
INTEGRATING PRAGMATIC CONSTRAINTS AND BEHAVIORS INTO REAL-TIME
SCHEDULING THEORY

Bipasa Chattopadhyay

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2015

Approved by:

Sanjoy K. Baruah

James H. Anderson

Kevin Jeffay

Montek Singh

Nathan W. Fisher

©2015
Bipasa Chattopadhyay

ALL RIGHTS RESERVED

ii

ABSTRACT

BIPASA CHATTOPADHYAY : Integrating Pragmatic Constraints and Behaviors into Real-Time
Scheduling Theory

(Under the direction of Sanjoy K. Baruah)

Scheduling theory has been studied and developed extensively in prior research. In some

existing scheduling theory results, the focus is primarily on demonstrating interesting theoretical

properties, thus these results are not always cognizant of pragmatic constraints. We seek to determine

how existing scheduling theory can be improved with respect to pragmatic constraints and behaviors.

The goal of this research is to study and design scheduling algorithms for scheduling real-time

workload under constraints and behaviors found in real-time systems. Based on our study we

derive a scheduling algorithm for partitioning a collection of real-time tasks in a manner that is

cognizant of multiple resource constraints. We apply the above scheduling algorithm for partitioning

mixed-criticality tasks.

In real-time systems the scheduling algorithm must schedule workload such that all timing

constraints are met; we verify this using schedulability tests. We describe schedulability tests for

each of the scheduling algorithms that we derive. We also propose a new schedulability test for an

existing scheduling algorithm that is commonly used in real-time systems research for scheduling

tasks with limited-preemptivity.

Finally, we propose a scheduling algorithm and schedulability test for scheduling real-time

workload on processors that allow dynamic overclocking.

iii

Dedicated to my family and friends.

iv

ACKNOWLEDGEMENTS

I would like to thank the following people for their continued help and support through out my

graduate studies.

Sanjoy Baruah, my advisor, has been instrumental in my effectiveness as a graduate student.

In my graduate career what I needed the most was to develop the ability to think rigorously about

algorithms and I have benefited immensely from Sanjoy Baruah’s guidance.

My advising committee: James Anderson, Kevin Jeffay, Montek Singh, and Nathan Fisher have

provided helpful advice and insightful ideas in the process of completing the work done in this

dissertation.

All members of the Real-time Systems group for discussions both technical and otherwise.

Some of the members with whom I have interacted with and learnt from the most are: Björn

Brandenburg, Andrea Bastoni, Cong Liu, Haohan Li, Jeremy Erickson, Glenn Elliott, Mac Mollison,

Zhishan Guo, and Bryan Ward.

Jodie Turnbull, the student services manager at our department, has helped me in every step of

my graduation. She is very approachable and patient.

The members of the Graduate Women in Computer Science (GWiCS) club for their enthusiasm

and support. Some of my most memorable events with them are when we participated in Pearl hacks

(March 2014) as a team, and when we organized the Women in Computing Research Workshop

(February 2015).

This research has been supported by NSF grants CNS 1016954, CNS 1115284, and CNS

1218693, and CNS 1239135; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549;

and AFRL grant FA8750-11-1-0033.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Thesis Statement . 3

1.3 Contributions . 4

Chapter 2: Background . 6

2.1 One-shot job model. 6

2.2 Liu and Layland Task Model . 7

2.3 Computing Platform model . 9

2.4 Scheduling Algorithms and Schedulability tests . 10

2.4.1 EDF scheduling. 12

2.4.2 Partitioned vs. Global scheduling . 13

Chapter 3: Partitioned Scheduling . 16

3.1 System Model . 17

3.2 Context, and related work . 18

3.3 PTAS Partitioning . 21

3.3.1 Overview: Constructing a lookup table . 22

3.3.2 Choosing ε . 23

3.3.3 Determining utilization values . 24

3.3.4 Determining legal single-processor configurations . 26

vi

3.3.5 Determining legal multi-processor configurations . 29

3.3.6 Task assignment . 31

3.3.7 Run-time complexity . 35

3.4 APX Partitioning . 37

3.4.1 Partitioning algorithm . 37

3.4.2 Run-time complexity . 39

3.4.3 Resource augmentation bound . 40

3.4.4 Heuristic improvements . 47

3.4.5 Experimental evaluation . 47

3.4.6 Extending to > 2 distinct resource types . 49

3.5 Conclusion . 50

Chapter 4: Mixed Criticality . 52

4.1 System Model . 53

4.2 EDF for Mixed Criticality systems . 56

4.3 Algorithm MC-partition . 58

4.3.1 Run-time complexity . 62

4.3.2 Speedup bound . 62

4.3.3 Pragmatic improvements . 65

4.3.4 Experimental evaluation . 66

4.4 EDF-VD Extended . 70

4.4.1 The pre-processing phase. 73

4.4.2 Run-time dispatching . 75

4.4.3 Proof of correctness . 75

4.5 Conclusion . 77

Chapter 5: Limited-preemption scheduling . 78

5.1 System Model . 79

vii

5.2 Related Work . 81

5.3 Schedulability Test . 82

5.3.1 Properties . 90

5.4 Multi-GPU System Model . 93

5.4.1 Prior GPU Analysis . 95

5.5 Multi-GPU Schedulability Test . 96

5.6 Experimental Evaluation . 98

5.7 Conclusion . 102

Chapter 6: Speed scaling on uniprocessors . 104

6.1 System Model . 107

6.2 Related Work . 109

6.3 Offline scheduling of jobs . 112

6.3.1 Determining intervals and jobs per interval . 112

6.3.2 Determining a speed profile per interval . 114

6.3.3 Sufficient schedulability test . 117

6.4 Conclusion . 119

Chapter 7: Summary . 120

BIBLIOGRAPHY . 123

viii

LIST OF TABLES

3.1 All the maximal single-processor configurations for the example. 28

3.2 Some example maximal 4-processor configurations. 31

4.1 An example mixed-criticality implicit-deadline sporadic task system. 55

ix

LIST OF FIGURES

2.1 One-shot job model. 7

2.2 Arrival sequence of an implicit-deadline task τi = (Ci,Ti). Note that Ti is
the minimum inter-arrival separation between two consecutive jobs. 7

2.3 Classification of scheduling algorithms. 10

2.4 Necessary and/or sufficient schedulability test. 12

2.5 Partitioned vs. Global scheduling . 14

3.1 Outline of Algorithm PTAS-PARTITION . 33

3.2 Pseudo-code for Algorithm APX-PARTITION. 38

3.3 Evaluating partitioning heuristic: m = 4,n = 40 . 48

3.4 Evaluating partitioning heuristics: m = 4,n = 40/80 . 49

4.1 Pseudo-code for Algorithm MC-PARTITION . 60

4.2 Evaluating mixed-criticality partitioning algorithms: m = 4,n = 20,CP =
0.5,CF = 8 . 68

4.3 Evaluating mixed-criticality partitioning algorithms: m = 4,n = 40,CP =
0.5,CF = 8 . 68

4.4 Evaluating mixed-criticality partitioning algorithms: m = 4,n = 40,CP =
0.2,CF = 8 . 69

4.5 Evaluating mixed-criticality partitioning algorithms: m = 4,n = 40,CP =
0.8,CF = 8 . 69

4.6 A k-criticality job arrives at time a, with deadline at d. It is scheduled using
the modified deadline d̂, which is ≤ d. If there is no criticality change
then this job can complete execution by d̂. However, if there is a criticality
change at tk then only jobs with criticality at least k execute as per their
k-criticality behavior. In the latter case, this job can meet its deadline by
only executing over [d̂,d). 72

x

5.1 The schedule generated by GEDF on two processors, CPU1 and CPU2, for
jobs of tasks τ1, τ2, τ3 and τk is shown. Note that jobs Jk and J2 are released
at time ta and job J1 is released immediately after time ta. Jobs J2 and J3
have an absolute deadline greater than td and cause job Jk to experience
non-preemptive blocking which leads to job Jk missing it’s deadline at time td 84

5.2 Scheduling scenario with m = 1 and g = 1 with non-preemptive busy-waiting. 94

5.3 Scheduling scenario for m = 1 and g = 1 under preemptive busy-waiting.
Jobs J1 and J2 execute in parallel on the GPU CE and GPU EE effectively
reducing the total time spent executing on the GPU. 98

5.4 Limited-preemption schedulability test: m = 4, n = 40, SP = 30 . 100

5.5 Limited-preemption schedulability test: m = 4, n = 40, m = g . 101

5.6 Limited-preemption schedulability test: m = 4, SP = 30, m = g. 102

6.1 Obtaining critical intervals . 113

6.2 Sufficient schedulability test for offline scheduling of jobs. 118

xi

CHAPTER 1: INTRODUCTION

In real-time systems logical correctness and temporal correctness are equally important. Some

examples of real-time systems are safety-critical computer systems such as those in aircrafts,

automobiles, nuclear reactors, and railway switching systems. In all the above examples the

computation that is performed by the system has to be logically correct, that is, the system needs to

compute the correct result (logical correctness in required in any general computer system), and the

computation needs to be temporally correct, that is, the computation must complete within a certain

time frame. The lack of temporal correctness in such systems could lead to life-threatening events.

There are several aspects that need to be considered in order to implement real-time systems. In

real-time scheduling theory two types of algorithms, which are crucial for implementing real-time

systems, are studied extensively. First, a scheduling algorithm controls how any given workload

is scheduled to run on a computing platform. Second, a schedulability test algorithm determines

whether the schedule generated by the scheduling algorithm ensures that all timing constraints are

met. Every scheduling algorithm should have an associated schedulability test.

In this dissertation we study real-time scheduling theory and incorporate pragmatic constraints

and behaviors found in real-time systems. The pragmatic constraints and behaviors that we consider

are motivated in the following section.

1.1 Motivation

The advantages of multicore technologies, and the increase in functionality of real-time systems

has caused an increasing trend towards the use of multicore CPUs and multiprocessor platforms for

implementing real-time systems. One approach for implementing real-time systems on multiproces-

sor platforms is to statically assign real-time workload to processors such that only the workload

1

that is assigned to a processor can execute on that processor. This is the well known partitioned

scheduling approach. While partitioning it is necessary to ensure that sufficient amounts of all

the resources required by the workload are available on a processor. Some key resources include

computing capacity, local (per-core) memory, and network bandwidth. We study and evaluate parti-

tioning scheduling approaches on platforms in which an arbitrary (but fixed) number of different

types of resources are available in limited quantities upon each processor.

Multiprocessor platforms are also used to implement mixed-criticality real-time systems. In

such systems, workload that may be of different degrees of importance or criticality are implemented

upon a common platform. For example, the safety critical workload that must meet their timing

guarantees, and the non-safety critical workload that may cause suboptimal behavior if they do not

meet their timing guarantees, are implemented upon a common platform. Workloads with different

criticalities are validated to different levels of assurance. In case of the safety critical workload, we

need high confidence that the timing guarantees are met. Thus, pessimistic assumptions (i.e inflated

values) are used to denote the computing capacity required by the workload. In the case of the

non-safety critical workload less pessimistic assumptions are used to denote the computing capacity

required by the workload. However, if we provision the system to operate under the pessimistic

assumptions of the safety-critical workload, then we waste a lot of the computing capacity available

on the processors, because during run-time the safety critical workload may use much less computing

capacity than the pessimistic estimate. The question then arises as to how can we better utilize the

available computing capacity? One way to do this is to design scheduling algorithms for mixed

criticality systems that schedule all the workload under less pessimistic assumptions, while ensuring

that only the safety critical workload can be scheduled under pessimistic assumptions if and when

needed. Scheduling in this manner effectively utilizes the available computing capacity, which

further enables more software functionality to be implemented on the same hardware. We extend

our knowledge of partitioned scheduling to derive a partitioned scheduling approach for mixed

criticality real-time systems.

2

An important design choice that arises upon scheduling on uniprocessor and multiprocessor

platforms alike is whether preemptions are enabled (fully-preemptive or simply preemptive schedul-

ing) or disabled (non-preemptive scheduling) during task execution. Both fully-preemptive and

non-preemptive scheduling have pros and cons. For example, fully-preemptive scheduling provides

better schedulability. However, in the case of fully-preemptive scheduling, the overheads incurred at

run-time tend to be larger. Further, in fully-preemptive scheduling access to shared resources need

to be arbitrated using non-trivial synchronization protocols, whereas in non-preemptive scheduling

the synchronization protocols are simpler to implement. An alternative to fully-preemptive and

non-preemptive scheduling is a restricted model of preemptive scheduling referred to as limited-

preemptive scheduling. Limited-preemptive scheduling is an approach to incorporate the positive

aspects of both fully-preemptive and non-preemptive scheduling. We study scheduling under

limited-preemptive scheduling.

On a computing platform the frequency of the processor is an important property of the

computing platform. The frequency rating provided by the processor manufacturer is usually

conservative, and a processor can be operated at a frequency higher than the specified frequency

rating; this is called overclocking. Overclocking a processor improves its performance, for example

some workloads may be able to satisfy their timing guarantees only with the help of overclocking.

However, uncontrolled overclocking may overheat the processor, and may finally damage the

processor. In dynamic overclocking a processor can overclock only if the conditions are favorable.

For example, the Turbo Boost technology by Intel (Rotem et al., 2012), enables overclocking

given a suitable workload and suitable operating conditions. We design a system model that

justifiably reflects the dynamic overclocking behavior allowed on a processor and study how

real-time workloads can be scheduled on such processors.

1.2 Thesis Statement

In my research we study existing real-time scheduling theory that has been developed within the

real-time systems community. We also study existing scheduling theory that has been developed in

3

the “traditional” scheduling (Operations Research/Theoretical Computer Science) community; some

of this theory is directly applicable to real-time systems, some is not, and some needs significant

adaption. Based on the analysis, we derive new scheduling algorithms and compare them on the

basis of theoretical metrics, and schedulability experiments. One of the theoretical metrics we use

to evaluate algorithms is the resource augmentation bound (Kalyanasundaram and Pruhs, 2000),

which compares the performance of an algorithm with that of a hypothetical optimal one, under

the assumption that the algorithm under discussion has access to more resources than an optimal

algorithm. This leads me to my thesis statement which is as follows:

A careful analysis of existing scheduling theory and evaluation of scheduling algorithms using

theoretical metrics, such as resource augmentation bound and worst-case run-time complexity,

and evaluation using schedulability experiments aid in the design and implementation of effective

real-time scheduling algorithms that are cognizant of pragmatic constraints and behaviors.

1.3 Contributions

We derive two partitioned scheduling approaches and compare both the approaches using

theoretical metrics. Based on our analysis we identify the partitioned scheduling approach that is

preferable for implementing partitioned scheduling on processors that have an arbitrary (but fixed)

number of different types of limited resources. We derive a heuristic improvement for the preferred

partitioned scheduling approach, and evaluate the heuristic improvement based on schedulability

experiments.

We then derive a partitioned scheduling approach for a mixed-criticality system. We also

derive the resource augmentation bound, run-time complexity, and pragmatic improvements for

the partitioned scheduling approach. We use schedulability experiments to evaluate the pragmatic

improvements.

From our study of prior work on limited-preemption scheduling, we found that there already

exist schedulability tests for some of the well known partitioned scheduling approaches with limited

preemptions. We did not however, encounter a demand-based schedulability test under limited-

4

preemption scheduling for a scheduling approach that is not based on partitioned scheduling but

is widely used in real-time systems research. We therefore derive a new schedulability test and

perform schedulability experiments to emphasize the different scenarios in which our schedulability

test can be used.

Finally, we study and identify a system model that justifiably reflects the dynamic overclock-

ing behavior allowed on a processor. Further, we derive an offline scheduling algorithm and a

schedulability test for scheduling real-time workload on processors that allow this behavior.

Overview. In Chapter 2, I provide some background on real-time systems. I then describe the

work on partitioned scheduling in Chapter 3, mixed-criticality scheduling in Chapter 4, limited-

preemption scheduling in Chapter 5, and dynamic overclocking in Chapter 6. I present a summary

of the work accomplished in this dissertation in Chapter 7.

5

CHAPTER 2: BACKGROUND

In real-time systems it is necessary to ensure that a scheduling algorithm is able to schedule a

given workload on a computing platform such that all the timing constraints are met. In order to

make such guarantees about timing constraints we need to first, identify the relevant characteristics

of the workload, the computational platform, and the scheduling algorithm that affect the timing

constraints of the system (Liu, 2000). We can then build a model for the workload and the

computational platform that justifiably abstracts away any information that is not relevant, or can be

simplified, from the perspective of ensuring timing constraints. Once we have derived the workload

and platform model we can describe a scheduling algorithm that determines how to schedule the

workload on the platform. (We describe only those characteristics of a scheduling algorithm that are

necessary to validate the timing constraints of the workload.) Given a scheduling algorithm, we can

use a schedulability test to determine if the timing constraints are indeed met.

We first describe a simple workload model that we call the one-shot job model.

2.1 One-shot job model

A real-time job, referred to as a job for brevity, is denoted as Ji, where the subscript i is used to

identify one job from another when referring to a set of jobs. We characterize a job Ji = (ai,ci,di),

by three parameters: an arrival time ai, a worst-case execution time (WCET) ci, and an absolute

deadline di. Figure 2.1 depicts each of these parameters for two jobs J1 and J2.

The arrival time ai of a job Ji is the time at which a job arrives. A job is scheduled correctly if

it can execute for up to ci time units in the interval [ai,di], that is in the interval between its arrival

time ai and its deadline di. In Figure 2.1, jobs J1 and J2 are scheduled correctly.

6

Figure 2.1: One-shot job model

In this simple model all jobs are independent. Thus, the execution of one job is not dependent on

the execution of another job. Also, all jobs are fully-preemptive. A scheduling algorithm determines

which job runs on a processor at any given time.

2.2 Liu and Layland Task Model

An implicit-deadline sporadic task (Liu and Layland, 1973) also known as Liu and Layland

task, is characterized by an ordered pair of parameters: a worst-case execution time (WCET) and a

minimum inter-arrival separation (that is, for historical reasons, also called the period of the task).

Let τi = (Ci,Ti), denote an implicit-deadline sporadic task with WCET Ci and period Ti. Such a

task generates a potentially infinite sequence of jobs, with the first job arriving at any time and

subsequent jobs arriving at least Ti time units apart. Each job has an execution requirement no

greater than Ci; this must be met by its absolute deadline that occurs Ti time units after the job’s

arrival. Figure 2.2 shows a possible arrival sequence for an implicit-deadline sporadic task τi.

Figure 2.2: Arrival sequence of an implicit-deadline task τi = (Ci,Ti). Note that Ti is the minimum
inter-arrival separation between two consecutive jobs.

7

We use the term utilization to denote the ratio of the WCET parameter of a task to its period.

The utilization of task τi, denoted as ui is equal to Ci/Ti. An implicit-deadline sporadic task system

or task set τ , comprises a finite collection of sporadic tasks τ = {τ1,τ2, . . . ,τn}, and a task is denoted

by τi (i = 1 to n).

By changing certain characteristics of the implicit-deadline sporadic task model we can obtain

other task models. For example, in certain cases we may a priori know that subsequent jobs of a

task arrive exactly Ti time units apart. Such a task model is referred to as a periodic task model.

Further, an additional parameter Di can be used to represent the relative deadline of a task τi. In

an implicit-deadline sporadic task Di = Ti, therefore this additional parameter is omitted. However,

the relationship between a task’s relative deadline Di and its period Ti may be such that, Di ≤ Ti. In

this case the sporadic task is said to have a constrained deadline (Baruah et al., 1990; Mok, 1983).

Each constrained-deadline sporadic task τi, is represented by three parameters: (Ci,Di,Ti), where

Di ≤ Ti. The execution requirement of a job of such a task must be met by its absolute deadline,

which occurs Di time units after the job’s arrival.

It may also be the case that tasks may have deadline greater than period, also referred to as

arbitrary deadlines. Yet another additional parameter ai, can be used to represent the arrival time

of the first job of each task τi in a task system. Such a task system is referred to as a concrete task

system.

In Chapter 3 we extend the implicit-deadline sporadic task model to incorporate an additional

parameter that represents the memory requirement of each task. In Chapter 4 we describe a mixed-

criticality implicit-deadline sporadic task model. In Chapter 5 we extend the constrained-deadline

sporadic task model to represent the preemptive and non-preemptive execution requirement of each

task. These model extensions are described in their respective chapters for better readability. In

Chapter 6 we use the one-shot job model described in Section 2.1.

8

2.3 Computing Platform model

An important characteristic of a computing platform, from the perspective of scheduling jobs

or tasks, is the computing capacity of the platform. It is very common in real-time systems research

to consider that a uniprocessor platform has a computing capacity, or speed of 1. This implies that

the utilization ui =Ci/Ti of a task τi, which is the ratio of the task’s worst-case execution time Ci

and period Ti, is essential equal to the portion of the computing capacity available on a uniprocessor

that needs to be exclusively used by this task, in the worst-case, for ensuring that each job of the

task meets its deadline.

A multiprocessor platform can be classified as one of the following platform models, depending

upon the relationship between the computing capacities of different processors available on the

platform:

• Identical: all the processors are identical, in the sense that they all have the same computing

capacity or speed.

• Uniform: each processor is characterized by its own computing capacity, with the interpreta-

tion that a job executing on a processor of speed s for t time units completes s× t units of

execution.

• Unrelated: each processor Pj, has an execution rate ri, j associated with each job-processor

ordered pair (Ji,Pj), with the interpretation that job Ji completes (ri, j× t) units of execution

by executing on processor Pj for t time units.

In most of this work we use the identical multiprocessor platform model, with m identical pro-

cessors each with computing capacity equal to 1. In Chapter 3 we incorporate resource constraints,

in addition to limited computing capacity, into the identical multiprocessor model. In Chapters 4,

and 5 we use the identical multiprocessor model as is. In Chapter 6 we use a uniprocessor model

that we describe in Section 6.1.

9

Figure 2.3: Classification of scheduling algorithms.

2.4 Scheduling Algorithms and Schedulability tests

The scheduling algorithm, sometimes called a scheduler, decides which job should execute on

a processor at any given time. Scheduling algorithms are generally required to be simple and fast

because they execute alongside other jobs.

There is a broad classification of scheduling algorithms based on whether the schedule is

generated prior to run-time or at run-time. In static or offline scheduling, the schedule is generated

prior to run-time. Offline scheduling often requires the exact knowledge of the arrival time of all the

jobs that need to be scheduled, or it makes pessimistic assumptions about the arrival times of jobs.

In dynamic or online scheduling the schedule is generated at run-time. In online scheduling, the

decision to schedule a job is made after the job has arrived. Therefore, it is not necessary to know

the exact arrival time of jobs.

In online dynamic-priority scheduling, the temporal behavior of all jobs that are ready to execute

is taken into account to determine which job should be prioritized over others for execution. For

example, in the Earliest Deadline First (EDF) scheduling algorithm the job of some task τi with the

earliest absolute deadline is given the highest priority and is scheduled to execute on a processor.

Subsequent jobs of the same task τi may have different priorities depending upon their arrival

time and the absolute deadline of all jobs that are ready to execute. In contrast, in static-priority

scheduling priorities are assigned to tasks such that all jobs of some task τi are always prioritized

10

over all jobs of some task τ j. Both dynamic- and static- priority scheduling have pros and cons.

In static-priority scheduling a safety-critical task can be prioritized over a non-safety critical task.

Thus, a job of a safety-critical task will always have a higher priority. However, dynamic-priority

scheduling is often able to better utilize the computing capacity available on a computing platform.

We focus on dynamic-priority scheduling.

A task set τ is deemed schedulable by a scheduling algorithm A if algorithm A can schedule all

jobs generated by τ such that all jobs complete execution by their deadline, and all jobs adhere to

the specifications of the task model. A task set τ is deemed feasible if it is schedulable in accordance

with some scheduling algorithm A. Note that feasibility is not defined with respect to any specific

scheduling algorithm. A scheduling algorithm is considered optimal if it can schedule any feasible

task set.

A real-time scheduling algorithm should be able to a priori guarantee if a given task set τ is

schedulable. A schedulability test indicates whether a specific algorithm can correctly schedule a

given task set. Since schedulability tests are performed prior to run-time they do not necessarily

have to be efficient. However, they should be computationally tractable. There is class of tests

called feasibility tests that indicate whether some algorithm can correctly schedule a given task set.

We do not study feasibility tests in this work.

A necessary schedulability test for algorithm A guarantees that if a task set does not satisfy the

schedulability test, then the task set is not schedulable by algorithm A. A sufficient schedulability

test for algorithm A guarantees that if a task set is schedulable by algorithm A, then the task set

satisfies the schedulability test.

A schedulability test for algorithm A, can be necessary and sufficient. Such a schedulability

test is also referred to as an exact schedulability test. An exact schedulability test and a sufficient

schedulability test, both guarantee that if a task set satisfies the schedulability test, then it is

schedulable by algorithm A. An exact schedulability test also guarantees that if a task set does

not satisfy the schedulability test, then it is not schedulable by algorithm A. However, if a task

set does not satisfy a sufficient schedulability test, then it may or not be schedulable by algorithm

11

Figure 2.4: Necessary and/or sufficient schedulability test.

A. The distinction between a necessary and sufficient (exact) schedulability test, and a sufficient

schedulability test is shown in Figure 2.4

2.4.1 EDF scheduling

Since all the scheduling approaches described in this paper are derived from the EDF scheduling

algorithm, we provide a brief description of the EDF scheduling algorithm. In EDF scheduling,

when a job arrives, it is queued in a priority queue that is ordered by shortest time remaining to

absolute deadline. The job at the front of the priority queue is chosen for execution and removed

from the priority queue. Thus, the job with the earliest absolute deadline is chosen for execution.

When the job completes, the next job that is in front of the priority queue is chosen for execution,

and so on. Note that a job is preempted and re-queued on the priority queue only if a job with an

earlier absolute deadline arrives before it completes execution.

In the above description of the EDF scheduling algorithm we assume that preemptions are

allowed. This is called preemptive EDF scheduling. There is a variant of the EDF scheduling

algorithm called non-preemptive EDF. In this variant preemptions are not allowed. (A detailed

discussion on the pros and cons of allowing preemptions is presented in Chapter 5.) When we refer

to EDF scheduling we are referring to preemptive EDF scheduling unless stated otherwise.

12

The EDF scheduling algorithm is optimal for scheduling a set of one-shot jobs on a uniproces-

sor (Liu, 2000). The EDF scheduling algorithm is also optimal for scheduling a collection of tasks

on a uniprocessor (Liu and Layland, 1973). A specific result is stated below.

Theorem 2.1. (Liu and Layland, 1973). An implicit-deadline sporadic task system τ can be

scheduled under EDF on a uniprocessor if and only if the total utilization U , of all tasks τi in the

task system τ , sums up to at most one:

U =
n

∑
i=1

ui ≤ 1. (2.1)

Note that if U > 1 then the task system is not feasible on a uniprocessor. Thus, to prove the

optimality of EDF it is sufficient to show that if U ≤ 1 then the task system is schedulable on a

uniprocessor under EDF. The proof of the above theorem is able to show that. From Theorem 2.1,

we can also claim that Equation 2.1, is a necessary and sufficient schedulability test to verify if a

task system τ , is schedulable on a uniprocessor under EDF.

It has been shown in (Jeffay et al., 1991) that non-preemptive EDF is optimal for scheduling

implicit-deadline sporadic task systems on a uniprocessor. A necessary and sufficient schedulability

is also described in (Jeffay et al., 1991).

2.4.2 Partitioned vs. Global scheduling

Due to multiple reasons including cost, energy-efficiency, and thermal properties, the use of

multicore/multiprocessor platforms has become widespread. On such platforms there are two main

scheduling approaches: partitioned and global scheduling.

In partitioned scheduling each task is statically assigned to a processor. Every job of a task

executes on the processor to which the task is assigned. In global scheduling a job of a task may

execute on any processor. A job may also migrate before it completes execution and execute on a

different processor; this is called intra-job migration.

