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ABSTRACT	
 

Shaili C Jha: Environmental and Genetic Influences on Infant Cortical Thickness and 
Surface Area  

(Under the direction of Rebecca Knickmeyer) 
 

Genetic and environmental influences on cortical thickness (CT) and surface area (SA) are 

thought to vary in a complex and dynamic way across the lifespan. It is established that CT and SA 

are genetically distinct in older children, adolescents, and adults and that heritability estimates vary 

across cortical regions. At these ages, various environmental factors have also been shown to have 

unique influences on cortical structure. Very little is known about how genetic and environmental 

factors determine infant CT and SA. This represents a critical knowledge gap, especially given 

compelling evidence that neuropsychiatric disorders have their ultimate origin in prenatal and early 

postnatal development. In this report, we examine the impacts of 17 major demographic and obstetric 

history variables on inter-individual variation in CT and SA in a unique sample of 805 neonates who 

received MRI scans of the brain around 2 weeks of age. Additionally, we examine genetic influences 

on CT and SA variation using a classical twin model in a subset of 376 twin neonates. Our results 

reveal that birth weight, postnatal age at MRI, gestational age at birth, and sex are significant 

predictors of SA and postnatal age at MRI, paternal education, and maternal ethnicity are significant 

predictors of CT. Additionally, we find that total SA is highly heritable and the relationship between 

total SA and average CT is under significant genetic control during infancy.  Together, these results 

suggest that genetic, obstetric, demographic, and socioeconomic factors are important determinants 

of cortical development during infancy. Both genetic and environmental influences drive individual 
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differences in neonatal SA while variation in neonatal CT is largely explained by environmental 

factors such as paternal education and maternal ethnicity. These findings offer novel insight into how 

genetic and environmental influences shape infant cortical structure during a delicate and highly 

malleable period of neurodevelopment and fill important gaps in the current understanding of CT and 

SA.  
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PREFACE	

 
Chapter 1 provides a review of the basic processes of prenatal and early postnatal brain 

development. It also contains an introduction to pediatric MRI and cortical thickness and surface 

area development. This chapter ends with an outline of the research aims and hypotheses 

presented in this report.   

Chapter 2 is a research chapter that addresses our first specific aim. It details the 

environmental influences on neonatal cortical thickness and surface area. This chapter is a 

manuscript currently under review at Cerebral Cortex.  

Chapter 3 is a research chapter that addresses our second specific aim. It details the genetic 

influences on neonatal cortical thickness and surface area. This chapter is a manuscript in 

preparation.  

Chapter 4 contains a summary of the key findings, an outline of the major contributions to 

the field, and potential future directions for follow-up research.  

 

All references are presented at the end of the dissertation 
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CHAPTER	1:	INTRODUCTION	
 

PRENATAL	AND	EARLY	POSTNATAL	BRAIN	DEVELOPMENT	

Embryonic development  

The formation of the nervous system begins early in development, approximately 2 to 3 

weeks post-conception, and continues well into adolescence. During the first gestational month, 

complex cascades of molecular signaling and gene-gene interactions initiate the processes of 

gastrulation and neurulation. During gastrulation, undifferentiated embryonic tissue become 

specialized into different stem cell lines, including neuroepithelial cells which serve as the 

precursors for all future neurons and glia. Through the process of neurulation, the first 

discernable structure of the nervous system, the neural tube, is formed (Stiles 2008). By the end 

of these fundamental developmental processes, the neural tube elaborates into the 

prosencephalon, mesencephalon, and rhombencephalon which eventually form the forebrain, 

midbrain, and hindbrain (Dudok et al. 2017) and the primary spatial organization of the brain and 

spinal cord is established. In the remaining embryonic period and continuing into the fetal 

period, there are increases in the size and complexity of the brain driven by cellular processes 

controlling the proliferation of neuronal progenitor cells, and the production, migration, and 

differentiation of neurons (Stiles and Jernigan 2010).  

 
Neurogenesis, migration, and differentiation  

Between embryonic days 25 to 42, neuroepithelial cells lining the central cavity of the 

neural tube begin to divide symmetrically, producing two identical neuroepithelial daughter 
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cells. Proliferation of neuroepithelial cells occurs within the ventricular zone (VZ) and is 

mediated by genes regulating cell cycle progression. Those controlling gap junctions, cell cycle 

length, cell cycle exit, and pro- and anti-apoptotic mechanisms that contribute to overall cortical 

size are particularly important	(Sun and Hevner 2014). This period of self-renewing divisions 

exponentially expands the pool of precursor cells, generating a large population of founder cells. 

Disruptions in neuroepithelial expansion have effects on both lateral and radial expansion of the 

cortex and can impact overall cortical size. Examples of aberrant development include 

microcephaly, which results in a reduction in brain size and macrocephaly which is characterized 

by an increase in brain size (Homem et al. 2015).  

After the period of symmetrical division is complete, neuroepithelial progenitors 

transition into radial glial cells, which maintain the properties of stem cells, and begin the 

production of cortical neurons. During this time, an additional proliferative zone, the 

subventricular zone (SVZ), emerges above the VZ and expands rapidly during fetal 

development. Neurogenesis in these proliferative regions is primarily driven by asymmetric cell 

divisions of radial glial cells. These divisions produce a radial glial progenitor cell which 

reenters the mitotic cell cycle and a daughter cell that is an intermediate progenitor, transient 

amplifying progenitor, subapical progenitor, or a basal radial glial cell	(Jiang and Nardelli 2016). 

These populations of cells represent a diverse number of progenitor cell types capable of 

producing neurons and are characterized by the location where they undergo mitosis, the extent 

of cell polarity, and proliferative capacity (Taverna et al. 2014). Neurogenesis is controlled by a 

variety of extracellular signals from the CSF including insulin and fibroblast growth factors, Shh, 

and Wnts that stimulate and regulate the proliferation of progenitor cells and by neighboring 
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progenitor cells that provide intrinsic signaling through proteins like Notch and Numb to 

influence neuron fate (Taverna et al. 2014).  

During prenatal corticogenesis, there are approximately 3.89 million neurons generated 

per hour. Rapid rates of neurogenesis are balanced by events of programmed cell death which 

begin as early as gestational week (GW) 7 (Stiles et al. 2015). The final pool of neurons at the 

end of neurogenesis is determined by the original pool of neuroepithelial cells, the switch from 

symmetrical to asymmetrical cell division, the duration of neurogenesis, and the balancing rates 

of cell death	(Jiang and Nardelli 2016). Processes of symmetrical and asymmetrical cell division 

and resulting pools of progenitor cells and neurons play a crucial role in the ultimate tangential 

and radial organization of the cortex. These events are likely important determinants of the 

cortical structure and will be discussed in more detail in the chapters that follow.  

After birth, neurons in the proliferative areas migrate toward the outer pial surface via 

varying mechanisms, dependent both on the timing and location of neurogenesis. Early in 

development, neurons migrate through means of somal translocation (Ortinau and Neil 2015) 

whereas later in development, neurons migrate radially along scaffolds provided by radial glial 

cells or tangentially via guidance cues (Nadarajah and Parnavelas 2002). Specifically, excitatory 

glutamatergic projection neurons generated in the VZ and the SVZ migrate radially whereas 

GABAergic interneurons, generated within the ganglionic eminence, migrate tangentially into 

the cortical plate (Silbereis et al. 2016). Neuronal migration is regulated by Cajal-Retzius cells 

which produce Reelin signaling to ensure neurons reach their proper location within the cortex 

and stop migrating	(Stiles and Jernigan 2010). Genes involved in cytoskeletal regulation 

including the function and regulation of microtubules (such as LIS1, TUBA1A, TUBB3, and 

DCX) and actin (FilaminA) are also essential for proper neuronal migration	(Liu 2011).  
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 Overall, rates of migration peak between GW 13 and 21 (de Graaf-Peters and Hadders-

Algra 2006) and result in the formation of a six-layer structure organized in an “inside-out” 

pattern. Specifically, early migrating neurons are located in deeper cortical layers and are 

predominantly neurons that project to subcortical areas such as the thalamus, brain stem, and 

spinal cord. Late-migrating neurons are positioned in subsequent outer cortical layers. These 

more superficial layers are composed of intracortical neurons that largely project locally within 

the cortex(Thomson and Lamy 2007; Cooper 2008). After corticogenesis and migration, graded 

signaling of transcriptional factors helps determine the proper radial and tangential position of 

neurons within the cortex	(Sansom and Livesey 2009). Intrinsic and extrinsic cellular cues guide 

the differentiation of neurons resulting in subtypes that have unique cellular, chemical, 

morphological, and anatomical properties  (Stiles 2008). 

 
Synaptogenesis  

After migration and differentiation are complete, neurons begin to integrate into the 

cortex as functional units capable of sending and receiving inputs. This process involves the 

development of axons and dendrites, the construction of pre- and postsynaptic machinery, and 

the formation of functional synapses. Attractive and repulsive chemical cues guide the 

development and fasciculation of axons. These include classical morphogens like Shh and Wnt, 

cell-adhesion molecules, and extracellular matrix molecules that together, provide both short and 

long-range cues that help axons reach their appropriate targets (Jiang and Nardelli 2016). 

Through the specialization of presynaptic axon terminals and postsynaptic membranes, 

functional synapses capable of transmitting electrical and chemical signals are formed.   

All of these mechanisms begin prenatally but show accelerated development after birth 

and into the early postnatal period (Markant and Thomas 2013). Specifically, there is accelerated 
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dendrite growth during the 3rd trimester with high rates continuing into the 1st year of life. Within 

the first 6 months, there is tremendous elaboration of dendritic branches and increases in axonal 

length (Nimchinsky et al. 2002; de Graaf-Peters and Hadders-Algra 2006). In parallel, beginning 

at GW 23 (Markant and Thomas 2013) there is rapid generation of synapses that peaks within the 

first years of life, continuing well into postnatal development (Huttenlocher and Dabholkar 

1997). Synaptogenesis is also a regionally heterogeneous process, with rapid increases in 

synaptic density observed first in the primary visual and auditory systems and much later in 

association areas like the frontal cortex. After peak rates of synaptogenesis, there is an 

overproduction of synapses during early postnatal life that is offset by mechanisms of synaptic 

elimination (Stiles 2008). By adolescence, nearly 50% of the synapses formed during infancy are 

pruned. These regressive processes ensure correct, efficient and refined connections within the 

cortex and are heavily influenced by environmental cues (Jiang and Nardelli 2016). 

 
Gyrification   

The rapid growth and elaboration of the cortex described in the previous sections is 

coupled with large-scale transformations in cortical morphology that begin around GW 23 

(Budday et al. 2015) and result in the formation of a convoluted brain. Cortical folding enables 

the mammalian brain to expand and grow despite the constraints of the skull. The development 

of cortical convolutions begins with the emergence of the longitudinal fissure, which separates 

the left and right hemispheres. After that, primary sulci are formed between GW 14 to 26, 

secondary sulci are formed 30 to 35 weeks and tertiary sulci arise at 36 weeks and continue into 

postnatal development (Stiles and Jernigan 2010).  

Many theories have been proposed to explain the emergence of cortical folding. For 

example, it is posited that external constraints imposed by the internal surface of the skull cause 
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the cortex to fold (Striedter et al. 2015). Other theories suggest that differential rates of 

intermediate and basal radial progenitor proliferation in the SVZ and rapid tangential expansion 

of the outer layers of cortex contribute to the development of gyri (Sun and Hevner 2014). The 

most popular theory of gyrification suggests that axonal tension between cortical areas generates 

a tangential force that causes the cortical sheet to fold (Van Essen 1997).  Because there is no 

concrete model of cortical folding that is agreed upon (Striedter et al. 2015), the many genes 

involved are still under investigation. With that said, genes and molecular pathways essential in 

proliferation, migration and axonal growth are likely important. Moreover, genetic defects in 

LIS1 and DCX genes are known to affect gyral development, resulting in lissencephaly, a cortical 

malformation and neurodevelopmental disorder characterized by a smooth, disorganized, and 

thickened cortex (Lian 2006).  

 
Glial Development 

While this chapter is largely focused on the overall development of cortical neurons, glial 

development is essential to proper neuronal function. After neurogenesis is complete, pro-

neuronal factors are downregulated, and pro-glial transcription factors initiate the generation of 

glia from radial glial progenitors(Jiang and Nardelli 2016). Gliogenesis begins around mid-

gestation, extends into postnatal life, and results in the formation of a diverse population of 

micro and macroglia including astrocytes and oligodendrocytes (Budday et al. 2015). Astrocytes 

serve a key role in the formation and maintenance of synapses. Oligodendrocytes play a pivotal 

role in neuronal signaling by myelinating axonal fibers and ensuring efficient transmission of 

electrical signals (Stiles et al. 2015). The myelination of fiber bundles begins in the third 

trimester, roughly around 32 weeks and continues in a regionally specific manner during the first 
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postnatal years (Qiu, Mori, et al. 2015). The process of myelination gives rise to the white matter 

of the brain observed in neuroimaging studies.  

 
USING	MRI	TO	STUDY	BRAIN	DEVELOPMENT	
 

The use of in vivo brain imaging, specifically MRI, has led to a tremendous increase in 

our understanding of brain development at both structural and functional levels. MRI provides a 

safe, noninvasive, and standardized approach to measuring brain changes across the lifespan.  

During infancy, collecting neuroimaging data poses fundamental limitations related to the 

newborn’s ability to remain asleep and still in a novel and noisy scanning environment (Luby 

2017). Analyzing neuroimaging data during this period also presents unique challenges which 

include low contrast to noise ratio, intensity inhomogeneity across tissue types, smaller 

anatomical structures, and rapidly changing tissue contrasts (Gilmore et al. 2004; Prastawa et al. 

2005). Despite these limitations, collaborative efforts between neuroscientists, radiologists, and 

computer scientists in the last two decades have led to the formation and refinement of infant- 

specific scanning protocols and image analysis tools that have provided researchers with an 

unprecedented window into the developing brain.  

Using structural MRI, Knickmeyer et al. (2008) found that the total volume of the infant 

brain increases an astonishing 101% in the first year and an additional 15% in the second year of 

life. This unprecedented assessment of brain volumes revealed that the majority of postnatal 

growth is explained by gray matter (GM), which increases 149% in the first year alone. During 

this time, substantial regional differences in cortical gray matter are also present. Specifically, 

primary motor and sensory regions grow at slower rates compared to associations regions 

involved in higher-order cognitive functions (Gilmore 2012). Cortical gray matter volumes 

within the cortex can be further delineated into two additional components: cortical thickness 
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and surface area. These morphometric features are the focus of this report and will be discussed 

in more detail below.   

 
CORTICAL	THICKNESS	AND	SURFACE	AREA		
	

Cortical thickness and surface area are thought to be independent dimensions of cortical 

volume, driven by distinct genetic and evolutionary factors (Raznahan et al. 2011). Between 

rodents and primates there is a 2-fold increase in CT and an incredible 1,000-fold increase in SA 

(Rakic 2009). According to the radial unit hypothesis, this enormous enlargement of the cortical 

surface occurs early in the embryonic period and is driven by an increase in proliferative 

capacity of neural precursor cells within the cortex (Mitchell and Silver 2017). Specifically, 

extended periods of symmetrical division produce a larger pool of precursor cells and an 

increased number of cortical columns, leading to the laminar expansion of the cortex. On the 

other hand, an increase in CT is attributed to the number of neurons within each cortical column 

and the enlargement of neuronal processes, glial processes, and synapses (Rakic 1995). These 

processes are largely fetal and early postnatal. More recent studies suggest that the radial glial 

scaffold transforms into a discontinuous structure during mid-neurogenesis. This work has led to 

the “supragranular hypothesis” which posits that during the discontinuous phase, outer radial 

glial (oRG) cells go through self-renewing divisions, increasing the SA of supragranular layers, 

and neurogenic divisions, increasing the thickness of these layers (Nowakowski et al. 2016). 

These findings explain the disproportionate tangential expansion of the upper cortical layers in 

the developing brain. SA and CT development are also related to cortical folding and gyrification 

and are impacted by rates of programmed cell death occurring in both symmetrically dividing 

precursor cells and in neurons throughout development (Rakic 1995; Stiles 2008). 
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With the use of pediatric MR imaging, both CT and SA measures can be separately 

examined postnatally to better understand their developmental origins and growth patterns. A 

recent longitudinal study of healthy twins and singletons examined both global and regional 

trajectories of CT and SA in the first two years of life and found distinct patterns of development 

for each measure. Specifically, CT increased 36% and total SA increased an extraordinary 114% 

on average (Lyall et al. 2015), indicating that SA expansion is the primary driver of volumetric 

increases in GM. Interestingly, by age 2, CT measures reached 97% of adult values while SA 

measures reach about 69%. In the same subset of infants, cortical folding patterns were found to 

be conserved from birth to age 2, revealing major sulci and gyri are well developed and present 

by term birth (Hill et al. 2010; Li et al. 2013). After birth, increased gyrification of the cortex is 

largely driven by changes in association regions with increases of 16.1% in the first year and 

6,6% in the second year of life (Li, Wang, et al. 2014). Studies of CT and SA (Li, Lin, et al. 

2015; Lyall et al. 2015) during early brain development also show heterogeneous patterns of 

growth across the cortex. Specifically, sensory and motor regions are shown to mature earlier 

during development compared to regions involved with higher-order integrative functions. 

Overall, results from these studies capture extremely rapid expansion and growth of the cortex 

during early postnatal development, likely driven by dendritic development, synaptogenesis, and, 

gliogenesis, as well as complex patterns of cortical connectivity and cortical folding (Stiles 

2008). By comparison, annual growth rates during middle and late childhood reach maximum 

values of only 0.005% and 0.015% for CT and SA respectively (Raznahan et al. 2011).  

Overall, early postnatal development represents a window into the effects of prenatal 

brain development and is a critical stage for charting developmental trajectories. Rapid rates of 

CT and SA growth during infancy could result in heightened vulnerability to genetic and 
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environmental disruptions and are linked to risk for psychopathology. Specifically, preliminary 

studies of CT and SA in infants at high risk for schizophrenia suggest that CT development is 

altered in female neonates (Li et al. 2016). Abnormalities in SA are also observed in individuals 

at risk for autism spectrum disorders (ASD) in the first year of life (Hazlett et al. 2017). These 

studies demonstrate that the foundation of many psychiatric conditions is rooted in disturbances 

of early typical brain development and can be observed at structural levels through cortical 

phenotypes like CT and SA.  

 
RATIONALE	&	SPECIFIC	AIMS	
 

As we review in this chapter, the prenatal and early postnatal periods represent a 

foundational phase of human brain development. During early life, tightly regulated patterns of 

gene expression and pre- and postnatal environmental influences shape the structure and function 

of the nervous system (Kandel 2013). The fetal period is characterized by strong temporal 

gradients of protein-coding genes that weaken during infancy, childhood, and adolescence (Kang 

et al. 2011) and by robust regional differences in gene expression that are replaced by global 

similarities in expression during infancy and early childhood (Pletikos et al. 2014; Silbereis et al. 

2016). At the structural level, the prenatal and early postnatal period is characterized by rapid 

micro and macrostructural growth that result in large volumetric and morphometric changes 

(Knickmeyer et al. 2008; Stiles and Jernigan 2010; Gilmore et al. 2012; Lyall et al. 2015). 

Imaging studies in our Early Brain Development Studies (EBDS) cohort demonstrate that 

genetic and environmental factors play an important role in explaining individual variation in 

brain structure during this early period. Classical twin studies reveal high heritability of regional 

gray and white matter volumes at 2 weeks of age (Gilmore et al. 2010) and a genome-wide 

association study (GWAS) has identified a significant genetic variant associated with neonatal 
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gray matter volumes	(Xia et al. 2017). Recently, a population neuroscience study from our group 

revealed gestational age at MRI, gestational age at birth, sex, and birth weight as significant 

obstetric predictors of global and regional gray matter volumes (Knickmeyer et al. 2016). 

The important next step is to establish which morphometric feature of gray matter 

volume (cortical thickness (CT) or surface area (SA)) reflect these environmental and genetic 

relationships. Previous studies have shown CT and SA to be genetically, evolutionarily, and 

phenotypically distinct. CT is thought to be driven by the number of neurons arranged in vertical 

proliferative columns while SA is determined by the number of columns present in the 

developing cortex (Rakic 1995; 2009). While our understanding of CT and SA development is 

expanding, very little is known about the underlying genetic and environmental influences 

during the early postnatal period. Given that the foundation of many psychiatric conditions is 

rooted in disturbances of early brain development (Wolff and Piven 2014; Birnbaum et al. 2015), 

it is vital to address the genetic and environmental factors that control variation in phenotypes 

such as cortical thickness and surface area during these largely understudied time points. 

The objective of this research was to investigate the environmental and genetic 

determinants of neonatal cortical thickness and surface area. This objective was achieved by 

pursuing the aims highlighted below. Overall, by examining how genetic and environmental 

influences contribute to individual differences in CT and SA during a time point of rapid cortical 

growth and heightened developmental vulnerability, we will better understand how genes and 

prenatal factors influence brain structure and ultimately contribute to pathological abnormalities.  

 
Aim 1/Chapter 2: Investigate the influence of major demographic and obstetric history 
variables on cortical thickness and surface area development during infancy 
	

Twin studies demonstrate that environmental factors account for a substantial portion of 

inter-individual variance in brain structure during infancy (Gilmore et al. 2010). The so-called 
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‘envirome’ encompasses an almost infinite variety of exposures and experiences (Anthony 

2001). Within this vast search space, prenatal and early postnatal environmental influences are 

likely to be particularly important. For example, subtle variations in birth weight exert robust 

influences on IQ and surface area well into adolescence (Raznahan et al. 2012). Similarly, effects 

of preterm birth show long-lasting influences on cortical thickness (Lax et al. 2013) and surface 

area (Zhang et al. 2015) during childhood. While these studies provide crucial insights into the 

persistent effects of prenatal influences on childhood and adolescent brain outcomes, they cannot 

address age-specific effects at birth. With comprehensive medical histories and well-established 

pediatric imaging protocols, we can assess the neurodevelopmental consequences of normative 

differences in birth weight, gestational age at birth and many other prenatal and postnatal 

environmental outcomes within the early postnatal period.  

In a previous study of demographic, obstetric, and socioeconomic variables, we found 

that gestational age at MRI, gestational age at birth, sex, and birthweight were the most 

significant predictors of infant brain volumes, explaining 31% to 59% of the overall variance 

(Knickmeyer et al. 2016). How these factors influence cortical structure measures like CT and 

SA has not yet been studied. Thus, we examined the impact of 17 major demographic and 

obstetric history variables on inter-individual variation in CT and SA in a unique sample of 805 

neonates who received MRI scans of the brain around 2 weeks of age. Given the unique 

developmental origins for CT and SA posited by the radial unit hypothesis, we theorized that 

different environmental factors would predict CT and SA development. Additionally, based on 

previous findings in later childhood and adulthood (Raznahan et al. 2011; Walhovd et al. 2012; 

Wierenga et al. 2014; Noble et al. 2015; Walhovd, Krogsrud, et al. 2016), we hypothesized that 

birth weight, sex, and socioeconomic status would determine individual variation in SA to a 
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greater extent than CT. The relationships we reveal may help explain individual variation in 

cognitive ability and risk for psychiatric and neurological disorders, all of which show 

associations with CT and SA.  

 
Aim 2/Chapter 3: Determine genetic contributions to cortical thickness and surface area in 
infancy using a classical twin model and identify regions with shared genetic architecture 
	

Genetic contributions to typical and atypical brain development have been studied 

through candidate gene approaches, genome-wide association studies (GWAS) and classical twin 

and family designs.  The classical twin design compares the similarity of monozygotic (MZ) and 

dizygotic (DZ) twins to estimate the proportion of phenotypic variance attributable to genetics 

versus shared and unique environments. Thus far, these approaches have been applied primarily 

in school age children, adolescents and adults. During this age range, observed genetic effects 

may be confounded or obscured by years of gene-environment interactions, medication use, or 

other factors associated with disease risk such as alcoholism, drug abuse, and social stress. It is, 

therefore, necessary to perform imaging genetic studies at earlier time points in order to better 

assess genetic effects.  

