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ABSTRACT

EMILY GAMBER: A Topological Classification of D-Dimensional Cellular Automata

(Under the direction of Professor Jane Hawkins)

We give a classification of cellular automata in arbitrary dimensions and on arbitrary

subshift spaces from the point of view of symbolic and topological dynamics. A cellular

automaton is a continuous, shift-commuting map on a subshift space; these objects were

first investigated from a purely mathematical point of view by Hedlund in 1969. In the

1980’s, Wolfram categorized one-dimensional cellular automata based on features of their

asymptotic behavior which could be seen on a computer screen. Gilman’s work in 1987

and 1988 was the first attempt to mathematically formalize these characterizations of

Wolfram’s, using notions of equicontinuity, expansiveness, and measure-theoretic analogs

of each. We introduce a topological classification of cellular automata in dimensions two

and higher based on the one-dimensional classification given by Kůrka. We characterize

equicontinuous cellular automata in terms of periodicity, investigate the occurrence of

blocking patterns as related to points of equicontinuity, demonstrate that topologically

transitive cellular automata are both surjective and have sensitive dependence on initial

conditions, and construct subshift spaces in all dimensions on which there exists an

expansive cellular automaton. We provide numerous examples throughout and conclude

with two diagrams illustrating the interaction of topological properties in all dimensions
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for the cases of an underlying full shift space and of an underlying subshift space with

dense shift-periodic points.
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CHAPTER 1

Introduction

A cellular automaton is a tool used to model complex systems, making discrete sim-

ulations of intricate processes. Originally introduced by John von Neumann, following

a suggestion of Stanislaw Ulam in the early 1950’s, the purpose of this new tool was

to construct a simple mathematical model capable of both universal computation and

self-reproduction [1]. High performance computer systems and parallel processing have

contributed to the popularity of cellular automata; computer implementation is quite

easy due to the local and parallel nature of these objects. Various types of processes are

simulated with cellular automata, cutting across many academic disciplines. Spin glass

systems, reaction/diffusion processes in physics, tumor growth and excitement of muscle

tissue in biology, and simulation of Turing machines in computer science are just a few

of the existing applications [15].

Cellular automata were first investigated from a purely mathematical point of view

in 1969 with Hedlund’s formative paper [12]. This work was motivated by then-current

problems in symbolic dynamics, possibly those of a cryptographic nature. When Wolfram

turned his attention to cellular automata via computer simulation in the early 1980’s,

the subject gained momentum. Wolfram categorized one-dimensional cellular automata

based on features of their asymptotic behavior which could be seen on a computer screen



[34, 35]. Gilman’s work in 1987 and 1988 was the first attempt to mathematically formal-

ize these characterizations of Wolfram’s [9, 10]. He utilized the notions of equicontinuity

and expansiveness, as well as measure theoretic analogs of each. There are other classi-

fications of one-dimensional cellular automata based on different types of properties, see

e.g., [20] and the references therein. While measure is intrinsic to Gilman’s partition,

Kůrka has a purely topological classification centered on equicontinuity, expansiveness,

and sensitivity [19], and Hurley has categorized cellular automata by their attractors

[13].

Although Ishii has developed a measure theoretic version of Wolfram’s classification

in dimension two [14], much of the literature devoted to higher dimensional cellular

automata pertains to the computational complexity and decidability of various properties.

Manzini, Margara, and others have examined a variety of properties of linear cellular

automata, that is those whose local rule is only a linear combination of the neighbors’

values, in higher dimensions [6, 22].

Here, we extend the one-dimensional topological classification of Kůrka for cellular

automata on the full shift space, to higher dimensional subshift spaces. Our classification

centers on equicontinuity, the topological property of almost equicontinuity, sensitive

dependence on initial conditions, and expansivity. Some of the results from the one-

dimensional case extend to full shift spaces in higher dimensions and to subshift spaces

having dense shift-periodic points. However, the classification as a whole does not move

up to all dimensions. In particular, there is a notion of a blocking word in dimension one

that characterizes almost equicontinuous cellular automata as exactly those which do not

have sensitive dependence on initial conditions [19]. This is due to the fact that, in one
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dimension, discrepancies in initial points can propagate towards the center from only the

right or the left. In higher dimensions, however, there are many more directions in which

an initial difference can alter a value, and so the dichotomy result does not extend as is

to all dimensions. We introduce other notions of blocking, those of fully blocking and of

blocking a cross, in order to obtain sufficient conditions for a cellular automaton to be

almost equicontinuous. The dimension of the shift space also has an impact on the sheer

existence of expansive cellular automata. While there are many examples of expansive

cellular automata on one-dimensional full shift spaces, Shereshevsky has shown that an

expansive cellular automaton can not exist on a full shift space in dimension higher than

1 [31]. To counter this, we construct subshift spaces in all dimensions on which there is

an expansive cellular automaton, and investigate a class of subshifts on which expansive

cellular automata can exist.

We begin with the basic definitions for symbolic dynamics and cellular automata in

Section 2.1, and give three examples of cellular automata, one on a one-dimensional full

shift space, one on a two-dimensional full shift space, and one on a two-dimensional

subshift space, in Section 2.3. The remainder of Chapter 2 gives the basic definitions for

more general topological dynamical systems, and concludes with a dichotomy result for

cellular automata: one must either have sensitive dependence on initial conditions, or

there exists a point of equicontinuity.

In Chapter 3, we address the property of equicontinuity. We first give an equivalent

definition for this property particular to cellular automata, and extend the following two

one-dimensional results from [20] to the setting where the underlying shift space is a sub-

shift on which the shift-periodic points are dense: a cellular automaton is equicontinuous

3



if and only if it is eventually periodic, and a cellular automaton is both surjective and

equicontinuous if and only if it is periodic. In Section 3.2, we give a number of exam-

ples of cellular automata which are equicontinuous. These include the identity, the zero

map, and in fact any cellular automaton with radius 0. Beyond these somewhat trivial

examples, we give a construction to build an equicontinuous (D + 1)-dimensional cellu-

lar automaton from a D-dimensional one. In Section 3.3, we investigate periodic points

under a cellular automaton which may or may not be points of equicontinuity. First, we

show that a periodic point under the shift must be eventually periodic under a cellular

automaton, and second, an attracting periodic point for a cellular automaton must be

fixed under both the cellular automaton and the shift, generalizing the one-dimensional

result in [13, 20].

Since equicontinuity is typically too strong a property to expect in general, we next

turn our attention to the property of almost equicontinuity, that is, that the set of

equicontinuity points is residual. In dimension one, there are three equivalent properties

for a CA: being almost equicontinuous, having sensitive dependence on initial condi-

tions, and having so-called blocking words [19]. It is an extension of this theorem that

we approach in Chapter 4. In order to do so, we introduce the notion of blocking and of

fully blocking in all dimensions based on the one-dimensional definition given by Blan-

chard and Tisseur [2]. We discuss the one-dimensional definition and the key idea in this

equivalence first in Section 4.1. Then, we move into higher dimensions in Section 4.2.

We prove that being almost equicontinuous implies not having sensitive dependence on

initial conditions, that not having sensitive dependence on initial conditions implies the

existence of blocking patterns, and that the existence of fully blocking patterns implies

4



being almost equicontinuous. However, having fully blocking patterns is not a necessary

condition for being almost equicontinuous, and we give another sufficient condition for

this property. Section 4.3 provides four examples of cellular automata exhibiting al-

most equicontinuity, one of which has the two-dimensional Golden Mean subshift as its

underlying shift space.

We examine sensitive dependence on initial conditions further in Chapter 5. We begin

by returning to our construction of a (D + 1)-dimensional cellular automaton from a D-

dimensional one from Section 3.2. We show that such a cellular automaton has sensitive

dependence on initial conditions if and only if the D-dimensional one from which it is built

has sensitive dependence on initial conditions. We also discuss topological transitivity,

and extend the one-dimensional results that a topologically transitive cellular automaton

is surjective, and either has sensitive dependence on initial conditions or consists of

a single periodic orbit, as in [20]. In Section 5.3, we give some examples of cellular

automata having these properties: the directional shifts are all topologically transitive

on full shift spaces, and we give two product cellular automata which are sensitive but

not transitive.

In Chapter 6, we address expansive cellular automata. By a result of Shereshevsky,

there can be no expansive cellular automata on any full shift space in dimension D ≥ 2

[31]. However, we build a subshift space in every dimension on which there is an ex-

pansive cellular automaton. To this end, we turn to the work of Boyle and Lind on the

subdynamics of an expansive D-dimensional action [3]. As the D-dimensional shift ac-

tion is an expansive action, this gives us information about the directional shifts. In fact,

the first expansive cellular automata we use in our construction are directional shifts.

5



The shift spaces are derived as complete history spaces of a cellular automaton acting on

a shift space one dimension lower. Shereshevsky has further shown that if F : X → X is

an expansive cellular automaton, where X ⊆ AZ
D

with D ≥ 2, then the underlying shift

action on X must have entropy zero [31]. We show that the complete history spaces

have zero entropy with respect to the shift, and as such, these shift spaces can support

expansive cellular automata. Finally, we address some examples of subshift spaces with

expansive cellular automata in Section 6.3. A large class of these in dimension two is

given by Kitchens and Schmidt [17], and we discuss a possibility to extend this to a class

in every dimension.

We conclude in Chapter 7 with diagrams illustrating the interaction of all the proper-

ties discussed in earlier chapters. One diagram holds for cellular automata on a full shift

space, and the other holds for cellular automata on a subshift space. The main differences

between the two are that first, no expansive cellular automata can exist on a full shift

space, and second, our proofs regarding fully blocking patterns rely on the fact that on a

full shift space, patterns can always be pieced together in a particular way. In Chapter 8,

we give a variety of possibilities to extend the work. These include not only a refinement

of the current classification, but moving in entirely new directions as well. We have not

yet put any measures on the shift spaces, and certainly investigating measure-theoretic

properties will give interesting insight to the nature of cellular automata. Also, the wide

range of physical phenomena which can be modeled with cellular automata leave open

numerous possibilities for future work.
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CHAPTER 2

Preliminaries

Cellular automata are studied and used for modeling in a variety of academic disci-

plines, and our approach comes from symbolic and topological dynamics. We begin, then,

with the basic definitions in symbolic dynamics, fixing a definition for cellular automata

in this setting. We illustrate these notions with three examples of cellular automata,

one on a one-dimensional full shift space, one on a two-dimensional full shift space, and

one on a two-dimensional subshift space. Then we give the basic definitions for more

general topological dynamical systems, as our classification is based on topological prop-

erties. We conclude the chapter with the first dichotomy result for cellular automata:

one must either have sensitive dependence on initial conditions, or there exists a point

of equicontinuity.

2.1. Symbolic Systems and Cellular Automata

Many different presentations and notations abound in the literature for symbolic

systems, even among papers by the same author; the presentation which follows is a

unified conglomeration. A detailed look at this material can be found in [18, 21, 28].

Let A be a finite set and |A| its cardinality. For |A| ≥ 2, A is an alphabet. A word

in A is any finite sequence from A, u = u0 · · ·un−1. The length of u, |u|, is n. A D-

dimensional generalization of a word is a pattern in A, a set of values from A on a finite

path-connected (in ZD) subset of coordinates E ⊆ ZD. For instance, the following is a



two-dimensional pattern of size (r + 1) × (s + 1).

(2.1) u =

u0,s u1,s u2,s · · · ur,s

...

u0,1 u1,1 u2,1 · · · ur,1

u0,0 u1,0 u2,0 · · · ur,0

.

Now we form the D-dimensional full shift spaces, AZ
D

. A point x ∈ AZ is a doubly

infinite sequence of letters from A,

(2.2) x = · · · x−2x−1.x0x1x2 · · · ,

where we use a decimal point to denote the 0th position of x. Points in AZ
2

are doubly

infinite sequences of points in AZ , arranged vertically:

(2.3) x =

...

· · · x(−2,2) x(−1,2) x(0,2) x(1,2) x(2,2) · · ·

· · · x(−2,1) x(−1,1) x(0,1) x(1,1) x(2,1) · · ·

· · · x(−2,0) x(−1,0) .x(0,0) x(1,0) x(2,0) · · ·

· · · x(−2,−1) x(−1,−1) x(0,−1) x(1,−1) x(2,−1) · · ·

· · · x(−2,−2) x(−1,−2) x(0,−2) x(1,−2) x(2,−2) · · ·

...

,

where the decimal point denotes the (0, 0)th position of x. Shift spaces in higher dimen-

sions are defined similarly; points in AZ
D

are indexed by D-vectors of integers and have

values from A at each coordinate. For a point x ∈ AZ
D

and a subset E ⊆ ZD, x|E is the

pattern which results from restricting x to the coordinates given by E. If E is infinite,

we call x|E an infinite pattern. We say that a word (in one-dimension) or a pattern (in
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higher dimensions) u occurs in a point x ∈ AZ
D

if there exists a finite subset, E ⊆ ZD,

so that x|E = u. For n < m, let 〈n,m〉 = {i ∈ Z : n ≤ i ≤ m} be a closed interval of

integers.

For a vector of integers, ~ı = (i1, i2, · · · , iD) ∈ ZD, denote by ||~ı|| the maximum of the

components, max{i1, i2, · · · , iD}. We define a metric d on AZ
D

by setting d(x, y) = 0 if

x = y and for x 6= y ∈ AZ
D

,

(2.4) d(x, y) = 2−k, where k = inf{||~ı|| : x~ı 6= y~ı}.

Under this metric, points in AZ are close if they agree on a large central word, x|〈−k,k〉 =

y|〈−k,k〉, points in AZ
2

are close if they agree on a large central square,

(2.5)

x−k, k · · · x0,k · · · xk, k

...
...

x−k, 0 · · · x0,0 · · · xk, 0

...
...

x−k,−k · · · x0,−k · · · xk,−k

,

and points in AZ
D

are close if they agree on a large central hypercube.

A basis for the topology determined by this metric is given by the cylinder sets,

[u]~ı = {x ∈ AZ
D

containing the pattern u beginning at the coordinates given by ~ı}.

These sets are both open and closed. As AZ
D

is a countable product of finite discrete

spaces for each D > 0, the full shift spaces are compact.

To define a map on AZ
D

, we simply describe the element in position ~ı of the image

for arbitrary ~ı ∈ ZD. On each full shift space, we have a ZD action given by the shift

9



transformations: for each n ∈ ZD, define

(2.6) (σ~nx)~ı = x~ı+~n.

In one dimension, σ : AZ → AZ is defined by σ(x)i = xi+1; the action of σ shifts terms

one position to the left,

(2.7) σ(· · ·x−1.x0x1 · · · ) = · · ·x−1x0.x1x2 · · · .

Let {−→ej : j = 1, · · · , D} be the standard orthonormal basis vectors of RD with a 1 in

position j and 0’s elsewhere. Generators for the ZD shift action are {σ−→ej
: j = 1, · · · , D},

the shifts in the directions of each −→ej . It is straightforward to check that the shift is

a continuous action on each of the full shift spaces. A closed, shift-invariant subset

X ⊆ AZ
D

is a subshift space; every subshift space is a compact metric space using the

metric d defined in (2.4).