13

Figure 2.5: Partitioned vs. Global scheduling

Suppose that the computing platform consists of m processors. In partitioned scheduling we

need to first solve a partitioning problem to assign tasks onto m processors; this is related to the bin-

packing problem and is NP-hard in the strong sense. Thus, an optimal solution to the partitioning

problem is intractable. This leads to utilization loss in partitioned scheduling. However, once

the tasks are assigned to the processors the problem reduces to multiple uniprocessor scheduling

problems. If EDF is used to schedule the tasks on each processor, then it is referred to as partitioned

EDF scheduling. From Theorem 2.1 we know that EDF scheduling is optimal for scheduling

implicit-deadline sporadic tasks on uniprocessors.

In global scheduling the top m highest priority jobs are scheduled on the processors. Thus, in

global EDF scheduling the m jobs with the earliest deadlines are scheduled on the m processors. In

hard real-time scheduling, all jobs must complete execution by their deadline. Under this constraint,

global EDF scheduling incurs utilization loss due to pessimism in any schedulability test. However,

in the case of soft real-time scheduling, global EDF scheduling has no utilization loss. In soft

real-time scheduling the execution of a job completes within a deadline tardiness bound. We study

hard real-time scheduling.

14

We now compare the run-time overheads incurred in partitioned and global scheduling. Fol-

lowing are examples of some run-time overheads incurred in a real-time system (Bastoni et al.,

2010)-

• Release overhead- time needed to service the interrupt routine that is responsible for releasing

jobs at correct times.

• Scheduling overhead- time spent while selecting the next job to execute and re-queuing the

previously-scheduled job.

• Context switching overhead- time spent in switching the execution stack and processor

registers.

• Preemption and migration overhead- when a job gets preempted and starts executing at a later

time on the same (different) processor there may be loss of cache affinity. Any cost incurred

due to the loss of cache affinity is called a preemption (migration) overhead.

Run-time overheads affect the timing behavior of tasks. One way to incorporate the delays

incurred due to run-time overheads is to inflate the WCET of tasks (Bastoni et al., 2010). It has been

shown in (Bastoni et al., 2010), that in the worst-case (a fully utilized system) the preemption and

migration overhead under global EDF scheduling and partitioned EDF scheduling are comparable.

Release and scheduling overheads are usually larger in the case of global EDF scheduling when

compared to partitioned EDF scheduling. This is because, in partitioned EDF scheduling each

processor has its own priority queue, and jobs only access the priority queue of the processor

they are assigned to. Whereas, in global EDF scheduling there is one global priority queue, and

there is contention to access the global priority queue every time any job is released or preempted.

This increases the delay incurred when a job is released or preempted. Thus, if overheads are

incorporated by inflating the WCET parameter of tasks, the WCET parameter of a task τi would

be lesser if it were being scheduled under partitioned EDF scheduling as apposed to global EDF

scheduling.

15

CHAPTER 3: PARTITIONED SCHEDULING

We study the partitioned Earliest Deadline First (EDF) scheduling of implicit-deadline sporadic

task systems (Liu and Layland, 1973) on multiprocessor platforms. Earlier work on this problem

(see, e.g., (Oh and Baker, 1998; Lopez et al., 2004)) focused exclusively on processors in which only

one resource – computing capacity – is available in limited amounts. The partitioning algorithms

described in earlier works (Oh and Baker, 1998; Lopez et al., 2004) can guarantee that the cumulative

computing capacity of all the tasks assigned to a processor does not exceed the total computing

capacity of the processor. However additional resource constraints (e.g., the amount of memory

available on each processor) were not considered.

Some more recent work (e.g., (Baruah and Fisher, 2004; Fisher et al., 2005)) based on ap-

proaches such as dynamic programming (Baruah and Fisher, 2004) and integer linear programming

(Fisher et al., 2005) have considered processors with limited memory in addition to limited com-

puting capacity. Each of the tasks were characterized by a memory requirement, in addition to

characterizations of its computational requirements (which was modelled according to the implicit-

deadline sporadic task model (Liu and Layland, 1973)). In this chapter we study the partitioning

problem on platforms in which an arbitrary (but fixed) number of different types of resources may be

available in limited quantities upon each processor, and the partitioning algorithm must therefore

be cognizant of all these limitations when determining the assignment of tasks to processors. This

problem is known to be highly intractable. To get an idea of its computational complexity it is

worth noting that the simpler problem of partitioning tasks onto multiprocessor platforms, where

computing capacity is the only limiting resource on each processor, is NP-hard in the strong sense.

Therefore, an algorithm that achieves optimal resource utilization even in the case of one limiting

resource per processor, is expected to have an inefficient implementation.

16

3.1 System Model

The ideas presented in this chapter are able to deal with any fixed number of different types of

resources. However, for the sake of simplicity we will restrict much of the discussion to systems in

which there are two constraining resources – computation capacity and local memory – on each

processor.

We consider a task system model in which all tasks are implicit-deadline sporadic tasks (Liu

and Layland, 1973) also known as Liu and Layland tasks. A task system τ consists of n tasks: τ =

{τ1,τ2, . . . ,τn}, and a task is denoted by τi (i = 1 to n). Each task τi is characterized by its

• Computation requirement, ui. Every implicit-deadline task is characterized by a worst-case

execution requirement Ci, and a minimum inter-arrival separation Ti. We denote the utilization

ui of a task, which by definition is Ci/Ti, as its computation requirement.

• Memory requirement, vi. The memory requirement of a task is the fraction of local memory

a task requires for its exclusive use. For example, local memory may be used to store the

executable code of a task on a processor.

We make no assumptions about the relationship between the computation requirement ui, and

the memory requirement vi, for a task τi. In particular, we do not require that tasks with modest

computation requirements have small vi, and those with large computation requirements have large

vi. (Such restrictions would not allow us to model, e.g., a relatively simple task that is extremely

computation-intensive because it repeatedly samples external input at a rapid rate, or a task with

large code-size, comprised of much conditional code, that is invoked very infrequently and hence

does not place a large computation demand on the processor.)

The multiprocessor platform is comprised of m identical processors denoted π1,π2, . . . ,πm on

which we are to partition a task system τ of n sporadic tasks. We know that preemptive EDF is

optimal on uniprocessors (Liu and Layland, 1973), and that a necessary and sufficient condition for

a collection of implicit-deadline sporadic tasks to be EDF-schedulable on a uniprocessor is that the

17

sum of the computation requirements of all the tasks on the processor not exceed the computing

capacity of the processor (as stated in Theorem 2.1). A correct partitioning of τ on the m processors

is therefore one that ensures that

1. the sum of the computation requirements (the ui parameters) of all the tasks assigned to each

processor does not exceed 1, and

2. the sum of the memory requirements (the vi parameters) of all the tasks assigned to each

processor does not exceed 1.

3.2 Context, and related work

A partitioning problem is inherently a decision problem, either a task system is schedulable or

not. Partitioning problems are NP-hard in the strong sense, therefore an optimal partitioning algo-

rithm is intractable. To deal with the intractability, we consider designing approximate partitioning

algorithms. In order to be able to quantitatively discuss the effectiveness of different approximation

algorithms it is useful to define the corresponding optimization problem. For partitioned scheduling

one such optimization problem, the one we use in this chapter, asks: given a task system and a

platform, what is the minimum multiplicative factor by which the resources available on each

processor in the platform must be augmented, in order for the task system’s schedulability to be

determined in polynomial-time? The minimum multiplicative factor by which the resources need to

be augmented is called the resource augmentation bound of the algorithm.

There is a classification of NP-hard optimization problems according to the difficulty of

obtaining approximate solutions to these problems in polynomial-time. In particular, an NP-hard

minimization problem is said to be in the class APX (for APproXimable) if there is a constant c

such that some polynomial-time algorithm can obtain a solution to any problem instance that is

no more than c times the cost of the (optimal) minimum-cost solution. APX problems for which

there exists polynomial-time algorithms that can obtain a solution to any problem instance that is no

more than c times the cost of the (optimal) minimum-cost solution for all c > 1 are said to be in the

18

class PTAS (for Polynomial-Time Approximation Schemes). Here, c is called the approximation

bound of the algorithm. (We use the terms approximation bound and resource augmentation bound

interchangeably.) It is good to be able to show that an NP-hard optimization problem is in the class

APX, even better to be able to show that it is in the class PTAS.

PTAS. A problem related to the partitioning problem, described in (Hochbaum and Shmoys,

1987), that deals with the scheduling of non-preemptive jobs with the objective of minimizing

makespan is shown to have a resource augmentation bound of 1+ ε , for any ε > 0. Therefore,

the minimizing makespan problem is in the class PTAS. It can be shown that both the partitioning

problem and minimizing makespan problem are in fact equivalent. Therefore, for a single limited

resource (computing capacity), the partitioning problem for implicit-deadline sporadic task systems

is in the class PTAS. In (Chattopadhyay and Baruah, 2011) we derived a lookup table based

PTAS partitioning approach for a single limited resource. In this approach we do the expensive

computation related to partitioning just once and store the results in a lookup table. For any

subsequent partitioning the worst-case run-time complexity is associated with the run-time incurred

in looking up the lookup table.

It can be shown by reduction to the vector scheduling problem (Chekuri and Khanna, 2004),

that for two limited resources (computing capacity and local memory), the partitioning problem is

in the class PTAS. We can use the results in (Chekuri and Khanna, 2004) to extend the partitioning

algorithm we proposed in (Chattopadhyay and Baruah, 2011), and derive a PTAS partitioning

algorithm for two limited resources. We evaluated this partitioning algorithm and observed that the

number of entries in the lookup table were prohibitively large. As a result, the worst-case run-time

complexity of the algorithm for any subsequent partitioning was also very large.

APX. Various heuristics for task partitioning on processors with limited computing capacity have

been studied and evaluated. In (Lopez et al., 2004), heuristics such as First-Fit, Best-Fit, Worst-Fit,

First-Fit-Decreasing etc., that have very efficient implementations have been compared on the basis

of their sufficient schedulability conditions (for a description of these heuristics please see (Lopez

19

et al., 2004)). Paraphrasing and simplifying slightly, the main result from (Lopez et al., 2004) can

be stated as follows: any implicit-deadline sporadic task system satisfying the condition

∑
all i

ui ≤ m− (m−1)×min
(1

2
,max

all i
{ui}

)
(3.1)

is successfully partitioned by the First-Fit-Decreasing (FFD) heuristic upon a platform consist-

ing of m unit-capacity processors. In multiprocessor platforms with limited computing capacity

First-Fit has an approximation bound of (2− 1
m) (Fisher, 2007, P.176). Thus, the First-Fit heuristic

is in the class APX.

Two partitioning algorithms, based on constructing and approximately solving integer linear

programs (ILPs), are presented in (Fisher et al., 2005). One algorithm constructs an ILP from the

specification of the task system and then solves a non-integer relaxation to this ILP. This algorithm

has a resource augmentation bound of 3 for processors with two limited resources, hence it is

not a PTAS. However, it can be implemented far more efficiently than our partitioning algorithm

based on vector scheduling. This algorithm is only applicable for partitioning task systems in

which all the resource requirements of a task are below a certain threshold. The second algorithm

presented in (Fisher et al., 2005) has no such restriction. If a task system consists only of tasks with

computation and memory requirements < 0.5, the second algorithm simply calls the first algorithm

to partition the task system. (The exact resource augmentation bound of the second algorithm is not

known.) However, unlike the first algorithm, the second algorithm does not always have an efficient

run time complexity. For assigning certain tasks the second algorithm needs to solve a pure ILP.

Solving a pure ILP for the partitioning problem is NP-hard and the solution may not be obtained

efficiently.

Heuristics such as First-Fit, Best-Fit, Worst-Fit, First-Fit-Decreasing etc. for the multidimen-

sional bin packing problem, which is related to the partitioning problem, have been described and

analyzed in (Kou and Markowsky, 1977). The analysis in (Kou and Markowsky, 1977) shows that

the First-Fit algorithm has an approximation bound no greater than d +1 where d is an arbitrary,

20

but fixed, number of dimensions that an item can occupy. This approximation bound is with respect

to the number of bins needed to pack the items and it is shown to be tight in (Kou and Markowsky,

1977).

The above result for the bin packing problem can be applied to the partitioning problem. Thus,

First-Fit for the task partitioning problem can be shown to have an approximation bound d +1 with

respect to the number of processors. Here d is an arbitrary, but fixed, number of limited resources

available on each processor. For a partitioning algorithm the approximation bound with respect

to the number of processors indicates how many additional processors may be needed to ensure

the successful partitioning of a task system that can be partitioned by an optimal algorithm. The

resource augmentation bound, on the other hand, indicates by how much the resources on the

existing processors may need to be inflated to ensure the successful partitioning of a task system

that can be partitioned by an optimal algorithm. In this chapter we compare partitioning algorithms

on the basis of their resource augmentation bound.

3.3 PTAS Partitioning

In this section we describe the PTAS partitioning approach proposed in (Chattopadhyay and

Baruah, 2011) for platforms in which computing capacity is the only limiting resource. (We later

discuss why this approach may not be suitable for partitioning on processors with more than one

limited resource.) The main idea behind our approach is to construct a lookup table (LUT) for any

identical multiprocessor platform upon which we intend to execute implicit-deadline sporadic tasks

under partitioned EDF. Whenever a task system is to be partitioned upon this platform, the table

that we construct may be used to determine the assignment of tasks to the processors.

The lookup table for a particular platform is constructed without knowledge of the task systems

that will later be partitioned upon the platform. We do not therefore know, during table construction

time, the exact characteristics of the tasks that will be assigned to the processors of the platform.

Instead, the table is constructed assuming that the utilizations of all the tasks have values from within

a fixed set of distinct values V . When this lookup table is later used to actually perform partitioning

21

of a given task system τ , each task in τ may need to have its WCET parameter inflated so that the

resulting task utilization is indeed one of these distinct values in V . (The sustainability (Baruah and

Burns, 2006) property of preemptive uniprocessor EDF ensures that if the tasks with the inflated

WCET’s are successfully scheduled, then so are the original tasks.) The challenge is to choose the

distinct utilization values in V in a clever manner, so that the amount of such inflation that is needed

is bounded.

We will see that larger the number of distinct utilization values we are permitted to have in the

set V , the smaller the amount of inflation that is needed. Hence, an important design decision must

be made prior to table-construction time: How large a table will we construct? This is expressed

in terms of choosing a value for a parameter ε for the procedure that constructs the lookup table.

Informally speaking, smaller the value of ε , smaller the degree of rounding up that is needed and

closer to optimal our subsequent task-assignment procedure will be. However, the size of the lookup

table and the time required to do a lookup also depend on the value of ε: the smaller the value, the

larger the table-size.

3.3.1 Overview: Constructing a lookup table

We now describe the construction of the lookup table for a given multiprocessor platform. Note

that this table is constructed only once for a given platform. Let us suppose that the multiprocessor

platform consists of m unit-speed processors. The steps involved in constructing the lookup table

for this platform are as follows:

1. Choose a value for the parameter ε , which determines the degree of accuracy.

2. Based on the value chosen for ε , determine the utilization values that are to be included in the

set V . (To make explicit the dependence of this set of utilization values upon the value chosen

for ε , we will henceforth denote this set as V (ε)). Recall that during the process of actually

partitioning implicit-deadline sporadic task systems upon this platform, we will round up the

actual utilizations of tasks to equal one of the utilization values in V (ε).

22

3. Determine the combinations of tasks with utilizations in V (ε) that can be scheduled together

on a single processor.

4. Use these single-processor combinations to determine the combinations of tasks with utiliza-

tions in V (ε) that can be scheduled on m processors.

Each of these steps is discussed in greater detail, in Sections 3.3.2-3.3.5. Throughout the

discussion, we will illustrate the construction of the lookup table by means of an example. Let us

suppose that the platform in this running example consists of 4 unit-speed processors (i.e., m = 4).

3.3.2 Choosing ε

As stated in Section 3.3.1 above, the procedure for computing the lookup table must be provided

a parameter ε , which is a positive real number. A design decision must now be made in the form of

choosing a value for ε .

We will see later (Theorem 3.2) that the performance guarantee that is made by our partitioning

algorithm is as follows: any task system that can be partitioned upon m unit-speed processors by an

optimal partitioning algorithm will be partitioned by our algorithm on m processors each of speed

(1+ ε). Hence, in choosing a value for ε we are in effect reducing the guaranteed utilization bound

of each processor to equal 1/(1+ ε) times the actual utilization; so the decision in choosing a value

for ε essentially becomes: what fraction of the processor capacity are we willing to sacrifice, 1 in

order to be able to do task partitioning more efficiently? For instance, if we were willing to tolerate

a loss of up to 10% of processor utilization, ε would need to satisfy the condition:

1
1+ ε

≥ 0.9

⇔ ε ≤ 1
0.9
−1

1 We note that this “sacrifice” is only in terms of worst-case guarantees, as formalized in Theorem 3.2. It is quite
possible that some of this sacrificed capacity can in fact be used during the partitioning of particular task systems.

23

⇔ ε ≤ 1
9
.

As stated in Section 3.3.1, the size of the lookup table, and the time required to do a lookup,

also depend on the value of ε: smaller the value, larger the table-size. Hence, ε is assigned the

largest value consistent with the desired overall system utilization. In the example above, ε would

in fact be assigned the value 1/9.

Example 3.1. For our running example, let us choose the value 0.3 for the parameter ε . (For an

actual platform we would typically choose a far smaller value, but this larger value is more useful

for purposes of illustration here: for small values of ε , the sizes of the intermediate data structures

are too large to be illustrative from a pedantic perspective.) With ε ← 0.3, we are guaranteeing to

achieve the same performance as an optimal algorithm would, on a platform consisting of the same

number of processors each of speed equal to 1/(1+0.3), or ≈ 0.77, of the speeds of the processors

available to our algorithm that is, we are “sacrificing,” in the worst case, a bit less than a quarter

of the platform’s computing capacity. (However, recall the point made in footnote 1, concerning

the pessimism in this worst-case bound on the fraction of capacity that is sacrificed. This point

is illustrated for our running example in Example 3.5, where the lookup table that we eventually

construct is used to successfully partition a task system with utilization≈ 3.6, in excess of the upper

bound of 4 · (1/1.3) ≈ 3.077.) 3

3.3.3 Determining utilization values

Once we have settled on a value for ε we use this value to determine which utilization values to

include in the set V (ε) of distinct utilization values that will be represented in the lookup table we

construct. In choosing the members of V (ε), the objective is to minimize the amount by which the

utilizations of the tasks to be partitioned must be inflated in order to become equal to one of the

values in V (ε).

The choice we make is to have V (ε) be equal to the set of all real numbers of the form

ε · (1+ ε)k, for all non-negative integers k (up to the upper limit of one). Why are these particular

24

values chosen? Recall that when the table is used to perform task partitioning, the actual task

utilizations (which may take on any value) will be rounded up to the nearest value present in the set

V (ε). Suppose that an actual utilization ui is just a bit greater than one of the values present in V ,

say, ε(1+ ε) j — this is depicted in the figure below by an “x.”.

-

0 ε · · · ε(1+ ε) j

x
ui

ε(1+ ε) j+1 · · ·

.

@@R

This utilization will be rounded up to ε(1+ ε) j+1. The fraction by which this utilization has

been inflated is therefore

ε(1+ ε) j+1

ui
<

ε(1+ ε) j+1

ε(1+ ε) j = (1+ ε) .

Thus if each task’s utilization were to be inflated by this maximal factor, it follows that any

collection of tasks with total utilization ≤ 1/(1+ ε) would have inflated utilization ≤ 1, and would

hence be determined, based on our lookup table, to fit on a single processor2.

Let us now determine |V (ε)|, the number of elements in the set V (ε). We wish to include each

positive real number ≤ 1 that is of the form ε(1+ ε) j for non-negative j. Since

ε(1+ ε) j ≤ 1

⇔ (1+ ε) j ≤ (1/ε)

⇔ j log(1+ ε)≤ log(1/ε)

⇔ j ≤ log(1/ε)

log(1+ ε)
,

2Note that this argument does not hold for actual utilizations — the ui in the figure — less than ε/(1+ ε). If a task
with utilization ui arbitrarily close to zero (ui→ 0+) were to have its utilization rounded up to ε/(1+ ε), the inflation
factor would be (ε/(1+ ε))÷ui, which approaches ∞ as ui→ 0. We will see that the task-assignment procedure of
Section 3.3.6 handles tasks with utilization < ε/(1+ ε) differently.

25

we conclude that

|V (ε)|=
⌊

log(1/ε)

log(1+ ε)

⌋
+1. (3.2)

Example 3.2. For our example (ε = 0.3), it may be verified that log(1/ε)
log(1+ε) = log(1/0.3)

log1.3 ≈ 4.589.

Hence by Equation 3.2 there are (b4.589c+1) = 5 elements in V (0.3). We therefore have 5 distinct

utilization values to consider: for j = 0,1,2,3, and 4. (The value of 1.114 for j = 5 is too large, as

are the values for all j > 5.) These elements are computed as follows:

j util. value (0.3 · (1.3) j)

0 0.3000

1 0.3900

2 0.5070

3 0.6591

4 0.8568

5 1.114

Hence

V (0.3) =
{

0.3000,0.3900,0.5070,0.6591,0.8568
}
.

3

3.3.4 Determining legal single-processor configurations

In Section 3.3.3 above, we have determined the distinct utilization values in the set V (ε). We

now seek to determine all the different ways in which a single processor can be packed with tasks

of these utilizations. We refer to these as single-processor configurations.

For reasons of efficiency in storage (and subsequent lookup), we seek only the maximal

configurations of this kind: a single-processor configuration is said to be a maximal one if no

additional task (also with utilization ∈ V (ε)) can be added without the sum of the utilizations

exceeding the capacity of the processor:

26

Definition 3.1. Single-proc. configuration: For a given value of ε , a single-processor configura-

tion is a |V (ε)|-tuple

〈x1,x2, . . . ,x|V (ε)|〉

of non-negative integers, satisfying the constraint that

(|V (ε)|

∑
i=1

(xi · ε · (1+ ε)i−1)
)
≤ 1. (3.3)

The single-processor configuration 〈x1,x2, . . . ,x|V (ε)|〉 is maximal if

(|V (ε)|

∑
i=1

(xi · ε · (1+ ε)i−1)
)
> (1− ε) (3.4)

(thereby implying that no task can be added to this single-processor configuration without

exceeding the processor’s capacity).

Our objective is to determine a list L1(ε) of all possible maximal single-processor configurations

for the selected value of ε (here, the subscript “1” denotes the number of processors. In section 3.3.5

below, we will describe how we construct the list Lm(ε) for m processors).

Since there are only finitely many distinct utilization values in V (ε) (the exact number is as

determined by Equation 3.2), all the elements of L1(ε) can in principle be determined by exhaustive

enumeration; simply try all |V (ε)|-tuples with the i’th component no larger than
(
1/(ε ·(1+ε)i−1)

)
,

adding the ones that satisfy Inequalities 3.3 and 3.4 to L1(ε). Such a procedure has run-time

exponential in (1/ε): the smaller the value of ε , the greater the run-time of the procedure (and the

length of L1(ε) — the number of maximal single-processor configurations found). Although this

can be quite high for small ε , we point out that:

• This run-time is incurred only once. After the list L1(ε) has been constructed, it can be stored

and repeatedly reused for doing task partitioning.

• Although the size of L1(ε) is indeed exponential in (1/ε) (to be specific |L1(ε)|=O(|V (ε)| 1ε)),

our experiments reveal that this size is quite reasonable in practice for values of ε that are

27

Config. ID 0.3000 0.3900 0.5070 0.6591 0.8568
1 3 0 0 0 0
2 2 1 0 0 0
3 1 0 1 0 0
4 1 0 0 1 0
5 0 2 0 0 0
6 0 1 1 0 0
7 0 0 0 0 1

Table 3.1: All the maximal single-processor configurations for the example.

not too small. We have computed these lists for various values of ε . For instance, choosing

ε = 1
9 (which is equivalent to sacrificing at most 10% of each processor’s capacity) yields a

list of 9604 maximal single-processor configurations. Given current memory costs, look-up

tables of sizes far larger than this are quite viable — consider the lookup tables used in, e.g.,

floating-point co-processors for speeding up the computation of operations such as sin, cos,

log, etc., which are often tens of megabytes large.

• Several simple and straightforward counting and programming techniques can be used to

optimize the computation of the list L1(ε). For example, we use a dynamic programming

approach in our computation of the list L1(ε). We start with a maximal configuration that

consists of the maximum number of only the first component in the set V (ε), which is ε . (An

example of such a configuration is the single-processor configuration with ID. 1 in Table 3.1

with ε = 0.3). We then systematically compute the next configuration by decreasing the

value of the first component, and maximizing the value of the next component until we have

reached the last component. We repeat the above for every component in the set V (ε). A

configuration is added to the list L1(ε) if it satisfies Inequalities 3.3 and 3.4.

Example 3.3. For our running example with ε = 0.3, it turns out that there are just seven maxi-

mal single-processor configurations. These maximal single-processor configurations are shown

in Table 3.1. The numbers in the headings for columns 2-6 are the 5 distinct utilization values in

V (0.3), that we determined in Section 3.3.3 above. Each row corresponds to a different maximal

28

single-processor configuration. It may be verified that the sum of the utilizations in each configu-

ration (i) satisfies Inequality 3.3 (is no larger than 1.0), and (ii) satisfies Inequality 3.4 (is at least

0.7, i.e., adding a task with even the smallest utilization would exceed the processor’s capacity).

Consider, for example, the single-processor configuration with ID. 2, the sum of the utilizations is

2 ·0.3000+1 ·0.3900, or 0.9900. For the single-processor configuration with ID. 4, the sum of the

utilizations is 1 ·0.3000+1 ·0.6591, or 0.9591. 3

3.3.5 Determining legal multi-processor configurations

We can use the maximal single-processor configurations determined above to determine maxi-

mal configurations for a collection of m processors. Intuitively, each such maximal multiprocessor

configuration will represent a different manner in which m processors can be maximally packed

with tasks having utilizations in V (ε).

Definition 3.2. Multiprocessor configuration: For given m and ε , a multiprocessor configuration

is an ordered pair of a |V (ε)|-tuple

〈y1,y2, . . . ,y|V (ε)|〉

of non-negative integers, and an m-tuple

〈z1,z2, . . . ,zm〉

of positive integers ≤ |L1(ε)|. The z j’s denote configuration ID’s of single-processor configurations

(as previously computed, and stored in L1(ε)); 〈z1,z2, . . . ,zm〉 thus denotes the m-processor configu-

ration obtained by configuring the j’th processor according to the single-processor configuration

represented by ID z j in L1(ε), for 1≤ j ≤ m.

The tuples 〈y1,y2, . . . ,y|V (ε)|〉 and 〈z1,z2, . . . ,zm〉 must satisfy the constraint that for each i,

1≤ i≤ |V (ε)|, the i’th component of the tuples in L1(ε) with ID’s ∈ 〈z1,z2, . . . ,zm〉 sums to exactly

yi.

29

A multiprocessor configuration
(
〈y1,y2, . . . ,y|V (ε)|〉,〈z1,z2, . . . ,zm〉

)
is maximal if there is no

other multiprocessor configuration
(
〈y′1,y′2, . . . ,y′|V (ε)|〉,〈z

′
1,z
′
2, . . . ,z

′
m〉
)

such that y′i ≥ yi for all i,

1≤ i≤ |V (ε)|.

Let Lm(ε) denote the list of all maximal multiprocessor configurations. Lm(ε) can in principle

be determined using exhaustive enumeration; simply consider all m-combinations of the single-

processor configurations computed and stored in L1(ε). While the worst-case run-time could be

as large as |L1(ε)|m and thus once again exponential in ε and m, this step, like the computation

of L1(ε), also needs to be performed only once for a given multiprocessor platform. As was the

case with computing L1(ε), all manner of counting techniques and programming heuristics may be

employed to reduce the run-time in practice. We list a few such optimizations below.

