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ABSTRACT

Kizzmekia Shanta Corbett: Characterization of Human Antibody Responses to Dengue Virus
Infections in a Sri Lankan Pediatric Cohort
(Under the direction of Aravinda de Silva)

Dengue virus (DENV) is the most significant mosquito-borne viral infection of humans.

People infected with dengue viruses present with subclinical (inapparent) or clinically-apparent

infections ranging from undifferentiated fever to dengue hemorrhagic fever or dengue shock

syndrome. It is not completely understood why some people get more severely ill from DENV

infections than others, but antibody responses have been implicated in playing a role facilitating

severe dengue disease. To that end, we analyzed samples from a pediatric dengue cohort

study in Sri Lanka to explore if antibody responses differentiated clinically inapparent and

apparent infections. 799 children living in a heavily urbanized area of Colombo, Sri Lanka were

followed for one year; samples were collected at enrollment, at follow-up, and intermittently from

any child who acquired fever.

Using those samples, we first obtained accurate estimates of the incidence of DENV

infection and disease in the cohort. At enrollment, dengue sero-prevalence was 53.07%

demonstrating high transmission in this population. Over the study year the incidence of DENV

infection and disease were 8.39 (95% CI: 6.56-10.53) and 3.38 (95% CI: 2.24-4.88),

respectively per 100 children per year. All together, we identified 35 primary (20 inapparent and

15 apparent) and 32 secondary/repeat infections (20 inapparent and 12 apparent) over the 12-

month study period. The ratio of inapparent to apparent infections was 1.48:1. Secondly, we

defined temporal regulation of the DENV-infected children’s antibody responses. Children who

experienced primary infections had broad, serotype cross-neutralizing responses that narrowed

in breadth to a single serotype over a 12-month period post infection. In children who
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experienced repeat infections, IgG antibody levels fluctuated following infection, but

neutralization breadth remained steady. Thirdly, we observed baseline antibody responses of

children who got repeat infections. Children with pre-existing monotypic neutralizing responses

were more likely to develop fever than children with cross-neutralizing responses. Pre-existing

DENV neutralizing antibodies were correlated with protection from apparent dengue disease.

Our results will be useful for obtaining more accurate estimates of the burden of dengue in the

Indian subcontinent, and, most importantly, provide insight on protective antibody responses as

they may be important for vaccine development.
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CHAPTER ONE

Background and Significance

1.1 Dengue: the Virus

Dengue virus (DENV), the causative agent of dengue disease, is an enveloped positive-

strand RNA Flavivirus, akin to other disease-causing viruses such as West Nile virus, Tick-

borne Encephalitis, and Yellow Fever virus. DENVs have been thought to exist as four distinct

but antigenically related serotypes, DENV1-4, but data describing a new fifth DENV serotype,

DENV5, has recently arisen [1]. Further complicating the dengue virus species, DENV

serotypes can be additionally classified into regionally-specific genotypes.

Infectious Life Cycle of Dengue Virus

DENV is transmitted to humans via the bite of infected Aedes aegypti and Aedes

albopictus mosquitoes. Upon injection into the skin, DENV primarily targets mononuclear

phagocytic cells, such as monocytes, macrophages, and dendritic cells [2]. To date, a specific

human cellular receptor for DENV has not been identified. Several molecules have been

identified to act as receptors or co-receptors on various mammalian cell types, including heparin

sulfate [3, 4], CD14 [5], and heat shock proteins 70 (hsp70) and 90 (hsp90) [6]. Additionally, a

few calcium-dependent (c-type) lectins are thought of as attachment factors for DENV; the most

dendritic cell-specific intercellular adhesion molecule-3-siwell-studied of these c-type lectins

grabbing non-integrin, DC-SIGN/CD209 [7-9]. Also, antibody-bound DENV can attach via

cellular Fcγ-receptors during a process called antibody dependent enhancement (ADE), which

is described in detail later in this chapter.



2

The methods by which DENV is internalized after attachment to appropriate receptors

and/or co-receptors (figure 1.1A) are still active areas of research (reviewed in [10]). Clathrin-

mediated endocytosis is largely accepted as the main method of internalization by DENV

(figure 1.1B) [11], although a clathrin-independent, dynamin-dependent internalization method

used by DENV2 was identified in Vero cells as well [12]. Upon internalization, DENV particles

are trafficked in early endosomes (figure 1.1C). Early endosomes mature into acidic late

endosomes; low pH of late endosomes triggers DENV envelope (E) conformational changes

[13, 14]. E homodimers dissociate, exposing the fusion loop (FL), which is then inserted into the

cellular membrane. E homotrimers form, and viral and host membranes bend toward each

other and fuse together (figure 1.1D) [14, 15].

As a result of viral to host membrane fusion, DENV nucleocapsid is ejected into the cell

cytoplasm, where genomic viral RNA (vRNA) (figure 1.2A) is uncoated (figure 1.1E). DENV

vRNA then travels to the rough endoplasmic reticulum (ER) where it is translated as a single

polyprotein (figure 1.1F). Polyprotein processing occurs resulting in three structural proteins,

capsid (C), pre-membrane (prM), and E, and seven nonstructural (NS) proteins, NS1, NS2A,

). Once the viral protease cleaved theBfigure 1.2NS2B, NS3, NS4A, NS4B, and NS5 (

precursor to generate active protein products, the proteins aggregate to form a replication

complex. Subsequently, repeated cycles of vRNA synthesis and replication occur (reviewed in

[16]). RNA is translated to make enough viral proteins to form new viruses, and vRNA is

packaged by C to form nucleocapsids. Then, immature DENV virions, containing prM/E

heterodimers, are assembled in the ER (figure 1.1G) and transported through the trans-Golgi

network (TGN) (figure 1.1H). It is in the Golgi where furin cleaves prM thus resulting in mature

DENV particles (figure 1.1I). Progeny DENV virions exit cells via host secretory processes

(figure 1.1J).
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Dengue Virion Structure

Mature dengue virions have icosahedral enveloped structures with a round core,

containing multiple copies of C encapsidating the DENV RNA genome. The core is surrounded

by a host-cell lipid bilayer containing 180 copies of membrane (M) and E [17]. The structure of E

is biologically important in regards to neutralizing antibody epitopes; briefly, E consists of three

domains, EDI-III, and a fusion loop at the tip of EDII (figure 1.3A). On a mature DENV virion, E

is organized in 90 homodimers, which lay in sets of triples along the viral surface, creating a

smooth appearance (figure 1.3C). Oppositely, immature dengue particles have a rough

appearance because trimers of prM/E heterodimers form spikes on the surface of the particle

(figure 1.3B,D) [18]. Dengue maturation state, as well as maturation of other flaviviruses, has

been shown to be relevant to pathogenesis and antibody responses [19, 20]. Dengue virion

structure will be related to antibody responses later in this chapter.

1.2 Dengue: the Disease

Global Epidemiology of Dengue

Dengue virus infection is a widespread emerging global epidemic, with a projected two-

thirds of the world’s population at risk of exposure to DENV [21, 22]. Of all Ae. aegypti-borne

viruses, including yellow fever virus and chikungunya, DENV represents the greatest

epidemiological and economic burden [23, 24]. In the last 30 years, DENV has spread into over

100 countries, including the United States of America, leading to a four-fold increase of dengue

disease [22]. Recent dengue outbreaks in Texas and Florida are true testaments to the

continuous spread of DENV into previously unaffected areas and the emergence of dengue as a

serious international disease threat [25, 26].

There are several factors that are contributing to the global emergence of dengue virus

infections [21]. For one, Ae. aegypti and Ae. albopictus, are populating new areas thus

contributing to the unwavering spread of DENV globally [21-23, 27]. Notably also contributing to

the spread of DENV is the increasing prominence of tropical urbanization worldwide [21]. Ten
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years ago, estimates of the global dengue disease burden stated that 100 million total DENV

infections occurred each year, 500,000 of which resulted in severe disease and over 20,000 that

resulted in death [21, 22]. Since then, those estimates drastically increased as surveillance,

detection, and records of dengue cases improved. In 2013, it was estimated that about 390

million dengue infections occur around the world each year, which is a staggering 300%

increase over previously published estimates [22, 28].

Dengue in Sri Lanka

Risk of dengue virus infection is considered highest in tropical regions of Asia. Latest

estimates from the global burden of dengue in 2010 state that Asia contributed to 67% of the

world’s dengue infections, with 37% occurring in India alone [28]. Sri Lanka is an island country

on the southern tip of the Indian subcontinent. Dengue virus has been present in Sri Lanka

since at least 1966 [29, 30], though epidemiology of DENV infection in Sri Lanka has changed in

recent years. There is documentation of a 10-fold increase in dengue fever (DF) and dengue

hemorrhagic fever (DHF) cases in the last 10 years [30, 31]. Expansion of dengue across Sri

Lanka coupled with introduction of new, possibly more virulent DENV genotypes have

contributed to an increase in Sri Lankan dengue cases [30-33]. Crude estimations, based on

surveillance cases reported to the WHO and cartographic estimates of global burden, state that

there are about 2 million dengue cases that occur in Sri Lanka per year. [28]. Until our studies

were conducted, there was no data on the true burden of dengue virus infections in Sri Lanka,

or even the entire Indian subcontinent.

Clinical Presentation of Dengue Disease

An estimated 1.4 million (70%) of the 2 million dengue infections that occur in Sri Lanka

each year are inapparent infections. That percentage is about the same globally, with 75% of all

dengue infections occurring sub-clinically [28]. Inapparent (asymptomatic) dengue infection, as

characterized by the World Health Organization (WHO), occurs when an individual is infected

with DENV but presents no clinical symptoms. Traditionally, apparent (symptomatic) infections
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are thought to manifest clinically as dengue fever (DF), dengue hemorrhagic fever (DHF), or

potentially-fatal dengue shock syndrome (DSS). DF consists of mild symptoms including, but

not limited to, fever, joint pain, headache, and rash. DHF, the more severe form of dengue

disease, includes symptoms of DF and is additionally characterized by plasma leakage. DSS,

the most severe category of dengue disease, consists of signs of complete circulatory failure,

manifesting as hypertension or irregular pulse [34]. In 2009, WHO modified its traditional

classification system to broaden the complexity and applicability of apparent DENV case

definitions. The newly revised system characterizes apparent dengue disease as dengue

without warning signs, dengue with warning signs, and severe dengue, which are respectively

similar to DF, DHF, and DSS, in regards to symptom descriptions [35]. Treatment of clinical

dengue disease is simply a matter of close observation and symptom maintenance, mostly

consisting of fluid replenishment [34]. (Refer to table 1.1 for a complete outline of WHO dengue

case classification.)

1.3 Role of Viral Factors in Dengue Disease Severity

It is not fully understood why some individuals become more severely ill after dengue

infections than others, although evidence shows viral factors play a role. Studies within the

same cohort population have correlated specific DENV serotypes with severe disease

outcomes. For example, a study in a Thai population showed DENV2 induced more severe

disease than any of the other DENV serotypes [36, 37]. Introduction of new DENV clades into

populations often have an effect on dengue disease severity, as well [32, 38-40]. DHF

epidemics in Nicaragua have been associated with the introduction of new DENV2 clades [38].

A similar story exists with DENV3 clades in Sri Lanka [32, 39]. Recently even, a new DENV1

genotype was associated with a severe dengue epidemic in Sri Lanka [33]. Subtle genetic

differences between DENV strains have been shown to correlate with pathogenesis [31, 38, 41,

42]. Additionally, DENV-encoded immune antagonists enable DENV to circumvent the host
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immune system [43, 44].  NS5, for example, has the ability to inhibit type I interferon (IFN)

signaling by binding to STAT2, which is a key component of the IFN pathway [43].

1.4 Role of Host Factors in Dengue Disease Severity

Immune Responses to Dengue Virus Infection

Although DENVs encode human immune system antagonists, as a whole, immune

responses are typically efficient enough to clear DENV infection. Dendritic cells (DCs) residing

in the skin are thought to be the first line of defense against invading DENVs [45]. DCs become

activated and produce tumor necrosis factor alpha (TNFα) and IFNα [46]. Generally speaking,

IFN responses to DENV infection are robust as evidenced by upregulation of IFN-related genes

in DENV-infected cells [47-51]. In several cell types, type I IFNs, IFNα [52] and IFNβ [53], play a

role in controlling DENV early in infection. Additionally, natural killer (NK) cells have been shown

to induce proinflammatory type II IFN production and lyse DENV-infected cells [54].

Innate immune activation initiates an adaptive immune response to dengue infection.

Antigen processing and presentation is an integral part of adaptive immunity. DCs are essential

in trafficking DENVs to the lymphatic system, from where the virus then spreads to other cell

types. Macrophages (mθ) process and present DENV antigen to T and B lymphocytes (T cells

and B cells) [55-57]. Antigens stimulate CD4+ T cells to produce IFNγ [58]. Strong CD8+ T cell

responses are stimulated by DENV infection as well [59-61]. Upon seeing antigen, B cells

clonally expand to produce DENV-specific antibodies [55, 56], which are discussed later in this

chapter.

Immunopathology of Dengue Virus Infection

Immune responses are tailored to defend against invading pathogens, but in the case of

DENV infection, immunopathology can play a key role in facilitating severe disease outcomes.

Protection from or progression towards dengue disease is essentially a competition between

protective versus pathogenic immune responses, respectively. As aforementioned, cytokines

are instrumental components of the initial immune response to DENV infection, but
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dysregulation of cytokine responses, namely “cytokine storm”, correlates with severe dengue

disease. Comprehensively, analysis of cytokine profiles in dengue patients reveals many

cytokines, including IFNγ, TNFα, and several interleukins (ILs), are associated with dengue

disease severity (reviewed in [62]). One of the more recent of these studies showed that MIP1β,

IP-10, and MCP-1, which are all associated with inflammatory responses, are higher in patients

with dengue with warning signs compared to patients with dengue without warning signs [63].

Cross-reactive CD8+ T cells are also correlated with DHF presence [59]. One

mechanism of T cell immunopathology is decreased degranulation [64], and another is cytokine

induction [64]. The standing theory is that cross-reactive T cells produce elevated levels of

cytokines, and subsequently, cytokine signaling contributes to vascular leakage, which is a

classic symptom associated with DHF and DSS [64]. Complement, which is typically thought of

as a viral clearance mechanism, is insinuated in inducing vascular leakage as well.  While a

helpful role for complement was shown in one study where DHF was associated with a

reduction in complement components [65], other studies suggest an immunopathological role

for complement. DENV NS1, an activator of complement signaling, and other key complement

components are increased in fluids of DHF and DSS patients compared to DF patients [66, 67].

Also, in vitro, complement activation can enhance DENV uptake and viremia in myeloid cells

[68].

1.5 Human Antibody Response to Dengue Virus

Role of Antibodies in Enhancement of Dengue Disease

From the host’s perspective, the most significant risk factor for severe disease is

previous exposure to DENV. Because DENVs circulate in waves of four serotypes, individuals

are susceptible to multiple infections over a lifetime. A first infection is considered primary (1°)

infection; repeat DENV infections are considered secondary (2°), tertiary (3°), and quaternary

(4°). Secondary infections have long been correlated with more DHF and DSS than 1° infections

[36, 69-73]. Studies with human monoclonal antibodies (huMAbs) show that a large proportion
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of DENV antibodies induced after 1° infection are weakly neutralizing but cross-reactive [74-77].

Cross-reactive, sub-neutralizing DENV antibodies are thought to induce severe disease through

a phenomenon known as antibody dependent enhancement (ADE) ([78] | reviewed in [79] and

[80]) (figure 1.4).

Serotype cross-reactive antibodies have been mapped to NS1, prM, and E [81-84].

These weakly neutralizing cross-reactive antibodies bind to DENVs (figure 1.4A), and antibody-

bound DENV particles then bind to Fc-gamma receptors, FcγRI and FcγRII, on appropriate

moncocytic cells [85] (figure 1.4B). ADE via FcγRII can be tricky because isoforms FcγRIIa

and FcγRIIb, which are found on most DENV target cells, have stimulatory and inhibitory effects

on DENV ADE, respectively [86, 87]. Entry via ADE is thought to occur in one of two fashions:

(1) endocytosis, similar to the classical DENV entry pathway described above, or (2)

phagocytosis, which occurs when aggregates of antibody-bound DENV particles sit atop a cell

(figure 1.4C). In all, DENVs are engulfed by host cells thus increasing viral burden (extrinsic

ADE) (figure 1.4E) and inducing cellular changes (figure 1.4D) that result in increased viral

production (intrinsic ADE) (figure 1.4F).

