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ABSTRACT 

ALISON HARRILL: Toxicogenomic Analysis of Risk Factors that Predict Sensitivity to 
Acetaminophen-Induced Liver Injury Using a Mouse Model of the Human Population 

(Under the direction of Ivan Rusyn, M.D., Ph.D. and David Threadgill, Ph.D.) 
 
 

Recent advances in the field of genomics have led to an improved understanding of 

genomic structure and function in humans and model organisms. Effective utilization of 

genomic information in the toxicology field has the potential to significantly improve risk 

assessment; however, a major limitation is a lack of animal models that can identify 

genetic variants underlying inter-individual differences in toxicity. Current testing 

strategies fail to capture sufficient genetic diversity, leading to over-generalization of the 

results from single-strain studies when extrapolating risk to human populations. We 

hypothesized that using a panel of genetically diverse inbred mouse strains (or Mouse 

Model of the Human Population; MMHP), would enable detection of genetic loci that 

affect individual toxicity responses to a model toxicant, acetaminophen. In Aim 1, we 

demonstrated that MMHP mouse strains experienced a range of toxicity outcomes 

following equal acetaminophen doses, similar to the range of toxicity observed in human 

subjects. Haplotype-associated mapping and genetic sequencing within the MMHP 

yielded a genetic variant within the gene encoding CD44 that correlated toxicity 
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sensitivity in both mouse and man. The results of this study indicated that use of the 

MMHP facilitates detection of genetic variants affecting chemical toxicity. In Aim 2, 

population-based biomarkers of liver injury were determined by analyzing gene 

expression. Identified liver injury biomarkers included several genes involved in known 

cell death pathways. The signature also included genes that had not been previously 

linked to acetaminophen-induced liver injury, indicating that the model may provide a 

means for discovery of novel therapeutic targets. In Aim 3, the metabolism of 

acetaminophen was examined across selected mouse strains. Acetaminophen toxicity 

requires bioactivation of acetaminophen to a quinone radical; it is therefore necessary to 

demonstrate whether metabolic differences potentially affect genetically pre-determined 

injury outcomes within the MMHP. Strain differences in acetaminophen metabolism 

were not a determining factor in the overall liver injury outcome, further demonstrating 

the need for a genetically diverse mouse model to identify therapeutic targets. Overall, 

the data confirm that using the Mouse Model of the Human Population as a research 

paradigm has the potential to improve both toxicity risk assessment and mechanistic 

research. 
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A. INTEGRATING STRUCTURAL AND FUNCTIONAL GENOMICS APPROACHES 
WITH TOXICITY TESTING TO IMPROVE RISK ASSESSMENT 

Advances in genomics in recent decades have lead to exponential growth in the 

understanding of genome structure and function in both humans and model organisms. 

Due to the wealth of resources available, including databases of sequence variation and 

transcriptional changes following chemical exposure, both the pharmaceutical industry 

and agencies within the federal government have begun to invest more resources into 

using genomic tools to improve drug development and drug and chemical safety 

evaluation. Systems toxicology, or the integration of traditional toxicology approaches 

with the development and implementation of toxicogenomics, proteomics, and 

metabolomics, offers the promise of developing novel, reliable toxicity biomarkers and 

more accurate predictions of adverse health effects in humans. 

The need for development of sensitive biomarkers to predict drug toxicity was 

recently reinforced by the Food and Drug Administration (FDA) Critical Path Initiative 

which emphasizes the development of diagnostic tests to improve clinical trials and 

post-market surveillance1.  In 2005, the FDA released a final guidance document on 

genomic data submissions, Guidance for Industry: Pharmacogenomic Data 

Submissions2, and announced the creation of a new FDA program entitled the 

Interdisciplinary Pharmacogenomic Review Group3. The importance of genomic 

information in FDA regulatory decisions is reflected in the increasing voluntary inclusion 

of these types of data in FDA submissions3. To establish reliable protocols for data 
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analysis and quality control in genomics studies, several consortia have been 

established which include academia, industry, and government agencies such as the 

FDA, Environmental Protection Agency, the National Institute of Standards and 

Technology, and the National Institutes of Health4-6. In the near future, a strong 

understanding of genomic data and its potential uses will be critical to the drug 

development process and clinical practice. The background information for this 

dissertation focuses on the current progress in the application of genomic and genetic 

data to drug safety and highlights recent successes and current knowledge gaps in: 1) 

the discovery of toxicity biomarkers or gene signatures that correlate with toxicity using 

functional genomics techniques and 2) the identification of susceptible individuals 

using structural genomics techniques. Functional genomics techniques focus on 

determining those changes in gene expression that are elicited by a toxic insult. 

Structural genomics, on the other hand, focuses on determining how alterations in 

genomic architecture affect toxicity phenotypes (e.g. genetic sequence variations that 

affect drug metabolism). The basis for this work is underscored by the assertion that 

data from each of these approaches may be used to improve understanding of toxicity 

mechanisms within a biological system. 

 

B. FUNCTIONAL GENOMICS STRATEGIES TO DETERMINE TOXICITY 
BIOMARKERS 
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1.) Functional genomics allows for global gene transcript profiling of cellular 
toxicity responses 

The major challenge of toxicology today is the ability to extrapolate risk from 

experimental systems to human populations. Rodents are most frequently used for in 

vivo toxicity testing, yet there often are major differences in clearance, metabolic activity 

of enzymes and other key biological factors between species. While it is difficult to 

directly translate rodent findings to human populations, human testing is most often not 

an option. A solution to this problem is to develop biomarkers that are: i) predictive of the 

toxicity response, ii) sub-clinical in that biomarkers are detectable before overt toxicity, 

and iii) able to be assayed from a non-invasive tissue. Toxicogenomics approaches 

may be used to identify gene expression patterns or signatures indicative of adverse 

health events at low doses. However, to accomplish these goals, the gene expression 

changes (and associated pathways) that are best associated with impending pathology 

must be identified and separated from benign adaptive changes that are responsive to 

the chemical but are not associated with toxicity. 

At the forefront of these emerging technologies is the use of functional 

genomics or analysis of molecular perturbations as measured by transcriptomics and 

assayed by microarray technology.  Gene expression analysis using current microarray 

platforms that encompass whole genomes allows for a comprehensive picture of 

cellular responses7, especially when examined in concert with proteomic and 

metabolomic data. While early microarray experiments were often criticized as “fishing 
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expeditions”, current testing strategies enable the generation of testable hypotheses that 

aid in understanding the mechanism of toxicity8. The ultimate value of using transcript 

profiling data within the context of systems toxicology is that responses that are 

predictive of cellular injury can be sampled across doses, time points, and species, 

facilitating risk extrapolation to human populations. 

 

2.) Improving safety assessment through genomic profiling 

 Microarray profiling has become a major tool for the characterization of drug 

toxicities by allowing for large-scale determination of gene expression changes 

associated with a defined pathology. A key step in toxicogenomics is phenotypic 

anchoring, defined as the ability to link a chemically-elicited phenotype with gene 

expression changes9. Experimentally determined gene expression signatures can serve 

as a guide for determining biomarkers that are indicative of toxicological responses that 

may be as-yet sub-clinical, with no observable morphological changes10. To confirm the 

utility of the approach, Heinloth et al.11 demonstrated that patterns of gene expression 

perturbations observed at sub-toxic doses of acetaminophen in rats may indicate subtle 

cellular injury that was not detectable by overt pathology or clinical chemistry parameters 

within the liver. At toxic doses, expression changes in the same subset of genes 

associated with mitochondrial dysfunction and oxidative stress were more exaggerated 

and changes were detected in additional genes associated with these processes. These 
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data indicate that gene expression profiling has the potential to identify subtle markers of 

cellular injury that precipitate overt organ toxicity. 

 

3.) Identification of biomarkers of toxicity 

 Identification of sensitive biomarkers that will assist in monitoring drug therapy for 

evidence of toxicity or therapeutic outcome, and (in acute poisoning cases) to predict 

exposure levels, is a critical area where omics technologies can be applied. Genomic 

biomarkers of toxicity have recently been identified for a wide variety of toxicants 

including nephrotoxic agents12, testicular toxicants13, and for keratinocyte proliferation in 

papilloma murine skin model14, to name only a few.  The potential for using this 

technology to identify safety biomarkers is great and may help to create better 

diagnostic tools for the traditionally difficult task of toxicodynamic monitoring, such as in 

patients receiving immunosuppressive therapy15. 

The majority of recent investigations have used microarrays to study toxicity in 

target organ tissue or in cultured cells. While these experiments often yield important 

insight into the mechanism of toxicity, they provide limited information for monitoring 

drug safety in patient populations through non-invasive means. To address this 

limitation, Bushel et al.16 investigated the utility of measuring gene expression signatures 

in peripheral blood as an indicator of pathological changes in the liver following 

administration of varying doses of acetaminophen. In this study, a prediction algorithm 
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using liver injury classifiers and a pattern-based method that was weighted toward non-

injurious exposure levels was used to discriminate sub-toxic and toxic exposure doses. 