• One obvious such heuristic that can speed up the computation of Lm(ε) quite significantly is

to iteratively compute L j(ε) from L j−1(ε) and L1(ε), for j = 2,3, . . . ,m. In such an iterative

approach, only the maximal multiprocessor configurations are retained in each intermediate

L j(ε). Since the number of maximal multiprocessor configurations in L j(ε) is typically far

smaller than the worst-case bound of |L1(ε)| j, such an iterative procedure is observed to be far

more efficient than determining Lm(ε) directly from L1(ε) by considering all m-combinations

of maximal single-processor combinations.

• For large values of m, further savings in run-time can be achieved by only determining

L j(ε) for values of j that are exact powers of two and ≤ m (i.e. for j = 1,2,4, . . . ,2blogmc).

Each such L j(ε) can be determined by considering 2-combinations of configurations in

L j/2(ε). Once these have all been determined, Lm(ε) can be determined by considering the

combinations of the L j(ε)’s corresponding to the j’s that are powers of two summing to m. It

is evident that there are at most logm such j’s.

After it has been computed, Lm(ε) is stored in a lookup table that is provided along with the

m-processor platform, and is used (in a manner discussed in Section 3.3.6 below) for partitioning

specific task systems upon the platform.

30

0.3 0.39 0.507 0.6591 0.8568 Single-proc. ID’s
3 2 1 2 0 [4 4 5 3]
3 4 2 0 0 [6 6 5 1]
0 3 3 0 1 [6 6 6 7]
4 1 1 1 1 [7 4 3 2]
4 0 1 3 0 [4 4 4 3]

Table 3.2: Some example maximal 4-processor configurations.

Example 3.4. For our example 4-processor platform with ε = 0.3, it turns out that there are 140

maximal multiprocessor configurations. Although this is too many to enumerate in this document,

we depict a few maximal multiprocessor configurations in Table 3.2 in the format that they will

appear in the lookup table. The numbers in the headings for columns 1-5 are the 5 distinct

utilizations; the sixth column lists the 4 maximal single-processor configurations (named according

to the configuration ID’s of Table 3.1) that give rise to this particular maximal multiprocessor

configuration.

3

3.3.6 Task assignment

The lookup table of maximal multiprocessor configurations needs to be determined once. Once

this lookup table has been obtained, we can use it repeatedly to determine whether any implicit-

deadline sporadic task system can be partitioned on this platform. We now describe the partitioning

algorithm for doing so.

Let τ denote a collection of n implicit-deadline sporadic tasks to be partitioned among the

(unit-capacity) processors in the m-processor platform. Let ui denote the utilization of the i’th task

in τ . (The task system τ , to be partitioned is completely specified by specifying the utilizations of

the n tasks in it.) Our task assignment algorithm is depicted in Figure 3.1. It operates in two phases.

31

1. In the first phase (Steps 1 and 2 in the pseudo-code), it attempts to assign all tasks with

utilization ≥ ε/(1+ ε). The lookup table constructed as described in Section 3.3.1 is used

during this phase.

2. Once this phase has been completed, tasks with utilization < ε/(1+ ε) are considered during

the second phase (Steps 3 and 4 in the pseudo-code). In essence, the algorithm attempts to

accommodate these small-utilization tasks in the remaining capacity that is left over in the

individual processors after phase 1 is completed.

We will first show that the partitioning algorithm is sound.

Theorem 3.1. If the partitioning algorithm of Figure 3.1 succeeds in assigning all the tasks in τ ,

then the tasks that are assigned to each processor can be scheduled on that processor to meet all

deadlines by uniprocessor EDF.

Proof. During the first phase (Steps 1 and 2 in the pseudo-code), the algorithm assigns tasks to

processors such that the sum of the inflated utilizations of all the tasks on each processor does not

exceed the capacity of the processor. Hence, the sum of the original (i.e., non-inflated) utilizations

of tasks assigned to any particular processor does not exceed the capacity of the processor. This

property is preserved during the second phase of the algorithm (Steps 3 and 4 in the pseudo-code),

since a task is only added to a processor during this phase if the sum of the utilizations after doing

so will not exceed the processor’s capacity. Hence if the task-assignment algorithm succeeds in

assigning all the tasks to processors, then the sum of the utilizations of the tasks assigned to any

particular processor is no larger than one. It follows from the optimality of EDF on uniprocessor

platforms (Liu and Layland, 1973; Dertouzos, 1974) that each processor is consequently successfully

scheduled by EDF.

And what if the algorithm fails to assign all the tasks in τ to the processors? In that case,

we will now show that no algorithm, not even an optimal one, could have partitioned τ upon an

m-processor platform comprised of processors of slightly smaller computing capacity:

32

Task system τ , consisting of n implicit-deadline tasks with utilizations u1,u2, . . . ,un, is to be
partitioned among m unit-speed processors.

1. For each task with utilization ≥ ε/(1+ ε), round up its utilization (if necessary) so that it
is equal to ε× (1+ ε)k for some non-negative integer k. (Observe that such rounding up
inflates the utilization of a task by at most a factor (1+ ε): the ratio of the rounded-up
utilization to the original utilization of any task is ≤ (1+ ε).)

Now all the tasks with (original) utilization ≥ ε/(1+ ε) have their utilizations equal to
one of the distinct values that were considered during the table-generation step. Let ki
denote the number of tasks with modified utilization equal to ε× (1+ ε)i−1, for each i,
1≤ i≤ |V (ε)|.

2. Determine whether this collection of modified-utilization tasks can be accommodated
in one of the maximal m-processor configurations that had been identified during the
pre-processing phase. That is, determine whether there is a maximal multiprocessor
configuration (

〈y1,y2, . . . ,y|V (ε)|〉,〈z1,z2, . . . ,zm〉
)

in Lm(ε), satisfying the condition that yi ≥ ki for each i, 1≤ i≤ |V (ε)|.

• If the answer here is “no,” then report failure, we are unable to partition τ among
the m processors.

• If the answer is “yes,” however, then a viable partitioning has been found for the
tasks with (original) utilization ≥ ε/(1+ ε). Assign these tasks according to the
maximal m-processor configuration.

3. It remains to assign the tasks with utilization < ε/(1+ ε). Assign each such task to any
processor upon which it will “fit” i.e., any processor on which the sum of the (original —
i.e., unmodified) utilizations of the tasks assigned to the processor would not exceed one
if this task were assigned to that processor.

4. If all the tasks with utilization < ε/(1+ε) are assigned to processors in this manner, then
a viable partitioning has been found for all the tasks. However, if some task cannot be
assigned in this manner, then report failure, we are unable to partition τ among the m
processors.

Figure 3.1: Outline of Algorithm PTAS-PARTITION

Theorem 3.2. If the partitioning algorithm of Figure 3.1 fails to partition the tasks in τ , then no

algorithm can partition τ on a platform of m processors each of computing capacity 1/(1+ ε).

33

Proof. The partitioning algorithm of Figure 3.1 may declare failure at two points, one of which is

in phase one and the other is in phase two. We consider each possible point of failure separately.

1. Suppose that the algorithm reports failure during phase one while attempting to assign only

the tasks with utilization ≥ ε/(1+ ε) (Step 2 in the pseudo-code). Since each such task has

its utilization inflated by a factor ≤ (1+ ε), it must be the case that all such (original — i.e.,

unmodified-utilization) tasks cannot be scheduled by an optimal algorithm on a platform

comprised of m processors each of computing capacity 1/(1+ ε). In other words, even

just the tasks in τ with unmodified utilizations ≥ ε/(1+ ε) cannot be partitioned among m

processors of computing capacity 1/(1+ ε) each, and consequently all of τ clearly cannot be

partitioned on such a platform.

2. Suppose that the algorithm reports failure during phase two, while attempting to assign the

tasks with utilization < ε/(1+ ε) (Step 4 in the pseudo-code). This would imply that while

some task with utilization < ε/(1+ ε) remains unallocated, the sum of the utilizations of the

tasks already assigned to each processor is > (1− ε/(1+ ε)). Therefore the total utilization

of τ exceeds m× (1− ε/(1+ ε)) = m(1/(1+ ε)), and τ cannot consequently be feasible on

m processors of computing capacity (1/(1+ ε)) each.

The theorem follows.

Example 3.5. Returning to our example (m = 4 processors, ε = 0.3), let us consider a task system

τ comprised of tasks with the following utilizations (listed here in non-decreasing order):

1
5
,
1
5
,
1
3
,

7
20

,
9

25
,
2
5
,
1
2
,
1
2
,
3
4
.

Noting that ε/(1+ ε) = 0.3/1.3 ≈ 0.2308, we observe that the first two tasks have utilization

< ε/(1+ ε) and are hence not to be considered during the first steps of the partitioning algorithm.

34

We round up the remaining utilizations:

1
5
,
1
5
,0.3900,0.3900,0.3900,0.5070,0.5070,0.5070,0.8568.

Using Table 3.2, we notice that the rounded-up utilizations here correspond to the configuration

listed on the third row: 0 3 3 0 1, obtained from the single-processor configurations [6 6 6 7] of

Table 3.1.

Accordingly, we assign the tasks with utilization ≥ ε/(1+ε) to the 4 processors as specified in

configurations 6, 6, 6, and 7 respectively:

6: 1/3, 2/5. (Remaining capacity = 1−0.7333 = 0.2667)

6: 7/20, 1/2. (Remaining capacity = 1−0.85 = 0.15)

6: 9/25, 1/2. (Remaining capacity = 1−0.86 = 0.14)

7: 3/4. (Remaining capacity = 1−0.7500 = 0.25)

It remains to assign the two tasks with utilization < ε/(1+ ε): the ones with utilization 1/5

each. These tasks can be accommodated in the first and last processors yielding the following

mapping:

6: 1/3, 2/5, 1/5. (Remaining capacity = 0.0667)

6: 7/20, 1/2. (Remaining capacity = 0.15)

6: 9/25, 1/2. (Remaining capacity = 0.14)

7: 3/4, 1.5. (Remaining capacity = 0.05)

3

3.3.7 Run-time complexity

The run-time complexity of Algorithm PTAS-PARTITION is dominated by Step 2, in Figure 3.1.

In this step the algorithm performs a lookup in the lookup table to determine if there is a maximal

35

multiprocessor configuration that can be used for partitioning tasks with utilization greater than

ε/(1+ ε). The time to lookup the lookup table depends upon how the lookup table is implemented,

however in the worst-case it is O(|Lm(ε)|), where Lm(ε) is the set of all the maximal multipro-

cessor configurations stored in the lookup table. (We have shown how to compute the maximal

multiprocessor configurations Lm(ε) in Section 3.3.5.)

For a single limited resource the number of multiprocessor configurations is exponential with

respect to m and ε , which are constant parameters with respect to our problem. From Example 3.4,

we know that for m = 4, ε = 0.3, there are L4(0.3) = 140 maximal multiprocessors configurations.

For a smaller value, ε = 0.2, there are L4(0.2) = 12980 maximal multiprocessor configurations.

Note that the primary cause of this difference in the number of maximal multiprocessor configura-

tions is due to the difference in the number of elements in the set V (ε) as computed in Section 3.3.3.

From Example 3.2, we know that for ε = 0.3, |V (0.3)|= 5, whereas when ε = 0.2, |V (0.2)|= 9;

the number of elements differ by 4.

For more than one limited resource it can be shown by a reduction to the vector scheduling

problem that the number of multiprocessor configurations in the lookup table is exponential with

respect to m, ε , and d, where d is an arbitrary, but fixed, number of limited resources on the

multiprocessor platform. For d > 1, the elements in the set V (ε) is a function of ε and d; we denote

this as V (ε,d). It can be shown that the value of |V (ε,d)| is strictly greater than |V (ε)|d , where

V (ε) is as computed in Section 3.3.3. This results in an “explosion” in the size of the lookup table

when d > 1, which in turn significantly impacts the run-time complexity of looking up the lookup

table.

In the following section we present the APX partitioning algorithm described in (Chattopadhyay

and Baruah, 2012). This algorithm has a larger (less desirable) resource augmentation bound when

compared to the resource augmentation bound of Algorithm PTAS-PARTITION. Thus with respect

to resource augmentation bound, Algorithm PTAS-PARTITION dominates. However, the algorithm

described in the following section has much better run-time complexity, and can be easily extended

to incorporate multiple resource constraints.

36

3.4 APX Partitioning

Our APX partitioning algorithm (Chattopadhyay and Baruah, 2012), is a generalization of

the work presented in (Lopez et al., 2004), in the sense that instead of assuming that computing

capacity is the only limited resource, we assume that an arbitrary, but fixed, number of resources

are available in limited quantities upon each processor. We first present our algorithm assuming that

two resources, computing capacity and local memory, are limited. In Section 3.4.6, we show how

our algorithm can be extended to incorporate an arbitrary, but fixed, number of limited resources on

each processor.

3.4.1 Partitioning algorithm

Given a task system τ of n implicit-deadline sporadic tasks τ1,τ2, . . . ,τn we want to partition

the tasks onto m identical processors π1,π2, . . . ,πm that have unit-capacity and unit-memory. We

present an approximate, but efficient algorithm to solve the problem. Figure 3.2 gives a pseudo-code

representation of our algorithm. The algorithm assumes that the collection of tasks τ1,τ2, . . . ,τn

is in any given order and then attempts to assign the tasks onto one of the m processors. We now

explain how a task τi is assigned to a processor.

First, let us suppose that tasks τ1,τ2, . . . ,τi−1 have been successfully assigned. For any processor

πk, let τ(πk) denote the tasks among τ1,τ2, . . . ,τi−1 that have already been assigned to it. Task τi is

assigned to a processor πk only if the following two conditions are satisfied:

(
1− ∑

τ j∈τ(πk)

u j

)
≥ ui (Condition 2) (3.5)

and (
1− ∑

τ j∈τ(πk)

v j

)
≥ vi (Condition 3) . (3.6)

37

APX-PARTITION(τ,m)

� The collection of sporadic tasks τ = {τ1, . . . ,τn} is to be partitioned on
m identical, unit-capacity and unit-memory processors denoted π1, . . . ,πm.
τ(πk) denotes the tasks assigned to processor πk; initially, τ(πk)←∅ for all
k.

1 for i← 1 to n
� i ranges over the tasks

2 for k← 1 to m
� k ranges over the processors

3 if τi satisfies Conditions 3.5-3.6
on processor πk then

� assign τi to πk;
4 τ(πk)← τ(πk)

⋃
{τi}

5 break;
6 end (of inner for loop)
7 if (k > m) return PARTITIONING FAILED

8 end (of outer for loop)
9 return PARTITIONING SUCCEEDED

Figure 3.2: Pseudo-code for Algorithm APX-PARTITION.

If no such πk exists, then the algorithm declares failure: it is unable to partition τ upon the

m-processor platform.

The following lemma asserts that, in assigning a task τi to a processor πk our partitioning

algorithm does not adversely affect the schedulability of the tasks previously assigned to the

processors.

Lemma 3.1. If the tasks previously assigned to each processor were EDF-schedulable on that

processor and our algorithm assigns task τi to processor πk, then the tasks assigned to each processor

(including processor πk) remain EDF-schedulable on that processor.

Proof. Observe that the EDF-schedulability of the processors other than processor πk is not affected

by the assignment of task τi to processor πk. It remains to demonstrate that, if the tasks assigned to

38

πk were EDF-schedulable on πk prior to the assignment of τi and Conditions 3.5-3.6 are satisfied,

then the tasks on πk remain EDF-schedulable after adding τi. To see that this is true, observe that

• Condition 3.5 ensures that there is sufficient computing capacity to accommodate task τi on

processor πk, and

• Condition 3.6 ensures that there is sufficient local memory to accommodate task τi on

processor πk.

The correctness of the partitioning algorithm can now be established by repeated applications

of Lemma 3.1.

Theorem 3.3. If our partitioning algorithm returns PARTITIONING SUCCEEDED on task system τ ,

then the resulting partitioning is EDF-schedulable.

Proof. Observe that the algorithm returns PARTITIONING SUCCEEDED if and only if it has success-

fully assigned each task in τ to some processor.

Prior to the assignment of task τ1, each processor is trivially EDF-schedulable. It follows from

Lemma 3.1 that all processors remain EDF-schedulable after each task assignment as well. Hence,

all processors are EDF-schedulable once all tasks in τ have been assigned.

3.4.2 Run-time complexity

Algorithm APX-PARTITION can maintain, for each processor, the cumulative computation

and memory requirements of all the tasks that have been assigned to each processor thus far. For

each task τi and each processor πk, Conditions 3.5 and 3.6 can then be evaluated in constant time.

Therefore the i’th task can be assigned in O(m) time. For n tasks this yields an overall run-time of

O(n×m), which is linear in the product of the number of tasks and the number of processors.

39

3.4.3 Resource augmentation bound

Algorithm APX-PARTITION is an approximation algorithm that seeks to solve the partitioning

problem in polynomial time. In order to quantitatively discuss the effectiveness of Algorithm

APX-PARTITION we derive a sufficient schedulability condition for Algorithm APX-PARTITION

in Theorem 3.4 below, and use this schedulability condition to derive the resource augmentation

bound of Algorithm APX-PARTITION in Theorem 3.5.

In the context of the two resource partitioning problems the resource augmentation bound can

be conceptualized as follows: if an optimal algorithm can schedule a task system onto m processors

then an approximation algorithm is guaranteed to schedule the task system onto m processors if the

resources are inflated by a factor equal to the resource augmentation bound. Different approximation

algorithms can be compared on the basis of their resource augmentation bounds. The smaller the

resource augmentation bound the better -closer to optimal- the algorithm.

We would like to stress that the properties described in Theorems 3.4–3.5 are not intended to be

used as a schedulability tests to determine whether Algorithm APX-PARTITION would successfully

schedule a given sporadic task system – since the algorithm itself runs efficiently in polynomial

time the “best” (i.e., most accurate) polynomial-time sufficient schedulability test for determining

whether a particular task system is successfully scheduled by it is to actually run Algorithm APX-

PARTITION and check whether it returns PARTITIONING SUCCEEDED. Rather, these properties are

intended to provide a quantitative measure of how effective Algorithm APX-PARTITION is vis a vis

the performance of an optimal scheduler.

First some definitions: for a given task system τ = {τ1, . . . ,τn}, let us define the following

notation:

umax(τ)
def
=

n
max
i=1

(ui) (3.7)

usum(τ)
def
=

n

∑
j=1

u j (3.8)

vmax(τ)
def
=

n
max
i=1

(vi) (3.9)

40

vsum(τ)
def
=

n

∑
j=1

v j. (3.10)

Intuitively, umax(τ) represents the maximum computation requirement of any individual task,

and usum(τ) represents the total computation requirement of all the tasks in the task system. Similarly,

vmax(τ) represents the maximum memory requirement of any individual task, and vsum(τ) represents

the total memory requirement of all the tasks in the task system.

Lemma 3.2 follows immediately.

Lemma 3.2. If task system τ is feasible (under either the partitioned or the global scheduling

paradigm) on an identical multiprocessor platform consisting of m processors each of computing

capacity ξ and available memory ξ , it must be the case that

ξ ≥max(umax(τ),vmax(τ)) ,

and

m ·ξ ≥max(usum(τ),vsum(τ)) .

Proof. Observe that

1. No individual task’s computation requirement may exceed the computing capacity of a

processor, i.e., it must be the case that ui ≤ ξ .

2. No individual task’s memory requirement may exceed the amount of memory available on

each processor, i.e., it must be the case that vi ≤ ξ .

Taken over all tasks in τ , these observations together yield the first condition.

In the second condition, the requirement that m ·ξ ≥ usum(τ) simply reflects the requirement

that the cumulative computation requirement of all the tasks in τ not exceed the computing capacity

of the platform. Similarly, the requirement that m ·ξ ≥ vsum(τ) reflects the requirement that the total

memory required by all the tasks in τ not exceed the memory available on the platform.

41

Lemma 3.2 above specifies necessary conditions for our partitioning algorithm to successfully

partition a sporadic task system; Theorem 3.4 below specifies a sufficient condition. But first, a

technical lemma that will be used in the proof of Theorem 3.4.

Lemma 3.3. Suppose that Algorithm APX-PARTITION is attempting to schedule task system τ on

a platform consisting of unit-capacity and unit-memory processors.

A: If usum(τ)≤ 1, then Condition 3.5 is always satisfied.

B: If vsum(τ)≤ 1, then Condition 3.6 is always satisfied.

Proof. The proof of A is straightforward, since violating Condition 3.5 requires that (ui+∑τ j∈τ(πk) u j)

exceed 1. Similarly, the proof of B follows from the observation that violating Condition 3.6 requires

that (vi +∑τ j∈τ(πk) v j) exceed 1.

Thus, any implicit-deadline sporadic task system satisfying all of usum(τ)≤ 1 and vsum(τ)≤ 1

is successfully scheduled by our algorithm. We will describe, in Theorem 3.4, what happens when

one or more of these conditions are not satisfied; Lemmas 3.4-3.5 below derive technical results

that are used in proving Theorem 3.4.

Lemma 3.4. Suppose usum(τ) > 1. Let the tasks τ1,τ2, . . . ,τi−1, be successfully mapped by the

partitioning algorithm onto the available processors. When the partitioning algorithm is attempting

to assign τi, if Condition 3.5 fails on m1 processors then the following inequality must hold:

m1 <
usum(τ)−ui

1−ui
. (3.11)

Proof. Since none of the m1 processors satisfy Condition 3.5 for task τi, it must be the case that

there is not enough remaining computing capacity on each such processor to accommodate the

computation requirement of task τi. Therefore, strictly more than (1−ui) of the computing capacity

of each such processor has been consumed by the tasks already assigned to these processors.

42

Summing over all m1 processors and noting that the tasks already assigned (τ1,τ2, . . . ,τi−1) to these

processors is a subset of the tasks in τ , we obtain the following:

(1−ui)m1 <
i−1

∑
j=1

u j

⇒ (1−ui)m1 +ui <
i

∑
j=1

u j

≡ (1−ui)m1 +ui <
n

∑
j=1

u j (∑i
j=1 u j ≤ ∑

n
j=1 u j)

≡ m1 <
usum(τ)−ui

1−ui
(∑n

j=1 u j = usum(τ)) ,

which is as asserted by the lemma.

Note that according to Lemma 3.3 (Part A), if usum(τ)≤ 1 then Condition 3.5 is always satisfied.

In this lemma we consider that Condition 3.5 fails on m1 processors when attempting to map task

τi. Therefore, by Lemma 3.3 (Part A), the value of usum(τ) should be greater than 1, which is as

stated in the Lemma. For usum(τ)> 1, if ui = umax(τ), i.e. if task τi has the maximum computation

requirement in τ , then we obtain the following upper bound on the value of m1:

m1 <
usum(τ)−umax(τ)

1−umax(τ)
. (3.12)

Lemma 3.5. Suppose vsum(τ) > 1. Let the tasks τ1,τ2, . . . ,τi−1, be successfully mapped by the

partitioning algorithm onto the available processors. When the partitioning algorithm is attempting

to assign τi, if Condition 3.6 fails on m2 processors then the following inequality must hold:

m2 <
vsum(τ)− vi

1− vi
. (3.13)

43

Proof. The proof is similar to the proof for Lemma 3.4. Also, just like in Lemma 3.4 we can show

that for vsum(τ)> 1, if vi = vmax(τ), i.e. if task τi has the maximum memory requirement in τ , then

we obtain the following upper bound on the value of m2:

m2 <
vsum(τ)− vmax(τ)

1− vmax(τ)
. (3.14)

We now present a sufficient schedulability condition for Algorithm APX-PARTITION which is

applicable when usum(τ)> 1 and vsum(τ)> 1:

Theorem 3.4. A sporadic task system τ such that usum(τ) > 1 and vsum(τ) > 1 is successfully

scheduled by our algorithm on m unit-capacity and unit-memory processors, for any

m≥
(

usum(τ)−umax(τ)

1−umax(τ)
+

vsum(τ)− vmax(τ)

1− vmax(τ)

)
. (3.15)

Proof. Our proof is by contradiction – we will assume that our algorithm fails to partition task system

τ on m processors, and prove that in order for this to be possible m must violate Inequality 3.15

above.

Let us suppose that our partitioning algorithm fails to obtain a partition for τ on m unit-capacity

processors. In particular, let us suppose that task τi cannot be mapped on to any processor. Let m1

and m2 denote (as in Lemmas 3.4-3.5 above) the number of processors on which Conditions 3.5 and

3.6 have failed respectively when we attempted to assign τi to some processor. It is necessary that:

m1 +m2 ≥ m

(By Lemmas 3.4 and 3.5 respectively)(
usum(τ)−umax(τ)

1−umax(τ)
+ vsum(τ)−vmax(τ)

1−vmax(τ)

)
> m1 +m2

⇒

44

(
usum(τ)−umax(τ)

1−umax(τ)
+ vsum(τ)−vmax(τ)

1−vmax(τ)

)
> m. (3.16)

Taking the contrapositive, it follows that the negation of Equation 3.16 is sufficient to ensure

that our partitioning algorithm will successfully partition τ on m unit-capacity and unit-memory

processors, as is claimed by the theorem.

Using Theorem 3.4 above, we now present resource-augmentation characterizations of our

partitioning algorithm when it is used for partitioning implicit-deadline sporadic task systems.

Theorem 3.5. Algorithm APX-PARTITION makes the following performance guarantee: if an

implicit-deadline sporadic task system is feasible on m identical processors each of a particular

computing capacity and memory, then Algorithm APX-PARTITION will successfully partition this

task system upon a platform comprised of m processors that each have (3− 2
m) times the computing

capacity and memory as the original.

Proof. Let us assume that τ = {τ1,τ2, . . . ,τn} is feasible on m processors each of computing capacity

and memory equal to ξ . Since τ is feasible on m ξ -speed processors, it follows from Lemma 3.2

that the tasks in τ satisfy the following properties:

umax(τ)≤ ξ , vmax(τ)≤ ξ ,

and

usum(τ)≤ m ·ξ , vsum(τ)≤ m ·ξ .

Suppose once again that τ is successfully scheduled by Algorithm APX-PARTITION on m

unit-capacity and unit-memory processors.

Now we have four possibilities:

45

Case 1 usum(τ)≤ 1, vsum(τ)≤ 1: According to Lemma 3.3 (Part A) and (Part B), Conditions 3.5

and 3.6 are always satisfied. For this case Algorithm APX-PARTITION is an optimal algorithm and

the resource augmentation bound is 1.

Case 2 usum(τ)≤ 1, vsum(τ)> 1: According to Lemma 3.3 (Part A), Condition 3.5 is always

satisfied. Therefore the problem reduces to a problem in which there is only one limited resource.

In this case we know from (Fisher, 2007, P.176) that the resource augmentation bound is 2− 1
m .

Case 3 usum(τ)> 1, vsum(τ)≤ 1: Same as above.

Case 4 usum(τ)> 1, vsum(τ)> 1:

For this case we know from Theorem 3.4 that the task system is schedulable if:

m≥
(

usum(τ)−umax(τ)

1−umax(τ)
+

vsum(τ)− vmax(τ)

1− vmax(τ)

)
.

We obtain an upper bound on the RHS of the above equation when:

• usum(τ) = m ·ξ and vsum(τ) = m ·ξ .

• umax(τ) = ξ and vmax(τ) = ξ .

Therefore, the task system is schedulable if:

m ≥ mξ −ξ

1−ξ
+

mξ −ξ

1−ξ

≡ m≥ ξ

1−ξ

(
2m−2

)
≡ m−mξ ≥ (2m−2)ξ

≡ 1
ξ
≥
(
3− 2

m

)
,

which is as claimed in the statement of the theorem.

46

3.4.4 Heuristic improvements

The description of Algorithm APX-PARTITION, and the derivation of its resource augmentation

bound make no assumptions about the order in which the tasks are considered for placement on

the processors. In implementing Algorithm APX-PARTITION however, we may want to consider

the tasks according to some ordering that enhances the likelihood that a given task system will be

successfully partitioned. (For instance, since it is intuitively speaking more difficult to place a task

that has larger computation and memory requirements, it may be better to consider such tasks for

placement earlier when more computing capacity and memory are available on the processors.)