Research carried out by the Early Brain Development Study group at UNC has made 

significant strides toward uncovering genetic influences on brain volumes and white matter 

microstructure in infancy through twin studies (Gilmore, Schmitt, et al. 2010; Geng et al. 2012; 

Lee et al. 2015), a candidate gene study (Knickmeyer, Wang, Zhu, Geng, Woolson, Hamer, 

Konneker, Lin, et al. 2014) and a recent GWAS (Xia et al. 2017). Results from these studies 

clearly demonstrated that genetic factors play a key role in shaping neonatal brain structure. 

What remains unknown is whether these relationships are driven by genetic effects on cortical 

thickness and/or surface area. To address this critical gap, we assessed heritability estimates for 

global and regional CT and SA in 376 subjects 2 weeks after birth using a classical twin study. 
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Cross-ROI genetic correlations were also calculated in order to determine which cortical regions 

are genetically similar. Based on previous studies, we hypothesized that higher heritability 

estimates would be observed for SA compared to CT and for global CT and SA compared to 

regional CT and SA. Results from this analysis will reveal how genetically similar or unique 

cortical measures are during a time of heightened and dynamic CT and SA growth.  

 
The research presented in this report is the first twin study of CT and SA during infancy. 

Our study is also the first to investigate a wide range of important environmental contributions to 

CT and SA. Our results will fill a critical gap in the understanding of normal brain development 

and the environmental and genetic influences on CT and SA. Specifically, we will be able to 

address how genes influence both CT and SA measures, how these changes regionally, and how 

they are correlated. Additionally, our work will provide much needed insight into how infant CT 

and SA differences may be driven by environmental, genetic and developmental factors. 

Promising findings from our work will enable us to prioritize cortical regions for future studies. 

By studying infants, we can assess pre- and perinatal variables of interest with a high degree of 

accuracy and ultimately provide data for a largely understudied period in development.
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CHAPTER	2:	ENVIRONMENTAL	INFLUENCES	ON	INFANT	CORTICAL	THICKNESS	

AND	SURFACE	AREA	
 

INTRODUCTION	
 

Cortical thickness (CT) and surface area (SA) are two independent components of 

cortical volume most commonly studied using structural MRI. Although both measures change 

dynamically across the lifespan (Storsve et al. 2014; Lyall et al. 2015; Remer, Croteau-Chonka, 

Dean, D'Arpino, Dirks, Whiley, and Deoni 2017; Tamnes et al. 2017) recent research suggests 

that early-life events, especially those occurring in the pre- or perinatal period, have pervasive 

and long-lasting effects (Raznahan et al. 2012; Walhovd et al. 2012; Walhovd, Krogsrud, et al. 

2016). Pre- and perinatal events may be especially important for atypical development as small 

differences early in life can have cascading effects on later outcomes (Karmiloff-Smith 1998; 

Masten and Cicchetti 2010). Notably, many neuropsychiatric disorders are characterized by 

altered global and/or regional CT and SA including schizophrenia and bipolar disorder (Rimol et 

al. 2012), autism (Ohta et al. 2016; Yang et al. 2016), and attention deficit hyperactivity disorder 

(Silk et al. 2016). 

Current theories of cortical development also point to the prenatal period as a 

foundational period in the emergence of individual differences in CT and SA. According to the 

radial unit hypothesis, differences in global and regional surface area are driven by the number of 

cortical columns generated during the early embryonic period, while differences in CT are 

attributed to the number and size of cells within a column, packing density, and numbers of 

neuronal processes, glial processes, and synapses, features which arise primarily during the fetal 
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and perinatal periods (Rakic 1995; 2009). More recently, a supragranular layer expansion 

hypothesis has been proposed which posits that outer radial glial cells play a critical role in radial 

and tangential expansion of supragranular layers in primates with potential implications for 

individual differences in CT and SA (Nowakowski et al. 2016). Throughout the prenatal and 

early postnatal developmental window, these processes are influenced by tightly regulated 

patterns of gene expression and environmental signals (Kandel 2013). How these factors 

influence individual variation in early CT and SA is not well understood. 

In this chapter, we report the first large scale neuroimaging study of environmental 

influences on CT and SA during infancy. Our aim was to understand how 17 major demographic 

and medical history variables affect neonatal CT and SA. Studying infants allows us to 

determine pre- and perinatal variables of interest with a high degree of accuracy and reduces 

potential confounding effects that can arise when studying children or adults, where pre- and 

perinatal variables of interest may be correlated with later environmental exposures. Previous 

work by our group (Knickmeyer et al. 2016) revealed that age, sex, gestational age at birth, and 

birth weight are highly significant predictors of neonatal brain volumes, but did not assess CT 

and SA. Based on the theories of cortical development reviewed in this report, we hypothesized 

that different sets of environmental factors would impact CT and SA. Additionally, based on 

previous findings relating birth weight, sex, and socioeconomic status (SES) to cortical structure 

in later childhood/adulthood (Raznahan et al. 2011; 2012; Walhovd et al. 2012; Wierenga et al. 

2014; Noble et al. 2015), we hypothesized that these environmental influences would determine 

individual variation in SA to a greater extent than CT. Given that many complex psychiatric 

diseases are the result of altered neurodevelopmental trajectories that commence in prenatal and 

early postnatal life (Wolff and Piven 2014; Birnbaum et al. 2015), our investigation of 
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environmental influences on neonatal CT and SA represents a fundamental step in developing 

public health interventions to optimize early cortical development and reduce risk for later 

mental illness.  

 
MATERIALS	AND	METHODS	
 
Subjects 

Our study included 805 neonates (434 twins, 371 singletons; 429 males, 376 females) 

between the ages of 6 and 144 days post birth, drawn from two prospective longitudinal studies 

of early brain development being carried out at the University of North Carolina (UNC) at 

Chapel Hill (Gilmore, Kang, et al. 2010; Gilmore, Schmitt, et al. 2010; Gilmore et al. 2012). 

Pregnant mothers were recruited from outpatient obstetrics and gynecology clinics in central 

North Carolina. Women with major medical illnesses or abnormal fetal ultrasounds were 

excluded at enrollment. Maternal reports were used to determine parental demographic 

information such as maternal age, paternal age, maternal education, paternal education, paternal 

ethnicity, maternal ethnicity, total household income, maternal psychiatric history, and paternal 

psychiatric history. Psychiatric history variables were also determined using medical record 

review. Both maternal and paternal psychiatric history were categorized and binarized such that 

individuals were considered positive for psychiatric history if they reported a diagnosis in any of 

the following DSM-V categories, or if medical record review indicated such a diagnosis:  

schizophrenia spectrum and other psychotic disorders, bipolar and related disorders, depressive 

disorders, anxiety disorders, obsessive-compulsive and related disorders, attention-deficit 

hyperactivity disorders, Tourette’s syndrome, or autism-spectrum disorders. Maternal smoking 

during pregnancy was also collected using maternal reports. Labor, delivery, and pediatric 

medical records were used to collect medical history variables such as birth weight, gestational 
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age at birth, 5 minute APGAR scores, stay in neonatal intensive care unit over 24 hours, 

gestation number, and delivery method. Detailed demographic information can be viewed in 

Table 2.1. After complete description of the study to subjects’ parent(s), written informed 

consent was obtained. Study protocols were approved by the Institutional Review Board of the 

UNC School of Medicine. 

Image Acquisition 

MRI images were obtained using either a Siemens Allegra head-only 3T scanner (N=673) 

or a Siemens TIM Trio 3T scanner (N=132) (Siemens Medical System, Inc., Erlangen, Germany) 

during unsedated natural sleep. Subjects were fitted with earplugs and secured into a vacuum-

fixed immobilization device prior to the scan. Heart rate and oxygen saturation were monitored 

using a pulse oximeter. Proton density and T2 weighted structural images were acquired on the 

Allegra using a turbo-spin echo sequence (TSE, TR = 6200ms, TE1 = 20ms, TE2 = 119ms, flip 

angle = 150°, spatial resolution = 1.25mm x 1.25mm x 1.95mm, N = 287, sequence name = 

Type1). For neonates who were deemed unlikely to sleep through the scan session, a “fast” 

turbo-spin echo sequence was collected on the Allegra using a decreased TR, a smaller image 

matrix, and fewer slices (TSE, TR range = 5270ms-5690ms, TE1 range = 20ms-21ms, TE2 

range = 119ms-124ms, flip angle = 150°, spatial resolution = 1.25mm x 1.25mm x 1.95mm, 

N=386, sequence name = Type2). For the Trio, subjects were initially scanned using a TSE 

protocol (TR=6200ms, TE1=17, TE2=116ms, flip angle=150°, spatial resolution= 1.25mm 

x1.25mm x1.95 mm, N = 12, sequence name = Type3) while the rest were scanned using a 3-D 

T2 SPACE protocol (TR=3200ms, TE=406, flip angle=120°, spatial resolution= 1mm x 1mm x 

1mm, N=120, sequence name = Type4). We determined that sequence parameters had a 
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significant influence on both cortical thickness and surface area and therefore included T2 

sequence name (Type1-Type4) as a covariate in all of the analyses described in this study. 

Image Analysis 

Cortical thickness and surface area measures were derived for all subjects using a 

pipeline previously described by Li et al (2016). All MR images were preprocessed for tissue 

segmentation using a standard infant-specific pipeline (Li et al. 2013). Specific steps included 

skull stripping and manual editing of non-brain tissue, removal of the cerebellum and brain stem, 

corrections for intensity inhomogeneity, and rigid alignment of T2-weighted images into an 

average atlas space (Shi et al. 2011).  Gray matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF) were segmented by applying a standalone infant-specific patch driven coupled level 

sets method (Wang et al. 2014). Non-cortical regions were masked and tissues were divided into 

the left and right hemisphere. A deformable surface method (Li et al. 2012; Li, Nie, et al. 2014) 

was applied to the tissue segmentation in order to reconstruct the inner, middle, and outer 

cortical surfaces. This method involved a topological correction of WM volume to ensure 

spherical topology, a tessellation of the corrected WM to generate a triangular mesh, and the 

deformation of the inner mesh towards the reconstruction of each cortical surface while 

preserving the initial topology. All inner, middle, and outer surfaces for the left and right 

hemisphere were visually examined for accurate mapping. 

The inner surface was defined as the boundary between grey and white matter and the 

outer surface as the boundary between the grey matter and CSF. A third, middle cortical surface, 

was defined as the layer lying in the geometric center of the inner and outer surfaces of the 

cortex. CT was computed for each vertex as the average value of the minimum distance from the 

inner to the outer surfaces and the minimum distance from the outer to the inner surfaces. SA 
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was computed based on the central cortical surface. The cortical surface was parcellated into 78 

regions of interest based on an infant-specific 90 region parcellation atlas (Tzourio-Mazoyer et 

al. 2002; Gilmore et al. 2012) as shown in in Figure 2.1. Twelve regions represent subcortical 

structures and were therefore not examined.  The average CT and total SA were calculated for 

each ROI based on corresponding values at each vertex. 

Statistical Analysis 

Parental demographic and medical history variables included maternal age, paternal age, 

maternal education, paternal education, maternal ethnicity, paternal ethnicity, maternal 

psychiatric history, paternal psychiatric history, total household income, and maternal smoking 

during pregnancy. Infant demographic variables included sex, birth weight, gestational age at 

birth, postnatal age at MRI, 5 min APGAR scores, stay in neonatal intensive care unit over 24 

hours, gestation number, and delivery method. See Table S2.1 for a correlation matrix of 

predictor variables (continuous and binary). See Table S2.2 for a comparison of demographic 

variables between Caucasian and African American subjects. See Table S2.3 for a comparison of 

demographic variables by income. To examine the effects of these variables on individual 

differences in neonatal cortical thickness and surface area, we applied a moment-based method 

to select fixed effects in a linear mixed effects model (Ahn et al. 2012; Knickmeyer et al. 2016). 

For the selection of fixed effects, an adaptive lasso penalty was applied with all twin pairs treated 

as repeated measures. Results were bootstrapped 1,000 times. Variables were considered to be 

significant predictors if they were selected more than 800 times. T2 sequence type was included 

as a fixed variable when model selection was run for all surface area and cortical thickness 

measures. To account for overall brain size, total surface area was also fixed for all regional 

surface area model selections and the cubed root of intracranial volume (a sum of gray matter, 
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white matter and cerebrospinal fluid) was fixed in the model selection for average and regional 

cortical thickness. As a sensitivity analysis, model selections were also run without adjusting for 

overall brain size. 

After variable selection, linear mixed effects models were run using the selected variables 

for each region independently. These selected models were used to perform significance testing 

and to generate effect sizes and r2 values. Mixed effects models were also run including all 

variables for comparison. To account for familial relatedness within monozygotic (MZ) and 

dizygotic (DZ) twins, we used a standard ACE model described in Xia et al. (2014), which 

includes additive genetic effects (A), common environmental effects (C) and random 

environmental effects (E). For all regional analyses, adjustments for multiple comparisons were 

made using Benjamini & Hochberg method. FDR <0.05 was considered significant for each 

region of interest.  

 
RESULTS	
 
Average CT 

Postnatal age at MRI, paternal education, and maternal ethnicity emerged as significant 

predictors of average neonatal cortical thickness (Table 2.2). Postnatal age at MRI showed a 

positive relationship, with average cortical thickness (Figure 2.2a) increasing 0.09% every day. 

Paternal education was negatively associated with average CT. With every additional year of 

paternal education, there was a 0.13% decrease in average CT. Significant associations between 

CT and maternal ethnicity were largely driven by differences between Caucasian and African 

American mothers. Compared to offspring of Caucasian mothers, offspring of African American 

mothers showed 1.4% larger average CT, offspring of Asian mothers showed 0.45% larger 

average CT, and offspring of Native American mothers showed 0.29% smaller average CT.  
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Regional CT 

Postnatal age at MRI, gestational age at birth, maternal ethnicity, and paternal education 

emerged as significant predictors of regional CT in at least 10% of regions examined (Table 

S2.4). Postnatal age at MRI showed positive associations with regional CT (Figure 2.3, Table 

S2.5). Specifically, older babies had thicker cortices in the pre- and postcentral gyri, right 

supplementary motor area, right middle cingulate gyrus, insula, and portions of the lateral 

frontal, occipital, and parietal lobes. Gestational age at birth showed negative associations with 

regional CT (Figure 2.3, Table S2.6). Earlier born babies had thicker cortices in the medial and 

lateral frontal lobe, superior and middle temporal poles, right hippocampal gyrus, and postcentral 

gyrus. Paternal education also showed a negative association with regional CT (Figure 2.4, Table 

S2.7). Higher paternal education was associated with thinner cortices in superior frontal, middle 

frontal, and middle orbital frontal gyri as well as in the right inferior frontal pars triangularis, 

right medial superior frontal gyrus, right olfactory region, and right middle temporal gyrus.  

Associations between maternal ethnicity and CT were largely driven by differences 

between infants of Caucasian and African American mothers (Figure 2.5, Table S2.8). Compared 

to offspring of Caucasian mothers, offspring of African American mothers had thicker cortices in 

bilateral postcentral gyri, superior parietal lobules, precuneus, and the supramarginal gyri, as 

well as the right precentral gyrus, insula, inferior parietal lobule, supplementary motor area, and 

rolandic operculum. Compared to offspring of Caucasian mothers, offspring of Asian mothers 

had thicker cortices in the right precentral gyrus, rolandic operculum, supramarginal gyrus, 

insula, and precuneus as well as the left superior parietal lobule. Offspring of Asian mothers had 

thinner cortices in the postcentral gyrus, right superior parietal lobule, right inferior parietal 

lobule, right supplementary motor area, left supramarginal gyrus, and left precuneus. Compared 
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to offspring of Caucasian mothers, offspring of Native American mothers had thicker cortices in 

the precuneus, left postcentral gyrus, right rolandic operculum, right supramarginal gyrus, right 

supplementary motor area, and right insula, and thinner cortices in the right precentral and 

postcentral gyri, superior parietal lobule, right inferior parietal lobule, and right supramarginal 

gyrus. Sex, birth weight and gestational number were also significant predictors of average CT in 

a small number of cortical regions. These results can found in Table S2.9.  

Total SA 

Birth weight, gestational age at birth, postnatal age at MRI, and sex emerged as the most 

significant predictors of total surface area (Table 2.2). Birth weight showed a strong positive 

association with total SA. For every 500g increase in birth weight, there was a 3.6% increase in 

overall cortical SA. Gestational age at birth and postnatal age at MRI also showed strong positive 

associations with total SA (Figure 2.2b-c). Total surface area increased 0.35% for every 

additional day in the womb and 0.51% for every postnatal day. Additionally, sex was a 

significant predictor of total SA, with males having 3.9% larger cortical surfaces than females. 

Regional SA 

We found postnatal age at MRI, birth weight, paternal ethnicity, maternal ethnicity, sex 

and gestational age at birth to be significant predictors of regional SA in a small number of ROIs. 

These results can found in Table S2.10.  

The following were not significant predictors of neonatal CT and SA at either the global 

or regional level: Apgar scores at 5 minutes, delivery method, maternal education, total 

household income, maternal age, paternal age, maternal psychiatric history, paternal psychiatric 

history, and NICU stay over 24 hours. Results of mixed effects models containing all possible 

predictors (Table S2.11) were highly similar to results using the adaptive lasso. Exceptions 
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included birth weight and maternal ethnicity, which did not emerge as significant predictors of 

regional CT in the full mixed models. Additionally, gestational age at birth, sex, and birth weight 

were significant predictors of regional SA in the full model but did not appear in the adaptive 

lasso.  

Secondary Analyses 

In a secondary analysis, model selection was performed without adjusting for overall 

brain size. For regional CT, significant predictors were similar to those in the primary analysis. 

For regional SA, we identified postnatal age at MRI, gestational age at birth, birth weight, 

gestation number, and sex as significant predictors in widespread regions of the cortex (Table 

S2.12).  

 
DISCUSSION	
 

To our knowledge, this study is the first to examine environmental influences on cortical 

thickness and surface area in a large normative sample of neonates. Our findings build on our 

previous work examining the influences of obstetric, demographic, and socioeconomic factors on 

neonatal brain volumes (Knickmeyer et al. 2016) and provide a more refined account of how 

these factors impact early cortical development.  

We found that the cortical surface expanded 0.51% and cortical thickness increased 

0.09% daily between the ages of 6 and 144 days post birth. These results capture extremely rapid 

expansion and growth of the cortex during early postnatal development, likely driven by 

dendritic development, synaptogenesis, and, gliogenesis, as well as complex patterns of cortical 

connectivity and cortical folding (Stiles 2008). By comparison, annual growth rates during 

middle and late childhood reach maximum values of only 0.005% and 0.015% for CT and SA 

respectively (Raznahan et al. 2011). We also found that CT growth patterns were regionally 
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heterogeneous, with primary visual, motor, and auditory regions representing some of the fastest 

growing cortices after birth. This is consistent with longitudinal studies of CT, SA, (Li, Lin, et al. 

2015; Lyall et al. 2015) and cortical volume during early brain development (Gilmore et al. 

2012) that also show heterogeneous patterns of growth across the cortex. Specifically, sensory 

and motor regions are shown to mature earlier during development compared to regions involved 

with higher-order integrative functions. Similar hierarchical organization is observed in older 

children and adolescents, with sensory and motor regions reaching their peak thickness values 

earlier than association cortices (Sowell et al. 2004; Shaw et al. 2008).  While our results were in 

line with these reports, faster growing cortices also included association regions within 

orbitofrontal and prestriate cortex. This suggests there are complex patterns of CT growth after 

birth in both primary sensory and association regions. Given minimal regional differences in 

gene expression during infancy (Pletikos et al. 2014), heterogeneous patterns of CT growth 

observed in our sample may reflect post-transcriptional processes and activity-dependent 

mechanisms sensitive to environmental input. Interestingly, we observed nominal regional 

heterogeneity in surface area growth during this time period. 

We found that gestational age at birth had opposing effects on surface area and cortical 

thickness (positive and negative associations respectively). In keeping with published studies 

showing reduced cortical SA during infancy (Engelhardt et al. 2015) and childhood (Lax et al. 

2013; Rogers et al. 2014; Zhang et al. 2015) in infants born preterm, total SA was larger in later 

born babies. During the late fetal stage, there is rapid growth in brain size driven by the 

accelerated development of cortical surface area relative to cortical volume (Kapellou et al. 

2006). This is likely influenced by the development of sulci, gyri, and cortico-cortical 

connectivity. Our results suggest that being born early disrupts these processes, even in children 
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that are not technically premature ( > 37 weeks). In contrast to SA, later born babies had thinner 

cortices in widespread regions of the frontal lobe as well as the postcentral gyrus, precuneus, and 

the temporal poles. This finding suggests that exposure to the postnatal environment in earlier 

born babies may alter the growth of the cortical mantle in these regions. Compared to the 

intrauterine environment, the extra-uterine environment is rich in sensory information and could 

promote synaptogenesis and complex dendritic morphology, leading to the accelerated growth of 

the cortex. Alternatively, thicker cortices in earlier born babies may reflect cortical overgrowth 

resulting from disrupted apoptotic mechanisms which normally take place late in gestation. 

Thicker cortices in earlier born babies compared to later born babies may also reflect a lack of 

maturation of the underlying white matter (Keunen et al. 2016) which would influence tissue 

classification during automated MRI segmentation protocols. The intrauterine environment is 

critical for the organization of axonal pathways and the processes of premyelination and 

myelination that begin during the second half of pregnancy and are likely interrupted as a result 

of preterm birth (Qiu, Mori, et al. 2015). Additional studies assessing white matter 

microstructure and myelination would help clarify the biological mechanisms underlying these 

findings. 

Overall, the opposing effects of gestational age at birth on CT and SA reaffirm the 

conceptualization of CT and SA as relatively independent phenotypes. This conceptualization is 

further supported by our finding that individual variation in infant CT and SA is explained by 

different sets of environmental factors. Sex and obstetric history variables (especially birth 

weight) had a strong influence on neonatal SA whereas variables related to SES and ethnic 

disparities (paternal education and maternal ethnicity) had a strong influence on CT. Observed 

differences are in keeping with twin studies which consistently report CT and SA to be 
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genetically independent (Jansen et al. 2015), and with current theories of prenatal cortical 

development. In particular, the radial unit hypothesis (Rakic 2009) suggests that the number of 

cortical minicolumns determines the size of the cortical surface and that the number of 

minicolumns depends on the rate of cell proliferation and/or programmed cell death within 

symmetrically-dividing radial glial cells of the ventricular zone (VZ). Differences in CT are 

ascribed to changes in proliferation kinetics of asymmetrically dividing neural progenitor cells, 

as well as to changes in the size of neurons and the amount of tissue situated between neuronal 

cell bodies, which is itself composed of neuronal and glial processes including dendrites, 

dendritic spines, axon terminals and synapses (Rakic 1995; 2009). Additionally, the recently 

proposed supragranular layer expansion hypothesis suggests that at mid-neurogenesis, radial 

glial scaffolds become discontinuous (Nowakowski et al. 2016). During this discontinuous 

phase, self-renewing divisions of oRG cells increase the surface area of supragranular layers, 

while neurogenic divisions of oRG cells increase the thickness of these layers.  

Our findings regarding birth weight and sex are similar to studies in older children and 

adults, which reveal males and heavier born babies have larger surface area but not cortical 

thickness (Raznahan et al. 2011; 2012; Walhovd et al. 2012; Wierenga et al. 2014; Walhovd, 

Fjell, et al. 2016). Our results indicate that these relationships are established during prenatal 

brain development and remains stable throughout childhood and into adulthood, confirming the 

importance of prenatal factors during early development.  Keeping the above 

neurodevelopmental hypotheses in mind, the positive association of birth weight with SA may 

reflect the influence of genetic potential for growth, maternal nutrition and metabolism, 

endocrine factors, and placental perfusion and function on proliferation and apoptosis of radial 

glial cells, as well as on self-renewing divisions of oRG cells, and, in late pregnancy, the 
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development of corticocortical connectivity. Larger total SA in males may reflect the influence 

of gonadal steroids on these same processes. It is notable that testosterone secretion in male 

fetuses is highest between weeks 14 and 18 (Prince 2001), encompassing the latter portion of the 

continuous scaffold stage and the early portions of the discontinuous scaffold stage.  