Characterization of acetaminophen-induced liver injury using gene expression profiles 

derived from blood was shown to better predict acute chemical exposure levels than 

clinical chemistry, hematology, or histopathology analysis, indicating that transcript 

profiles derived from blood may be a good marker for specific organ toxicity. 

 

4.) Pathway analysis may facilitate mode of action determination 

A major knowledge gap in connecting gene expression profiles to classes of 

toxicants that elicit similar phenotypes is a lack of complete information regarding the 

complexity of cellular molecular pathways. Regulation of responses can be relatively 

straightforward (i.e., at the transcriptional level), but it can also be quite complex and 

controlled by multiple genes, proteins, and metabolites. Therefore, accurate 

identification of gene-gene interactions and regulation is essential for determining well-

defined pathways that could serve as potential targets in therapeutic development or 

intervention. The importance of understanding subtle pathway changes and applying 

the data to risk assessment has been underlined in the National Research Council’s 

report entitled “Toxicity Testing in the 21st Century”17. Transcriptional pathway-level 

analysis may prove essential for identifying molecular perturbations that are associated 

with sub-clinical pathologies. 
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There are several public databases available which aid in the annotation and 

interpretation of gene expression data in terms of cellular process, functions, and 

pathways. These databases include the Gene Ontology (GO; www.geneontology.org), 

Gene Map Annotator and Pathway Profiler (www.genmapp.org), the Science Signaling 

Connections Map (stke.sciencemag.org/cm/),  BioCarta 

(www.biocarta.com/genes/index.asp), Reactome (www.genomeknowledge.org), KEGG 

(www.genome.jp/kegg/pathway.html), and Ingenuity (www.ingenuity.com). Most often, 

these tools are used to associate a set of differentially expressed genes from a 

microarray experiment with a particular pathway with the goal of identifying key modes 

of action. Several groups have developed statistical methods for associating annotated 

cellular pathways with gene expression changes such as GOMiner18, Significance 

Analysis of Function and Expression (SAFE)19,  and Onto-Tools20. While the methods 

employed by these statistical techniques vary, each is aimed at assigning biological 

meaning to gene expression data. A broad understanding of the pathways affected by a 

variety of xenobiotics is essential for the future of drug safety assessment. A complete 

understanding of the molecular perturbations that precipitate a toxic pathology in vivo 

will enable a shift from high dose to low dose testing and may enable a better prediction 

of pathology from in vitro and in vivo data when similar patterns of perturbations are 

observed. 
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C. STRUCTURAL GENOMICS APPROACHES TO DETERMINE SUSCEPTIBLE 
INDIVIDUALS 
 

1.) Identifying sensitive individuals 

Toxicogenetics is a discipline that evaluates genetic sequence variations that may 

impact individual’s susceptibility to toxicity. In the pharmaceutical arena, these efforts are 

largely aimed at identification of susceptible individuals within a prospective patient 

population, thereby enabling personalized drug treatment and improved drug safety. It is 

well accepted that genetic variants affect responses to drugs21, 22. One of the first studies 

in this field compared plasma drug half-lives in identical and fraternal twin pairs and 

showed that greater differences existed between fraternal twins23. Recently, several 

more monogenic toxicogenetic traits have been reported24. Such research has yielded 

some success into the identification of genetic alleles that predict drug responses. For 

example it has been demonstrated that apolipoprotein E (APOE)-4/4 allele carriers are 

the worst responders to conventional Alzheimer’s disease treatments25. 

Successes in this field have led to important regulatory action by the FDA that has 

allowed a number of drugs to remain on the market due to the availability of genetic 

testing. Current genetic tests include assigning the dose of 6-mercaptopurine based on 

the genotype of thiopurine S-methyltransferase (TPMT)26, 27, and the dose of warfarin 

based on the genotypes of vitamin K epoxide reductase complex (VKORC1)28 and 

CYP2C929. In the case of the anti-coagulant drug warfarin, the combination of VKORC1 
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haplotyping and CYP2C9 genotyping explained an estimated 25% and 6-10% of the 

variance in warfarin dose, respectively30. In fact, warfarin represents one of the first 

drugs for which toxicogenetic information (by VKORC1 haplotyping) better explained the 

dose variance than pharmacokinetic pharmacogenomic data (through CYP2C9 

genotyping)31. The data on warfarin, therefore, represents a shift from monogenic 

toxicogenetic testing to a polygenic model, which can be expected to be utilized with 

increasing frequency as research in this field expands to include a greater variety of 

pharmaceuticals. 

The wealth of information on genetic polymorphisms now available through the 

Human Genome Project has led to a dramatic increase in studies that seek to connect 

genetic variants with toxicity and pharmacologic phenotypes. Because the base pair 

sequence variation among individuals averages to be about 1 in 500-1000 base pairs32, 

it is reasonable to expect that a significant number of genes will contain polymorphisms 

that contribute to disease and that many will play a role in adverse drug responses. 

Most of the current research focuses on the association between phenotype/disease 

and single nucleotide polymorphisms (SNPs). SNPs are an attractive choice for 

biomarkers of adverse responses because, unlike other factors which contribute to a 

toxicity phenotype such as age, co-morbidity, and environment, an individual’s genetic 

code remains stable throughout their lifetime. Genetic testing offers the potential of 

replacing empirical dose adjustment for many drugs that is based upon therapeutic 
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assessment of pharmacologic or toxic effect after initial dosing. In addition, predictive 

genetic tests could also be of value in the drug development process by rescuing drugs 

that failed Phase III clinical trials due to toxicity within a subset of participants33. A key 

example of this is the genetic testing available to patients with HIV who are prescribed 

the drug abacavir, in which screening for major histocompatibility complex, class I, B 

(HLA-B)*5701 reduces the risk of hypersensitivity reactions34. 

 

2.) Toxicogenetic models and approaches 

A number of publications have reported a significant association between SNPs and 

disease phenotypes in many areas of research; however few have been validated and 

these studies have often been followed by reports that refute the original conclusion35. 

Reasons for discrepancies between genotype-and-phenotype are numerous, but are 

often due to a low sample size in the study, population stratification of alleles, and 

heterogeneity of phenotypic classification36, 37. To better facilitate a clinical translation of 

toxicogenetic data, efficient and validated strategies are needed. Recent successes in 

this research area include clinical data that has been used to determine the genetic 

variation underlying complex traits such as Parkinson disease38 and susceptibility to HIV 

infection39. 

Classical approaches in this area have focused on mapping quantitative trait loci 

(QTL) within the genome that influence a specific phenotype. While there are many 
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approaches to identify QTL, all involve a population of individuals with a measurable 

phenotype, a database of genotypic variation present within that population, and 

statistical measures that serve to link the magnitude of the phenotype with a specific 

genotype or polymorphism40. Classical approaches have often sought to utilize the 

genotypic and phenotypic diversity present in F2 or backcross mouse populations; 

however, this approach is limited by the necessity to genotype all individuals within a 

population. Due to the relatively low number of recombination events in F2 and 

backcross populations, identification of precise QTL locations is often more difficult. 

Recombinant inbred lines offer the advantage of fixed genomes, but these lines can be 

expensive to acquire and maintain. 

A promising new alternative is a method known as genomic association mapping 

in classical inbred mouse lines, which takes advantage of the genetic variation that 

arose naturally across inbred mouse strains over decades of crosses and inbreeding by 

scientists and fanciers.  In this approach, large single nucleotide polymorphism (SNP) 

datasets for several dozen strains and a database of over 8 million SNPs for 15 inbred 

mouse strains have recently become publicly available41. Computational methods for 

genomic association mapping using inbred mouse strains have been recently 

described40, 42, enabling the use of these approaches to determining genetic sequence 

variants that affect toxicity responses. 
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Applications of genomic association algorithms to toxicology have been performed 

in vivo within inbred mouse strains to determine additional genetic factors that affect the 

metabolism of warfarin43. The metabolism of warfarin, specifically the generation of 7-

hydroxywarfarin, was shown to vary across inbred strains. This phenotype was then 

computationally associated with the mouse genomic region that encodes for Cyp2c 

family enzymes. Experimental validation narrowed the list of potential genomic 

candidates to show that Cyp2c29 polymorphisms altered hepatic protein expression of 

this enzyme. In a subsequent publication44, this same group demonstrated the utility of 

this approach in an in vitro drug biotransformation system in which genomic association 

was performed for downstream metabolism of testosterone and irinotecan across 15 

mouse lines. The results of these studies showed that genetic variation within the 

Cyp2b9 and Ugt1a loci influenced the metabolism of α-hydroxytestosterone43 and 

irinotecan glucuronidation44, respectively. These results were then confirmed 

experimentally using recombinant enzymes. These results suggest that genomic 

association using inbred mouse strains has the potential to aid in the identification of 

genetic alleles that play a role in toxicity responses. However, further studies that 

demonstrate a clear translation to human populations is required. 
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D. INTEGRATION OF OMICS DATA WITH TRADITIONAL TOXICOLOGY 

The need to better describe biological systems has led to the study of systems 

toxicology. Systems toxicology comprises the integration of genetics, metabolomics, 

and conventional toxicity endpoints into a systems biology approach. These integrative 

approaches often use mouse models for: i) an improved characterization of toxicity 

pathways, ii) the discovery of new molecular and cellular indicators of exposure and 

outcome, iii) better dose-response assessment, and iv) improved inter-individual/cross-

species extrapolations (Figure 1.1). 

