by the overall expression and represented by the 

eigengene, which can then be correlated post-hoc with provided traits, in this case treatment, 

natal reef environment, and holobiont physiology (calcification rate, host carbohydrate, host 
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lipid, host protein, algal endosymbiont chlorophyll a, algal endosymbiont cell density). 

Resulting correlations with provided traits were assessed to identify modules that capture 

pathways correlating with response to treatment conditions (temperature, and pCO2) as well 

as with other physiological parameters. Gene Ontology (GO) enrichment analysis was also 

applied to WGCNA modules to identify GO enrichment within each selected module. 

 

Results 

Coral host and algal endosymbiont physiology 

Coral host total tissue energy reserves (mg cm-2) was calculated as the sum of each 

protein, lipid, and carbohydrate value per coral host. No overall effect of pCO2 was 

quantified in any of the three species examined (Figure 3.1A). Elevated temperature (31°C) 

resulted in a clear reduction in total coral host energy reserves in only P. strigosa across all 

pCO2 treatments (Figure 3.1A). Total host energy reserves of P. astreoides at T0 were clearly 

greater than the total energy reserves quantified in coral hosts maintained under control 

treatment at T90 (Figure 3.1A). There was no difference in total energy reserves between T0 

and T90 control coral hosts in either S. siderea or P. strigosa.  

Neither pCO2 nor temperature exhibited a statistically clear overall effect on algal 

endosymbiont cell densities (106 cells cm-2) quantified at T90 in any of the three coral 

species (Figure 3.1B). Algal endosymbiont cell density in P. astreoides T0 densities were 

clearly lower than those measured under all treatments at T90 (Figure 3.1B). Algal 

endosymbiont cell densities did not exhibit a statistically clear difference between T0 

fragments and T90 fragments maintained at the control treatment in S. siderea or P. strigosa.  
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All species exhibited reduced algal endosymbiont chlorophyll a (µg cm-2) in the 

highest pCO2 treatment, while elevated temperature (31°C) only clearly reduced chlorophyll 

a in the algal endosymbionts associated with P. strigosa (Figure 3.1C). Algal endosymbiont 

chlorophyll a content of S. siderea and P. strigosa at T0 was lower than the measured 

chlorophyll a in fragments maintained in the control treatment at T90 (Figure 3.1C). 

Conversely, chlorophyll a measured at T0 was not clearly different than in fragments reared 

in the control treatment at T90 for P. astreoides.  

 

Principal component analysis of coral holobiont physiology 

Two principal components (PCs) explained approximately 69% of the variance in 

physiological responses of the S. siderea holobiont to ocean acidification and warming 

treatments (Figure 3.2A). Treatment pCO2 predominantly drove physiological responses (P = 

0.026), while temperature and reef environment were not significant (P > 0.05). Samples 

with higher host energy reserves (lipid, protein, carbohydrate) separated out from samples 

with higher calcification rates, while samples with greater endosymbiont physiology 

(chlorophyll a, cell density) were more similar to samples with higher calcification rates. 

Further, samples with greater endosymbiont physiology and calcification rates were more 

present in low pCO2 treatments (Figure 3.2A). For P. strigosa, 78% of the variance in the 

holobiont responses to treatments was explained by two PCs (Figure 3.2B). Both treatment 

temperature (P = 0.013) and pCO2 (P = 0.013) drove coral holobiont physiology, however 

native reef environment again did not impact overall physiology (P = 0.07). Samples within 

the elevated temperature treatment clustered closely together at the low end of all measured 

parameters, however, samples from each pCO2 treatment were less clearly similar (Figure 
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3.2B). Finally, two PCs explained about 63% of the total variance of the P. astreoides 

holobiont response to treatment (Figure 3.2C). Again, temperature (P = 0.039) and pCO2 (P 

= 0.011) drove separations in holobiont physiology, while reef environment was 

nonsignificant (P = 0.744). Coral holobiont samples separated most clearly along PC1 

(43.6%) with overall greater physiology, while PC2 (19.8%) exhibited separation of samples 

with higher protein, carbohydrate, and calcification rates from those with higher 

endosymbiont physiology and lipid content (Figure 3.2C). 

 

Siderastrea siderea host and algal endosymbiont transcriptomic responses to temperature 
and pCO2 

	
 Transcriptomic analysis of S. siderea host expression of significant DEGs (FDR = 

0.05) in response to pCO2 alone exhibited a total of 867 DEGs, representing a total of 5.7% 

of the entire transcriptome responding to treatment (Figure 3.3A). Temperature drove few 

DEGs in the coral host (399) to only represent 1.98% of the total host transcriptome 

responding to experimental treatments (Figure 3.3A). Finally, the combination of pCO2 with 

temperature resulted in 122 significant DEGs, only about 0.8% of the host transcriptome 

(Figure 3.3A). Similarly, transcriptomic analysis of S. siderea algal endosymbiont 

(Cladocopium goreaui) expression in response to pCO2 resulted in 6.65% (1567) of the 

endosymbiont transcriptome expressing significant DEGs (FDR = 0.05) (Figure 3.3B). 

Within pCO2 DEGs, the majority of the significant DEGs were enriched (99%) in higher 

pCO2 treatments. Both temperature and the combination of pCO2 with temperature resulted 

in no significant transcriptomic responses in the algal endosymbionts, highlighting the 

sensitivity of the endosymbionts to pCO2 but not temperature (Figure 3.3B). 
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 Principal component analysis (PCA) of the overall vst-transformed expression 

profiles of the coral host explained approximately 58% of the expression differences with 

two PCs (Figure 3.3C). Treatment pCO2 (P = 0.001) and temperature (P = 0.015) 

significantly drove differences in S. siderea host expression profiles. Conversely, two PCs 

explained approximately 95% of the overall expression profile differences in C. goreaui, 

with pCO2 (P = 0.002), but not temperature (P = 0.083), driving expression differences 

(Figure 3.3D). 

 

Weighted gene correlation network analysis 

 WGCNA assigned 8,791 of the coral host vst-transformed isogroups to four modules 

(merging of 0.62) (Figure 3.4). The “brown” module (1047 genes) was significantly 

correlated with several treatments and physiological parameters, including upregulation with 

algal endosymbiont cell density (r = 0.44) and chlorophyll a concentration (r = 0.34), while 

the genes were downregulated with pCO2 (r = 0.41). The “green yellow” module (2159 

genes) was upregulated in algal endosymbiont cell density (r = 0.35) while the “blue” module 

(2527 genes) was downregulated (r = 0.41). Genes in the “midnight blue” module (334) were 

upregulated with pCO2 (r = 0.60) and downregulated with calcification rate (r = 0.36) and 

temperature (r = 0.39). Temperature was associated with the upregulated genes in both the 

“cyan” (r = 0.34) and “dark red” (r = 0.63) modules, while the genes in the “dark turquoise” 

(r = 0.50) module were downregulated. Finally, the “blue” module (2527 genes) was 

significantly downregulated with algal endosymbiont cell density (r = 0.40) and the “dark 

green” module (179 genes) was significantly upregulated with carbohydrates (r = 0.32) 

(Figure 3.4B). 
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Gene Ontology (GO) enrichment analysis of the “blue” and “green yellow” modules 

correlating with algal endosymbiont density identified several pathways for “cellular 

component” (CC), “biological processes” (BP), and “molecular function” (MF) (Figures 

3.4B, S3.9). Analysis of the “dark green” module associated with coral host carbohydrate 

content identified several CC, BP, and MF pathways correlating with the module (Figures 

3.4B, S3.10). While modules significantly correlated with algal endosymbiont chlorophyll a 

(“brown”), calcification (“midnight blue”), pCO2 (“brown”, “midnight blue”), temperature 

(“midnight blue”, “cyan”, “dark red”, “dark turquoise”), and algal endosymbiont cell density 

(“brown”), no significant GO terms were identified in these modules associated with the 

traits (Figure 3.4B).  

GO enrichment of the “blue” module identified significantly downregulated terms 

associated with oxidative metabolism, cell growth, and proton transport in the CC category, 

while both BP and MF categories identified downregulation of terms relating to homeostasis, 

metabolism, oxidative and heat stress, and immune responses (Figures 3.4B, S3.9). The 

“green yellow” module identified upregulation of several terms within the CC, BP, and MF 

categories associated with response to environmental stimuli, cellular communication, 

metabolic processes, and cytoskeleton maintenance (Figures 3.4B, S3.9). Finally, the “dark 

green” module exhibited significantly upregulated GO enrichment terms associated with 

protein synthesis in the CC and MF categories, while the BP process exhibited terms 

associated with growth and metabolism (Figures 3.4B, S3.10).  

No significant GO terms were identified through GO enrichment analysis in any of 

the algal endosymbiont modules correlating significantly with treatments or physiological 

parameters (Figure S3.11). 
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Discussion 

Coral host total energy reserves show little change under simulated global change 

Ocean acidification, warming, and the combination of the two stressors is expected to 

considerably reduce coral abundance and cover throughout the Greater Caribbean due to the 

physiological strain placed on the corals under these stressors (Hughes et al. 2017a, Drury 

2019). Here, we demonstrate the variety of physiological responses, both at the coral host 

and the algal endosymbiont levels, to simulated ocean acidification and warming scenarios. 

Increasing pCO2 did not elicit a reduction in the total host energy reserves (sum of protein, 

carbohydrate, and lipid concentrations per sample) in any of the three species examined, even 

under extreme pCO2 or at the elevated temperature. Further, the lack of a clear response to 

pCO2 was observed in the separate host lipid, protein, and carbohydrate concentrations for 

each species (Figures S3.1 – S3.3), suggesting all of the host energy reserves quantified were 

similarly unaffected by pCO2. When compared with previously measured calcification rates 

(Figure S3.4), these results demonstrate that the corals in the current study do not consume 

tissue energy reserves as a mechanism to sustain net calcification under ocean acidification, 

as have been seen previously in similar studies (Edmunds 2012, Schoepf et al. 2013, Towle 

et al. 2015). 

Conversely, total host energy reserves of only P. strigosa were clearly reduced under 

warming conditions regardless of pCO2, likely driven by decline in protein concentrations 

(Figure S3.3B), and this species similarly exhibited slower calcification rates (Figure S3.4B). 

Indeed, P. strigosa is known to be a more thermally sensitive coral species (Scheufen et al. 

2017, Rippe et al. 2018), especially compared with S. siderea and P. astreoides, and it is 

likely that the combination of reduced calcification rates with consumption of host energy 
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reserves is indicative of the fragments moving towards mortality. Thermal events on coral 

reefs are generally considered more acute stress events (on the scale of hours to weeks) 

(Hughes et al. 2018), thus exposure of these corals to more than 90 days of constant elevated 

temperatures may have elicited a more severe response to elevated temperature in P. 

strigosa. Although host energy reserves in S. siderea were not clearly different under 

elevated temperatures, the quantified values exhibited a trend towards lower total host energy 

reserves under warming compared to conspecifics reared at ambient temperature. Thus, it is 

possible that if the experiment were prolonged beyond the 93 days or employed a higher 

treatment temperature (i.e., greater than 31°C) that host energy reserves would be reduced for 

this species as well (Fitt et al. 1993). Indeed, calcification rates of these S. siderea fragments 

were not impacted by elevated temperature (31 °C), while corals collected from a similar 

region exhibited clearly reduced calcification rates when maintained at a slightly higher 

temperature for a similar duration (32 °C for 95 days) (Castillo et al. 2014). Because 

warming predominantly impacts the symbiosis between the coral host and algal 

endosymbiont (Brown 1997, Coles and Brown 2003, Baird et al. 2009), algal endosymbiont 

community and physiology likely play a significant role in both the calcification and host 

physiological responses of the three coral species examined.  

 

Algal endosymbionts exhibit productivity loss under ocean acidification 

 While pCO2 did not clearly alter the coral host energy reserves in any species 

examined in this study, S. siderea exhibited clear reductions in algal endosymbiont 

chlorophyll a concentration along with increasing pCO2 and both P. strigosa and P. 

astreoides demonstrated trends suggestive of reduced chlorophyll a concentration under high 
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pCO2, contrasting previous work (Hii et al. 2009, Crawley et al. 2010, Schoepf et al. 2013). 

Chlorophyll a concentrations are representative of the efficiency of the algal endosymbionts 

living within the coral tissue (Jones 1997), thus higher chlorophyll a content is generally 

interpreted to represent more productive endosymbiont communities (Prezelin 1987). The 

observed decline of chlorophyll a within fragments of S. siderea, along with the similar 

trends in P. strigosa and P. astreoides, in response to increasing pCO2 may suggest that 

symbiont communities within the coral holobiont may become less efficient at 

photosynthesizing, consequently providing less autotrophically-derived carbon to the coral 

host (Muscatine et al. 1981, Anthony and Fabricius 2000). However, chlorophyll a alone 

does not fully represent algal endosymbiont physiology within a coral holobiont and thus 

should also be interpreted in the context of overall endosymbiont cell density. 

While chlorophyll a concentration exhibited a clear reduction (S. siderea only) or 

declining trends (P. strigosa and P. astreoides) suggestive of sensitivity to increasing pCO2, 

algal endosymbiont cell density only resulted in a trend in S. siderea with increasing pCO2 

and no clear effect on either P. strigosa or P. astreoides. This is consistent with previous 

work that demonstrated no change in algal cell density in several species of corals collected 

from Fiji (Schoepf et al. 2013), as well as in Acropora cervicornis collected from the Florida 

Keys (Towle et al. 2015). However, another study found clear decreases in algal 

endosymbiont cell densities in Acropora millepora from the Great Barrier Reef when 

exposed to elevated pCO2 for 28 days (Edmunds 2011), a similar timescale to Schoepf et al. 

(2013) but shorter than both the current experiment (93 days) and Towle et al. (2015) (~56 

days). The variable impacts of pCO2 across species, regions, and experimental durations 

suggests that responses of the algal endosymbiont densities are highly variable and complex 
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when taken out of context of other algal endosymbiont physiology parameters (Fitt et al. 

2000).  

Experimental warming did not elicit a clear response in algal endosymbiont 

physiology (chlorophyll a or cell density) in S. siderea or P. astreoides. However, 

chlorophyll a concentration in P. strigosa was clearly reduced in all warming treatments and 

cell density exhibited a similar trend, although not significant. These algal endosymbiont 

physiology trends are not unexpected for the three species examined due to similar 

calcification and host physiology responses observed on the same fragments, and highlight 

the relative resilience of both P. astreoides and S. siderea under warming conditions 

(Okazaki et al. 2017, Bove et al. 2019). While warming is generally associated with 

bleaching, especially during prolonged exposure to elevated temperatures, S. siderea did not 

show signs of bleaching while P. strigosa was clearly bleached, especially over time (Figure 

S3.5). Interestingly, previous studies using colonies of S. siderea collected from a similar 

region on the Belize MBRS exhibited bleaching in warming experiments when the species 

was maintained at 32 °C for either 60 (Horvath et al. 2016) or 95 days (Castillo et al. 2014). 

The present study and those conducted previously only differ in temperature treatments by 1 

°C, highlighting the potential consequences of even slight temperature increases on the 

symbiosis between the coral host and the algal endosymbiont. Additionally, the three species 

are known to host varying algal endosymbiont communities. Indeed, S. siderea is known to 

predominately host Symbiodiniaceae from the genus Cladocopium, while P. strigosa hosts 

both Cladocopium spp and Breviolum spp and P. astreoides hosts the genera Breviolum and 

Symbiodinium (LaJeunesse 2002). Previous studies have demonstrated variable thermal 

tolerances of different algal endosymbiont species (Suggett et al. 2008, Gregoire et al. 2017), 
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potentially driving the different trends in cell density and chlorophyll a concentration 

observed. Because of the major role these differing algal endosymbiont communities play in 

the coral holobiont, the algal communities should be assessed in the future. 

Consideration of both cell density and chlorophyll a concentration together provides 

further insight into the overall physiology of algal endosymbionts hosted within the coral 

holobiont by understanding the efficiency per algal cell within each fragment (Mason 2018). 

For example, S. siderea fragments from the present study exhibited declines in both algal 

endosymbiont chlorophyll a and cell density with increasing pCO2, but not temperature, 

suggesting that the algal endosymbiont communities within this species may be more 

sensitive to projected ocean acidification, exhibiting less dense, less efficient algal 

communities. Indeed, several other studies have demonstrated bleaching in corals, via 

reduced endosymbiont densities and chlorophyll a concentration, however the reasons behind 

the bleaching remains unclear (Anthony et al. 2008, Kaniewska et al. 2012, Mason 2018). 

Conversely, fragments of both P. strigosa and P. astreoides exhibited declining trends in 

chlorophyll a concentration accompanied by no clear change in algal endosymbiont cell 

density with increasing pCO2, likely indicative of declining endosymbiont photosynthetic 

efficiencies (Prezelin 1987). Overall, these results confirm the diversity of algal 

endosymbiont responses under projected global change scenarios among coral species and 

highlight the need to better understand the mechanisms driving bleaching responses in the 

coral holobiont. 
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Species-specific holobiont physiology highlights overall response to ocean acidification 

Understanding the individual physiological responses of the coral host and the algal 

endosymbionts provides valuable insight into the relationships within the coral holobiont, 

however, it is equally important to assess the two in conjunction to investigate potential 

drivers of the coral holobiont responses under global change stressors. Indeed, while 

simulated ocean acidification conditions only altered some parameters within the coral 

holobiont in some species, pCO2 treatment clearly drove sample differences in principal 

component analyses on all three coral holobiont species. The significance of pCO2 on the 

holobiont response highlights the complexity of the coral holobiont under stress (Weis 2010, 

Schoepf et al. 2013, Hoadley et al. 2019) and suggests that by only assessing a few 

physiological parameters, studies may be missing important changes to the coral holobiont. 

