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ABSTRACT

SIRION VITTAYAKORN: VISUAL ATTRIBUTE DISCOVERY AND ANALYSES
FROM WEB-DATA.

(Under the direction of Tamara L. Berg.)

Visual attributes are important for describing and understanding an objects appear-

ance. For an object classification or recognition task, an algorithm needs to infer the

visual attributes of an object to compare, categorize or recognize the objects. In a zero-

shot learning scenario, the algorithm depends on the visual attributes to describe an

unknown object since the training samples are not available. Because different object

categories usually share some common attributes (e.g., many animals have four legs, a

tail and fur), the act of explicitly modeling attributes not only allows previously learnt

attributes to be transferred to a novel category but also reduces the number of train-

ing samples for the new category which can be important when the number of training

samples is limited. Even though larger numbers of visual attributes help the algorithm

to better describe an image, they also require a larger set of training data. In the su-

pervised scenario, data collection can be both a costly and time-consuming process. To

mitigate the data collection costs, this dissertation exploits the weakly-supervised data

from the Web in order to construct computational methodologies for the discovery of

visual attributes, as well as an analysis across time and domains.

This dissertation first presents an automatic approach to learning hundreds of visual

attributes from the open-world vocabulary on the Web using a convolutional neural net-
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work. The proposed method tries to understand visual attributes in terms of perception

inside deep neural networks. By focusing on the analysis of neural activations, the system

can identify the degree to which an attribute can be visually perceptible and can localize

the visual attributes in an image. Moreover, the approach exploits the layered structure

of the deep model to determine the semantic depth of the attributes.

Beyond visual attribute discovery, this dissertation explores how visual styles (i.e.,

attributes that correspond to multiple visual concepts) change across time. These are

referred to as visual trends. To this goal, this dissertation introduces several deep neural

networks for estimating when objects were made together with the analyses of the neural

activations and their degree of entropy to gain insights into the deep network. To utilize

the dating of the historical object frameworks in real-world applications, the dating

frameworks are applied to analyze the influence of vintage fashion on runway collections,

as well as to analyze the influence of fashion on runway collections and on street fashion.

Finally, this dissertation introduces an approach to recognizing and transferring vi-

sual attributes across domains in a realistic manner. Given two input images from two

different domains: 1) a shopping image, and 2) a scene image, this dissertation proposes

a generative adversarial network for transferring the product pixels from the shopping

image to the scene image such that: 1) the output image looks realistic and 2) the visual

attributes of the product are preserved.

In summary, this dissertation utilizes the weakly-supervised data from the Web for the

purposes of visual attribute discovery and an analysis across time and domains. Beyond

the novel computational methodology for each problem, this dissertation demonstrates
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that the proposed approaches can be applied to many real-world applications such as

dating historical objects, visual trend prediction and analysis, cross-domain image label

transfer, cross-domain pixel transfer for home decoration, among others.
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CHAPTER 1: INTRODUCTION

Visual attributes are the attributes that human use to describe the visual appearances

of objects. For many computer vision tasks, such as object classification or recognition,

the algorithm needs to infer what the visual attributes of the object are (e.g., a banana is

yellow, elongated and curved, while a strawberry is conical, bright red with its seeds on

the outer skin) in order to compare, categorize or recognize the objects. In a zero-shot

learning scenario where the system faces an unknown category with zero training data,

visual attributes are crucial for describing and understanding the object appearance even

though the system cannot identify it. For example, we can describe the object in Figure

1.1 as an object with two black eyes, two ears, four papaya whip small horns, periwinkle

fluffy fur and a rounded tail. Moreover, since different object categories usually share

some common attributes (e.g., many animals have four legs, a tail and fur), explicitly

modeling attributes not only allows previously learnt attributes to be transferred to a

novel category but also reduces the number of training samples for the new category

which can be important when the number of training samples are limited.

Although the visual attributes are important in many tasks, visual attributes discov-

ery is a challenging task. While one can describe handbag in Figure 1.2 as ‘the smoky

gray fades into a pearly white, resembling the majestic, snow-capped Himalayas, an-

other one can describe the same handbag as ‘a 25 cm handbag of white matte niloticus



Figure 1.1: Unknown object. Figure 1.2: Birkin bag. Figure 1.3: Example of
weakly-supervised data.

crocodile skin with palladium hardware as well as other hundreds different ways. It is

obvious to say that the more visual attributes the system can learn, the better the system

can describe an object. However, if an object can be described by tens or hundreds of

attributes, the number of attributes that use to describe tens or hundreds of objects must

be very large. And it is very expensive to learn such large number of visual attributes

from supervised data. What is an alternative data source for visual attributes discovery?

Nowadays, we are living in the time that millions of images are uploaded to the Inter-

net every day. The online photo sharing websites (e.g., Flickr, Pinterest, etc.), the social

media networks (e.g., Facebook, Instagram, Chictopia, etc.), the online collections from

museum (e.g., MET, Europeana, etc.), the online magazines (e.g., Vogue, Cosmopolitan,

etc.) or e-commerce websites (e.g., etsy, houzz, etc.) have millions of images with millions

of active users. In 2016, Facebook users have shared more than 240,000 new photos per

day, resulting in about 250 billion photos one this website alone. Similarly to Facebook,

the online mobile photo sharing application Instagram has also become popular in the

past couple of years. Instagram users upload more than 80 million photos daily, which

amounts to 40 billion shared photos in total. With a terabyte of photo storage and more

2



flexible photo and video resolution options than Facebook and Instagram, Flickr now

hosts more than 12 billion photos with 2 million new photos posted every day. Unlike

other photo sharing websites, Pinterest users are creating more than 5 million photo

catalogs daily.

Not only have billions of photos been uploaded to the Internet, text descriptions

related to these photos are uploaded as well. When people share images and details of

their lives or their interests via social networks, it is not just photos but also the story

behind those photos. A short caption or tag is provided alongside photos, which can

describe the content of the photo or the story related to the photo. These photos and

textual descriptions make Web data a rich source of weakly-supervised data as shown

in Figure 1.3. The characteristics of the internet photos and their associated text are

appealing to researchers for many reasons:

Data size There are already billions of photos and their associated texts available on

the Internet and this number is increasing every second. With a tremendous amount of

data, a variety of data-driven approaches have become feasible.

Data availability Since people use social networks to share their personal stories or

interests with others, these photos are mostly publicly available and easy to collect.

Cost efficiency Collecting photos and texts associated with them from the web is more

affordable than manual annotation (supervised data). Although web data can be noisy

and some descriptions or tags might not be related to the image content, verifying image

description is cheaper than writing the image description task.

Data diversity With billions of users worldwide, the photos and their descriptions that
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are posted are diverse. These photos cover thousands of topics (e.g., activities or events,

landscapes or landmarks, animals, objects, people, etc.), involve hundreds of photograph

styles (e.g., black/white, macro, HDR, time lapse, motion, panorama, portrait, etc.) and

different timestamps (from the past to the present) from all over the world.

The objective of this dissertation is to exploit the weakly-supervised data from the

Web in order to construct computational methodologies so as to: 1) discover and recog-

nize visual attributes of objects (Chapter 3), 2) recognize and analyses the visual styles

(i.e., attributes that corresponses to multiple visual attributes) across time or visual

trends (Chapter 4), and 3) synthesize the images of objects across image domain while

preserving their visual attributes (Chapter 5).

1.1 Thesis statement

By exploiting a large-scale weakly-supervised data from the Web using the deep con-

volutional network, it is feasible to develop the automatic systems to discover hundreds

of visual attributes together with recognize and analyses the visual attributes across time

and image domain.

1.2 Outline of contributions

This dissertation begins by reviewing the relevant work discussed in Chapter 2. The

chapter will first go through the recent work on the visual attributes learning and the

convolutional neural networks for visual attribute recognition. Since the visual attributes

of objects are contextually dependent on object domain, this dissertation studies the
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Figure 1.4: Visual attribute discovery framework.

consistent meaning of the attributes under the clothing domain to avoid a semantic

shift. Thus, Chapter 2 reviews several methods used for clothing recognition and its

applications. The chapter also includes state-of-the-art work on generative network for

synthesizing images for different applications.

Then, the main contributions of this dissertation that advanced the state of the art in

visual attribute discovery and analyses are introduced throughout the following chapters.

First, Chapter 3 describes an automatic approach to learning visual attributes from

the open-world vocabulary on the Web. Although there have been numerous attempts at

learning novel concepts from the Web in the past, this dissertation tries to better under-

stand potentially-attributable words in terms of perception inside deep neural networks.

Since deep networks have demonstrated outstanding performance in many computer vi-

sion tasks, this chapter focuses on the analysis of neural activations in order to identify

the degree of being visually perceptible, namely the visualness of a given attribute. The

proposed approach takes advantage of the layered structure of the deep model to deter-

mine the semantic depth of the attribute.
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The experiments show that by using a trained neural network, a visual attribute word

can be characterized using the divergence of neural activations in the weakly-annotated

data. Figure 1.4 illustrates the visual attribute discovery framework. The approach starts

by cleaning the noisy Web data to identify and select the potentially visual attributes

in the dataset. Then, it splits the data into positive and negative sets. Using a pre-

trained neural network, highly-activating neurons are identified by the KL divergence

of the activations. The results show that the identified neurons (prime units) can be

used for: 1) learning a novel attribute classifier that is close to human perception, 2)

understanding the perceptual depth of the attribute, and 3) identifying attribute-specific

saliency in the image.

Although the results from Chapter 3 show that visual attributes can be automatically

discovered from Web data using the neural activation acquired from a deep network, the

discovered visual attributes usually correspond to one visual representation (e.g., striped

corresponds to long narrow bands of different colors). However, this characteristic does

not stay true for attributes in every domain. Some attributes are more informative in that

they correspond to multiple visual representations or concepts, for example, the temporal

attributes. In some domains like fashion, the 1970s corresponds to mini-skirt, the disco-

look, bell-bottoms, tight on top and loose on bottom, etc.. These temporal attributes are

very important. With the temporal attributes, it is feasible for researcher to explore

several interesting problems such as dating historical photograph, temporal classification

for data organization. Notably, temporal attributes become important in the fashion

domain where the reoccurrence of visual concepts from time to time has been observed.
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The temporal attribute also leads to appealing to certain applications, such as in trend

analysis and prediction problems.

In order to conduct the temporal analyses of the visual concepts, Chapter 4 first

explores the deep learning methods for the temporal estimation of clothing items. Then,

the analyses of neural activations and their entropy from the temporal estimation network

are provided in order to give an additional understanding of the network. To demonstrate

the advantages of the temporal estimation network in real world applications, the analysis

of the influence of vintage fashion in the fashion show collections is explored. The results

show that the proposed approach can discover the degree of vintage influences that agrees

with the reference.

To further extend the analysis of fashion in the real world, this chapter introduces

an approach to the study of fashion both on the runway and in street settings. The

contributions involve collecting a new fashion show dataset, designing features suitable

for capturing outfit appearance, collecting human judgments of outfit similarity, and

learning similarity functions on the features to mimic human judgments. The intrinsic

evaluations of the learned models are provided to assess performance on outfit similarity

prediction. Finally, an application that tracks visual trends as runway fashions filtering

down to street fashions is described in this chapter.

Chapter 5 goes beyond the concept of learning visual attribute by presenting a gener-

ative model that is trained to transfer the visual attributes of the input object to a new

image. Given two inputs: room image and object image (e.g., chandelier, nightstand,

chair, etc.), the convolutional neural network is trained to generate an output image
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where the input object appears in the input room. The objective of the network is to

generate the output image such that: 1) the output room looks realistic and 2) the visual

attributes of the input objects are transferred into the synthesized object in the output

image.

Finally, Chapter 6 will conclude this dissertation.
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CHAPTER 2: BACKGROUND

This chapter will review the relevant work as it relates to three different topics: visual

attribute learning, convolutional neural network and computer vision within the fashion

domain.

2.1 Visual attribute learning

Visual attribute is an important cue involved in many tasks, such as object classifi-

cation and recognition, fine-grained classification (Berg et al., 2010; Duan et al., 2012;

Rastegari et al., 2012), face or person verification (Kumar et al., 2009, 2011; Taigman

et al., 2014) and recognition (Liu et al., 2015; Taigman et al., 2014) or activity classi-

fication (Raptis et al., 2012), as well as a number of others. All of these tasks require

informative visual attributes to distinguish target samples from other samples. The im-

portance of visual attributes has encouraged a large number of research studies that

have been used to generate a benchmark of attribute datasets related to visual attribute

recognition and visual attribute discovery.

2.1.1 Visual attribute datasets

To evaluate the performance of visual attribute recognition and discovery across dif-

ferent approaches, several studies have attempted to propose a visual attribute dataset



as a benchmark for the community.

The early work (Farhadi et al., 2009) has proposed two attribute datasets: 1) a-

Pascal containing images of 20 classes from the PASCAL VOC2008 dataset (Everingham

et al., 2008), and 2) a-Yahoo containing images of 12 additional classes acquired from

Yahoo!. Both datasets have been manually annotated with 64 types of binary attributes.

Several studies have provided attribute datasets in specific domains; 1) Animals (Lampert

et al., 2009), 2) Human faces (Liu et al., 2015), 3) Clothing (Chen et al., 2012) and 4)

Scene (Patterson and Hays, 2012, 2016). Animals with Attributes (Lampert et al., 2009)

contains more than 30K images of 50 different animal classes acquired from the Internet

and that have been manually labeled with 85 attributes. For the human faces domain,

the CelebFaces Attributes Dataset (Liu et al., 2015) is a large-scale face attribute dataset

with more than 200K celebrity images, each with 40 attribute annotations. In the clothing

domain, the Clothing Attribute Dataset (Liu et al., 2015) is comprised of about 1,800

images of street fashion with 26 clothing attributes (e.g., ‘Necktie’, ‘Collar’ and ‘Spotted

Pattern’). To tackle the scene understanding problem and that of fine-grained scene

recognition, the SUN Attribute database (Patterson and Hays, 2012) was the first large-

scale scene attribute database on top of the fine-grained SUN categorical database (Xiao

et al., 2014). The later work, the COCO attribute dataset (Patterson and Hays, 2016) was

an attempt to discover and annotate visual attributes for the COCO dataset (Lin et al.,

2014) with 3.5 million object-attribute pair annotations describing 180 thousand different

objects. Recently, the Visual Genome dataset (Krishna et al., 2016) was presented to

handle the cognitive tasks (e.g., image description and question answering). The dataset
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contains over 100K images with the dense annotations of objects, attributes, and pairwise

relationships between objects.

