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ABSTRACT
GREG COOMBE: Practical Surface Light Fields

(Under the direction of Anselmo Lastra)

The rendering of photorealistic surface appearance is one of the main challenges

facing modern computer graphics. Image-based approaches have become increasingly

important because they can capture the appearance of a wide variety of physical surfaces

with complex reflectance behavior. In this dissertation, I focus on Surface Light Fields,

an image-based representation of view-dependent and spatially-varying appearance.

Constructing a Surface Light Field can be a time-consuming and tedious process.

The data sizes are quite large, often requiring multiple gigabytes to represent complex

reflectance properties. The result can only be viewed after a lengthy post-process is

complete, so it can be difficult to determine when the light field is sufficiently sampled.

Often, uncertainty about the sampling density leads users to capture many more images

than necessary in order to guarantee adequate coverage.

To address these problems, I present several approaches to simplify the capture of

Surface Light Fields. The first is a “human-in-the-loop” interactive feedback system

based on the Online SVD. As each image is captured, it is incorporated into the repre-

sentation in a streaming fashion and displayed to the user. In this way, the user receives

direct feedback about the capture process, and can use this feedback to improve the

sampling. To avoid the problems of discretization and resampling, I used Incremental

Weighted Least Squares, a subset of Radial Basis Function which allows for incremen-

tal local construction and fast rendering on graphics hardware. Lastly, I address the

limitation of fixed lighting by describing a system that captures the Surface Light Field

of an object under synthetic lighting.
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CHAPTER 1

Introduction

The richness I achieve comes from Nature, the source of my inspiration.

– Claude Monet

The beauty and complexity of the natural world holds an enduring fascination for

artists. From the earliest painters to modern-day digital artists, humans have looked to

nature for subject material. One component of this is the desire to incorporate natural

objects into modern artistic expressions such as movies and games. These elements

heighten the sense of realism by providing familiar touchstones.

As a consequence, digital artists have developed a number of techniques to represent

the appearance of surfaces. Traditional approaches often require the artists to hand-

create a set of shaders that match the desired surface properties. However, the demand

for photorealistic images in movies and games has outpaced the ability of artists to

create the tens (or hundreds) of complex shaders per surface that are needed.

Driven by these limitations, image-based methods have become increasingly impor-

tant. Image-Based Rendering (IBR) is a set of techniques that use photographs to

generate representations of geometry and surface appearance. The appeal of IBR is

that it is often easier to acquire the visual phenomena than to simulate it. Simulating

physical processes such as subsurface scattering and interreflection can be a daunting

task requiring hours of computer simulation. On the other hand, advances in digital

cameras, 3D laser scanners, and other imaging technology enable us to easily capture

large amounts of geometric and radiance data. The challenge is to represent all of this

data in such a way that novel images can be generated at interactive rates.

In this dissertation I focus on the Surface Light Field (SLF) (Miller et al., 1998) as

a representation of radiance data. A SLF is a function which assigns a color value to

every ray leaving every point on a surface. It is constructed by acquiring images from

different viewpoints and mapping these images onto the surface of a known geometric

model, as shown in Figure 1.2. This representation enables the display of complex,

view-dependent illumination of real-world objects at interactive rates. Surface Light



Figure 1.1: Left: Spiderman 2 by Sony Imageworks. Right: Matrix Reloaded by ESC
Entertainment. The top row shows a few of the source images captured as a pre-process.
The bottom row shows novel viewpoints reconstructed from the imagery. In order to
animate the SLF in the Matrix Reloaded, the artists collected several sets of SLFs with
different extreme facial expressions, and interpolated between them to generate the
facial expressions used in the movie.

Fields (SLFs) can represent a wide variety of complex surface properties, including

anisotropy, Fresnel reflection, forward/backward scattering, off-specular scattering, and

diffuse inter-reflection.

SLFs have recently been used in a number of games and movies. Examples from two

recent movies are shown in Figure 1.1. The artists were prompted to use image-based

techniques due to the difficulty of representing the complex reflectance properties of

the human face using traditional CG techniques. SLFs enabled the artists to create

photorealistic characters that could be integrated into virtual and real environments.

1.1 Surface Light Field Capture Difficulties

The two primary goals of SLF research are high-quality representation and interactive

rendering, and much of the previous research has focused on these goals. However, the
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Figure 1.2: The first step in the SLF process is to capture a set of photographs of
a real object from a variety of viewpoints. These images are processed to generate a
compressed representation, which can be used to render novel images from this repre-
sentation. Dataset courtesy of Intel Corp.
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process of capturing all of the necessary data has remained difficult and time-consuming.

It is my belief that the capture process is one of the major hindrances towards wider

adoption of SLFs. In this dissertation, I attempt to address this difficulty by presenting

several techniques to simplify the capture of SLFs. I focus on three problems; the lack

of feedback during capture, handling missing data, and the problem of matching a

desired virtual lighting environment.

The first difficulty with SLF capture is the lack of feedback. Collecting the numer-

ous images needed for the construction of surface light fields is a time-consuming and

tedious process. Since the result can be viewed only after a lengthy post-process is

complete, it can be difficult to determine when the light field is sufficiently sampled. It

is not enough to uniformly sample the hemisphere, as this may miss high-frequency in-

formation such as highlights. Often, uncertainty about the sampling density leads users

to capture many more images than necessary in order to guarantee adequate coverage.

If undersampling artifacts are visible in the result, more images must be acquired and

the entire factorization post-process must be repeated. These data-acquisition prob-

lems can be traced to the lack of feedback during the image capture process, as humans

are quite adept at recognizing undersampling errors.

The second difficulty with SLF capture is handling missing and irregularly-sampled

data. An optimal capture process would acquire radiance data from every direction at

every point on the surface. This is impossible due to the sheer amount of data that this

would require. As a consequence, the data samples are often sparse and scattered. The

data is resampled to fit the mathematical representation and compressed, and novel

viewpoints are reconstructed by interpolating or extrapolating from nearby points in

the compressed representation. Each of these steps: resampling, compression, and

reconstruction, can create artifacts in the final result. To minimize these artifacts, the

mathematical representation must be designed with the data characteristics in mind.

The representation must also be compact, so that it can rendered efficiently. This often

means that the reconstruction algorithm must run on graphics hardware to exploit the

computational power and bandwidth of these cards.

The third difficulty with SLF capture is matching desired lighting. An artist may

have a desired lighting environment, such as an environment map from a game or a

light probe from a remote location. For example, a game developer writing a DaVinci

Code thriller may have several scenes that are set in famous cathedrals, and it is

important that objects in the game match the cathedral lighting. It would be expensive

(or perhaps impossible) to travel to these actual locations to capture SLFs of the

objects. This is a problem since source images for the SLF are captured under specific
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illumination conditions, and the SLF is constructed from these images. This fixed

lighting restriction makes the SLF compact and fast to render, but it means that the

SLF retains the appearance of the lighting environment under which it was captured.

This makes it hard to capture an object as lit by a desired lighting environment. Being

unable to match this lighting is a serious limitation, as it precludes the use of SLFs in

movies or games.

In this dissertation, I present a series of approaches to deal with these limitations.

1.2 Thesis

Three major problems with Surface Light Field construction, (1) lack of feedback, (2)

difficulty handling missing data, and (3) matching desired illumination, can be ad-

dressed by (1) enabling incremental construction, (2) employing scattered data approx-

imation techniques, and (3) capturing under virtual lighting environments.

1.3 Contributions

To address these three limitations of the SLF capture process, I have developed three

novel techniques.

1.3.1 Incremental Construction

To address the lack of feedback, I discuss a system for incrementally capturing, con-

structing, and rendering directionally-varying illumination. As each image is captured,

it is incorporated into the SLF by incrementally building a low rank linear approxi-

mation. These partial results are rendered interactively on graphics hardware. This

real-time feedback enables the user to preview the lighting model and direct the image

acquisition towards undersampled areas of the object. The incremental construction

method is based on the Online SVD (Brand, 2002).

We also develop a novel data-driven heuristic that highlights undersampled areas of

the SLF and directs the user towards effective camera views. This heuristic is used to

aid the user in identifying undersampled regions. Our system is an order of magnitude

faster than previous systems, and reduces the time necessary to capture the images

and construct a surface light field from hours to minutes. Example images from the

system are shown in Figure 1.3. I presented these methods at the 2005 Eurographics

Symposium on Rendering (Coombe et al., 2005).
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Figure 1.3: A heart figurine, a marble pestle, and a copper pitcher captured and ren-
dered with our online system.
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Figure 1.4: A side-by-side comparison of the WLS reconstruction with an input image
that was not included in the training set.

1.3.2 Scattered Data Approximation

The Incremental SLF construction technique is a powerful technique for capturing

spatially- and directionally-varying surface appearance. However, it requires that the

data lie on a regular grid. Since SLF data can be sparse and irregularly distributed, it

requires extensive resampling which can introduce artifacts such as blurring. One way

to avoid this resampling is to use data approximation techniques which were developed

for scattered data. I discuss one particular technique, Weighted Least Squares, and our

extension to an incremental framework. Each surface patch consists of a set of Weighted

Least Squares (WLS) node centers, which are low-degree polynomial representations of

the anisotropic exitant radiance. During rendering, the representations are combined

in a non-linear fashion to generate a full reconstruction of the exitant radiance. We

developed a rendering algorithm that is fast, efficient, and implemented entirely on the

GPU. An example of the result is shown in Figure 1.4.
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Figure 1.5: Left: pitcher model in St. Peter’s light probe. Right: heart model in Uffizi
light probe.

Building off our work in incremental construction, we designed the algorithm to

process images incrementally instead of in the traditional batch fashion. We present

two approaches for incremental construction, a hierarchical refinement and an adaptive

refinement. This human-in-the-loop process enables the user to preview the model as

it is being constructed and to adapt to over-sampling and undersampling of the surface

appearance. These techniques were presented at the 2006 Conference on Computer

Graphics Theory and Applications (Coombe and Lastra, 2006).

1.3.3 Matching Desired Lighting

Another limitation of SLFs is that they can only represent the fixed lighting conditions

of the environment where the model was captured. If the artists wishes to capture

the object as if it were lit using a desired lighting environment, then there are several

possible approaches. One approach is to illuminate the object using a combination of

physical lights, but this is a low-resolution approximation which is difficult to calibrate.

Another approach is to capture a full 6D Bidirectional Texture Function (BTF) and

only use the portion that corresponds to the desired lighting. This approach is high-

quality and allows arbitrary lighting, but requires several orders of magnitude more

data and is unnecessary if the lighting environment is known.

I describe a third approach: a method for capturing a SLF as if it were lit from a

virtual illumination environment. I use a simple setup consisting of a projector, a cam-
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era, a pan-tilt unit, and tracking fiducials to recreate the desired lighting environment.

This enables the artist to capture objects lit using any desired lighting environment,

either real or synthetic. Some examples of objects captured under virtual illumination

are shown in Figure 1.5.

There are several challenges to recreating the virtual lighting environment. We de-

termine the correspondence between surface points and rays in the virtual environment

using two calibration methods; a fast method for planar screens, and a slower technique

for screens with arbitrary geometry. To decrease noise and improve the quality of the

capture under low- and high-dynamic range environment maps, I extend Multiplexed

Illumination to handle High-Dynamic Range images. These techniques were presented

in (Coombe et al., 2007) and (Frahm et al., 2006) .

1.4 Thesis Organization

The rest of the dissertation is organized as follows. The next chapter gives an overview

of research in the area of image-based modeling and rendering, and specifically in

the area of image-based representations of surface appearance. Chapter 3 discusses

a method for incrementally constructing a SLF using the Online Singular Value De-

composition (SVD). Chapter 4 details how to represent the SLF as a scattered data

approximation problem and use WLS to represent the radiance values. Chapter 5

describes a physical setup to capture to SLF under virtual illumination. Finally, in

Chapter 6, I summarize the major results of this dissertation and conclude with a look

at areas of future improvement.
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CHAPTER 2

Background

2.1 Introduction

In order to compactly represent the view-dependent appearance of an object, the SLF

makes particular assumptions about the light paths. In order to understand the SLF

algorithm, it is important to understand why these assumptions were made, and the

assumptions that other researchers have made in designing their algorithms. This

chapter gives a short introduction to the field of IBR, with an emphasis on the degrees

of freedom of the radiance representations. I then discuss SLFs and a particular SLF

implementation, OpenLF, which was the basis for much of my research.

2.2 Image-Based Modeling and Rendering

Image-Based Rendering (IBR) is a powerful approach for generating real-time photore-

alistic computer graphics. While it started with pure lightfield algorithms (Levoy and

Hanrahan, 1996; McMillan and Bishop, 1995) it quickly became clear that augmenting

the representation with geometry information could improve the quality of the recon-

struction (Gortler et al., 1996; Debevec et al., 1996; Miller et al., 1998). Buehler et

al. (Buehler et al., 2001) established a set of criteria that IBR algorithms should pos-

sess. These criteria address geometric concerns such as ray coherency, continuity, and

epipole consistency, as well as behavioral characteristics such as real-time behavior, the

use of geometric proxies, and the ability to handle unstructured input.

One of the noticeable characteristics of IBR algorithms is that they tend to involve

large datasets. For example, the Lafortune (Lafortune et al., 1997) factorization pre-

sented in Hillesland (Hillesland et al., 2003) involves solving 106 nonlinear optimizations

of 103 data samples. The tensor product computation used by Furukawa (Furukawa

et al., 2002) requires 104 factorizations of 3D matrices of 103×103×102. Consequently,

much of algorithm design revolves around issues of compression and representation.



The choice of representation of this captured data is crucial for interactive ren-

dering. Appearance modeling approaches can be categorized into parametric and

non-parametric. Parametric approaches assume a particular model for the surface

appearance (such as the Lafortune (Lafortune et al., 1997) model used by McAllis-

ter (McAllister et al., 2002)). However, parametric models have difficulty representing

the wide variety of objects that occur in real scenes, as observed in Hawkins et al.

(Hawkins et al., 2001). Some of the physical properties that are difficult to represent

are anisotropic materials, Fresnel reflection, forward/backward scattering, off-specular

scattering, diffuse inter-reflection, and subsurface scattering.

Non-parametric (also called data-driven) approaches use the captured data to es-

timate the underlying function and make minimal assumptions about the behavior of

the reflectance. Thus non-parametric models are capable of representing a larger class

of surfaces, which accounts for their recent popularity in image-based modeling (Chen

et al., 2002; Furukawa et al., 2002; Zickler et al., 2005). In this dissertation I focus on

non-parametric SLF models, so I will describe the background research in this area in

further detail.

2.2.1 Non-Parametric Models

The Eurographics State of the Art Report on Acquisition, Synthesis and Rendering of

Bidirectional Texture Functions (Mueller et al., 2004) presents a taxonomy of image-

based modeling representations, shown in Figure 2.2. The most general appearance

representation is the Bi-directional Surface Scattering Reflectance Distribution Func-

tion (BSSRDF) (Nicodemus et al., 1977) represented as:

L(ui, vi, θi, φi, ue, ve, θe, φe)

The subscript i denotes incident radiance, and the subscript e denotes exitant radi-

ance. This function, shown in Figure 2.1, is an 8D function which models the scattering

of light from the surface. The incident light arrives at the surface point (ui, vi) from

direction (θi, φi). It is then scattered through the material and exits at surface point

(ue, ve) in direction (θe, φe).

The term “Surface Scattering” in BSSRDF encompasses physical behavior such as

translucency, transparency, and subsurface scattering. Since measuring these properties

is quite complex (Goesele et al., 2004), the light that travels through the surface is often

ignored and the points (ui, vi) and (ue, ve) are treated as a single point (u, v). This

assumption leads to the BTF, a model of the entire set of incident lighting directions
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Figure 2.1: The Bidirectional Subsurface Scattering Distribution Function. The inci-
dent light arrives at the surface point (ui, vi) from direction (θi, φi). It is then scattered
through the material and exits at surface point (ue, ve) in direction (θe, φe).

and exitant lighting directions (viewpoints)

L(s, t, θi, φi, θe, φe)

The BTF is also known as the spatially-varying BRDF or view-dependent texture

maps (Debevec et al., 1998). Lensch et al. (Lensch et al., 2001) use the Lafortune

(Lafortune et al., 1997) representation and clustered BRDFs from sparse acquired im-

ages in order to create spatially-varying BRDFs. This is inspired by the observation

that while objects rarely have a uniform BRDF, many objects consist of a small set of

BRDFs. The object is split into clusters with different properties, a set of basis BRDFs

is generated for each cluster, and the original samples are reprojected onto the space.