Unsurprisingly, the coral holobiont physiology of P. strigosa was also clearly explained by 

temperature treatment, with fragments reared at the elevated temperature clustering closely 

together at the low end of all physiological measurements. All measured physiological 

parameters within P. strigosa exhibited similar trends in the principal component analysis, 

with higher physiologies occurring in the control temperature, regardless of pCO2 treatment. 

This is likely representative of the overall holobiont deterioration in response to thermal 

stress which would have likely led to total mortality if the experiment had been conducted 

longer, as is seen during mass bleaching events in situ (Eakin et al. 2010). Temperature also 

impacted P. astreoides holobiont physiology, with higher physiologies generally in the 

warmer treatment, while temperature did not clearly affect S. siderea holobiont physiology. 

This difference in coral holobiont physiology temperature responses is not surprising given 

that P. astreoides is generally considered a weedier coral that can persist in less-desirable 
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conditions (Green et al. 2008, Darling et al. 2012, Grottoli et al. 2014, Manzello et al. 2015), 

while S. siderea and P. strigosa are classified as ‘stress tolerant’ species with varying levels 

of susceptibility and resilience to environmental stressors (Alemu and Clement 2014, Castillo 

et al. 2014, Venti et al. 2014, Davies et al. 2016, Horvath et al. 2016, Neal et al. 2017, 

Okazaki et al. 2017). 

Within the S. siderea holobiont physiology, host energy reserves drove similar 

physiological responses while algal endosymbiont parameters were more similar to one 

another. Interestingly, fragment calcification rate was more similar to algal endosymbiont 

physiology, highlighting the importance of retaining a healthy algal endosymbiont 

community for the maintenance of net calcification rates of S. siderea, especially under 

global change. This relationship suggests that S. siderea is able to maintain net calcification 

primarily due to carbon allocation from the associated algal endosymbionts (Muscatine and 

Cernichiari 1969). Indeed, previous work with S. siderea reported significant reductions in 

calcification rates accompanied by bleaching under warming scenarios (Castillo et al. 2014, 

Horvath et al. 2016). Conversely, P. astreoides exhibited similar protein, carbohydrate, and 

calcification physiology, highlighting the importance of maintaining protein and 

carbohydrate for sustained calcification rates (Allemand et al. 2004, Grottoli et al. 2004, 

Allemand et al. 2010). Additionally, lipid content within the P. astreoides host drove similar 

physiology patterns to both algal endosymbiont cell density and chlorophyll a concentration, 

indicative of a positive relationship between algal endosymbionts and coral host lipid content 

(Yamashiro et al. 2005, Chen et al. 2017). Together, these trends suggest that host energy 

reserves are important for maintaining calcification rates in P. astreoides, however, protein 

and carbohydrate are likely not being acquired/maintained via symbiosis with the algal 
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endosymbionts. Conversely, fragments with higher lipid content and algal endosymbiont 

physiology may be allocating energy away from skeletal growth towards other metabolic 

processes to promote a healthier coral holobiont (Grottoli et al. 2004). Overall, it is clear that 

coral holobiont responses to ocean acidification and warming cannot be easily explained 

through assessment of host or algal endosymbiont alone, emphasizing the importance of 

quantifying as many response parameters as possible in similar studies to gain accurate 

perspectives of future coral reefs. 

 

Siderastrea siderea coral host exhibits greater transcriptomic response to global change 
stressors 
	

Differential gene expression after exposure to ocean acidification and warming 

scenarios for 93 days highlight a greater transcriptomic response in the S. siderea coral host 

than in the algal endosymbionts. These findings suggest that the coral host may be 

responding more to acidification, and especially warming and the combination of stressors, 

than their associated algal endosymbionts as suggested previously (Leggat et al. 2011, 

Barshis et al. 2013, Davies et al. 2018). Further, both the coral host and algal endosymbionts 

exhibited a greater transcriptomic response to ocean acidification than warming, suggesting 

that the temperature employed in this study was not high enough to elicit symbiotic 

breakdown as seen previously (Davies et al. 2018), with the extreme pCO2 treatment driving 

similar overall expression profiles in both the coral host and algal endosymbiont. Previous 

work has demonstrated transcriptomic responses of the coral host (Kaniewska et al. 2012, 

Moya et al. 2012, Davies et al. 2018) and algal endosymbionts (Rivest et al. 2018) to changes 

in seawater pCO2, attributing the responses to changes in ion transportation, respiration, and 

oxidative stress response. The differences between the coral host and algal endosymbiont 
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differential expression highlight the need to further investigate the molecular underpinnings 

behind the symbiosis between the coral host and algal endosymbionts. 

While WGCNA identified several coexpression modules of genes in both the S. 

siderea coral host and algal endosymbionts, Gene Ontology (GO) enrichment only identified 

significant terms associated with identified modules in the coral host, again highlighting the 

strong transcriptomic response of the coral host. Several coexpression modules within the 

coral host exhibited upregulation of genes corresponding to responses to environmental 

stimuli, growth, protein synthesis, and metabolic processes (Mayfield et al. 2010, Kaniewska 

et al. 2012, Moya et al. 2012, Davies et al. 2016) in association with algal endosymbiont cell 

densities and coral host carbohydrate content. This combined with downregulation of genes 

within the “blue” module corresponding to oxidative metabolism, immune response, and 

proton transport (Kaniewska et al. 2012, Moya et al. 2012, Granados-Cifuentes et al. 2013, 

Davies et al. 2016) suggest that fragments with greater endosymbiont densities were overall 

growing more and exhibited less stress signals. This agrees with the extensive evidence 

highlighting the importance of algal endosymbionts for the coral holobiont in order to 

maintain growth and survival, especially under stress (Brown 1997, Anthony et al. 2008, 

Baird et al. 2009, Leggat et al. 2011, Rivest et al. 2018). It is possible that the healthy 

association with the algal endosymbionts allow the coral host to allocate resources away 

from processes that are not necessary during times of homeostasis, such as immune response, 

towards increased growth to take advantage of the favorable conditions (Metcalfe and 

Monaghan 2001, Bove et al. 2019). Conversely, some coral holobionts may actually allocate 

energy towards increasing metabolism as an adaptative strategy of survival indicating a stress 
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response (Moya et al. 2012), however, further evidence of these stress signals were not 

identified within these gene expression modules. 

WGCNA identified several modules associated with temperature and pCO2 treatment 

in the host, but not in the algal endosymbionts. While no significant GO terms were 

identified within any of these modules in the coral host, these results suggest that these 

treatments elicited a stress response in the coral host. Similar responses within the coral 

holobiont have been reported in response to elevated pCO2 (Kaniewska et al. 2012, Moya et 

al. 2012) and temperature (Davies et al. 2016). Alone, warming has been shown in S. siderea 

to increase catabolic processes and reduce responses to environmental stimuli after long-term 

exposure (Davies et al. 2016), however, the same signs of physiological shutdown were not 

seen in the current study highlighting the significance that ocean warming of a single degree 

can have on Caribbean corals. Additionally, many previous studies identified significant 

increases in genes associated with proton transport or respiration in response to changing 

pCO2 (Kaniewska et al. 2012, Moya et al. 2012, Davies et al. 2018), no similar responses 

were identified in the current study. Proton transport has been associated with increased 

calcification in corals through proton pumps to remove protons from the calcifying fluid 

(Cohen and McConnaughey 2003, Ries 2011), and has been proposed as a sign of 

acclimation of corals to elevated pCO2 (Davies et al. 2016). To better understand the role of 

proton transport in coral calcification, it would be valuable to pair skeletal growth rates and 

gene expression with a measure of calcifying fluid saturation state.  
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Conclusions 

 As global change continues to persist, it is critical to understand species-specific coral 

holobiont responses under ocean acidification and warming scenarios in order to predict the 

future state of Caribbean coral reef assemblages. Results from the present study suggest that 

S. siderea may become dominant reef builders across the Caribbean due to their maintenance 

of tissue energy reserves, minimal transcriptomic response to stress, and relatively unaltered 

symbiosis with their algal endosymbionts (Figure 3.5). Conversely, P. strigosa was unable to 

maintain any holobiont physiological parameters under warming, suggesting that this species 

will be particularly vulnerable to thermal stress, likely resulting in widespread bleaching and 

mortality (Figure 3.5). Finally, P. astreoides exhibited shifts in host and algal endosymbiont 

physiology throughout the experiment, however, pCO2 and temperature did not clearly elicit 

a response indicating this species may also fair better than most under global change (Figure 

3.5). These results also demonstrate that while ocean warming is a severe acute stressor that 

will have dire consequences for coral reefs globally, chronic exposure to increasing pCO2 

may be impacting the coral holobiont physiology to a greater extent than previously assumed.   
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Figure 3.1 Coral host and algal endosymbiont physiology 

Representative coral colony images (A) and modelled 95% confidence interval of (B) total 
host energy reserves (mg cm-2), (C) cell density (106 cells cm-2), and (D) Chlorophyll a (ug 
cm-2) for S. siderea, P. strigosa, and P. astreoides at T0 (green) or T90 (red/blue), with 
individual coral fragment physiology denoted by points. Blue denotes 28°C and red denotes 
31°C, with pCO2 treatment along the x axis. 
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Figure 3.2 Coral holobiont physiology principal component analyses 

Principal component analyses of overall holobiont physiology for (A) S. siderea, (B) P. 
strigosa, and (C) P. astreoides. Left column within each panel represents the data separated 
by temperature treatment (blue = 28 °C; red = 31 °C) and the right panel colours depict pCO2 
treatment (light purple = pre industrial/280; dark purple = current day/400; light orange = end 
of century/700; dark orange = extreme/2800). 
 



78	
 
	
	

 
Figure 3.3 Siderastrea siderea host and algal endosymbiont gene expression 

Bar plot depicting the numbers of significantly (P < 0.05) differentially expressed genes 
(DEGs) for S. siderea coral host (A) and algal endosymbionts (C. goreaui; B) in response to 
pCO2, temperature, or the combination of pCO2 with temperature stress. Principal component 
analysis of the vst transformed isogroup clusters by pCO2 and temperature treatment in both 
the coral host (C) and algal endosymbiont (D). pCO2 drove significant profiles in both the 
host and endosymbionts, while temperature only elicited differences in the coral host. 
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Figure 3.4 WGCNA analysis of Siderastrea siderea host gene expression 

Dendrogram of gene clustering based on similar expression patterns (A). Coloured bars in the 
top depict co-expression modules before clustering of modules (Dynamic Tree Cut), and the 
coloured bars below depict modules based on clustering (Merged Dynamic). Correlations 
between module eigengenes and treatment or physiological parameters (B). The bar graph 
(left) depicts the number of genes corresponding to each module. Significant modules are 
denoted by values for Pearson’s correlation coefficients within each cell.  
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Figure 3.5 Summary of physiological responses to treatment 

Summary of coral host and algal endosymbiont physiology trends in response to pCO2 and 
temperature treatments. Each row represented the physiology of a single species and the 
columns correspond to the different physiological parameters. Temperature is depicted by 
colour (blue = 28 °C; red = 31 °C) and pCO2 is represented along the x axis. Separation of 
blue and red lines represent effects of temperature, while lines with slopes deviating from a 
flat line represent pCO2 effects. Overall, S. siderea appears more susceptible to changes in 
pCO2, P. strigosa exhibits thermal sensitivity, and P. astreoides only shows moderate 
physiological response to temperature and pCO2.   
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Sample pCO2 Temp # PE reads Trimmed Mapped 
(symbiont) 

Mapped 
(host) 

% mapped 
(symbiont) 

% mapped 
(host) 

CFSA1 280 31     8,340,331    2,350,680     111,510    451,153  4.7 19.2 
CFSA10 2800 28     4,923,247    1,124,825       48,472    226,245  4.3 20.1 
CFSA14 280 28     7,560,790    2,184,974     127,079    415,282  5.8 19.0 
CFSA2 400 28     7,559,407    2,142,984     235,867    367,802  11.0 17.2 
CFSA3 400 31     3,477,839    1,071,563       62,040    209,170  5.8 19.5 
CFSA5 700 31     9,297,430    2,606,417     128,458    495,742  4.9 19.0 
CFSA6 700 28     5,297,093       316,590       17,608      51,777  5.6 16.4 
CFSA7 2800 31     7,325,024    2,009,615       34,730    404,788  1.7 20.1 
CFSB1 280 31     6,028,486    1,673,102     174,147    283,293  10.4 16.9 
CFSB10 400 31     8,309,773    2,074,975     144,215    385,694  7.0 18.6 
CFSB13 400 28     9,315,996    2,355,221     229,362    479,857  9.7 20.4 
CFSB2 280 28     3,644,957       898,462       57,371    138,180  6.4 15.4 
CFSB3 2800 28     4,148,173    1,093,218       30,696    215,827  2.8 19.7 
CFSB5 700 31   10,271,033    2,529,758     197,184    497,108  7.8 19.7 
CFSB6 700 28   11,543,969    2,766,331     147,438    592,224  5.3 21.4 
CFSB7 2800 31     9,227,113    2,289,967       34,630    377,864  1.5 16.5 
CFSD11 280 28     5,007,517    1,269,669       99,749    196,608  7.9 15.5 
CFSD3 400 31     8,524,744    1,689,962     106,544    286,126  6.3 16.9 
CFSD5 700 31   15,746,927    3,658,550     283,765    791,604  7.8 21.6 
CFSD6 700 28     5,507,256    1,610,552     130,713    308,209  8.1 19.1 
CFSD7 2800 31   12,056,903    1,505,616       74,111    253,101  4.9 16.8 
CFSD8 2800 28     7,068,598    1,964,633     150,906    387,577  7.7 19.7 
CFSD9 400 28     8,397,205    2,143,893     265,788    366,642  12.4 17.1 
CFSF16 2800 28   14,922,916    3,571,119     159,400    738,582  4.5 20.7 
CFSF2 280 28     6,537,468    1,742,159     107,988    317,315  6.2 18.2 
CFSF3 400 31     6,882,645       755,210       40,545    111,594  5.4 14.8 
CFSF5 700 31   12,012,025    2,475,681     106,247    427,341  4.3 17.3 
CFSF6 700 28     4,666,596    1,427,632       87,936    275,139  6.2 19.3 
CFSF7 2800 31     7,177,091    1,676,428     113,655    267,673  6.8 16.0 
CNSB1 280 31     9,815,280    2,566,080     133,619    421,547  5.2 16.4 
CNSB2 280 28   11,230,948    3,358,859     382,453    620,212  11.4 18.5 
CNSB20 2800 31     5,707,712       378,221         8,805      56,580  2.3 15.0 
CNSB3 400 31     7,345,760    1,624,653       84,077    328,681  5.2 20.2 
CNSB5 700 31     9,736,434    2,427,004     206,302    433,646  8.5 17.9 
CNSB6 700 28     6,068,999    1,598,762     119,154    308,914  7.5 19.3 
CNSB7 400 28     7,719,211    2,193,616     203,680    418,799  9.3 19.1 
CNSB8 2800 28     5,202,678    1,153,371       47,355    246,329  4.1 21.4 
CNSD1 280 31   11,451,779    3,290,594     286,474    668,958  8.7 20.3 
CNSD2 280 28          17,481           6,148            233           723  3.8 11.8 
CNSD5 700 31     8,554,185    2,499,249     172,317    553,441  6.9 22.1 
CNSD8 2800 28          18,282           5,951            236           664  4.0 11.2 
 
Table 2.1 Summary of Siderastrea siderea RNA libraries 

Sample ID, pCO2 (µatm) and temperature (°C) treatment, total number of raw 50 bp paired-
end (PE) reads (“# PR Reads”), unpaired reads remaining after trimming and quality control 
(“Trimmed”), reads that mapped to the algal endosymbiont (“Mapped (symbiont)”) or coral 
host (“Mapped (host)”) transcriptome, and mapping efficiency of both the algal 
endosymbiont (% mapped (symbiont)) and coral host (% mapped (host)).   
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CHAPTER 4: EXTREME OCEAN ACIDIFICATION ALTERS SKELETAL 
MORPHOLOGY IN A CARIBBEAN REEF-BUILDING CORAL  

Introduction 

Coral calcification on tropical reefs produces the three-dimensional framework 

necessary to support a significant proportion of the world’s ocean biodiversity. However, 

recent increases in atmospheric carbon dioxide (CO2) concentrations from anthropogenic 

sources have caused dramatic global change phenomena, namely ocean warming and 

acidification (Hoegh-Guldberg et al. 2007, Doney et al. 2009, Hoegh-Guldberg and Bruno 

2010), that are affecting the ability of scleractinian corals to maintain skeletal production. 

Ocean warming, caused by CO2 trapping heat in the atmosphere and consequently driving 

warmer oceanic temperatures (IPCC 2019), is leading to more frequent and severe coral 

bleaching events globally (Hughes et al. 2017b) in which the symbiosis between the coral 

animal and algal endosymbionts breaks down (Brown 1997). Because reef-building corals 

rely on their algal endosymbionts for up to 100% of their nutritional needs (Muscatine et al. 

1981), especially for calcification, colonies experiencing such dysbiosis often exhibit reduced 

skeletal growth and partial or total mortality (Cantin et al. 2010, DeCarlo et al. 2017, Prada et 

al. 2017). In addition to threats from warming sea surface temperatures, excess atmospheric 

CO2 is being dissolved into the world’s ocean causing declines in seawater pH and alterations 

to carbonate chemistry (Doney et al. 2009). Coral calcification has been shown to be closely 

linked with carbonate chemistry (Jury et al. 2010, Albright et al. 2016, Comeau et al. 2017, 

Schoepf et al. 2017, Albright et al. 2018, DeCarlo et al. 2018) through several field and 
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experimental studies, suggesting that changes to the carbonate system on coral reefs will 

further alter the way corals produce reef structures.  

Although significant research has been performed to elucidate the calcification 

response of corals to ocean acidification and warming (Anthony et al. 2008, Agostini et al. 