The association between paternal education and CT may reflect the father's ability to 

provide psychosocial resources during pregnancy and the early postpartum period, support 

healthy maternal behaviors, reduce stress, and provide greater cognitive stimulation in the home 

(Blumenshine et al. 2011; Shapiro et al. 2016). All of these factors may influence asymmetrically 

dividing neural progenitor cells, neurogenic divisions of oRG cells, synaptogenesis, and the 

formation/elaboration of neuronal and glial processes during development. Alternatively, 

associations between neonatal CT and paternal education could be driven by genetic influences. 

Given the rapid rates of CT growth observed in our study, it is somewhat surprising that this 

association is negative such that infants of more educated fathers have thinner cortices, 

especially in the frontal lobes. With that said, our findings are in keeping with previous work 

showing negative correlations between CT and intelligence during early childhood (Shaw et al. 

2006). These findings have led to the hypothesis that children with higher IQs have more 

prolonged maturation of higher order regions. Thus, we hypothesize that infants born to more 

educated fathers may experience a slower, more extended developmental window of the frontal 

lobe that may be advantageous to later cognitive outcomes. It is also possible that thinner 

cortices in offspring of highly educated fathers reflect changes in image contrast caused by the 

myelination of underlying white matter (Sowell et al. 2004). Notably, environmental enrichment 

and social interactions promote oligodendrocyte lineage development and myelination 

(Tomlinson et al. 2016). Supporting this hypothesis, we previously found that higher paternal 
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education is associated with larger overall white matter volume in neonates (Knickmeyer et al. 

2016).   

We observed that offspring of African American mothers had thicker cortices in parietal 

regions involved in somatosensory processes and sensory integration compared to offspring of 

Caucasian mothers. However, we note that these associations were not significant in the full 

mixed effects models. Associations between maternal ethnicity and CT may reflect genetic 

differences and/or the influences of environmental factors associated with the sociocultural 

construct of race/ethnicity on the cellular processes described above. Additional studies are 

needed to determine whether these associations are robust and if they are temporary or represent 

persistent alterations with functional consequences. Furthermore, to effectively develop 

interventions aimed at optimizing infant brain development, future studies must delineate 

specific mechanisms underlying these associations. Specific variables that may be of importance 

include psychosocial stress, exposure to environmental pollutants, and reduced access 

to/utilization of prenatal care, which may be more common among racial and ethnic minorities 

(Grobman et al. 2016; Lorch and Enlow 2016). These variables were not assessed in the current 

study, but when comparing infants of Caucasian and African American (AA) mothers, we did 

observe significant differences in birth weight, maternal and paternal education, and maternal 

age (all lower in AA), in NICU stay greater than 24 hours, maternal psychiatric history, and 

maternal smoking (all more common in AA), and in paternal psychiatric history (less common in 

AA). 

We note that Apgar scores at 5 minutes, delivery method, maternal education, total 

household income, maternal age, paternal age, maternal psychiatric history, paternal psychiatric 

history, and NICU stay over 24 hours were not selected as significant predictors of neonatal CT 
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and SA. In some cases, this may reflect high correlations between predictor variables (e.g. 

between paternal and maternal education). In such a situation, the moment-based method selects 

the best predictive variable. With specific regard to psychiatric history, the lack of associations 

may reflect the fact that our psychiatric history variables include multiple disorders with 

depression being the most common. Previous work by our group has shown that a maternal 

history of severe mental illness (specifically schizophrenia) does influence brain development 

(Gilmore, Kang, et al. 2010). 

In conclusion, CT and SA both exhibit rapid growth during the first postnatal month but 

show distinct relationships with environmental factors. Gestational age at birth is positively 

associated with SA, but negatively associated with CT. Birth weight and sex influence SA, 

potentially through cellular processes active during early pregnancy and midgestation, while 

maternal ethnicity and paternal education influence CT, possibly through cellular processes 

active in the perinatal period. Strengths of this study include the use of detailed medical, 

obstetric, and demographic data, the collection of a large representative imaging dataset, and the 

application of cutting-edge pediatric image analysis methods. Limitations reflect inherent 

difficulties in imaging infant subjects. Age-related changes in signal intensities and contrast may 

affect CT and SA measures (Walhovd, Fjell, et al. 2016).  In addition, compared to SA 

measurements at this age, CT measurements are much smaller, show less variation, and more 

prone to partial volume errors. Despite these limitations, our results highlight the importance of 

obstetric, demographic, and socioeconomic factors in explaining individual variation in neonatal 

CT and SA. Ultimately, this line of research will allow the development and optimal application 

of interventions to support prenatal/perinatal cortical development, ensuring a strong foundation 

for a long, healthy, and productive life.  
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Table 2.1. Descriptive Statistics for Demographic and Medical History Variables 
 Continuous Variables  Average SD Min Max 

Birth weight 2843.511 706.544 790 4820 
Gestational Age at Birth 261.195 19.082 192 295 
Postnatal Age at MRI 30.64 16.871 6 144 
5 Minute APGAR Score 8.72 0.693 3 10 
Maternal Education 15.05 3.464 0 26 
Paternal Education 14.86 3.488 0 26 
Maternal Age 29.858 5.585 16 47 
Paternal Age 32.379 6.553 17 64 
     
Categorical Variables N % 

NICU Stay > 24 hours No 635 79% 
Yes 170 21% 

Sex Male 429 53% 
Female 376 47% 

Delivery Method Vaginal 382 47% 
C-section  423 52% 

Household Income 

High 238 30% 
Mid 217 27% 
Low 299 37% 
Missing 51 6% 

Maternal Ethnicity 

Caucasian 612 76% 
African American 173 21% 
Asian  17 2% 
Native American 3 < 1% 

Paternal Ethnicity  

Caucasian 588 73% 
African American 184 23% 
Asian  26 3% 
Native American 7 1% 

Gestational Number Singleton 371 46% 
Twin 434 54% 

Maternal Psychiatric History No 508 63% 
Yes 297 37% 

Paternal Psychiatric History No 714 89% 
Yes 91 11% 

Maternal Smoking No 738 92% 
Yes 67 8% 

T2 Sequence Type 

Type 1 287 36% 
Type 2 386 48% 
Type 3 12 1% 
Type 4 120 15% 
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Table 2.2. Significant Associations with Global Cortical Thickness and Surface Area  
 

Region of 
Interest R2 Predictors Beta r2  q- value  Relative 

Difference 

Average 
Thickness 

0.52 Intercept 1.14E+00    
 Postnatal Age at MRI 1.64E-03 1.77E-01 6.67E-44 0.09% 
 Paternal Education -2.44E-03 1.67E-02 3.26E-06 -0.13% 
 Maternal Ethnicity - Asian 8.66E-03 3.58E-04 

3.39E-08 
0.45% 

 Maternal Ethnicity - African American 2.74E-02 2.91E-02 1.40% 
 Maternal Ethnicity - Native American -5.44E-03 2.53E-05 -0.29% 
 ICV 1/3 9.59E-03 1.87E-01 4.24E-49 0.50% 
 T2 Sequence (Type1 vs Type2) 3.62E-03 7.53E-04 

8.12E-01 
0.19% 

 T2 Sequence (Type1 vs Type3) 2.73E-03 2.52E-05 0.14% 
 T2 Sequence (Type1 vs Type4) -1.86E-03 1.01E-04 -0.10% 

       

Total 
Surface 

Area 
  

0.51 Intercept -2.11E+02    
 Birth Weight 5.70E+00 1.89E-01 3.98E-24 3.6%* 
 Gestational Age at Birth 2.78E+02 3.29E-01 1.78E-26 0.35% 
 Postnatal Age at MRI 4.08E+02 5.52E-01 1.16E-67 0.51% 
 Sex -3.06E+03 2.71E-02 1.69E-10 3.90% 
 T2 Sequence (Type1 vs Type2) 7.39E+02 1.59E-03 

3.76E-01 
0.93% 

 T2 Sequence (Type1 vs Type3) -1.26E+03 2.72E-04 -1.59% 
  T2 Sequence (Type1 vs Type4) 4.33E+02 2.73E-04 0.55% 

* per 500g for birth weight 
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Figure 2.1. The 78 cortical regions of interest from the AAL atlas projected onto a representative 

neonatal brain 
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Figure 2.2. Age at MRI plotted against average CT (a), age at MRI plotted against total SA (b), and 
gestational age at birth plotted against total SA (c) for all individual subjects.  
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Figure 2.3. Significant associations between regional CT and postnatal age at MRI and gestational age at 
birth shown as percent change by day. Regions in white were not deemed significant after correction for 

multiple comparisons. Subcortical regions are in gray and were not analyzed. 
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Figure 2.4. Significant associations between regional CT and paternal education are projected onto the 
cortical surface. Regions in white were not significant and regions in gray were not analyzed.  
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Figure 2.5. Significant associations between regional CT and maternal ethnicity are projected onto the 
cortical surface. Regions in dark pink show thinner cortices in infants of Caucasian mothers and regions 

in light pink show thicker cortices in infants of Caucasian mothers.  Regions in white were not significant 
and regions in gray were not analyzed.  
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Table S2.1. Correlation Matrix of Predictor Variables 
 

 Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 Var13 Var14 Var15 
Var1 1.00               
Var2 0.83 1.00              
Var3 -0.61 -0.71 1.00             
Var4 -0.60 -0.70 0.55 1.00            
Var5 -0.03 0.05 0.00 -0.01 1.00           
Var6 0.30 0.37 -0.31 -0.39 -0.02 1.00          
Var7 -0.32 -0.38 0.27 0.28 -0.05 -0.16 1.00         
Var8 0.15 0.14 -0.15 -0.10 -0.05 0.03 -0.02 1.00        
Var9 0.11 0.12 -0.10 -0.08 -0.03 0.05 -0.06 0.70 1.00       

Var10 0.01 -0.01 -0.02 -0.03 0.00 0.00 0.12 0.41 0.31 1.00      
Var11 -0.06 -0.09 0.05 0.03 0.00 -0.04 0.12 0.27 0.19 0.68 1.00     
Var12 -0.67 -0.65 0.43 0.34 -0.05 -0.18 0.43 -0.03 -0.01 0.13 0.10 1.00    
Var13 -0.01 -0.04 0.03 0.03 -0.03 -0.12 0.03 -0.20 -0.22 -0.15 -0.08 -0.11 1.00   
Var14 0.01 0.00 0.01 0.03 -0.05 -0.05 -0.01 0.05 -0.01 0.03 -0.03 -0.04 0.19 1.00  
Var15 -0.11 -0.06 0.03 0.12 -0.03 -0.04 0.06 -0.27 -0.20 -0.14 -0.08 -0.06 0.21 0.03 1.00 

 
Var1- Birth Weight, Var2 – Gestational Age at Birth, Var3 – Postnatal Age at MRI, Var4 – NICU stay > 24 hours, Var5 – Sex, Var6 – 5 Minute                        
APGAR Score, Var7 – Delivery Method, Var8 – Maternal Education, Var9 – Paternal Education, Var10 – Maternal Age, Var11 – Paternal Age, 

Var12 –  Gestational Number, Var13 – Maternal Psychiatric History, Var14 – Paternal Psychiatric History, Vary15 – Maternal Smoking 
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Table S2.2. Demographic Characteristics of Neonates with Caucasian and African American Mothers 

 

  Caucasian  
(n = 612) 

African American  
(n = 173)  

Continuous Variables Average SD Average SD P-value 
Birth weight (grams) 2910.941 695.798 2610.613 727.922 < 0.001 

Gestational Age at Birth (days) 261.882 18.644 258.572 21.128 0.063 
Postnatal Age at MRI (days) 30.092 16.878 32.601 17.153 0.089 

5 Minute APGAR Score 8.740 0.696 8.642 0.706 0.105 
Maternal Education (years) 15.428 3.513 13.569 2.771 < 0.001 
Paternal Education (years) 15.204 3.633 13.420 2.230 < 0.001 

Maternal Age (years) 30.361 5.326 27.994 6.236 < 0.001 
Paternal Age (years) 32.379 6.068 32.237 8.249 0.833 

      
Categorical Variables N % N % P-value 

NICU Stay > 24 hours 
No 493 81% 125 72% 

0.026 Yes 119 19% 48 28% 

Sex Male 321 52% 92 53% > 0.999 Female 291 48% 81 47% 

Delivery Method Vaginal 298 49% 78 45% 0.388 C-section 314 51% 95 55% 

Gestational Number Singleton 286 47% 75 43% 0.489 Twin 326 53% 98 57% 

Paternal Ethnicity 

Caucasian 564 92% 17 10% 

< 0.001 African American 31 5% 152 88% 
Asian 13 2% 1 1% 

Native American 4 1% 3 2% 
Maternal Psychiatric 

History 
No 403 66% 90 52% 0.001 Yes 209 34% 83 48% 

Paternal Psychiatric 
History 

No 527 86% 169 98% < 0.001 Yes 85 14% 4 2% 

Maternal Smoking No 569 93% 149 86% 0.008 Yes 43 7% 24 14% 
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Table S2.3. Demographic Characteristics of Neonates by Total Household Income 
 

  High (n = 238)  Middle (n = 217) Low (n = 299)  
Continuous Variables  Average SD Average SD Average SD P-value  
Birth weight (grams) 2920.231 678.033 2887.76 781.669 2761.137 677.829 0.022 
Gestational Age at Birth (days) 263.122 18.503 260.834 19.517 259.786 19.434 0.13 
Postnatal Age at MRI (days) 29.769 17.052 29.433 15.485 32.144 17.636 0.128 
5 Minute APGAR Score 8.769 0.624 8.728 0.642 8.682 0.788 0.358 
Maternal Education (years) 17.466 2.6 15.871 2.775 12.793 2.85 < 0.001 
Paternal Education (years) 16.911 2.736 15.452 3.053 12.785 3.26 < 0.001 
Maternal Age (years) 32.882 3.868 31.014 5.227 26.732 5.523 < 0.001 
Paternal Age (years) 35.075 5.386 33.598 5.427 29.192 6.93 < 0.001 

        
Categorical Variables N % N % N %  

NICU Stay > 24 hours No 205 86% 162 75% 225 75% 0.002 Yes 33 14% 55 25% 74 25% 

Sex Male 124 52% 117 54% 157 53% 0.921 Female 114 48% 100 46% 142 47% 

Delivery Method Vaginal 110 46% 95 44% 151 51% 0.298 C-section  128 54% 122 56% 148 49% 

Gestational Number Singleton 112 47% 99 46% 134 45% 0.873 Twin 126 53% 118 54% 165 55% 

Maternal Ethnicity 

Caucasian 220 92% 165 76% 199 67% 

< 0.001 African American 12 5% 45 21% 95 32% 
Asian  6 3% 7 3% 2 1% 
Native American 0 < 1% 0 < 1% 3 1% 

Paternal Ethnicity 

Caucasian 214 90% 159 73% 186 62% 

< 0.001 African American 14 6% 47 22% 104 35% 
Asian  9 4% 9 4% 5 2% 
Native American 1 < 1% 2 1% 4 1% 

Maternal Psychiatric History No 170 71% 146 67% 163 55% < 0.001 Yes 68 29% 71 33% 136 45% 

Paternal Psychiatric History No 213 89% 188 87% 267 89% 0.56 Yes 25 11% 29 13% 32 11% 
         

Maternal Smoking No 236 99% 206 95% 257 86% < 0.001 Yes 2 1% 11 5% 42 14% 
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Table S2.4. Bootstrapping Results from Variable Selection 
 

Variable of Interest Cortical Thickness Surface Area Total 
SA 

# ROIs > 
800 

% ROIs 
> 800 

# ROIs 
> 800 

% ROIs 
> 800 

> 800 

5 Minute Apgar 0 0% 0 0% No 
Postnatal Age at MRI 41 52% 3 4% Yes 
Birth weight 4 5% 2 3% Yes 
Delivery Method 0 0% 0 0% No 
Gestational Age at Birth 24 30% 1 1% Yes 
Gestational Number 2 3% 0 0% No 
Income (low vs high) 0 0% 0 0% No 
Income (low vs mid) 0 0% 0 0% No 
income (low vs missing) 0 0% 0 0% No 
Maternal Age 0 0% 0 0% No 
Maternal Education 0 0% 0 0% No 
Maternal Ethnicity (Caucasian vs Native American) 0 0% 0 0% No 
Maternal Ethnicity (Caucasian vs Asian) 0 0% 0 0% No 
Maternal Ethnicity (Caucasian vs African American) 14 18% 1 1% No 
Maternal Psychiatric History 0 0% 0 0% No 
Maternal Smoking 0 0% 0 0% No 
NICU Stay > 24 hours 0 0% 0 0% No 
Paternal Age 0 0% 0 0% No 
Paternal Education 11 14% 0 0% No 
Paternal Ethnicity (Caucasian vs Native American) 0 0% 0 0% No 
Paternal Ethnicity (Caucasian vs Asian) 0 0% 0 0% No 
Paternal Ethnicity (Caucasian vs African American) 0 0% 2 3% No 
Paternal Psychiatric History 0 0% 0 0% No 
Sex 7 9% 1 1% Yes 
T2 Sequence Type (Type1 vs Type2) * 79 100% 78 100% Yes 
T2 Sequence Type (Type1 vs Type3) * 79 100% 78 100% Yes 
T2 Sequence Type (Type1 vs Type4) * 79 100% 78 100% Yes 
ICV1/3 * 79 100% --- --- --- 
Total Surface Area * --- ---- 78 100% --- 
*Variables are fixed in the model  
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Table S2.5. Significant Associations of Postnatal age at MRI with Cortical Thickness from Selected 

Models 
 

Region of Interest Beta r2 q- value Relative Difference 
Angular_L 1.69E-03 0.05 1.57E-10 0.091% 
Angular_R 1.72E-03 0.08 1.43E-15 0.094% 
Calcarine_L 2.42E-03 0.08 1.36E-16 0.130% 
Calcarine_R 1.98E-03 0.05 1.70E-05 0.102% 
Cingulum_Mid_R 9.81E-04 0.03 1.07E-07 0.051% 
Cuneus_R 1.68E-03 0.05 1.01E-09 0.092% 
Frontal_Inf_Oper_L 1.80E-03 0.08 2.12E-15 0.093% 
Frontal_Inf_Oper_R 1.77E-03 0.06 5.04E-14 0.091% 
Frontal_Mid_L 1.21E-03 0.04 1.77E-05 0.065% 
Frontal_Mid_R 1.12E-03 0.04 1.91E-05 0.061% 
Frontal_Sup_L 1.06E-03 0.02 8.62E-04 0.056% 
Frontal_Sup_Orb_R 2.51E-03 0.09 8.97E-17 0.139% 
Frontal_Sup_R 8.12E-04 0.01 8.84E-03 0.043% 
Heschl_L 2.08E-03 0.06 1.96E-13 0.103% 
Heschl_R 2.47E-03 0.07 1.61E-14 0.117% 
Insula_L 1.65E-03 0.10 4.77E-23 0.082% 
Insula_R 1.25E-03 0.06 9.70E-14 0.061% 
Lingual_L 1.43E-03 0.06 3.55E-06 0.076% 
Lingual_R 1.91E-03 0.08 4.98E-16 0.101% 
Occipital_Mid_L 1.21E-03 0.05 3.47E-10 0.069% 
Occipital_Mid_R 1.17E-03 0.04 1.11E-08 0.066% 
Occipital_Sup_L 1.29E-03 0.04 1.19E-08 0.074% 
Occipital_Sup_R 1.52E-03 0.06 5.28E-12 0.086% 
Olfactory_R 2.71E-03 0.04 1.56E-08 0.120% 
Parietal_Inf_L 1.66E-03 0.08 5.39E-16 0.090% 
Parietal_Inf_R 1.96E-03 0.09 1.10E-18 0.108% 
Parietal_Sup_L 1.06E-03 0.02 7.03E-03 0.059% 
Parietal_Sup_R 1.32E-03 0.04 1.28E-04 0.074% 
Postcentral_L 1.38E-03 0.07 3.40E-07 0.074% 
Postcentral_R 1.43E-03 0.07 1.88E-08 0.078% 
Precentral_L 1.72E-03 0.11 1.58E-25 0.091% 
Precentral_R 1.91E-03 0.12 8.31E-29 0.101% 
Rolandic_Oper_L 2.18E-03 0.14 4.03E-26 0.109% 
Rolandic_Oper_R 1.83E-03 0.10 1.81E-21 0.093% 
Supp_Motor_Area_R 1.25E-03 0.03 3.65E-04 0.060% 
SupraMarginal_R 1.45E-03 0.05 2.79E-09 0.077% 
Temporal_Mid_L 1.15E-03 0.04 8.33E-08 0.061% 
Temporal_Mid_R 1.22E-03 0.05 4.18E-10 0.063% 
Temporal_Sup_L 1.57E-03 0.08 7.57E-15 0.077% 
Temporal_Sup_R 1.84E-03 0.12 4.49E-22 0.091% 
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Table S2.6. Significant Associations of Gestational Age at Birth with Cortical Thickness from Selected 
Models 

 
Region of Interest Beta r2 q-value Relative Difference 
Frontal_Inf_Orb_L -2.07E-03 0.12 1.38E-24 -0.10% 
Frontal_Inf_Tri_L -1.64E-03 0.08 1.62E-18 -0.09% 
Frontal_Med_Orb_L -2.35E-03 0.06 5.53E-13 -0.12% 
Frontal_Med_Orb_R -2.13E-03 0.07 4.29E-14 -0.11% 
Frontal_Mid_L -1.16E-03 0.05 2.01E-06 -0.06% 
Frontal_Mid_Orb_L -2.49E-03 0.08 4.04E-18 -0.13% 
Frontal_Mid_Orb_R -2.16E-03 0.07 2.20E-14 -0.12% 
Frontal_Mid_R -1.18E-03 0.05 2.44E-07 -0.06% 
Frontal_Sup_L -1.67E-03 0.08 2.17E-09 -0.09% 
Frontal_Sup_Medial_L -2.97E-03 0.22 4.06E-49 -0.14% 
Frontal_Sup_Medial_R -3.56E-03 0.23 4.80E-50 -0.17% 
Frontal_Sup_Orb_L -2.24E-03 0.08 8.28E-16 -0.12% 
Frontal_Sup_R -1.96E-03 0.11 1.05E-12 -0.10% 
ParaHippocampal_R -1.59E-03 0.02 4.01E-03 -0.07% 
Parietal_Sup_L -1.58E-03 0.06 4.22E-06 -0.09% 
Parietal_Sup_R -1.07E-03 0.03 3.42E-04 -0.06% 
Postcentral_L -5.96E-04 0.02 1.08E-02 -0.03% 
Postcentral_R -5.06E-04 0.01 2.06E-02 -0.03% 
Precuneus_L -1.28E-03 0.09 2.65E-19 -0.07% 
Precuneus_R -1.57E-03 0.11 4.34E-23 -0.08% 
Supp_Motor_Area_L -2.93E-03 0.17 8.21E-33 -0.14% 
Temporal_Pole_Mid_L -3.46E-03 0.13 9.18E-23 -0.16% 
Temporal_Pole_Mid_R -2.94E-03 0.11 1.24E-19 -0.14% 
Temporal_Pole_Sup_L -2.05E-03 0.10 1.69E-17 -0.09% 
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Table S2.7. Significant Associations of Paternal Education with Cortical Thickness from Selected 
Models 

 
Region of Interest Beta r2 q-value Relative Difference 
Frontal_Inf_Tri_R -5.05E-03 0.03 3.80E-07 -0.27% 
Frontal_Mid_L -4.41E-03 0.02 7.63E-08 -0.24% 
Frontal_Mid_Orb_L -6.97E-03 0.02 3.72E-06 -0.37% 
Frontal_Mid_Orb_R -6.70E-03 0.02 6.00E-06 -0.36% 
Frontal_Mid_R -4.59E-03 0.03 1.98E-09 -0.25% 
Frontal_Sup_L -4.10E-03 0.02 1.15E-05 -0.22% 
Frontal_Sup_Medial_R -5.04E-03 0.02 1.15E-05 -0.25% 
Frontal_Sup_R -5.46E-03 0.03 3.65E-09 -0.29% 
Olfactory_R -7.59E-03 0.01 5.57E-04 -0.34% 
Temporal_Mid_R -4.34E-03 0.03 1.27E-06 -0.23% 
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 Table S2.8. Significant Associations of Maternal Ethnicity with Cortical Thickness from Selected 
Models 