2.1.2 Visual attribute recognition

Since visual attributes have been shown to be crucial for several tasks such as zero-

shot learning when training samples are not available or fine-grain classification when

only class label is not enough, the automatic identification of such attributes has been

the focus of several research studies.

Earlier studies (Farhadi et al., 2009; Lampert et al., 2009) go beyond naming the

objects to describe the objects by using their visual attributes and train the models for

the unseen object categories based on the visual attributes. Zero-shot learning or ob-

ject recognition with no exist training examples has been explored in many later studies

(Lampert et al., 2014; Socher et al., 2013; Yu et al., 2013). For example, the attribute

classifiers which are trained on a high-level description that is phrased in terms of the

semantic attributes (Lampert et al., 2014). The attribute classifiers can be trained inde-

pendently from the existing image data sets and new classes can be detected based on

their attribute representation. More recent works apply convolutional neural networks to

tackle the attribute recognition problem to both weakly-supervised (Shankar et al., 2015)

and unsupervised scenario (Huang et al., 2016; Doersch et al., 2015). As opposed to pre-

dicting the presence or absence of visual attributes, many studies (Parikh and Grauman,

2011; Shrivastava et al., 2012) have explored the use of relative attributes which indicates

the strength of an attribute in an image with respect to other images. Visual attributes
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can be used as a feedback for an image search where a user indicates which attributes

of exemplar images should be tuned in order to improve the retrieval results (Kovashka

et al., 2012).

2.1.3 Visual attribute discovery

Visual attributes are used to describe the visual appearances of an object. Some

attributes are specific for certain object categories, while others are shared among cate-

gories. In order to classify or recognize an object category, the discriminative attributes

are required. However, these informative attributes are category dependent. The dis-

criminative attributes that can distinguish between oranges vs. apples can be different

from those used to distinguish between oranges vs. watermelons. How one discovers the

informative attributes for each task is still a challenging problem. Several approaches

have been proposed to tackle this problem.

Text-based search retrieval

There have been several attempts at attribute discovery from a collection of images

from the Web (Chen et al., 2013; Ferrari and Zisserman, 2007) based on the text-based

search image retrieval. Ferrari et al. (2007) propose a probabilistic generative model of

a given attribute (e.g., red, spotted), and a procedure for learning its parameters from

images collected by a text-based retrieval. NEIL (Chen et al., 2013) aimed to discover

common sense knowledge from the Web starting from small exemplar images per concept

to train the initial detector. Through the use of initial detectors, the system automatically
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extracts common sense relationships between the object and the attributes. Both the

detectors and the common sense relationships are then used to retrieve new images which

in turn are used to re-train the detectors and so on.

Text data mining

Alternative approaches start from mining the attributes from the textual data (e.g.,

descriptions, labels or tags) and then training the visual classifier of each concept.

LEVAN (Divvala et al., 2014) began by mining the bi-gram concepts from a large text

corpus, and the automatically retrieving the training images from the Web to learn a full-

fledged detection model for each concept. ConceptLearner (Zhou et al., 2015) uses weakly

labeled image collection from Flickr to train visual concept detectors. Sun et al. (2015)

take advantage of natural language by embedding the semantic similarity of the attributes

into their pipeline. In the e-commerce scenario, Berg et al. (2010) presented an automatic

system to identify visual attributes from noisy textual data and define the visualness of

an attribute as an average value of the precision of the visual classifier on the held-out

data.

Visual data mining

To bypass the noisy textual data, several visual data mining approaches have been

explored to directly discover the visual elements which are the characteristics of a given

category. To automatically locate the visual elements that are most geo-informative,

Doersch et al. (2012) searched for the visual elements that are both: 1) repeating, i.e. they
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frequently occur in some geographic regions R, and 2) geographically discriminative, i.e.

they occur much more often in R than in RC . Given the randomly sampled candidate

patches, a linear SVM detector is trained in a iterative manner to construct a geo-

informative cluster. In contrast to Doersch et al. (2012) who searched for patterns that

remain visually consistent throughout the dataset, Lee et al. (2013) targeted the visual

elements whose appearance gradually changes through time and space, which are called

style-sensitive elements. The system starts from mining the style-sensitive patches and

incrementally builds correspondences between these patches to find the same elements

across the dataset. The style-aware regressors are then trained to model each elements

range of stylistic differences.

Although these discriminative elements are crucial and machine-detectable, they

might not be human-understandable which limits the ability of humans to understand

object models or contribute the domain knowledge to the recognition systems. Thus,

Duan et al. (2012) have proposed an interactive system that discovers the discriminative

attributes, which are both machine-detectable and human-understandable. At each iter-

ation, the system starts by discovering the candidates’ local attributes. These candidates

are then presented to the human in order to collect attribute names. The candidates for

which the users can give a name are added to the pool of attributes, while the unnamed

ones are discarded. Unlike the other studies, Rastegari et al. (2012) discovered the visual

attributes in the form of contrasts from the learned binary codes. Each bit in the binary

code can be visualized as a hyper-plane in the feature space that corresponds to a visual

attribute. The images from different sides of the hyper-plan correspond to different visual
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attributes, for example, images of silver or metallic objects vs. natural images.

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) have a great impact on the computer vision

community due to the outstanding performance of detection (Szegedy et al., 2015), se-

mantic segmentation (Long et al., 2015) and classification (Krizhevsky et al., 2012; Si-

monyan and Zisserman, 2015; He et al., 2015) on the benchmark dataset that have been

employed in the past couple of years.

The feature representations from the network trained on 1.2 million supervised im-

ages (Deng et al., 2009) have been shown to generalize well to other image classification

tasks (Donahue et al., 2013), as well as to other related tasks such as object detec-

tion (Girshick et al., 2014; Sermanet et al., 2013), pose estimation and action detection

(Gkioxari et al., 2014), or fine-grained category detection (Zhang et al., 2014). Karayev

et al. (2014) stated that using a pre-trained network (Donahue et al., 2013) as a generic

feature extractor, produces a better classifier for photo and painting style than hand-

crafted features.

2.2.1 Understanding neural representation

Unlike certain hand-crafted representations such as SIFT (Lowe, 2004) or HOG (Dalal

and Triggs, 2005), the learned representations from the deep networks are not immedi-

ately interpretable. Thus, the deep analyses of these intermediate representations of the

neural networks have been explored in many recent research studies (Yosinski et al., 2015;
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Zeiler and Fergus, 2014; Zhou et al., 2014).

To better understand what the network has learned, Fischer et al. (2014) compared

the learned representation with SIFT in a descriptor matching task. Zeiler and Fergus

(Zeiler and Fergus, 2014) proposed a novel technique to map the neural activation back

to the image space while Yosinki et al. (2015) introduced the tools to visualize the neu-

ron activations in real-time. Long et al. (2014) studied the effectiveness of the neural

activation features for tasks requiring correspondence. Zhou et al. (2014) proposed a

data-driven approach to visualize the receptive fields (RFs) of each neuron in the net-

work and to finally find the object detectors that emerge in a scene classification network.

Simonyan et al. (2014) visualized parts of the image that cause the highest change in the

class labels that had been computed by back-propagation and applied this technique to

compute an image-specific class saliency map which highlights the areas of the given

image and discriminates with respect to the given class. Mahendran and Vedaldi (Ma-

hendran and Vedaldi, 2015) extended this approach by introducing natural image priors

which result in inverse images that have fewer artifacts. Dosovitskiy and Brox (2016b)

proposed a deconvolutional network that could invert a CNN in a feed-forward manner.

2.2.2 Convolutional neural networks for attribute recognition

Recently, a number of research studies have attempted to tackle the attribute recog-

nition problem using the convolutional neural network. Both Escorcia et al. (2015) and

Ozeki et al. (2014) explored the relationship between neural representation and the visual

attributes acquired from the supervised dataset. Escorcia et al. (2015) revealed empirical
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evidence on the existence of Attribute Centric Nodes (ACNs) within an object classifica-

tion network. ACNs encode information that precisely reconstruct attributes in a sparse

and unevenly distributed manner among the network layers. Ozeki et al. (2014) con-

ducted several experiments in an attempt to demonstrate that the neural representations

can be interpreted as category-level attributes which are informative for the classification

task.

Shankar et al. (2015) proposed a deep network training procedure for the purpose of

multiple attribute predictions acquired from weakly-supervised data. During training,

the responses of the neuron activations are exploited to provide multiple pseudo-labels

for training images in subsequent iterations. Doersch et al. (2015) explored the use of

spatial context as a cue to train a convolutional neural network that can predict the

relative position of the input patches. Although the network is trained for different

tasks, the visual representation has also proven to be useful for both object detection and

unsupervised object discovery. Huang et al. (2016) have proposed a two-stage pipeline,

which consists of unsupervised discriminative clustering and weakly-supervised hashing,

where the visual clusters, hashing functions and feature representations are jointly learned

in order to learn the visual attributes from the unlabeled data. More recent works rely

on convolutional neural network to tackle the attribute recognition problem on both

weakly-supervised (Shankar et al., 2015) and unsupervised scenario (Huang et al., 2016).
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2.2.3 Generative model

Due to a promising performance on generating natural images using a convolutional

neural network, the generative models have recently gained attention from the computer

vision community. Goodfellow et al. (2014) proposed a new framework for estimating

generative models via an adversarial process (GAN) that jointly train two different mod-

els: a generative model G which captures the data distribution, and a discriminative

model D which estimates the probability that a sample came from the training data

rather than the G model. Inspired by GAN, Radford et al. (2016) proposed new convo-

lutional architectures and optimization hyperparameters for GAN to improve the results.

Denton et al. (2015) combined the GAN structure with the multi-scale Laplacian pyra-

mid to produce high-resolution results. Dosovitskiy and Brox (2016a) introduced a new

loss function called deep perceptual similarity metrics (DeePSiM) which compute the dis-

tances between image feature extracted by the encoder of the GAN-style network. The

experiments showed that DeePSiM better reflects the perceptual similarity of the images

and thus leads to better results. Nguyen et al. (2016) applied the network developed by

Dosovitskiy and Brox (2016a) to explore the preferred input images of the classification

networks e.g., CaffeNet (Jia et al., 2014).

Applying recurrent neural networks for image generation, Gregor et al. (2015) com-

bined the sequential variational auto-encoding framework with an attention mechanism

to iteratively construct parts of an image. Unlike some previous research studies, Doso-

vitskiy et al. (2015) demonstrated that the convolutional neural network can be trained

to generate images of objects, given object types, viewpoints, and colors using supervised
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data.

2.3 Computer vision in fashion domain

One important characteristic of the visual concept is contextual dependency; the

same concept can correspond to different visual elements depending on the context. For

example, the term red eye can refer to an overnight airline flight or an eye that appears

red due to illness or injury. This contextual dependency can result in the certain amount

of ambiguity for the visual classifier (red classifier). To isolate the contextual dependency

of the attributes to the object category, this dissertation focuses on domain-specific data,

such as that of the fashion domain, which has gained an increasing level of interest from

computer vision researchers, possibly because of the potential benefit in e-commerce

applications. Thus, this section will review recent efforts in clothing recognition, clothing

retrieval and their related applications.

2.3.1 Clothing recognition

Clothing recognition is one of the fundamental problems of computer vision research

in the fashion domain. Several research studies have depended on clothing cues to: 1)

Recognize the occupations of people (Song et al., 2011; Shao et al., 2013) or their social

identity (Murillo et al., 2012; Kwak et al., 2013; Kiapour et al., 2014), 2) Recommend

the fashion coordination by occasion (Liu et al., 2012a), or 3) Predict the fashionability

of the users’ photographs and to suggest subtle improvements that users could make to

improve their appeal (Simo-Serra et al., 2015).
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Many research studies have attempted to tackle the clothing parsing problem through

the use of large clothing categories (Yamaguchi et al., 2012, 2013; Simo-Serra et al.,

2014). The earlier research study by (Yamaguchi et al., 2012) formulated a way to

addressing the problem as a MAP estimation of image-region labels in the conditional

random field (CRF) given pose estimations. Dong et al. (2013) proposed clothing parsing

as an inference problem over parselets, which is the basis group of image regions that

constitute clothing items. Also, Liu et al. (2014) presented a pipeline in order to eliminate

a pixel-level supervision in learning how to use image-level color tags. The later work

from (Yamaguchi et al., 2013) tackled the problem of using a retrieval based approach

that combines clothing parsing from: pre-trained global clothing models, local clothing

models learned on the fly from the retrieved examples, and transferred parse masks from

retrieved examples. Simo-Serra et al. (2014) presented the parsing problem as one of

inference in a pose-aware CRF which exploits appearance, figure/ground segmentation,

shape and location priors for each garment as well as the similarities between segments,

and symmetries between different human body parts.

2.3.2 Clothing retrieval

In a similar fashion to the clothing recognition task, clothing retrieval has also become

more popular due to the growth of e-commerce and mobile applications. This has resulted

in an increasing number of recent studies on clothing retrieval and its application.