2013, Holcomb et al. 2014, Barott et al. 2015, Comeau et al. 2017, Bove et al. 2019, DeCarlo 

et al. 2019), little is known about the specific mechanisms that cause the observed declines in 

calcification rates. One theory behind the reduction in coral calcification is that coral 

skeletons are becoming less dense while maintaining extension rates in response to global 

change stressors (Mollica et al. 2018, Rippe et al. 2018). Conversely, others have suggested 

that changes in calcification rates are a result of dissolution of previously-formed skeletal 

material (Bove et al. 2019, Chou et al. 2020) or through morphological modifications to the 

skeleton (Marubini et al. 2003, Tambutte et al. 2015). Indeed, previous work has quantified 

declines in the structural complexity of Siderastrea siderea corallites under experimental 

ocean acidification and warming, potentially impacting the coral polyp’s ability to anchor 

and retract within the corallite (Horvath et al. 2016). 

Here, I investigate the effects of experimental ocean acidification and warming on 

skeletal morphology of the coral S. siderea from inshore and offshore reefs on the 

Mesoamerican Barrier Reef System (MBRS). In S. siderea, corallites contain a predictable 

pattern of septal disposition following hexameral symmetry (Neves et al. 2016), making it a 

great candidate for corallite morphological assessment. Corallite height and skeletal infilling 

were assessed using stereomicroscopy and complimented with scanning electron microscopy 

of septal ridge and peak rugosity to quantify alterations of the corallite after experimental 

treatment conditions. Fragments of S. siderea were previously exposed to one of eight 
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treatments for 93 days: two temperatures [present day (28°C) and an end-of-century (31°C)] 

fully crossed with four pCO2 treatments [pre-industrial (~280 μatm), present-day (~400 

μatm), end-of-century (~700 μatm), and extreme value (~3200 μatm)]. These data assist in 

the understanding of how ocean acidification and warming alter calcification rates of S. 

siderea by attempting to identify where changes in skeletal morphology may be occurring. 

 

Methods 

Experimental design 

The experimental design and implementation is described in detail in Bove et al. 

(2019) and the specific parameters of the experimental treatments are included in the 

supplemental information. Briefly, six colonies of the common Caribbean reef-building coral 

Siderastrea siderea were collected from inshore and offshore reef environments in June 2015 

from the southern portion of the Belize Mesoamerican Barrier Reef System. Corals were 

immediately transported to Northeastern University’s Marine Science Center. Colonies were 

sectioned into eight equally sized fragments and maintained in one of eight experimental 

treatments (3 replicate tanks per treatment) for 93 days. The eight treatments encompassed 

four pCO2 treatments corresponding to pre-industrial, current-day (pCO2 control), end-of-

century, and an extreme pCO2 level and two temperatures corresponding to the corals’ 

approximate present day mean (28°C) and projected next-century warming (31°C). These 

pCO2-temperature combinations resulted in eight triplicate (24 tanks total) treatments: 288 

(±65), 447 (±152), 673 (±104), 3285 (±484) µatm at 28°C (±0.4); and 311 (±96), 405 (±91), 

701 (±94), 3309 (±414) µatm at 28°C at 31.0°C (±0.4). At the completion of the 

experimental, coral tissue was removed from the skeleton with a seawater sprayer and 
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skeletons and air-dried for skeletal morphology assessment (see Appendix 2 for details on 

experimental design and maintenance). 

 

Assessment of corallite height and infilling 

 All fragments of S. siderea (n = 87) were imaged for corallite height and infilling 

analyses via stereomicroscopy (Figure 4.1). Corallite height was quantified following 

Horvath et al. (2016), using a stereomicroscope (Nikon SMZ 1500) to determine the 

difference in vertical position of the microscope’s z-stage between the in-focus basal plate 

and top of the septal ridge of each corallite (Figure 4.1B). Images were taken starting with 

the top of the basal plate fully-focused, then continued until the top of the septal ridge was 

fully in focus to result in corallite height. This was performed on 5 intact corallites away 

from the edge of the fragments, as this was the number determined to be needed in order to 

represent the fragment’s true mean corallite height. In addition to height, area of each 

corallite was measured due to the phenotypic observation that larger corallites had greater 

heights.  

 Fully-focused images of all 5 corallites quantified were created using NIS Elements 

Basic Research (Nikon) using the z-series step images taken to produce the fully-focussed 

image (Figure 4.1A). The final image was cropped along the top of the septal ridge and then 

the colour threshold was changed to white (skeleton) and black (space) using GIMP (GIMP 

Development Team 2019). White pixels in each image were then changed to red in order to 

calculate the ratio of red to black (skeleton to space) pixels in each corallite using a custom 

Python script to determine the percent corallite infilling (Figure 4.1C).  
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Septa and septal peak rugosity 

 A subset of S. siderea samples (n = 14) was selected to represent all treatments 

present in the experimental design and based on their previous assessment of transcriptomic 

responses to experimental stressors (see Appendix 3). Coral fragments were submerged for 3 

hours in 8.25% sodium hypochlorite solution to remove organic residue and then rinsed with 

95% ethanol and air-dried for at least 24 hours. Samples were then mounted and sputter 

coated in platinum (4.0 nm thickness; Leica EM ACE600; Buffalo Grove, Illinois, USA) and 

imaged using scanning electron microscopy (30 kV, 10.0 BI; Tescan Vega3; Brno - 

Kohoutovice, Czech Republic). For every coral fragment, a total of three corallites were 

analysed with the following images: full corallite, basal plate, 2 first order septa, 2 fourth 

order septa, 3 peaks per first order septa, and 3 peaks per fourth order septa (Neves et al. 

2016) (see Figure 4.2 for representative images of corallite (A), septal ridge (B), and septal 

peak (C)). For images of the septa and septal peaks, the coral sample was angled in the SEM 

so that images could be taken of the septa from the side (Figure 4.2B–C). Septal ridge and 

septal peak rugosity were measured using IMAGEJ (Schindelin et al. 2012). Tracing along 

the peaks along the septa and then dividing it by the length quantified resulted in the septa 

rugosity. Similarly, the length of tracing each peak was divided by the length of a segmented 

line drawn from the base to the peak and then down to the base again to obtain the peak 

rugosity (Figure S4.1).  

 

Statistical analyses 

Linear mixed effects models selected using AIC were used to assess the impacts of 

pCO2 and temperature on S. siderea corallite morphology (corallite height, infilling, septal 
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peak rugosity, and septal ridge rugosity), with a random effect of colony (lme4 (1.1-12)) 

(Bates et al. 2015b) (see Tables S4.1–S4.4 for model selection). Parametric bootstraps were 

performed to model 95% confidence intervals with 2500 iterations (Wilcox 2010). 

Significant differences between treatments were defined as non-overlapping 95% confidence 

intervals. All statistical analyses were performed in R (3.5.2) (R Core Development Team 

2016).  

 

Results 

Corallite height and percent skeletal infilling 

Corallite height (mm) of S. siderea after 93-days of exposure to elevated temperature 

and pCO2 exhibited no clear differences due to treatment effects (Figure 4.3A; Tables S4.5, 

S4.6). However, corallite height in the extreme pCO2 treatment at both temperatures trended 

towards smaller heights, suggesting moderate effects of elevated pCO2. Conversely, the 

percent of corallite skeletal infilling was lower in the control treatment (447 μatm; 28 °C) 

compared to infilling of fragments reared under elevated temperature alone (447 μatm; 31 

°C) or compared to fragments reared at pre-industrial and end-of-century pCO2 treatments at 

both temperatures (Figure 4.3B,; Tables S4.7, S4.8). Corallite skeletal infilling in fragments 

reared in the extreme pCO2 treatment at both temperatures was clearly reduced compared to 

all other treatment. Natal reef environment did not clearly impact corallite height or skeletal 

infilling and was not assessed further for these parameters (Tables S4.1, S4.2).  
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Septal peak rugosity 

Both 1st and 4th order septal peaks exhibited similar responses to temperature 

and pCO2 after 93-days in experimental treatments (Figure 4.5; Tables S4.9, S4.10). Septal 

peak rugosity of both the 1st and 4th order peaks exhibited higher peak rugosity in inshore 

samples than in offshore sample in the pre-industrial and extreme pCO2 treatments. Finally, 

temperature and pCO2 treatment did not clearly impact septal peak rugosity of either 1st or 

4th order peaks (Figure S4.2). While the 95% confidence intervals overlap, data suggest that 

both types of septal peaks trended toward the lower rugosity in the control treatment 

(447 μatm; 28 °C) when compared to all other temperature and pCO2 treatment 

combinations. 

 

Septal ridge rugosity 

Ridge rugosity of both 1st and 4th order septa do not exhibit clear impacts of 

experimental pCO2 or temperature (Figure 4.6; Tables S4.11, S4.12). While 95% confidence 

intervals between natal reef environments were not clearly different, trends suggest that 

inshore fragments had more complex septal ridges than fragments originating in the offshore 

environment. Temperature and pCO2 treatment did not clearly alter the 1st or 4th order septal 

ridge rugosity, however the lowest quantified complexity was in the end-of-century 

(673 μatm) pCO2 treatment at current-day temperature (28 °C) (Figure S4.3). 

 

Qualitative assessment of septa alterations due to treatment 

 Visual assessment was conducted on all septal peak and ridge SEM images to identify 

minute alterations to the skeleton that were not quantified through other measurements. Signs 
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of septal peak and ridge dissolution were observed on several corallite from different 

colonies maintained in the extreme pCO2 treatment at both temperatures (Figure 4.7A–C). 

Septal peaks on corals maintained in the higher pCO2 treatments (both end-of-century and 

extreme) were also generally smoother than peaks assessed on corals maintained at pre-

industrial and control pCO2 treatments. Additionally, skeletal pitting was observed on most 

corallites assessed in the elevated temperature treatment across pCO2 levels (Figure 4.7D). 

 

Discussion 

 Changes to seawater chemistry on coral reefs is expected to cause widespread 

reductions in net coral calcification rates, however, how ocean acidification alters these 

growth rates remains relatively unknown. The purpose of the current study was to assess 

changes to corallite morphology of S. siderea under simulated acidification and warming 

scenarios in order to quantify alterations that may be leading to reduced calcification rates. 

Assessment of experimental S. siderea fragments suggests that ocean acidification causes 

more detectable differences in corallite morphology than ocean warming, and colonies from 

different reef environments may exhibit varying levels of morphological plasticity to 

seawater conditions.  

 

Ocean acidification drives greater differences in corallite morphology than warming 

 Substantial research has shown that increasing seawater pCO2 causes declines in coral 

calcification rates across reef-building coral species (Cohen and Holcomb 2009, Ries et al. 

2010, Albright and Langdon 2011, Comeau et al. 2014, Horvath et al. 2016, Bahr et al. 2018, 

Bove et al. 2019). Whiles these declines in calcification rates are often attributed to 
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physiological changes brought on by changing seawater chemistry, such as reduced 

efficiency of the proton pump (Cohen and Holcomb 2009) or reduction in energy reserves 

(Horvath et al. 2016), it is unclear if these changes are accompanied with alterations to 

skeletal structure and morphology. However, recent work has aimed to quantify the effects of 

ocean acidification on calcification rates and resulting morphology in tandem to better 

understand how coral calcification is changing with seawater chemistry (Marubini et al. 

2003, Tambutte et al. 2015, Horvath et al. 2016). 

Siderastrea siderea corallite morphology (height and infilling) patterns from the 

present study were similar to the previously reported calcification rates for these fragments, 

with reduced values under the extreme pCO2 treatment (Bove et al. 2019). However, these 

findings contrast previous work on the same species that show clear reductions in both 

calcification rates and corallite morphology with increased pCO2 (~ 900 μatm) on a shorter 

time scale (Horvath et al. 2016). Corallite height values were similar in the present study to 

those measured by Horvath et al. (2016), while percent corallite infilling was much lower 

(ca. 50-60% in the present study versus 80-90% in Horvath et al. (2016)). This difference in 

total skeletal infilling is likely due to varying colony corallite size or differences in 

experimental systems (i.e., light level, water flow, seawater source) (Foster 1979, Bove et al. 

2020). 

The assessment of corallite height and infilling were used as proxies for linear 

extension and skeletal density, respectively. These two parameters are commonly used to 

quantify growth rates in corals (Lough and Barnes 2000, Castillo et al. 2011, Carricart-

Ganivet et al. 2012, Rippe et al. 2018), however, they represent two distinct growth 

mechanisms with extension (corallite height) preceding skeletal thickening (corallite 
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infilling) (Barnes and Lough 1993). Previous work has demonstrated that skeletal thickening 

is susceptible changing seawater chemistry, resulting in reduced skeletal density (Tambutte et 

al. 2015, Horvath et al. 2016, Mollica et al. 2018). Results from the present study only 

exhibit a reduction in skeletal infilling at the control treatment and under the most extreme 

pCO2. This may be due to the relatively robust nature of S. siderea under acidification and 

warming stress (Davies et al. 2016, Bove et al. 2019), or because the coral tissue maintains 

contact with the skeleton after being precipitated, thus continuously modifying the top level 

of the skeleton (Mollica et al. 2018). Either way, understanding the role of skeletal extension 

versus thickening in response to changing seawater chemistry may provide beneficial insight 

into the calcification mechanisms impacts by ocean acidification. 

The preliminary assessment of corallite septal ridge and peak rugosity in the present 

study was intended to determine a quantifiable approach to identify minute alterations to the 

skeletal morphology of S. siderea that may be responsible for declines in calcification rate 

facilitated by global change stressors. While previous studies have identified minute 

alterations to skeletal precipitation and morphology, these are generally very qualitative 

assessments (Marubini et al. 2003, Rodolfo-Metalpa et al. 2011, Tambutte et al. 2015), 

highlighting the need for new methodologies. Results from the limited sample size assessed 

in the present study suggest that measurement of septal ridge and peak rugosity may begin to 

explain changes in net calcification rates, however, other aspects of the skeleton are also 

likely being altered (Marubini et al. 2003, Tambutte et al. 2015). Additionally, the increase in 

septal peak rugosity in the extreme pCO2 treatment suggests that higher rugosity of septal 

peaks does not necessarily translate to more ideal skeletal production. Visual assessment of 

septa in this and other studies (Marubini et al. 2003) suggest that elevated pCO2 conditions 
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may result in more disorganized aragonite precipitation (i.e. higher rugosity) that may be a 

consequence of maintained growth rate or reduced control of the center of calcification 

(Holcomb et al. 2009, Allemand et al. 2010). Further, several signs of septal peak and ridge 

dissolution were observed in the present study, suggesting that some of the increased septal 

rugosity quantified may be attributed to active removal of previously deposited skeletal 

material. This is in contrast to previous work that identified no skeletal dissolution in 

response to elevated pCO2, suggesting that tissue protects the skeleton from dissolution 

(Marubini et al. 2003, Rodolfo-Metalpa et al. 2011). However, the extent of acidification 

impacts on aragonite crystallization and dissolution is likely highly species-specific 

(Marubini et al. 2003) and S. siderea has exhibited alterations to septal peaks previously 

(Horvath et al. 2016) suggesting that it may be more susceptible to such external seawater 

changes, despite likely having a strong biological control of calcification (Davies et al. 2016).  

 Along with acidification, ocean warming causes even more dramatic declines in 

calcification rates in corals across ocean basins; however, alterations of skeletal morphology 

is not generally detected as a result of increasing temperatures (Foster et al. 2016, Horvath et 

al. 2016). Indeed, while some skeletal pitting was observed on septal peaks of S. siderea 

reared under warming treatments in the present study, temperature did not clearly alter any 

quantified morphological parameters. This suggests that while ocean acidification may alter 

how corals are precipitating their skeletons under acidification (Marubini et al. 2003, 

Tambutte et al. 2015, Foster et al. 2016, Horvath et al. 2016), declines in growth rates 

associated with warming may simply be due to resource limitation preventing continuous 

growth rates (Anthony et al. 2007). Indeed, previous work has demonstrated downregulation 

of genes associated with calcification in coral exhibiting thermally-induced bleaching, 
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resulting in lower calcification rates associated with algal endosymbiont loss (Kenkel et al. 

2013b). Reduced calcification rates recorded in response to increasing ocean temperature is 

thus likely reflecting a biological response to the global change stressor, while acidification 

may also cause physical changes to coral skeletons.  

 

Morphological plasticity of corallites determined by natal reef environment  

 Siderastrea siderea skeletal morphology is known to be highly responsive to 

environmental conditions, with corallite morphology (Foster 1980) and historic growth rates 

(Castillo et al. 2012, Rippe et al. 2018) varying based on reef location. Thus, it is not 

surprising fragments from the inshore exhibited higher septal rugosity than the offshore 

counterparts in some treatments in the present study. It is interesting, however, that inshore 

colonies of S. siderea are generally thought of being more resilient to less favourable 

conditions (i.e., temperature variation (Castillo and Lima 2010) and wave energy (Lugo-

Fernandez et al. 1998)) while the inshore colonies from this study exhibited significant 

deviations from the control septal peak rugosity measurements, suggesting negative 

responses to experimental treatment. Alternatively, the increased septal peak rugosity 

identified in the inshore colonies may simply reflect changes in the growth strategy 

employed by this species to cope with changing seawater chemistry (Tambutte et al. 2015). 

Similarly, S. siderea has been previously shown to produce thicker columella and 

synapticulae as a form of protection from the higher wave energy associated with more 

inshore environments (Foster 1980). While no clear differences in corallite height or infilling 

were detected between fragments from the different reef environments in the present study, 

this could be due to responses to the experimental conditions and water flow driving similar 
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morphologies over the total six-month period in the system. If this is the case, this suggests 

the plasticity of S. siderea skeletal morphology to environmental conditions (Foster 1979, 

1980), even on the scale of months, that should be assessed further on shorter time scales. 