In vitro studies suggest extrinsic ADE can result in upwards of a 1000-fold increase in

virus infection [88]. Increased DENV infection by ADE has been proven repeatedly in multiple

cell systems, including human-isolated mθ, monocytes, and DCs, using huMAbs [89], mouse

MAbs [90], and serum from DENV-infected individuals [91]. ADE may be a more effective

method of infection due to the ability of immature DENV particles, which are noninfectious via

classical receptor-mediated pathways, to be bound by prM-specific antibodies and taken up by

FcγRs [19, 81]. DENV infection via ADE pathways dramatically changes innate immune

responses. Most notably, ADE has been correlated with cytokine storm [92-94] and complement

activation, both of which were discussed previously [65-67]. Effects of DENV ADE on IFN

regulation are controversial, as some studies cite increases [95] and other studies cite

decreases [96, 97] in IFN production following ADE. TLRs are instrumental in sensing
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pathogens and inducing cytokine and IFN production. DENV ADE may affect IFN production by

reducing toll-like receptor (TLR) expression and signaling. [94]. Overall, the likely effect of

intrinsic ADE is increased viral replication and progeny virus output per infected cell.

Role of Antibodies in Protection of Dengue Disease

Similar to other DENV immune responses, antibody responses can be either pathogenic

(enhancing), as discussed in detail above, or protective (neutralizing). The DENV neutralizing

antibody response consists of type-specific antibodies and cross-neutralizing antibodies. Dogma

would have it that these antibodies facilitate protection from severe disease upon 2° infection

with a homotypic or heterotypic DENV serotype, respectively. Early in the quest to dissect

DENV antibody epitopes, mouse MAbs revealed a large portion of the DENV antibody response

was directed to EDIII [98].  However, more recent mapping studies, using huMAbs and

polyclonal human sera, show human antibody responses to DENV are different and more

complex. In fact, human antibodies recognizing EDIII are relatively sparse and furthermore play

only a minute role in DENV neutralization [99].

While strongly neutralizing mouse MAbs bind to recombinant E (rE) protein, strongly

neutralizing huMAbs only recognize regions on intact DENV virions [77]. That finding was one of

first to suggest a role for complex epitopes recognized by DENV neutralizing antibodies; since

then more effort has been spent in understanding epitope specificity of DENV neutralizing

antibodies. Strongly neutralizing huMAbs exerted antibody pressure on DENV in cell culture to

render neutralization escape mutations around DENV EDI/II [77]. In studies of DENV1 vaccine

recipients, it was found that amino acid mutations in EDI and EDII together were responsible for

a type-specific antibody response [100, 101]. Structural analysis revealed a type-specific

DENV1 neutralizing antibody epitope that spans the EDI/II hinge region of E monomers [102].

This region may be relevant to long-term type-specific DENV antibody response, as evidenced

in an elegant EDI/II hinge transplant study [103].
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Antibodies that confer potent neutralization across multiple DENV serotypes are less

understood than type-specific antibodies. A few huMAbs that have potent broad neutralization

capacity have been mapped to the FL region of E [104]. A potent broadly neutralizing huMAb

that recognizes a region next to FL known as the “bc loop of EDII” was recently identified.

However, FL-specific antibodies are typically weakly neutralizing, and, in fact, can confer

enhancing activity [105]. The role for FL-specific antibodies in pathogenesis and/or protection is

questionable, but a study using samples from a Nicaraguan cohort provides evidence that anti-

FL antibodies generated from 1° DENV infections correlate with protection against 2°

heterologous infections [106].

Temporal Regulation of Dengue Antibodies

One might imagine that the balance between pathogenic and protective DENV antibody

responses is largely dependent on temporal regulation of antibodies following DENV infections.

The field’s current understanding of antibody timing following DENV infections is summarized in

figure 1.5 [36, 107, 108]. Upon 1° DENV infection, a person may begin to show symptoms 4-10

days after inoculation. In the symptomatic or acute phase of illness, a person can exhibit viremia

for up to 7 days; typical viremia lasts 5 days, peaking at day 3 of illness [36]. Length and

magnitude of viremia is shortened during 2° infections [36, 107]. NS1 antigen circulates in the

blood stream during the viremic period and is often used as a quick and easy method for acute

diagnosis of DENV infection [109-111].

IgG antibodies following 1° infection begin to appear after viremia wanes, at about day

five post illness onset, and remain for a lifetime. Upon 2° infection, one is thought to experience

a boost in IgG antibody levels that remains steady forever. IgM is more robust than IgG

immediately following 1° infection and quickly wane to undetectable levels by 3-6 months [112].

IgM levels following 2° infection are not as robust and are even shorter lived than those

following 1° infection [113, 114]. IgA and IgE antibodies have been detected following both
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primary and secondary DENV infections, but temporal regulation and biological significance of

these antibody subtypes remain unclear [114].

More important than the timing of various types of antibodies is the timing of antibodies

as they relate to pathogenic and protective disease outcomes. To that end, studies are being

conducted to dissect temporal regulation of enhancing and protective antibody responses.

Primary DENV infection with one serotype is dogmatically believed to lead to lifelong protective

immunity to the infecting (homologous) serotype, but dengue-immune individuals remain

susceptible to 2° infection with a different (heterologous) serotype [115]. It is thought that 2°

infections induce antibody responses that are broadly-neutralizing and likely protective against

post-secondary infections [116]. Even a 2° antibody response may not be completely protective

because 3° and 4° infections, although rare, have been documented [70, 116-118].

Some of the more telling research on how long protective antibody responses last was

conducted in the 1950s; Sabin infected humans with DENV and challenged them with either a

homologous or heterologous serotype. That study pronounced the period of type-specific

protection to be at least 18 months while the period of cross-protection was only about 2 months

[119]. Sabin’s last timepoint was 18 months, but studies have shown type-specific neutralization

lasts up to 60 years post-infection [120]. Sequential infections in Thai and Nicaraguan cohorts

reveal that 2° inapparent infections are more likely to occur within a shorter time span following

1° infection than 2° apparent infections. Together, these studies determined the period of cross-

protection to be about 2 years [118, 121]. Perhaps, it is after 2 years that concentrations of

weakly neutralizing cross-reactive antibodies decline and enhancement begins to occur [87].

1.6 Advantages of Studying Dengue Virus Infections in Human Cohorts

Mouse Models for Dengue Virus Pathogenesis

Studying vaccine-induced immunity and dengue pathogenesis in a small animal model

has been difficult (reviewed in [122]). Mice infected with mouse-adapted DENV strains do not

typically show classical signs of human disease. In the early stages of mouse model
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development, neurological effects and paralysis, which are not clinical symptoms of human

dengue disease, were seen in DENV-infected animals [123, 124]. BALBc and C57BL/6 mice

have shown human-like DHF symptoms, but only after being inoculated with high doses of

DENV [125]. In studies of DENV pathogenesis, humanized mice have a stark advantage over

other mouse models because their cell tropism is similar to that of an infected human [126], and

their disease presentation is similar to that of human DF [126, 127]. ADE has been shown

multiple times in IFNI/II receptor-deficient AG129 mice [128, 129]. In the AG129 model,

protection from ADE-induced disease is dependent on neutralizing antibodies [128]. In regards

to antibody responses, it is important to restate that antibody responses in mice are drastically

different than in humans [79, 99]. Furthermore, temporal regulation of DENV antibody

responses and sequential DENV infections cannot be studied in mice due to their short life

spans.

Use of Non-human Primates in Vaccine-Related Studies

Despite aforementioned pitfalls, mice are still a telling model for preliminary vaccine

studies, especially because many mouse models exhibit disease symptoms that can be used as

suitable protection endpoints [123, 124]. For advanced vaccine-related studies, it is imperative

that disease manifestation and antibody responses resemble those seen in humans’. DENV

pathogenesis is less well-studied in non-human primates (NHP) because they do not develop

human-like clinical symptoms. However, early on DENV-infected Rhesus macaques were

shown to have similar viremia and antibody responses as humans [130]. Before introduction into

humans, DENV vaccines are often tested in NHPs [122, 131-136], and NHPs have proven

rather useful in predicting vaccine-induced immunogenicity.

Lessons Learned from Human Cohort Studies

With knowledge that antibody responses in mice [79, 99] and disease pathology in mice

and NHPs alike are drastically different than humans’, it is ideal to study DENV pathogenesis in

humans [137]. Over the years, several prospective dengue cohort studies have been
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completed (Table 1.2). The lessons that cohort studies have taught the dengue field are

immense (reviewed in [138]). Using samples collected from cohort studies, it has been shown

that severe dengue disease correlates with several biological factors, such as age, and clinical

outcomes, such as platelet count [139-143]. Results from cohort studies [144] were even

influential in WHO’s reevaluation of clinically apparent dengue symptomologies [145-148].

Additionally, researchers are making progress with understanding DENV antibody

responses in human cohorts. Cohorts in Thailand were the first to show previous DENV

infection is a risk factor for severe disease [69, 70]. Later, several cohorts followed suit with

similar findings [78, 128, 149-152]. Also, maternal antibodies have been correlated with severe

dengue disease in Vietnamese infants [153, 154]. Together, these findings justify the theory of

ADE in naturally infected people. As far as protective antibody responses are concerned,

determining the natural correlate of protection from DENV infections and/or disease is a

continuing challenge for the vaccine field. As previously mentioned, cohort studies provided us

with the first evidence of clade-induced shifts in DENV immunity [32, 38-40]. In Thai cohorts,

pre-existing neutralization titers did not correlate with protection from DENV infection with the

same serotype, as evidenced by clinical symptoms and viremia [152, 155], but Thai cluster

studies show that neutralization titer does correlate with protection from DENV infection

[Buddhar, Darunee, et al. | unpublished data submitted to PLoS Neglected Tropical Diseases].

In a cohort in Peru, pre-existing neutralization breath correlated with protection from apparent

post-secondary DENV infections [116]. Cross-protection following natural primary infections was

determined to last about 2 years in Thai and Nicaraguan cohorts [118, 121].

1.7 Dengue Vaccine Development

In the wake of dengue emerging as a serious emerging global health problem,

development of a DENV vaccine is urgently needed. However, dengue vaccine development

has proven difficult. There are several criteria that a successful DENV vaccine must meet.

Although young children are thought to be the target vaccine population, adults are still
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susceptible to 3° and 4° DENV infections. Therefore, an ideal DENV vaccine should target a

spectrum of age groups. Also, given the widespread circulation of DENV within poor nations, a

DENV vaccine must be affordable. Most importantly, serotype-unbalanced vaccine responses

run the risk of facilitating ADE upon natural challenge so an effective DENV vaccine must

induce long-lived cross-protective responses against all DENV serotypes. Together these

criteria present a vaccine development feat that, despite intense research efforts, has not been

obtainable. To date, there is no DENV vaccine available to humans.

Prospective Dengue Virus Vaccine Candidates

Various approaches have been taken to develop a dengue vaccine. Subunit, subviral

particles, or nonliving whole virus vaccines represent the safest class of DENV vaccines. There

are a couple of nonliving DENV vaccines that stand out as potential vaccine candidates. The

first is a tetravalent DNA vaccine that expresses DENV1-4  prM/E constructs [133], and the

second is a tetravalent rE subunit vaccine [132]. These types of vaccines typically induce

subpar immunogenicity and require combination with adjuvants and viral vectors to provide an

immune boost [156, 157]. Live-attenuated or recombinant DENV vaccines have been tested and

generally show stronger, longer-lived neutralizing antibody responses than nonliving

counterparts. Dengue virus can be attenuated via serial passage in cell culture so the virus no

longer induces disease-causing infection but still induces an effective immune response. The

efficacy of live attenuated DENV as a vaccine strategy was first tested by administering

attenuated DENV2 to naïve individuals. In that small trial, DENV2-specific neutralizing antibody

responses lasted for up to 2 years post-vaccination [158]. Live-attenuated DENV vaccines have

evolved since then into tetravalent recombinant formulas administered at various prime/boost

timepoints [131, 134, 159-177].

There are three DENV live-attenuated vaccines (LAV) that stand out as promising

human vaccine candidates. Steve Whitehead’s group has developed a tetravalent attenuated

vaccine strategy, namely “TDV”, which consists of DENV prM/E from DENV1-3 inserted into an
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attenuated DENV4 background. In human trial, vaccinees were challenged with DENV1 or

DENV3 and were completely protected or partially protected, respectively [178]. DENVax is a

LAV that has a DENV2 backbone with prM/E from the other serotypes inserted. In nonhuman

primates, DENVax showed complete protection against DENV3 and DENV4 challenge, but only

partial protection against DENV1 and DENV2 [135]. Recently completed human trials revealed

DENVax induced broadly neutralizing antibody responses 30 days following inoculation [160].

Lastly is Sanofi Pasteur’s version of the DENV vaccine, CYD-TDV, which was thought to be the

most promising candidate based on pre-phase IIB studies [179]. The chimeric tetravalent

formulation consists of each of DENV1-4 prM/E inserted into the yellow fever vaccine backbone.

Unfortunately, this vaccine showed only showed ~30-70% protection against natural DENV

challenge in clinical trials, depending on serotype [180-187], and was notably deficient in

protecting against DENV2 infection in a Thai trial [186].

1.8 Outline of this Dissertation Research

Research Questions

With levels of protection being lower than predicted with the leading DENV vaccine [180-

187], the field was reminded that there are fundamental aspects of protective responses that we

do not understand.  Natural DENV infection protects most people against severe secondary

infection so using protective immune responses to natural infection as a gold-standard may

prove beneficial to the vaccine field. Three overarching questions exist about human antibody

responses to DENV infection:

(1) What are the differences between antibody responses induced by primary versus

secondary infections?

(2) What role do enhancing antibodies play in disease severity?

(3) What role do neutralizing antibodies play in protection from dengue disease?
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Research Approach

To that end, the overall goal of this dissertation was to characterize the role of antibodies

in natural inapparent and apparent dengue infections. Based on knowledge that a balance of

pathogenic and protective antibody responses can influence the severity of dengue disease, we

hypothesize that distinct properties of pre-existing antibodies correlate with inapparent

and apparent dengue disease outcome upon secondary infection. In collaboration with the

Pediatric Dengue Vaccine Initiative (PDVI) and investigators from the Ministry of Health in Sri

Lanka, our group completed a prospective dengue study of 799 children, ages 0-12 years, who

reside in Colombo, Sri Lanka. Using samples collected from the cohort, we addressed the

following specific aims:

Specific Aim 1 (Chapter Two). Determine the incidence of DENV infection in cohort. We

set out to characterize the true burden of DENV infection, including inapparent cases, on

the Indian subcontinent for the first time.

Specific Aim 2 (Chapter Three). Investigate temporal regulation of antibodies following

DENV infections.

 2A. Compare quantity and neutralization capacity of antibodies acquired from 1°

inapparent and apparent DENV infections.

 2B. Determine how time post-infection influences antibody neutralization capacity

following 1° infections.

 2C. Characterize quantity and quality of antibodies following repeat DENV infections.

Specific Aim 3. Investigate qualities of pre-existing antibodies from repeat inapparent

and apparent DENV infections.

 3A. (Chapter Four) Compare quantity, neutralization capacity, and enhancement ability

of pre-infection antibodies from repeat inapparent and apparent DENV infections.
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 3B. (Future Directions) Dissect infection history of children who acquired repeat DENV

infection.

Innovation

Our study is innovative because most previous studies have only detailed differences

between mild DF cases and severe DHF/DSS cases because they are hospital-based studies

that enroll patients upon acquisition of symptoms [69, 139, 140]. Given the complexity and cost

of cohort studies, very few groups have pre- and post-infection blood samples from both

inapparent and apparent cases. Even for studies that have been able to characterize inapparent

infections, many have not specifically differentiated between 1° and repeat silent infections in

their analyses [140, 141]. The findings that I detail in the following chapters will likely change the

way the dengue field thinks about DENV antibody responses to natural infections in ways that

will impact future dengue vaccine development.
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Table 1.1. World Health Organization Dengue Case Classifications

1997 World Health Organization Dengue Case Classifications [34]

Case
Classification

Asymptomatic
(Inapparent)

Dengue Fever
(DF)

Dengue Hemorrhagic Fever
(DHF)

Dengue Shock Syndrome
(DSS)

Clinical
Manifestations

 no symptoms  fever
AND ≥2 of the following…

 retroorbital or ocular pain
 headache
 rash
 myalgia
 arthralgia
 leukopenia
 hemorrhagic

manifestations not meeting
DHF criteria

ALL of the following…

 fever (2-7 days)

 hemorrhagic
manifestations (positive
tourniquet test or
purpura/ecchymosis or
epistaxis or gum bleeding
or blood in vomit, urine or
stool or vaginal bleeding)

 thrombocytopenia

 plasma leakage or pleural
effusion or ascites or
hypoproteinemia

 rapid and weak pulse and
narrow pulse pressure

OR…

 hypertension and cold,
clammy skin and
restlessness

Other possible
Symptoms

 anorexia

 nausea

 abdominal pain

 persistent vomiting

2009 World Health Organization Dengue Case Classifications [35]

Asymptomatic
(Inapparent)

Dengue
without Warning Signs

Dengue
with Warning Signs Severe Dengue

Clinical
Manifestations

 no symptoms

 fever
AND ≥2 of the following…

 aches and pain
 nausea, vomiting
 rash

 positive tourniquet test

Dengue without warning signs
AND ANY of the following…

 abdominal pain

 fluid accumulation

 mucosal bleeding

 restlessness

 liver enlargement

 decrease in platelet count

Dengue with ≥1 of the following…

 plasma leakage leading to
DSS or fluid accumulation
with respiratory distress

 severe bleeding

 severe organ involvement
(liver | CNS – impaired
consciousness | heart or
organ failure)
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Table 1.2. List of Prospective Dengue Cohort Studies1

1This table was taken from 138. Endy, Timothy P, Human Immune Responses to Dengue Virus Infection: lessons learned from
prospective cohort studies. Front Immunol, 2014. 5.