The street-to-shop clothing retrieval system developed by Liu et al. (2012b) aims to

connect street-fashion snapshots with the images that have been acquired from the online
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shopping website using hand-crafted features on the supervised dataset. They employ

a mapping function that involves street and shopping images using a sparsely coded

transfer matrix to mitigate the cross-domain effect on the retrieval results. Kalantidis

et al. (2013) also proposed a cross-domain retrieval system of street fashion and shop-

ping images and suggested visually similar outfits from the shop to the user. Cushen

et al. (2013) proposed a visual search approach with efficiency in a mobile scenario. Ki-

apour et al. (2015) approached the problem using a deep network to learn the similarity

measurement between the two image domains, comprised of the street and shop images.
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CHAPTER 3: AUTOMATIC ATTRIBUTE DISCOVERY WITH

NEURAL ACTIVATIONS

This chapter introduces an automatic approach to learn visual attribute words from

the open-world vocabulary available on the Web. There have been numerous attempts

at learning novel concepts from the Web in the past (Chen et al., 2013; Ferrari and

Zisserman, 2007; Divvala et al., 2014; Zhou et al., 2015; Berg et al., 2010). However,

none of the previous works have aimed to understand potential attribute words in terms

of the perception found inside deep neural networks, which demonstrate outstanding

performance in object recognition (Krizhevsky et al., 2012; Simonyan and Zisserman,

2014; He et al., 2015) from supervised data, and from noisy data (Tong Xiao et al., 2015;

Vo et al., 2015). To propose an alternative way to tackle this problem, this chapter focuses

on the analysis of neural activations to identify the degree of being visually perceptible,

namely the visualness of a given attribute. The analysis takes advantage of the layered

structure of the deep model in order to determine the semantic depth of the attribute.

3.1 Datasets

Since the visual attributes of objects have contextual dependency to the object do-

main, this dissertation studies the consistent meaning of the attributes in the clothing

domain to avoid semantic shifts. Thus, two domain-specific datasets from an online

e-commerce website and a social networking website were acquired.



3.1.1 Etsy dataset

The Etsy dataset is a collection of data acquired from the online market of handcrafted

products, called etsy.com. Each product listed in Etsy contains an image, a title, a

product description, and various metadata such as tags, category, or price. Considering

the trade-off between dataset size and domain specificity, the product images under the

clothing category that includes 247 subcategories (e.g., clothing/women/dress) were

collected.

Near-duplicate removal

As is common with any Web data, the raw data acquired from Etsy contains a huge

amount of near-duplicates. The major characteristics of the Etsy data include the fol-

lowing: 1) there are many shops, but the number of sold items per shop is exhibited by

a long-tail. Meaning many shops sell only a few items, while only a few shops sell many

items, and 2) many shops tend to sell similar items, e.g., the same black hoodie in the

same background with a different logo patch, and in an extreme case, just a few words

(proper nouns) being different in the product description. The near-duplicate removal

is primarily designed to prevent such proper nouns from building up a category. The

results show that without the near-duplicate removal, the system severely suffers from

overfitting and resulting in meaningless results.

To remove near-duplicate data, the system applies the following procedure: 1) group

product listings by shop, 2) computing a bag-of-words from a title and description for

each item within the group except English stop words, 3) computing the cosine distance
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between all pairs of products, 4) applying agglomerative clustering by thresholding the

pairwise cosine distance, 5) randomly picking one product from each cluster.

The duplicate-removal process was applied for all shops in the dataset while for each

shop, any pairs of products that had less than 0.1 cosine distance are merged into the

same cluster. After the near-duplicate removal process has been applied, the Etsy dataset

contained 173,175 clothing products.

Syntactic analysis

Given the title and description of the products in the Etsy dataset, the system applies

syntactic analysis (de Marneffe et al., 2006) and extracts part-of-speech (POS) tags for

each word. In this dissertation, the 250 most frequent adjectives (JJ, JJR, and JJS tags)

are considered potential attribute words. Unless noted, the following experiments use

the (50%, 25%, 25%) splits of data for training, testing, and validation.

3.1.2 WEAR dataset

The WEAR dataset is a large collection of images acquired from the social fashion

sharing website wear.jp, where each post contains an image, associated shots from differ-

ent views, a list of items, blog text, tags, and other metadata. From the crawled data, a

subset of 212,129 images was randomized for the experiments.

From the WEAR dataset, the user-annotated tags are treated as the candidate words.

The majority of tags acquired from the WEAR dataset were not only in Japanese, but

also included multiple synonyms treated as different tags and typos. To mitigate this
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problem, user-annotated tags were translated into English using Google Translate and

manually fixed, and then merged if they correlate to the same English word. After

translation, the most frequent 250 tags were picked as a set of attribute candidates for

further experiments.

3.2 Attribute discovery

The attribute discovery framework begins by splitting the weakly-annotated dataset

into positive and negative sets, then computes the Kullback-Leibler divergence (KL) for

each activation unit in the deep neural network. The KL divergence is then used to

determine the important neurons for the given attributes. The degree of being visually

perceptible or the visualness of attributes can be estimated from these selected neurons.

3.2.1 Divergence of neural activations

Although the image representation (neural activations) from the deep network cap-

tures numerous discriminative features in an image (Zeiler and Fergus, 2014), each neuron

only sparsely responds to visual stimuli. The first step of the proposed framework at-

tempts to discover the neurons that respond highly to the visual pattern associated with

a given attribute word by using the KL divergence of neuron activations. These highly

responding neurons are further described as prime units.

The framework begins by splitting the dataset D into positive and negative sets

according to the weak annotation (adjectives or tags in Sec 3.1). While positive sets D+
u

contain images with the candidate attribute-word u, the negative set D−u is the opposite.

25



Using a pre-trained neural network, the empirical distribution of the neural activations

from all of the units in the network was computed. Let P+
i and P−i denote the empirical

distribution of the positive / negative set for each neuron i. P+
i , P

−
i were computed from

the max-pooling results over the spatial dimension in all channels of the convolutional

layers. Finally, the symmetric KL divergence Si of the word u for each activation unit i

of the network is defined as:

Si(u|D) ≡ DKL(P+
i ||P−i ) +DKL(P−i ||P+

i )

=
∑
x

P+
i (x) log

P+
i (x)

P−i (x)
+
∑
x

P−i (x) log
P−i (x)

P+
i (x)

, (3.1)

where x is the activation of the unit corresponding to the histogram bins. The result-

ing KL divergence Si(u|D) serves as an indicator to find the prime units for the word u.

The intuition is that if the word u is associated with specific visual stimuli, the activation

pattern of the positive set should be different from the negative set and that should result

in a larger KL divergence for highly visual attributes such as color (e.g., red, white) or

texture (e.g., floral, stripped) than the less visual attributes such as expensive or hand-

made. In other words, the system should be able to identify the visual pattern associated

with the given word by finding neurons with a higher KL divergence.

3.2.2 Visualness

According to the previous work (Berg et al., 2010), the visualness is defined as the

classification accuracy given the balanced positive and negative sets:
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V (u|f) ≡ accuracy(f,D+
u , D

−
u ), (3.2)

where f is a binary classification function. To eliminate the bias influence, balanced

samples are subsampled from both positive and negative sets D+
u , D

−
u . The neural acti-

vations are used as a feature representation to build a classifier, and the KL divergence

Si is used as resampling and feature-selection criteria to identify important features for

a given word u.

Selecting and resampling by activations

The noisy positive and negative sets D+, D− bring undesirable influences when eval-

uating the classification accuracy of the word Eq. (3.2). This dissertation proposes a

system to learn a visual classifier in two steps: 1) learning the initial classifier based

on the activations from the prime units and 2) learning the visual classifier from the

confident samples of the initial classifier.

More specifically, the system begins by selecting the top 100 prime units according

to the KL divergence Eq. (3.1); then, the activations from these units are used as a

100-dimensional feature to learn an initial classifier1 using logistic regression (Fan et al.,

2008) and to identify the confident samples for the second classifier.

1Gaussian Naive Bayes also works in this setting, but a stronger classifier such as SVM with RBF kernel
tends to overfit.
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Learning attribute classifier

Once an initial classifier is learned, the second step is to train the visual classifier from

the confident samples ranked by initial classifier confidence. The logistic regression will

be trained using the learned representation from all neural activations (9,568 dimensions).

The final accuracy evaluation Eq. (3.2) on the balanced test set gives the visualness of

the given word.

3.2.3 Human perception

To evaluate the proposed visualness of the attributes, the human perception or visu-

alness is required. Inspired by the observation from (Parikh and Grauman, 2011), it is

harder for humans to provide the absolute visualness score than the relative score. This

involves similar intuition to the KL divergence process, which states that if the word

u is associated with specific visual stimuli, it should be easy for humans to distinguish

between the positive sample and the negative sample, which should result in a higher

human agreement among the subjects for the highly visual attributes than the less visual

attributes.

Thus, the Amazon Mechanical Turk (AMT) task is designed to collect the human

judgment of visualness as follows: given a word, two images are shown to the annotators

where one is from the positive set and the other is from the negative set. The annotators

are then required to pick the image that is more relevant to the given attribute; otherwise,

the answer is none. The 100 most frequent words from the Etsy dataset are selected for

evaluation purposes. For each word, 50 pairs of positive and negative images are randomly
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sampled, and 5 annotators are required to complete an image pair annotation. Let H(u)

denotes the human visualness of word u as the ratio of positive annotator agreements:

H(u) ≡ 1

N

N∑
k

1
[
h+
k (u) > θ

]
(3.3)

where 1 is an indicator function, h+
k (u) is the number of positive votes for image pair k, N

is the number of annotated images, and θ is considered the threshold. In this experiment,

θ is set to 3 for 5 annotators. Finally, the correlation between the machine visualness

ranking and the human perception ranking is used to evaluate the proposed approach.

3.2.4 Experimental results

Since the prime units in the Convolutional Neural Network (CNN) activates differently

depending on the network, three different models are explored as follows:

• Pre-trained: Reference CaffeNet model (Krizhevsky et al., 2012) implemented in

(Jia et al., 2014) and trained on the ImageNet 1000 categories.

• Attribute-tuned: A CNN is fine-tuned to directly predict the weakly-annotated

words in the dataset, assuming they are the ground truth and the noise is ignored.

The soft-max layer in the CaffeNet is replaced with a sigmoid to predict 250 words.

• Category-tuned: A CNN is fine-tuned to predict the 247 sub-categories of cloth-

ing using the metadata in the Etsy dataset, such as t-shirts, dresses, etc.
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The basic AlexNet model has been chosen to evaluate how fine-tuning affects the

attribute discovery task, however different architectures such as VGG (Simonyan and

Zisserman, 2014) can be used to do the same task as well. The category-tuned model

demonstrates the effect of domain transfer without being overfitted to the target labels.

The following different visualness definitions are compared against human perception.

• CNN+maximum KL-div: To observe the correlation between visualness and

the neural activations of the prime units (bypass two-step classifier), the visualness

is defined as the largest KL divergence Si(u|D) across all layers.

• CNN+random: The random sub-sampling of the same number of positive and

negative images so as to learn a logistic regression from all of the neural activations

in the CNN, and to then use the testing accuracy to define the visualness. This is

similar to the visualness prediction in the previous work (Berg et al., 2010), except

that the neural activations are used as a feature.

• CNN+initial: Testing accuracy of the initial classifier trained on the most acti-

vating neurons or prime units.

• CNN+resample: Testing accuracy of the attribute classifier trained on the re-

sampled images according to the confidence of the initial classifier and learned from

all of the neural activations, as has been described in Sec 3.2.2

• Attribute-tuned: Average precision of the direct prediction of the Attribute-

tuned CNN in the balanced test set.
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Table 3.1: Visualness correlation to human perception.
Method Feature dim. Pearson Spearman
Pre-trained+maximum KL-div - 0.672 0.527
Pre-trained+random (baseline) 9,568 0.737 0.637
Pre-trained+initial 100 0.760 0.663
Pre-trained+resample 9,568 0.799 0.717
Attribute-tuned+maximum KL-div - 0.575 0.455
Attribute-tuned 4,096 0.662 0.549
Attribute-tuned+random 9,568 0.760 0.684
Attribute-tuned+initial 100 0.663 0.480
Attribute-tuned+resample 9,568 0.783 0.704
Category-tuned+maximum KL-div - 0.665 0.489
Category-tuned+random 9,568 0.716 0.565
Category-tuned+initial 100 0.716 0.603
Category-tuned+resample 9,568 0.782 0.721
Language prior - 0.139 0.032

• Language prior: The n-gram frequency of adjective-noun modification for the

given attribute-word from the Google Books N-grams (Michel et al., 2010). The

language prior is considered as a reference to understand the scenario when visual

data is not accessible. The assumption is that for each of the object categories

in Etsy, the visual modifier should co-occur more than the non-visual words. For

example, for dress category, the words ‘floral dress’ or ‘white dress’ should appear

more than ‘available dress’ or ‘expensive dress’ in the literature (Michel et al.,

2010). The prior is computed using the sum of n-gram probability on attribute-

category modification to 20 nouns in the Etsy clothing categories.

Quantitative evaluation

Table 3.1 summarizes the Pearson and Spearman correlation coefficients to human

perception using different definitions of visualness together with the feature dimensions

for each approach. From the table, the maximum KL-div results confirm that there exists

a correlation between the KL-divergence of neural activations from the prime units and

the visualness of the attributes, showing as a positive correlation with human perception.

31



Table 3.2: Most and least visual attributes discovered in Etsy dataset.
Method Most visual Least visual
Human flip pink red floral blue url due last right additional

sleeve purple little black yellow sure free old possible cold
Pre-trained+resample flip pink red yellow green big great due much own

purple floral blue sexy elegant favorite new free different good
Attribute-tuned flip sexy green floral yellow right same own light happy

pink red purple lace loose best small different favorite free
Language prior top sleeve front matching waist organic lightweight classic gentle adjustable

bottom lace dry own right floral adorable url elastic super

Moreover, the results show that even though the initial classifiers are only learned

through the filtering of 100-dimensional feature using the prime units, the higher Spear-

man correlation to human perception is achieved than the random baselines with a 90-

time larger feature. Resampling images by the initial classifier confidence improves the

correlation to human perception over the random baseline in all models. These results

demonstrate that feature-selection and resampling using the high-KL neurons helps the

discovery of visual attributes in the noisy dataset.