For any two tasks τi and τ j, let us say that τi � τ j if ui ≥ u j and vi ≥ v j. A straightforward

extension of the “decreasing” concept in First-Fit-Decreasing yields the following rule for ordering

the tasks:

• If τi � τ j then consider τi before considering τ j (ties broken arbitrarily).

When we have tasks τi and τ j such that neither τi � τ j nor τ j � τi hold (i.e., if (ui > u j and

vi < v j) or (ui < u j and vi > v j)), there are several possible generalizations to the FFD rule that we

can come up with. Inspired by the proof of Theorem 3.4 consider tasks in decreasing order of fi,

where fi is defined as follows:

fi
def
=

(
usum(τ)−ui

1−ui
+

vsum(τ)− vi

1− vi

)
. (3.17)

Note that if there are no memory constraints (all the vi’s are zero), then ordering as per

decreasing fi reduces to FFD for partitioning tasks onto processors with limited computing capacity.

3.4.5 Experimental evaluation

We experimentally evaluate whether our heuristic in Section 3.4.4 for re-ordering tasks improves

the schedulability of Algorithm APX-PARTITION. In order to do so, we randomly generated task

sets and reordered the tasks in each task set according to the heuristic. We then determined if the

47

generated task sets and the reordered task sets could be partitioned by Algorithm APX-PARTITION.

We measured the percentage of task sets that could be successfully partitioned in both cases.

The task sets were generated as follows. Each task set comprised n tasks. The UUnifast-Discard

algorithm described in (Davis and Burns, 2009) was used to generate n values of computation

requirement {u1 . . .un} such that ∑
n
i=1 ui = M, and n values of memory requirement {v1 . . . ,vn}

such that ∑
n
i=1 vi = M, for some value of M ≤m. (The UUnifast-Discard algorithm generates values

at random from a uniform distribution over the range [0,1]). Each task τi in the task set had its

computation requirement set equal to ui, and memory requirement set equal to vi, as computed

above.

For m = {2, 4, 6, 8} processors and for each M (total computation and memory requirement)

starting from M = m/2 and incremented in steps of m ∗ 0.05 until M = m, 1000 task sets were

generated. We determined the percentage of the task sets that were schedulable under Algorithm

APX-PARTITION without re-ordering and with re-ordering as per our heuristic. From the resulting

graphs we made the following observations.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Total Computation and Memory requirement

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

No-reordering

Heuristic

Figure 3.3: Evaluating partitioning heuristic: m = 4,n = 40

48

Observation 1. In Figure 3.3, we observe that for m = 4 processors and n = 40 tasks, more task

sets are successfully partitioned by Algorithm APX-PARTITION after the tasks have been re-ordered

as per our heuristic.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Total Computation and Memory requirement

0

20

40

60

80

100
P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

No re-ordering, n=40

Heuristic, n=40

No re-ordering, n=80

Heuristic, n=80

Figure 3.4: Evaluating partitioning heuristics: m = 4,n = 40/80

Observation 2. In Figure 3.4, we interpose the graph for m = 4 processors and n = 40 tasks,

with the graph for m = 4 processors and n = 80 tasks. We observe that for both partitioning with no

re-ordering and with our heuristics, we get better schedulability when the number of tasks in the task

set is larger. This is because for larger number of tasks the computation and memory requirement of

each task is smaller. Thus, the resource requirement of each task is smaller with respect to the size

of the processor, and intuitively this increases schedulability.

These observations are consistent for experiments with different values of m.

3.4.6 Extending to > 2 distinct resource types

So far, we have restricted our attention to the partitioning of implicit-deadline sporadic task

systems upon platforms in which each processor has limited amounts of two resources- computing

capacity and local memory. Our results are easily generalized to platforms in which there are

multiple resources on each processor (in addition to computing capacity), each available in limited

49

quantities. In order for these generalizations to hold it is required that each such additional resource

be allocated in the specified amount “permanently” to each task throughout the duration of the

run-time of the system.

More formally, suppose that there are ` kinds of resources (in addition to computing capacity).

We characterize each sporadic task τi by

• Its computation requirement, using the traditional implicit-deadline sporadic-tasks model:

τi =Ci,Ti

• Its resource requirements vi[1],vi[2], . . . ,vi[`], with vi[p] denoting the fraction of the p’th

resource that is locally available on each processor that must be reserved for the exclusive use

of this task.

In determining whether such a task τi “fits” on processor πk, Algorithm APX-PARTITION must

ensure that πk has enough of each of the ` resources; Condition 3.6 is therefore replaced by the

more general condition:

∀p : 1≤ p≤ ` :

1− ∑
τ j∈τ(πk)

v j[p]

≥ vi[p]. (3.18)

It can be shown that with this generalization to Condition 3.6, the resource augmentation bound

of Theorem 3.5 becomes (
2+ `− 1+ `

m

)
.

Observe that for `← 1 we have, once again, the system model discussed in Section 3.1, and the

bound above becomes exactly the bound of Theorem 3.5.

3.5 Conclusion

As embedded devices such as smart-phones increasingly come to be implemented upon multi-

core and multiprocessor platforms, it becomes increasingly important that platform resources be

50

efficiently managed. However, much prior scheduling-theoretic research on obtaining multiproces-

sor implementations of real-time systems has focused almost exclusively on processor computing

capacity, to the exclusion of other resources such as memory that are also available in scarce quanti-

ties on individual processors or cores. A few results have been obtained (for example, (Chekuri and

Khanna, 2004) and (Baruah and Fisher, 2004; Fisher et al., 2005)) concerning the scheduling of

systems in which the usage of multiple resources must be simultaneously optimized.

In this chapter we further explore the issue of resource allocation and scheduling on platforms

that require the simultaneous management of multiple resources. We have described two partitioning

algorithms, and derived their resource augmentation bound and run-time complexity. One is a

PTAS and the other is a APX partitioning algorithm. Even though the PTAS partitioning algorithm

has a better resource augmentation bound, we claim that the APX partitioning algorithm is more

effective for partitioning a collection of implicit-deadline sporadic tasks on memory-constrained

multiprocessor platforms. Unlike the PTAS partitioning algorithm, the APX partitioning algorithm

is easy to implement and has a more desirable run-time computational complexity - linear in

the product of the number of tasks in the task system and the number of processors. We have

described a heuristic improvement for the APX partitioning algorithm, and performed schedulability

experiments to show that our heuristic does in fact increase schedulability. We have also indicated

how the APX partitioning algorithm can be extended to deal with additional resource constraints.

51

CHAPTER 4: MIXED CRITICALITY

In mixed-criticality (henceforth referred to as MC) systems, multiple functionalities that may

be of different degrees of importance or criticalities are implemented upon a common platform. As

more functionalities with different degrees of criticality are implemented on a common multiproces-

sor platform, mixed-criticality systems are becoming more complex, less uniform and predictable,

and show greater variation in their performance. Certification of such systems is crucial to their

successful deployment. In order to certify a system as being correct, the certification authority

(CA) mandates certain assumptions about the worst-case behavior of the system during run-time.

These assumptions are typically far more conservative than the assumptions that the system designer

would use during the process of designing, implementing, and testing the system if subsequent

certification was not required. (For instance, the worst-case execution time estimate used by the CA

to characterize a complex piece of code is likely to be more pessimistic (i.e., larger) than the WCET

estimate used by the system designer.) While the CA is only concerned with the correctness of

the safety-critical part of the system the system designer is responsible for ensuring that the entire

system is correct, including the non-critical parts.

The scheduling problem then becomes one of coming up with a single scheduling strategy

that meets two separate goals, (i) certification of the high criticality jobs under more pessimistic

assumptions, and (ii) schedulability of all the jobs (including the low criticality ones) under the

system designer’s less pessimistic assumptions.

A large body of recent research has addressed mixed-criticality scheduling for certifiability

(see, e.g., (Vestal, 2007; Dorin et al., 2010; Lakshmanan et al., 2011; Park and Kim, 2011; Guan

et al., 2011; Baruah et al., 2011; Baruah and Fohler, 2011; Tamas-Selicean and Pop, 2011; Huang

et al., 2012; Herman et al., 2012; Baruah et al., 2012; Li and Baruah, 2012; Pathan, 2012)– this list

52

is by no means exhaustive). From among these papers, (Baruah et al., 2012) has results most closely

related to our work on partitioned scheduling of mixed criticality systems.

In the following discussion we first describe the mixed criticality task model we will use in this

chapter, and then present a variant of the EDF scheduling algorithm, Algorithm EDF-VD described

in (Baruah et al., 2012) for scheduling mixed-criticality tasks on a uniprocessor. Finally, we present

a mixed-criticality partitioning algorithm, which is a modification of Algorithm APX-PARTITION

described in Section 3.4.1, for partitioning mixed-criticality tasks on m identical processors each hav-

ing a computing capacity of 1. The tasks assigned to each processor are scheduled as per Algorithm

EDF-VD. The mixed-criticality partitioning algorithm was first presented in our work (Baruah

et al., 2014).

4.1 System Model

As with the task model described in Section 2.2 we will model a MC task system τ , as consisting

of a finite specified collection of MC sporadic tasks each of which generate a potentially infinite

sequence of MC jobs.

MC jobs. Each job is characterized by a 5-tuple of parameters:

Ji = (ai,di,χi,ci(LO),ci(HI)), where

• ai ∈ R+ is the release time.

• di ∈ R+ is the deadline. We assume that di ≥ ai.

• χi ∈ {LO,HI} denotes the criticality of the job. A HI-criticality job (a Ji with χi = HI) is one

that is subject to certification under the CA’s pessimistic assumptions, whereas a LO-criticality

job (a Ji with χi = LO) is one that needs to be schedulable under the system designer’s less

pessimistic assumptions.

• ci(LO) specifies the worst case execution time (WCET) estimate of Ji that is used by the

system designer (i.e., the WCET estimate at the LO-criticality level).

53

• ci(HI) specifies the worst case execution time (WCET) estimate of Ji that is used by the CA

(i.e., the WCET estimate at the HI-criticality level). We assume that

– ci(HI) ≥ ci(LO) (i.e., the WCET estimate used by the system designer is never more

pessimistic than the one used by the CA), and

– ci(HI) = ci(LO) if χi = LO (i.e., a LO-criticality job is aborted if it executes for more

than its LO-criticality WCET estimate1).

The MC job model has the following semantics. Job Ji is released at time ai, has a deadline

at di, and needs to execute for some amount of time γi. However, the value of γi is not known

beforehand, but only becomes revealed by actually executing the job until it signals that it has

completed execution. If Ji signals completion without exceeding ci(LO) units of execution, we

say that it has exhibited LO-criticality behavior. If it signals completion after executing for more

than ci(LO) but no more than ci(HI) units of execution, we say that it has exhibited HI-criticality

behavior. If it does not signal completion upon having executed for ci(HI) units, we say that its

behavior is erroneous.

MC implicit-deadline sporadic tasks. Each implicit-deadline sporadic task in the MC model

is characterized by a 4-tuple of parameters: τk = (χk,Ck(LO),Ck(HI),Tk), with the following

interpretation. Task τk generates a potentially infinite sequence of MC jobs, with successive jobs

being released at least Tk time units apart. Each such job has a deadline that is Tk time units after its

release. The criticality of each such job is χk, and it has LO-criticality and HI-criticality WCET’s of

Ck(LO) and Ck(HI) respectively. A MC sporadic task system is specified as a finite collection of

such sporadic tasks.

Utilizations. The utilization or computing requirement of a implicit-deadline sporadic task de-

scribed in Section 2.2 denotes the ratio of its WCET to its period; the utilization of a task system

denotes the sum of the utilizations of all the tasks in the system. We now define analogous concepts

1We assume that the run-time system provides support for ensuring that jobs do not execute for more than a specified
amount; see, e.g., (Baruah et al., 2011) for a discussion of this issue.

54

χk Ck(LO) Ck(HI) Tk
τ1 LO 2 2 6
τ2 HI 1 2 10
τ3 HI 2 10 20

Table 4.1: An example mixed-criticality implicit-deadline sporadic task system.

for mixed-criticality sporadic task systems. Let Uk(LO) and Uk(HI) denote the LO-criticality and

HI-criticality utilizations of task τk such that:

Uk(LO) :=Ck(LO)/Tk and Uk(HI) :=Ck(HI)/Tk.

Let τ = {τ1,τ2, . . . ,τn} denote a MC implicit-deadline sporadic task system. For each of x and

y in {LO,HI}, we define a utilization parameter as follows:

Uy
x (τ) = ∑

τi∈τ∧χi=x
Ui(y).

Thus for example, U LO
HI (τ) denotes the sum of the utilizations of the HI-criticality tasks in τ ,

under the assumption that each job of each task executes for no more than its LO-criticality WCET.

Example 4.1. Consider the task system depicted in Table 4.1. For this task system,

U LO
LO (τ) = 2/6 = 0.33

U HI
LO(τ) = 2/6 = 0.33

U LO
HI (τ) = 1/10+2/20 = 0.2

U HI
HI (τ) = 2/10+10/20 = 0.7.

3

Scheduling MC implicit-deadline sporadic task systems. A particular MC implicit-deadline

sporadic task system may generate different instances of jobs during different runs. Furthermore,

55

during any given run each job comprising the instance may exhibit LO-criticality, HI-criticality, or

erroneous behavior. We define an algorithm for scheduling MC implicit-deadline sporadic task

system τ to be correct if it is able to schedule every instance generated by τ such that:

• If all jobs exhibit LO-criticality behavior, then all jobs receive enough execution between their

release time and deadline to be able to signal completion, and

• If any job exhibits HI-criticality behavior, then all HI-criticality jobs receive enough execution

between their release time and deadline to be able to signal completion.

Note that if any job exhibits HI-criticality behavior, we do not require any LO-criticality jobs

(including those that may have arrived before this happened) to complete by their deadlines. This

is an implication of the requirements of certification: informally speaking, the system designer

fully expects that all jobs will exhibit LO-criticality behavior, and hence is only concerned that

they behave as desired under these circumstances. The CA on the other hand, allows for the

possibility that some jobs may exhibit HI-criticality behavior and requires that all HI-criticality jobs

nevertheless meet their deadlines.

4.2 EDF for Mixed Criticality systems

Algorithm EDF-VD (for Earliest Deadline First with Virtual Deadlines) of (Baruah et al.,

2012) is derived from preemptive EDF for scheduling mixed-criticality implicit-deadline sporadic

task systems upon a uniprocessor. We now provide a high-level description of EDF-VD.

Let τ = {τ1, . . . ,τn} denote the MC implicit-deadline sporadic task system that is to be sched-

uled on a processor with unit computing capacity. EDF-VD’s approach to scheduling τ can be

thought of as a three-phased one:

1. An initial pre-processing phase occurs prior to run-time.

56

2. During run-time, jobs are initially dispatched in the expectation that the behavior of the

system is going to be a LO-criticality one; no job will execute for more than its LO-criticality

WCET.

3. If some job does execute beyond its LO-criticality WCET without signaling that it has

completed execution, the dispatching algorithm is modified accordingly and the algorithm

enters its optional third phase.

We now discuss each of the three phases.

During pre-processing, a schedulability test is performed to determine whether τ can be

guaranteed to be successfully scheduled. If it is determined that τ can be successfully scheduled,

then an additional parameter, called a modified period denoted T̂i, is computed for each HI-criticality

task τi ∈ τ . It is always the case that T̂i ≤ Ti.

Initial run-time dispatching is done according to EDF. Since EDF is defined for regular rather

than mixed-criticality task systems, we map the mixed-criticality tasks in τ to regular implicit-

deadline sporadic tasks as follows: each LO-criticality task τk = (χk,Ck(LO),Ck(HI),Tk) is mapped

to a regular task (Ck(LO),Tk), while each HI-criticality task τk = (χk,Ck(LO),Ck(HI),Tk) is mapped

to a regular task (Ck(LO), T̂k), where the T̂k’s are the modified periods computed during the pre-

processing phase.

If some job does execute beyond its LO-criticality WCET without signaling that it has completed

execution, we enter the third phase of the algorithm, and the following changes occur.

1. All currently-active LO-criticality jobs are immediately discarded; henceforth, no LO-criticality

job will receive any execution.

2. Subsequent run-time scheduling of the HI-criticality tasks (including their jobs that are

currently active) are done according to EDF. This is done by mapping each HI-criticality MC

task τk = (χk,Ck(LO),Ck(HI),Tk) in τ to a regular task (Ck(HI),Tk).

EDF-VD Properties. The following properties of Algorithm EDF-VD, derived in (Baruah et al.,

2012), are used in deriving the partitioning algorithm described next.

57

Theorem 4.1. (Baruah et al., 2012). Any mixed-criticality implicit-deadline sporadic task system

τ satisfying the property

max
(
U LO

LO (τ)+U LO
HI (τ),U

HI
HI (τ)

)
≤ 3/4

is successfully scheduled by EDF-VD on a unit-speed processor.

Theorem 4.1 asserts that any MC implicit-deadline sporadic task system for which both the

LO-criticality utilization (U LO
LO (τ)+U LO

HI (τ)) and the HI-criticality utilization (U HI
HI (τ)) are ≤ 3/4 is

successfully scheduled by EDF-VD on a processor with unit computing capacity.

Since utilization not exceeding processor speed is a necessary condition for schedulability, a

resource augmentation bound, also called speedup bound when it refers to augmenting processor

speed or computing capacity, of 4/3 for EDF-VD immediately follows:

Corollary 4.1. (Baruah et al., 2012). EDF-VD has a speedup bound no greater than 4/3.

Theorem 4.1 guarantees schedulability when both LO-criticality and HI-criticality utilizations

are bounded by 3/4. A more general test for when one of the utilizations is greater than 3/4, and

the other less than 3/4 has also been derived.

Theorem 4.2. (Baruah et al., 2012). Any mixed-criticality implicit-deadline sporadic task system

τ satisfying the property

U LO
LO (τ)≤

1−U HI
HI (τ)

1−
(
U HI

HI (τ)−U LO
HI (τ)

)
is successfully scheduled by EDF-VD on a unit-speed processor.

Both Theorems 4.1 and 4.2 are sufficient schedulability conditions.

4.3 Algorithm MC-partition

We start with an overview of our partitioning algorithm. It proceeds in two phases:

1. During the first phase each HI-criticality task is assigned to some processor while ensuring

that the cumulative HI-criticality utilization assigned to each processor does not exceed 3/4.

58

2. During the second phase each LO-criticality task is assigned to some processor while ensuring

that the cumulative LO-criticality utilization assigned to each processor also does not exceed

3/4.

Observe that by Theorem 4.1, such an assignment procedure ensures that each processor

remains schedulable by EDF-VD. The algorithm reports failure if it fails to successfully assign

every task.

The details are as follows. Let τ denote the MC implicit-deadline sporadic task system that

is to be partitioned amongst m processors. Let us assume that there are n tasks in τ , of which n1

are HI-criticality tasks. Without loss of generality, assume that {τ1,τ2, . . . ,τn1} are the HI-criticality

tasks, and {τn1+1, . . . ,τn} the LO-criticality ones. Let {π1,π2, . . . ,πm} denote the m processors.

Figure 4.1 gives a pseudo-code representation of Algorithm MC-PARTITION.

Let us suppose that tasks {τ1,τ2, . . . ,τi−1} have been successfully assigned. We now explain

how task τi is assigned to a processor.

For any processor πk, let τ(πk) denote the tasks from amongst {τ1,τ2, . . . ,τi−1} that have

already been assigned to it. Algorithm MC-PARTITION assigns the task τi to any processor πk

satisfying the following condition. If i≤ n1 (i.e., if τi is a HI-criticality task) then:

Ui(HI)+ ∑
τ j∈τ(πk)

U j(HI)

≤ 3
4
, (4.1)

else (i.e., i > n1 and τi is hence a LO-criticality task)

Ui(LO)+ ∑
τ j∈τ(πk)

U j(LO)

≤ 3
4
. (4.2)

If no such πk exists, then Algorithm MC-PARTITION declares failure: it is unable to partition τ

upon the m-processor platform.

59

MC-PARTITION(τ,m)

� τ = {τ1, . . . ,τn} is to be partitioned on m identical, unit-
capacity processors denoted {π1, . . . ,πm}. Tasks {τ1, . . . ,τn1}
are HI-criticality tasks; tasks {τn1+1, . . . ,τn} are LO-criticality
tasks. The set of tasks assigned to processor πk is denoted as
τ(πk); initially, τ(πk)←∅ for all k.

1 for i← 1 to n1 � Phase 1: HI-criticality tasks
2 for k← 1 to m
3 if τi satisfies Condition 4.1 on processor πk

then� assign τi to πk;
4 τ(πk)← τ(πk)

⋃
{τi}

5 break;
6 end (of inner for loop)
7 if (k > m) return PARTITIONING FAILED

8 end (of outer for loop)
9 for i← (n1 +1) to n� Phase 2: LO-criticality tasks

10 for k← 1 to m
11 if τi satisfies Condition 4.2 on processor πk

then� assign τi to πk;
12 τ(πk)← τ(πk)

⋃
{τi}

13 break;
14 end (of inner for loop)
15 if (k > m) return PARTITIONING FAILED

16 end (of outer for loop)
17 return PARTITIONING SUCCEEDED

Figure 4.1: Pseudo-code for Algorithm MC-PARTITION

The following lemma asserts that in assigning a task τi to a processor πk Algorithm MC-

PARTITION does not adversely affect the schedulability of the tasks previously assigned to the

processors.

Lemma 4.1. If the tasks previously assigned to each processor were schedulable on that processor

by EDF-VD and Algorithm MC-PARTITION assigns task τi to processor πk, then the tasks assigned

to each processor (including processor πk) remain schedulable on that processor by EDF-VD.

60

Proof. Observe that the schedulability of the processors other than processor πk is not affected

by the assignment of task τi to processor πk. It remains to demonstrate that, if the tasks assigned

to processor πk were schedulable by EDF-VD prior to the assignment of τi and Algorithm MC-

PARTITION assigns τi to πk, then the tasks on πk remain schedulable by EDF-VD after adding τi.

To see that this is true we consider two cases.

• If i≤ n1, Condition (4.1) must hold for Algorithm MC-PARTITION to assign τi to πk. This

condition ensures that the sum of the HI-criticality utilizations of all HI-criticality tasks

assigned to processor πk remains ≤ 3/4. Since each task’s LO-criticality utilization is no

greater than its HI-criticality utilization, this also means that the sum of the LO-criticality

utilizations of all tasks assigned to processor πk remains ≤ 3/4.

• If i > n1, Condition (4.2) must hold for Algorithm MC-PARTITION to assign τi to πk. This

condition ensures that the sum of the LO-criticality utilizations of all tasks assigned to

processor πk remains ≤ 3/4 while the sum of the HI-criticality utilizations of HI-criticality

tasks does not change.

It is thus the case that both the sum of the HI-criticality utilizations and the sum of the LO-

criticality utilizations upon each processor remains ≤ 3/4. The correctness of the lemma then

follows from Theorem 4.1.

The correctness of Algorithm MC-PARTITION can now be established by repeated applications

of Lemma 4.1.

Theorem 4.3. If Algorithm MC-PARTITION returns PARTITIONING SUCCEEDED on task system τ ,

then the resulting partitioning is schedulable by EDF-VD.

Proof. Observe that Algorithm MC-PARTITION returns PARTITIONING SUCCEEDED if and only if

it has successfully assigned each task in τ to some processor.

Prior to the assignment of task τ1 each processor has been assigned no tasks, and is therefore

trivially schedulable by EDF-VD. It follows from Lemma 4.1 that all processors remain schedulable

61

by EDF-VD after each task assignment as well. Hence, all processors are schedulable by EDF-VD

after all tasks in τ have been successfully assigned.

4.3.1 Run-time complexity

Algorithm MC-PARTITION can be implemented to maintain, for each processor, the cumulative

HI-criticality and LO-criticality utilizations of all the tasks that have been assigned to that processor

thus far. For each task τi and each processor πk, Condition (4.1) or Condition (4.2) can then be

evaluated in constant time. Therefore the i’th task can be assigned in O(m) time. For n tasks this

yields an overall run-time complexity of O(n×m).

4.3.2 Speedup bound

We now derive a sufficient schedulability condition for Algorithm MC-PARTITION in Lemma 4.2

below, and use this schedulability condition to derive a speedup bound for Algorithm MC-

PARTITION in Theorem 4.4.

We would like to stress that Lemma 4.2 is not intended to be used as a schedulability test

to determine whether Algorithm MC-PARTITION would successfully schedule a given sporadic

task system – since the algorithm itself runs efficiently in polynomial time, the “best” (i.e., most

accurate) polynomial-time sufficient schedulability test for determining whether a particular task

system is successfully scheduled by it is to actually run Algorithm MC-PARTITION.

Lemma 4.2. Suppose that Algorithm MC-PARTITION fails to assign some task τi. One or both of

the following conditions must hold:

U HI
HI (τ) >

3
4

m− (m−1)Ui(HI), (4.3)

U LO
LO (τ)+U LO

HI (τ) >
3
4

m− (m−1)Ui(LO). (4.4)

Proof. Let us first consider the case when i ≤ n1. Since τi cannot be accommodated on any

processor, Condition (4.1) must be violated for task τi on each of the m processors. Summing the

62

negation of Condition (4.1) across all m processors, we have

(3
4
−Ui(HI)

)
m <

i−1

∑
j=1

U j(HI)

⇔ 3
4

m−mUi(HI)+Ui(HI)<
i−1

∑
j=1

U j(HI)+Ui(HI)

⇔ 3
4

m− (m−1)Ui(HI)<
i

∑
j=1

U j(HI)

⇒ 3
4

m− (m−1)Ui(HI)<U HI
HI (τ)

which is as claimed.

Now let us consider when i > n1. Since τi cannot be accommodated on any processor, Con-

dition (4.2) must be violated for task τi on each of the m processors. Summing the negation of

Condition (4.2) across all m processors, we have

(3
4
−Ui(LO)

)
m <

i−1

∑
j=1

U j(LO)

⇔ 3
4

m−mUi(LO)+Ui(LO)<
i−1

∑
j=1

U j(LO)+Ui(LO)

⇔ 3
4

m− (m−1)Ui(LO)<
i

∑
j=1

U j(LO)

⇒ 3
4

m− (m−1)Ui(LO)<U LO
LO (τ)+U LO

HI (τ)

which is also as claimed in the lemma.

Using Lemma 4.2 above, we now derive a speedup bound for our partitioning algorithm.

Theorem 4.4. The speedup bound of Algorithm MC-PARTITION on an m-processor platform is

(8m−4
3m).

Proof. To prove this, we must show that any MC implicit-deadline sporadic task system that

can be partitioned upon an m-processor platform by an optimal algorithm can be partitioned by

Algorithm MC-PARTITION upon an m-processor platform in which each processor is (8m−4
3m) times

as fast.

63

Let us assume that τ = {τ1,τ2, . . . ,τn} can be scheduled by an optimal scheduling algorithm on

m processors each of computing capacity equal to ξ . It must therefore be the case that

Ui(LO) ≤ ξ for each i,1≤ i≤ n

Ui(HI) ≤ ξ for each i,1≤ i≤ n1

U LO
LO (τ)+U LO

HI (τ) ≤ mξ

U HI
HI (τ) ≤ mξ .

Suppose that Algorithm MC-PARTITION fails to partition τ on m unit-capacity processors. By

Lemma 4.2 above, it must be the case that at least one of Conditions (4.3) or (4.4) holds. If

Condition (4.3) holds, it must be the case that

U HI
HI (τ)>

3
4

m− (m−1)Ui(HI)

⇒ mξ >
3
4

m− (m−1)ξ

⇔ (2m−1)ξ >
3
4

m

⇔ ξ >
3m

4(2m−1)
.

Similarly if Condition (4.4) holds, it must be the case that

U LO
LO (τ)+U LO

HI (τ)>
3
4

m− (m−1)Ui(LO)

⇒ mξ >
3
4

m− (m−1)ξ

⇔ (2m−1)ξ >
3
4

m

⇔ ξ >
3m

4(2m−1)
.