Region of Interest Beta r2 q-value Relative Difference 
Insula_R      

African American 3.06E-02 0.02 
4.04E-05 

1.5% 
Asian 6.49E-03 < 0.01 0.006% 

Native American 5.80E-02 < 0.01 2.82% 
Parietal_Inf_R      

African American 3.46E-02 0.02 
7.12E-04 

1.9% 
Asian -1.43E-02 < 0.01 0.020% 

Native American -7.87E-04 < 0.01 -0.04% 
Parietal_Sup_L      

African American 5.20E-02 0.03 
3.11E-06 

2.9% 
Asian 2.74E-03 < 0.01 0.001% 

Native American -4.93E-02 < 0.01 -2.76% 
Parietal_Sup_R      

African American 6.09E-02 0.05 
1.55E-11 

3.4% 
Asian -2.48E-02 < 0.01 0.058% 

Native American -2.55E-02 < 0.01 -1.43% 
Postcentral_L      

African American 3.41E-02 0.02 
8.29E-06 

1.8% 
Asian -6.40E-03 < 0.01 0.005% 

Native American 1.35E-02 < 0.01 0.72% 
Postcentral_R      

African American 3.05E-02 0.02 
8.18E-06 

1.7% 
Asian -1.11E-02 < 0.01 0.018% 

Native American -4.51E-02 < 0.01 -2.47% 
Precentral_R      

African American 4.23E-02 0.04 
5.96E-09 

2.2% 
Asian 5.70E-03 < 0.01 0.004% 

Native American -1.98E-02 < 0.01 -1.05% 
Precuneus_L      

African American 3.20E-02 0.03 
9.15E-06 

1.7% 
Asian -1.17E-02 < 0.01 0.023% 

Native American 2.46E-02 < 0.01 1.29% 
Precuneus_R      

African American 3.55E-02 0.03 
1.04E-05 

1.8% 
Asian 1.23E-03 < 0.01 0.000% 

Native American 4.27E-02 < 0.01 2.20% 
Rolandic_Oper_R      

African American 4.12E-02 0.03 
8.68E-07 

2.1% 
Asian 1.67E-02 < 0.01 0.032% 

Native American 4.62E-02 < 0.01 2.34% 
Supp_Motor_Area_R      

African American 5.23E-02 0.03 
1.58E-06 

2.5% 
Asian -9.05E-03 < 0.01 0.005% 

Native American 9.58E-02 < 0.01 4.58% 
SupraMarginal_L      

African American 5.67E-02 0.04 
1.36E-06 

2.9% 
Asian -1.15E-02 < 0.01 0.010% 

Native American -2.82E-02 < 0.01 -1.46% 
SupraMarginal_R      

African American 4.06E-02 0.02 
4.84E-04 

2.2% 
Asian 4.08E-03 < 0.01 0.001% 

Native American 3.20E-02 < 0.01 1.70% 
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Table S2.9. Significant Associations of Sex, Gestational Number, and Birth Weight with Cortical 
Thickness from Selected Models 

 
Region of Interest Beta r2 q-value Relative Difference 
Sex 
Calcarine_L 4.62E-02 0.03 7.36E-07 2.48% 
Heschl_L 4.02E-02 0.02 1.57E-05 2.00% 
Lingual_R 3.54E-02 0.03 2.32E-06 1.87% 
Parietal_Inf_L 2.50E-02 0.02 1.62E-04 1.36% 
Parietal_Inf_R 2.66E-02 0.02 1.69E-04 1.47% 
Precentral_L 2.54E-02 0.02 8.61E-07 1.34% 
Temporal_Mid_R 2.44E-02 0.02 9.28E-05 1.27% 
     
Gestational Number 
ParaHippocampal_R 1.09E-01 0.06 1.31E-07 4.78% 
Fusiform_R -3.77E-02 0.02 4.31E-05 -2.34% 
     
Birth Weight* 
Frontal_Inf_Tri_R -4.65E-05 0.09 4.93E-19 -1.25% 
Lingual_L -1.82E-05 0.02 1.25E-02 -0.47% 
Supp_Motor_Area_R -4.23E-05 0.06 5.11E-07 -1.12% 

* relative difference is based per 500g for birth weight 
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Table S2.10. Significant Associations with Surface Area from Selected Models 
 

Region of Interest Beta r2 q-value Relative Difference 
Birth Weight 
Frontal_Mid_L -0.05 0.01 8.98E-06 1.20% 
Rectus_R 0.01 0.03 1.59E-05 1.10% 
     
Postnatal age at MRI 
Frontal_Sup_Medial_R 0.52 0.01 1.05E-07 0.07% 
Occipital_Mid_R -1 0.01 1.10E-06 0.10% 
Temporal_Pole_Sup_L 0.46 0.01 2.31E-06 0.08% 
     
Gestational Age at Birth 
Rectus_R -0.68 0.06 1.04E-08 0.15% 
     
Sex  
Temporal_Pole_Mid_L -14.92 0.02 4.49E-06 3.78% 
     
Paternal Ethnicity 
Frontal_Mid_R      

African American 102.84 0.01 
1.19E-07 

4.96% 
Asian 26.29 < 0.01 1.27% 

Native American 5.99 < 0.01 0.29% 
Temporal_Sup_R      

African American 48.24 0.01 
2.21E-05 

2.64% 
Asian 6.92 < 0.01 0.38% 

Native American -9.33 < 0.01 0.51% 
     

 Maternal Ethnicity 
Rectus_R      

African American 14.2 0.01 
2.79E-05 

3.13% 
Asian 1.08 < 0.01 0.24% 

Native American -33.19 < 0.01 7.32% 
* relative difference is based per 500g for birth weight 
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Table S2.11. Summary of Results from Mixed Effects Models Containing All Possible Predictors 
 

Variable of Interest 
Cortical Thickness Surface Area Total SA 

# Significant 
ROIs 

% Significant 
ROIs 

# Significant 
ROIs 

% Significant 
ROIs Significant  

5 Minute Apgar 0 0% 0 0% No 
Postnatal Age at MRI 42 53% 5 6% Yes 
Birth weight 0 0% 7 9% Yes 
Delivery Method 0 0% 0 0% No 
Gestational Age at Birth 18 23% 2 3% Yes 
Gestational Number 2 3% 1 1% No 
Income 0 0% 0 0% No 
Maternal Age 0 0% 0 0% No 
Maternal Education 0 0% 0 0% No 
Maternal Ethnicity  1 1% 1 1% No 
Maternal Psychiatric History 0 0% 0 0% No 
Maternal Smoking 0 0% 0 0% No 
NICU Stay > 24 hours 0 0% 0 0% No 
Paternal Age 0 0% 0 0% No 
Paternal Education 10 13% 0 0% No 
Paternal Ethnicity 0 0% 1 1% No 
Paternal Psychiatric History 0 0% 1 1% No 
Sex 41 52% 13 17% Yes 
T2 Sequence Type 27 34% 11 14% Yes 
ICV1/3  78 99% --- --- --- 
Total Surface Area  --- ---- 78 100% --- 
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Table S2.12. Bootstrapping Results from Variable Selection – Without Adjustments for Global Measures 

 

Variable of Interest Cortical Thickness Surface Area 
# ROIs > 800 % ROIs > 800 # ROIs > 800 % ROIs > 800 

5 Minute Apgar 0 0% 0 0% 
Postnatal Age at MRI 69 87% 78 99% 
Birth weight 9 11% 77 97% 
Delivery Method 0 0% 1 1% 
Gestational Age at Birth 13 16% 78 99% 
Gestational Number 3 4% 29 37% 
Income (low vs high) 0 0% 0 0% 
Income (low vs mid) 0 0% 0 0% 
Income (low vs missing) 0 0% 0 0% 
Maternal Age 0 0% 0 0% 
Maternal Education 0 0% 0 0% 
Maternal Ethnicity (Caucasian vs Native American) 0 0% 0 0% 
Maternal Ethnicity (Caucasian vs Asian) 0 0% 1 1% 
Maternal Ethnicity (Caucasian vs African American) 6 8% 2 3% 
Maternal Psychiatric History 0 0% 0 0% 
Maternal Smoking 0 0% 0 0% 
NICU Stay > 24 hrs 0 0% 0 0% 
Paternal Age 0 0% 0 0% 
Paternal Education 2 3% 1 1% 
Paternal Ethnicity (Caucasian vs Native American) 0 0% 0 0% 
Paternal Ethnicity (Caucasian vs Asian) 0 0% 2 3% 
Paternal Ethnicity (Caucasian vs African American) 1 1% 1 1% 
Paternal Psychiatric History 0 0% 1 1% 
Sex 3 4% 53 67% 
T2 Sequence Type (Type1 vs Type2) * 79 100% 79 100% 
T2 Sequence Type (Type1 vs Type3) * 79 100% 79 100% 
T2 Sequence Type (Type1 vs Type4) * 79 100% 79 100% 
*Variables are fixed in the model          
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CHAPTER	3:	GENETIC	INFLUENCES	ON	INFANT	CORTICAL	THICKNESS	AND	
SURFACE	AREA	

 
INTRODUCTION	
 

Individual variations in cortical thickness and surface area are associated with complex 

psychiatric and neurodevelopmental conditions, intellectual ability, and aging (Shaw et al. 2006; 

Wolosin et al. 2009; Long et al. 2012; Janssen et al. 2014). Current evidence suggests CT and SA are 

independent phenotypes with distinct genetic underpinnings. Twin and family studies have revealed 

that overall total SA and average CT are highly heritable, with genetic factors accounting for up to 

89% and 81% of total phenotypic variance respectively (Panizzon et al. 2009; Winkler et al. 2010). 

Regionally, heritability measures are found to be distinct across the cortex, ranging from 17% to 

76% for SA and from 6% to 73% for CT, after correcting for global measures (Winkler et al. 2010). 

These studies also reveal small and nonsignificant genetic correlations between CT and SA, 

suggesting that these phenotypes are driven by different sets of genetic factors. At present, the 

majority of this research has been performed in children, adolescents, and adults. There are no 

investigations that focus on genetic contributions to CT and SA during infancy. 

This is an important unanswered question given that the prenatal and early postnatal 

periods represent the foundational phase of cortical development. The radial unit hypothesis and 

the supragranular layer expansion hypothesis suggest that the number of cortical columns 

generated during the early embryonic period drive SA development and the number and size of 

cells within a column, packing density, and numbers of neuronal processes, glial processes, and 

synapses drive CT development (Rakic 1995; 2009). Additionally, CT and SA development are 
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also regulated by outer radial glial (oRG) cells which play a critical role in radial and tangential 

expansion of supragranular layers (Nowakowski et al. 2016). These processes are marked by 

dynamic patterns of gene expression. Indeed, the majority of brain-expressed genes show strong 

temporal changes (Kang et al. 2011) and large regional differences in expression during the 

prenatal period (Pletikos et al. 2014). In contrast, during the early postnatal period, there is a shift 

in temporal and spatial gradients resulting in relatively stable levels of gene expression over time 

and minimal regional differences across the cortex (Kang et al. 2011; Pletikos et al. 2014; 

Silbereis et al. 2016). Genes expressed at high levels midgestation are likely involved in 

proliferation and migration of neuronal cell types while genes expressed at high levels during 

late fetal and early postnatal development likely reflect the robust growth of dendrites and 

synapses, as well as myelination. (Stiles and Jernigan 2010). Postmortem brain transcriptomic 

studies have also shown that many genes associated with autism, schizophrenia, intellectual 

disability, and syndromic neurodevelopmental disorders exhibit elevated expression during these 

developmental windows (Birnbaum et al. 2015; Chen et al. 2015). Investigating genetic 

influences during this period is therefore crucial to our understanding of typical and atypical 

brain development. 

In this chapter, we report findings from the first twin study of cortical thickness and 

surface area during infancy. We examine the genetic, shared environmental, and unique 

environmental contributions to individual differences in neonatal CT and SA using both global 

CT and SA as well as CT and SA measures in 78 cortical regions. We also assess genetic 

correlations among ROIs for CT and SA measures to identify regions with shared genetic 

architecture. Given the dynamic patterns of gene expression and the robust cortical growth 

within the prenatal and early postnatal period, we hypothesize that heritability estimates will be 



	 52 

higher for neonatal SA compared to CT. Moreover, based on the radial unit hypothesis, we 

predict that we will observe CT and SA to have independent genetic origins.  Outcomes from 

this study fill a critical gap in our understanding of how genetic influences shape cortical 

structure during early development and provide key insight for future imaging genetic studies of 

cortical structure.  

 
MATERIALS	AND	METHODS	
 
Subjects 

This study included 246 dizygotic and 130 monozygotic twins between the ages of 9 and 

85 postnatal days, drawn from UNC’s Early Brain Development Program (Gilmore, Schmitt, et 

al. 2010). Mothers with twin pregnancies were recruited during the second trimester of 

pregnancy from outpatient OB-GYN clinics in central North Carolina. Exclusion criteria 

included major medical illnesses in the mother or abnormal fetal ultrasounds. Zygosity was 

determined by polymerase chain reaction-short tandem repeat (PCR-STR) analysis of 14 loci on 

DNA extracted from buccal cells (BRT Laboratories, Baltimore, MD). Detailed subject 

demographics can be viewed in Table 3.1. After complete description of the study to subjects’ 

parent(s), written informed consent was obtained. Study protocols were approved by the 

Institutional Review Board of the UNC School of Medicine.  

Image Acquisition 

All MRI images were collected at UNC’s Biomedical Research Imaging Center using a 

Siemens Allegra head-only 3T scanner (N=309) or a Siemens TIM Trio 3T scanner (N=67) 

(Siemens Medical System, Inc., Erlangen, Germany). Infants were scanned at 37.22 ± 16.82 days 

post birth on average. All neonate subjects were fitted with earplugs, secured into a vacuum-

fixed immobilization device, and scanned during unsedated natural sleep. Heart rate and oxygen 
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saturation were monitored using a pulse oximeter. On the Allegra scanner, proton density and T2 

weighted structural images were acquired using a turbo-spin echo sequence (TSE, TR = 6200ms, 

TE1 = 20ms, TE2 = 119ms, flip angle = 150°, spatial resolution = 1.25mm x 1.25mm x 1.95mm, 

sequence name = Type1, N = 124). For neonates who were deemed unlikely to sleep through the 

scan session, a “fast” turbo-spin echo sequence was collected using a decreased TR, a smaller 

image matrix, and fewer slices (TSE, TR range = 5270ms-5690ms, TE1 range = 20ms-21ms, 

TE2 range = 119ms-124ms, flip angle = 150°, spatial resolution = 1.25mm x 1.25mm x 1.95mm, 

sequence name = Type2, N=185) On the Trio, subjects were initially scanned using a TSE 

protocol (TR=6200ms, TE1=17, TE2=116ms, flip angle=150°, spatial resolution= 1.25mm 

x1.25mm x1.95 mm, sequence name = Type3, N = 11) while the rest were scanned using a 3DT2 

SPACE protocol (TR=3200ms, TE=406, flip angle=120°, spatial resolution= 1mmx1mmx1mm, 

sequence name = Type4, N=56). Because sequence parameters could have a significant influence 

on cortical measures, we used T2 sequence (Type1-Type4) as a covariate in all of the analyses 

described in this study.  

Image Analysis 

Cortical thickness and surface area measures were derived for all subjects using an image 

analysis pipeline previously described by Li et al (2016). First, all T2-weighted images were 

preprocessed for tissue segmentation using a standard infant-specific pipeline (Li et al. 2013). 

This included skull stripping and manual editing of non-brain tissue, removal of the cerebellum 

and brain stem, corrections for intensity inhomogeneity, and finally, a rigid alignment of all the 

images into an average atlas space (Shi et al. 2011).  Thereafter, an infant-specific path-driven 

coupled level sets method (described in Wang et al. 2014)) was applied to segment gray matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF). Non-cortical regions were masked, 
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and tissues were divided into left and right hemispheres. A deformable surface method (Li et al. 

2012; Li, Nie, et al. 2014) was then applied to the tissue segmentations to reconstruct the inner, 

middle, and outer cortical surfaces. The inner surface was defined as the boundary between grey 

and white matter and the outer surface was defined as the boundary between the grey matter and 

CSF. A third, middle cortical surface, was defined as the layer lying in the geometric center of 

the inner and outer surfaces of the cortex. The deformable surface method involved a topological 

correction of the WM to ensure spherical topology, a tessellation of the corrected WM to 

generate a triangular mesh, and the deformation of the inner mesh towards the reconstruction of 

each inner, middle, and outer surface.   

All cortical surfaces for the left and right hemisphere were visually examined for accurate 

mapping. In order to generate a regional parcellation, all inner cortical surfaces were smoothed, 

inflated, and mapped to a standard sphere (Fischl et al. 1999). The cortical surface was 

parcellated into 78 regions of interest based on an infant-specific 90 region parcellation atlas 

(Tzourio-Mazoyer et al. 2002; Gilmore et al. 2012). Twelve regions represent subcortical 

structures and were therefore not examined.  CT was computed for each vertex as the average 

value of the minimum distance from the inner to the outer surfaces and the minimum distance 

from the outer to the inner surfaces. SA was computed based on the central cortical surface. The 

average CT and total SA were calculated for each ROI based on corresponding values at each 

vertex. Overall total SA was computed as the total of the regional SA values and overall average 

CT was computed by weighting regional CT values by the corresponding surface size. 

Statistical Analysis 

All statistical analyses were performed in R using OpenMx, a matrix-based structural 

equation modeling package (Neale and Cardon 1992; Boker et al. 2011; Neale and Cardon 
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2013). Phenotypes of interest included: 1) overall average CT, 2) total SA, 3) regional CT in 78 

ROIs, and 4) regional SA in 78 ROIs. Univariate analyses were performed using a classical ACE 

model, which allows for the decomposition of the observed phenotypic variance into variance 

explained by additive genetic (a2), shared environmental (c2), and unique environmental (c2) 

components. Maximum likelihood was used to generate estimates of model parameters and to 

perform hypothesis testing (Schmitt et al. 2008). The significance of genetic and shared 

environmental effects was assessed by removing a parameter of interest and comparing the 

resulting change in the fit of the submodel against the original model. The difference in 

maximum likelihood asymptotically follows a c2 distribution, with degrees of freedom equal to 

the difference in the number of free parameters (Neale and Cardon 1992) 

Bivariate Cholesky decomposition models were used to identify common genetic and 

environmental determinants between global CT, SA, and ICV, between regional CT measures, 

and between regional SA measures. The Cholesky decomposition model allows for the 

covariance between two phenotypes to be segregated into covariance resulting from either 

genetic or environmental sources (Neale and Cardon 1992). Covariance estimates were used to 

calculate genetic and environment correlations between phenotypes. These correlations represent 

the degree of genetic overlap between two phenotypes and are calculated as the genetic 

covariance of two phenotypes divided by the square root of the heritabilities of both phenotypes. 

In both univariate and bivariate analyses, models for regional and total average CT were 

adjusted for birth weight, gestational age at birth, age at MRI, sex, paternal education, and 

maternal ethnicity.  Models for regional SA were adjusted for birth weight, age at MRI and sex. 

The model for total SA was adjusted for birth weight, gestational age at birth, age at MRI, and 

gender. Covariates were chosen based on output from variable selection and linear mixed effects 
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model results for CT and SA in a large sample of neonates (see chapter 2). To account for overall 

brain size, total surface area was fixed for all regional surface area models and the cubed root of 

intracranial volume (a sum of gray matter, white matter and cerebrospinal fluid) was fixed in the 

models for average and regional cortical thickness. As a sensitivity analysis, univariate variance 

decomposition and bivariate Cholesky decomposition models were also run without adjusting for 

overall brain size. An additional sensitivity analysis was also performed controlling for age at 

MRI and sex as the main covariates. For regional analyses of CT and SA, adjustments for 

multiple comparisons were made using Benjamini & Hochberg method. FDR <0.05 was 

considered significant for each region of interest. 

 
RESULTS	

 
Cross-twin correlations for CT and SA are presented in Table 3.2. In general, MZ twin 

pairs had increased correlations when compared to DZ twin pairs. 

Global CT and SA 

Parameter estimates and tests of significance for global CT and SA are presented in Table 

3.3. Overall, shared environmental influences had very small and nonsignificant impacts on 

global CT/ SA variation. Total SA was highly heritable, with genetic influences accounting for a 

large portion of the observed variance (0.79). For average CT, genetic influences accounted for a 

small (0.2) and nonsignificant proportion of the phenotypic variance. The observed genetic 

correlation between average CT and total SA was strong and significant (rG = 0.78, see Table 

3.4). To understand the impact of overall brain size on CT and SA, we also examined the 

heritability of intracranial volume (ICV). Genetic influences on ICV accounted for a 

significantly large amount of the total phenotypic variance (0.64). Significantly high genetic 

correlations were found between ICV and total SA (rG = 0.95) and between ICV and overall 



	 57 

average CT (rG = 0.69). Phenotypic (rP), common environmental (rC), and unique environmental 

(rE) correlations for global measures can be found in Table 3.4. 

Regional CT and SA 

Parameter estimates and tests of significance for regional CT and SA are presented in 

Tables 3.5 and 3.6 respectively. For CT, regional heritability estimates ranged from < 0.01 to 

0.55 with significant genetic effects in 6 of the 78 regions. After correcting for multiple 

comparisons however, no regional significance was observed. Genetic correlations of regional 

CT ranged from -1 to 1 (Figure S3.1), with 79 significant relationships. No significant 

correlations were found across regions after correcting for multiple comparisons. Heritability 

estimates for regional SA ranged from < 0.01 to 0.76 with significant genetic influences in 20 of 

the 78 regions. Of these, genetic influences remained significant in 4 regions after a correction 

for multiple comparisons (see Table 3.6). Genetic correlations of regional SA also ranged from   

-1 to 1 (Figure S3.2) with 128 significant relationships. One significant correlation (between the 

left and right insula, rG = 0.90) remained after FDR correction. Overall, shared environmental 

influences had very small and nonsignificant impacts on regional CT/ SA variation. 

Secondary analyses 

In the first secondary analysis, genetic influences on CT and SA were examined without 

adjusting for overall brain size. For regional CT, heritability estimates ranged from < 0.01 to 

0.58 and were significant in 7 of the 78 ROIs (Table S3.1). No significant genetic influences 

remained after FDR correction. For regional SA, heritability estimates ranged from < 0.01 to 

0.83 and were significant in 60 of the 78 ROIs. After correction for multiple comparisons, 

estimates were significant in 54 of the 78 ROIs (Table S3.2). Genetic correlations for regional 

CT and regional SA ranged from -1 to 1(Figures S3.3 and S3.4). For regional CT, 187 significant 
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correlations were found and one (between the left and right insula, rG = 0.94) remained after 

FDR correction. For regional SA, there were 2,283 significant correlations across various regions 

of interest and 2,167 survived FDR correction. Shared genetic influences remained small and 

nonsignificant for both regional CT and SA.   

Most twin studies of CT and SA are performed during childhood, adolescence, and 

adulthood, and often do not have access to detailed prenatal demographics that may serve as 

important covariates.  Therefore, we performed an additional sensitivity analysis controlling for 

variables most often used as covariates in studies performed at later ages: brain size, age, sex, 

and scanner parameters. We observed significant genetic and common environmental influences 

on total SA (0.32 and 0.60 respectively) and on ICV (0.42 and 0.48 respectively). There were no 

significant genetic or common environmental influences on CT (Table S3.3). Genetic 

correlations were 0.72 between CT and SA, 0.95 between total SA and ICV, and 0.73 between 

average CT and ICV (Table S3.4). For regional CT, heritability estimates ranged from < 0.01 to 

0.60 and were significant in 6 of the 78 ROIs (Table S3.5). One significant genetic influence 

remained after FDR correction. For regional SA, heritability estimates ranged from < 0.01 to 

0.73 and were significant in 19 of the 78 ROIs (Table S3.6). After correction for multiple 

comparisons, estimates were significant in 4 of the 78 ROIs. Genetic correlations for regional CT 

and regional SA ranged from -1 to 1 but no significant correlations remained after FDR 

correction (Figures S3.5 and S3.6).  

