
INNOVATIVE METHODS FOR SOME STATISTICAL ISSUES IN
CLINICAL TRIALS

Diana Fong-Hor Lam

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Biostatistics in the Gillings School of Global Public Health.

Chapel Hill
2015

Approved by:

Gary G. Koch

Joseph G. Ibrahim

John S. Preisser

Amy Herring

Hongtu Zhu

Geraldo Heiss



©2015
Diana Fong-Hor Lam

ALL RIGHTS RESERVED

ii



ABSTRACT

Diana Fong-Hor Lam: Innovative Methods for Some Statistical Issues in Clinical Trials
(Under the direction of Gary Koch)

Clinical trials have many different aspects to them, and here three topics will be explored: Bayesian

sensitivity analysis in survival models, ROC methods in the presence of verification bias, and non-parametric

adjustment of covariates in randomized clinical trial with and without missing data.

The aim of the first paper is to develop several Bayesian influence measures to assess the influence of the

prior, the sampling distribution, and individual observations in survival analysis with the presence of missing

covariate data and describe these changes in a modified likelihood model (the perturbation model). We

construct a Bayesian perturbation manifold to the perturbation model and calculate its associated geometric

quantities and influence measures based on several objective functions to quantify the degree of various

perturbations to statistical models. We carry out several simulation studies and analyze a real data set to

illustrate the finite sample performance of our Bayesian influence method.

While clinical trials concerned with survival track how long people will live given that they have the

disease, some trials are concerned with using screeners to predict disease in the first place. Chronic obstructive

pulmonary disease (COPD) affects 5% of the adult population in the United States, but a general screener

has not been evaluated for the disease at a large scale. In this paper a COPD screener is evaluated using an

innovative application of sampling weights. With these sampling weights, which help us adjust for verification

bias, we explore the different variables to use in the screener. The optimal variable on the pocket screener

was forced expiratory volume in 1 second as compared to peak expiratory flow.

While screeners can help predict disease, mainly clinical trials are designed to evaluate treatments

that cure disease or improve health outcomes. Non-parametric adjustment of covariates is an attractive

methodology in the regulatory setting as it requires few assumptions. We develop methodology to estimate

the treatment effect in a longitudinal logistic randomized trial after non-parametrically adjusting for covariates.

We also develop methodology to estimate treatment effect when the outcome is ordinal (with more than

two groups) instead of binary, when there is missing data among the baseline covariates, and when there

iii



are multiple treatment groups to be evaluated. This methodology and its extensions are applied to a data

set evaluating Cushing’s disease and another data set evaluating multiple doses of a neurological disorder

medication.
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CHAPTER 1: INTRODUCTION

In today’s world of clinical trials, there are many statistical analyses that we perform to adjust for the fact

that trials occur in real life and are not carried out as perfectly as we would wish. There are methods to adjust

for missing data, sensitivity analyses to test model assumptions, and weighting schemes to adjust the data to

a more general population. Furthermore, clinical trials have many outcome variables that can be addressed:

length of survival in the study, dichotomous outcomes such as diseased or non-diseased, or ordinal outcomes

such as diseased, partially diseased, and non-diseased.

1.1 SURVIVAL ANALYSIS

In one type of clinical trial, the objective is to assess whether a treatment can improve the survival rates.

There are many types of survival models. Survival models are inherently different from general linear models

because they contain a censoring variable. Since it is unlikely that all patients in the study will experience the

event or events during the time frame of the study, it is necessary to include a variable indicating whether or

not the patient was event-free at the time they left the study or the time that the study ended.

A subject with an uncensored event is a subject who experienced the event of interest during the observed

portion of the study. The event could be death, recurrence of disease, organ transplant, to name a few. A

patient who is censored is a patient who does not experience the event during his time in the study. Patients

may be censored for one of many reasons: they completed the study period without incident, they withdrew

from the study, they were loss to follow-up, etc. For the purpose of this paper, it is assumed that all patients

have a known starting time in the study. Therefore any censoring that occurs is right-sided censoring.

While many models use maximum likelihood methods by estimating parameters in the density function,

survival models want to maximize survival, which is measured as a function of the cumulative distribution.

Let F (t, β, x) be the cumulative distribution function for a subject at time t, and covariates in the vector

x, with parameters in the vector β, and let f(t, β, x) be the density function. The survivorship function is

then S(t, β, x) = 1− F (t, β, x). If an event occurred, then that helps to estimate the density function, but if

the observation is censored, that means the survivorship function is needed. The likelihood that needs to be
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maximized must incorporate both the density of events and survivorship function. Therefore, a censorship

indicator variable, C, is created, where C=1 if the subject experienced the event and C=0 otherwise.

The likelihood function we want to maximize for survival models for all i = 1, . . . , N subjects is

N∏
i=1

[f(t, β, x)]c[S(t, β, x)]1−c

In order to estimate the survivorship function (S(t, β, x)), we use the cumulative hazard function and the

density of the hazard function. The hazard function represents the risk of experiencing an event in an interval

after time t, given that the subject has survived to time t (Hosmer and Lemeshow, 1999). If the hazard

function can be estimated parametrically, it is usually modeled using traditional linear modeling methods.

The cumulative hazard function is the sum of the hazards over all intervals.

If the hazard function has a parametric form, the hazard, cumulative hazard, and survivorship function

are related with the following equations:

H(t) =

∫ t

0
h(u) du

S(t) = exp(−H(t))

A popular method for analyzing such data is the Cox proportional hazards model (Cox, 1972), which

estimates the effects of the covariates on the hazard ratio with respect to an unspecified baseline hazard.

It assumes that hazards are proportional between groups with respect to time. The model for the Cox

proportional hazards model is

λ(t|zj) = λ0(t) exp(β′zj) (1.1)

where λ0(t) is the baseline hazard given the subject had survived until time t, zj is the vector of covariate

values for patient j, and β is the vector of treatment effect parameters.

1.2 MISSING DATA AND SENSITIVITY ANALYSIS

Survival models, with their inherent censoring issues and numerous covariates, have posed a problem for

statisticians wishing to perform sensitivity analysis on them. Any measure of sensitivity must be able to
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accommodate the censored structure of the data and account for binary, categorical, and continuous covariates.

Ad hoc methods are sometimes used for treating missing data, such as carrying the last observation forward

or imputing the missing value using the mean of the covariate (Little and Rubin, 1987). One of the earlier

papers to address missing data in survival models was Schluchter and Jackson (1989). They specified the joint

distribution of failure time and covariates as the conditional distribution of failure time given covariates, and

a marginal distribution on covariates, which was treated as a nuisance parameter. Lin and Ying (1993) came

up with an estimator using the approximate partial likelihood estimator. Zhou and Pepe (1995) expanded on

this work and applied this EM-type algorithm to data that were missing at random and monotone.

Most methods assume that missing covariates are either missing completely at random (MCAR) or

missing at random (MAR). Covariates that are MCAR means the missing data mechanism does not depend

on the observed or missing observations (Little and Rubin, 1987). In other words the missing observations are

themselves a simple random sample. Covariates that are MAR means the data missing mechanism depends

on the observed values but not the missing values (Little and Rubin, 1987). The missing observations are a

simple random sample given the observed values. Paik and Tsai (1997) proposes using multiple imputation

to address the missing covariates under MAR conditions. Chen and Little (1999) introduce a non-parametric

likelihood which uses a discretized version of the likelihood where the baseline hazard is cast as a step

function with jumps at the observed values. This method requires the specification of the missing data

distribution and assumes missingness is MAR. Furthermore the method is only valid for covariates that are

all discrete or all normally distributed (Herring and Ibrahim, 2001). Another method of handling missing

covariates is to use estimating equations to produce parameter estimates. These methods generally require

the missing data mechanism to be specified. The likelihood often has an expectation of the complete data

given the observed data. Lipsitz and Ibrahim (1998) have estimating equations that are applicable only to

categorical covariates. Herring and Ibrahim (2001) expand on the methodology of Lipsitz and Ibrahim (1998)

to the situation looking at both continuous and categorical covariates. They provide weighted estimating

equations in the log likelihood where the weights are the probabilities of a particular missing data pattern for

a subject. These methods (Lipsitz and Ibrahim, 1998; Chen and Little, 1999; Herring and Ibrahim, 2001) all

use an EM algorithm (and possibly adaptive rejection metropolis sampling) to get estimates.

Semiparametric methods required fast computing capabilities. With faster capabilities, more nuanced

ways of handling missing data in survival models became available. Herring et al. (2002), suggested using

Gibbs sampler along with Monte Carlo EM algorithm to obtain parameter estimates. Herring et al. (2004) later
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expanded on the methods of Leong et al. (2001), who had done work on non-ignorable data mechanisms for

binary covariates, to the case when the non-ignorable mechanism was applied to both discrete and continuous

covariates. More recently, Ibrahim et al. (2008) developed semi-conjugate priors for missing at random

covariate data and developed a variation on DIC for survival models. As the methods become more complex,

other papers such as Cho et al. (2009) have found creative ways of getting around computational issues for

survival models.

Bayesian work in survival models has focused on two main areas: extending frequentist hypothesis

testing methods into a Bayesian setting and developing more complex priors to better suit the nature of

survival parameters. Sinha et al. (2003) extended Cox’s partial likelihood into a Bayesian context. Dunson and

Herring (2003) developed Bayesian methods for testing null hypothesis versus order-restricted alternatives.

In addition to exploring survival model testing, Dunson and Park (2008) developed a kernel stick breaking

prior to model an uncountable number of random events. Other types of priors used in Bayesian survival

analysis include beta process and Dirichlet process. The beta process treats discrete intervals of the hazard

function as having a beta distribution. The Dirichlet process is a non-parametric prior that involves putting a

Dirichlet distribution on the cumulative hazard over disjoint intervals. A more detailed summary of these

priors can be found in Ibrahim et al. (2001).

Bayesian diagnostics on survival models and other generalized models has grown out of frequentist

diagnostics. The most commonly used frequentist diagnostic is Cook’s distance (Cook, 1986). One extension

of Cook’s distance is the conditional posterior ordinate (CPO), which can be thought of as the marginal

posterior predictive density of the ith case if it were deleted from the data set (Gelfand et al., 1992; Gelfand,

1999; Wei and Su, 1999). In addition to case deletion diagnostics, there are also systemic and isolated

departures to examine (Davison and Tsai, 1992). Systemic departures come about when features of the data

set have not been captured or a large group of observations does not fit well. Isolated departures, such as

outliers, arise when a few observations do not fit the model.

Detecting systemic departures is part of doing robust Bayesian analysis, which came to light in the early

90’s (Berger, 1990, 1994). The idea behind robust Bayesian analysis was that the outcome of the analysis

was an imprecise judgment quantifiable only on certain probabilistic intervals. Berger and Berliner (1986)

tested the robustness of priors by developing an ε−contamination class of priors, that allowed for a related

family of priors to be considered at once; however, they did not quantify the change caused by going from

different priors. McCulloch (1989) developed a method of quantifying the change caused by changes in the
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prior, and this method is called local sensitivity analysis. Although measuring the many different changes at

once is possible, Gustafson and Wasserman (1995) suggested that examining individual elements of change

is preferred. Hyperparameters or clusters that had high local sensitivity were a cause for concern. Zhu et al.

(2007) developed advanced techniques for exploring clusters that did not fit well.

1.3 RECEIVER OPERATOR CHARACTERISTIC CURVES IN THE PRESENCE OF
VERIFICATION BIAS

Another aspect of clinical trials besides survival is determining whether continuous or categorical measures

can be used to discriminate between diseased and non-diseased patients. Initially the methods developed

were used to detect signals in the presence of noise(Green and Swets, 1966). Early evaluations focused on

categorical measures. The estimates used to evaluate the measures were sensitivity, the probability of the

test being positive given the subject was diseased, and specificity, the probability of the test being negative

given the subject was not diseased. Eventually, methods were created to handle continuous measures. These

methods created a Receiver Operating Characteristic curve (ROC curve), which plots the sensitivity versus

1-specificity at a variety of cutoff points, where the cutoff point differentiates between diseased and non-

diseased subjects. The Area Under the Curve (AUC) gives a sense of the measures accuracy for differentiating

between diseased and non-diseased states and ranges from 0.5 to 1. An AUC of 0.5 represents a measure

whose accuracy is no better than a random guess, while an AUC of 1 represents a measure that predicts

diseased or non-diseased status perfectly. The AUC corresponds to the Mann-Whitney statistic (Bamber,

1975).

In addition, statisticians can compare the AUC’s of multiple measures that were conducted on the same

people to see if one measure is better able to discriminate than others (DeLong et al., 1988). Multiple tests

or screeners can be tested on the same subjects in an effort to compare different screeners. The AUC’s for

the different screeners are then correlated. Statistical tests that wish to determine whether one screener is

significantly different than the other needs to take into account this correlation when calculating the variance

of the difference between the AUC’s.

One of the first papers to address the issue of the variance of the difference between two correlated AUC’s

was Hanley and McNeil (1983). The proposed method for estimating the standard error of the difference of

two correlated AUC’s involved calculating r, the correlation introduced between the two areas by studying

the same sample of patients. The correlation, r, is a function of the average of the correlation between the two
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tests in the non-diseased group and the correlation between the two tests in the diseased group and the average

of the AUC’s for each test was calculated. A derived table with average correlation along the rows and average

area under the curve along the columns was then used to calculate r . The standard error formula is the same

as normal: SE(AUC1 − AUC2) =
√

SE2(AUC1) + SE2(AUC2)− 2× r × SE(AUC1)× SE(AUC2).

In addition to calculating the correlation between the measures, it is also important to consider verification

bias when calculating both the estimate of the difference between correlated AUC’s and the variance of the

difference. There have been 2 main ways of dealing with verification bias: imputation and reweighting. Some

of the imputation methods are full imputation (Rotnitzky et al., 2006; Alonzo and Pepe, 2005) and mean

score imputation (Alonzo and Pepe, 2005). These imputation methods extend the ideas initially proposed

by Begg and Greenes (1983) to screener tests with continuous outcomes. Unlike imputation methods that

treat the disease status as missing, reweighting methods use only the subjects that has both test and disease

information. But like imputation methods, reweighting methods assumes that the population of subjects with

the test results is the population that we wish to make inference on.

For all methods described, let Ti be the test result for the ith person, Vi be the indicator that the ith patient

went on for disease verification, Di be the true disease status, and Xi be the vector of covariates of interest.

Thus in the presence of verification bias, Ti, Vi, and Xi are observed for all i = 1, . . . , n patients where

n =total number of patients in the study, and Di is missing for a subset of patients.

In the full imputation method the missing disease status is predicted by modeling P (D = 1|T,X). The

disease status is replaced by the predicted probability of disease even for subjects whose disease status is

known. The estimated probability of disease for the ith patient is ρ̂i = P (Di = 1|Ti, Xi). Therefore for the

screener cutoff of c the senstivity with full imputation is

sens(c)FI =

∑n
i=1 I(Ti ≥ c)ρ̂i∑n

i=1 ρ̂
.

It seems the method of Rotnitzky et al. (2006) is the most popular full imputation method due to the

flexibility, development of statistical estimators, and double robustness property. Details follow, but the main

steps that Rotnitzky et al. (2006) use to deal with verification bias are to first model the probability of being

sent on for disease verification given the test result and other measured covariates (1.2), and then model the

probability of disease given that the disease was verified (1.3). Using the estimates from these models, they
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create an estimator for the disease status based on the model parameters, test result, and other measured

covariates.

The model of log odds of no disease verification is expressed as

log

{
Pr(V = 0|T,X,D)

Pr(V = 1|T,X,D)

}
= h(T,X) + q(T,X)D. (1.2)

where h(T,X) is a function of the test result and covariates associated with the log odds of not having disease

verification depend on disease status that do not have any interaction with the disease status. Let q(T,X)

be a function of how test result and covariates interact with disease status to influence the log odds of no

disease verification. For example, if we had non-ignorable verification bias, then we expect q(T,X) 6= 0.

Then h(T,X) is assumed to have a parametric form such that h(T,X) = h(T,X|γ).

The next step is to model the probability of being diseased given that the subject went on for verification

log

{
Pr(D = 1|V = 1, T,X)

Pr(D = 0|V = 1, T,X)

}
= m(T,X). (1.3)

Let m(T,X) be a function of the test result and covariates that models log odds of disease status among

those who have their disease status verified. m(T,X) is also assumed to have a parametric form m(T,X) =

m(T,X|µ).

The double robust estimator, DDR(γ, µ)i or DDRi for short, for the ith patient’s disease status is

DDR(γ, µ)i = P (Vi, Ti, Xi|µ) + Ui(γ|µ)

where

Ui(γ, µ) = Vi[{Di − P (1, Ti, Xi|µ)}+ exp{h(Ti, Xi|γ)

+ q(Ti, Xi)Di} × {Di − P (0, Ti, Xi|µ)}]
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and

P (Vi, Ti, Xi) = Pr(Di = 1|Vi = 1, Ti, Xi)

× {Vi +
(1− Vi) exp{q(Ti, Xi)}

1− Pr(Xi = 1|Vi = 1, Ti, Xi)× {1− exp{q(Ti, Xi)}}
}.

The process gives us 2 chances to get the model right. The estimator’s double robustness property means

that if either the verification or disease model is mis-specified the estimator will still be consistent. DDRi

is then calculated for all subjects and depends only on observed variables, therefore it can be calculated

regardless of verification status. The estimator of the AUC is then calculated using the normal formula with

DDRi substituted for Di for the entire data set. The formula for the AUC and its double robust estimator is

ν = Pr(T2 > T1|D1 = 1, D2 = 0) + 0.5× Pr(T2 > T1|D1 = 1, D2 = 0)

ν̂ =

n∑
i=1

n∑
j=1
{DDRi(1−DDRj)× [I(Ti > Tj) + I(Ti = Tj)]}

n∑
i=1

n∑
j=1,j 6=i

{DDRi(1−DDRj)}
.

Instead of treating the disease status as missing as in imputation methods, the inverse probability

weighting (IPW) estimator uses weights to calculate the probability of verification. It weights each observation

in the verified sample by the inverse of the probability of being selected for verification (Alonzo and Pepe,

2005). Let π̂i = P (Vi|Ti, Xi), which is estimated from disease-verified patients only. The estimate for

sensitivity using IPW for the cutoff c is

sens(c)IPW =

∑n
i=1 I(Ti ≥ c){Vi ∗Di/π̂i}∑n

i=1{Vi ∗Di/π̂i}
.

This approach yields bias estimates of AUC when verification model is mis-specified (Alonzo and Pepe,

2005). However, in randomized studies, often the verification model is under investigators control. In these

situations, investigators send a random sample of subjects on for verifiation based on pre-specified criteria.

Another method derived by Alonzo et al. (2003) is the semiparametric efficient estimator (SPE). This is a

combination of both the IPW and full imputation method. The estimator is
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sens(c)SPE =

∑n
i=1 I(Ti ≥ c){Vi ∗Di/ρ̂− (Vi − π̂i) ∗ ρ̂iπ̂i}∑n

i=1{Vi ∗Di/π̂i − (Vi − π̂i) ∗ ρ̂i/π̂i}
.

This method is semiparametric since it parametrically models P (D|T,X) and P (V |T,X) but does not

specify a distribution for P (D,T,X). This method is also doubly robust. Furthermore, this method combines

both the efficiency of imputation methods with the robustness of re-weighting methods. Finally, another

concern when evaluating ROC’s is the presence of verification bias, sometimes referred to as work up bias.

Selection bias, sometimes referred to as verification bias or work-up bias, occurs when the measures

used to evaluate a test are based only on the subset of patients who had the disease verified (Begg, 1987). The

stronger the association between the test result and disease verification, the larger the bias (Begg, 1987). The

bias is important to adjust for since positive tests will be over-represented in the disease-verified population,

leading to artificially inflated sensitivity and deflated specificity estimates.

Another bias that occurs is the bias of uninterpretable results. Uninterpretable results are those that are

technically unacceptable. For example, if the test is an ultrasound of the pancreas and the pancreas cannot be

viewed, the test is uninterpretable (Begg et al., 1986). This is different from indeterminate results in which

the meaning of the test is unclear. In situations in which the test result is uninterpretable, the uninterpretable

subjects may be biasing the results if the uninterpretability is associated with test results (Begg et al., 1986).

Begg et al. (1986) suggests adjusting the posterior odds by the probability of the odds of uninterpretable

results of diseased groups to non diseased groups. Another suggestion by Begg et al. (1986) was to consider

the uninterpretable readings as non-diseased, and adjust the numerator and denominator of specificity by that

number.

1.4 NON-PARAMETRIC COVARIATE ADJUSTMENT IN LONGITUDINAL BINARY AND
ORDINAL SETTINGS

For many clinical trials, the main purpose of the trial is to evaluate the treatment effect. Analysis plans need

to state a priori the statistical methods they plan on using to determine if the treatment effect is significant.

This can be difficult when some methods require checking the data to determine if certain assumptions are

met. Therefore, the fewer assumptions a method requires the more attractive it is in a regulatory setting. One

of the benefits of operating in a regulatory setting is that oftentimes, the treatment groups are randomized,
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meaning that covariate imbalances between the treatment group(s) and control(s) are due to random chance.

Non-parametric adjustment of covariates exploits this assumption of random covariate imbalance.

The advantages and limits of covariate modeling versus non parametric modeling have been outlined

extensively by Tangen and Koch (1999). Some of the advantages of traditional covariate modeling are that

the odds ratio for the treatment applies to patients in the same subpopulation according to the covariates

in the model (Tangen and Koch, 1999). That then assumes that the patients at each cross classification of

the covariates represent a stratified simple random sample of subjects based on explanatory variables. Also,

traditional methods produce estimates of the effect of the covariates. Furthermore, non-parametric adjustment

treats covariates and stratification variables differently while modeling treats them the same (Tangen and

Koch, 1999). The main advantage of non-parametric adjustment is that it generally reduces the variance of

the treatment effect without impacting the parameter estimate itself, and the treatment effect is still applicable

to the general population the subjects come from (Koch et al., 1998). One of the advantages of adjusting

non-parametrically is that the sample size only needs to take into account the number of parameters that

pertain to treatment, without regard for the number of covariates you wish to adjust by.

After adjusting for covariates, we still have multiple ways of modeling the treatment effect, depending

on the outcome variable. Oftentimes, the outcome variable in clinical settings is a dichotomous variable,

however, there has been some work to extend methodology to an ordinal outcome. A few different methods

deal with ordinal outcome variables. The generalized logistic regression model developed by McCullagh

(1980) models the log of the probability of one level with respect to the probability of a reference level

of the outcome variable. For simplicity’s sake, we will assume the reference level is j = 1, although in

reality, the reference could be any level of Y . Let Yi be the outcome for the ith subject, where Yi ∈ 1, . . . , k,

γj = Pr(Y = j|x), and xi be a vector of covariates for the ith subject. The generalized logistic regression

models

log

(
γj
γ1

)
= αj + x′βj , j = 2, . . . , k,

where αj represents the jth log odds ratio of the jth outcome to the first outcome, holding all other variables

constant. βj represents the effect of the covariates on the log odds ratio of the jth outcome with respect to the

first outcome.
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Unfortunately, the generalized logistic regression has two disadvantages when the outcome is ordinal.

As each outcome level except the reference has its own parameter effects and intercept, the sample size

required to produce stable parameter estimates is large. It does not make use of the ordinal nature of the

outcome variable, as odds are calculated with respect to a reference level. A model that does make use of the

ordinal nature of the outcome variable is the proportional odds model developed by McCullagh (1980). Let

πj = Pr(Y ≤ j|x), so the linear model is

logit(πj) = αj + x′β, j = 2, . . . , k.

In this setting, αj represents the log odds ratio of Y ≤ j if all covariates are equal to 0. β represents the

effect of the covariates on the log odds of more favorable values to less favorable values. This model requires

that the effect of the covariates be the same regardless of which value differentiates between a success and

failure for the odds, as there is only one parameter of covariate effect regardless of the πj being modeled.

This assumption is called the proportional odds assumption and requires the data to check.

A model that combines features of the 2 is the partial proportional odds model, developed by Peterson

and Harrell (1990). It can be modeled as

logit(πj) = αj + x′β + tφj

where t is a vector of a subset of the original covariates which do not satisfy the proportional odds assumption.

The partial proportional odds model uses both the ordinal nature of the outcome, and relaxes the proportional

odds assumption for the covariates in the model. The advantage of this model is that for covariates for

which proportional odds holds, we only need one parameter (expressed in β, but we still have flexibility for

covariates which do not satisfy the proportional odds assumption.

Today’s world of clinical trials is moving more towards longitudinal studies where the effects of time can

be teased out. While longitudinal studies can provide a clearer picture of treatment effect, they also present

a challenge for analysis due to the correlation between repeated measures. The same variable measured

multiple times within the same person will have some correlation between measurement. There are two

methods for dealing with longitudinal data. In the generalized linear model (GLM) method, the correlation is

treated like a nuisance parameter, leading to inference on the marginal model only. In the generalized linear
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mixed model (GLMM) method the correlation is treated like an additional parameter to be estimated. The

GLMM method requires large sample sizes, so if the correlation of the outcome variable between repeated

visits is not of interest to inference, then the GLM method is more practical to use.

Within the GLM method, there are 2 methods for adjusting for the correlation between repeated measures.

Maximum likelihood methods require specifying the correlation structure between measurements. However

this can lead to bias if the correlation structure is mis-specified. An alternative method for parameter

covariance estimation is to use generalized estimating equations (Liang and Zeger, 1986). The advantage

of this method is that it is robust even if the correlation structure is mis-specified. Generalized estimating

equations use a generalized linear model to estimate the marginal distribution of the outcome variable, and

then uses a combination of sandwhich estimators and working correlation matrices to estimate the parameter

and its covariance (Liang and Zeger, 1986).

Zeger et al. (1985) formed a model for the analysis of binary longitudinal data with time-independent

covariates. If we let Yit be the binary outcome variable for the ith subject for the tth time point andXi be the

covariate vector for the ith subject, then Zeger et al. (1985) models πi = Pr(Yit = 1) and the correlation

between consecutive time points ρ. The models used is logitπi = X ′iβ where β is the effect of the covariates

on the log odds ratio and corr(Yit, Yi,t−1) = ρ. This model treats the binary series as the realization of a

stationary Markov chain. One of the issues with this method was that there might also be correlation between

outcomes that were more than 1 repeated measure apart. Furthermore, all time dependence is modeled in one

parameter: ρ.

Stram et al. (1988) formed a more flexible model than Zeger et al. (1985) that could also work for

repeated ordered categorical outcomes. The model relies on the proportional odds assumption for marginal

probabilities, and each time point has its own model. By modeling each time point separately, the dependence

between time points does not need to be modeled and instead is calculated empirically. Furthermore, the paper

suggests a multi-stage testing procedure to check whether the time coefficients are significantly different

from each other. The procedure relies on the fact that all hypotheses need to be rejected to move on to a

subset of the hypothesis.

Schacht et al. (2008) develops a different type of testing frame work. He uses non-parametric baseline

covariate adjustment for two groups, but not in a longitudinal setting. Instead of finding a parameter estimate,

he built a testing framework. Let Yi be the distribution of the outcome for treatment group i where i = 1

if the patient is on treatment and 0 otherwise. He tested p = Pr(Y0 < Y1) + 0.5Pr(Y0 = Y1). Under
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the null hypothesis p = 0.5. The estimate of p, p̂ is then adjusted by
∑d

c=1 γ̂c(q̂c − 0.5) where q̂c is

Pr(Qc0 < Qc1) + 0.5P (Qc0 = Qc1). Qci is the value of the cth covariate for the ith treatment group. γ̂c

is then estimated from the covariance matrix of the covariates with each other and the covariates with the

outcome. This method is similar to a simplified version of the method we propose. The advantages of our

method is that we calculate the estimate of the difference between the two groups and the calculation of γ̂ is

unnecessary.

This literature review covers many different aspects of clinical trials. We have reviewed survival models

and aspects of them that present challenges for analysis. We have talked about more preventative-oriented

clinical trials that aim to determine disease status using some other measure which is usually either easier

or cheaper than a gold standard, and the estimates that go with those studies. Finally, we addressed clinical

trials in a regulatory setting which measure whether the treatment effect can provide some benefit.

13



CHAPTER 2: BAYESIAN SENSITIVITY ANALYSIS IN SURVIVAL MODELS

2.1 INTRODUCTION OF SURVIVAL DATA SET IN ONCOLOGY STUDY

In this paper, we extend the methods of Zhu et al. (2007, 2010) to data from the Eastern Cooperative Oncology

Group (ECOG), who carried out a phase III clinical trial for high dose interferon on multiple melanoma

patients. In this data set, we have n = 285 subjects and either their time to relapse or time to censoring.

There were 196 relapses and 89 censored observations. The four covariates of interest are treatment, age,

Breslow score, and size. Breslow score and size had missing values.

Briefly, Zhu et al. (2007) outlines 4 steps to calculating Bayesian local sensitivity measures for survival

models.

1. Define what aspects of the model are to be tested, ie, individual data points, prior assumptions, etc, and

create a vector, ω that is associated with these aspects

2. Adjust the likelihood model such that ω is incorporated

3. Choose how sensitivity will be measured (posterior mean distance, φ-divergence,. . .)

4. Calculate sensitivity measures that are generally derivatives of the adjusted likelihood in step 2 with

respect to ω

We will apply this method to both a simulation, a real data set, and then we will explore some of its

properties using a bootstrap simulation.

Mahabadi and Ganhali (2013) uses an index of sensitivity to non-ignorability (ISNI) to meausre how

sensitive model parameters are to departures in the ignorability assumptions. It is calculated in a similar

manner to the measures we develop, however, it is not as flexible as the model we develop, as it can only test

the ignorability assumption. Furthermore, it is a frequentist measure as opposed to ours which is a Bayesian

one.