Additionally, the skeletal plasticity of S. siderea may be a valuable response employed by 

this species to thrive in various reefs environments (Baumann et al. 2016) and under 

environmental stressors (Davies et al. 2016, Bove et al. 2019).  

 

Future directions and implications 

Results from this study provide valuable insight into the morphological alterations 

accompanying calcification rates of the Caribbean coral S. siderea under projected global 

change stressors. Moving forward, additional experimental samples should be analysed for 

septal peak and ridge rugosity to better understand these minute skeletal alterations on more 

of a population level. These rugosity measurements could then be better compared with 

calcification rates, linear extension rates, and corallite height and infilling values in order to 

understand how these parameters are related. Indeed, preliminary analysis of the corallite 

parameters assessed here on a subset of fragments reveals potential relationships between 

parameters (Figure S4.4), including corallite height with first order septal ridge rugosity and 

linear extension with fourth order septal ridge rugosity. Additionally, further assessment of 

corallite morphology may lead to a better understanding of the phenotypic response of S. 

siderea to global change stressors. Another possible next step in assessing the thickening of 

corallites could be to directly measure the width of septa from images and count the total 

number of septa within each order as these are known to vary by colony or population in S. 

siderea (Foster 1980).  
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 While concern over declining coral calcification rates in response to global change is 

increasing, our understanding behind the consequences of these changes on the coral skeleton 

is also improving. Ocean warming drives more dramatic declines in coral calcification rates, 

however, these declines appear to be associated with biological slowdown of growth 

(Anthony et al. 2007), leaving the structure of coral skeletons relatively unimpacted (Horvath 

et al. 2016). Conversely, ocean acidification is driving dissolution and morphological 

alterations to the coral skeleton that may explain why calcification rates are declining even 

though other physiological processes are less impacted (Schoepf et al. 2013). Together, these 

results highlight the potential changes in coral skeleton phenotypes that may occur on future 

reefs as oceans continue to experience rapid environmental transformations.  
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Figure 4.1 Diagram of corallite height and infilling methodology 

Example of fully-focused image of corallite (A) taken to quantify corallite height (B) and 
then corallite skeletal infilling (C). Distance between the basal plate and the top of the septal 
ridge determined corallite height (B). Corallite image was converted to red (skeleton) and 
black (space) pixels and percent of red pixels was calculated for % infilling (C). 
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Figure 4.2 Representative SEM image of corallite morphology 

Example images taken using a scanning electron microscope (SEM) of S. siderea corallite 
(A), septal ridge (B), and septal peak (C). Arrows denoted with the number ‘1’ and ‘2’ in 
panel A indicate the first and fourth order septa selected for SEM imaging and analyses, 
respectively. The arrow in panel B indicates the targeted septal ridge.  
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Figure 4.3 Corallite height and infilling in response to temperature and pCO2 

Modelled 95% confidence interval of S. siderea corallite height (mm) (A) and % skeletal 
infilling (B) in response to experimental pCO2 and temperature conditions. Blue triangles 
represent values for fragments in the 28°C treatments and red triangles represent values for 
fragments in the 31°C treatments. Blue and red vertical bars represent modelled 95% 
confidence intervals for each pCO2 treatment at 28°C and 31°C, respectively.  
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Figure 4.4 Representative SEM images of control versus extreme treatment 
morphology 

Example images taken of fragments of S. siderea in the control (400 µatm; 28 °C) treatment 
(A-C) and the most extreme (2800 µatm; 31 °C) treatment (D-F). Full corallite (A, D), septal 
ridge (B, E), and septal peak (C, F) images demonstrate changes to corallite morphology as a 
result of exposure to 93-day of experimental acidification and warming. 
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Figure 4.5 Siderastrea siderea septal peak rugosity in response to experimental 
treatment 

Modelled 95% confidence interval of S. siderea 1st (left panels) and 4th (right panels) order 
septal peak rugosity in response to experimental pCO2 and temperature conditions (28°C top 
panels; 31°C bottom panels). Light blue triangles represent values for fragments collected 
from the offshore reef environment and brown triangles represent values for fragments 
collected from the inshore reef environment. Light blue and brown vertical bars represent 
modelled 95% confidence intervals for each corresponding reef environment and treatment 
condition.  
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Figure 4.6 Siderastrea siderea septal ridge rugosity in response to experimental 
treatment 

Modelled 95% confidence interval of S. siderea 1st (left panels) and 4th (right panels) order 
septal ridge rugosity in response to experimental pCO2 and temperature conditions (28°C top 
panels; 31°C bottom panels). Light blue triangles represent values for fragments collected 
from the offshore reef environment and brown triangles represent values for fragments 
collected from the inshore reef environment. Light blue and brown vertical bars represent 
modelled 95% confidence intervals for each corresponding reef environment and treatment 
condition.  
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Figure 4.7 Representative images of skeletal dissolution and pitting 

Example images of skeletal dissolution (A-C) and skeletal pitting (D) observed on S. siderea 
corallites. Skeletal dissolution (A-C) was observed only on fragments reared in one of the 
extreme pCO2 treatments, while pitting (D) was observed across treatments, however, it was 
primarily documented in elevated seawater temperatures.  
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APPENDIX 1: SUPPLEMENTAL DESCRIPTIONS AND FIGURES – CHAPTER 1 
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Supplementary Table S1.2. Global meta-analysis mixed effects model (function rma.mv) 
output by treatment only, with random effects of study and species, used in Figure 1.2. The 
test for residual heterogeneity and significance is represented by QE (P-value) and the test of 
moderators is QM (P-value). 
 

Treatment Estimate SE Z-value P-value 
acidification -1.2 0.78 -1.55 0.122 
warming 1.19 1.41 0.84 0.399 
combination -1.07 1.19 -0.89 0.369 

Variance Components   
   

QE (P-value) 823.95 (< 0.0001) 
   

QM (P-value) 2.4 (0.30) 
   

 
 
 
Supplementary Table S1.3. Meta-analysis mixed effects model (function rma.mv) output of 
treatment by region (Belize versus Florida Keys), with random effects of study and species, 
used in Figure 1.3. The test for residual heterogeneity and significance is represented by QE 
(P-value) and the test of moderators is QM (P-value). 
 

Treatment Estimate SE Z-value P-value 
Belize         

acidification  -0.93 1.32 -0.70 0.48 
warming  1.56 2.24 0.70 0.49 
combination  -3.64 2.07 -1.76 0.08 

Florida 
    

acidification  0.09 1.88 0.05 0.96 
warming  -0.96 3.18 -0.30 0.76 
combination  5.17 3.06 1.69 0.09 

Variance 
Components 

        

QE (P-value) 504.39 (< 0.0001) 
  

QM (P-value) 9.37 (0.09) 
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Supplementary Table S1.4. Temperature and region linear mixed effects model section using 
AICc. All models were run with random effects for study and species and a weight of 1/SE. 
The asterisk (*) denotes the selected model run for the final analysis. 
 

Model DF AICc 
scaled temperature 6 107.84 
scaled temperature + scaled temperature2 7 72.85 
scaled temperature + region 7 109.99 
scaled temperature + region + scaled temperature2 * 8 75.39 * 
region 6 125.18 

 
 
Supplementary Table S1.5. Temperature and region best fit linear mixed effects model output 
and 95% confidence intervals of the calcification rates in response to treatment temperature 
plotted in Figure 1.4.  
 

Predictors Estimate SE Lower 95% CI Upper 95% CI 

intercept 0.74 1.26 –1.72 3.21 
scaled temperature -0.23 0.04 -0.31 –0.16 
region 0.24 0.66 -1.05 1.53 
scaled temperature2 -0.36 0.05 –0.44 –0.27 
days 0.01 0.01 –0.02 0.04 

Random Effects   
   

variance species 0.20 
   

variance study 0.18 
   

residual 0.28 
   

N  60 
   

N study 5 
   

N spec 11 
   

AIC 75.39 
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Supplementary Table S1.6. Aragonite saturation state and region linear mixed effects model 
section using AICc. All models were run with random effects for study and species and a 
weight of 1/SE. The asterisk (*) denotes the bet fit model. 
 

Model DF AICc 
scaled aragonite 6 56.39 
scaled aragonite + scaled aragonite2  7 47.98 
scaled aragonite + region 7 57.97 
scaled temperature + region + scaled aragonite2 * 8 49.85 
region 6 105.28 

 
 
Supplementary Table S1.7. Aragonite saturation state (ΩArag) and region best fit linear mixed 
effects model output and 95% confidence intervals of the calcification rates in response to 
treatment ΩArag plotted in Figure 1.5.  
 

Predictors Estimate SE Lower 95% CI Upper 95% CI 
intercept –0.19 1.47 –3.06 2.69 
scaled aragonite 0.10 0.02 0.07 0.14 
region 0.47 0.75 -1.00 1.95 
scaled aragonite2 -0.04 0.01 -0.07 -0.02 
days 0.02 0.02 -0.02 0.05 

Random Effects 
   

variance species 0.17 
   

variance study 0.25 
   

residual 0.20 
   

N  140 
   

N study 5 
   

N spec 12 
   

AIC 49.85 
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Figure S1.1 Forest plot depicting individual standard mean difference (SMD) and confidence 
interval of each species-site-study combination included in the meta-analysis of ocean 
acidification only studies. Studies with confidence intervals not overlapping zero (dotted line) 
denote either a significant increase (positive values) or decrease (negative values) in 
calcification response under experimental acidification compared to the corresponding control 
treatment.  

  

RE Model

−6 −4 −2 0 2 4

Observed Outcome

Towle 2015 − ACER − South Florida
Okazaki 2017 − SRAD − Key West
Okazaki 2017 − PAST − Key Biscayne
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Figure S1.2. Funnel plot of the standard mean difference (SMD) against standard error of each 
species-site-study combination included in the meta-analysis of ocean acidification only 
studies. Dotted lines represent confidence intervals of all studies, background plot colour 
represents statistical significance of individual study, the black vertical line denotes the overall 
effect of all included ocean acidification studies. 
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Figure S1.3. Forest plot depicting individual standard mean difference (SMD) and confidence 
interval of each species-site-study combination included in the meta-analysis of ocean 
warming only studies. Studies with confidence intervals not overlapping zero (dotted line) 
denote either a significant increase (positive values) or decrease (negative values) in 
calcification response under experimental warming compared to the corresponding control 
treatment.  
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Figure S1.4. Funnel plot of the standard mean difference (SMD) against standard error of each 
species-site-study combination included in the meta-analysis of ocean warming only studies. 
Dotted lines represent confidence intervals of all studies, background plot colour represents 
statistical significance of individual study, the black vertical line denotes the overall effect of 
all included ocean acidification studies. 
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Figure S1.5. Forest plot depicting individual standard mean difference (SMD) and confidence 
interval of each species-site-study combination included in the meta-analysis of the 
combination of ocean acidification and warming studies. 
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Figure S1.6. Funnel plot of the standard mean difference (SMD) against standard error of each 
species-site-study combination included in the meta-analysis of combined ocean acidification 
and warming only. Dotted lines represent confidence intervals of all studies, background plot 
colour represents statistical significance of individual study, the black vertical line denotes the 
overall effect of all included ocean acidification studies. 
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APPENDIX 2: SUPPLEMENTAL DESCRIPTIONS AND FIGURES – CHAPTER 2 

Further explanation of methods 

Coral collection  

In June 2015, 6 colonies each of 4 reef-building coral species (Siderastrea siderea, 

Pseudodiploria strigosa, Porites astreoides, and Undaria tenuifolia; Figure S2.1) were 

collected from an inshore reef (Port Honduras Marine Reserve; 16°11’23.5314”N, 

88°34’21.9360”W) and 6 colonies of each of the 4 coral species were collected from an 

offshore reef (Sapodilla Cayes Marine Reserve; 16°07’00.0114”N, 88°15’41.1834”W) along 

the Belize Mesoamerican Barrier Reef System (MBRS) at a depth of 3 to 5 m. A total of 48 

coral colonies were collected from both reef environments (2 reef environments x 4 species x 

6 colonies). The inshore reef is 9 km from the mainland of Belize, while the offshore reef is 

approximately 37 km from the mainland.  

 

Experimental design and setup  

Corals were transported to Northeastern University’s natural flow-through seawater 

system located at the Marine Science Centre, where corals were sectioned with a seawater-

cooled tile-cutting saw. Each sectioned coral fragment (approximate surface area: 5 cm x 3 

cm = 15 cm2; approximate thickness: 2 cm) was mounted on to the outer surface of a 47 mm 

polystyrene petri dish (EMD Millipore; Billerica, Massachusetts, USA) using Loctite® 

cyanoacrylate adhesive (Düsseldorf, Germany). All 384 coral fragments (i.e., 48 colonies x 8 

fragments) were placed into 1 of 8 treatments (4 fragments per species per tank; 16 fragments 

per tanks; 384 fragments in total; Figure S2.2) filled with 5 μm-filtered seawater obtained 

from Massachusetts Bay off the coast of Boston, Massachusetts (see Table S2.1 for in situ 
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water chemistry data from Belize) (Hyde et al. 2007, Soto et al. 2009). Corals were 

maintained in natural seawater at a salinity (±SD) of 30.7 (±0.8) and temperature (±SD) of 

28.2°C (±0.5) for a recovery period of 23 days. After recovery, temperature and pCO2 were 

adjusted every other day over a 20-day interval until target experimental conditions were 

approximately achieved for each treatment (temperature: 28 and 31°C; pCO2: 280, 400, 700, 

2800 µatm). Seawater temperatures in experimental tanks were incrementally increased by 

0.4°C every 3 days and experimental pCO2 was adjusted by –12 µatm (pre-industrial), 0 

µatm (current-day), +30 µatm (end-of-century), and +240 µatm (extreme) during the 20-day 

adjustment interval before starting the 30-day acclimation period. Four pCO2 treatments 

corresponding to pre-industrial (311/288 μatm), current-day (pCO2 control; 405/447 μatm), 

end-of-century (701/673 μatm), and an extreme (3309/3285 μatm) pCO2 were maintained at 

two temperatures corresponding to the corals’ approximate present day mean annual 

temperature (28°C; determined by over 10 years of in situ records) (Castillo and Lima 2010, 

Castillo et al. 2012, Baumann et al. 2016) and projected end-of-century annual mean 

temperature (31°C) (Stocker et al. 2013). 

Experimental 42 L acrylic tanks were illuminated by full spectrum LED lights 

(Euphotica; 120W, 20000K) on a 10:14 h light:dark cycle with photosynthetically active 

radiation (PAR) of ca. 300 μmol photons m–2 s–1 to simulate natural light cycles occurring 

within the corals’ native habitat (Castillo et al. 2014). PAR was regularly measured within 

each tank using a LI-COR LI-1500 data logger affixed with a LI-COR LI-192 2π underwater 

quantum sensor (LI-COR; Lincoln, Nebraska, USA; Figure S2.3). Experimental tanks were 

covered with an acrylic lid and wrapped in cellophane plastic to facilitate equilibrium 

between the gas mixtures and the experimental seawaters and to minimize evaporative water 
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loss. Circulation and turbulence in the experimental tanks were maintained with a Maxi-Jet® 

400 L h-1 powerhead (Marineland; Blacksburg, Virginia, USA), which have been used in 

previous common garden experiments on corals from Belize (Castillo et al. 2014, Horvath et 

al. 2016). Freshly filtered natural seawater was added via the flow-through system so that the 

water in each tank was replenished ca. 1.3 times per day.  

Experimental pCO2 gas mixtures were measured using Qubit S151 (range 0-2000 

µatm; accuracy ± 1 µatm) and S153 (range 0-10%; accuracy ± 0.3%) infrared pCO2 

analyzers (Qubit Systems; Kingston, Ontario, Canada) calibrated with certified air-CO2 gas 

standards. High-precision digital solenoid-valve mass flow controllers (Aalborg Instruments 

and Controls; Orangeburg, NY, USA) were used to bubble air alone (401; 447 µatm), or in 

combination with CO2-free air (311; 288 µatm) or CO2 gas (701; 673; 3309; 3285 µatm) with 

compressed air to achieve gas mixtures of the desired pCO2, and bubbled into each tank and 

sump via flexible air bubblers (Table 2.1; Figure S2.4). Because temperature affects the 

solubility of CO2 in seawater, the two temperature treatments averaged different carbonate 

parameters for each of the pCO2 treatments, despite being sparged with the same gas mixture 

ratios (Figure S2.4). These eight pCO2-temperature combinations were replicated three-fold 

(24 tanks total) and yielded the following treatment conditions (±SD): 311 (±96), 405 (±91), 

701 (±94), 3309 (±414) µatm pCO2 at 28°C (±0.4); and 288 (±65), 447 (±152), 673 (±104), 

3285 (±484) µatm pCO2 at 31.0°C (±0.4). The temperature of both the 28 and 31°C 

treatments were maintained using 50W glass aquarium heaters within each tank and 75W 

glass aquarium heaters (EHEIM; Deizisau, Germany) in each sump. Temperature, salinity, 

and pH were measured every other day and water samples were taken using 250 mL ground-

glass-stoppered borosilicate glass bottles around 13:00 Eastern Time every 10 days 
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throughout the 93-day experimental period (9 September – 17 December 2015). Total 

alkalinity was determined by closed-cell potentiometric Gran titration and DIC was 

determined by coulometry (UIC 5400), with both methods calibrated with certified Dickson 

Laboratory standards for seawater CO2 measurements (Scripps Institution of Oceanography; 

San Diego, California, USA). Measured temperature, salinity, TA, and DIC were used to 

calculate carbonate parameters using CO2SYS (Pierrot et al. 2006) with Roy et al. (1993) 

carbonic acid constants K1 and K2 (Roy et al. 1993), the Mucci (1983) value for the 

stoichiometric aragonite solubility product (Mucci 1983), and an atmospheric pressure of 

1.015 atm (Figure S2.4; Tables S2.2, S2.3). Moderate deviations between calculated and 

targeted parameters throughout the duration of the experiment resulted largely from 

biological activity within the aquaria and from minor seasonal changes in source water 

chemistry. Temperature was measured using a high precision partial-immersion glass 

thermometer (precision ±0.3%; accuracy ±0.4%). Salinity (±SD) was measured using a YSI 

3200 (Yellow Springs, Ohio, USA) conductivity meter with a 10.0 cm–1 cell and maintained 

at 31.7 (±0.2), with slight natural seasonal variation as expected in Massachusetts Bay 

waters. An AccuFet™ Solid-State pH probe (Fisher Scientific™; Waltham, Massachusetts, 

USA) calibrated with 7.00 and 10.01 NBS buffers maintained at experimental temperatures 

was used to measure pH in each tank (Table S2.2; Figure S2.4). Coral fragments within each 

tank were fed every other day with a mixture of ca. 6 g frozen adult Artemia sp. and 250 mL 

concentrated newly hatched live Artemia sp. (500 mL-1) to satisfy any heterotrophic feeding 

by each species (Lewis and Price 1975, Winston 1983). 
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Buoyant weight quantification 

Coral fragments were suspended in a 38 L aquarium 4 cm below the surface in 

seawater (temperature, 28.2°C; salinity, 32.4) using an aluminum wire hanging from a 

Nimbus NBL 423e Precision Balance (±0.0002 precision, ±0.002 accuracy; AE Adam®; 

Oxford, Connecticut, USA). A standard of a known mass was weighed three times before 

weighing corals in each tank to monitor any deviations in the balance over the course of the 

experiment. Each coral fragment was weighed three times, averaged, and normalized to 

surface area. Surface area was quantified in triplicate from photos of each nubbin taken at 

corresponding intervals using imaging software (IMAGE J). 