 
DISCUSSION	
 

Utilizing a sample of 376 twin neonates, we performed the first quantitative genetic study 

of infant CT and SA. Our results revealed strong genetic influences on total SA and significant 

genetic overlap between CT and SA. Overall, findings provide a deeper understanding of CT and 
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SA development and contribute critical insight into how genetic influences shape cortical 

structure across the human lifespan. 

We found that that genetic influences determine a significant portion of individual 

differences in neonatal total SA. Specifically, when controlling for obstetric history variables, we 

observed a high heritability estimate of 0.79. When controlling for variables most often used in adult 

studies (age, sex, and scanning protocol) the heritability estimate remained significant but was 

greatly reduced. Compared to adult twin and family studies, which report high estimates of 0.89 and 

0.71 respectively (Panizzon et al. 2009; Winkler et al. 2010), genetic influences seem to play a 

significant but smaller role in explaining individual differences in total SA at birth. During early 

development, genetic influences driving total SA may control the tangential expansion of the cortex 

by impacting symmetric divisions of ventricular radial glia during early neurogenesis and outer 

radial glia during late neurogenesis (Rakic 2009; Nowakowski et al. 2016). Genes involved in the 

development of sulci, gyri, and cortico-cortical connectivity may also impact individual differences 

in total SA observed in our study (Lewitus et al. 2013).  

In contrast to total SA, genetic influences did not explain a significant proportion of the 

variation observed in neonatal average CT. However, similar to total SA, the observed heritability in 

our neonatal sample (0.20) was smaller compared to higher heritability estimates (0.81and 0.69) 

reported in adults (Panizzon et al. 2009; Winkler et al. 2010). Our findings suggest that genetic 

influences on average CT and total SA may increase between the neonatal period and adulthood. In 

adults, individual differences in average CT and total SA may be related to genes impacting the 

number and size of neurons, glia, and synaptic machinery (de Graaf-Peters and Hadders-Algra 2006; 

Rakic 2009) and pathways controlling processes of synaptic pruning, myelination, and aging (Stiles 

and Jernigan 2010). A potential increase in heritability for total SA and average CT between 
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neonates and adults may also be reflective of canalization, (Lenroot and Giedd 2008; Gilmore, 

Schmitt, et al. 2010) the concept that heritability of a phenotype will increase as various genetic 

influences act over development under expected environmental conditions. To best understand how 

early postnatal genetic influences compare to genetic influences during later ages however, 

heritability studies of total SA and average CT should be performed during late childhood and 

adolescence.  

Our most interesting and unexpected finding regarding total SA and average CT was the 

strong genetic overlap between these global measures. We found that variation in neonatal average 

CT and total SA was largely determined by the same set of genetic factors (rG = 0.78). Thus far, 

studies comparing CT and SA in adults have found little to no genetic associations between the two 

phenotypes (Panizzon et al. 2009; Winkler et al. 2010).  Such reports argue that CT and SA are 

driven by two distinct sets of genetic influences related to distinct developmental events during early 

prenatal life. In contrast to these findings, our twin neonate study reveals that early genetic 

influences driving the columnar organization of the cortex are actually similar and overlapping. The 

association we observe between total SA and average CT is likely reflective of broad ranging genetic 

influences that control general molecular mechanisms involved in cortical development and those 

which coordinate the tangential and radial expansion during the fetal and early postnatal periods 

(Silbereis et al. 2016). In fact, developmental studies in rodents reveal that many genes involved in 

cortical patterning or the proliferation of founder cells also play a role in determining the thickness 

of the cortex by controlling neuron number and size (Korada et al. 2002; Georgala et al. 2011). Our 

assessment of neonatal CT and SA serves as the earliest snapshot of genetic effects on brain 

structure and provides evidence of a dynamic genetic relationship between these two features across 

different periods of development. To better understand the genetic relationship between CT and SA 
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during the prenatal period, comparable fetal MRI studies of global cortical structure are critical. 

Moreover, longitudinal studies of global cortical structure from infancy to adulthood will also 

provide insight into the genetic association of CT and SA across the lifespan.  

At the regional level, genetic influences accounted for < 1% to 76% of variation in SA 

and < 1% to 55% of the variation in CT across the cortex. In adult samples, Panizzon and 

colleagues (2009) found genetic influences ranging from 3% to 74% for regional SA and from 

20% to 76% for regional CT and Winkler et al. (2010) found genetic influences ranging from 

17% to 76% regional SA and from 6% to 73% for regional CT. When comparing our findings to 

these studies, we note that genetic influences during infancy explain a smaller percent of the total 

phenotypic variation in CT and SA. Moreover, while we observe considerable heterogeneity in 

regional heritability estimates, genetic influences remain largely nonsignificant in our sample. 

The exceptions are the heritability estimates for SA in the insular cortex and precuneus, which 

are similar to those found in adults.  

Furthermore, when examining heritability estimates across all 78 ROIs, we did not 

observe clear regional patterns based on structural, functional, or maturational organization. Nor 

did we observe meaningful patterns of regionalization when examining the genetic correlations 

among regions of CT and SA. Together, these results suggest that individual differences in CT 

and SA are likely driven by a common set of underlying genetic factors influencing cortical 

structure at the global level. This is in contrast to twin studies of regional CT in older populations 

which reveal that regional heritability estimates align with maturational patterns. Specifically, in 

early childhood, CT in primary sensory and motor regions is highly heritable and at older ages, 

heritability is higher in dorsal prefrontal and temporal lobes (Lenroot et al. 2009). Moreover, 

twin studies of genetic regionalization in older adults have found up to 12 genetically similar 
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clusters. Genetic divisions of SA follow an anterior- posterior division with spatially contiguous 

regions being genetically correlated. Genetic divisions of CT follow a basic dorsal-ventral 

pattern and are driven by similarities of maturational timing (Chen et al. 2011; 2012; 2013). The 

lack of significant regional genetic patterns in our sample is in keeping with studies of cortical 

gene expression which suggest that there are minimal interareal differences in gene expression 

across the cortex during infancy (Kang et al. 2011; Pletikos et al. 2014; Silbereis et al. 2016). 

This period is characterized by general neuronal and glial proliferation transcriptional programs 

(Pletikos et al. 2014) that are involved in the construction and maturation of neuronal circuitry 

and are sensitive to experience and external inputs from the environment.  Significant regional 

differences in genetic studies of CT and SA observed in studies of older populations are likely 

reflections of increasing interareal differences across the cortex during later time periods.  

By performing the first twin study of infant CT and SA, we show genes are important 

determinants of individual differences in neonatal cortical structure. Our findings provide 

important data points previously unavailable for the understanding of genetic contributions to CT 

and SA across the lifespan. Strengths of this study include a unique sample, extensive 

demographic data, and the application of cutting-edge infant image analysis methods. 

Limitations of this study are largely centered around the challenges of infant neuroimaging. 

While offering many unprecedented opportunities to study neurodevelopment, our pediatric 

population may be underpowered to detect significant shared environmental effects. 

Additionally, our use of predefined cortical regions may limit our ability to find genetic 

relationships across regions of the cortex, if those relationships do not adhere to classic 

anatomical boundaries. However, it should be noted that cortical parcellations based on genetic 

data do reveal genetic divisions that largely correspond to anatomical divisions similar to those 
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used in the current study (Chen et al. 2012). Future studies should focus on pursuing a non-

biased approach of using vertex-based analysis to generate continuous maps of genetic 

influences on CT and SA. Moreover, because results from our analysis are based on one infant 

dataset, they may not be generalizable to other pediatric populations. However, because there are 

no genetic investigations of CT or SA in young typically developing infants, results from this 

study are highly informative. Findings provide cortical regions to prioritize for future imaging 

genetic studies and valuable targets to better understand genetic processes that contribute to 

psychiatric and developmental disorders. 
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Table 3.1. Demographics for Neonate Twin Sample  
 

Continuous Variables Average SD 
Birth weight 2409.82 534.84 

Gestational Age at Birth 249.67 16.86 
Postnatal Age at MRI 37.22 16.82 

5 Minute Apgar 8.62 0.75 
Maternal Education 14.99 3.39 
Paternal Education 14.77 3.52 

Maternal Age 30.49 5.6 
Paternal Age 32.89 6.83 

      
Categorical Variables N % 

Zygosity Monozygotic 130 35% 
Dizygotic  246 65% 

NICU Stay > 24 hours No 249 66% 
Yes 127 34% 

Sex Male 214 57% 
Female 162 43% 

Delivery Method Vaginal 104 28% 
C-section 272 72% 

Household Income 

High 106 28% 
Mid 108 29% 
Low 142 38% 

Missing 20 5% 

Maternal Ethnicity 

Caucasian 284 76% 
African American 84 22% 

Asian 6 2% 
Native American 2 1% 

Paternal Ethnicity 

Caucasian 276 73% 
African American 84 22% 

Asian 14 4% 
Native American 2 1% 

Maternal Psychiatric History No 254 68% 
Yes 122 32% 

Paternal Psychiatric History No 338 90% 
Yes 38 10% 

Maternal Smoking No 356 95% 
Yes 20 5% 

T2 Sequence Type 

Type 1 124 33% 
Type 2 185 49% 
Type 3 11 3% 
Type 4 56 15% 
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Table 3.2. Co-twin Correlations for MZ and DZ pairs  
 

Region of Interest  Cortical Thickness Surface Area  
 DZ MZ DZ MZ 

Total SA -- -- 0.74 0.93 
Average Thickness 0.66 0.77 -- -- 

Precentral_L 0.52 0.54 0.54 0.77 
Precentral_R 0.48 0.64 0.56 0.82 

Frontal_Sup_L 0.54 0.7 0.59 0.55 
Frontal_Sup_R 0.62 0.71 0.63 0.76 

Frontal_Sup_Orb_L 0.46 0.53 0.44 0.63 
Frontal_Sup_Orb_R 0.45 0.6 0.61 0.65 

Frontal_Mid_L 0.54 0.63 0.56 0.82 
Frontal_Mid_R 0.55 0.58 0.66 0.83 

Frontal_Mid_Orb_L 0.25 0.18 0.4 0.72 
Frontal_Mid_Orb_R 0.29 0.53 0.55 0.79 
Frontal_Inf_Oper_L 0.24 0.44 0.49 0.6 
Frontal_Inf_Oper_R 0.17 0.44 0.4 0.64 

Frontal_Inf_Tri_L 0.35 0.58 0.4 0.6 
Frontal_Inf_Tri_R 0.3 0.36 0.39 0.73 

Frontal_Inf_Orb_L 0.46 0.5 0.55 0.88 
Frontal_Inf_Orb_R 0.36 0.56 0.55 0.85 

Rolandic_Oper_L 0.39 0.51 0.48 0.79 
Rolandic_Oper_R 0.26 0.38 0.55 0.75 

Supp_Motor_Area_L 0.41 0.6 0.57 0.69 
Supp_Motor_Area_R 0.42 0.48 0.6 0.78 

Olfactory_L 0.23 0.19 0.18 0.56 
Olfactory_R 0.3 0.29 0.23 0.69 

Frontal_Sup_Medial_L 0.37 0.55 0.5 0.61 
Frontal_Sup_Medial_R 0.31 0.53 0.62 0.79 

Frontal_Med_Orb_L -0.03 0.27 0.28 0.4 
Frontal_Med_Orb_R 0.21 0.43 0.56 0.77 

Rectus_L 0.13 0.51 0.32 0.62 
Rectus_R 0.12 0.36 0.51 0.71 
Insula_L 0.39 0.71 0.59 0.83 
Insula_R 0.45 0.72 0.62 0.85 

Cingulum_Ant_L 0.27 0.36 0.36 0.67 
Cingulum_Ant_R 0.39 0.2 0.62 0.85 
Cingulum_Mid_L 0.39 0.58 0.47 0.72 
Cingulum_Mid_R 0.44 0.48 0.59 0.89 
Cingulum_Post_L 0.05 0.31 0.29 0.71 
Cingulum_Post_R 0.23 0.17 0.38 0.58 

ParaHippocampal_L 0.22 0.59 0.2 0.54 
ParaHippocampal_R 0.04 0.45 0.38 0.74 

Calcarine_L 0.44 0.39 0.45 0.67 
Calcarine_R 0.32 0.35 0.32 0.69 

Cuneus_L 0.18 0.29 0.34 0.61 
Cuneus_R 0.24 0.05 0.33 0.69 
Lingual_L 0.42 0.24 0.54 0.73 
Lingual_R 0.47 0.27 0.69 0.82 

Occipital_Sup_L 0.42 0.2 0.42 0.67 
Occipital_Sup_R 0.21 0.19 0.46 0.63 
Occipital_Mid_L 0.47 0.46 0.59 0.74 
Occipital_Mid_R 0.24 0.33 0.57 0.67 

Occipital_Inf_L 0.18 0.32 0.45 0.55 
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Occipital_Inf_R 0.33 0.51 0.48 0.61 
Fusiform_L 0.29 0.52 0.51 0.55 
Fusiform_R 0.39 0.47 0.5 0.71 

Postcentral_L 0.42 0.65 0.47 0.71 
Postcentral_R 0.41 0.58 0.62 0.81 

Parietal_Sup_L 0.48 0.51 0.41 0.49 
Parietal_Sup_R 0.37 0.28 0.67 0.86 
Parietal_Inf_L 0.31 0.4 0.51 0.65 
Parietal_Inf_R 0.31 0.43 0.53 0.71 

SupraMarginal_L 0.17 0.3 0.35 0.55 
SupraMarginal_R 0.33 0.31 0.54 0.78 

Angular_L -0.01 0.19 0.31 0.6 
Angular_R 0.36 0.5 0.54 0.69 

Precuneus_L 0.22 0.48 0.53 0.84 
Precuneus_R 0.23 0.26 0.71 0.88 

Paracentral_Lobule_L 0.27 0.55 0.3 0.62 
Paracentral_Lobule_R 0.09 0.38 0.45 0.69 

Heschl_L 0.11 0.36 0.09 0.62 
Heschl_R 0.31 0.59 0.28 0.59 

Temporal_Sup_L 0.25 0.48 0.51 0.81 
Temporal_Sup_R 0.17 0.54 0.66 0.84 

Temporal_Pole_Sup_L 0.16 0.4 0.56 0.81 
Temporal_Pole_Sup_R 0.24 0.25 0.65 0.75 

Temporal_Mid_L 0.3 0.42 0.59 0.76 
Temporal_Mid_R 0.41 0.58 0.61 0.86 

Temporal_Pole_Mid_L 0.11 0.32 0.37 0.72 
Temporal_Pole_Mid_R 0.3 0.49 0.5 0.75 

Temporal_Inf_L 0.24 0.68 0.45 0.74 
Temporal_Inf_R 0.34 0.55 0.64 0.85 
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Table 3.3. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Global 
Measures 

 
Region of Interest  Variance Components  Hypothesis test (P values)  
 a2 c2 e2 A C A and C 
Total SA 0.79 0.11 0.10 < 0.001 0.401 < 0.001 
Average CT  0.20 0.23 0.57 > 0.999 > 0.999 < 0.001 
ICV 0.64 0.19 0.17 < 0.001 0.199 < 0.001 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Table 3.4. Bivariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Global 
Measures 

 
Region of Interests Correlation Coefficient Hypothesis test (P values) 

1 2 rP rG rC rE A C E A and C A, C, and E 
Total SA Average CT 0.29 0.78 0.13 -0.22 0.005 0.840 0.091 < 0.001 < 0.001 
Total SA ICV 0.85 0.95 0.8 0.51 < 0.001 0.611 < 0.001 < 0.001 < 0.001 

Average CT ICV 0.56 0.69 0.77 0.37 0.029 0.383 0.003 < 0.001 < 0.001 
 
A= test of genetic covariance; C = test of shared environmental covariance; A and C = test of familial covariance 

(genetic + environmental); A, C, and E = test of all and any covariance 
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Table 3.5. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Regional 
CT Measures 

 
Region of Interest Variance Components Hypothesis test  P values Hypothesis test  Q values 

 a2 c2 e2 A C A and C A C A and C 
Precentral_L 0.04 0.19 0.77 0.896 0.356 0.012 1.000 1.000 0.030 
Precentral_R 0.38 < 0.01 0.62 0.200 0.995 0.002 0.698 1.000 0.009 

Frontal_Sup_L 0.03 0.29 0.68 0.915 0.139 < 0.001 1.000 1.000 0.001 
Frontal_Sup_R < 0.01 0.38 0.62 1.000 0.028 < 0.001 1.000 1.000 < 0.001 

Frontal_Sup_Orb_L < 0.01 0.25 0.75 1.000 0.196 0.003 1.000 1.000 0.010 
Frontal_Sup_Orb_R 0.36 < 0.01 0.64 0.100 1.000 0.001 0.668 1.000 0.007 

Frontal_Mid_L < 0.01 0.20 0.80 1.000 0.192 0.022 1.000 1.000 0.050 
Frontal_Mid_R < 0.01 0.21 0.79 1.000 0.109 0.017 1.000 1.000 0.040 

Frontal_Mid_Orb_L < 0.01 < 0.01 1.00 1.000 0.964 0.999 1.000 1.000 1.000 
Frontal_Mid_Orb_R 0.29 < 0.01 0.71 0.200 1.000 0.041 0.698 1.000 0.083 
Frontal_Inf_Oper_L 0.14 < 0.01 0.86 0.433 1.000 0.345 1.000 1.000 0.454 
Frontal_Inf_Oper_R 0.04 < 0.01 0.96 0.732 1.000 0.943 1.000 1.000 0.993 

Frontal_Inf_Tri_L 0.26 < 0.01 0.74 0.115 1.000 0.016 0.685 1.000 0.040 
Frontal_Inf_Tri_R 0.14 < 0.01 0.86 0.531 1.000 0.360 1.000 1.000 0.466 

Frontal_Inf_Orb_L < 0.01 0.18 0.82 1.000 0.295 0.049 1.000 1.000 0.096 
Frontal_Inf_Orb_R 0.12 < 0.01 0.88 0.495 1.000 0.568 1.000 1.000 0.680 

Rolandic_Oper_L 0.20 0.14 0.66 0.461 0.490 0.001 1.000 1.000 0.003 
Rolandic_Oper_R 0.16 < 0.01 0.84 0.407 1.000 0.305 1.000 1.000 0.408 

Supp_Motor_Area_L 0.20 0.14 0.66 0.515 0.485 0.001 1.000 1.000 0.006 
Supp_Motor_Area_R < 0.01 0.22 0.78 1.000 0.153 0.009 1.000 1.000 0.026 

Olfactory_L < 0.01 0.14 0.86 1.000 0.443 0.169 1.000 1.000 0.258 
Olfactory_R < 0.01 0.07 0.93 1.000 0.501 0.632 1.000 1.000 0.713 

Frontal_Sup_Medial_L < 0.01 0.07 0.93 1.000 0.524 0.601 1.000 1.000 0.698 
Frontal_Sup_Medial_R 0.13 < 0.01 0.87 0.379 1.000 0.424 1.000 1.000 0.531 

Frontal_Med_Orb_L < 0.01 < 0.01 1.00 1.000 1.000 1.000 1.000 1.000 1.000 
Frontal_Med_Orb_R 0.21 < 0.01 0.79 0.395 1.000 0.138 1.000 1.000 0.219 

Rectus_L 0.24 < 0.01 0.76 0.086 1.000 0.035 0.668 1.000 0.074 
Rectus_R 0.11 < 0.01 0.89 0.564 1.000 0.578 1.000 1.000 0.682 
Insula_L 0.41 < 0.01 0.59 0.006 1.000 < 0.001 0.248 1.000 0.003 
Insula_R 0.55 < 0.01 0.45 0.001 1.000 < 0.001 0.076 1.000 < 0.001 

Cingulum_Ant_L 0.32 < 0.01 0.68 0.271 0.990 0.008 0.793 1.000 0.022 
Cingulum_Ant_R < 0.01 0.20 0.80 1.000 0.117 0.022 1.000 1.000 0.050 
Cingulum_Mid_L 0.43 < 0.01 0.57 0.065 1.000 < 0.001 0.668 1.000 < 0.001 
Cingulum_Mid_R 0.02 0.20 0.78 0.943 0.367 0.011 1.000 1.000 0.030 
Cingulum_Post_L 0.02 < 0.01 0.98 0.875 1.000 0.988 1.000 1.000 1.000 
Cingulum_Post_R < 0.01 0.10 0.90 1.000 0.495 0.370 1.000 1.000 0.472 

ParaHippocampal_L 0.44 < 0.01 0.56 0.014 1.000 < 0.001 0.283 1.000 0.002 
ParaHippocampal_R 0.28 < 0.01 0.72 0.048 1.000 0.064 0.638 1.000 0.116 

Calcarine_L < 0.01 0.19 0.81 1.000 0.369 0.036 1.000 1.000 0.075 
Calcarine_R 0.13 0.08 0.79 0.658 0.717 0.069 1.000 1.000 0.121 

Cuneus_L 0.13 0.05 0.83 0.664 0.837 0.174 1.000 1.000 0.259 
Cuneus_R < 0.01 0.13 0.87 1.000 0.293 0.189 1.000 1.000 0.276 
Lingual_L < 0.01 0.24 0.76 1.000 0.057 0.005 1.000 1.000 0.016 
Lingual_R < 0.01 0.28 0.72 1.000 0.094 < 0.001 1.000 1.000 0.003 

Occipital_Sup_L < 0.01 0.24 0.76 1.000 0.097 0.005 1.000 1.000 0.016 
Occipital_Sup_R < 0.01 0.12 0.88 1.000 0.402 0.272 1.000 1.000 0.377 
Occipital_Mid_L 0.01 0.20 0.78 0.962 0.330 0.013 1.000 1.000 0.032 
Occipital_Mid_R 0.08 < 0.01 0.92 0.407 1.000 0.710 1.000 1.000 0.789 

Occipital_Inf_L 0.11 < 0.01 0.89 0.519 1.000 0.618 1.000 1.000 0.708 
Occipital_Inf_R 0.37 < 0.01 0.63 0.156 1.000 0.002 0.698 1.000 0.009 
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Fusiform_L 0.33 < 0.01 0.67 0.130 1.000 0.005 0.685 1.000 0.016 
Fusiform_R 0.03 0.33 0.64 0.904 0.085 < 0.001 1.000 1.000 < 0.001 

Postcentral_L 0.38 < 0.01 0.62 0.127 1.000 0.001 0.685 1.000 0.004 
Postcentral_R 0.17 < 0.01 0.83 0.271 1.000 0.226 0.793 1.000 0.319 

Parietal_Sup_L < 0.01 0.28 0.72 1.000 0.185 0.001 1.000 1.000 0.004 
Parietal_Sup_R < 0.01 0.14 0.86 1.000 0.154 0.170 1.000 1.000 0.258 
Parietal_Inf_L 0.23 < 0.01 0.77 0.243 1.000 0.056 0.793 1.000 0.108 
Parietal_Inf_R 0.03 0.10 0.87 0.940 0.666 0.286 1.000 1.000 0.389 

SupraMarginal_L 0.04 0.06 0.90 0.889 0.787 0.478 1.000 1.000 0.581 
SupraMarginal_R 0.16 0.07 0.77 0.623 0.748 0.063 1.000 1.000 0.115 

Angular_L < 0.01 < 0.01 1.00 1.000 1.000 1.000 1.000 1.000 1.000 
Angular_R 0.26 < 0.01 0.74 0.203 1.000 0.025 0.698 1.000 0.054 

Precuneus_L 0.22 < 0.01 0.78 0.188 1.000 0.095 0.698 1.000 0.156 
Precuneus_R 0.13 < 0.01 0.87 0.560 1.000 0.443 1.000 1.000 0.547 

Paracentral_Lobule_L 0.33 < 0.01 0.67 0.141 1.000 0.003 0.696 1.000 0.010 
Paracentral_Lobule_R 0.04 < 0.01 0.96 0.711 1.000 0.933 1.000 1.000 0.993 

Heschl_L 0.05 < 0.01 0.95 0.712 1.000 0.876 1.000 1.000 0.961 
Heschl_R 0.43 < 0.01 0.57 0.014 1.000 < 0.001 0.283 1.000 0.003 

Temporal_Sup_L 0.36 < 0.01 0.64 0.088 1.000 0.003 0.668 1.000 0.010 
Temporal_Sup_R 0.22 < 0.01 0.78 0.101 1.000 0.138 0.668 1.000 0.219 