In addition, the result suggests that directly fine-tuning against the noisy annota-

tion (attribute-tuned) can harm the representational ability of neurons since fine-tuning

to domain-specific data with possibly non-visual words can lead to overfitting and the

suppression of neuron activity in the network even if they are important for recogni-

tion. Indeed, the alternative fine-tuned model (category-tuned) gives a slightly better

human correlation. The pre-trained network gives a slightly higher Pearson correlation.

One explanation is because the neurons are trained on a wider range of visual stimuli in

the ImageNet than in a domain-specific dataset like Etsy, which helps reproduce human

perception. The low correlation from language prior indicates the difficulty of detecting

visual attributes from only textual knowledge.
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Qualitative evaluation

Table 3.2 lists the most and the least visual attributes for some of the selected meth-

ods. Note that the error in syntactic analysis incorrectly marked some nouns as adjectives,

such as url or flip (flip-flops) here. Generally, CNN-based methods result in a similar

choice of the most visual words such as colors (e.g., pink, red, purple, etc.) or texture

(e.g., floral, lace, etc.). Unlike the most visual words, many least visual words have a

similar visualness (almost zero or zero), thus the 10 least visual words across all methods

that are shown in Table 3.2 (the right most column) are diverse. The language prior

involves picking very different vocabulary due to the lack of visual clue in Google Books.

For example, ‘matching (couple) t-shirt’ is very common in the textual domain; however,

the word ‘matching’ is non-visual.

Figure 3.1 shows examples of the most and the least confident images according to

the pre-trained+resample model. From concrete concepts like orange to more abstract

concepts such as elegant, the results confirm that the automatic approach can learn

various attributes from the noisy dataset. Figure 3.2 shows examples of the most and

least floral images from both the positive and negative sets. As seen in the figure, the

noise in the dataset introduces a lot of true-negatives (not mentioned but actually a

floral product) and false-positives (floral is mentioned in the text but not relevant to

the product). The automatically learned attribute classifiers can function as a dataset

purifier for a noisy dataset.
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lovely	bright	orange	 acrylic	

NOT lovely	NOT bright	NOT orange	 NOT acrylic	

elegant	

NOT elegant	

Figure 3.1: Examples of most and least predicted images for some of the attributes.
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Figure 3.2: Most and least floral images. With the automatically learned classifier, the
true-negatives and false-positives in the dataset can be discovered.

3.3 Understanding perceptual depth

This section explores how each layer in the neural network relates to attributes. It

is well-known that neurons in a different layer activate different types of visual pat-

terns (Zeiler and Fergus, 2014; Escorcia et al., 2015). This section is a further attempt

to understand what type of semantic concepts directly relate to neurons using the KL

divergence.
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Consider the activation with respect to the layer depth, then the relative magnitude

of max-pooled KL divergence for the layer l as:

Sl(u|D) ≡ 1

Z
max
i∈l

Si(u|D), where Z ≡
∑
l

max
i∈l

Si(u|D). (3.4)

The system is able to identify the most salient words by ranking the attribute vocabulary

based on Sl(u|D).

Tables 3.3 - 3.4 list the most salient 10 words for each layer of CNN in the Etsy and

the WEAR datasets from the pre-trained CaffeNet. From both tables, the more primitive

visual concepts like color words (e.g., orange, green) appear in the earlier stages of the

CNNs, and as one moves down the network towards the output, the more complex visual

concepts are observed. The same trend appears from both the Etsy and the WEAR

datasets, even though the two datasets are very different (Etsy images are clothing images

on a clear background while WEAR images are street fashion: outfits on people) and

both are considered noisy (missing or incorrect descriptions/tags).

Note that there are non-visual words in a general sense due to the dataset bias. For

example, genuine in Etsy tends to appear in the context of the phrase genuine leather, and

the word many appears in the context of many designs available for sweatshirt products.

An example of such a dataset bias results in higher divergence of the neuron activity.

One approach to deal with such context-dependency is to consider the phrase instead of

a single adjective since the words genuine and many have been identified as non-visual

terms when they stand alone, while genuine leather and many designs are considered
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norm1 norm2 conv3 conv4 pool5 fc6 fc7
orange green bright flattering lovely many sleeve
colorful red pink lovely elegant soft sole
vibrant yellow red vintage natural new acrylic
bright purple purple romantic beautiful upper cold
blue colorful green deep delicate sole flip

welcome blue lace waist recycled genuine newborn
exact vibrant yellow front chic friendly large
yellow ruffle sweet gentle formal sexy floral

red orange french formal decorative stretchy waist
specific only black delicate romantic great american

Table 3.3: Most salient words from the Etsy dataset for each CaffeNet layer.

visual.

How fine-tuning affects perceptual depth

Fine-tuning has an influence on the magnitude of the layer-wise max-pooled KL di-

vergence in that 1) the pre-trained model activates almost equally across layers and 2)

the category-tuned model induced larger divergence in the mid-layer (conv4), while 3)

the attribute-tuned model activates more in the last layer (fc7). Figure 3.3 shows the

relative magnitude of the average layerwise max-pooled KL divergence:

Ml ≡
1

|U |
∑
u∈U

∑
i∈l

Si(u|D) (3.5)

The attribute-tuning causes a direct change in the last layer as expected, whereas the

category-tuning brings a representational change in the mid-layers. The results suggest

that the domain-specific knowledge is encoded inside the activations from the mid-to-

higher layers, but there are domain-agnostic features in the earliest layers which are

useful for recognizing primitive attributes such as color. Moreover, the set of salient
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norm1 norm2 conv3 conv4 pool5 fc6 fc7
blue
green
red-black
red
denim-on-
denim
denim-
shirt
pink
denim
yellow
leopard

denim-
jacket
pink
red
red-socks
red-black
champion
blue
white
shirt
i-am-
clumsy
yellow

border-
striped-
tops
border-
stripes
dark-style
stripes
backpack
red
dark-n-
dark
denim-
shirt
navy
outdoor-
style

kids
bucket-
hat
hat-n-
glasses
black
sleeveless
american-
casual
long-
cardigan
white-n-
white
stole
mom-style

shorts
half-
length
pants
denim
dotted
border-
stripes
white-
pants
border-
tops
gingham-
check
sandals
chester-
coat

white-
skirt
flared-
skirt
spring
upper
beret
shirt-dress
overalls
hair-band
loincloth-
style
matched-
pair

long-skirt
suit-style
midi-skirt
gaucho-
pants
handmade
straw-hat
white-n-
white
white-
coordinate
white-
pants
white

Table 3.4: Most salient words from the WEAR dataset for each CaffeNet layer.

words per layer stays similar after fine-tuning in either case: earlier layers activate more

on primitive attributes, color or texture, and later layers activate more on abstract words.

How each layer relates to human perception

This section evaluates how each layer relates to human perception, using the annota-

tion from Sec 3.2.3. Figure 3.4 plots the Pearson correlation of the layer-wise maximum

KL divergence Eq. (3.4) against human visualness. The plot suggests that the activa-

tion of mid-layers is closer to the human visualness perception, but interestingly, the last

fully-connected layers give a negative correlation. It is positive that the last layers are

more associated to abstract words that are not generally considered visual by humans.

However, they are contextually associated to visual patterns in the domain-specific data.
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norm1 norm2 conv3 conv4 pool5 fc6 fc7 

Figure 3.3: Relative magnitude of average layer-wise
maximum KL divergence.
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Figure 3.4: Pearson correlation
coefficients between human visu-
alness and max KL divergence of
each CNN layer.

3.4 Saliency detection

Convolutional neural networks demonstrate their benefit in many tasks including

class-specific saliency detection (Simonyan et al., 2014; Zhou et al., 2014). To emphasize

the advantage of the neural activations from prime units, this dissertation proposes an

approach which detects the salient regions in the given image directly from the neurons

are highly-activated.

3.4.1 Cumulative receptive fields

This section introduces the saliency detection with respect to the given attribute based

on the receptive field (Zhou et al., 2014). The main idea is to accumulate the neurons’

response in order of the largest KL divergence to the least. The detection pipeline starts

as follows:

1. Applying the sliding-windows of a multi-scale occluder to the input image. In the

experiments, the occluder sizes include 24× 24, 48× 48, and 96× 96 with a stride

size 4 for the 256× 256 input image.
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2. Forwarding the occluded images through the CNN.

3. Observing the differences in activations as a function of the occluder location

aji (x, y) for unit i at occluder size j.

4. Applying a Gaussian filter with the scale proportional to the occluder size j of the

response map aji (x, y).

5. Applying an average pooling over the response maps from multi-scale occulder j to

generate a single response map Ai(x, y).

The resulting response map Ai(x, y) can have either positive or negative peaks to the

input pattern. The system heuristically negates and inverts the response map if the map

has negative peaks. The response map of unit i is then normalized to be within [0, 1]

scale by Ri(x, y). The final saliency map M given image I and word u is computed by

accumulating the units ordered and weighted by the KL divergence:

M(x, y|u, I) ≡ 1

Z

K∑
i

Si(u|D)Ri(x, y|I), (3.6)

where Z =
∑K

i Si(u|D). The units are accumulated by the largest unit divergence

Si(u|D) up to K.

3.4.2 Human annotation

Since the images in the Etsy dataset consist mostly of a single object appearing in the

center of the image frame and localization is merely needed, the WEAR dataset is used
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Figure 3.5: Saliency detection performance in terms of (a) mean average precision and
(b) mean IoU of the attribute-tuned model over the heat-map threshold. Accumulating
receptive fields by KL improves the detection performance, and even the pre-trained
model can reach the baseline performance without any fine-tuning.

for saliency evaluation. Similarly to Sec 3.2.3, human annotation on the salient regions

is required for evaluation purposes. For the randomly selected set of 10 positive images

of the most frequent 50 tags in the WEAR dataset, 3 annotators are required to draw

bounding boxes around the relevant region to the specified tag-word. The pixels which

have 2 or more annotator votes are counted as the ground-truth salient regions. The

images that have no worker agreement are discarded from the evaluation.

3.4.3 Experimental results

Figure 3.5(a) plots the average detection performance from all the tags in terms of

the mean average precision (mAP) for predicting pixel-wise binary labels, and the mean

intersection-over-union (IoU) of the attribute-tuned model as shown in Figure 3.5(b).

The results show the IoU for the binarized saliency map M(x, y|u, I) ≥ θ at the different

threshold θ.
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attribute-tuned 
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border-striped 
tops	

pre-trained 

Figure 3.6: Accumulating receptive fields by the largest KL divergence. As adding more
neurons, the saliency heat-map becomes finer.

Both plots from Figure 3.5 show the performance with respect to the number of

accumulationsK, as well as the baseline performance of the smoothed gradient magnitude

(Simonyan et al., 2014) of the attribute-tuned model. The results show that the detection

performance improves as more neurons are accumulated in the saliency map according

to the divergence, and gives on par or slightly better performance against the baseline.

Note that even the pre-trained model can already reach the baseline by this simple

accumulation based on KL divergence, without any optimization towards saliency. The

improvement in both the pre-trained and attribute-tuned models is observed, but the pre-

trained model tends to require more neurons. One explanation is that fine-tuning makes

each neuron activate more to a specific pattern while reducing activations on irrelevant

patterns, which then results in the diminishing accumulation effect. The results also

suggest that visual attributes are combinatorial visual stimuli rather than some visual

pattern detectable only with a single neuron since the larger K leads to the better mean

AP and mean IoU.

Figure 3.6 shows the detection results by human annotation and by the cumulative
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Figure 3.7: Results of detected salient regions for the given attribute. The rightmost
column shows failure cases due to distracting contexts or visibility issues.

receptive field using a CNN pre-trained on ImageNet or fine-tuned on the WEAR tags,

when the accumulation size K is 1, 8, and 64.

Figure 3.7 shows the results of human annotation and the pre-trained CNN with the

accumulation size K = 64 where saliency detection methods using a pre-trained CNN

perform remarkably well even without fine-tuning. As more neurons are accumulated,

the response map tends to produce a finer degree of localization.

Accumulation helps most of the cases, but failure cases are spotted when there is a

distractor co-occuring with the given attribute. For example in Figure 3.7, the detection

of shorts fails because legs always appear with shorts and the system ends up with the leg

detector instead of a shorts detector (distractor issue). Moreover, the proposed method

tends to fail when the target attribute is associated to only a small region in the image

(visibility issue).
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3.5 Conclusion

This chapter has shown that it is possible to discover and analyze new visual attributes

from noisy Web data using neural activations. The key idea is the use of neurons that

are highly activated in the network, and that are identified by the KL divergence of their

activation distribution in a weakly annotated dataset. The empirical study using two real-

world datasets demonstrates that the proposed approach can automatically learn a visual

attribute classifier that has a perceptual ability that is similar to humans. Consequently,

the depth in the network relates to the depth of attribute perception and the neurons

can detect salient regions in the given image.
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CHAPTER 4: RECOGNITION AND ANALYSIS OF

VISUAL STYLE TRENDS

This chapter explores more informative attributes, focusing on visual styles. The

visual styles are more challenging because they correspond to multiple visual representa-

tions. In some domains like fashion, 1900s corresponds to corset, broad ribbon tie, lace

collar, pouter-pigeon shape, frilly blouses, etc. The visual styles are crucial for many

tasks. By identifying the visual styles of each era, it is feasible to explore several in-

teresting problems such as dating historical photographs and temporal classification for

data organization. Especially, in the fashion domain where the reoccurrence of visual

concepts has been observed from time to time or visual trends, the visual styles can lead

to certain appealing applications such as trend analysis and prediction problem.