A cellular automaton, CA, on a shift space X ⊆ AZ
D

is a continuous function

F : X → X which commutes with the action of the shift. A trivial example of a CA is

σ : AZ → AZ itself. A theorem of Curtis, Hedlund, and Lyndon (Theorem 3.4, [12]) states

that F : AZ → AZ is a CA if and only if there is a positive integer r, called the radius,

and a function f : A2r+1 → A, called the local rule, such that F (x)i = f(xi−r, · · · , xi+r).

The radius of the shift, σ, is 1 and the local rule is f(a, b, c) = c. It is also the case in

higher dimensions that a self-map of a shift space is a CA if and only if there is a radius

and local rule as above; the proof in [12] extends. By a relabeling of the alphabet, every

CA with radius r is conjugate to a CA with radius 1, so we will often assume radius 1.

The definition of a conjugacy is given in Section 2.4.
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2.2. Surjectivity of Cellular Automata

One of the earliest discoveries regarding properties of cellular automata were the

“Garden of Eden” theorems of Moore and Myhill in 1962 and 1963, respectively [16].

A Garden of Eden for a CA is a point which is not in the image; it is so-named since

a point unobtainable via iteration of the CA can only occur at the beginning of time.

These theorems relate the properties of injectivity and surjectivity for two-dimensional

cellular automata by passing to the set of points which have only finitely many non-zero

entries, called the set of finite configurations. Let Ff denote the restriction of F to the

set of finite configurations.

Theorem 2.2.1 (Moore [25], Myhill [26]). A cellular automaton F : AZ
2

→ AZ
2

is

surjective if and only if Ff is injective.

An easy corollary to this theorem is that an injective CA must also be surjective, since

an injective CA is certainly still injective when restricted to the set of finite configurations.

A direct proof of this result is given for one-dimensional CA’s in [12], and an extension

of the Garden of Eden theorems of Moore and Myhill to all dimensions is given in [29].

Theorem 2.2.2 (Hedlund [12], Richardson [29]). Let F : AZ
D

→ AZ
D

be an injective

cellular automaton. Then F is also surjective.

However, a CA which is injective on the set of finite configurations need not be

injective on the full shift space, and in fact, the statement that a surjective CA must

also be injective is not true in any dimension [16]. There is a sense that an onto CA is

finite-to-one though, by considering the pre-images of cylinder sets. Maruoka and Kimura
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introduce the following definitions and notation in order to give this depiction. Denote

by

(2.8) Bk,ℓ = {~ı ∈ ZD : k ≤ ||~ı|| ≤ l}

the annular ring of coordinates, and by

(2.9) Pk,ℓ = {x|Bk,ℓ
: x ∈ AZ

D

}

the patterns occurring in these coordinates. We need to discuss the image of a pattern,

and so we introduce the following notation. Let p ∈ As1×···×sD be a pattern given by

{p(i1,··· ,iD) : 0 ≤ ij ≤ sj − 1, j = 1, · · · , D}. For a CA F : AZ
D

→ AZ
D

of radius r

and local rule f , denote by F (p) the pattern of size (s1 − 2r) × · · · × (sD − 2r) given

by (Fp)~ı = f ({p~ : ||~ −~ı|| ≤ r}). A cellular automaton F : AZ
D

→ AZ
D

is said to be

k-balanced if for all patterns p ∈ P0,k, we have

(2.10) |{p′ ∈ P0,k+1 : F (p′) = p}| = |A||Bk+1,k+1| = |A|(2k+3)D−(2k+1)D

.

That is, all cylinder sets of
(
∏D

j=1〈−k, k〉
)

-blocks have the same number of pre-images.

We say that F is balanced if F is k-balanced for all k ≥ 1. The concept of balanced lets

us approach surjectivity by determining whether all cylinder sets of the same size have

an equal number of pre-images. Moreover, there is a seemingly weaker statement, that

each cylinder set have a non-empty pre-image, that guarantees a CA is balanced.

Theorem 2.2.3 (Maruoka, Kimura [23]). Let F : AZ
D

→ AZ
D

be a cellular automa-

ton. The following are equivalent:

(1) F is surjective.

(2) F is balanced.

12



(3) For all k ≥ 1 and every pattern p ∈ P0,k, there exists a pattern p′ ∈ P0,k+1 such

that F (p′) = p.

Although Theorem 2.2.3 gives a local characterization of the global property of sur-

jectivity, it is still a challenging task in general to determine whether a given CA is

surjective. In fact, Kari has shown that detecting the answer is computationally unde-

cidable for two-dimensional CA’s [15]. This is in stark contrast to the one-dimensional

case, where Amoroso and Patt have given an explicit algorithm to decide whether a CA

F : AZ → AZ is surjective [15].

2.3. First Examples of Cellular Automata

In dynamics, there is great interest in the asymptotic behavior of a system, and this is

certainly the case in studying CA’s. A useful way to track orbits under a one-dimensional

CA consists of writing the iterates of a point underneath one another as follows:

x = · · · x−2 x−1 . x0 x1 x2 · · ·

Fx = · · · (Fx)−2 (Fx)−1 . (Fx)0 (Fx)1 (Fx)2 · · ·

F 2x = · · · (F 2x)−2 (F 2x)−1 . (F 2x)0 (F 2x)1 (F 2x)2 · · ·

...

Example 2.3.1. Let A = {0, 1} and consider the CA S : AZ → AZ defined by

(Sx)i = xi−1 + xi+1 (mod 2). We will show that S satisfies condition (3) in Theorem

2.2.3, and thus, S is surjective. Given a word w = w0 · · ·wk, let w′ = w0 w1 0 0 w2 w3 w4−

w2 w5 −w3 w6 −w4 −w2 w7 −w5 −w3 · · ·wk −wk−2 −wk−4 −· · ·−w2. Then S(w′) = w,

as desired. S is not injective however; it is a four-to-one mapping. To see the dynamics

of S, we show the orbit of the point x = · · · 0 0 .1 0 0 · · · in Figure 2.1.
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x = · · · 0 0 0 0 0 0 .1 0 0 0 0 0 0 · · ·

Fx = · · · 0 0 0 0 0 1 .0 1 0 0 0 0 0 · · ·

F 2x = · · · 0 0 0 0 1 0 .0 0 1 0 0 0 0 · · ·

F 3x = · · · 0 0 0 1 0 1 .0 1 0 1 0 0 0 · · ·

F 4x = · · · 0 0 1 0 0 0 .0 0 0 0 1 0 0 · · ·

F 5x = · · · 0 1 0 1 0 0 .0 0 0 1 0 1 0 · · ·

...

Figure 2.1. Orbit of · · · 0.10 · · · under S

A more illustrative way to view points in {0, 1}Z is to let 0’s be represented by white

space and let 1’s be represented by black space. Figure 2.2 shows the same orbit after

more iterations in this fashion.

Figure 2.2. Color representation of the orbit of · · · 00.100 · · · under S

14



An obvious benefit to visualizing orbits under a one-dimensional CA is that the space-

time diagram only requires two dimensions. However, a single point in a two-dimensional

space fills up the entire plane, so the space-time diagram of an orbit under a CA on a

two-dimensional space would require three dimensions. Thus, in order to visualize orbits

under a two-dimensional CA, we must show a series of iterates.

Example 2.3.2. Let A = { , , , }, and define the CA P : AZ
2

→ AZ
2

to

describe the movement of three different colored particles in white space as follows. A

particle moves both northeast and southwest leaving a trail, a particle moves both

northwest and southeast leaving a trail, and a particle is a wall that annihilates any

other particle which runs into it. When a and a particle try to occupy the same

space, they annihilate each other. This is indeed a CA; we give the radius one local rule

definition in Figure 2.3, where we represent the neighborhood by
NW N NE

W E

SW S SE

. The

dynamics of P is illustrated in Figures 2.4 through 2.7.

P is not a surjective CA. For, we show that the point

y =

15



7→

7→







if NW = or SE = ,

otherwise.

7→







if NE = or SW = ,

otherwise.

7→







if either NE = or SW = , and both NW 6= and SE 6= ,

if either NW = or SE = , and both NE 6= and SW 6= ,

otherwise.

Figure 2.3. Local Rule for P

is not in the image of P . Suppose x ∈ AZ
2

is a point mapping to y, and that y(0,0) = .

First consider the values x(i,i), where i ∈ Z. Since P “moves” ’s in both directions

along a diagonal, these values of x would need to be a combination of ’s and ’s such

as , , or . As y also has diagonal lines of ’s at coordinates

(i, i + 4c) for i, c ∈ Z, then for each c ∈ Z, the values x(i,i+4c) must follow one of these

types of infinite patterns also. One way for y(0,2) = would be to have x(0,2) = ;

however, this would prohibit y(1,1) = . The only other way to have y(0,2) = would

be for x(0,2) = with either x(−1,3) = or x(1,1) = . Respectively, this prohibits either

y(−1,3) = or y(1,1) = . Thus, there is no x ∈ AZ
2

having P (x) = y. As P is not

surjective, it cannot be injective either by Theorem 2.2.2. We see this explicitly in Figure

2.8; the two points y1 and y2 both map to y2 under P .
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Figure 2.4. Initial point for P Figure 2.5. One iteration of P

Figure 2.6. Five iterations

of P Figure 2.7. 100 iterations of P
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y1 = y2 =

Figure 2.8. P is not injective: P (y1) = P (y2) = y2

Example 2.3.3. Consider the two-dimensional Golden Mean Shift Space, given by

(2.11) X{

11,
1
1

} =







x ∈ {0, 1}Z
2

: x|{(i,j),(i+1,j)} 6= 1 1 and x|{(i,j),(i,j+1)} 6=
1

1







.

This space is referred to as such because the shift, σ, has entropy 1+
√

5
2

on the corre-

sponding one-dimensional subshift space,
{
x ∈ {0, 1}Z : xixi+1 6= 11

}
. (We will discuss

entropy more thoroughly in Chapter 6.) Returning to a CA on this space however, define

G : X{

11,
1
1

} → X{

11,
1
1

} by the radius one local rule which sends the pattern

0 1 0

1 0 1

0 1 0

to 1 and all other 3 × 3 patterns to 0. First, we note that the image of G is, in fact,
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contained in X{

11,
1

1

}. For,

(Gx)(i,j) = 1 ⇔

x(i−1,j+1) x(i,j+1) x(i+1,j+1)

x(i−1,j) x(i,j) x(i+1,j)

x(i−1,j−1) x(i,j−1) x(i+1,j−1)

=

0 1 0

1 0 1

0 1 0

,(2.12)

(Gx)(i+1,j) = 1 ⇔

x(i,j+1) x(i+1,j+1) x(i+2,j+1)

x(i,j) x(i+1,j) x(i+2,j)

x(i,j−1) x(i+1,j−1) x(i+2,j−1)

=

0 1 0

1 0 1

0 1 0

, and(2.13)

(Gx)(i,j+1) = 1 ⇔

x(i−1,j+2) x(i,j+2) x(i+1,j+2)

x(i−1,j+1) x(i,j+1) x(i+1,j+1)

x(i−1,j) x(i,j) x(i+1,j)

=

0 1 0

1 0 1

0 1 0

.(2.14)

But (2.12) and (2.13) contradict one another, so they cannot both hold at the same time;

neither can both (2.12) and (2.14) hold at the same time. Thus G

(

X{

11,
1
1

}

)

⊆ X{

11,
1
1

}.

The dynamics of this CA is illustrated in Figures 2.9 through 2.12.

G is not a surjective CA, for the pattern u = 1 0 0 1 is not in the image of G. In

order for a pattern, v, to map to u, we would need to have

0 1 0

1 0 1

0 1 0

centered at each 1

in u. But this means v would look like

0 1 0 0 1 0

1 0 1 1 0 1

0 1 0 0 1 0

, and of course this pattern is

forbidden in all points of X{

11,
1
1

}. Thus by Theorem 2.2.2, G is not injective either.

2.4. Topological Dynamical Systems

Here we present the standard introductory definitions from topological dynamics. For

further reference on these notions, see [4, 5, 27, 32].
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Figure 2.9. Initial point for G

Figure 2.10. One iteration

of G

Figure 2.11. Two iterations

of G

Figure 2.12. Three itera-

tions of G
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By a dynamical system, we will mean a pair (Y, T ) consisting of a compact met-

ric space Y and a continuous map T : Y → Y . A subset W ⊆ Y is invariant if

T (W ) ⊆ W . A homomorphism of dynamical systems, φ : (Y, T ) → (Z, S), is a contin-

uous map φ : Y → Z such that φ ◦ T = S ◦ φ. If φ is surjective, we say that it is a

factor map, and if it is bijective, φ is called a conjugacy. Denote the nth iterate of T by

T n = T ◦ T ◦ · · · ◦ T (n times); by convention, T 0 = Id. The orbit of a point y is the set

O(y) = {T ny : n ≥ 0}. A point y ∈ Y is periodic if ∃ p ≥ 0 such that T py = y. The

period of y is p = min{k : T ky = y}. If Ty = y, we say that y is fixed. A point y is

eventually periodic (pre-periodic, respectively) if ∃ m ≥ 0 (> 0, respectively), called the

pre-period, such that Tmy is periodic. We say that T is periodic if there is p ≥ 0 such

that T p = T as functions. That is, T py = Ty for all y ∈ Y . T is eventually periodic

(pre-periodic, respectively) if ∃ m ≥ 0 (> 0, respectively), called the pre-period, such

that Tm is periodic in the above sense.

In contrast to periodic dynamical systems are those which jumble the space to some

extent over time. A first notion of this type of behavior is captured by the property of

transitivity. A dynamical system (Y, T ) is (topologically) transitive if there is a point

y ∈ Y with a dense forward orbit, Y = {T ny : n ≥ 0}. That is to say, from the initial

point y, we can get arbitrarily close to any other point in the space Y via iteration by T .

The shift σ : AZ → AZ is a transitive mapping: any point containing all finite words in

the positive indices has a dense forward orbit under σ. We say that a dynamical system

(Y, T ) is (topologically) mixing if for every pair of non-empty open sets U, V , there exists a

N ≥ 0 such that T nU∩V 6= ∅ for all n ≥ N . This is a stronger property than transitivity,

as not only must there be a single point whose orbit occasionally gets near other points,
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but a part of every neighborhood must stay near all other neighborhoods beyond some

time. The shift σ : AZ → AZ is also mixing, because given any two cylinder sets U = [B]i

and V = [C]j, we can take N > i− j + |B|− 1. Then for n ≥ N , there exist points in AZ

having the word B beginning at index i−n and ending at index i−n+ |B|−1 < j which

also have the word C beginning at index j, thus σnU ∩ V 6= ∅ for n ≥ N , as desired.

A point y is an equicontinuity point of a dynamical system (Y, T ) if ∀ ε > 0,∃ δ > 0

such that d(x, y) < δ ⇒ d(T nx, T ny) < ε ∀ n ≥ 0. A dynamical system is equicontinuous

if each of its points is an equicontinuity point. Essentially, an equicontinuous system is

one for which points initially close have orbits which stay close for all time. We say that

a dynamical system is almost equicontinuous if the set of equicontinuity points contains

an intersection of dense open sets.