Incidence (average)Study site Population Age range Study
(years) periodsize3

Symptomatic Hospitalized Severe Symptomatic:Dengue
dengueinfection (%) dengue dengue asymptomatic

ratio

n/abRayong, Thailand (2) 1,056 1980-1981 39.4 0.7% 0.7% n/a4-14
Bangkok,Thailand (3) 1,757 1980-1981 0.4% 0.4%4-16 11.8 0.7% 1:8
Yangon, Myanmar (4) 12,489 1984-1988 0.3% 0.2%1-9 5.1 n/a n/a
Yogyakarta, Indonesia (5) 1,837 1995-1996 0.4% 0.4%4-9 29.2 0.6% n/a
Kamphaeng Phet I, Thailand (6) 2,119 1998-2002 0.6%3.9%7.3 1.0% 1:0.97-11
Iquitos, Peru (7) 2,300 1999-2005 n/a n/a n/a n/a5-20 34.5
West Java, Indonesia (8) 2,536 2000-200218-66 7.4 1.8% 0.1% 0.1% 1:3
Managua, Nicaragua (9, 10) 1,186 2001-20024-16 9.0 0.85% n/a n/a 1:13-1:6
Maracay, Venezuela (11) 2001-2002981 5-13 16.9 n/a n/a n/a n/a
Kamphaeng Phet II, Thailand (12) 2004 20062,095 4-16 6.7 2.2% 0.5% 0.1% 1:3.0
Ratchaburi, Thailand (13, 14) 2006-20093,015 3.6% 0.3% n/a3-11 3.6 1.6%
Managua, Nicaragua (10) 2004-20103,800 0.85%2-9 9.0 n/a n/a 1:13-1:6
Long Xuyen, Vietnam (15) 2004 20072,190 3.0%2-15 3.0 1.2% 1.2% n/a
Southeast Asia (Indonesia, 2010 20111,500 n/a n/a n/a n/a2-14 11.4
Malaysia, Philippines, Thailand,

and Vietnam (16)

-

-

-

aNumber in cohort tested for dengue antibody (incidence denominator).
bn/a, not available; not provided in the published paper.
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Figure 1.1. Dengue virus infectious life cycle. (A) DENV attaches to cells via appropriate

receptors and/or co-receptors, and is (B) internalized via clathrin-mediated endocytosis. (C)

DENV travels in an early endosome, which matures into a late endosome. (D) pH changes in

the late endosome induce DENV envelope conformational changes and the viral and host-cell

membranes fuse. (E) DENV nucleocapsid exits into cell cytoplasm, and vRNA is uncoated. (F)

vRNA travels to the rough ER where polyprotein processing and RNA synthesis and replication

occur. RNA is encapsulated, and (G) an immature DENV particle, with prM/E heterodimers

assembles in the ER. (H) Immature DENVs travel to the TGN and undergo (I) viral maturation;

prM is cleaved by furin. (J) Lastly, mature virions are released from the host cell. (This figure

was adapted from [188].)
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Figure 1.2. Dengue virus genome and polyprotein. (A) DENV RNA genome is (B) translated

and processed as a polyprotein at the ER. ((A) was adapted from [189]. (B) was adapted from

[190].)
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Figure 1.3. DENV virion structure. (A) DENV E consists of three domains, EDI (red), EDII

(yellow), EDIII (blue) and a fusion peptide. (B) prM/E heterodimers are organized on the surface

of an immature DENV particle, creating a jagged appearance. (C) Ninety homodimers of E are

organized flatly on the surface of a mature DENV particle, creating a smooth appearance. (D)

Immature DENV particles are assembled in the ER and matured in the TGN. Mature DENV

particles, and pr peptides, are excreted from the host cell. ((A) and (C) were adapted from [14].

(B) and (D) were adapted from [79].)
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Figure 1.4. Antibody dependent enhancement of dengue virus. Upon secondary dengue

infection, (A) heterotypic weakly-neutralizing antibodies from previous infection bind to DENV

particles. (B) Antibody-bound DENVs are attached to monocytic cells via Fcγ receptors. (C)

DENVs are endocytosed or phagocytized. (D) Various internal cellular processes are

dysregulated. This entire process results in (E) increased virus infection (extrinsic ADE) and (F)

increased viral load (intrinsic ADE).  (This figure was adapted from [191].)
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Figure 1.5. Temporal regulation of antibodies following DENV infection. (This figure was

adapted from [192].) A person can exhibit viremia for up to 7 days [36], although length and

magnitude of viremia is shortened during 2° infections [36, 107]. NS1 antigen circulates in the

blood stream during the viremic period [109-111]. IgG antibodies (yellow line) following 1°

infection begin to appear at about day five post illness onset and remain for a lifetime. Upon 2°

infection, one is thought to experience a boost in IgG antibody levels that remains steady

forever. IgM (red line) is more robust than IgG immediately following 1° infection and quickly

wane to undetectable levels by 3-6 months [112]. IgM levels following 2° infection are not as

robust and are even shorter lived than those following 1° infection [113, 114].
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CHAPTER TWO

Burden of Dengue Infection and Disease in a Pediatric Cohort in Urban Sri Lanka
2 3 4

2.1 Introduction

Dengue is caused by four related mosquito-borne dengue viruses (DENV1-4), which are

endemic in many tropical and subtropical regions of the world. Most individuals infected with

DENV are asymptomatic or develop a febrile illness known as dengue fever (DF), but in a

minority, disease can be more severe and progress to dengue hemorrhagic fever and dengue

shock syndrome (DHF/DSS). Infection with one DENV serotype confers protective immunity to

future infections with that serotype only and these individuals are susceptible to secondary

infections with heterologous serotypes [79]. Individuals suffering from secondary DENV

infections are at a greater risk of developing DHF/DSS compared to individuals experiencing

their first infection [189, 193].

Globally, an estimated 2.5 billion people are at risk for DENV infection, with estimated

390 million annual DENV infections and 96 million dengue cases [28]. From prospective

community and school based cohort studies, it has been possible to obtain estimates for the

2
This chapter was previously published. | Tissera H, Amarasinghe A, de Silva A.D., Palihawadana P,

Kariyawasam P, Gunasena S, Corbett K.S., Katzelnick L, Tam C, Letson G.W., Margolis H.S.,  and

de Silva A.M., Burden of dengue infection in a pediatric cohort in urban Sri Lanka. American Jo

91(1): p. 132-7..

urnal of

2014Tropical Medicine and Hygiene,

3
Portions of this chapter are in press. | Corbett K.S., Katzelnick L, Tissera H, Amarasinghe A, de Silva

A.D., and de Silva A.M., Pre-existing Neutralizing Antibody Responses Distinguish Clinically Inapparent
and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort. Journal of Infectious Diseases.

4
This study was funded by the Pediatric Dengue Vaccine Initiative (Bill and Melinda Gates Foundation

Grant #: 23197). Additional funding was provided by UNC Virology Training Grant (NIH Grant #:
T32AI007419) and Initiative for Minority Student Development (NIH Grant #: 5R25GM055336).



26

incidence of DENV infection and disease for sites in southeast Asia [141, 194-198] and Latin

America [199-201]. Although dengue is emerging in the Indian subcontinent and is considered a

major health issue, we do not have estimates of the true burden of DENV infection and disease

in this region.

Dengue was first reported in Sri Lanka in the 1960s [29]. Studies conducted from 1980-

1984 showed a DENV seroprevalence of 50% among school children, with an annual

seroconversion rate of 10-15% among 5−7-year-old school children in Colombo, the capital of

Sri Lanka [39, 202]. More recently, analysis of age-stratified seroprevalence data indicated that

the annual seroconversion rate among children <12 years in Colombo is around 14% [202]. In

the past, most dengue cases have been reported from the Colombo district and other

neighboring districts in the heavily urbanized southwestern region of the country. However, over

the past 10-15 years dengue has been reported from nearly all districts of the island, and over

the past two decades, the number of reported DF and DHF cases has increased by over 10-fold

[31].  This increase in cases has been attributed to introduction of new genotypes of DENV as

well the expansion of the range of the virus on the island [31-33]. In many ways, the changing

epidemiology of dengue in Sri Lanka mirrors events in other parts of the subcontinent including

India, which has also documented large increases in cases and appearance of new virus strains

[203, 204]. We conducted a population-based study to determine the incidence of symptomatic

and asymptomatic DENV infection among children living in Colombo, Sri Lanka, an urban

setting of the Indian subcontinent.

2.2 Materials and Methods

Ethical Approval for Study

Ethical approval for this research was obtained from the Ethical Review Committee of

the Faculty of Medicine, University of Colombo, Sri Lanka and the Institutional Research Board

of the International Vaccine Institute, Seoul, Korea. Only the children whose parents or legal

guardians provided written informed consent were enrolled in the study.
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Study Site

The study was conducted in the city of Colombo, the commercial capital of Sri Lanka,

which has a population of 647,100 and is the most densely populated area in the country with

17,353 persons per square kilometer [205]. The city is divided into 47 municipal wards and ward

33 was selected for the study because of its stable population, which reflects the socio-

economic status and demographics of the entire municipal area. The ward is endemic for

dengue with the catchment population seeking healthcare in the tertiary care institution situated

within its boundaries (Figure 2.1).

Study Population

A prospective cohort study was conducted between November 2008 and January 2010.

The protocol for the study is described in detail elsewhere [206]. In brief, a house-to-house

census was conducted by research assistants to determine the size, socio-demographic

information and health-seeking patterns of the permanent resident childhood population <12

years of age.  A representative sample of 800 children <12 years of age was recruited for the

current study. The sample size calculation was based on the ability to detect an annual

incidence of dengue of 10% with an absolute precision of 3%. The estimated sample size was

then inflated by 30% to allow for possible loss to follow-up during the study period. All children

were enrolled in the study following written informed consent from parent/legal guardian and

assent from children > 7 years of age.  Each participating household was given a thermometer

and each child was given an identification card with a unique study number. A febrile illness was

defined as a temperature of ≥38°C lasting ≤7 days in any child in the study cohort documented

by the parent, research assistant or health care professional. Following assessment and

treatment by a designated physician, the research assistants interviewed the patient and parent

using a standard case investigation form.
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Sample Collection

Blood samples were collected from all children at enrollment (Between November 2008-

January 2009) and one year after enrollment (between November 2009 and January 2010) by

finger prick and stored as blood spots on protein saver card (Whatman & ID Biological systems,

USA) [207, 208].  From children with a documented fever, whole blood was collected by

venipuncture into EDTA containing tubes.  Some of the whole blood was used to prepare dried

blood spots for later serological testing.  The remaining blood was centrifuged and the plasma

used for molecular diagnostic testing.  Ten or more days after recovery from fever, convalescent

samples were collected by finger prick and stored as blood spots on protein saver cards.

DENV Strains Used for Laboratory Assays

The WHO DENV reference strains, i.e. DENV1 West Pac 74, DENV2 S-16803, DENV3

CH54389 and DENV4 TVP-360 were used for preparing antigen and infectious stocks for

serological assays. The WHO reference viruses were initially obtained from Dr. Robert Putnak

(Walter Reed Army Institute of Research, Silver Spring, MD). Infectious stocks of virus were

prepared using the C6/36 mosquito cell line and dengue antigens were harvested from Vero

cells as previously described [209].

Molecular Detection of DENV

Plasma obtained during the acute phase of the febrile illness was tested by reverse

transcriptase polymerase chain reaction (RT-PCR) to detect and serotype DENVs as previously

described [31].

Detection of anti-DENV IgM and IgG Antibodies in Dried Blood Spots

Antibodies were eluted from dried blood spots by submerging the filter paper in PBS and

incubating for 37C for 2.5 hrs.  The final volume of the eluted antibody was adjusted to obtain a

1:50 or 1:100 dilution of the original blood volume applied to the filter paper.  A recent report

validated the use of dried blood spots for dengue serology [210].
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We performed dengue IgM capture ELISA as described [211],  except we used anti-

flavivirus monoclonal antibody 4G2 followed by enzyme-conjugated goat anti-mouse IgG to

detect captured DENV antigen. In brief, 96-well plates were coated (overnight, 4°C) with 100

μL/well (1 ng/μL) of goat anti-human IgM (Sigma, St. Louis, MO, USA) at a concentration of 0.1

mol/L in carbonate buffer (pH 9.6). Plates were washed 3× in Tris-buffered saline with 0.2%

Tween 20 (TBST) and blocked with 200 μL/well of 1× Tris-buffered saline with 0.05% Tween 20

and 3% nonfat dry milk. Paired serum samples were tested on the same plate. Diluted serum

(1:50) was loaded in duplicate and incubated (37°C, 1 h) to capture IgM antibody. Unbound

antibody was washed, and wells were successively incubated with DENV antigen (mix of

serotypes DEN1–4), mouse anti-flavivirus 4G2 mAb, and human-absorbed alkaline

phosphatase (AP)–conjugated goat anti-mouse IgG antibody (Sigma). Optical density (OD) was

measured at 405 nm after final incubation with AP substrate.

Dengue IgG ELISA was performed as described [212]. Plates were coated overnight

(4°C) with 100 μL/well of mouse anti-flavivirus 4G2 mAb at a concentration of 0.1 mol/L in

carbonate buffer (pH 9.6) and then washed 3× in TBST. Plates were then blocked with standard

diluents and successively incubated (37°C, 1 h) with DEN1–4 antigen, diluted serum (1:100) in

duplicate wells, and AP-conjugated goat anti-human IgG (Fc portion), with 3 washings (TBST)

between incubations. Plates were read at 405 nm after a final incubation with AP substrate (15

min, room temperature, in the dark).

Measurement of DENV Neutralizing Antibodies

The presence of DENV neutralizing antibody was determined using a flow cytometry-

based neutralization assay with U937 monocytic cells stably transfected with dendritic cell-

specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as previously

described [213]. This flow cytometry based neutralization test has comparable specificity to the

conventional dengue plaque reduction neutralization test and does not detect antibodies against

Japanese encephalitis virus (Broadwater and de Silva unpublished data) [213].  Blood samples
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were serially diluted (4 fold dilutions starting at 1:40 and ending at 1:10,240) and the seru

dilution that neutralized 50% of the viruses was calculated by nonlinear, dose-response

m

regression analysis with Prism 4.0 software (GraphPad Software, Inc., San Diego, CA).

Determining Dengue Serostatus at Study Enrollment

Dengue virus serostatus (DENV naïve or immune) at enrollment was determined by

dengue IgG immunoassay. An OD value > 0.3 were considered dengue antibody positive.

During the study period, primary infections were defined as dengue naïve children at enrollment

who experienced an infection.  Secondary infections were defined as dengue immune children

at enrollment who experienced an infection.

Criteria for Laboratory Diagnosis of DENV infections

A laboratory-confirmed clinically apparent dengue case was a child with a febrile illness

who tested positive in at least two out of the three diagnostic assays (PCR, rising levels of IgM

and/or IgG antibodies in paired acute and convalescent blood samples).  In the few cases

where there was only an acute blood sample, the diagnosis was based on RT-PCR testing only.

Apparent dengue cases were further classified as primary or secondary based on baseline

DENV naïve or immune status, respectively.