While microarray-based approaches in toxicity studies generate a wealth of data on 

gene expression and pathways that are affected by treatment or that are associated 

with a particular phenotype, these data are most often descriptive and may not reflect 

changes at the protein level. A key limitation of an analysis of toxicogenomic data alone 

is that these data often do not take into account confounding factors such as the 

pharmacokinetics of the test chemical45 and environmental factors, such the gut 

microflora population46. Genomic studies, while more comprehensive than high-

throughput metabolite or protein analysis, fail to characterize the full complement of 

cellular proteins which are subject to post-translational modifications and additional 

regulation47. To address this concern and to develop additional toxicity biomarkers, it is 

important to consider the pharmacokinetics of the test chemical in vivo because 

genomic approaches, when analyzed alone, are limited in their ability to completely 
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describe dose kinetics and post-transcriptional biological complexity present within 

biological systems. 

Databases and approaches are currently being developed that can establish 

links between genomic, metabolomic, and proteomic data with the goal of placing 

toxicogenomics data into a larger biological perspective. These include the Comparative 

Toxicogenomics Database (ctd.mdibl.org), the Distributed Structure-Searchable Toxicity 

database (www.epa.gov/ncct/dsstox/index.html), the Critical Path Institute (www.c-

path.org), and systems biology databases developed by GeneLogic, Inc., 

(www.genelogic.com), Iconix Pharmaceuticals (www.iconixbiosciences.com) and 

Ceetox, (www.ceetox.com). As more data is added to publicly- and privately-funded 

databases, the data can be re-used and integrated to better inform hypothesis-driven 

research48. It is important to collect and archive data for a wide variety of compounds 

across multiple genotypes in order to understand the basis for individual differences in 

drug response. 

The overall goal of the present series of studies is to develop a rodent model 

that facilitates determination of toxicity biomarkers across a genetically heterogeneous 

population. To accomplish this goal, we integrate functional and structural genomics 

approaches with “classical” toxicological assessments of pathology, clinical chemistry, 

and pharmacokinetics in order to assess the validity of the approach to translate findings 

to human populations. 
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E. RATIONALE AND SPECIFIC AIMS 

 

1.) Drug-induced liver injury is a significant public health concern 

Drug-induced liver injury (DILI) is the most prominent reason for cessation of 

pharmaceutical testing in clinical trials, limitations on drug use, and the withdrawal of 

approved drugs49; recent data from the United States Acute Liver Failure Study Group 

indicate that DILI accounts for more than 50% of cases of liver failure50. Adverse hepatic 

drug reactions remain a significant safety concern because they are often idiosyncratic 

in nature and occur at rates that are too low to be detected in standard-sized clinical 

trials51. Because of the relatively low frequency of occurrence during drug testing, drug-

induced liver injury is often difficult to anticipate and prevent. 

There are currently no diagnostic tests available to clinicians to pre-screen 

patients for DILI. Factors that contribute to DILI in a single individual are various, and 

often require contributions from genetics to environmental variables and lifestyle habits. 

In pharmaceutical toxicity testing, the dogmatic approach is to screen a chemical 

against a single outbred rodent strain, in which every mouse must be genotyped in 

order to look for genetic variations that affect toxicity phenotypes. This approach is 

limited in its ability to detect genetic polymorphisms that influence mechanisms of 

hepatotoxicity in humans and larger numbers of rodents need to be screened before an 

effect can be considered statistically significant. Therefore, better pre-clinical models are 
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required that can accurately predict and identify genetic variants that predispose 

individuals within a heterogeneous population to drug toxicity from pharmaceutical 

agents. 

 

2.) Acetaminophen-induced liver injury has a complex etiology 

In these studies, we investigate genetic causes of variation in the hepatotoxicity 

of the commonly used analgesic drug, acetaminophen (N-acetyl-p-aminophenol; APAP; 

Tylenol™). In the United States, 39% of cases of DILI are due to overdose of APAP, 

either intentionally or by “therapeutic misadventure”, and 13% are due to idiosyncratic 

liver injury associated with other drugs50.  APAP has not typically been considered an 

idiosyncratic drug because overdose is known to cause acute toxicity within the liver. 

However, a considerable number of participants in a recent clinical trial who were 

administered a daily intake of the maximum therapeutic dose of APAP (4 g/day in four 

equal doses) experienced elevations in serum alanine aminotransferase (ALT) levels 

that were greater than three times the upper limit of normal52, indicative of liver injury. 

Additionally, while more than one third of all cases involving acute liver failure in the 

United States are due to APAP overdose53, about half of these cases are unintentional 

and involve chronic ingestion of sub-acute doses54. 

Liver injury due to acetaminophen overdose represents a complex phenotype, 

requiring accumulation of its reactive metabolite, N-acetyl-p-benzoquinone imine 
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(NAPQI), and the depletion of reduced glutathione (GSH) within the liver. Processes that 

have been shown to play a role in the mechanism leading to injury progression include 

covalent binding to cellular proteins, oxidative stress, apoptosis, necrosis, and disruption 

of calcium homeostasis (Figure 1.2). Following oxidative stress events caused by 

acetaminophen metabolism, aggravation of liver injury has been linked to activation of 

the innate immune system55, 56, including Kupffer cell activation and an imbalance 

between protective and injurious cytokines57-59. The recruitment of neutrophils to 

pericentral regions has also been implicated as a risk factor for increased injury56,60, but 

much debate exists on their importance in the liver injury outcome61-63. While much 

recent research on APAP-induced liver injury has focused on the specific contributions 

of innate immunity, the precise mechanisms by which injury continues after the drug has 

been fully metabolized remain unclear. Due to the complexity of factors contributing to 

APAP-induced toxicity, it has been difficult to determine the underlying causes that 

might predispose any specific individual to drug-induced liver injury. The development of 

a mouse model that can identify inherent susceptibility factors is an important first step 

toward predicting and preventing rare hepatotoxic reactions. 

 

3.) Design of the  Mouse Model of the Human Population 

 There is a greater ability to detect genetic variants that contribute to a phenotype 

when utilizing multiple inbred strains rather than a single outbred strain. In toxicity 
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studies, most phenotypic outcomes have a polygenic mode of inheritance in which the 

phenotypic variance is defined as the sum of the genetic variance and the 

environmental variance. Because all mice within an inbred strain are identical, the 

genetic variance is zero and the phenotypic variance is thus equal to the environmental 

variance. In contrast, in an outbred stock (in which the genetic variance is greater than 

zero), the phenotypic variance will be much greater and the detection of an effect will 

require significantly larger numbers of animals per study, although the extent will depend 

on the heritability of the trait and the degree of genetic variation present within the 

outbred colony. For these major reasons, some experts recommend using a “factorial” 

design for experimental detection of toxicity in which the number of mice needed to 

detect an effect, as designated by statistical power calculations, can be split among 

multiple strains of equal groups57. Such an approach would have increased value over 

using either an outbred or a single inbred strain because the experiment retains 

statistical power, can offer insight into whether the toxicity response is influenced by 

strain genetics, and overcomes the problem of resistance within a particular strain 

obscuring the effect. In addition, testing in inbred mouse strains facilitates genomic 

mapping of loci that contribute to a particular toxicity phenotype due to the large SNP 

databases available for many commonly used strains40. 
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4.) Specific aims of the research 

The diversity of genotypes among different mouse strains is suitable for studying 

genetic components that influence pathological outcome because it has been 

demonstrated that the genetic diversity among mouse strains is as great as that within 

the human population64.  Genomics strategies using mouse diversity panels that have 

thus far have been utilized to understand and predict individual drug responses have 

been limited by a lack of human validation. There is additionally a lack of information on 

genetic variants that affect acetaminophen-induced liver injury. Therefore, we 

hypothesized that, by combining classical toxicological endpoints with an extensive 

knowledge base of rodent genetics, we could effectively model human genetic 

sensitivity to acetaminophen-induced liver injury by using a panel of genetically diverse 

inbred mouse strains. To test this hypothesis, we proposed three specific aims designed 

to evaluate the Mouse Model of the Human Population (MMHP) and assess the ability 

of the model to discover novel biomarkers of toxicity response and effect within 

genetically different individuals. 