A dynamical system (Y, T ) is said to be expansive if ∃ ε > 0 such that ∀ x 6= y ∈ Y

d(T nx, T ny) ≥ ε for some n ∈ N, or n ∈ Z if T is invertible. In such a case, ε is an

expansive constant for T . An expansive system is one in which distinct points, no matter

how close initially, will eventually be pushed apart by the action of the transformation.

A dynamical system (Y, T ) has sensitive dependence on initial conditions if ∃ ε > 0

such that ∀ y ∈ Y, and δ > 0,∃ x with d(x, y) < δ and d(T nx, T ny) ≥ ε for some

n ≥ 0. We will refer to this property simply as sensitive. In this case, ε is called a

sensitive constant. Sensitivity differs from expansivity by not requiring that every pair

of distinct points necessarily get pushed apart, but that for each y ∈ Y , we can find

points arbitrarily close to y which eventually do get pushed away. We say that (Y, T ) is

sensitive at y, or that y ∈ Y is a point of sensitivity, if ∃ εy > 0 such that ∀ δ > 0,∃ x

with d(x, y) < δ and d(T nx, T ny) ≥ εy for some n ≥ 0.
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Although at first glance, the definitions of equicontinuity and sensitivity look as

though the properties cannot hold simultaneously, there are some subtleties to notice

here. An equicontinuous transformation is defined so that every point is a point of

equicontinuity. Moreover, such a map is uniformly equicontinuous ; that is, for every

ε > 0, there is a δ > 0 which works for every point in the space: for all x, y with

d(x, y) < δ, d(T nx, T ny) < ε for all n ≥ 0. If there are no points of equicontinuity for a

system, then every point is a point of sensitivity. However, this does not guarantee that

the system is sensitive. For sensitivity is defined in a uniform way; there is an ε > 0 that

works for every point in the space. An example of a system which is not sensitive, but

for which every point is a point of sensitivity is given in [19]. In contrast though, any

system having a point of equicontinuity cannot also be sensitive.

Proposition 2.4.1. Let (Y, T ) be a dynamical system If T has a point of equiconti-

nuity, then T is not sensitive.

Proof. Let y ∈ Y be a point of equicontinuity for T . Suppose that T is sensitive. Then

∃ ε > 0 such that for all z ∈ Y and δ > 0, there exists x ∈ Y with d(x, z) < δ and

d(T nx, T nz) ≥ ε for some n ≥ 0. But by the definition of an equicontinuity point, the

above property does not apply to y, and hence T is not sensitive. ¤

In Section 4.2, we give a complete characterization of CA’s which are not sensitive,

Theorems 4.2.1 through 4.2.3.
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CHAPTER 3

Equicontinuity Properties

The property of equicontinuity captures the notion of predictable behavior. For cel-

lular automata, we see that this is incredibly rigid, as equicontinuous CA’s are exactly

those which are eventually periodic. We also investigate eventually periodic points for

non-equicontinuous cellular automata, and provide numerous examples.

3.1. Equicontinuous Cellular Automata

We will first address equicontinuous cellular automata, that is, those for which every

point is a point of equicontinuity. We give an equivalent definition for this property,

and then extend the following two one-dimensional results from [20] to the setting where

the underlying shift space is a subshift on which the shift-periodic points are dense: a

cellular automaton is equicontinuous if and only if it is eventually periodic, and a cellular

automaton is both surjective and equicontinuous if and only if it is periodic.

Theorem 3.1.1. Let X ⊆ AZ
D

be a subshift and let F : X → X be a cellular

automaton. The following statements are equivalent:

(1) F is equicontinuous,

(2) ∃ M ≥ 0 such that for x, y ∈ X with d(x, y) < 2−M , d(F nx, F ny) < 1 ∀ n ≥ 0.

The proof is straightforward, though it does not appear to be in the literature.



Proof. (1 ⇒ 2 ) The equicontinuity of F implies that for ε = 1, there exists a δ = 2−M

satisfying the property given in (2).

(2 ⇒ 1 ) Let ε = 2−k > 0, and take δ = 2−(k+M). Then for a pair x, y ∈ X with

d(x, y) < δ ≤ 2−M , the distance between their iterates being smaller than 1 means that

(F nx)~0 = (F ny)~0 ∀ n ≥ 0. By our choice of δ, we also have d(σ~ı x, σ~ı y) < 2−M for

~ı = (i1, · · · , iD) with |i1|, |i2|, · · · , |iD| ≤ k, and so (F n(σ~ı x))~0 = (F n(σ~ı y))~0. Then for

|i1|, |i2|, · · · , |iD| ≤ k and for all n ≥ 0,

(F nx)~ı = (σ~ı (F
nx))~0 = (F n(σ~ı x))~0 =(3.1)

(F n(σ~ı y))~0 = (σ~ı (F
ny))~0 = (F ny)~ı.

Thus d(x, y) < δ implies d(F nx, F ny) < ε ∀ n ≥ 0, and hence F is equicontinuous. ¤

The next theorem characterizes equicontinuous CA’s as those which are eventually

periodic, extending Theorem 5.2 in [20], which is in the setting of one-dimensional CA’s

on the full shift space. We give the result in the more general setting of a CA on any

subshift which has a dense set of shift periodic points. When σ is a ZD action, x ∈ X is

σ-periodic if the set
{
σ~ı (x) :~ı ∈ ZD

}
is finite. A point is σ-periodic if and only if it has

a period for each σ−→ej
in the traditional sense. The full shift spaces in all dimensions and

transitive one-dimensional subshifts of finite type (for every pair of allowable words u and

v, there is an allowable word w so that uwv is an allowable word) each have a dense set

of shift periodic points. Further, two-dimensional SFT’s with strong specification (see

Ward, [33]) and two-dimensional SFT’s with the uniform filling property (see Robinson

and Şahin, [30]) are also shown to have a dense set of shift periodic points. However, a

general characterization of higher dimensional subshifts with this property is unknown.
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Theorem 3.1.2. Let X ⊆ AZ
D

be a subshift with dense σ-periodic points, and let

F : X → X be a cellular automaton. F is equicontinuous if and only if F is eventually

periodic.

Proof. (⇐) Let r be the radius of F , and assume ∃ m ≥ 0, p > 0 such that Fm+p = Fm.

Take M = r(m + p). For x, y ∈ X with d(x, y) < 2−M , we have

(3.2) d(Fx, Fy) < 2−M · 2r = 2−r(m+p−1) < 1.

Further, d(x, y) < 2−M implies that for each n < m + p,

(3.3) d(F nx, F ny) < 2−M · 2nr = 2−r(m+p−n) < 1.

Now as Fm+p = F p, the two sequences of patterns consisting of the central symbols of the

iterates, (F nx)~0 and (F ny)~0, each form an eventually periodic sequence with pre-period

m and period p. But since the first m + p > m elements are equal, we have the equality

(F nx)~0 = (F ny)~0 for all n ≥ 0. Therefore,

(3.4) d(x, y) < 2−M ⇒ d(F nx, F ny) < 1 ∀ n ≥ 0,

and by Theorem 3.1.1, F is equicontinuous.

(⇒) Assume F is equicontinuous, and let M be the constant resulting from The-

orem 3.1.1 (2). Let x ∈ X, and consider the central
∏D

j=1(2M + 1) pattern of x,

ux = x|∏D
j=1

〈−M, M〉. Since the shift periodic points are dense in X, there exists a z ∈ [ux]−M~e

which is periodic under the shift, where ~e =
∑D

j=1
−→ej is the sum of all basis vectors. De-

note by ~p = (p1, · · · , pD) the period vector of z; that is, σ
pj
−→ej

z = z for each j.
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Now as F commutes with the action of the shift, for each n ≥ 0 and basis vector −→ej ,

we have

(3.5) σ
pj
−→ej

(F nz) = F n(σ
pj
−→ej

z) = F nz.

That is, each iterate F nz is also periodic for the shift with the same period vector ~p.

This puts an upper bound on the cardinality of the set of iterates of z,

(3.6) |{F nz : n ≥ 0}| ≤ |A|p1p2···pD ,

which is finite. Hence there must be a repetition in the set of iterates; let the first one

be Fmux+puxz = Fmuxz. Thus the set of iterates {F nz : n ≥ 0} forms an eventually

periodic sequence with pre-period mux
≥ 0 and period pux

> 0. We use the subscript

ux on both the pre-period and period of this sequence as these quantities depend only

on the pattern ux. Now for all y in the cylinder [ux]−M~e, d(y, z) < 2−M and hence

(F ny)~0 = (F nz)~0 ∀ n ≥ 0. Therefore (F ny)~0 is also an eventually periodic sequence with

pre-period mux
and period pux

. Let

(3.7) m = max{mu} and let p =
∏

pu,

where the maximum and the product are each taken over all patterns u ∈ A
∏D

j=1
(2M+1).

Since ∀ x ∈ X, the pattern ux = x|∏D
j=1

〈−M, M〉 is one of those that the maximum and

product are taken over, we have (Fm+px)~0 = (Fmx)~0. Using the commutativity of F and

the shift maps gives the equality

(Fm+px)~ı =
(
σ~ı (F

m+px)
)

~0
=

(
Fm+p(σ~ı x)

)

~0
=

(Fm(σ~ı x))~0 = (σ~ı (F
mx))~0 = (Fmx)~ı(3.8)
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for each ~ı ∈ ZD. Hence, Fm+p = Fm, and so F is eventually periodic. ¤

Further, an equicontinuous cellular automaton which is also surjective must be peri-

odic. This seems to be well known, but a proof is not available in the literature.

Theorem 3.1.3. Let X ⊆ AZ
D

be a subshift with dense σ-periodic points, and let

F : X → X be a cellular automaton. F is both equicontinuous and surjective if and only

if F is periodic.

Proof. (⇒) Suppose F is both equicontinuous and surjective. By the previous theorem,

there are minimal integers m ≥ 0 and p > 0 so that Fm+p = Fm. Assume to the contrary

that m > 0, i.e., that F is only eventually periodic and not periodic. For an arbitrary

x ∈ X, there must be a point y ∈ X with Fy = x. Then we have both of the following:

(3.9) Fmy = Fm+py = Fm+p−1(Fy) = Fm+p−1x

(3.10) Fmy = Fm−1(Fy) = Fm−1x,

so that Fm+p−1x = Fm−1x. As x was arbitrary, Fm−1+p = Fm−1, and so m is not the

pre-period of F . Therefore, m = 0, and F p = F 0 = Id is periodic.

(⇐) This direction is trivial, as F periodic of period p implies that for every x ∈ X,

F (F p−1x) = x; therefore F is surjective. Equicontinuity of F is then given by Theorem

3.1.2. ¤

3.2. Examples of Equicontinuous Cellular Automata

Example 3.2.1. Let X ⊆ AZ
D

be any subshift space and let I : X → X be the

identity map. For ε > 0, simply set δ = ε. Then for all x, y ∈ X with d(x, y) < δ, we
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have d(Inx, Iny) = d(x, y) < ε for all n ≥ 0 and hence I is equicontinuous. Clearly, I is

surjective also and has period 1.

Example 3.2.2. Let A be any finite set and let O : AZ
D

→ AZ
D

be the zero map, i.e.

O(x)~ı = 0 for all ~ı ∈ ZD and x ∈ AZ
D

. For ε > 0, again let δ = ε. For x, y ∈ AZ
D

with

d(x, y) < δ, clearly the 0th iterates of x and y are within epsilon, and since for any n > 0,

(Onx)~ı = (Ony)~ı = 0 for all ~ı ∈ ZD, we have d(Onx,Ony) = 0 < ε for n > 0 also. Hence

O is equicontinuous. Since there is only one point in the image of O, it is certainly not

surjective, and we see that m = 1, p = 1.

Example 3.2.3. Let A be any finite set and let F : AZ
D

→ AZ
D

be a CA with radius

0 and local rule f : A → A. For ε = 2−k > 0, again let δ = ε. Now for x, y ∈ AZ
D

with

d(x, y) < δ, we have x~ı = y~ı for |i1|, |i2|, · · · , |iD| ≤ k. Then for |i1|, |i2|, · · · , |iD| ≤ k and

n ≥ 0, (F nx)~ı = fn (x~ı) = fn (y~ı) = (F ny)~ı, and so d(F nx, F ny) < ε for all n ≥ 0. Thus

any radius 0 CA is equicontinuous.

Example 3.2.4 ([20]). Let E : {0, 1}Z → {0, 1}Z be given by (Ex)i = xi + xi−1 · xi+1

(mod 2). E is not surjective, as we will show that the point · · · 1 0 1 .0 1 0 · · · is not in

the image. By inspection, we see that E−1([010]i) ⊆ [00100]i−2 ∪ [00111]i−2 ∪ [11100]i−2.

However, as E([00]i) ⊆ [00]i, we see E−1([10101]i−1) = ∅. E is eventually periodic though,

having pre-period 2 and period 2; thus it is an equicontinuous CA. The dynamics for a

typical orbit are shown in Figure 3.1.

Example 3.2.5. A class of two-dimensional examples can be obtained from equicon-

tinuous one-dimensional cellular automata. We define the two-dimensional action by

letting the one-dimensional CA act on the rows of points in AZ
2

. Precisely, let A be a
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Figure 3.1. Orbit under E

finite set and G : AZ → AZ be an equicontinuous one-dimensional CA. For j ∈ Z, let

Hj : AZ
2

→ AZ be the restriction map to the jth row, given by (Hj x)
i

= x(i,j). Now

define the map F : AZ
2

→ AZ
2

by (Fx)(i,j) = (G ◦ Hj x)i. We notice that as (G ◦ Hj x)

and (Hj ◦ Fx) both represent the jth row of Fx, we have (F nx)(i,j) = (Gn ◦ Hj x)i. To

see that F is equicontinuous, let ε > 0. As G is equicontinuous, ∃ δG = 2−k > 0 such

that for x, y ∈ AZ with d(x, y) < δG, d(Gnx,Gny) < ε ∀ n ≥ 0. Let δ = δG. Then

for x, y ∈ AZ
2

with (.x, y) < δ, we have d(Hj x,Hj y) < δ = δG for |j| ≤ k. Now

d(F nx, F ny) = d(Gn ◦ Hj x,Gn ◦ Hj y) < ε ∀ n ≥ 0.

This construction extends to higher dimensions so that from a D-dimensional equicon-

tinuous CA, we can create a (D+1)-dimensional equicontinuous CA on the same alphabet.

We view an arbitrary point in AZ
D+1

as an infinite number of points in AZ
D

by fixing

the last coordinate. Specifically, for each j ∈ Z, let Hj : AZ
D+1

→ AZ
D

be the restriction

map given by (Hjx)(i1,··· ,iD) = x(i1,··· ,iD,j). Then we let the (D + 1)-dimensional CA act
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by applying the D-dimensional rule independently to each of these lower dimensional

points.