This factorization is expensive and cannot be done in real-time.

McAllister et al. (McAllister et al., 2002) describe a system for capturing the BTF

and methods for fitting the data to a Lafortune representation. The compact form of

the Lafortune model allows the authors to process a large amount of data and render

at interactive rates. Gardner (Gardner et al., 2003) describe a BRDF capture device

that uses a linear light source (as opposed to a point source), which can also estimate

surface normals and a height field.

Surface Reflectance Fields, Bidirectional Reflectance Distribution Functions (BRDFs)

and Surface Light Fields are models of reflectance that are derived from the BTF by

further restricting the domain. The Surface Reflectance Field (SRF) models the inci-
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Figure 2.2: A taxonomy of reflectance functions with dimensionality. From
Mueller (Mueller et al., 2004).

dent radiance from a fixed viewpoint, while the SLF models the exitant radiance from

arbitrary viewpoints under fixed lighting. Both Surface Reflectance Fields (SRFs) and

SLFs allow surface variation, while the Bidirectional Reflectance DistributionFunction

(BRDF) assumes uniform surface material but models incident and exitant radiance.

2.3 Surface Reflectance Fields

SRFs represents directionally-varying incident radiance for a fixed viewpoint. These

are also known as image-based relighting methods (Debevec et al., 2000). The Surface

Reflectance Field is represented as a 4D function L(s, t, θl, φl). As shown in Figure 2.2,

the SRFs have the same dimensionality as SLFs, which allows similar compression and

rendering techniques to be used.

These methods typically capture a set of images of the scene lit by basis functions.
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Since light is linear, images under arbitrary lighting can be reconstructed by projecting

the desired lighting onto the light basis. Debevec (Debevec et al., 2000) acquire radiance

samples of a human face using a custom-built light stage, and compute a reflectance

function that can be used to generate images under novel lighting conditions. A similar

system was used to capture reflectance fields with high-frequency BRDFs (Koudelka

et al., 2001).

Malzbender (Malzbender et al., 2001) use a simple basis system and focus on fast

rendering of surface reflectance fields. A camera is placed on a rig which is positioned

over the object to be scanned. The rig is constructed in such a way that lights are posi-

tioned uniformly over the hemisphere, and a set of images are captured under different

illumination conditions. The captured images are fit to a bi-quadratic polynomial at

each pixel:

L(u, v; lu, lv) = a0(u, v) + a1(u, v)lu + a2(u, v)lv + a3(u, v)l
2
u + a4(u, v)lulv + a5(u, v)l

2
v

where lu and lv are the projections of the incident lighting vector (θi, φi) onto the local

u, v basis. Fixing the camera position means that no intrinsic or extrinsic calibration

of the camera is necessary, and the authors are able to capture a high-spatial frequency

but low-lighting frequency. The coefficients can be stored in texture maps and rendered

at interactive rates on graphics hardware. One advantage of this representation is that

it is fairly general; the authors show how it can be used to encode different per-pixel

lighting information such as bump-maps and depth-of-field.

Matusik (Matusik et al., 2004) represent the SRF as a large transport matrix and

progressively refine this matrix as new images are acquired. The transport matrix

maps the known input illumination to the captured output illumination. For a known

illumination Lk and a captured image Bk, we get an equation of the form:

Bk = TLk

where T is the unknown transport matrix. The goal of this method is to estimate

T from the set of input/output pairs. Then, given an arbitrary illumination, an image

of the scene under that illumination can be rendered by multiplying by the transport

matrix. Since this matrix T is quite large (# of pixels in illumination × # of pixels in

output image), it is stored as the sum of a set of 2D kernels:

Ti ≈
∑

w

wk,iRk,i
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These kernels can be progressively refined by representing the kernels as the leaf

nodes of a kd-tree basis. Following the suggestion of Buehler (Buehler et al., 2001),

they augment the transport database with geometric proxy information to improve the

reconstruction.

The progressive refinement of the kernels provides several advantages. It allows the

user to recognize areas of complex reflectance behavior and to capture more photographs

in these areas. It also produces a more compact representation by only refining those

areas which require more detail. I discuss the idea of user feedback in Chapter 3 and

progressive refinement in Chapter 4.

Most lighting models only represent the directional variation of the incident light,

assuming that the light comes from infinitely far away. This does not allow for spatial

variation in the lighting such as spotlights and patterned lighting. Masselus (Masselus

et al., 2003) present a system for capturing a SRF with spatially-varying light. This

can be thought of as an extension of SRFs to the equation:

L(u, v, θ(i,u), θ(i,v), φ(i,u), φ(i,v))

They fix a camera to a turntable with an object at the center, and rotate both under

a projector. A set of lighting patterns is projected onto the object. These patterns

are used to compute a set of basis functions which represent the lighting. These basis

functions can be recombined to produce a relighted version of the scene from a single

viewpoint. The system can represent phenomena which are not possible with many

other SRF capture systems. However, the increased dimensionality significantly in-

creases the acquisition time. To speed this up, the authors use a form of multiplexed

illumination (Schechner et al., 2003), where several patterns are projected at once and

the individual patterns are demultiplexed from the result. Even with this speedup, the

capture times reported in the paper are around 40 hours.

2.4 Surface Light Fields

SLFs (Miller et al., 1998; Wood et al., 2000) are image-based representations of lighting

which are mapped onto the surface of a geometric model. They represent the exitant

radiance under fixed illumination conditions. This parameterization results in a com-

pact representation that enables the capture and display of complex, view-dependent

illumination of real-world objects. Constructing these representations can be a time-

consuming and tedious process. The data sizes can be large, often requiring multiple
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Figure 2.3: Surface light fields can be represented as the function L(u, v, θ, φ), a 4D
space composed of the product of the 2D space of surface points and the 2D space of
view directions.

gigabytes to represent complex reflectance properties.

SLFs can be represented as the function L(u, v, θe, φe). The variables u and v

represent surface location on the mesh, and θe and φe represent view directions (to

simplify notation, the subscript e will be implied in subsequent equations). The SLF

parameterization is 4-dimensional, composed of the product of the 2D space of surface

points and the 2D space of view directions. An example is shown in Figure 2.3.

Instruments designed to capture the BRDF or BTF of objects can collect surface

light fields also. The capture stage of Matusik, et al. (Matusik et al., 2002) was used

to model objects that are difficult to represent, including objects with indeterminate

silhouettes such as fuzzy toy figures. They used two plasma panels, six cameras, and

four Halogen lamps in their instrument.

Wood et al. (Wood et al., 2000) use a generalization of Vector Quantization and

Principal Component Analysis to compress surface light fields, and introduce a 2-pass

rendering algorithm that displays compressed light fields at interactive rates. They con-

struct a representation that they call a lumisphere, which is a sphere of exitant lighting

directions. The surface is scanned at a high-resolution using a laser-scanner, and each

point on the surface has a corresponding lumisphere. They develop generalizations

of both PCA and vector-quantization to compress these lumispheres. To improve the
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compression, the lumisphere is re-parameterized around the reflection direction. As a

side-effect of the parameterization, the lumisphere can be rotated within the lighting

environment (in a plausible but not physically-based manner).

The SLF describes the exitant radiance in every direction at every point on the

surface. We can discretize this function over the surface patches and solid angles

and represent it as a matrix. The columns of this matrix are the camera views, and

the rows are the surface locations. Since storing these full data matrices would be

impractical, several techniques have been developed to compress the data. Factorization

approaches represent the 4D surface light field L(u, v, θ, φ) as a sum of products of

lower-dimensional functions

L(u, v, θ, φ) ≈
rank∑
r=1

gr(u, v)hr(θ, φ)

The number of terms r is the rank of the approximation. This is shown in Figure 2.4.

This factorization attempts to decouple the variation in surface texture from the vari-

ation in lighting. These functions can be constructed by using Principal Component

Analysis (Wood et al., 2000; Chen et al., 2002; Nishino et al., 2001) or non-linear

optimization (Hillesland et al., 2003; McCool et al., 2001). The function parameters

can be stored in texture maps and rendered in real-time (Chen et al., 2002). I discuss

this approach in Chapter 3.

2.5 OpenLF

The approach that I have been describing was implemented in an open source software

package called OpenLF (OpenLF, ), developed by Intel and based on the research by

Chen et. al. (Chen et al., 2002). We have based our research on the framework of

OpenLF. This section describes several components of OpenLF, including visibility,

resampling, and rendering.

2.5.1 Rendering

One of the advantages of the factorization approach to surface light fields is that the

functions g(u, v) and h(θ, φ) can be stored in texture maps and rendered in real-time

on graphics hardware (Chen et al., 2002). The functions g(u, v) are known as surface

maps and h(θ, φ) are known as view maps.
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Figure 2.4: Discretizing the view directions and surface locations produces a matrix
representation of the SLF. This matrix can then be factored into smaller matrices which
represent the surface variation and view variation.

The exitant radiance directions (θ, φ) are parameterized over the hemisphere above

each vertex. The surface locations (u, v) are parameterized over the triangle rings cen-

tered at each vertex. A triangle ring is the set of triangles which share a vertex. Using

triangle rings instead of individual triangles avoids discontinuities at the edges (Chen

et al., 2002), but requires that each triangle be represented by three surface maps (one

per vertex k). A diagram is shown in Figure 2.5.

The rendering algorithm, which is executed on graphics hardware, evaluates the

following function:

Lk(u, v, θ, φ) =
rank∑
r=1

3∑
k=1

β(u, v, k)gr
k(u, v)h

r
k(θ, φ)

at each of the triangles. A view vector is computed from the eye to each of the three

vertices of the triangle. These vectors are projected onto the local basis system, and

interpolated across the triangle. At each fragment, the vectors are normalized and

used to index into the view maps hr
(1,2,3)(θ, φ). The functions gr

(1,2,3)(u, v) are computed

by linearly interpolating the surface maps across the triangle. The two functions are

multiplied together and weighted by a barycentric function β(u, v, k) to get the final

exitant radiance at this point. Each term r of the approximation is rendered in one

pass and accumulated in a floating-point frame buffer.
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Figure 2.5: The surface functions g(u, v) are parameterized across triangle rings. To
get the color for the triangle, each of the three triangle ring functions are weighted
by β(u, v, k) and summed. The weighting function sums to 1.0 everywhere within the
triangle. From Chen et al. (Chen et al., 2002).

2.5.2 Visibility and Resampling

The visibility is tested by projecting the triangle mesh using the camera’s position and

orientation. Visibility is computed on a per-vertex basis by back-projecting the vertex

into the camera. If a point is determined to be visible, the colors are sampled from the

input image using bilinear interpolation.

The matrix factorization approach to compression of surface light fields requires that

the image data be resampled from the input images to fit into the rows and columns

of the data matrices. This resampling occurs in both dimensions; not only are the

camera locations at arbitrary locations in the hemisphere, but the projected areas of

the triangles vary in each image.

Resampling the images to fill the columns of the data matrix is straightforward. If

a triangle ring is determined to be visible, the colors are sampled from the input image

using bilinear interpolation.

Resampling the camera views to cover the hemisphere is more complicated. In the

OpenLF system, camera locations are treated as points in a Delaunay triangulation.

This triangulation is used to weight each of the camera positions, which are stored in
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Figure 2.6: Resampling of views. Left: The camera positions are projected onto the
local basis. Center: Delaunay triangulation of views. Right: Resampling to uniform
grid. From Chen et al. (Chen et al., 2002).

the texture maps. Each image represents a point in the hemisphere. The 3D position

of the camera is projected onto the vertex basis vectors and normalized. This point

is projected down onto the plane and inserted into the Delaunay triangulation. The

triangulation is then uniformly resampled at the view map resolution and stored. A

diagram is shown in Figure 2.6.

Resampling can cause the amount of data to increase dramatically. In Chapter 3

I discuss methods to avoid this resampling by treating the SLF reconstruction as a

scattered data approximation problem.

2.6 Online Methods

Most of the research in image-based modeling has focused on batch processing systems.

These systems process the set of images over multiple passes, and consequently require

that the entire set of images be available. For detailed capture of light fields, this

requires significant storage (around 106 data samples (Hillesland et al., 2003)). In

addition, incorporating additional images into these models requires recomputing the

model from the beginning.

Recently researchers have developed online methods which provide direct feedback

to the user. Schirmacher (Schirmacher et al., 1999) adaptively meshed the uv and st

planes of a light field, and used an error metric along the triangle edges to determine

the locations of new camera positions. Hillesland (Hillesland et al., 2003) updated a

non-linear solution in an online fashion, but required multiple passes over the data.

One of the inspirations for this research was Rusinkiewicz (Rusinkiewicz et al., 2002),
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who described a system to interactively capture geometry. The user was incorporated

into the processing loop, which enabled them to view the sampling and to steer the

solution to eliminate holes in the model.

Formulating surface light field construction as an online processing approach avoids

these problems by incrementally constructing the model as the images become available.

In the next chapter, I discuss a technique to convert the SLF batch capture process

into an incremental process.
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CHAPTER 3

Incremental Construction of

Surface Light Fields

The goal of this research is to acquire the appearance of physical objects and render

these objects at interactive rates. In contrast to analytical radiance models (Hanrahan

and Krueger, 1993; Cook and Torrance, 1982; Oren and Nayar, 1994), the SLF approach

has not been widely adopted. I believe that is partially because the capture process is

time-consuming and complex.

In this chapter I discuss a system for interactively capturing, constructing, and

rendering surface light fields by incrementally building a low rank approximation to

the surface light field. Each image is incorporated into the lighting model as it is

captured, providing the user with real-time feedback. This feedback enables the user

to preview the lighting model and direct the image acquisition towards undersampled

areas of the object. We also provide a novel data-driven quality heuristic to aid the

user in identifying undersampled regions. Our system reduces the time necessary to

capture the images and construct a surface light field from hours to minutes.

3.1 Introduction

Collecting the numerous images needed for the construction of surface light fields is

a time-consuming and tedious process. Since the result can be viewed only after a

lengthy post-process is complete, it can be difficult to determine when the light field

is sufficiently sampled. It is not enough to uniformly sample the hemisphere, as this

may miss high-frequency information such as highlights. Often, uncertainty about the

sampling density leads users to capture many more images than necessary in order to

guarantee adequate coverage. If undersampling artifacts are visible in the result, more

images must be acquired and the entire factorization process must be repeated. This

factorization process may take several hours for a complex SLF.



Figure 3.1: A heart figurine, a marble pestle, and a copper pitcher captured and ren-
dered with our online system.

These data-acquisition problems can be traced to the lack of feedback during the

image capture process, as humans are quite adept at recognizing undersampling errors.

An incremental algorithm provides the user with feedback as the lighting model is being

constructed, allowing the user to obtain the necessary quality and avoid taking many

extra pictures. Examples of several models can be seen in Figure 3.1.

The goal of this work is a “casual capture” system which allows the user to in-

teractively capture and view surface light fields. “Casual capture” refers to two ele-

ments of our approach; no specially-constructed capture rigs or tracking devices, and a

“human-in-the-loop” interactive feedback system. We present a system for incremen-

tally capturing and rendering a surface light field with fixed illumination conditions and

known geometry. As each image is acquired, it is incorporated into the representation

in a streaming fashion and displayed to the user. In this way, the user receives direct

feedback about the capture process and can use this feedback to direct the image ac-

quisition towards undersampled regions. Our online light-field capture process enables

the user to examine the surface light field as it is being acquired, add images where

necessary, and make the final determination as to whether the quality is sufficient. A

sequence demonstrating this process is shown in Figure 3.2. We also introduce a novel
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data-driven quality heuristic to highlight these areas.

We believe this approach has several advantages over other SLF approaches:

• The SLF algorithm we present is fast and incremental. Since each image is pro-

cessed as it is captured, the storage overhead is low, and new images can be

incorporated at rates of more than one per second.

• The algorithm provides continuous feedback to the user. As a new image is incor-

porated into the surface light field, the rendering data structures are immediately

updated and displayed, enabling the user to interactively evaluate the light field

quality.

• We provide a data-driven quality heuristic to guide sampling. An error metric

is interactively computed and displayed to aid in determining which parts of the

4D SLF space are undersampled.