Inapparent infections were classified as new DENV infections occurring in children who

did not have a laboratory-confirmed apparent dengue fever during the study year. To detect

primary inapparent infections, paired baseline and end-of-year blood samples from all children

were tested by IgG immunoassay. Dengue-naïve children at enrollment (391 children) who

seroconverted over the study year (baseline sample seronegative and end-of-year sample

seropositive [> 0.3 OD units]) were classified as primary infections.  DENV-immune children at

enrollment (441 children) who displayed rising levels of anti-DENV IgG antibodies by the end of

the year (> 0.1 OD units) were initially classified as secondary infections.  However, gold-

standard neutralization testing of these secondary infections (as classified by IgG increases)

indicated no neutralization capacity increase over the study year.
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Therefore, all children were screened for increased neutralization capacity over the

study year by subjecting paired baseline and 12-month follow up samples from all children (at

dilutions of 1:40 and 1:640) to a FACS-based neutralization assay against each of the four

dengue serotypes (Table 2.1). Those children showing an increase in neutralization capacity by

2-dilution screen were then confirmed by neutralization assay [213, 214] with full serum dilution

series (Figure 2.2). To establish criteria for defining secondary infections using paired samples

collected 12 months apart, we used a test set of 8 symptomatic secondary cases (detected by

PCR and serology performed on samples collected within 1 month of acute infection). Only half

the cases (4/8) cases displayed a 4-fold or greater increase whereas all cases (8/8) displayed a

2-fold or greater increase in neutralizing antibody levels when paired baseline and end-of-year

samples from these children were tested.  Therefore, children who had >2 fold increases in

levels of neutralizing antibodies to one or more serotypes by the end of the year were

designated as secondary infections.  Samples were tested at least twice and only paired

samples that displayed a reproducible 2 fold-increase were included as new secondary

infections. Although it is possible that some inapparent infections were actually dengue fever

cases that were missed, efforts were made to ascertain case detection by educating parents

and having a study team visit each house weekly [215]. Loss to follow-up was minimal; of 800

children enrolled, only 1 child dropped out during the 12 months [215, 216].

2.3 Results

Notably, all DENV cases (inapparent and apparent) in this study were confirmed by

neutralization assay [213, 214] with full serum dilution series (Figure 2.2). While the DENV

neutralization assay is the gold standard assay for detecting new infections by serology, DENV-

specific IgG ELISAs are faster and easier to perform than neutralization assays. Paired samples

were tested by both IgG ELISA and neutralization test to assess the performance of the IgG

assay for detecting new infections using samples collected 12 months apart (Table 2.2).  While

the IgG assay performed well for detecting primary infections (sensitivity of 94.3% and positive
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predictive value (PPV) of 76.7%), the assay performed poorly for secondary infections

(sensitivity of 62.5% and a PPV of only 29.9%) These results indicate that IgG ELISA is an

unreliable method for identifying true DENV infections, particularly 2° infections, when utilizing

paired samples collected 12 months apart.

Between November 2008 and February 2009 a total of 800 children ages 0-12 years

were enrolled in the study from ward 33 (Figure 2.1), these being representative of the age and

demographic distribution of the 2527 children known to be permanent resident of the ward.

Only 1 child was lost to follow up during the study period. The dengue seroprevalence at

enrollment was determined by testing all children by ELISA for the presence of DENV binding

IgG antibodies (Table 2.3).  To confirm that IgG seropositivity was due to dengue infection and

not exposure to related Japanese encephalitis virus (JEV), which is also present in Sri Lanka, all

IgG positive samples were tested for the presence of DENV neutralizing antibodies.  The vast

majority (96%) of IgG positive sera also neutralized DENV indicating that in this population the

results of the IgG ELISA reflected dengue seroprevalence. The overall dengue seroprevalence

was 53% at enrollment (Table 2.3). The age specific seroprevalence steadily increased with

advancing age from a low of 22% in the youngest (<1 year) age group to a high of 74.26 % in

the oldest (10-12 year) age group (Table 2.3).

A total of 681 fever episodes were detected among the 799 children indicating that on

average each child reported 0.9 fever episodes over one person-year of follow-up (Table 2.4).

Dengue was laboratory-confirmed in 3.9% (27/681) of the fever episodes (Table 2.4); no child

had more than one episode of dengue fever over the course of the study.  Therefore, the

incidence of clinically apparent dengue in the cohort was 3.38 per 100 children per year (Table

2.4).  When combined with the clinically inapparent infections, the total incidence of DENV

infection was 8.39 per 100 children (Table 2.4). The highest incidence of infection and disease

was in the 1-3 year group.  The overall ratio of inapparent to apparent infections was 1.48.
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Out of the 65 new apparent and inapparent DENV infections, 34 were primary infections

and 31 were secondary infections (Table 2.5).  As might be expected, the ratio of primary to

secondary infections decreased with age from 3 in the youngest (< 1 year) age group to 0.75 in

the oldest (10-12) age group (data not shown).  The ratios of inapparent to apparent infections

were not statistically significantly different (P>0.1) between primary and secondary infections

(Table 2.5).

The prevalence of each DENV serotype during the study year was estimated by

identifying the serotypes responsible for primary infections (Table 2.6). DENV2 was the most

common serotype (49%) followed by DENV3 (27%), DENV1 (23%) and DENV4 (3%). The

number of people with monospecific neutralizing Abs to each serotype at enrollment into the

study was used to estimate the prevalence of each serotype in this population before the start of

our study (Table S1).  This analysis demonstrated that DENV2 (43%) and DENV3 (29%) were

more common than DENV1 (9%) and DENV4 (12%) in the period preceding the study.

2.4 Discussion

Over the past two decades dengue has emerged as a major health problem in the Indian

subcontinent [203, 204].  Dengue epidemics in the region have been linked to more intense

transmission, expansion of the range of the virus and introduction of new strains [31-33, 203,

204].  Most estimates of dengue incidence in the region are based on hospital-based studies

and nationally reported cases, which grossly underestimate the true burden of disease and

infection [217]. In this study, we followed a cohort of 799 children in Colombo, Sri Lanka to

gauge the true burden of infection in this region.

A strength of our study is that infections were detected by testing paired baseline and

follow-up blood samples by neutralization test. This approach is not feasible with most cohort

studies given the difficulty of testing large sample panels using the DENV neutralization test.

We overcame this hurdle by using a 96-well format, flow cytometry based, high throughout

neutralization assay [213, 214]. We screened baseline and follow-up samples from all enrolled
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children at 2 dilutions for the presence of neutralizing antibody before selecting samples for

more comprehensive neutralization testing.  Our study demonstrates that while simple to

perform, IgG ELISA and related assays are unreliable methods for detection of DENV infections

when samples are collected 12 months apart, particularly for repeat infections.

Having fully characterized primary and secondary DENV infections in the cohort using

neutralization assay, we estimated the incidence of infection and disease to be 8.39 and 3.38

per 100 children respectively.  The ratio of clinically inapparent to apparent infections was 1.48

indicating that for every apparent infection there were approximately 1.5 inapparent infections in

children.  This high intensity of transmission was also supported by the seroprevalence data that

demonstrated a gradually rising prevalence with age that ranged from 22% in the youngest age

group to 74% in the oldest age group.  The 4 DENV serotypes were circulating in this population

both before and during our study, with serotypes 2 and 3 being more prevalent than 1 and 4

(Table 2.6). Our study establishes a rigorously measured, accurate burden of dengue infection

and disease among children living in an urban area of Sri Lanka.

Recently, we used dengue seroprevalence data from this cohort to model the rate of

primary infections in dengue naïve children [202]. Using a catalytic model, we estimated the

incidence of primary infection to be 14.1% per year (95% CI: 12.7%– 15.6%), which is higher

than the incidence 8.39 % (95% CI: 6.56-10.53) observed here for total infections (primary and

secondary infections).  A more legitimate comparison would be to compare the model based

estimate for primary infections with the incidence of primary infections in our cohort.  The

incidence of primary infection noted in the current study was 9.8% (95% CI: 6.80-12.80), which

is closer to the model-based estimate of 14.1% per year (95% CI: 12.7%– 15.6%). A previous

study of school children in Colombo over a 5-year period from 1980-1985 estimated the

incidence of new infections to range between 10.78 to 18.54 per 100 children in different years

[39]. Collectively, these findings demonstrate intense transmission of dengue among children in

Colombo.
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Our current estimate for disease (3.38 per 100 under 12 years of age population) is 14-

fold higher than the reported national incidence of the disease (0.23 per 100 individuals) among

<15 years of age in 2010 in Sri Lanka, which is based on the passive national surveillance

system (Epidemiology Unit, MoH).  Based on national surveillance for 2010, the disease

estimates for children less than 15 years in the Colombo district and the Colombo Municipality

(study area) (See Figure 2.1) were 0.64 and 1.61 per 100 population respectively.  Thus, as

expected the passive national program underreports the true burden of disease in Sri Lanka.

Recent studies in SE Asia have estimated expansion factors of 8.9 and 9.6 when comparing

national data with true disease incidence for Thailand and Cambodia respectively [195, 218].

Moreover, a recent study of the global burden of dengue estimated that there are three times as

many infections and dengue cases compared to cases reported to the World Health

Organization [28].

For most regions in the world with endemic dengue transmission we do not have

accurate estimates of infection and disease because of the cost and infrastructure required to

conduct cohort studies.  The most comprehensive cohort studies on dengue in South East Asia

have been done in Thailand where the incidence of infection has ranged between 2 to 15%

depending on the year and location of the study [141, 194, 196, 219, 220]. Studies in Puerto

Rico, Nicaragua and Peru have documented incidences that range between 1.34-12%

depending on the year and location [199, 200].  Thus, the intensity of dengue transmission

among children in Colombo (8.14%) is similar to transmission documented in other cohort

studies conducted in South East Asia and Latin America.  The ratio of inapparent to apparent

infections has also been estimated in different regions of the world.  In southeast Asia the ratio

has ranged from 3:1 to 1:1, whereas in Latin America the ratio has ranged from 3:1 to 18:1,

indicating that infections in Southeast Asia [141, 194, 196] are more likely to lead to clinically

apparent cases compared to infections in Latin America [199, 200]. The data we report here
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indicates that the situation in Colombo Sri Lanka with a ratio of 1.5:1 is more similar to the

situation in Southeast Asia.

The current study was not designed to test hypotheses about risk factors for DHF/DSS

because our cohort of 799 children is too small to detect significant numbers of DHF/DSS

cases. We did not observe any significant differences in the ratio of inapparent to apparent

cases between primary and secondary cases.  However, it is premature to conclude from these

data that risk of developing a clinically apparent infection is the same in primary and secondary

cases as the study was only powered to detect a large difference in risk following primary and

secondary infection.  We do note that other studies have documented that children exposed to

primary and secondary infections have a similar risk of developing clinically apparent infections

[194].

It is well documented that the incidence of infection and disease can vary from year to

year and our data was collected over a single year only.   Our study was confined to a relatively

small area and our results may not be generalizable to children in other parts of the city and

country.  Thus, studies such as this have to be conducted in other parts of the country over a

longer period to understand how the incidence of infection and disease vary by location and

over time.  Dengue vaccines are currently being tested in different regions of the world [162].  It

is important that trials also be conducted in the Indian subcontinent given the heavy burden of

disease and the distinct strains of DENV circulating in the region.  The results of the current

study will be useful for designing vaccine trials in the region of South Asia and for making

decisions about how best to introduce vaccines.
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Table 2.1. Detection of secondary inapparent dengue cases by 2-dilution neutralization
screen5

5Children were screened for increased neutralization activity against DENV1-4 over the study
period. Paired baseline and follow-up sera at dilutions of 1:40 and 1:640 were subjected to
neutralization tests

Neutralization Capacity (% of virus)

Serum Dilution
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Table 2.2. Ability of IgG ELISA to detect true dengue infections based on neutralization

assay outcome6

Predictive
Values (%)

Secondary Cases

(+) (-)

339 1010

212 31313

76.7%11

99.4%14

209 4710

1212 36213

29.9%11

96.8%14

Sensitivity Specificity

94.3%15 96.9%16

Sensitivity Specificity

62.5% 88.5%

Neutralization Assay Outcome7

Primary Cases Predictive
Values (%)(+) (-)

IgG (+)
ELISA

Outcome8 (-)

6Paired baseline and follow-up samples were subjected to DENV IgG ELISA and DENV
neutralization assay.

7Neutralization assay outcome criteria: A primary case was DENV seronegative at baseline and
DENV seropositive at follow-up. A secondary case was DENV seropositive at baseline and
indicated a 2-fold neut50 titer increase or seroconversion to at least one DENV serotype at
follow-up.

8IgG ELISA outcome criteria: A primary case was DENV IgG negative at baseline and DENV
IgG positive at follow-up. A secondary case was DENV IgG positive at baseline and showed an
increase in DENV IgG OD at follow-up.

9True Positive (TP) – correctly identified

10False Negative (FN) – incorrectly identified

11Positive Predictive Value (PPV) – [TP ÷ (TP+FP) × 100%]

12True Negative (TN) – correctly unidentified

13False Positive (FP) – incorrectly identified

14Negative Predictive Value (NPV) – [TN ÷ (FN+TN) × 100%]

15Sensitivity – [TP / (TP + FN) × 100%]

16Specificity – [TN / (TN + FP) × 100%]
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Table 2.3. Age-specific dengue sero-prevalence17

Age group No. No. seropositive confirmed by dengue
(years) children by IgG ELISA neutralization test Seroprevalence (%)

No.  seropositive

0 51 12 11 21.57

1-3 196 71 67 34.18

4-6 191 105 100 52.36

7-9 225 150 145 64.44

10-12 136 103 74.26101

Total (0-12) 799 441 53.07424

17The dengue seroprevalence at the beginning of study (baseline) was determined by screening
all sera by dengue IgG ELISA and then testing the positive samples by dengue neutralization
test.
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Table 2.4. Age-specific fever episodes and incidence of dengue infection and illness18

Age #

(yrs) Children

Fever Episodes New dengue infections
Incidence of Infection Incidence of Disease

(per 100 children) (per 100 children)

Total Mean/Child Total Inapparent Apparent (95% confidence interval)

0 51 31 0.6 1 0 1 1.96 (0.05-10.45) 1.96 (0.05-10.45)

1-3 196 252 1.3 27 15 12 13.78 (9.28-19.41) 6.12 (3.20-10.45)

4-6 191 174 0.9 13 11 2 6.81 (3.67-11.36) 1.05 (0.13-3.73)

7-9 225 137 0.6 15 6 9 6.67 (3.78-10.76) 4.00 (1.85-7.46)

10-12 136 87 0.6 11 8 3 8.09 (3.25-16.03) 2.21 (0.46-6.31)

0-12 799 681 0.9 67 40 27 8.39 (6.56-10.53) 3.38 (2.24-4.88)

18Clinically apparent dengue infections were diagnosed by performing paired serology and PCR on acute and convalescent samples
collected from febrile children.  Total dengue infections over the study year were detected by testing paired baseline and end of year
samples by IgG ELISA and neutralization test. Children who were infected but not identified as apparent cases were designated as
inapparent cases.
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Table 2.5. Dengue disease outcome in children exposed to primary versus secondary

infections

Disease

Infection Total Inapparent Apparent Inapp./App. ratio

Primary 35 20 15 1.33

Secondary 32 20 12 1.67

Total 67 40 27 1.48
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Table 2.6. Prevalence of circulating DENV serotypes

DENV Serotype Exposure
(before initiation of study)19

N (%)

DENV Serotype Exposure
during study year20

N (%)

DENV1 7 (9) 7 (21)

DENV2 32 (43) 16 (49)

DENV3 27 (36) 9 (27)

DENV4 9 (12) 1 (3)

Total 75 (100) 33 (100)

19A dengue immune individual was considered to have been previously exposed to a particular
serotype if the individual had neutralizing antibodies to one serotype only (monotypic) at
baseline. Inferences of infecting serotype were not made when more than one serotype was
neutralized.

20Based on children who were exposed to primary infections during the study year. The
serotype was determined by PCR or neutralization test performed with sample collected at the
end of the study (follow-up).
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Figure 2.1. Map and location of study site (Ward 33) in relation to Colombo Municipal

Council and Colombo District in Sri Lanka.
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Figure 2.2. Representative neutralization curves for confirmed inapparent dengue cases.

Graph shows representative cases. Paired baseline (A,C)  and follow-up sera (B,D) (when

available) from 1° (A-B) and 2° (C-D) dengue cases  were subjected to neutralization assay at

1:40 – 1:10240 in 4-fold increments against DENV1-4.  Sigmoidal curves were generated, and

neut50 titers were calculated for each serotype. These graphs depict temporal sera collected

from two representative children (1 primary and 1 secondary).
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CHAPTER THREE

Temporal Regulation of Antibody Responses Following Dengue Virus Infections
in a Sri Lankan Pediatric Cohort 21 22

3.1 Introduction

Dengue virus (DENV) is a positive-stranded RNA virus that is transmitted to humans via

the bite of Aedes mosquitos. DENVs exist as four serotypes, DENV1-4, which circulate in

tropical and subtropical regions. Currently, over 2/3 of the world’s population is at risk of being

exposed to DENV [21, 22]. A recent study estimates 390 million DENV infections occur globally

each year, rendering dengue the most common mosquito-borne human virus in the world [28].