We have shown that for either of Conditions (4.3) or (4.4) to hold, ξ must exceed 3m
4(2m−1) . Hence

if ξ ≤ 3m
4(2m−1) then τ is successfully scheduled by Algorithm MC-PARTITION on m unit-speed

processors; equivalently, if ξ ≤ 1 then τ is successfully scheduled by Algorithm MC-PARTITION

on m speed-4(2m−1)
3m processors, as claimed by the theorem.

64

We note that 4(2m−1)
3m < 8/3 for all m≥ 1, asymptotically approaching 8/3 as m→ ∞. Hence,

8/3≈ 2.67 is an upper bound on the speedup of Algorithm MC-PARTITION, for all values of m.

4.3.3 Pragmatic improvements

We now describe two modifications to Algorithm MC-PARTITION. The exact speedup bound

of these modified algorithms is not known.

Algorithm MC-PARTITION-UT-0.75. This version incorporates two modifications:

§1: Preprocessing tasks with Ui(HI)> 3/4. Algorithm MC-PARTITION is modified to incorporate

the partitioning of HI-criticality tasks with 3/4 <Ui(HI)≤ 1. The modification assigns one such HI-

criticality task per processor prior to partitioning other tasks (we call this the pre-processing phase.)

Suppose m′ processors were assigned HI-criticality tasks during the pre-processing phase. Each of

these m′ processors will be assigned HI-criticality tasks as long as the HI-criticality utilization does

not exceed 1. Hence during phase 1 of Algorithm MC-PARTITION each of the m′ processors are

assigned HI-criticality tasks so long as the following condition is satisfied:

Ui(HI)+ ∑
τ j∈τ(πk)

U j(HI)

≤ 1. (4.5)

For the remaining processors, Condition (4.1) remains the requirement for assigning HI-

criticality tasks during phase 1.

§2: Improved utilization during phase 2. Condition (4.2) is based upon Theorem 4.1. As stated

in Section 4.2, the schedulability test in Theorem 4.2 is superior to the one in Theorem 4.1. We

therefore replace Condition (4.2) with the following condition based upon Theorem 4.2:

Ui(LO)+ ∑
τ j∈τ(πk)∧χ j=LO

U j(LO)

≤ 1−U HI
HI (τ(πk))

1−
(
U HI

HI (τ(πk))−U LO
HI (τ(πk))

) . (4.6)

65

It follows from Theorem 4.2 that satisfying Condition (4.6) will ensure that the system is

schedulable. Furthermore, it is possible that tasks with LO-criticality utilization > 3/4 will be

accommodated upon some processor.

Algorithm MC-PARTITION-UT-INC. This is obtained by replacing Condition (4.1) by:

Ui(HI)+ ∑
τ j∈τ(πk)

U j(HI)

≤ val (4.7)

where val is a variable that iteratively takes on values in the range [0.5,1] (in pre-determined

steps). The intuition behind this modification is that depending upon the value of val the HI-criticality

tasks are assigned to processors differently, which in turn affects the partitioning of the LO-criticality

tasks. As a result, different values of val might result in a success or failure in partitioning different

task systems. In the pre-processing phase of Algorithm MC-PARTITION-UT-INC, HI-criticality

tasks with utilization greater than val are assigned to the processors. Suppose m′ processors were

each assigned a HI-criticality task during the pre-processing phase. The remaining HI-criticality are

assigned to the processors while ensuring that Condition (4.5) is satisfied on the m′ processors and

Condition (4.7) is satisfied on the processors excluding the m′ processors. Also, Condition (4.2) for

LO-criticality tasks is replaced by Condition (4.6). Algorithm MC-PARTITION-UT-INC returns

PARTITIONING FAILED only if partitioning fails for all the values of val that are considered.

It is evident that Algorithm MC-PARTITION-UT-INC dominates Algorithms MC-PARTITION-

UT-0.75 since MC-PARTITION-UT-INC checks with different values of val (0.75 can be included

as a value for val), and returns PARTITIONING FAILED only if the partitioning failed for all the

values that were considered.

4.3.4 Experimental evaluation

We experimentally evaluate whether the pragmatic improvements described in Section 4.3.3

improve the schedulability of Algorithm MC-PARTITION. In order to experimentally evaluate the

improvements we randomly generated task sets and determined if the task sets could be partitioned

66

by Algorithm MC-PARTITION, MC-PARTITION-UT-0.75, and MC-PARTITION-UT-INC. We

measured the percentage of task sets that could be successfully partitioned by each algorithm. We

also compared the schedulability of the above partitioning algorithms with the schedulability of the

worst-case partitioning algorithm, we refer to it as Algorithm WC-PARTITION, which corresponds

to partitioning the HI-criticality tasks as per their HI-criticality utilization and the LO-criticality

tasks as per their LO-criticality utilization such that for each processor πk:

∑
τi∈πk

Ui(χ j)≤ 1.

The task sets were generated as follows. Each task set comprised n tasks. The UUnifast-Discard

algorithm described in (Davis and Burns, 2009) was used to generate n utilization values {u1 . . .un}

such that ∑
n
i=1 ui = M, for some value of M ≤m. The probability of a task becoming a HI-criticality

task was determined by the parameter CP, 0 ≤CP ≤ 1. If a task τi became a HI-criticality task,

then Ui(HI) was set equal to ui, else Ui(LO) was set equal to ui. Thus the total worst-case utilization

U LO
LO (τ)+U HI

HI (τ), of a task set τ was equal to M. For a HI-criticality task the ratio of its HI-

criticality utilization to its LO-criticality utilization was uniformly drawn from the range [1,CF],

where CF is called the criticality factor.

For m = {2, 4, 6, 8} processors and for each value of M (total worst-case utilization) starting

from M = m/2 and incremented in steps of m∗0.05 until M = m, 1000 task sets were generated.

We determined the percentage of task sets that were schedulable under Algorithm WC-PARTITION,

MC-PARTITION, MC-PARTITION-UT-0.75, and MC-PARTITION-UT-INC. From the resulting

graphs we made the following observations.

Observation 1. In Figure 4.2 we observe that for m = 4, n = 20, CP = 0.5, and CF = 8,

Algorithm MC-PARTITION-UT-INC is able to schedule more task sets than Algorithm MC-

PARTITION-UT-0.75, and Algorithm MC-PARTITION. Note that Algorithm MC-PARTITION is

unable to partition tasks with HI-criticality or LO-criticality utilization above 0.75. Thus, for higher

values of total worst-case utilization AlgorithmMC-PARTITION has the least schedulability, since it

67

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Total Worst-case Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

WC

MC

MC-UT-0.75

MC-UT-INC

Figure 4.2: Evaluating mixed-criticality partitioning algorithms: m = 4,n = 20,CP = 0.5,CF = 8

is possible that the task set consists of a task with HI-criticality or LO-criticality utilization greater

than 0.75.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Total Worst-case Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

WC

MC

MC-UT-0.75

MC-UT-INC

Figure 4.3: Evaluating mixed-criticality partitioning algorithms: m = 4,n = 40,CP = 0.5,CF = 8

Observation 2. In Figure 4.2 where n = 20, vs. Figure 4.3 where n = 40, we observe that the

schedulability of all the algorithms increase. All parameters, except n, in both these figures are the

68

same. This is because for larger number of tasks the utilization of each task in a task set is smaller,

and intuitively this increases the schedulability of partitioning algorithms.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Total Worst-case Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

WC

MC

MC-UT-0.75

MC-UT-INC

Figure 4.4: Evaluating mixed-criticality partitioning algorithms: m = 4,n = 40,CP = 0.2,CF = 8

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Total Worst-case Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

WC

MC

MC-UT-0.75

MC-UT-INC

Figure 4.5: Evaluating mixed-criticality partitioning algorithms: m = 4,n = 40,CP = 0.8,CF = 8

Observation 3. When the probability CP is such that there are many HI-criticality tasks or many

LO-criticality tasks, for example in Figure 4.4 where CP = 0.2 and in Figure 4.5 where CP = 0.8,

the schedulability of Algorithm MC-PARTITION decreases because it is unable to use more than

69

75% of the HI-criticality or LO-criticality computing capacity. In the case where there are many

HI-criticality tasks, for example in Figure 4.5 where CP = 0.8, the schedulability of Algorithm

MC-PARTITION-UT-0.75 also decreases because it is unable to schedule the larger HI-criticality

workload. Under both these situations Algorithm MC-PARTITION-UT-INC is able to maintain

schedulability that is comparable to that of Figure 4.3 where CP = 0.5.

These observations were consistent with different values of m.

4.4 EDF-VD Extended

We have thus far assumed that our system consists of tasks with two criticality levels denoted

as LO and HI. In many safety-critical application domains there may be functionalities with more

than two criticality levels. For instance, the DO-178B standard specifies five criticality levels while

the IEC 61508 international standard for industrial use recommends four different Safety Integrity

Levels (SILS). In this section we describe an extension to the EDF-VD scheduling algorithm (Baruah

et al., 2012) that incorporates a fixed number L of criticality levels. We also show how to incorporate

the pessimism of run-time parameters for higher criticality tasks in terms of larger worst-case

execution times and also in terms of the shorter periods, that is we enable consecutive jobs of a

higher criticality task to arrive at higher frequency (Baruah, 2012).

Task Model. The following task model is an extension to the mixed-criticality task model described

in Section 4.1. It incorporates any fixed number L of criticality levels and enables pessimism in

run-time parameters for each criticality level. We characterize an implicit-deadline sporadic mixed-

criticality task τi by the following parameters: τi = (χi,{Ci(1),Ci(2), . . . ,Ci(L)},{Ti(1),Ti(2), . . . ,

Ti(L)}), where

• χi ∈ 1,2, . . . ,L denotes the criticality. A task τi with χi = k, where k ≤ L, must be certified to

be schedulable assuming that it can require up to Ci(k) units of processing time, and it can

arrive with a frequency equal to but no sooner than Ti(k).

70

• Ci(1) is the WCET of task τi at criticality level 1, Ci(2) is the WCET of task τi at criticality

level 2, . . . , Ci(L) is the WCET of task τi at criticality level L. We assume that Ci(1) ≤

Ci(2) . . .≤Ci(L)

• Ti(1) is the minimum frequency of task τi at criticality level 1, Ti(2) is the minimum frequency

of task τi at criticality level 2, . . . , Ti(L) is the minimum frequency of task τi at criticality

level L. We assume that Ti(1)≥ Ti(2) . . .≥ Ti(L)

A MC task system τ is a finite collection of MC tasks: τ = {τ1,τ2, . . . ,τn}. We study the

problem of scheduling such MC task systems on a uniprocessor platform.

Behaviors. A system is considered to exhibit k-criticality behavior if the execution of the system

satisfies the property that for each task τi, all jobs of τi execute for at most Ci(k) time units and

successive jobs of τi arrive at least Ti(k) time units apart. Any execution that exhibits behavior not

allowed by any of the k criticality levels is said to be erroneous.

Correctness. A scheduling algorithm for the given system is said to be correct if it satisfies the

property that for each task τi with criticality at least k, all jobs of τi complete execution before there

deadline in any k-criticality behavior of the system.

We modify the EDF-VD scheduling algorithm for the mixed-criticality model described above.

We also present a sufficient schedulability analysis for the derived scheduling algorithm.

The idea behind our modification to the EDF-VD scheduling algorithm is similar to the idea

presented in (Baruah, 2012) and (Baruah et al., 2012) for a system with two criticality levels.

The algorithm essentially ensures that if the system behavior is compliant with some k′-criticality

behavior, jobs of all tasks with criticality greater than k′ complete execution well before their

deadline. This guarantees that if the system changes to a higher k-criticality behavior (k′ < k) during

run-time then there is sufficient computing capacity available to nevertheless complete all jobs of all

tasks with criticality at least k by their deadlines, after discarding all jobs with criticality less than k.

More specifically, suppose that the system is exhibiting (k−1)-criticality behavior and at some

time-instant tk a job of some task τi executes for longer than Ci(k−1) but at most Ci(k) time units,

71

-
6

a tk
?

d̂
?

d

Figure 4.6: A k-criticality job arrives at time a, with deadline at d. It is scheduled using the modified
deadline d̂, which is ≤ d. If there is no criticality change then this job can complete execution by d̂.
However, if there is a criticality change at tk then only jobs with criticality at least k execute as per
their k-criticality behavior. In the latter case, this job can meet its deadline by only executing over
[d̂,d).

or if successive jobs of task τi arrive less than Ti(k−1) but at least Ti(k) time units apart. Thus a

criticality level change has been triggered at time-instant tk, and we are not required to demonstrate

that jobs of tasks with criticality less than k will complete execution by their deadline. Informally,

we would like to ensure that there is enough capacity available on the processor for jobs of each task

τi with criticality at least k that happen to be currently-active –arrived but not completed execution–

complete execution by their deadline, provided only jobs of tasks with criticality at least k execute

henceforth (see Figure 4.6). To achieve this we ensure that as long as the system’s behavior is

consistent with some criticality less than k ((k− 1) in this case), τi’s job would have completed

execution well before its actual deadline (by d̂ in Figure 4.6 whereas the actual deadline is denoted

d). In this way we ensure that if τi’s job is active at time-instant tk, there is sufficient computing

capacity freed up by the discarded jobs of tasks with criticality less than k over the interval [d̂,d] to

schedule τi’s job to completion by its actual deadline.

We can think of our scheduling algorithm as consisting of 2 phases. In the pre-processing phase

a schedulability test is applied to the system and if successful, L additional parameters δ (k) such

that 0 < δ (k)≤ 1 are determined for each criticality level 1≤ k ≤ L. This readies the system for

the run-time phase of the algorithm. During the run-time phase jobs are initially dispatched under

the assumption that the system will behave according to level 1-criticality specifications. If this is

violated, that is if a job of task τi executes for longer than Ci(1) time units but at most Ci(k) time

units, or if successive jobs of task τi arrive less than Ti(1) but at least Ti(k) time units apart then the

system behavior changes to a level k-criticality behavior. In k-criticality behavior currently-active

72

jobs of tasks with criticality less than k are discarded, and no such jobs are subsequently admitted in

the system. Further increase in the criticality level of the system may occur as long k < L; if k = L

then any further increase in the criticality level is considered erroneous.

We now discuss the phases in greater detail.

4.4.1 The pre-processing phase

During this phase we compute the parameters δ (k) for each criticality level 1≤ k ≤ L. These

parameters are passed to the run-time phase of our algorithm which is described in Section 4.4.2.

If we are able to compute the parameters δ (k) for each criticality level then the task system is

schedulable by our algorithm. However, if we are unable to compute a parameter δ (k) for some

criticality level k then the task system may not be schedulable. Therefore, this phase also serves as

a sufficient schedulability test for our algorithm.

Let {δ (1), . . . ,δ (L)}, denote positive real numbers satisfying 0≤ δ (k)≤ 1, where 1≤ k ≤ L.

For each criticality level k we define a corresponding constrained-deadline sporadic task system

τ(k) as follows:

τ(k) =
(Ci(k),((1−δ (k))×Ti(k)),Ti(k)), {∀τi ∈ τ|χi = k}

(Ci(k),(min(δ (χi),1−δ (χi))×Ti(χi)),Ti(k)), {∀τi ∈ τ|χi > k}.
(4.8)

Let τi(k) represent a task is the task system τ(k). (From Section 2.2 recall that each constrained-

deadline sporadic task τi(k) ∈ τ(k) is represented by three parameters:(Ci(k),Di(k),Ti(k)), where

Di(k)≤ Ti(k).)

For each task system τ(k) starting with τ(L) and then proceeding in decreasing order of

criticality we can perform a binary search to derive the largest value of δ (k) for which the task

system τ(k) is EDF-schedulable. An extension to the Demand Bound Function schedulability

73

test (Baruah et al., 1990) for EDF, which is pseudo-polynomial with respect to task parameters can

be used to derive the largest value of δ (k) that ensures that the task system is schedulable under

EDF. If we find a value δ (k) for each criticality level then the task system is schedulable.

The demand bound function DBF(τi, t), bounds the maximum cumulative execution require-

ment by jobs of a task τi that arrive in and have deadlines within any interval of length t. DBF(τi(k), t)

for a task τi(k) in Expression 4.8 for scheduling under EDF is as follows:

DBF(τi(k), t) =
max(0,

⌊
t−(1−δ (k))×Ti(k)

Ti(k)

⌋
+1)×Ci(k), if χi = k

max(0,
⌊

t−min(δ (χi),(1−δ (χi)))×Ti(χi)
Ti(k)

⌋
+1)×Ci(k), if χi > k.

(4.9)

However, if the system is operating at a criticality level below k, and there is a change to

criticality level k, then it can be shown that the demand bound function DBF(τi(k), t) for a task

τi(k) in Expression 4.8 with criticality greater than k increases (because of one additional job) as

follows:

DBF(τi, t) =
max(0,

⌊
t−(1−δ (k))×Ti(k)

Ti(k)

⌋
+1)×Ci(k), if χi = k

max(0,
⌊

t−min(δ (χi),(1−δ (χi)))×Ti(χi)
Ti(k)

⌋
+2)×Ci(k), if χi > k.

(4.10)

We use Equation 4.10 to derive the largest value of δ (k) that ensures that the task system is

EDF-schedulable.

74

4.4.2 Run-time dispatching

Each criticality level k has a run queue Q(k). A job of a task τi with criticality χi is queued

in queue Q(χi) with deadline equal to its period, and is queued in the queue of every criticality

level less than χi with deadline equal to (δ (χi)×Ti(χi)), where δ (χi) is the parameter computed

for the task system τ(k) described in Expression 4.8 such that k = χi. Note that during a criticality

change to level k-criticality, if a job of a k-criticality task is active its deadline is pushed back from

(δ (χi = k)×Ti(k)) to Ti(k), and if a job of a task with criticality greater than k is active its deadline

is pushed back from (δ (χi)×Ti(χi)) to (min(δ (χi),(1−δ (χi)))×Ti(χi)). All currently-active jobs

of tasks with criticality less than k are discarded. Subsequently, jobs of all k-criticality tasks have a

deadline Ti(k) time units after they arrive, and jobs of all tasks with criticality greater than k have a

deadline (δ (χi)×Ti(χi)) time units after they arrive. Jobs of tasks with criticality less than k are

not admitted.

We allow for more than one criticality change to occur at run-time. However, after a criticality

change occurs the system must reach an idle instant, that is all jobs in the system should have

finished execution and the system should be idle at some time-point before another criticality change

can occur.

Additional rules can be specified to switch to a lower criticality level. This could happen for

instance, if the system has been idle for a while. (We will not discuss the process of switching back

to a lower criticality level since this concern is application-specific.)

4.4.3 Proof of correctness

We show the correctness of our algorithm in two steps. First, we show that all the k-criticality

levels are schedulable. We then show that the algorithm correctly schedules all jobs during any

criticality change that may occur during run-time.

Scheduling k-criticality compliant behavior. During the pre-processing phase we choose a pa-

rameter δ (k) for each criticality level k such that the task system τ(k) described in Expression 4.8

75

is EDF-schedulable. This ensures that in criticality level k all jobs of tasks with criticality k can

execute for at most Ci(k) time units in Di(k) = ((1− δ (k))×Ti(k)) time units, which is at most

Ti(k) since 0 ≤ δ (k) ≤ 1. Also, all jobs of tasks with criticality greater than k can execute for

Ci(k) time units in Di(k) = (min(δ (χi),1−δ (χi))×Ti(χi)) time units, which is at most Ti(χi) and

Ti(χi) ≤ Ti(k) because χi > k. This establishes that all k-criticality behaviors of the system are

correctly scheduled by our algorithm.

Scheduling criticality change behavior. Next, consider that a criticality change occurs. Let tk

denote the first time-instant at which the system exhibits k-criticality behavior. Henceforth, all

jobs of tasks with criticality less than k are discarded. If a job of a k-criticality task τi is active

at time tk its deadline is pushed back from (δ (k)×Ti(k)) to Ti(k). Thus, it’s deadline is at least

((1−δ (k))×Ti(k)) time units in the future. Subsequent jobs of such a k-criticality task τi will have

a deadline Ti(k) time units after they arrive. If a job of a task τi with criticality greater than k is

active at time tk its deadline is pushed back from (δ (χi)×Ti(χi)) to (min(δ (χi),1−δ (χi))×Ti(χi))

time units in the future. Subsequent jobs of such a task τi with criticality greater than k will have a

deadline (δ (χi)×Ti(χi)) time units after they arrive.

It can be shown by an extension to the results in (Baruah et al., 1990) that DBF(τi(k), t), as

computed in the Equation 4.10, is the worst-case execution requirement of the jobs of a task τi(k)

with criticality at least k in an interval t following a criticality change.

Since each task system τ(k) such that 1 ≤ k ≤ L, is checked for EDF-schedulability in the

pre-processing phase of our algorithm we conclude that a criticality change to level k is correctly

scheduled by our algorithm. Further, if there is a subsequent criticality change we can use a similar

argument to show that the criticality change is correctly scheduled. Note that in our analysis, it is

essential that a subsequent criticality change occur only after the system has reached an idle instant.

If a criticality change occurs before the system has reached an idle instant, the system may not be

schedulable.

76

4.5 Conclusion

Mixed-criticality systems are increasingly being implemented upon multiprocessor platforms.

We have described and evaluated an algorithm for partitioned scheduling of mixed-criticality

implicit-deadline sporadic task systems upon an identical multiprocessor platform. We use an

existing EDF based mixed-criticality scheduling algorithm as the uniprocessor scheduling algorithm

on each processor. We have also described pragmatic improvements for the algorithm, and compared

the improvements by performing schedulability experiments.

The existing EDF based mixed-criticality scheduling algorithm that we use considers that the

mixed-criticality task system consists of tasks with two criticality levels denoted as LO and HI,

and that the pessimism for HI-criticality tasks is expressed in terms of having a larger worst-case

execution time parameter. It is however common to have tasks with more than two criticality levels

in a given system, for example the DO-178B standard specifies five criticality levels. Further, the

pessimism of higher criticality tasks can be expressed in terms of larger worst-case execution times

and shorter periods, that is jobs of higher criticality tasks may arrive at shorter intervals. We have

shown how to extend the existing EDF based mixed-criticality scheduling algorithm to incorporate

tasks with more than two criticality levels, and express pessimism in the worst-case execution time

and period parameters.

77

CHAPTER 5: LIMITED-PREEMPTION SCHEDULING

In Chapters 3 and 4 we studied partitioned scheduling on multiprocessors, and tasks on each

processor were scheduled as per preemptive EDF or a scheduling algorithm based on preemptive

EDF. In this chapter we study a variation of preemptive EDF scheduling in which preemptions are

not always allowed. The choice of enabling or disabling preemptions is not a trivial one and many

issues have to be considered.

In fully-preemptive scheduling (or simply preemptive scheduling) preemptions are enabled

and a higher priority job can preempt a lower priority job at any time. The lower priority job can

resume execution after all other higher priority jobs have completed execution. In non-preemptive

scheduling preemptions are disabled and a higher priority job may have to wait for a lower priority

job to finish executing, before it can start executing. The latter delays the execution of a higher

priority job. This is one of the main disadvantages of non-preemptive scheduling.

Run-time overheads, described in Section 2.4.2, are higher in preemptive scheduling when

compared to non-preemptive scheduling. Each time a job gets preempted and resumes execution run-

time overheads for managing scheduling queues and reloading cache lines are incurred. This makes

the worst-case execution cost of a task both larger and less predictable. This in turn makes it harder

to estimate the number of preemptions a job may incur during its execution, resulting in inflated

worst-case execution costs for tasks under preemptive scheduling. Further, when preemptions are

enabled a preemption may be forbidden if a job is executing in a critical section. Thus, non-trivial

locking protocols for arbitrating access to shared resources are needed to augment preemptive

scheduling. This increases the complexity of implementing preemptive scheduling algorithms and

the associated run-time overheads. In contrast, arbitrating access to shared resources is trivial in

78

non-preemptive scheduling on uniprocessors and requires simple synchronization techniques on

multiprocessors. (Preemptions are disabled on a per-processor basis).

An alternative to fully-preemptive scheduling and non-preemptive scheduling is a restricted

model of preemptive scheduling referred to as limited-preemptive scheduling. In limited-preemptive

scheduling each job can execute preemptively on a processor until it needs to execute non-

preemptively, possibly to access a shared resource. One of the objectives of this type of scheduling

is to allow non-preemptive access to shared resources while still preserving the schedulability of the

system.

Some examples of shared resources are shared memory and network bandwidth; more recently

work has been done on incorporating Graphical Processing Units (GPUs) as a shared resource

in real-time systems. GPUs are used widely for their ability to speed up graphical computations.

General purpose computing on GPUs has allowed GPUs to be used in applications outside of

graphics. GPUs can be incorporated in real-time systems as shared processing units and a task can

use a GPU or CPU at different times during its execution.

In this chapter our main contribution is a demand-based schedulability test for limited-

preemption scheduling under the global EDF (GEDF) scheduling algorithm for multiprocessors.

This schedulability test was first described in (Chattopadhyay and Baruah, 2014). In addition,

we show how to apply this schedulability test to a multiprocessor, multi-GPU system. In such

systems the execution of a task on a GPU is non-preemptive. A task can execute preemptively on

the processor and then request access to a GPU. After a request is made, one option is for the task

to busy-wait non-preemptively on the processor until its non-preemptive execution on the GPU is

complete. This can be thought of as a limited-preemption scheduling problem.

5.1 System Model

We consider a sporadic task system τ = {τ1, . . . ,τn}, with n constrained-deadline sporadic tasks

τi,1≤ i≤ n. In Section 2.2, we described the traditional constrained-deadline sporadic task model

in which each sporadic task τi = (Ci,Di,Ti) is characterized by a worst-case execution time Ci, a

79

relative deadline Di, and a minimum inter-arrival separation period parameter Ti. Such a sporadic

task generates a potentially infinite sequence of jobs with successive job arrivals separated by at least

Ti time units. Each job has a worst-case execution requirement equal to Ci, that is fully-preemptive,

and has an absolute deadline that occurs Di time units after its arrival time. The utilization Ui of

task τi is Ci
Ti

.

In this chapter each sporadic task τi = (Ci,Li,Di,Ti) has an additional parameter Li that repre-

sents the total length for which a job of a task may need to execute non-preemptively. The total

execution requirement of such a task is Ci+Li, where Ci is fully-preemptive and Li is non-preemptive.

We assume that Li may be non-contiguous. For each task τi, we let the length of its non-preemptive

execution time be represented as an ordered set {Li1, Li2, . . . Lik}, where Li j (j ∈ {1,2, . . . ,k})

represents the maximum length of the jth longest contiguous non-preemptive execution of task τi,

and max{Li j} = Li1. Li is the sum of all such non-preemptive execution lengths: Li = ∑
k
j=1 Li j.

Such a sporadic task can be fully represented as, τi = (Ci,{Li1, Li2, . . . Lik},Di,Ti). Further, we

assume that the preemptive and the non-preemptive execution of a task can be interleaved in any

manner, i.e. we assume that we do not know the start and end points of the non-preemptive execution

Li j of a task.

The Di and Ti parameters denote the same task properties as in the traditional model. The

utilization of a task Ui is Ci+Li
Ti

. We henceforth refer to such tasks as limited-preemption sporadic

tasks and n such tasks make up a limited-preemption sporadic task system τ . We denote U(τ) =

∑
n
i=1Ui as the total utilization.

A traditional sporadic task system is said to be a constrained-deadline sporadic task system if

for each task τi ∈ τ , Di ≤ Ti, and an implicit-deadline sporadic task system if Di = Ti. This definition

is applicable to limited-preemption sporadic task systems as well. In this chapter, we restrict our

attention to constrained-deadline and implicit-deadline limited-preemption sporadic task systems.

The computing platform consists of a multiprocessor with m identical unit-capacity processors.

The scheduling algorithm is GEDF (global EDF). As discussed in Section 2.4.2, in GEDF scheduling

80

the m jobs with the earliest deadline are scheduled on the m processors. Intra-job migrations are

allowed.