 

Specific Aim 1. In a recent clinical trial conducted by our collaborators at UNC and at 

Purdue Pharma, it was shown that more than 50% of human volunteers taking the 

maximum dose of APAP over a seven day in-clinic study developed significantly 

elevated serum ALT levels52. A similar exposure study was performed using a second 
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human cohort at UNC, thereby replicating the results in which some individuals 

experience ALT elevations while others remain at control levels. The study provided a 

unique opportunity to test whether differential toxicity responses observed in humans 

could be replicated within a mouse diversity panel. In addition, because genomic DNA 

from both humans and mice were available, we were afforded a unique opportunity to 

validate potential toxicogenomic loci determined by haplotype-associated mapping in 

mice. We hypothesized that human subject sensitivity to APAP-induced liver injury is 

due to genetic polymorphisms that can be identified in the genetically diverse mouse 

strain panel. Therefore, in Aim 1, we sought to validate the MMHP by assessing 

whether genetically-determined hepatotoxicity following an acute dose of APAP reflects 

the range of hepatotoxicity observed in human cohorts following APAP administration. 

In addition, we sought to determine the functional consequences of potential toxicity-

modulating polymorphisms on the APAP-toxicity outcome using gene knock-out mice 

and in silico protein predictions. 

 

Specific Aim 2. The mechanisms by which APAP contributes to DILI have been 

extensively studied; however, much debate remains on the specific contributions of 

metabolic processes, intracellular signaling, and extracellular signaling events following 

acute APAP doses, given that N-acetylcysteine administration is an effective early 

antidote. As a result of Aim 1, we demonstrated that there were diverse strain-specific 
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liver injury outcomes across the MMHP. High-throughput microarray studies are 

increasingly applied to the discovery of potential biomarkers of adverse health events; 

however, data obtained from studies using a single strain should be interpreted with 

some caution because biomarkers may be strain-specific and therefore may not be 

useful to assess responses within heterogeneous human populations. We hypothesized 

that that liver gene expression profiling would yield a set of liver injury “population-based” 

biomarkers. In Aim 2, we performed global gene expression profiling derived from the 

MMHP following an acute dose of APAP.  Using microarrays and an endpoint used 

traditionally to assess hepatotoxicity (i.e. the percent liver necrosis), we sought to 

determine a set of genes for which expression correlates with the liver injury outcome, 

but is independent of mouse strain. 

 

Specific Aim 3. Due to the complexity of factors required to initiate and propagate 

APAP-induced liver injury, it is important to determine which key processes are affected 

by differences in genetics. In Aim 1 and Aim 2, we used in silico and high-throughput 

gene expression profiling methods to determine biomarkers of sensitivity and injury 

response. However, the samples used to generate these data were derived from 

tissues extracted temporally downstream of APAP metabolism in the mouse. Therefore, 

we previously were unable to determine whether there are strain-specific differences in 

the metabolic bioactivation of APAP to its reactive, injury-causing metabolite. We 
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hypothesized that potential differences in APAP metabolism, while important to initiating 

toxicity, do not determine the overall liver injury outcome within the MMHP. Therefore, in 

Aim 3, we investigated the pharmacokinetics of APAP within five strains of varying 

sensitivity to APAP-induced liver injury and assessed the relevance for potential strain-

dependent metabolic differences to affect the overall toxicity outcome. 

 

 

 

 



 

 24

Figure 1.1 

Information flow in systems toxicology 
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Figure 1.2 
 

Factors contributing to acetaminophen-induced liver injury 
 

Hepatotoxicity due to an overdose of APAP is initiated by metabolic events that involve 
the bioactivation of APAP to a reactive quinone, NAPQI, that binds to key hepatocellular 
proteins.  Stressed hepatocytes initiate a signaling cascade that can result in the 
activation of innate immune cells that can affect the propagation of the liver injury 
response. Adapted from Kaplowitz54. 
 
Abbreviations: acetaminophen, APAP; acetaminophen glucuronide, APAP-G; 
acetaminophen sulfate, APAP-S; Cytochrome P450 2E1, Cyp2e1; N-acetyl-p-
benzoquinoneimine, NAPQI; reduced glutathione, GSH; Gluathione S-transferase, 
GST; reactive oxygen species, ROS; Acetaminophen glutathione, NAPQI-SG; 
adenosine triphosphate, ATP; lipopolysaccharide, LPS; liver sinusoidal epithelial cells, 
LSEC; Fas ligand, FasL. 
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Chapter 2 

 

 

 

 

 

 

MOUSE MODEL OF THE HUMAN POPULATION REVEALS THAT VARIANTS IN 
CD44 CONTRIBUTE TO ACETAMINOPHEN-INDUCED LIVER INJURY IN HUMANS 
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A. ABSTRACT 

Inter-individual variability in response to chemicals and drugs is a common 

regulatory concern. It is assumed that xenobiotic-induced adverse reactions have a 

strong genetic basis, but many mechanism-based investigations have not been 

successful in identifying susceptible individuals. While recent advances in 

pharmacogenetics of adverse drug reactions show promise, the small size of the 

populations susceptible to important adverse events limits the utility of whole-genome 

association studies conducted entirely in humans. We present a novel strategy to 

identify genetic polymorphisms that may underlie susceptibility to adverse drug 

reactions. First, in a cohort of healthy adults who received the maximum recommended 

dose of acetaminophen (4 g/day X 7 days), we confirm that about one third of subjects 

develop elevations in serum alanine aminotransferase indicative of liver injury. To 

identify the genetic basis for this susceptibility, a panel of 36 inbred mouse strains was 

used to model human genetic diversity. Mice were treated with 300 mg/kg 

acetaminophen and the extent of liver injury quantified. We then employed whole-

genome association analysis and targeted sequencing to determine that polymorphisms 

in Ly86, Cd44, Cd59a, and Capn8 correlate strongly with liver injury. Finally, we 

demonstrated that variation in the orthologous human gene, CD44, is associated with 

susceptibility to acetaminophen in two independent cohorts. Our results indicate a role 

for CD44 in modulation of susceptibility to acetaminophen hepatotoxicity. These studies 



 

 29

demonstrate that a diverse mouse population can be used to understand and predict 

adverse toxicity in heterogeneous human populations. 

 

B. INTRODUCTION 

Adverse reactions, such as liver injury, are prominent reasons for cessation of 

drug testing in clinical trials, restrictions on drug use, and the withdrawal of approved 

drugs65. Adverse reactions remain a significant safety concern since they occur at low 

rates, often undetectable in standard-sized clinical trials, and are not foreseen through 

traditional in vitro and animal safety testing paradigms66. While it is widely recognized 

that better pre-clinical models are required to enable accurate prediction and 

identification of xenobiotic-induced toxicity67, few experimental paradigms exist that 

provide preclinical population-wide testing. 

The promise of personalized medicine and the accumulating knowledge of 

human genomic variation serve as potent catalysts for pharmacogenetics research68. 

Polymorphisms within genes encoding xenobiotic metabolizing enzymes and major 

histocompatibility complex proteins are promising genetic biomarkers that may predict 

the efficacy of drug treatment or identify individuals at risk of adverse reactions69, 70. 

However, only a limited number of potentially useful biomarkers have been identified 

thus far. Furthermore, current research into pharmacogenetic biomarkers is largely 

focused on human studies where only a limited number of positive associations 
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between a polymorphism and adverse drug reaction have been reproduced in 

independent cohorts. 

For the past century, the mouse has been the most widely used model system 

for studying human disease and related phenotypes, often in ways that are not directly 

possible in humans 71. Many laboratory studies take advantage of the fact that the 

genomes of inbred strains are a mosaic of regions that are derived from different 

subspecies of Mus musculus72. The major mouse genetic resource used for association 

studies of complex polygenic traits is the Laboratory Strain Diversity Panel (LSDP)73. 

Recent resequencing of 15 mouse inbred strains and the analysis of their polymorphism 

architecture74 have shown that an LSDP contains as many or more single nucleotide 

polymorphisms (SNPs) than estimated to be present in humans, and minor allele 

frequency distribution in the LSDP is largely similar to that present in man. Thus, we 

hypothesized that a panel of inbred mouse strains (or mouse model of the human 

population; MMHP) can be used to model the diverse human population and to uncover 

susceptibility factors for drug-induced toxicities, thus shortening the path to the discovery 

of pharmacogenetic biomarkers. 