Temporal_Pole_Sup_L 0.09 0.07 0.84 0.762 0.760 0.194 1.000 1.000 0.278 
Temporal_Pole_Sup_R < 0.01 0.16 0.84 1.000 0.385 0.092 1.000 1.000 0.155 

Temporal_Mid_L 0.23 < 0.01 0.77 0.175 1.000 0.058 0.698 1.000 0.110 
Temporal_Mid_R 0.35 < 0.01 0.65 0.100 1.000 0.002 0.668 1.000 0.008 

Temporal_Pole_Mid_L 0.04 < 0.01 0.96 0.646 1.000 0.900 1.000 1.000 0.974 
Temporal_Pole_Mid_R 0.31 < 0.01 0.69 0.186 1.000 0.005 0.698 1.000 0.016 

Temporal_Inf_L 0.37 < 0.01 0.63 0.022 1.000 < 0.001 0.347 1.000 0.003 
Temporal_Inf_R 0.24 < 0.01 0.76 0.253 1.000 0.073 0.793 1.000 0.126 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Table 3.6. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Regional 
SA Measures 

 
Region of Interest Variance Components Hypothesis test  P values Hypothesis test  Q values 

 a2 c2 e2 A C A and C A C A and C 
Precentral_L 0.25 0.13 0.62 0.353 0.498 < 0.001 0.521 1.000 0.001 
Precentral_R 0.14 0.20 0.66 0.605 0.319 < 0.001 0.705 1.000 0.001 

Frontal_Sup_L 0.02 0.18 0.79 0.937 0.384 0.021 1.000 1.000 0.034 
Frontal_Sup_R 0.18 0.15 0.67 0.508 0.455 0.001 0.647 1.000 0.002 

Frontal_Sup_Orb_L 0.32 < 0.01 0.68 0.081 1.000 0.009 0.221 1.000 0.015 
Frontal_Sup_Orb_R 0.03 0.01 0.97 0.927 0.982 0.942 1.000 1.000 0.966 

Frontal_Mid_L 0.38 < 0.01 0.62 0.017 1.000 0.002 0.127 1.000 0.004 
Frontal_Mid_R 0.27 0.20 0.53 0.265 0.256 < 0.001 0.445 1.000 < 0.001 

Frontal_Mid_Orb_L 0.20 < 0.01 0.80 0.264 1.000 0.158 0.445 1.000 0.190 
Frontal_Mid_Orb_R 0.29 < 0.01 0.71 0.035 1.000 0.016 0.169 1.000 0.026 
Frontal_Inf_Oper_L 0.07 < 0.01 0.93 0.607 1.000 0.772 0.705 1.000 0.824 
Frontal_Inf_Oper_R 0.05 < 0.01 0.95 0.674 1.000 0.915 0.761 1.000 0.951 

Frontal_Inf_Tri_L 0.08 < 0.01 0.92 0.575 1.000 0.723 0.689 1.000 0.793 
Frontal_Inf_Tri_R 0.31 < 0.01 0.69 0.172 1.000 0.011 0.332 1.000 0.019 

Frontal_Inf_Orb_L 0.56 < 0.01 0.44 < 0.001 1.000 < 0.001 0.005 1.000 < 0.001 
Frontal_Inf_Orb_R 0.51 < 0.01 0.49 0.020 1.000 < 0.001 0.133 1.000 < 0.001 

Rolandic_Oper_L 0.33 < 0.01 0.67 0.054 1.000 0.006 0.169 1.000 0.012 
Rolandic_Oper_R 0.44 < 0.01 0.56 0.056 1.000 < 0.001 0.169 1.000 0.001 

Supp_Motor_Area_L 0.38 0.02 0.60 0.160 0.906 < 0.001 0.332 1.000 0.001 
Supp_Motor_Area_R 0.17 0.15 0.68 0.558 0.458 0.001 0.687 1.000 0.003 

Olfactory_L 0.10 < 0.01 0.90 0.384 1.000 0.685 0.532 1.000 0.762 
Olfactory_R 0.26 < 0.01 0.74 0.045 1.000 0.040 0.169 1.000 0.055 

Frontal_Sup_Medial_L 0.28 < 0.01 0.72 0.140 1.000 0.040 0.316 1.000 0.055 
Frontal_Sup_Medial_R 0.08 < 0.01 0.92 0.460 1.000 0.761 0.596 1.000 0.824 

Frontal_Med_Orb_L < 0.01 0.05 0.95 1.000 0.490 0.788 1.000 1.000 0.830 
Frontal_Med_Orb_R 0.27 0.06 0.67 0.356 0.761 0.004 0.521 1.000 0.008 

Rectus_L 0.24 < 0.01 0.76 0.134 1.000 0.110 0.314 1.000 0.141 
Rectus_R 0.09 0.09 0.83 0.783 0.690 0.138 0.871 1.000 0.173 
Insula_L 0.76 < 0.01 0.24 < 0.001 1.000 < 0.001 0.001 1.000 < 0.001 
Insula_R 0.64 < 0.01 0.36 < 0.001 1.000 < 0.001 0.005 1.000 < 0.001 

Cingulum_Ant_L 0.23 < 0.01 0.77 0.149 1.000 0.141 0.328 1.000 0.174 
Cingulum_Ant_R 0.31 < 0.01 0.69 0.045 1.000 0.032 0.169 1.000 0.047 
Cingulum_Mid_L 0.34 < 0.01 0.66 0.191 1.000 0.008 0.342 1.000 0.014 
Cingulum_Mid_R 0.38 < 0.01 0.62 0.024 1.000 0.003 0.136 1.000 0.006 
Cingulum_Post_L 0.29 < 0.01 0.71 0.055 1.000 0.030 0.169 1.000 0.045 
Cingulum_Post_R 0.12 < 0.01 0.88 0.565 1.000 0.537 0.687 1.000 0.606 

ParaHippocampal_L 0.21 < 0.01 0.79 0.135 1.000 0.163 0.314 1.000 0.193 
ParaHippocampal_R 0.24 0.14 0.62 0.392 0.468 < 0.001 0.534 1.000 0.001 

Calcarine_L 0.25 0.28 0.48 0.273 0.114 < 0.001 0.450 1.000 < 0.001 
Calcarine_R 0.49 0.01 0.50 0.054 0.971 < 0.001 0.169 1.000 < 0.001 

Cuneus_L 0.26 < 0.01 0.74 0.321 1.000 0.041 0.507 1.000 0.055 
Cuneus_R 0.27 < 0.01 0.73 0.107 1.000 0.055 0.273 1.000 0.073 
Lingual_L 0.53 0.02 0.45 0.039 0.899 < 0.001 0.169 1.000 < 0.001 
Lingual_R 0.17 0.38 0.45 0.402 0.023 < 0.001 0.539 1.000 < 0.001 

Occipital_Sup_L 0.45 < 0.01 0.55 0.010 1.000 < 0.001 0.100 1.000 < 0.001 
Occipital_Sup_R 0.47 < 0.01 0.53 0.036 1.000 < 0.001 0.169 1.000 0.001 
Occipital_Mid_L 0.48 < 0.01 0.52 0.018 1.000 < 0.001 0.127 1.000 < 0.001 
Occipital_Mid_R < 0.01 0.26 0.74 1.000 0.168 0.002 1.000 1.000 0.004 

Occipital_Inf_L < 0.01 0.12 0.88 1.000 0.529 0.267 1.000 1.000 0.306 
Occipital_Inf_R 0.25 < 0.01 0.75 0.383 1.000 0.035 0.532 1.000 0.051 
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Fusiform_L 0.30 < 0.01 0.70 0.190 1.000 0.006 0.342 1.000 0.011 
Fusiform_R 0.27 < 0.01 0.73 0.300 1.000 0.025 0.484 1.000 0.038 

Postcentral_L 0.37 < 0.01 0.63 0.053 1.000 0.001 0.169 1.000 0.002 
Postcentral_R 0.34 < 0.01 0.66 0.117 1.000 0.006 0.288 1.000 0.011 

Parietal_Sup_L < 0.01 < 0.01 1.00 1.000 1.000 1.000 1.000 1.000 1.000 
Parietal_Sup_R 0.50 0.04 0.46 0.050 0.827 < 0.001 0.169 1.000 < 0.001 
Parietal_Inf_L < 0.01 0.29 0.71 1.000 0.112 < 0.001 1.000 1.000 0.001 
Parietal_Inf_R 0.27 < 0.01 0.73 0.342 1.000 0.020 0.521 1.000 0.032 

SupraMarginal_L < 0.01 < 0.01 1.00 1.000 1.000 1.000 1.000 1.000 1.000 
SupraMarginal_R 0.37 < 0.01 0.63 0.010 1.000 0.001 0.100 1.000 0.003 

Angular_L 0.20 < 0.01 0.80 0.163 1.000 0.158 0.332 1.000 0.190 
Angular_R 0.21 0.10 0.69 0.430 0.657 0.001 0.566 1.000 0.003 

Precuneus_L 0.50 < 0.01 0.50 0.004 1.000 < 0.001 0.067 1.000 < 0.001 
Precuneus_R 0.61 < 0.01 0.39 0.001 1.000 < 0.001 0.026 1.000 < 0.001 

Paracentral_Lobule_L 0.41 < 0.01 0.59 0.022 1.000 0.004 0.136 1.000 0.008 
Paracentral_Lobule_R 0.31 < 0.01 0.69 0.078 1.000 0.008 0.221 1.000 0.014 

Heschl_L 0.40 < 0.01 0.60 0.010 1.000 0.002 0.100 1.000 0.005 
Heschl_R 0.19 < 0.01 0.81 0.210 1.000 0.174 0.368 1.000 0.202 

Temporal_Sup_L 0.44 < 0.01 0.56 0.096 1.000 < 0.001 0.252 1.000 0.001 
Temporal_Sup_R 0.44 < 0.01 0.56 0.052 1.000 < 0.001 0.169 1.000 < 0.001 

Temporal_Pole_Sup_L 0.24 0.09 0.66 0.366 0.656 0.001 0.526 1.000 0.002 
Temporal_Pole_Sup_R 0.17 0.10 0.72 0.542 0.627 0.007 0.680 1.000 0.012 

Temporal_Mid_L 0.34 < 0.01 0.66 0.018 1.000 0.006 0.127 1.000 0.011 
Temporal_Mid_R 0.31 < 0.01 0.69 0.181 1.000 0.023 0.340 1.000 0.035 

Temporal_Pole_Mid_L 0.12 0.20 0.67 0.639 0.330 < 0.001 0.732 1.000 0.001 
Temporal_Pole_Mid_R 0.23 < 0.01 0.77 0.170 1.000 0.095 0.332 1.000 0.123 

Temporal_Inf_L 0.24 < 0.01 0.76 0.170 1.000 0.082 0.332 1.000 0.108 
Temporal_Inf_R 0.44 0.08 0.48 0.061 0.648 < 0.001 0.178 1.000 < 0.001 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Table S3.1. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Regional 
CT Measures Without Adjustments for Brain Size 

 
Region of Interest Variance Components Hypothesis test  P values Hypothesis test  Q values 

 a2 c2 e2 A C A and C A C A and C 
Precentral_L 0.08 0.26 0.66 0.752 0.18 < 0.001 1 1 < 0.001 
Precentral_R 0.38 0.07 0.55 0.143 0.693 < 0.001 0.51 1 < 0.001 

Frontal_Sup_L 0.18 0.26 0.55 0.438 0.157 < 0.001 0.804 1 < 0.001 
Frontal_Sup_R 0.11 0.4 0.49 0.598 0.019 < 0.001 0.942 0.952 < 0.001 

Frontal_Sup_Orb_L 0.06 0.23 0.71 0.825 0.251 0.001 1 1 0.002 
Frontal_Sup_Orb_R 0.4 < 0.01 0.6 0.087 1 < 0.001 0.51 1 0.001 

Frontal_Mid_L 0.07 0.27 0.66 0.782 0.166 < 0.001 1 1 < 0.001 
Frontal_Mid_R < 0.01 0.29 0.71 1 0.124 < 0.001 1 0.952 0.001 

Frontal_Mid_Orb_L < 0.01 0.07 0.93 1 0.486 0.624 1 1 0.657 
Frontal_Mid_Orb_R 0.31 < 0.01 0.69 0.124 1 0.017 0.51 1 0.032 
Frontal_Inf_Oper_L 0.2 0.04 0.76 0.48 0.854 0.029 0.822 1 0.048 
Frontal_Inf_Oper_R 0.14 < 0.01 0.86 0.363 1 0.465 0.796 1 0.511 

Frontal_Inf_Tri_L 0.39 < 0.01 0.61 0.097 1 < 0.001 0.51 1 < 0.001 
Frontal_Inf_Tri_R 0.25 < 0.01 0.75 0.381 0.983 0.026 0.796 1 0.043 

Frontal_Inf_Orb_L 0.07 0.26 0.67 0.805 0.192 < 0.001 1 1 < 0.001 
Frontal_Inf_Orb_R 0.29 < 0.01 0.71 0.14 1 0.02 0.51 1 0.036 

Rolandic_Oper_L 0.18 0.19 0.64 0.489 0.349 < 0.001 0.822 1 < 0.001 
Rolandic_Oper_R 0.2 < 0.01 0.8 0.432 1 0.145 0.804 1 0.188 

Supp_Motor_Area_L 0.35 0.11 0.54 0.185 0.561 < 0.001 0.542 1 < 0.001 
Supp_Motor_Area_R < 0.01 0.31 0.69 1 0.105 < 0.001 1 0.952 < 0.001 

Olfactory_L < 0.01 0.14 0.86 1 0.468 0.179 1 1 0.224 
Olfactory_R < 0.01 0.1 0.9 1 0.396 0.382 1 1 0.431 

Frontal_Sup_Medial_L 0.25 0.01 0.74 0.404 0.952 0.036 0.804 1 0.057 
Frontal_Sup_Medial_R 0.23 < 0.01 0.77 0.238 1 0.065 0.606 1 0.09 

Frontal_Med_Orb_L 0.02 < 0.01 0.98 0.839 1 0.98 1 1 0.992 
Frontal_Med_Orb_R 0.21 < 0.01 0.79 0.365 1 0.144 0.796 1 0.188 

Rectus_L 0.27 < 0.01 0.73 0.067 1 0.016 0.482 1 0.03 
Rectus_R 0.18 < 0.01 0.82 0.347 1 0.211 0.796 1 0.257 
Insula_L 0.55 < 0.01 0.45 0.001 1 < 0.001 0.07 1 < 0.001 
Insula_R 0.58 < 0.01 0.42 0.002 1 < 0.001 0.07 1 < 0.001 

Cingulum_Ant_L 0.33 < 0.01 0.67 0.232 1 0.005 0.606 1 0.011 
Cingulum_Ant_R < 0.01 0.21 0.79 1 0.104 0.015 1 0.952 0.03 
Cingulum_Mid_L 0.35 0.13 0.53 0.15 0.501 < 0.001 0.51 1 < 0.001 
Cingulum_Mid_R 0.15 0.21 0.64 0.565 0.314 < 0.001 0.91 1 < 0.001 
Cingulum_Post_L 0.11 < 0.01 0.89 0.31 1 0.586 0.742 1 0.625 
Cingulum_Post_R < 0.01 0.14 0.86 1 0.319 0.164 1 1 0.209 

ParaHippocampal_L 0.47 < 0.01 0.53 0.012 1 < 0.001 0.192 1 < 0.001 
ParaHippocampal_R 0.3 < 0.01 0.7 0.037 1 0.045 0.42 1 0.069 

Calcarine_L 0.03 0.21 0.76 0.929 0.316 0.008 1 1 0.016 
Calcarine_R 0.13 0.11 0.76 0.655 0.586 0.019 0.962 1 0.035 

Cuneus_L 0.19 0.01 0.8 0.516 0.962 0.123 0.848 1 0.168 
Cuneus_R < 0.01 0.13 0.87 1 0.334 0.2 1 1 0.246 
Lingual_L < 0.01 0.26 0.74 1 0.038 0.001 1 0.952 0.003 
Lingual_R < 0.01 0.29 0.71 1 0.133 < 0.001 1 0.952 0.001 

Occipital_Sup_L < 0.01 0.24 0.76 1 0.093 0.004 1 0.952 0.01 
Occipital_Sup_R < 0.01 0.12 0.88 1 0.374 0.271 1 1 0.315 
Occipital_Mid_L 0.01 0.22 0.77 0.979 0.292 0.008 1 1 0.017 
Occipital_Mid_R 0.08 < 0.01 0.92 0.383 1 0.683 0.796 1 0.71 

Occipital_Inf_L 0.13 < 0.01 0.87 0.48 1 0.48 0.822 1 0.52 
Occipital_Inf_R 0.38 < 0.01 0.62 0.162 1 0.002 0.51 1 0.004 
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Fusiform_L 0.37 < 0.01 0.63 0.148 1 0.001 0.51 1 0.003 
Fusiform_R 0.1 0.31 0.59 0.698 0.093 < 0.001 0.985 0.952 < 0.001 

Postcentral_L 0.51 < 0.01 0.49 0.008 1 < 0.001 0.192 1 < 0.001 
Postcentral_R 0.31 < 0.01 0.69 0.138 1 0.006 0.51 1 0.013 

Parietal_Sup_L < 0.01 0.38 0.62 1 0.064 < 0.001 1 0.952 < 0.001 
Parietal_Sup_R < 0.01 0.17 0.83 1 0.121 0.06 1 0.952 0.086 
Parietal_Inf_L 0.32 < 0.01 0.68 0.144 1 0.004 0.51 1 0.01 
Parietal_Inf_R 0.26 0.03 0.71 0.412 0.888 0.024 0.804 1 0.041 

SupraMarginal_L 0.15 0.01 0.84 0.62 0.974 0.296 0.942 1 0.339 
SupraMarginal_R 0.16 0.09 0.75 0.615 0.68 0.034 0.942 1 0.055 

Angular_L < 0.01 < 0.01 1 1 1 1 1 1 1 
Angular_R 0.26 < 0.01 0.74 0.197 1 0.022 0.556 1 0.039 

Precuneus_L 0.35 < 0.01 0.65 0.054 1 0.002 0.478 1 0.004 
Precuneus_R 0.05 0.09 0.87 0.884 0.687 0.265 1 1 0.313 

Paracentral_Lobule_L 0.41 < 0.01 0.58 0.113 0.987 < 0.001 0.51 1 < 0.001 
Paracentral_Lobule_R 0.18 < 0.01 0.82 0.223 1 0.25 0.606 1 0.299 

Heschl_L 0.13 < 0.01 0.87 0.425 1 0.426 0.804 1 0.474 
Heschl_R 0.48 < 0.01 0.52 0.012 1 < 0.001 0.192 1 < 0.001 

Temporal_Sup_L 0.38 < 0.01 0.62 0.062 1 0.001 0.482 1 0.003 
Temporal_Sup_R 0.26 < 0.01 0.74 0.054 1 0.053 0.478 1 0.08 

Temporal_Pole_Sup_L 0.12 0.06 0.81 0.689 0.773 0.126 0.985 1 0.169 
Temporal_Pole_Sup_R 0.14 0.08 0.78 0.657 0.717 0.062 0.962 1 0.088 

Temporal_Mid_L 0.24 < 0.01 0.76 0.154 1 0.059 0.51 1 0.086 
Temporal_Mid_R 0.36 < 0.01 0.64 0.142 1 0.001 0.51 1 0.003 

Temporal_Pole_Mid_L 0.07 < 0.01 0.93 0.449 1 0.751 0.806 1 0.77 
Temporal_Pole_Mid_R 0.32 < 0.01 0.68 0.168 1 0.004 0.51 1 0.01 

Temporal_Inf_L 0.38 < 0.01 0.62 0.02 1 < 0.001 0.268 1 0.001 
Temporal_Inf_R 0.25 < 0.01 0.75 0.286 1 0.05 0.706 1 0.075 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Table S3.2. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Regional 
SA Measures Without Adjustments for Brain Size  

 
Region of Interest Variance Components Hypothesis test  P values Hypothesis test  Q values 

 a2 c2 e2 A C A and C A C A and C 
Precentral_L 0.56 0.13 0.31 0.003 0.43 < 0.001 0.007 1 < 0.001 
Precentral_R 0.7 0.03 0.27 < 0.001 0.849 < 0.001 0.001 1 < 0.001 

Frontal_Sup_L < 0.01 0.4 0.6 1 0.024 < 0.001 1 0.58 < 0.001 
Frontal_Sup_R 0.35 0.3 0.35 0.054 0.066 < 0.001 0.067 0.724 < 0.001 

Frontal_Sup_Orb_L 0.55 < 0.01 0.45 0.014 1 < 0.001 0.023 1 < 0.001 
Frontal_Sup_Orb_R 0.3 0.24 0.46 0.204 0.157 < 0.001 0.229 0.934 < 0.001 

Frontal_Mid_L 0.64 0.07 0.29 0.001 0.643 < 0.001 0.003 1 < 0.001 
Frontal_Mid_R 0.48 0.29 0.23 0.002 0.044 < 0.001 0.004 0.58 < 0.001 

Frontal_Mid_Orb_L 0.6 < 0.01 0.4 0.001 1 < 0.001 0.003 1 < 0.001 
Frontal_Mid_Orb_R 0.59 0.08 0.33 0.003 0.648 < 0.001 0.007 1 < 0.001 
Frontal_Inf_Oper_L 0.41 0.05 0.54 0.104 0.811 < 0.001 0.119 1 < 0.001 
Frontal_Inf_Oper_R 0.57 < 0.01 0.43 0.001 1 < 0.001 0.004 1 < 0.001 

Frontal_Inf_Tri_L 0.28 0.15 0.57 0.283 0.437 < 0.001 0.302 1 < 0.001 
Frontal_Inf_Tri_R 0.56 < 0.01 0.44 0.018 1 < 0.001 0.028 1 < 0.001 

Frontal_Inf_Orb_L 0.83 < 0.01 0.17 < 0.001 1 < 0.001 < 0.001 1 < 0.001 
Frontal_Inf_Orb_R 0.57 0.16 0.27 0.001 0.294 < 0.001 0.003 1 < 0.001 

Rolandic_Oper_L 0.69 < 0.01 0.31 < 0.001 1 < 0.001 0.002 1 < 0.001 
Rolandic_Oper_R 0.64 0.08 0.28 0.001 0.603 < 0.001 0.003 1 < 0.001 

Supp_Motor_Area_L 0.47 0.13 0.4 0.032 0.427 < 0.001 0.045 1 < 0.001 
Supp_Motor_Area_R 0.37 0.3 0.32 0.039 0.045 < 0.001 0.052 0.58 < 0.001 

Olfactory_L 0.39 < 0.01 0.61 0.023 1 0.001 0.034 1 0.001 
Olfactory_R 0.47 < 0.01 0.53 0.004 1 < 0.001 0.008 1 < 0.001 

Frontal_Sup_Medial_L 0.61 < 0.01 0.39 0.007 1 < 0.001 0.013 1 < 0.001 
Frontal_Sup_Medial_R 0.69 0.02 0.29 < 0.001 0.92 < 0.001 0.002 1 < 0.001 

Frontal_Med_Orb_L 0.27 < 0.01 0.73 0.265 1 0.037 0.29 1 0.037 
Frontal_Med_Orb_R 0.59 0.03 0.39 0.009 0.881 < 0.001 0.016 1 < 0.001 

Rectus_L 0.53 < 0.01 0.47 0.003 1 < 0.001 0.007 1 < 0.001 
Rectus_R 0.55 0.02 0.44 0.023 0.924 < 0.001 0.034 1 < 0.001 
Insula_L 0.72 0.13 0.15 < 0.001 0.32 < 0.001 < 0.001 1 < 0.001 
Insula_R 0.62 0.2 0.18 < 0.001 0.154 < 0.001 < 0.001 0.934 < 0.001 

Cingulum_Ant_L 0.53 < 0.01 0.47 0.007 1 < 0.001 0.013 1 < 0.001 
Cingulum_Ant_R 0.78 < 0.01 0.22 < 0.001 1 < 0.001 < 0.001 1 < 0.001 
Cingulum_Mid_L 0.67 < 0.01 0.33 0.001 1 < 0.001 0.003 1 < 0.001 
Cingulum_Mid_R 0.82 < 0.01 0.18 < 0.001 1 < 0.001 < 0.001 1 < 0.001 
Cingulum_Post_L 0.49 < 0.01 0.51 0.004 1 < 0.001 0.008 1 < 0.001 
Cingulum_Post_R 0.46 < 0.01 0.54 0.02 1 < 0.001 0.03 1 < 0.001 