We derive a schedulability test for constrained-deadline and implicit-deadline limited-preemption

sporadic task systems for the given computing platform. In the derivation of the schedulability

test we use the concept of Demand Bound Function. This concept was introduced in Section 4.4.3

(Equation 4.9) with respect to mixed-criticality tasks. We now define the demand bound function of

a limited-preemption sporadic task.

Definition 5.1. By an extension to the results in (Baruah et al., 1990), DBF(τi, t) of a limited-

preemption sporadic task τi over an interval t is as follows:

DBF(τi, t) = max(0,(
⌊

t−Di

Ti

⌋
+1)(Ci +Li)). (5.1)

5.2 Related Work

A recent survey (Buttazzo et al., 2013) discusses and compares existing approaches for limited-

preemption scheduling. The following approaches have been proposed in the literature: Preemption

thresholds scheduling, Deferred preemptions scheduling, and Fixed Preemption Points. The ap-

proach that we adopt in this work is deferred preemptions scheduling and is described below. Please

refer (Buttazzo et al., 2013, Section 2) for a description of the other approaches.

Deferred preemptions scheduling was first introduced in (Baruah, 2005) under EDF scheduling.

In this approach, each task τi can execute non-preemptively for a total length of say, qi. It has been

explained in (Buttazzo et al., 2013) that there are two ways in which non-preemptive regions can be

implemented, floating, and activation-triggered.

A floating non-preemptive region can be defined by the programmer by inserting specific

primitives in the task code that disable and enable preemption. However, the start and end time of

this region is not specified. Thus, from an analysis perspective the non-preemptive region can be

thought as “floating” in the code with a duration not exceeding some constant qi.

81

An activation-triggered non-preemptive region can be triggered by the arrival of a higher

priority job say at time t and programmed by a timer to last exactly qi time units, unless the

currently executing job finishes earlier, after which preemption is enabled. Any further arrivals do

not postpone the time t +qi at which preemptions are enabled. Once a preemption takes place at or

after time t +qi, a new higher-priority job can trigger another non-preemptive region.

Schedulability analysis in (Baruah, 2005) assumes floating non-preemptive regions and com-

putes the longest non-preemptive execution qi for each task τi without compromising the feasibility

of the system. Analysis in (Bertogna and Baruah, 2010) assumes the activation-triggered model

and computes a function Q(t) that takes as input the time to the deadline of the executing job, and

provides the amount of time for which such a job could execute non-preemptively when a new

high-priority job arrives without compromising the feasibility of the system.

The analysis in (Baruah, 2005; Bertogna and Baruah, 2010; Short, 2011) was derived for

uniprocessor EDF. The analysis presented in (Fisher and Baruah, 2006) was derived for partitioned

EDF assuming floating non-preemptive floating regions. We are unaware of any demand-based

schedulability analysis under GEDF for multiprocessors for the system model described in Sec-

tion 5.1.

In this chapter we present a schedulability analysis for multiprocessor GEDF scheduling for the

limited-preemption sporadic task model described in Section 5.1. Our model assumes floating non-

preemptive regions, and in our analysis we use the demand bound function to determine whether,

given the task parameters (Ci,Li,Ti,Di) for each task τi, the system is schedulable.

5.3 Schedulability Test

The schedulability test described here extends the schedulability test described in (Baruah,

2007) for fully-preemptive sporadic task systems to limited-preemption sporadic task systems. Note

that if Li = 0 for each task τi = (Ci,Li,Di,Ti) in τ , then the task system is a fully-preemptive sporadic

task system. In the following discussion a task (task system) is assumed to be a limited-preemption

sporadic task (task system) unless mentioned otherwise.

82

The general framework of how we derive the schedulability test is the same as described

in (Baruah, 2007). We consider each task τk separately; when considering a specific τk, we identify

sufficient conditions for ensuring that τk cannot miss any deadlines. To ensure that no deadlines are

missed by any task in τ , these conditions are checked for each of the n tasks, τ1,τ2, . . . ,τn.

Consider any legal sequence of job requests of task system τ for which GEDF misses a deadline.

Suppose that a job of task τk is the one to first miss a deadline, and that this deadline miss occurs at

time-instant td . Let ta denote this job’s arrival time: ta = td−Dk.

Definition 5.2. Let t0 denote the latest time-instant at or before ta at which at least one processor

has finished executing all jobs that arrive before t0 and have absolute deadlines at most td .

Let t = td− t0 and Ak = ta− t0. (Consequently, t is also Ak +Dk).

Note that the definition of t0 is the same as that in (Baruah, 2007). However, in (Baruah, 2007)

only jobs with absolute deadlines at most td are considered in the analysis. (This is valid in the

analysis for fully-preemptive systems since jobs with absolute deadlines greater than td do not

contribute to the deadline miss at time td .) In limited-preemptive systems a job of a task τi having

absolute deadline greater than td can contribute to the deadline miss at time td . In the following

Lemmas it will become clear that a job of a task τi with absolute deadline greater than td does not

start executing in the interval [t0, ta) but it can start executing in the interval [ta, td) and cause a

deadline miss at time td .

Lemma 5.1. A job of task τi with absolute deadline greater than td does not start executing in the

interval [t0, ta).

Proof. Let us assume that a job of task τi with absolute deadline greater than td starts executing

in the interval [t0, ta). Let this job of task τi start executing at time-instant t0 +δ , 0≤ δ < (ta− t0).

As per GEDF this implies that at least on one processor all jobs with absolute deadline at most td

finished executing by time-instant t0 + δ and no job with absolute deadline at most td arrived at

t0 +δ .

83

This makes t0 +δ + ε , ε ' 0, the latest time-instant ≤ ta at which at least one processor has

finished executing all jobs that arrived before t0+δ +ε and with absolute deadline at most td . Since

t0 +δ + ε > t0 and by Definition 5.2 of time-instant t0, we have a contradiction to our assumption.

The lemma follows.

Figure 5.1: The schedule generated by GEDF on two processors, CPU1 and CPU2, for jobs of tasks
τ1, τ2, τ3 and τk is shown. Note that jobs Jk and J2 are released at time ta and job J1 is released
immediately after time ta. Jobs J2 and J3 have an absolute deadline greater than td and cause job Jk
to experience non-preemptive blocking which leads to job Jk missing it’s deadline at time td .

Lemma 5.2. A job of task τi with absolute deadline greater than td can start executing in the interval

[ta, td).

Proof. The scenario shown in Figure 5.1 can be observed under GEDF when non-preemptive

execution is permitted. This scenario was first shown in (Block et al., 2007). Since we consider

implicit-deadline and constrained-deadline tasks, only one job of task τi with absolute deadline

greater than td can execute non-preemptively, for at most Li time units, and contribute to the deadline

miss of task τk at time td . Note that the preemptive execution of jobs with absolute deadline greater

than td does not contribute to the deadline miss at time td .

84

We now identify conditions necessary for a deadline miss to occur, that is for τk’s job to execute

for strictly less than Ck +Lk time units over [ta, td). In order for τk’s job to execute for strictly less

than Ck +Lk time units over [ta, td), it is necessary that all m processors execute jobs other than

τk’s for strictly more than Dk− (Ck +Lk) time units over [ta, td). Let us denote by Γk a collection

of intervals, not necessarily contiguous, of cumulative length exactly Dk− (Ck +Lk) over [ta, td),

during which all m processors are executing jobs other than τk’s job in this GEDF schedule.

For each task τi,1≤ i≤ n, let I(τi) denote the contribution of τi to the work done in this GEDF

schedule during [t0, ta)∪Γk. In order for a deadline miss to occur, it is necessary that the total

amount of work that executes over [t0, ta)∪Γk satisfy the following condition:

∑
τi∈τ

I(τi)> m× (Ak +Dk− (Ck +Lk)). (5.2)

This follows from the observation that all m processors are, by definition, completely busy

executing this work over the Ak time units in the interval [t0, ta), as well as the intervals in Γk of

total length Dk− (Ck +Lk). Note that the total length of the intervals in [t0, ta)∪Γk is equal to

(Ak +Dk− (Ck +Lk)).

Let us say that τi has a carry-in job in this GEDF schedule if there is a job of τi that arrives

before t0 and has not completed execution by t0. In the following discussion we compute upper

bounds on I(τi) if τi has no carry-in job (this is denoted as I1(τi))), or if it does (denoted as I2(τi)).

We separately compute B(τi) which is the maximum non-preemptive blocking due to task τi.

Computing I1(τi). Let us consider the situation when all jobs of τi arrive in the interval [t0, td)

and as a result task τi has no carry-in work. I1(τi) is the total work contributed by all jobs of τi that

arrive in the interval [t0, td) and have absolute deadlines at most td . (Later, we compute B(τi) to

determine the maximum non-preemptive blocking due to a job of task τi with absolute deadline

greater than td .)

Let us first consider a task τi such that i 6= k. In this case, it follows from Definition 5.1 of the

demand bound function that the total work is at most DBF(τi,Ak +Dk). Furthermore, this total

85

contribution cannot exceed the total length of the intervals in [t0, ta)∪Γk. Hence, the contribution of

τi to the total work that must be done by GEDF over [t0, ta)∪Γk is at most

min(DBF(τi,Ak +Dk),Ak +Dk− (Ck +Lk)). (5.3)

Now consider the case i = k. In this case, the job of τk arriving at time-instant ta does not

contribute to the work that must be done by GEDF over [t0, ta)∪Γk, hence its execution requirement

must be subtracted. Also, this contribution cannot exceed the length of the interval [t0, ta) i.e., Ak.

Putting these pieces together we get the following bound on the contribution of τi to the total

work that must be done by GEDF over [t0, ta)∪Γk:

I1(τi) =
min(DBF(τi,Ak +Dk),Ak +Dk− (Ck +Lk)), if i 6= k

min(DBF(τi,Ak +Dk)− (Ck +Lk),Ak), if i = k.
(5.4)

Computing I2(τi). Let us now consider the situation when τi arrives before t0, and hence

potentially carries in some work in the interval [t0, td). It was shown in (Bertogna et al., 2005) that

the total work of a sporadic task τi with carry-in work can be upper-bounded by considering the

scenario in which some job of τi has a deadline at td , and all jobs of τi execute at the very end of

their scheduling windows.

Let the demand bound function DBF ′(τi, t) denote the maximum amount of work that can

be contributed by τi with carry-in work over a contiguous interval of length t. The definition of

DBF ′(τi, t) in (Baruah, 2007) for sporadic tasks can be extended to limited-preemption sporadic

tasks as follows:

86

DBF ′(τi, t) =
⌊

t
Ti

⌋
× (Ci +Li)+min(Ci +Li, t mod Ti). (5.5)

In computing τi’s contribution to the total amount of work that must execute over [t0, ta)∪Γk,

let us first consider i 6= k. In this case, it follows from the definition of demand bound function

DBF ′ that the upper bound on the amount of work contributed by task τi is DBF ′(τi,Ak +Dk).

Furthermore, this contribution cannot exceed the total length of the intervals in [t0, ta)∪Γk. Hence,

the contribution of τi to the total work that must be done by GEDF over [t0, ta)∪Γk is at most:

min(DBF ′(τi,Ak +Dk),Ak +Dk− (Ck +Lk)). (5.6)

Now consider the case i = k. In this case, we know that a job of task τk that arrives at time ta

has a deadline at td and does not contribute to the work that must be done by GEDF over [t0, ta)∪Γk,

hence its execution requirement must be subtracted. Also, this contribution cannot exceed the length

of the interval [t0, ta) i.e., Ak.

From the discussion above we get the following bound on the contribution of τi to the total

work that must be done by GEDF over [t0, ta)∪Γk:

I2(τi) =
min(DBF ′(τi,Ak +Dk),Ak +Dk− (Ck +Lk)), if i 6= k

min(DBF ′(τi,Ak +Dk)− (Ck +Lk),Ak), if i = k.
(5.7)

Computing B(τi). The maximum non-preemptive blocking due to task τi over [t0, ta)∪Γk is

caused by a job of task τi with absolute deadline greater than td . Since we consider constrained-

deadline and implicit-deadline tasks there can be only one such job of task τi in the intervals in

87

[t0, ta)∪Γk. Note that if this job arrives before t0 then it can be considered a carry-in job and I2(τi)

upper bounds its contribution. Therefore, in computing B(τi) we only need to account for the

maximum non-preemptive blocking due to a job of task τi that arrives in the interval [t0, td).

We know from Lemmas 5.1 and 5.2 that a job of task τi that arrives in the interval [t0, td) with

an absolute deadline greater than td can start executing only in the interval [ta, td), of length Dk.

Therefore, the maximum non-preemptive blocking due to task τi is as follows:

B(τi) =
min(Li,Dk), if i 6= k

0, if i = k.
(5.8)

Putting the pieces together. Let us first compute the total amount of carry-in work over the

intervals in [t0, ta)∪Γk. By Definition 5.2 of t0, at most m tasks have not completed execution at

time-instant t0. Consequently, at most m tasks can contribute an amount I2(τi) and the remaining

(n−m) tasks must contribute I1(τi). However, as per Definition 5.2, on at least one processor all

tasks with absolute deadline at most td have completed execution before t0. Thus, on at least one

processor the carry-in work is contributed by a job of a task τ j with absolute deadline greater than

td . Further, it can be shown that such a task τ j has a deadline D j that satisfies D j > t, and that the

maximum amount of carry-in work that task τ j can contribute is the length of its non-preemptive

execution L j. Hence, the total amount of carry-in work can be written as:

∑
(m−1)max

I2(τi)+max{L j}D j>t , (5.9)

where ∑(m−1)max I2(τi) is the sum of the (m−1) largest values of I2(τi), 1≤ i≤ n.

88

Note that Equation 5.9 upper bounds the maximum carry-in work and the maximum non-

preemptive blocking due to jobs that arrive before t0.

We now compute the maximum non-preemptive blocking due to jobs that arrive in the interval

[t0, td). From Equation 5.8 we know that the total non-preemptive blocking caused by such jobs can

be expressed as ∑τi∈τ B(τi). However, this can be pessimistic for the following reason.

We know that a job of task τk arrives at time ta and has a deadline at td , therefore on at least

one processor jobs with absolute deadline greater than td will not start executing in the interval

[ta, td) until the job of task τk has met its deadline. However, as per our assumption the job of task

τk misses its deadline. Therefore, the total non-preemptive blocking is at most (m−1)×Dk. Let Bn

be the maximum non-preemptive blocking due to jobs of all tasks that arrive in the interval [t0, td).

Bn is as follows:

Bn = min(∑
τi∈τ

B(τi),(m−1)×Dk) (5.10)

Let us denote by IDi f f (τi) the difference between I2(τi) and I1(τi):

IDi f f (τi) = I2(τi)− I1(τi). (5.11)

Condition 5.2 may be re-written as follows:

∑
τi∈τ

I1(τi)+ ∑
(m−1)max

IDi f f (τi)+max{L j}D j>t +Bn

> m× (Ak +Dk− (Ck +Lk)).

(5.12)

Observe that all the terms in Condition 5.12 above are completely defined for a given task

system, once a value is chosen for Ak. Hence for a deadline miss of task τk to occur, there must

89

exist some Ak such that Condition 5.12 is satisfied. Conversely, in order for all deadlines of task τk

to be met it is sufficient that Condition 5.12 be violated for all values of Ak. Theorem 5.1 follows

immediately:

Theorem 5.1. Task system τ is GEDF-schedulable upon m unit-capacity processors if for all tasks

τk ∈ τ and all Ak ≥ 0,

∑
τi∈τ

I1(τi)+ ∑
(m−1)max

IDi f f (τi)+max{L j}D j>t +Bn

≤ m× (Ak +Dk− (Ck +Lk))

(5.13)

where I1(τi), IDi f f (τi), and Bn are as defined in Equations 5.4, 5.11, and 5.10 respectively.

5.3.1 Properties

Run-time Complexity. For a given task τk and Ak, it is easy to see that Condition 5.13 can be

evaluated in time linear in n, the number of tasks in the task system:

• Compute I1(τi), I2(τi),B(τi) and IDi f f (τi) for each task τi - total time is O(n).

• Use linear-time selection (Blum et al., 1973) on {IDi f f (τ1), IDi f f (τ2), . . . , IDi f f (τn)} to deter-

mine the (m−1) tasks that contribute to the second sum on the LHS.

• Compute max{L j}D j>t and Bn - total time is O(n).

We now determine the values of Ak. First, we derive the range for the values of Ak and then

determine the individual values of Ak for which Condition 5.13 must be verified.

Theorem 5.2. If Condition 5.13 is to be violated for any Ak, then it is violated for some Ak satisfying

the condition below:

Ak≤
S∑−Dk(m−U(τ))+∑i((Ti−Di)Ui+Li)+m(Ck+Lk)

m−U(τ)
(5.14)

where S∑ denotes the sum of the m largest (Ci +Li).

90

Proof. It can be seen that I1(τi) ≤ DBF(τi,Ak +Dk), I2(τi) ≤ DBF(τi,Ak +Dk)+ (Ci +Li), and

Bn≤∑τi∈τ Li. From this, it can be shown that the LHS of Condition (5.13) is≤ S∑+∑τi∈τ DBF((τi,Ak+

Dk)+Li).

For this to exceed the RHS of Condition (5.13), it is necessary that:

S∑ + ∑
τi∈τ

(DBF(τi,Ak +Dk)+Li)> m(Ak +Dk− (Ck +Lk))

→S∑ +(Ak +Dk)U(τ)+∑
i
((Ti−Di)Ui +Li)

> m(Ak +Dk− (Ck +Lk))

(bounding DBF using the technique in (Baruah et al., 1990))

≡S∑ +DkU(τ)+∑
i
((Ti−Di)Ui +Li)−m(Dk− (Ck +Lk))

> Ak(m−U(τ))

≡Ak ≤
S∑−Dk(m−U(τ))+∑i((Ti−Di)Ui +Li)+m(Ck +Lk)

m−U(τ)
.

The theorem follows.

Further, we only need to consider the non-negative values of Ak. It can also be shown that

Condition (5.13) need only be tested at those values of Ak at which DBF(τi,Ak +Dk) changes for

some τi. To be specific, it is shown in (Brandenburg, 2011, p. 82) that it is sufficient to test only

those values of Ak that satisfy:

Ak = Di−Dk + j×Ti, (5.15)

for all τi ∈ τ and all j ∈ {0,1,2, . . .} that satisfy Condition 5.14. The bound on the maximum

Ak grows exponentially as m−U(τ) approaches 0. However, for values of U(τ) bounded by a

constant strictly less than the number of processors m the following property holds:

91

Property 5.1. The condition in Theorem 5.1 can be tested in time pseudo-polynomial in the task

parameters, for all task systems τ for which U(τ) is bounded by a constant strictly less than the

number of processors m.

Sufficient/Necessary. Theorem 5.1 is an extension to the schedulability test in (Baruah, 2007).

The latter was derived for fully-preemptive sporadic task systems. The schedulability test in (Baruah,

2007) has been shown to be a generalization of the uniprocessor schedulability test in (Baruah et al.,

1990). It is sufficient and necessary when m = 1 and sufficient but not necessary when m > 1.

A limited-preemption sporadic task system τ is a fully-preemptive sporadic task system if

Li = 0 for all tasks τi ∈ τ . It can be shown that, if Li = 0 for all tasks τi ∈ τ then the schedulability

test in Theorem 5.1 reduces to the schedulability test in (Baruah, 2007). This leads to the following

property.

Property 5.2. For fully-preemptive sporadic task systems the schedulability test in Theorem 5.1 is

sufficient and necessary when m = 1 and sufficient but not necessary when m > 1.

We now show that the above property continues to hold for limited-preemption sporadic task

systems, such that Li > 0 for some task τi ∈ τ .

Lemma 5.3. For a task τk and for m = 1 processor, Condition (5.16) determines whether the exact

processor demand over an interval t of length Ak +Dk is at most the length of the interval.

(∑
τi∈τ

I1(τi)+(Ck +Lk))+max{Li}Di>t

≤ Ak +Dk

(5.16)

Proof. As per Equation (5.4) the first term in the LHS of Condition (5.16) is equal to the processor

demand in an interval t by jobs arriving in this interval and having deadlines within this interval.

By Definition 5.2 of t0 no task τi with Di ≤ t can be active at time-instant t0 and one or many tasks

with Di > t can be active at time-instant t0. Under EDF and m = 1 only one such task can execute

non-preemptively in the interval t. The second term in the LHS of Condition (5.16) accounts for the

92

maximum amount of non-preemptive blocking possible due to limited-preemptivity. Thus, the LHS

of Condition (5.16) gives the exact processor demand over some interval t.

Observe that Condition (5.13) reduces to Condition (5.16) for m = 1 by adding (Ck +Lk) to

both LHS and RHS. Thus, by Lemma 5.3, Condition (5.13) determines whether the exact processor

demand over an interval t is at most the length of the interval for m = 1. For m > 1, Condition (5.13)

upper bounds the amount of work carried in on m−1 processors (Refer Equation 5.7). This leads

to the following property.

Property 5.3. For limited-preemption sporadic task systems, such that Li > 0 for some task τi ∈ τ ,

the schedulability test in Theorem 5.1 is sufficient and necessary when m = 1 and sufficient but not

necessary when m > 1.

5.4 Multi-GPU System Model

We have described a schedulability test in Theorem 5.1 and derived and discussed some of

its properties. In Section 5.5 we show how Theorem 5.1 can be used as a schedulability test for a

multiprocessor multi-GPU system. First, we describe the multi-GPU system model.

A job of a task running on a processor can initiate execution on a GPU. Several aspects of GPU

program execution are described in (Elliott et al., 2013). A GPU has an execution engine (EE) and

one or two DMA copy engines (CEs). A copy engine transmits data between system memory and

GPU memory and an execution engine performs some computation on a given data. A possible

sequence of events when a job executes on a GPU is described in (Elliott et al., 2013) and is as

follows. First, the copy engine copies data from the system memory to the GPU memory, followed

by the computation on the execution engine. Finally, the copy engine copies the results from the

GPU memory back to the system memory. Further, GPU operations on the various engines are

non-preemptive.

Let us assume that each task τi ∈ τ , makes k requests to the GPU represented as an ordered

set, {Gi1, Gi2, . . . Gik}, where Gi j > 0, j ∈ {1,2, . . . ,k}, represents the jth longest GPU execution.

93

Each request Gi j can either be a request to a copy engine, execution engine, or a combination of

requests to the copy engine and execution engine. Let Gi be the sum of the execution length of all

the GPU requests a task makes: Gi = ∑
k
j=1 Gi j. If a task does not make any GPU requests, Gi = 0.

Once a job running on a processor initiates execution on a GPU it can either self-suspend or it

can busy-wait on the processor until the GPU execution is complete. When a job self-suspends, the

processor is available for other jobs to execute. This is preferable because the job wastes processor

cycles when busy-waiting. However, busy-waiting benefits from lower overheads (compared to the

cost of suspending and resuming tasks). Therefore, busy-waiting is preferable only if for all tasks

the non-preemptive critical section on the GPU is short. Empirical results obtained in (Brandenburg,

2011, Chapter 7) show that busy-waiting implemented as spin-based locks is useful if a task uses a

resource for at most a few microseconds.

In the case of busy-waiting, a job can busy-wait preemptively, that is it busy-waits until a job

with a higher priority preempts it on the CPU while it continues to execute non-preemptively on

the GPU. This is different from self-suspension only because a lower or equal priority job can start

executing on the CPU after a job self-suspends.

Figure 5.2: Scheduling scenario with m = 1 and g = 1 with non-preemptive busy-waiting.

An alternative to preemptive busy-waiting is non-preemptive busy-waiting. In this case a job

busy-waits non-preemptively on a processor until it completes its GPU execution. This is illustrated

with the help of Figure 5.2. In Figure 5.2, job J1 arrives at time a1 and has a deadline at time d1,

and job J2 arrives at time a2 and has a deadline at time d2. Job J1 starts executing on the GPU just

94

before time a2 while busy-waiting non-preemptively on the CPU. This causes job J2 with a shorter

deadline, thus higher priority, to wait for job J1 to complete its GPU execution before it can preempt

it and start executing on the CPU. Non-preemptive busy-waiting has the least run-time overheads

when compared to preemptive busy-waiting and self-suspensions.

Our analysis focuses on the multi-GPU system model with non-preemptive busy-waiting. Tasks

under this system model can be modeled as limited-preemption sporadic tasks. For each limited-

preemption sporadic task τi ∈ τ , Li j is set equal to the length of the jth longest non-preemptive

critical section on a GPU.

In our system we use a simple synchronization approach (a version of the locking protocol

described in (Block et al., 2007) for non-nested, short resource requests) to control access to the

GPUs. For each GPU we assume there is a spin-lock controlling access to it and for each spin-lock

there is a corresponding FIFO-ordered wait queue. If a job that requests for a GPU can acquire

any spin-lock it can access the GPU protected by that spin-lock, otherwise it is assigned to a wait

queue. A shortest queue mechanism is used to determine which wait queue a job is assigned to.

Once a job is assigned to a wait queue, it waits on this queue until it can acquire the corresponding

spin-lock. For a task τi the length of its non-preemptive execution Li j is equal to the sum of the

execution requirement on a GPU Gi j, and the amount of time it must wait to access a GPU. The

latter is computed in Section 5.5.

We assume that all GPUs are identical, that is the execution requirement Gi j of a task is the

same irrespective of the GPU on which it executes. The number of GPUs is denoted by g. The

number of identical, unit-capacity processors continues to be denoted by m.

5.4.1 Prior GPU Analysis

Several GPU management frameworks have been designed and implemented including Time-

Graph (Kato et al., 2011b), RGEM (Kato et al., 2011a), Gdev (Kato et al., 2012). Analysis of

the RGEM framework includes blocking analysis that is incorporated into classical fixed-priority

scheduling response-time analysis for multiprocessors. Elliott et al. designed and implemented

95

GPUSync (Elliott et al., 2013). In (Elliott and Anderson, 2013) a blocking analysis for a k-exclusion

locking protocol for globally-scheduled job-level static-priority systems for self-suspending spo-

radic tasks has been described. The term k-exclusion means that there are k copies of some resource,

for example GPUs. Recent analysis in (Kim et al., 2013) provides response-time analysis for self-

suspending sporadic tasks under rate monotonic scheduling for multiprocessors. Blocking analysis

is done using a linear programming technique. In (Cong and Anderson, 2013) a schedulability test

for self-suspending tasks under GEDF scheduling is described. This work was not aimed at a GPU

platform but can be extended to GPUs.

In our analysis we assume GEDF scheduling. We present a schedulability test for the non-

preemptive busy-waiting multi-GPU system model using the results of the schedulability analysis

obtained in Theorem 5.1.

5.5 Multi-GPU Schedulability Test

Given the execution length of each GPU request Gi j of a task τi we first need to determine the

length of the non-preemptive execution Li j. For this we have to determine the amount of time a

task τi may have to wait to access one of the g GPUs. This can be computed by upper bounding

the number of GPU requests at any time. The following Lemmas follow directly from the results

obtained in (Block et al., 2007).

Lemma 5.4. There can be at most m GPU requests at any time, one per processor.

Proof. A job of a task can request for a GPU only when it is executing on some processor. If a job

executing on a processor requests for a GPU then it busy-waits non-preemptively until the request

is serviced by the GPU. Thus, no other job of any task can execute on this processor and as a result

no other GPU request can be made from this processor. Since there are m processors there can be at

most m GPU requests at any time.

Lemma 5.5. The length of any wait queue is at most
⌈

m
g

⌉
− 1.

96

Proof. From Lemma 5.4 there can be at most m GPU requests at any time. If a shortest queue

mechanism is used to distribute these requests across the g wait queues, one for each GPU, then

the number of requests on each wait queue is
⌈

m
g

⌉
. Of these requests one is satisfied by the GPU.

Therefore, the length of a wait queue is at most
⌈

m
g

⌉
−1. Note that when g = m the length of any

wait queue is 0.