• We provide a structured method for dealing with incomplete data. Due to oc-

clusion, many surface patches are only partially visible. Rather than discarding

these data, we use the current approximation to fill in these holes.

The core of our approach is the Online SVD (Brand, 2003), a fast memory-efficient

algorithm for constructing an incremental low-rank Singular Value Decomposition. The

next sections describe the mathematical background of the SVD, then proceed to de-

scribe the Online SVD. In Section 3.5, we present details of the implementation, followed

by results and conclusions.

3.2 Mathematical Background

Singular Value Decomposition was used by Chen et al. (Chen et al., 2002) to build a

compressed representation of the SLF which could be rendered at interactive rates. In

this section I describe the mathematical background of the SVD.

3.2.1 Eigenvectors and Eigenvalues

Both the Singular Value Decomposition and Principal Component Analysis are rooted

in the concept of eigenvectors and eigenvalues, which are the solutions to the equation

Ax = λx
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Figure 3.2: This sequence shows the image acquisition process. The left frame shows
an image from the camera. In the middle is the reconstruction before this image is
incorporated, with highlights interpolated from nearby views. The right image shows
the reconstruction after it is incorporated, with the correct highlights.

where A ∈ Rn×n, x ∈ Rn×1, and λ ∈ R. This equation says that for certain special

vectors x (the eigenvectors), the general transformation matrix A only scales them by

a factor (the eigenvalues) and does not rotate them. Every n× n square matrix has n

(not necessarily distinct) eigenvectors. They can be found by rearranging the terms of

the above equation:

Ax− λx = 0

(A− λI)x = 0

We don’t consider the 0 vector to be an eigenvector, so the above equation is true when

det(A− λI) = 0

This equation is called the characteristic polynomial, which is a set of n linear equations

which can be solved for λ to determine the eigenvalues. The eigenvalues are substituted

back into the matrix equation to get the eigenvectors. In practice, this is only done for

small matrices due to the computational complexity. For larger matrices, an iterative

algorithm based on the characteristic polynomial can be used.

3.2.2 Power Iteration Algorithm

The characteristic polynomial can be used to develop an algorithm for computing the

eigenvectors and eigenvalues. This algorithm, which is known as Power Iteration, takes
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advantage of the property that vectors which are transformed by the matrix A will

be scaled in the direction of the largest eigenvector. Initially, the vector is chosen to

be some random non-zero vector. This vector is iteratively multiplied by the matrix,

which causes it to gradually align with the largest eigenvector. This is repeated until the

vector has converged. The eigenvector and eigenvalue are stored, and the eigenvector’s

contribution is subtracted from the matrix. The process is then repeated to compute

the next largest eigenvector. Here is the pseudocode for determining an eigenvector:

xi = rand(n,1)

xi = xi/‖xi‖
repeat

xi−1 = xi

xi = Axi

xi = xi/‖xi‖
until ‖xi − xi−1‖ > threshold

λi = ‖xi‖

To compute the subsequent eigenvalues, the eigenvector is removed from A in a

process called Deflation. The outer product of the eigenvector is subtracted from the

matrix:

Ai+1 = A− λixix
T
i

The performance of Power Iteration is highly-dependent on the eigenvalues. The

convergence ratio is controlled by the ratio of subsequent eigenvalues λi

λi+1
. If this ratio

is large, the algorithm will converge rapidly. Thus Power Iteration is usually used

only when the first few eigenvalues need to be computed, since these are usually well-

separated. Power Iteration was used by Chen et al. (Chen et al., 2002) to determine

the eigenvectors of the SLF.

3.2.3 Principal Component Analysis

PCA is a widely used data compression technique in statistics and data modeling (Press

et al., 1992). The PCA is computed by determining the eigenvectors and eigenvalues

of the covariance matrix. The covariance of two random variables is their tendency to

vary together. This is expressed as:

cov(X, Y ) = E[E[X]−X] · E[E[Y ]− Y ]
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where E[X] denotes the expected value of X. For sampled data this can be explicitly

written out as:

cov(X, Y ) =
N∑

i=1

(xi − x̄)(yi − ȳ)

N

with x̄ = mean(X) and ȳ = mean(Y ). Note that cov(X,X) = var(X), and for inde-

pendent variables cov(X, Y ) = 0. The covariance matrix is a matrix A with elements

Ai,j = cov(i, j). The covariance matrix is square and symmetric. For independent

variables, the covariance matrix will be a diagonal matrix with the variances along the

diagonal.

Calculating the covariance matrix from a dataset first requires centering the data

by subtracting the mean of each sample vector. Considering the columns of the data

matrix A as the sample vectors, we can write the elements of the covariance matrix C

as:

cij =
1

N

N∑
i=1

aijaji

written in matrix form:

C =
1

N
AAT

Often the scale factor 1/N is distributed throughout the matrix and the covariance

matrix is written simply as AAT .

The eigenvectors of the covariance matrix are the axes of maximum variance. The

PCA technique is effective because for many datasets the majority of the data variance

can be captured by a small subset of the eigenvectors. An example from a SLF dataset

is shown in Figure 3.3. Note that the magnitude of the eigenvalues falls off quickly,

such that 70% of the value is contained in the first 15 eigenvectors. This implies that

a good approximation of the full matrix can be computed using only a subset of the

eigenvectors and eigenvalues. To approximate the matrix, the eigenvalues are truncated

below some threshold. The data is then reprojected onto the remaining r eigenvectors

to get a rank-r approximation. This can be shown to be optimal compression in the

least-squares sense, i.e. it is the closest approximation to the full matrix that can be

achieved using r terms.
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Figure 3.3: The eigenvalues of a 655x75 matrix from a SLF dataset. The mass of
the eigenvalues are concentrated in the first dozen terms, which implies that a good
approximation of the full matrix can be computed using only a subset of the eigenvectors
and eigenvalues.
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3.2.4 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a technique for decomposing a matrix into

a set of rotation matrices and a scale matrix. The form is:

A = USV T

where A ∈ Rm×n (with m >= n), U ∈ Rm×n, V ∈ Rn×n, and S is a diagonal matrix of

size Rn×n. Both U and V are orthogonal.

The SVD is closely related to PCA and to eigenvalue computation. Recall from

above the eigenvalue equation:

Ax = λx

In order to compute the eigenvalues, A must be a square matrix. The SVD is less

restrictive in that it can be performed on any m× n matrix. The singular values of a

matrix A solve the equations

Au = λv and ATv = λu

The vectors u and v are known as the right- and left-singular vectors respectively. We

can show the relation between SVD and eigenvalues through the following equations:

AAT = (USV T )(USV T )T = USV TV SUT = US2UT

ATA = (USV T )T (USV T ) = V SUTUSV T = V S2V T

using the fact the U and V are orthogonal so UT = U−1. This shows that U and V

can be calculated as the eigenvectors of AAT and ATA respectively. The square root

of the eigenvalues are the singular values along the diagonal of the S matrix.

The advantage of the SVD is that there are a number of algorithms for computing

the SVD. One method is to compute V and S by diagonalizing ATA:

ATA = V S2V T

and then to calculate U as:

U = AV S−1

There are also a number of efficient algorithms which minimize error propagation

such as the Golub–Reinsch SVD and the Lanzcos SVD (Golub and Loan, 1996). The
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SVD is a powerful and widely-used compression technique, but it requires that the full

set of data be available during processing. Since these data are usually extensively

resampled to fit the columns and rows of the data matrices, this can be a significant

storage cost. In the next section, we describe an algorithm which can incrementally

compute the SVD.

3.3 Online SVD

The Online Singular Value Decomposition (Brand, 2003) is an incremental SVD al-

gorithm (Hall et al., 2000; Chandrasekaren et al., 1997) that computes the principal

eigenvectors of a matrix without storing the entire matrix in memory. The results are

built up from a series of simple operations on the output eigenvectors, which are low-

rank approximations to the full matrix. If the rank r is much smaller than the size of

the matrices, this is a considerable saving, and reduces the computational complexity

from quadratic to linear (Brand, 2003).

The Online SVD works as follows (see Figure 3.4). Consider a rank-r SVD

A = USV T

where U ∈ Rm×r, S ∈ Rr×r, and V ∈ Rn×r. Each new column of samples c is projected

onto the eigenspace:

j = UT c

The amount that is orthogonal to the eigenspace is given by:

p = c− Uj

The norm of this vector, ‖p‖, is a measure of how different the pixels in this new

image are from our current approximation. If the pixels are similar (that is, ‖p‖ is

below a threshold) we can incorporate this new sample by simply rotating the existing

eigenspaces.

U ′ = URU V ′ = V RV

Otherwise, the current rank r of the approximation is insufficient, and we increase
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Figure 3.4: The Online SVD. A new point c is incorporated into the existing SVD.
The orthogonal component p is computed by projecting onto U . If ‖p‖ is below a
threshold, then we can incorporate this new sample by simply rotating U . Otherwise,
we must increase the rank of the approximation by adding another eigenvector that is
orthogonal to the current set of eigenvectors.
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the rank to r + 1 and append the column j to our approximation.

U ′ = [U ; j]RU V ′ = V RV

The rotations are computed by re-diagonalizing the (r + 1)× (r + 1) matrix[
S UT c

0 ‖p‖

]
→ [RU , RV ] (3.1)

These rotations can be computed in O(r2). Since only the output matrices U , S,

and V are stored, this representation results in significant storage savings.

3.3.1 Error

The batch SVD can iterate over the entire dataset multiple times, while the Online SVD

uses only the current approximation and the incoming data vector. Consequently, the

Online SVD tends to have more error than a batch SVD for the same rank. Figure 3.5

shows the error as a function of rank. If the rank is too low to approximate the

dataset, it will bias the Online SVD by forcing it to select sub-optimal eigenvectors.

Brand (Brand, 2003) suggests computing the Online SVD at twice the desired rank

and truncating, which allows the eigenvectors more degrees of freedom to fit to the

incoming data. This increases the size of the working data structures, but does not

affect the size of the rendering data structures.

3.3.2 Missing Values

Acquired radiance data is often incomplete because of occlusion. Many systems are

forced to discard surface patches with missing data, or fill in the holes with incorrect

values, such as zeros or mean values. A better approach is to estimate the missing

data using a process known as imputation. Imputation uses the current Online SVD

estimate of the light field to fill in missing values (Brand, 2003). The known samples are

projected onto the current eigenspace, and the unknown values are estimated by solving

the under-determined system using Linear Least Squares (Golub and Loan, 1996). This

fills in the missing values with the nearest plausible values using the Mahalonobis metric

(a metric defined in the scaled eigenspace) (Brand, 2003).

Suppose that an incoming column of data is partitioned into two components, c+ and

co, which represent the known and unknown components of the incoming image. For
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Figure 3.5: The Mean Squared Error of a reconstructed light field as a function of the
rank. The majority of the light field is captured after 4-6 terms. For the same number
of terms, the Online SVD has more error than the batch SVD.
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example, co could represent the occluded region of a triangle. The current eigenspace

is also partitioned into U+ and Uo. We can set up two linear systems:

U+Sb = c+

UoSb = co

These equations state that a vector b can be projected on the known subspace and

the unknown subspace to get the known column vector and the unknown column vector.

We can solve these equations using the method of Normal Equations (in (Golub and

Loan, 1996) and discussed in Section 4.3.1). The first equation becomes:

b = (SUT
+U+S)−1(SUT

+c+)

This can be simplified using the fact that U is orthogonal:

b = (U+S)−1c+

and substitute UoSk = co

co = UoS(U+S)−1c+

This set of equations yields the full vector c which lies closest to the existing eigenspace

in the Least Squares sense (for further details, consult (Brand, 2003)). The inverse

is not a true matrix inverse, but is computed using the pseudo-inverse (discussed in

Section 4.3.1). Substituting the above equations into Equation 3.1 yields:[
S UT c

0 ‖k‖

]
=

[
S S(U+S)−1c+

0 ‖c+ − UoS(U+S)−1c+)‖

]
Figure 3.6 shows the advantage of imputation for surface light fields. In practice, we

only impute missing values when at least half of the surface patch is visible in an image.

In addition, we can only impute values after 8-10 initial images have been processed,

which allows the system to establish a reasonable approximation. A different approach

to handle missing data is discussed in Chapter 4.

3.4 Data-Driven Quality Heuristic

The Online SVD enables the user to view the light field model as it is being captured.

This visual feedback is helpful, but it can still be difficult to recognize undersampling

errors during image acquisition. To aid the user in collecting high-quality radiance
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Figure 3.6: Left: The bust dataset with areas of missing data highlighted in red. Right:
Imputation of the missing data fills in the areas with plausible values.

information, we developed a data-driven quality heuristic that uses the information

obtained from the estimate to indicate whether more data are needed. This is displayed

as the user views the model, and provides additional statistics about the reconstruction

quality.

One possible way to do this is to assume a fixed BRDF and measure the error be-

tween this and the collected samples. This is the approach taken by Lensch (Lensch

et al., 2003), who used an uncertainty minimization technique to guide image acqui-

sition. We wanted to avoid this fixed BRDF assumption in order to capture a wide

variety of reflectance properties.

There are two statistics that we want to provide feedback about: the variation over

the surface, and the variation over the viewing direction. To this end, we developed a

per-triangle scalar quality heuristic that is computed as the combination of two quality

functions:

ψ(s, t, θ, φ) =
√
ψp(s, t)2 + ψh(θ, φ)2

The surface quality function ψp measures the quality of the surface approximation

by tracking the projection error of the Online SVD. The projection error is computed

as part of the updating step as the quantity ‖p‖. This value is a measure of how much
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Figure 3.7: The data-driven quality heuristic ψ(s, t, θ, φ) displayed on the star model.
Left: The heuristic is dark in areas where images have already been captured, indicating
that the area has been well-sampled. Right: In areas where more data is needed, the
heuristic is bright to draw attention to the area.

the new image differs from our approximation. As the SVD refines, the projection error

decreases. This scalar quantity is smoothed using an exponential fall-off filter.

The hemisphere quality function ψh is a measure of the sampling density of the

hemisphere. The value is computed by using the areas of the triangles in the Delaunay

triangulation of the hemisphere. As more images are captured, the areas of the triangles

decrease. The Delaunay triangulation, which is used for interpolation, is described in

more detail in Section 4.2.1.

The quality heuristic ψ(s, t, θ, φ) is displayed as a scalar value at each triangle. We

display this value in red in our system, since it is easily visible from a distance. An

example in shown in Figure 3.7. As the user moves the tracked camera around the

object, the object rotates on the screen and the brightness of the heuristic changes. As

images are captured in a region, the heuristic darkens and the user moves to a different

area. As the light field is being acquired, the user can either view the light field, the

heuristic, or a split-screen view of both. In practice, we typically view the camera

output and tracking information on one screen and switch between the heuristic and

the light field on the other.

3.5 Implementation

The goal of this project is to build an interactive system that enables the rapid capture

of exitant radiance under fixed illumination conditions. The radiance data is sampled
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Figure 3.8: A side-by-side comparison of the Buddha model constructed with the
OpenLF system (left) and our incremental approach (right). There are some slight
differences noticeable in the chest area.

from the physical world and a compressed representation is generated such that it can

be rendered at interactive rates on graphics hardware.

The Online SVD enables us to incrementally construct a low-rank approximation to

a dataset. In this section we describe how to incorporate this tool into a SLF system.

I will first give an overview of the entire SLF capture process, then describe some of

the particular components of our system.

3.5.1 The Surface Light Field Construction Process

The user interacts with our system by moving a video camera around the object whose

appearance is to be captured. The video camera is tracked in real-time, and the images

are incorporated into the model and displayed on the screen. This enables the user to

view the surface light field as it is being constructed and to correct for undersampling

errors. As each new image is captured, it is resampled into a per-vertex column vector,

which represents every pixel in a surface patch from one camera view. This image

is incorporated into the Online SVD for each surface patch, and the rendering data
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structures are updated. The result can then be viewed on the screen, usually after

only about 1 second. In addition, the user can view the data-driven quality heuristic

as a scalar value for each surface patch, which provides additional statistics about the

reconstruction quality.

This section discusses the entire SLF construction process, including the physical

setup of the capture environment as well as the software tools that we used to build

the systems. Many of the design choices were made for performance reasons to enable

the user to view the result of each image acquisition as quickly as possible.