In this study, we tested this novel approach by investigating the genetic causes 

of variation in the hepatotoxicity of acetaminophen (N-acetyl-p-aminophenol). More than 

a third of all cases involving acute liver failure in the United States are due to overdose 

of this widely available medication75; about half of these cases are unintentional or 
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involve chronic ingestion54. In addition, it has been estimated that 10% of patients 

experiencing liver failure due to acetaminophen were taking recommended doses of 

acetaminophen76. Liver injury due to acetaminophen is a complex phenotype, requiring 

accumulation of its reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), 

covalent binding to cellular proteins, oxidative stress, and hepatocellular necrosis, as 

well as an imbalance between protective and injurious cytokines77, 78. A recent placebo-

controlled clinical study revealed that about a third of healthy adult volunteers who were 

administered the maximum therapeutic dose of acetaminophen (4 g/day for 14 days) 

exhibited transient, asymptomatic elevations in serum alanine aminotransferase (ALT) 

levels that were greater than three times the upper limit of normal52, indicating liver 

toxicity. Acetaminophen represents an intriguing model compound for pharmacogenetic 

studies, because, while subjects taking therapeutic doses of the drug exhibit transient 

serum ALT elevations, the drug has a good safety profile in long-term use79. The same 

pharmacogenetic factors that predispose a person to transient low-dose ALT elevations 

may be responsible for decreasing that individual’s hepatotoxic susceptibility threshold 

at higher doses. For these reasons, acetaminophen is an ideal compound for the 

validation of a human-to-mouse-to-human approach in pharmacogenetic research. 
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C. METHODS 

Acetaminophen Administration to Human Subjects 

Study volunteers were healthy men and women between 18-45 years of age, and not 

receiving concomitant medications. Prescreening was performed 14 days prior to 

admission to confirm health as previously described52. Written informed consent was 

obtained and approved by the UNC Institutional Review Board. Participants remained in 

the General Clinical Research Center at UNC for the duration of the 14 day study during 

which they received a controlled diet of standardized whole-food meals. From days 4 to 

11, subjects received either Extra Strength Tylenol (two 500 mg tablets of 

acetaminophen, commercial product; n=49) or placebo (n=10) orally every 6 hours. 

Blood samples were taken at 8 am daily prior to dosing and analyzed for aspartate 

aminotransferase (AST), alanine aminotransferase (ALT; Appendix 1), total bilirubin, 

alkaline phosphatase, blood urea nitrogen, glutathione alpha-S-transferase, and 

creatinine. Dosing was discontinued for subjects in whom serum ALT or AST reached 

more than 3 times upper limit of normal. Baseline serum ALT was determined as the 

mean of the values obtained prior to the start of dosing. Blood was collected from study 

participants for DNA isolation. Leukocytes were isolated from whole blood and DNA 

was extracted using the Qiagen MidiPrep kit (Qiagen) and the manufacturer’s protocol. 

The protocol for the Purdue Pharma L.P. cohort study has been as previously 

described52. 



 

 33

Acetaminophen Administration to Mice 

Toxicity Studies. Male mice aged 7-9 wks were obtained from Jackson Laboratory and 

housed in polycarbonate cages on Sani-Chips irradiated hardwood bedding (P.J. 

Murphy Forest Products Corp). Animals were fed NTP-2000 diet (Zeigler Brothers, Inc.) 

and water ad libitum, and maintained on a 12 h light-dark cycle. Mice utilized in this 

study comprise 36 inbred strains that are priority strains for the Mouse Phenome 

Project80; B6C3F1/J hybrid mice were also used. Care of mice followed institutional 

guidelines under a protocol approved by the Institutional Animal Care and Use 

Committee. Mice were singly housed and fasted 18 h prior to intra-gastric dosing with 

acetaminophen (30, 100, 300, 600, 900, or 1200 mg/kg; 99% pure, Sigma-Aldrich) or 

vehicle (0.5% methyl 2-hydroxyethyl cellulose, Sigma-Aldrich) with a dosing volume of 

10 ml/kg for all doses. Dosing was performed at the same time of day throughout the 

study to avoid diurnal variability81. Feed was returned 3 h after dosing and animals were 

sacrificed at 4 or 24 h. Blood was collected from the vena cava from animals 

anesthetized with nembutal (100 mg/kg i.p., Abott Laboratories). Samples were 

assayed for serum markers by standard enzymatic procedures82. Livers were quickly 

excised and sections of the left lobes were placed in 10% phosphate buffered formalin 

for immunohistochemical analyses. Remaining liver was snap-frozen in liquid nitrogen 

and stored at -80ºC. 
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Metabolism Studies. Adult (aged 7 weeks) male mice of strains C3H/HeJ, C57BL/6J, 

DBA/2J, LP/J, and NZW/LacJ were selected for metabolism studies based on their wide 

variation of liver toxicity observed at 24 h following a 300 mg/kg APAP dose. Mice were 

fed overnight prior to dosing with 50 mg/kg APAP or fasted for 18 h overnight prior to 

dosing with 300 mg/kg APAP (N=5 per strain per dose). Blood (45 µl) was collected 

sequentially from the tail vein at 0, 0.5, 1, 2, and 3 h post-dosing. At 6 h, blood was 

collected by exsanguination at 6 h for metabolite measurements and ALT quantification 

and livers collected as described above. 

CD44 Knockout Studies. To test the ability of CD44 protein to modulate APAP toxicity, 

CD44 knockout mice, B6.Cg-Cd44tm1Hbg/J (N=6), and wild-type mice, C57BL/6J (N=6), 

were dosed with 300 mg/kg APAP (i.g.) and sacrificed at 24 h as described in toxicity 

studies. An interim blood sample was collected from the tail vein at 4 h post-dosing for 

ALT analysis. 

Glutathione Quantification 

Liver samples were homogenized in borax/EDTA (pH 9.3) solution, precipitated with 

chloroform and centrifuged. Reduced glutathione was derived in liver samples, 

calibration standards, and QC samples with 7-fluorobenzofurazan-4-sulfonic acid 

ammonium salt (SBD-F) and analyzed by HPLC with fluorescence detection. 

Concentrations were calculated using the glutathione response, sample weights, and a 

regression line constructed from the concentrations and peak responses of the 



 

 35

appropriate calibration standards (Sigma). Glutathione detection assays were 

performed by Battelle (Columbus, OH). 

Enzyme-linked Immunosorbent Assay (ELISA) 

Quantitative determinations of protein levels of cytochrome p450(CYP) 2E1, CYP1A2, 

catalase, and glutathione S-transferase (GST) was performed using microsomes 

isolated from the left liver lobe using the Protein Detector ELISA kit protocol (KPL, Inc. 

Gaithersburg, MD) as detailed by the manufacturer.  The ELISAs were performed by 

Integrated Laboratory Systems, Inc. (Research Triangle Park, NC). 

Liver Histopathology 

Formalin-fixed liver specimens were embedded in paraffin and 5 µm sections cut in 

duplicate were applied to each slide. Sections were stained with hematoxylin and eosin 

(H&E) and liver injury was blindly scored. Necrosis was quantified by a point counting 

technique83. Scores were independently verified by a veterinary pathologist. 

Serum Metabolite Quantification 

The procedure used for the quantification of APAP is similar to that previously 

described84. Briefly, a reversed-phase HPLC assay was used in which the mobile phase 

was 5% acetonitrile and 95% 5 mM sodium sulfate/20 mM potassium phosphate buffer 

(pH=3.2) with a flow rate of 1.2 ml/min.  Retention times for APAP and the internal 

standard (3-acetamidophenol) detected at 254 nm were 7 and 11 min respectively. 

APAP standard (Sigma Chemical, St. Louis, MO) and the internal standard were spiked 
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into naive mouse plasma to generate standard curves. The AUC was calculated by 

using noncompartmental analysis in WinNonLin (Pharsight, Mountain View, CA). A one-

way ANOVA with a Tukey post-hoc test was used to assess significantly different AUC 

across mouse strains (P<0.05). 

Haplotype Association Mapping 

Haplotype association mapping was performed as described elsewhere85. Briefly, 

haplotype associations were calculated using a modified F-statistic based upon 

genotype-phenotype pairings at each 3-SNP window across a 160,000 SNP dataset. 

Strains excluded from association analysis due to lack of polymorphism data were 

C57BL/10J, NZO/H1LtJ, and P/J. LogP values were plotted across the mouse genome 

using SpotFire (SpotFire, Inc.). Genomic intervals with association scores greater than 

3.5 were considered significant. Genes within significant intervals were identified with 

the BioMart feature of Ensembl using NCBI build 36 (http://www.ensembl.org). 

Genetic Sequence Analysis 

For sequence-based genotyping, primers were designed using Primer3 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). For each reaction, genomic 

DNA from pedigreed mice or from human subjects was diluted to 100 ng/µl and 1 µl of 

DNA mixed with 12.5 µl of 2x PCR Master Mix (Promega), 2.5 µl of 10 µM upstream 

primer, 2.5 µl of 10 µM downstream primer and 6.5 µl of nuclease-free water. Primers 

and conditions used for PCR amplification are listed in Appendix 1. Sequencing 
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reactions were performed using the ABI PRISM™ BigDye™ Terminator Version 1.1 

Cycle Sequencing Ready Reaction Kit with the AmpliTaqR DNA Polymerase (Applied 

Biosystems). DNA was sequenced on a 3730 DNA Analyzer (Applied Biosystems) 

(Appendix 2). Sequence alignment was performed using Vector NTI version 10 

(Invitrogen). 

Statistical Methods 

Phenotypic values were expressed as the mean ± standard error of the mean. 