Therefore, this chapter starts by presenting the deep learning methods employed for

estimating when objects were made based on their visual appearances. Toward this goal,

the first proposed method utilizes features from existing deep networks. Then, the deep

networks are fine-tuned for the purpose of dating an object. The results show that the

deep learning method outperforms a color-based baseline and significantly improves on

the previous state of the art for dating historical objects. Unlike hand-crafted representa-

tions, the learned representations from deep networks are not immediately interpretable.

Thus, the analyses of the neural activations and their entropy are provided in order to

gain an additional level of understanding about the deep network. While the direct ap-



plications of dating historical objects framework include large-scale data organization or

image retrieval, the framework can be applied to analyze the influence of vintage fashion

on the runway collections and finally to analyze the influence of runway collections on

street fashion.

4.1 Datasets

This chapter includes five different datasets: 1) The Car Database (Lee et al., 2013),

2) A large novel collection of clothing photographs with associated dates, collected from

Flickr.com, 3) Manually annotated clothing photographs from museum collections, 4) A

set of large fashion show collections acquired from Vouge.com, and finally 5) The Paper

Doll dataset (Yamaguchi et al., 2013) which is a collections of street fashion collected

from chictopia.com.

Car Database (CarDb): The Car Database (Lee et al., 2013) contains 13,474 pho-

tographs of cars made from 1920 to 1999 resulting in 8 temporal classes collected from

the cardatabase.net.

Flickr Clothing Dataset: The system first acquired hundreds of thousands of images

from a wide variety of 50 Flickr groups focus on vintage fashions, e.g., Fashions Past -

Best and Worst and As She Was. A face detection algorithm (Zhou et al., 2013) is then

applied to automatically filter out images without a depicted person. After that, the

images are manually inspected to remove additional non-photographic content such as

artwork, painting, and advertisements. To automatically assign the temporal label to an

image, the meta-data such as title, description, and tags are taken into account. From the
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text information, the temporal word that appears the most will be assigned as temporal

label for an image. Finally, the dataset will contain 58,350 clothing photographs with

corresponding meta-data, including photo id, user id, title, description, tags, longitude,

latitude, number of views and groups, etc.

Museum Dataset: Since the user annotated date in Flickr can sometimes be noisy, ad-

ditional photographs have been collected from museum collections. The museum dataset

contains vintage photographs labeled by expert museum curators from 2 different muse-

ums; the Metropolitan Museum of Art, and Europeana Fashion. The Museum dataset

contains 9,421 images taken between 1900 and 2009, showing the clothing that was worn

on people. The dataset is treated as an alternative test set to evaluate clothing date mod-

els trained on the larger Flickr clothing dataset. As this Museum dataset has a different

domain than the Flickr images, it also can be used to evaluate model generalizations, i.e.

by training on one dataset and testing on another.

Runway Dataset: This dataset consists of 348,598 images taken from 9,328 fashion

shows involving a wide variety of brands over a period of 15 years, from 2000 to 2014,

that were taken from Vouge.com. The metadata includes season (e.g., Spring 2014),

category (e.g., Ready-to-Wear, Couture), brand name, date of the event, and a short

text description. In the dataset, there are 852 distinctive brand names, ranging from

haute couture designers like Chanel or Fendi, to more common consumer brands like J

Crew or Topshop. Most brands have between 10 to 100 photos, while a few brands have

significantly more. Note that in this dataset, season refers to a specific fashion event (e.g.,

fashion week), which might be different from the date of the event. The most common
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events is the Ready-to-Wear shows that are held in the spring and fall.

Paper Doll dataset: The Paper Doll dataset (Yamaguchi et al., 2013) is used to sample

street photos of outfits that regular people wear everyday. This dataset contains 339,797

images collected from chictopia.com. The street photographs from the Paper Doll dataset

is used as the test set for cross-domain retrieval system to study how runway fashions

influence everyday fashions on the street.

4.2 Dating historical objects approaches

This chapter begins by proposing the deep learning approaches that are used for

estimating when objects were made. Since the deep network shows the remarkable per-

formance in several tasks, both the pre-trained network and fine-tuning approach are

explored in this section.

4.2.1 Pre-trained + Classifier

Two Convolutional Neural Network (CNN) models pre-trained on 1.2million labeled

images from ImageNet; AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan and Zis-

serman, 2015) have been used as the feature extraction unit in this experiment. For each

network, the learned representation from the second fully-connected layer is computed

and used as a visual representation to train two different classification model: a linear

Support Vector Machines (Fan et al., 2008) with fixed Csvm = 0.1 as used in the color

based approach (Palermo et al., 2012), and Support Vector Regressors (Chang and Lin,

2011) with fixed ε = 0.1 and set Csvr = 100 as used in the data-driven approach (Lee
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et al., 2013).

4.2.2 Fine-tuning (FT)

From each pre-trained model (Krizhevsky et al., 2012; Simonyan and Zisserman,

2015), three different fine-tuning models have been explored as follow:

• CarDb: Fine-tuning a CNN on 10,130 training images and tested on 3,343 images

from the CarDb using the same train/test split as the data-driven baseline (Lee

et al., 2013).

• Clothing: Fine-tuning a CNN using 3/4 of images from the Flickr clothing dataset.

• Black/White (BW): Since the Flickr clothing and Museum datasets depict vin-

tage photographs taken from 1900-2009, there exist the historic color cues (e.g.,

black and white color or sepia tones in early photos and color photographs in later

photos) in both datasets. In order to constrain the network to learn about the

temporal information of objects, without taking ”trivial” shortcuts, a CNN is fine-

tuned using the same train/test split as the Clothing model but in black and white.

To emphasize this experiment, the same experiment has been applied for the CarDb

model as well. Note that the test images are also in black and white color.

To fine-tune the network, the last fully connected layer has been modified from 1000

classes to 11 temporal classes (one per decade) of the Flickr clothing dataset and 8

temporal classes for the CarDb. The models are trained for 50,000 cycles using stochastic
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CarDb Clothing Museum

Data-driven baseline (Lee et al., 2013) 8.56 17.74 19.56

Color based baseline (Palermo et al., 2012) - 17.21 21.21

AlexNet + SVM 7.77 12.99 17.33
AlexNet + SVR 8.10 16.73 22.00
VGG-16 + SVM 6.90 12.60 16.35
VGG-16 + SVR 7.43 15.87 18.76

AlexNet (FT) + BW 6.78 17.16 17.96
AlexNet (FT) 6.17 12.88 16.43
VGG-16 (FT) + BW 4.27 13.66 16.40
VGG-16 (FT) 3.97 11.54 14.23

Table 4.1: The mean absolute error (years) training and testing on CarDb and training
on the Flickr clothing dataset and testing on the held out clothing and Museum dataset.

gradient descent with a batch size of 50 examples, a momentum of 0.9, a weight decay

of 0.0005 and a decrease the learning rate of the models to 0.00001.

4.3 Experimental results

Table 4.1 shows the mean absolute error (MAE) in years across the features and

classifiers, including comparisons to the baselines (Palermo et al., 2012; Lee et al., 2013)

on all datasets.

4.3.1 Pre-trained + Classifier

Without any modification of the pre-trained network, the deep feature already out-

performs the previous state-of-the-art tests on both datasets. Moreover, for clothing,

the results show that even though the domain shift is quite evident (the results of the

Museum dataset are worse than the results of the held out portion of the Flickr clothing

dataset), the deep learning feature is beneficial for the dating of vintage objects. The

evaluations achieve error reductions of 0.95 ± 2.47 years and 3.19 ± 2.06 years on the
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Museum and Flickr clothing collections respectively when compare to the baseline (Lee

et al., 2013).

4.3.2 Fine-tuning (FT)

The fine-tuned models consistently outperform the pre-trained models on both object

categories. For cars, the MAE decreases by around 2.48±0.86 years. Similar trends apply

for clothing, wherein the fine-tuned model decreases MAE by around 2.86 ± 2.42 years

on the Museum dataset and 1.67± 1.94 years on the nosier Flickr clothing dataset.

Moreover, the results confirm that the fine-tuned network learns visual elements be-

yond color by outperforming two color-based baselines. The first baseline (Palermo et al.,

2012) proposed temporally discriminative features related to the evolution of color imag-

ing processes over time, achieves the worse MAE on both datasets compare to the fine-

tuned networks. The results from the fine-tuning network using using black/white images

from the Flickr clothing dataset show that the B/W model achieves about 2.53±1.2 years

higher MAE than the color model. These results emphasize that even though color is an

important clue, the fine-tuned network is able to learn the temporally sensitive features

of an object beyond color.

4.4 Deep Network Analyses

Based on the quantitative results, the deep learning methods appear to be promising

for dating vintage objects. However, unlike the patch discovery methods proposed in

some previous work (Lee et al., 2013), the learned representations from deep networks
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Figure 4.1: Histogram of unit temporal entropy from 2 different fully connected layers of
pre-trained(blue) and fine-tuned network(orange).

are not immediately interpretable. Thus, this section provides some analyses of the CNN

networks on the CarDb to gain additional understanding about what the fine-tuned

networks have learned.

4.4.1 Temporally-sensitive units

Since the fine-tuned network outperforms the pre-trained network, it is reasonable

to hypothesize that the temporal sensitivity of the neurons in the network has changed

during the fine-tuning process. To verify this hypothesis, for each unit, the following

procedures were applied: 1) rank images by their maximum activation, 2) quantize top

N = 500 maximum activation images into a temporal histogram, by decade, 3) compute

the entropy of each histogram as:

E(u) = −
n∑

i=1

H(i) · log2H(i) (4.1)
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(a) 1920s (b) 1930s (c) 1940s (d) 1950s

(e) 1960s (f) 1970s (g) 1980s (h) 1990s

Figure 4.2: In each rectangle, 3 image regions, from the 1920s to the 1990s, with the
maximum activations from 3 different units from the 2nd FC layer of the fine-tuned
network on the CarDb are shown.

where H(i) denotes the histogram count for bin i and n denotes the number of quantized

label bins. Note that lower entropy values indicate higher temporal sensitivity, and 4)

compute the entropy histogram of all units from the fully-connected layers as shown in

Figure 4.1(a) (first FC layer) and Figure 4.1(b) (second FC layer). Both histograms

show that low entropy units appear more in the fine-tuned network than the pre-trained

network. The results indicate that the units have been tuned to capture a temporally

discriminative feature for a specific time period. This trend is visible in both layers, but

is more pronounced in the second layer, which makes intuitive sense since this layer is

closest to the classification layer.

4.4.2 Unit activation analysis

The results from Sec 4.4.1 demonstrate that the units have been tuned to capture the

temporal sensitive elements for a specific time period. Thus, this section aims to reveal
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(a) 1900s (b) 1910s (c) 1920s (d) 1930s

(e) 1940s (f) 1950s (g) 1960s (h) 1970s

Figure 4.3: Each rectangle shows 3 images with the maximum activation regions (in green
highlighting) of the units which have the lowest entropy in each decade of the fine-tuned
network on the Flickr Clothing dataset.

those visual elements and answer the question whether or not the temporal sensitive

elements correspond to the semantic elements of objects.

To visualize the visual elements that have been captured by the network, the system

follows the approach proposed by the previous work (Zhou et al., 2014) to estimate the

receptive fields (RFs) of the units. To estimate a unit’s RF, images are ranked by their

maximum activations for that unit, and the top K images were selected to identify image

regions that are highly activated. To recover the high activation regions within an image,

each image is replicated many times with a small occluder of size 11x11 placed at one of

about 5,500 locations in a dense grid (stride 3 pixels) in the images. Each occluded image

is evaluated using the same network and the change in activation versus the original value

is calculated. Those differences are combined into a discrepancy map over the image. The

intuition behind this approach is that if there is a large discrepancy between activation

values before and after occlusion, then the occluded region is important for activating
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that unit.

In order to investigate the most informative regions in an image, the system focuses

on the image regions that highly contribute to the prediction decision. Only the true

positive images from the fine-tuned network are included in this experiment. For a

given image, the top N units were selected based on their contribution to the prediction

decision. Finally, a discrepancy map of assigned images is computed following the same

work (Zhou et al., 2014). Figures 4.2 - 4.3 show image regions that caused the maximum

activation for the given unit from the last FC layer from the CarDb and Flickr clothing

datasets. The results indicate that the networks have been tuned to the temporal sensitive

elements which highly correspond to certain parts of the object such as front bumpers,

headlights, or wheels for cars and cinched-in waists (40s-50s), mod dresses (60s) and

leisure suits (70s) for clothing.

4.4.3 Discriminative part correlation

So far, the results reveal that during fine-tuning, the units in the network have been

tuned to temporal sensitive elements and these visual elements highly correlate to object

parts. These results lead us to an interesting question: Do these visual elements corre-

spond to the style-sensitive elements discovered by the data-driven approach (Lee et al.,

2013)?

To identify the correspondence between the visual elements learned by the fine-tuned

network and the style-sensitive elements proposed by the data-driven approach (Lee

et al., 2013), the pipeline starts by searching for units which have a similar behavior as
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Figure 4.4: The average IoU score between style-sensitive patches and maximum activa-
tion patches.

their style-sensitive detectors where: (1) high responses on similar sets of images, and

(2) similar localization patterns. To target these units two image rankings have been

computed; the first one is based on the maximum activation for a given unit u over the

images, and the other is based on the maximum detector confidence for a given detector

d over images. Let C(u, d) denote the correlation C between unit u and the generic

detector d as C(u, d) = |An∩Dn|
n

where An represents the set of top n images from the

activation based ranking and Dn represents the set of top n images from the detection

based ranking (n = 30% in all experiments).