14



This chapter is organized as follows, in Section 2.2, we develop measures for calculating first and second

order influence measures. Since the measures are based on geometric tensors and covariant derivatives as

described in differential geometry and require only a proper sampling distribution, the censoring in survival

models does not pose a problem. In Section 2.3, we apply the influence measures to a variety of simulated

data sets and the ECOG data. In Section 2.4, explore the properties of the Bayesian influence measures via

bootstrap samples of the ECOG data set. Section 2.5 contains a discussion of the measures.

2.2 BAYESIAN SURVIVAL MODELS WITH MISSING COVARIATES

2.2.1 STATISTICAL SURVIVAL MODELS WITH MISSING DATA

When covariates are missing, we need to think about whether or not the data are missing completely at

random (MCAR), missing at random (MAR), or missing not at random (MNAR). To access aspects of the

missingness pattern, we need to first establish some notation. For our data, we let Do = (x1,o, ..., xn,o),

Dm = (x1,m, ..., xn,m), andDc = (Do, Dm) represent the observed, missing, and complete data respectively.

Let xi,m be the vector of missing values for the ith subject and xi,o be the vector of observed values. The

vector of covariates for the ith subject is xi = (xi,m, xi,o) for i = 1, . . . , n. For missing data problems,

we want to model p(Dc|θ) as the product of p(Do|θ) and a model of the missing data given the observed

data (p(Dm|Do, θ)), where θ is a vector of necessary parameters. We usually use Markov chain Monte

Carlo (MCMC) methods to simulate p(θ|Do) ∝
∫
p(Dc|θ) ∗ p(θ)dDm. With missing data, we also need a

missingness indicator, rij , to indicate missingness of the jth covariate of the ith subject. Therefore, rij = 1

if xij is missing and 0 otherwise, and each subject’s missingness vector is ri. While i = 1, . . . , n and the

number of covariates is p, j goes from 1, . . . , q where q is the number of possible missing covariates, q ≤ p,

and the difference (p − q) is the number of completely observed covariates. Finally, let yi represent the

survival data for the ith observation, with covariates xi for i = 1, . . . , n.

Each of the three missingness mechanisms has its own strategies for analysis. When the data are MCAR,

then the probability of observing xi is independent of yi and the observed and unobserved values of xi.

In this case, the xi represents a random sample of the data. While doing a complete case analysis where

only observations that are completely observed are used would be inefficient, it would at least be unbiased.

When the data are MAR, the probability of observing xi conditional on the observed data does not depend

on the unobserved data. If the data are MAR and missingness depends only on the covariates and not the
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response, then a complete case analysis will lead to unbiased results. In both the MCAR and MAR case,

the data missing mechanism can be ignored. When the data are MNAR then the probability of observing

xi conditional on the observed data is dependent on the missing data itself. Again, if missingness does not

depend on the response, a complete case analysis will be unbiased (Ibrahim et al., 2005).

We can model the probability of the ith observation having a particular survival time, covariate values,

and missingness indicator as

p(yi, xi, ri|θ) = p(yi|xi, θ) ∗ p(xi|θ) ∗ p(ri|xi, yi, θ)

p(yi|xi, θ) is a general survival model, which depends on the covariates being known. p(x1|θ) is a model for

the covariates, both missing and observed, and p(ri|xi, yi, θ) is the model of the missingness indicator of

the covariates. One way to perturb the missing data mechanism from MAR to MNAR is to use a Bayesian

Perturbation Maniforld.

2.2.2 BAYESIAN PERTURBATION MANIFOLD

The mechanics of measuring perturbations has its roots in differential geometry. We first choose a function

that we would like to evaluate our diagnostic measures with respect to; measures such as the Bayes factor,

φ-divergence, Kullback-Leibler distance (KL distance) to name a few. Then, we envision the function as a

manifold, or surface in more than 3 dimensions, over all changes of interest. The change in the manifold

curvature going in one direction of change represents the amount of change that perturbation affects. There

are certain guidelines as to what makes a viable perturbation scheme.

We represent pertubations to the complete-data model, p(Dc, θ) using the vector ω = ω(Dc, θ) in a set

Ω. For example, if we are interested in investigating if our model has heteroscedastic variance in a general

linear model Yi = xiβ+ εi, εi ∼ N(0, σ2) and we wish to use the Bayes factor to measure how the pertrubed

model changed from the unperturbed model, we would go from our unpertubed model, Yi ∼ N
(
x′iβ, σ

2
)

to

the pertrubed model Yi|ω ∼ N
(
x′iβ,

σ2

ωi

)
. By dividing each observation’s variance by an element of ω, we

can then examine how our manifold of the Bayes factor, curves as we let each of the observations have its

own variance. Our perturbation vector would be ω = (ω1, . . . , ωn) where n is the number of observations.

The value of ω that represents no perburation is ω0 = (1, . . . , 1)n×1. All perturbations must have some

ω0 ∈ Ω that represents no change in the model. Furthermore, the distribution with the perturbation must still
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follow the rules of probability. For example, if we perturb the sample variance, then
∫
p(y|ω)dy = 1 and

p(y|ω) > 0. Ideally each element of ω needs to be independent, and the vector elements need to be scaled so

that the effect sizes are comparable. For example, when using Cook’s distance to examine clustered data,

larger clusters have more influence due to their size (Zhu et al., 2007). Perturbations should not have this

problem.

We put the perturbations in a geometric framework called a Bayesian perturbation manifold. We can

consider all possible perturbations of interest as a Riemannian Hilbert manifold under some conditions,

M = p(Dc, θ) : ω ∈ Ω. We can parameterize tangent curves from ω as

C(t) = p(Dc, θ|ω(t)) : [−ε, ε]→M,C(0) = p(Dc, θ|ω)

and∫
l̇(Dc, θ|ω(t))2p(Dc, θ|ω(t))dDcdθ <∞. On M we define the tangent space of all possible curves M at

ω as those curves that take form of C(t) as TωM . We can define the inner product of two tangent vectors

v1(ω) and v2(ω) on TωM as

< v1, v2 > (ω) =

∫
{v1(ω)v2(ω)}p(Dc, θ|ω)dDcdθ (2.1)

In TωM we can measure pertrubations. We look at several measusres: G(ω0),FIRI [v](ω(0)) and

SIRI [v](ω(0)). These terms approximately represent distance, first-order curvature of the manifold, and

second-order curvature of the manifold. The geometric tensor, G(ω) is defined as

G(ω(0)) =

∫
[∂ωl(Dc, θ|ω(0))]⊗2p(Dc, θ|ω)dDcdθ (2.2)

. If the covariant derivative,∇vu(ω) 6= 0 then we use first-order influence measure (FIRI [v](ω(0))) as the

diagnostic of interest. If ∇vu(ω) = 0 then use we use the second-order influence measure (SIRI [v](ω(0)))

as the diagnostic. The covariant derivative ∇vu(ω) measures the initial rate of change of IF (ω0) as we

move from ω0 in the direction of ω and is defined as∇vu(ω),

du[v](ω)− 0.5{u(ω)v(ω)p(zcom,θ | ω)−
∫
u(ω)v(ω)p(zcom,θ | ω)dzcomdθ}. (2.3)

17



The first and second order influence measure are written with respect to an intrinsic influence measure,

IF(ω) = IF(p(θ | zobs,ω)). We are usually interested in letting IF (ω) represent φ-divergence, the Bayes

Factor, or the posterior mean.

We must then define a relative intrinsic influence measure (RIFM, RI(ω, ω0)) as a function of both

p(θ|Do, ω) and p(θ|Do, ω0) so that the difference in the intrinsic influence measure between the perturbed

and unperturbed situation can be measured on the Bayesian Perturbation Manifold. The simplest example is

to let RI(ω, ω0) = IF (ω)− IF (ω0). In addition, we want to scale the RI(ω, ω0) by the minimal geodesic

distance between p(Dc, θ|ω) and p(Dc, θ|ω0). We will define this as the intrinsic influence measure.

IGIRI(ω,ω0) =
RI(ω,ω0)2

g(ω,ω0)2
. (2.4)

Since we are in the space TωM , we can describe the local behavior of RI(ω, ω0) as RI(ω(t), ω0) as

t→ 0 along all possible curves p(Dc, θ|ω(t)) passing through ω(0) = ω0. The first-order influence measure

is defined as

FIRI [v](ω(0)) = lim
t→0

IGIRI(ω(0),ω(t)) =
{d(RI)[v](ω(0))}2

< v,v > (ω(0))
(2.5)

When ∂RI(ω(0)) = 0, the first-order influence measure is 0, so we use ∂2RI(ω(0)) to calculate the

second-order influence measure, defined as

SIRI [v](ω(0)) =
∂2RI(ω(0))

< v,v > (ω(0))
(2.6)

We can structure the missing data as a sequence of one-dimensional conditional distributions as in

(Ibrahim and Lipsitz, 1999). In order to deal with missing data, we cast the influence measures, FIRI(v)

or SIRI(v) as an expectation with respect to the joint distribution of the parameters and missing data. We

use Gibbs sampling in adaptive rejection Metropolis sampling (ARMS) to get an empirical missing data

distribution. We treat the missing values for each observation as a parameter to be estimated in Gibbs

sampling, meaning that each observation that was missing was modeled with a prior distribution. The

parameters for the missing variable distribution can be thought of as nuisance parameters.

In order to deal with missing data, we cast the influence measures, FIRI [v] or SIRI [v] as an expectation

with respect to the joint distribution of the parameters and missing data. We use Gibbs sampling in adaptive
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rejection metropolis sampling to get an empirical missing data distribution. We treat the missing values for

each observations as a parameter to be estimated in Gibbs sampling meaning that each observation htat was

missing was modeled with a prior distribution.

When we want to perturb the missing data mechanism from MAR to MNAR, then we perturb p(ri|yi, xi, θ),

where xi = (xi,o, xi,m). Therefore the missingness will depend on both the observed (xi,o) and unob-

served (xi,m) covariates. Since ri is a binary variable vector, we perform a logistic regression on ri with

the observed covariates and failure time as the predictors. To model the missingness indicator, we have

logit[P (ri = 1|ω)] = φ0 + φ1yi +ωxi, where φ0 is the intercept, φ1 is the coefficent of the failure time, and

ω is a perturbation of the affect of the observed covariate. Let φ0 and φ1 be hyperparameters, used in the

following logistic regression:

P (ri = 1|xi, yi) = (2.7)(
exp{φ0 + φ1yi + ωxi}

1 + exp{φ0 + φ1yi + ωxi+}

)ri ( 1

1 + exp{φ0 + φ1yi + ωxi}

)1−ri
.

When we have more than one covariate missing, we can use the following one-dimensional conditional

distribution of the missing variables to simplify the distrubtion of the missing covariate:

logit[P (riq = 1|ri1, . . . , riq−1, xi,o, yi)] = φ0 + φ1yi + ω̃′qx̃iq + φ′xi,o (2.8)

logit[P (riq−1 = 1|ri1, . . . , riq−2, xi,o, yi)] = η0 + η1yi + ω̃′q−1x̃iq−1 + η′xi,o

... (2.9)

logit[P (ri1 = 1|xi,o, yi)] = ψ0 + ψ1yi + ω1xi1 + ψ′xi,o.

Let ω̃q be a q× 1 vector of ω elements and x̃iw is the vector of missing elements 1, . . . , w ≤ q. The elements

of each ω̃ are modeled independently, i.e., the model for the first element of ω̃q does not depend on the first

element of ω̃q−1
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2.3 EXAMPLES

2.3.1 SIMULATED WEIBULL

We performed a simulation study for the Weibull model to determine whether our method was accurately

detecting perturbations. We wanted the final data set to have n = 250 observations. The failure times were

chosen from

Yi|xi ∼Weibull(α, exp(x̃′iβ)) (2.10)

for i = 1, . . . , n. The vector x̃i = (1, xi) where xi is a simulated continuous covariate distributed Xi ∼

N(0, 1). β is the parameter of the effect of the intercept and covariate β = (β0, β1)′. Let α affect the rate

of the hazard, and θ = (β′, α)′. Censoring times were created from an Exponential(0.5) distribution. The

observed time was the minimum of the failure and censoring time. Overall 32% of the observations were

censored.

Next, we added missingness to the covariates. We let the covariate be missing at random. The probability

of missing depended on a random Bernoulli(logit−1(1.5+0.2∗yi)) variable, where the probability of missing

depended on failure time. Overall we had 21.2% missing covariates.

In addition to creating the data set, we needed to have 5 observations for the influence measure to detect.

We let the first 245 failure times come from the unperturbed Weibull distribution (2.10), but observations

246-250 came from a perturbed model. Instead of the normal hazard: h(t|xi) = αt(α−1) exp(β0 + β1xi), we

perturb the hazard for the last 5 observations to h(t|xi) = αt(α−1) exp(β0 + β1 ∗ xi − 2x2
i ). The difference

of 2xi can be represented in the perturbed hazard as:

h(t|xi, ωi) = αt(α−1) exp((β0 + β1xi)− ωi), ω(0) = (0, . . . , 0). (2.11)

The perturbation to the hazard implies we have also pertrubed the log-likelihood:

l(p(y|α, β, ω)) = d log(α) +

n∑
i=1

[vi(α− 1) log yi + vix̃
′
iβ + viω − yαi exp(x̃′iβ + ωi)] (2.12)

where d is the number of subjects who died in the study and vi is an indicator of whether or not the subject

was censored.
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Having simulated the data, we also needed to come up with priors for β and α. We chose flat priors

for both parameters, β ∼ N2

(
(0, 0)′, 10−6I2

)
where I2 is a 2× 2 identity matrix, and α ∼ Γ(0.001, 0.001).

The true values are β = (0.5,−1)′, and α = 2. The prior on the missing covariates was a normal distribution

with the mean and variation of the observed covariates.

The geometric tensor for our perturbation to the prior is the n × n identity matrix. Therefore, the

perturbation does not need to be shifted or scaled. The first-order influence measure for the Bayes factor for

the ith observation is

FIRI [vi](ω(0)) =

(
I(vi = 1)−

∫
yαi exp(x̃′iβ + ωi)p(β, α|Do)dΛ(α, β)

)2

. (2.13)

Table 2.1: FI for unperturbed and perturbed probability densities
Obs Time x P(time|x, θ) P(time|x, θ, ω) FIBayes
246 0.926 -1.89 0.00167 0.0153 17.0
247 0.442 -0.263 1.25 1.15 0.301
248 1.01 -0.208 0.515 0.560 0.701
249 0.451 -1.04 1.63 0.431 0.0756
250 1.19 -1.54 0.000361 0.143 26.8

As Table (2.1) shows, there are two points that have a large FI. Given our perturbation scheme, we

suspect that these two points may have a different hazard function that the rest of the data, as the Bayes factor

has a large change for observations 246 and 250. As we can see from Table 2.1, observations 247-249 have

very small influence measures. Since we know the hazard function that generated these points, we can look at

the presumed probability density (p(time|x, θ)), and the true probability density (p(time|x, θ, ω)). For the

observations with high FI values, we see that the observations are much more likely under the perturbed

density than the unperturbed density. For the observations with small FI values, it can be seen that the

observations do not have a large difference in densities.

Our influence measure is able to detect the perturbation despite missing covariates in the data. Fur-

thermore, the measures are robust, as only large perturbations were detected. From Figure (2.1), we would

suspect observations 246 and 250 came from a different hazard since their FI are so much greater than the

other observations’. Unfortunately, there is no way to test whether observations are significant or not and the

scale is meaningless. “Large” observations are relative to other points.
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2.3.2 PIECEWISE EXPONENTIAL

We applied the piecewise exponential model to data from the Eastern Cooperative Oncology Group, who

carried out a phase III clinical trial for high dose interferon on multiple melanoma patients. Survival time was

defined as the time between enrollment in the study and progression of the tumor or death, whichever came

first. In this data set, we have n = 285 subjects and either their time to relapse or time to censoring. There

were 196 relapses and 89 censored observations. The 4 covariates of interest are treatment (binary), age

(17-78 years), Breslow score (0.2-35), and size (0-476). Only the Breslow score which measures the thickness

of the tumor and size (area) of the tumor have missing observations (30 and 55 respectively, and 11 with both

covariates missing). Breslow and size were log transformed in order to use a normal distribution, and their

log values were standardized. Observations with a fail-time of 0 were recorded as 0.01 since survival times

are always positive.

The piecewise exponential model is constructed by partitioning the time axis at times 0 < s1 < s2 <

. . . < sJ , where sJ is large enough to ensure that no survival times fall outside of it. Within each of the J

intervals [0, s1), [s1, s2), . . . , [sJ−1, sJ) we assume a constant hazard, i.e. an exponential survival function

for the interval. We also chose to model three windows. They went from [0,0.378), [0.378, 1.16), [1.16, 10).

There were approximately equal number of failures in each window.

The hazard for the ith subject with covariates xi over the jth time interval is h(t) = exp(φj + x′iβ)

for sj−1 ≤ t < sj . For the complete data distribution, we have two parameters of interest: β, and φ. Let

β represent the effect of the covariates of interest, which we assume remains the same for all windows

and φ a vector of the log of baseline hazards for the J time windows. As the range for both parameters is

(−∞,∞), we use multivariate normal (MVN) priors on both. We model β ∼MVN4(µ0,Σ0) where Σ0 is a

large multiple of the 4x4 identity matrix. Let φ be modeled as φ ∼MVNJ=3 (γ0, diag(a1, a2, a3)), where

diag(a1, a2, a3) is a diagonal matrix whose diagonal is formed by the enclosed vector.

In addition to the complete data distribution, we also need to define the missing variable distribution.

This data set has two possible missing covariates. We divide the missing observations into 3 groups: (1)

those with only Breslow score missing, (2) only size missing, and (3) both missing. We express the vector

of missingness for the ith observation as xi,m. When the ith observation is missing only Breslow score,

xi,m ∼ N(η1, σ11). When the ith observation is missing only the size, xi,m ∼ N(η2, σ22). When the ith

observation is missing both covariates, xi,m ∼ MVN2 (η = (η1, η2)′,Σ), where Σ =
σ2
11 σ12
σ12 σ2

22
. The mean
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and variance of the observation missing only Breslow or only size is the respective marginal distribution of

the observation missing both covariates. We can express all three situations as xi,m ∼ MVNdi(ηei ,Σsi),

where in the case of only Breslow score missing, di = 1, ηei = η1,Σsi = σ11. In the case of only size

missing, di = 1, ηei = η2,Σsi = σ22. In the case of both covariates missing, di = 2, ηei = η,Σsi = Σ.

The missing variable distribution has two parameters of interest: η and Σ. η is a 2-dimensional vector of

the mean of the missing Breslow scores and sizes while Σ is the covariance matrix of the bivariate distribution.

We let η ∼ MVN2(ζ0,Ψ0) and model Σ ∼ Wishart2(c0, d0 ∗ I2), where c0 and d0 are scalars, and I2

is the 2-dimensional identity matrix, as Σ is a semi-positive definite matrix. All multivariate normal prior

distributions have means of 0 and variances of 106. We let c0 = 2 and d0 = 0.5 which corresponds to an

uninformative prior for the Wishart distribution.

The priors for the parameters may not reflect the true situation. If we have previous data on the covariates

of interest, we may be interested in modeling a less flat prior on β. The prior on φ assumes that the baseline

hazards are independent for each interval. We may also be interested in allowing the mean for each missing

observation to vary, so that instead of all the missing breslow and size covariates having the same mean,

they would depend on which observation was missing. These changes to our model can be represented as

perturbations.

When performing model diagnostics, it is important to assess whether the model is sensitive to these

perturbations. We could explore how reducing the variance would effect the model by perturbing the variance

terms of β. Our perturbed prior would be

β|ω ∼ N4

(
µ0, diag(

σ2
1

ωβ1
,
σ2

2

ωβ2
,
σ2

3

ωβ3
,
σ2

4

ωβ4
)

)
. (2.14)

If we want to explore whether or not the baseline hazards are independent, we can perturb or change the prior

on φ. We perturb φ such that

φ|ω ∼MVN3(γ0, AR(ω)), AR(ω) =


a1 ωφ1 0

ωφ1 a2 ωφ2

0 ωφ2 a3

 . (2.15)

When ωφi = 0, i = 1, 2 this corresponds to independence. When 0 6= ωφi this corresponds to some

correlation between the baseline hazards.
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If we were interested in modeling a separate mean for each missing observation, we could change the

missing variable distribution for xi,m. Instead of xi,m ∼MVNdi(ηei ,Σsi) we can explore,

xi,m|ωimis ∼MVNdi

(
ωimis1

′
di

+ ηei ,Σsi

)
(2.16)

where ωimis has the same dimension as xi,m. Written out for each of the three scenarios, we have

xi,m|ωimis ∼ N (ωimis + η1, σ11) if only Breslow missing (2.17)

xi,m|ωimis ∼ N (ωimis + η2, σ22) if only size missing (2.18)

xi,m|ωimis ∼MVN2

(
(ωimis1, ωimis2) ∗ (1, 1)′ + η,Σ

)
if both missing. (2.19)

Let ωimis = (ωimis,1, ωimis,2) if xi is missing 2 variables and ωimis is scalar if xi is missing only 1

variable. As we have 72 observations with one or two covariates missing, and 83 values of either Breslow

score or size missing. Therefore, ωmis is a vector with 83 elements, one for each missing value. All together,

ω = (ωβ, ωφ, ωmis) where ωβ corresponds to the scaling perturbations on β, ωφ to covariance between the

log baseline hazards (φ), and ωmis to the missing means of xi,m and ω0 = (1, 1, 1, 1, 0, 0, 0, . . . , 0)89×1.

Using these perturbations, we calculate the complete log posterior to be

l(Dm, Do, β, φ, η,Σ|ω) ∝ l(Do|Dm, β, φ) + l(Dm|η,Σ, ωmis) + l(β|ωβ) + l(φ|ωφ) + l(η) + l(Σ−1)

(2.20)

which we will use to calculate G(ω) and FIRI [v].

The geometric tensor is a block diagonal matrix composed of three block matrices along the diagonal.

The first block matrix in the diagonal corresponds to G(ωβ)4×4 = diag(1
2 ,

1
2 ,

1
2 ,

1
2). The second block matrix

corresponds to G(ωφ)2×2 =

 1
a1a2

0

0 1
a2a3

+Eω

 φ22
a1a22

+
φ21
a21a2

φ1φ3
a1a2a3

φ1φ3
a1a2a3

φ22
a22a3

+
φ23
a2a23

, where ai is the ith diagonal

element of AR(ω) and Eω is the expected value with respect to p(Dc, θ). The third and final block matrix

corresponds to G(ωmis)72×72 = diag(g(Σ)). g(Σ) is a vector with 72 elements, one for each patient with

missing observations. Two elements of ωmis are used when a patient has two missing covariates. The ith
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element of g(Σ) is

gi(Σ) =



Eω

(
1
σ11

)
if the ith missing observation only has the Breslow score missing

Eω

(
1
σ22

)
if the ith missing observation only has the size missing

Eω

(
σ22

det(Σ) + σ11
det(Σ) −

2σ12
det(Σ)

)
if the ith missing observation has both missing

(2.21)

Since both G(ωφ) and G(ωmis) contain parameters in the expression, we rewrite

gij(ω) = −
∫
∂2
ωiωj

lc(ω)p(Dc, θ)dΛ(Dcom, θ)

as

gij(ω) = −
∫
∂2
ωiωj

lc(ω)p(Dm, θ|Do)p(Do)dΛ(Dm, θ,Do).

By reformulating the geometric tensor as the expected value of p(Dm, β, α|Do) we can calculate this

distribution from ARMS, which is also used to calculate FIRI [v], and SIRI [v]. We also use the fact that

G(ωφ) and G(ωmis) do not contain any terms involving the observed data so the integral with respect to

p(Do) is trivial.

Since G(ω) is not proportional to the identity matrix, we need to adjust our calculations for FIRI [v],

and SIRI [v] so that measures are on the same scale for comparison reasons. We scale by G−1/2(ω0). We can

easily calculate the diagonal matrices of G(ωβ) and G(ωmis), and for non-diagonal matrix G(ωφ) we can

use spectral decomposition. Details are provided in Appendix A1

To calculate p(Dm, θ|Do), we use Gibbs sampling in ARMS. We have 4 elements of β, 3 elements of φ,

2 elements of η, 3 elements of Σ, and 83 parameters that correspond to the missing covariates, which means

that we have 95 parameters to sample. We had a burn-in of 5,000 and trimmed every 5th observation. In

the end, we had 105,000 Gibbs samples. Convergence was monitored using traceplots, auto-correlation, and

Geweke statistics. The parameters associated with missing variables did not have great convergence.
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Let vi be the elementary vector with 1 in the ith position. Therefore, v1 − v4 correspond to the

perturbations to β, v5 − v6 correspond to the perturbations to φ, and v7 − v78 correspond to the perturbations

to the means of the missing observations. There are 72 elements since these are calculated by subject.

For i ∈ {1, 2, 3, 4} which corresponds to scaling the variance of the ithβ parameter

FIRI [vi] =

(∫ (√
2

2
−
√

2(βi − µ0i)
2

2σ2
0i

)
∗ p(β|Do)Λ(β)

)2

. (2.22)

Since G(ωφ) is not diagonal, calculating the FIRI [v] is more difficult. For ωφ, when i ∈ {1, 2} which

corresponds to exploring covariance between φ1, and φ2, and φ2 and φ3, respectively

d(RI)[vi+4](ω(0)) =

∫
−(φi − γ0i)(φi+1 − γ0i+1)

ai ∗ ai+1
p(φ|Do)dΛ(φ) (2.23)

For further details regarding the calculation of FIRI [v5], F IRI [v6], see Appendix A1.

For ωmiss, when i ∈ {1, 2, . . . , 72}, which corresponds to the observations with one or two missing

covariates, then

FIRI [vi+6] =



(∫ ( (ximis1−η01)
σ11

)
p(xi,m|Do)Λ(xi,m)× Eω( 1

ω11
)−1/2

)2

if ith missing observation has breslow score missing(∫ ( (ximis2−η02)
σ22

)
p(xi,m|Do)Λ(xi,m)× Eω( 1

ω22
)−1/2

)2

if ith missing observation has size missing[∫ (
σ22

det(Σ)(ximis1 − η01) + σ22
det(Σ)(ximis2 − η02)

− σ12
det(Σ)(ximis1 + ximis2 − η01 − η02)

)
p(xi,m|Do)dΛ(xi,m)

×Eω( σ22
det(Σ) + σ11

det(Σ) −
2σ12
det(Σ))−1/2

]2

if ith missing observation has both missing

(2.24)

Recall that Eω() is the expected value with respect to p(Dc, ω), and the power is taken after the expected

value. The FI for β and the missing observations have already been scaled in their expression.

Table 2.2: First order influence measures for E1684 data
FI in direction of β1 β2 β3 β4 φ1 φ2

0.125 0.125 0.125 0.125 2.3e-4 5.4e9
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As we can see from the Table 2.2, there is only a small change in the curvature of the Bayes Factor as we

scale the variance due to FI’s small value. Because we have put the the β′s on the same scale, the equivalent

FI values show that there is no β that is more influential than the others. This is mostly due to the fact that the

hyperparameter for the variance of the β′s is on the orders of magnitude larger than the mean of the β′s.

Table 2.2 also suggests that there is only a minor change if we decided to take into account covariance

between the log baseline hazards in the first and second window, however the covariance between the log

baseline hazards in the second and third window has a large effect on the Bayes factor.

The missing data perturbation, as shown in Figure (2.2), shows a similar story. The FI values vary from

1.7e-4 to 85.1, which indicates not much influence over the Bayes factor. The 3 highest FI’s come from

observations that are missing both covariates, but these values are not much higher than the other FI’s. The

lack of high FI’s suggests that none of the observations is particuarly influential on the Bayes factor.

2.4 SIMULATIONS

To access the variability of the FI measures, we created 100 bootstrap iterations with sample size 285 (the

original sample size) with replacement from the ECOG data and linked the FI measures back to the original

observations. Figure 2.3 shows that the measure has a lot of variability and is dependent on the sample. An

observation might have high FI in one bootstrap sample and low FI in another. Since this is the case, it is

prudent to consider not only the original data’s FI, but also how high a percentage of the observations might

be. To this end, we consider both the 75th and 90th percentile.

We could consider an observation as having high influence if the observation had a large value in the

original data set and the 75th percentile was above a certain cutoff. By forcing the 75th percentile to be above

a certain cutoff implies that 25% of the bootstrap sample is above the cutoff. The FI graph of the original

values, Figure 2.2, suggests that 50 might be a reasonable cutoff. Figure 2.4, which shows the inter-quartile

range versus the observation number overlayed with the original FI values, suggests that 30 might be a good

cutoff for the 75th percentile in this data set. Using this cutoff suggests that there 6 potential influential

observations listed in Table 2.3, only one of which has an original FI above 50 (observation number 75).

Another measure to consider are the observations whose 90th percentile is above a certain cutoff. Figure

2.5 shows the interdecile range versus the observation number overlayed with the original FI values and

suggests that 60 might be a good cutoff in this situation. Using this cutoff we see that there are 9 possible
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outliers (Table 2.4), all of which have both variables missing, while in the cutoff using the 75th percentile,

there were some observations that only have Breslow missing. This suggests that the tails of the distribution

of the FI measure could be related to the number of variables that are missing for a particularly observation.

Using this cutoff, we see there are 5 observations whose original FI values are greater than 50 (observation

numbers 75, 81, 156, 184, and 189) and whose 90th percentile is high.