An individual can be infected and re-infected with DENV. Primary (1°) dengue infection

occurs when a naïve individual is exposed to DENV. Repeat dengue infection occurs when a

previously-exposed individual is exposed to DENV for the second (secondary), third (tertiary), or

fourth (quaternary) time, etc. Natural human DENV infection can result in clinically inapparent or

apparent infections. Apparent infections, which account for less than half of total DENV

infections, manifest as mild dengue fever (DF), severe dengue hemorrhagic fever (DHF), or

potentially fatal dengue shock syndrome (DSS) [28].

21
Portions of this chapter are in press. | Corbett K.S., Katzelnick L, Tissera H, Amarasinghe A, de

Silva A.D., and de Silva A.M., Pre-existing Neutralizing Antibody Responses Distinguish Clinically
Inapparent and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort. Journal of Infectious
Diseases.

22
This study was funded by the Pediatric Dengue Vaccine Initiative (Bill and Melinda Gates Foundation

Grant #: 23197). Additional funding was provided by UNC Virology Training Grant (NIH Grant #:
T32AI007419) and Initiative for Minority Student Development (NIH Grant #: 5R25GM055336).
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Viral and host factors have been shown to influence dengue disease outcome [31, 38,

42, 43]. But, the most significant risk factor for severe disease is previous DENV infection [69-

73]. Primary DENV infection induces cross-reactive non-neutralizing antibodies that assist in

binding and uptake of DENV particles into FcᵞR-bearing cells upon secondary infection with a

heterologous DENV serotype [69, 221]. This phenomenon is coined “antibody-dependent

enhancement (ADE)” [221].

Together, a compilation of recent studies suggests that the human DENV antibody

response following primary DENV infection is dominantly cross-reactive and weakly neutralizing

[81, 99, 222]. Current dogma suggests that following 1° DENV infections neutralizing antibodies

are induced in two forms: long-lasting type-specific antibodies and short-lived cross-reactive

neutralizing antibodies (reviewed in [115]), but the specifics of temporal regulation of antibody

responses following dengue infections remain unclear. To that end, here we utilized sera

samples collected during a prospective dengue fever surveillance study in Colombo, Sri Lanka

[215, 216] to provide insight on the timing of IgG and neutralizing antibody responses following

primary and repeat DENV infections.

3.2 Materials and Methods

Human Subjects Protocol Approval

Ethical approval for this research was obtained from the Ethical Review Committee of

the Faculty of Medicine, University of Colombo, Sri Lanka and the Institutional Research Board

(IRB) of the International Vaccine Institute, Seoul, Korea. University of North Carolina IRB

determined that this study does not constitute human subject research with respect to UNC

investigators’ involvement. Only children whose parents or legal guardians provided written

informed consent were enrolled in the study.

Cell Lines and Viruses

U937+DC-SIGN cells were maintained in RPMI media supplemented with 5% fetal

bovine serum, 1% L-Glutamine, 1% Penicillin/Streptomycin, 1% non-essential amino acids, and
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0.05 mM beta-mercaptoethanol. C6/36-derived WHO reference DENV strains, DENV1 (West

Pac 74), DENV2 (S-16803), DENV3 (CH 53598), DENV4 (TVP-376), were used in all infection-

based experiments.

Sample Collection

Surveillance and sample collection methods were previously detailed [215, 216]. Briefly,

between November 2008 and January 2010, in Colombo, Sri Lanka, blood samples were

collected from 799 children, ≤ 12 years old, at enrollment (baseline) and 12 months later (follow-

up). In addition, children who experienced febrile illness were bled upon fever onset (acute) and

≥ 10 days following fever dissipation (convalescent) [216]. Blood samples were stored as dried

blood spots (DBS) on protein saver cards (Whatman, UK & ID Biological Systems, Greenville

SC USA) [207, 208] or centrifuged and stored as plasma.

Elution of Antibodies from DBS

DBS diluent volume was determined based on standard plasma dilutions in pilot

experiments using matched DBS and plasma obtained from our dengue traveler cohort [99].

Antibodies were eluted from DBS by submerging filter paper in diluent appropriate for

subsequent assay. DBS/diluent mixtures were incubated at 37°C for 2hrs. Resulting DBS

eluates (sera) were used in IgG, IgM, and neutralization assays, as described below.

Detection of DENV-specific IgG and IgM Antibodies

Immunoassays for detection of DENV-specific IgG and IgM antibodies were performed

as previously described [31, 39]. Sera were used at 1:100 and 1:50 in IgG and IgM ELISAs,

respectively. Cutoffs for IgM and IgG positivity were determined based on positive control

samples and, where applicable, represented as standard deviations relative to normal human

sera (NHS) controls (N = 10, pooled).

Detection of DENV Neutralizing Antibodies

Sera were assessed for the presence of neutralizing antibodies against each DENV

serotype using a flow cytometry-based neutralization assay with U937 monocytic cells stably
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transfected with DC-SIGN (U937+DC-SIGN), as previously described [213, 214]. Sera dilutions

used were 1:40 – 1:10240 in 4-fold increments. Samples were run on GUAVA easyCyte HT and

analyzed on GUAVASoft software (Millipore, Billerica MA USA). Sigmoidal curves were

generated using Prism v4.0 (GraphPad Software, La Jolla CA USA). Neut50 titer was calculated

as the dilution of a serum that neutralizes 50% of each DENV serotype. The seroconversion

threshold was set to ≥ 50% neutralization at ≥ 1:40 serum dilution.

Laboratory Confirmation of DENV Infections

To identify clinically apparent DENV infections, acute and convalescent samples were

collected from children with fever and tested by PCR and paired IgG and IgM serology, as

previously described [216].  Refer to chapter two for complete details of how inapparent DENV

infections were detected. Briefly, all children were screened for increases in neutralizing

antibody levels over the study year by testing paired baseline and 12-month follow up samples

(at dilutions of 1:40 and 1:640) by neutralization assay (Table 2.1). Cases were then confirmed

by neutralization assay with full serum dilution series (Figure 2.2). DENV infections occurring in

children who did not have a laboratory-confirmed apparent dengue fever during the study year

were classified as inapparent DENV infections. Dengue cases were further classified as primary

or secondary based on baseline DENV naïve or immune status, respectively. Notably, all DENV

cases in this study were confirmed by gold-standard neutralization assay [213, 214].

Statistical Analyses

To compare DENV IgG levels or neut50 titers between inapparent and apparent groups,

we used unpaired student’s t-tests. Unpaired student’s t-tests were also used to compare neut50

titers between IgM- and IgM+ groups. Repeated measure 1-way ANOVA with Tukey’s multiple

comparison post-test analysis was used to compare DENV IgG levels of paired baseline, acute,

convalescent, and follow-up groups. To compare breadth of neutralizing antibody responses

between groups, we performed Fisher’s exact tests, defining outcome categories as “monotypic”

(seroconversion to one serotype) and “heterotypic” (seroconversion to ≥ 2 serotypes). Pearson’s
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product-moment correlation tests were used to determine the linear relationship between

elapsed time and neutralization breadth or magnitude. A 1-way ANOVA, with Tukey’s multiple

comparison post-test, was used to compare mean # of serotypes neutralized or mean neut50

titer at baseline, acute, convalescence, and follow-up for 2° apparent cases. For some assays,

sample variability exists due to the limited quantity of sample available for the multiple and

repeat analysis of the various assays, not due to loss at follow-up. P-values represent two-tailed

analyses, unless otherwise specified. On graphs, each dot shows an individual serum sample

measured in duplicate, and, wherever applicable, means are depicted. Generation of graphs

and statistical analyses was completed using Prism v4.0.

3.3 Results

We used blood samples from a prospective pediatric dengue cohort study in Colombo,

Sri Lanka to describe temporal regulation antibody responses in children who acquired primary

and secondary dengue infections. The cohort population, study design, surveillance methods,

and epidemiological findings are detailed elsewhere [215, 216].  As previously reported, we

identified a total of 35 primary and 32 secondary/repeat infections over the 12-month study

period (Table 2.1) [216]. Forty of the infections (20 primary and 20 secondary/repeat) were

classified as inapparent, as they occurred in children who did not have a laboratory-confirmed

dengue fever during the 12 month period of active disease surveillance.

Comparison of antibody responses following primary inapparent and apparent DENV
infections

First, we set out to compare acquired DENV-specific antibody responses in children

exposed to 1° inapparent and apparent infections.  We found no difference in total DENV-

binding IgG (Figure 3.1A) or the ability of antibodies to neutralize the 4 DENV serotypes

(Figure 3.1B,C). Both 1° inapparent and apparent DENV infections induced neutralizing

antibody responses that were monotypic in some cases and heterotypic in other cases (Figure

3.1B). The magnitude of neutralization, as depicted by combined 50% neutralization across all
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DENV serotypes, induced by 1° inapparent and apparent DENV infections was also similar

(Figure 3.1C). Together, these data indicate that children experiencing 1° inapparent and

apparent infections develop similar DENV-specific antibody responses; thus regulation of

antibody responses following primary infection must be correlated with another factor, such as

time or genetics.

Temporal analysis of antibody responses following primary DENV infections

Therefore, we went on to characterize temporal regulation of neutralizing antibody

responses following primary DENV infections. With apparent infections, for which we knew the

date of fever onset, we found a significant negative correlation between time elapsed after

infection and neutralization breadth across the 4 serotypes (Pearson’s r = -0.69, P < 0.01);

children who experienced recent dengue fever had more broadly neutralizing antibody

responses than children who experienced dengue fever early in the study year (Figure 3.2A).

Although there was a trend towards a negative correlation between time elapsed after 1°

apparent infection and neutralization magnitude, it was not statistically significant (Figure 3.2C).

Following these observations, for all 1° infections, both inapparent and apparent, we

tested follow-up sera for presence of DENV IgM, which are indicative of recent (<6 months)

infection [112]. Serotype cross-neutralizing sera were more likely to be IgM-positive than

monotypic sera (P < 0.05) (Figure 3.1B) further confirming the association between recent

primary exposure and broad neutralization. Additionally, IgM-positive sera have a significantly

higher neutralization magnitude than IgM-negative sera (P < 0.01) (Figure 3.2D). Together,

these data indicate that 1° DENV infection stimulates a DENV-serotype cross neutralizing

response that evolves over time into a more monotypic response.

Temporal analysis of antibody responses following repeat DENV infections

Seeing temporal changes in antibody responses following primary infections, we set out

to measure changes in DENV-specific antibodies as a function of time following repeat DENV

infections.  We focused on apparent infections for which dates of actual infection were known.
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There was a significant increase in DENV IgG at the early convalescent stage (~2-4 weeks after

infection), compared to baseline (p < 0.001) and acute stages (p < 0.05). However, these

elevated IgG levels had declined back to pre-infection and acute levels by the end of the study

year (follow-up) (Figure 3.3A).  Neutralization curves of timed sera from apparent re-infections

revealed boosting of neutralizing antibody titer against the serotype of previous infection (data

not shown). At the convalescent stage, there was a robust increase in neutralizing antibody titer

against multiple DENV serotypes, compared to baseline (P < 0.001) (Figure 3.3B,C).  Although

the overall magnitude of neutralizing antibody was slightly reduced at follow-up, the response

remained broadly cross neutralizing (Figure 3.3B,C). Our complete analysis of neutralization

breadth in apparent repeat infections revealed a significant and stable increase in neutralization

breadth that was maintained through the end of the study (follow-up) compared to pre-infection

(baseline)  (p < 0.001) and acute (p < 0.05) levels (Figure 3.3C).  Thus, for repeat infections,

although the overall quantity of DENV-specific IgG antibody increased and then decreased back

to pre-infection/acute levels, the magnitude and breath of neutralization was increased and

maintained over the duration of the study year.

3.4 Discussion

In this study, we used blood samples collected from a Sri Lankan pediatric dengue

cohort to investigate temporal regulation of antibody responses in children exposed to

inapparent and apparent DENV infections. With respect to primary DENV infections, factors

other than pre-existing immunity, such as infecting DENV strain or serotype and/or intrinsic host

factors, must influence development of inapparent versus apparent infection [41, 141, 223, 224].

Here, we explored whether inapparent and apparent primary infections stimulated different

antibody responses in children and found no differences in DENV-specific IgG or neutralization

quality.

Our data also demonstrates that time elapsed following primary DENV infections

negatively correlates with breadth of neutralization, suggesting that neutralizing antibody
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responses evolve from cross-neutralizing to serotype-specific by 8-12 months after infection.

Others have also observed that primary DENV exposure results in cross-neutralizing/protective

antibodies that gradually become monotypic as time elapses [106, 222, 225], although

mechanisms responsible for the waning of cross-neutralization following primary DENV

infections have not been defined. We utilized IgM as a marker of time in those children who got

inapparent infections for which we did not know the specific date of infection. In doing so, we

observed a strong association between the presence of DENV-specific IgM and cross

neutralization, further associating recent infections with broad neutralization. This data also

indicates that IgM may, in part, be responsible for cross neutralization. However, IgM cannot be

the only explanation because the period of transient cross neutralization extends to 8-12

months, which is well beyond the 3-6 month window after infection when IgM is detected. The

magnitude of the neutralization response following primary infections did not wane significantly

over time as breadth did, but we saw significantly higher neutralization titers in IgM-positive sera

than IgM-negative sera. This alludes to IgM being partially responsible for high neutralization

titers following primary infection, similar to a previous study conducted by the Harris group [113],

but further studies are needed to understand what role, if any, IgM antibodies have in

neutralization and protection.

For repeat apparent infections, we were able to characterize antibody quantity and

quality before, during, and after infection.  Although we did not observe a significant rise in

DENV-specific IgG during the acute stage of infection, by 2-4 weeks after infection most

children had elevated levels of IgG compared to pre-infection levels.  Surprisingly, the elevation

of IgG after repeat infection was not stable; in fact, when follow-up samples were collected

several months after re-infection, IgG levels had declined to pre-infection and acute levels.  At

the acute stage, we observed boosting of neutralizing antibody response to previously-infecting

serotype in most repeat infection cases. At 2-4 weeks after a repeat infection, children had high

levels of cross-neutralizing antibodies.  When follow-up samples were collected several months
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later, although the overall magnitude of neutralizing antibody had slightly decreased (though not

significantly), the breath of neutralizing antibody remained significantly greater than in the pre-

repeat infection sample.  We did not follow these children longer than 12 months, but we believe

that these cross-neutralizing antibody responses are long-lived, perhaps for a lifetime. Thus,

although following a repeat DENV infection, the quantity of DENV-specific IgG returned to pre-

infection/acute levels, the quality of the neutralization response was stably altered. Our findings

show that antibody responses following primary and repeat infections are temporally regulated

in different ways. Understanding how the temporal regulation of these antibody responses

correlates with protection from subsequent DENV infection or disease will be important for

DENV vaccine development.
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Figure 3.1. Comparison of antibody responses following primary inapparent and

apparent dengue virus infections. Follow-up sera from children exposed to 1° DENV

infections were subjected to (A) IgG ELISA at 1:100 dilution and (B-C) neutralization assays at

1:40 – 1:10240 in 4-fold increments against DENV1-4. (A) Lines represent mean OD405nm

values. Means were found to be insignificant by unpaired student’s t-test. (B-C) Sigmoidal

curves were generated, and neut50 titers were calculated for each serotype. (B)

Neutralization/Seroconversion threshold was set to ≥ 50% neutralization at ≥ 1:40 serum dilution

for each DENV serotype. Groups were compared using Fisher’s exact tests, defining outcome

categories as “monotypic” (seroconversion to one serotype) and “heterotypic” (seroconversion

to ≥ 2 serotypes). (C) Total neut50 is a calculation of each serum’s combined neut50 titer across

all serotypes. Lines represent mean total neut50 values for each group and were found to be

insignificant by unpaired student’s t-test. (A-C) Each dot represents mean values of an

individual serum tested in duplicate.
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Figure 3.2. Temporal analysis of neutralizing antibody responses following primary

dengue virus infections. Follow-up sera from children exposed to 1° DENV infections were

subjected to neutralization assays at 1:40 – 1:10240 in 4-fold increments against DENV1-4.

Sigmoidal curves were generated, and neut50 titers were calculated for each serotype.