The average correlation scores between the style-sensitive detectors and their top 5

correlated units from the last convolutional layer (conv) and a second fully connected

layer (fc) are 0.521 and 0.543, respectively, which indicates that about half of the units

in both layers overlap with style-sensitive detectors. In addition, the average Intersection-

over-Union score (IoU) between the maximum activation patches and the style-sensitive

patches are shown in Figure 4.4. These results emphasize that units in the network
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(a) (b) (c) (d) (e) (f)

Figure 4.5: For each block, the top two rows show style-sensitive patches from the baseline
(Lee et al., 2013), while the bottom two rows show regions with the maximum activation
from the same images. While (a-c) shows unit activations which are highly correlated
to style-sensitive patches, (d-f) shows unit activations which are poorly correlated to
style-sensitive patches

are fine-tuned to temporally sensitive parts of an object. Additionally, only 7.5% of

the patches revealed an average IoU score of less than 0.1 while 61.25% of the patches

revealed an average IoU score of more than 0.5, confirming that the style-sensitive parts

acquired from the baseline (Lee et al., 2013) have been automatically discovered by the

network. Qualitative examples of high/poor correlation patches are shown in Figure 4.5.

Although Figures 4.5(d) - 4.5(f) show visual elements which have low correlation to the

baseline (Lee et al., 2013), these additional patches could be posited as being temporally

sensitive, and contribute to the improved performance.

4.5 Analyzing the influence of vintage fashion

When thinking about fashion trends: denim miniskirts, ripped distressed jeans, track-

suits, preppy polo shirts with popped collars, neon colors, gladiator shoes, etc. Children

look at their parents’ vintage photographs and say “That’s ridiculous! What were they

wearing?”. However, these trends keep coming back with some tweaks. Designers seek

for the inspiration from everywhere, and that usually include the past!
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(a) 1940s (b) 1960s (c) 1970s

(d) 1970s (e) 1980s (f) 1980s

Figure 4.6: Predicting vintage influence in fashion collections. (a)-(f) indicate the decade
of predicted influence.

Fashion influence analysis is a challenging task in which it requires both expertise in

the vintage fashion domain and big data since fashion influences or trends are represen-

tative of the similar aesthetics that are followed by a group of people, which appear and

reappear cyclically over time. Since the deep network demonstrates an excellent perfor-

mance in capturing the iconic style of an era and is practical within a large dataset, the

dating of the historical objects network is proposed as a core module of vintage fashion

analysis.

To estimate the influence of vintage fashion on fashion show collections, the fine-tuned

model is used to estimate when the collections from the Runway dataset were made.

Then, the inspiration date of the collection is defined as the decade with the highest

probability among the images from that collection. To evaluate the proposed approach,

human judgments on the same task using AMT were collected. For each assignment, five

works are shown five fashion show images per collection and ask to identify the decade

that inspired these images. Initially 200 collections per predicted decade are picked and
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Figure 4.7: The influence of vintage fashion (1900s-2000s) in fashion show collections
from (a) 2000 and (b) 2004. Figure (c) shows the influence of the fashion of the 1960s,
1980s and 1990s throughout the 2000s - 2010s.

then removed collections with low human agreement (less than 3 of 5 in agreement).

The final 300 collections are included for the evaluation. Regarding these collections,

the fine-tuned model revealed 58.33% agreement with MAE of 8.6 years compared to the

human judgments. Some qualitative results of the temporal prediction task are shown in

Figure 4.6.

Once the fashion show collections were dated, it became feasible to analyze the in-

fluence of the vintage fashion on modern outfits. To do so, the system accumulates the

classification confidence of collections from the same year as shown in Figures 4.7(a) -

4.7(b). By observing the classification confidence of a particular vintage decade across

years, several interesting trends are spotted. For example, Figure 4.7(c) shows that the

fashion of the 1990s had a strong influence during both the early 2000s and the early

2010s, while during the mid-2000s a revival of the fashion of the 1960s and 1980s fashion

occurred.
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4.6 Cross-domain fashion influence

Clothing fashion represents an individual’s choices about how to represent themselves

relative to others. While some choices truly are unique, fashion trends include similar

aesthetics that are followed by groups of people which often appear and reappear in

a cyclic pattern over time. Seasonal trends like floral patterns in the spring or reds

and oranges in the fall recur without fail each year while other fashion trends pop up

sporadically, often appearing first on the runway and then filtering quickly into the real

world. For example, neon colors reminiscent of the 90s in the Spring 2012 collections

from Rodarte, Peter Som, Jason Wu, and Nanette Lepore (among others) have since

been appearing in fashion followers’ closets.

Thus, this section provides a quantitative analysis of fashion both on the runway and

in the real world and further explores the influence of fashion show collections on street

outfits.

4.6.1 Outfit similarity

The overarching goals of this section are to propose an automatic system that quan-

tifies and learns to measure outfit similarity both within and across domain scenario and

then to use the learned similarity to discover fashion influences or trends.

The subroutine of the proposed approach involves a pair-wise comparison of the

clothing outfits based on a learned combination of the visual features that have been

aggregated over the semantic parses of clothing. Based on human judgments of outfit

similarities, the system trains a discriminative models that replicates human judgments.
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Clothing visual representation

To produce the quantitative analyses of fashion, this dissertation presents a novel

visual representation that captures the appearance of outfits. To extract the visual

representation from an input image, the system starts from pre-processing an image as

follows: 1) estimating the pose of a person (Yang and Ramanan, 2011), 2) analyzing

what are they wearing in the form of a clothing parse (Yamaguchi et al., 2013), and 3)

dividing an image into sub-regions based on the pose and clothing parse.

More specifically, the feature extraction pipeline starts from resizing each person

detection window to 320 × 160 pixels. The clothing parsing algorithm is applied to an

image in order to identify the clothing pixels or foreground pixels of an image.

Global descriptor: To integrate the global cue to the proposed representation, a Style

descriptor (Yamaguchi et al., 2013) is computed over the person detection window. This

descriptor is a reduced-dimensional feature of various visual descriptors including RGB,

Lab, MR8, Gradients, HOG, Boundary distance and Pose distance.

Local descriptors: With the pose and clothing parse, the system extracts nine sub-

regions defined be relevance to the pose estimate as head, chest, torso, left/right arm,

hip, left/right/between legs. For each sub-region, four visual features have been extracted

from the foreground pixels:

• Color Two 512 dimensional histograms in RGB and Lab color spaces from fore-

ground pixels (e.g., clothing items, hair and skin).

• Texture A concatenation of two bag-of-words histograms: 1) a histogram of MR8
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responses (Varma and Zisserman, 2005) quantized into 256 visual words, and 2) a

histogram of HOG descriptors (Dalal and Triggs, 2005) (8x8 blocks, 4 pixel step

size, 9 orientations) quantized into 1000 words.

• Shape The system starts from resizing each sub-region to 32 × 16 pixels, and

extracts 2 features: 1) a binary mask of the foreground pixels estimated by the

clothing parsing algorithm, and 2) an edge map of the foreground region estimated

using structured forest efficient edge detection (Dollr and Zitnick, 2013). To binarize

an edge map using the images parsed as guideline, the threshold t is selected where

it minimizes the following cost function:

c(t) =
∑
i∈x

d (xi, x̄j) +
∑
j∈x̄

d (x̄j, xi) (4.2)

where d(xi, x̄j) represents the Euclidean distance transform of the pixel i of binary

edge map x thresholded at t to the nearest pixel j of the clothing contour x̄. This

provides an edge map that has a similar level of detail to the predicted clothing

parse boundaries.

• Parse An item-masks of 56 different clothing items (e.g., dress, shirt, shoes, etc)

which form a 56-dimensional descriptor of the percentage of each item present in

the foreground region.

The final representation is a concatenation of the four visual features from nine sub-

regions and the Style descriptor.
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Human judgments of outfit similarity

Determining similarities between images of outfits may be difficult, even for humans.

To address this challenge, human judgments of outfit similarity are collected using crow-

sourcing. Here, agreement between people, where the present provides a definition of the

wisdom-of-crowds for similarity between styles.

Human judgment collection: Given a query outfit from the Runway dataset, five

annotators on AMT are required to pick the most similar outfit from five candidate

outfits, or none in the event of no similar outfits being present. The candidate outfits

are selected based on the cosine similarity using each individual feature in isolation (e.g.,

color, texture), or to an equally weighted combination of all features. To explore the

outfit similarity under two scenarios, candidate outfits have been taken from both the

Runway dataset (within-runway scenario) and the Paper Doll dataset (cross domain

scenario). About 2000 human judgments of outfit similarity have been collected for this

experiment.

Results: Overall, there is agreement between annotators for the within-runway scenario.

For 20.4% of the queries, all five annotators agreed on the most similar outfit. For an

additional 29.8% and 24.6% of the queries three and four out of five annotators agree

on the best match. In total, the majority of annotators agreed on 74.8% of the queries

in the within-runway scenario. The agreement was a little lower in the runway-to-street

scenario where all five annotators agreed in 10.9% of the queries, and in 39.3% and 23.7%

of the queries, three and four out of five annotators agree on the best match. This has

yielded a majority agreement for 73.9% of the runway-to-street queries.
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Learning to compare outfits

Using human judgment, the system trains a model of similarity for the fashion outfits.

More specifically, a linear SVM (Chang and Lin, 2011) is trained to classify a pair of

outfits as either similar or dissimilar. To train the model, three different strategies for

converting human judgments to positive/negative labels for training have been explored:

• Majority: A query-candidate pair is marked as positive when the pair gets the

majority of annotators’ clicks. Any query for which all the annotators clicked none

is used to form five negative pairs with each of its five potentially similar images.

• Unanimity: Query-candidate pairs for which all annotators agree on the best

match are treated as positive. Any query for which all the annotators clicked none

is used to form negative pairs with each of its five potentially similar images.

• Some: Query-candidate pairs marked by any of the five annotators are treated as

positive. And any query for which all the annotators clicked none is used to form

five negative pairs with each of its five potentially similar images.

Outfit similarity evaluation

Figure 4.9 shows similar outfit retrieval from runway outfit queries. On the left, re-

sults reflect the majority approach trained on runway-to-runway labels to retrieve similar

runway outfits. On the right results use the majority approach trained on runway-to-

realway labels to retrieve realway images from chictopia.com. Outfits retrieved both from
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(a) Runway to Runway (b) Runway to Realway

Figure 4.8: Retrieved similar outfits for example query runway outfits (red boxes) using
the learned similarity. The right-hand panel shows retrieved outfits from everyday life,
while the left-hand panel shows outfits retrieved from other runway collections.

Runway to Runway Runway to Realway
Method Clothing feature Style descriptor Clothing feature Style descriptor
Majority 0.76 ± 0.11 0.66 ± 0.11 0.54 ± 0.03 0.45 ± 0.02

Unanimity 0.73 ± 0.08 0.62 ± 0.07 0.53 ± 0.02 0.42 ± 0.01
Some 0.73 ± 0.14 0.63 ± 0.12 0.55 ± 0.01 0.43 ± 0.03

Table 4.2: Intrinsic Evaluation: AUC for predicting outfit similarity from Runway images
to Runway images or from Runway images to Realway (street-style) images.

the runway and from the realway images look quite promising, colors are matched well,

and overall shapes and patterns also tend to be similar.

The quantitative results of the learned similarity model (area under the precision

recall curve (AUC) using 6-fold cross validation) for both scenarios are shown in Table

4.2. Establishing the baseline for this experiment involves training the learned similarity

model using the Style descriptor (Yamaguchi et al., 2013) as a visual feature. The
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(a) Floral print (b) Pastel colors (c) Neon colors

Figure 4.9: Street fashion trends for floral prints, pastel colors and neon colors in the
Paper Doll dataset acquired from 2009-2012. The plot shows the density of images similar
to the example images for the trends. The number of images is expressed as a fraction
of all images posted for that month.

results show that the proposed learned similarity models agree with the human similarity

judgments quite well. For the runway-to-runway scenario, learned similarity using the

proposed Clothing features and framework achieves 73−76% AUC compared to the Style

descriptor baseline of 62− 66%, giving an increase in performance of about 10% in these

experiments. The same trend also appears for the runway-to-realway task (53− 55% vs

42− 45%).

4.6.2 Influence of runway collections on street fashion

Finally, this section presents the preliminary experiments that examined how runway

styles influence street outfits. In particular, the system focuses on images from the

runway collections that illustrate three potential visual trends: floral prints, pastel colors

and neon colors.

To study these trends, about 110 example images for each trend from the Runway

dataset have been manually selected for the experiment. Using each of these runway

images as a seed, all street fashion images from the Paper Doll dataset have been retrieved
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(a) Floral print retrieval (b) Neon colors retrieval

Figure 4.10: Example retrieval results for floral prints (left) and neon colors (right) trends.
Query outfits from the runway are shown in red with retrieved street outfits using the
learned similarity

with a similarity score above a fixed threshold, the retrieval results for floral prints and

neon colors are shown in Figure 4.10. The percentage of similar images (normalized for

increasing dataset size) for each trend has been plotted and is presented in Figure 4.9(a)

- 4.9(c). By observing the distribution of the retrieved images over time, the temporal

trends at the resolution of months in the street fashion have been spotted. The seasonal

variation is clear for all three styles, but neon and pastel colors show a clear increasing

trend over time, unlike with the floral style. Moreover, the results shows that even if the

similarity threshold is varied, the trend pattern remains the same, as is shown in Figure

4.9(c) where the distribution of the retrieval neon colors images over time with different

thresholds are shown.
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AUC
Methods Years Seasons Brands

Random 0.067 0.333 0.003
Most common 0.151 0.478 0.012
Human 0.240 0.520 -
10-nearest neighbor + fstyle 0.234 0.534 0.106
10-nearest neighbor + fsim 0.258 0.572 0.122
Classifier + fstyle 0.244 0.554 0.098
Classifier + fsim 0.278 0.578 0.129

Table 4.3: Extrinsic evaluation: AUC for season, year and brand prediction multi-class
classifiers using Style descriptor fstyle (Yamaguchi et al., 2013) and the proposed feature
fsim compared with other baselines.