Table 2.3: Observations with high 75th percentiles
RFS
(yrs)

Relapse Trt Std.
log(Bres.)

Std.
log(size)

Std.
Age
(yrs)

count FI 75th Pctl

0.39 1 0 9999 9999 -2.30 75 63.07 35.07
1.84 0 1 9999 9999 -0.03 161 4.71 31.21
2.15 0 1 9999 -0.37 0.12 171 35.87 35.55
6.31 0 0 9999 0.35 -1.33 232 38.81 34.35
7.97 0 1 9999 -0.84 -0.93 264 39.68 33.37
8.29 0 1 9999 9999 1.41 272 8.78 41.16

Table 2.4: Observations with high 90th percentile values
RFS
(yrs)

Relapse Trt Std.
log(Bres.)

Std.
log(size)

Std.
Age
(yrs)

count FI 90th Pctl

0.26 1 1 9999 9999 -0.33 53 0.01 80.66
0.39 1 0 9999 9999 -2.30 75 63.07 68.07
0.44 1 1 9999 9999 1.10 81 63.17 63.58
1.70 1 1 9999 9999 -0.99 156 65.69 85.39
1.84 0 1 9999 9999 -0.03 161 4.71 95.77
3.02 1 1 9999 9999 0.32 184 4.93 97.37
3.28 1 0 9999 9999 -0.70 189 82.34 91.21
4.89 0 1 9999 9999 -0.52 210 85.13 71.85
8.29 0 1 9999 9999 1.41 272 8.78 151.09
1

The Tables 2.3 and 2.4 suggest that we have perhaps 1 observation whose 75th and 90th percentile are

different from the rest of the data, and whose original FI was high. However, this observation does not seem

a cause for concern given the high variability of the FI measure.

1RFS: Relapse Free Survival time
Relapse is 1 if relapse occured
Trt is 1 if high interferon dose used, 0 if observation
A value of 9999 indicates missing observation
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2.5 DISCUSSION

The purpose of performing model diagnostics is to ensure that the chosen model is not sensitive to small

changes, and if the model is sensitive to small changes, we need to be forthwright with investigators about the

model’s sensitivity. As investigators, we may be interested in changes that that are a result of our modeling or

prior assumptions.

In this paper, we used both simulated data and a real data set to explore how our modeling and prior

assumptions effected the Bayes factor. Our first simulation example explored perturbations to the model

by perturbing the hazard function. By knowing the truth behind the simulations, we can verify that the

diagnostics are accurately picking up perturbed observations. We see that the influence measures pick up

big changes, and is not sensitive to smaller changes. For diagnostics, that is what we want as we are only

interested in knowing about potential large changes to our model.

For our ECOG data set, we explored perturbations to the variances of β, φ, and the influence of individual

observations. Our perturbation to the variances of β and the covariances of φ represent perturbations to the

prior assumptions. The FI measure for β were largely dominated by the original hyperparameter variance

for β. In non-informative cases, the variance for β is chosen to be many orders of magnitude larger than

the hyperparameter mean of β. Since the original hyperparameter for the variance of β appears in the

denominator of the FI measure, it ends up dominating the term. No one variable is more influential in the

model unless its estimate is large compared to the hyperparameter variance.

We see from our bootstrap sample of the ECOG data set, that the FI measure has much variability. It

gives a sense that “large” FI should only be those whose order of magnitude are 2 to 3 times the majority of

the data. Knowing this, we suspect that there are not any unduely influential observations in the ECOG data

set.

There are many ways of measuring sensitivity. With Bayesian influence measures, we measure how

small perturbations will effect a measure of interest. Using graphical methods, we determine which changes

to the model will have a large effect on our measure of interest.
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Figure 2.1: First-order influence measure for Bayes factor
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Figure 2.2: First order influence measures for missing observations

Figure 2.3: Graphic of FI measures across all 100 iterations

31



Figure 2.4: Original FI values versus interquartile range (IQR) of 100 bootstraps
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Figure 2.5: Original FI values versus interdecial range (IDR) of 100 bootstraps
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CHAPTER 3: ROC ANALYSIS IN THE PRESENCE OF VERIFICATION BIAS

3.1 INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States,

affecting more than 5% of the adult population (Lin et al., 2008). Despite its high prevalence, COPD is

not often diagnosed until it has reached advanced stages. According to the Global Initiative for Chronic

Obstructive Lung Disease (GOLD), COPD is defined as air flow limitation that is not fully reversible, is

gradually progressive, and is associated with an abnormal inflammatory lung response to noxious particles or

gases (Rabe et al., 2007), making it hard to diagnose. Four out of five COPD patients have ever smoked or

are current smokers, which puts smokers in a high risk population. Still there have been some attempts to

screen the general population and not just high risk patients.

The main method of diagnosing a patient with COPD is office spirometry. When the subject blows into

an office spirometer, it measures variables such as the forced expiratory volume in 1 second (FEV1) and

forced volume capacity (FVC) and assigns a quality grade (A-F) that indicates the validity of the reading. A

passing grade (A-C) is sometimes difficult to achieve for patients who have to blow into the device for as

long as 10 seconds. Enright and Kaminsky (2003) suggest that instead of asking general practitioners to do

spirometry, technicians should perform the test and then have general practitioners interpret the results.

One of the problems with screening for COPD is that there is no universally accepted definition of

a COPD case, which makes estimating population prevalence difficult. GOLD defined a COPD case as

someone whose FEV1/FVC < 0.7. The American Thoracic Society (ATS) recommends that cutoffs be age

and gender specific, as lung capacity is a function of these two variables (Enright and Kaminsky, 2003).

Hankinson et al. (1999) showed that FEV1 decreases with age and tends to be higher in males than in females.

The third National Health and Nutrition Examination Survey (NHANES III) also has its own recommendation

for COPD diagnosis. NHANES III surveyed a random sample of the U.S. population from 1988 to 1994

and collected spirometry data on 20,627 participants ages eight and older who came from a selection of

races (Hankinson et al., 1999). The NHANES III study developed reference equations to determine the
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lower limit of normal for FEV1/FVC for different populations. In the end, the significant covariates in the

equations were gender, height, race, and age. With so many ways of defining a COPD case, estimates for

population prevalence vary. Some reports calculate a COPD prevalence of 4.5% while others calculate a

21.1% prevalence (Wilt et al., 2005).

With all the difficulties of using spirometry to determine COPD, the U.S. Preventive Services Task Force

(USPSTF) was formed in order to make a recommendation on whether using spirometry to screen for COPD

is effective. The USPSTF reviewed COPD studies from 1966 to 2007. Lin et al. (2008) did a review of

the studies and found no papers provided direct evidence on health outcomes associated with screening for

COPD. They concluded that screening using spirometry would require testing hundreds of patients to identify

a single exacerbation and would likely identify people with mild or moderate airflow obstruction who would

not experience any adverse health benefits attributable to COPD, and was therefore not an effective screener

for COPD in the general population.

Since the Agency for Healthcare Research and Quality (AHRQ) did not recommend spirometry for

COPD screening (Qaseem et al., 2007; Lin et al., 2008) for healthy adults who do not report symptoms to

a clinician, there has been a need to develop and evaluate alternatives to spirometry for detecting COPD.

Nelson et al. (2012) staged a large COPD screening study in the general adult population to evaluate pocket

spirometers. Ideally, screening tools should be affordable, simple, and accurate enough to avoid producing

large numbers of false positives or false negatives (Marshall, 1996a,b). Pocket spirometers cost approximately

$30 and require a short exhalation, making them ideal for large screening studies of the sort described in

Nelson et al. (2012). These devices, however, have not been validated for accuracy as a population-wide

screener. Both FEV1 and peak expiratory force (PEF), which is the maximum speed of exhalation, can be

measured with a pocket spirometer. Nelson et al. (2012), selected PEF as the measurement to be used for

screening in their general population study. The main question of interest is whether there is a significant

difference between the performance of the pocket spirometer screener on PEF and FEV1 when used on the

entire population of interest, and not just the study population.

We will first describe the study in Section 3.2. In Section 3.3 we report some descriptive summaries of

the data, which provide the numbers we need in Section 3.4, where we describe our method to address our

three aims. Section 3.5 describes the results. In Section 3.6 we use simulations to explore how our method

works in different scenarios. Section 3.7 discusses the strengths and limitations of our method.
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3.2 EXAMPLE

The study by Nelson et al. (2012) recruited subjects from events such as health fairs, health expositions, and

national conventions of older adults in cities where a large number of adults were expected to attend. These

subjects represented the population at risk for COPD. A “Mobile Spirometry Unit” trailer or 10× 10 foot

booths advertised free lung tests. Subjects provided informed consent, but otherwise their information was

linked only with a non-descriptive ID number. Patients provided their gender, age, height, and race in order to

better calculate the lower limit of normal of PEF for a person with those characteristics, also referred to as the

predicted PEF. Then all patients answered a questionnaire used to identify whether they were at high risk for

COPD and performed at least 3 maneuvers, i.e. breaths, into the pocket spirometer. Pocket spirometers from

Vitalograph asma-1 Kansas City, MO were chosen because they met ATS accuracy standards for PEF and

FEV1 and were efficient for a large number of screener tests due to their minimization of cross-contamination

between patients by using disposable one-way mouth pieces.

Severe COPD is associated with low values of PEF and the study was designed to sample more heavily

from those with low PEF values. In Stage 1 of sampling, all patients whose PEF was less than 70% predicted

for their age, height and race were asked to complete a spirometry exam. In Stage 2 of sampling (which

takes place after Stage 1), every 10th person who did not meet the Stage 1 requirement of having a PEF less

than 70% was asked to complete an office spirometry exam, which produced a 10% random sample of the

at risk population. The office spirometer used was ndd EAsyOne Frontline, Zurich Switzerland, which is a

diagnostic-quality office spirometer that meets ATS accuracy standards and minimizes cross-contamination

by using disposable plastic mouthpieces (Nelson et al., 2012). The FEV1 and FVC values to determine

COPD status (severe versus non-severe) were measured using the office spirometer. The technician recorded

the maximum measure of three passing attempts (grades A-C).

Although the GOLD standard uses FEV1/FVC< 70% of predicted as the cutoff for determining a COPD

case, an alternative measure was used. The GOLD standard assumes a post-bronchodilator spirometry,

while pre-bronchodilator spirometry was used in this screener study. Therefore a less conservative definition

of severe COPD cases was used. For this purpose, FEV6 was used to estimate FVC and additionally

FEV1< 60% of predicted was required. The final definition for a severe COPD case by office spirometry

were subjects with FEV1/FEV6< lower limit of normal (given age, height, gender, and ethnicity) and

FEV1< 60%.

36



The population that the study wanted to screen with the pocket spirometers corresponds to potential

COPD patients. Therefore never smokers with no asthma-like symptoms, women who were pregnant, and

people who had tuberculosis, a current respiratory infection, or eye surgery, major surgery or heart attack

during the previous 30 days were excluded. With exclusion of these groups, there is a better target population

at risk for COPD without confounding from other factors accounting for restricted air flow. The initial plan to

target the COPD risk population was to limit pocket spirometry to those subjects who had two or more risk

factors according to the questionnaire, which asked about COPD risk factors, such as age, daily wheezing,

productive cough, asthma, and recent smoking activity. Since it was determined that performing PEF on all

participants would add little time or expense, all patients were screened on the pocket spriometer regardless

of the number of risk factors identified on the questionnaire.

Although there was a clearly defined population to screen, not everyone wanted to be screened. There

were patients who refused to do either pocket spirometry or office spirometry, while some were unable to

perform office spirometry and achieve a passing grade. There were also people who had normal PEF values

but who volunteered for spirometry. When calculating the sensitivity and specificity, it is important to weigh

these volunteers properly. Since these people were self-selecting into the study, it is important that they were

given a different weight from the rest of the patients in Stage 2 as they were not part of the random sample.

Since not everyone was asked or was able to perform office spirometry to produce an interpretable disease

status, it is necessary to have weights according to the sampling scheme. The purpose of this analysis was to

use an innovative application of sampling weights to evaluate the performance of the screener in identifying

COPD cases, confirmed with the use of diagnostic quality spirometry. There are two main issues that the

sampling scheme needs to address. First, there is verification bias. As noted in Begg and Greenes (1983),

not everyone is sent on for disease verification, which will artificially inflate our sensitivity and deflate our

specificity since a higher percentage of diseased patients will be evaluated in our study compared to the

general population. Secondly, we need to address the fact that we have some patients whose disease status is

uninterpretable even after being evaluated for the disease. Disregarding these patients whose disease status is

unknown will lead to bias in our estimates (Matchar et al., 1990).

We had three main aims: 1) to generalize our results for estimates of the screener to the entire screened

population, 2) determine if PEF< 70% was a good cutoff for identifying potential COPD cases, and 3) to

determine if PEF was the best screener variable to differentiate between disease statuses. We were interested

in providing weighted analysis of sensitivity and specificity so that the results could be more generally
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applicable, and we were also interested in using the data for alternative analyses for which the study was not

necessarily designed, such as the evaluation of a different screener variable.

3.3 DATA

Data were collected between June 2008 and December 2009. A total of 5,761 people provided demographic

data and completed the risk assessment questionnaire. Of these, 5,638 people performed the peak flow

screener, and this subset comprised the study population. 315 of the 5,638 subjects had peak flow < 70%

predicted so they also were asked to performed office spirometry. 251 of the 315 completed office spirometry

and of the 251, only 179 had spirometry maneuvers with adequate quality grades (A-C). In summary, of

the 315 subjects whose pocket spiromety PEF < 70% predicted, 179 had passing maneuvers, 72 had failing

maneuvers, and 64 did not complete the office spirometry. There were 5,323 participants with PEF ≥ 70%

predicted, of which 651 underwent spirometry. Of the 651 spirometry participants, 107 were volunteers

who requested spirometry while the remainder was a random 10% sample. Only 550 of the 651 had passing

spirometry maneuvers. Table 3.1 provides a more detailed break down of the sample that underwent both the

screener test and office spirometry.

The study population of 5,638 participants provided a good representation of the population at risk

that was the target. The majority of participants was female (n=3,262 57.9%). The predominant race was

White/Hispanic (n=4,932 87.5%) while Blacks made up the remaining population (n=706, 12.5%). The

average age was 54.41 years with a minimum of 12 and a maximum of 93. Furthermore, 84.2% (n=4,745)

were over 40 years of age, which is considered a risk factor for COPD.

The questionnaire was based on other studies which used short questionnaires to detect adult smokers

who have a high probability of having COPD. The risk factors considered in the questionnaire were the

presence of daily wheezing and productive cough, asthma diagnosis, physical activity limitations due to

breathing, particle (i.e. smoke, chemical, dust) exposure, smoking status, and if so, how recently smoking

occurred. A total of 2,243 (39.8%) had been smokers with 641 (11.4%) having smoked in the past 6 months.

Furthermore, 3,450 (61.2%) had particle exposure. The rest of the risk factors were found in roughly 20% of

the population.
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3.4 METHOD

3.4.1 EXTRAPOLATING TO THE POPULATION AT RISK

In order to generalize the office spirometry results so that they were more representative of the people who

were screened, there needs to be a weighting scheme. In the group with abnormal PEF, which was defined to

be less than 70% of predicted PEF, the 179 adequate spirometry results needed to represent the 315 that were

supposed to complete spirometry. Therefore, each person in this group, where everyone was also asked to

perform spirometry, was given a weight of 1.76. This assumes that those who did not complete spirometry

are similar to those who failed to get a passing grade. In the group of 123 volunteers, whose whose PEF

was greater than 70% but who self-selected into the office spirometry portion of the study, there were 107

acceptable office spirometry maneuvers, so they were given a weight of 1.15. The volunteers needed to be

removed from the 550 acceptable spirometry results, as well as the 5,323 population count as they were not

randomly selected. Therefore, the remaining 443 would represent the non-volunteering population of 5,200

(5,323-123) and were given a weight of 11.74. Table 3.2 shows how the weights were calculated. The use of

weights to account for those whose disease status was not observed seems reasonable given that the mean of

the PEF values for those who were able to produce an acceptable disease status is very similar to the mean of

the PEF values for those who were unable to produce an acceptable disease score for volunteers, those below

the cutoff, and those above the cutoff (Table 3.3).

Since we had sampling weights in our data set, it was important to make sure that our analysis correctly

accounted for them in the variance. For calculation of confidence intervals using the sampling weights, we

used SAS-callable SUDAAN, which is a sampling program that calculates variance taking into account the

sampling design. We treated the study as a single population, and we assumed simple random sampling with

replacement and unequal probabilities of selection in our design specification.

Using the weights, we also graphed the sensitivities and specificities of different screener cutoffs on a

weighted Receiver Operator Curve (ROC). An ROC is used to show the trade-off between sensitivity and

specificity as the cutoff of the continuous screener variable changes. In our study, sensitivity is defined as the

probability of the pocket spirometer PEF measure being below the cutoff given that the person has COPD

based on office spirometry analysis. Specificity is the probability of the screener being negative at the same

cutoff given that the person does not have COPD. As the cutoff for PEF increases, our sensitivity increases,

thus identifying more patients for office-grade spirometry, leaving fewer cases behind; however, at the same
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time, our specificity decreases. The ROC plots the sensitivity by 1-specificity. A good measure has high

sensitivity and specificity.

We used SUDAAN and SAS to make a graphical depiction of the ROC and the 95% confidence intervals

of sensitivity and specificity about different cut points. We measured the confidence intervals of a range of

cutoffs that went from 55% to 85% by increments of 5% to get an overall picture of how PEF would perform

in the general population at differen cutoffs.

3.4.2 EVALUATING CUTOFF

One way to determine an ideal cutoff is to use the cutoff that corresponds to the point that is farthest from the

one-to-one line. The one-to-one line represents a test that is random, i.e. sensitivity and specificity add to 1.

The point farthest away from this line would indicate the cutoff that has the best sensitivity given the tradeoff

with specificity, assuming sensitivity and specificity are equally valued.

The study was designed to prioritize the negative predictive value of the screener. Researchers wanted to

be confident that a negative diagnostic of the screener truly represented a non-severe COPD case. Therefore,

the false negatives needed to be minimized while maintaining an acceptable true positive rate. With respect to

sensitivity and specificity, maximizing the negative predictive value means minimizing the ratio of 1-sensitivity
specificity

while maintaining an acceptable overall specificity, as shown below, where ρ is the disease prevalence in the

general population

NPV = P(True Negative|Test Negative)

=
(1− ρ)specificity

(1− ρ)specificity + ρ(1− sensitivity)

=

(
1 +

ρ

1− ρ
1− sensitivity

specificity

)−1

.

From Figure 3.2, we see that the ratio is smaller for larger values of sensitivity, so long as the sensitivity is

not 1. Therefore cutoffs with larger sensitivities will also have larger negative predictive values.

3.4.3 PEF VS FEV1

In addition to assessing different cutoffs values for PEF as a screening tool, we wanted to analyze whether

PEF was the best variable to use for the screener. Since the pocket spirometers measured both PEF and FEV1,
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we analyzed the data as if we had used FEV1 as the screener variable. The FEV1 measure from the pocket

spirometer has less accuracy than the office spirometer measured value, although the advantage is that the

pocket spirometer is easier to use.

Another measure that ROC’s provide is the area under the curve (AUC), which can be used as the measure

of discrimination for the screener variables. DeLong et al. (1988) developed a non-parametric correlated

AUC test that is applicable to comparisons of correlated measures in the study population (i.e. two screeners

that were measured on the same person). However, for generalization to the general population, incorporation

of sampling weights is needed. The Kawaguchi et al. (2011) variation of the DeLong et al. (1988) test statistic

will be used to incorporate sampling weights. In Kawaguchi et al. (2011), they formulate the test statistic as a

ratio of two estimators. The numerator is the estimated probability that a random pair of patients come from

different disease groups and the diseased patient has a lower value for the kth response variable (assuming

low values are associated with disease). Here, the kth response corresponds to PEF for k = 1 and FEV1 for

k = 2. The denominator pertains to the estimated probability that a random pair of patients are from different

disease groups (severe versus non-severe COPD). The weighted estimators of the numerator and denominator

statistic can be written as:

θ̂1k =
N∑
j=1

N∑
j′ 6=j

U1jj′k

U1jj′k =
wjwj′I[(tj − tj′)(Yjk − Yj′k) > 0]

wjwj′

θ̂2k =
N∑
j=1

N∑
j′ 6=j

U2jj′k

U2jj′k =
wjwj′I[(tj − tj′) 6= 0]

wjwj′

where tj = 1 if the subject has severe COPD and -1 if not, Yjk is the value of the jth patient’ kth response,

and wj is the jth patient’s sampling weight. The test statistic to determine if there is a significant difference

between the two measures can be written as θ̂ = θ̂11
θ̂21
− θ̂12

θ̂22
. Let θ̂ be a statistic that estimates the difference

between the AUC’s for PEF and FEV1, and θ̂k = θ̂1k
θ̂2k

is a statistic that estimates the AUC for response k

where k = 1 indicates the AUC for PEF and k = 2 indicates the AUC for FEV1.

41



We use the weighted estimates U1j∗k, U2j∗k, which are the respective weighted averages of U1jj′k and

U2jj′k over all j′ 6= j to formulate θ̂k as the weighted mean of two estimates using the following calculations:

θ̂k =

N∑
j=1

N∑
j′ 6=j

wjwj′U1jj′k/

 N∑
j=1

N∑
j′ 6=j

wjwj′


N∑
j=1

N∑
j′ 6=j

wjwj′U2jj′k/

 N∑
j=1

N∑
j′ 6=j

wjwj′



θ̂k =

 N∑
j=1

wj


N∑
j′ 6=j

wj′U1jj′k/
N∑
j′ 6=j

wj′

 /
N∑
j=1

wj


 N∑
j=1

wj


N∑
j′ 6=j

wj′U2jj′k/

N∑
j′ 6=j

wj′

 /
N∑
j=1

wj


U1∗∗k =

N∑
j=1

wjU1j∗k/

N∑
j=1

wj

U2∗∗k =
N∑
j=1

wjU2j∗k/
N∑
j=1

wj

θ̂k =

 N∑
j=1

wjU1j∗k/

N∑
j=1

wj

 /

 N∑
j=1

wjU2j∗k/

N∑
j=1

wj


= (U1∗∗k/U2∗∗k).

While calculating the weighted mean of θ̂ is easily implemented, calculating the variance is harder. The

unweighted variance is calculated by creating a vector of values for the jth patient (j = 1, . . . , N ), where

the vector is expressed as Fj = (U1j∗1, U1j∗2, U2j∗1, U2j∗2). The first subscript of Uij∗k corresponds to the

group that’s being estimated: i = 1 if estimating the probability that for a random pair of patients in which

one has severe COPD and one does not, the patient with severe COPD will have the larger test result, and

i = 2 if estimating the probability that a randomly chosen pair will have different COPD statuses. The last

subscript refers to the screener variable being measured. Let U1j∗k pertain to the probability that the jth

subject has a higher kth response value than any other subject in the opposite COPD class, and can be thought

of as the weighted average of U1jj′k over all values of j′ 6= j. Let U2j∗k pertain to the probability that any
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other subject is from the opposite COPD class. In terms of formulas we have

Uij∗k =

N∑
j′ 6=j

wj′Uijj′k

N∑
j′ 6=j

wj′

for i = 1, 2. Our statistic needs to incorporate both measures as a function of F so we have

θ̂ = θ̂1 − θ̂2

=
U1∗∗1
U2∗∗1

− U1∗∗2
U2∗∗2

= C1 exp{A1 log(F̄ )}

where

C1 =

[
1 −1

]
,

A1 =

1 0 −1 0

0 1 0 −1

 , and

F̄ =

N∑
j=1

wjFj

N∑
j=1

wj

We can use Taylor series expansion of θ̂ to get

Var(θ̂) =

[
1 −1

]
A1 ∗Da2 ∗WF ∗Da2 ∗A′1 ∗

 1

−1


where Da2 is a diagonal matrix whose diagonal is the vector a2 = F̄−1 and WF is the covariance matrix of

F̄ taking into account sampling weights.
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Details for the unweighted covariance calculation of the average of F (VF ) shown below come from

Davis and Quade (1968)

VF =
4

N(N − 1)

N∑
j=1

(Fj − F̄ )′(Fj − F̄ ).

Since the weighted counterpart of 1
N(N−1)

N∑
j=1

(Fj − F̄ )′(Fj − F̄ ) can be obtained from SAS-callable

SUDAAN, it’s multiplication by 4 produces WF , with weights taken into account. We can test the null

hypothesis for 2 measures by testing H0 : θ = 0 using the test statistic X = θ̂2

Var(θ̂)
. By the central limit

theorem, this statistic has a χ2
1 distribution.

We can expand the methodology to accommodate the situation in which we have 3 screeners and want

to determine whether at least one of the tests has an AUC that is significantly different from the others. In

this situation F̄ = (U1∗∗1, U1∗∗2, U1∗∗3, U2∗∗1, U2∗∗2, U2∗∗3), the weighted covariance matrix of F̄ (WF ) is

4×(Covariance matrix from SUDAAN). We still multiply by a factor of 4 since we are still comparing 2

states, diseased vs non-diseased, at a time.

Now our null hypothesis is H0 : θ1 − θ2 = θ1 − θ3 = 0. Now θ = (θ1 − θ2, θ1 − θ3)′

Var(θ̂) =

1 −1 0

1 0 −1

A1 ∗Da2 ∗WF ∗Da2 ∗A′1 ∗


1 1

−1 0

0 −1


where

A1 =


1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

 .

We can test the null hypothesis for 3 measures using the test statistic X = θ̂′Var(θ̂)
−1
θ̂. By the central limit

theorem, this statistic has a χ2
3 distribution.
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3.5 RESULTS

3.5.1 EXTRAPOLATING TO THE POPULATION AT RISK

Of the 179 adequate spirometry results for those subjects whose PEF was < 70% predicted, 113 would be

considered to have COPD according to spirometry. Of the 550 who had normal peak flow and adequate

spirometry results, only 30 would be considered to have COPD according to spirometry. With the weights,

199 of the 315 with low PEF values have severe COPD by spirometry, and 267 of the 5,323 with normal

PEF values would be expected to have severe COPD by spirometry. The un-weighted and weighted results

are compared in Tables 3.1 and 3.4. The screener has a weighted sensitivity of 0.4270, and a weighted

specificity of 0.9776 versus an unweighted sensitivity and specificity of 0.7902 and 0.8873, respectively.

Using SUDAAN to calculate the weighted confidence intervals of our screener, the 95% confidence interval

for weighted sensitivity is (0.3228, 0.5377) and for weighted specificity is (0.9711, 0.9826). Table 3.4 uses

the weights to calculate the estimates of the population had everyone undergone both pocket and office

spirometry.

In order to illustrate how different PEF cutoffs of 55%− 85% would have performed, we use Figure 3.1,

which provides the ROC combined with confidence intervals. Table 3.5 provides the actual estimates for the

range of cutoffs. The inclusion of the cutoff of 88% is explained in more detail in the following section.

3.5.2 EVALUATING CUTOFF

If we wanted to consider sensitivity and specificity as equally important, we could use the weighted ROC

curve to find the point farthest away from the one-to-one line and to use the data to determine which cutoff

that point corresponded to. We determined that a PEF cutoff of 88% would have increased sensitivity without

too much of a loss in specificity (Figure 3.3).

If instead we wanted to maximize the negative predictive value of our screener while generalizing to

the general population, we could find the cutoff point that was farthest from the y =
√
x. The point that

was farthest from the curve corresponded to a PEF cutoff of 91% for the pocket spirometer. With the higher

cut off, our sensitivity would have been 0.9510 and our specificity would have been 0.6809. The weighted

sensitivity would have been 0.8455 and the weighted specificity would have been 0.7854. Tables 3.6 and 3.7

provide a comparison of the full 2× 2 tables.
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In order to maximize the negative predictive value of a screening test based on a pocket spirometer, we

recommend using a cut off value of 91% instead of 70% for PEF. The reason why we were we wanted to

maximize the negative predictive value even at the cost of more false positives is because the negative effects

of a false positive were minimal. Sending more people to spirometry was considered less undesirable than

failing to identify someone who might have COPD. 70% was already considered a conservative cutoff in the

sense that we wanted mostly severe COPD cases in stage 1 of sampling, but the analysis from the y =
√
x

curve suggests we could have been less conservative.

Our analysis calculated the cutoff corresponding to the farthest point from the y =
√
x curve in order

to emphasize sensitivity, however if specificity were a higher priority, we could have calculated the cutoff

corresponding to the y = x2 curve instead. This would represent the case when we wanted to maximize the

positive predictive value. One scenario in which this might occur would be when the diagnostic exam is

prohibitively expensive or may be potentially dangerous. For COPD, however, the consequences of a false

positive for the screener are minimal, as the consequences of a false positive, office spirometry, is neither

costly nor harmful.

3.5.3 PEF VS FEV1

Another question of interest was whether PEF was the best variable to use for the screener using AUC as the

measure of discrimination. The AUC is an estimate of the probability that the measure of someone in the

non-diseased group will have a higher response variable value than someone in the diseased group, where the

response variable is either PEF or FEV1 in this situation. The FEV1 measure from the pocket spirometer has

less accuracy than the office spirometer measured value, although the advantage is that the pocket spirometer

is easier to use. Using the same weights a weighted ROC curve using FEV1 as the screener was calculated,

and the results are shown in Figure 3.4. There were 23 observations missing screener FEV1 data. The overall

mean of the group (n=5,615, ¯FEV 1 = 0.8470) was used for these missing observations so that the same

weights in the PEF situation could be used. The weighted AUC for PEF is 0.8740, while the weighted AUC

for FEV1 is 0.9002.