To illustrate this construction, recall the CA E : {0, 1}Z → {0, 1}Z from Example

3.2.4. Let the two-dimensional CA E2 : {0, 1}Z
2

→ {0, 1}Z
2

be derived from E as outlined

above. We illustrate the dynamics of E2 in Figures 3.2 through 3.5. For the initial point,

we choose a point in {0, 1}Z
2

which has as its center row the initial sequence, x0 ∈ {0, 1}Z,

which is seen in Figure 3.1. As we iterate E2 then, in the center row we see the iterates

Ex0, E2x0, and E3x0.

3.3. Equicontinuity Points for Cellular Automata

We now turn our attention to cellular automata which have points of equicontinuity,

but are not equicontinuous mappings. Since equicontinuity is linked with periodicity,

we investigate periodic points. We show that a periodic point under the shift must be

eventually periodic under a cellular automaton, and that an attracting periodic point for

a cellular automaton must be fixed under both the cellular automaton and the shift, as

in [13, 20].

Theorem 3.1.2 is not only useful for characterizing equicontinuous cellular automata,

but its proof suggests a more general result. If we have any CA, F , on a subshift,

X ⊆ AZ
D

, then even if F is not equicontinuous, we can obtain F -eventually periodic

points. These are the points which are periodic under the shift action.

Proposition 3.3.1. Let X ⊆ AZ
D

be a subshift space and let F : X → X be a cellular

automaton. If x ∈ X satisfies σ~ı x = x for some ~ı ∈ ZD, then there exist integers m ≥ 0

and p > 0 so that Fm+px = Fmx.
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Figure 3.2. An Initial

point for E2

Figure 3.3. One Iteration

of E2

Figure 3.4. Two Iterations

of E2

Figure 3.5. Three Itera-

tions of E2
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Proof. Suppose that σ~ı x = x for some point x ∈ X and vector ~ı = (i1, · · · , iD) ∈ ZD.

Then for each n ≥ 0, we have σ~ı (F
nx) = F n(σ~ı x) = F nx, and so each iterate F nx is also

fixed under σ~ı . As in the proof of Theorem 3.1.2, we have a bound on the set of iterates,

|{F nx : n ≥ 0}| ≤ |A|
∏D

j=1
ij ; the set of iterates of x is a finite set. Therefore, there must

be a repetition, Fmx = Fm+px, for some m ≥ 0 and p > 0. Thus x is F -eventually

periodic. ¤

From Hurley’s work investigating the attractor classification of CA, [13], Kůrka has

extracted the one-dimensional result that any attracting periodic point for a CA must

be a fixed point, with respect to both the CA and the shift, [20]. Hurley gave a result in

arbitrary dimensions, and while his proof used the existence of a minimal quasi-attractor

of full measure for a CA, Kůrka uses only topological notions. Our Theorem 3.3.2 is a

strengthening of this result to the case of a subshift space, in any dimension, on which

the generators for the shift action are each mixing. We use Kůrka’s approach in our

proof, keeping our result topological.

Let (Y, T ) be a dynamical system. A subset V ⊆ Y is an attractor if there exists a

non-empty open set U such that T (U) ⊆ U and V =
⋂

n≥0

T n(U). A periodic point y ∈ Y

is attracting if its forward orbit O(y) = {T ny : n ≥ 0} is an attractor. Any attracting

periodic point is a point of equicontinuity.

Theorem 3.3.2. Let X ⊆ AZ
D

be a subshift space on which each of the generators for

the shift action, σ−→ej
, is topologically mixing, and let F : X → X be a cellular automaton.

If x ∈ X is an attracting periodic point for F , then Fx = x and σ~ı x = x for all ~ı ∈ ZD.

That is, x is a fixed point with respect to both the CA and the shift action.
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Proof. Let p be the period of F , i.e., F px = x. By definition of attracting, there exists a

non-empty open set U such that F (U) ⊆ U and
⋂

n≥0

F n(U) = O(x) = {x, Fx, · · · , F p−1x}.

Thus, there exists a non-empty U0 ⊆ U so that y ∈ U0 ⇒ lim
n→∞

F npy = x. Since

σ−→ej
is topologically mixing on X for each standard basis vector −→ej , then there exist

K1, K2, · · · , KD ≥ 0 so that for each 1 ≤ j ≤ D and all k ≥ Kj, σk−→ej
(U0) ∩ U0 6= ∅. In

particular,

(3.11) σ
Kj
−→ej

(U0) ∩ U0 6= ∅ and σ
Kj+1
−→ej

(U0) ∩ U0 6= ∅.

Then for yj ∈ σ
Kj
−→ej

(U0) ∩ U0, we have points y′
j ∈ U0 with σ

Kj
−→ej

(y′
j) = yj, so that

lim
n→∞

F np(y′
j) = x. Then by applying σ

Kj
−→ej

, using continuity of each σ−→ej
, and using com-

mutativity of F with each σ−→ej
, we have:

(3.12) σ
Kj
−→ej

x = σ
Kj
−→ej

(

lim
n→∞

F np(y′
j)

)

= lim
n→∞

F np
(

σ
Kj
−→ej

(y′
j)

)

= lim
n→∞

F np(yj).

Similarly, for zj ∈ σ
Kj+1
−→ej

(U0) ∩ U0, we have

(3.13) σ
Kj+1
−→ej

x = lim
n→∞

F np(zj).

But as yj, zj ∈ U0, we also have

(3.14) lim
n→∞

F np(yj) = lim
n→∞

F np(zj) = x.

Thus σ
Kj
−→ej

x = σ
Kj+1
−→ej

x, and as σ−→ej
is a homeomorphism, σ−→ej

x = x. Since this is true for

each 1 ≤ j ≤ D, x is a fixed point for the shift action. Since x is fixed, we have x~ı = a

for all ~ı ∈ ZD.

But for each −→ej , σ−→ej
(Fx) = F (σ−→ej

x) = Fx, and so Fx must also be a fixed point

for the shift; let (Fx)~ı = b for all ~ı ∈ ZD. We will now show that Fx = x. We

first note that as x is attracting, there also exists a non-empty, open U1 ⊆ U so that
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y ∈ U1 ⇒ lim
n→∞

F npy = Fx. Since U0 and U1 are open and x ∈ U0, Fx ∈ U1, there is

a positive number r so that the open ball about x with radius 2−r and the open ball

about Fx with radius 2−r are contained in the sets U0 and U1, respectively. As the

generators for the shift action are mixing on X, there is a point z ∈ X such that the

patterns x|∏D
j=1

〈−r,r〉 and (Fx)|∏D
j=1

〈−r,r〉 both appear in z. Let −→v1 ,
−→v2 ∈ ZD be such that

d(σ−→v1
z, x) < 2−r and d(σ−→v1

z, Fx) < 2−r. Thus, σ−→v1
z ∈ U0 and σ−→v2

z ∈ U1. Now we have

lim
n→∞

F np(σ−→v1
z) = x(3.15)

σ−→v1

(

lim
n→∞

F npz
)

= x(3.16)

lim
n→∞

F npz = σ−−→−v1
x = x.(3.17)

Similarly, we have

lim
n→∞

F np(σ−→v2
z) = Fx(3.18)

σ−→v2

(

lim
n→∞

F npz
)

= Fx(3.19)

lim
n→∞

F npz = σ−−→−v2
Fx = Fx.(3.20)

Therefore, by comparing (3.17) and (3.20), we see that x is also fixed under the CA, F .

¤

Now, we can realize Hurley’s result as a corollary to Theorem 3.3.3, since each gen-

erator for the shift action on a full shift space is mixing.

Corollary 3.3.3. Let F : AZ
D

→ AZ
D

be a cellular automaton. If x ∈ AZ
D

is an

attracting periodic point for F , then Fx = x and σ~ı x = x for all ~ı ∈ ZD. That is, x is

a fixed point with respect to both the CA and the shift action.
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CHAPTER 4

Almost Equicontinuity Properties

The property of being equicontinuous at every point is too restrictive for classifying

CA’s, for a number of cellular automata are not equicontinuous but still have points

of equicontinuity. Recall that almost equicontinuous refers to a topological property; it

means that the set of equicontinuity points is residual. In dimension one, Kůrka has

shown that every CA is either almost equicontinuous or has sensitive dependence on

initial conditions [19]. Therefore, we study the property of almost equicontinuous in

higher dimensions as well. It is in this chapter that the classification separates from the

one-dimensional case.

4.1. History in Dimension One

We will begin in dimension one with a brief review of the literature, so that when

we give our higher dimensional results in Section 4.2, the role of the dimension will be

clearer. In one dimension, almost equicontinuous CA’s are characterized by the existence

of blocking words, first introduced by Blanchard and Tisseur [2].

Let X ⊆ AZ be a subshift space. A word u is called s-blocking for a CA F : X → X

if s ≤ |u| and there exists a non-negative integer p ≤ |u| − s, called the offset, so that for

all x, y ∈ [u]0, F nx〈p,p+s) = F ny〈p,p+s) ∀ n ≥ 0. Illustrated in Figure 4.1, this means that

each occurrence of the pattern u in x determines a length s word in all iterates of x; p is

the offset.



x = · · · |−−− u −−−| · · · |−−− u −−−| · · · |−−− u −−−| · · ·

Fx = · · · · · · · · · · · ·

F 2x = · · · · · · · · · · · ·

F 3x = · · · · · · · · · · · ·

.

.

.

u u u

{

p

︷ ︸︸ ︷
s

Figure 4.1. A Blocking Word for a 1D Cellular Automaton

As we have mentioned, any almost equicontinuous cellular automaton has a blocking

word. This comes directly from the definition of a point of equicontinuity, and the fact

that the metric is discrete on shift spaces. Further, the existence of a blocking word is a

sufficient condition for almost equicontinuity, as was proven by Kůrka.

Theorem 4.1.1 (Kůrka,[19]). Let F : AZ → AZ be a cellular automaton with radius

r. The following conditions are equivalent:

(1) F is not sensitive.

(2) There exists an r-blocking word for F .

(3) F is almost equicontinuous.

While we will not reproduce the proof of Theorem 4.1.1 completely, it is instructive

for moving the result into higher dimensions for us to provide an illustration of the key

idea in the equivalence. Clearly, (3) ⇒ (1); again (1) ⇒ (2) is easily seen by combining

the definition of an equicontinuity point and the nature of the metric on a shift space.

So, we regard the remaining implication, (2) ⇒ (1). Let u be the r-blocking word for F
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guaranteed in the hypothesis. The set of points containing infinitely many occurrences

of u in both the positive and negative coordinates is a residual set, and we will illustrate

why a point in this set is one of equicontinuity in Figure 4.2. For such a point x, suppose

ε > 0 is given; then choose δ ≤ ε so that an occurrence of u is contained on both the

positive and the negative side within the δ region. Since u is blocking and has length at

least r, then for all time n, the values in the ε region cannot depend on values outside

the δ region.

︷ ︸︸ ︷
ε

|————————————– δ ————————————–|

.x = · · · |—– u —–| · · · |—– u —–| · · · . |—– u —–| · · · |—– u —–| · · · |—– u —–| · · ·

Fx = · · · · · · · · · · · · · · · · · ·

F 2x = · · · · · · · · · · · · · · · · · ·

...

Figure 4.2. A point with infinitely many occurrences of u is one of equicontinuity

4.2. Almost Equicontinuity in Higher Dimensions

In order to develop our extension of the preceding theorem in higher dimensions, we

prove versions of each implication in Theorems 4.2.1 through 4.2.3, rather than proving

a single equivalence. We begin by noting the well-known fact that any dynamical system

without isolated points which is almost equicontinuous cannot be sensitive, corresponding

to (3) ⇒ (1) in Theorem 4.1.1.
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Theorem 4.2.1. Assume that X has no isolated points, and let (X,T ) be an almost

equicontinuous dynamical system. Then T is not sensitive.

Proof. Since T is almost equicontinuous, T has a point of equicontinuity, x. Suppose

that T is also sensitive. Then ∃ ε > 0 such that for all z ∈ X and δ > 0, there exists

y ∈ X with d(y, z) < δ and d(T ny, T nz) ≥ ε for some n ≥ 0. But by the definition

of an equicontinuity point, the above property does not apply to x, and hence T is not

sensitive. ¤

We next extend the notion of blocking to patterns in dimensions two and higher,

and examine the existence of such patterns and their relation to almost equicontinuity.

We describe blocking first in two dimensions, where the definition is easier to state. A

rectangular pattern u of size k× l is said to be (r, s)- blocking if there exist non-negative

integers p ≤ k − r and q ≤ l − s such that for all x, y ∈ [u]0,0 and n ≥ 0, we have

(4.1) (F nx)|〈p, p+r)×〈q, q+s) = (F ny)|〈p, p+r)×〈q, q+s).

The pair (p, q) is called the offset. That is to say, if the pattern u occurs in a point x at

the coordinates of E, the values of F nx at a subset of the coordinates of E are determined

for all time n. See Figure 4.3 for an illustration; the entire shaded region is an occurrence

of u, and the lighter shaded region is the part which is determined for all time.

If r = k, s = l and p = q = 0, we say that u is fully blocking. A fully blocking

pattern is one whose occurrence in x at E determines the values of F nx in all coordinates

of E for all time n. In higher dimensions, a pattern u of size k1 × k2 × · · · × kD is

(r1, r2, · · · , rD)-blocking if the occurrence of u in a point x determines the values of F nx

in a r1 × r2 × · · · × rD hypercube of coordinates for all n. If each ki = ri, then u is said
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(0, 0) (k, 0)

(k, ℓ)(0, ℓ)

︸
︷
︷

︸

q

︷ ︸︸ ︷
p

︷ ︸︸ ︷
r

︸
︷
︷

︸

s

Figure 4.3. A Blocking Pattern for a 2D Cellular Automaton

to be fully blocking ; that is, the values of F nx are determined in all coordinates where

u occurs in x for all time n. For Example 2.3.3, the cellular automaton acting on the

two-dimensional Golden Mean subshift space, any square pattern of 0’s with side length

at least 2 is fully blocking; once such a pattern occurs, there will always be 0’s in those

positions under iteration of G.

We now address the existence of blocking patterns for a CA. Theorem 4.2.2 is our

version of (1) ⇒ (2) in Theorem 4.1.1, showing that if a CA is not sensitive, then a

blocking pattern exists.

Theorem 4.2.2. Let X ⊆ AZ
D

be a subshift and F : X → X be a cellular automaton

with radius r which is not sensitive. Then there exists an (r, r, · · · , r)-blocking pattern

for F .

Proof. Let m ∈ Z be such that 2m+1 ≥ r. Since F is not sensitive, for ε = 2−m, ∃ x ∈ X

and δ = 2−m−p, p ≥ 0 such that for all y ∈ X, d(x, y) < δ ⇒ d(F nx, F ny) < ε ∀ n ≥ 0.