The capture process consists of

1. acquiring the geometry of the object,

2. acquiring a set of images of the object,

3. determining the 3D position and orientation of the camera with respect to the

model,

4. determining the visibility of the surface patches,

5. sampling the values from the image,

6. incorporating the values into the representation, and

7. rendering novel images from this representation.

Steps 6 and 7 have been discussed previously in Sections 3.3 and 2.5. The other steps in

this process are less complicated, and are described in this section. Since these steps are

fairly well-understood in the computer vision community, we used several off-the-shelf

components.

The geometry of the object is captured as a preprocess using a FaroTMdigitizing

arm. The 3D point samples (usually around 1000-3000 samples) are triangulated using

the constrained 3D Delaunay mesh generator Triangle (Shewchuk, 1996). This trian-

gulation is then loaded into Blender (Blender, ) or MeshLab (MeshLab, ) for cleanup

and refinement. In addition to the 3D model points, the 3D locations of the fiducial

markers are also acquired. This enables the model to be registered with the tracking

system. An image of the scanning process along with the resulting mesh is shown in

Figure 3.9.

The imaging device that we use is a Point Grey Research FleaTMvideo camera. This

camera captures 1024 × 768 color images at 30 frames per second. The advantage of
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Figure 3.9: Acquiring the geometry of a marble pestle. Left: The object is scanned
using a contact scanner. Right: The resulting mesh after triangulation and editing.

a video camera over a digital still camera is the higher speed of data transfer. The

camera was calibrated with Bouguet’s Camera Calibration Toolbox (Bouguet, ), and

images are rectified using Intel‘s Open Source Computer Vision Library (OpenCV, ).

3.5.2 Pose Estimation

In order to project the image samples onto the geometry, the camera’s position and

orientation must be known. The 3D position and orientation of the camera is known

as the pose of the camera, and the process of computing it from acquired images is

known as pose estimation. To determine the pose of the camera with respect to the

object, a stage was created with fiducials along the border. The 3D positions of the

fiducials are located in the camera’s coordinate system in real-time using the ARToolkit

Library (Kato and Billinghurst, 1999). This library uses image segmentation, corner

extraction, and matching techniques for tracking the fiducials. Knowing the 3D position

of an imaged fiducial allows the pose of the camera to be computed. When multiple

fiducials are present in an image, the camera pose can be refined by minimizing the

differences between the pose estimates for each fiducial. A picture of our system showing

the fiducials is in Figure 3.11.

We used several existing components of the OpenLF (OpenLF, ) system, and mod-

ified several components to fit the new incremental approach. A diagram is shown in

Figure 3.10. Like OpenLF, the visibility is needed to determine which surface patches

to update. The OpenLF system uses a software algorithm to compute visibility, which

we converted to graphics hardware for performance reasons. The mesh is first rendered

from the point of view of the camera. The depth buffer is then read back to the CPU,
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Figure 3.10: Top: The OpenLF system. Bottom: Our online system. The two sys-
tems share several components, including the visibility, resampling, and rendering. We
introduce several new components to convert light field construction into an online
process.

Figure 3.11: The pose estimation output. Left: The output from the video camera,
showing the object and the tracking fiducials. Right: The tracking fiducials are seg-
mented from the image and the pose estimation is computed.
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where it is compared against the projected depth of each vertex. If the vertex passes

the depth test, it samples a color from the projected position on the input image.

The view map construction was also modified to fit into the incremental framework

and to use graphics hardware. The OpenLF system uses Delaunay triangulation to

resample the view locations into the hemisphere, which we convert to an incremental

Delaunay triangulation. The triangulation is initialized with four points at the corners

of the view map. When a new image is captured, the camera location is projected

onto the vertex basis vectors and normalized to get a point on the hemisphere. This

point is projected down onto the plane and inserted into the Delaunay triangulation.

The triangulation is then rendered using these points as the colors, and the graphics

hardware resamples the colors across the hemisphere. The result is stored in the view

map.

3.5.3 Computer Hardware

Our system uses two PCs, one for camera tracking and one for visibility, resampling,

and rendering. The tracking PC, a 1.8GHz Intel Pentium 4, is connected to the camera

via a IEEE-1394 interface. The images and pose estimates are sent over the network to

the second PC, a 2.3GHz AMD Athlon64, where they are incorporated into the surface

light field and rendered.

The systems presented in this thesis all use graphics hardware to accelerate the

SLF reconstruction and rendering. GPUs are powerful and can handle large amounts

of data, which enables the SLF to be rendered at interactive speeds. However, the

programming model of GPUs imposes certain constraints on algorithm design. I will

discuss these constraints in more detail in the next chapters.

The texture lookup on graphics hardware is more efficient when dealing with several

large textures than it is with numerous small textures. The surface maps and view maps

for all of the triangles are tiled into larger texture maps, as shown in Figure 3.12. We

typically use surface maps of size 16x16 and view maps of size 32x32. All textures

are stored in floating point format, which avoids quantization error and scale/bias

artifacts. This requires more storage than the 8-bit textures used in OpenLF (OpenLF,

), but the signed representation and high dynamic range are important as the principal

components can be either negative or positive.
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Figure 3.12: To improve the efficiency of the texture lookup on the graphics hardware,
the numerous small textures are packed into larger textures. Left: The viewing func-
tions h(θ, φ) are parameterized over the hemisphere and stored in view maps. Right:
The surface functions g(u, v) are parameterized over the triangles and stored in surface
maps.

Figure 3.13: Left: A captured image of the star model. Right: The star model rendered
in our system. Dataset courtesy of Intel Corporation.
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Figure 3.14: Timing results in seconds for several models. The bust has 7K triangles,
the Buddha has 12K triangles, the star has 5K triangles, the heart has 2.7K triangles,
and the pitcher has 3K triangles.

3.6 Results

One of the advantages of our method is the reduced storage cost, which translates

to improved speed of model construction. In our tests, this resulted in an order of

magnitude increase in speed over the OpenLF system. For the Buddha dataset shown

in Figure 3.8, the processing time is reduced from 67 minutes in OpenLF to 7 minutes

in our system. Timings for several datasets are presented in Figure 3.14.

As we noted in Sec. 3.3.1, the Online SVD can have more error than the PCA.

We ran several experiments to compare the quality of the Online SVD to a batch

PCA. Using a stored dataset, the images were fed one at a time through the Online

SVD solver to mimic the conditions of an incremental construction. Since this was

implemented within the OpenLF framework, we can directly compare the quality of

the reconstruction. A side-by side-comparison of two images is shown in Figure 3.8.

During image acquisition, the data-driven heuristic provides visual feedback to the

user to highlight undersampled areas. We have found this works well in practice, but

we are interested in formally evaluating the usefulness of this heuristic. In lieu of a

user study, we developed an automated experiment to measure the convergence of a

surface light field using the heuristic. Using an archived dataset, we compared random

image selection to image selection guided by the heuristic. To add a new image, the

computer calculates the heuristic from the point-of-view of all of the remaining images,
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Figure 3.15: Measuring the convergence of surface light field construction using the
data-driven heuristic. Compared to random selection, the use of the data-driven heuris-
tic dramatically speeds convergence. The PSNR of the reconstruction was compared
to a reference SVD implementation at 10 random viewpoints.

and selects the image with the highest error. The results of this experiment are shown in

Figure 3.15. This experiment indicates that the heuristic can accurately predict which

images will contribute the most content to the final result. Capturing images where the

heuristic is large should likewise enable users to efficiently capture light fields. We are

interested in conducting a user study to evaluate how well this heuristic information is

communicated to the user.

One factor that can affect the quality of incremental approximations is dependence

upon the ordering of data. In a different experiment, we measured the error over dif-

ferent permutations of a light field dataset. The results of this experiment are shown

in Figure 3.16. For reference, we included the ground truth estimate from PCA and a

sorted permutation of the samples. Note that the worst error is from the sorted permu-

tation. Brand (Brand, 2003) points out that small, gradual rotations tend to amplify

floating-point error, which causes the eigenvectors to lose orthogonality. He suggests
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Figure 3.16: The total reconstruction error of the Online SVD from 20 random permu-
tations of the original dataset. The reference PCA is shown in the lower left corner. A
permutation of the SVD where the samples were sorted by norm is shown in the upper
right corner. This indicates that the error is greatest when the samples are correlated.

periodically re-orthogonalizing the matrices using Gram-Schmidt orthonormalization.

In a different paper (Brand, 2002), he provides an alternative matrix formulation that

reduces this error. He also describes a method for “down-dating” the Online SVD to

remove a previous column of data from the approximation. We are interested in ex-

ploring this techniques as it would allow the user to undo mistakes that occur during

the image acquisition process.

3.7 Conclusions

In this chapter I discussed a method for incremental construction of surface light fields,

which uses the Online SVD to build a surface light field approximation interactively

during the acquisition stage. This online approach provides real-time feedback to the

user, which enables the user to direct the image acquisition towards the undersampled

areas of the model. This significantly reduces the acquisition time and helps build
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higher quality models. This approach can also decrease the processing time by an

order of magnitude. I believe that incremental construction of surface light fields is a

powerful tool for the capture and rendering of photorealistic models.

To assist the user in the capture process, I present a novel data-driven heuristic

that provides an extra channel of information. I conducted several experiments to

demonstrate that the data-driven quality heuristic, a tool for providing feedback to the

user during sampling, can significantly increase the convergence of the reconstruction.

Since the order in which the images are acquired affects the Online SVD solution, I

also investigated the errors caused by permutations of the images.

I also discussed a method for imputing missing values from the data by using the

current Online SVD approximation. This method worked reasonably well for our ex-

periments, but it required extra computation and could result in artifacts. In the next

chapter I discuss a different approach for dealing with the problem of missing data in

SLF construction.
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CHAPTER 4

Scattered Data Approximation

IBR techniques can represent the appearance of a wide variety of real physical surfaces

with complex reflectance behavior. The challenges with IBR are handling the large

amount of data, rendering the data efficiently, and previewing the model as it is being

constructed. In this chapter, I describe the Incremental Weighted Least Squares ap-

proach to the representation and rendering of spatially-varying view-dependent anisotropic

illumination. The appearance of the object is represented by a set of low-degree poly-

nomials called WLS centers. During rendering, these polynomials are combined in a

non-linear fashion to generate a full reconstruction of the exitant radiance. The render-

ing algorithm is fast, efficient, and implemented entirely on the GPU. The construction

algorithm is incremental, which means that images are processed immediately as they

are captured instead of in the traditional batch fashion. This human-in-the-loop pro-

cess enables the user to preview the model as it is being constructed and to adapt to

over-sampling and under-sampling of the surface appearance.

4.1 Introduction

As we saw in the previous chapter, the matrix factorization approach to SLFs has

many advantages, including high compression rates and fast rendering. However, the

matrix factorization step requires a complete and regularly sampled set of data, which

necessitates an expensive resampling step. This is a problem when data is missing or

sparse, which is often the case with SLF data.

A better approach is to treat SLF construction as a data approximation problem.

The exitant radiance at each surface patch is represented as a function, and the in-

put images are treated as samples from this function. Since there are no restrictions

imposed on the geometry of the object or on the camera locations, the input samples

are located at arbitrary positions. This is an example of a problem known as scattered

data approximation (Wendland, 2005).



A common scattered data approximation technique is Radial Basis Functions (RBFs).

Zickler et al. (Zickler et al., 2005) demonstrated the ability of RBFs to accurately re-

construct sparse reflectance data. Constructing this approximation requires a global

technique, since every point in the reconstruction influences every other point. This is

a disadvantage for an incremental algorithm, as every value must be recomputed when

a new sample arrives. It is also difficult to render efficiently on graphics hardware,

since many RBF algorithms rely on Fast Multipole Methods to reduce the size of the

computation (Carr et al., 2001). We would like a method which has the scattered data

representation ability of RBFs, but without the complex updating and reconstruction.

In this chapter I discuss Incremental WLS, a fast, efficient, and incremental algo-

rithm for the representation and rendering of surface light fields. It is a non-linear

polynomial approximation for multi-variate data, based on the idea of Least Squares

polynomial approximation, which fits scattered data samples to a set of polynomial

basis functions. WLS is similar to piecewise polynomial approximation and splines,

except that the reconstruction is non-linear. WLS (Wendland, 2005) generalizes Least

Squares by computing a set of approximations with associated weighting terms. These

weighting terms can be either noise (in statistics) or distance (in graphics and compu-

tational geometry (Ohtake et al., 2003)). If we use distance, then WLS becomes a local

approximation method. This local approximation is extended to a global approximation

by computing the Partition of Unity (Shepard, 1968).

In this chapter I discuss several topics:

• I apply existing mathematical tools such as the Weighted Least Squares approxi-

mation technique by casting surface light fields as a scattered data approximation

problem.

• I describe Incremental Weighted Least Squares, an incremental approach to sur-

face light field construction which enables interactive previewing of the recon-

struction.

• Using the Incremental WLS representation, I develop a real-time surface light field

rendering algorithm, implemented on the GPU, which provides direct feedback

about the quality of the surface light field.

The chapter proceeds as follows. I first describe several approaches to scattered

data approximation, including piecewise polynomials and RBFs. In Section 4.3 I dis-

cuss Least Squares fitting and the extension to Weighted Least Squares. I then present
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Figure 4.1: A side-by-side comparison of the WLS reconstruction with an input image
that was not included in the training set.

Incremental WLS and describe how the WLS representation can be incrementally con-

structed and rendered. In Section 4.5 I discuss implementation details of the capture

and rendering system, and then present results and conclusion.

4.2 Scattered Data Approximation

Scattered Data Approximations techniques take a set of samples in arbitrary locations

and construct a function which is a reasonable fit to these samples. More formally, given

a set of points V = {ν0, . . . , νm} ∈ Rd and function values at these points fν ∈ R, we

seek an approximant f : Rd → R which is as close as possible our data. In general, there

are two types of approximants; interpolating and approximating. They are differentiated

by their behavior at the sites ν. The residual at the sites is

ε = ‖f(ν)− fν‖ for ν ∈ V
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For interpolating functions, ε = 0 for all ν ∈ V . For approximating functions, the

residual is minimized for the given set of basis functions.

4.2.1 Piecewise Polynomial

The most common scattered data approximation technique is to triangulate the data

sites. This defines the regions where the polynomials lie as well as how they are joined

at common vertices and edges. It is usually used for two-dimensional data, as higher

dimensions are too difficult to triangulate. The quality of the spline approximation

depends strongly on triangulation, so it is very important to get a good triangulation;

long thin triangles will destroy the accuracy of the approximation.

The most commonly used triangulation is the Delaunay triangulation (Delaunay,

1934), which is the dual of the Voronoi diagram. The Voronoi diagram is a partitioning

of the space into cells such that every point within the cell is closer to one site than

any other site. This is written as:

Ty = {x ∈ R2 s.t. ‖x− y‖ = min
ν
‖x− ν‖, y and ν ∈ V}

The Delaunay triangulation is constructed from the Voronoi diagram by using the sites

as vertices and connecting neighboring sites with edges.

A piece-wise linear interpolation over a Delaunay triangulation is defined by linearly

interpolating the function values from the vertices. This can be extended to a piece-

wise quadratic function by using additional information such as the mid-points of the

edges. In general, extending this to higher-order continuity requires subdividing the

triangulation.

4.2.2 Shepard’s Method

Shepard’s Method (Shepard, 1968) is a non-polynomial global multivariate interpola-

tion scheme for scattered data. The advantage of global methods is that they define a

single function f(x) over all of Rd, instead of a (potentially large) set of local piece-wise

polynomial functions. Shepard’s Method has the form:

f(x) =

∑
ν∈V fνφ(‖x− ν‖)∑

ν∈V φ(‖x− ν‖)

The weight functions φ(r) are chosen to be large at the sites and to fall off away from the

points. A common weight function is φ(r) = r−µ. These radially-symmetric functions
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decay as the distance from the site increases, where the µ parameter controls the rate of

decay. One problem with these functions is that they are not compact, so their support

can extend globally. Consequently, another popular choice for weight function is the

bounded exponential decay function:

φ(r) =


exp[−t2/(t2−r)2]

exp[r2/h2]−1
if r ≤ t

0 otherwise

The user parameters consist of the support radius t and the decay rate h.