A subsample of fragments from each coral species was selected for constructing the 

linear regression that relates the coral species’ buoyant weight to their dry weight. Buoyant 

weight (‘BW’) and dry weight of the fragments are highly correlated for each species (R2 S. 

siderea = 0.970, p < 0.001; R2 P. strigosa = 0.900, p < 0.001; R2 P. astreoides = 0.980, p < 0.001; R2 U. 

tenuifolia = 0.983, p < 0.001), therefore the change in buoyant weight should be proportional to 

the corresponding change in dry weight (Figure S2.5). 

 

S. siderea: Dry weight (mg) = 1.9 * BW + 3.47, R2 = 0.970 

P. strigosa: Dry weight (mg) = 1.78 * BW + 5.47, R2 = 0.900 

P. astreoides: Dry weight (mg) = 1.93 * BW + 4.51, R2 = 0.980 

U. tenuifolia: Dry weight (mg) = 1.66 * BW + 5.04, R2 = 0.983 
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Linear Extension 

A calcein horizon was emplaced into coral skeletons at the beginning of the 

experiment to establish a marker from which linear extension throughout the experiment 

could be measured (Venti et al. 2014). Each experimental tank was dosed with 213.4 g of a 

1% calcein solution for 5 days. During this period, the light cycle was increased to 14 h light 

in all tanks to ensure sufficient uptake of fluorescent marker into skeletons. At the 

completion of the experiment, tissue was removed from all coral fragments using a precision 

seawater sprayer (PointZero; Sunrise, Florida, USA). Sections 5mm thick were cut from the 

middle of each fragment using a DB-100 ReefKeeperTM diamond band saw (Inland; Madison 

Heights, Michigan, USA). The full thin sections were imaged under a stereo microscope 

outfitted with a blue fluorescent adapter with excitation 440–460nm (NIGHTSEATM; 

Lexington, Massachusetts, USA). Linear extension was measured as the total area of new 

growth above the calcein line (Figure S2.7) measured using imaging software (IMAGE J) 

divided by the measured length of the coral’s lateral growth surface. Extension was then 

divided by the number of months in the experimental treatments resulting in linear extension 

per month (mm month-1). 

 

Estimation of gross calcification rates 

Gross calcification rates were estimated by subtracting the corals’ calculated gross 

dissolution rates from their net calcification rates at the aragonite saturation states of each 

treatment. Gross dissolution was calculated using gross dissolution regression equations 

derived in Ries et al. (Ries et al. 2016) for two coral species. The gross dissolution equation 

(‘y’) for the massive coral S. siderea was used to estimate gross dissolution of the massive 
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corals S. siderea, P. strigosa, and P. astreoides from the current experiment, while the gross 

dissolution equation for the branching coral O. arbuscula was used to estimate gross 

dissolution of the branching coral U. tenuifolia (Ries et al. 2016) (Figure S2.9).  

 

S. siderea: y (%-wt/day) = 0.055 – 0.638 * e (–6.187 * ΩA + 2.039 * ΩA)	

O. arbuscula:  y (%-wt/day) = 0.073 – 0.638 * e (–5.632 * ΩA + 2.039 * ΩA)	

 

Survival quantification and analysis 

Coral fragments were assessed for mortality every 30 days and considered dead when 

no living tissue remained. Impacts of pCO2 and temperature on survival rates were assessed 

using a Kaplan-Meier estimate of survival (survfit, survival, 2.39-5) (Therneau 2015b). Cox 

proportional hazard models, with colony nested within tank as a random effect, were 

performed using coxme (2.2-5) (Therneau 2015a).  

 

Further explanation of statistical analyses 

Linear mixed effects models were fit to the calcification and linear extension data. 

Models were run to include species, pCO2 (factor), and temperature (factor) as fixed effects 

with colony (genotype) as a random effect: 

 

lmer(rate ~ species * (pCO2 + temperature) + ( 1 | colony) 

 

This model was selected using AIC and log likelihood tests to determine the best fit 

for the data. A parametric bootstrap of the data was run 1500 times for each model, resulting 
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in the modelled mean and 95% confidence intervals. Colonies were pooled by natal reef 

environment in all analyses because this was not a significant predictor of any measured 

parameter. All statistical analyses were performed using R 3.3.2 for OS X (R Core 

Development Team 2016). 

A Bayesian hierarchical regression model was fit to calculate credible intervals of the 

corresponding extracted correlation coefficients using Hamiltonian MCMC, using default 

uninformative priors. Four chains were run for 1000 iterations after a 1000-iteration warmup. 

Chains mixed well and all Rhats were less than 1.0. The model was fit with species, pCO2 

(factor), and temperature (factor) as fixed effects with colony (genotype) as a random 

intercept and temperature and pCO2 as random slopes: 

brms(rate ~ species * (pCO2 + temperature) + ( 1 + pCO2 + temperature | colony), family = guassian()) 

 

Additional results 

Coral survivorship  

Siderastrea siderea maintained nearly 100% survival across treatments, resulting in 

no significant effect of temperature (p = 0.23), pCO2 (p = 0.60), or their interaction (p = 1.0) 

on survival (Figure S2.6a). Survival of P. strigosa, P. astreoides, and U. tenuifolia reared at 

31°C was significantly reduced compared to conspecifics reared at 28°C (p < 0.01, p < 0.01, 

p < 0.01, respectively; Figure S2.6). No U. tenuifolia fragments under extreme pCO2 

conditions at 31°C survived the acclimation period, indicating that this species is extremely 

sensitive to these conditions. Increasing pCO2 had no effect on survival of P. astreoides or U. 

tenuifolia (p = 0.09 and p = 0.22, respectively), while increasing pCO2 significantly increased 

survivorship of P. strigosa (p < 0.01), a trend driven by relatively low survival at present-day 

pCO2. Finally, the interaction between pCO2 and temperature had no significant effect on 
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survivorship of P. strigosa, P. astreoides, or U. tenuifolia (p < 0.08, p < 0.25, p < 0.21, 

respectively; Figure S2.6B-D; Tables S2.9, S2.10, S2.11).  

 

Effects of exposure duration on calcification rate 

Differences in calcification rates for the four species were also examined across three 

30-day observation intervals (T0-T30, T31-60, and T61-T90) to assess the impact of duration 

of exposure to treatment conditions on coral calcification rates. Although responses are 

complex, some general patterns emerged.  

Specimens of S. siderea exhibited a slight increase in calcification rates from the first 

(T0-T30) to second (T31-T60) intervals in most treatments, followed by a decline from the 

second to third (T61-T90) interval (Figure S2.13a). In addition, calcification rates for coral 

reared at 28°C and 31°C under extreme pCO2 are lower at each interval when compared with 

the lower pCO2 treatments. 

Calcification rates of P. strigosa were generally higher at 28°C than at 31°C at every 

30-day interval, regardless of pCO2 treatment. Excluding specimens reared under current-day 

pCO2 at 28°C, calcification rates progressively declined across the three 30-day observational 

intervals of the experiment (Figure S2.13b). 

Porites astreoides calcification rates demonstrated a declining trend across 

observational intervals within most temperature-pCO2 treatment combinations, and exhibited 

net dissolution during the final interval (Figure S2.13C). However, some specimens failed to 

exhibit net calcification during any of the three intervals at either temperature. 

Calcification rates of U. tenuifolia exhibited a decreasing trend across the three 

observational intervals for all pCO2 and temperature treatment combinations (Figure S2.13d). 
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Missing data from the 31oC treatment in both the current-day and extreme pCO2 treatments 

reflects the low survival rates in these treatments.  

 

Additional discussion 

Corals’ natal reef environment does not influence resilience to pCO2 or thermal stress 

Rates of calcification, linear extension, and survival were not significantly impacted 

by natal reef environment (i.e., inshore vs. offshore) of the four coral species investigated 

here (Figures S2.11, S2.12; Tables S2.11, S2.12, S2.13). This result is consistent with 

previous laboratory experiments on some of the same and other species of zooxanthellate 

corals, which found no difference in responses to thermal and pCO2 stress due to natal reef 

environment (Castillo et al. 2014, Horvath et al. 2016), but inconsistent with historical 

growth records of S. siderea obtained from century-scale coral cores that showed that the 

extension rate of forereef colonies has declined much faster than that of backreef and 

nearshore colonies (Castillo et al. 2011). However, it is possible that natal-reef-environment 

differences in resilience to thermal stress may emerge with more prolonged exposure to 

acidification and warming stress, as well as with larger sample sizes.  
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Reef 
environment T (°C) pCO2 

(µatm) pH TA (µM) DIC (µM) ΩA Salinity 

Inshore 26.7 346.7 8.05 2495.9 2112 4.56 32.8 
Inshore 26.7 326.0 8.04 2485.9 2090 4.68 32.7 
Offshore 27.5 302.5 8.06 2572.8 2124 5.2 34.8 
Offshore 27.5 298.1 8.06 2579.3 2126 5.25 34.8 
Offshore 27.5 287.5 8.06 2583.8 2120 5.37 34.8 

 
Table S2.1. Carbonate system parameters of seawater samples obtained in December 2016 
from inshore and offshore locations in southern Belize near coral sampling sites 
demonstrating similarity to experimental seawater treatments (see Table 2.1 in the main text). 
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Table S2.4. Summary of AIC and degrees of freedom (df) for all model combinations. The 
model combination in bold is the final model used in this analysis.  

Model AIC df 
Temperature * Reef 508.5704 6 
Reef 506.5132 4 
Temperature 505.4378 4 
Species * Reef 481.4342 10 
Species 477.2899 6 
Reef * pCO2 * Temperature 476.3029 18 
pCO2 * Reef 475.0965 10 
pCO2 473.5468 6 
Temperature * pCO2 471.7448 10 
Species * Temperature * Reef 470.4927 17 
Species * Temperature 459.8295 10 
Species * pCO2 * Reef 458.286 34 
Species * pCO2 * Reef + Temperature 457.005 35 
Species * pCO2 + Temperature + Reef 451.5823 20 
Species * pCO2 451.1012 18 
Species * pCO2 + Temperature 449.6505 19 
Species * pCO2 * Temperature * Reef 449.1111 59 
pCO2 * Temperature * Reef + Species 448.8439 21 
Species + pCO2 * Temperature + Reef 446.5169 14 
Species * Reef + pCO2 + Temperature 446.3451 14 
Species + pCO2 + Temperature * Reef 445.5166 12 
pCO2 * Temperature + Species 444.6838 13 
Species + pCO2 + Temperature + Reef 444.5401 11 
pCO2 * Reef + Species + Temperature 443.6495 14 
Species + pCO2 + Temperature 442.6241 10 
Species * pCO2 * Temperature + Reef 440.0991 33 
Species * pCO2 * Temperature 438.1393 32 
Species * Temperature * Reef + pCO2 438.0031 20 
Species * (pCO2 + Temperature) 432.9082 22 
Species * Temperature + Reef + pCO2 430.5345 14 
Species * Temperature + pCO2 428.5378 13 



127	
 
	
	

 
Species Treatment N Mean Calcification 

(mg cm2 day−1) 
Lower 
95% CI 

Upper 
95% CI 

S.
 si

de
re

a 
28°C 311 μatm 10  1.106  0.872  1.342 

405 μatm 12  1.256  1.038  1.468 
701 μatm 11  1.084  0.875  1.302 
3309 μatm 12  0.280  0.070  0.492 

31°C 288 μatm 8  1.093  0.854  1.335 
447 μatm 11  1.243  1.026  1.448 
673 μatm 11  1.071  0.856  1.286 
3285 μatm 12  0.267  0.047  0.468 

P.
 st

ri
go

sa
 

28°C 311 μatm 15  1.198  0.989  1.408 
405 μatm 5  0.504  0.209  0.828 
701 μatm 14  0.665  0.443  0.871 
3309 μatm 16  0.181 −0.015  0.374 

31°C 288 μatm 9  0.202 −0.023  0.450 
447 μatm 6 −0.493 −0.801 −0.184 
673 μatm 7 −0.332 −0.606 −0.088 
3285 μatm 8 −0.815 −1.058 −0.564 

P.
 a

st
re

oi
de

s  

28°C 311 μatm 11  0.072 −0.159  0.304 
405 μatm 12  0.010 −0.233  0.231 
701 μatm 10 −0.196 −0.438  0.050 
3309 μatm 12 −0.680 −0.903 −0.456 

31°C 288 μatm 6  0.229 −0.039  0.497 
447 μatm 8  0.166 −0.073  0.419 
673 μatm 9 −0.039 −0.280  0.219 
3285 μatm 4 −0.523 −0.803 −0.246 

U
. t

en
ui

fo
lia

 

28°C 311 μatm 11  0.147 −0.138  0.432 
405 μatm 7  0.237 −0.125  0.611 
701 μatm 4  0.029 −0.398  0.465 
3309 μatm 5 −0.241 −0.650  0.177 

31°C 288 μatm 4  0.129 −0.304  0.583 
447 μatm 0 NA NA NA 
673 μatm 1  0.011 −0.565  0.601 
3285 μatm 0 NA NA NA 

 
Table S2.5. Bootstrapped modelled mean calcification rate for each species in all pCO2 and 
temperature treatments reported in mg cm2 day-1. Sample sizes (N) and 95% confidence 
intervals (CI) are reporter for each modelled mean calcification rate (Figure 2.1). 
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Fixed effect Value SE t-value 
(Intercept) 1.089 0.163 6.664 
Species (PSTR) 0.106 0.224 0.471 
Species (PAST) −1.020 0.231 −4.412 
Species (UTEN) −0.947 0.251 −3.769 
pCO2 - current 0.163 0.148 1.102 
pCO2 - end-of-century −0.002 0.150 −0.013 
pCO2 - extreme −0.809 0.146 −5.522 
Temperature (31oC) −0.011 0.100 −0.113 
Species (PSTR) * pCO2 - current −0.887 0.228 −3.886 
Species (PAST) * pCO2 - current −0.224 0.215 −1.039 
Species (UTEN) * pCO2 - current −0.074 0.280 −0.263 
Species (PSTR) * pCO2 -  end-of-century −0.523 0.205 −2.558 
Species (PAST) * pCO2 -  end-of-century −0.267 0.220 −1.216 
Species (UTEN) * pCO2 -  end-of-century −0.121 0.295 −0.410 
Species (PSTR) * pCO2 - extreme −0.189 0.199 −0.950 
Species (PAST) * pCO2 - extreme 0.063 0.221 0.284 
Species (UTEN) * pCO2 - extreme 0.420 0.298 1.409 
Species (PSTR) * Temperature 
(31oC) 

−1.066 0.154 −6.923 

Species (PAST) * Temperature 
(31oC) 

0.166 0.153 1.080 

Species (UTEN) * Temperature 
(31oC) 

−0.013 0.273 −0.048 

Colony (intercept) 0.147 
  

Residual 0.215     
 
Table S2.6. Summary output of the linear mixed effects model used to determine the 
relationship between calcification rates, pCO2, and temperature for all four coral species 
(PSTR = P. strigosa; PAST = P. astreoides; UTEN = U. tenuifolia). Temperature and pCO2 
were treated as factors. 
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Species Treatment N Mean LE 
(mm day−1) 

Lower 
95% CI 

Upper 
95% CI 

S.
 si

de
re

a  
28°C 311 μatm 11 0.0080 0.0070 0.0090 

405 μatm 9 0.0082 0.0074 0.0091 
701 μatm 11 0.0086 0.0076 0.0095 
3309 μatm 12 0.0075 0.0066 0.0083 

31°C 288 μatm 10 0.0069 0.0059 0.0079 
447 μatm 8 0.0071 0.0062 0.0081 
673 μatm 11 0.0075 0.0066 0.0083 
3285 μatm 12 0.0063 0.0055 0.0072 

P.
 a

st
re

oi
de

s  

28°C 311 μatm 9 0.0059 0.0048 0.0069 
405 μatm 9 0.0047 0.0037 0.0058 
701 μatm 9 0.0046 0.0036 0.0056 
3309 μatm 12 0.0033 0.0023 0.0043 