The weighted test statistic to test the difference between correlated AUC curves is 0.026192

0.0483 = 0.0142,

with a p-value of 0.9051 from a χ2 distribution with 1 df. The data suggests that there is not enough evidence

to show a significant difference between AUC using PEF and FEV1. As the AUC for FEV1 is higher, the data

suggests that FEV1 on the pocket spirometer would have been a better predictor of severe COPD than PEF.
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Table 3.1: PEF Screener versus COPD status by office spirometry, un-weighted.
Non-severe COPD by spirometry Severe COPD by spirometry Total

PEF ≥ 70% 520 30 550
PEF < 70% 66 113 179

Total 586 143 729

Table 3.2: Calculation of weights
Category # observed disease status # screened Weight
PEF< 0.7 179 315 1.76

PEF≥ 0.7 and randomly selected 443 5200 11.74
PEF≥ 0.7 and volunteered 107 123 1.15

This is graphically confirmed by Figure 3.4. As we are interested in high sensitivity in order to have a high

negative predictive value, the FEV1 test performs better than the PEF test for high sensitivities. However we

will use a simulation to further explore the performance aspects of our weighted statistics.

3.6 SIMULATIONS LOOKING AT SAMPLING ASSUMPTIONS, NO VOLUNTEERS

We examined the assumptions of our estimator using four different simulations. In all the simulations, D was

the true disease status for the 5,000 patients. D ∼ Bernoulli(π) where 1 indicated the patient had the disease,

and π is the prevalence of the disease. Y1 was the value of the first screener and Y2 was the value of the

second screener. Y1|D ∼ N(µ0 + µ1 ∗D,σ2
1) and Y2|D ∼ N(β0 + β1 ∗D,σ2

2). R1 and R2 simulated the

sampling rules, where 1 indicated that the subject was sent on for disease verification. R1|Y1, D = (Y1 < c)

where c was the cutoff for the screener that sent all subjects on to disease verification. R2 was 1 for every

10th individual who has Y1 ≥ c. We let W1 and W2 represent the whether or not the patient was able to get

an interpretable disease status. If the disease was interpretable, W1 or W2 was 1. For those who had Y1 < c,

W1|R1 = 1, Y1, D ∼ Bernoulli(1/w1) where the magnitude of w1 ∈ [1,∞) represents how hard it is for the

patients in the first phase of the sampling scheme to produce an interpretable result. If these patients are easily

able to produce interpretable disease results, then w1 is close to 1. W2|R1 = 0, Y1, D ∼ Bernoulli(1/w2)

is the variable indicating interpretable disease results in the second sampling stage. All simulations were

repeated 510 times. These following values were assigned to the simulation parameters: π̂ = 0.2, µ̂0 = 1.016,

µ̂1 = −0.4, σ̂1 = 0.252,β̂0 = 0.832, β̂1 = −0.37, σ̂2 = 0.22 and w1 and w2 were varied depending on the

situation.

In the first set of simulations, we explored whether the impact of non-ignorable verification bias on our

estimator. We made the probability of getting an interpretable disease status, W1 and W2, dependent on
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Table 3.3: Comparison of PEF between 3 groups of subjects
Volunteers Below cutoff Above cutoff, without volunteers

Observed disease status
# 107 179 443

Mean 0.98 0.55 1.07
Std Dev 0.21 0.12 0.21

Designated or volunteered for
office spirometry, but unobserved
disease status

# 16 136 85
Mean 0.97 0.58 1.03

Std Dev 0.2 0.13 0.19

Total group
# 123 315 5200

Mean 0.98 0.56 1.09
Std Dev 0.21 0.12 0.2

Not selected for office spirometry
# . . 4672

Mean . . 1.1
Std Dev . . 0.2

Table 3.4: PEF Screener versus COPD status by office spirometry, weighted
Non-Severe COPD by spirometry Severe COPD by spirometry Total

PEF ≥ 70% 5056 267 5323
PEF < 70% 116 199 315

Total 5172 466 5638

Table 3.5: Sensitivity and specificity with 95% confidence interval (CI) for different cutoffs of PEF
Cutoff % for
PEF screener Sensitivity 95% CI for Sensitivity Specificity 95% CI for Specificity

55 0.2531 (0.1853, 0.3355) 0.9952 (0.9919, 0.9972)
60 0.3211 (0.2393, 0.4155) 0.9929 (0.9890, 0.9954)
65 0.3739 (0.2812, 0.4769) 0.9888 (0.9841, 0.9921)
70 0.4268 (0.3228, 0.5377) 0.9775 (0.9711, 0.9826)
75 0.5365 (0.4096, 0.6588) 0.9339 (0.9116, 0.9508)
80 0.6672 (0.5254, 0.7840) 0.894 (0.8652, 0.9172)
85 0.7451 (0.6005, 0.8504) 0.8428 (0.8083, 0.8720)

Table 3.6: Unweighted values if cutoff of 91% had been used
Non-severe COPD by spirometry Severe COPD by spirometry Total

PEF ≥ 91% 399 7 406
PEF < 91% 187 136 323

Total 586 143 729

Table 3.7: Weighted values if cutoff of 91% had been used
Non-severe COPD by spirometry Severe COPD by spirometry Total

PEF ≥ 91% 4062 72 4134
PEF < 91% 1110 394 1504

Total 5172 466 5638
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Figure 3.1: ROC with confidece intervals around a variety of cutoffs

the disease status itself. We had W1|R1 = 1, Y1, D ∼ Bernoulli
(

exp{α0+α1∗D}
1+exp{α0+α1∗D}

)
and W2 had the same

distribution

(W2|R1 = 0, Y1, D ∼ Bernoulli
(

exp{α0+α1∗D}
1+exp{α0+α1∗D}

)
). As the magnitude of α1 increases, the larger the effect

of disease status on disease interpret-ability. We let α0 = 0.75 and α1 vary from -3 to 3 by 1. No

matter the magnitude of α1, the coverage of the estimator remains high, as shown in Figure 3.5. The

weight of the interpretability of diseased patients varied from 1.02 to 10.5. The weight of the non-diseased

patients was 1.5. The same held true whether the verification of disease depended on the disease or

the screener (Figure 3.5). This was done by replacing the disease status with the screener value and

looking at a range of slope and intercept values. W1|R1 = 1, Y1, D ∼ Bernoulli
(

exp{φ0+φ1∗D}
1+exp{φ0+φ1∗D}

)
and

W2|R1 = 0, Y1, D ∼ Bernoulli
(

exp{φ0+φ1∗D}
1+exp{φ0+φ1∗D}

)
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In the next simulation, we looked at adjusting the sampling scheme. While the first part of the sampling

scheme still sent those under a cutoff on for additional screener, the second sampling stage for those who had

a screener variable above the cutoff dependend on the disease status. Instead of R2 being 1 for every tenth ob-

servation for those whose screener was above the cutoff, R2|R1 = 0, Y1, D ∼ Bernoulli
(

exp{η0+η1∗D}
1+exp{η0+η1∗D}

)
.

Without the random sampling scheme in the second stage of sampling, the coverage of the estimator decreases

dramatically.

In the final set of simulations, we explored having a situation in which W1|R1 = 1, Y1, D or W2|R1 =

0, Y1, D did not have the same distribution over their respective domains of Y1. This would represent a

situation in which the probability of disease interpretability depended on a certain cutoff of Y1 (c2), but

the cutoff is not the same as the cutoff used in the study (c 6= c2). If c2 < c then W1|Y1 < c2 < c,D ∼

Bernoulli(1/w1), W1|c2 ≤ Y1 < c,D ∼ Bernoulli(1/w2), and W2|c ≥ Y1 ∼ Bernoulli(1/w2). Alterna-

tively, if c2 > c then W1|Y1 < c < c2, D ∼ Bernoulli(1/w1), W2|c ≥ Y1 < c2, D ∼ Bernoulli(1/w1), and

W2|Y1 ≤ c2, D ∼ Bernoulli(1/w2). Figure 3.6 represents the simulation set-up. Biologically this might

happen if more severe cases, represented by either really high or really low values of Y1 had a harder time

producing interpretable results. In our simulation, we let estimates of w1, w2 ∈ (1.2, 1.4, 1.6, 1.78, 1.8, 2, 3)

and c2 ∈ (0.6, 0.7, 0.9, 1).

This alternation to the simulation created some situations in which our estimator did not have good

95% coverage. In situations for which w1 6= w2 and c 6= c2 our estimator of the difference in correlated

AUC’s had 92.3% 95% coverage (Figure 3.7), but of greater concerns is that the coverage could be as low as

78.2%. When c = c2 the estimator had good 95% coverage. This would imply that the cutoff for disease

interpretability was the same as the cutoff for sampling. For example, a disease verification for which obese

patients might have a harder time producing interpretable results would want the BMI screener variable cutoff

to be the same as the BMI screener cutoff for obeseity. The other scenario for which disease interpretability

would be sufficient is when there is no difference in the distribution of disease interpretability given Y1

(w1 = w2).
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3.7 DISCUSSION

3.7.1 EXTRAPOLATING TO THE GENERAL POPULATION

Our post-hoc analysis suggests that the pocket spirometer’s sensitivity is not large when extrapolated to

the general population (weighted sensitivity of 0.4270 versus unweighted sensitivity of 0.7902), although

specificity improves with extrapolation (0.8873 vs 0.9776). Differences between unweighted and weighted

results are expected since we have verification bias. While other methods involve simulation or an estimate

of the disease prevalence to extrapolate to the general population (Matchar et al., 1990; Begg and Greenes,

1983), our method does not require either and uses only data that we have collected. This is ideal for situations

in which disease prevalence estimates are unknown, or for which the current literature vary greatly.

3.7.2 EVALUATING CUTOFF

According to our analysis, the cutoff of 70% may have been a conservative choice, in the sense that it is overly

strict and we are not screening many of the severe COPD patients who are above the 70% cutoff. Cuoffs as

high as 88% could have been used to increase specificity without too much of a decrease in sensitivity.

3.7.3 PEF VS FEV1

Our sampling scheme not only allows us to easily measure the AUC and correlated AUC between PEF and

FEV1, but it also provides an easy way to test the difference between correlated AUC’s in the presence of

verification bias and unknown disease states. We will compare our method with the method of Rotnitzky et al.

(2006).

In Rotnitzky et al. (2006) paper, the authors deal with verification bias by first modeling the probability

of being sent on for disease verification given the test result and other measured covariates, and then modeling

the probability of disease given that the disease was verified. Using the estimates from these models, they

create an estimator for the disease status based on the model parameters, test result, and other measured

covariates. The details are provided in the Appendix 2.

Using Rotnitzky et al. (2006) method, the difference in the AUC’s is -0.0369, with a variance of 0.17.The

test statistic is 0.0081, with a p-value of 0.9282. While both methods yield similar test statistics (ours was

0.0142), one of the advantages of using Sudaan to calculate the weighted variance of the test statistic is that

it eliminates the modeling step required by Rotnitzky et al. (2006). We do not need to be concerned about
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model misspecification, or missing covariate data. Furthermore, while our method may produce a smaller

difference between the correlated AUC’s, the variance is also smaller than the method of Rotnitzky et al.

(2006).

A disadvantage of the Rotnitzky et al. (2006) method is that it cannot accomodate variables for which

a parameter cannot be estimated. There are two situations in which this occurs in this particular example.

The first situation is that Rotnitzky et al. (2006) method cannot discriminate between people whose disease

verification was unknown because they were not selected for disease verification and the people whose

disease verification was unknown because they were unable to produce a passable office spirometry reading.

While this could be viewed as a potential non-ignorable disease situation, we still need the disease status to

form parameter estimates. By having the people whose disease status was missing due to failure to produce

an acceptable office spirometry reading being estimated by people who were sent on for disease verification,

we get a more accurate estimate of their disease status since the results are being estimated from a more

equivalent population. The second situation that yields unestimable parameter estimates is the volunteer

population.

By stratifying the unknown disease status with the test results, we avoid having to simulate marginal

sensitivity and specificities for our data as in Matchar et al. (1990). At the same time, this allows us to take

into account their data when calculating variances.

These simulation results show us some strengths, weaknesses, and underlying assumptions of our method.

Including a group for volunteers produces results that less biased than estimates not including volunteers.

The simulations show us that the assumption that our sample is random for those whose screener variable is

greater than the cutoff is extremely important. Coverage decreases dramatically when the random sample

actually depends on disease status. The simulations also illustrates some assumptions our method makes

about the disease interpretability mechanism. While the assumption of uniform disease interpretability is

reasonable, it shows us that some knowledge of the interaction between disease and disease verification may

rule out this method in certain situations. While we assume that the interpretablilty of the disease behaves

consistently within each group, one must keep in mind that the group is chosen by an untried cutoff.

Our weighting scheme allows us to generalize our results, and our alternative methods for the ROC

analysis allow us to emphasize sensitivity more than specificity. Furthermore, these methods are adaptable to

situations that have different characteristics than COPD.
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Figure 3.2: Ratio (1−sensitivity
specificity ) vs sensitivity
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Figure 3.3: ROC of PEF to the y = x line and the y =
√
x curve
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Figure 3.4: Weighted ROC of PEF and FEV1

55



Figure 3.5: Summary of coverage of simulations exploring non-ignorable verification bias

Figure 3.6: Graphic representation of components changed in the simulation
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Figure 3.7: Summary of coverage of simulations exploring mismatch of study cutoff and disease interpretabil-
ity cutoff
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CHAPTER 4: RANDOMIZATION-BASED NON-PARAMETRIC COVARIANCE
ADJUSTMENT FOR CATEGORICAL OUTCOMES WITH REPEATED

MEASURES

For randomized studies, the main reason for adjusting by covariates is to increase precision of the

treatment parameter. For randomized clinical trials, Robinson and Jewell (1991) showed that for logistic

regression, adjusting for predictive covariates results in greater power for efficacy when testing for treatment

effect. Furthermore, Rosenblum and van der Laan (2009) showed that a certain class of hypotheses are robust

even when the model is mis-specified, meaning that even if we do not have the right covariates in the model,

our hypothesis test will still have the correct type I error.

After adjusting for covariates, we still have multiple ways of modeling the treatment effect, depending

on the outcome variable. Oftentimes, the outcome variable in clinical settings is a dichotomous variable, but

there has been some work to extend methodology to an ordinal outcome. A few different methods deal with

ordinal outcome variables. One such model is the proportional odds model developed by McCullagh (1980).

This model requires that the effect of the covariates be the same regardless of which cutoff differentiates

between a success and failure for the odds. This assumption is called the proportional odds assumption and

the only way to determine if covariates have a proportional odds for the outcome is to look at the data. The

partial proportional odds model uses both the ordinal nature of the outcome, and relaxes the proportional

odds assumption for the covariates in the model. The advantage of this model is that for covariates for which

proportional odds holds, we only need one parameter, but we still have flexibility for covariates which do not

satisfy the proportional odds assumption.

In order to state an analysis plan that will be appropriate regardless of the data distribution, statisticians

have developed semi-parametric and non-parametric methods that do not rely on distributional assumptions

of the data. In Hastie and Tibshirani (1987), they developed non-parametric methods for logistic regression.

They use a local scoring algorithm for the logistic model where estimates of the predicted probability for

each subject is estimated with a back-fitting algorithm. In the back-fitting algorithm each covariate’s effect is

estimated using a scatterplot smoother on the residuals. The scatterplot smooths allow for a wide variety of

covariate adjustments to take place. Alternatively, Zhang et al. (2008) developed a semi-parametric model for
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logistic regression. They implement a three step algorithm. In the first step, the unadjusted treatment effect is

calculated using estimating equations which produces a consistent, asymptotically normal estimator. Then

using that estimate of treatment effect, each subject’s contribution to the estimating equation is calculated for

all treatment levels. Using this basis for the third and final step, they calculate the expected contribution to

the estimating equation for each treatment given the covariates using parametric models. Therefore, each

treatment effect has its own model and covariate effects. Using these parameters in the estimating equation,

they estimate the final adjusted treatment effect. The adjustments of the estimating equation means that

hypotheses testing also requires covariate adjustments to score equations and the like.

Our method is similar to Zhang et al. (2008) in that we first start with the unadjusted treatment estimate

and then adjust it through some function of the covariates. However, instead of modeling covariate effects, we

adjust the estimate non-parametrically through the correlation of the covariates with the treatment effects. Our

method also differs in the hypothesis testing method in that a direct variance for the adjusted treatment effect is

calculated making hypothesis testing similar to classical methods. We propose extending the non-parametric

covariate adjustment methods that Tangen and Koch (1999) used in repeated measures randomized clinical

trial with missing data for outcomes.

This chapter is organized as follows: in Section 4.1 we explain and demonstrate our methodology for

binary outcomes on a respiratory data set. We expand our methodology to ordinal outcomes in Section 4.2 and

address stratification variables in Section 4.3. In Section 4.4 we apply the method to a clincial trial evaluating

two doses in the treatment of Cushing’s disease, and finally, we discuss the strengths and limitations of our

method in Section 4.5

4.1 METHOD

Our method consists of four steps. First, we model the treatment effect for outcomes nested within each

visit. Let V be the number of visits, with some visits having randomly missing outcome data for some

patients and M be the number of covariates we wish to adjust by, with all M covariates having complete

data. The V treatment effects allow the treatment effect to differ by visit, which may be the case when there

is a delay or tapering of treatment effect. We define the vector d as the vector of the V treatment by visit

effects for outcomes stacked on top of the M differences of the means of the covariates of the treatment from
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the placebo. Therefore d is a (V +M)× 1 vector. We will refer to the M differences of the means of the

covariates of the treatment from the placebo as the differences of the means of the covariates for brevity.

The second step is to calculate the covariance matrix of d, which involves calculating three covariance

matrices: the covariance matrix of the treatment effects for the V outcomes, the covariance matrix of the M

differences of the means of the covariates, and the covariance matrix of the treatment effect for outcomes

with the covariates. We can calculate the covariance matrix of the treatment parameters for outcomes by

multiplying the dfbetas associated with the treatment effect (Hammill and Preisser, 2006), which is explained

later in further detail. Next we calculate the usual covariance matrix of the differences of the means of the

covariates based on sums of cross-products of deviations. The covariance matrix between the treatment effect

for outcomes and the difference of the means of the covariates is derived by multiplying the dfbetas from the

model for outcomes by their counterparts for the differences of the means of the covariates on the basis of

comparability to corresponding estimators based on U-statistics (Saville and Koch, 2013). The covariance

matrix of d, V d, is a (V +M)× (V +M) matrix.

In the third step we force the differences in means of covariates to 0 through weighted least squares

(WLS) regression. We regress d, which contains both treatment effects for outcomes and differences in

the means of the covariates, onto the space of only treatment parameters. We use WLS with the weights

based on V −1
d . Forcing the differences in means of the covariates to 0 through WLS is appropriate due to

randomization; any differences observed in the distribution of the covariates is due to chance. From WLS

theory we obtain both the estimator for the adjusted treatment effects (b) and its covariance matrix (V b).

Finally, since b is approximately multivariate-normally distributed when sample sizes are sufficiently

large, we can test hypotheses using traditional contrast matrices and associated asympotitc theory for test

statistics. We can conduct tests of homogeneity of treatment effects across visits, and assess the overall

significance for treatment effects.

In the case of ordinal outcomes, we use partial proportional odds in order to avoid the proportional odds

assumption. Let P be the number of categories. Our treatment is tested within visit and outcome cutoff

designating favorable versus unfavorable outcome. The method proceeds as described previously, only the

dimensions of the vector d are [(P − 1)V + M ] × 1, and V d is a [(P − 1)V + M ] × [(P − 1)V + M ]

matrix. Additionally, we can test the proportional odds assumption using the appropriate contrast matrix.

When we have stratification and sufficiently large sample size in all strata, we can apply our method on

each stratum. Each stratum will have its own adjusted treatment effect, and we then take a weighted average
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(using weights such as Mantel-Haenszel’s) to get an overall adjusted treatment effect and covariance matrix.

The method requires at least 30 subjects in each treatment assignment of each stratum. This is because there

needs to be enough subjects for the generalized estimating equations (GEE) used in longitudinal analysis to

enable approximate normality for adjusted treatment effects and create consistent variance estimates. Since

we use Chi-square tests in our hypothesis testing, we assume that V d is essentially known through consistent

estimation.

4.1.1 LOGISTIC LONGITUDINAL MODEL

We will look at the binary outcome variable for a trial with one treatment and one control group. Let Yhtj = 1

if the hth subject for the tth treatment group reported favorable outcomes at the jth visit, and 0 otherwise. Let

t = 1 if the subject is on the treatment and 2 if the subject is in the control group. Let h = 1, . . . , n where n

is the total number of subjects in the study, and j = 1, . . . , V where V is the number of visits in the study.

We will assume that the design of the trial forces subjects to have the same visit schedule.

First we will model reference intercepts for each visit and treatment effects nested in visits. Let

πtj = Pr(Ytj = 1) which is the probability that a subject in the tth treatment group will have a favorable

outcome at the jth visit. Let αj be the parameter that represents the intercept for the jth visit, and βj be the

parameter that represents the treatment effect at the jth visit. The longitudinal logistic model is

log

(
πtj

1− πtj

)
=α1 ∗ (j = 1) + . . .+ αV ∗ (j = V ) (4.1)

+ β1 ∗ (j = 1) ∗ (t = 1) + . . .+ βV ∗ (j = V ) ∗ (t = 1)

where ( ) is the indicator that the expression within the parenthesis is true. This model does not have an

overall intercept, and each visit is allowed to have its own effect for treatment and control. For example, the

model for the treatment effect at the first visit on the log odds of a favorable event is

log

(
πt1

1− πt1

)
= α1 + β1 ∗ (t = 1)

where α1 is the parameter for the log odds of a favorable outcome for the control group at visit 1 and α1 + β1

is the parameter for the log odds of a favorable outcome for the treatment group at visit 1. Therefore, the

vector of treatment effects is β = (β1, . . . , βV ).
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Let nt be the number of subjects in the tth treatment group and n1 + n2 = n. We create R1 =

(r11, . . . , r1n1)′ which is the (n1 × V ) matrix of unstandardized cluster-level dfbeta’s for the treatment effect

vector (β) from the n1 subjects on treatment. Let R2 = (r2n1+1, . . . , r2n)′ be the (n2 × V ) matrix of

unstandardized cluster-level dfbeta’s for the treatment effect vector (β) from the n2 subjects on placebo.

These are described in Hammill and Preisser (2006). The number of columns is V since we have a treatment

parameter for each of the V visits. Therefore, as shown in Hammill and Preisser (2006) ifR′ = (R′1,R
′
2)

then R′R is the bias corrected covariance matrix estimator of β. This bias corrected covariance matrix

approximates the empirical covariance matrix and has more robust performance with moderate sample sizes.

Therefore,R′R = (R′1R1 +R′2R2).

The macro by Preisser and Qaqish (1996) requires that the data have a monotone missing pattern in

addition to missing completely at random (MCAR). We use this macro’s calculation of the dfbetas, which

can be used to provide bias-corrected covariance matrices. However, if unstructured correlation between

responses is used, the data can be similar to missing at random (MAR-like). In the event that the data does not

have a monotone missing pattern, other methods of producing dfbetas can be used, such as PROC GENMOD

in SAS.

Since we want to non-parametrically adjust β for covariates in a randomization based non-parametric

way, we will need to adjust the covariance matrix of β̂ with the covariance matrix of the treatment effects

with their covariates as well as the covariance matrix of the covariates themselves. LetXt = (xt1, . . . ,xtM )

be the nt ×M matrix where xtm is the nt × 1 column vector for the mth covariate with the nt patients in the

tth treatment stacked vertically. Let x̄t be the M × 1 vector of means of the M covariates for the tth treatment

group. The covariance matrix for the means of the covariates of the tth treatment group is

V x̄t = (Xt − 1x̄′t)
′(Xt − 1x̄′t)/{nt(nt − 1)} (4.2)

= C ′tCt

whereCt = (Xt− 1x̄′t)/
√
nt(nt − 1) and 1 is a (nt× 1) vector of ones. Let d = (β̂

′
, (x̄1 − x̄2)′)′ which

is the (V + M × 1) column vector stacking the V log odds treatment effects for each visit with the M

covariate differences of the averages of the 2 treatment groups. The covariance matrix for d is V d produced
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as shown below on the basis of Saville and Koch (2013)

V d =

 (V β̂,1 + V β̂,2) (V β̂,x̄1
− V β̂,x̄2

)

(V β̂,x̄1
− V β̂,x̄2

) (V x̄1 + V x̄2)


=

R′1R1 +R′2R2 R′1C1 −R′2C2

C ′1R1 −C ′2R2 C ′1C1 +C ′2C2

 .
We then use weighted least squares methodology to regress the parameter estimates for the V outcomes

and M covariate differences onto the parameter space that has just the treatment parameter estimates for

outcomes where the covariate differences are forced to be 0. Let b be the covariance adjusted estimate of

treatment effect on the log odds ratios for the treatment effect at the V visits (V ×1). Then b can be calculated

from d with weighted least squares where X = [IV , 0VM ]′ where IV is the (V × V ) identity matrix and

0VM is the (V ×M ) matrix of 0’s

b = (X ′V −1
d X)−1X ′V −1

d d (4.3)

= β̂ − (V β̂t,x̄1
− V β̂t,x̄2

)′(V x̄1 + V x̄2)−1(x̄1 − x̄2).

An estimator of the covariance matrix of b is V b

V b = (X ′V −1
d X)−1 (4.4)

= (V β̂,1 + V β̂,2)− (V β̂,x̄1
− V β̂,x̄2

)′(V x̄1 + V x̄2)−1(V β̂,x̄1
− V β̂,x̄2

)

As the estimator b has an approximately multivariate normal distribution, we can test the homogeneity of

the visit effects with a contrast statement. Let C = [I(V−1),−1(V−1)]. The test statistic for homogeneity of

visit effects is

Qvisit = b′C(CVbC
′)−1Cb (4.5)

which has a χ2 distribution with V − 1 df.
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Table 4.1: Distribution of responses for Stokes et al. (2012)
Visit Drug Proportion of responders

1 Placebo 0.49
Treatment 0.69

2 Placebo 0.39
Treatment 0.7

3 Placebo 0.46
Treatment 0.72

4 Placebo 0.44
Treatment 0.61

4.1.2 RESULTS FOR RESPIRATORY DATA SET

To illustrate our methods, we use a data set from Stokes et al. (2012). We have 111 patients enrolled in a

clinical trial comparing two treatments for a respiratory disease. Patients are stratified by two centers, and

their outcome variable is a five-point scale for how they feel. Patients who felt terrible had a 0 recorded, and

patients who felt excellent had a 4 recorded. This scale was recorded at baseline (as a covariate) and then at

each of 4 visits (as outcomes). Other covariate data collected are age, gender, and center. There is no missing

data for this study. The distributions of responses by visit and treatment are shown in Table 4.1.

Using the method previously described in the data set for Stokes et al. (2012), we can get a sense for how

much of an impact the covariance adjustment has by comparing d to b along with their estimated covariance

matrices (Equations 4.7 and 4.8 versus Equation 4.9). The test statistic of homogeneity of treatment effect

across visits was 3.14 (with 3 df), which has a p-value of 0.3699. Since this result is compatible with treatment

effects being homogeneous across visits, we can consider a model model with one treatment parameter for

all visits. The covariate-adjusted effect of treatment on the log odds ratio of good or excellent outcomes

is 0.95 (0.46, 1.43). The test statistic for the treatment effect is 14.32, with a p-value of 0.00015. This

indicates that the treatment has a significant effect on the log-odds ratio for treatment vs placebo for the study

population. A comparison of the unadjusted and adjusted odds ratios (OR) for treatment effect by visit is

shown in Table 4.2, and a comparison for the overall treatment effect is shown in Table 4.3. Our unadjusted

treatment effect estimate β̂ comes from the initial model (Equation 4.6). Both tables demonstrate that there is

minimal adjustment to the estimate itself, but randomization-based non-parametric adjustment of covariates
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produces reduction in the length of the confidence interval.

log

(
πij

1− πij

)
=α1(j = 1) + α2(j = 2) + . . .+ αV (j = V ) (4.6)

+ βall ∗ (i = 1)

Table 4.2: Comparison of OR for unadjusted and adjusted treatment effects by visit
Unadjusted Adjusted

Visit OR Lower 95% CL Upper 95% CL OR Lower 95% CL Upper 95% CL
1 2.25 1.04 4.89 2.27 1.2 4.29
2 3.78 1.71 8.33 3.96 1.87 8.39
3 3.1 1.4 6.84 3.24 1.59 6.59
4 2.01 0.94 4.29 2.14 1.09 4.18

Table 4.3: Comparison of overall treatment OR
Method OR 95% LCL 95% UCL

Unadjusted 2.69 1.46 4.96
Adjusted 2.58 1.71 3.89

d = (0.8128, 1.3293, 1.1314, 0.6988,−0.7602,−0.1871,−0.0156, 0.0088)′ (4.7)

V d =



0.1618 0.0780 0.0703 0.0774 0.0245 −0.0006 0.0470 0.0102

0.0780 0.1689 0.0936 0.0834 −0.0533 0.0006 0.0281 0.0067

0.0703 0.0936 0.1691 0.0887 −0.1552 −0.0006 0.0360 0.0060

0.0774 0.0834 0.0887 0.1547 −0.0930 0.0014 0.0333 0.0115

0.0245 −0.0533 −0.1552 −0.0930 6.7936 0.0592 0.0216 0.0548

−0.0006 0.0006 −0.0006 0.0014 0.0592 0.0056 −0.0009 0.0015

0.0470 0.0281 0.0360 0.0333 0.0216 −0.0009 0.0402 0.0058

0.0102 0.0067 0.0060 0.0115 0.0548 0.0015 0.0058 0.0092



(4.8)
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b =



0.8202

1.3758

1.1756

0.7588


,V b =



0.1054 0.0438 0.0273 0.0352

0.0438 0.1469 0.0653 0.0554

0.0273 0.0653 0.1313 0.0533

0.0352 0.0554 0.0533 0.1173


(4.9)

4.1.3 COMPARISON WITH TANGEN AND KOCH (1999) METHOD

Tangen and Koch (1999) discussed a similar method using the same basic concepts as our method, but with a

different estimation method for the covariance matrix and with the requirement of no missing data. Tangen

and Koch (1999) create a vector of the log odds ratios for treatment effects and differences in the means of

the covariates and then uses weighted least squares to force the differences in the covariates to 0. However,

instead of using dfbetas to calculate covariance terms related to the treatment effect, their method uses the

difference in the observed value and the mean for each treatment group and Taylor series methods. The

Taylor series method is an approximation so our method of using the dfbetas could be more accurate.