Differences were considered significant when the P-value < 0.05. The Pearson 

correlation coefficient was used to determine correlation between phenotypic toxicity 

measurements. Genotype-to-phenotype associations for the mouse data were 

performed using the two-tailed Student’s t-test (for two variants) or ANOVA (for more 

than two variants). P-values were adjusted for multiple comparisons using a false 

discovery rate of 5% for the total number of SNPs genotyped in mouse strains across 

the six genes. P-value corrections were performed using the p.adjust module in R (v. 

2.4.0). Correlation between human genotype data for CD44 and phenotypic responses 

across time was performed in Partek Genomics Suite (Partek) using repeated 

measures ANOVA across the first seven days of acetaminophen treatment in which the 

study centers were coded as random effects (Appendix 3). In determining the effect of 

genotype to influence serum ALT increases in acetaminophen-treated human subjects 

during treatment at UNC, we excluded subjects whose average baseline was 55 U/L or 
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greater (4 subjects). Elevations in ALT level within each subject were analyzed using 

linear modeling in which the daily ALT of each individual over time was assigned a p-

value using lm{stats} module in R (v. 2.4.0). 

 

D. RESULTS 

Variability in Acetaminophen-induced Liver Injury in Humans 

To confirm a prior report of differential sensitivity to acetaminophen 

hepatotoxicity among healthy human volunteers52, an independent cohort of 59 healthy 

subjects was enrolled in a double-blind, placebo-controlled study in which 49 received 

the maximum recommended therapeutic dose of acetaminophen (4 g/day for 7 days) 

and 10 subjects were randomly assigned to placebo.  Elevations in ALT greater than 

1.5-fold of individual baseline values were observed for 69% (34/49) of subjects 

receiving acetaminophen (Figure 2.1) and values exceeding 2-fold baseline were 

observed in 37% (18/49), confirming that some healthy subjects experience mild liver 

injury in response to therapeutic doses of acetaminophen. In each subject, a 1.5-fold 

cut-off was confirmed to represent significant (P>0.05) elevation in ALT from baseline by 

linear modeling. Interestingly, 31% (15/49) did not demonstrate ALT elevations greater 

than 1.5 fold baseline and showed no meaningful differences from the placebo-control 

group (N=10, P=0.42). ALT levels were at baseline levels in all subjects 14 days after 
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cessation of the treatment (Appendix 4). Elevations in serum ALT correlate well with 

other markers of liver injury (e.g., glutathione alpha-S-transferase) (Appendix 5). 

 

Differences in Liver Injury in Mice Following Acetaminophen Exposure 

To determine whether genetic factors influence acetaminophen-associated liver 

toxicity, a panel of 36 inbred mouse strains was selected to represent the genetic 

variation present within humans64. Liver toxicity was assessed at 4 and 24 hours after 

administration of an acute dose (300 mg/kg) of acetaminophen. Hepatic necrosis was 

histologically quantified 24 h after treatment and a dramatic interstrain variation in liver 

damage, exemplified by a characteristic centrilobular necrosis, was observed (Figure 

2.2A, B). CAST/EiJ mice were most resistant as they sustained no liver necrosis or 

alterations in serum ALT, while B6C3F1/J mice, which are commonly used to evaluate 

chemical toxicity, were the most sensitive strain. 

Serum ALT levels were measured at 4 and 24 hours post-dosing (Figure 2.2D, 

E). A Pearson correlation of 0.77 between serum ALT 24 h post-dosing with 

acetaminophen and extent of liver necrosis was noted, confirming that serum ALT is a 

good indirect marker for liver injury. However, comparison between ALT level at 4 and 

24 hours post-dosing shows that it may be difficult to predict injury outcome from ALT 

measured at early time points following acetaminophen doses. These data suggest that 
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there are genetic factors that may independently affect the timing of acetaminophen-

induced hepatocellular injury and ALT release. 

It is well accepted that acetaminophen hepatotoxicity depends on metabolic 

activation, hepatic glutathione depletion and protein binding of NAPQI as initiating 

events. However, it is not known whether variability in glutathione levels and drug 

metabolism enzymes contribute to differential toxicity between individuals. Therefore, 

we quantified the ratio of reduced to oxidized glutathione in livers from mice sacrificed 4 

h post-dosing, a time when acetaminophen-induced glutathione depletion is still 

robust86. There was no correlation between either reduced (Figure 2.2C) or total (data 

not shown) glutathione pool at 4 hours and liver necrosis at 24 hours post-dosing, 

suggesting that liver glutathione is not a sensitive biomarker for predicting injury 

outcome across individuals. Similarly, protein levels of cytochrome p450(CYP) 2E1, 

CYP1A2, catalase, and glutathione S-transferase (GST)pi in liver microsomes from 

mice sacrificed at 24 h did not correlate with acetaminophen-induced liver necrosis, or 

with serum ALT levels across individual strains (discussed in more detail in Chapter 4). 

Inter-individual differences in pharmacokinetics of acetaminophen were found to 

be not correlated with liver injury in the previous study of acetaminophen hepatotoxicity 

among healthy human volunteers52. To investigate the inter-strain differences in 

metabolism of acetaminophen, we selected 5 strains (LP/J, C57BL/6J, DBA/2J, 

NZW/LacJ and C3H/HeJ) from our panel based on the differences in sensitivity to 
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acetaminophen-induced liver necrosis (Figure 2.2A). The pharmacokinetics of the parent 

compound and its two major metabolites, sulfate and glucuronide conjugates, was 

assessed over a 6 h period following a bolus dose of 50 or 300 mg/kg (i.g.) using the area 

under the concentration (AUC) curve (Figure 2.3). After the 50 mg/kg dose, no 

differences between strains were observed (Figure 2.3A-C). After the 300 mg/kg dose, 

LP/J mice showed a significantly different profile than the other strains in exposure to 

acetaminophen and the glucuronide conjugate (Figure 2.3D-E), while no difference was 

observed for the sulfate conjugate. Despite the fact that metabolism of acetaminophen at 

high doses does vary between strains, this observation is insufficient to explain inter-

individual differences in liver injury in mice, similar to that in humans, since susceptible 

strains have a much lower plasma exposure to acetaminophen than the resistant strains 

and therefore a theoretically lower exposure to NAPQI. Further analysis of 

pharmacokinetics in susceptible and resistant strains is presented in Chapter 4. 

Representative mouse strains were selected from across the hepatic injury 

gradient to examine whether genetic variation also affects the dose-response. We 

classified each strain into one of three groups by the degree of necrosis observed 24 h 

following administration of 300 mg/kg acetaminophen. Representative non-responder 

(mean necrosis score less than 15%), mid-responder (mean necrosis score 15-50%), 

and high-responder (mean necrosis score > 50%) strains were tested at additional 

doses ranging from 30-1200 mg/kg (N=4). Markedly different dose-response curves in 
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response to acetaminophen were observed (Figure 2.2F). High-responder strains 

CBA/J, DBA/2J, and B6C3F1/J, and the mid-responder strain C57BL10/J have 

significant elevations in serum ALT at 24 h post-dosing with a 200 mg/kg dose. 

However, the high-responder strain C3H/HeJ and low-responder strain NOD/LtJ had no 

observable adverse response below 300 mg/kg. Of particular interest is strain CAST/EiJ 

in which comparably small elevations in ALT were observed only at 600, 900, or 1200 

mg/kg. 

 
Identification of Candidate Genes for Sensitivity to Acetaminophen-induced Liver 
Injury 

To uncover polymorphisms associated with sensitivity to acetaminophen toxicity 

we performed haplotype-associated mapping utilizing a dense single nucleotide 

polymorphism (SNP) map40. Association analyses were performed with mouse serum 

ALT levels for 4 h (Figure 2.4A) and 24 h (Figure 2.4B) post-dosing. Because the 

genomic intervals with the greatest computed association with toxicity contained several 

genes (Table 2.1), we selected candidate genes that could be reasonably linked to the 

propagation of oxidative- or immune-mediated stress responses following 

acetaminophen exposure. We chose Cd44, Cd59a, Ly86, Cat and Capn8 as likely 

candidate genes responsible for strain-specific liver injury. 

A 300-800 bp region from each gene that contained either known non-

synonymous coding SNPs or polymorphisms in intronic splice site regions was selected 
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for re-sequencing. Also included in the analysis was Cyp2e1, which is a primary 

enzyme known to metabolize acetaminophen to its reactive metabolite, NAPQI87. Ly86, 

Cd44, and Cd59a contain polymorphisms that, within the mouse diversity panel, 

correlate well with the degree of ALT release (Table 2.2; P<0.05). The Capn8 gene, 

which was implicated in the 24 h ALT phenotype genome scan, was found to have a 

non-synonymous coding SNP that is highly correlative with 24 hour ALT measurements 

(P<0.05). The polymorphisms selected for genotyping in Cat or Cyp2e1 were not 

correlative with markers of liver injury. 