It has been shown in (Wieder and Brandenburg, 2013) that FIFO-ordered spin-locks offer strong

progress guarantees and is an effective mechanism for non-preemptive busy-waiting.

Let Wi j be the amount of time a job of a task τi has to wait upon making the jth request to the

GPU.

Theorem 5.3. The schedulability test in Theorem 5.1 can be applied to the system model under

consideration if for each task τi and jth GPU request Gi j, Li j = Gi j +Wi j, where:

Wi j = ∑
(dm

g e−1)max

Grs,

r ∈ {1, . . . , i−1, i+1, . . . ,n},s ∈ {1, . . . ,k}. (5.17)

Proof. For a task τi the length of its non-preemptive execution Li j is equal to the sum of the

execution time of its jth GPU request Gi j, and the amount of time it must wait on a wait queue Wi j.

From Lemma 5.5, the length of any wait queue is at most
⌈

m
g

⌉
− 1. Since we consider implicit-

deadline and constrained-deadline task systems, two jobs of the same task cannot be on any of the g

wait queues at the same time. Thus, Equation (5.17) upper bounds the term Wi j.

Note that if Gi = 0, then a task τi does not make any GPU requests. Therefore, it does not have

to wait to access the GPU and Li = 0. Also, when g = m, Li j = Gi j in the multi-GPU system model

with non-preemptive busy-waiting.

97

With non-preemptive busy-waiting we do not get any analytical benefits when g > m. However,

we can get analytical benefits when g > m for the self-suspending and preemptive busy-waiting

system models discussed in Section 5.4. Also, in our system model we assume that the GPU

can execute only one task at a time. However, the GPU copy engine (CE) and GPU execution

engine (EE) can in fact non-preemptively execute jobs of two different tasks at the same time (see

Figure 5.3). This parallelism can be exploited under non-preemptive busy waiting when g < m, and

in the self-suspending and preemptive busy-waiting system model. We leave this as future work.

Figure 5.3: Scheduling scenario for m = 1 and g = 1 under preemptive busy-waiting. Jobs J1 and J2
execute in parallel on the GPU CE and GPU EE effectively reducing the total time spent executing
on the GPU.

5.6 Experimental Evaluation

We perform experiments to determine the effectiveness of our schedulability test in the context

of the multiprocessor, multi-GPU system model. We randomly generated task sets and determined

the percentage of task sets that were schedulable by our schedulability test.

Each task set was generated as follows. The UUnifast-Discard algorithm described in (Davis

and Burns, 2009) was used to generate n task utilizations {u1 . . .un} of some total utilization u(τ).

The period Ti for each task was generated according to a log-uniform distribution in the range 10ms

to 1000ms. All task periods were set to integer values by rounding down from any non-integer

value. The total execution requirement of a task without using a GPU was set to ui×Ti. A portion

98

gi was chosen from a uniform distribution in the range [0,ui×Ti] to denote the execution of a task

on the GPU. We assumed that a task exploits the parallelism provided by a GPU and executes in

lesser time on a GPU when compared to a CPU. Speed up SP is the ratio of the execution time

on the CPU and the execution time on the GPU. Thus, Gi = gi/SP. For simplicity we assume

that a job of a task makes one request to the GPU. The remaining execution time (ui×Ti)− gi,

was set to Ci. Li was computed from Gi. If Gi = 0 then Li = 0. Else, Li was computed using

Equation (5.17) for k = 1. Note that Li = Gi when m = g. Task deadline Di was set equal to Ti for

implicit-deadline task systems, and was chosen from a uniform distribution in the range [ui×Ti,Ti]

for constrained-deadline task systems. Utilization ui generated above is referred to as the effective

utilization of a task and u(τ) as the total effective utilization of task system τ . The actual utilization

of a task is Ui =
Ci+Li

Ti
and the actual total utilization is U(τ) = ∑

n
i=1U(i).

The value of SP for different tasks in a task set depends on the amount of parallelism of each

task on the GPU. For simplicity, in our experiments we assume that all tasks have the same speed

up. A speed up strictly greater than 1 is needed to justify the use of a GPU, higher values of SP are

better.

We randomly generated implicit-deadline task sets, as described above, for m processors with

total effective utilization in the range [m×0.05,m×2), and in increments of m×0.1. For each of

the total effective utilization values, 1000 sets of effective utilization values were generated such

that each set had n values. From the generated utilization values and speed up SP the following task

sets were generated:

• LPE - limited-preemptive task set with g = m.

• LPL - limited-preemptive task set with g = m/2.

• FP - fully-preemptive task set that does not use GPUs for any part of its computation. The

parameters for each task τi were as follows; Ci = ui×Ti, Gi = 0, Li = 0. Thus, the actual

utilization of a task was equal to its effective utilization.

99

We refer to task sets generated from the same effective utilization values as corresponding task

sets. Thus, LPE, LPL, and FP are corresponding task sets.

0.6 1.4 2.2 3.0 3.8 4.6 5.4 6.2 7.0 7.8
Total Effective Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

FP

LPE

LPL

Figure 5.4: Limited-preemption schedulability test: m = 4, n = 40, SP = 30

Our schedulability test was applied to each of the above generated task sets and the results

obtained are shown in Figure 5.4. Different values of m, n, and SP were used in these experiments.

In Figure 5.4, the results are shown for m = 4, n = 40, and SP = 30.

Observation 1. We observe that task set LPE has better schedulability than FP for higher values

of total effective utilization and LPE has significantly better schedulability than LPL. Note that

worst-case execution times for tasks under fully-preemptive scheduling are often larger. Thus, in

practice the schedulability of FP will be lower than what is shown in the graph for a given task

set. From this experiment we can conclude that a small difference in the ratio of the number of

processors to the number of GPUs makes a significant difference in schedulability. This is due to

an increase in the length of the non-preemptive execution Li for any task τi that accesses a GPU.

Also, note that in Figure 5.4 the schedulability of task set FP caps at a total effective utilization of 4

because its actual total utilization is equal to its effective total utilization and m = 4.

To analyze the affect of speed up SP, implicit-deadline task sets were generated for m processors

and g GPUs with m = g. The total effective utilization of the task sets generated was in the range

100

[m×0.05,m×2) in increments of m×0.1. In Figure 5.5 for each total effective utilization, 1000

task sets were generated with SP = 30 and then for each of the 1000 task sets, corresponding task

sets, that is task sets with the same effective utilization values were generated with SP = 20. The

results for m = 4 and n = 40 are shown in Figure 5.5.

Observation 2. With smaller values of SP the length of the non-preemptive execution Li of each

task τi increases. This reduces schedulability. For comparison, we also show the schedulability of

the corresponding fully-preemptive task set in Figure 5.5. We observe that for smaller values of SP

the schedulability of FP can be better than that of LPE.

0.6 1.4 2.2 3.0 3.8 4.6 5.4 6.2 7.0 7.8
Total Effective Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

LPE SP = 30

LPE SP = 20

FP

Figure 5.5: Limited-preemption schedulability test: m = 4, n = 40, m = g

The above experiment was repeated to analyze the affect of the number of tasks in a task set. In

this case, for each total effective utilization mentioned above, 1000 task sets with n = m×5 tasks

were generated and then 1000 task sets with n = m×10 tasks were generated. In both cases SP was

the same. The results for m = 4 and SP = 30 are shown in Figure 5.6.

Observation 3. With smaller number of tasks in a task set the effective utilization of each task

τi increases. As a result the length of its preemptive execution Ci and non-preemptive execution

Li increases. Therefore, schedulability decreases and we observe that for smaller values of total

effective utilization LPE with n = 40 tasks has better schedulability than LPE with n = 20 tasks.

101

0.6 1.4 2.2 3.0 3.8 4.6 5.4 6.2 7.0 7.8
Total Effective Utilization

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
S
ch

e
d
u
la

b
le

 T
a
sk

 s
e
ts

LPE n = 40

LPE n = 20

FP n = 40

FP n = 20

Figure 5.6: Limited-preemption schedulability test: m = 4, SP = 30, m = g

However, for larger values of total effective utilization the schedulability of LPE for larger

number of tasks is dominated by the number of tasks that contribute to the term Bn (Equation 5.10),

where as for smaller number of tasks, even though the length of Li may be greater for each task, the

number of tasks that contribute to the term Bn is fewer. Thus, we observe that for larger values of

total effective utilization the schedulability of LPE for both n = 40 and n = 20 tasks is comparable.

For comparison, we also show the schedulability of the corresponding fully-preemptive task sets in

Figure 5.6 denoted as FP with n = 40 and n = 20 tasks.

5.7 Conclusion

Limited-preemption scheduling is an alternative to the extreme options of fully-preemptive

scheduling and non-preemptive scheduling. While preemptions are better from a schedulability

perspective, run-time overheads incurred by arbitrary preemptions can be large.

In this chapter, we have described a pseudo-polynomial time, demand-based schedulability

test for limited-preemption scheduling under GEDF. We have shown that this test is necessary

and sufficient for uniprocessors, and it is sufficient for multiprocessors. Further, we have shown

102

how to apply this schedulability test to a multiprocessor multi-GPU system with non-preemptive

busy-waiting.

We have also indicated how further analysis may provide better analytical results for the

multi-GPU system model under consideration. A comparison of analytical results under different

multi-GPU system models is merited.

103

CHAPTER 6: SPEED SCALING ON UNIPROCESSORS

Thus far in this dissertation, we have abstracted away the frequency of a processor core by

normalizing it, and denoting it as computing capacity or speed equal to 1. Processor cores are

usually rated at a conservative estimate of the frequency at which they can operate. Thus, processors

can often run at a frequency higher than the frequency rating provided by the manufacturer (that is

at speed greater than 1). Running at a higher frequency improves the performance of a processor,

since more computation can be done in a shorter duration. Operating a processor at a frequency

higher than its suggested frequency rating is called overclocking. There is however, an upper

limit on the frequency at which a processor can operate. This limit depends upon the maximum

instantaneous power a processor can generate at any time t without being compromised. The

relationship between frequency f (t) and power P(t) of a processor at any given time t is given by

the following equation (Liu and Mok, 2003):

P(t) ∝ C.V (t)2. f (t),

where C is the capacitance in the wires (we assume that capacitance is a constant), V (t) is the

supply voltage, and f (t) is the frequency of a processor at any given time t. However, V (t) and f (t)

are related; there is a minimum voltage required to drive a processor at a desired frequency. This

minimum voltage is approximately proportional to frequency. Since V (t) is proportional to f (t),

this leads to the well known relation (Brooks et al., 2000): P(t) ∝ f (t)3. By ensuring that frequency

f (t) is under a certain limit we can limit the maximum power generated by a processor. In the

remainder of this chapter we refer to frequency f (t) as speed S(t), speed is normalized frequency,

and f (t) ∝ S(t). We then obtain the following relation:

104

P(t) ∝ S(t)3. (6.1)

Thus, if a processor always operates below a certain maximum speed say Smax, then we can

limit the instantaneous power generated by the processor.

While overclocking a processor may violate the Thermal Design Power (TDP) rating of the

processor. Violating the TDP rating causes a processor to generate heat at a rate faster than the

cooling system can dissipate (Raghavan et al., 2012), which in turn causes the temperature of the

processor to rise. In order to ensure that a processor is not damaged by the heat generated during

overclocking it is necessary that the temperature of the processor is always under a certain value say

Tmax.

In dynamic overclocking the speed at which a processor operates is varied at run-time while

ensuring that the processor is not compromised. For example, the Turbo Boost technology by

Intel (Rotem et al., 2012) enables dynamic overclocking when there is a demand and the operating

environment is favorable. In this chapter we study dynamic overclocking, or speed scaling on

uniprocessors when there is a demand, and under the constraints that the speed of the processor

should not exceed Smax and the temperature of the processor should not exceed Tmax.

Real-time scheduling can benefit from processors with speed scaling; some sets of real-time jobs

that cannot meet deadlines without overclocking may be able to meet deadlines with overclocking.

Prior work on real-time scheduling on processors with speed scaling include the following

papers: (Yao et al., 1995; Liu and Mok, 2003; Bansal et al., 2004; AlEnawy and Aydin, 2004; Wang

and Bettati, 2006b,a; Bansal et al., 2007; Ahn and Bettati, 2008).

The paper by (Yao et al., 1995) is a seminal paper on the theoretical study of processors with

speed scaling. In (Yao et al., 1995) the objective is to vary the speed of a processor to construct

a schedule for real-time jobs that minimizes the amount of energy used by the processor during

the course of execution. (Energy is power P(t) integrated over time.) The energy usage of a

processor is an important concern for battery-operated devices. Other papers such as (Liu and Mok,

105

2003; AlEnawy and Aydin, 2004) also focus on minimizing the energy used by the processor. The

algorithms, heuristics, and techniques presented in (Yao et al., 1995; Liu and Mok, 2003; AlEnawy

and Aydin, 2004) are effective power management techniques that minimize the energy used by a

processor, and in some cases minimize the maximum power used at any given time t.

When considering sustained execution minimizing the energy used by a processor in the primary

concern. However, when the responsiveness of an application is the primary concern we need to

ensure that a processor can meet the execution demand of the application in a short interval. Thus,

if it is necessary for a processor to overclock in this short interval, then it is also necessary to ensure

that the maximum power generated by the processor and the temperature of the processor are within

desirable limits.

In (Wang and Bettati, 2006b,a; Ahn and Bettati, 2008) the authors use speed scaling to schedule

real-time workload on processors such that maximum temperature reached by a processor is always

below a certain maximum value. In this set of papers the authors adopt a reactive speed scaling

technique, where the processor can overclock at speed SH until it reaches a maximum temperature

Tmax. Once Tmax is reached the processor continues execution at a reduced equilibrium speed SE ,

which keeps the temperature at or below Tmax. (Subsequently, the processor may or may not need to

operate at speed SH depending upon the workload and current temperature.) This ensures that the

temperature of the processor is always below Tmax. Further, by choosing a suitable value of speed

SH we can also constrain the maximum power generated at any time t.

In one set of prior work (Bansal et al., 2004, 2007) the authors describe separate algorithms

for minimizing the energy used by the processor, and for minimizing the maximum temperature

reached by the processor. They also illustrate that power management techniques that are effective

for minimizing energy may not be effective for minimizing temperature. The algorithm proposed

in (Bansal et al., 2004, 2007) to minimize the maximum temperature reached by a processor does

not assume a constraint on the maximum power or maximum speed.

In this work we assume that the maximum temperature Tmax is given, and unlike the work

in (Bansal et al., 2004, 2007) we have an additional constraint that the speed at which the processor

106

operates is at most Smax, which is also given. We derive an offline schedule and a schedulability test

for determining whether a given set of jobs specified according to the model described in Section 2.2

are schedulable on a uniprocessor platform under the given constraints. For convenience the job

model is briefly described in the following section.

6.1 System Model

Consider a set of n jobs. Each job Ji has an arrival time ai, worst-case execution time ci, and

deadline di. A job is scheduled correctly if it can execute for up to ci time units in the interval [ai,di],

that is in the interval between when it arrives at time ai and before its deadline at time di. We seek

to schedule a set of n such jobs J on a uniprocessor platform.

In the uniprocessor platform the temperature at any time t is denoted as T (t), and the speed

at any time t is denoted as S(t). The temperature and speed are scaled such that the ambient

temperature is 0, and the idle speed of the processor is 0. We assume that at time t = 0 the processor

is operating at idle speed. Thus, S(0) = 0. Let the temperature of the processor at time t = 0 be

denoted by T0, where 0 ≤ T0 ≤ Tmax. Thus, T (0) = T0. Once the processor starts executing, the

following conditions should hold:

• Temperature constraint, ∀t : 0≤ T (t)≤ Tmax,

• Speed constraint, ∀t : 0≤ S(t)≤ Smax.

In order to schedule a given set of jobs J on a processor with the above constraints the scheduler

needs to decide at each time t, which job should execute and at what speed the processor must

operate. If the scheduler always chooses a speed at most Smax then the speed constraint is satisfied.

However, this alone does not satisfy the temperature constraint. Therefore, we derive a temperature

model that can be used to determine the temperature of the processor at any time t, and then ensure

that the temperature constraint is satisfied.

107

The temperature model we use was first described in (Bansal et al., 2004, 2007). This tempera-

ture model was derived from the observation that at any given time the net change in temperature

can be shown to be proportional to:

• The heating due to the electric power generated by the device, and

• The cooling due to Newton’s law.

To be specific, the rate of change of temperature at any given time t, dT (t)/dt, is proportional

to P(t) which is the power generated by the device at time t:

dT (t)
dt

∝ P(t) ∝ S(t)3.

Recall that as per Equation 6.1, P(t) ∝ S(t)3.

According to Newton’s law the rate of change of temperature of an object is proportional to the

difference between the temperature of the object and the ambient temperature Tambient , (Campbell

and Haberman, 2008). Thus, dT (t)/dt decreases in proportion to (T (t)− Tambient). We make

the simplifying assumption that Tambient is a constant, and we scale the temperatures such that

Tambient = 0. Thus, we can write Newton’s law as:

dT (t)
dt

∝−T (t).

The rate of change of temperature, dT (t)/dt, can then be defined as follows:

dT (t)
dt

= a×S(t)3−b×T (t), (6.2)

where a and b are constants (Bansal et al., 2007). The constant b ≥ 0 is called the cooling

parameter. We have derived a relation between the speed of a processor and the rate of change of

temperature. The temperature at any time t can be obtained by solving Equation 6.2.

108

6.2 Related Work

To the best of our knowledge only one set of papers (Bansal et al., 2004, 2007) consider

temperature optimization. The goal in (Bansal et al., 2004, 2007) is to minimize Tmax.

Our work is different from (Bansal et al., 2004, 2007) because we assume that we are given Tmax

and our goal is to schedule jobs such that both the temperature and speed constraints are satisfied.

We use results from (Bansal et al., 2007) to derive a schedule and a schedulability test for a set of

n jobs. In particular, we use results from (Bansal et al., 2007) to derive the maximum work that

can be done in an interval [tx, ty] and to obtain a speed profile, that is speed as a function of time t,

during this interval.

In (Bansal et al., 2007), the authors let MaxW (tx, ty,Tx,Ty) denote the maximum work that can

be done starting at time tx at temperature Tx, and ending at time ty at temperature Ty, subject to

the temperature constraint throughout the interval [tx, ty]. The authors compute MaxW (tx, ty,Tx,Ty)

by first solving the unconstrained work problem UMaxW (tx, ty,Tx,Ty), defined as the maximum

possible work that can be done during the interval [tx, ty] subject to the boundary constraint that

T (tx) = Tx and T (ty) = Ty. However, the temperature at any time in the interval [tx, ty] is allowed

to exceed Tmax. The following lemma from (Bansal et al., 2007) provides further insight into the

relation between Tx and Ty.

Lemma 6.1. (Bansal et al., 2007). Suppose that Tx and Ty are at most Tmax. Each of the quantities

MaxW (tx, ty,Tx,Ty) and UMaxW (tx, ty,Tx,Ty) are well defined if and only if Ty ≥ Txe−b(ty−tx).

Proof. The Lemma follows from the fact that the power generated in the interval [tx, ty] should be

nonnegative.

Let UMaxT (t) = UMaxT (tx, ty,Tx,Ty)(t) denote the temperature as a function of time t that

solves UMaxW (tx, ty,Tx,Ty). Thus, UMaxT (t) is the temperature curve that maximizes the amount

of work done without the temperature constraint. From (Bansal et al., 2007) we know that UMaxT (t)

is as follows:

109

UMaXT (t) = c.e(−bt)+d.e(−bt3/2), (6.3)

where c+d = Tx, and d =
Tx.e(−b(ty−tx))−Ty

e(−b(ty−tx))− e(−b(ty−tx)3/2)
.

Let γ and β be defined as follows.

Definition 6.1. (Bansal et al., 2007). γ is the largest value of ty for which the maximum temperature

attained by the curve UMaxT (0, ty,Tx,Tmax)(t) during the interval [0, ty] does not exceed Tmax.

Thus, the curve UMaxT (0,γ,Tx,Tmax)(t) satisfies the temperature constraint, but for any value

γ ′ greater than γ the curve UMaxT (0,γ ′,Tx,Tmax)(t) does not satisfy the temperature constraint.

Definition 6.2. (Bansal et al., 2007). β is the largest value of ty for which the maximum temperature

attained by the curve UMaxT (0, ty,Tmax,Ty)(t) during the interval [0, ty] does not exceed Tmax.

Thus, the curve UMaxT (0,β ,Tmax,Ty)(t) satisfies the temperature constraint, but for any value

β ′ greater than β the curve UMaxT (0,β ′,Tmax,Ty)(t) does not satisfy the temperature constraint.

MaxT (t) = MaxT (tx, ty,Tx,Ty)(t), which is the temperature curve that maximizes the amount

of work done under the temperature constraint, can be derived from UMaxT (t), γ , and β as shown

in the following lemma.

Lemma 6.2. (Bansal et al., 2007). If (ty− tx)≤ (γ +β), then MaxT (t) =UmaxT (t). If (ty− tx)>

(γ +β), then the curve MaxT (t) travels along the curve UMaxT (tx,(tx + γ),Tx,Tmax)(t), then stays

at Tmax until ty−β , and finally travels along the curve UMaxT ((ty−β), ty,Tmax,Ty)(t).

We refer the reader to (Bansal et al., 2007) for details about the proof.

In this work, we use the temperature curve MaxT (t) to derive a speed profile UMaxS(t) =

UMaxS(tx, ty,Tx,Ty)(t), which we define as the speed curve that maximizes the amount of work

that can be done under the temperature constraint but without the speed constraint. Rewriting

Equation 6.2 we get:

110

S(t) =
(

dT (t)/dt +bT (t)
a

)1/3

.

Thus, by Equation 6.2 and Lemma 6.2 the speed function UMaxS(t) corresponding to the

temperature curve MaxT (t) is as follows:

If(ty− tx)≤ (γ +β) :

UMaxS(t) =
(

d(MaxT (t))/dt +bMaxT (t)
a

)1/3

, t ∈ [tx, ty]

Else :

UMaxS(t) =
(

d(MaxT (t))/dt +bMaxT (t)
a

)1/3

, t ∈ [tx, tx + γ]∧ [ty−β , ty]

UMaxS(t) =
(

bTmax

a

)1/3

, t ∈ (tx + γ, ty−β). (6.4)

The maximum work MaxW (tx, ty,Tx,Ty) that can be done under the temperature constraint but

without the speed constraint is then the integral of UMaxS(t) in the interval [tx, ty]:

MaxW (tx, ty,Tx,Ty) =
∫ ty

tx
UMaxS(t)dt. (6.5)

The above Equation 6.5 has been solved in (Bansal et al., 2007) as follows:

If(ty− tx)≤ (γ +β) :

MaxW =−(d/a)1/3
(

b
2

)1/2

(1− e(−b(ty−tx)/2))

where, d =

(
Tx.e(−b(ty−tx))−Ty

e(−b(ty−tx))− e−b((ty−tx)3/2)

)

Else :

111

MaxW =−(d1/a)1/3
(

b
2

)1/2

(1− e(−bγ/2))+(ty− tx− γ−β)

(
bTmax

a

)1/3

+ . . .

− (d2/a)1/3
(

b
2

)1/2

(1− e(−bβ/2))

where, d1 =

(
Tx.e(−bγ)−Tmax

e(−bγ)− e(−bγ3/2)

)
,and d2 =

(
Tmax.e(−bβ)−Ty

e(−bβ)− e(−bβ3/2)

)
. (6.6)

Note that in the above equation, a and b are constants (refer Equation 6.2). Also as per

Definitions 6.1 and 6.2, γ and β can be derived from the values of Tx and Ty respectively. Thus, if

we are given the values of (tx, ty,Tx,Ty) then for any interval [tx, ty] we can compute the value of

MaxW from Equation 6.6.

6.3 Offline scheduling of jobs

We propose a schedule and a schedulability test for a set of jobs J. In Section 6.3.1, we divide

the schedule into many intervals Ik. We determine the subset of jobs J(k) in J that must fully execute

in each interval Ik. We also ensure that all jobs in J are assigned to some interval. Within an interval

the jobs execute as per EDF, thus the job with the earliest deadline is chosen for execution. In

Section 6.3.2, we derive a speed profile (speed as function of time) for each interval. The jobs that

must execute in each interval, and the speed profile for each interval are determined before run-time,

thus we are scheduling the jobs offline. Finally in Section 6.3.3, we put together the results from

Sections 6.3.1 and 6.3.2 to obtain a sufficient schedulability test for the set of jobs J under the given

temperature and speed constraints.

6.3.1 Determining intervals and jobs per interval

We first derive a schedule that is composed of one or more intervals. To compute the intervals

in our schedule we use the following definitions of intensity of an interval g(I) and critical interval

I∗ provided in (Yao et al., 1995).

112

Definition 6.3. (Yao et al., 1995) The intensity of an interval I = [z,z′], starting at time z and

ending at time z′ is:

g(I) =
∑ci

z′− z
,

where the sum is taken over all jobs Ji with [ai,di] ∈ I.

Note that g(I) is the minimum constant speed the processor has to maintain in the interval I to

ensure that all jobs Ji with [ai,di] ∈ I meet their deadlines.

Definition 6.4. (Yao et al., 1995) Let I∗ = [z,z′] be an interval that maximizes g(I). We call I∗ a

critical interval for J and the set of jobs J(I∗) = {Ji|[ai,di] ∈ [z,z′]} the critical group for J.

Within the interval I∗ = [z,z′] only the jobs in the critical group of J(I∗) must execute, and the

minimum constant speed of the processor must be g(I∗). We consider I∗ to be one of the intervals

Ik in our schedule.

Repeat the following steps until J is empty:

1. Identify a critical interval I∗ = [z,z′]; this is the interval that maximizes g(I). Also obtain
the set of jobs J(I∗) that must execute in interval I∗, and the minimum constant speed
g(I∗) the processor must maintain in this interval.

2. Remove J(I∗) from the list of jobs J. Let J = J− J(I∗).

3. If the deadline of any job Ji is in I∗ = [z,z′] then reset the deadline of the job such that
di = di− (z′− z). If the arrival time of any job Ji is in [z,z′] then reset the arrival time of
the job such that ai = z′.

Figure 6.1: Obtaining critical intervals

We can obtain all the intervals in our schedule by the method described in (Yao et al., 1995),

also shown in Figure 6.1. We repeatedly compute the critical interval for the remaining set of jobs.

At the end of each iteration we obtain the following: i) a critical interval I∗, which is one of the

intervals Ik in our schedule, ii) the jobs J(k) that need to be scheduled in this interval, iii) and the

113

minimum constant speed Sk = g(I∗) that the processor must maintain in interval Ik so that the jobs

in J(k) meet their deadlines. (Note that if for some interval Ik, Sk > Smax then we can conclude

that the speed constraint of our schedule will be violated, thus the jobs are not schedulable under

the given constraints. Therefore, for the rest of the discussion we assume that for all intervals Ik,

Sk ≤ Smax.)

In Step 1 of Figure 6.1, we identify a critical interval but we do not specify how we do so. A

simple algorithm to identify the critical interval for a set of jobs J would consider all time points

in the set {ai,di} for all jobs Ji ∈ J, and compare the intensity of every interval that starts at each

time point under consideration. The interval with the largest intensity is the critical interval. This

is a straightforward algorithm and has a run-time complexity of O(n2) where n is the number of

jobs in J. Other algorithms to identify a critical interval that have better run-time complexity can be

derived, but we do not discuss them here.

6.3.2 Determining a speed profile per interval

We now describe how to derive a speed profile for interval Ik such that the amount of work

done in the interval is at least Sk times the length of the interval, and the temperature constraint it

satisfied (Ik and Sk were derived in Section 6.3.1). Further, the speed profile we derive minimizes

the temperature at the end of interval Ik. Note that for an interval Ik a possible speed profile is

to operate the processor at speed Sk for the entire interval. However, with this speed profile the

temperature constraint may be violated, and it depends upon the length of the interval and the value

of Sk. Another possible speed profile corresponds to executing the work as soon as possible at the

beginning of the interval, and to idle the processor for the rest of the interval. The speed profile

we derive is different from the above mentioned speed profiles because in the above cases the

temperature at the end of interval Ik may not be minimized. Intuitively, the lower the temperature at

the end of an interval the more overclocking we can achieve in the next interval.