As we can see from Figure 4.1, the two methods produce very similar results. Table 4.4 suggests that our

method produces slightly larger variance calculations and adjusted parameter estimates. The advantage of

using the newer method is that the covariance matrix calculation takes into account possible missingness of

the response through dfbeta calculations as well as the correlation between responses. However a limitation

is that our use of GEE to calculate the dfbetas involves the assumption that missing responses are missing

completely at random, or very similar to missing at random. Although Tangen and Koch (1999) and our

method can handle stratification, we will manage center as a covariate.

4.2 PARTIAL PROPORTIONAL ODDS LONGITUDINAL MODEL

Now we will extend our method to ordinal outcomes. Let Yhtj = p represent an outcome of p for the hth

subject for the tth treatment group at the jth visit, where p = 1, 2, . . . , P and the larger the value of p, the

more favorable the outcome. We will assume that the design of the trial forces subjects to have the same visit

schedule.
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Figure 4.1: Forest plot comparing Tangen and Koch (1999) and current method

First we will model reference intercepts for visit by cumulative logit with treatment nested within visit

by cumulative logit. Let γptj = Pr(Ytj ≥ p) which is the probability that a subject in the tth treatment group

will have an outcome at least as good as the pth level(p > 1) at the jth visit. Let αpj represent the jth visit

intercept for the log odds model for an outcome at least as good as p. Let βpj be the treatment effect for the

jth visit for the log odds of an outcome at least as good as p. The longitudinal partial proportional odds model
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Table 4.4: Table comparing treatment effects nested within visit for 2 methods
Visit Method Estimate SE LCL UCL p-value

1 Tangen and Koch 0.8201 0.3218 0.1894 1.4508 0.0108
Lam and Koch 0.8202 0.3247 0.1837 1.4566 0.0115

2 Tangen and Koch 1.3753 0.3798 0.631 2.1197 0.0003
Lam and Koch 1.3758 0.3833 0.6246 2.127 0.0003

3 Tangen and Koch 1.1751 0.359 0.4714 1.8788 0.0011
Lam and Koch 1.1756 0.3623 0.4654 1.8857 0.0012

4 Tangen and Koch 0.7582 0.3395 0.0929 1.4235 0.0255
Lam and Koch 0.7588 0.3426 0.0874 1.4302 0.0268

is

log

(
γptj

1− γptj

)
= α21(p = 2)(j = 1) + . . .+ α2V (p = 2)(j = V ) + . . . (4.10)

+ αP1(p = P )(j = 1) + . . .+ αPV (p = P )(j = V )

+ β21(p = 2)(j = 1)(t = 1) + . . .+ β2V (p = 2)(j = V )(t = 1) + . . .

+ βP1(p = P )(j = 1)(t = 1) + . . .+ βPV (p = P )(j = V )(t = 1)

Each visit and each cumulative logit is allowed to have its own specifications for treatment and con-

trol. α = (α21, . . . , α2V , . . . , αP1, . . . , αPV )′ contains the estimators of the V visit intercepts for a

cutoff of 2 followed by the estimators of the V visit intercepts for a cutoff of 3, etc. Likewise, β =

(β21, . . . , β2V , . . . , βP1, . . . , βPV )′ is the (P − 1)V × 1 vector that contains the V treatment by visit effects

for a cutoff of 2 followed by the V treatment by visit effects for a cutoff of 3, etc. For example, the model for

the treatment at the first visit for Pr(Ytj ≥ 2) is

log

(
γ2t1

1− γ2t1

)
= α21 + β21 ∗ (t = 1)

where α21 is the parameter for the log odds of Pr(Ytj ≥ 2) for the control group at visit 1 and α21 + β21 is

the parameter for the log odds of Pr(Ytj ≥ 2) for the treatment group at visit 1.

LetR1 = (r11, . . . , r1n1)′ be the n1 ×K matrix of un-standardized cluster-level dfbetas for patients in

group 1, where K = (P − 1)V , as described in Hammill and Preisser (2006) for the treatment effect vector
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(β). Each r1h where h ∈ (1, . . . , n1) is a K × 1 column vector that corresponds to the V treatment effects

for all visits for the first cumulative logit followed by the V treatment effects for all visits for the second

cumulative logit, etc. Let R2 = (r2n1+1, . . . , r2n)′ be the n2 ×K matrix of un-standardized cluster-level

dfbetas for patients in group 2. ThereforeR′ = (R′1,R
′
2), andR′R is the bias corrected covariance matrix

estimator of β. This bias corrected covariance matrix approximates the empirical covariance matrix and has

better performance with moderate sample size. Therefore,R′R = (R′1R1 +R′2R2).

The non-parametric covariate adjustment is performed the same as in the logistic regression situation.

The only difference is that the dimensions that referred to treatment effects are now larger by a factor of

P − 1. Therefore, d = (β̂
′
, (x̄1 − x̄2)′)′, which is a [(P − 1)V +M ]× 1 column vector.

We can test the proportional odds assumption across cumulative logits using the following contrast

specification

Qproportional odds = b′C′(CVbC
′)
−1
Cb (4.11)

where C = [IP−2 ⊗ IV ,1P−2 ⊗−IV ]. IP−2 ⊗ IV is a block diagonal matrix where each of the P − 2

blocks is the identity matrix of dimension V . 1P−2 ⊗−IV is a column matrix of P − 2 blocks where each

block is −IV . If the proportional odds test is non-significant, the treatment effect can be regressed onto the

parameter space that regresses the treatment by visit effects for all cutoffs into the same space. In otherwords,

carry out a weighted regression of d onX = [(1P−1 ⊗ IV )′ 0VM ]′.

4.2.1 APPLICATION TO RESPIRATORY DATA SET

Before applying the partial proportional odds regression model, we must first check the number of observations

in each type of outcome for the visit*treatment combinations. The poorest two outcomes (0 and 1) are

sparsely populated, so we will not place a cutoff for the cumulative logits between them. Furthermore the

two best outcomes (3 and 4) are clinically similar as they represent good and excellent outcomes so we will

also collapse them. Our cutoffs are then 0-1 vs 2-4 (cutoff=2) and 0-2 vs 3-4 (cutoff=3) Using the previously

specified methods, we can obtain the treatment adjusted estimates (Equation 4.14) which can be compared to

the unadjusted estimates and differences in means (Equation 4.13). We can test whether or not the treatment
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by visit effect satisfies the proportional odds assumption across the two cutoffs by testing

η21 = η31

... =
...

η24 = η34

where ηpj is the covariance adjusted treatment effect parameter for cutoff p at visit j. In other words, bpj is

an estimator of ηpj .

The test statistic of the proportional odds assumption is 1.15 with a p-value of 0.8863, which suggests

that the treatment by visit effects do not significantly differ across the two cutoffs. The adjusted treatment

estimates by visit over both cutoffs is given in Equation 4.16. The test statistic for whether or not the treatment

effects are different across the visits is 5.41, which has a p-value of 0.1440. This suggests we can use a model

with one treatment parameter for all visits, as shown in Equation 4.12. The test statistic is 14.61, with a

p-value of 0.0001. The data suggest that treatment is a significant predictor of the odds of more favorable

versus less favorable outcomes. The covariate adjusted treatment effect on the log odds of more favorable

outcomes versus less favorable outcomes is 0.94 (0.46, 1.43). A comparison of the unadjusted and adjusted

OR for treatment effects by visit for each cutoff is given in Table 4.5.

log

(
γptj

1− γptj

)
= α21(p = 2)(j = 1) + . . .+ α2V (p = 2)(j = V ) + . . . (4.12)

+ αP1(p = P )(j = 1) + . . .+ αPV (p = P )(j = V )

+ β1(j = 1)(t = 1) + . . .+ βV (j = V )(t = 1)
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Table 4.5: Comparison of unadjusted and adjusted method for partial proportional odds model
Unadjusted Adjusted

Cutoff Visit OR 95% LCL 95% UCL OR 95% LCL 95% UCL
2-4 vs 0-1 1 2.66 0.78 9.06 3.09 0.96 9.89

2 4.88 1.51 15.73 5.58 1.79 17.36
3 4.17 1.41 12.28 4.44 1.53 12.90
4 1.79 0.71 4.51 1.89 0.76 4.67

3-4 vs 0-2 1 2.25 1.04 4.89 2.27 1.20 4.29
2 3.78 1.71 8.33 3.96 1.87 8.39
3 3.1 1.4 6.84 3.24 1.59 6.59
4 2.01 0.94 4.29 2.14 1.09 4.18

d =



0.9782

1.5847

1.4267

0.5798

0.8128

1.3293

1.1314

0.6988

−0.7602

−0.1871

−0.0156

0.0088



(4.13)
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b =



1.1276

1.7187

1.4910

0.6346

0.8202

1.3758

1.1756

0.7588



(4.14)

V b =



0.3527 0.1470 0.1028 0.0986 0.0580 0.0506 0.0359 0.0332

0.1470 0.3358 0.0685 0.0803 0.0317 0.0861 0.0563 0.0629

0.1028 0.0685 0.2959 0.1149 0.0294 0.0598 0.0974 0.0688

0.0986 0.0803 0.1149 0.2139 0.0230 0.0364 0.0655 0.0818

0.0580 0.0317 0.0294 0.0230 0.1054 0.0438 0.0273 0.0352

0.0506 0.0861 0.0598 0.0364 0.0438 0.1469 0.0653 0.0554

0.0359 0.0563 0.0974 0.0655 0.0273 0.0653 0.1313 0.0533

0.0332 0.0629 0.0688 0.0818 0.0352 0.0554 0.0533 0.1173



(4.15)

b =



0.8431

1.4080

1.2416

0.6780


,V b =



0.0982 0.0455 0.0306 0.0334

0.0455 0.1301 0.0629 0.0536

0.0306 0.0629 0.1235 0.0598

0.0334 0.0536 0.0598 0.1068


(4.16)

4.3 STRATIFICATION

Clinical trials often have some factor for stratification of patients, such as center or a demographic or

prognostic characteristic. While both covariates and stratified variables are managed in the same way

in parametric models, they are not the same in randomization-based nonparametric adjustments (Tangen

and Koch, 1999). In the nonparametric model, when we account for a stratified factor, we consider the
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randomization being invoked separately within each stratum. Expanding the stratification methods of Tangen

and Koch (1999) and Zink and Koch (2012), we have a method for stratification.

Suppose we stratify by the variable s = 1, . . . , S. For simplification, we will assume our outcome

variable is binary. Much like in the partial proportional odds model, we index the stratified variable as we did

the cumulative logit. For the sth stratum, the model is:

log

(
πstj

1− πstj

)
= αs1(j = 1) + αs2(j = 2) + . . .+ αsV (j = V ) + . . .

+ βs1(j = 1)(t = 1) + βs2(j = 2)(t = 1)

+ . . .+ βsV (j = V )(t = 1)

Each visit and each stratum level logit is allowed to have its own effect for treatment and control. For

example, the model at the second visit for the third value of the stratification variable is

log

(
π3i2

1− π3i2

)
= α32 + β32 ∗ (t = 1)

where α32 is the parameter for the log odds of Pr(Y3i2 = 1) for the control group at visit 2 in the third

stratum and α32 + β32 is the parameter for the log odds of Pr(Y3i2 = 1) for the treatment group at visit

2. Let β = (β11, . . . , β1V , . . . , βS1, . . . , βSV )′ which is a SV × 1 column vector. The vector of treatment

effects for the sth stratum is βs = (βs1, . . . , βsV ); which is a (V × 1) vector.

4.3.1 MODERATE TO LARGE STRATA

For large sample size in each stratum (nst ≥ 30, where nst is the number of patients in the sth stratum for

the tth treatment), we calculate the covariance-adjusted treatment effects for each stratum, and then take a

weighted average of those treatment effects.

The covariate adjustment is different from the partial proportional odds case. Instead of Xt for each

treatment, we have Xst which is the (nst ×M ) matrix of the M covariates for the nst patients in the sth

stratum for the tth treatment. x̄st is the (M × 1) vector of averages for the M covariates in the sth stratum

and tth treatment.

73



Therefore, we let

ds =

 β̂st

x̄s1 − x̄s2

=̂

[
IV 0VM

]′ [
bs

]
,

where =̂ means estimates. bs = [bs1t, . . . , bsV t]
′ represents the treatment effects for the sth stratum. The

overall treatment effects b̄ are the weighted averages of the S adjusted treatment effects for the respective

strata:

b̄ =
S∑
s=1

wsbs
S∑
s=1

ws

where ws = ns1ns2
ns1+ns2

is the Mantel-Haenszel weight of the sth stratum. The estimated covariance matrix, V ds

is produced fromHst = [Rst, (−1)t−1Cst] which is the nst × (V +M) matrix where the first V columns

correspond to the nst dfbetas for the V treatment effects for the sth stratum and tth treatment, and the last M

columns refer to the nst corresponding differences between the observed covariate levels and x̄st, i.e. with

H ′s = [H ′s1,H
′
s2]

V ds = H ′sHs =

R′s1 R′s2

C ′s1 −C ′s2


R′s1 C ′s1

R′s2 −C ′s2

 =

R′s1Rs1 +R′s2Rs2 R′s1Cs1 −R′s2Cs2

C ′s1Rs1 −C ′s2Rs2 C ′s1Cs1 +C ′s2Cs2

 .
The estimated covariance matrix of b̄ is Vb̄

Vb̄ =
S∑
s=1

 ws
S∑
s=1

ws


2

Vbs

where Vbs calculated below, is the covariance matrix of bs, calculated from the weighted least squares

regression for the sth stratum

Vbs = (X ′V −1
dsX)−1.
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4.3.2 SMALL TO MODERATE STRATA

For small to moderate sample size in each stratum, we construct weighted averages across the strata and then

apply the weighted least squares regression on the weighted outcomes.

Therefore, we let

S∑
s=1

ws
S∑
s=1

ws

 β̂st

x̄s1 − x̄s2

=̂

[
IV 0VM

]′ [
b∗

]

where b∗ = [b1t, . . . , bV t]
′ represents the stratum-weighted, covariate-adjusted treatment effect for each visit.

Let d∗ =
S∑
s=1

ws
S∑

s=1
ws

 β̂st

x̄s1 − x̄s2


The estimator of b∗ is

b∗ = (X ′V −1
d∗X)−1X ′V −1

d∗d∗

where V d∗ is defined below

V d∗ =

S∑
s=1

(
ws∑S
s=1ws

)2

V ds.

The estimator of the covariance matrix of b∗ is V b∗ as given below,

V b∗ = (X ′V −1
d∗X)−1.

Furthermore, our method has some flexibility if sample sizes are only moderately large. For example, we

can have stratum effects, visit effects, and visit by treatment effects, which allows us to reduce our parameters

by 2SV − (S − 1 + 2V ) while still allowing treatment effects to vary by visit. The model would look like

Equation 4.17
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log

(
πstj

1− πstj

)
= α1(j = 1) + α2(j = 2) + . . .+ αV (j = V ) + . . . (4.17)

+ φ1(s = 1) + φ2(s = 2) + . . .+ φS(s = S − 1)

+ β1(j = 1)(t = 1) + β2(j = 2)(t = 1)

+ . . .+ βV (j = V )(t = 1)

where α would be the vector of visit intercepts estimated across all strata, φ = (φ1, . . . , φS−1) would be the

vector containing the stratum effects for being in the sth stratum, s = 1, . . . , S − 1, relative to the Sth stratum,

and β contains the treatment by visit effects estimated across all strata. This would be a good model to use

when the treatment effect by visit is the same within all strata, but some strata have consistently higher or

lower estimates of the log odds for placebo over all visits. If we had the conditions listed previously and also

have homogeneous treatment effects for all visits, we can consider estimating the average of the treatment

effects over all visits as opposed to treatment effects nested within visit, such as in Equation 4.18

log

(
πstj

1− πstj

)
= α1(j = 1) + α2(j = 2) + . . .+ αV (j = V ) (4.18)

+ φ1(s = 1) + φ2(s = 2) + . . .+ φS(s = S − 1)

+ β(t = 1)

.

4.3.3 APPLICATION TO THE RESPIRATORY DATA SET

With 27-29 subjects in each treatment by center combination, it is unclear whether to use the method for

moderate to large or small to moderate strata. As there are no missing data in our data set, we will use the

method for large sample size. The Mantel Haenszel weight for each center is 0.50. The adjusted treatment

effects for center 1 are (0.66, 1.22, 1.11, 0.73), and the adjusted treatment effects for center 2 are (1.45, 1.76,

1.45, 1.07), as shown in Equation 4.21. Comparing these estimates to Equation 4.19, we see that the estimates

have been adjusted more in center 1 than in center 2, possibly due to the better precision of the estimated
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covariance matrix of the differences in the means (Equation 4.20). The treatment effect for each visit is

higher for center 2 than it is for center 1, but the estimated covariance matrix for center 2 is also less precisely

estimated than that of center 1 (Equation 4.22). The consistently higher estimates may support our decision

to stratify by center as these populations may not be the same. The average age, percentage of females, and

baseline level for center 2 is higher for both the treatment and placebo group than center 1’s. In center 2, the

placebo has a slightly lower baseline, suggesting that the placebo group in center 2 is somewhat worse than

the treatment group at baseline.

The value of the test statistic that tests the homogeneity of the treatment effect across visits after adjusting

for center stratification is 2.00, with a p-value of 0.57. Therefore, if we were to stratify by center our

covariate-adjusted treatment effect on the log odds ratio is 1.14 (0.60, 1.69). The test statistic testing the

significance of the treatment effect is 17.09, which has a p-value < 0.0001. This result is very similar to the

treatment effect which managed center as a covariate (1.14 versus 0.95). The stratified value is larger than

the non-stratified counterpart. The stratified treatment effect is for the log odds ratio for patients at the same

center versus the non-stratified treatment effect is for the population average log odds ratio. The comparison

of the unadjusted and adjusted method when managing center as a stratification variable is shown in Table

4.6.

Table 4.6: Comparison of unadjusted and adjusted OR with stratification by center
Unadjusted Adjusted

Visit OR 95% LCL 95% UCL OR 95% LCL 95% UCL
1 2.55 1.11 5.89 2.86 1.38 5.92
2 4.01 1.77 9.09 4.43 2.00 9.81
3 3.25 1.44 7.32 3.59 1.69 7.63
4 2.16 0.97 4.81 2.45 1.15 5.23

d1 =



0.4224

1.0165

0.8789

0.5754

−0.7637

−0.0983

−0.2095



,d2 =



1.4615

1.7693

1.4816

0.9651

−0.8624

−0.2804

0.1706



(4.19)

77



V d1 =



0.3125 0.1562 0.1684 0.1477 −0.3132 −0.0064 0.1131

0.1562 0.3292 0.1668 0.1465 −0.3918 0.0004 0.0740

0.1684 0.1668 0.3238 0.1679 −0.3559 −0.0009 0.0885

0.1477 0.1465 0.1679 0.3346 −0.3470 −0.0026 0.0697

−0.3132 −0.3918 −0.3559 −0.3470 9.7230 0.0353 −0.0534

−0.0064 0.0004 −0.0009 −0.0026 0.0353 0.0077 −0.0011

0.1131 0.0740 0.0885 0.0697 −0.0534 −0.0011 0.0767



(4.20)

V d2 =



0.4733 0.1697 0.1202 0.2085 0.1408 0.0021 0.0599

0.1697 0.4215 0.2669 0.2019 0.0776 0.0008 0.0221

0.1202 0.2669 0.4183 0.2192 −0.3947 −0.0037 0.0413

0.2085 0.2019 0.2192 0.3879 −0.3931 0.0028 0.0489

0.1408 0.0776 −0.3947 −0.3931 16.7011 0.1724 0.0018

0.0021 0.0008 −0.0037 0.0028 0.1724 0.0139 −0.0058

0.0599 0.0221 0.0413 0.0489 0.0018 −0.0058 0.0708



b1 =



0.6595

1.2221

1.1119

0.7318


, b2 =



1.4479

1.7612

1.4462

1.0663


(4.21)

V b1 =



0.1380 0.0403 0.0315 0.0374

0.0403 0.2448 0.0705 0.0689

0.0315 0.0705 0.2125 0.0784

0.0374 0.0689 0.0784 0.2619


,V b2 =



0.4189 0.1495 0.0868 0.1653

0.1495 0.4140 0.2553 0.1867

0.0868 0.2553 0.3837 0.1778

0.1653 0.1867 0.1778 0.3348


(4.22)
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b̄ =



1.0503

1.4893

1.2776

0.8976


,V b̄ =



0.1380 0.0470 0.0293 0.0501

0.0470 0.1640 0.0807 0.0634

0.0293 0.0807 0.1483 0.0636

0.0501 0.0634 0.0636 0.1489


(4.23)

4.4 CUSHING’S DISEASE STUDY

Cushing’s disease is a rare, life-threatening disease caused by an adrenocorticotropic hormone-secreting

pituitary adenoma. Patients with Cushing’s disease suffer from symptoms similar to chronic hypercortisolism

and have impacted health and quality of life. The primary treatment for Cushing’s disease is surgery, but for

those patients who do not respond well to surgery or who are not viable candidates for surgery, there are few

therapeutic options.

Pasireotide was explored as possible treatment for those suffering from Cushing’s disease who do

not respond well to surgery or for whom surgery is not an option, due to its high affinity for a particular

somatostatin receptor (SSTR5), which is expressed at high levels in adrenocorticotropic-secreting tumors in

Cushing’s disease. Two doses were explored for efficacy (Colao et al., 2012): 600 µg twice daily (bid) and

900 µg bid. Due to ethical concerns, there was no placebo arm in this clinical trial. The data we were given

are not the exact data from the trial, but a random bootstrap sample.

162 patients were enrolled in the clinical trial in a roughly one-to-one ratio, 80 at the pasireotide

600 µg bid dose and 82 at the 900 µg bid dose for 12 months. The urinary free cortisol (UFC) levels

were measured every 30 days. After 3 months a patient’s dose was increased by 300 µg if month 3

UFC> min(2× ULN, baseline UFC), where ULN is Upper Limit of Normal (145 nmol/24hr). The primary

efficacy measure was the percent of responders for each dose at month 6. Responders were defined as patients

whose UFC<ULN at month 6 without a dose increase at month 3. Those patients whose dose was increased

were considered non-responders, regardless of their month 6 UFC levels. Furthermore, there is a secondary

endpoint with the ordered outcome of controlled, partially controlled, and uncontrolled, where controlled

was the most favorable response and uncontrolled was the least favorable. These outcomes are respectively

defined as month 6 UFC ≤ ULN (regardless of dose increase), month 6 as UFC > ULN but UFC decreased

by at least 50% from baseline (regardless of dose increase), and neither controlled nor partially controlled at

month 6.
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Our post-hoc analysis will address the effect of treatment on the log odds of response as both binary and

ordinal outcomes taking into account more than just the month 3 and month 6 UFC levels. In addition to

sampling the UFC at baseline, there were 2 sampling visits before the month 3 visit, the month 3 visit, 2

sampling visits between the month 3 and month 6 visits, and the month 6 visit for a total of 6 sampling visits.

As responder status is only defined for month 6, we defined a responder before or at month 3 as a patient

whose UFC< min(2×ULN, baseline UFC). If a patient was not a responder at month 3, they could not be a

responder at later visits due to the increase in dose. If they were a responder at month 3, then for visits after

month 3, patients were classified as a responder if their post month 3 UFC was lower than ULN. Furthermore,

we will examine the data looking at the visit effect on treatment as well as the role of missing data.

When dealing with the secondary (ordinal) outcome, we defined the categories as controlled (UFC ≤

ULN (regardless of dose increase)), partially controlled (UFC > ULN but UFC decreased by at least 50%

from baseline (regardless of dose increase)), and uncontrolled (neither controlled nor partially controlled).

The definition for the ordinal outcome is the same at all 6 visits.

Due to the limitations of the availability of the data, the only baseline covariate we have is the baseline

UFC level. Since we have arbitrary missingness of the response variable, we used PROC GENMOD in

SAS with a within subject specification on the repeated specification so as to account for the way responses

are aligned when the correlations between responses are calculated. The dfbetas produced using PROC

GENMOD and unstructured correlation are similar within a reasonable order of magnitude to the ones

produced by Hammill and Preisser (2006), but they can allow for different missing patterns.

4.4.1 DICHOTOMOUS OUTCOME

In the data set, we have 162 subjects (K = 162) and six visits (J = 6). The covariate we will adjust is

log(baseline UFC). The log transformation normalizes the UFC distribution. The high dose group has a

log(baseline UFC) of 6.33 and the low dose has 6.52. Baseline has no missing UFC values, and a visit has at

most 21.0% of the 162 responses missing. The distribution of responders by visit is shown in Table 4.7. The

distribution of responders by visit and treatment is shown in Table 4.8.

Using the methods described previously, we compare the randomization-based non-parametric covariate

adjustment method to the unadjusted method in Table 4.9. We can see there that the method tends to adjust

the estimate of the treatment by visit effect, but the confidence intervals are narrower. Since the definition of

responder status for visits 4-6 is different from the definition of responder at visits 1-3, a test of homogeneity
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of treatment effect across visits should take this into account. Furthermore, it appears from Table 4.8 that

there could be a potential delay in the treatment effect, so we will look at combining visits 2 and 3, and visits

4-6. Our test of homogeneity will test

H0 :η2 = η3 (4.24)

η4 = η5 = η6

where ηj is the covariance adjusted treatment parameter at the jth visit. The test statistic of homogeneity of

treatment effect across visits managing visits 2-3 as distinct from visits 4-6 was 4.62 with 3 df, which has a

p-value of 0.2020. The data suggest that the treatment effect is homogeneous within these 2 sets of visits. We

also evaluate whether combining visits 1-3 and 4-6 versus visits 2-3 and 4-6, but the test statistic was 9.61

with 4 df, which had a p-value of 0.048. Since the data suggest that this combination is significantly different

from 0, we will use the initial suggestion of combining visits 2 and 3, and combining visits 4-6.

The new treatment estimates and its estimated covariance matrix are shown in Equation 4.30, where

c = (c1, c2, c3) solves Equation 4.26. Let c1 be the estimator of the adjusted treatment effect on the log odds

of responder status at visit 1, c2 be the estimator of the adjusted treatment effect on the log odds at visits

2 and 3, and c3 be the estimator of the adjusted treatment effect on the log odds at visits 4, 5, and 6. The

test statistic for all three treatment parameters being equal to 0 is 6.39 with 3 df and a p-value of 0.0942.

The estimates of the adjusted treatment effects in the condensed version (Equation 4.30) suggest that there

separate assessments are of interest. The test statistic for c3 = 0 is 2.08 with 1 df and a p-value of 0.1492.

This higher p-value could be due to the large estimated variance for c3. Thus, there is not enough evidence to

suggest that the two doses have significantly different odds of a patient being a responder.

H0 :η1 = 0 (4.25)

η2 = η3 = 0

η4 = η5 = η6 = 0
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b=̂



1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1




c1

c2

c3

 (4.26)

Table 4.7: Distribution of binary response pooled over treatment
Visit Missing Non-Responder Responder

1 18 65 79
2 30 61 71
3 31 60 71
4 30 97 35
5 34 97 31
6 32 101 29

Table 4.8: Distribution of binary response by visit and treatment
Visit Dose Missing Non-Responder Responder

1 Low 8 34 40
High 10 31 39

2 Low 16 37 29
High 14 24 42

3 Low 17 33 32
High 14 27 39

4 Low 17 53 12
High 13 44 23

5 Low 18 51 13
High 16 46 18

6 Low 17 55 10
High 15 46 19
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Table 4.9: Comparison of randomization based non-parametric covariate adjustment with unadjusted treatment
estimates

Unadjusted Adjusted
Visit OR Estimate 95% LCL 95% UCL OR Estimate 95% LCL 95% UCL

1 0.99 0.51 1.90 0.85 0.49 1.60
2 2.25 1.13 4.48 1.97 1.00 3.88
3 1.43 0.72 2.83 1.21 0.62 2.36
4 1.96 0.90 4.27 1.75 0.80 3.81
5 1.42 0.65 3.10 1.27 0.58 2.78
6 2.22 0.97 5.10 2.00 0.87 4.61
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d =

(
−0.0103 0.8118 0.3573 0.6721 0.3475 0.7995 −0.1894

)′
, (4.27)

V d =



0.1145 0.0682 0.0526 0.0484 0.0501 0.0502 −0.0108

0.0682 0.1264 0.0635 0.0524 0.0543 0.0564 −0.0093

0.0526 0.0635 0.1250 0.0764 0.0747 0.0728 −0.0114

0.0484 0.0524 0.0764 0.1631 0.1167 0.1267 −0.0079

0.0501 0.0543 0.0747 0.1167 0.1646 0.1363 −0.0076

0.0502 0.0564 0.0728 0.1267 0.1363 0.1850 −0.0072

−0.0108 −0.0093 −0.0114 −0.0079 −0.0076 −0.0072 0.0130



(4.28)

b =



−0.1674

0.6771

0.1922

0.5576

0.2365

0.6950


,V b =



0.1055 0.0606 0.0432 0.0419 0.0438 0.0443

0.0606 0.1198 0.0554 0.0468 0.0489 0.0513

0.0432 0.0554 0.1151 0.0695 0.0680 0.0665

0.0419 0.0468 0.0695 0.1584 0.1121 0.1224

0.0438 0.0489 0.0680 0.1121 0.1602 0.1321

0.0443 0.0513 0.0665 0.1224 0.1321 0.1810


(4.29)

c =


−0.2328

0.4238

0.5224

 ,V c =


0.1030 0.0515 0.0458

0.0515 0.0864 0.0588

0.0458 0.0588 0.1312

 (4.30)

Since a placebo dose was considered as not ethical, the investigators considered a dose for which the

lower 95% confidence limit of the proportion of responders was above 15% as having useful benefits in terms

of UFC reduction. The 15% criterion was chosen as the cutoff by both an external Cushing’s Advisory Board

and the study’s steering committee. As we see in Table 4.11, both doses showed significant signs of UFC

reduction, with the high dose showing better UFC reduction.