31°C 288 μatm 7 0.0054 0.0042 0.0066 
447 μatm 5 0.0042 0.0031 0.0053 
673 μatm 6 0.0041 0.0029 0.0051 
3285 μatm 1 0.0028 0.0014 0.0042 

 
Table S2.7. Bootstrapped modelled mean linear extension for each species in all pCO2 and 
temperature treatments reported in mm day-1. Sample sizes (N) and 95% confidence intervals 
(CI) are reported for each mean extension rate (Figure 2.3). 
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Fixed effect Estimate SE t-value 
Intercept 7.86E−03 6.31E−04 12.5 
Species (PAST) −1.95E−03 9.14E−04 −2.14 
pCO2 - current 3.62E−04 6.24E−04 0.058 
pCO2 - end-of-century 7.32E−04 6.11E−04 1.20 
pCO2 - extreme −4.50E−04 6.01E−04 −0.075 
Temperature (31oC) −1.08E−03 4.12E−04 −2.62 
Species (PAST) * pCO2 - current −1.51E−03 9.35E−04 −1.62 
Species (PAST) * pCO2 -  end-of-century −2.01E−03 9.38E−04 −2.15 
Species (PAST) * pCO2 - extreme −2.15E−03 9.60E−04 −2.24 
Species (PAST) * Temperature (31oC) 5.01E−04 6.94E−04 0.072 
Colony 1.68E−06   
Residual 3.46E−06     

 
Table S2.8. Summary output of the linear mixed effects model used to determine the 
relationship between linear extension, pCO2 and temperature for S. siderea and P. astreoides 
(PAST). Temperature and pCO2 were treated as factors. 
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Species Treatment T0 T30 T60 T90 

S.
 si

de
re

a 
28°C 

311 μatm 10 10 10 10 
405 μatm 12 12 12 12 
701 μatm 11 11 11 11 
3309 μatm 12 12 12 12 

31°C 

288 μatm 8 8 8 8 
447 μatm 11 11 11 11 
673 μatm 12 11 11 11 
3285 μatm 12 12 12 12 

P.
 st

ri
go

sa
 28°C 

311 μatm 16 16 15 15 
405 μatm 8 6 5 5 
701 μatm 14 14 14 14 
3309 μatm 16 16 16 16 

31°C 

288 μatm 14 11 9 9 
447 μatm 13 11 6 6 
673 μatm 15 13 7 7 
3285 μatm 13 11 8 8 

P.
 a

st
re

oi
de

s  28°C 

311 μatm 11 11 11 11 
405 μatm 12 12 12 12 
701 μatm 12 11 10 10 
3309 μatm 12 12 12 12 

31°C 

288 μatm 11 8 6 6 
447 μatm 9 8 8 8 
673 μatm 12 12 9 9 
3285 μatm 10 6 4 4 

U
. t

en
ui

fo
lia

 28°C 

311 μatm 12 11 11 11 
405 μatm 7 7 7 7 
701 μatm 8 5 4 4 
3309 μatm 8 6 5 5 

31°C 

288 μatm 8 8 4 4 
447 μatm 1 0 0 0 
673 μatm 4 2 1 1 
3285 μatm 0 0 0 0 

 
Table S2.9. Sample size surviving for each species at each time point per treatment that was 
used for constructing survival curves (Figure S2.6). 
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Table S2.10. Cox mixed effects proportional hazards analysis for survival of all four species. 
The ‘hazard rate’ represents the modelled risk of death, so that positive values represent 
increased risk. The ‘hazard ratio’ indicates the hazard in the treatment compared to the control. 
  

Species Fixed Effect Hazard rate Hazard 
ratio 

Hazard 
ratio SE z P 

S.
 si

de
re

a 
pCO2 −5.39E-06 1.00 0.00 0 1.00 

Temperature (31oC ) 22.09 3.92E09 0.00 Inf 0.00 

pCO2 * Temperature (31oC ) −5.87E-04 1.00 0.00 −Inf 0.00 

P.
 st

ri
go

sa
 pCO2 −3.72E−03 1.00 0.00 −1.02 0.31 

Temperature (31oC ) 0.58 1.79 1.51 0.39 0.70 

pCO2 * Temperature (31oC ) 3.54E−03 1.00 0.00 0.97 0.33 

P.
 a

st
re

oi
de

s  pCO2 3.12E−04 1.00 0.00 1.20 0.23 

Temperature (31oC ) 0.47 1.60 1.17 0.40 0.69 

pCO2 * Temperature (31oC ) 3.28E−03 1.00 0.00 1.52 0.13 

U
. t

en
ui

fo
lia

 pCO2 3.41E−04 1.00 2.66E−04 1.28 0.20 

Temperature (31oC ) 0.52 1.68 1.17 0.44 0.66 

pCO2 * Temperature (31oC ) 3.26E−03 1.00 2.17E−03 1.51 0.13 
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Species Fixed Effect loglik χ2 DF P 

S.
 si

de
re

a 

NULL −4.48    
pCO2 −4.34 0.27 1 0.6 
Temperature (31oC ) −3.61 1.47 1 0.23 
Reef environment −2.94 1.35 1 0.225 
pCO2 * Temperature (31oC ) −3.61 0 1 1 

P.
 st

ri
go

sa
 NULL −131.95       

pCO2 −121.63 20.64 1 5.53E−06 *** 
Temperature (31oC ) −113.32 16.61 1 4.60E−05 *** 
Reef environment −113.29 0.07 1 0.79 
pCO2 * Temperature (31oC ) −111.80 3.06 1 0.08 

P.
 a

st
re

oi
de

s NULL −74.67       
pCO2 −73.25 2.84 1 0.09 
Temperature (31oC ) −66.06 14.38 1 1.49E−04 *** 
Reef environment −64.55 3.02 1 0.08 
pCO2 * Temperature (31oC ) −65.41 1.3 1 0.25 

U
. t

en
ui

fo
lia

 NULL −59.12       
pCO2 −58.36 1.5 1 0.22 
Temperature (31oC ) −54.28 8.18 1 4.24E−03 ** 
Reef environment −54.16  0.24 1 0.63 
pCO2 * Temperature (31oC ) −53.49 1.56 1 0.21 

 
Table S2.11. Statistical outcomes for coral survival analyses of all four species, using Cox 
mixed effects proportional hazards models.  
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Species 
Reef 

Treatment N 
Mean 
Calcification Lower 

95% CI 
Upper 
95% CI Environment (mg cm2 day-1) 

S.
 si

de
re

a  

O
ff

sh
or

e  
28°C 

311 μatm 6 1.045 0.803 1.284 
405 μatm 6 1.192 0.974 1.411 
701 μatm 6 1.023 0.808 1.252 
3309 μatm 6 0.217 -0.002 0.441 

31°C 

288 μatm 4 1.031 0.789 1.275 
447 μatm 5 1.177 0.956 1.398 
673 μatm 6 1.008 0.789 1.228 
3285 μatm 6 0.202 -0.022 0.405 

In
sh

or
e 

28°C 

311 μatm 4 1.173 0.926 1.421 
405 μatm 6 1.320 1.094 1.539 
701 μatm 5 1.151 0.926 1.374 
3309 μatm 6 0.345 0.129 0.564 

31°C 

288 μatm 4 1.159 0.905 1.407 
447 μatm 6 1.305 1.073 1.522 
673 μatm 5 1.136 0.911 1.359 
3285 μatm 6 0.330 0.113 0.554 

P.
 st

ri
go

sa
 

O
ff

sh
or

e  

28°C 

311 μatm 10 1.141 0.935 1.354 
405 μatm 3 0.444 0.146 0.778 
701 μatm 8 0.605 0.387 0.822 
3309 μatm 10 0.124 -0.078 0.322 

31°C 

288 μatm 5 0.144 -0.088 0.386 
447 μatm 3 -0.553 -0.859 -0.233 
673 μatm 4 -0.392 -0.672 -0.141 
3285 μatm 5 -0.874 -1.136 -0.621 

In
sh

or
e  

28°C 

311 μatm 5 1.269 1.042 1.488 
405 μatm 2 0.572 0.265 0.904 
701 μatm 6 0.733 0.495 0.952 
3309 μatm 6 0.252 0.044 0.466 

31°C 

288 μatm 4 0.272 0.036 0.527 
447 μatm 3 -0.425 -0.744 -0.107 
673 μatm 3 -0.264 -0.544 -0.006 
3285 μatm 3 -0.746 -0.997 -0.482 
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Species Reef Treatment N Mean Calcification Lower 

95% CI 
Upper 
95% CI Environment (mg cm2 day-1) 

P.
 a

st
re

oi
de

s 

O
ff

sh
or

e 

28°C 311 μatm 6 0.012 -0.226 0.255 
405 μatm 6 -0.053 -0.296 0.171 
701 μatm 5 -0.259 -0.496 -0.010 
3309 μatm 6 -0.749 -0.991 -0.508 

31°C 288 μatm 3 0.163 -0.119 0.435 
447 μatm 4 0.098 -0.146 0.353 
673 μatm 4 -0.108 -0.356 0.155 
3285 μatm 0 NA NA NA 

In
sh

or
e  

28°C 311 μatm 4 0.140 -0.102 0.385 
405 μatm 6 0.075 -0.180 0.301 
701 μatm 5 -0.131 -0.379 0.121 
3309 μatm 6 -0.621 -0.853 -0.399 

31°C 288 μatm 4 0.291 0.015 0.574 
447 μatm 6 0.226 -0.020 0.485 
673 μatm 5 0.020 -0.221 0.280 
3285 μatm 6 -0.470 -0.758 -0.192 

U
. t

en
ui

fo
lia

 

O
ff

sh
or

e 

28°C 311 μatm 3 0.060 -0.233 0.361 
405 μatm 2 0.152 -0.233 0.539 
701 μatm 1 -0.062 -0.513 0.380 
3309 μatm 1 -0.337 -0.773 0.099 

31°C 288 μatm 0 NA NA NA 
447 μatm 0 NA NA NA 
673 μatm 0 NA NA NA 
3285 μatm 0 NA NA NA 

In
sh

or
e  

28°C 311 μatm 8 0.188 -0.099 0.479 
405 μatm 5 0.280 -0.071 0.650 
701 μatm 3 0.066 -0.369 0.515 
3309 μatm 4 -0.209 -0.621 0.210 

31°C 288 μatm 4 0.150 -0.284 0.597 
447 μatm 0 NA NA NA 
673 μatm 1 0.028 -0.536 0.622 
3285 μatm 0 NA NA NA 

 
Table S2.12. Bootstrapped modelled mean calcification rate for each species by reef 
environment in all pCO2 and temperature treatments reported in mg cm-2 day-1. Sample sizes 
(N) and 95% confidence intervals (CI) are reported for each mean calcification rate (Figure 
S2.11). 
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Species 
Reef 

Treatment N 
Mean LE Lower 

95% CI 
Upper 
95% CI Environment (mm day-1) 

S.
 si

de
re

a  

O
ff

sh
or

e 

28°C 

311 μatm 6 0.0076 0.0066 0.0087 
405 μatm 6 0.0078 0.0069 0.0088 
701 μatm 6 0.0082 0.0072 0.0091 
3309 μatm 6 0.0071 0.0062 0.0080 

31°C 

288 μatm 4 0.0065 0.0054 0.0076 
447 μatm 4 0.0067 0.0057 0.0077 
673 μatm 6 0.0071 0.0061 0.0080 
3285 μatm 6 0.0059 0.0050 0.0069 

In
sh

or
e 

28°C 

311 μatm 3 0.0084 0.0073 0.0096 
405 μatm 5 0.0086 0.0077 0.0096 
701 μatm 5 0.0090 0.0080 0.0100 
3309 μatm 6 0.0079 0.0069 0.0088 

31°C 

288 μatm 4 0.0073 0.0063 0.0084 
447 μatm 6 0.0075 0.0065 0.0085 
673 μatm 5 0.0079 0.0069 0.0088 
3285 μatm 6 0.0067 0.0058 0.0076 

P.
 a

st
re

oi
de

s 

O
ff

sh
or

e 

28°C 

311 μatm 5 0.0055 0.0043 0.0066 
405 μatm 3 0.0043 0.0031 0.0055 
701 μatm 5 0.0042 0.0031 0.0053 
3309 μatm 6 0.0029 0.0018 0.0040 

31°C 

288 μatm 2 0.0049 0.0037 0.0062 
447 μatm 3 0.0038 0.0026 0.0050 
673 μatm 3 0.0037 0.0025 0.0048 
3285 μatm 0 NA NA NA 

In
sh

or
e  

28°C 

311 μatm 4 0.0063 0.0052 0.0074 
405 μatm 6 0.0051 0.0040 0.0062 
701 μatm 4 0.0050 0.0039 0.0061 
3309 μatm 6 0.0037 0.0027 0.0048 

31°C 

288 μatm 3 0.0057 0.0046 0.0070 
447 μatm 4 0.0045 0.0034 0.0057 
673 μatm 3 0.0045 0.0033 0.0056 
3285 μatm 1 0.0032 0.0017 0.0046 

  
Table S2.13. Bootstrapped modelled mean linear extension for each species by reef 
environment in all pCO2 and temperature treatments reported in mm day-1. Sample sizes (N) 
and 95% confidence intervals (CI) are reporter for each mean extension rate (Figure S2.12). 
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Figure S2.1. Representative specimens of the collected colonies of (a) S. siderea, (b) P. 
strigosa, (c) P. astreoides, and (d) U. tenuifolia from the Belize Barrier Reef System prior to 
sectioning. 
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Figure S2.2. Diagram showing allocation of coral fragments for a single species throughout 
experimental tank array. Colour represent a different colony and shape represents reef 
environment. Four colonies (two from each reef environment) are reared within each tank 
(grey box), with three tanks comprising a treatment (white box). This is repeated for each 
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pCO2 treatment at both temperatures. This same experimental design was used for all four 
species.  

 
Figure S2.3. Ten hour light cycle for all 24 experimental treatment tanks reported in PAR 
(photosynthetically active radiation; μmol photons m-2 s-1). 
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Figure S2.4. Calculated and measured parameters for all 24 experimental tanks over the 93-
day experimental interval: (a) measured temperature; (b) measured pH; (c) measured salinity; 
(d) measured total alkalinity; (e) measured dissolved inorganic carbon; (f) calculated pH; (g) 
calculated pCO2 of the mixed gases in equilibrium with the experimental seawaters; (h) 
calculated dissolved carbon dioxide; (i) calculated carbonate ion concentration; (j) calculated 
bicarbonate ion concentration; and (k) calculated aragonite saturation state. 



141	
 
	
	

  

 
Figure S2.5. Linear relationship between buoyant weight (mg) and dry weight (mg) for (a) S. 
siderea, (b) P. strigosa, (c) P. astreoides, and (d) U. tenuifolia. 
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Figure S2.6. Fraction of fragments surviving from the start of the experiment for S. siderea 
(a), P. strigosa (b), P. astreoides (c), and U. tenuifolia (d). Blue represents 28°C treatments and 
red represents 31°C treatments. Colour intensity corresponds to pCO2 level, with the lowest 
intensity representing pre-industrial pCO2 and the highest intensity representing an extreme 
pCO2 condition. 
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Figure S2.7. Example of linear extension measurement for S. siderea sample, indicating total 
growth area and lateral growth surface determination using image analysis software (IMAGE 
J). Linear extension was calculated by dividing total growth area by lateral growth surface 
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Figure S2.8. Density plot of the extracted correlation coefficients describing the correlation 
between the Bayesian random effects of colony on calcification rate under the control treatment 
(pre-industrial pCO2 at 28°C) versus each stress treatment. The black circle represents the 
estimated mean, the thick black bar is the 75% credible interval, the thin black bar is the 95% 
credible interval, and the grey area represents the range of the Bayesian model output of the 
extracted correlation coefficients. Intervals that do not overlap zero denote significant effects 
of colony basal calcification rate on colony-level calcification response to pCO2 or thermal 
stress. 
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Figure S2.9. Modelled 95% confidence intervals of gross calcification rate for the 90-day 
experimental period in mg cm-2 day-1 for (a) S. siderea, (b) P. strigosa, (c) P. astreoides, and 
(d) U. tenuifolia. Blue bars represent 28oC treatment 95% confidence intervals and orange bars 
represent 31oC treatment 95% confidence intervals, with pCO2 along the x-axis (μatm). Blue 
open circles represent gross calcification rates for individual fragments in the 28oC treatment, 
and orange open circles represent gross calcification rates for individual fragments in the 31oC 
treatment. 
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Figure S2.10. Relationship between calcification rate and symbiont density (cell counts cm-2) 
for (a) S. siderea, (b) P. strigosa, (c) P. astreoides, and (d) U. tenuifolia. Shape represents pCO2 
treatments and colour represents temperature treatments. The line denotes a simple linear 
regression with standard error denoted by grey shading. 
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Figure S2.11. Modelled mean calcification rate for the 93-day experimental period in mg cm-

2 day-1 separated by reef environment for (a) S. siderea, (b) P. strigosa, (c) P. astreoides, and 
(d) U. tenuifolia. Grey triangles denote inshore corals and black circles denote offshore corals. 
Left panel demonstrates mean calcification rate at 28°C and the right panel shows calcification 
at 31°C, with pCO2 along the x-axis (μatm) on a log scale. Error bars denote 95% confidence 
intervals of each estimated mean. 
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Figure S2.12. Modelled mean linear extension rate for the 93-day experimental period in mm 
cm-2 day-1 separated by reef environment for (a) S. siderea and (b) P. astreoides. Grey triangles 
denote inshore corals and black circles denote offshore corals. Left panel demonstrates mean 
calcification rate at 28°C and the right panel shows calcification at 31°C, with pCO2 along the 
x-axis (μatm) on a log scale. Error bars denote 95% confidence intervals of each estimated 
mean. 
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Figure S2.13. Mean calcification rate (mg cm-2 day-1) at each 30-day experimental interval at 
all pCO2 treatments for (a) S. siderea, (b) P. strigosa, (c) P. astreoides, and (d) U. tenuifolia. 
Blue circles represent 28oC treatments and orange triangles represent 31oC treatments, with 
time interval along the x-axis. Error bars denote standard error of each mean. 
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APPENDIX 3: SUPPLEMENTAL DESCRIPTIONS AND FIGURES – CHAPTER 3 