Once we compute the speed profile we check if the speed constraint is satisfied. Note that

the speed profile we derive is a continuous function of speed with respect to time. We can easily

114

discretize the function is a naı̈ve manner for use in a real-time system. However, we leave an

effective implementation of the speed profile as future work. Before we proceed we need a few

additional definitions.

• Let the time at the beginning of interval Ik be represented as tk−1, and the time at the end of

the interval be represented as tk.

• Let the temperature at the beginning of interval Ik be represented as Tk−1, and the temperature

at the end of the interval be represented as Tk.

In Section 6.3.1 we determined each interval Ik of our schedule, which also provided the start

and end points of the interval. Thus, we know the values of tk−1 and tk for each interval Ik. Let

the values of tk−1 and tk be shifted such that t0 = 0. Then by the assumptions made in Section 6.1

the processor is idle at time t0, and temperature T0 is given. We however do not know Tk for

any interval Ik. Since we know that the amount of work that needs to be done in interval Ik is

Sk× (tk− tk−1), we can compute a value of Tk for each interval Ik by solving Equation 6.6 such

that MaxW (tk−1, tk,Tk−1,Tk) is set equal to Sk× (tk− tk−1). (MaxW (tk−1, tk,Tk−1,Tk), represents

the maximum work that can be done in interval Ik under the temperature constraint with the given

starting and ending conditions.)

In the following Lemmas we derive some properties of UMaxS(t) and MaxW (tk−1, tk,Tk−1,Tk),

which show that computing the value of Tk as above gives the minimum value of Tk for interval Ik.

(The speed profile UMaxS(t) =UMaxS(tk−1, tk,Tk−1,Tk)(t) maximizes the work done in interval

Ik under the temperature constraint with the given starting and ending conditions. UMaxS(t) can be

greater than Smax for some value of t.)

Lemma 6.3. If T ∗k > Tk and S(tk−1) is given, then:

UMaxS(tk−1, tk,Tk−1,T ∗k)(t)≥UMaxS(tk−1, tk,Tk−1,Tk)(t)∀t ∈ [tk−1, tk].

115

Proof. Let t∗ be the last time point at which the two curves intersect. We know that such a time

exists because at time tk−1 the value of both curves is S(tk−1). Since both the curves maximize the

amount of work done, they are identical in the interval [tk−1, t∗]. Thus, in the interval [tk−1, t∗] the

Lemma holds.

We need to prove that the lemma holds in the interval [t∗, tk]. At time tk, UMaxS(tk−1, tk,Tk−1,T ∗k)(tk)

is strictly greater than UMaxS(tk−1, tk,Tk−1,Tk)(tk), because T ∗k > Tk is given. We also know that

the curves do not intersect after t∗. Thus, the lemma follows.

Lemma 6.4. If T ∗k > Tk and S(tk−1) is given, then:

MaxW (tk−1, tk,Tk−1,T ∗k)> MaxW (tk−1, tk,Tk−1,Tk).

Proof. This follows directly from Lemma 6.3. Note that if MaxW (tk−1, tk,Tk−1,T ∗k)=MaxW (tk−1, tk,Tk−1,Tk)

then MaxW (tk−1, tk,Tk−1,T ∗k) is not the maximum amount of work the can be done in the interval

[tk−1, tk], which is a contradiction.

Lemma 6.5. The minimum value of Tk for an interval Ik satisfies the following:

Sk× (tk− tk−1) = MaxW (tk−1, tk,Tk−1,Tk).

Proof. From Lemma 6.4 we know that for a value lower than Tk the amount of work done in interval

Ik will be strictly less than Sk× (tk− tk−1).

The minimum value of Tk such that Sk× (tk− tk−1) = MaxW (tk−1, tk,Tk−1,Tk) can be obtained

by doing a binary search in the range [Tk−1e−b(tk−tk−1),Tmax] (By Lemma 6.1, Tk ≥ Tk−1e−b(tk−tk−1)).

For now assume that we know Tk−1. As per Definition 6.1, we can derive γ given Tk−1.

Suppose that initially Tk =(Tle f t +Tright)/2, Tle f t = Tk−1.e−b(tk−tk−1), and Tright = Tmax. The cho-

sen value of Tk is used to compute β as per Definition 6.2, and then to obtain MaxW (tk−1, tk,Tk−1,Tk)

by solving Equation 6.5.

• If MaxW (tk−1, tk,Tk−1,Tk) = Sk× (tk− tk−1), then we have found the minimum value of Tk.

116

• If MaxW (tk−1, tk,Tk−1,Tk) > Sk× (tk− tk−1), then from Lemma 6.4 we know that we can

choose a lower value of Tk. Therefore, we set Tright = Tk.

• If MaxW (tk−1, tk,Tk−1,Tk) < Sk× (tk− tk−1), then from Lemma 6.4 we know we have to

choose a higher value of Tk. Therefore, we set Tle f t = Tk.

We re-compute Tk = (Tle f t +Tright)/2 and repeat the above steps until we obtain a value of Tk

that satisfies: MaxW (tk−1, tk,Tk−1,Tk) = Sk× (tk− tk−1)

For interval I1 we already know the value of the parameters (t0, t1,T0), and we compute the

minimum value of T1 as per Lemma 6.5. We use the value of the parameters (t1, t2,T1) to compute

the minimum value of T2 and so on. Thus, for each interval Ik:

• We compute the parameters (tk−1, tk,Tk−1,Tk)

• Then by Equation 6.3 and Lemma 6.2, we compute MaxT (t) = MaxT (tk−1, tk,Tk−1,Tk)(t).

MaxT (t) is the temperature profile that maximizes the work done in interval Ik under the

temperature constraint for the given starting and ending conditions.

• From MaxT (t) we compute the speed profile UMaxS(t) by Equation 6.4.

In this manner, we are able to obtain the speed profile UMaxS(t) for each interval. We know

that this speed profile satisfies the temperature constraint. What remains is to determine whether the

speed profile satisfies the speed constraint. This is verified in the following schedulability test.

6.3.3 Sufficient schedulability test

Putting together the results from Sections 6.3.1 and 6.3.2 we derive a sufficient schedulability

test for a set of jobs J.

The pseudo-code for the schedulability test is shown in Figure 6.2. The schedulability test

returns INTERVAL NOT SCHEDULABLE, if in Step 4 for some interval Ik, Sk × (tk − tk−1) >

MaxW (tk−1, tk,Tk−1,Tmax). This is in fact a necessary condition for the following reasons. As

117

1 First obtain the critical intervals as shown in Figure 6.1.
2 Initially k = 1. We are given Tk−1 = T0.
3 for each interval Ik:
4 if Sk× (tk− tk−1)> MaxW (tk−1, tk,Tk−1,Tmax) :
5 return INTERVAL NOT SCHEDULABLE

6 else
7 Compute the minimum value of Tk (Lemma 6.5)
8 if UMaxS(tk−1, tk,Tk−1,Tk)(t)> Smax for some t ∈ [tk−1, tk]
9 return INTERVAL NOT SCHEDULABLE

10 return SCHEDULABLE

Figure 6.2: Sufficient schedulability test for offline scheduling of jobs.

per Definition 6.4, the set of jobs J(k) that execute in interval Ik have to execute in this interval

because these jobs arrive and have deadlines within interval Ik. Further, we derive the minimum

end temperature Tk−1 for interval Ik−1, which is the same as deriving the minimum starting tem-

perature for interval Ik. Intuitively, the lower the starting temperature of an interval, the greater

the maximum amount of work that can be done in the interval. Thus, if for any interval Ik,

Sk× (tk− tk−1)> MaxW (tk−1, tk,Tk−1,Tmax) then as per Lemma 6.4, the set of jobs J(k) are indeed

not schedulable in accordance to the temperature constraint.

Suppose that in Step 7 we obtain a value for Tk such that ∀t ∈ [tk−1, tk] : UMaxS(tk−1, tk,

Tk−1,Tk)(t)≤ Smax. In this case, UMaxS(t) is a speed profile for interval Ik that satisfies both the

speed and temperature constraints, and we can move onto the next interval.

If however the value of Tk is such that UMaxS(tk−1, tk,Tk−1,Tk)(t) > Smax for some value

t ∈ [tk, tk−1] (Step 8), then by Lemma 6.4, for a lower value of Tk the amount of work done in

interval Ik will be less than Sk× (tk− tk−1). By Lemma 6.3, a higher value of Tk will generate a

speed profile UMaxS(t) that will continue to violate the speed constraint. Thus, the schedulability

test returns INTERVAL NOT SCHEDULABLE. However, the speed profile we derive is not optimal

with respect to the problem, therefore there may exist a speed profile S(t), which unlike UMaxS(t)

118

does not maximize the amount of work done in interval Ik. Instead the speed profile S(t) does only

the necessary amount of work and satisfies the speed constraint for a higher value of Tk (we do not

compute the speed profile S(t)). Thus, the schedule may still be feasible under the given constraints.

In order to determine if UMaxS(t)> Smax for some t ∈ [tk, tk−1], we can derive a speed profile which

is a step-function that upper bounds UMaxS(t), and then determine whether the derived speed

profile exceed Smax for some t ∈ [tk, tk−1]. Thus, this test is only a sufficient schedulability test.

The run-time complexity of the schedulability test in Figure 6.2, depends upon the run-time

complexity of i) Step 1 in which we compute the critical intervals, ii) Step 7 in which we perform

a binary search to compute the minimum value of Tk for each interval, iii) and Step 8 in which

we determine whether the condition- UMaxS(tk−1, tk,Tk−1,Tk)(t) > Smax for some t ∈ [tk−1, tk] is

satisfied. The run-time complexity of our schedulability test is dominated by the condition in Step 8.

We can derive a speed profile, which is a step-function that upper bounds UMaxS(t) in pseudo-

polynomial time. We can then determine whether the derived speed profile exceeds Smax for some

t ∈ [tk−1, tk]. Thus, the run-time complexity of the proposed schedulability test is pseudo-polynomial

with respect to the job parameters.

6.4 Conclusion

In this chapter we assume that dynamic overclocking, or speed scaling is allowed on a processor

as long as there is a demand for overclocking, and the temperature and speed constraints are satisfied.

We have identified a temperature model described in (Bansal et al., 2007) that justifiably reflects the

dynamic overclocking behavior allowed on a processor.

We have determined an offline schedule for a set of one-shot jobs on such processors. The

schedule determines which jobs should be scheduled in certain intervals that we derive, and also

determines a speed profile (that is speed as a function of time) for each of the intervals. We have

proposed a sufficient schedulability test for the schedule that verifies whether for a given interval

and speed profile, the jobs scheduled in the interval meet their deadline, and the temperature and

speed constraints are both satisfied.

119

CHAPTER 7: SUMMARY

We now provide a summary of our contributions. We also indicate how our contributions can

be extended and further improved.

We have proposed two partitioning algorithms. One is a PTAS for partitioning on processors

with just one limited resource. This PTAS partitioning algorithm can be extended to partition

tasks onto processors with more than one limited resource. However, for an arbitrary (but fixed)

number of limited resources our extension to the PTAS partitioning algorithm has a large run-time

complexity; the run-time complexity is polynomial with respect to the task parameters but the

degree of the polynomial is very large. Thus, we propose a APX partitioning algorithm, which is

a generalization of the first-fit partitioning algorithm for a single limited resource. Although the

PTAS algorithm has a smaller resource augmentation bound, the APX algorithm is more efficient

with respect to run-time complexity.

The partitioning problem is solved before run-time for any given task set and computing

platform. However, it is likely that the specifications of the task set or the computing platform may

change during the process of deploying the task set onto the computing platform, and a partitioning

algorithm may need to be applied every time the specifications change. Thus, a partitioning

algorithm with an efficient run-time complexity is preferable. This leads to our conclusion that

the APX partitioning algorithm is more pragmatic than the PTAS partitioning algorithm. We also

derive a first-fit decreasing heuristic for the APX partitioning algorithm. We use schedulability

experiments to determine the effectiveness of our heuristic. Further, we can derive worst-fit and

best-fit partitioning algorithms based on the heuristic that we have described. We however, do not

know the exact resource augmentation bound of the worst-fit and best-fit partitioning algorithms.

120

We apply the APX partitioning algorithm and derive a partitioning algorithm for a mixed-

criticality task model. We determine the resource augmentation bound and the run-time complexity

of our mixed-criticality partitioning algorithm. We also propose pragmatic improvements for

our algorithm. We do not know the exact resource augmentation bound of our algorithm with the

pragmatic improvements, but we have shown via schedulability experiments that these improvements

are in fact effective in increasing the schedulability of our algorithm.

We then consider scheduling under limited-preemptions. In limited-preemption scheduling

a job of a task may execute non-preemptively over short intervals (possibly to gain exclusive

access to a shared resource), but executes preemptively otherwise. We derive a demand-based

schedulability test for limited-preemption scheduling under global EDF. This schedulability test

extends an existing schedulability test for fully-preemptive global EDF scheduling. We show that

the run-time complexity of the schedulability test is pseudo-polynomial with respect to the task

parameters. We also show that the schedulability test is necessary and sufficient for uniprocessors

and sufficient for multiprocessors.

Recently, GPUs are being incorporated as a shared resource in real-time systems. Thus far

execution on GPUs is non-preemptive, therefore when a job is granted access to non-preemptively

execute on a GPU one option is for the job to busy-wait non-preemptively on the CPU (other options

are to busy-wait preemptively or self-suspend on the CPU). We have shown how to apply the

schedulability test that we derived for limited-preemption scheduling, as a schedulability test for a

system model that incorporates GPUs as a shared resource and allows non-preemptive busy-waiting.

In this system model we assume that only one job can execute on a GPU at any given time. However,

two jobs of two different tasks can in fact non-preemptively execute on a GPU at the same time;

one job can execute non-preemptively on the GPU copy engine (CE), and another job can execute

non-preemptively on the GPU execution engine (EE). We leave the schedulability analysis of this

type of parallelism as future work.

Finally, we study the dynamic overclocking behavior allowed on a processor and determine

how real-time jobs can be scheduled on processors that enable this behavior. We assume that a

121

processor can overclock only if it needs to meet the execution demand of the jobs being scheduled,

and if the speed and temperature constraints are satisfied. The speed constraint ensures that the

speed (also instantaneous power) at which the processor is operating at any time is under a desirable

limit, and the temperature constraint ensures that the temperature at any time is under a desirable

limit.

We identify a system model and propose an offline scheduling algorithm for scheduling jobs

on such processors. In our scheduling algorithm we determine critical intervals and determine

the jobs that need to be scheduled in each interval, before run-time. The jobs in each interval are

scheduled as per EDF. We also determine the speed profile for each interval, which is a continuous

function of speed with respect to time. (We leave the implementation of this continuous speed

profile as future work.) We propose a sufficient schedulability test to determine if each interval

can be scheduled as per its speed profile such that all jobs meet their deadline, and the speed and

temperature constraints are satisfied. The next step is to identify a scheduling algorithm for online

scheduling of periodic/sporadic tasks.

122

BIBLIOGRAPHY

Ahn, Y. and Bettati, R. (2008). Transient overclocking for aperiodic task execution in hard real-time
systems. In Proceedings of the IEEE EuroMicro Conference on Real-Time Systems (ECRTS).

AlEnawy, T. and Aydin, H. (2004). On energy-constrained real-time scheduling. In Proceedings of
the IEEE EuroMicro Conference on Real-Time Systems (ECRTS).

Bansal, N., Kimbrel, T., and Pruhs, K. (2004). Dynamic speed scaling to manage energy and
temperature. In Proceedings of the IEEE Symposium on Foundations of Computer Science.

Bansal, N., Kimbrel, T., and Pruhs, K. (2007). Speed scaling to manage energy and temperature.
Journal of the ACM, 54(1):3:1–3:39.

Baruah, S. (2005). The limited-preemption uniprocessor scheduling of sporadic task systems. In
Proceedings of the IEEE EuroMicro Conference on Real-Time Systems (ECRTS).

Baruah, S. (2007). Techniques for multiprocessor global schedulability analysis. In Proceedings of
the IEEE Real-Time Systems Symposium (RTSS).

Baruah, S. (2012). Certification-cognizant scheduling of tasks with pessimistic frequency specifica-
tion. In Proceedings of the IEEE Symposium on Industrial Embedded Systems (SIES).

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., van der Ster, S., and
Stougie, L. (2012). The preemptive uniprocessor scheduling of mixed-criticality implicit-
deadline sporadic task systems. In Proceedings of the IEEE EuroMicro Conference on Real-
Time Systems (ECRTS).

Baruah, S. and Burns, A. (2006). Sustainable scheduling analysis. In Proceedings of the IEEE
Real-time Systems Symposium (RTSS).

Baruah, S., Burns, A., and Davis, R. (2011). Response-time analysis for mixed criticality systems.
In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

Baruah, S., Chattopadhyay, B., Li, H., and Shin, I. (2014). Mixed-criticality scheduling on
multiprocessors. Real-Time Systems: The International Journal of Time-Critical Computing,
50(1):142–177.

Baruah, S. and Fisher, N. (2004). A dynamic-programming approach to task partitioning among
memory-constrained multiprocessors. In Proceedings of the International Conference on
Real-time Computing Systems and Applications. Springer-Verlag.

Baruah, S. and Fohler, G. (2011). Certification-cognizant time-triggered scheduling of mixed-
criticality systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

Baruah, S., Mok, A., and Rosier, L. (1990). Preemptively scheduling hard-real-time sporadic tasks
on one processor. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

123

Bastoni, A., Brandenburg, B., and Anderson, J. (2010). An empirical comparison of global,
partitioned, and clustered multiprocessor real-time schedulers. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS).

Bertogna, M. and Baruah, S. (2010). Limited preemption EDF scheduling of sporadic task systems.
IEEE Transactions on Industrial Informatics, 6(4):579–591.

Bertogna, M., Cirinei, M., and Lipari, G. (2005). Improved schedulability analysis of EDF on
multiprocessor platforms. In Proceedings of the IEEE EuroMicro Conference on Real-Time
Systems (ECRTS).

Block, A., Leontyev, H., Brandenburg, B., and Anderson, J. (2007). A flexible real-time locking
protocol for multiprocessors. In Proceedings of the IEEE Embedded and Real-Time Computing
Systems and Applications (RTCSA).

Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and Tarjan, R. E. (1973). Time bounds for selection.
Journal of Computer and System Sciences, 7(4):448–461.

Brandenburg, B. (2011). Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, The University of North Carolina at Chapel Hill.

Brooks, D., Bose, P., Schuster, S., Jacobson, H., Kudva, P., Buyuktosunoglu, A., Wellman, J.-
D., Zyuban, V., Gupta, M., and Cook, P. (2000). Power-aware microarchitecture: design
and modeling challenges for next-generation microprocessors. IEEE Transactions on Micro,
20(6):26–44.

Buttazzo, G., Bertogna, M., and Yao, G. (2013). Limited preemptive scheduling for real-time
systems. A Survey. IEEE Transactions on Industrial Informatics, 9(1):3–15.

Campbell, S. and Haberman, R. (2008). Introduction to Differential equations with Dynamical
systems, pages 68 – 69. Princeton university press.

Chattopadhyay, B. and Baruah, S. (2011). A lookup-table driven approach to partitioned scheduling.
In Proceedings of the IEEE Real-Time Technology and Applications Symposium (RTAS).

Chattopadhyay, B. and Baruah, S. (2012). Partitioned scheduling of implicit-deadline task systems
under multiple resource constraints. In Proceedings of the IEEE International Conference on
Embedded and Real-time Computing Systems and Applications (RTCSA).

Chattopadhyay, B. and Baruah, S. (2014). Limited-preemption scheduling on multiprocessors.
In Proceedings of the ACM International Conference on Real-Time Networks and Systems
(RTNS).

Chekuri, C. and Khanna, S. (2004). On multidimensional packing problems. SIAM Journal of
Computing, 33(4):837–851.

Cong, L. and Anderson, J. (2013). Suspension-aware analysis for hard real-time multiprocessor
scheduling. In Proceedings of the IEEE EuroMicro Conference on Real-Time Systems (ECRTS).

124

Davis, R. and Burns, A. (2009). Priority assignment for global fixed priority pre-emptive scheduling
in multiprocessor real-time systems. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS).

Dertouzos, M. (1974). Control robotics : the procedural control of physical processors. In
Proceedings of the International Federation for Information Processing (IFIP) Congress.

Dorin, F., Richard, P., Richard, M., and Goossens, J. (2010). Schedulability and sensitivity analysis
of multiple criticality tasks with fixed-priorities. Real-Time Systems, 46(3):305 – 331.

Elliott, G. and Anderson, J. (2013). An optimal k-exclusion real-time locking protocol motivated by
multi-gpu systems. Real-Time Systems, 49(2):140–170.

Elliott, G., Ward, B., and Anderson, J. (2013). GPUSync: A framework for real-time gpu manage-
ment. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

Fisher, N. (2007). The Multiprocessor Real-Time Scheduling of General Task Systems. PhD thesis,
Department of Computer Science, The University of North Carolina at Chapel Hill.

Fisher, N., Anderson, J., and Baruah, S. (2005). Task partitioning upon memory-constrained
multiprocessors. In Proceedings of the IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA).

Fisher, N. and Baruah, S. (2006). The partitioned multiprocessor scheduling of non-preemptive
sporadic task systems. In Proceedings of the ACM International Conference on Real-Time and
Network Systems (RTNS).

Guan, N., Ekberg, P., Stigge, M., and Yi, W. (2011). Effective and efficient scheduling for certifiable
mixed criticality sporadic task systems. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS).

Herman, J., Kenna, C., Mollison, M., Anderson, J., and Johnson, D. (2012). RTOS support
for multicore mixed-criticality systems. In Proceedings of IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS).

Hochbaum, D. S. and Shmoys, D. B. (1987). Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. Journal of the ACM, 34(1):144–162.

Huang, H.-M., Gill, C., and Lu, C. (2012). Implementation and evaluation of mixed-criticality
scheduling algorithms for periodic tasks. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS).

Jeffay, K., Stanat, D., and Martel, C. (1991). On non-preemptive scheduling of periodic and sporadic
tasks. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

Kalyanasundaram, B. and Pruhs, K. (2000). Speed is as powerful as clairvoyance. Journal of the
ACM, 37(4):617–643.

125

Kato, S., Lakshmanan, K., Kumar, A., Kelkar, M., Ishikawa, Y., and Rajkumar, R. (2011a). RGEM:
A responsive GPGPU execution model for runtime engines. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS).

Kato, S., Lakshmanan, K., Rajkumar, R., and Ishikawa, Y. (2011b). TimeGraph: GPU scheduling
for real-time multi-tasking environments. In Proceedings of the USENIX Conference on Annual
Technical Conference.

Kato, S., McThrow, M., Maltzahn, C., and Brandt, S. (2012). Gdev: First-class gpu resource
management in the operating system. In Proceedings of the USENIX Conference on Annual
Technical Conference.

Kim, J., Andersson, B., de Niz, D., and Rajkumar, R. R. (2013). Segment-fixed priority scheduling
for self-suspending real-time tasks. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS).

Kou, L. T. and Markowsky, G. (1977). Multidimensional bin packing algorithms. IBM Journal of
Research and Development, 21(5):443–448.

Lakshmanan, K., de Niz, D., and Rajkumar, R. R. (2011). Mixed-criticality task synchronization in
zero-slack scheduling. In Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS).

Li, H. and Baruah, S. (2012). Global mixed-criticality scheduling on multiprocessors. In Proceedings
of the IEEE Euromicro Conference on Real-Time Systems (ECRTS).

Liu, C. and Layland, J. (1973). Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1):46–61.

Liu, J. W. S. (2000). Real-Time Systems. Prentice-Hall Incorporated.

Liu, Y. and Mok, A. (2003). An integrated approach for applying dynamic voltage scaling to hard
real-time systems. In Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS).

Lopez, J. M., Diaz, J. L., and Garcia, D. F. (2004). Utilization bounds for EDF scheduling on real-
time multiprocessor systems. Real-Time Systems: The International Journal of Time-Critical
Computing, 28(1):39–68.

Mok, A. K. (1983). Fundamental Design Problems of Distributed Systems for The Hard-Real-
Time Environment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology. Available as Technical Report No. MIT/LCS/TR-297.

Oh, D.-I. and Baker, T. P. (1998). Utilization bounds for N-processor rate monotone scheduling with
static processor assignment. Real-Time Systems: The International Journal of Time-Critical
Computing, 15:183–192.

Park, T. and Kim, S. (2011). Dynamic scheduling algorithm and its schedulability analysis for
certifiable dual-criticality systems. In Proceedings of the ACM International Conference on
Embedded Software (EMSOFT).

126

Pathan, R. (2012). Schedulability analysis of mixed-criticality systems on multiprocessors. In
Proceedings of the IEEE Euromicro Conference on Real-Time Systems (ECRTS).

Raghavan, A., Luo, Y., Chandawalla, A., Papaefthymiou, M., Pipe, K. P., Wenisch, T. F., and
Martin, M. M. K. (2012). Computational sprinting. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA).

Rotem, E., Naveh, A., Ananthakrishnan, A., Rajwan, D., and Weissmann, E. (2012). Power-
management architecture of the intel microarchitecture code-named sandy bridge. IEEE
Transactions on Micro, 32(2):20–27.

Short, M. (2011). Improved schedulability analysis of implicit deadline tasks under limited
preemption edf scheduling. In Proceedings of the IEEE Conference on Emerging Technologies
Factory Automation (ETFA).

Tamas-Selicean, D. and Pop, P. (2011). Design optimization of mixed-criticality real-time appli-
cations on cost-constrained partitioned architectures. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS).

Vestal, S. (2007). Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

Wang, S. and Bettati, R. (2006a). Delay analysis in temperature-constrained hard real-time systems
with general task arrivals. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).

Wang, S. and Bettati, R. (2006b). Reactive speed control in temperature-constrained real-time
systems. In Proceedings of the IEEE EuroMicro Conference on Real-Time Systems (ECRTS).

Wieder, A. and Brandenburg, B. (2013). On spin locks in autosar: Blocking analysis of fifo,
unordered, and priority-ordered spin locks. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS).

Yao, F., Demers, A., and Shenker, S. (1995). A scheduling model for reduced cpu energy. In
Proceedings of the IEEE Symposium on Foundations of Computer Science.

127

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Thesis Statement
	Contributions

	Background
	One-shot job model
	Liu and Layland Task Model
	Computing Platform model
	Scheduling Algorithms and Schedulability tests
	EDF scheduling
	Partitioned vs. Global scheduling

	Partitioned Scheduling
	System Model
	Context, and related work
	PTAS Partitioning
	Overview: Constructing a lookup table
	Choosing
	Determining utilization values
	Determining legal single-processor configurations
	Determining legal multi-processor configurations
	Task assignment
	Run-time complexity

	APX Partitioning
	Partitioning algorithm
	Run-time complexity
	Resource augmentation bound
	Heuristic improvements
	Experimental evaluation
	Extending to >2 distinct resource types

	Conclusion

	Mixed Criticality
	System Model
	EDF for Mixed Criticality systems
	Algorithm MC-partition
	Run-time complexity
	Speedup bound
	Pragmatic improvements
	Experimental evaluation

	EDF-VD Extended
	The pre-processing phase
	Run-time dispatching
	Proof of correctness

	Conclusion

	Limited-preemption scheduling
	System Model
	Related Work
	Schedulability Test
	Properties

	Multi-GPU System Model
	Prior GPU Analysis

	Multi-GPU Schedulability Test
	Experimental Evaluation
	Conclusion

	Speed scaling on uniprocessors
	System Model
	Related Work
	Offline scheduling of jobs
	Determining intervals and jobs per interval
	Determining a speed profile per interval
	Sufficient schedulability test

	Conclusion

	Summary
	BIBLIOGRAPHY