Let the pattern u be a central hypercube of x,

u = x|∏D
j=1

〈−(m+p),m+p〉 ∈ A
∏D

j=1
(2m+2p+1).
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Now for y, z ∈ [u]−(m+p)~e, we have d(F ny, F nz) < ε ∀ n ≥ 0, since d(x, y) < δ and

d(x, z) < δ imply that both d(F nx, F ny) < ε and d(F nx, F nz) < ε for all n ≥ 0. Thus u

blocks a hypercube of size (2m + 1) × (2m + 1) × · · · × (2m + 1), and as m was chosen

so that 2m + 1 ≥ r, u is an (r, r, · · · , r)-blocking pattern. ¤

If we assume that the existing blocking pattern is actually fully blocking on a full

shift space, then we obtain almost equicontinuity of the CA. This provides a version of

(2 ⇒ 3) in Theorem 4.1.1. The proof we give relies on the fact that in a full shift space,

patterns can always be fit together.

Theorem 4.2.3. Let F : AZ
D

→ AZ
D

be a CA with radius r. If there exists a fully

blocking pattern of size k×k×· · ·×k for F , where k ≥ r, then F is almost equicontinuous.

Proof. Let u ∈ A
∏D

j=1
k be a fully blocking pattern, where k ≥ r. That is, u is a size

k×k×· · ·×k pattern and when u occurs in a point of AZ
D

, the values in the k×k×· · ·×k

frame of the coordinates where u is are determined for all iterates of that point.

Let the sets Gn be the following:

Gn = {x ∈ AZ
D

: ∃ δ = δ(n, x) such that(4.2)

d(x, y) < δ ⇒ d(F ix, F iy) < 2−n ∀ i ≥ 0}.

Clearly,
⋂

n≥0

Gn is the set of equicontinuity points for F . We will show that Gn is open,

and using u, we will also show that Gn is dense for each n. This will prove that the set

of equicontinuity points contains a residual set; that is, that F is almost equicontinuous.

Claim 1: Gn is open for each n ≥ 0.
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Fix n ≥ 0, and let x ∈ Gn. Let δ be the δ(n, x) guaranteed by (4.2), the definition of

Gn. We claim that Bδ(x) ⊆ Gn. For, let y ∈ Bδ(x). In order for y to be in Gn, we need

an α = α(n, y) so that d(y, z) < α ⇒ d(F iy, F iz) < 2−n ∀ i ≥ 0. Let

(4.3) α = min

{
d(x, y)

2
,
δ − d(x, y)

2

}

.

Then for d(y, z) < α, we have

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) +
δ − d(x, y)

2
=

δ

2
+

d(x, y)

2
<

δ

2
+

δ

2
= δ.(4.4)

Thus for each i ≥ 0, d(F ix, F iz) < 2−n. That is, (F ix)~ = (F iz)~ for each i ≥ 0 and

~ = (j1, j2, · · · , jD) with |j1|, |j2|, · · · , |jD| ≤ n. Now by the choice of δ, we also have

(4.5) y ∈ Bδ(x) ⇒ d(F ix, F iy) < 2−n ∀ i ≥ 0,

and thus d(F iy, F iz) < 2−n ∀ i ≥ 0. Therefore,

(4.6) d(y, z) < α ⇒ d(F iy, F iz) < 2−n ∀ i ≥ 0,

and hence y ∈ Gn. Thus Bδ(x) ⊆ Gn, and so Gn is open.

Claim 2: Gn is dense for each n ≥ 0.

Let B be a hypercube pattern with side length a multiple of k. We will show that

for all ~p ∈ ZD, Gn ∩ [B]~p 6= ∅; thus Gn is dense. We build a point x ∈ [B]~p by placing

the pattern B in the proper place, then filling out the rest of the coordinates with the

pattern u. We will get the picture of Figure 4.4 for x in AZ
2

.
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…

… …
u u u … u u u
u u u … u u u
u u
u u

x = … … B … …
u u
u u
u u u … u u u
u u u … u u u

… …

…

Figure 4.4. Creation of the point x ∈ [B]~p ∩ Gn

We have x ∈ [B]~p, and we will now show that x ∈ Gn also. Let δ = 2−(k+m), where

m = max{n, side length of B}. Suppose y ∈ AZ
D

has d(x, y) < δ; we will show that all

of the iterates F ix and F iy, i ≥ 0, are within 2−n. By construction of δ, since y is within

δ of x, y must contain the pattern B and at least one border of u patterns around B in

the same location as x. Further, y will contain a border of u patterns inside the central

n × n × · · · × n region, again by construction of δ. Now as u is a (k, k, · · · , k)-blocking

pattern, the values at the coordinates of y which contain u (the frame around B) will be

determined for all iterates F iy. Since F has radius r and u has side length k ≥ r, for each

iterate F iy, the values at the coordinates where y has the pattern B can only depend on

the values at those same coordinates as well as the coordinates where y has the pattern u.

That is, for all i ≥ 0, the values in the central n×n×· · ·×n region of F iy are determined

by the values of the coordinates in the central (k+m)×(k+m)×· · ·×(k+m) region of y,

which equal the values of the coordinates in the central (k +m)× (k +m)×· · ·× (k +m)

region of x. Therefore, d(x, y) < δ ⇒ d(F ix, F iy) < 2−n ∀ i ≥ 0, and thus x ∈ Gn.
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Therefore, we have that Gn is an open, dense set for each n ≥ 0, and that the in-

tersection of all Gn’s is contained in the set of equicontinuity points of F . Hence, F is

almost equicontinuous. ¤

What we have now shown in higher dimensions, with Theorems 4.2.1 through 4.2.3,

is that almost equicontinuous implies not sensitive, not sensitive implies the existence of

blocking patterns, and the existence of fully blocking patterns implies almost equicon-

tinuity. However, not all almost equicontinuous CA’s have fully blocking patterns; one

such example is given in the next section. It has not yet been determined if there are

any two-dimensional CA’s which have a non-fully blocking pattern but are not almost

equicontinuous.

The difficulty in extending Theorem 4.1.1 straightaway lies in the observation that in

one dimension, the only directions from which values can propagate toward the center

coordinate are the left and the right. In dimension 2, however, values can propagate

toward the center coordinate from the left, the right, the top, the bottom, or any angle,

depending on the rule of the CA. Recall that having a blocking pattern means that once

we see a particular pattern, we will see a determined sequence of patterns in a subset of the

positions where the blocking pattern occurred. What this accomplishes in one dimension

is that a blocking pattern on either side of our coordinates of interest (in the epsilon

region) seals off these central coordinates from outside influence, a sufficient condition for

having the property of almost equicontinuity. However, existence of a blocking pattern in

two dimensions does not appear to guarantee this. A first approach to guarantee almost

equicontinuity is to use a blocking pattern in a ring around the coordinates of interest.

However, as the patterns determine only a subset of the coordinates values for all time, it
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is conceivable that some far away value could affect the central coordinates by seeping in

through the cracks in the patterns, that is, through the coordinates which are part of the

blocking pattern which are not determined by the pattern’s presence. This is illustrated

in Figure 4.5; u is a blocking pattern which determines only the values in the shaded

coordinates. The red coordinates and diagonal line represent the region through which

an unwanted value could propagate toward the center.

…

… …

u u u u u u u
…

u u u u u u u
…

u u u

u u u

y = … … B … … …

u u u

u u u

u u u

u u u u u u u
…

… …

…

Figure 4.5. Potential Problem with Non-Fully Blocking Patterns

Our next result guarantees almost equicontinuity when there is a blocking pattern,

not necessarily fully-blocking, which allows for no cracks when the pattern is used to

form a boundary around the coordinates in the epsilon region. Let F : AZ
2

→ AZ
2

be a

CA with radius r. We say that a pattern u of size k× ℓ blocks a cross containing an r× r

square for F if, in addition to being (τ, s)-blocking with offset (p, q) for some τ, s ≥ r,
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p ≤ k − τ and q ≤ l − s, u is also (τ, q)-blocking with offset (p, 0), (τ, ℓ− s− q)-blocking

with offset (p, q + s), (p, s)-blocking with offset (0, q), and (k − p − τ, s)-blocking with

offset (p + τ, q). As illustrated in Figure 4.6, the entire shaded region is an occurrence

of u and the lighter shaded regions are coordinates whose values are determined for all

time. Theorem 4.2.4 shows that fully blocking is not a necessary condition for almost

equicontinuity.

(0, 0) (k, 0)

(k, ℓ)(0, ℓ)
︸

︷
︷

︸

q

︷ ︸︸ ︷
p

︷ ︸︸ ︷
τ

︸
︷
︷

︸

s

︷ ︸︸ ︷
r

︸
︷
︷

︸
r

Figure 4.6. A Pattern Blocking a Cross for a 2D Cellular Automaton

Theorem 4.2.4. Let F : AZ
2

→ AZ
2

be a cellular automaton with radius r. If there

exists a pattern u which blocks a cross containing an r× r square for F , then F is almost

equicontinuous.

Proof. This proof is essentially identical to the proof of Theorem 4.2.3. The only dif-

ference is that the iterates of the point formed using the pattern u, x ∈ [B]p,q ∩ Gn, do

not have all values determined in coordinates outside of those containing the pattern B.

Figure 4.7 shows what x will look like in this situation, where the shaded coordinates

represent the cross determined by the occurrence of u which contains an r × r square.

Since the shaded region of x, the coordinates whose values are determined for all time,
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…

… …

u u u u u u u u
…

u u u u u u u u
…

u u u u

u u u u

x = … … … B … … …

u u u u

u u u u

u u u u

u u u u u u u u
…

u u u u u u u u
…

… …

…

Figure 4.7. Creation of the point x ∈ [B]p,q ∩ Gn

has no gaps, x will be in each set Gn, and the proof of Theorem 4.2.3 holds here as well.

¤

One final note on fully blocking patterns is that if such patterns are prevalent in the

space, we can guarantee not just almost equicontinuity, but equicontinuity of the CA. In

dimension one, Blanchard and Tisseur have shown that if there is an s > 0 such that

every word of length at least s is blocking for a CA, then the CA is equicontinuous [2].

What we show is that if every big enough pattern is fully blocking for a CA, then the

CA is equicontinuous.

Theorem 4.2.5. Let F : AZ
D

→ AZ
D

be a cellular automaton with radius r. If there

exists ℓ ≥ r such that for all patterns u of size ‖u‖ ≥ ℓ, u is fully blocking, then F is

equicontinuous.

Proof. Let x ∈ AZ
D

; we will show that x is a point of equicontinuity. For ε = 2−k > 0,

set δ = 2−(k+ℓ). Now for y ∈ AZ
D

with d(x, y) < δ, y contains the pattern x|∏D
j=1

〈−k,k〉

in the same location as x, and by the choice of δ, y also contains the same values as x

in the central annular region between the coordinates
∏D

j=1〈−k, k〉 and
∏D

j=1〈−ℓ, ℓ〉. We

can cover this annular region by patterns of side length at least ℓ, which by assumption
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are all fully blocking. Thus, the values in this annular region for all iterates F iy, i ≥ 0,

will be determined just by the values in these positions. Now since F has radius r and

ℓ ≥ r, for each iterate F iy, the values at the central k × · · · × k coordinates can only

depend on the values of the coordinates in the central (k + r) × · · · × (k + r) region

of y, which equal the values of the coordinates in the central (k + r) × · · · × (k + r)

region of x, since k + r ≤ k + ℓ. Therefore, these values will be equal for all time; hence

d(x, y) < δ ⇒ d(F ix, F iy) < 2−k = ε ∀ i ≥ 0.

¤

4.3. Examples of Almost Equicontinuous Cellular Automata

Example 4.3.1. Recall the Golden Mean subshift space, X{

11,
1
1

}, and the CA

G : X{

11,
1
1

} → X{

11,
1
1

} given in Example 2.3.3. We first show that the point x0 con-

sisting entirely of 0’s is a point of equicontinuity for G. Note that x0 is a fixed point

of G. Fix an ε = 2−k and suppose that d(x, x0) < 2−(k+1). Since every 0 in x in this

central region has 0’s in at least two of its left, right, top, and bottom neighbors, none

of them will get mapped to a 1 in Gx. Similarly, all iterates Gnx will retain the central

(2(k + 1) + 1) × (2(k + 1) + 1) pattern of 0’s, and so d(Gnx,Gnx0) < ε for all n ≥ 0.

However, G is not an equicontinuous CA, as we next show. Consider the “checker-

board” period 2 points,

y0 =

.

.

.

1 0 1 0 1

0 1 0 1 0

· · · 1 0 1 0 1 · · ·

0 1 0 1 0

1 0 1 0 1

.

..

7→ y1 =

.

.

.

0 1 0 1 0

1 0 1 0 1

· · · 0 1 0 1 0 · · ·

1 0 1 0 1

0 1 0 1 0

.

..
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Fix ε = 1, and suppose there is a δ = 2−M so that d(x, y0) < δ ⇒ d(Gnx,Gny0) < 1

for all n ≥ 0. Take x∗ to agree with y0 in the central (2M + 1) × (2M + 1) pattern,

and to be filled with 0’s in all other coordinates. Now the 0’s in the ±M th rows and

columns have only two 1’s in their left, right, top, and bottom neighbors, and so they

will not change to 1’s in Gx∗. Under the next iteration of G, we see that the 0’s in the

±(M − 1)st rows and columns do not change to 1’s, and as we continue to apply L, the

1’s eventually disappear completely. In particular, Gnx∗ = x0 for n ≥ M + 1. But as

(Gny0)0,0 alternates between 0 and 1 as n increases, d(Gnx∗, Gny0) ≮ 1 for all n.

In fact, G is almost equicontinuous. As in Theorem 4.2.3, we use the fully blocking

pattern
0 0

0 0

in order to construct the open dense sets Gn, whose intersection is the set

of equicontinuity points.

Example 4.3.2. Let A = {0, 1}, and let R : AZ
2

→ AZ
2

be given by the radius 1

local rule,

(4.7) r










x1 x2 x3

x4 x5 x6

x7 x8 x9










=







0 if
9∑

i=1

xi ≤ 3

1 if
9∑

i=1

xi ≥ 4

.

Neither 0 nor 1 are (1,1)-blocking patterns for R, but consider the pattern u =
1 1

1 1

.

Since each 1 neighbors at least three other 1’s, u 7→ u, and hence u is a fully blocking

pattern. Then by Theorem 4.2.3, R is almost equicontinuous. The dynamics of R are

illustrated in Figures 4.8 and 4.9.

By a pre-image of cylinder count, we will show that R is not surjective. Since a

pattern u ∈ {0, 1}3×3 maps to 0 when there are no more than three 1’s present in u, we
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Figure 4.8. An initial point

for R

Figure 4.9. Sixty-four itera-

tions of R

see that there are 1 + (9
1) + (9

2) = 46 such patterns. On the other hand, the remaining

29 − 46 = 466 patterns of size 3 × 3 map to 1, and so R is not 1-balanced. Thus by

Theorem 2.2.3, R is not surjective. By Theorem 2.2.2, R is not injective either.

Example 4.3.3. Let A = {0, 1}, and let M : AZ
2

→ AZ
2

be given by the radius 1

local rule,

(4.8) m










x1 x2 x3

x4 x5 x6

x7 x8 x9










=







0 if
9∑

i=1

xi ≤ 4

1 if
9∑

i=1

xi ≥ 5

.