Species Treatment N Modelled mean Lower 95% Upper 95% 
SSID 288_28 11 0.4 0.3 0.48 
SSID 311_31 9 0.4 0.28 0.47 
SSID 3285_28 12 0.4 0.28 0.46 
SSID 3309_31 12 0.4 0.26 0.44 
SSID 405_31 12 0.4 0.3 0.47 
SSID 447_28 12 0.4 0.32 0.49 
SSID 673_28 13 0.3 0.24 0.41 
SSID 701_31 12 0.3 0.22 0.39 
SSID T0 10 0.1 -0.05 0.19 
PSTR 288_28 16 0.3 0.19 0.36 
PSTR 311_31 9 0.1 0.04 0.23 
PSTR 3285_28 15 0.2 0.13 0.3 
PSTR 3309_31 8 0.1 -0.02 0.18 
PSTR 405_31 5 0.1 -0.01 0.24 
PSTR 447_28 5 0.3 0.13 0.38 
PSTR 673_28 14 0.2 0.13 0.3 
PSTR 701_31 7 0.1 -0.02 0.17 
PSTR T0 8 0.1 -0.05 0.22 
PAST 288_28 11 0.2 0.11 0.31 
PAST 311_31 6 0.3 0.15 0.37 
PAST 3285_28 12 0.1 0.03 0.23 
PAST 3309_31 4 0.2 0.06 0.3 
PAST 405_31 7 0.2 0.12 0.33 
PAST 447_28 12 0.2 0.08 0.27 
PAST 673_28 10 0.1 0.01 0.21 
PAST 701_31 9 0.2 0.06 0.26 
PAST T0 13 0.1 0 0.2 

 
Table S3.1 Modelled mean host lipid and 95% confidence intervals 
Bootstrapped modelled mean coral host lipid content (mg cm-2) for each species (SSID = S. 
siderea; PSTR = P. strigosa; PAST = P. astreoides) by treatment (T0 denotes samples taken 
at the start of the experiment and all others were assessed at T90). Sample sizes (N) and 95% 
confidence intervals are reported for each mean (Figure S3.1).   
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Species Treatment N Modelled mean Lower 95% Upper 95% 
SSID 288_28 11 1.2 0.95 1.35 
SSID 311_31 8 0.8 0.62 1.02 
SSID 3285_28 12 1.1 0.93 1.29 
SSID 3309_31 12 0.8 0.6 0.96 
SSID 405_31 12 0.8 0.57 0.93 
SSID 447_28 12 1.1 0.91 1.26 
SSID 673_28 13 1.3 1.1 1.44 
SSID 701_31 12 0.9 0.76 1.1 
SSID T0 10 1.1 0.82 1.31 
PSTR 288_28 16 0.8 0.6 0.93 
PSTR 311_31 9 0.5 0.3 0.7 
PSTR 3285_28 16 0.6 0.45 0.78 
PSTR 3309_31 8 0.4 0.15 0.54 
PSTR 405_31 6 0.4 0.16 0.65 
PSTR 447_28 5 0.7 0.42 0.93 
PSTR 673_28 14 0.6 0.39 0.75 
PSTR 701_31 7 0.3 0.09 0.49 
PSTR T0 8 0.8 0.57 1.1 
PAST 288_28 11 0.8 0.61 1.03 
PAST 311_31 6 0.7 0.42 0.88 
PAST 3285_28 12 0.6 0.38 0.78 
PAST 3309_31 4 0.4 0.17 0.65 
PAST 405_31 7 0.7 0.52 0.94 
PAST 447_28 12 0.9 0.71 1.08 
PAST 673_28 10 0.6 0.4 0.81 
PAST 701_31 9 0.4 0.23 0.65 
PAST T0 14 1.4 1.2 1.61 

 
Table S3.2 Modelled mean host carbohydrate and 95% confidence intervals 
Bootstrapped modelled mean coral host carbohydrate content (mg cm-2) for each species 
(SSID = S. siderea; PSTR = P. strigosa; PAST = P. astreoides) by treatment (T0 denotes 
samples taken at the start of the experiment and all others were assessed at T90). Sample 
sizes (N) and 95% confidence intervals are reported for each mean (Figure S3.2).   
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Species Treatment N Modelled mean Lower 95% Upper 95% 
SSID 288_28 11 0.5 0.41 0.58 
SSID 311_31 9 0.4 0.35 0.52 
SSID 3285_28 12 0.5 0.37 0.53 
SSID 3309_31 12 0.4 0.31 0.47 
SSID 405_31 12 0.5 0.38 0.54 
SSID 447_28 12 0.5 0.44 0.6 
SSID 673_28 13 0.5 0.39 0.54 
SSID 701_31 12 0.4 0.33 0.49 
SSID T0 10 0.5 0.42 0.63 
PSTR 288_28 16 0.6 0.49 0.64 
PSTR 311_31 9 0.3 0.23 0.4 
PSTR 3285_28 16 0.4 0.35 0.49 
PSTR 3309_31 8 0.2 0.08 0.26 
PSTR 405_31 6 0.2 0.06 0.29 
PSTR 447_28 5 0.4 0.31 0.54 
PSTR 673_28 14 0.5 0.37 0.54 
PSTR 701_31 7 0.2 0.11 0.3 
PSTR T0 8 0.4 0.24 0.48 
PAST 288_28 11 0.2 0.15 0.33 
PAST 311_31 6 0.2 0.09 0.29 
PAST 3285_28 12 0.1 0.01 0.2 
PAST 3309_31 4 0.1 -0.05 0.17 
PAST 405_31 7 0.2 0.07 0.25 
PAST 447_28 12 0.2 0.13 0.29 
PAST 673_28 10 0.2 0.07 0.25 
PAST 701_31 9 0.1 0.02 0.2 
PAST T0 14 0.3 0.21 0.4 

 
Table S3.3 Modelled mean host protein and 95% confidence intervals 
Bootstrapped modelled mean coral host protein content (mg cm-2) for each species (SSID = 
S. siderea; PSTR = P. strigosa; PAST = P. astreoides) by treatment (T0 denotes samples 
taken at the start of the experiment and all others were assessed at T90). Sample sizes (N) 
and 95% confidence intervals are reported for each mean (Figure S3.3).   
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Species Treatment N Modelled mean Lower 95% Upper 95% 
SSID 288_28 11 2.16 1.95 2.39 
SSID 311_31 8 1.76 1.53 1.99 
SSID 3285_28 12 1.88 1.67 2.1 
SSID 3309_31 12 1.48 1.26 1.69 
SSID 405_31 12 1.68 1.45 1.91 
SSID 447_28 12 2.09 1.86 2.3 
SSID 673_28 13 1.92 1.71 2.12 
SSID 701_31 12 1.52 1.3 1.74 
SSID T0 10 1.67 1.3 2.07 
PSTR 288_28 16 1.54 1.34 1.73 
PSTR 311_31 9 0.88 0.63 1.13 
PSTR 3285_28 15 1.25 1.05 1.45 
PSTR 3309_31 8 0.59 0.32 0.85 
PSTR 405_31 5 0.8 0.53 1.06 
PSTR 447_28 5 1.46 1.23 1.7 
PSTR 673_28 14 1.3 1.09 1.5 
PSTR 701_31 7 0.63 0.37 0.9 
PSTR T0 8 1.28 0.87 1.7 
PAST 288_28 11 1.21 0.98 1.44 
PAST 311_31 6 1.05 0.79 1.32 
PAST 3285_28 12 0.93 0.71 1.15 
PAST 3309_31 4 0.76 0.48 1.03 
PAST 405_31 7 0.97 0.71 1.24 
PAST 447_28 12 1.14 0.91 1.36 
PAST 673_28 10 0.97 0.75 1.19 
PAST 701_31 9 0.8 0.55 1.06 
PAST T0 13 1.83 1.51 2.16 

 
Table S3.4 Modelled mean total host energy reserve and 95% confidence intervals 
Bootstrapped modelled mean total coral host energy reserves (mg cm-2) for each species 
(SSID = S. siderea; PSTR = P. strigosa; PAST = P. astreoides) by treatment (T0 denotes 
samples taken at the start of the experiment and all others were assessed at T90). Sample 
sizes (N) and 95% confidence intervals are reported for each mean (Figure 3.1B).   
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Species Treatment N Modelled mean Lower 95% Upper 95% 
SSID 288_28 11 3.34 2.4 4.31 
SSID 311_31 9 2.46 1.47 3.44 
SSID 3285_28 12 2.07 1.16 2.97 
SSID 3309_31 12 1.19 0.28 2.13 
SSID 405_31 12 2.59 1.65 3.51 
SSID 447_28 12 3.47 2.55 4.38 
SSID 673_28 13 2.96 2.07 3.85 
SSID 701_31 12 2.08 1.17 2.96 
SSID T0 10 2.07 0.74 3.35 
PSTR 288_28 16 2.21 1.34 3.09 
PSTR 311_31 9 0.43 -0.59 1.51 
PSTR 3285_28 16 1.55 0.67 2.44 
PSTR 3309_31 8 -0.23 -1.27 0.82 
PSTR 405_31 6 0.46 -0.84 1.72 
PSTR 447_28 5 2.23 0.98 3.52 
PSTR 673_28 14 1.72 0.83 2.64 
PSTR 701_31 7 -0.06 -1.11 0.97 
PSTR T0 8 1.8 0.37 3.25 
PAST 288_28 11 7.33 6.31 8.38 
PAST 311_31 6 6.44 5.29 7.62 
PAST 3285_28 12 5.83 4.86 6.85 
PAST 3309_31 4 4.94 3.67 6.23 
PAST 405_31 6 5.58 4.45 6.75 
PAST 447_28 12 6.47 5.44 7.48 
PAST 673_28 10 5.02 3.97 6.09 
PAST 701_31 8 4.13 3.03 5.25 
PAST T0 14 1.66 0.55 2.7 

 
Table S3.5 Modelled mean algal endosymbiont cell density and 95% confidence 
intervals 
Bootstrapped modelled mean algal endosymbiont cell density (106 cells cm-2) for each 
species (SSID = S. siderea; PSTR = P. strigosa; PAST = P. astreoides) by treatment (T0 
denotes samples taken at the start of the experiment and all others were assessed at T90). 
Sample sizes (N) and 95% confidence intervals are reported for each mean (Figure 3.1C).   
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Species Treatment N Modelled mean Lower 95% Upper 95% 
SSID 288_28 11 120.8 93.95 147.27 
SSID 311_31 9 95.78 68.08 122.9 
SSID 3285_28 12 53.23 27.81 78.85 
SSID 3309_31 12 28.22 2.2 52.44 
SSID 405_31 12 104.9 79.27 130.43 
SSID 447_28 12 129.9 105.49 155.19 
SSID 673_28 13 94.59 70.29 118.96 
SSID 701_31 12 69.58 43.99 93.96 
SSID T0 10 46.17 11.01 79.02 
PSTR 288_28 16 193.8 170.37 217.87 
PSTR 311_31 9 108.8 81.57 136.4 
PSTR 3285_28 16 81.43 57.99 105.14 
PSTR 3309_31 8 -3.49 -32.26 24.19 
PSTR 405_31 6 47.02 9.81 83.7 
PSTR 447_28 5 131.9 94.83 168.34 
PSTR 673_28 14 90.82 65.27 116.53 
PSTR 701_31 7 5.91 -25.4 36.83 
PSTR T0 8 49.04 9.22 88.2 
PAST 288_28 11 104.2 77.16 132.35 
PAST 311_31 6 142.4 110.92 175.02 
PAST 3285_28 12 17.71 -12.59 46.48 
PAST 3309_31 4 55.9 22.29 91.31 
PAST 405_31 7 83.73 53.52 113.12 
PAST 447_28 12 45.54 19.14 71.25 
PAST 673_28 10 44.91 16.96 74.43 
PAST 701_31 9 83.1 55.13 112.3 
PAST T0 14 43.4 14.9 73.72 

 
Table S3.6 Modelled mean algal endosymbiont chlorophyll a and 95% confidence 
intervals  
Bootstrapped modelled mean algal endosymbiont chlorophyll a concentration (mg cm-2) for 
each species (SSID = S. siderea; PSTR = P. strigosa; PAST = P. astreoides) by treatment 
(T0 denotes samples taken at the start of the experiment and all others were assessed at T90). 
Sample sizes (N) and 95% confidence intervals are reported for each mean (Figure 3.1D). 
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Parameter Df Sums of squares Mean squares F model R2 Pr (>F) 
Temperature 1 3111 3111.1 2.0968 0.00376 0.15 
pCO2 3 14260 4753.4 3.2037 0.01722 0.019 * 
Reef 1 736 736.2 0.4962 0.00089 0.455 
Residuals 546 810104 1483.7 0.97814   

Total 551 828211 1       
 
Table S3.7 PERMANOVA model output for S. siderea holobiont physiology 
Assessment of the main effects of treatment pCO2, temperature, and natal reef environment 
on the similarity/dissimilarity of S. siderea holobiont physiology as visualized in the PCA in 
Figure 3.2A. Parameters with an asterisk (*) denote significant main effects. 
 
 
 
Parameter Df Sums of squares Mean squares F model R2 Pr (>F) 
Temperature 1 18776 18775.5 6.0027 0.01231 0.011 * 
pCO2 3 31998 10666.2 3.41 0.02098 0.019 * 
Reef 1 10809 10809.2 3.4558 0.00709 0.059 
Residuals 468 1463839 3127.9 0.95963   

Total 473 1525422 1    
 
Table S3.8 PERMANOVA model output for P. strigosa holobiont physiology 
Assessment of the main effects of treatment pCO2, temperature, and natal reef environment 
on the similarity/dissimilarity of P. strigosa holobiont physiology as visualized in the PCA in 
Figure 3.2B. Parameters with an asterisk (*) denote significant main effects. 
 
 
 
Parameter Df Sums of squares Mean squares F model R2 Pr (>F) 
Temperature 1 4401 4401.1 4.1153 0.00972 0.038 * 
pCO2 3 12017 4005.7 3.7456 0.02654 0.007 * 
Reef 1 116 116.4 0.1089 0.00026 0.754 
Residuals 408 436336 1069.5 0.96349   

Total 413 452871 1    
 
Table S3.9 PERMANOVA model output for P. astreoides holobiont physiology  
Assessment of the main effects of treatment pCO2, temperature, and natal reef environment 
on the similarity/dissimilarity of P. astreoides holobiont physiology as visualized in the PCA 
in Figure 3.2C. Parameters with an asterisk (*) denote significant main effects. 
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Figure S3.1 Total coral host lipid content. Modelled 95% confidence interval of total host 
lipid concentrations (mg cm-2) for (A) S. siderea, (B) P. strigosa, and (C) P. astreoides at T0 
(green) or T90 (red/blue), with individual coral fragment physiology denoted by points. Blue 
denotes 28°C and red denotes 31°C, with pCO2 treatment along the x axis. 
 

 

 

Figure S3.2 Total coral host carbohydrate content. Modelled 95% confidence interval of 
total host carbohydrate concentrations (mg cm-2) for (A) S. siderea, (B) P. strigosa, and (C) P. 
astreoides at T0 (green) or T90 (red/blue), with individual coral fragment physiology denoted 
by points. Blue denotes 28°C and red denotes 31°C, with pCO2 treatment along the x axis. 
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Figure S3.3 Total coral host protein content. Modelled 95% confidence interval of total host 
protein concentrations (mg cm-2) for (A) S. siderea, (B) P. strigosa, and (C) P. astreoides at 
T0 (green) or T90 (red/blue), with individual coral fragment physiology denoted by points. 
Blue denotes 28°C and red denotes 31°C, with pCO2 treatment along the x axis. 
 