Neutralization/Seroconversion threshold was set to ≥ 50% neutralization at ≥ 1:40 serum dilution

for each DENV serotype. Neut50 is a calculation of each serum’s combined neut50 titer across

(C,D) all serotypes, (C) the three heterologous serotypes, which were not responsible for

infection, or the infecting serotype, as determined by PCR or serotype of highest neutralization

response. (B,D) Those sera were also subjected to IgM ELISA at 1:50 dilution; IgM positivity
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was determined to be 5 standard deviations over NHS (N=10, pooled). (A,C) For 1° apparent

infections, time elapsed since DENV fever was determined as amount of time between date of

acute fever onset and date of follow-up sample collection. Line was generated by linear

regression analysis. Correlation between (A) neutralization breath or (C) neutralization

magnitude and elapsed time was calculated by Pearson’s product-moment correlation test. (B)

Groups were compared using Fisher’s exact tests, defining outcome categories as “monotypic”

(seroconversion to one serotype) and “heterotypic” (seroconversion to ≥ 2 serotypes). (D) Lines

represent mean total neut50 values for each group and were compared using unpaired student’s

t-test. (A-D) Each dot represents mean values of an individual serum tested in duplicate.
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Figure 3.3. Temporal analysis of antibody responses following repeat dengue virus

infections. Paired baseline, acute, convalescent, and follow-up sera (when available) from
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repeat apparent DENV infections were subjected to (A) IgG ELISA at 1:100 dilution, and (B,C)

neutralization assay at 1:40 – 1:10240 in 4-fold increments against DENV1-4.  (A) DENV IgG

OD values were calculated as fold change with respect to baseline OD values. (B-C) Sigmoidal

curves were generated, and neut50 titers were calculated for each serotype. (B) Total Neut50 is a

calculation of each serum’s combined neut50 titer across all serotypes. (C) The

neutralization/seroconversion threshold was set to ≥ 50% neutralization at ≥ 1:40 serum dilution

for each DENV serotype. (A-C) Each dot represents mean values of an individual serum tested

in duplicate. Lines show (A) mean OD values, (B) mean total neut50 values, and (C) # of DENV

serotypes neutralized at each timepoint; timepoints were compared by 1-way ANOVA, with

Tukey’s multiple comparison post-test.
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CHAPTER FOUR

Pre-existing Neutralizing Antibody Responses Distinguish Clinically Inapparent
and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort23 24

4.1 Introduction

The most significant risk factor for severe disease is previous DENV infection; an

individual experiencing secondary (2°) infection with a heterologous DENV serotype faces

greater risk of developing severe disease than someone experiencing primary (1°) infection [69-

73]. Antibody dependent enhancement (ADE) is the leading explanation for increased severe

dengue disease risk following re-infection. ADE theory postulates that 1° DENV infection

induces cross-reactive non-neutralizing antibodies that promote entry of DENV particles into

FcᵞR-bearing cells upon 2° infection with a heterologous DENV serotype. This phenomenon is

believed to result in increased cellular viral burden and subsequent severe disease [80, 150,

221].

Many studies have been performed to examine the role of antibodies in severe dengue

disease [78, 128, 149-152]. A topic that has been less studied is the role of antibodies in

clinically inapparent versus apparent DENV infection [38, 113, 116]. The mere fact that 75% of

DENV infections occur subclinically in populations where repeat infections are highly likely [28]

points to an important role for neutralizing antibodies in protection from repeat apparent

infections. In fact, progression to or protection from dengue disease is likely dependent on the

23
Portions of this chapter are in press. | Corbett K.S., Katzelnick L, Tissera H, Amarasinghe A, de

Silva A.D., and de Silva A.M., Pre-existing Neutralizing Antibody Responses Distinguish Clinically
Inapparent and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort. Journal of Infectious
Diseases.

24
This study was funded by the Pediatric Dengue Vaccine Initiative (Bill and Melinda Gates Foundation

Grant #: 23197). Additional funding was provided by UNC Virology Training Grant (NIH Grant #:
T32AI007419) and Initiative for Minority Student Development (NIH Grant #: 5R25GM055336).
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balance between DENV enhancing and neutralizing antibodies [128]. Here we set out to test the

hypothesis that antibody responses are linked to the development of inapparent and apparent

DENV infections. We did so by utilizing sera collected from naturally-infected children in a

prospective dengue fever surveillance cohort study in Colombo, Sri Lanka [216]

4.2 Materials and Methods

Human Subjects Protocol Approval

Ethical approval for this research was obtained from the Ethical Review Committee of

the Faculty of Medicine, University of Colombo, Sri Lanka and the Institutional Research Board

(IRB) of the International Vaccine Institute, Seoul, Korea. University of North Carolina IRB

determined that this study does not constitute human subject research with respect to UNC

investigators’ involvement. Only children whose parents or legal guardians provided written

informed consent were enrolled in the study.

Cell Lines and Viruses

U937+DC-SIGN cells were maintained in RPMI media supplemented with 5% fetal

bovine serum (FBS), 1% L-Glutamine (L-Gln), 1% Penicillin/Streptomycin (Pen/Strep), 1% non-

essential amino acids (NEAA), and 0.05 mM beta-mercaptoethanol. K652 cells were maintained

in RPMI media supplemented with 5% FBS, 1% L-Gln, 1% Pen/Strep, and 1% NEAA. C6/36-

derived WHO reference DENV strains, DENV1 (West Pac 74), DENV2 (S-16803), DENV3 (CH

53598), DENV4 (TVP-376), were used in all infection-based experiments.

Sample Collection

Surveillance and sample collection methods were previously detailed [215, 216]. Briefly,

between November 2008 and January 2010, in Colombo, Sri Lanka, blood samples were

collected from 799 children, ≤ 12 years old, at enrollment (baseline) and 12 months later (follow-

up). In addition, children who experienced febrile illness were bled upon fever onset (acute) and

≥ 10 days following fever dissipation (convalescent) [216]. Blood samples were stored as dried
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blood spots (DBS) on protein saver cards (Whatman, UK & ID Biological Systems, Greenville

SC USA) [207, 208] or centrifuged and stored as plasma.

Elution of Antibodies from DBS

DBS diluent volume was determined based on standard plasma dilutions in pilot

experiments using matched DBS and plasma obtained from our dengue traveler cohort [99].

Antibodies were eluted from DBS by submerging filter paper in diluent appropriate for

subsequent assay. DBS/diluent mixtures were incubated at 37°C for 2hrs. Resulting DBS

eluates (sera) were used in IgG, IgM, and neutralization assays, as described below.

Detection of DENV-specific IgG and IgM Antibodies

Immunoassays for detection of DENV-specific IgG and IgM antibodies were performed

as previously described [31, 39]. Sera were used at 1:100 and 1:50 in IgG and IgM ELISAs,

respectively. Cutoffs for IgM and IgG positivity were determined based on positive control

samples and, where applicable, represented as standard deviations relative to normal human

sera (NHS) controls (N = 10, pooled).

Detection of DENV Neutralizing Antibodies

Sera were assessed for the presence of neutralizing antibodies against each DENV

serotype using a flow cytometry-based neutralization assay with U937 monocytic cells stably

transfected with DC-SIGN (U937+DC-SIGN), as previously described [213, 214]. Sera dilutions

used were 1:40 – 1:10240 in 4-fold increments. Samples were run on GUAVA easyCyte HT and

analyzed on GUAVASoft software (Millipore, Billerica MA USA). Sigmoidal curves were

generated using Prism v4.0 (GraphPad Software, La Jolla CA USA). Neut50 titer was calculated

as the dilution of a serum that neutralizes 50% of each DENV serotype. The seroconversion

threshold was set to ≥ 50% neutralization at ≥ 1:40 serum dilution.

Detection of DENV Enhancing Antibodies

The presence of DENV enhancing antibodies in sera was determined using a flow

cytometry-based enhancement assay with FcγRIIa+ K562 erythroleukemic cells, as previously
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described [226]. RPMI media supplemented with 2% FBS, 1% L-Gln, 1% Pen/Strep, and 1%

NEAA was used for this assay. 1:40 dilution of sera and each DENV serotype was incubated at

37°C for 1 hour. Virus was added at an MOI of 1, based on titers calculated in Vero81 cells.

Cells were added to sera/DENV mixtures and incubated at 37°C for 2 hours. Cells were washed

in media twice and incubated at 37°C for 24 hours (from the time of cells being added). As

previously described with our flow cytometry based neutralization assay [213, 214], cells were

then washed, fixed, permeabilized, and stained with 2H2-Alexa488 to detect DENV-infected

cells. 2H2-Alexa488 is a flavivirus prM-specific antibody conjugated to Alexa488. Samples were

run on GUAVA easyCyte HT and analyzed on GUAVASoft software (Millipore, Billerica MA

USA). Percentage of infection was determined. On graphs, % infection is represented at

number of standard deviations (SD) above mean % infection of NHS (N=10). Enhancement

threshold was set to ≥ 10 SD above mean % infection of NHS (N=10), based on positive

controls (N=3) for each DENV serotype.

Laboratory Confirmation of DENV infections

To identify clinically apparent DENV infections, acute and convalescent samples were

collected from children with fever and tested by PCR and paired IgG and IgM serology, as

previously described [216].  Refer to chapter two for complete details of how inapparent DENV

infections were detected. Briefly, all children were screened for increases in neutralizing

antibody levels over the study year by testing paired baseline and 12-month follow up samples

(at dilutions of 1:40 and 1:640) by neutralization assay (Table 2.1). Cases were then confirmed

by neutralization assay with full serum dilution series (Figure 2.2). DENV infections occurring in

children who did not have a laboratory-confirmed apparent dengue fever during the study year

were classified as inapparent DENV infections. Dengue cases were further classified as primary

or secondary based on baseline DENV naïve or immune status, respectively. Notably, all DENV

cases in this study were confirmed by gold-standard neutralization assay [213, 214].
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Statistical Analyses

To compare DENV IgG levels or neut50 titers between inapparent and apparent groups,

we used unpaired student’s t-tests. To compare breadth of neutralizing antibody responses

between groups, we performed Fisher’s exact tests, defining outcome categories as “monotypic”

(seroconversion to one serotype) and “heterotypic” (seroconversion to ≥ 2 serotypes).

Enhancement of inapparent and apparent groups were compared for each DENV serotype by

Mann Whitney test. Neutralization and enhancement were correlated using Pearson’s product

moment correlation tests. In the quantitative analysis of neutralization breadth, represented in

table 4.1, Wilcoxon rank sum test was used for statistical comparison between groups, as

samples were not normally distributed. For some assays, sample variability exists due to the

limited quantity of sample available for the multiple and repeat analysis of the various assays,

not due to loss at follow-up. P-values represent two-tailed analyses, unless otherwise specified.

On graphs, each dot shows an individual serum sample measured in duplicate, and, wherever

applicable, means are depicted. Generation of graphs and statistical analyses was completed

using Prism v4.0.

4.3 Results

We used blood samples from a prospective pediatric dengue cohort study in Colombo,

Sri Lanka to compare pre-existing antibody responses between children who developed repeat

clinically inapparent and apparent dengue infections. The cohort population, study design,

surveillance methods, and epidemiological findings are detailed elsewhere [215, 216].  As

previously reported, we identified a total of 35 primary and 32 secondary/repeat infections over

the 12-month study period (Table 2.1) [216]. Forty of the infections (20 primary and 20

secondary/repeat) were classified as inapparent, as they occurred in children who did not have

a laboratory-confirmed dengue fever during the 12 month period of active disease surveillance.
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Comparison of pre-existing neutralizing antibody responses of repeat inapparent and
apparent DENV infections

To compare pre-existing (baseline) antibody responses of children experiencing repeat

inapparent and apparent infections, we first looked at total DENV-specific IgG levels and found

no difference (Figure 4.1A). Then, we compared the magnitude and breadth of pre-existing

neutralizing antibody responses. Total 50% neutralization titers, across all DENV serotypes, did

not differ (Figure 4.1B). However, we found that children who got repeat inapparent DENV

infections were more likely to have heterotypic neutralizing responses at baseline compared to

children who got repeat apparent infections (p < 0.05) (Figure 4.1C). To examine whether

children who got repeat inapparent infections had experienced very recent past DENV

infections, we tested pre-infection sera for the presence of DENV-specific IgM. We did not

observe a correlation between the presence of IgM and neutralization breadth or clinical

outcome (Figure 4.1D). In fact, 17 out of the 20 (85%) baseline sera from children who had

inapparent repeat infections were DENV IgM-negative, indicating their prior DENV exposures

had not occurred in the past 6 months. These data indicate that neutralization breadth of pre-

infection antibodies has significant bearing on clinical outcome of subsequent DENV infection.

Furthermore, the difference in neutralization capacity observed comparing repeat inapparent

and apparent infections cannot simply be explained by very recent exposure, based on IgM

presence.

Comparison of pre-existing enhancing antibody responses of repeat inapparent and
apparent DENV infections

Showing a difference in pre-existing neutralization capacity between repeat inapparent

and apparent DENV infections, we wanted to determine if there was a difference in

enhancement ability as well. We saw no difference in the ability of pre-existing antibodies from

repeat inapparent and apparent DENV infections to enhance any of the DENV serotypes

(Figure 4.2A). Because it believed that a balance between enhancing and neutralizing

antibodies influences dengue disease outcome, we wanted to compare pre-existing
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neutralization to enhancement. Overall, comparing breadth of neutralization to breadth of

enhancement, we saw a correlation that was slightly negative but not significant, with a p-value

of 0.07 (Figure 4.2B). There was a slight opposite relationship between the number of

serotypes a child neutralized with the number of serotypes that child enhanced. Suspecting

actual levels of neutralization and enhancement may be more telling, we compared pre-existing

neutralization magnitude to enhancement magnitude. For each serotype, with the exception of

DENV4, there was a negative correlation between neutralization and enhancement magnitudes

(DENV1, p < 0.05 | DENV2, p < 0.001 | DENV3, p < .001) (Figure 4.2C-F). For DENV1-3, the

higher a serum’s pre-existing neutralization titer, the weaker that serum’s ability to enhance the

same serotype. These data indicate that enhancing ability of pre-infection antibodies does not

have significant bearing on fever outcome of subsequent DENV infection, in the way that

neutralization breadth does.

Quantitative analysis of differences in neutralizing antibody responses between types

We conducted a direct analysis of the difference in neutralization of DENV types to delve

further into neutralizing antibody responses in the cohort (Table 4.1).  Breadth of response was

measured as the difference between the titer of the dominantly neutralized DENV type,

assumed to be of the previous infecting type, and the other three types. Similar to our

aforementioned findings, we determined that children experiencing repeat apparent DENV

infections had more monotypic baseline neutralizing antibody responses (dominant responses

to a single DENV serotype) than those who acquired repeat inapparent infections (p < 0.05).

Interestingly, a significant difference in post-infection breadth was also observed between

inapparent and apparent repeat infections; apparent infections were observed to develop more

balanced responses following infection than inapparent infections (p < 0.05).  Thus, children

whose repeat infections were inapparent had relatively conserved patterns of neutralization at

baseline and follow-up, while children whose repeat infections were apparent transitioned from

mostly type-specific neutralization before infection to broad neutralization after their repeat
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DENV exposure. The degree of breadth in this sample was independent of the magnitude of the

best neutralized DENV type prior to infection.  Further, inapparent and apparent repeat

infections had similar maximum titers at baseline and follow-up.  Notably, after the study year,

both inapparent and apparent repeat infections had higher titers when compared with primary-

infected children (p < 0.05).

4.4 Discussion

Many studies have focused on how antibodies may enhance DENV infections and

increase risk of developing DHF [78, 128, 149-152].  While it is well documented that most

DENV infections are clinically-inapparent [28], factors responsible for inapparent infections have

not been thoroughly investigated.  Here, we quantified the magnitude and relative breadth of

neutralization before repeat infections. While pre-existing neutralization magnitude did not seem

to affect dengue disease outcome, we observed a strong association between breadth of

neutralization and manifestation of fever. Children who got repeat inapparent infections had

more broadly-neutralizing pre-existing DENV antibodies than children who got apparent re-

infections. This is perhaps the most interesting finding of this study. It demonstrates an

association between breadth of pre-existing DENV neutralizing antibodies and the likelihood of

developing an inapparent versus apparent infection; thus, alluding to an important role of pre-

existing neutralizing antibodies in protection from clinical symptom manifestation in repeat

dengue infections.

There are different non-exclusive possible explanations for this association.  Recent

studies based on careful analysis of serial first, second, and third DENV infections in Nicaragua

and models based on large dengue data sets from Thailand indicate that the period of cross

protection after a primary infection can be up to 2 years after infection [121, 227]. Children in our

study who had secondary inapparent infections may have been more recently exposed to their

first infection compared to children who had secondary apparent infections. Our data showing

IgM absence in baseline samples of nearly all repeat infections (both inapparent and apparent)
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demonstrates that these cases were not in children within the first 6 months of their first

infection. It remains possible that children who had secondary inapparent infections were still

within the 1-2 year window of cross-protection unlike children who had secondary apparent

infections who were well beyond this period of cross protection.