M successively homogenizes the space, illustrated in Figures 4.10 and 4.11.

There are no fully blocking k × k patterns for this CA, since the values in the corners

of a square neighbor only three other known values, and at least four neighboring values

must be known in order to determine the value in the next iteration. However, consider
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Figure 4.10. An initial point

for M

Figure 4.11. Twenty-seven

iterations of M

the pattern u =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

. After one iteration, u 7→

1 1

1 1 1 1

1 1 1 1

1 1

, which is invariant,

since each of the 1’s neighbor at least four other 1’s. Thus u is a blocking pattern; it

determines a cross of 1’s containing a 2 × 2 square for all time. Now as M has radius 1,

M is almost equicontinuous by Theorem 4.2.4. Note that this CA is not equicontinuous

though, for consider the point

x =

..

.

1 0 1 0 1

0 1 0 1 0

· · · 1 0 1 0 1 · · ·

0 1 0 1 0

1 0 1 0 1

.

.

.

Since each value is surrounded by four 0’s and four 1’s, this is a fixed point under M . It

is not an equicontinuity point though: for ε = 2−k and δ = 2−m, let y ∈ Bδ(x) so that
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y~ı = 0 for each ||~ı|| ≥ m+1. That is, y agrees with x in a large central square and has 0’s

elsewhere. Under iteration of M , the 0’s in y propagate towards the center until Mm+1y

consists solely of 0’s.

M is not a surjective CA either; we will appeal to Theorem 2.2.3 by counting the

pre-image patterns of the four 1× 2 patterns. Some careful counting is required, but we

find that |M−1(00)| = |M−1(11)| = 1518 and |M−1(01)| = |M−1(10)| = 530, totalling

the 212 = 4096 possible 3 × 4 patterns. Hence M is not 2-balanced, and thus neither

surjective nor injective.

Example 4.3.4. Let A = { , , , }, and let P : AZ
2

→ AZ
2

be the CA given

in Example 2.3.2, describing the movement of three different colored particles through

space.

Clearly, is a (1,1)-blocking pattern, and since P has radius 1, Theorem 4.2.3 implies

that (AZ
2

, P ) is almost equicontinuous. As the point consisting of a single particle in

all white space evolves under iteration to a longer and longer diagonal red line through

white space, P cannot be eventually periodic, and hence is not equicontinuous.
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CHAPTER 5

Sensitive Dependence Properties

We now turn our attention away from predictable cellular automata and investigate

those CA’s which do not have points of equicontinuity. Recall Proposition ??, that

any CA without a point of equicontinuity must have sensitive dependence on initial

conditions. In keeping with our goal of lifting one-dimensional CA phenomena to higher

dimensions, we first build a class of examples in dimension D+1 from CA’s in dimension

D, showing that the new CA is sensitive if and only if the D-dimensional CA is. We

give another way to construct sensitive CA’s by taking the product of two CA’s, at least

one of which is sensitive. We then investigate the property of topological transitivity, as

a transitive CA on a one-dimensional full shift space must have sensitive dependence on

initial conditions [19]. Finally, we discuss some concrete examples of sensitive CA’s.

5.1. Constructions of Sensitive Cellular Automata

Recall the construction of Example 3.2.5, in which we used a D-dimensional equicon-

tinuous CA to build a (D + 1)-dimensional equicontinuous CA by letting the lower di-

mensional rule act on restrictions of a higher dimensional point. As we show in Theorem

5.1.1, the properties of sensitive and of not sensitive are also preserved in this construc-

tion. We give the proof for dimension D = 1 to D + 1 = 2, where the terminology is

easier; however, it is easily applicable to arbitrary D.



Theorem 5.1.1. Let G : AZ → AZ be a cellular automaton. For each j ∈ Z, let

Hj : AZ
2

→ AZ be the restriction (Hjx)i = x(i,j). Now define the cellular automaton

F : AZ
2

→ AZ
2

by (Fx)(i,j) = (G◦Hjx)i. Then F is sensitive if and only if G is sensitive.

Proof. (⇐) Assume that G is sensitive. Then there is an εG = 2−k such that for all

x ∈ AZ and δ > 0, there is some y ∈ Bδ(x) and n > 0 such that d(Gnx,Gny) ≥ εG.

We claim that ε = εG is a sensitive constant for F also. For, let x ∈ AZ
2

and let

δ = 2−m > 0. Let y0 ∈ Bδ(H0x) be the one-dimensional sequence and n > 0 be the

iterate guaranteed by the sensitivity of G to have d(Gn ◦ H0x,Gny0) ≥ ε. Now there is

a point y ∈ AZ
2

having both d(x, y) < δ and H0y = y0 since d(H0x, y0) < δ. Then we

have d(Gn ◦ H0x,Gn ◦ H0y) = d(Gn ◦ H0x,Gny0) ≥ ε. That is, after n iterations of F ,

there are differences in the ε-regions of iterates of x and y in the central row, so that

d(F nx, F ny) ≥ ε. Therefore, F is sensitive.

(⇒) Assume G is not sensitive. Let ε = 2−k > 0; then ∃ x ∈ AZ and δG = 2−m > 0

such that for all y ∈ BδG
(x) ⊆ AZ , the iterates of x and y under G stay close; d(Gnx,Gny) < ε

for all n ≥ 0. Take z ∈ AZ
2

such that Hjz = x for all |j| ≤ max{k,m}. That is, z is a

point in the infinitely wide cylinder set


















x

x

...

x

x


















,
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having the central 2k + 1 and 2m + 1 rows all equal to the one-dimensional sequence x.

Now take δ = min{δG, ε}.

Claim: ∀ y ∈ Bδ(z) ⊆ AZ
2

, d(F ny, F nz) < ε for all n ≥ 0.

Let y ∈ AZ
2

such that d(y, z) < δ. Then for |j| ≤ m, k, we have

d(Hjy,Hjz) = d(Hjy, x) < δ. So for these j,

(5.1) d(Gn ◦ Hjy,Gn ◦ Hjz) < ε ∀ n ≥ 0.

That is, for |i| ≤ k, (Gn ◦ Hjy)i = (Gn ◦ Hjz)i for all n ≥ 0. Thus, for |i|, |j| ≤ k,

(F ny)i,j = (F nz)i,j for all n ≥ 0, or d(F ny, F nz) < ε for all n ≥ 0. Therefore, F is not

sensitive. ¤

Another way to construct new sensitive CA’s from old ones is by taking products of

CA’s, at least one of which is sensitive. Let A be a finite alphabet, let D ≥ 1, and let

F1, F2 : AZ
D

→ AZ
D

be two cellular automata. The aim is to define a CA F := F1 × F2

on the space (A × A)Z
D

, where a point in (A × A)Z
D

has a pair of values from A, (a1, a2),

at each coordinate of ZD. In order to do so, let P1 : (A×A)Z
D

→ AZ
D

be the projection

map onto the first component, and similarly let P2 : (A × A)Z
D

→ AZ
D

be projection

onto the second component. Now we define F : (A × A)Z
D

→ (A × A)Z
D

by

(5.2) (Fx)~ı = ([F1 ◦ P1x]~ı, [F2 ◦ P2x]~ı) .

Using the local rules of F1 and F2, we see that F is actually a cellular automaton. Notice

that, for j ∈ {1, 2}, as (Fj ◦Pj x) and (Pj ◦Fx) both represent the jth component of Fx,

we have (Pj ◦ F nx) = (F n
j ◦ Pj x).
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Proposition 5.1.2. Let F1, F2 : AZ
D

→ AZ
D

be any cellular automata, and let

F := F1 ×F2 : (A×A)Z
D

→ (A×A)Z
D

be the cellular automaton defined in (5.2). Then

if either F1 or F2 is sensitive, F is sensitive as well.

Proof. Suppose, without loss of generality, that F1 is a sensitive CA. Then by definition,

there exists ε0 > 0 such that for all z ∈ AZ
D

and all δ > 0, there exists y ∈ AZ
D

with

d(z, y) < δ such that d(F n
1 z, F n

1 y) ≥ ε0 for some n ≥ 0. We show that ε0 is a sensitive

constant for F also. Let x ∈ (A × A)Z
D

, and fix δ > 0. Then there exists y ∈ AZ
D

and

n0 ≥ 0 such that d(P1x, y) < δ, but d(F n0

1 ◦ P1x, F n0

1 y) ≥ ε0. Let w ∈ (A×A)Z
D

be given

by P1w = y and P2w = P2x. Thus we have,

(5.3) d(x,w) = max {d(P1x, P1w), d(P2x, P2w)} = {d(P1x, y), 0} = d(P1x, y) < δ.

But also,

d(F n0x, F n0w) = max {d(P1 ◦ F n0x, P1 ◦ F n0w), d(P2 ◦ F n0x, P2 ◦ F n0w)}

= max {d(F n0

1 ◦ P1x, F n0

1 ◦ P1w), d(F n0

2 ◦ P2x, F n0

2 ◦ P2w)}

= max {d(F n0

1 ◦ P1x, F n0

1 y), d(F n0

2 ◦ P2x, F n0

2 ◦ P2x)}(5.4)

= max {d(F n0

1 ◦ P1x, F n0

1 y), 0}

= d(F n0

1 ◦ P1x, F n0

1 y) ≥ ε0.

Therefore, F is sensitive with constant ε0 also. ¤

We defer examples of this type to Section 5.3.
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5.2. Topologically Transitive Cellular Automata

Recall that a dynamical system (Y, T ) is transitive if there is a point y ∈ Y with

a dense forward orbit. We discuss transitivity here since transitive CA’s on a one-

dimensional full shift space are sensitive [19]. We generalize the proof of this result

so that in higher dimensions as well, a transitive CA must be sensitive if the underlying

subshift space is infinite.

Theorem 5.2.1. Let F : AZ
D

→ AZ
D

be a cellular automaton and suppose X ⊆ AZ
D

is an F -invariant subshift. If (X,F ) is transitive, then it is either sensitive or consists

of a single periodic orbit.

Proof. Suppose that (X,F ) is transitive but not sensitive. By a result of Glasner and

Weiss, (Lemma 1.2, [11]), (X,F ) is uniformly rigid. That is, there exists a sequence nk →

such that {F nk} tends uniformly to the identity on X. So for ε = 1, there is an n ≥ 0

so that for all x ∈ X, d(F nx, x) < 1. That is, (F nx)~0 = x~0 for all x and this n. Now for

any integer vector ~ı ∈ ZD and all x ∈ X we have

(5.5) (F nx)~ı = (σ~ı ◦ F nx)~0 = (F n ◦ σ~ı x)~0 = (σ~ı x)~0 = x~ı.

Therefore, F n = Id, and so X must consist of a single periodic orbit. ¤

Corollary 5.2.2. Every cellular automaton on an infinite subshift space which is

transitive is also sensitive.

Proof. This is clear, since the only alternative to a transitive CA being sensitive is that

the subshift must consist of a single periodic orbit. However, this would then make the

subshift space finite. ¤
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We can say even more about transitive CA’s, following a result for a general dynamical

system. Theorem 5.2.3 appears regularly in the literature without proof, so we include

one.

Theorem 5.2.3. Let (X,T ) be a dynamical system with no isolated points. If T is

transitive, T is also surjective.

Proof. Let x ∈ X be the point with a dense forward orbit and let y ∈ X be arbitrary.

Then we have a sequence of iterates, {T nk(x)}, nk > 0, which converges to y. Con-

sider the sequence {T nk−1(x)}. Since X is compact, there is a convergent subsequence,

{T nki
−1(x)} → x0. Continuity of T implies that

(5.6) {T (T nki
−1x)} = {T nki (x)} → T (x0).

Then as X is a metric space, the limit of this sequence is unique, and so T (x0) = y. Thus

T is surjective. ¤

Corollary 5.2.4. Every cellular automaton on an infinite subshift space which is

transitive is surjective.

5.3. Examples of Sensitive Cellular Automata

We illustrate the ideas brought out in the preceding sections with examples.

Example 5.3.1. Let A be any finite alphabet, D ≥ 1, and ~v ∈ ZD any vector. Then

the directional shift σ~v is sensitive on the full shift space AZ
D

, with sensitive constant

ε = 1. For, given any x and any δ = 2−k > 0, take a point y ∈ AZ
D

such that the

central pattern y|∏D
j=1

〈−k,k〉 agrees with x, but having y~ı 6= x~ı for all ||~ı || ≥ k + 1. Then,
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as y is shifted in the direction of ~v, these discrepancies will be closer to the origin,

resulting in relatively large distances between the iterates of x and of y. In fact, we have

d
(
σk+1

~v x, σk+1
~v y

)
= 1, since

(
σk+1

~v x
)

~0
= x(k+1)·~v and ||~v|| ≥ 1 ⇒ ||(k + 1) · ~v|| ≥ k + 1.

Example 5.3.2. Let A be any finite alphabet, D ≥ 1, and ~v ∈ ZD any vector. By

Proposition 5.1.2, the CA σ~v × I is sensitive on (A × A)Z
D

, where I is the identity

map. This CA is easily seen to be surjective, since both σ~v and I are surjective on AZ
D

.

However, I is not transitive, and so σ~v × I is not transitive either.

Example 5.3.3. Let X{

11,
1
1

} ⊆ {0, 1}Z
2

be the two-dimensional Golden Mean sub-

shift space as in Example 2.3.3. We claim that for any vector ~v ∈ ZD, σ~v is sensitive. We

cannot simply refer to the discussion in Example 5.3.1 on this subshift space, since we

could potentially be creating points y ∈ {0, 1}Z
2

\ X{

11,
1
1

} by changing all the values of

a given x outside the central k × k region. However, given an x ∈ X{

11,
1
1

} and δ = 2−k,

choose y 6= x ∈ AZ
2

such that y|∏D
j=1

〈−k,k〉 = x|∏D
j=1

〈−k,k〉 as follows. If x has a 1 outside

this central δ region in the ~v direction, that is, if xj~v = 1 for some j ∈ Z, then take

yj~v = 0 and y~ı = x~ı for all other ~ı 6= j~v. For such x, y ∈ X{

11,
1
1

}, we have d(x, y) < δ

and d(σj

~vx, σj

~vy) = 1. If x does not have a 1 outside the central k × k region in the ~v

direction, that is if xj~v = 0 for all j ∈ Z, then take yj~v = 1 for all ||j~v|| ≥ k+2 and y~ı = 0

for all other ~ı. Then y ∈ X{

11,
1
1

}, d(x, y) < δ, and d(σk+2
~v x, σk+2

~v y) = 1. Therefore, σ~v is

sensitive on X{

11,
1
1

} with constant 1.