ParaHippocampal_L 0.38 < 0.01 0.62 0.041 1 0.003 0.054 1 0.003 
ParaHippocampal_R 0.57 < 0.01 0.43 0.01 1 < 0.001 0.017 1 < 0.001 

Calcarine_L 0.43 0.19 0.38 0.038 0.235 < 0.001 0.052 1 < 0.001 
Calcarine_R 0.6 < 0.01 0.4 0.002 1 < 0.001 0.005 1 < 0.001 

Cuneus_L 0.45 0.02 0.54 0.084 0.933 < 0.001 0.1 1 < 0.001 
Cuneus_R 0.57 < 0.01 0.43 0.001 1 < 0.001 0.004 1 < 0.001 
Lingual_L 0.63 0.08 0.28 0.001 0.582 < 0.001 0.003 1 < 0.001 
Lingual_R 0.29 0.44 0.27 0.044 0.003 < 0.001 0.057 0.176 < 0.001 

Occipital_Sup_L 0.64 < 0.01 0.36 0.002 1 < 0.001 0.004 1 < 0.001 
Occipital_Sup_R 0.57 0.06 0.37 0.013 0.729 < 0.001 0.023 1 < 0.001 
Occipital_Mid_L 0.7 0.02 0.28 < 0.001 0.904 < 0.001 0.001 1 < 0.001 
Occipital_Mid_R 0.51 0.13 0.36 0.018 0.411 < 0.001 0.028 1 < 0.001 

Occipital_Inf_L 0.26 0.15 0.58 0.329 0.415 < 0.001 0.346 1 < 0.001 
Occipital_Inf_R 0.16 0.26 0.58 0.54 0.156 < 0.001 0.554 0.934 < 0.001 
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Fusiform_L 0.18 0.23 0.58 0.48 0.206 < 0.001 0.499 1 < 0.001 
Fusiform_R 0.39 0.17 0.44 0.073 0.346 < 0.001 0.09 1 < 0.001 

Postcentral_L 0.64 < 0.01 0.36 0.001 1 < 0.001 0.004 1 < 0.001 
Postcentral_R 0.71 0.03 0.26 < 0.001 0.858 < 0.001 0.001 1 < 0.001 

Parietal_Sup_L < 0.01 0.27 0.73 1 0.097 0.001 1 0.934 0.001 
Parietal_Sup_R 0.53 0.29 0.19 < 0.001 0.037 < 0.001 0.001 0.58 < 0.001 
Parietal_Inf_L 0.47 0.12 0.41 0.039 0.463 < 0.001 0.052 1 < 0.001 
Parietal_Inf_R 0.26 0.26 0.48 0.241 0.148 < 0.001 0.268 0.934 < 0.001 

SupraMarginal_L 0.4 < 0.01 0.6 0.098 1 0.001 0.115 1 0.001 
SupraMarginal_R 0.68 < 0.01 0.32 0.001 1 < 0.001 0.002 1 < 0.001 

Angular_L 0.37 < 0.01 0.63 0.017 1 0.001 0.028 1 0.001 
Angular_R 0.39 0.16 0.45 0.078 0.391 < 0.001 0.094 1 < 0.001 

Precuneus_L 0.8 < 0.01 0.2 < 0.001 1 < 0.001 < 0.001 1 < 0.001 
Precuneus_R 0.75 0.15 0.11 < 0.001 0.275 < 0.001 < 0.001 1 < 0.001 

Paracentral_Lobule_L 0.56 < 0.01 0.44 0.002 1 < 0.001 0.004 1 < 0.001 
Paracentral_Lobule_R 0.43 0.15 0.42 0.045 0.389 < 0.001 0.058 1 < 0.001 

Heschl_L 0.47 < 0.01 0.53 0.002 1 < 0.001 0.005 1 < 0.001 
Heschl_R 0.44 < 0.01 0.56 0.053 1 < 0.001 0.067 1 < 0.001 

Temporal_Sup_L 0.56 0.12 0.31 0.003 0.44 < 0.001 0.007 1 < 0.001 
Temporal_Sup_R 0.58 0.2 0.23 < 0.001 0.189 < 0.001 0.001 1 < 0.001 

Temporal_Pole_Sup_L 0.51 0.16 0.33 0.007 0.364 < 0.001 0.013 1 < 0.001 
Temporal_Pole_Sup_R 0.19 0.45 0.36 0.269 0.005 < 0.001 0.291 0.189 < 0.001 

Temporal_Mid_L 0.69 0.02 0.29 < 0.001 0.887 < 0.001 0.002 1 < 0.001 
Temporal_Mid_R 0.73 0.08 0.18 < 0.001 0.567 < 0.001 < 0.001 1 < 0.001 

Temporal_Pole_Mid_L 0.37 0.14 0.48 0.101 0.436 < 0.001 0.118 1 < 0.001 
Temporal_Pole_Mid_R 0.64 < 0.01 0.36 < 0.001 1 < 0.001 0.002 1 < 0.001 

Temporal_Inf_L 0.56 < 0.01 0.44 0.019 1 < 0.001 0.03 1 < 0.001 
Temporal_Inf_R 0.56 0.24 0.2 < 0.001 0.11 < 0.001 0.001 0.934 < 0.001 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Table S3.3. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Global 
Measures Controlling for Age, Sex, Brain Size, and T2 Type   

 
Region of Interest  Variance Components  Hypothesis test (P values)  
  a2 c2 e2 A C A and C 
Total SA 0.32 0.60 0.08 < 0.001 < 0.001 < 0.001 
Average CT  0.16 0.33 0.51 0.963 0.578 < 0.001 
ICV 0.42 0.48 0.10 < 0.001 < 0.001 < 0.001 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
 
  



	 78 

Table S3.4. Bivariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Global 
Measures Controlling for Age, Sex, Brain Size, and T2 Type   

 
Region of Interests Correlation Coefficient Hypothesis test (P values) 

1 2 rP rG rC rE A C E A and C A, C, and E 
Total SA Average CT 0.32 0.72 0.36 -0.23 0.012 0.057 0.065 < 0.001 < 0.001 
Total SA ICV 0.92 0.95 0.96 0.62 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Average CT ICV 0.53 0.73 0.58 0.28 0.012 0.027 0.035 < 0.001 < 0.001 
 
A= test of genetic covariance; C = test of shared environmental covariance; A and C = test of familial covariance 

(genetic + environmental); A, C, and E = test of all and any covariance 
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Table S3.5 Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Regional 
CT Measures Controlling for Age, Sex, Brain Size, and T2 Type 

 
Region of Interest Variance Components Hypothesis test  P values Hypothesis test  Q values 

 a2 c2 e2 A C A and C A C A and C 
Precentral_L < 0.01 0.26 0.74 1 0.158 0.001 1 0.862 0.005 
Precentral_R 0.28 0.10 0.62 0.334 0.603 < 0.001 0.851 1 0.002 

Frontal_Sup_L 0.04 0.33 0.64 0.879 0.088 < 0.001 1 0.578 < 0.001 
Frontal_Sup_R < 0.01 0.45 0.55 1 0.004 < 0.001 1 0.295 < 0.001 

Frontal_Sup_Orb_L 0.12 0.20 0.68 0.651 0.318 < 0.001 1 1 0.002 
Frontal_Sup_Orb_R 0.39 < 0.01 0.61 0.075 1 < 0.001 0.506 1 0.001 

Frontal_Mid_L < 0.01 0.24 0.76 1 0.161 0.005 1 0.862 0.011 
Frontal_Mid_R < 0.01 0.23 0.77 1 0.072 0.007 1 0.578 0.015 

Frontal_Mid_Orb_L < 0.01 0.06 0.94 1 0.468 0.706 1 1 0.764 
Frontal_Mid_Orb_R 0.37 < 0.01 0.63 0.135 1 0.003 0.59 1 0.008 
Frontal_Inf_Oper_L 0.18 < 0.01 0.82 0.476 1 0.166 0.963 1 0.208 
Frontal_Inf_Oper_R 0.07 < 0.01 0.93 0.627 1 0.848 1 1 0.893 

Frontal_Inf_Tri_L 0.30 < 0.01 0.70 0.107 1 0.004 0.556 1 0.01 
Frontal_Inf_Tri_R 0.09 0.06 0.86 0.764 0.8 0.26 1 1 0.307 

Frontal_Inf_Orb_L < 0.01 0.26 0.73 0.988 0.196 0.001 1 0.862 0.004 
Frontal_Inf_Orb_R 0.20 < 0.01 0.80 0.276 1 0.164 0.808 1 0.208 

Rolandic_Oper_L 0.23 0.13 0.64 0.381 0.511 < 0.001 0.861 1 0.001 
Rolandic_Oper_R 0.19 < 0.01 0.81 0.392 1 0.189 0.861 1 0.23 

Supp_Motor_Area_L 0.29 0.15 0.56 0.289 0.408 < 0.001 0.815 1 < 0.001 
Supp_Motor_Area_R < 0.01 0.28 0.72 1 0.086 < 0.001 1 0.578 0.002 

Olfactory_L < 0.01 0.16 0.84 1 0.398 0.102 1 1 0.139 
Olfactory_R < 0.01 0.11 0.89 1 0.367 0.328 1 1 0.376 

Frontal_Sup_Medial_L < 0.01 0.14 0.86 1 0.461 0.18 1 1 0.222 
Frontal_Sup_Medial_R 0.22 < 0.01 0.78 0.387 1 0.094 0.861 1 0.133 

Frontal_Med_Orb_L 0.03 < 0.01 0.97 0.786 1 0.964 1 1 0.976 
Frontal_Med_Orb_R 0.26 < 0.01 0.74 0.272 1 0.044 0.808 1 0.07 

Rectus_L 0.27 < 0.01 0.73 0.068 1 0.014 0.506 1 0.027 
Rectus_R 0.13 < 0.01 0.87 0.508 1 0.414 1 1 0.461 
Insula_L 0.44 < 0.01 0.56 0.004 1 < 0.001 0.148 1 0.001 
Insula_R 0.60 < 0.01 0.40 0.001 1 < 0.001 0.041 1 < 0.001 

Cingulum_Ant_L 0.29 0.04 0.67 0.323 0.834 0.004 0.851 1 0.01 
Cingulum_Ant_R < 0.01 0.23 0.77 1 0.075 0.006 1 0.578 0.013 
Cingulum_Mid_L 0.44 < 0.01 0.56 0.066 1 < 0.001 0.506 1 < 0.001 
Cingulum_Mid_R < 0.01 0.25 0.75 0.997 0.253 0.003 1 1 0.007 
Cingulum_Post_L 0.03 < 0.01 0.97 0.787 1 0.964 1 1 0.976 
Cingulum_Post_R < 0.01 0.11 0.89 1 0.462 0.326 1 1 0.376 

ParaHippocampal_L 0.45 < 0.01 0.55 0.014 1 < 0.001 0.239 1 0.001 
ParaHippocampal_R 0.34 < 0.01 0.66 0.029 1 0.017 0.388 1 0.03 

Calcarine_L < 0.01 0.22 0.78 1 0.187 0.011 1 0.862 0.021 
Calcarine_R 0.09 0.13 0.78 0.774 0.545 0.039 1 1 0.064 

Cuneus_L 0.13 0.07 0.80 0.66 0.727 0.076 1 1 0.111 
Cuneus_R < 0.01 0.15 0.85 1 0.191 0.115 1 0.862 0.154 
Lingual_L < 0.01 0.25 0.75 1 0.046 0.002 1 0.578 0.006 
Lingual_R < 0.01 0.30 0.70 1 0.044 < 0.001 1 0.578 0.001 

Occipital_Sup_L < 0.01 0.26 0.74 1 0.054 0.001 1 0.578 0.004 
Occipital_Sup_R < 0.01 0.15 0.85 1 0.313 0.136 1 1 0.179 
Occipital_Mid_L < 0.01 0.25 0.75 1 0.18 0.002 1 0.862 0.006 
Occipital_Mid_R 0.10 < 0.01 0.90 0.392 1 0.59 0.861 1 0.647 

Occipital_Inf_L 0.15 < 0.01 0.85 0.432 1 0.351 0.922 1 0.396 
Occipital_Inf_R 0.42 < 0.01 0.58 0.113 1 < 0.001 0.556 1 0.001 



	 80 

Fusiform_L 0.35 < 0.01 0.65 0.115 1 0.002 0.556 1 0.005 
Fusiform_R 0.04 0.34 0.62 0.876 0.062 < 0.001 1 0.578 < 0.001 

Postcentral_L 0.41 0.01 0.58 0.113 0.969 < 0.001 0.556 1 0.001 
Postcentral_R 0.24 < 0.01 0.76 0.232 1 0.05 0.763 1 0.076 

Parietal_Sup_L < 0.01 0.40 0.60 1 0.009 < 0.001 1 0.339 < 0.001 
Parietal_Sup_R < 0.01 0.21 0.79 1 0.072 0.015 1 0.578 0.027 
Parietal_Inf_L 0.27 < 0.01 0.73 0.265 1 0.019 0.808 1 0.033 
Parietal_Inf_R 0.07 0.10 0.83 0.835 0.665 0.156 1 1 0.202 

SupraMarginal_L 0.17 0.01 0.82 0.574 0.971 0.214 1 1 0.256 
SupraMarginal_R 0.15 0.08 0.77 0.632 0.707 0.049 1 1 0.076 

Angular_L < 0.01 < 0.01 1.00 1 1 1 1 1 1 
Angular_R 0.27 0.03 0.70 0.332 0.881 0.006 0.851 1 0.013 

Precuneus_L 0.32 < 0.01 0.68 0.175 1 0.006 0.693 1 0.012 
Precuneus_R 0.02 0.14 0.84 0.952 0.504 0.101 1 1 0.139 

Paracentral_Lobule_L 0.35 < 0.01 0.64 0.191 0.988 0.001 0.72 1 0.003 
Paracentral_Lobule_R 0.08 < 0.01 0.92 0.547 1 0.788 1 1 0.842 

Heschl_L 0.05 < 0.01 0.95 0.714 1 0.873 1 1 0.907 
Heschl_R 0.44 < 0.01 0.56 0.013 1 < 0.001 0.239 1 0.001 

Temporal_Sup_L 0.37 < 0.01 0.63 0.077 1 0.002 0.506 1 0.006 
Temporal_Sup_R 0.25 < 0.01 0.75 0.069 1 0.069 0.506 1 0.103 

Temporal_Pole_Sup_L 0.26 0.03 0.71 0.359 0.871 0.008 0.861 1 0.016 
Temporal_Pole_Sup_R 0.16 0.08 0.76 0.612 0.687 0.036 1 1 0.061 

Temporal_Mid_L 0.25 < 0.01 0.75 0.175 1 0.04 0.693 1 0.065 
Temporal_Mid_R 0.38 < 0.01 0.62 0.12 1 < 0.001 0.556 1 0.002 

Temporal_Pole_Mid_L 0.21 < 0.01 0.79 0.218 1 0.091 0.763 1 0.131 
Temporal_Pole_Mid_R 0.40 < 0.01 0.60 0.076 1 < 0.001 0.506 1 0.001 

Temporal_Inf_L 0.39 < 0.01 0.61 0.015 1 < 0.001 0.239 1 0.001 
Temporal_Inf_R 0.26 < 0.01 0.74 0.228 1 0.037 0.763 1 0.062 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Table S3.6. Univariate ACE Model Maximum Likelihood Parameter Estimates and P-values for Regional 
SA Measures Controlling for Age, Sex, Brain Size, And T2 Type 

 
Region of Interest Variance Components Hypothesis test  P values Hypothesis test  Q values 

 a2 c2 e2 A C A and C A C A and C 
Precentral_L 0.26 0.13 0.61 0.338 0.511 < 0.001 0.509 1 0.001 
Precentral_R 0.13 0.21 0.66 0.622 0.299 < 0.001 0.72 1 0.001 

Frontal_Sup_L 0.03 0.19 0.79 0.926 0.381 0.019 0.999 1 0.03 
Frontal_Sup_R 0.18 0.15 0.67 0.512 0.45 0.001 0.664 1 0.002 

Frontal_Sup_Orb_L 0.32 < 0.01 0.68 0.072 1 0.007 0.215 1 0.013 
Frontal_Sup_Orb_R 0.03 < 0.01 0.96 0.923 0.984 0.939 0.999 1 0.989 

Frontal_Mid_L 0.35 < 0.01 0.65 0.03 1 0.005 0.18 1 0.01 
Frontal_Mid_R 0.26 0.22 0.52 0.276 0.224 < 0.001 0.459 1 < 0.001 

Frontal_Mid_Orb_L 0.21 < 0.01 0.79 0.228 1 0.137 0.403 1 0.169 
Frontal_Mid_Orb_R 0.28 < 0.01 0.72 0.042 1 0.018 0.185 1 0.03 
Frontal_Inf_Oper_L 0.07 < 0.01 0.93 0.624 1 0.783 0.72 1 0.841 
Frontal_Inf_Oper_R 0.02 < 0.01 0.98 0.858 1 0.984 0.963 1 1 

Frontal_Inf_Tri_L 0.08 < 0.01 0.92 0.572 1 0.767 0.698 1 0.841 
Frontal_Inf_Tri_R 0.31 < 0.01 0.69 0.169 1 0.011 0.326 1 0.019 

Frontal_Inf_Orb_L 0.55 < 0.01 0.45 < 0.001 1 < 0.001 0.008 1 < 0.001 
Frontal_Inf_Orb_R 0.51 < 0.01 0.49 0.014 1 < 0.001 0.127 1 < 0.001 

Rolandic_Oper_L 0.33 < 0.01 0.67 0.056 1 0.007 0.185 1 0.012 
Rolandic_Oper_R 0.42 < 0.01 0.58 0.077 1 < 0.001 0.221 1 0.001 

Supp_Motor_Area_L 0.37 0.03 0.6 0.164 0.88 < 0.001 0.324 1 0.001 
Supp_Motor_Area_R 0.16 0.16 0.68 0.593 0.421 0.001 0.714 1 0.003 

Olfactory_L 0.11 < 0.01 0.89 0.348 1 0.644 0.516 1 0.727 
Olfactory_R 0.26 < 0.01 0.74 0.045 1 0.04 0.185 1 0.055 

Frontal_Sup_Medial_L 0.28 < 0.01 0.72 0.134 1 0.039 0.317 1 0.055 
Frontal_Sup_Medial_R 0.07 < 0.01 0.93 0.48 1 0.779 0.643 1 0.841 

Frontal_Med_Orb_L < 0.01 0.05 0.95 1 0.734 0.788 1 1 0.841 
Frontal_Med_Orb_R 0.27 0.06 0.67 0.357 0.753 0.003 0.519 1 0.007 

Rectus_L 0.23 < 0.01 0.77 0.15 1 0.136 0.324 1 0.169 
Rectus_R 0.09 0.09 0.82 0.777 0.687 0.129 0.884 1 0.164 
Insula_L 0.73 < 0.01 0.27 < 0.001 1 < 0.001 0.003 1 < 0.001 
Insula_R 0.61 < 0.01 0.39 < 0.001 1 < 0.001 0.008 1 < 0.001 

Cingulum_Ant_L 0.23 < 0.01 0.77 0.151 1 0.14 0.324 1 0.17 
Cingulum_Ant_R 0.29 < 0.01 0.71 0.056 1 0.046 0.185 1 0.062 
Cingulum_Mid_L 0.36 < 0.01 0.64 0.197 1 0.005 0.363 1 0.01 
Cingulum_Mid_R 0.38 < 0.01 0.62 0.027 1 0.003 0.172 1 0.007 
Cingulum_Post_L 0.29 < 0.01 0.71 0.054 1 0.03 0.185 1 0.045 
Cingulum_Post_R 0.12 < 0.01 0.88 0.567 1 0.549 0.698 1 0.629 

ParaHippocampal_L 0.2 < 0.01 0.8 0.132 1 0.164 0.317 1 0.194 
ParaHippocampal_R 0.24 0.14 0.62 0.392 0.467 < 0.001 0.551 1 0.001 

Calcarine_L 0.25 0.28 0.48 0.272 0.11 < 0.001 0.459 1 < 0.001 
Calcarine_R 0.49 0.01 0.5 0.054 0.946 < 0.001 0.185 1 < 0.001 

Cuneus_L 0.26 < 0.01 0.74 0.33 1 0.037 0.509 1 0.054 
Cuneus_R 0.28 < 0.01 0.72 0.085 1 0.035 0.228 1 0.052 
Lingual_L 0.54 0.01 0.45 0.036 0.951 < 0.001 0.184 1 < 0.001 
Lingual_R 0.16 0.38 0.45 0.426 0.022 < 0.001 0.59 1 < 0.001 

Occipital_Sup_L 0.45 < 0.01 0.55 0.01 1 < 0.001 0.107 1 < 0.001 
Occipital_Sup_R 0.47 < 0.01 0.53 0.033 1 < 0.001 0.183 1 0.001 
Occipital_Mid_L 0.47 < 0.01 0.53 0.026 1 < 0.001 0.172 1 < 0.001 
Occipital_Mid_R < 0.01 0.26 0.74 1 0.173 0.002 1 1 0.004 

Occipital_Inf_L < 0.01 0.11 0.89 1 0.54 0.317 1 1 0.368 
Occipital_Inf_R 0.25 < 0.01 0.75 0.374 1 0.035 0.535 1 0.052 



	 82 

Fusiform_L 0.3 < 0.01 0.7 0.201 1 0.007 0.363 1 0.012 
Fusiform_R 0.27 < 0.01 0.73 0.261 1 0.024 0.452 1 0.038 

Postcentral_L 0.37 < 0.01 0.63 0.055 1 0.001 0.185 1 0.002 
Postcentral_R 0.35 < 0.01 0.65 0.118 1 0.004 0.306 1 0.009 

Parietal_Sup_L < 0.01 < 0.01 1 1 1 1 1 1 1 
Parietal_Sup_R 0.49 0.05 0.47 0.054 0.792 < 0.001 0.185 1 < 0.001 
Parietal_Inf_L < 0.01 0.3 0.7 1 0.095 < 0.001 1 1 0.001 
Parietal_Inf_R 0.27 < 0.01 0.73 0.323 1 0.019 0.509 1 0.03 

SupraMarginal_L < 0.01 < 0.01 1 1 1 1 1 1 1 
SupraMarginal_R 0.37 < 0.01 0.63 0.01 1 0.001 0.107 1 0.003 

Angular_L 0.2 < 0.01 0.8 0.162 1 0.146 0.324 1 0.175 
Angular_R 0.19 0.12 0.69 0.479 0.58 0.001 0.643 1 0.003 

Precuneus_L 0.49 < 0.01 0.51 0.005 1 < 0.001 0.075 1 < 0.001 
Precuneus_R 0.61 < 0.01 0.39 0.001 1 < 0.001 0.026 1 < 0.001 

Paracentral_Lobule_L 0.4 < 0.01 0.6 0.023 1 0.005 0.172 1 0.01 
Paracentral_Lobule_R 0.31 < 0.01 0.69 0.08 1 0.007 0.222 1 0.012 

Heschl_L 0.4 < 0.01 0.6 0.009 1 0.002 0.107 1 0.004 
Heschl_R 0.2 < 0.01 0.8 0.184 1 0.111 0.347 1 0.144 

Temporal_Sup_L 0.42 0.01 0.56 0.132 0.945 < 0.001 0.317 1 0.001 
Temporal_Sup_R 0.44 < 0.01 0.56 0.059 1 < 0.001 0.187 1 < 0.001 

Temporal_Pole_Sup_L 0.27 0.07 0.65 0.312 0.723 0.001 0.507 1 0.002 
Temporal_Pole_Sup_R 0.17 0.11 0.72 0.549 0.612 0.006 0.698 1 0.011 

Temporal_Mid_L 0.34 < 0.01 0.66 0.017 1 0.005 0.138 1 0.01 
Temporal_Mid_R 0.32 < 0.01 0.68 0.15 1 0.016 0.324 1 0.026 

Temporal_Pole_Mid_L 0.15 0.17 0.68 0.562 0.421 < 0.001 0.698 1 0.001 
Temporal_Pole_Mid_R 0.24 < 0.01 0.76 0.156 1 0.067 0.324 1 0.09 

Temporal_Inf_L 0.25 < 0.01 0.75 0.159 1 0.069 0.324 1 0.091 
Temporal_Inf_R 0.47 0.07 0.46 0.044 0.708 < 0.001 0.185 1 < 0.001 

 
A= test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + 

environmental). 
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Figure S3.1. Genetic Correlation Matrix of Regional CT Measures  
	

	
	

Adjusting for birth weight, gestational age at birth, age at MRI, sex, paternal education, maternal 
ethnicity, ICV1/3, and T2Type 
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Figure S3.2. Genetic Correlation Matrix of Regional SA Measures 
	

 
 

Adjusting for birth weight, age at MRI, sex, total surface area, and T2 type 
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Figure S3.3. Genetic Correlation Matrix of Regional CT Measures Without Adjustments for Brain Size  
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Figure S3.4. Genetic Correlation Matrix of Regional SA Measures Without Adjustments for Brain Size  
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Figure S3.5. Genetic Correlation Matrix of Regional CT Measures Controlling For Age, Sex, Brain Size, 
and T2 Type   
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Figure S3.6: Genetic Correlation Matrix of Regional SA Measures Controlling for Age, Sex, Brain Size, 
and T2 Type   
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CHAPTER	4:	CONCLUSIONS	
 
SUMMARY	OF	FINDINGS	
 

In the first large-scale population-based neuroimaging study of infant cortical structure, 

we sought to understand how environmental and genetic factors contribute to individual 

differences in neonatal CT and SA. In Aim 1 (Chapter 2), we examined the impact of 17 major 

demographic, obstetric, and socioeconomic variables on inter-individual variation in global and 

regional CT and SA. Our findings suggested that individual differences in infant CT and SA are 

explained by different sets of environmental factors likely acting on different cellular processes. 