 
Mouse Genes Associated with Acetaminophen-induced Liver Injury Translate to 
Humans 

To evaluate the human relevance of the susceptibility genes identified in mice, 

we tested if polymorphisms in orthologous genes correlate with inter-individual variability 

in acetaminophen toxicity in humans. We sequenced 300-650bp regions of CD44, 

CD59, CAPN10 (human ortholog of mouse Capn8), and LY86 that included SNPs 

reported by the HapMap Project (http://www.hapmap.org) as having a minimal r2 of 0.8 

and a minor allele frequency greater than 0.05. Genomic DNA from two independent 

human cohorts were available for these experiments: a UNC cohort reported here and 

the Purdue Pharma cohort52. 

Within the UNC cohort, we observed an association between an individual’s 

genotype at a CD44 SNP (rs1467558) and the elevation in serum ALT reached during 
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the 14-day study (Figure 2.5A; P=0.02). The polymorphism is non-synonymous, 

encoding an amino acid change from an isoleucine (C allele) to a threonine (T allele) 

residue in the CD44 protein. In order to test whether this association is replicable, we 

evaluated DNA from 76 subjects enrolled in the Purdue Pharma cohort. Because the 

duration of acetaminophen administration was 14 days in the Purdue Pharma cohort (vs 

7 days in the UNC cohort), data analysis was limited to the first seven days of treatment. 

Within the Purdue Pharma cohort, a C/T genotype at the same CD44 SNP (rs1467558) 

was also found to be associated with ALT elevations during treatment (Figure 2.5B; 

P=0.01). When the two cohorts were combined, the association was more significant 

(Figure 2.5C; P=0.002). To further assess the functional relevance of this finding to 

acetaminophen-induced liver injury in mice and humans, we performed experiments in 

Cd44-null mice and performed in silico prediction of the effect of the amino acid 

substitution resulting from the polymorphism at CD44 SNP rs1467558. Indeed, Cd44-

null mice exhibit significantly greater liver injury 24 h following administration of 

acetaminophen (300 mg/kg) as compared to the wild type (C57BL/6J) counterparts 

(Figure 2.6). Furthermore, the structural ramification of the change from isoleucine (C 

allele) to threonine (T allele) in the CD44 protein due to SNP rs1467558 was predicted 

in silico to be possibly damaging to the function of the protein due to the potential 

creation of a cavity within a buried site with a PolyPhen PSIC score difference between 

the variant proteins of 1.711. 
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A polymorphism within CAPN10 (rs3749166) displayed a trend across both 

cohorts in which individuals having the G/A allele tended to be more sensitive to 

acetaminophen-induced ALT elevations in the first seven days of treatment (Figure 

2.5D-F). While the trend remained consistent across sample populations, the data was 

only marginally significant when analyzed in the combined cohorts (P=0.045). It is 

interesting to note that while rs3749166 is a synonymous coding SNP, it is a tag SNP for 

rs2975766, a non-synonymous polymorphism that alters coding from isoleucine to 

valine. 

There was no correlation between increased serum ALT and genotyped 

polymorphisms within the CD59 (rs10538602) or LY86 (rs5874047) genes in the data 

collected. There was also no statistical difference between sensitivity to acetaminophen 

and genotype when all pairs of gene-gene interactions were examined (data not 

shown). 

 

E. DISCUSSION 

One of the major reasons that efficacious drugs fail to advance through late 

stages of development, or are removed or restricted after entering the marketplace, are 

rare adverse health events that were not predicted using current preclinical testing 

paradigms68. Consequently, being able to identify which drugs cause, and more 

importantly which individuals are likely to develop, adverse reactions is a major 
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challenge preventing informed deployment of new medicines. The novel experimental 

approach we describe here, using acetaminophen as a model compound, bypasses the 

limitations of humans-only pharmacogenetics studies by showing that a population of 

mouse strains can be used to predict genetic biomarkers of toxicity sensitivity. 

A traditional genome-wide pharmacogenetic investigation88 into the genetic 

factors linked to the liver toxicity of acetaminophen would require a much larger number 

of individuals due to greatly reduced power associated with P-value correction in whole-

genome SNP analyses. Conversely, a so called “candidate gene” analysis89 may be 

equally challenging due to a complexity of the mechanism of action of acetaminophen54. 

Significantly, well characterized genes known to be essential for acetaminophen toxicity 

did not correlate with liver injury in the panel of mouse strains. Rather, the candidate 

susceptibility genes identified through genetic studies in the mouse translated to two 

independent human cohorts despite small numbers of individuals available. 

It is noteworthy that the top candidate genes suggested by the analysis of the 

inbred mouse strains are related to the immune response, and not to metabolism and 

detoxification of acetaminophen. The traditional view on the mechanisms of toxicity, the 

approach widely utilized to predict individual responses to xenobiotics, would imply that 

metabolism of acetaminophen to the reactive electrophile NAPQI and/or detoxification of 

the latter by glutathione conjugation should explain, at least to a considerable degree, the 

variability in responses. However, no apparent correlation between levels of major 
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metabolizing enzymes, glutathione, or acetaminophen plasma exposure in select strains 

and liver injury was observed in the mouse population. Similarly, in several cytokine 

knockout mouse models of acetaminophen toxicity, the sensitivity to liver necrosis due to 

acetaminophen was largely independent of covalent binding of NAPQI to proteins or 

glutathione depletion54. Furthermore, we found no correlation with sensitivity for 

polymorphisms in the genes encoding catalase or cytochrome P450 2E1, implying that 

variation at these key mediators of acetaminophen toxicity cannot fully explain differential 

susceptibility to acetaminophen. This conclusion does not refute the molecular 

mechanism of APAP toxicity via bioactivation by CYP2E1. In contrast, our data form a 

basis by which we show that the end outcome of the toxicity response is not directly 

correlative with inter-individual differences in the basic metabolism of acetaminophen. 

This indicates that other cellular processes leading to tissue injury, in addition to 

metabolism and pathways involved in cell damage, are involved in determining the extent 

of liver necrosis observed following treatment with acetaminophen. This also raises a 

critical distinction between genes (enzymes/proteins) that are essential mediators of 

toxicity but which may not functionally vary (e.g. CYP2E1) and those, whose activity or 

function may vary considerably among individuals and determine susceptibility to toxicity 

(i.e. CD44, see below). 

While events downstream of the consumption of hepatic intracellular glutathione 

are not as well described as acetaminophen metabolism, these downstream events 
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have been shown to be a major mediator of the toxicity response. Indeed, the presence 

of inflammatory mediators released from non-parenchymal cells in the liver, including 

interleukin-(IL)690, IL-1091, interferon-γ92, and tumor necrosis factor-α93, have been 

shown to affect liver sensitivity to acetaminophen. Furthermore, neutrophil-mediated 

necrosis60 and Kupffer cell recruitment94 have also been implicated as important factors 

in progression of liver injury; however, their precise role and timing of involvement are 

debated62, 95. 

Our data supports the notion that variation in immune response may be the most 

critical of the complex events that determine susceptibility to acetaminophen toxicity 

since a number of candidates from this pathway were significantly associated with 

strain-specific injury in response to acetaminophen. Within the mouse diversity panel, 

ALT release at four hours was shown to be affected by polymorphisms in lymphocyte 

antigen 86 (Ly86, also known as MD-1), CD44 antigen (Cd44), and CD59a antigen 

(Cd59a), which are involved in B-cell responsiveness to lipopolysaccharide, lymphocyte 

adhesion and activation, and regulation of complement deposition, respectively. Subtle, 

transient alterations in immunogenic signaling during acetaminophen toxicity may also 

play a role in the development of idiosyncratic toxicities in an individual, however more 

data is needed to fully characterize this relationship. 

Capn8, a gene identified by association mapping of the 24 hour ALT phenotype, 

was the only non-immune gene found to be associated with sensitivity to 
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acetaminophen (an exonic A to G base change). This observation is intriguing given that 

calpain released from necrotic hepatocytes has been associated with the progression of 

acetaminophen-induced liver injury96. In addition, calpastatin, a specific inhibitor of 

calpain, was recently shown to play a role in attenuating liver injury and increasing 

survival of mice following an acute dose97. 

The ability of the panel of mouse strains to predict sensitivity to acetaminophen-

induced liver injury in humans was supported by sequencing of the orthologous genes 

positively associated with liver injury in mice. Consistent with the data in the mouse 

population, we found CD44 to be a marker of sensitivity in two independent human 

cohorts. The genotypes at CD44 allowed partitioning of subjects based upon 

susceptibility to acetaminophen-induced hepatic toxicity and implicate variation in 

immunogenic cell surface antigens as potential mediators of acetaminophen sensitivity. 

It is noteworthy that heterozygous (C/T) individuals are more susceptible, since (i) in 

silico prediction of the effect of this non-synonymous coding SNP suggests a disruption 

in the protein function and (ii) Cd44-null mice are more susceptible to liver necrosis due 

to acetaminophen. These data are intriguing given that Cd44-deficient mice exhibit 

greater liver injury due to another classic hepatotoxicant, carbon tetrachloride98. 