Shepard’s Method is based on the Partition of Unity (Shepard, 1968), which is a

general technique to weight a set of basis functions such that they sum to 1. The form

of the Partition of Unity is:

f(x) =

∑
b(x)φ(x)∑
φ(x)

The Partition of Unity is a non-linear combination of the basis functions, which we

will talk about further in Section 4.3.2. The disadvantage of the Partition of Unity is

that it does not preserve the differentiability or continuity of the basis functions. For

example, a major disadvantage of Shepard’s Method is that it has stationary points

(vanishing gradients) at all data sites. This is a problem for modeling the appearance

of an object, since the quality of the highlights are dependent on the first and second

derivatives.

4.2.3 Radial Basis Functions

Another common scattered data approximation technique is Radial Basis Functions(RBFs),

which consists of a finite linear combination of translated basis functions. These ba-

sis functions are radially-symmetric functions of the form φ(‖ · ‖), where ‖ · ‖ is the

Euclidean norm. The general form of f is:

f(x) =
∑

k

λkφ(‖x− ck‖)

where λk ∈ R are the coefficients of the basis functions and ck ∈ Rd are known as the

centers. For interpolating functions, the centers are defined to be the original sites V .

For approximating functions, the centers are optimized to minimize the residual.

One advantage of RBFs is that they are independent of dimension. The basis

functions φ(r) take Euclidean distance as input, so they can be trivially extended to

arbitrary dimensions. This is in contrast to piece-wise polynomial schemes, which
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usually rely on the tensor product of the dimensions.

The basis functions are chosen to emphasize certain desirable qualities such as con-

tinuity, hole-filling, or differentiability. Commonly used basis functions include:

φ(r) = r bi-harmonic

φ(r) = r2log r thin-plate splines

φ(r) =
√
r2 + c2 multiquadrics

φ(r) = e−αr2
Gaussian

Once the basis functions are chosen, the coefficients can be computed by solving the

linear system:

Aλ = f

where A = {φ(‖xi−xj‖}, and xi and xj are the centers. A is known as the interpolation

matrix and is square, symmetric, and non-singular (Micchelli, 1986). This is one of the

primary advantages of RBFs; unlike high-degree spline approximation or polynomial

interpolation, RBF interpolation is always uniquely solvable.

Note that the biharmonic, thin-plate splines, and the multiquadrics all increase as

the distance from the point increases, while the Gaussian falls off to zero. This behavior

affects the form of the interpolation matrix. For the biharmonic function, the matrix

will be very dense with a zero diagonal. Gaussian basis functions, which have local

support, generate a matrix which is banded and sparse. This local support also means

that adding a point only affects a small set of interpolation coefficients. Adding a point

into a global RBF requires recomputing the entire set of interpolation coefficients.

The combination of local support and matrix form would seem to imply that Gaus-

sians are a much better choice for basis function. However, it order to effectively use a

local function such as a Gaussian the sampling density must be fairly uniform, which

is not the case with many datasets. Global functions such as thin-plate splines and

the multiquadrics are very good at filling holes in the sampling domain. These occur,

for example, when reconstructing surfaces from laser-scanned data. Thus global basis

functions tend to be more widely used, and research is focused on fast methods for

solving the interpolation matrix (Carr et al., 2001).

4.3 Least Squares

Least Squares methods are a set of linear approximation techniques for scattered data.

As before, we are given a set of N scalar samples fν ∈ R at points ν ∈ Rd, and we
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want a globally-defined function f(x) that best approximates the fν samples. For the

approximation problem, the goal is to generate this function f(x) such that the distance

between the scalar data values fν and the function evaluated at the data points f(νi)

is as small as possible. This is written as:

min{
∑

i

‖f(νi)− fν‖}

(Note: this discussion follows Nealen (Nealen, 2004)). Typically, f(x) is a polynomial

of degree m in d spatial dimensions. Thus f(x) can be written as

f(x) = Bc

where c = [c1 . . . ck]
T is the unknown coefficient vector. The B matrix is the polynomial

basis matrix, and is composed of a set of basis functions b(~x). These functions are chosen

based on the properties of the data and the dimensionality. In our case, we use either

the 2D quadratic basis set

b(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2

or the 2D linear basis set

b(x, y) = c1 + c2x+ c3y

The polynomial basis matrix B is creating by stacking all of the k polynomial basis

equations:

B =


b1(x, y)

b2(x, y)

· · ·
bk(x, y)

 =


1 x1 y1

1 x2 y2

· · ·
1 xk yk


The data points are also written as a vector f = [f1(x) . . . fk(x)]

T . The fitting problem

can now be stated as finding the coefficient vector c that minimizes the error between

the polynomial approximation Bc and the data values f :

min
c
{||Bc− f‖}
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This can be solved using the Method of Normal Equations (Johnson et al., 1993):

Bc = f

BTBc = BTf

c = [BTB]−1BTf

Solving the Normal Equation requires inverting the matrix BTB. Since this inver-

sion must be performed for every Least Squares fit, it is worthwhile to look into how

this can be performed efficiently.

4.3.1 Solving the Normal Equations

The matrix inversion is possible because BTB is square and non-singular (Johnson

et al., 1993). The size of the matrix depends upon the dimensionality d of the data and

the degree k of the polynomial basis. For small matrices, it can be inverted directly.

For larger matrices, I will discuss several efficient algorithms, including QR Decom-

position and SVD. These are often implemented in matrix inversion packages such as

BLAS (Blackford et al., 2002).

4.3.1.1 QR Decomposition

One problem with the Normal Equations is that the matrix BTB can be ill-conditioned,

and thus subject to numerical precision errors when inverting. This can be addressed

by using a technique called QR Decomposition. This technique decomposes a matrix

B into an upper-trapezoidal matrix R and an orthogonal matrix Q such that B = QR.

By substituting equivalence into the above Normal Equations and using the fact that

QT = Q−1:

c = [BTB]−1BTf

= [(QR)TQR]−1(QR)Tf

= [RTQTQR]−1RTQTf

= R−1(RT )−1RTQTf

= R−1QTf

This formulation is much less prone to numerical precision errors. The QR Decom-
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position can be computed using three different techniques; Gram-Schmidt orthogonal-

ization, Householder transformations, or Givens rotations. Householder transforma-

tions are most commonly used, but there are advantages and disadvantages to each of

these. For more information on these techniques, see (Johnson et al., 1993).

4.3.1.2 Singular Value Decomposition

Another technique is to invert the matrix using the SVD. Recall from Section 3.2.4

that the SVD decomposes a matrix A = USV T . U and V are orthogonal and S is a

diagonal matrix with the elements σ1, σ2, . . . , σn along the diagonal. This leads to a

simple method for computing A−1:

A−1 = [USV T ]−1

= [V T ]−1S−1U−1

= V S−1UT

where S−1 is a diagonal matrix with the elements 1/σ1, 1/σ2, . . . , 1/σn along the diago-

nal. When A is a square matrix, this computes the inverse of the matrix. When A is not

square a true matrix inverse does not exist, and this is known as a pseudo-inverse. The

pseudo-inverse A+ is a generalization of the inverse which satisfies the linear equation

x = A+b.

4.3.2 Local Least Squares Methods

One of the limitations of Least Squares fitting is that the solution encompasses the

entire domain. This global complexity makes it difficult to handle large data sets or

data sets with local high frequencies. We prefer a method that considers samples that

are nearby as more important than samples that are far away. This can be accomplished

by adding a distance-weighting term φ(r) to the Least Squares minimization. We are

now trying to minimize the function

min{
∑

i

φ(‖x− xi‖)‖f(xi)− fi‖}
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Figure 4.2: A diagram of the weighted least squares approach to function representa-
tion. Each center constructs a low-degree polynomial approximation based on samples
in their neighborhood. These local approximations are then combined to form a global
approximation.

Common choices for the distance-weighting basis functions φ(r) are the Wendland

function (Wendland, 1995)

φ(r) = (1 +
4r

h
)(1− r

h
)4

and the interpolation function

φ(r) = 1 + 2(r/h)3 − 3(r/h)2

which are both 1.0 at d = 0, and fall off to zero at the edges of the support radius h.

These functions are illustrated in Figure 4.3.

It is interesting to note the connection with the Radial Basis Functions discussed

in Section 4.2.3. In fact, we could use some of the other weighting functions that

were discussed such as multiquadrics and thin-plate splines. However, these functions

have infinite support and thus must be solved globally. The advantage of Weighted

Least Squares is that instead of evaluating a single global approximation for all of

the data samples, we create a set of local approximations. We then blend these local

approximations together to get a global approximation. This provides us with local

approximation behavior through the Least Squares fitting, which is useful because the

data from the image capture can be noisy due to calibration errors.
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Figure 4.3: Two possible distance-weighting functions, with a variable support. Both
functions are 1.0 at the center, and taper off to zero as the distance increases. While
they are well-behaved within the support interval, they must be clamped outside this
interval to avoid spurious weighting.
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There are two methods for reconstructing a function using these distance weights.

Moving Least Squares evaluates the Least Squares fit of the data points at every point

in the domain. Weighted Least Squares evaluates the Least Squares fit at a small

set of points called centers, and interpolates between these centers using the Partition

of Unity. These centers are analogous to the concept of the centers of Radial Basis

Functions. I will first discuss Moving Least Squares, then discuss Weighted Least

Squares.

4.3.3 Moving Least Squares

Moving Least Squares (McLain, 1976; P. Lancaster, 1981) treats each point in the

domain as a separate evaluation. This can be thought of as “moving” a Least Squares

fit over the entire parameter domain to compute a new approximation everywhere.

Moving Least Squares generates a continuously differentiable global function f(x) if

and only if the weighting function φ(r) is continuously differentiable (Levin, 1998). It

consists of a set of local functions fx(x):

min
fx

{
∑

i

φ(‖x− xi‖)‖fx(xi)− fi‖}

The functions fx(x) are constructed and evaluated at each point in the domain. The

parameters of the basis functions can be adjusted to smooth the data, which makes it

useful for reconstructing functions from noisy data (Alexa et al., 2003).

4.3.4 Weighted Least Squares

Since a neighborhood of points is required for evaluation, Moving Least Squares tech-

niques require a fast query for the entire set of sample points, which would be difficult

to implement on graphics hardware. Instead, we use Weighted Least Squares to com-

pute a Least Squares fit at a small set of points, then interpolate using the Partition of

Unity.

Each of the approximations is associated with a point x̄, which is known as the

center. At each of these centers, a low-degree polynomial approximation is computed

using the distance-weighted samples xi in the local neighborhood. This means that the

coefficients are now a function of x̄, and only defined locally around these centers. We

can define a distance weighting vector Φx̄ with elements φi = φ(‖x̄− xi‖).
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The system is solved using Normal Equations:

cx̄ = [Φx̄B
TB]−1Φx̄B

Tf

Expanding this out in equation form:

c(x̄) = [
∑

i

φ(‖x̄− xi‖)b(xi)b(xi)
T ]−1

∑
i

φ(‖x̄− xi‖)b(xi)fi

We now have a set of local approximations at each center. During the reconstruction

step, we need to combine these local approximations to form a global approximation.

Since this global function is a weighted combination of the basis functions, it has the

same continuity properties.

The first step in the Weighted Least Squares algorithm is to determine the m nearby

local approximations that overlap this point. These functions are evaluated at the

sample points and combined using a weight based on distance. However, the functions

cannot just be added together, since the weights may not sum to 1.0. To get the proper

weighting of the local approximations, the Partition of Unity (Shepard, 1968) is used

to extend the local approximations to cover the entire domain. The Partition of Unity

computes a new set of weights Θj by considering all of the m local approximations that

overlap this point

Θj(r) =
φj(r)∑m

k=1 φk(r)

. The global approximation of this function is computed by summing the weighted

local approximations:

f(x) =
m∑

j=1

Θj(x)b(x)
T c(x̄j)

. This representation allows us to place the centers x̄ at the most effective locations.

This is important for incremental construction, which we discuss in the next section.

We also discuss several strategies for center placement in Section 4.5.1.

Note that Weighted Least Squares is very similar to Shepard’s Method, which we

discussed in Section 4.2.2. Recall that Shepard’s Method has the form:

f(x) =

∑
fνφ(‖x− ν‖)∑
φ(‖x− ν‖)

There are several differences between the two methods. Weighted Least Squares uses a
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Figure 4.4: A diagram of the Adaptive construction of WLS. Initially, there are a fixed
number of centers, each with a large domain. As new points are added to the data
structure, they are classified according to which domains they fall within. When the
number of points within a domain crosses a threshold, the domains are shrunk.

distance-weighted Least Squares approximation to the points, while Shepard’s Method

uses the distance-weighted points directly.

4.4 Incremental Weighted Least Squares

SLF representation can be treated as a batch process, by first collecting all of the images

and then constructing and rendering the WLS representations. The advantage of batch

processing is that all of the sample points are known at the time of construction, and

the support radii and locations of the centers can be globally optimized.

The disadvantage to batch processing, as discussed in the previous chapter, is that

it provides very little feedback to the user capturing the images. There is often no

way to determine if the surface appearance is adequately sampled, and undersampled

regions require recomputing the WLS representation. A better approach is to update

the representation as it is being constructed, which allows the user to preview the

model and adjust the sampling accordingly. In this section we describe two approaches

to incrementally update the WLS approximation.

4.4.1 Adaptive Construction

The adaptive construction method starts with all of the centers having a large support

radius. As new samples are generated, they are tested against the support radius of a
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Figure 4.5: A diagram of the Hierarchical construction of WLS. Initially, there is a
single center with a large domain. As points are added to the data structure, they are
classified according to the domains they fall within. When the number of points within
a domain crosses a threshold, the domain is subdivided into four smaller domains.

center, and added to that center’s neighborhood list. Note that image samples can be

members of more than one leaf node, since the support radii of the nodes can overlap.

The WLS approximation is computed from the samples in the neighborhood list. As

each center’s list gets larger, the support radius is decreased, and samples are discarded

if they no longer fall within the neighborhood. An example of this process is shown

in Figure 4.4. In our implementation, this involves several user-defined parameters; we

typically decrease the radius by 25% if the number of samples is more than 4 times the

rank of the approximation.

4.4.2 Hierarchical Construction

The adaptive approach has the disadvantage that a single sample can cause the re-

computation of numerous WLS coefficients, particularly in the initial phases when the

support radii are large. The hierarchical approach avoids this computation by subdi-

viding the domain as a quadtree. Initially, the representation consists of a single WLS

center with a large support radius. When a new image sample arrives, the hierarchy is

traversed until a leaf node is reached. The sample is deposited at the leaf node and the

WLS approximation is recalculated. If the number of samples in a leaf node is larger

than a pre-determining threshold, the leaf node is split into four children. Each child

decreases its support radius and recomputes its WLS coefficients. An example of this

process is shown in Figure 4.5. There are several user-defined parameters for this ap-

61



Figure 4.6: The heart object, rendered in our system.

proach; we have had good results splitting the nodes if the number of samples exceeds

4 times the rank of the approximation, and decreasing the area of the neighborhood by

half (decreasing the radius by 1/
√

2).

4.4.3 Rendering

WLS conforms well to the stream-processing model of modern graphics hardware. Each

surface patch is independent and is calculated using a series of simple mathematical

operations (polynomial reconstruction and Partition of Unity). More importantly, the

local support of the WLS centers means that reconstruction only requires a few texture

lookups in a small neighborhood.

After the centers and the WLS coefficients have been computed (using either the

adaptive or the hierarchical technique), they are stored in a texture map for each

surface patch. The coefficients are laid out in a grid pattern for fast access by the

texture hardware. The adaptive centers are typically arranged in a grid pattern, but

the hierarchical pattern must be fully expanded before it is saved to texture. This is

done by propagating downward any leaf nodes that are not fully expanded.

During rendering, the viewpoint is projected onto the UV basis of the surface patch

and used to index into the coefficient texture. The samples from the neighborhood

around this element comprise the set of overlapping WLS approximations. Texture

lookups are used to collect the neighboring centers and their coefficients. These poly-

nomial coefficients are evaluated and weighted by their distance. The weights are

computed using the Partition of Unity, which generates the final color for this surface

patch.
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Figure 4.7: A diagram of the SLF capture and rendering system. Images are captured
using a handheld video camera, and passed to the system. The pose of the camera is
estimated using fiducials in the environment. Using the mesh information, visibility is
computed and the surface locations are back-projected into the image. Each of these
samples are incorporated into the Incremental Weighted Least Squares approximation,
and sent to the card for rendering. The user can use this direct feedback to decide
where to move the video camera to capture more images.