Example 5.3.4. Let A = {0, 1}, and consider the space X ⊆ (A × A)Z
2

defined by

(5.7) X =

{

x ∈ (A × A)Z
2

: P1x, P2x ∈ X{

11,
1
1

}

}

.
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Now on X , we have the product CA σ~v × G, where G : X{

11,
1

1

} → X{

11,
1

1

} is the

CA given in Example 2.3.3 and ~v ∈ ZD is any integer vector. Since σ~v was seen to

be sensitive in Example 5.3.3, then σ~v × G is also sensitive by Proposition 5.1.2. As

discussed in Example 5.3.3, G is not surjective; let y ∈ X{

11,
1

1

} be a point which is not

in the image of G. Then for any x ∈ X{

11,
1

1

}, the point w ∈ X having P1w = x and

P2w = y will not be in the image of σ~v ×G. Therefore, σ~v ×G is not surjective and thus

not transitive.
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CHAPTER 6

Expansive Properties

We now turn to a discussion of expansive cellular automata, where the dimension of

the underlying shift space plays a much larger role. By a result of Shereshevsky, there

are no expansive cellular automata on any full shift space in dimension D ≥ 2. Further,

if F : X → X is an expansive cellular automaton, where X ⊆ AZ
D

with D ≥ 2, then

the underlying shift action on X must have entropy zero [31]. Using complete history

spaces (in the language of Milnor, [24]) we show that there are subshift spaces in all

dimensions which have expansive CA’s. To get such spaces, we use complete histories,

first under directional shifts, and then under any bijective CA. We raise the question of

whether any complete history space coming from a CA has expansive directional shifts,

and give some partial answers. To this end, we show that the shift action has entropy

0 on such spaces, and so an expansive CA could exist on this space. We conclude with

some concrete examples of spaces which do have expansive directions. This results in a

construction of an expansive CA on some subshift X ⊆ AZ
D

for each D, in contrast to

the result in [31].

6.1. Expansive Cellular Automata on Subshift Spaces

We first introduce some notation. For j ∈ Z, let πj : AZ
D+1

→ AZ
D

be the restriction

map onto the jth D-dimensional Euclidean subspace, given by (πj x)(i1,··· ,iD) = x(i1,··· ,iD,j).



When D = 1, πj gives the jth row of a point of AZ
2

, when D = 2, πj gives the jth plane

of a point of AZ
3

, and so on.

Let F : AZ
D

→ AZ
D

be a cellular automaton. We will define a (D + 1)-dimensional

subshift space of complete histories,

(6.1) XF = {x ∈ AZ
D+1

: ∀ j ∈ Z, πjx = F ◦ πj+1x}.

Thus, a point in XF consists of an orbit of a D-dimensional point under F . If F is not

invertible, then there will be multiple points in XF with equal “half histories;” that is,

for k ∈ Z, there are points x 6= y ∈ XF with πjx = πjy for all j ≤ k.

We will use complete history spaces to inductively build up subshift spaces in all

dimensions which have expansive CA’s. The maps will be simply directional shifts.

Since these are components of the ZD shift action, σ, we first introduce expansivity for

higher dimensional actions, as given by Boyle and Lind [3], for our setting.

Let ‖ · ‖ denote the Euclidean norm on RD, and for a vector ~w ∈ RD and a linear

subspace V ⊆ RD, define the distance from ~w to V to be

(6.2) dist(~w, V ) = inf{‖~v − ~w‖ : ~v ∈ V }.

For each linear subspace V and t > 0, define V t = {~w ∈ RD : dist(~w, V ) ≤ t} to be a

thickening of V by t. If W is any closed subset of RD, consider the following new function

on AZ
D

× AZ
D

:

(6.3) dW
σ (x, y) = sup{d(σ~ı x, σ~ı y) : i ∈ W ∩ ZD}.

If W ∩ ZD = ∅, then set dW
σ (x, y) = 0.
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A subspace V ⊆ RD is said to be expansive for σ if there exist ε, t > 0 such that

dV t

σ (x, y) ≤ ε implies x = y. We say that the ZD action σ is expansive if RD is an

expansive subspace for σ; that is, if there exists an expansive constant, ε > 0, such that

d(σ~ı x, σ~ı y) ≤ ε for all ~ı ∈ ZD implies x = y.

Clearly, the ZD shift action, σ, is expansive on any subshift space X ⊆ AZ
D

, using

ε = 1. Combining this new definition with our earlier terminology, a directional shift, σ~ı ,

is expansive if the one-dimensional subspace of RD generated by the directional vector ~ı

is an expansive subspace for the ZD action σ.

The main result that we use to find expansive directions for the shift is that these

directions are all determined by the expansive subspaces of co-dimension 1.

Theorem 6.1.1 (Boyle, Lind [3]). A directional shift, σ~ı , is expansive on any infinite

subshift space, X ⊆ AZ
D

, if and only if the direction vector, ~ı , lies in an expansive

subspace V ⊆ RD which has dimension D − 1.

The following result tells us that we always obtain expansive subspaces of co-dimension

1 on complete history subshift spaces coming from a bijective CA.

Theorem 6.1.2. Let X ⊆ AZ
D

be a subshift, let F : X → X be a bijective cellular

automaton, and let XF ⊆ AZ
D+1

be the subshift space of complete histories under F .

Then the following subspace is expansive for the ZD+1 shift action:

V = {(i1, · · · , iD, 0) : ij ∈ Z ∀ j = 1, · · · , D} ⊆ ZD+1.

Proof. Suppose x, y ∈ XF are such that d(σ~ı x, σ~ı y) < 1 for all ~ı ∈ V . That is,

x and y agree in all coordinates of the form (i1, · · · , iD, 0), for any integers ij. Since

πjx = F ◦ πj+1x and πjy = F ◦ πj+1y by the definition of the space XF , we further have
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that x and y agree on all coordinates of the form (i1, · · · , iD, iD+1), where iD+1 < 0.

But as F is bijective, F−1 is uniquely defined and so we have both F−1 ◦ πjx = πj+1x

and F−1 ◦ πjy = πj+1y. Thus x and y also must agree on coordinates of the form

(i1, · · · , iD, iD+1) where iD+1 > 0. Hence x = y, and so the subspace V is expansive for

the ZD+1 shift. ¤

Combining Theorems 6.1.1 and 6.1.2, we have the following result regarding expansive

directional shifts.

Corollary 6.1.3. Let X ⊆ AZ
D

be a subshift, let F : X → X be a bijective cellular

automaton, and let XF ⊆ AZ
D+1

be the subshift space of complete histories under F .

Then for any ~ı = (i1, · · · , iD, 0) ∈ ZD+1, σ~ı is an expansive CA on XF .

We remark that Theorem 6.1.2 is false if F is not bijective. Consider the one-

dimensional CA L : {0, 1}Z → {0, 1}Z by (Lx)i = xi + xi+1 (mod 2). This gives rise

to the two-dimensional complete history space

(6.4) XL =
{

x ∈ {0, 1}Z
2

: xi,j + xi+1,j + xi,j−1 ≡2 0
}

.

The subspace V = {(i, 0) : i ∈ Z} is not expansive for the two-dimensional shift, however.

For, suppose x, y ∈ XL have d(σ(i,0)x, σ(i,0)y) < 1 for all i ∈ Z. In particular, x(i,0) = y(i,0)

for all i ∈ Z, or π0x = π0y. Then as XL is a complete history space, we have πjx = πjy

for all j ≤ 0, or x(i,j) = y(i,j) for all i ∈ Z and j ≤ 0. Now since L is a two-to-one

map, there exists a z 6= π1y ∈ {0, 1}Z with Lz = π0x. Further, there are two points in

{0, 1}Z which L maps to z and two which are mapped to π1y, and so on, so that there

are infinitely many different points y′ ∈ XL having σ(i,0)x = σ(i,0)y
′ for all i ∈ Z.

64



Now we establish our main theorem, that there are subshift spaces in all dimensions

on which there are expansive CA.

Theorem 6.1.4. For any D ≥ 1, there exists a subshift space X ⊆ AZ
D

and a cellular

automaton F : X → X such that F is expansive.

Proof. We will prove this by induction on D. For D = 1, the shift map, σ, is expansive

on any full shift space. For if all iterates of x and y agree on the central coordinate

(ε = 1), then all coordinates of x and y are equal, and x = y.

Assume that for D ≥ 1, X ⊆ AZ
D

is a subshift space and ~v is an expansive di-

rection for the ZD shift map on X. That is, the CA σ~v is expansive on X. Now let

Xσ~v
⊆ AZ

D+1

be the complete history space under σ~v. Since σ~v is bijective for any

~v ∈ ZD, then by Corollary 6.1.3, we have many expansive CA’s σ~ı on Xσ~v
⊆ AZ

D+1

,

where ~ı = (i1, · · · , iD, 0) ∈ ZD+1. Therefore, the statement holds for all dimensions

D ≥ 1. ¤

As in Theorem 6.1.4 we can construct a subshift space in any dimension with an

expansive shift direction by starting with a shift on a one-dimensional full shift space,

choosing an expansive shift direction in the two-dimensional subshift space of complete

histories, and continuing to choose expansive directions as we move up one dimension

at a time. Alternatively, we do not always have to begin in dimension one; if we begin

with a bijective CA on a subshift space in dimension D, we obtain many expansive

directions on the complete history space in dimension D + 1 coming from this CA by

Corollary 6.1.3. For example, any one of the cyclic CA’s in dimension D could be a

starting point for this construction. Let A = Zm be the finite group of integers mod m,

and let C : AZ
D

→ AZ
D

be given by (Cx)~ı = x~ı + 1 (mod m). C has radius 0, and thus
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is equicontinuous as in Example 3.2.3. C is injective, since the map B : AZ
D

→ AZ
D

defined by (By)~ı = y~ı − 1 (mod m) is clearly an inverse for C. Then by Theorem 2.2.3,

C is also surjective; C is thus a bijection.

6.2. Entropy of Complete History Spaces

We now look beyond the case of having a bijective CA on a subshift space in dimension

D, and consider the subshift space of complete histories in dimension D + 1 coming

from an arbitrary CA. Does such a space always have expansive directions for the shift?

Certainly, there are some spaces which do; the complete history space XL defined by

Equation (6.4) has many, these are addressed in the following section. To begin, we show

that such any complete history space has entropy 0 with respect to the D-dimensional

shift action, so that it is at least possible for an expansive CA to exist on such a space.

We use the following definition of (topological) entropy of σ, given in [21]. Let

X ⊆ AZ
D

be a subshift space, and denote by

(6.5) (X)|∏D+1

j=1
〈0,n−1〉 = {x|∏D+1

j=1
〈0,n−1〉 : x ∈ X}

the set of all hypercube patterns of side length n occurring in points of X. The entropy

of the shift action on X, or the entropy of X is given by

(6.6) h(σ,X) = h(X) = lim
n→∞

1

nD+1
log

∣
∣
∣(X)|∏D+1

j=1
〈0,n−1〉

∣
∣
∣ .

That is, the entropy of a shift space is the exponential asymptotic growth rate of the

number of patterns occurring in points of the space. By building a complete history space

from any CA in any dimension, we substantially limit the number of patterns which can
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occur in the higher dimensional space, and it turns out that the ZD+1 shift action has

entropy 0 on a complete history space.

Theorem 6.2.1. Let F : AZ
D

→ AZ
D

be a cellular automaton and let XF ⊆ AZ
D+1

be the subshift space of complete histories under F . Then the ZD+1 shift action, σ, has

entropy 0 on XF .

Proof. Let n ≥ 1, and let x ∈ XF . In order to compute the entropy of the shift action on

XF , we will consider the possibilities for x(i1,i2,··· ,iD+1), where 0 ≤ i1, i2, · · · , iD+1 ≤ n − 1.

First, consider iD+1 = n−1, the “top” level of this hypercube. We have no restrictions

on what values can occur in these nD positions, since the full shift space is the domain

of F . Since every CA is conjugate to a CA with radius 1 by a relabeling of the alphabet,

we will assume that r = 1. So, this choice of values will determine the values at the level

where iD+1 = n − 2 in a hypercube with side length n − 2, the values at the level where

iD+1 = n − 3 in a hypercube with side length n − 4, and so on, so that a hyperpyramid

of values is determined from this initial choice. Illustrated in Figure 6.1 for D = 1, the

choice of values in a line determines a triangle, and illustrated in Figure 6.2 for D = 2,

the choice of values in a square determines a pyramid.

Next we consider iD+1 = n − 2. Most of the values have been determined by the

image of F , but a “ring” of nD − (n− 2)D positions remains independent of our previous

choice. Notice that for D = 1, there are just 2 such positions, the leftmost and rightmost

coordinates in the line. These values, along with the ones chosen previously, are all

F needs to determine another layer of the hyperpyramid. See Figures 6.3 and 6.4 for

illustrations in two and three dimensions.
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Figure 6.1. D = 1: Values

in a line determine a triangle

Figure 6.2. D = 2: Values

in a square determine a pyra-

mid

When iD+1 = n − 3, we have the same sized ring of nD − (n − 2)D positions whose

values are independent of our previous choices. Again, from these values, F will determine

another layer on the hyperpyramid. We see that this will occur for each iD+1 between

0 and n − 2. Thus we have choice of nD values when iD+1 = n − 1, and choice of

nD − (n − 2)D values when 0 ≤ iD+1 ≤ n − 2. As we are working on the full shift space,

all patterns are allowed, and so we have:

(6.7)
∣
∣
∣{x|∏D+1

j=1
〈0,n−1〉 : x ∈ XF}

∣
∣
∣ = |A|n

D+(n−1)·(nD−(n−2)D).

Substituting (6.7) into the entropy definition in (6.6) and simplifying, we have the

following computation for entropy:
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Figure 6.3. D = 1: Values in outer coordinates determine layers of a triangle

Figure 6.4. D = 2: Values in a square ring determine layers of a pyramid

h(XF ) = lim
n→∞

1

nD+1
log

∣
∣
∣(XF )|∏D+1

j=1
〈0,n−1〉

∣
∣
∣(6.8)

= lim
n→∞

1

nD+1
log |A|n

D+(n−1)·(nD−(n−2)D)(6.9)

= lim
n→∞

nD + (n − 1)(nD − (n − 2)D)

nD+1
log |A|(6.10)

= log |A| · lim
n→∞

nD + (n − 1)
(

nD −
∑D

k=0

(
D

k

)
nk(−2)D−k

)

nD+1
(6.11)

= log |A| · lim
n→∞

nD + (n − 1)
∑D−1

k=0

(
D

k

)
nk(−2)D−k

nD+1
(6.12)

= log |A| · 0 = 0,(6.13)
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since the polynomial in the numerator of (6.12) has degree D and the polynomial in

the denominator of (6.12) has degree D + 1. ¤

6.3. A Class of Examples Having Expansive Directions

We next consider a class of two-dimensional examples of Kitchens and Schmidt, de-

scribed here in the setting of complete history spaces. In [17], Kitchens and Schmidt

determine all of the expansive directions on particular subshifts of {0, 1}Z
2

defined by a

local condition; we state their result in a more restricted setting, where a one-dimensional

additive cellular automaton gives a two-dimensional complete history space which satis-

fies their condition.