Estimation of the proportion of responders was done by additionally including the six variables associated

with visit intercepts in the vector for the treatment effects, and incorporating the corresponding dfbetas into
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the covariance matrix calculations. If we let ζj be the parameter of the adjusted jth visit intercept and aj be

its estimator, then if we are interested in simplifying the model, we can test

H0 :ζ2 = ζ3

ζ4 = ζ5 = ζ6

η2 = η3

η4 = η5 = η6.

d =


α̂

β̂

(x̄1 − x̄2)

 =



0.6721

0.3475

0.7995

−0.0103

0.8118

0.3573

0.1876

−0.2371

−0.0275

−1.3771

−1.2758

−1.6607

−0.1894



,b =



0.5576

0.2365

0.6950

−0.1674

0.6771

0.1922

0.2608

−0.1961

0.0475

−1.3175

−1.2218

−1.6307



(4.31)
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c =



0.3522

−0.0796

−1.3613

−0.2943

0.4397

0.5571


,V c =



0.0496 0.0271 0.0227 −0.0468 −0.0243 −0.0210

0.0271 0.0472 0.0320 −0.0252 −0.0453 −0.0309

0.0227 0.0320 0.0747 −0.0212 −0.0305 −0.0737

−0.0468 −0.0252 −0.0212 0.0993 0.0519 0.0463

−0.0243 −0.0453 −0.0305 0.0519 0.0862 0.0583

−0.0210 −0.0309 −0.0737 0.0463 0.0583 0.1300


(4.32)

The aj are simplified similarly to the treatment effect since responder status of those on low dose also depends

on the responder status at visit 3. The test statistic for homogeneity of visit and treatment effects within visits

2-3 and 4-6 is 6.36 with 6 df and a p-value of 0.3844. The data suggest we can simplify our model to have

six parameters (c = (c1, c2, c3, c4, c5, c6)), as shown in Equation 4.32. Let c1 be the estimator for the visit 1

intercept on the log odds of responder status, c2 be the estimator for visits 2 and 3 effect, c3 be estimator for

visits 4,5, and 6 effect; and let c4 be the estimator for the high dose effect for visit 1, c5 be the estimator for

the high dose effect on visits 2 and 3, and c6 be estimator of the high dose effect for visits 4, 5, and 6.

Let V c[i, j] be the element in the ith row and jth column of matrix V c. The lower 95% CL of the

estimates of the log odds of being a responder given dose and time can be estimated in terms of parameters as

given in Equation 4.10. We can use the inverse logit function to find the estimated proportion.

Table 4.10: Lower 95% CL of odds of responders on low and high dose at 3 time points
Visit Low Dose High Dose

Visit 1 c1 − 1.96
√
V c[1, 1] c1 + c4 − 1.96

√
V c[1, 1] + V c[4, 4] + 2V c[1, 4]

Visit 2 and 3 c2 − 1.96
√
V c[2, 2] c2 + c5 − 1.96

√
V c[2, 2] + V c[5, 5] + 2V c[2, 5]

Visit 4, 5, and 6 c3 − 1.93
√
V c[3, 3] c3 + c6 − 1.96

√
V c[3, 3] + V c[6, 6] + 2V c[3, 6]

From Table 4.11, we see that the lower 95% CL of the proportion of responders for the high dose is

greater than 15% at visit 6, but the low dose slightly misses this criterion. This indicates that the high dose is

sufficiently effective and the low dose is not quite sufficient by a small margin.

Table 4.11: Lower 95% CL of proportion of responders on low and high dose at 3 time points
Visit Low Dose High Dose

Visit 1 0.4790 0.4007
Visit 2 and 3 0.3763 0.4887

Visit 4, 5, and 6 0.1305 0.2187
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4.4.2 ORDINAL OUTCOME

The distribution of the ordinal response is shown in Table 4.12. When a subject is controlled, Yhtj = 3, and

when a subject is uncontrolled, Yhtj = 1. Therefore, a cutoff of 3 means that we are modeling the log odds of

having controlled UFC levels, while a cutoff of 2 means that we are modeling the log odds of having at least

partially controlled UFC levels. When using PROC GENMOD to calculate the dfbetas, an independence

working correlation had to be used to obtain model convergence. Therefore, we only have twelve treatment

effects. The test statistic for the test of proportional odds is 23.56 with 6 df and a p-value of 0.0006, which

suggests that the treatment by visit effect is significantly different across the two cutoffs. We can see this

from Equation 4.34, as the estimates for the cutoff of 3 are positive, and the estimates for the cutoff of 2 are

mostly negative. The test statistic for whether the treatment effects are homogeneous within two classes of

visits (2-3 versus 4-6) for each cutoff is 11.57 with 6 df and a p-value of 0.1713. The data suggest that we can

use a simplified model (Equation 4.33)

d =



β̂21

...

β̂26

β̂31

...

β̂36

(x̄1 − x̄2)



=̂



1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0





c21

c22

c23

c31

c32

c33


. (4.33)

Let cp1 be the estimator of the adjusted high dose effect on log odds of responder status at visit 1 for the pth

cutoff, cp2 is the estimator of the adjusted high dose effect on log odds of responder status at visit 2 and 3 for

the pth cutoff, and cp3 is the estimator of the adjusted high dose effect on log odds of responder status at visit
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Table 4.12: Distribution of ordinal responses by treatment
Visit Dose Controlled Partially controlled Uncontrolled

1 Low dose 44 50 54
High dose 54 8 78

2 Low dose 28 40 64
High dose 40 26 66

3 Low dose 26 40 64
High dose 44 26 62

4 Low dose 28 32 64
High dose 52 16 54

5 Low dose 28 40 52
High dose 42 20 50

6 Low dose 22 32 58
High dose 42 16 52

4, 5, and 6 for the pth cutoff. The estimates of c are shown in Equation 4.35. Since we are only interested in

the high dose effect at visit 6, we can test whether the parameters corresponding to visit 6 for each cutoff

are equal to 0. Our test statistic is 8.22 with 2 df and a p-value of 0.0164. This suggests that the high dose

has a significant effect on the log odds of more favorable outcome (i.e. more controlled) for one or both

cutoffs at visit 6. The estimates for the high dose for an outcome of controlled versus partially controlled or

uncontrolled are all positive, while the estimates for high dose for an outcome of at least partially controlled

versus uncontrolled gradually increase. This trend in an outcome of controlled versus other suggests that the

high dose has a positive significant effect on the log odds of controlled versus partially or uncontrolled, and a

possible insignificant effect on the log odds of at least partially controlled versus uncontrolled.
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d =



−0.7839

−0.0606

0.0906

0.2951

−0.0532

0.1807

0.3948

0.4793

0.6931

0.9349

0.6788

0.9269

−0.1894



, b =



−0.8269

−0.1173

0.0496

0.2651

−0.0920

0.0587

0.4484

0.4817

0.6476

0.9229

0.6704

0.8604



(4.34)

c =



−0.8519

−0.0289

0.0800

0.4320

0.5164

0.7918


,V c =



0.1179 0.0584 0.0511 0.0847 0.0407 0.0392

0.0584 0.0918 0.0607 0.0396 0.0625 0.0512

0.0511 0.0607 0.0914 0.0384 0.0584 0.0726

0.0847 0.0396 0.0384 0.1232 0.0579 0.0633

0.0407 0.0625 0.0584 0.0579 0.1266 0.0871

0.0392 0.0512 0.0726 0.0633 0.0871 0.1228


(4.35)

4.5 DISCUSSION

To summarize, our method consists of calculating the unadjusted (for covariates) treatment effects for

outcomes nested within visits (and cutoffs if outcome is ordinal), and creating a vector of the treatment

effects and the differences in the means of the covariates (d). U-statistic-based quantities and dfbetas are

used to calculate the covariance matrix V d of d. Then WLS regression is used to regress d only onto the

space of treatment parameters for outcomes. Finally, hypothesis testing occurs with contrast matrices. While

adjustment is non-parametric due to the distribution-free method of variance calculation of covariates, it still
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yields a consistent, asymptotically normally distributed estimator of the treatment effects when sample sizes

are reasonably large as is the case for many confirmatory clinical trials.

Our method provides an easy-to-implement non-parametric randomization based covariate adjustment

for treatment effects for responses in randomized clinical trials with only a few requirements and limitations.

Its only requirements are the population has been randomized to one of two groups and that we have large

enough sample size for the GEE method to provide approximately normal estimates and consistent estimates

for their covariance matrix. We need the GEE estimation to obtain the initial treatment effect estimates for

responses and dfbetas for variance calculations. We rely on the randomization basis to force the differences

of covariates to 0. One limitation of the method is that it only adjusts for covariates through their linear

correlation with the treatment effect, and so it is possible that this method would not be good with respect to

improving power for covariates which have a known non-linear relationship with the outcome (unless that

relationship was taken into account).

When we have large sample size (100 subjects per treatment) and missing are less than 20%, then we

want to use GEE with unstructured correlation so that our estimates are MAR-like. If we have monotone

missingness, we can use the macro provided by Hammill and Preisser (2006) which provides estimates of

bias-corrected covariance matrices. If we have intermittent missingness among the responses, we can use

methods such as PROC GENMOD in SAS. If we have medium sample size, then we can use an independence

specification for correlation if we suspect our data are MCAR. If we do not have a MCAR situation, we can

use multiple imputation methods to fill the missing responses and an unstructured specification to generate

our dfbetas for the covariance matrix estimation.

The requirements are easily met in a regulatory setting, and further development of the method could

make it more appealing. One further development is to include more than two treatments. This could

potentially be done similarly to the partial proportional odds model where the treatment effect vector is

expanded to include other treatments as opposed to other cutoffs. Another possible extension would be to

account for covariates with missing data.
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CHAPTER 5: RANDOMIZATION-BASED NON-PARAMETRIC COVARIANCE
ADJUSTMENT FOR TIME-TO-EVENT OUTCOMES WITH MISSING DATA

5.1 INTRODUCTION

Clinical trials often have time-to-event outcomes rather than cross-sectional or change from baseline endpoints.

A popular method for analyzing such data is the Cox proportional hazards model (Cox, 1972), which estimates

the effects of the covariates on the hazard ratio relative to an unspecified baseline hazard. It assumes that

hazards are proportional between groups with respect to time. Covariate adjustment can provide increased

power for tests of treatment versus control (Jiang et al., 2008), but it requires each covariate to meet the

assumption of proportional hazards. One can do non-parametric tests of treatment versus placebo using

logrank and Wilcoxon tests (Gehan, 1965; Peto and Peto, 1972), and randomization-based non-parametric

covariate adjustment for tests of treatment versus placebo can be carried out using methods developed by

Saville and Koch (2013) and Tangen and Koch (2001).

The most appealing feature of a method like the one proposed in Saville and Koch (2013) is that it requires

few assumptions, produces interpretable estimates of hazard ratios with estimated covariance matrices or

variances, and is computationally straight-forward to implement. The main requirement in the Saville and

Koch (2013) method is that subjects are randomized to treatment and placebo. This paucity of assumptions is

attractive in a regulatory clinical trial setting in which analysis plans must be stated a priori (LaVange et al.,

2005). In contrast, the proportional hazards assumption complicates covariate adjustment in analysis using

the Cox proportional hazards model because it is not known if the covariates will satisfy this assumption

without looking at the data. Furthermore, the Cox proportional hazards model nor those of Saville and Koch

(2013) and Tangen and Koch (2001) do not specify how to handle missing data among the covariates.

Our method for the comparison of randomized treatment to placebo requires the missing data to be MAR

(and in some implementations MCAR), allows missing covariates to be both continuous and categorical,

contains easily implemented computations, and does not require specification of either the missing data
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distribution or mechanism for covariates. It also provides meaningful parameter estimates for treatment

comparison to placebo as well as corresponding estimates of variance.

We follow the randomization based non-parametric covariate adjustment of treatment effect method

of Saville and Koch (2013), except for the covariance matrix estimate for the covariates is produced via

generalized linear models of the transformed covariate values. In Section 5.2 we review the method of Saville

and Koch (2013) and extend it to the case of missing covariates. We apply our method to an oncology trial

in Section 5.3 and make comparisons with other methods. Finally, in Section 5.4 we discuss strengths and

limitations of our method.

5.2 METHOD

The general method of randomization-based non-parametric covariance adjustment consists of four steps.

First, we model the treatment effect for outcomes. We have survival data for K outcomes for a randomized

clinical trial evaluating one group, which we will call treatment, versus another, which we will designate as

placebo. We will follow the notation used in Saville and Koch (2013), however in this case, covariates are

allowed to be missing. Let M be the number of covariates for adjustment. We define a (K +M)× 1 vector,

d, as the vector of the K estimates of treatment effects by outcomes stacked on top of the M estimates of the

differences of the means of the covariates of the treatment from the placebo. We will refer to the M estimates

for the differences of the means of the covariates of the treatment from the placebo as the differences of the

means of the covariates for brevity.

In the second step, we estimate the covariance matrix of d, which involves estimating three covariance

matrices: the covariance matrix of the estimates of treatment effects for the K outcomes, the covariance

matrix of the estimates of the differences of the means of the covariates, and the covariance matrix of the

estimates of treatment effect for outcomes with those for the comparisons of the covariates. We can calculate

the covariance matrix of the treatment effects for outcomes by using output associated with the time-to-event

analysis (Wei et al., 1989), which is explained later in further detail. Next, we calculate the covariance

matrix of the estimated differences of the means of the covariates and the covariance matrix of the treatment

effects with the differences in the means of the covariates using one of three methods which are the main

contributions of this paper. The covariance matrix of d, V d, is a (K +M)× (K +M) matrix.
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Third, we force the estimated differences in means of covariates to 0 through weighted least squares

(WLS) regression. We regress d, which contains both treatment effects for outcomes and covariate differences

estimates, onto the space of only treatment parameters for outcomes. We use WLS with the weights based

onVd−1. Forcing the estimated differences in means of the covariates to 0 through WLS is appropriate

due to the randomization since we assume these differences in the means of the covariates are random and

the population receiving the treatment is the same as the population receiving the placebo. From WLS

methods, we obtain both the estimator for the adjusted treatment effects (b) and a consistent estimator for

their covariance matrix (V b).

The fourth step is to do hypothesis testing using the approximately multivariate normal distribution of

b (via sufficiently supportive sample size), with the corresponding expected value and covariance matrix

estimated in the WLS in step 3. We can test hypothesis using traditional contrast matrices and calculate

estimates of parameters from linear combinations of b.

To carry out these four steps it will be helpful to explain some notation. Let Tjk be the survival time

for the kth outcome for the jth patient. Let zj be the jth subject’s indicator of treatment; zj = 1 if subject

j receives treatment and 0 otherwise. For each outcome event k, we will use a marginal Cox proportional

hazards model to estimate the treatment effects. Our model for the estimate of treatment effects is

λjk(t|zj) = λ0k(t) exp(βkzj). (5.1)

In Equation 5.1, λ0k(t) is the baseline hazard for outcome k given the subject has survived until time t. Let

βk be the treatment effect on the log hazard ratio for the kth outcome. We assume that we have independent

random censoring, which is a MAR-like assumption. Let i index group, and i = 1 if we want to indicate

the treatment group, and i = 2 if we want to indicate the placebo group. We assume the first n1 patients are

in group 1 (treatment), the last n2 patients are in group 2 (placebo), and n1 + n2 = n, where n is the total

number of patients in the study. LetR = (R′1,R
′
2)′ whereR1 = (r11, . . . , r1n1)′ be the n1 ×K matrix of

dfbeta residuals for group 1 obtained from the fitted unadjusted Cox proportional hazards model for each

of the K events, andR2 = (r2n1+1, . . . , r2n)′ be the n2 ×K matrix of dfbetas residuals for group 2. The

components of Ri are rij , a K × 1 column vector of dfbeta residuals for the treatment effects for the K

outcomes for patient j in group i. Let β̂ be the K × 1 vector of estimated log hazard ratios for treatment

versus placebo for the K outcomes.

93



The estimated differences in the means of the covariates is expressed as θ̂. When all covariates have no

missing data, θ̂ = (x̄1 − x̄2), where x̄i = (x̄i1, . . . , x̄iM ) is the vector of M baseline covariate means for

group i, and x̄im denotes the mean of covariate m for group i.

To calculate the covariance matrix of d = (β̂
′
, θ̂
′
)′ we need to calculate V β̂, V β̂,θ̂, and V θ̂. Let

V β̂ = (R′1R1 +R′2R2) be the estimated covariance matrix of β̂, V β̂,θ̂ be the estimated covariance matrix

of β̂ with θ̂, and V θ̂ be the estimated covariance matrix of θ̂. When all covariates have no missing data, we

use Ci =
Xi−1ni x̄

′
i√

ni(ni−1)
whereXi is the ni ×M matrix of observed values for group i as discussed in Saville

and Koch (2013); i.e., V θ̂ = (C ′1C1 +C ′2C2) and V β̂,θ̂ = (R′1C1 −R′2C2). Let 1ni denote the ni × 1

column vector of 1’s. Each subject contributes one row to Xi, and the columns are the M covariates. To

calculate V β̂,θ̂ and V θ̂ in the presence of missing data where we have U of the M covariates containing

missing data, we suggest a method using dfbetas from a model of covariates to estimate covariance models.

5.2.1 DFBETAS FROM A SCALED MODEL OF COVARIATES

In order to obtain an estimate of the differences of the means of the covariates for the treatment group versus

placebo comparison in the presence of missing data, we fit generalized linear models with repeated measures

within subjects. We transform all the covariates onto a 0-1 scale by subtracting a plausible minimum possible

value from the covariate value and dividing the difference by a plausible range of the covariate (Equation 5.2).

For categorical variables with v levels, we create v− 1 indicators of level and the covariate can take the value

0 or 1 for the v − 1 indicators. We then use PROC GENMOD and generalized estimating equations (GEE) in

SAS 9.4 to model the effect of treatment nested within covariate type on the transformed covariate values with

the identity link, normal distribution, and unstructured working correlation matrix as in Equation 5.3. The

use of unstructured covariance allows us to be reasonably sure that we have the correct correlation structure

specified. When the correct correlation structure is specified, simulation studies (Preisser et al., 2002) show

that the expected bias in treatment parameters is neglible even under MAR conditions. Then we use dfbeta

residuals to obtain an estimated covariance matrix of the differences in the means of the covariates. The

covariate dfbeta can be used to replace Ci in the complete data method with some transformation (Equation

5.2) to address the scaling to the 0-1 scale.
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Let ximj be the value of covariate m for patient j in group i. Let am be the minimum possible population

value for covariate m and pm be the maximum value. We define our covariate trasnformation as

f(ximj) =
ximj − am
pm − am

, (5.2)

which puts the covariates on the 0-1 scale and allows GEE to be more computationally straightforward. If

ximj is missing then f(ximj) is missing. We want to model the value of the M × 1 vector of covariates

for patients in group i (x1m = (x1m1, . . . , x1mn1)′, and x2m = (x2mn1+1, . . . , x2mn)′) using the following

model:

f(xim) =η1(m = 1) + . . .+ ηM (m = M)+ (5.3)

φ1(m = 1)(i = 1) + . . .+ φm(m = M)(i = 1).

In Equation 5.3, ηm is the intercept for estimating a transformation of covariate m for a subject in group

2 and φm is the effect of being in group 1 on the estimate of the transformation of covariate m. We use

SAS v9.4’s GEE implementation to obtain the dfbetas associated with φ (Preisser and Qaqish, 1996). Let

gij be the M × 1 vector of dfbetas corresponding to φ̂ for patient j in group i. The gij are components of

G1 = (g11, . . . , g1n1
)′, the n1 ×M matrix of dfbetas for patients in group 1, and G2, the corresponding

n2 ×M matrix of dfbetas for patients in group 2.

To obtain the estimated differences in means of the covariates we compute θ̂ = Dφ̂ where D =

diag(p − a) is a diagonal M ×M matrix with the length of the ranges of the M covariates along the

diagonal, where p = (p1, . . . , pM ) and a = (a1, . . . , aM ). The estimated covariance matrix of θ̂ is

Cov(Dφ̂) = DCov(φ̂)D = D(G′1G1 + G′2G2)D and V β̂,θ̂ = R′1G1D + R′2G2D. In addition to

the transformation of the dfbetas for the covariates by the range of the covariates, this formulation of the

covariates differs from previous methods in that the terms are added instead of subtracted when calculating

the estimated covariance matrix of the treatment effects for outcomes with the differences in the means of the

covariates. This is because the dfbeta residuals of the covariate model estimate the scaled difference itself,

there is no need to subtract the terms. The method then proceeds with WLS being performed on d. The main

feature of this method is the difference in the calculation of elements of V d. We will compare our method of
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handling missing covariate data with the traditional method of multiple imputation or imputation of the mean,

so those methods will be discussed briefly.

5.2.2 MULTIPLE IMPUTATION

Another way to deal with missingness among baseline covariates is to create many data sets with imputed

values. Let P be the number of imputed data sets to be created, andR′R be the same estimate for all data

sets as there are no missing treatment values. The pth imputed data set has its own Cip =
Xip−1ni x̄

′
ip√

ni(ni−1)
where

Xip is the ni×M matrix of observed and imputed values for group i, imputation p. Each subject contributes

one row toXip, and the columns are the M covariates. Furthermore x̄ip is the column vector of covariate

means for group i, imputation p, and 1n1 is a ni × 1 vector of 1’s. Therefore,

dp =

 β̂

x̄1p − x̄2p

 ,V dp =

 R′R R′1C1p −R′2C2p

C ′1pR1 −C ′2pR2 C ′1pC1p +C ′2pC2p

 . (5.4)

For each of the p = 1, . . . , P imputed data sets, let bp be the adjusted treatment effect for the log hazard

ratio of treatment to placebo for the pth imputation. Furthermore V bp is the estimated covariance matrix

of bp. Using PROC MIANALYZE in SAS 9.4, we can combine our estimates of the P bp’s and V bp’s to

obtain an overall b (b∗) and V b (V b∗), which we can then use for standard estimation and hypotheses tests

of parameters. MIANALYZE combines parameter estimates and associated standard errors or covariance

matrices of the imputed data sets and then can enable univariate inference for these parameters.

An alternative method would be to combine our estimates of the P dp’s and V dp’s to get an overall

estimate of d (d∗) and V d (V d∗), which we can then use for WLS. Then d∗ and V d∗ can be used to estimate

the adjusted treatment effects, b∗∗ and its covariance matrix V b∗∗ .

5.2.3 MISSINGNESS INDICATORS

For the method using missingness indicators, we created a missingness vector for each of the U missing

variables. Without loss of generality, we assume the first U covariates contain missing values. Therefore,

mi1, . . . ,miU are the missingness indicators for xi1, . . . ,xiU , respectively, and xiu are the ni× 1 values for

covariate u for patients in group i. The missing values in xiu are replaced with the group i sample mean for

covariate u. This imputation allows us to use the non-missing covariate information from patient j without
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affecting φ too much. Letmiu be the ni × 1 column vector whose elements are 1 when the corresponding

xiu element is missing and 0 otherwise. The average ofmiu is the proportion of missing for xiu. In the case

of categorical variables with missing values, a corresponding set of dummy variables can have missing values

replaced by corresponding means. Ordinal variables can be managed as numerical and have the missing

values replaced by the mean.

Let d be a (K + M + U) × 1 vector with the K treatment effects on outcome followed by the M

differences in the means of the covariates, followed by the U differences in the means of the proportion of

missingness for the U covariates containing missing values. The methodology proceeds as usual with Ci

now a ni × (M + U) matrix where the missingness indicators are managed like a usual covariate. WLS

produces the adjusted treatment effects on the log of the hazard ratios for the K outcomes.

5.3 EXAMPLE

We applied the randomization based non-parametric covariance adjustment of treatment effect (referred to as

adjusted treatment effect for brevity) to data from the Eastern Cooperative Oncology Group, who carried out

a phase III clinical trial for high dose interferon on multiple melanoma patients. Survival time (in years) was

defined as the time between enrollment in the study and progression of the tumor or death, whichever came

first. In this data set, we have n = 285 subjects and either their time to relapse or time to censoring. There

were 196 relapses and 89 censored observations. Therefore, we have only one outcome of interest (K = 1).

Summary statistics of the survival time are shown in Table 5.1. Kaplan-Meier curves for the treatment groups

are shown in Figure 5.1. The M = 3covariates of interest are age (17-78 years), Breslow score (0.2-35), and

size (0-476). Only the Breslow score, which measures the thickness of the tumor, and size of the the tumor

have missing observations (U = 2). The distribution of missingness by covariate is shown in Table 5.2 and

the missingness of each variable by treatment is shown in Table 5.3. Observations with a survival time of 0

were recorded as 0.01 instead since survival times are always positive, which seemed reasonable given that

the second smallest survival time was 0.03.

5.3.1 DFBETAS FROM A SCALED MODEL OF COVARIATES

In order to reduce the influence of outliers for PROC GENMOD with the identity link in SAS for calculation

of the dfbetas, Breslow and size were transformed by adding 1 and then taking the natural log . The addition
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Table 5.1: Summary of survival time (yrs) by drug group and status
Drug Group Status N Obs Min Quartile 1 Median Quartile 3 Max

Placebo Censored 35 1.9 5.12 6.41 7.8 9.64
Relapsed 105 0.03 0.23 0.44 1.36 8.26

Treatment Censored 54 0.01 4.95 7.02 8.04 9.63
Relapsed 91 0.05 0.34 0.71 1.52 5.17

Figure 5.1: Kaplan-Meier plot of treatment versus placebo

of one is so that all transformed values are greater than or equal to 0. The square root and cubed root

transformation were also considered but there were still long tails with the transformation so the log(ximj +1)

for m′s corresponding to Breslow and size were chosen. These transformed values were standardized using

Equation 5.2. The population minimum, maximum, and range used to transform the variables onto the 0-1

scale are shown in Table 5.8. The randomization seems to have worked reasonably well as there does not

appear to be large differences in the means of the covariates of the two treatment groups (Table 5.4). We also

see from Equation 5.5 that the small covariance between β̂ and θ̂ means that not much will be gained by
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Table 5.2: Distribution of missing observations by covariate
Size

Present Missing Total
Breslow Present 213 42 255

Missing 19 11 30
Total 232 53 285

Table 5.3: Number (percent) missing for covariates by treatment
Drug N Age Breslow Size

Placebo 140 0 (0%) 13 (9.3%) 26 (18.6%)
Treatment 145 0 (0%) 17 (11.7%) 27 (18.6%)

Total 285 0 (0%) 30 (10.5%) 53 (18.6%)

covariance adjustment

d =

β̂
θ̂

 =



−0.357

1.038

−0.098

0.089


,V d =



0.0202 0.0137 0.0001 0.0004

0.0137 2.4221 0.0087 0.0240

0.0001 0.0087 0.0059 0.0014

0.0004 0.0240 0.0014 0.0162


. (5.5)

The adjusted treatment effect log hazard ratio is -0.363 (-0.641, -0.085). The unadjusted treatment effect on

the log hazard scale compared to placebo is -0.357 (-0.638, -0.076). The parameter estimates themselves

for the dfbeta and unadjusted method are reported in Table 5.9, and V b = 0.020 compared to the estimated

variance of the unadjusted method of 0.0202. We have modest gains in the efficiency, although our estimate is

farther from the null. The adjusted hazard ratio of the treatment is 0.695 (0.526 ,0.917), while the unadjusted

hazard ratio is 0.700 (0.528, 0.927).

Table 5.4: Estimates of the differences in means (treatment-placebo) of covariates from PROC GENMOD on
original scale

Variable Difference Estimate Standard Error
Age 1.038 1.545

Ln(Breslow+1) -0.098 0.076
ln(Size+1) 0.089 0.126
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5.3.2 MULTIPLE IMPUTATION METHOD

Using PROC MI in SAS 9.4 with MCMC, we created 30 imputed data sets that have imputed values for

ln(Breslow+1) and ln(size+1). Because we had 11 subjects missing both variables, we used age which had no

missing values to provide a basis for which to impute the other missing values for the other two covariates.

We avoided using treatment to impute Breslow and size because it is preferable not to use treatment since any

imbalances by treatment may be propagated in the imputed data set, and this would be in conflict with having

randomization between groups.