 
 
 

Figure S3.4 Coral calcification rates. Modelled 95% confidence interval of coral 
calcification rates (mg cm-2 day-1) previously reported in Bove et al. (2019) for (A) S. siderea, 
(B) P. strigosa, and (C) P. astreoides T90 only, with individual coral fragment rates denoted 
by points. Blue denotes 28°C and red denotes 31°C, with pCO2 treatment along the x axis. The 
dashed grey line at 0 highlights confidence intervals exhibiting net calcification (above 0) or 
net dissolution (below 0).  
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Figure S3.5 Coral colour change over experimental period. Representative images of P. 
astreoides (A), S. siderea (B), and P. strigosa from the same colonies demonstrating change 
in coral colour over time in either control (400_28) or warming (400_31) treatments from the 
start of the experiment (T0) to the end (T90). 
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Figure S3.6 Relationship between S. siderea physiology and calcification rate.  
Measured S. siderea calcification rate (mg cm-2 day-1) plotted against (A) coral host lipid (mg 
cm-2), (B) coral host protein (mg cm-2), (B) coral host carbohydrate (mg cm-2), (D) coral host 
total energy reserves (mg cm-2), (E) algal endosymbiont cell density (106 cells cm-2), and (F) 
algal endosymbiont chlorophyll a concentration (mg cm-2). Each plot contains the 
corresponding R2, p-value, and regression equation fit to each parameter pair.  
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Figure S3.7 Relationship between P. strigosa physiology and calcification rate.  
Measured P. strigosa calcification rate (mg cm-2 day-1) plotted against (A) coral host lipid (mg 
cm-2), (B) coral host protein (mg cm-2), (B) coral host carbohydrate (mg cm-2), (D) coral host 
total energy reserves (mg cm-2), (E) algal endosymbiont cell density (106 cells cm-2), and (F) 
algal endosymbiont chlorophyll a concentration (mg cm-2). Each plot contains the 
corresponding R2, p-value, and regression equation fit to each parameter pair.  
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Figure S3.8 Relationship between P. astreoides physiology and calcification rate.  
Measured P. astreoides calcification rate (mg cm-2 day-1) plotted against (A) coral host lipid 
(mg cm-2), (B) coral host protein (mg cm-2), (B) coral host carbohydrate (mg cm-2), (D) coral 
host total energy reserves (mg cm-2), (E) algal endosymbiont cell density (106 cells cm-2), and 
(F) algal endosymbiont chlorophyll a concentration (mg cm-2). Each plot contains the 
corresponding R2, p-value, and regression equation fit to each parameter pair.  
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Figure S3.9 Expression modules correlated with algal endosymbiont cell density 
Significantly correlated modules (“blue” and “green yellow”) with algal endosymbiont cell 
density values for S. siderea, with higher correlations indicating stronger associations between 
the module and cell density (A). Gene Ontology (GO) categories significantly enriched for the 
“blue” (B) and “green yellow” (C) modules by “cellular component” (CC), “biological 
process” (BP), and “molecular function” (MF). Significance (via Fisher’s exact test) of each 
identified pathway is denoted by text font. Each fraction denotes the number of genes within 
the corresponding module compared to the total number of genes within the GO category.   
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Figure S3.10 Dark green module correlated with coral host carbohydrate 
Significantly correlated “dark green” module with coral host algal endosymbiont 
concentration for S. siderea, with higher correlations indicating stronger associations 
between the module and carbohydrate content (A). Gene Ontology (GO) categories 
significantly enriched for the “dark green” (B) module by “cellular component” (CC), 
“biological process” (BP), and “molecular function” (MF). Significance (via Fisher’s exact 
test) of each identified pathway is denoted by text font. Each fraction denotes the number of 
genes within the corresponding module compared to the total number of genes within the GO 
category.  
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Figure S3.11 WGCNA analysis of Siderastrea siderea algal endosymbiont gene 
expression 
Dendrogram of gene clustering based on similar expression patterns (B). Coloured bars in the 
top depict co-expression modules. Correlations between module eigengenes and treatment or 
physiological parameters (B). The bar graph (left) depicts the number of genes corresponding 
to each module. Significant modules are denoted by values for Pearson’s correlation 
coefficients within each cell.  
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APPENDIX 4: SUPPLEMENTAL DESCRIPTIONS AND FIGURES – CHAPTER 4 

Table S4.1 AIC model selection for corallite height. Summary of AIC and degrees of 
freedom (df) for all model combinations assessing corallite height. The model combination in 
bold is the final model used in this analysis. 
 

Model df AIC 
reef * pCO2 * temperature 18 -25.44 
reef + pCO2 + temperature 8 -39.67 
reef + pCO2 * temperature 11 -35.76 
reef * pCO2 + temperature 11 -33.69 
reef * temperature + pCO2 9 -39.51 
reef * (pCO2 + temperature) 12 -33.53 
pCO2 * temperature 10 -37.2 
pCO2 + temperature 7 -41.08 

 
 
Table S4.2 AIC model selection for corallite skeletal infilling. Summary of AIC and degrees 
of freedom (df) for all model combinations assessing corallite skeletal infilling. The model 
combination in bold is the final model used in this analysis. 
 

 Model df AIC 
reef * pCO2 * temperature 18 513.99 
reef + pCO2 * temperature 11 511.49 
reef * pCO2 + temperature 11 513.69 
reef * (pCO2 + temperature) 12 515.61 
pCO2 * temperature 10 509.73 
pCO2 + temperature 7 515.00 
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Table S4.3 AIC model selection for septal peak rugosity. Summary of AIC and degrees of 
freedom (df) for all model combinations assessing septal peak rugosity. The model 
combination in bold is the final model used in this analysis. 
 

 Model df AIC 
septa * reef * pCO2 * temperature 28 -823.77 
septa * reef * pCO2 + temperature 245 -642.98 
septa * reef * temperature + pCO2 137 -688.98 
septa * reef * (pCO2 + temperature) 304 -664.65 

 
 
 
Table S4.4 AIC model selection for septal ridge rugosity. Summary of AIC and degrees of 
freedom (df) for all model combinations assessing septal ridge rugosity. The model 
combination in bold is the final model used in this analysis. 
 

Model df AIC 
septa + reef + pCO2 + temperature 19 123.94 
septa + reef + (pCO2 * temperature) 22 110.85 
septa * reef + (pCO2 * temperature) 33 122.7 
septa * reef * pCO2 + temperature 83 164.27 
septa * reef * temperature + pCO2 49 158.94 
septa * reef * (pCO2 + temperature) 102 178.92 
septa * pCO2 * temperature 93 201.06 
septa + pCO2 + temperature 18 137.31 
septa * pCO2 + temperature 51 164.45 
septa * temperature + pCO2 29 152.99 
septa * (pCO2 + temperature) 62 178.06 
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Table S4.5 Model output of linear mixed effects model of corallite height by 
treatment pCO2 and temperature. Summary output of the linear mixed effects model used to 
determine the relationship between corallite height, pCO2 and temperature for S. siderea. 
Temperature and pCO2 were treated as factors. 
 

Predictors Estimates CI p 
(Intercept) 1.26 1.13 – 1.38 <0.001 
pCO2 (669 µatm) 0.03 -0.07 – 0.13 0.542 
pCO2 (3297 µatm) -0.08 -0.18 – 0.02 0.104 
pCO2 (426 µatm) 0 -0.10 – 0.10 0.971 
Temperature (31 °C) 0.01 -0.06 – 0.07 0.838 

Random Effects    
σ2 0.02   
τ00 colony 0.03   
ICC 0.51   
N colony 12   
Observations 86   
Marginal R2 / Conditional R2 0.036 / 0.529     

 
 
Table S4.6 Bootstrapped linear mixed effects model mean and 95% confidence interval for 
corallite height. Bootstrapped modelled mean corallite height for S. siderea in all pCO2 and 
temperature treatments reported in mm. 95% confidence intervals (CI) are reporter for each 
modelled mean (Figure 4.3A). 
 

pCO2 Temperature Mean Lower 95% CI Upper 95% CI 
299 28 1.25 1.18 1.33 
299 31 1.26 1.18 1.34 
3297 28 1.17 1.10 1.25 
3297 31 1.18 1.11 1.25 
426 31 1.26 1.18 1.33 
426 28 1.25 1.18 1.33 
669 28 1.29 1.21 1.36 
669 31 1.29 1.22 1.37 
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Table S4.7 Model output of linear mixed effects model of corallite height by 
treatment pCO2 and temperature. Summary output of the linear mixed effects model used to 
determine the relationship between corallite skeletal infilling, pCO2 and temperature for S. 
siderea. Temperature and pCO2were treated as factors. 
 
Predictors Estimates CI p 

(Intercept) 61.16 58.03 – 64.30 <0.001 
pCO2 (426 matm) -9.32  -13.59 – -5.04 <0.001 
pCO2 (669 matm) -0.08  -4.36 – 4.20 0.971 
pCO2 (3297 matm) -15.83  -20.11 – -11.55 <0.001 
Temperature (31 °C) 1.37  -3.28 – 6.02 0.564 
pCO2 (426 matm) : Temperature (31 °C) 6.06  -0.27 – 12.38 0.061 
pCO2 (669 matm) : Temperature (31 °C) -2.75  -9.06 – 3.57 0.394 
pCO2 (3297 matm) : Temperature (31 °C) -2.8  9.05 – 3.45 0.380 

Random Effects    

σ2 24.84   

τ00 colony 0.66   

ICC 0.03   

N colony 12   

Observations 82   

Marginal R2 / Conditional R2 0.667 / 0.675     
 
 
Table S4.8 Bootstrapped linear mixed effects model mean and 95% confidence interval for 
corallite % skeletal infilling. Bootstrapped modelled mean corallite % skeletal infilling for S. 
siderea in all pCO2 and temperature treatments. 95% confidence intervals (CI) are reporter 
for each modelled mean (Figure 4.3B). 
 

pCO2 Temperature Mean Lower 95% CI Upper 95% CI 
299 28 61.08 57.99 64.11 
299 31 62.54 59.16 66.10 
426 28 51.81 48.77 54.76 
426 31 59.25 56.25 62.42 
669 28 61.09 58.12 63.92 
669 31 59.72 56.54 62.93 
3297 28 45.33 42.37 48.22 
3297 31 43.88 40.90 46.85 
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Table S4.9 Model output of linear mixed effects model of septal peak rugosity by 
treatment pCO2 and temperature. Summary output of the linear mixed effects model used to 
determine the relationship between septal peak rugosity, pCO2, temperature, and reef 
environment for S. siderea. Temperature and pCO2 were treated as factors. 
 

Predictors Estimates CI p 
(Intercept) 1.17 1.05 – 1.29 <0.001 
pCO2 (669 µatm) -0.15 -0.21 – -0.08 <0.001 
param2F_peak: Inshore : pCO2 (3297 µatm) 0.12 -0.01 – 0.24 0.067 
pCO2 (426 µatm) 0.01 -0.19 – 0.20 0.952 
4th peak : Temperature (31 °C) 0 -0.15 – 0.15 0.986 
pCO2 (426 µatm): Temperature (31 °C) 0.3 -0.02 – 0.63 0.069 
4th peak : Inshore -0.06 -0.15 – 0.04 0.247 
pCO2 (669 µatm) : Temperature (31 °C) 0.1 0.02 – 0.19 0.021 
pCO2 (3297 µatm) 0.05 -0.01 – 0.11 0.119 
4th peak : pCO2 (3297 µatm) : Temperature (31 °C) -0.05 -0.17 – 0.07 0.45 
Inshore : pCO2 (426 µatm) -0.15 -0.36 – 0.05 0.142 
4th peak 0.07 -0.00 – 0.14 0.059 
Inshore 0.19 -0.01 – 0.38 0.067 
4th peak : pCO2 (3297 µatm) -0.04 -0.13 – 0.05 0.379 
Inshore : pCO2 (3297 µatm) -0.15 -0.36 – 0.05 0.134 
4th peak : pCO2 (669 µatm) 0.03 -0.06 – 0.12 0.483 
Temperature (31 °C) -0.15 -0.36 – 0.06 0.167 
4th peak : Inshore : pCO2 (426 µatm) : Temperature (31 °C) 0.08 -0.10 – 0.25 0.403 
4th peak : Inshore : pCO2 (426 µatm) 0.02 -0.11 – 0.14 0.786 
Inshore : Temperature (31 °C) 0.08 -0.12 – 0.28 0.431 
4th peak : Inshore : Temperature (31 °C) -0.01 -0.13 – 0.12 0.919 
pCO2 (3297 µatm) : Temperature (31 °C) 0.12 0.04 – 0.21 0.005 
4th peak: pCO2 (426 µatm) : Temperature (31 °C) -0.07 -0.25 – 0.11 0.436 
4th peak : pCO2 (426 µatm) -0.02 -0.11 – 0.07 0.676 
Inshore : pCO2 (426 µatm) : Temperature (31 °C) -0.16 -0.39 – 0.06 0.144 
4th peak : pCO2 (669 µatm) : Temperature (31 °C) -0.03 -0.16 – 0.09 0.615 

Random Effects    
σ2 0.01   
τ00 colony 0.01   
ICC 0.42   
N colony 4   
Observations 437   
Marginal R2 / Conditional R2 0.177 / 0.525     
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Table S4.10 Bootstrapped linear mixed effects model mean and 95% confidence interval for 
septal peak rugosity. Bootstrapped modelled mean septal peak rugosity for S. siderea in 
all pCO2 and temperature treatments. 95% confidence intervals (CI) are reporter for each 
modelled mean (Figure 4.5). Inshore values are represented by “I” and offshore values are 
represented by “O.” 
 

pCO2 Temperature Reef 
environment Mean Lower 95% 

CI 
Upper 95% 
CI 

299 28 O 1.18 1.12 1.24 
299 28 I 1.36 1.32 1.41 
299 31 I 1.30 1.26 1.34 
3297 28 I 1.25 1.20 1.30 
3297 28 O 1.22 1.19 1.25 
3297 31 O 1.19 1.15 1.25 
3297 31 I 1.30 1.25 1.36 
426 31 I 1.28 1.22 1.33 
426 31 O 1.33 1.27 1.39 
426 28 I 1.21 1.17 1.25 
426 28 O 1.18 1.14 1.22 
669 28 I 1.21 1.17 1.26 
669 31 I 1.26 1.21 1.30 
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Table S4.11 Model output of linear mixed effects model of septal ridge rugosity by 
treatment pCO2 and temperature. Summary output of the linear mixed effects model used to 
determine the relationship between septal ridge rugosity, pCO2, temperature, and reef 
environment for S. siderea. Temperature and pCO2 were treated as factors. 
 

Predictors Estimates CI p 
(Intercept) 1.79 1.18 – 2.39 <0.001 
pCO2 (669 µatm) -0.51 -0.91 – -0.11 0.014 
param2F_peak: Inshore : pCO2 (3297 µatm) -0.09 -0.90 – 0.71 0.824 
pCO2 (426 µatm) 0.58 -0.37 – 1.53 0.229 
1st peak : Temperature (31 °C) 0.2 -0.76 – 1.16 0.685 
pCO2 (426 µatm): Temperature (31 °C) -0.31 -1.89 – 1.27 0.699 
1st peak : Inshore 0.03 -0.58 – 0.63 0.93 
pCO2 (669 µatm) : Temperature (31 °C) 0.32 -0.22 – 0.87 0.247 
pCO2 (3297 µatm) 0.4 -0.01 – 0.81 0.054 
1st peak: pCO2 (3297 µatm) : Temperature (31 °C) 0.14 -0.62 – 0.89 0.724 
Inshore : pCO2 (426 µatm) -0.48 -1.50 – 0.55 0.363 
1st peak -0.06 -0.51 – 0.39 0.787 
Inshore 0.6 -0.36 – 1.55 0.221 
1st peak: pCO2 (3297 µatm) -0.13 -0.72 – 0.46 0.665 
Inshore : pCO2 (3297 µatm) 0.05 -0.95 – 1.04 0.928 
1st peak: pCO2 (669 µatm) 0.16 -0.42 – 0.73 0.593 
Temperature (31 °C) 0.26 -0.80 – 1.32 0.631 
1st peak : Inshore : pCO2 (426 µatm) : Temperature (31°C) -0.01 -1.14 – 1.11 0.982 
1st peak: Inshore : pCO2 (426 µatm) 0.29 -0.52 – 1.09 0.489 
Inshore : Temperature (31 °C) -0.17 -1.15 – 0.82 0.737 
1st peak : Inshore : Temperature (31 °C) -0.44 -1.23 – 0.35 0.273 
pCO2 (3297 µatm) : Temperature (31 °C) -0.46 -1.00 – 0.07 0.089 
1st peak : pCO2 (426 µatm) : Temperature (31 °C) 0 -1.13 – 1.12 0.995 
1st peak : pCO2 (426 µatm) -0.26 -0.84 – 0.32 0.38 
Inshore : pCO2 (426 µatm) : Temperature (31 °C) 0.26 -0.87 – 1.39 0.655 
1st peak : pCO2 (669 µatm) : Temperature (31 °C) 0.3 -0.47 – 1.08 0.446 

Random Effects    
σ2 0.11   
τ00 colony 0.12   
ICC 0.53   
N colony 4   
Observations 143   
Marginal R2 / Conditional R2 0.216/0.634     
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Table S4.12 Bootstrapped linear mixed effects model mean and 95% confidence interval for 
septal ridge rugosity. Bootstrapped modelled mean septal ridge rugosity for S. siderea in 
all pCO2 and temperature treatments. 95% confidence intervals (CI) are reporter for each 
modelled mean (Figure 4.5). Inshore values are represented by “I” and offshore values are 
represented by “O.” 
 

pCO2 Temperature Reef 
environment Mean Lower 

95% CI 
Upper 
95% CI 

299 28 O 2.17 1.91 2.42 
299 28 I 2.46 2.21 2.70 
299 31 I 2.16 1.90 2.43 
3297 28 O 2.36 2.14 2.59 
3297 28 I 2.65 2.38 2.94 
3297 31 I 2.39 2.11 2.67 
3297 31 O 1.93 1.70 2.17 
426 31 O 2.02 1.75 2.29 
426 31 I 2.31 2.03 2.64 
426 28 I 2.41 2.19 2.64 
426 28 O 2.04 1.79 2.29 
669 28 I 1.87 1.59 2.15 
669 31 I 2.24 1.95 2.52 
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Figure S4.1 Corallite peak rugosity measurement 
Example images of how septal peak rugosity was assessed. The peak outline was traced in 
IMAGEJ (A) and then divided by the length of the peak as quantified from the base to the top 
and back down (B).   
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Figure S4.2 Septal peak rugosity without reef environment effects 
Response of peak rugosity to temperature and pCO2 treatment combined by treatment. Blue 
triangles represent values for fragments in the 28°C treatments and red triangles represent 
values for fragments in the 31°C treatments. Blue and red vertical bars represent modelled 
95% confidence intervals for each pCO2 treatment at 28°C and 31°C, respectively.   
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Figure S4.3 Septal ridge rugosity without reef environment effects 
Response of ridge rugosity to temperature and pCO2 treatment combined by treatment. Blue 
triangles represent values for fragments in the 28°C treatments and red triangles represent 
values for fragments in the 31°C treatments. Blue and red vertical bars represent modelled 
95% confidence intervals for each pCO2 treatment at 28°C and 31°C, respectively. 
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Figure S4.4 Pairwise regressions of morphological features  
Preliminary assessment of pairwise comparisons between skeletal morphology and growth 
parameters with R2, p-value, and regression equations for the best comparisons as determined 
through AIC model selection on linear models.   
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