4.7 Similarity for extrinsic tasks

As fashion similarity may be considered potentially nebulous and subjective, several

additional extrinsic tasks have been extended to evaluate the learned similarity.

4.7.1 Predictions

Since, the observation from the Runway dataset shows that clothing from the same

season, year or brand shares aspects of a visual appearance (e.g., color, texture, type of

fabric, etc.), the season, year and brand prediction problems are proposed as categories

of extrinsic evaluation. In this experiment, several prediction frameworks are explored

as follows:

• Random The system randomizes the predicted season/year/brand of the input

image from all of the possibilities (3 seasons, 15 years and 852 brands) with equal

probability.

• Most common The system identifies the predicted season/year/brand of the input
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image as the most commonly occurring label.

• Nearest neighbor Given the input image, the system retrieves similar images

according to the learned similarity fsim (or the Style descriptor fstyle) and output

of the majority classification label. The predicted season, year, or brand is thereby

estimated as the majority vote of the top k retrieved runway images from other

collections, excluding images from the same collection as the query image. Since

the number of possible years and brands is large, sometimes there is no candidate

that has a majority vote. In that case, the system randomly predicts the year or

brand from the candidate pool.

• Classifier The system trains the linear classifier (one vs. all) to predict the year,

season, and brand of outfits using the proposed feature fsim, and the Style descriptor

fstyle (Yamaguchi et al., 2013).

To evaluate the difficulty of the prediction tasks, human performance on the prediction

tasks are collected using AMT. For season prediction, the definitions and five example

images of each season are shown to the annotators at the beginning of the task. Then,

five annotators are required to identify the season of an input image. The annotation

with the highest agreement among the annotators is then assigned to the input image.

Unlike in the season prediction, the annotators are required to choose one of the years

without referring to the example images. Notably, due to the large number of distinctive

brands in the Runway dataset, human performance on brand prediction is not practical.
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Table 4.3 presents a comparison of automatic predictions vs human predictions. The

results indicate that humans are better than both the random and most common frame-

works. The nearest neighbor techniques based on the learned similarity models performed

surprisingly well, and in some cases, even outperformed humans on the same tasks. More-

over, even though the learned similarity is trained for the similarity prediction task, it

can achieve a comparable level of performance at about 2% lower than the classifiers that

were trained specifically for the extrinsic tasks.

4.7.2 Cross-domain label transfer

In this experiment, the learned similarity has been applied to transfer four different

textual tags; style, trend, clothing item and color from the street collections to the runway

collections. The label transfer pipeline starts from retrieving the top k-nearest street

images of the runway input using the learned similarity. Then, the following alternative

approaches are proposed to complete the task.

• Most similar image The system directly transfers labels from the most similar

realway image to the runway query image.

• Highest probability The system retrieves the 10 nearest realway outfits, and

selects candidate tags according to their frequency within the set of tags contained

in the retrieval set.

• TFIDF weighting The system retrieves the 10 nearest realway neighbors, but

selects candidate tags weighted according to term frequency (tf) and inverse docu-
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(a)

Most similar TFIDF Prob
style Sexy Chic Chic

Trend Lace dress CK Vintage
Item Dress Dress Dress

Color - Black Black

(b)

Figure 4.11: (a) Query runway image(left most), and the 5 nearest realway outfits.
(b)The transferred labels from the 10 nearest neighbors of the query image(a)

ment frequency (idf).

Figure 4.11(a) shows an example query image, 5 retrieved realway outfits and tags

predicted by each method, while Figure 4.11(b) shows the transferred labels from the 10

nearest neighbors of the query image.

To evaluate the predicted labels, 100 query images are randomly selected and five

annotators on the AMT are used to ask to verify whether each label is relevant to

the query image. Labels that receive majority agreement (more than three out of five

annotators) are counted as relevant. The results show that by using the nearest neighbor

technique based on the learned similarity together with TFIDF approach, the system

achieved 68%, 30%, 80% and 75% accuracy in this task.

4.8 Conclusion

This chapter presents a deep learning approach that would automatically estimate

when objects were made, and the evaluation would be done using an existing dataset of

cars and two novel datasets of vintage clothing photographs. The neural activations and

their entropy would be analyzed in order to gain insights into the temporal sensitivity of

the neurons, what the networks have learned and their comparison to the discriminative
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parts learned by the data mining approach (Lee et al., 2013). While the direct applica-

tions of dating historical objects involve large-scale data organization or image retrieval,

the results show that the framework can be applied to an analysis of the influence of

vintage fashion on runway collections.

To extend the study of the influence of the fashion on runway collections to street

fashion, this chapter also presents a novel approach for learning the human judgments of

outfit similarity. The results show that the learned similarities match well with human

judgments of clothing style similarity in both within-runway and runway-to-street sce-

nario. Finally, the results demonstrate that the learned similarity is practical for many

applications: 1) identifying and analyzing the fashion influence or visual trends of runway

collections to street fashion, 2) Season, year or brand prediction of runway collections,

and 3) Cross-domain label transfer.
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CHAPTER 5: CROSS-DOMIAN GENERATIVE ADVERSARIAL

NETWORK

This chapter introduces a cross-domain generative adversarial network that has been

trained to virtually place a product into a room. There have been numerous attempts

at generating realistic images using generative adversarial networks (Goodfellow et al.,

2014; Radford et al., 2016; Denton et al., 2015; Dosovitskiy and Brox, 2016a; Nguyen

et al., 2016). However, none of the previous works have aimed to take images from two

different domains and virtually place one into another in a realistic manner.

Given input images from two different domains: 1) a product image acquired from

online shops, and 2) a room image acquired from home design websites, the generative

adversarial network is trained to generate a realistic image of the input product in the

room. The network is trained to automatically transform (i.e., translate, rotate or scale)

a product image; then, generate a realistic image of the product in a room while the visual

attributes (e.g., color, texture, shape, etc.) of the product are preserved. The proposed

generative adversarial network simultaneously trains two models: 1) a generator that

captures the data distributions from both domains, and 2) a discriminator that estimates

the probability that an input image came from the training data rather than appeared

as synthesized data from the generator.



Figure 5.1: Example of the bedroom image from the Houzz dataset on the right and the
corresponding product image from the Product dataset on the left. The green tag on the
bottom left of the room image indicates the pinpoint location of the chair which is linked
to the product page on the online shop.

5.1 Datasets

This chapter introduces two novel datasets from two different domains: 1) a collec-

tion of indoor and outdoor scenes designed by professional interior designers, and 2) a

collection of shop photographs of furniture and home decoration products.

5.1.1 Houzz dataset

Houzz dataset is a collection of photographs of the interiors and the exteriors of

home designs acquired from houzz.com; an online platform for home designers and home

remodeling professionals around the world that is used as a medium of conveyance to

showcase their work, as well as being a place to collaborate with clients and/or prospective

clients.

The dataset consists of 136,034 room listings across 20 styles (e.g., contemporary,

modern, traditional, etc.) and 30 categories (e.g., bedroom, living room, garage, etc.).
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Each room listing from the Houzz dataset contains an image, a designer’s name, a ti-

tle, room description, room category, style, location, number of saved ideabooks, Q&A,

comments, keywords, links of products that appear in the image and their associated

pinpoint locations as shown in Figure 5.1.

5.1.2 Product dataset

Product dataset contains 83,706 shop photographs of 720 product categories (e.g.,

chandeliers, coffee tables, sofa, etc.) over 19 styles (e.g., Asian, beach style, Victorian,

etc.) acquired from houzz.com. Each product listing consists of a product image, vendor

name, title, price, product description, category, styles, number of saved ideabooks, Q&A,

comments, keywords and links to the rooms where the product appears. The relationship

between the room images and the product images are many-to-many: one product could

appear in multiple rooms and one room could contain multiple products.

5.2 Product localization

To provide the most satisfying service to the clients, the designers not only provide

the most stylish room images but also the sources of the products in the rooms. In each

room from the Houzz dataset, many products are linked to their corresponding product

listing in the online shops via the pinpoint location in the image of the room. Although

the product links and the pinpoint location of a product in the image are provided by

the interior designers themselves, the data can be noisy:

• Inaccurate location Many of the pinpoint locations are at the edge of the product
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region. And in the worst case, they are not inside the product region.

• Inconsistent product link Since the shopping websites occasionally update their

products, some product links associate to similar products (i.e., same products but

they are different in color or texture), irrelevant products or out of stock products

where the associated product data no longer exist.

• Visual appearance inconsistent The major characteristics of the Product dataset

include the following: 1) frontal view product image with no occlusion, 2) a sin-

gle product appears in the center of an image, and 3) the background pixels are

plain in color (e.g., white, black, etc.). However, the associated room images from

the Houzz dataset are more complex. There are multiple products in a room and

they are carefully placed together to create the most functional and beautiful space

which can lead to many issues: 1) many products appear from a different view

point from the product image, 2) some products are very small in the room, and

3) there is a great deal of occlusion of products in rooms by other objects.

Since the characteristics of the Product dataset and the Houzz dataset are different,

two different product localization frameworks have been designed to propose the product

bounding boxes for each dataset.

Product dataset localization: To localize the product location in the product image

IP from a product image domain P ⊂ IRW×H×3 from the Product dataset, the system

applies the following procedure:

1. Compute the average background color Ai of 4 background patches of a size of 3×3

from the corners of a product image IPi
of product i.
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2. Calculate the ‘objectness’ of the product Oi = |Ai − IPi
|.

3. Classify the image pixels IPi
(x, y) into foreground pixels where Oi(x, y) ≥ θ.

4. Finally, compute the product bounding box Bi as the tight bounding box over

foreground pixels. The product patch IBPi
∈ IPi

is then defined as the product

region inside Bi.

Houzz dataset localization: Given the product image IPi
from the Product dataset

and the associated room image IRj
from the room image domain R ⊂ IRW×H×3, the

system applies the following procedure:

1. Sample the sliding-windows of M multi-scale image patches pjm ∈ IRj
,m ∈M from

the input image from the Houzz dataset with a stride size of 10. In the experiments,

the patch sizes range from 5 − 80% of the room image size with the same aspect

ratio with the product bounding box Bi. The image patches which do not contain

the pinpoint location of the product will be discarded.

2. Represent the image patches pjm and product patch IBPi
with the neuron activations

from the last fully-connected layer (FC7) of VGG-16 (Simonyan and Zisserman,

2014).

3. Calculate the Euclidean distance between pjm and IBPi
in the feature domain, the

bounding box with the smallest L2 distance is then defined as the product bounding

box Bj
i of the product i in the room j.

5.2.1 Product localization evaluation

To evaluate the product localization framework, the ground truth bounding boxes are

collected from the Amazon Mechanical Turk (AMT). The fifty product categories with
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Figure 5.2: The product localization performance: (a) mean IoU of top K product
bounding boxes from the room images. The plot shows the average IoU score over 50
product categories, the Prints and posters category and the Area rugs category, and (b)
the examples of the product bounding boxes acquired from different categories in green
compared with ground truth bounding boxes in red and the pinpoint locations in blue
points.

forty associated room images per category are randomized for the evaluation purpose. To

collect the ground truth bounding box, three annotators are required to draw a bounding

box of a given product in a given room image.

Figure 5.2(a) shows the mean intersection-over-union (IoU) score of the ground truth

bounding boxes and the top K proposed bounding boxes of the product in the room

image at different K values. At each K, the graph shows the highest IoU score of the

ground truth bounding boxes and K proposed bounding boxes, averaging across images.

The results show that for Prints and photos category gained the higher IoU score than

the Area rugs category. One reason is that the variation between the print images from

the product domain and the room domain were smaller than the area rug images. The

area rugs usually appear on the floor of the room which is not only presented from a

different viewpoint from the product image (frontal view), but the area rugs are also
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usually occluded by other products and, the prints or photos usually appear on the wall

and present less viewpoint variations and less occlusion.

Figure 5.2(b) shows the examples of the ground truth product bounding box in a red

rectangle, the proposed product bounding box in a green rectangle and the blue points

shows the pinpoint location of the product. While the first row shows the successful

examples of the product localization framework, the bottom row shows the failure ex-

amples. The results show that the proposed product localization framework tends to

fail when the algorithm fails to estimate the aspect ratio of the product. Moreover, the

framework also suffers from occlusion and viewpoint variations. Finally, the results also

show that the product pinpoint locations are noisy, as 77.5% of the pinpoint locations

from the Houzz dataset are inside the ground truth bounding boxes.

5.3 Cross-domain image generation

This section introduces the cross-domain image generation problem. Given input

images from two different domains: 1) a product image acquired from online shops, and

2) a room image acquired from home design websites, the generative adversarial network

is trained to generate a realistic image of the input product in the room. The network

is trained to automatically transform (i.e., translate, rotate or scale) a product image,

then to generate a realistic image of a product in a room while the visual attributes (e.g.,

color, texture, shape, etc.) of the product are preserved.
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5.3.1 Generator network

Given a transfer function, generator G, the task is to transfer both a product image

IP ∈ P and a room image IR ∈ R to the new room image ÎR ∈ R such as

ÎR = G(IP , IR|ΘG) (5.1)

where ΘG is the model parameter of the generator. In the experiments, the system

applies a convolutional network model for generator G.

Generator G is employed as a standard encoder-decoder pipeline. The encoder takes

two input images: 1) a product image IP of size 64× 64, and 2) a room image IR of size

128×128 with a bounding box B of size 64×64 which determines the specific the location

of a product in the final image. From the inputs, the encoder produces a latent feature

representation which captures the structure of the product and the room. The decoder

takes this feature representation and transfers the product into the room content inside

the bounding box. In this experiment, two different encoder architectures are explored.