Once the color at each patch has been determined, we need a method to interpolate

the colors across the model to smoothly blend between surface patches. One approach

is to simply interpolate the colors directly. However this approach is incorrect, as it

interpolates the values after the Partition of Unity normalization step. This generates

artifacts similar to those encountered when linearly interpolating normal vectors across

a triangle. The correct approach is to perform the normalization after the interpolation.

For our system, we can accomplish this by interpolating the polynomial weights and

colors independently, and using a fragment program to compute the Partition of Unity

at every pixel.

4.5 Implementation

I have constructed a prototype system to demonstrate the ability of Incremental Weighted

Least Squares to capture and render a wide variety of complex surface reflectance prop-

erties. The data structure and camera capture are managed on the CPU, while function
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reconstruction and rendering are handled by the GPU. This decouples the construc-

tion and rendering sub-systems and allows for free-form viewing while images are being

incorporated. A diagram of the system in shown in Figure 4.7. The camera tracking,

pose estimation, visibility, and image sampling steps are performed using the process

described in Chapter 3.

Each surface patch is associated with a texture which stores the coefficients for

one term of the polynomial basis. For all of the examples in this chapter we use a 3-

term polynomial basis. We found that higher-order polynomial bases were susceptible

to over-fitting (Geman et al., 1992). Over-fitting occurs when there are too few input

samples, and the function tries to fit minor deviations in the data rather than the overall

shape. The consequence is that reconstruction is very accurate at sample positions, but

oscillates wildly around the edges. Using a lower-degree polynomial avoids this problem,

at the cost of needing more centers to fit high-frequency data.

The positions of the surface patches, which are determined a priori, are represented

as either vertices or texels. For most of the models we use vertices, and the renderer

uses a vertex texture fetch to associate surface patches with vertices. As previously

discussed, the graphics hardware can deal more efficiently with several large textures

than with numerous small textures. As in the other systems, the coefficient textures

are packed into a larger texture map.

4.5.1 Results

We have implemented this system on the hardware platform described in Chapter 3.

A graph of timing results from several different models is shown in Figure 4.8, and the

parameters used for these timings are shown in Table 4.9. The rendering algorithm is

compact, fast, and efficient and can render all of the models in this paper at over 200

frames per second. An image generated with our system is shown in Figure 4.6, and

a side-by-side comparison with a image that was withheld from the training data is

shown in Figure 4.1.

The hierarchical construction method is much faster than the adaptive construction

method due to the fact that the adaptive construction method can potentially cause

the recomputation of a number of coefficients. For the 4K-vertex heart model, the

adaptive construction generated about 5.1 Least Squares fitting computations per im-

age, while the hierarchical construction only generated about 1.7. As this is the most

time-consuming aspect of the process, reducing the number of Least Squares fits is im-

portant to achieve good performance. This performance gain enables higher resolution
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Figure 4.8: Timing results (in seconds per image) for the Incremental WLS construc-
tion. We measured three quantities; the time to compute the visibility and reproject
the vertices into the image, the Least Squares fitting times, and the time to transfer the
computed results to the graphics card for rendering. The dominant term is the Least
Squares fitting.

Model # Vertices Construction # Centers
Bust A 31K Hierarchical 16
Heart A 4K Hierarchical 16

Pitcher A 29K Hierarchical 16
Bust B 14K Hierarchical 16
Bust C 14K Hierarchical 64
Heart B 4K Adaptive 16

Figure 4.9: A description of the models and construction methods used for timing data.
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Figure 4.10: The reconstruction error of the hierarchical construction versus a batch
construction for a single surface patch of the bust model. Each method used only the
input samples available, and the error was measured against the full set of samples.
The hierarchical algorithm is initially superior to the batch algorithm, and continues
to be similar in error behavior while also being much faster to compute.

reconstruction; note that the bust model with 64 centers is only 1.4 times slower than

the 16 center version, even though it has 4 times as many coefficients. However, the

increased number of coefficients is reflected in the data transfer time, which is close to

4 times longer.

One potential issue with the hierarchical construction is that it could introduce

error. To quantify this error, we conducted an experiment to compare the quality of

the reconstruction with a reference batch process which has global knowledge. The

results are shown in Figure 4.10.

We have tried several center placement strategies; a uniform grid over projected

hemisphere directions, a uniform disk using Shirley’s concentric mapping (Shirley and

Chiu, 1997), and jittered versions of each. A comparison is shown in Table 4.1. For

most of the models in this paper we use the grid method due to its ease of graphics

hardware implementation.
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Layout Mean RMS Error StD RMS Error
Uniform Grid 0.0519 0.0086
Jittered Grid 0.0608 0.0148
Uniform Disk 0.0497 0.0045
Jittered Disk 0.0498 0.0036

Table 4.1: RMS Error values from reconstructing a WLS approximation while varying
the center layout. The error was computed with a training set of 64 images and an
evaluation set of 74 images. The disk is a slight improvement in terms of error compared
to the grid, and it has a large benefit in terms of reducing the variance of the error.

4.6 Conclusion

We have introduced Incremental WLS, a fast, efficient, and incremental algorithm

for the representation and rendering of surface light fields. Incremental WLS can be

used to render high quality images of surfaces with complex reflectance properties.

The incremental construction is useful for visualizing the representation as it is being

captured, which can guide the user to collect more images in undersampled regions

of the model and minimize redundant capture of sufficiently sampled regions. The

rendering algorithm, which is implemented on the GPU for real-time performance,

provides immediate feedback to the user.

4.6.1 Incremental WLS and Online SVD

Before I describe the third component, I would compare the Online SVD and the

Incremental Weighted Least Squares techniques. Both of these techniques incrementally

construct a compressed representation of the scattered data. They differ not only in

representation, but also in the way that they partition the SLF. The Incremental WLS

partitions the SLF as a set of points which represent a 2D hemisphere. In contrast, the

factorization approach of the Online SVD partitions the SLF as a set of surface patches

which represent a 4D function of the surface and the hemisphere. The factorization

approach shares the variance across surface and hemisphere, which enables it to adapt

to the complexity of the hemisphere or surface.

The Incremental WLS does not share the reflectance between nearby surface points,

and as a consequence does not achieve the same compression rate as the factorization

approach. For our experiments, the size of a Incremental WLS SLF with comparable

quality is about an order of magnitude larger. This ratio varies with SVD rank, number

of centers, incremental construction method, and geometric complexity. Due to the

increased size, the time to incorporate a new image in an Incremental WLS SLF is
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about 20%-40% slower than the Online SVD. This can be seen in Figures 3.14 and 4.8.

However, the Incremental WLS has the capability to represent a much higher lighting

frequency, since the WLS is a continuous representation. Also, the Incremental WLS

does not have the same problems with missing data that the factorization approaches

have. For both techniques, the rendering speed is realtime (30-60fps or more).

To increase the compression rate of the Incremental WLS, it would be possible

to partition to SLF differently to allow nearby points to share data by collecting WLS

coefficients from itself as well as its neighbors. This would involve adjusting the distance

weighting to reflect the geometric distance along the surface of the model. We could

also use an approach similar to Zickler (Zickler et al., 2005) to share reflectance values

across a surface.
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CHAPTER 5

Capturing a Surface Light Field

Under Virtual Illumination

SLFs can be used to render the complex reflectance properties of a physical object.

However, they can only represent the fixed lighting conditions of the environment where

the model was captured. This is problematic for synthetic environments such as games

or virtual environments in which a specific illumination environment is desired. These

illumination environments could come from light probes captured in real locations, or

from synthetic lighting environments created by artists. Some examples of lighting

environments are shown in Figure 5.1.

The lighting environments must be physically duplicated in the lab at the time of

capture which can be difficult. One approach is to use lights or projectors that are

physically situated to mimic the virtual lighting positions and colors. This approach

can only represent low-resolution lighting, and is often time-consuming and inaccurate.

Another approach is to collect the full 6D BTF, which enables the object to be rendered

under arbitrary lighting environments. However, this requires a significant increase in

the amount of data that is acquired, most of which is unnecessary since the lighting

Figure 5.1: Sample light probes. Left and middle: Real light probes captured from
St. Peter’s Cathedral and Uffizi Gallery, courtesy of Paul Debevec (from debevec.org).
Right: Synthetic light probe created by the artist Crinity.



Figure 5.2: Left: pitcher model in St. Peter’s light probe. Right: heart model in Uffizi
light probe.

condition is already known.

In this chapter I describe a third approach: a method for capturing a surface light

field using the virtual illumination from an environment map. We use a simple setup

consisting of a projector, a camera, a pan-tilt unit, and tracking fiducials to recreate

the desired lighting environment. To decrease noise and improve the quality of the

capture under low- and high-dynamic range environment maps, we use an extended

version of the multiplexed illumination algorithm (Schechner et al., 2003). This results

in a high-dynamic range SLF which accurately represents the interaction of the virtual

illumination with the real object. Two examples are shown in 5.2.

5.1 Introduction

In this chapter I describe a method to capture a SLF under virtual lighting, requiring

only very modest equipment and infrastructure. To mimic the light falling onto the

object from the environment, light is projected onto a large screen and reflected onto

the object. This setup simulates a large controllable light source which illuminates

the object. If the projector were to be pointed directly at the object, it would only

simulate a small portion of the lighting environment from the perspective of the object

(i.e. those rays coming directly from the projector).

In order to recreate a virtual lighting environment, the light must illuminate the
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object from all directions. This would require moving the screen and the camera around

the object as we acquire images. However, instead of moving the camera as in previous

chapters, we move the object itself using a programmable pan/tilt unit. Moving the

object simplifies the setup since the screen and projector can be fixed in place. It

also avoids some of the problems with the camera (and user) occluding the light. The

illumination that is projected onto the screen is a portion of the lighting environment,

and changes as the object rotates and tilts. In this way, the projected light changes

to maintain the fixed relation between the object and the lighting environment. A

diagram of our system is shown in Figure 5.3, and a photograph of the laboratory

setup in shown in Figure 5.4.

However, a single projector and screen do not represent the entire hemisphere of

incident light, so multiple camera positions are used to simulate the incident light ar-

riving from all directions. The lighting environment can be arbitrarily complex, and

can be either fully synthetic or captured from a real scene as a light probe (Debevec,

1998). Examples of light probes that we used in our experiments are shown in Fig-

ure 5.1. Since these light probes often have dramatic contrast between the darkest and

brightest areas, we employ high-dynamic range lighting and imaging.

One of the major problems that must be addressed to make such a system work

is the mapping between the physical setup and the virtual lighting environment. This

is established by determining the correspondence between the position of projected

pixels and the position of the object relative to the camera. We describe two methods

for establishing this correspondence; a simple geometric calibration method for simple

planar screens, and a more complicated method for screens with arbitrary geometry.

The geometric calibration is only part of the total calibration; in order to correctly

simulate the color of the lighting environment, it is also important to calibrate the

color of both the camera and the projector.

To deal with the reduced illumination from reflecting the light off of the screen, we

using multiplexed illumination (Schechner et al., 2003). This technique was developed

in the computer vision community to reduce the noise in acquired images. Since the

lighting environments are high-dynamic range images, I present a method to extend

multiplexed illumination to high-dynamic range images.

In the next section I discuss how the different environments are registered both

geometrically and photometrically. Section 5.3 describes how we use multiple cameras

to capture the entire set of incident light. Section 5.4 describes multiplexed illumination

and the extension to high-dynamic range. This is followed by results for objects under

low and high dynamic range illumination.
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Figure 5.3: A diagram of the capture system. Light is projected onto a large screen,
which is then reflected onto the object. The object is mounted on a pan/tilt device.
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Figure 5.4: A picture of the Surface Light Field capture system. The light is projected
onto the screen and reflects down onto the object. The object is mounted on a tracking
board, which is mounted on a pan/tilt device. The fiducial markers are used to estimate
the object’s position and orientation relative to the screen. The black curtains on the
walls minimize light scattering in the lab.
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Figure 5.5: Mapping the virtual illumination environment to our physical setup. Left:
The virtual lighting environment. Right: The image that is projected onto the screen.
Note that the image is stretched upward and outward to represent the rays of light
from the virtual illumination environment.

5.2 System Calibration

One of the important components of our system is the calibration, since it registers the

virtual lighting environment to the real physical object. This calibration involves four

components: the camera, the tracking fiducials, the physical object, and the projected

image on the screen. The camera is fixed in relation to the screen, and the fiducials are

fixed in relation to the object. Thus by calibrating the geometric relationship between

the screen and the physical object, we can accurately characterize the entire system.

In this section I describe how this relationship is determined in our system.

We have developed two techniques for geometrically calibrating the setup; a single

image calibration, and a reflective object calibration. The single image calibration is

simple and fast, but it can only handle screens which are planar parallelograms. The

reflective object calibration is more robust and relaxes many of these constraints, but

requires more images. Both of these systems leverage the fiducial tracking system

ARToolkit (Kato and Billinghurst, 1999) that was used in the previous chapters.

The result of this calibration is a mapping between pixels on the screen and points

on the surface of the object. This mapping is used to determine how to display the

lighting environment on the screen, as shown in Figure 5.5.
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Figure 5.6: Calibration method for planar screens. Left: A diagram of the physical
setup for geometric calibration of the screen. Right: The calibration image, which
shows both the projected fiducial board and the physical fiducial board. This is used
to establish a correspondence between the two coordinate systems.

5.2.1 Single Image Calibration

This calibration method uses ARToolkit to compute the correspondence between the

screen and the object. We display fiducials of known projected size onto the screen.

The camera is placed in such a way that it can see the calibration pattern on the screen

simultaneously with the fiducials on the base plate. This is shown in Figure 5.6. We

estimate the camera position Pscreen = [RT
screen|−RT

screenCscreen] in the screen coordinate

system. We also compute the position of the camera Pcam = [RT
cam| − RT

camCcam] with

respect to the board coordinate system.

This results in two estimated camera positions: one in the screen coordinate system

and one in the tracking board coordinate system. Since both camera positions were

computed by employing the same image, we can compute a transformation T

T =

[
RT

sb −RT
sbCsb

01×3 1

]
, (5.1)

which transforms the camera Pscreen from the screen coordinate system into the board

coordinate system. This results in a rotation Rsb and translation Csb of the screen in

the board coordinate system (see Figure 5.4).

Since the projected fiducial board does not represent the entire screen, we need to

determine the exact extent of the screen in the board coordinate system. Given the

size of the displayed fiducials and their size in pixels on the screen we can compute

the homography Hps that maps the image onto physical screen coordinates. Note that

this only works for screens which are planar parallelograms. This homography can be
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applied afterwards to the image corners, which describes the screen coordinates in the

board coordinate system. These corners of the screen are used to compute the direction

vectors into the light probe.

These calibration transformations are computed once during initialization and stored.

During runtime the object is rotated, and the tracking fiducials are used to update the

camera position and the screen position by applying the inverse change to the camera

and screen. Hence we are always able to determine the screen position to display the

appropriate solid angle of the light probe.

5.2.2 Reflective Object Calibration

The previous method works well for screens which are planar parallelograms. However,

it can be useful to consider screens which are not planar. For example, consider pro-

jecting images into the corner of a room. Since the screen covers a larger solid angle

above the object, we can reduce the number of cameras required to capture the full

hemisphere of incident light. These considerations led us to look for a more general

calibration method.

This calibration procedure uses a reflective calibration object and can deal with

arbitrary screen geometries. The goal of the procedure is to determine the light rays

corresponding to each projector pixel. These rays are used to index into the environ-

ment map to provide a “window” into the synthetic environment. This relationship is

influenced by the angle between object and screen, geometry of the screen, and nonlin-

earities of the projection. This method also addresses several concerns over the previous

method from Section 5.2.1:

• The tracking frame of the object may not be orthogonal to the screen.

• The screen may not be planar, and may have multiple surfaces (such as corners).

• The projector may not be orthogonal to the screen, and may have keystone effects.

These factors imply that physically measuring the system is difficult and often

inaccurate. We propose a calibration procedure that takes advantage of a particular

property of light probes; they are independent of translation. Thus the calibration

procedure needs to only compute the rays emanating from the object, and does not

need to compute the translation information. This simplifies the calibration procedure

to one of determining the relation between a pixel on the screen and a ray in object

space.
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Pixel -2% -1% +1% +2%
(34, 131) 0.4064◦ 0.2011◦ 0.1971◦ 0.3902◦

(151, 63) 2.0260◦ 0.9988◦ 0.9719◦ 1.9179◦

(-18, 156) 0.0919◦ 0.0455◦ 0.0446◦ 0.0883◦

(-72, 154) 0.7546◦ 0.3733◦ 0.3655◦ 0.7235◦

Table 5.1: Angular error vs. relative radius error

We place a mirrored sphere with known radius and position in approximately the

same location as the object. This mirrored sphere reflects the illuminated points on the

screen back to the camera. Using the known projector pixel and the reflection of this

point into the camera, the ray associated with each projector pixel can be computed.