Another possibility is that children experiencing repeat apparent infections were exposed

to secondary infections whereas most inapparent cases resulted from tertiary or quaternary

(post-secondary) exposure. Thus, the broadly neutralizing baseline responses may be due to 2

or more previous DENV infections whereas the children with monotypic responses may have

only been exposed to a single serotype. Indeed, a recent study utilizing cohort samples from

Iquitos, Peru demonstrated that individuals experiencing post-secondary infections were more

likely to develop inapparent infections compared to people exposed to “true” second infections

[116]. It is worthwhile to note that while it is possible that children who appeared to have

inapparent second infections were actually having post-secondary infections, the degree of

neutralization breadth we observed prior to infection in those cases was not significantly

different from children with primary infections (Table 4.1).  It is likely that proximity to previous

infection and number of previous infections, together with person-to-person variation, all

influence whether someone will experience inapparent or apparent DENV re-infection.

We explored the balance of neutralization and enhancement and found that magnitude

of neutralization to DENV1-3 was negatively correlated with magnitude of enhancement

responses. However, children who got repeat inapparent and apparent infections had similar

levels of pre-existing DENV enhancing antibodies. Together with neutralization data, this data

may mean that neutralizing antibodies play a role in protection against DF, but enhancing

antibodies do not play a role in inducing DF. This would go along with the field’s idea about

ADE; enhancing antibodies are not thought to induce mild DF but severe DHF. Even in the first

study that correlated DHF with secondary infection, there was no difference between the

occurrences of DF in primary or secondary cases [69]. Our study was not designed to explore
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questions about the role of antibodies in DHF, which is typically seen in less than 5% of

apparent dengue cases and 1% of dengue cases overall [228].  Even with rising incidence of

severe dengue in Sri Lanka [39], our cohort size of 799 children was too small to obtain the

number of DHF cases required for such analysis [8].

The role of antibodies in inapparent infections is a neglected topic and increasingly

relevant as dengue vaccines enter clinical trials.  Recent trial results of a highly-anticipated

DENV vaccine candidate signify the importance of understanding the role pre-existing DENV

neutralizing antibodies play in protection from subsequent dengue disease and clinical outcome

[197]. Our findings point to an important role for heterotypic neutralizing antibodies in protection

from dengue disease.  Further studies are needed to better define the protective properties of

these cross-neutralizing antibodies.
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Table 4.1. Quantitative analysis of breadth of neutralizing antibody responses25

Primary Infections Inapparent Apparent P value

Baseline

Follow-up

Median 25th 75th Median 25th 75th Median 25th 75th

3.21 2.20 4.01 5.10 3.53 5.66

3.17 1.74 4.91 1.49 0.90 2.82

0.0326

0.04263.9127 2.52 4.51

4.39 3.73 6.69

Repeat Infections

Maximum Titer28

Baseline 4.39 3.55 5.40 4.58 3.78 5.10 0.5726

Follow-up 6.48 5.61 7.26 5.87 5.03 6.67 0.0229

25Breadth of response expressed as log2(reciprocal neut50 titer/10), is a measure of the average difference in titer between the DENV

serotype best neutralized by a serum (the maximum titer) and the titers for each of the other three DENV serotypes.  A value close to
0 indicates the serum neutralizes all DENV types similarly, while higher values indicate that the serum neutralizes one DENV type
significantly better than the other three types.

26Wilcoxon rank sum test for difference between secondary inapparent and apparent infections.

27Wilcoxon rank sum test for difference in breadth between primary infections and baseline secondary inapparent infection was not

significant (p≅0.3).

28Maximum titer for each individual, regardless of the infecting type, is shown.

29Kruskal-Wallis test for difference in maximum titer between primary infections, inapparent and apparent repeat infections.
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found to be insignificant by unpaired student’s t-test. (B-D) Baseline sera were subjected to

neutralization assays at 1:40 – 1:10240 in 4-fold increments against DENV1-4. Sigmoidal

curves were generated, and neut50 titers were calculated for each serotype. (B) Total neut50 is a

calculation of each serum’s combined neut50 titer across all serotypes. Lines represent mean

total neut50 values for each group and were found to be insignificant by unpaired student’s t-test.

(C-D) Neutralization/Seroconversion threshold was set to ≥ 50% neutralization at ≥ 1:40 serum

dilution for each DENV serotype. (D) Baseline sera were also subjected to IgM ELISA at 1:50

dilution; IgM positivity was determined to be 5 standard deviations over NHS (N=10, pooled).

(C-D) Groups were compared using Fisher’s exact tests, defining outcome categories as

“monotypic” (seroconversion to one serotype) and “heterotypic” (seroconversion to ≥ 2

serotypes).
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Figure 4.2. Pre-existing enhancing antibody responses of repeat inapparent and apparent

dengue infections. Baseline sera (when available) from repeat DENV infections were

subjected to enhancement and neutralization tests. (A) Baseline sera were used in

enhancement assay at 1:40 dilution. Percentage of infection was represented at number of

standard deviations (SD) above mean % infection of NHS (N=10). Box and whiskey plots were

generated for each group. Inapparent and apparent groups were compared for each DENV
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serotype and found to be insignificant by Mann Whitney test. (B) Baseline sera were subjected

to neutralization assays at 1:40 – 1:10240 in 4-fold increments against DENV1-4. Sigmoidal

curves were generated, and neut50 titers were calculated for each serotype.

Neutralization/Seroconversion threshold was set to ≥ 50% neutralization at ≥ 1:40 serum dilution

for each DENV serotype. Enhancement threshold was set to ≥ 10 SD above mean % infection

of NHS (N=10). (C-F) Neut50 of each serum against (C) DENV1, (D) DENV2, (E) DENV3, and

(4) DENV4 was compared to enhancement ability against the same serotype. (B-F)

Neutralization and enhancement were compared by Pearson’s product moment correlation test.

If no p-value is assigned, statistically analysis revealed an insignificant outcome.
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CHAPTER FIVE

Conclusions, Discussion, and Future Directions

5.1 Overview of Research Purpose

Research Significance

Dengue virus is estimated to infect about 390 million people per year, representing the

greatest epidemiologic and economic burden of all mosquito-borne viruses in the world [24, 28].

Dengue disease manifests with a range of clinical symptoms that WHO traditionally groups into

inapparent and apparent infections. Inapparent infections are subclinical asymptomatic

infections; apparent infections present as DF, DHF, and DSS [35]. There are implications that

both viral and host factors play a role in facilitating severe dengue disease outcome [31, 38, 42,

43]. Antibody dependent enhancement is an immunopathological phenomenon thought to

contribute most to dengue disease severity. This theory was formed in the 1980s [69] and has

since been intensely studied [74, 78, 79, 88, 90-92, 94, 96, 105, 153, 226]. ADE is essentially a

mechanism by which weakly-neutralizing cross-reactive antibodies bind to heterotypic DENV

particles upon secondary infection, facilitating the uptake of those DENV particles into FcγR-

bearing monotypic cells. Through various mechanisms, viral burden is increased and severe

DHF ensues. As with many of the other immune responses to DENV, human antibody

responses are considered a double-edged sword of sorts. On one side, there are enhancing

responses that increase pathogenesis, and on the other side there are neutralizing responses

that induce protection. There is a breadth of research detailing both sides of the antibody

double-edged sword, but there is still plenty that we do not understand [74, 77, 78, 88, 90-92,
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94, 96, 101-103, 105, 153, 226]. Our lack of understanding about DENV antibody responses

was solidified when a prospective DENV vaccine candidate revealed an unpredicted lack of

protection following natural challenge [162, 179-182, 184, 186].

Research Approach

A recent review eloquently pronounces 6 reasons why vaccine researchers could benefit

from lessons taught by human cohort studies [138]. To date, prospective human cohorts from

around the world have provided us with a glimpse of understanding about antibody responses

[64, 70, 118, 121, 131, 138, 140, 142, 143, 148, 152, 154, 155, 160, 168, 182, 197, 229],

proving that studying natural DENV infections in human cohorts is a beneficial method of

answering some of the field’s most daunting questions. Our approach piggybacks on the

relevance that human cohorts have to the dengue field. In collaboration with PDVI and

investigators from the Ministry of Health in Sri Lanka, our group completed a prospective

dengue study of 799 children, ages 0-12 years, who reside in Colombo, Sri Lanka. Using

samples collected from the cohort, we addressed the field’s three overarching questions about

human antibody responses to DENV infection:

(1) What are the differences between antibody responses induced by primary versus

secondary infections?

(2) What role do enhancing antibodies play in disease severity?

(3) What role do neutralizing antibodies play in protection from dengue disease?

In this chapter, I will discuss how our findings fit into the context of those three

questions, suggest future directions for the Sri Lankan cohort, and close with an overview of the

relevance of this work to the field and vaccine development in particular.

5.2 Introduction to the Sri Lankan Pediatric Cohort

Sri Lankan Pediatric Cohort Ideal for Studying Dengue Virus Antibodies

Before delving into the specifics of antibody responses in the Sri Lankan cohort, we first

had to characterize DENV cases. Over the course of a year, between 2008 through 2009, 799
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children were followed for fever occurrence. Children were bled at enrollment (baseline), and

one year later (follow-up). If fever occurred, they were bled at the onset of fever (acute) and ≥

10 days following fever dissipation (convalescent) [215, 216]. The level of sero-prevalence at

baseline in our cohort was 53.1%, meaning half of the children entered the cohort having

already been exposed to DENV (Table 2.3). For those children who had been exposed to only

one DENV serotype, as shown by a monotypic neutralization response at baseline, we

determined that all DENV serotypes had previously been introduced to this population (Table

2.4). Also, during the study year, children who got repeat infections were exposed to DENV1-4.

The high level of initial sero-prevalence to all DENV serotypes and the circulation of all four

DENV serotypes during the study year made this population ideal for studying pre-existing

antibody responses. There is previous data linking specific serotypes to severe DENV

epidemics and correlating sequence of infections to more severe 2° infections [32, 36-40]. A

pitfall with our study is that clear conclusions based on serotype specificity of antibody

responses could not be made; however, this means that our findings may be generalizable

across antibody responses to multiple DENV serotypes.

Comparison of Inapparent to Apparent Infection Ratios Across Cohorts

In all, we characterized four classes of DENV infections: (1) 1° inapparent (N=20), (2) 1°

apparent (N=15), (3) repeat inapparent (N=20), and (4) repeat apparent (N=12). The inapparent

to apparent ratio was 1.48:1 (Table 2.5) [216]. There was no difference between the number of

primary apparent and repeat apparent cases. Depending on cohort location and severity of the

DENV season being monitored, cohorts from around the world have shown inapparent to

apparent ratios ranging from 0.9:1 [200] through 13:1 [138, 139] (Table 1.2) [139]. Based on

what we know about the prevalence of inapparent infections [28], the global ratio would be

inferred to be about 3:1. Our ratio represents a few inherent factors of our cohort. Our apparent

cases do not include DHF or DSS due to the small number of enrollees. 2008-2009 may have

been a year for increased amount of DF cases in Sri Lanka, bringing the ratio closer to 1:1.
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Evidence from Sri Lanka [39], and all over the world [230-238], shows that severe epidemics

occur in temporal and spatial waves so we can assume that this ratio will change on an

epidemic by epidemic basis. Unlike many other cohorts, particularly those recording more

apparent cases than inapparent cases, our surveillance methods were not hospital- or school

absentee-based. Something is to be said about a possible skewing towards apparent cases if

methods include enrolling individuals who present symptoms at a hospital or children who are

absent from school due to illness.

Importance of Using Neutralization Assays to Characterize Dengue Cases

For those cohorts that have large inapparent to apparent ratios, false characterization of

inapparent cases may have occurred due to assay sensitivity and specificity. We are confident

that the burden of DENV we detected in our cohort is true because we utilized a gold-standard

neutralization assay to detect repeat inapparent cases. Our FACS-based neutralization assay is

a high-throughput 96-well plate method that allowed us to screen baseline and follow-up

samples from all children for increases in neutralization capacity (Table 2.1). Use of such an

assay is however tedious; therefore many cohorts also utilize haemagglutination inhibition (HAI)

IgG capture ELISA and HAI assayassays to detect secondary inapparent infections [139, 200].

have been shown to detect 1° and 2° DENV infection comparably [239]. We tested the

reliability of IgG ELISA to detect repeat inapparent DENV infections in our cohort. Using

samples collected one year apart, we found that sensitivity and specificity of detecting repeat

infections by IgG were 62.5% and 88.5%, respectively. These statistics were higher for primary

infections, due to the positive predictability of IgG ELISA to simply detect seroconversion rather

than antibody boosts. Using a virus-like particle neutralization assay [240] with samples from the

Nicaraguan dengue cohort[139], researchers show similar sensitivity and specificity for HAI to

detect 2° infections [Harris, Eva. | personal discussion at Dengue Vaccine Consultation Meeting

2013]. That said, the number of inapparent infections in many cohorts may be overestimated.

Some other cohorts present an advantage having collected samples in closer time intervals,
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from which basic HAI or IgG assays may be able to detect increases in DENV-specific antibody

capacity. But, our data suggest that it is worthwhile to always characterize DENV cases using

gold-standard neutralization assays. True estimates of the global burden of DENV, stemming

from properly characterized cohorts, will be important when determining vaccine implementation

strategies.

What Understanding True Burden of Dengue Infection in Sri Lanka Means to the Field

The Asian tropics represent a large portion (67%) of the global DENV infection burden.

37% of that burden is said to come from the Indian subcontinent alone [28]. Sri Lanka, a country

in the Indian subcontinent, has a high prevalence of DENV infection as evidenced by our

aforementioned sero-prevalence data. Two million DENV infections are said to have occurred in

Sri Lanka in 2010, based on surveillance cases reported to the WHO and cartographic

estimates of global burden [28]. How accurate is that published estimate of 2 million infections in

Sri Lanka per year? How accurate is the estimate of DENV burden for the entire Indian

subcontinent? These are questions that only intense surveillance and detection of inapparent

cases in a cohort, like the PDVI cohort, can answer. Data on Sri Lankan DF cases shows that

even in highest incidence, 15,000 DF cases occurred annually through 2009 [204, 241]. Our

characterization of inapparent infections allowed for us to estimate the true burden of DENV

infections on the Indian subcontinent, for the first time. It will be interesting to see how our data

influences future estimates of the burden of DENV in Sri Lanka.

5.3 What are the differences between antibody responses induced by primary
versus secondary infections?

Current Understanding of Temporal Regulation of Dengue Virus Antibody Responses

Having fully characterized primary and repeat DENV infections in the cohort, we set out

to answer the question: What are the differences between antibody responses induced by

primary versus secondary infections?. Primary and secondary infections are known to induce

different antibody responses (Figure 1.5). Primary infections induce IgM responses that last up
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to 6 months [112] and IgG responses that are lifelong [120]. We did not analyze IgG responses

over time following 1° infections. Recently, when a group looked at IgG avidity over time, they

showed IgG avidity waned after primary infections in positive correlation with decreasing

neutralization breadth [113].   We found that following repeat infections, IgG responses

fluctuated to some extent. From what we currently understand, secondary infections induce IgM

responses that are shorter-lived and less robust than primary infections. After a secondary

infection, IgG is boosted to a high level that is thought to last indefinitely [113, 114]. Our data

shows that the IgG boost that is thought to occur after a secondary infection does in fact occur,

particularly through convalescence (Figure 3.3). But following the convalescent stage, IgG

antibodies return to baseline levels. This means that increases in DENV IgG after repeat

infection are is not lifelong, as previously predicted. This may explain why IgG ELISA cannot be

used to detect repeat inapparent infections. After a primary infection, IgG levels are increased;

this is the level that we see at baseline. After 12 months, even if a dengue infection occurs, the

boosted IgG responses have waned back to baseline levels. Therefore looking for significant

increases in baseline and follow-up samples do not reveal an repeat inapparent infection.

Predictions about Waning of Cross-protection

Following 1° infections, the period of cross-protection is predicted to be anywhere from 3

months, as shown in Sabin’s human challenge studies [119], up to 2 years, as shown in

naturally-infected people [118, 121]. In our cohort, cross-neutralization is defined as having

sero-positivity to ≥ 2 DENV serotypes. Using linear regression analysis, we show neutralization

breadth wanes with time elapsed after 1° DENV infection (Figure 3.2A). At 10 months post-

primary infection, there were still two children who exhibited cross-neutralization, one of which

neutralized all serotypes. In the period of 10-12 months, neutralization breadth becomes specific

to one DENV serotype. Perhaps, the cross-neutralization capacity of the remaining broad-

neutralizers lasts up to 2 years like shown in previous cohorts [118, 121], but we will have to

follow the children for longer to determine this to be true.
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Interestingly, the period of cross-protection, in our study and others, lasts beyond the

known period of IgM presence. That said, other studies have correlated IgM with cross-

protection [113]; we did as well (Figure 3.2B). IgM positivity even correlated with neutralization

titers (Figure 3.2D). This has been shown previously, as well [113]. Together, this data would

suggest a role for IgM antibodies in early cross-neutralization, but there must be other types of

antibodies, besides IgM, responsible for cross-protection beyond the 6 month mark. Following

post-secondary infections, lifelong cross-protection is insinuated [116].