By a one-dimensional additive CA of radius r, we mean that F : AZ → AZ has the

form (Fx)i =
∑r

j=−r cj·xj, where each cj is either 0 or 1. Let m = min{j ∈ [−r, r] : cj 6= 0}

denote the memory of F and a = max{j ∈ [−r, r] : cj 6= 0} the anticipation of F . The

next result states that for an additive CA F : {0, 1}Z → {0, 1}Z, almost every direction

~ı ∈ Z2 is an expansive direction on the complete history space XF ⊆ {0, 1}Z
2

.

Theorem 6.3.1 (Kitchens, Schmidt [17]). Let F : {0, 1}Z → {0, 1}Z be an additive

cellular automata with memory m and anticipation a, and let XF ⊆ {0, 1}Z
2

be the com-

plete history space under F . For any ~ı ∈ Z2\{±(1, 0),±(−m, 1),±(a, 1)}, the directional

shift σ~ı is expansive on XF .

Example 6.3.1. Recall the two-to-one CA L : {0, 1}Z → {0, 1}Z described in the

discussion following Corollary 6.1.3; (Lx)i = xi + xi+1 (mod 2). First, note that L is

not expansive, as given any ε = 2−k > 0, we can choose x 6= y that agree on the right

tails, x〈−k,∞) = y〈−k,∞); these points have all of their iterates within ε. L is sensitive,
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however, since a difference on the right will propagate to the central coordinate. We

see that L is an additive CA with memory 0 and anticipation 1, so that there are many

directional shifts on the complete history space XL ⊆ {0, 1}Z
2

defined in Equation (6.4).

The directional shift σ~ı is expansive on XL for any ~ı /∈ {±(1, 0),±(0, 1),±(1, 1)}, by

Theorem 6.3.1. Now by choosing any such i, the complete history subshift space under

σ~ı in {0, 1}Z
3

will have expansive directions, and we can continually apply Corollary

6.1.3, ultimately giving an expansive CA on a D-dimensional subshift space.

Theorem 6.3.1 provides another way to begin the induction in the proof of Theo-

rem 6.1.4 without using the one-dimensional shift to get expansive directions on two-

dimensional subshift spaces. In the proof of Theorem 6.1.4, we obtained a subshift space

in dimension D with expansive directions by starting on a one-dimensional space and

taking the complete history space under an expansive shift direction at each step until

we arrived in dimension D. In Example 6.3.1, we begin with an additive CA in dimension

one to get many expansive directions on the two-dimensional subshift space from which

to choose how to inductively increase the dimension of the CA. Using Theorem 6.3.1,

any additive CA gives rise to an expansive direction on a D-dimensional subshift space

in the same way. Both of these approaches to a construction of a D-dimensional subshift

space with an expansive direction start in dimension one.
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CHAPTER 7

Conclusion

In [20], Kůrka gives a diagram showing the interaction of topological properties for

one-dimensional cellular automata. We give analogous diagrams illustrating the relation-

ships among the topological properties for higher dimensional cellular automata; Figure

7.1 is for the case where the base space is a full shift space and Figure 7.2 is for the case

where the base space is a subshift spaces with dense σ-periodic points.

Sensitive Dependence
on Initial Conditions

Existence of a Blocking Pattern

Almost Equicontinuous

Existence of a Fully
Blocking Pattern

Every Big Enough

Pattern is

Fully Blocking

Equicontinuous = Pre-Periodic

Periodic

Surjective

Topologically
Transitive σ~v

L
M

E

I

E2
O

P Rσ~v × I

Figure 7.1. Classification of CA’s on AZ
D



Sensitive Dependence
on Initial Conditions

Existence of a Blocking Pattern

Almost Equicontinuous

Equicontinuous = Pre-Periodic

Periodic

Surjective

Topologically
Transitive

Expansive

σ~v × G

σ~v

G

O

I

σ~v × I

Figure 7.2. Classification of CA’s on X ⊆ AZ
D

Corollary 7.1. The diagrams in Figures 7.1 and 7.2 summarize the following results

from previous chapters:

(1) Every almost equicontinuous CA is not sensitive (Theorem 4.2.1).

(2) Every CA which is not sensitive has a rD-blocking pattern (Theorem 4.2.2).

(3) Every CA which has a fully blocking rD pattern is almost equicontinuous (The-

orem 4.2.3).

(4) Every CA in which every kD pattern, k ≥ r, is fully blocking is equicontinuous

(Theorem 4.2.5).

(5) Every equicontinuous CA is eventually periodic (Theorem 3.1.2).

(6) Every surjective, equicontinuous CA is periodic (Theorem 3.1.3).
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(7) Every topologically transitive CA is both sensitive and surjective (Corollaries

5.2.2, 5.2.3).

(8) In every dimension, there exists a subshift space having an expansive CA (The-

orem 6.1.4).

Additionally, we have examined these properties in the context of numerous concrete

examples. The letters in Figures 7.1 and 7.2 correspond to examples treated, and prove

the non-empty overlap of some of the topological classes.

Corollary 7.2. The non-emptiness of various topological classes is provided by the

following examples:

I: The identity CA of Example 3.2.1 is equicontinuous, surjective, and periodic,

and every 1D pattern is fully blocking.

O: The zero CA of Example 3.2.2 is equicontinuous and pre-periodic, and every 1D

pattern is fully blocking, but it is neither surjective nor periodic.

E: Example 3.2.4 is equicontinuous and pre-periodic, but it is neither surjective nor

periodic, and while every long enough word is blocking, there are arbitrarily large

words which are not fully blocking.

E2: The two-dimensional version of E given in Example 3.2.5 is also equicontinuous

and pre-periodic, neither surjective nor periodic, and there are arbitrarily large

patterns which are not fully blocking.

G: On the two-dimensional Golden Mean shift space, the CA of Example 4.3.1 has a

fully blocking pattern and is almost equicontinuous, but is neither equicontinuous

nor surjective.
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R: Example 4.3.2 has a fully blocking pattern and is almost equicontinuous, but is

not surjective.

M : The majority CA of Example 4.3.3 has no fully blocking k × k patterns, but has

a pattern which blocks a cross containing a 1 × 1 square and is almost equicon-

tinuous; it is neither equicontinuous nor surjective.

P : The moving particles CA of Example 4.3.4 has a fully blocking pattern and is

almost equicontinuous, but is neither equicontinuous nor surjective.

σ~v: The directional shift CA’s, Example 5.3.1, are topologically transitive, surjective

and sensitive. Additionally, σ : AZ → AZ is expansive. Further, these CA are

sensitive and surjective on the Golden Mean subshift space, Example 5.3.3.

S: The sum CA of Example 2.3.1 is expansive, transitive, sensitive and surjective.

σ~v × I: The product CA of Example 5.3.2, product of a directional shift and the identity,

is surjective and sensitive, but is not transitive.

σ~v × G: The product CA of Example 5.3.3 is sensitive, but is neither surjective nor tran-

sitive on the subshift space X .

L: The additive CA of Example 6.3.1 is sensitive but not expansive, and is surjec-

tive.

We have given a topological classification of cellular automata both on full shift

spaces, AZ
D

in dimension D ≥ 2, and on subshift spaces, X ⊆ AZ
D

, based on the

topological classification of cellular automata F : AZ → AZ given in [20]. Some facts

generalize from the one-dimensional results: an equicontinuous CA is eventually periodic,

an equicontinuous and surjective CA is periodic, an attracting periodic point must be

fixed for the shift action and the CA, a periodic point for the shift is eventually periodic
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under the CA, and a transitive CA is both sensitive and surjective. What differs in higher

dimensions is the notion of blocking and the existence of expansive CA’s.

In dimension one, a CA is either almost equicontinuous or it is sensitive; this di-

chotomy is proven via the existence of a blocking word for a CA which is not sensitive.

In higher dimensions, we do not know that the existence of a blocking pattern which is

not fully blocking will guarantee that the CA is almost equicontinuous. Certainly, such

a pattern will allow the construction of a point of equicontinuity for the CA. However,

we obtained a sufficient condition, that there exists a fully blocking pattern, for a CA in

higher dimensions to be almost equicontinuous. This condition is not necessary, though,

as we have given examples of CA’s on {0, 1}Z
2

which are almost equicontinuous but do

not have any fully blocking patterns. In dimension one, a CA is equicontinuous if and

only if every long enough word is blocking. In higher dimensions, we have shown that

if every big enough pattern is fully blocking, then the CA is equicontinuous. Again, we

have established that this is not a necessary condition for higher dimensions, by providing

an example of an equicontinuous two-dimensional CA that has arbitrarily large patterns

which are not fully blocking.

In dimension one, the shift map on any full shift space is one example of an expansive

CA. There can be no expansive CA’s on any full shift space in dimension D ≥ 2, as Shere-

shevsky has shown. However, we have constructed a subshift space in every dimension on

which there is an expansive CA. We accomplished this by taking an expansive direction

for the shift action in dimension D and building the complete history space as a subshift

space in dimension D + 1. Shereshevsky has also determined that if F : X → X is an

expansive CA, where X ⊆ AZ
D

, then the entropy of the ZD shift action must be 0 on
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X. We have identified a class of subshift spaces on which expansive CA’s may exist, by

showing that a complete history space arising from any surjective CA will have entropy

0 with respect to the shift action.
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CHAPTER 8

Future Directions

We are interested in continuing to refine our topological classification. We have shown

that there is a subshift space in every dimension on which there exists an expansive

direction for the shift action. Further, we have shown that from a cellular automaton in

any dimension D, the complete history space in dimension D + 1 has entropy 0, so that

expansive directions can exist on this subshift space; we would like to determine whether

all such subspaces have an expansive direction for the shift. Recall that Kitchens and

Schmidt gave a class of subshift spaces X ⊆ {0, 1}Z
2

with many expansive directions

[17]; we plan to apply their techniques to higher dimensions in order to determine the

expansive directions for subshift spaces of {0, 1}Z
D+1

defined in a similar manner. That

is, if F : {0, 1}Z
D

→ {0, 1}Z
D

is defined by adding (mod 2) the coordinates in a shape,

then we would like to show that the complete history space XF ⊆ {0, 1}Z
D+1

has many

expansive directions.

We have shown implications among the properties of the existence of a fully-blocking

pattern, almost equicontinuity, not having sensitive dependence on initial conditions, the

existence of an equicontinuity point, and the existence of a blocking pattern which is not

necessarily fully-blocking. We would like either to prove the final implication, making

all of the statements equivalent, or to produce an example which has both a point of



equicontinuity and a blocking pattern, but does not have any fully-blocking patterns. A

possibility to address this question is to apply some techniques from percolation theory.

Although many topological properties were investigated in the thesis, we aim to con-

sider the role of both open and closing cellular automata in higher dimensions. An open

dynamical system, (Y, T ), is one for which T (U) is open for all open sets U ⊆ Y . Hedlund

showed that F : AZ → AZ is open if and only if there is a constant m > 0 such that

|F−1x| = m for all x ∈ AZ [12]. A CA F : AZ → AZ is right closing (respectively, left

closing) if for every pair of points x 6= y ∈ AZ such that xn = yn for all n ≤ m for some

m ∈ Z (respectively, for all pairs x 6= y ∈ AZ such that xn = yn for all n ≥ m for some

m ∈ Z), Fx 6= Fy. That is, F is a right (left) closing CA if all points x and y which

agree on a left (right) tail and have Fx = Fy also have x = y. A CA is closing if it is

either left closing or right closing. Kůrka has shown that for every CA F : AZ → AZ ,

F being open implies F is closing, F being closing implies F is surjective, and F being

open and almost equicontinuous implies F is bijective [20]. We are interested to see if

these implications hold in higher dimensions as well.

In addition to the investigation of topological properties, a lot of measure-theoretic

work has been done in one dimension. Gilman has shown that every CA F : AZ → AZ

is either essentially equicontinuous or almost expansive. That is, it is equicontinuous on

closed, invariant sets of measure arbitrarily close to 1; or, there is an expansive constant

ε > 0 so that for all x ∈ AZ , the set of points y ∈ AZ having d(F nx, F ny) < ε for all n ≥ 0

has measure 0. We extended this result to the case of irreducible shifts of finite type in

[8], and refer the reader there for further definitions, results, and proofs. In order to state

the one-dimensional measure-theoretic classification, we recall the following definitions
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and notation. Let F : X → X be a CA on a subshift X ⊆ AZ , and for any x ∈ X

and any interval I = [a, b], define θIx ⊆ (A|I|)N by (θIx)i = (F ix)a · · · (F
ix)b. That is,

θIx is a column of width I in the “forward history” subshift space in AZ
2

. Now define

DI(x) = {y ∈ X : θI(y) = θI(x)}, and consider the following hypothesis: F : X → X

is a CA with radius r on an irreducible subshift of finite type, X ⊆ AZ , of order l with

a stationary, fully-supported Markov measure µ. Once we fix such a measure on X, the

class to which a CA belongs is determined by the measure of its sets DI(x). In fact,

different µ can change the class to which a CA belongs. Define Condition (8.1) by:

(8.1) µ(DI(x)) > 0 for some x ∈ X and I of width at least max{l, 2r}.

Theorem 8.0.1 (Gilman [10], Gamber [8]). (a) If F satisfies Condition (8.1), then

∀ ε > 0, ∃ a closed, F -invariant subset Y ⊆ X such that µ(Y ) > 1 − ε and F |Y is

equicontinuous.

(b) If F does not satisfy Condition (8.1), then for each x ∈ X, for µ-a.e. y ∈ X,

∃ i > 0 such that d(F ix, F iy) ≥ 2−r.

As yet, we have not considered the possible measures on shift spaces in dimensions

two and higher; we anticipate that doing so will yield interesting results regarding the

properties of a CA. In addition to considering a measure-theoretic classification for cel-

lular automata in higher dimensions, there are topological properties which can be cast

in terms of a measurable property. For instance, it is known that a CA F : AZ
D

→ AZ
D

is surjective if and only if F preserves the uniform Bernoulli measure, µ, on AZ
D

, that

is, the product measure which arises from assigning probability 1
|A| to each a ∈ A. This

can be seen via the notion of balanced, as in Theorem 2.2.3. Since F is surjective if and
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only if |F−1p| = |A|(2k+3)D−(2k+1)D

for all patterns p ∈ P0,k, we see that F is surjective if

and only if µ(F−1p) = |A|(2k+3)D−(2k+1)D

· |A|−(2k+3)D

= |A|−(2k+1)D

, since all pre-image

patterns of p of size (2k + 1)D have the same µ measure. Then since µ(p) = |A|−(2k+1)D

,

F is surjective if and only if F preserves µ.

Finally, many physical applications of cellular automata were mentioned in the in-

troduction, and we anticipate exploring some of these in detail. In particular, there is a

specific model of HIV evolution in lymph nodes that appears in the literature [7]. The

purported advantage of using such a model as opposed to a traditional ODE approach is

that this CA captures the three phases of the illness, the initial infection which lasts a

few weeks, the latency stage which can last 5 to 10 years, and finally the onset of AIDS.

This model is the subject of Jessica Hubbs’ master’s project at UNC, Chapel Hill. We

are interested in exploring this model and some variations, as well as looking at some

other physical applications.
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