This is shown in Figure 5.7.

The process works as follows. A pixel is illuminated on the screen, and an image is

captured of the light reflected from the sphere. The position of the pixel in the image

is segmented using an adaptive threshold. The ray through the camera plane into the

scene can be computed from the pose of the tracking board. This ray is then traced

into the scene and intersected with the sphere. At the intersection point, the normal

is computed and a reflected ray is generated. This reflected ray is the ray in 3D space

which corresponds to the projector pixel.

This establishes a correspondence between projector pixels and rays in the scene.

For rendering, these rays are rotated according to the delta rotation of the tracking

board, and used to index into the environment map. The resulting images for the

projector are shown in Figure 5.7.

5.2.2.1 Error

The primary source of error in this calibration procedure is from the physical measure-

ment of the sphere. We measured the error in the reflected rays as a function of the

error in radius of the sphere for several projector pixels. These results are shown in

Table 5.1. Pixels near the edge of the sphere are more susceptible to error, since the

normals change more quickly. In general, there is about 1◦ of angular error for 1% ra-

dial error. Other sources of error which we did not measure are camera pose estimation

and segmentation problems.

Currently, we use a 9x9 sampling of the screen (100 calibration points) aligned on

a regular grid. For screens which are mostly planar (including our corner screen), this

is sufficient. However, for more complex screens a denser sampling would be needed.
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Figure 5.7: The reflective object calibration process, shown for a planar screen on the
left and a corner screen on the right. Top: A reflective calibration object is placed in
the same location as the object. Pixels are projected onto the screen and segmented
from the images. Bottom: The reflected rays are used to index into the environment
map, producing an image which is correct from the point-of-view of the object.
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Figure 5.8: The relationship between the RGB color values that are sent to the projector
and the color values that are actually displayed on the projector. We fit a polynomial
to these curves and inverted it to correct for the error.

5.2.3 Projector Color Calibration

One of the sources of error in our setup is the color from the projector. It is not correct

to assume that the light coming from the projector is linearly correlated with the

values that are sent, even with the gamma set to 1.0 and the controls adjusted. This is

important because both the HDR exposures and the Multiplexed Illumination assume

that the light can be linearly combined. Without correcting for this non-linearity, the

color of the resulting images would be incorrect.

We attacked this problem by applying a color correction to the image sent to the

projector. To do this, we first need to determine the color response of the projector.

We calibrated the color response of the camera using the Camera Color Calibration

Toolkit (Ilie and Welch, 2005). We established the reference colors by placing the Mac-

beth color checker in the direct light of the projector. Once the camera was calibrated

for this light level, we then displayed a series of pure and mixed colors and captured

images. By averaging over a large area of these images, we obtained the measurements

shown in Figure 5.8.
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Once the projector values were measured, we fit a curve of the form c = α1x
2 +

α2x+ α3 to each RGB channel separately. A quadratic curve was chosen because it is

simple to fit and can be inverted in graphics hardware by selecting the positive root of

the quadratic equation. We first attempted to fit an exponential curve to the data, but

were unable to obtain good results due to a knee in the data at the lower values.

An interesting area of research might be applying the methods of the Camera Color

Calibration Toolkit to the projector. Using a camera that had been calibrated, the pro-

jector could display a Macbeth color checker, and use the same non-linear optimization

over the set of available projector parameters.

5.3 Multiple Cameras

In order to properly capture the appearance of the object under the synthetic lighting

conditions, the projector-camera system must be able to display the entire hemisphere

of incoming light. However, due to physical limitations a single camera can only capture

a section of the hemisphere, as shown in Figure 5.9. In this figure the tessellated points

from the calibration procedure are rendered in relation to the object. Any object

captured under this physical setup would only be lit by a portion of the environment.

5.3.1 Coverage

To capture the full environment, we need to add more cameras, which are situated so

that they can capture a broader portion of the hemisphere. In Figure 5.9 four cameras

have been placed around the object to capture more light. In essence, each camera is

capturing the light which has bounced off the object in a different direction.

The diagrams in Figure 5.9 were using the vectors from the calibration procedure.

The calibration procedure generates a set of vectors in the tracker’s coordinate system.

These vectors were rotated into each camera’s coordinate system, then rotated back

into the common board coordinate system using the initial camera Cam0.

v′ = CamT
0 ∗ Cami ∗ v

5.3.2 Integrating Multiple Cameras

Once a set of images have been captured for each camera position, they need to be

combined to generate a single surface light field. As long as the “windows” do not
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Figure 5.9: How much of the environment does the screen cover? Left: A single camera
position covers only a portion of the environment, resulting in an incorrect SLF. Right:
Four cameras cover the entire hemisphere of light above an object, leaving only a small
hole in the top.

overlap, the light is independent and can be simply summed to get the final result.

However, since each of the cameras are located in different positions, it is unlikely that

their projected positions will line up. If that were the case, then we could simply add

the images together to get a composite image.

Instead, we combine the images in the resampling stage, which is later in the

pipeline. As described in Chapter 3, after the visibility has been computed the camera

positions are projected onto the coordinate system of each vertex and the points are

resampled using a Delaunay triangulation. The values are resampled onto a fixed grid,

which is the same for every camera. At this stage we can add the values from the differ-

ent cameras together without incurring any more projection error than the resampling

already creates.

For these experiments, we used only one camera and captured the images sequen-

tially. It would obviously be much faster to use a set of cameras and capture in parallel,

although it would raise the cost of the system.

5.3.3 Overlap

The data from cameras which capture different portions of incoming light can be

summed to get a surface light field which incorporates the entire hemisphere of in-

coming light. However, if these portions overlap then some of the light will be counted

twice. This overlap can be seen in Figure 5.9. There are several methods to avoid

overlap. One method is to manually position the cameras so that none of the windows
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overlap. This can be quite difficult to do, particularly for large numbers of cameras.

A better method is to compute the section of the screen which is occluded by

previous cameras, and not display in that area. This technique only works if the

cameras are captured sequentially, which is the case in our setup. For each camera

position, we need to compute the portion of the screen which is occluded by previous

camera positions. We do this on a per-pixel basis by treating each pixel on the screen

as a ray and testing against the rays from the calibration procedure.

In general, this operation would require testing whether a ray intersects a spherical

polygon, which is a difficult task. We can make several simplifying assumptions to make

this more efficient. The first simplification is to notice that the edges of the screen in

the world are straight lines, even though they are curved when normalized. This means

that we can define a plane which contains the edge of the screen and the center of the

calibration sphere. For each screen pixel, we test whether the ray is within the frustum

of a previous camera. This is a simple dot-product with each of the planes that define

the frustum, which can be accomplished on the graphics hardware. If the pixel is inside

a previous frustum, we do not display a color for this pixel to avoid counting regions

twice.

The other simplifying assumptions have to do with the relative size of the objects.

As previously mentioned, we assume that the calibration object is approximately the

same size as the object we are capturing. In this way the rays which emanate from the

calibration object are approximately the same as the rays which would emanate from

the object. The new assumption we are adding is that the calibration object is very

small relative to the screen, so that it can be treated as a point. For our experiments,

this is true; the area of the screen is about 12,000cm2 and the area of the sphere in the

plane of the screen is about 70cm2, over two orders of magnitude smaller.

5.4 Multiplexed Illumination and High-Dynamic Range

Since the range of illumination present in the world is much larger than can be re-

produced by displays or captured by cameras, we need to use High-Dynamic Range

(HDR) imaging techniques (Larson et al., 1997). Research in this area was pioneered

by Debevec (Debevec, 1998) in a paper that described how to linearize the response

of cameras and combine multiple exposures into a single HDR image. Debevec also

describes a technique for illuminating synthetic objects under HDR illumination (De-

bevec, 1998). A recent book serves as an excellent reference to the body of work
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surrounding HDR imaging (Reinhard et al., 2005).

To accurately model an object under a virtual illumination environment, we need

to be able to handle the high-dynamic range of light. This requires mapping the

high-dynamic range values from the light probe onto the low dynamic range of the

projector. A common technique is to split the high-dynamic range light probe into

multiple exposure levels, which can then be re-combined to form the full dynamic

range. We use the technique by Cohen et al. (Cohen et al., 2001) and split the energy

into discrete levels, each of which fits within the 8-bit range of the projector. We use

the function

ColorE =
1

10

⌊
Color

10E

⌋
(5.2)

with the exposure level E ∈ [−2...3]. Any color values outside the range [0...1] are

ignored. This mapping enables us to reconstruct the full dynamic range of the light

probe as a sum of scalar multiples of the exposure levels.

Once this mapping is established, we could capture a set of images using the differ-

ent exposure levels, then scale the images to get the high-dynamic range result. The

problem with this direct approach is that most of the light energy is concentrated at

a few pixels on the screen. Hence very little light is falling on our object for shorter

exposure times. The problem is that these short exposure images are the images that

must be scaled by a large number to convert them to high dynamic range images.

Unfortunately, this also scales the CCD noise by the same amount. To minimize this

noise we extend the multiplexed illumination (Schechner et al., 2003) to high-dynamic

range images. In this section I describe multiplexed illumination and our extension to

high-dynamic range lighting.

5.4.1 Multiplexed Illumination

Capturing images under dim lighting is difficult due to the presence of camera CCD

noise. This noise can significantly degrade the quality of the image due to the low

signal-to-noise ratio. Schechner et al. (Schechner et al., 2003) introduced a technique

to significantly reduce the noise in the captured images with multiple low intensity

light sources. The main idea of multiplexed illumination is to reduce the additive inde-

pendent noise of the camera’s CCD array in low-light situations by collecting multiple

measurements per image. Using n light sources, we can increase the signal-to-noise

ratio by up to
√

n
2

with the same number of images.

Before the general case is described, we first consider an example of three light
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sources. An acquired image lit by light source l will be called a(x, y), and the image

irradiance is i(x, y). Now suppose that we acquire a set of 3 images of the same scene,

each lit by only one of the light sources. We can write this in matrix form as:

 a1

a2

a3

 =

 1 0 0

0 1 0

0 0 1


 i1

i2

i3


We have used a 1 where the light is on, and 0 where the light is off. In this setup,

it is trivial to recover the images as lit by one of the light sources, as the images were

acquired under a single light source. However, each of these images are lit by only

1/3 of the available light sources. This is a problem in low-light situations, where the

noise from the CCD cameras corrupts the images. For many of the light probes that

we use, the signal-noise ratio of the captured images is poor. We can improve this

ratio by increasing the signal and lowering the noise. Increasing the signal requires

incorporating more light sources into each measurement, while decreasing the noise

requires incorporating more measurements into each image. Multiplexed illumination

is a technique to accomplish both at the same time. If each of the images is captured

under 2 of the 3 lights, we can write the system:

 a1,2

a2,3

a1,3

 =

 1 1 0

0 1 1

1 0 1


 i1

i2

i3


Each of the observed images a(x, y) consist of the light from the multiple lights

multiplexed together. We want to demultiplex these images by reconstructing the

images i(x, y) which contain the light from only a single light source. Suppose the we

want to reconstruct i1, the scene lit by light 1. If we add the observed image a1,2 to

a1,3, we get twice i1 as well as i2 and i3. Since a2,3 consists of i2 and i3, we can subtract

this two get twice i1. Dividing by two gives us the contribution of i1, as reconstructed

from the multiplexed images. Writing this down for each of the 3 lights gives us:

 i1

i2

i3

 =
1

2

 1 −1 1

1 1 −1

−1 1 1


 a1,2

a2,3

a1,3


The advantage of this new method is the reduced noise. To see this, assume that

each of the images have independent additive noise σ. The noise of the demultiplexed
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image will be a combination of the noise from the three component images. To get the

total noise, we add the variances of the individual noisy images together (the square of

the standard deviation):

(±1

2
σ1)

2 + (±1

2
σ1)

2 + (±1

2
σ1)

2 =
3

4
σ2

The noise has been reduced to
√

3
4
σ, an improvement of about 14% without increasing

the number of images that we have to acquire.

5.4.2 General Multiplexed Illumination

Now let’s consider the general case of n lights and n images. The light are additive

quantities and are linearly related by superposition

[aζ0(x, y), . . . , aζn(x, y)]T︸ ︷︷ ︸
a(x,y)

= W [i0(x, y), . . . , im(x, y)]T︸ ︷︷ ︸
i(x,y)

where aζk
(x, y) is the light observed at pixel (x, y) under the set of lights ζk and

il(x, y) is the energy contributed by light source l at pixel (x, y). The multiplexing

matrix W for the light sources l = 1, . . . ,m describes which light sources illuminate the

scene. An element Wi,j is one if the light j is illuminated in image i, and zero if the

light was “off”. The sets ζk consists of all of the lights in row k which are “on”.

In order to recover the images il(x, y) as lit under a single light source l, we demul-

tiplex the observed images a(x, y) by inverting the matrix W :

i(x, y) = W−1a(x, y)

The next question is to determine an effective multiplexing matrix. There are

several properties that an optimal multiplexing matrix should have: it should minimize

the MSE, and it should be easy to invert. The authors (Schechner et al., 2003) suggest

using a special matrix form called Hadamard matrices which were developed in the

X-ray astronomy community (Harwit and Sloane, 1979). Hadamard matrices have 0’s

or 1’s as elements of the matrix, and have the property that n+1
2

of the elements are

1 along any row (an algorithm for constructing these matrices is given in (Harwit and

Sloane, 1979)). This means that for each image, a little over half of the lights are on.

From this, we can calculate the benefit of using such Hadamard matrices for mul-

tiplexing the illumination. Let the light level from one light be L with a standard
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deviation of σ due to additive independent noise. Thus the SNR of an image under a

single light source is:

SNRsingle =
L

σ

Using multiplexing with Hadamard matrices, the number of lights that are used

is n+1
2

so the signal is increased to Ln+1
2

. The noise level is a combination of the

independent additive noise from n images, which means that the variance of the noise

is σ2n and the standard deviation is σ
√
n. The SNR of the multiplexed images is:

SNRmulti =
L(n+ 1)

2σ
√
n

This means that the ratio of the multiplexed SNR to the single image SNR is:

SNRmulti

SNRsingle

=

√
n+ 1√

n

2
≈
√
n

2

The larger the number of images, the more useful this technique becomes. For 5

images, the increase is SNR is only 1.34x, but for 50 images, the increase is 3.61x.

It’s important to note that multiplexed illumination does not require taking any more

images than single light illumination. The only added computation is the post-process

demultiplexing step, which is minimal when using Hadamard matrices.

5.4.3 Multiplexed illumination for HDR images

In this section I discuss how to apply multiplexed illumination to HDR images. The

approach from (Schechner et al., 2003) can only be applied to one exposure level at a

time since the relationship across exposure levels is non-linear (Equation 5.2).

Our approach tiles the projector screen into multiple regions i0, . . . , im where each

region displays a different exposure level (see Figure 5.10). As previously mentioned,

much of the high-intensity lighting is concentrated in a small number of pixels. These

short-exposure regions are dark in comparison to the long-exposure regions. By splitting

the screen into multiple regions, we can balance the amount of light that falls on the

object. This allows us to use a single exposure setting across all of the images, which

simplifies the acquisition process.

Each region on the screen is a light source l displaying a part of the light probe

with exposure level Er. Demultiplexing these images requires that we account for light

sources that have different exposure levels. However, this means that the coefficients
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Figure 5.10: Multiplexing the St. Peter’s Cathedral light probe (light probe courtesy
of debevec.org). Left: Low-dynamic range multiplexing. The screen is divided into 9
regions, where each region is either “on” or “off”. Approximately half of the regions
are “on” at a time. Right: High-dynamic range multiplexing. Each region represents
a different exposure level.