Sex and obstetric history variables had a strong influence on neonatal SA whereas variables 

related to SES and ethnic disparities (paternal education and maternal ethnicity) had a strong 

influence on CT.  In Aim 2 (Chapter 3), we used a classical twin model to identify genetic 

contributions to global and regional CT and SA variation. Our results indicated that genetic 

influences explained a large degree of the individual differences in total SA and revealed a 

substantial genetic overlap between total SA and average CT. Heritability estimates and genetic 

correlations at the regional level were not significant and did not reveal meaningful 

organizational patterns. Outcomes from these studies provide a unique addition to the existing 

understanding of how environmental and genetic factors influence CT and SA development 

during the lifespan.  
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CONTRIBUTIONS	TO	THE	FIELD	
	

This research provides the following contributions to the field of pediatric neuroimaging 

and to the understanding of cortical thickness and surface area:   

 
A normative reference for future studies of neurodevelopmental disorders 

Overall, our research addresses high priority areas identified by the National Institutes of 

Mental Health by focusing on normative development during a sensitive and highly malleable 

period of neurodevelopment. For many neurodevelopmental disorders, abnormalities in CT and 

SA are not only observed in diagnosed patients but are also evident in at-risk populations as early 

as the first two years of life (Li et al. 2016; Hazlett et al. 2017). To better understand these 

pathological conditions, it is crucial to understand how normal neurodevelopmental trajectories 

are established, how they are influenced by environmental and genetic factors, and how they are 

altered in mental illness.  By investigating the environmental and genetic influences on early 

brain structure, we made progress toward identifying brain regions which might show heightened 

genetic vulnerability to later dysfunction and ultimately allow early identification and 

intervention for these devastating disorders.   

 
An unprecedented CT and SA sample  

Our dataset is comprised of a large infant sample with detailed medical, obstetric, and 

demographic information. It is currently the largest collection of cortical data spanning the early 

postnatal period. Moreover, CT and SA measures in this report are generated using well-

established infant imaging protocols and cutting-edge image analysis methods developed 

precisely for this age range. Specifically, tissue segmentation, image registration, and cortical 

surface construction tools used are designed to address the rapid changes in tissue contrast during 

the first years of life. Unlike many emerging pediatric samples which span several critical years 
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of development (Remer, Croteau-Chonka, Dean, D'Arpino, Dirks, Whiley, and Deoni 2017), our 

sample is focused on an early window into prenatal development by targeting the first month of 

life. Moving forward, there is enormous potential for additional informative studies in our 

dataset. Neonatal subjects in the EBDS were followed up throughout infancy and early childhood 

and will be studied longitudinally. Moreover, additional measures have been acquired from these 

subjects by using diffusion tensor imaging, and cognitive, genetic, and microbiome assessments.  

 
New insights into prenatal and perinatal environmental factors  

By applying an epidemiological approach to studying environmental influences on early 

brain structure, we revealed the first detailed snapshot of perinatal cortical development. Our 

analysis revealed that daily growth rates of CT and SA dwarf annual growth rates measured in 

childhood and adolescence (Raznahan et al. 2011). Using a neonatal sample, we were also able 

to confirm that robust effects of birth weight and sex on total surface area during childhood and 

adolescence (Raznahan et al. 2011; Walhovd et al. 2012; Wierenga et al. 2014) are similar at 

birth. Continuous impacts of these variables across the lifespan follow the same pattern, with 

males and heavier born babies having larger total surface area. Based on previous reports and 

results from our study, it is likely that in utero influences are particularly important for 

explaining these relationships. 

Very little research has examined how SES and ethnicity contribute to normative 

trajectories of brain development. For the first time, we show that individual differences in infant 

CT but not SA are influenced by parental socioeconomic and ethnicity variables. Specifically, 

we show that it is paternal education and not household income that drives the individual 

differences in CT observed in our sample. No studies to date have examined paternal education 

as a stand-alone variable yet our findings highlight just how critical it may be for shaping early 
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cortical trajectories. Findings from both ethnicity and SES variables highlight the potential role 

of prenatal care and psychosocial stress (Blumenshine et al. 2011; Grobman et al. 2016; 

Mutambudzi et al. 2017) on brain development during a period of heightened plasticity and 

vulnerability. For the first time, we show that variables such as parental ethnicity and education 

may have direct effects on cellular processes such as those controlling the radial expansion of the 

developing cortex during both prenatal and early postnatal time periods.  

 
Addition of critically needed genetic insight into cortical development 

Our studies fill an important gap in the understanding of how genetic influences shape 

cortical thickness and surface area during a critical yet understudied period of development. In 

contrast to the heritability studies performed in childhood, adolescence, and adulthood, we show 

that during infancy, genetic influences on CT and SA reveal virtually no regional significance or 

meaningful associations. Instead, our twin model suggests that neonatal genetic influences act 

through general mechanisms, influencing global measures such as total SA.  We also provide 

novel insights into the genetic relationship between CT and SA. Adult studies of CT and SA 

suggest that average CT and total SA are genetically independent (Panizzon et al. 2009; Winkler 

et al. 2010), and it has generally been assumed that this independence reflects different neural 

mechanisms occurring during prenatal brain development. For the first time, we reveal that the 

genetic relationship between these two features is significantly strong during infancy and is 

likely dynamic throughout the lifespan. This finding has immense implications on our current 

understanding of how underlying genetic and cellular processes influence cortical development. 

Primarily, it suggests that differences in CT and SA observed in adult studies may not be 

reflective of fetal differences in radial and tangential expansion as explained by the radial unit 

hypothesis. Moreover, it suggests that CT and SA independence may be driven by differences in 
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cellular and genetic processes that are implicated in synaptic pruning and neuronal degeneration. 

Additional genetic studies of CT and SA are needed to better understand how neurobiological 

processes are involved. Overall, we demonstrate that during the early perinatal window into 

brain development, genetic mechanisms contributing to CT and SA are largely overlapping and 

likely act in coordination to produce a properly functioning cortex.  

 
An avenue for data reduction in large-scale imaging genetic studies 

Our quantitative genetic approach allows us to examine genetic contributions to early 

cortical structure without the need to focus on specific genes or mechanisms (Lenroot and Giedd 

2011). For this reason, it serves as a crucial first step for examining the genetic influences on 

imaging phenotypes like CT and SA (Blokland et al. 2012). Promising findings highlighted in 

our report enable researchers to prioritize cortical regions for future candidate gene studies and 

further GWAS analyses (van Dongen et al. 2012). Our results indicate that total SA, as well as 

regional SA in the bilateral insula should be the focus of genetic studies moving forward. Our 

results provide an important data reduction and selection approach for additional studies in 

typically developing cohorts and identify potential endophenotypes for future 

neurodevelopmental studies.   

 
FUTURE	DIRECTIONS		
 

Replication is an important avenue for follow-up research. With the establishment of the 

Baby Connectome Project and a growing number of infant imaging datasets across the world 

(Broekman et al. 2014; Grewen et al. 2014; Holland et al. 2014; Spann et al. 2014; Deoni et al. 

2015), it is feasible to investigate the role of environmental and genetic factors on cortical 

structure in other independent samples. Replication of our findings would greatly fortify our 
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current understanding of prenatal and perinatal influences on the brain and provide critical 

information about the generalizability of the current results. Additional proposed future studies 

are as follows:  

 
Extension of the current environmental and genetic analyses to 1 and 2 year olds subjects  

Cross-sectional and longitudinal follow-up studies are needed to address the stability of 

findings across the postnatal period. Pediatric imaging studies consistently demonstrate that the 

first two years of life are an extremely rapid and dynamic time of cortical brain growth. As 

reviewed in the introductory chapter, postnatal growth is driven by large increases in dendritic 

processes, elongation of axons, the proliferation of glial cells, and formation of synapses across 

the brain (Stiles 2008). At the structural level, these processes are reflected in complex regional 

patterns of volumetric growth and CT and SA change at ages 1 and 2 (Gilmore et al. 2012; Li, 

Lin, et al. 2015; Lyall et al. 2015). Concurrent with rapid structural growth, there is an 

emergence of early cognitive functions, with infants reaching many sensory, motor, and 

language milestones during this time (Luby 2017). All of these processes are heavily regulated 

by genetic and molecular mechanisms and are influenced by the ever-growing infant 

environment. Thus, as a feasible next step to the research outlined in this report, I propose 

environmental and genetic influences should continue to be examined during the first two years 

of life.  

Many neonate subjects recruited through UNC’s Early Brain Development Studies 

program have received follow-up structural MRI scans at ages 1 and 2. Specifically, there are 

462 subjects at age 1 (189 singletons, 273 twins, 238 males, and 224 females) and 353 subjects at 

age 2 (162 singletons, 191 twins, 197 males, and 156 females) that can be used to assess the 

genetic and environmental predictors of CT and SA. Preliminary data regarding total SA and 
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overall average CT has been collected and provides interesting results regarding both 

environmental and genetic influences.  

Regarding obstetric and demographic influences, sex is a significant predictor of total SA 

at ages 1 and 2. Compared to females, males have 7.21% larger SA at age 1 and 6.79% larger SA 

at age 2. Sex differences between males and females have also been observed in studies of total 

SA from childhood through adulthood (Raznahan et al. 2011; Walhovd et al. 2012; Wierenga et 

al. 2014) and were found in our neonate sample as well. Differences likely reflect the presence of 

androgens and other sex-chromosome related processes (Lentini et al. 2013; Knickmeyer, Wang, 

Zhu, Geng, Woolson, Hamer, Konneker, Styner, et al. 2014) influencing cortical growth during 

both prenatal and postnatal periods as well as effects of cultural and parental expectations (Luby 

2017).  

Regarding socioeconomic factors, we found paternal education is a significant predictor 

of total SA at the 2-year time point. With every additional year of paternal education, there is a 

0.64% increase in total SA. In chapter 2, we discuss the negative relationship between average 

CT and paternal education in our neonate sample. Paternal education appears to be an important 

predictor of early cortical development, showing differential effects during early and late 

infancy. During early infancy, paternal education likely captures father's ability to provide 

psychosocial resources during pregnancy and the early postpartum period, support healthy 

maternal behaviors, and reduce stress (Blumenshine et al. 2011; Shapiro et al. 2016) and 

influences the cellular mechanisms governing CT. During late infancy and into toddlerhood, 

paternal education likely captures the father’s ability to provide cognitive stimulation in the 

home and reflects the quality and quantity of language exposure (Cabrera et al. 2007) and 
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influences neurodevelopmental processes involved in SA expansion. We found no significant 

environmental predictors of average CT at ages 1 and 2.  

Additionally, univariate and bivariate ACE models were applied to assess the genetic 

influences driving variation in total SA and average CT at ages 1 and 2. Total SA was 

significantly heritable, with genetic influences accounting for a large portion of the observed 

variance (0.56 at age 1 and 0.92 at age 2). For average CT, genetic influences accounted for a 

moderate (0.45) and non-significant proportion of the total variance at age 1 but accounted for a 

large and significant portion of variance at age 2 (0.68). Results regarding total SA suggest that 

genetic influences remain significant determinants of individual differences in the surface area 

throughout the lifespan. Moreover, results regarding CT and SA at ages 1 and 2 support the 

notion that genetic influences increase with age from infancy to toddlerhood and likely into 

adulthood. Increasing heritability estimates may also reflect decreasing environmental influences 

or effects of canalization with age (Lenroot et al. 2009; Gilmore, Schmitt, et al. 2010; Douet et 

al. 2014). Most interestingly, while we observed a strong and positive genetic correlation 

between neonatal average CT and total SA, at ages 1 and 2 the genetic overlap between these 

variables was small and negative (-0.29 at age 1 and -0.29 at age 2). These outcomes are similar 

to those observed in adult studies (Winkler et al. 2010) suggesting that CT and SA relationships 

at birth are unique and may represent prenatal-specific cellular processes.  

Preliminary outcomes from our cross-sectional analyses of 1 and 2-year-old samples 

provide a strong impetus for performing longitudinal analyses of CT and SA. Longitudinal 

studies will be critical in understanding whether there are significant differences in 

environmental effects or heritability estimates between neonates, one-year-olds, and two-year-

olds. Assessments will also provide insight into how environmental and genetic factors influence 
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CT and SA growth trajectories across the first two years of life. Studies from our lab have 

revealed extensive growth in both cortical features in the first two years of life (Li, Lin, et al. 

2015; Lyall et al. 2015) but have not explored the underlying influences.  

Based on longitudinal studies of CT and SA in children, adolescents, and adults, and our 

cross-sectional results reviewed in this dissertation, I expect that we will find significant effects 

of sex (Raznahan et al. 2011; Wierenga et al. 2014; Vijayakumar et al. 2016) and birth weight 

(Raznahan et al. 2012; Walhovd et al. 2012) on global SA trajectories. Moreover, studies of 

intelligence reveal that general cognitive function is associated with trajectories of CT and SA 

during childhood, showing positive associations with SA and negative associations with 

CT(Shaw et al. 2006; Schnack et al. 2015). This is in keeping with our cross-sectional findings 

of paternal education and suggests that paternal and/or maternal education many also be 

significant contributors to cortical developmental trajectories in the first two years of life. 

Regarding genetic influences, I expect higher heritability estimates of total SA expansion 

compared to average CT growth.  Additionally, because gene expression studies suggest 

increased synchronization of areal transcriptomes during postnatal development(Pletikos et al. 

2014), I expect genetic factors will be significant drivers of global CT and SA trajectories and 

regional heritabilities over the first two years will be small. Overall, proposed longitudinal 

analyses would identify which obstetric, demographic, and genetic features contribute to the 

expansion of the cortex and how they differ from results observed at older ages.  

 
Assessment of potential genetic variants associated with neonatal CT and SA  

In this dissertation, we discuss the potential role of complex neurodevelopmental 

processes in shaping prenatal and postnatal CT and SA development. However, our results 

cannot directly address these relationships. To identify exact developmental processes and 
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whether they contribute to CT and SA development, I propose imaging genetic studies be 

performed during this period. Specifically, two feasible approaches for our pediatric dataset 

include candidate gene and genome-wide association analyses. Genetic activity in the embryonic 

and early fetal neocortex is imperative to the proliferation and migration of neuronal cell types. 

Conversely, during late fetal development, and continuing into perinatal development, gene 

expression patterns are reflective of neurodevelopmental processes such as synaptogenesis, 

dendritic development, gyrogenesis, and myelination (Kang et al. 2011; Tebbenkamp et al. 

2014). What remains largely unexplored is how these early gene expression patterns contribute 

to the ultimate macrostructure of the cortex and more specifically to CT and SA growth. 

Investigating how genetic mechanisms govern the development of CT and SA might provide 

important implications into the distinct biological nature of these clinical endophenotypes.  

Using a candidate gene approach, we can test whether variants in pre-specified genes of 

interest are associated with global and regional CT and SA measures. Genes would be selected 

based on biological and functional relevance. A few candidate gene studies in healthy adult and 

clinical populations have shown that genes related to brain development drive CT and SA growth 

in distinct ways. Variations in the MECP2 region have been associated with SA but not CT in 

two independent adult populations (Joyner et al. 2009). In patients with schizophrenia, the effects 

of COMT on gray matter volumes are found to be driven largely by CT rather than SA (Li, 

Xiang, et al. 2015). No candidate gene studies of CT and SA have been performed in a normative 

population within the first few years of life.  

This is a promising avenue for follow up research given that a previous study in our 

cohort (Knickmeyer, Wang, Zhu, Geng, Woolson, Hamer, Konneker, Lin, et al. 2014) revealed 

variations in neonatal local gray matter volumes were associated with polymorphisms in putative 
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psychiatric risk genes including DISC1, COMT, NRG1, APOE, ESR1, and BDNF. As a follow 

up, these candidate genes should also be studied in relation to CT and SA in our sample. 

Proposed candidates should also include biologically plausible genes based on gene expression 

analyses performed by Kang et al (2011). Specifically, these genes are linked to neuronal 

migration (DCX), dendritic development (MAP1A, MAPT, CAMK2A), neuronal differentiation 

(MAP1B, MAP2, TUBB), synaptogenesis (SYP, SYPL1, SYPL2, SYN1) and axonal development 

(CNTN2). Overall, I hypothesize that genes related to synaptogenesis and dendritic development 

will be most predictive of CT and SA. Additionally, I hypothesize that candidate gene 

associations will be the strongest for total surface area. This candidate gene approach would 

allow us to investigate genetic variants of known relevance to brain development and psychiatric 

and neurodevelopmental outcomes.  

While the candidate gene approach enables us to investigate how genetic variants of 

known biological and clinical relevance impact cortical structure, current research in the field of 

imaging genetics has shifted toward GWAS. GWAS can provide an unbiased assessment of 

millions of markers across the genomes to identify novel variants associated with CT and SA 

development. GWA studies of CT and SA are extremely limited. Thus far, such analyses have 

identified common genetic variants that contribute to SA in the adult visual cortex (Bakken et al. 

2012) and auditory cortex (Cai et al. 2014) but GWA studies aimed at identifying genes 

influencing cortical development are greatly lacking. By performing genome-wide assessments 

in infants, it is possible to capture individual differences in fetal and early postnatal 

neurodevelopmental processes such as neuron proliferation, migration and differentiation, axonal 

growth, dendritic arborization, synaptogenesis, myelination and programed cell death.  Recently, 

our group performed the first GWAS of infant brain volumes and identified a significant genetic 
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variant in IGFBP7 (rs114518130) associated with neonatal GM. Compared to imaging genetic 

studies in adolescents and adults, genetic determinants of neonatal brain volumes were highly 

distinct (Xia et al. 2017). Thus, genome-wide association studies of CT and SA during infancy 

would provide a unbiased approach to finding novel variants associated with foundational 

prenatal and perinatal developmental processes. I hypothesize that genes related to the 

development of neuronal and glial processes and synapses will be significant for neonatal CT 

development and genes related to radial glial proliferation, cortical folding, and programmed cell 

death will be most significant for explaining neonatal SA. Understanding the relationship 

between specific genes and CT and SA development will provide critically needed evidence 

regarding the origins of these morphometric features.  

 
Investigation of links between SES, ethnicity/race, and brain structure    

In our report, we examined the impacts of maternal and paternal ethnicity and SES 

variables like maternal education, paternal education, and total household income on inter-

individual variation in global and regional CT and SA. Our results revealed meaningful 

relationship between SES and ethnic disparities, specifically paternal education and maternal 

ethnicity, and neonatal CT. To date, studies examining SES have focused on maternal education 

or have used an average or sum of educational attainment from all parents in the home (Lawson 

et al. 2013; Noble et al. 2015). To our knowledge, there are no neuroimaging studies which 

report contributions of paternal education to neurodevelopmental outcomes. Similarly, 

neuroimaging studies assessing maternal and paternal ethnicity in the context of healthy brain 

development are also greatly lacking.  As a whole, imaging and behavioral studies of infant and 

childhood neurodevelopment should include parental education and ethnicity as important 

variables of interest moving forward. Additionally, future studies should focus on dissecting the 



	 101 

causal mechanisms underlying our findings of thinner cortices in infants of more educated 

fathers and infants of Caucasian mothers.   

Important variables likely include levels of psychosocial stress and access and utilization 

of quality health care before, during and after pregnancy. To tackle these questions infant 

imaging studies should set specific goals for evaluating SES and ethnic disparities on brain 

structure using economically and ethnically diverse families. These studies should not only 

collect detailed infant medical and obstetric history variables but should also place a large focus 

on assessing prenatal stress and variables related to personalized prenatal care. Prenatal stress 

should be measured using a variety of instruments aimed at assessing anxiety, depression, socio-

environmental stressors, stressors related to pregnancy and parenting, and daily hassles and life 

events (Nast et al. 2013). Quality of prenatal care should be assessed through parent reports and 

prenatal medical records to gage the initiation and frequency of medical visits and the quality of 

health care facilities, health care providers, and educational resources provided (Phillippi 2009; 

Phillippi et al. 2014).  

Existing studies of psychosocial stress during pregnancy suggest that mothers who 

experience high levels of prenatal stress report higher incidences of gastrointestinal and 

respiratory illnesses and higher rates of urgent care and emergency department visits for infants 

in the first year of life (Phelan et al. 2015). Similarly, access to adequate antenatal care during 

pregnancy is associated with infant health outcomes such as preterm birth (Fernandez Turienzo 

et al. 2016). Studies of maternal well-being during pregnancy also show associations with brain 

structure, including cortical thickness in infants (Buss et al. 2010; Qiu, Tuan, et al. 2015). By 

collecting structural MR images and detailed prenatal data in a diverse population of infants, 
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researchers can assess whether relationships between brain structure and SES or ethnicity are 

mediated by variables reflecting antenatal stress and access to prenatal care.  

Recently, randomized control trials have also become a potential avenue of future SES 

and brain development research. A current research study funded by the National Institutes of 

Child Health & Human Development has proposed to understand the relationship between SES 

and child development by conducting a randomized control trial to determine whether 

unconditional cash payments have causal effects on brain development in infants from low-

income families in the first three years of life (HD087384).  Similar approaches may be taken to 

study the mechanisms of prenatal stress and access to adequate health care during pregnancy and 

to evaluate the influences on structural phenotypes like CT and SA. By facilitating early and 

adequate access to prenatal care through monetary incentives and education approaches and 

assessing psychosocial burdens through home-based interventions and prenatal counseling, 

researchers can study how these mechanisms vary among diverse populations of parents and 

assess the impacts on neurodevelopmental outcomes in infants. 

Importantly, future studies should also determine whether SES and ethnicity variables are 

associated with cognitive and functional outcomes during early development. Performing the 

studies above will allow public health and policy experts to develop interventions aimed at 

optimizing infant brain development and overall infant health outcomes. 

 
OVERALL	CONCLUSION	
 

In summary, our findings suggest that CT and SA exhibit extremely rapid growth during 

the first month of life. These results also reveal genetic, obstetric, demographic, and 

socioeconomic factors are important determinants of cortical development during infancy. Both 

genetic and environmental influences, especially sex and birth weight, are central to individual 
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differences in neonatal SA while variation in neonatal CT is largely explained by environmental 

factors such as paternal education and maternal ethnicity. These influences likely impact key 

prenatal and early postnatal cellular processes responsible for the formation, differentiation, and 

organization of neurons and the establishment and refinement of neuronal circuits (Stiles and 

Jernigan 2010). Results are also particularly meaningful because the neonatal brain is highly 

plastic and thus a period for both intervention and potential injury. Overall, our findings 

highlight the important environmental and genetic influences on CT and SA development 
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