What we saw with neutralization responses following repeat infections was markedly

different than what we saw with repeat IgG responses. Also, neutralization capacity following re-

infections did not wane, as it did following 1° infections, but remained steady through the end of

the study year (Figure 3.3B-C). This goes along with what we believe about protective antibody

responses following secondary infections [116].

Neutralization Magnitude versus Neutralization Breadth

Characterizing neutralization breadth is a standard way by which neutralization capacity

is determined [116]. But, there is another important aspect of neutralization capacity…

magnitude. There are disagreeing data on whether pre-existing neutralization titers correlate

with protection from subsequent DENV infection [152, 155] [Buddhar, Darunee, et al. |

unpublished data submitted to PLoS Neglected Tropical Diseases]. Therefore, we felt that it was

worthwhile to look at neutralization magnitude in our cohort. Before discussing our findings, it

must be noted that there are pitfalls of drawing conclusions from neutralization titers. To date,

no specific neutralization titer has been pinpointed as a correlate for protection. Because there

are four DENV serotypes, it is quite possible that such a correlate would be different based on

serotype, and even genotype. Recent failure of a dengue vaccine to protect against a particular

DENV2 genotype draws eminent concern to that point [162, 180]. Also, researchers have their

own favorite methods for detecting DENV neutralization [155, 214, 240, 242]. Variability across

assays, and even within assays on a day-to-day basis, creates concerns about conclusions
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drawn without use of an acceptable number of experimental replicates. All of these things could

be reasons why previous data is conflicting.

To satisfy some of those concerns, our FACS-based DENV neutralization assay has

been compared to a standard plaque-based neutralization assay [213]. Additionally, in this

study, we tested the assay for reproducibility in detecting DENV infections (data not shown),

and each confirmed DENV case was tested at least twice to determine neut50 titers. We first

showed that following 1° infections, while there was a trend towards negative correlation

between neutralization breadth and time elapsed, neutralization titers did not decrease

significantly over time like neutralization breadth (Figure 3.2C). It is worthwhile to note that the

most significant of these correlations was that between neutralization titers of serotypes of non-

exposure and time elapsed. Essentially, that means that magnitude of cross-neutralizing

responses wanes quicker than magnitude of type-specific responses.

In the acute phase following repeat infections, we noticed neutralization magnitude

increased to only one serotype, likely the serotype of previous infection. There was an

abundance of strong broadly-neutralizing antibodies at the convalescent stage (Figure 3.3)

(some data not shown | Corbett, Kizzmekia, et. al | manuscript in press in Journal of Infectious

Diseases). Another study showed the same type of robustly increasing neutralization through

the convalescent stage of infection [113]. At follow-up, we could not determine the relative

contribution of neutralization capacity as it related to infection history so we cannot definitively

state that the previously infecting serotype is responsible for the highest boosted response. But

overall, the temporal trends of neutralization magnitude seen after repeat infections may be

associated with original antigenic sin, which has been described for DENV infections [243-247].

5.4 What role do enhancing antibodies play in disease severity?

Using K562 Cells to Determine DENV Enhancement

We then asked: What role do enhancing antibodies play in disease severity? This

question is of particular interest with the plethora of data showing DENV enhancing antibodies
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can facilitate the uptake of DENV particles into cells to cause an increased viral burden and

severe disease [74, 78, 79, 88, 90-92, 94, 96, 105, 153, 226]. We subjected baseline samples

from children who acquired repeat DENV infections to a K562 cell-based enhancement assay

[226]. This is a pitfall of our study because these cells only contain FcγRIIa, which is considered

the stimulatory FcγRII isotype [86, 226]. Without the presence of its inhibitory counterpart,

FcγRIIb, FcγRIIa could provide a biologically-irrelevant idea of true DENV enhancement. U937

cells, which contain FcγRIIa and FcγRIIb, were tested but did not induce significant enough

enhancement, perhaps due to technical issues. Primary human monocytes, which we also

tested (data not shown), are the most relevant cell type to test DENV enhancement, but lack of

availability of large batches of these cells called for a more feasible alternative in order to test all

of our samples repetitively.

Dengue Antibody Dependent Enhancement and Mild Disease

We didn’t find a difference in the ability of pre-existing antibodies from repeat inapparent

and apparent infections to enhance DENVs (Figure 4.2). Without any severe DHF or DSS

cases, we cannot draw any strict conclusions about the role of enhancing antibodies on dengue

disease severity as a whole. What we can say is that enhancing antibodies did not play a role in

inducing DF in our cohort. We were not surprised by this result because enhancing antibodies

are not thought to differentiate between inapparent and mild DF [69]. Despite this finding, we

were able to negatively correlate enhancement to neutralization; the balance between

pathogenic and protective antibody responses which will be discussed later in the chapter.

5.5 What role do neutralizing antibodies play in protection from dengue disease?

Protection from Apparent Dengue Infection Facilitated by Cross-Neutralizing Antibodies

From a vaccine development perspective, it is of particular importance that we

understand the role neutralizing antibodies play in protection from dengue disease. In that

aspect, the fact that there were no DHF or DSS cases in our cohort presented an opportunity to

examine fine-tuned protection between inapparent and mild DF cases. Starting with simple pre-



83

existing DENV-binding IgG antibody responses, we did not see a difference between repeat

inapparent and apparent cases (Figure 4.1A). Our IgG ELISA uses a 1:1:1:1 mixture of

DENV1-4 as antigen [31, 39]. There is an abundance of cross-reactive antibodies after DENV

infections. Recent studies have shown that most of these cross-reactive antibodies are weakly-

neutralizing and even sometimes enhancing [76, 105]. By accessing DENV binding to our

antigen mixture, OD readout was just a gauge of DENV cross-reactivity, not a gauge of actual

antibody function.

As shown in chapter 3, cross-reactive IgG after 1° infections may exist, but neutralization

capacity wanes. That known, we tested baseline sera from children who got repeat infections for

DENV-specific neutralization. We didn’t find a difference in neutralization magnitude (Figure

4.1B). This finding goes along with previous findings that absolute DENV neutralization titers

cannot be used a correlate of protection [152, 155]. We did however find that neutralization

breadth correlated with clinical outcome of dengue infection. Children who got repeat inapparent

infections had more broadly-neutralizing pre-existing DENV antibodies than children who got

apparent re-infections (Figure 4.1C).

Quantitative Analysis of Breadth of Neutralizing Antibody Responses

We quantified neutralization breadth by inserting our neutralization data into a

cartography algorithm for determining distance between the best-neutralized DENV serotype

and other serotypes; similar methods have been used for influenza studies [248]. To better

imagine the concept, think of the 4 DENV serotypes being placed on a map based on their

antigenic distances from each other. With the algorithm, each serum tested was placed within

that map based on serotype-specificity of neutralization titers. Type-specific sera clustered

around one serotype and broadly-neutralizing sera clustered in the middle of multiple serotypes.

The placement of groups of sera on said hypothetical map is represented by the numbers

shown in table 4.1. A value closer to 0 essentially means the sera reside in the middle of the

map and neutralize all DENVs similarly.
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There are pitfalls to our method though; most notable is that we assumed the DENV

serotype that a person neutralized best was the previously infecting serotype. That assumption

may not hold true knowing what we know about the differential ability of DENV serotypes to be

neutralized in the neutralization assay [214]. For those sera that neutralize more than one

serotype, it is difficult to tell which serotype is responsible for the infection. To eliminate much of

our concern about this, we compared PCR data from acute infections with neutralization titers at

follow-up, following 1° apparent infections; we found our predictions of infecting serotypes

based on neutralization titers held true most of the time (data not shown). Another pitfall is the

use of a neut50 titer of 20 in instances when a serum did not neutralize a serotype. Although the

lowest dilution we used in our assays was 1:40, we chose 1:20 based on it being the lowest

dilution typically used in neutralization assays [213, 214], but there is no biological basis to

justify this cutoff.  Use of ≤1:40 dilutions was not feasible due to limited DBS availability. Pitfalls

aside, our quantitative analysis further exemplified what we saw when we looked at

neutralization breadth: children who got repeat inapparent infections had pre-existing DENV

antibodies that were more active against all DENV serotypes than children who got apparent re-

infections (Table 4.1). With that, we propose that this algorithm be used as a secondary method

to determine neutralization breadth in studies of this nature.

Explanations for Correlation between Breadth of Neutralization and Dengue
Disease Outcome

Our findings demonstrate an association between breadth of pre-existing DENV

neutralizing antibodies and the likelihood of developing an inapparent versus apparent infection.

For only the second time in the field has a role for pre-existing neutralizing antibodies in

protection against apparent dengue infections been shown. In the first study, individuals were

extensively followed in Peru; 1°, 2°, and post-secondary infections were characterized [116].

This study showed that breadth of pre-existing neutralization antibodies correlated with

protection from post-secondary infections, but not 2° infections. This brings me to a particularly
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relevant point when thinking about what our data mean about protection. Because we have yet

to decipher the children’s infection histories, it is impossible for us to differentiate between 2°

and post-secondary infections. We tried to determine prior infection history based on

neutralization profiles of baseline samples, but this method did not produce clear results (data

not shown). The only indication we have that these infections are “true” secondary infections is

that the degree of neutralization breadth observed at baseline for repeat cases was not

significantly different from the degree of neutralization breadth at follow-up for 1° cases (Table

4.1).

The other non-exclusive possibility for our finding is that individuals who have cross-

neutralizing antibodies at baseline got their previous infection recently, within the window of time

that cross-neutralization exists. Experimentally, we could not determine if previous infections

occurred in the entire 1-2 year window of cross-protection, but we utilized IgM as a marker for

determining recent previous infections, within the last 6 months. There was no correlation

between neutralization breadth and IgM response in baseline samples from these children

(Figure 4.1D). This data suggests that recent infection within the last 6 months cannot be used

to explain the association between broad-neutralization and protection. The simplest

explanation for this association is that some individuals inherently induce long-lived broadly

neutralizing responses after primary infections. Our data showing broad-neutralizing antibody

responses up to 10 months after some primary infections would suggest that this as a

possibility. All possibilities considered, it is most logical that a combination of time since

previous exposure and infection history influence one’s ability to neutralize multiple serotypes,

consequently influencing protection from apparent dengue disease.

Balance Between Pathogenic and Protective Antibody Responses

Progression towards or protection from DENV diseases is likely a matter of the balance

between enhancing and neutralizing antibody responses [115]. Comparisons between

neutralizing and enhancing antibodies have been made in mouse models and other human
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cohorts [137, 249, 250]. We tested the theory of pathogenic versus protective responses using

samples from our cohort. For DENV1-3, as a child’s neutralization capacity increased, their

ability to enhance that serotype decreased (Figure 4.2C-E). We did not see this trend with

DENV4 (Figure 4.2F) which may be due to the fact that the ability of these sera to neutralize

DENV4 was typically low. The negative correlation we see with neutralization and enhancement

in this cohort justifies the idea that neutralizing and enhancing antibodies are completely

different antibodies. An analysis of the correlation between neutralization titer against

heterotypic serotypes and enhancing ability would have been nice to further solidify this idea. In

just, we found a correlation between neutralization breadth and protective disease outcome, but

did not find a correlation with enhancement ability and clinical disease outcome. Therefore, with

regards to differentiating between inapparent and mildly apparent dengue cases, pre-existing

neutralization capacity is more telling.

5.6 Snapshot of Research Findings

In summary, we drew the following major conclusions from our studies:

(1) What are the differences between antibody responses induced by primary versus

secondary infections?

a. IgG ELISA was determined to be unreliable for detecting repeat DENV infections

utilizing paired samples collected 12 months apart.

b. Primary inapparent and apparent DENV infections result in similar IgG and

neutralization capacity.

c. After 1° infections, neutralization capacity is negatively correlated with time

elapsed since DENV exposure.

d. Following repeat DENV infections, IgG levels increase during a brief span around

febrile illness, but eventually decline to baseline levels. On the other hand,

neutralizing antibody capacity increases and remains steady.

(2) What role do enhancing antibodies play in disease severity?
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a. There was no correlation between pre-existing enhancement capacity and

inapparent or apparent outcome following repeat infection.

b. Pre-existing neutralization capacity and enhancement ability were negatively

correlated.

(3) What role do neutralizing antibodies play in protection from dengue disease?

a. Repeat inapparent infections are more likely to occur in children with broadly-

neutralizing pre-existing antibody responses than repeat apparent infections,

indicating an association between neutralization breath and protection from

apparent DENV infection.

b. Breadth of pre-existing neutralizing antibodies is not correlated with IgM level,

and thus not indicative of previous DENV exposure within the last 6 months.

Able oFuture Directions

Dissecting Infection History of Children with Repeat DENV Infections

Our findings leave a wide-open arena for exploration of specific mechanisms of pre-

existing neutralizing antibody responses to DENV infections as they correlate with protection. It

will be important to dissect infection history of children with repeat DENV infections to determine

whether children exhibiting broadly-neutralizing baseline antibodies have been previously

exposed to dengue more than once. This will also allow us to test the hypothesis that serotype

specificity of prior DENV exposure influences neutralization/protection or lack thereof (perhaps

enhancement) upon repeat exposure. As aforementioned, neutralization responses at baseline

do allow us to decisively determine infection history.

Therefore, we propose a couple of options for dissecting infection history using samples

from our cohort. One method is to deplete baseline sera with native dengue virions of particular

serotypes and then assess neutralization capacity of depleted sera [77]. If a serum contains

type-specific neutralizing responses to ≥ 2 serotypes following depletion, that individual has

been exposed to DENV multiple times prior to enrollment. The other method is to use a
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blockade of binding (BoB) assay. In BoB assays, DENVs are captured on 96-well plates,

experimental sera are allowed to bind to DENVs, then a flourochrome-conjugated type-specific

mAb is added. If antibodies in a serum block binding by the mAb that means that there are type-

specific antibodies in said serum. If a serum contains type-specific responses to ≥ 2 serotypes

in the BoB assay, that individual has been exposed to DENV multiple times prior to enrollment.

Dissecting Epitope-Specificity of Pre-existing Antibodies

One could take this analysis a step further to dissect epitope-specificity of pre-existing

antibodies in children with repeat DENV infections, testing the hypothesis that quantity of pre-

infection antibodies that target prM and E fusion loop epitopes (highly-conserved regions)

correlate with cross-neutralization [104, 106, 222]. Conversely, we can test the hypothesis that

quantity of pre-infection antibodies that target the EDI/II region correlates with type-specificity

[76, 77, 102, 103]. A strategy by which to pursue this direction was previously published [106].

Briefly, anti-FL antibodies were determined by capture ELISA using FL-mutated VLPs. The

concentration of anti-FL antibodies in each serum was correlated with neutralization capacity. A

similar approach can be used for all relative epitopes of DENV. Also we could generate huMAbs

from PMBCs collected from these children, as previously described [74]. We could then use

neutralizing huMAbs to apply pressure to DENVs in culture to generate escape mutants, which

will allow us to map epitope-specificity the huMAbs [76].

Following Cohort into Year Two of Sample Collection and Possibly into a Vaccine Trial

Additionally, a second year of samples was collected from 2009 through 2010, which we

did not completely analyze for the purposes of this dissertation. Based on our own preliminary

analysis and knowledge that a wave of severe DENV1 replaced DENV2/3 in Colombo, Sri

Lanka during that year [33], we suspect many interesting findings will come from applying the

specific aims from this dissertation to those samples. The most interesting experiments would

be a detailed analysis of burden of DENV infection in year 2, from which, we could compare

inapparent to apparent infection ratios across two markedly different epidemics and provide the
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field with a longer-termed analysis of the burden of DENV infection in Sri Lanka. We could also

determine, once infection history is assessed, if there is a particular level of immunity to certain

serotypes that render 2° DENV1 infections more or less severe. Cohorts like this provide the

ideal setting for vaccine trials because the participants’ previous DENV immunity is mapped out

in detail. Introducing a dengue vaccine candidate into this cohort could provide the field with an

understanding of how pre-existing immunity affects vaccine efficacy.

5.8 Closing Statement

This dissertation details the characterization of human antibody responses to DENV

infections in a Sri Lankan Pediatric Cohort. We were able to characterize the true burden of

DENV infection in the Indian subcontinent, analyze the temporal regulation of antibodies

following DENV infections, and, most importantly, correlate DENV neutralization breadth with

protection from subsequent apparent DENV infection. This finding implicates neutralization

capacity as having an important role in protection against clinical manifestations. Our research

is innovative because it is based on existing clinical samples collected from a cohort of children

before and after experiencing inapparent and apparent DENV infections. DENV vaccine

development is hindered by a gap in understanding of the properties of antibodies that protect

or possibly enhance disease. Our results will provide insight into pre-existing antibody

responses that correlate with protection. These findings may be applicable to developing and

evaluating DENV vaccines in the future.
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