Single-path encoder Given two input images: 1) a product image IP of size 64 × 64,

and 2) a room image IR of size 128 × 128 with a bounding box B of size 64 × 64

which determines the specific location of a product in the synthesized image ÎR. The

system begins by replacing the room pixels inside the bounding box with product pixels,

resulting in a single input ĨR. Then, ĨR is forwarded to the encoder with a series of five

convolutional layers with a kernel size of 4×4 and a stride of 2. Each convolutional layer,

except the last layer, is followed by a batch normalization operation (Ioffe and Szegedy,
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Figure 5.3: The adversarial network architecture with the single-path encoder.

2015) and LeakyReLU activation function (Nair and Hinton, 2010). The final latent

feature representation z1 of size 4096 is then fed to the decoder. The overall pipeline of

the network with a single-path encoder is shown in Figure 5.3.

Two-path encoder The generator G is derived from the Siamese architecture as shown

in Figure 5.4. The encoder consists of two asymmetrical paths of convolutional layers:

1) the product image path for a product image, and 2) the room image path for a room

image. The product image path consists of five convolutional layers with a kernel size

of 4 × 4 and a stride of 2. Each convolutional layer, except the last layer, is followed

by a batch normalization operation (Ioffe and Szegedy, 2015) and LeakyReLU activation

function (Nair and Hinton, 2010). The size of the latent feature representation of the

product image path z1 is 512. Since the input room image is two times larger than

the product image, the additional convolutional layer followed by a batch normalization

operation and LeakyReLU activation function are added into the room image path. And

the size of the latent feature representation of the room image stack z2 is 3,584. The
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Figure 5.4: The adversarial network architecture with the two-path encoder

two paths are sequential and trained independently without shared weights. Finally, the

hidden variables z1 and z2 acquired from both paths are concatenated and fed into the

decoder.

Decoder The decoder consists of a series of five up-convolutional layers (A.Dosovitskiy

et al., 2015) with learned filters, each with a batch normalization operation and a rectified

linear unit (ReLU) activation function (except the last up-convolutional layer). An up-

convolutional is an upsampling operation followed by the convolution that results in a

higher resolution image. Finally, the Tanh function is applied as the last layer of the

decoder.
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5.3.2 Discriminator networks

The discriminator D takes either a room image IBR of size 64 × 64 (an image patch

inside the bounding box) or a synthesized image ÎR from generator G, and distinguishes

whether its input is real or fake (i.e., synthesized image). Generator G and discriminator

D are adversaries since G is trained to estimate the data distribution or maximize the

probability of D making a mistake.

The real/fake discriminator D architecture is similar to that of the generator (the

product image path). The discriminator consists of five convolutional layers with a

kernel size of 4 × 4 and a stride of 2. Each convolutional layer, except the last layer, is

followed by a batch normalization operation and LeakyReLU activation function. The

last layer of D is a Sigmoid layer where its output is the real number which will be large

when the input comes from the training set, and will be small when the input image is

the synthesized image from G.

5.3.3 Loss function

For a pair, such as product image IP and room image IR with the bounding box B,

the adversarial network is trained by regressing to the ground truth content inside the

bounding box IBR . Let MR be a binary mask corresponding to the product bounding

box B in the room image IR with a value of 1 wherever the pixel is inside the bounding

box and 0 for otherwise. During the training, the masks are automatically generated for

each image and training iterations. The components of the loss function of the model

are described in the following section.
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Generator loss: The generator loss Lgen is responsible for capturing the overall structure

of the region inside the bounding box and for a value of coherence with regard to its

context. To achieve this goal, the generator loss Lgen is defined as the normalize masked

L2 distance:

Lgen(ĨR) =
∥∥∥MR � (IR −G(ĨR))

∥∥∥2

2
,

Lgen(IR, IP ) = ‖MR � (IR −G((1−MR)� IR, IP ))‖2
2

(5.2)

where Lgen(ĨR),Lgen(IR, IP ) is defined for the single-path encoder and the two-path en-

coder, respectively, and � is the element-wise product operation.

Discriminator loss: Unlike the generator, the objective for the discriminator is the

logistic likelihood indicating whether the input is real or synthesized:

min
G

max
D

EIR∈R [log(D(IR))] + EIR∈R,IP∈P [log(1−D(G(IR, IP )))] (5.3)

This method has recently shown promising results in many image generation studies

(Goodfellow et al., 2014; Radford et al., 2016). To condition the given context informa-

tion, the adversarial loss Ladv is defined as:

Ladv = max
D

EIR∈R,IP∈P [log(D(IR)) + log(1−D(G((1−MR)� IR, IP )))] (5.4)

where, in practice, both D and G are optimized jointly using alternating SGD. Finally,
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the overall loss function is defined as:

L = λgenLgen + λadvLadv (5.5)

where λgen, λadv are the weight parameters.

5.4 Experiments

This section begins with the implementation details for the experiments. Then, the

section discusses the dataset pre-processing and augmentation, and the quantitative re-

sults of both architectures: 1) the adversarial network with a single-path encoder, and

2) the adversarial network with a two-path encoder.

5.4.1 Implementation details

Unless noted, the following training process and parameter setting details are ap-

plied to all experiments. The overall loss function is jointly trained with the weight

λgen = 0.999 and λadv = 0.001. The networks are implemented in Torch and utilize the

ADAM stochastic gradient descent solver (Kingma and Ba, 2014) with a mini-batch size

of 64 for optimization. To further emphasize the consistency of prediction within the

context, the network applies a higher learning rate for the generator (×10 times) than

the discriminator (lr = 0.0002).
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5.4.2 Data pre-processing and augmentation

The system begins by splitting the room images from the Houzz dataset and their

associated product images from the Product dataset at a ratio of 0.85:0.15 for the training

and testing sets.

Given two input images: 1) room images from the Houzz dataset, and 2) product

image from the Product dataset, the system localizes the product bounding box B of

the associate product in the room (Sec. 5.2). Note that B indicates the target region of

the product in the room which can also be specified by the user during the testing. The

proposed bounding boxes B are then resized to a size of 64 × 64, and their associated

room images are resized with the same aspect ratio. The region of the size 128×128 of the

room image around B is then cropped, resulting in the room image IR for the training.

The product image IP is simply resized to a size of 64 × 64 for the training as well.

To prevent the network from over-fitting, the system performs data augmentation on

training the room-product pairs by using the top 3 proposed bounding boxes to generate

IR.

To prepare a single input image for the single-path encoder pipeline, the system

directly replaces the pixels inside B with IP , resulting in a single input image ĨR for the

generator. For the two-path encoder pipeline, the system fills the pixels inside B with

the constant mean value from the training set.
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5.4.3 Experimental results

Figure 5.5 shows the qualitative results from two different adversarial networks: 1)

Single-path generative adversarial network, and 2) Two-path generative adversarial net-

work. During the training, each model was trained on two different training sets: 1) the

training set was randomized from all product categories resulting in about 300K training

pairs, and 2) the training set that was randomized from ‘Chandeliers’ category resulting

in about 8K training pairs. For all-category models, the models were trained for 5 epochs,

while the chandelier models were trained for 500 epochs.

Figure 5.5(b) shows six pairs of input-output images from the single-path generative

adversarial network. Given the input images ĨR on the left, the synthesized images ÎR

are shown on the right. Figure 5.5(b) shows four triplets of room-product-output images

from the two-path generative adversarial network. Given two input images: 1) the room

images IR with the product bounding box B (filled with the constant mean value) on

the left most, and 2) the product images IP in the middle, along with the synthesized

images ÎR being shown on the right.

The results from the all-category model (rows 1-6) and the chandelier model (rows

7-8), acquired from both Figures 5.5(a) - 5.5(b) show that the models had difficulty in

transferring the product pixels from IP to ÎR. Instead of transferring pixels from one

domain to another, the models take a shortcut solution by generating the contents of the

missing pixels conditioned on the image surroundings or impainting due to the following

explanations.

Firstly, Lgen as the normalized masked L2 distance is not an efficient loss for cross-
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domain image generation. With L2 loss, the generator can ignore the product pixels

by generating the low-level structure of the room image (e.g., the continuing boundary

patterns or edges/textures) and achieves a reasonable loss.

Secondly, the cross-domain image generation is more complicated than the impainting

task. In order to transfer the product pixels from one domain to another in a realistic

manner, G is required to learn various pixel transformations (i.e., rotation, scaling, view

point transformation, etc.) with different degrees. Although training a single network to

solve the problem might not be the optimal solution, training a network for a transfor-

mation is not practiced due to the limitations of the training samples.

5.5 Discussion

To enforce the network to be able to transfer product pixels from one domain to

another without taking a shortcut (e.g., impainting), several techniques are employed

and discussed as follows:

• Weighted Euclidean distance To emphasize the importance of product pixels,

the Gaussian weight w is introduced to the generator loss Lgen:

Lgen(ĨR) =λ
∥∥∥MR � (w � (IP −G(ĨR)))

∥∥∥2

2

+ (1− λ)
∥∥∥MR � ((1− w)� (IR −G(ĨR)))

∥∥∥2

2

(5.6)

where λ is the weight of the loss. In this scenario, G is enforced to generate an

image where its center pixels are similar to the product image and the background

pixels are similar to the room image.
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• Domain discriminator The domain discriminator DA (Yoo et al., 2016) takes

a pair of images from two different domains and produces a scalar probability of

whether or not the input pair is associated. Given the product image IP , the ground

truth content IBR , the synthesize image ÎR = G(IR, IP ) and the random room image

I ′R, the domain discriminator loss LDA
adv is defined as:

LDA
adv(IP , I) = −t · log [DA(IP , I)] + (t− 1) · log [1−DA(IP , I)] ,

s.t., t =


1 if I = IBR

0 if I = ÎR, I
′
R

(5.7)

The product image IP is always one of the input pairs while the other I is ran-

domized among (IBR , ÎR, I
′
R) with equal probability. The domain discriminator is

trained to produce high probability when the input pair is (IP , I
B
R ), otherwise the

probability should be low.

5.6 Conclusion

This chapter proposes the cross-domain image generation problem. Given two input

images from two different domains: 1) shopping image, and 2) scene image, this chapter

explores generative adversarial networks for transferring the product from the shopping

image to the scene image such that: 1) the output image looks realistic, and 2) the visual

attributes of the product are preserved. Although the generative adversarial networks

demonstrated convincing results for several related problems, the results have shown that

there is room to improve the system in order to address this problem. Several techniques

88



have been discussed in this chapter and will be integrated in future work.
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(a) Results from the single-path generative adversarial network

(b) Results from the two-path generative adversarial network

Figure 5.5: Qualitative results from two generative adversarial networks: a) Single-path
generative adversarial network, and b) Two-path generative adversarial network.
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CHAPTER 6: CONCLUSION

This dissertation exploited weakly-supervised data from the Internet in order to con-

struct computational methodologies so as to: 1) discover and recognize visual attributes

of objects, 2) estimate the temporal attributes of objects, and 3) synthesize novel images

of objects while preserving their visual attributes.

First, this dissertation utilized the convolutional neural network for visual attribute

discovery and recognition. This dissertation is the first attempt to explore the visual

attributable words in terms of perception inside deep neural networks. The discovery

pipeline of this study focused on the analysis of neural activations in order to identify

the degree of being visually perceptible, namely the visualness of a given attribute. The

principle concept of this process involves the use of neurons that are highly activated

in the network, and that are identified by the KL divergence of their activation distri-

bution in a weakly annotated dataset. The empirical study using two novel datasets

demonstrated that the system automatically learned a visual attribute classifier that has

a similar perceptual ability to humans. The extended experimental results showed that

the neural activations are also practical for the visual attribute localization task. More-

over, the system also exploited an advantage of the layered structure of the deep model to

determine the semantic depth of the attribute. And the results revealed that the depth

of the deep network corresponded to the depth of attribute perception.



Beyond discovering the simple visual attributes (e.g., color, texture, etc.), this disser-

tation examined certain more informative attributes, particularly the temporal attributes

since they can lead to certain other relevant and constructive applications, such as those

involved with trend analysis and prediction problems. The dissertation proposed a deep

learning approach that automatically dated when objects were made. The dating histori-

cal object networks were evaluated using both an existing dataset and two novel datasets.

The results demonstrated the state-of-the-art performance of all datasets. Moreover, the

neural activations and their entropy were analyzed in order to provide insights into the

temporal sensitivity of the neurons, what the networks have learned and their comparison

to the discriminative parts learned by the data mining approach. The insights obtained

from the experiments are useful for improving the dating historical object network in the

future. To further utilize the dating historical object network, this dissertation applied

the dating framework to analyze the influence of vintage fashion on runway collections

as well as the influence of fashion on runway collections and on street fashion. The

results indicated that the proposed approach could discover certain fashion trends of

street fashion, inspiring many applications such as fashion trend predictions and fashion

recommendation or advertisements based on current fashion trends.

Finally, this dissertation employed the generative adversarial network for the realistic

image generation task. Given two input images from two different domains: 1) shopping

image, and 2) scene image, the dissertation explored the generative models for transfer-

ring the product from the shopping image to the scene image such that: 1) the output

image looks realistic and 2) the visual attributes of the product are preserved. The disser-
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tation reviewed two baselines, and both demonstrated the promising results. To improve

the baseline performances, many state-of-the-art image generation techniques have been

discussed for use in future work. Although this dissertation only included the experi-

ments in the early state of the study, the cross-domain image generation demonstrated

its potential in a range of other applications. For example, the method can be applied

to: 1) a home decoration application which gives the users the power to experiment with

home decor options by virtually placing products from the online shops into their homes

before they decide to buy them, or 2) an online clothing website which provides a new

shopping experience wherein the users can virtually try on the clothes (full-body shots)

from the comfort of their homes before purchasing them.
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