W̃k,l of the weight matrix W̃ for multiplexed high-dynamic range illumination are no

longer binary. They now model the exposure level of the region W̃k,l = 10−Et with

t = 0, . . . , h− 1 enumerating the different exposures Et

a(x, y) = W̃
[
i0,E0(x, y), . . . , im,E0(x, y), . . . , im,Eh−1

(x, y)
]T︸ ︷︷ ︸

ih(x,y)

, (5.3)

where il,Et(x, y) with t = 0, . . . , h− 1 is pixel (x, y) in the image of light source l with

exposure level Et and ak(x, y) is the k-th image. Hence the light of each light source

at all exposure levels Et at pixel (x, y) can be computed by

ih(x, y) = W̃−1a(x, y). (5.4)

Equation (5.4) is an extension to handle multiple dynamic ranges of the light sources.

A sample image used for high dynamic range illumination is shown in Figure 5.10.

To compute the contribution of each light source from the captured images, the

weight matrix W̃ has to be inverted. The efficient inversion from (Schechner et al.,

2003) can not be directly applied to the weight matrix W̃ for the HDR illumination

since these values are no longer binary. Additionally the high range of entries W̃k.l of
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the exposure levels for high dynamic range images leads to a high condition number of

W̃ . This poses numerical problems for a direct inversion of W̃ .

To invert this matrix, we note that the illuminations of the light sources within each

exposure level are additive quantities, but they are not additive across exposure levels.

Hence the matrix W̃ consists of blocks corresponding to the different exposure levels.

Each of the blocks can be written as

W̃tm:(t+1)m−1,th:(t+1)h−1 = 10−EtW, (5.5)

where W̃tm:(t+1)m−1,th:(t+1)h−1 is the sub matrix of W̃ from row tm to (t+ 1)m− 1 and

columns th to (t + 1)h − 1. According to (5.5) the inversion scheme from (Schechner

et al., 2003) can be applied to each of the sub matrices W̃tm:(t+1)m−1,th:(t+1)h−1

W̃−1
tm:(t+1)m−1,th:(t+1)h−1 = 10−EtW−1. (5.6)

This re-ordering of the matrix results in a new weight matrix W̃ for high dynamic range

illumination that can be inverted as efficiently as before. To simplify the demultiplex-

ing computation, the same sequence of exposure levels is displayed for each position.

This means that the weight matrix W̃ only has to be inverted once. Furthermore the

computation can be done online after the capture of image ak by multiplying the k-th

column of W̃−1 with ak. This means that we can stream the images ak through memory

and never have to store them.

5.5 Implementation and Results

We use a 1024x768 resolution projector pointed at a 4x3 foot white screen as light

source. The printed fiducial board is placed atop a pan-tilt unit from Directed PerceptionTM.

Our surface light field capture rig is shown in Figure 5.4. The rest of the hardware setup,

including camera and computers, is the same as discussed in the previous chapters.

One of the advantages of our system is cost; we estimate that a total of $3000 is

enough to buy the required equipment, although in fact most labs already have this

gear. Furthermore, our camera-based calibration does not require a rig for precise

positioning. We used off-the-shelf tripods to hold the camera and the pan-tilt motor.

The system was built using the software components described in Chapter 3, such

as camera tracking, visibility, resampling. Since these components were developed

for standard 8-bit images, the extension to high-dynamic range floating-point images

88



Figure 5.11: Different HDR levels of the heart model illuminated with the St. Peter’s
Cathedral light probe.

requires extensive software modifications.

5.5.1 Results

We captured two objects, a pitcher model and a heart model on our capture rig under

a number of different illumination environments, as shown in Figures 5.2 and 5.11.

Capturing a low-dynamic range surface light field from 80 viewpoints took about 40

minutes, and OpenLF processing took another 20 minutes. The high-dynamic range

capture multiplies the capture time by the number of exposure levels (we used five

exposure levels in our experiments). For the heart model shown in Figure 5.11, the

capture took about 4 hours. The light field processing time is only slightly changed, as

the demultiplexing recombines these exposure levels into a single high-dynamic range

image. There is a small added computational burden as the HDR images are stored as

32-bit floating-point rather than 8-bit fixed-point images.

As discussed in Chapter 3, the OpenLF system has problems with missing data.

In the virtual illumination system, this problem is exacerbated by the multiple camera

positions. A triangle which is not visible in one camera view may be visible in another,

which results in a data mismatch which must be corrected in a post-process. Using the

Incremental WLS system would avoid this problem.

5.5.2 Error

An example of this error is shown in Figure 5.12. This image shows the camera blocking

part of the screen, thereby reducing the amount of light that falls on the object. In fact,

this is a common problem in Image-Based Modeling since the acquisition devices often
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Figure 5.12: An example image from the capture system which shows the camera
blocking part of the screen.

interfere with the lighting (Debevec et al., 2000). To quantify this error, we measured

the area of the image that is covered by the camera, and compared it to the area that

the screen covers. In the 1024×768 image shown, over 3.1×105 pixels are screen pixels,

and 1.6× 104 are camera pixels. This means that the camera covers about 5.2% of the

light from the screen.

The image shown is the worst-case for camera position. When the camera is po-

sitioned to the sides or back, it does not block the light from the projector and the

screen. For our system, it might be possible to mount the camera behind the screen so

that it peeks through a small hole. This would minimize the light interference.

5.6 Conclusion

In this chapter, I described a system which captures the surface light field of an object

under virtual illumination from a light probe. It consists of a projector which shines

light onto a screen and reflects onto the object. This configuration enables us to capture

a larger portion of the hemisphere than shining the projector directly on the object. To

model the physical world, we used high-dynamic range light probes and mapped the

values onto the 8-bit levels of the projector. To avoid amplifying noise, we extended

the multiplexed illumination algorithm to high-dynamic range imagery.
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CHAPTER 6

Summary and Conclusion

6.1 Conclusion

SLFs are a powerful technique for representing the appearance of objects. However,

they have not been widely adopted in movies or games. In Chapter 1 I discuss sev-

eral reasons why this may be true. I also highlighted three particular limitations to

discuss in further detail. They are batch construction, extensive resampling, and the

restriction of fixed lighting. I addressed these limitations by enabling incremental con-

struction, scattered data approximation, and the ability to capture under synthetic

lighting environments.

6.1.1 Incremental Construction

To address the batch construction limitation, I discuss a system for incrementally cap-

turing, constructing, and rendering directionally-varying illumination by incrementally

building a low rank linear approximation to the surface light field. Each image is in-

corporated into the lighting model as it is captured, providing the user with real-time

feedback. This feedback enables the user to preview the lighting model and direct the

image acquisition towards undersampled areas of the object. Incremental construction

allows the surface light field to be viewed interactively using graphics hardware as the

model is being constructed. We also provide a novel data-driven heuristic that high-

lights undersampled areas of the surface light field and directs the user towards effective

camera views. This heuristic is used to aid the user in identifying undersampled re-

gions. Our system is an order of magnitude faster than previous systems, and reduces

the time necessary to capture the images and construct a surface light field from hours

to minutes.



6.1.2 Scattered Data Approximation

The incremental construction technique is very powerful, but it requires extensive re-

sampling of the data. One way to avoid this resampling is to use scattered data approx-

imation techniques. I discuss the Incremental Weighted Least Squares approach to the

representation and rendering of spatially and directionally varying illumination. Each

surface patch consists of a set of WLS node centers, which are low-degree polynomial

representations of the anisotropic exitant radiance. During rendering, the represen-

tations are combined in a non-linear fashion to generate a full reconstruction of the

exitant radiance. The rendering algorithm is fast, efficient, and implemented entirely

on the GPU. The construction algorithm is incremental, which means that images are

processed as they arrive instead of in the traditional batch fashion. This human-in-the-

loop process enables the user to preview the model as it is being constructed and to

adapt to over-sampling and undersampling of the surface appearance. I also compared

the Incremental Weighted Least Squares technique to the Online SVD technique to

illustrate the difference in compression and rendering times.

6.1.3 Virtual Illumination

Another main limitation of SLFs is that they can only represent the fixed lighting

conditions of the environment where the model was captured. If a specific lighting

condition is desired, then there are two options: either use a combination of physical

lights as an approximation, or capture a full 6D BTF and only use the portion that

corresponds to the desired lighting. I describe a third option: a method for capturing

a surface light field using the virtual illumination from an environment map. I use

a simple setup consisting of a projector, a camera, and tracking fiducials to recreate

the desired lighting environment. We determine the correspondence between surface

points and rays in the virtual environment using two calibration methods; a fast method

for planar screens, and a slower technique for screens with arbitrary geometry. To

decrease noise and improve the quality of the capture under low- and high-dynamic

range environment maps, I extend Multiplexed Illumination to handle High-Dynamic

Range images. To demonstrate the effectiveness of this approach, I show results from

objects captured under different lighting environments.

92



6.2 Limitations

We encountered a number of research issues when designing these systems, some of

which we were able to address directly. However, there were a number of issues that we

were not able to sufficiently address. Some of these issues are related to the physical

constraints of the capture setup. For example, it is difficult in our setup to capture

extreme angles due to the projection step. Due to small errors in the mesh or camera

pose estimate, these points are often discarded. These points are crucial for representing

the highlights that occur at extreme grazing angles.

We also have to deal with various problems relating to extraneous light. One prob-

lem is the scattering of light around the lab, which we try to minimize by hanging

black curtains on the walls and ceiling. We also have to be careful to avoid certain

configurations which can cause the projector to shine directly into the camera. The

fiducial board that we use can interfere with capture process by both reflecting light

and blocking certain extreme camera angles. A different design for fiducial tracking (or

by tracking points directly on the object’s surface) could alleviate some of these issues.

The camera (and possibly the user) is also in the lighting environment, and can block

light. This problem is common to many Image-Based Modeling techniques.

One of the major difficulties that we encountered during the course of this research

is that the quality of the SLF is highly-dependent upon a number of calibrations. These

include both the intrinsic and extrinsic camera calibration, the registration of geometry

with tracking, and the registration of light probe with geometry. We would prefer that

the geometry serve only as a coarse approximation of the object, and use the reflectance

data to capture the appearance of the model. However, small errors in the mesh can

dramatically affect the reconstruction quality, particularly around the silhouette edges.

Compounding this problem is the fact that the tracking must be computed very quickly

to handle the stream of images from the camera at 30 fps. This combination of the

mis-registration of the geometry and the errors in tracking causes the SLF to blur, as

is shown in Figure 6.1. This is due to the same point on the object being projected

to different points in the SLF. Note that this occurs despite the ability of our system

to represent these high-frequency characteristics. This blurring often obscures the very

detail that we are using the SLF to represent.

Another limitation of the techniques presented here is that many of the parameters

determined in advance. These parameters include geometric resolution, surface and

hemisphere resolution (the number of rows and columns in the factorization matrices),

placement of WLS centers, and SVD rank. For example, the SVD rank is fixed for all of
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Figure 6.1: The effect of tracking quality on SLF reconstruction. Left: High-quality
tracking and calibration from Chen et. al (Chen et al., 2002) enables the SLF to accu-
rately represent surface properties. Right: Errors in real-time tracking and calibration
cause the SLF of a similar object to blur out interesting surface properties.

the surface patches, regardless of the different surface complexities. This is problematic

since we would like to represent a large class of surfaces, which may vary in frequency

of lighting or geometry. Allowing the rank to vary per patch based on an error cutoff

would address this problem, but it would require conditional rendering passes. It may

also be possible to determine some parameters programmatically by collecting a small

set of initial images which could be used to determine the fixed parameters.

6.3 Future Work

There are a number of directions for future work based on this research. In this section

I describe several possibilities, starting with the incremental framework, followed by

SLF ideas.

6.3.1 Incremental Construction

I believe that the incremental framework presented in Chapter 3 is a powerful idea for

a wide-range of Image-Based Modeling acquisition methods. This idea was used by

Rusinkiewicz et. al (Rusinkiewicz et al., 2002) to capture geometry in real-time and to

provide feedback to the user about the quality of the sampling. This approach could
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be applied to a number of domains where feedback can affect the quality of the result,

such as the capture of Bidirectional Texture Functions (BTFs). BTFs require several

orders of magnitude more data to represent, which dramatically increases the capture

time. Providing feedback to the user could have a significant impact on the capture

time by guiding the user towards important areas of the BTF and avoiding redundant

capture. Mathematically, the Weighted Least Squares approach easily generalizes to

multiple dimensions by changing the polynomial basis.

I focused on the incremental construction for providing feedback to a user about

the quality of sampling. However, it could also be used in a fully-automatic system to

provide feedback to a robot gantry or a pan-tilt rig. Such a system could compare a

captured image to the current SLF from that viewpoint. If the images are sufficiently

different, the captured image would be incorporated into the SLF.

The timing results from Chapters 3 and 4 show that it takes about one to two

seconds to incorporate a new image into the approximation. We are interested in de-

creasing this time by implementing the system on the GPU as in Hillesland (Hillesland

et al., 2003). Our initial interest in Online SVD was due to streaming nature, which

we thought would be a natural match to a GPU implementation. Implementing these

algorithms on the GPU would significantly accelerate the capture process, since these

are examples of “computationally-dense” algorithms (Owens et al., 2000). This acceler-

ation would enable us to reduce the capture time and eliminate the redundant storage

of data structures on both the CPU and GPU.

It would be interesting to apply the incremental approach to SRFs. Both SLFs

and SRFs are the same dimensionality, with the SRFs varying the input illumination

instead of the viewpoint. Since it can be more difficult to visualize the coverage of the

input illumination directions, the continuous feedback and data-driven heuristics might

be very beneficial.

More importantly, the idea of compressing and representing sparse scattered data is

common across many scientific disciplines, as demonstrated by the wide-spread use of

the SVD. We are interested in examining how an incremental framework could benefit

these areas.

6.3.2 Surface Light Fields

An interesting future approach would be to evaluate and improve the data-driven qual-

ity heuristic that was presented in Chapter 3. In the current implementation, the

heuristic is displayed as a scalar value, but it should be possible to use all of the color
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channels to convey more information about the sampling. We would also like to inves-

tigate other quality functions that take into account the incident light or the reflected

light directions. In addition, we would like to formally show that the quality heuristic

can decrease the number of images required.

The optimal capture process would acquire radiance data from every direction at

every point on the surface. This is impossible, not only because of the sheer amount

of data that this would require, but because points are often occluded from certain

viewpoints. Some points may even be occluded from all viewpoints (such as points

along the bottom of the model which are blocked by the fiducial board). Any ray

which does not have data must interpolate or extrapolate values from nearby rays.

If the data is so sparse that interpolation or extrapolation is not reasonable, it may

be possible to synthesize data. In order for this to be valid, the surface must be

assumed to consist of patches which have the same statistical properties, in general

some sort of repeating pattern. This enables new surface patches to be synthesized by

probabilistically combining data from existing patches. There are several well known

algorithms for texture synthesis, such as (Ashikhmin, 2001; Efros and Leung, 1999).

Tong et al. (Tong et al., 2002) applied these algorithms to BTFs.

One of the primary advantages of artistic techniques to represent appearance is

that they allow the artists full creative control. Since the SLF is constructed from

images acquired from the real world, it is limited to physical objects. Several authors

have proposed techniques for editing light fields (Wood et al., 2000; Chen et al., 2005).

One promising approach is to use a data-driven reflectance approach (Matusik et al.,

2003). In this paper, the authors acquire a database of BRDFs of different materials,

then construct a data-driven representation that allows artists to intuitively navigate

through the high-dimensional space of materials. This allows them to create materials

to suit needs. One could imagine interfacing with such a database to allow artists to

modify a SLF. The artist could select a region of the SLF, along with some example

BRDFs from the database. The system would then construct a parameterization that

allows the user to “guide” the SLF region towards to the BRDF. This process could

be repeated until the artist is satisfied. The major algorithmic challenge with such a

system would constructing the parameterization to link the SLF to the BRDF database.

This could be done using the SVD techniques from the paper (Matusik et al., 2003),

although it may require a resampling step.

One of the primary limitations of the SLF is that it tightly coupled to the geometry.

This forces us into a two-step capture process where the geometry must be captured

before the SLF capture process can begin. It also causes problems when geometry is
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poor. An interesting area of future research would be to explore a more loosely-coupled

SLF representation which would allow the user to capture the geometry and the SLF

at same time. This would not only simplify the capture, but it would eliminate some

of the registration errors from capturing the geometry in a different coordinate frame

than the reflectance. A loosely-coupled representation could also enable the rendering

of deformable geometry such as faces. One approach would be to use a higher-level

representation which can be resampled to generate each new representation, which is

similar to dynamic reparameterization (Isaksen et al., 2000).
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