Using the method of combining the bp, we get an overall adjusted treatment effect on the log hazard

scale of -0.363 (-0.641, -0.085), compared to the unadjusted treatment effect on the log hazard scale of -0.357

(-0.638, -0.076). This translates to an adjusted hazard ratio of treatment to placebo of 0.695 (0.527, 0.918)

versus an unadjusted hazard ratio of treatment to placebo of 0.6997 (0.5282, 0.9268). A summary over the 30

imputed data sets of the adjusted treatment effects on log-hazard ratios and its estimated variance is provided

in Table 5.5. The average within imputation variance for b is 0.0210, and the average between imputation

variance for b is 1.64 × 10−05, which suggests that we have stable parameter estimates for b over all the

imputations.

Table 5.5: Summary of imputed data sets
Variable Mean Std Dev Min Max
b∗ -0.3635 0.004 -0.3707 -0.3554
Vb∗ 0.0201 2.40E-05 0.0201 0.0201

If we use the method of combining the dp and then carrying out the WLS on d∗, we obtain a very similar

parameter estimate with a larger confidence interval. This is due to the larger values in V d∗ than in V d, as

shown in Equations 5.6 and 5.5, which are due to imputation. The estimated treatment effects and differences

in the means of the covariates and its estimated covariance matrix when doing multiple imputation is

d∗ =



−0.3571

1.0379

−0.0896

0.0731


,V d∗ =



0.021924 0.014865 0.000144 0.000462

0.014865 2.610159 0.009348 0.026854

0.000144 0.009348 0.005697 0.001568

0.000462 0.026854 0.001568 0.014194


. (5.6)

100



The adjusted hazard ratio of the treatment compared to placebo is 0.695 (0.527, 0.918), while the unadjusted

hazard ratio is 0.700 (0.528, 0.927). The adjusted treatment effect combining the d∗ on the log hazard scale

is -0.363 (-0.653, -0.074), compared to the adjusted treatment effect combining the bp on the log hazard

scale compared to placebo which is -0.363 (-0.641, -0.085). Not only is the standard error on the adjusted

treatment effect larger when combining the dp than when combining the bp, it is also larger than the standard

error of the unadjusted treatment effect (Table 5.9). The estimated treatment effects and differences in the

means of the covariates and its estimated covariance matrix when doing multiple imputation is

d∗ =



−0.3571

1.0379

−0.0896

0.0731


,V d∗ =



0.021924 0.014865 0.000144 0.000462

0.014865 2.610159 0.009348 0.026854

0.000144 0.009348 0.005697 0.001568

0.000462 0.026854 0.001568 0.014194


. (5.7)

Each of the imputations had the Cox proportional hazards model with all three covariates (age, ln(Breslow+1),

and ln(size+1)) fit to it:

λjk(t|zj) = λ0k(t) exp(β′kxj) (5.8)

where xj is a vector of covariates containing the indicator of age, ln(Breslow+1), and ln(size+1) of the jth

patient and βk is an (M + 1)× 1 vector of covariate and treatment effects. The results were combined using

PROC MIANALYZE. We can then determine how predictive the covariates themselves are from Table 5.6.

Ln(Breslow+1) and ln(size+1) are not significant, and age, which is minimally significant, does not have a

large effect size. This suggests that adjusting by the covariates may only yield modest gains in efficiency.

Table 5.6: Full model results from Equation 5.8 on imputations of original data on original covariate scale
Variable Estimate Standard Error p-value

Age 0.0116 0.0054 0.0322
ln(Breslow+1) -0.0715 0.14 0.6065

ln(Size+1) -0.0461 0.0721 0.5224
Treatment -0.3934 0.1398 0.0049
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5.3.3 MISSING INDICATORS METHOD

Since we have two variables with missingness, we need to create two indicator variables of missingness, one

for ln(Breslow+1) (m = 2) and one for ln(size+1) (m = 3). We can see the difference in the proportion

of missingess in Breslow and size between the treatment and placebo are very small (0.024 and 0.000493,

respectively as in Table 5.3). The overall means used to impute missing values for the covariates are shown

in Table 5.8. The adjusted treatment effect on the log hazard scale compared to placebo is -0.369 (-0.647,

-0.092) versus -0.357 (-0.638, -0.076) for the unadjusted method. The estimated standard error of the adjusted

treatment parameter is 0.141, compared to the estimated variance of the unadjusted treatment effect of 0.143.

The adjusted hazard ratio of the treatment compared to placebo is 0.691 (0.538, 0.912), while the unadjusted

hazard ratio is 0.700 (0.528, 0.927). The estimated treatment effects and differences in the means of the

covariates and its estimated covariance matrix when using missingness indicators is

d =



β̂

x̄1 − x̄2

m̄12 − m̄22

m̄13 − m̄23


=



−0.3571

1.0379

−0.0899

0.0575

0.0244

0.0005



Vd =



0.0202 0.0137 0.0001 0.0003 0.0003 −0.0003

0.0137 2.4050 0.0084 0.0206 0.0019 −0.0024

0.0001 0.0084 0.0047 0.0011 0.0000 −0.0001

0.0003 0.0206 0.0011 0.0108 −0.0002 0.0000

0.0003 0.0019 0.0000 −0.0002 0.0013 0.0003

−0.0003 −0.0024 −0.0001 0.0000 0.0003 0.0021


. (5.9)
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Table 5.7: Distribution of the missingness of size by treatment group
Size

Drug Present Missing Total
Placebo 114 26 140

Treatment 118 27 145
Total 232 53 285

Table 5.8: Population based minimum and maximum for covariates (# in parenthesis is the un-logged value)
Variable Min Max Mean Range

Age 0 100 47.12 100
ln(Breslow+1) 0 (1) 4.62 (100) 1.33 4.62

ln(Size+1) 0 (1) 6.91 (1000) 1.23 6.91

5.3.4 COMPARING ALL THREE METHODS

As we can see from Figure 5.2, there is good agreement between the adjusted estimated treatment effect and

the corresponding variance estimates for the three methods. Table 5.9 shows that the method using dfbetas

has good agreement with the method of imputation. Comparing the methods with the unadjusted estimate,

we see that the estimate of the treatment effect is close to the unadjusted estimate, and we have variance

reduction.

We also wanted to compare the three methods across bootstrap samples of the original data. We created

100 bootstrap samples with replacement of the 285 observations from our original data set. We applied all

three methods to see how well the methods agreed across bootstrap samples. Figures 5.3 and 5.4 are box

plots of the results across the bootstrap samples, where the imputation method has 30 imputations. Overall,

we see that the methods agree with each other across the 100 bootstrap samples for the estimation of both b

and Vb. While there is not much change between the adjusted and unadjusted estimates of b, we see that our

method of adjustment using dfbetas, multiple imputation, and indicators, all have smaller estimated variance

than the unadjusted estimate of the variance.

We also fit the full Cox proportional hazards model with covariates on the multiple imputation of the

bootstraps. We used the same model as before (Equation 5.8). The estimates and standard errors of the

covariates (including treatment) were then combined in PROC MIANALYZE. The p-values for the covariates

combined over 100 bootstrap samples are shown in Figure 5.5. The covariates age, ln(Breslow+1), and

ln(size+1) do not appear to be consistently significant given the wide range of p-values. Treatment, however,

appears to be significant in most bootstrap samples. Scatter plots of the estimates of b and its standard error
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using our method by dfbetas and multiple imputation show that the methods have good agreement between

each other over a range of values (Figures 5.6 and 5.7).

Figure 5.2: Forest plot comparing three methods to handle missingness

5.4 DISCUSSION

This article handled the issue of missing data for baseline covariates in randomization-based non-parametric

covariance adjustment of evaluation of treatment effects by using subject specific dfbetas of treatment effects

of a model of the treatment nested within type of covariates on a transformation of covariate values on the 0-1

scale. Comparing the method of covariate dfbetas to multiple imputation and single imputation using the

variable’s sample mean combined with missingness indicator variables suggests good agreement between the

three methods.
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Table 5.9: Comparing estimates of three methods
Method Trt Est Std Err LCL UCL p-value

Covariate dfbetas -0.363 0.142 -0.641 -0.085 0.011
Imputation combining bp -0.363 0.142 -0.641 -0.085 0.010
Imputation combining dp -0.363 0.148 -0.653 -0.074 0.014

Indicators -0.369 0.141 -0.647 -0.092 0.009
Unadjusted -0.357 0.143 -0.638 -0.076 0.013

Table 5.10: Summary of b across 100 bootstraps
Type Minimum Lower Quartile Median Upper Quartile Maximum

Imputation -0.820 -0.443 -0.341 -0.248 -0.026
Indicators -0.825 -0.436 -0.312 -0.242 -0.026

Covariate dfbetas -0.820 -0.445 -0.339 -0.245 -0.023

The covariate dfbeta method requires the MAR assumption of covariates through the use of GEE for

creation of the dfbetas as well as independent random censoring of the survival time. To check this assumption,

the methods used in Zhao et al. (2014) may be applied. When unstructured correlation is used for the working

correlation of the covariate model, a MAR-like assumption is sufficient. The method is efficient compared

to the unadjusted method, which we see in the estimated variance reduction. The method also works well

with moderate sample size. The limitation of our method is that it may not work well when there is extensive

missing data. In that case,Dφ̂ may not be a good estimate of θ.

The multiple imputation method also requires the MAR assumption as the process of combining estimates

and standard errors or covariance structures requires it. Large sample sizes may be needed, but it can handle

extensive missingness among the baseline covariates.

The method of using missingness indicators does not necessarily require the data to be MAR. It can only

handle moderate missing data, and it could potentially be less efficient by reducing the correlation of the

covariates with the outcome. Furthermore, when many covariates contain missing data, large sample size

may be needed, since more missingness indicators are included in the formulation of the differences of the

means of the covariates.

In confirmatory clinical trials, baseline covariates usually are completely observed as some data collection

is required to assess whether the patient meets inclusion/exclusion criteria. If baseline covariates are missing,

they are typically only minimally missing. Since the covariates are measured at baseline, they typically

satisfy the MAR assumption. Missingness among biomarkers, if present, is usually due to malfunctions of

laboratory machines and therefore do not depend on the unobserved data. Furthermore, it is sufficient that the
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Figure 5.3: Boxplot of b across 100 bootstraps by method

dfbeta method work for minimally missing data (usually considered as less than 20% missing) since a useful

covariate would need to be present to contribute to the gains in efficiency in a MAR situation. If there were

a useful covariate with many missing values, that could be managed using the method of indicators. The

covariate would have a dummy variable created for each category and treat the missing value as the reference.

Even if the covariate were MNAR, such as being below the limit of detection for a laboratory machine, the

indicator method would suffice.

These three methods each have their strengths and weaknesses. For regulatory clinical trial settings,

using the covariate dfbetas may be the most commonly useful method due to its efficiency even in a moderate

sample size. Multiple imputation should be used when sample size is large and there is extensive missing
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Figure 5.4: Boxplot of estimated standard error of b across 100 bootstraps by method

data, and the method of indicators could be appropriate when the MAR assumption may not be satisfied and

the data has a large sample size.
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Figure 5.5: Boxplot of p-values of covariates across 100 bootstraps

Table 5.11: Summary of Vb across 100 bootstraps
Type Minimum Lower Quartile Median Upper Quartile Maximum

Imputation 0.01794 0.01938 0.02007 0.02069 0.02289
Indicators 0.01782 0.01899 0.01954 0.02046 0.02236

Covariate dfbetas 0.0179 0.01928 0.01994 0.02066 0.02283

108



Figure 5.6: Scatter plot comparing standard errors of multiple imputation method with dfbeta method over
100 bootstraps
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Figure 5.7: Scatter plot comparing treatment estimates of multiple imputation method with dfbeta method
over 100 bootstraps
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CHAPTER 6: RANDOMIZATION-BASED NON-PARAMETRIC COVARIANCE
ADJUSTMENT FOR TIME-TO-EVENT OUTCOMES WITH MULTIPLE

TREATMENT GROUPS

6.1 INTRODUCTION

Previous non-parametric covariance adjustment methodology has focused on only one treatment versus

reference group, but we extend the method to make multiple treatment comparisons. Some clinical trials

have multiple doses for which they wish to assess efficacy. There could be some indication that one dose is

moderately effective, but there could be questions as to whether a larger dose could be more effective or if a

smaller dose might be as adequaely effective with fewer safety issues.

We follow the randomization based non-parametric covariate adjustment of treatment effect method of

Saville and Koch (2013), except for the covariance matrix estimate for the covariates is done via generalized

linear models of the transformed covariate values. The dfbetas then take the place of the deviations from the

mean. In Section 6.2 we review the method of Saville and Koch (2013), and extend it to the case of missing

covariates and multiple treatment groups. We apply our method to a neurological disease dose-finding trial

which we describe in Section 6.3 and provide results in Section 6.5. In Section 6.4 we compare our method

with that of Hussey (2012). Finally, in Section 6.6 we discuss strengths and limitations of our method.

6.2 METHOD

The general method of randomization-based non-parametric covariance adjustment consists of four steps. We

will follow the notation used in Saville and Koch (2013); however, in this case, baseline covariates are allowed

to have missingness and more than one treatment will be evaluated. First we model the unadjusted treatment

effect for outcomes. In our randomized clincial trial, we have survival data for K outcomes evaluating T

different treatments. We will compare treatments 1, 2, . . . , T −1 to treatment T . The main difference between

our method and that of Saville and Koch (2013) is that we have T − 1 times more treatment parameters to

allow for pairwise comparisons with group T (as well as for contrasts among groups), and we have T − 1
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times more differences in the means of the covariates to allow for comparisons of different treatment groups’

means to the means of covariates of group T (or for contrasts among groups). Let M be the number of

covariates for adjustment. We define the vector d as the vector of the K(T −1) treatment effects by outcomes

stacked on top of the M(T − 1) estimates for the differences of the means of the covariates of the treatments

from treatmeng group T . The differences of the means of the covariates are estimated as some of the baseline

covariates may be missing. Therefore d is a (K +M)(T − 1)× 1 column vector.

In the second step, we want to estimate the covariance matrix of d because we will use it in a weighted

least squares regression which occurs in the third step. The covariance matrix of d is comprised of three

different covariance matrices: the covariance matrix of the treatment effects for the K outcomes, the

covariance matrix of the estimates for the differences of the means of the covariates for the T −1 comparisons,

and the covariance matrix of the treatment effect for outcomes with those for the comparisons of the covariates.

We can estimate the covariance matrix of the treatment parameters for outcomes by calculating the sum of

cross products of the dfbetas associated with the treatment effects (Wei et al., 1989). Next we calculate the

covariance matrix of the estimated differences of the means of the covariates and the covariance matrix of the

treatment effects for outcomes with the estimated differences in the means of the covariates using dfbetas of

a generalized linear model of the covariates transformed onto a 0-1 scale which we describe in some detail

later. The covariance matrix of d, V d, is a (K +M)(T − 1)× (K +M)(T − 1) matrix.

Third we force the estimated differences in means of covariates to 0 through weighted least squares

(WLS) regression. We regress d, which contains both estimates of treatment effect for outcomes and estimates

of the differences in the means of the covariates onto the space of only treatment parameters. We use WLS

with the weights based on V −1
d . Forcing the estimated differences in means of the covariates to 0 through

WLS is appropriate due to randomization since these differences for covariates are random and the populations

receiving the T treatments are the same for them. From WLS methods, we obtain both the estimator for the

adjusted treatment effects (b) and and a consistent estimator for their covariance matrix (Vb).

The fourth step is to do hypothesis testing using the approximately multivariate normal distribution of

b (via sufficiently supportive sample size), with the corresponding expected value and covariance matrix

estimated in the WLS in Step 3. We can test hypotheses using traditional contrast matrices and calculate

estimates of parameters from linear combinations of b.

To carry out these four steps we must first explain some notation. Let Tijk be the survival time for the kth

outcome for the jth patient on the ith treatment. Let zj = (zj1, . . . , zjT−1)′ be a vector of the jth’s subject’s
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indicator of treatment; zji is 1 if the patient receives treatment i, and 0 otherwise. Thus the position of the

1 indicates which treatment patient j receives and if patient j receives treatment T then zj is a vector of

0’s. For each outcome k, we will use a marginal Cox proportional hazards model to estimate the unadjusted

treatment effects. Our model for the estimate of treatment effects is

λjk(t|zj) = λ0k(t) exp(z′jβk)

where λ0k(t) is the baseline hazard for outcome k given the subject has survived until time t. Let βk =

(β1k, β2k, . . . , β(T−1)k)
′ be the (T − 1)× 1 vector of the T − 1 treatment effects on the log hazards ratios

for the kth outcome, and let βik be the treatment effect for the kth outcome for the comparison between the

ith and T th treatment. Thus, we have pairwise comparisons of different treatment groups with the reference

group T for the kth outcome.

To express our model for the K outcomes and the T − 1 treatment effects, let

λj(t|zj) = (λj1(t|zj), . . . , λjK(t|zj))′ be the vector of the K hazards for patient j, and let

λ0(t|zj) = (λ01(t), . . . , λ0K(t))′ be the vector of baseline hazards for the K outcomes. Therefore, our

model for the unadjusted treatment effects for the K outcomes and T treatments is

λj(t|zj) = λ0(t) exp{[zj ′ ⊗ IK ]β} (6.1)

where β = (β11, . . . , β1K , . . . , β(T−1)1, . . . , β(T−1)K)′ is theK(T−1)×1 column vector of all the treatment

parameters for all outcomes, IK is theK×K identity matrix, and⊗ is the kronecker product. Thus zj ′⊗IK

is a matrix of 1× (T − 1) diagonal blocks where the ith block is zji× IK . β is arranged so that outcomes are

nested within treatment. We assume that we have independent random censoring, which satisfies a MAR-like

assumption.

We next need notation to refer to the treatment effects dfbetas. Let i be the index of treatment group, ni

be the number of patients receiving treatment i, and
T∑
i=1

ni = n, where n is the total number of patients in

the study. Without loss of generality, we will index the patients from 1 to n where patients will be grouped

by treatment. Patients 1 to n1 are in treatment 1, and patients indexed from ([
i−1∑
t=1

nt] + 1) to (
i∑
t=1

nt), are in
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treatment group i, where i ranges from 1 to T . R = (R′1,R
′
2, . . . ,R

′
T )′is the n×K(T − 1) matrix where

R1 =



r11(1) r12(1) . . . r1K(1) . . . r{T−1}1(1) . . . r{T−1}K(1)

r11(2) r12(2) . . . r1K(2) . . . r{T−1}1(2) . . . r{T−1}K(2)

...
...

r11(n1) r12(n1) . . . r1K(n1) . . . r{T−1}1(n1) . . . r{T−1}K(n1)


. (6.2)

In Equation 6.2, R1 is the n1 × K(T − 1) matrix of dfbeta residuals for treatment 1 obtained from

the unadjusted Cox proportional hazards model with T − 1 parameters for each of the K events. Each row

represents a subject’s effect on β from Equation 6.1. Because of the way we have grouped our patients by

treatment, we can express the ni ×K(T − 1) matrix of dfbetas for patients in treatment i ∈ (1, . . . , T ) in

general terms as shown in Equation 6.3:

Ri =



r
11([

i−1∑
t=1

nt]+1)
. . . r

1K([
i−1∑
t=1

nt]+1)
. . . r

{T−1}1([
i−1∑
t=1

nt]+1)
. . . r

{T−1}K([
i−1∑
t=1

nt]+1)

r
11([

i−1∑
t=1

nt]+2)
. . . r

1K([
i−1∑
t=1

nt]+2)
. . . r

{T−1}1([
i−1∑
t=1

nt]+2)
. . . r

{T−1}K([
i−1∑
t=1

nt]+2)

...
...

r
11(

i∑
t=1

nt)
. . . r

1K(
i∑

t=1
nt)

. . . r
{T−1}1(

i∑
t=1

nt)
. . . r

{T−1}K(
i∑

t=1
nt)


. (6.3)

In Equation 6.3 rik(j)=̂β̂ik(j) − β̂ik, where β̂ik(j) is the estimate of βik when subject j is deleted. In other

words rik(j) is the dfbeta of the jth patient on parameter βik. The estimated covariance matrix V β̂ for β̂ is

R′R.

The estimated differences in the means of the covariates is expressed as θ̂, and when all covariates have

no missing data, θ̂ = ((x̄1 − x̄T )′, . . . , (x̄T−1 − x̄T )′)′, where x̄i = (x̄i1, . . . , x̄iM )′ is the vector of M

baseline covariate means for treatment i with x̄im being the mean of covariate m for patients in treatment

group i.

To estimate the covariance matrix of d = (β̂
′
, θ̂′)′ we need to calculate V β̂, V β̂,θ̂, and V θ̂ where V β̂ is

the estimated covariance matrix of β̂, V β̂,θ̂ is the estimated covariance matrix of β̂ with θ̂, and V θ̂ = R′R

is the estimated covariance matrix of θ̂. When all covariates have no missing data and only one treatment

group is evaluated relative to placebo, we used Ci =
Xi−1ni x̄

′
i√

ni(ni−1)
whereXi is the ni ×M matrix of observed

values for patients in treatment group i. Each subject contributes one row toXi, and the columns are the M
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covariates. 1ni is the ni × 1 column vector of 1’s. To calculate V β̂,θ̂ and V θ̂ in the presence of missing data

we need to model the effect of treatment group on the mean of each of the M covariates.

In order to obatin an estimate of the differences of the means of the covariates for the T − 1 treatment

group comparisons in the presence of missing data we use generalized linear models with repeated measures

within subjects. We transform all the covariates onto a 0-1 scale by subtracting a plausible minimum possible

value from the covariate value and dividing the difference by a plausible range of the covariate (Equation 6.4).

We then use generalized estimating equations to estimate the effect of treatment nested within covariate type

on the transformed covariate values in a model with the identity link, normal distribution, and unstructured

working correlation matrix, and then using dfbetas (Preisser and Qaqish, 1996) to obtain an estimated

covariance matrix of the differences in the means of the covariates. The covariate dfbetas then replace the Ci

in the complete data method, with some transformation to reverse the scaling to the 0-1 scale.

Let ximj be the value of covariate m for patient j in treatment group i. Let am be a plausible minimum

possible population value for covariatem and pm be a plausible maximum value. Our covariate transformation

is defined as

f(ximj) =
ximj − am
pm − am

. (6.4)

This transformation of covariates to the 0-1 scale allows generalized estimating equations (GEE) in PROC

GENMOD to be more computationally straightforward, and if ximj is missing then f(ximj) is missing. We

want to model the value of the M × 1 vector of covariates for patients in treatment group i (xim) using the

following marginal mean model:

E [f(xim)] =η1(m = 1) + . . .+ ηM (m = M)+ (6.5)

φ11(i = 1)(m = 1) + . . .+ φ1M (i = 1)(m = M) + . . .

φ(T−1)1(i = T − 1)(m = 1) + . . .+ φ(T−1)M (i = T − 1)(m = M).

In Equation 6.5, ηm is the intercept for estimating a transformation of covariate m for a subject in treatment

group T and φim is the effect of being in treatment group i instead of T on the estimate of the transformation

of covariate m. We use PROC GENMOD with an unstructured covariance matrix to obtain the dfbetas
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associated with φ = (φ11, . . . , φ(T−1)M ), and we use the dfbetas in the matrix G = (G′1,G
′
2, . . . ,G

′
T )′

which is an n×M(T − 1) matrix.

Let G1 be the n1 ×M(T − 1) matrix in Equation 6.6 for dfbetas for φ for the subjects in treatment

group 1 so that

G1 =



g11(1) g12(1) . . . g1M(1) . . . g{T−1}1(1) . . . g{T−1}M(1)

g11(2) g12(2) . . . g1M(2) . . . g{T−1}1(2) . . . g{T−1}M(2)

...
...

g11(n1) g12(n1) . . . g1M(n1) . . . g{T−1}1(n1) . . . g{T−1}M(n1)


. (6.6)

More generally, Gi is the ni × (T − 1)M matrix in Equation 6.7 for dfbetas for patients in treatment

group i ∈ (1, . . . , T ) and is written as

Gi =



g
11([

i−1∑
t=1

nt]+1)
. . . g

1M([
i−1∑
t=1

nt]+1)
. . . g

{T−1}1([
i−1∑
t=1

nt]+1)
. . . g

{T−1}M([
i−1∑
t=1

nt]+1)

g
11([

i−1∑
t=1

nt]+2)
. . . g

1M([
i−1∑
t=1

nt]+2)
. . . g

{T−1}1([
i−1∑
t=1

nt]+2)
. . . g

{T−1}M([
i−1∑
t=1

nt]+2)

...
...

g
11(

i∑
t=1

nt)
. . . g

1M(
i∑

t=1
nt)

. . . g
{T−1}1(

i∑
t=1

nt)
. . . g

{T−1}M(
i∑

t=1
nt)


(6.7)

and gim ≈ φ̂im(j) − φ̂im, which is the dfbeta for patient j on φ̂im.

To obtain the estimated differences in means of the covariates, we compute θ̂ = Dφ̂ where D =

IT−1 ⊗ diag(p − a) is a block diagonal matrix of dimension M(T − 1) × M(T − 1). IT−1 is the

(T − 1)× (T − 1) identity matrix, and diag(p−a) is a diagonal matrix for which the diagonal is the vector

(p − a); p = (p1, . . . , pM ) and a = (a1, . . . , aM ) so (p − a) is the M × 1 vector of ranges for the M

covariates. ThusD has (T − 1) diagonal blocks which are the M ×M diagonal matrices with the lengths of

the ranges of the M covariates along the diagonal. The estimated covariance matrix V θ̂ of θ̂ is shown in
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Equation 6.8

V θ̂ = Cov(Dφ̂) (6.8)

= DCov(φ̂)D

= D(G′G)D

Also,

V β̂,θ̂ = R′GD.

The main feature of this method is the difference in the calculation of elements of V d as in Equation 6.9.

V d =

 R′R R′GD

DG′R DG′GD

 =


T∑
i=1
R′iRi

T∑
i=1
R′iGiD

T∑
i=1
DG′iRi

T∑
i=1
DG′iGiD

 . (6.9)

The calculation for the covariance matrix has a very similar form to the work developed by Hussey

(2012). The method then proceeds with WLS being performed on d as shown in Equation 6.10

d =

β̂
θ̂

=̂

 IK(T−1)

0M(T−1)×K(T−1)

 b = Xb (6.10)

where I(T−1)K is the (T−1)K×(T−1)K identity matrix and 0(T−1)M×(T−1)K is a (T − 1)M × (T − 1)K

matrix of 0’s. Thus, with WLS, b is obtained as shown in Equation 6.11. The WLS estimate of b is

b =(X ′V −1
d X)−1X ′V −1

d d (6.11)

=β̂ − (R′GD)(DG′GD)−1Dφ̂

=β̂ − (R′G)(G′G)−1φ̂.
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A consistent estimator for V b for the covariance matrix of b is

V b = (X ′V −1
d X)−1 = R′R−R′G(G′G)−1G′R (6.12)

6.3 NEUROLOGICAL DISORDER DATA

Our data come from a double-blind randomized clinical trial evaluating the effect of multiple doses of riluzole

on time to disease progression of Amyotrophic Lateral Sclerosis (ALS). In the trial, disease progression (an

event) was defined as death, requirement of tracheostomy, or intubation with artificial ventilation leading to

tracheostomy. In total, there were 959 patients randomized and 431 events. The 3 doses of 50 mg, 100 mg,

and 200 mg of riluzole were compared to placeo (0 mg). Using the notation in the previous method, K = 1

and T = 4. Patients in this analysis were followed for 18 months and have a maximum survival time of 549

days. The trial is described in more detail in Lacomblez et al. (1996) and has been analyzed using different

methods of non-parametric covariance adjustment by Hussey (2012); Tangen and Koch (2001). Previous

studies have focused on 100 mg as the main dose of interest.

The specification for covariates was the same as in Hussey (2012) for methods that he developed for

time-to-event data with T treatment groups. In this regard, he used the same covariates he had identified using

stratified conditional step-wise logistic regression for 2 treatment groups (100 and 200 mg dose versus 0 mg

dose with the 50 mg dose subjects omitted). In the study, patients were stratified by three regions and two

sites of onset for six total strata. The three regions were France and Belgium, other European countries, and

North America and the two onset sites were bulbar versus limb. It also evaluated covariates that are associated

with patients surviving past 12 months, with a conditional stepwise logistic regression for the 12 strata by

pooled treatment groups with an entry criterion of p < 0.005. Conditioning on strata by pooled treatment

enables a selection of covariates that are predictive of having an event by 12 months independent of treatment.

There were 6 patients who were censored before 12 months but who did not suffer the event. These patients

were managed as not experiencing the outcome. The covariates chosen were age (years), disease duration

(years), weight (kgs), muscle testing score (22 items on a 5 point scale), visual analogue scale fatigue score,

and vital capacity ratio at inclusion. For our method, the ranges we chose for the covariates are shown in

Table 6.1.
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Table 6.1: Ranges used for transformation of covariates
Variable Min Max
Age (yrs) 0 100

Disease Duration (yrs) 0 15
Weight (kgs) 0 500

Muscle testing (22 items on 5 point scale) 0 110
Visual Analogue Scale Fatigue 0 100

Vital Capacity Ratio 0 200

Table 6.2: Imputed means for varaiables by disease onset site
Site onset Variable Mean

Limb Age at inclusion (years) 55.73
Disease duration (years) 1.97

Weight (kgs) 68.89
Muscle Testing Total Score 84.35

Visual Analogue Scale Fatigue (inclusion) 48.43
Vital Capacity Ratio (inclusion) 90.53

Bulbar Age at inclusion (years) 58.89
Disease duration (years) 1.38

Weight (kgs) 65.15
Muscle Testing Total Score 97.91

Visual Analogue Scale Fatigue (inclusion) 37.28
Vital Capacity Ratio (inclusion) 83

The overall missingness percentage for the selected covariates was 1.53%, and the mean values of the

covariates given their site of disease onset were used for imputation (Table 6.2) in analyses reported by

Hussey (2012). The distribution of missingness by treatment group is shown in Table 6.3 and suggests that

the number of missing observations is roughly the same for all 4 treatment groups. We will analyze the

data with both the 1.53% missingness and with the imputed values so that we can compare this method with

Hussey (2012). For all 6 covariates, the largest absolute difference in the mean of any of the 4 treatment

groups for the imputed data set versus the non-imputed data set was 0.17 for visual analogue scale fatigue

score. Given the means of the variables, we do not expect to see large differences between the imputed and

non-imputed data sets.
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Table 6.3: Distribution of missingness by treatment group
Variable 50 mg 100 mg 200 mg Placebo Overall

Age at inclusion (years) 0 0 0 0 0
Disease duration (years) 0 0 0 0 0

Weight (kgs) 9 10 7 8 34
Muscle Testing Total Score 4 1 3 0 8

Visual Analogue Scale Fatigue 11 10 11 10 42
Vital Capacity Ratio 2 2 0 0 4

6.4 COMPARISON OF THE PROPOSED METHOD WITH HUSSEY (2012)

Hussey (2012) investigated non-parametric randomization based methods for multiple treatment effects in

multivariate time-to-event outcomes with no missing data for the baseline covariates. When referring to

components calculated using the method of Hussey (2012), we will use a subscript of H for differentiation.

The vector of treatment effects and baseline covariates is

dH =



β̂
(1)
1

...

β̂
(1)
K

...

β̂
(T−1)
1

...

β̂
(T−1)
K

x̄1 − x̄T

x̄2 − x̄T
...

x̄T−1 − x̄T



(6.13)

where β(i)
k is the treatment effect of being in group i on outcome k and is equivalent to our definition of βik; x̄i

is defined the same way we have defined it previously. We letβH = (β1,
(1) , . . . , β

(1)
K , . . . , β

(T−1)
1 , . . . , β

(T−1)
K ).
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The covariance matrix of β̂H is

V β̂H
=



R(1)′R(1) R(1)′R(2) . . . R(1)′R(T−1)

R(2)′R(2) . . . R(2)′R(T−1)

. . .
...

R(T−1)′R(T−1)


(6.14)

whereR(u) = (R
(u)
i , . . . ,R

(u)
T−1) withR(u)

i is the ni ×K matrix of dfbeta residuals for K events for the tth

treatment comparison for the ni subjects from group i. Furthermore,R(u)′R(s) =
T∑
i=1
R

(u)′

i R
(s)
i is the robust

estimate of theK×K covariance matrix of β̂
(u)

and β̂
(s)

where β̂
(u)

= (β̂
(u)
1 , . . . , β̂

(u)
K ). SinceR(u)′R(s) =

T∑
i=1
R

(u)′

i R
(s)
i is equivalent to the subset ofR′R composed of rows (u(K−1) + 1, . . . , u(K−1) + (T −1))

and columns (s(K − 1) + 1, . . . , s(K − 1) + (T − 1)), then V β̂H
is equivalent to V β̂

Let x̄H = ((x̄1 − x̄T )′, . . . , (x̄T−1 − x̄T )′)′ be the M ∗ (T − 1)× 1 vector of M differences of means

of the covariates for the T − 1 treatment comparisons. The covariance matrix for x̄H is

V x̄H =



V x̄1 + V x̄T V x̄T . . . V x̄T

V x̄2 + V x̄T . . . V x̄T

. . . . . .
...

. . . V x̄T

V x̄T−1 + V x̄T


(6.15)

which is estimated by the covariance matrix V θ̂ = DG′GD. Note thatDG′GD =
T∑
i=1
DG′iGiD. Since

Gi contains only the patients in treatment group i, then for i = 1, . . . , T − 1 the non-zero columns are

{1 +M(i− 1), . . . ,M +M(i− 1)} and the rest of the columns are effectively 0. Therefore,

DG′iGiD=̂diag(eT−1(i)) ⊗ V x̄i , where diag(eT−1(i)) is a diagonal matrix for which the diagonal

is eT−1(i), a (T − 1)× 1 vector of 0’s with a 1 in element i, and =̂ means estimates. For i = T , the patients

are in the placebo group, so deleting them adjusts the estimates of η which affects all values of φ. Therefore,

GT is non-zero in all columns. The effect of deleting a patient in the reference group affects φim the same

for i = 1, . . . , T − 1 when m is held constant, soDG′TGTD has block matrix structure made of one matrix
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repeated for all blocks. ThereforeDG′TGTD=̂


V x̄T . . . V x̄T

...
...

...

V x̄T . . . V x̄T

 , and the covariance matrix of

DG′GD =

T∑
i=1

DG′iGiD (6.16)

≈



V x̄1 0 . . . 0

0 V x̄2 . . . 0

. . .

V x̄T−1


+



V x̄T . . . . . . V x̄T

...
...

...
...

...
...

...
...

V x̄T . . . . . . V x̄T


= V x̄H

agrees with the covariance matrix of Hussey (2012).

LetRiM = (R
(1)
i , . . . ,R

(T−1)
i ) be the ni×K ∗ (T − 1) matrix of dfbeta residuals for the K events and

T−1 treatment comparisons for the ni patients on treatment i. The covariance matrix of V β̂H ,x̄i
−V β̂H ,x̄T

=

R′iMCi −R′TMCT , where Ci is defined earlier in Section 6.2. Our covariance matrix estimate isR′GD.

Due to the columns of 0’s inRi andGi for i < T , and the repetitive nature ofRT andGT

R′GD =

T∑
i=1

R′iGiD (6.17)

whereR′iGiD=̂eT−1(i)⊗ V β̂,x̄i
for i < T , andR′TGTD=̂1(T−1) ⊗ V β̂,x̄T

V β̂,θ̂ =R′GD (6.18)

≈
[
V β̂,x̄1

. . . V β̂,x̄T−1

]
+

[
−V β̂,x̄T

. . . −V β̂,x̄T

]
= V β̂,x̄H

.

Our method of estimating the covariance matrix of d, which uses estimates of a generalized linear model,

agrees with the method of Hussey (2012) which uses U-statistics kernel functions.

While Hussey (2012) uses the imputed data set, our results are reported for the data set with missing

covariate values. Still our estimates of d and dH are very similar (6.19). The estimate of V d and V dH is

provided in the appendix. There is only a slight difference in the adjusted estimates of treatment effect of b

vs bH (6.20) and a slight different in the adjusted estimated covariance matrices (6.21).

122



6.5 EXAMPLES

We can see from Table 6.4 that while almost half of the patients on the placebo experienced an event (defined

as death, a tracheostomy, or intubation with artificial ventilation leading to tracheostomy), the percentage is

smaller in all the drug doses. Furthermore, the median survival time for those who had an event is highest for

the 100 mg dose (329 days versus 289.5, 282, and 256.5 days), suggesting that the 100 mg dose lengthens

time to disease progression.

To explore the proportional hazards assumption for the Cox proportional hazards model, we will examine

the Kaplan-Meier curve (Figure 6.1). There appears to be overlap for the first 100 days or so, and then the

treatments begin to separate from the placebo. The 200 mg dose appears to cross with both the 50 mg and 100

mg dose at different points in time near the end of the study. While not perfectly satisfying the proportional

hazards assumption, the separation achieved in the middle of the study seems adequately compatible.

The distributions of the covariates by treatment group is shown in Tables 6.5 and 6.6. We can see that

the distributions of the covariates are very similar for all 3 doses and placebo, suggesting that any impact

of covariance adjustment will mostly be through the extent of variance reduction as that corresponds to the

correlations of the covariates with the outcomes.

We can see from Table 6.7 that the non-parametric covariance adjustment adjusts the effect of all three

doses away from the null. Since we are interested in pairwise comparisons of the dose with placebo, we can

test the 3 parameters associated with treatment effect using the Hochberg method. The Hochberg method is a

step-up method for multiple comparisons (Hochberg, 1988). The data suggests that the 100 mg and 200 mg

dose are significantly different from 0, while there is not enough evidence to make the same conclusion about

the 50 mg dose.

We see from Figure 6.2 that we have some variance reduction over the unadjusted method without much

change in the estimates themselves, and our method agrees quite well with that of Hussey (2012). This is

re-enforced by Table 6.7.

The non-parametric covariance adjustment is greatest for the 200 mg dose. This is possibly due to the

larger mean visual analogue scale fatigue score the 200 mg dose has compared to placebo (48.07 vs 43.31).

This was the largest difference in the means of the covariates that was observed for all covariates and all

treatment groups.
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The comparison with the most variance reduction from randomization-based covariance adjustment is

that for 100 mg. The unadjusted standard error is 0.1347 while the adjusted standard error is 0.1101. This is

an 18.2% reduction in variability. The 50 mg dose has an estimated 16.6% reduction, and the 200 mg dose

has a 16.8% reduction. The stronger treatment parameter estimate of the 100 mg dose combined with its

reduced estimated variance well confirm the efficacy of the 100 mg dose.

Figure 6.1: Kaplan-Meier plot of 3 doses versus placebo
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Figure 6.2: Forest plot of treatment doses by method

Table 6.4: Distribution of survival time (days) by treatment and censoring
Dose Censoring indicator # Min Q1 Median Q3 Max
50 mg Required tracheostomy 106 27 186 289.5 405 546

Censored 131 63 487 541 549 549

100 mg Required tracheostomy 102 6 170 329 458 549
Censored 134 62 493 541.5 549 549

200 mg Required tracheostomy 103 7 160 282 410 545
Censored 141 157 478 544 549 549

Placebo Required tracheostomy 120 10 160.5 256.5 368 534
Censored 122 172 492 542 549 549
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d =



−0.15284

−0.22981

−0.22595

1.105224

0.021829

−0.52947

0.76529

0.903731

0.91071

0.919176

−0.15251

−0.04213

1.169933

1.181435

0.77418

0.836167

−0.05602

−1.07567

0.834009

4.844518

0.565



,dH =



−0.15284

−0.22981

−0.22595

1.105224

0.021829

−0.48319

0.661182

0.844358

0.924232

0.919176

−0.15251

−0.01381

1.180201

1.170219

0.807384

0.836167

−0.05602

−1.04977

0.794585

4.56865

0.565



(6.19)

b =


−0.176859

−0.301994

−0.311058

 , bH =


−0.177648

−0.301312

−0.310445

 (6.20)
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V b =


0.0123679 0.0052555 0.0052517

0.0052555 0.0121377 0.0052493

0.0052517 0.0052493 0.012499

 ,V bH =


0.0124148 0.0052611 0.0052586

0.0052611 0.0121542 0.0052524

0.0052586 0.0052524 0.012531


(6.21)

Table 6.5: Distribution of covariates by treatment
Dose N Obs Label Min 1st Q Median 3rd Q Max
50 mg 237 Age (years) 26 50 59 66 75

Disease duration (years) 0 1 2 3 5
Weight (inclusion) 37 58 65 76 103

Muscle Testing Total Score 34 82 92 100 110
Visual Analogue Scale Fatigue 0 19 45 71 100

Vital Capacity Ratio 55 73 86 102 157

100 mg 236 Age (years) 24 51 59 65 75
Disease duration (years) 0 1 1 2 5

Weight (inclusion) 40 59 67 77 117
Muscle Testing Total Score 28 80 92 101 110

Visual Analogue Scale Fatigue 0 19 46 70 100
Vital Capacity Ratio 57 73 86 103 134

200 mg 244 Age (years) 26 48 59 65 75
Disease duration (years) 0 1 1 2 5

Weight (inclusion) 38 59 67 74 107
Muscle Testing Total Score 26 79 91 100 110

Visual Analogue Scale Fatigue 0 22 49 76 100
Vital Capacity Ratio 44 73 85 102 148

Placebo 242 Age (years) 27 48 57 65 81
Disease duration (years) 0 1 2 3 14

Weight (inclusion) 32 59 68 78 97
Muscle Testing Total Score 24 79 91 101 110

Visual Analogue Scale Fatigue 0 18 48 64 98
Vital Capacity Ratio 52 73 84 101 135

6.6 DISCUSSION

In summary, we use the outcome dfbetas from the unadjusted treatment effects with the transformed covariate

dfbetas from treatment nested within covariates to find the covariance matrix of d. This vector is regressed
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Table 6.6: Distribution of mean of covariates by treatment group
Variable 50 mg 100 mg 200 mg Placebo

Age at inclusion (years) 57.09 56.91 56.82 55.99
Disease duration (years) 1.86 1.68 1.78 1.83

Weight (inclusion) 67.64 68.11 67.06 68.13
Muscle Testing Total Score 88.6 89.06 88.66 87.86

Visual Analogue Scale Fatigue (incl.) 44.17 44.48 48.07 43.31
Vital Capacity Ratio at Inc 88.55 88.43 88.21 87.64

Table 6.7: Comparison of unadjusted, Hussey (2012), and dfbeta methods
Dose vs Placebo Method Estimate Std Error LCL UCL p-value

50 mg Unadjusted -0.1528 0.1333 -0.4141 0.1084 0.2516
50 mg Hussey -0.1777 0.1114 -0.3960 0.0407 0.1109
50 mg Dfbetas -0.1769 0.1112 -0.3948 0.0411 0.1118

100 mg Unadjusted -0.2298 0.1347 -0.4938 0.0342 0.0880
100 mg Hussey -0.3013 0.1103 -0.5174 -0.0852 0.0063
100 mg Dfbetas -0.3020 0.1102 -0.5179 -0.0861 0.0061

200 mg Unadjusted -0.2260 0.1344 -0.4893 0.0374 0.0926
200 mg Hussey -0.3104 0.1119 -0.5299 -0.0910 0.0056
200 mg Dfbetas -0.3111 0.1118 -0.5302 -0.0919 0.0054

onto the space of adjusted treatment parameters by a weighted least squares regression to force the differences

in the means of the covariates to 0. Hypotheses tests are conducted using the approximately multivariate

normal distribution of b. With multiple comparisons, we simply extend both the treatment parameter estimates

by a factor of T − 1 and the differences in the means of the covariates by a factor of T − 1. This allows for

the T − 1 treatment groups to be compared to treatment T .

The covariate dfbeta method requires the MAR-like assumption of covariate missingness through the

use of GEE for creation of the dfbetas as well as independent random censoring of the survival time. GEE

requires MCAR, but gives essentially equivalent results to corresponding maximum likelihood methods that

require MAR, in the case of multivariate normal covariates. To check the latter assumption of independent

random censoring of the survival time, the methods used in Zhao et al. (2014) could be applied. Furthermore,

we assume the sample size is sufficiently large that b is multivariate normally distributed.

Our method provides computationally straight-forward methods for handling missing baseline covariate

data and agrees well with the method by Hussey (2012) that requires complete data and uses U-statistic kernels

for justification of the covariance matrix. Furthermore, there are less components involved with calculating
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the estimate of V d. Using cluster-level dfbetas from a model of the covariate values with treatment nested

within the covariate type is an elegant way of estimating the differences of the means of the covariates when

the covariates have missing data. It is readily available in existing statistical packages.

While traditional modeling methods consider the effect of a treatment when all other covariates in the

model are the same, this method does the opposite of that. Instead of comparing treatment effects at the same

covariate level, we adjust the treatment effect to simulate the situation in which the means of covariates are

the same for the treatment populations. This is justified by the randomization of subjects to treatment groups.

If there are large covariate imbalances, we may see large shifts in the estimates for treatment comparison, as

in the case of the 200 mg dose in the ALS study.

While both the 100 and 200 mg dose have significant effects on the estimated time-to-event compared to

placebo, the 100 mg dose had a somewhat smaller estimated variance and an estimated effect similar to the

200 mg dose. These properties make it a useful dose. Even when we performed the analysis on the imputed

data we saw the same results. The imputed data set results are so similar to the non-imputed data set results

that they have been omitted for brevity.

Future directions could examine the effect of stratification on the analysis. This study had six strata

that were not taken into account. Furthermore, as this non-parametric randomization-based methodology

is well suited to confirmatory clinical trials due to its few requirements, sample size calculations using this

methodology may be attractive as well.
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CHAPTER 7: FUTURE DIRECTIONS

7.1 ROC ANALYSIS IN THE PRESENCE OF VERIFICATION BIAS

In our simulation of estimators for correlated AUC’s in ROC analysis in the presence of verification bias we

explored how the weights performed when there were no volunteers. Future studies could conduct simulations

in which there were a group of those screened who volunteer as opposed to being randomly chosen.

The set up would be similar to the without volunteer situation. In our simulation with volunteers, we

model the probability of volunteering on a risk factor, such as whether or not a patient has smoked within

the last six months. For all 5000 patients in each iteration, let S ∼ Bernoulli(πs), where s = 1 if the

patient smoked within the last six months and s = 0 otherwise. As before, the disease (D) is modeled as

D ∼ Bernoulli(π). The first screener variable, which can now depend on both disease and risk factor can

be modeled as Y1|D,S ∼ N(µ0 + µ1D + µ2S + µ3DS, σ
2
1) and the second screener can be modeled as

Y2|D,S ∼ N(β0 + β1D + β2S + β3DS, σ
2
2). For the sampling variables, let R1|Y1, D, S = (Y1 < c)

and R2|R1 = 0, Y1, D, S ∼ Bernoulli(1/10). This is different than the implementation in the study, where

every tenth subject whose screener value was greater than the cutoff was selected, but this is easier to

simulate and effectively the same. The volunteers would be represented by R3|R2 = 0, R1 = 0, Y1, D, S ∼

Bernoulli(logit−1(φ0 + φ1S)). When R3 = 1 then the patient volunteered to go on for disease verification.

Different values of φ0 and φ1 would affect the percentage of volunteers. Letting µ3 and β3 be 0 would

indicate there was no interaction between the disease and risk factor status of the patient. Interpretability

(W1,W2) would be modeled as W1|R1 = 1, Y1, D, S ∼ Bernoulli(1/w1) and W2|R1 = 0, (R2 = 1orR3 =

1), Y1, D, S ∼ Bernoulli(1/w2) which would assume that the probability of interpretability of the disease is

the same for those whose screener value was above the cutoff, regardless of whether they were randomly

chosen or volunteered. We would have 510 iterations for varying values of φ0 and φ1.

Once the data generation is defined for a variety of values of φ0 and φ1, we would calculate the estimated

differences in AUC and the true AUC since we have the true disease status for all 5000 patients for each
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iteration. We could calculate the bias of all the iterations as well as the 95% confidence interval coverage

when volunteers are given a separate category, exploring the effect of volunteers.

7.2 RANDOMIZATION-BASED NON-PARAMETRIC COVARIANCE ADJUSTMENT FOR
TIME-TO-EVENT OUTCOMES WITH MISSING DATA EXPANSIONS

Since we used GEE to calculate the estimated differences of the means of the covariates we need to assume

that our covariates are MCAR. For baseline covariates, this is a pallet-able assumption. If we assume our data

is MAR-like, the unstructured correlation structure suggests that our bias is negligible (Preisser et al., 2002).

If instead of using GEE, we had multivariate normally distributed covariates after transformation to the 0-1

scale, we could use maximum likelihood methods which only require that the data be MAR. Extensions to

our method of randomization-based non-parametric covariance adjustment with missing covariate data could

use SAS’s PROC MIXED when calculating φ̂ andG.

In clinical trials, there is still more to develop with respect to sensitivity analysis in survival mod-

els, weighted ROC analysis in the presence of verification bias, and randomization-based non-parametric

covariance adjustment of treatment effects. This dissertation gives a few examples in these areas.
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APPENDIX 1: BAYESIAN SENSITIVITY ANALYSIS IN SURVIVAL MODELS
SUPPLEMENT

To calculate FIRI [v] in the piecewise exponential setting, we need to calculateG−1/2(ωφ(0)) using spec-

tral decomposition. G(ωφ(0)) =

 1e−12 4.5e−19

4.5e−19 1e−12

 which we will express as

a b

b c

. The eigenvalues

are a+c±
√

(a+c)2−4(ac−b2)

2 , which we will express as λ1 and λ2, respectively. They have corresponding eigen-

vectors −a−c∓
√

(a+c)2−4(ac−b2)

2b , which will be expressed as v1 and v2, respectively. Let Q =

 1 1

v1 v2

.

G−1/2(ωφ(0)) = Q

λ1 0

0 λ2


−1/2

Q−1 (A2.1)

We use this matrix in the calculation of FI using equation (2.5).
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APPENDIX 2: ROC ANALYSIS IN THE PRESENCE OF VERIFICATION BIAS

Let Xi be the disease status of the ith patient. Let Yi be the test result of the ith patient, and let Vi be a

vector of covariates for the ith patient. Let the entire population be i = 1 . . . n. Everyone in this population

has a test result, but only a sub-sample have known Xi. Model

log

{
Pr(R = 0|Y, V )

Pr(R = 1|Y, V )

}
= h(Y, V ) + q(Y, V )X, (A4.1)

then model

log

{
Pr(X = 1|R = 1, Y, V )

Pr(X = 0|R = 1, Y, V )

}
= m(Y, V ). (A4.2)

The double robust estimator for the ith patient’s disease status is

XDR(γ, µ) = P (Ri, Yi, Vi|µ) + Ui(γ|µ) (A4.3)

where

Ui(γ, µ) = Ri[{Xi − P (1, Yi, Vi|µ)}+ exp{h(Yi, Vi|γ) + q(Yi, Vi)Xi} ∗ {Xi − P (0, Yi, Vi|µ)}]

(A4.4)

P (Ri, Yi, Vi) = Pr(Xi = 1|R1 = 1, Yi, Vi)∗ (A4.5){
Ri +

(
(1−Ri) exp{q(Yi, Vi)}

1− Pr(Xi = 1|Ri = 1, Yi, Vi) ∗ (1− exp{q(Yi, Vi)})

)}
.

We then substitute [1 + exp{−m(Yi, Vi|µ)}]−1 for Pr(Xi = 1|R1 = 1, Yi, Vi).

In our situation, since a random sample of the population is sent on for disease verification if their

PEF 70%, then we can treat the probability of disease verification as independent of the disease status itself,

given that we know the test result. The random sample allows us to treat the verification bias a ignorable,

simplifying the estimation of γ and µ. The model we used for disease verification was:

log

{
Pr(R = 0|Y, V )

Pr(R = 1|Y, V )

}
= γ0 + γ1I(PEF < .7) + γ2I(PEF < .7) ∗ age+ γ3 ∗ age (A4.6)
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The model we used for disease given verification was:

log

{
Pr(X = 1|R = 1, Y, V )

Pr(X = 0|R = 1, Y, V )

}
= µ0 + µ1PEF + µ2I(Q3 = Y ) + µ3I(Q6 = Y ) (A4.7)

Using the parameter estimates of γ and µ, the test result, and covariate information, we can form an

estimate of X , the disease status for people without a known disease status.
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APPENDIX 3: RANDOMIZATION-BASED NON-PARAMETRIC COVARIANCE
ADJUSTMENT FOR TIME-TO-EVENT OUTCOMES WITH MULTIPLE

TREATMENT GROUPS

V d USING DFBETA METHOD

Estimates for V d and V dM are provided below.

V d =

V β̂ V β̂,θ̂

V θ̂

 (A6.1)

V β̂ =


0.018002 0.008604 0.008603

0.008604 0.01798 0.008604

0.008603 0.008604 0.018337

 (A6.2)

V θ̂ =


Aθ̂ Dθ̂ Dθ̂

Dθ̂ Bθ̂ Dθ̂

Dθ̂ Dθ̂ C θ̂

 (A6.3)

135



V ′
β̂,θ̂

=



0.046479 0.029494 0.029418

−0.00339 −0.00147 −0.00147

−0.03041 −0.0166 −0.01657

−0.04393 −0.02299 −0.02296

0.052747 0.029801 0.029968

−0.05872 −0.02811 −0.02827

0.029421 0.045011 0.029396

−0.00147 −0.00298 −0.00147

−0.01655 −0.03173 −0.01654

−0.02294 −0.03797 −0.02287

0.030181 0.067293 0.030342

−0.02827 −0.0602 −0.02813

0.029398 0.02938 0.046725

−0.00147 −0.00146 −0.00191

−0.01654 −0.01645 −0.02901

−0.02284 −0.02288 −0.048

0.030164 0.030171 0.079207

−0.02839 −0.02831 −0.0676



(A6.4)
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Aθ̂ =



1.0357 −0.0005 −0.2546 0.0192 0.1302 0.0411

−0.0005 0.0150 0.0108 −0.0470 0.0437 −0.0095

−0.2546 0.0108 1.4710 0.1832 0.0870 −0.0976

0.0192 −0.0470 0.1832 2.2605 −0.9764 0.5635

0.1302 0.0437 0.0870 −0.9764 7.2307 0.0857

0.0411 −0.0095 −0.0976 0.5635 0.0857 2.9051


(A6.5)

Bθ̂ =



1.0486 0.0086 −0.2487 −0.0085 0.3395 0.0608

0.0086 0.0142 −0.0059 −0.0503 0.0532 −0.0180

−0.2487 −0.0059 1.5328 0.1155 −0.2240 −0.1068

−0.0085 −0.0503 0.1155 2.1006 −1.0599 0.4948

0.3395 0.0532 −0.2240 −1.0599 7.1173 −0.1329

0.0608 −0.0180 −0.1068 0.4948 −0.1329 2.9451


(A6.6)

C θ̂ =



1.0301 0.0066 −0.2216 −0.0485 0.3138 −0.0305

0.0066 0.0142 −0.0001 −0.0425 0.0541 −0.0156

−0.2216 −0.0001 1.2950 0.1349 −0.1383 −0.0519

−0.0485 −0.0425 0.1349 2.0548 −1.0428 0.4020

0.3138 0.0541 −0.1383 −1.0428 7.1749 −0.2920

−0.0305 −0.0156 −0.0519 0.4020 −0.2920 2.9272


(A6.7)

Dθ̂ =



0.5471 0.0029 −0.1336 0.0269 0.0624 0.0290

0.0029 0.0084 −0.0022 −0.0267 0.0319 −0.0114

−0.1336 −0.0022 0.7331 0.0909 −0.0591 −0.0638

0.0269 −0.0267 0.0909 1.1705 −0.5584 0.2909

0.0624 0.0319 −0.0591 −0.5584 3.3133 −0.2017

0.0290 −0.0114 −0.0638 0.2909 −0.2017 1.3775


(A6.8)
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V d USING HUSSEY (2012) METHOD

V dH =

V β̂H
V β̂,x̄H

V x̄H

 (A6.9)

V β̂H
=


0.0180017 0.0086037 0.008603

0.0086037 0.0179803 0.008604

0.0086025 0.0086039 0.018337

 (A6.10)

V x̄H =


Ax̄H Dx̄H Dx̄H

Dx̄H Bx̄H Dx̄H

Dx̄H Dx̄H Cx̄H

 (A6.11)
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V ′
β̂H ,x̄H

=



0.0463816 0.0294333 0.029357

−0.003386 −0.001466 −0.00147

−0.029235 −0.016041 −0.01601

−0.041727 −0.02293 −0.0229

0.0490974 0.0281865 0.028352

−0.058322 −0.028052 −0.0282

0.0293601 0.0449168 0.029335

−0.001462 −0.002969 −0.00147

−0.015998 −0.030219 −0.01598

−0.022894 −0.037975 −0.02282

0.0285645 0.0638801 0.028714

−0.028209 −0.059724 −0.02806

0.0293374 0.029319 0.046628

−0.001463 −0.001461 −0.00191

−0.01598 −0.015887 −0.02782

−0.022792 −0.022832 −0.04772

0.0285538 0.0285714 0.075022

−0.028326 −0.028247 −0.06747



(A6.12)
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Ax̄H =



1.0314 −0.0005 −0.2453 0.0098 0.1164 0.0391

−0.0005 0.0149 0.0105 −0.0474 0.0417 −0.0091

−0.2453 0.0105 1.3653 0.1523 0.0729 −0.0906

0.0098 −0.0474 0.1523 2.1928 −0.8964 0.5363

0.1164 0.0417 0.0729 −0.8964 6.6084 0.1173

0.0391 −0.0091 −0.0906 0.5363 0.1173 2.8685


(A6.13)

Bx̄H =



1.0442 0.0086 −0.2416 −0.0094 0.3246 0.0611

0.0086 0.0141 −0.0057 −0.0500 0.0522 −0.0180

−0.2416 −0.0057 1.4153 0.1062 −0.2139 −0.1017

−0.0094 −0.0500 0.1062 2.0859 −1.0397 0.4915

0.3246 0.0522 −0.2139 −1.0397 6.5457 −0.1215

0.0611 −0.0180 −0.1017 0.4915 −0.1215 2.9071


(A6.14)

Cx̄H =



1.0259 0.0065 −0.2155 −0.0495 0.2956 −0.0304

0.0065 0.0141 0.0003 −0.0423 0.0518 −0.0156

−0.2155 0.0003 1.2127 0.1303 −0.1219 −0.0492

−0.0495 −0.0423 0.1303 2.0282 −1.0243 0.4035

0.2956 0.0518 −0.1219 −1.0243 6.5796 −0.2731

−0.0304 −0.0156 −0.0492 0.4035 −0.2731 2.9151


(A6.15)

Dx̄H =



0.5448 0.0029 −0.1305 0.0268 0.0566 0.0288

0.0029 0.0084 −0.0020 −0.0266 0.0313 −0.0114

−0.1305 −0.0020 0.6840 0.0858 −0.0589 −0.0596

0.0268 −0.0266 0.0858 1.1657 −0.5483 0.2897

0.0566 0.0313 −0.0589 −0.5483 3.0537 −0.1810

0.0288 −0.0114 −0.0596 0.2897 −0.1810 1.3719


(A6.16)
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