Interestingly, inflammatory response to carbon tetrachloride was temporally shifted in 

Cd44-deficient mice compared to wild-type (C57BL/6 mice), an effect that may be 

mediated by the temporal differences in liver NF-қB activity. Therefore, it is possible that 
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variations in CD44 may significantly affect liver necrosis through effects on leukocyte 

signaling via cytokine modulation. However, owing to the many physiologic and 

pathologic roles of CD44 isoforms in vivo99, including cell-cell matrix interaction, 

lymphocyte extravasation, wound healing, scar formation, cell migration, and the binding 

and presentation of growth factors, the precise mechanistic role of this gene in 

conferring sensitivity to acetaminophen-induced ALT elevations remains to be 

determined. 

 

F. CONCLUSIONS 

Collectively, our results indicate that the use of an inbred mouse strain panel is a 

valuable tool for evaluating drug safety and for the development of biomarkers to pre-

screen individuals prior to therapeutic drug treatment with potential toxicities. The 

identification of the genes associated with differential susceptibility to toxicity in a pre-

clinical phase, exemplified by the finding that CD44 may be involved in modulation of 

susceptibility to acetaminophen hepatotoxicity, has potential to focus pharmacogenetics 

research, overcome the challenge of small human cohorts, and to shorten the validation 

period. The data acquired with this model could therefore be influential in the analysis of 

individual risk to pharmaceutical agents and may facilitate both drug development and 

human safety endeavors. One of the limitations of this approach, however, lies in the 

uncertainties of whether the associations between SNPs and modest increases in ALT 
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observed with “therapeutic” doses would also predict individuals susceptible to more 

severe toxicity seen in overdose situations. Additional research into the mechanisms of 

predisposition to minor forms of liver injury and those which lead to more severe organ 

damage is needed. 
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Table 2.1 

Genomic regions identified by haplotype-associated mapping in inbred mouse 
strains 

 
 

 
Genes highlighted in bold were selected for sequence analysis. 
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Table 2.2 
 

Sequence analysis of polymorphisms within candidate mouse regions 
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P values < 0.05 are in bold. Underlined genomic locations indicate that the 
polymorphism causes a non-synonymous amino acid change in the protein. 



 

 55

Figure 2.1 
 

Maximum serum ALT fold change measured in human volunteers taking daily 
oral doses of acetaminophen 

 
The peak ALT fold change over baseline reached over the course of treatment by each 
subject in the UNC cohort is shown. Subjects were considered responders (white bars, 
N=34) if peak serum ALT reached greater than 1.5-fold (line) higher than the subject’s 
baseline value. Black bars represent subjects who were non-responders (i.e. with a 
peak ALT fold change less than 1.5). 
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Figure 2.2 

Toxicity responses to acetaminophen in a panel of mouse strains 

(A) Representative photomicrographs (100x) of the hematoxylin-eosin stained sections 
of left liver lobe of mice 24 hours after dosing with acetaminophen (300 mg/kg). (B) Liver 
necrosis score (mean±S.E., n=3-4/strain) in mice treated with acetaminophen (300 
mg/kg) for 24 h. (C) Serum ALT levels (mean±S.E.) in acetaminophen-treated mice 
sacrificed 24 h after dosing. (D) Serum ALT levels (mean±S.E.) in acetaminophen-
treated mice sacrificed 4 h post-dosing. (E) Liver reduced glutathione (ratio between 
acetaminophen- and vehicle-treated animals in each strain, mean ± S.E.) 4 h post-
dosing. Symbol ( ) indicates strains with no data. (F) Dose-response to 
acetaminophen-induced liver injury as measured by ALT release (n=4/strain, 
mean±S.E.) at 24 h after treatment. 
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Figure 2.3 

Plasma AUC of acetaminophen metabolites 

Plasma AUC of acetaminophen (mean±S.E.) as well as the glucuronide and sulfate 
conjugates measured across strains for 6 h post-dosing with (A-C) 50 mg/kg (i.g.) or (D-
F) 300 mg/kg (i.g.) following an overnight fast. Asterisk (*) indicates significant 
differences between strains by the Tukey post-hoc test (P<0.05). 
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Figure 2.4 

Haplotype association mapping of acetaminophen-induced liver injury in the 
mouse 

 
Serum ALT at 4 (A) and 24 (B) hours after acetaminophen (300 mg/kg) treatment was 
used to identify genomic intervals significantly associated with liver injury. Peaks 
(numbered, see Table 2.1) indicate a significant logP association score at each 3-SNP 
marker window. Marker colors indicate chromosome number across the mouse 
genome. 
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Figure 2.5 

ALT elevations in human volunteers delineated by genetic variation in CD44 and 
CAPN10 

 
Polymorphisms in CD44 (A-C) and CAPN10 (D-F) associated with susceptibility to 
acetaminophen-induced liver injury in humans. Data from UNC (A and D), Purdue 
Pharma (B and C) and a combined cohort (C and F) are shown. Average mean (± S.E.) 
serum ALT per genotype is plotted for each matching study day. 
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Figure 2.6 

Acetaminophen-induced liver injury in Cd44 gene knockout and wild type mice 

Differential susceptibility of CD44 knockout (KO) and wild-type (WT) mice to liver injury 
following an acute dose of APAP (300 mg/kg, i.g.) as measured by percent liver 
necrosis (mean±S.E.). Asterisk (*) indicates a significant difference between groups 
(P<0.05). 
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POPULATION-BASED DISCOVERY OF TOXICOGENOMICS BIOMARKERS FOR 
HEPATOTOXICITY USING THE MOUSE MODEL OF THE HUMAN POPULATION
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A. ABSTRACT 

Toxicogenomic studies are increasingly used to uncover potential biomarkers of 

adverse health events, enrich chemical risk assessment, and to facilitate proper 

identification and treatment of persons susceptible to toxicity. Current approaches to 

biomarker discovery through gene expression profiling usually utilize a single or few 

strains of rodents, limiting the ability to detect robust biomarkers that may represent the 

wide range of toxicity responses typically observed in genetically heterogeneous human 

populations. To enhance the utility of animal models to detect toxicity biomarkers for 

genetically diverse populations, we used a laboratory mouse strain diversity panel. 

Specifically, mice from 36 inbred strains derived from Mus musculus musculus, M.m. 

castaneous, and M.m. domesticus origins were treated with a model hepatotoxicant, 

acetaminophen (300 mg/kg, i.g.). Gene expression profiling was performed on liver 

tissue collected at 24 hours after the dose. We identified 26 population-wide biomarkers 

of response to acetaminophen hepatotoxicity in which the changes in gene expression 

were significant across treatment and liver necrosis score, but not significant for 

individual mouse strains. Importantly, these genes point to a sub-set of the intracellular 

signaling involved in acetaminophen-induced hepatocyte death, such as oncostatin M 

receptor and MLX interacting protein-like. These data demonstrate that a multi-strain 

approach may provide a more robust method for understanding genotype-independent 

toxicity responses and identify novel targets of therapeutic intervention. 
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B. INTRODUCTION 

Biological monitoring to assess potential toxicity of chemical and pharmaceutical 

compounds relies heavily on the availability of sensitive, specific and widely-applicable 

biomarkers of toxic effects100. Toxicogenomics is widely used at all stages of chemical 

risk assessment and it is thought that gene expression changes may be utilized as 

biomarkers of adverse effects 101. Current approaches often attempt to classify 

compounds with the goals of predicting adverse responses to specific chemical 

classes48, understanding the underlying biological mechanism of toxicity102, or identifying 

key nodes in the toxicity pathway that may serve as biomarkers103. Extensive 

proprietary104-106 and public107, 108 databases containing gene expression profiles and 

pathological endpoints derived from rodent and human tissues exposed to a variety of 

chemicals have been developed, thereby allowing the scientific community to mine the 

data for toxicity biomarkers of interest. 

Many biomarkers of toxicity may be surrogate measures for the genetics of an 

individual, which can play a major role in determining the threshold of toxicity of a given 

compound69. Compelling research has led to the identification of gene variants that 

correlate with drug toxicity109 and recent pharmacogenomic research efforts have made 

significant advances in connecting variability in responses to drug efficacy and/or toxicity 

to genetic polymorphisms33. While major research efforts are seeking genetic and 

genomic markers that could identify individuals susceptible to toxicity, less attention is 
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given to the fact that inter-individual variability in responses and genetic control of gene 

expression110, 111 may present a challenge for finding robust population-wide expression 

biomarkers of effect. Indeed, while toxicogenomics has been used widely for the study 

of toxicity biomarkers across compounds and across species, its usefulness in 

determining biomarkers that are relatable to a genetically diverse human population is 

limited by a lack of intra-species comparisons. 

To address the need for a biomarker identification strategy that is independent of 

population heterogeneity, we utilized a mouse Laboratory Strain Diversity Panel80. The 

use of a genetically-defined panel of mice has advantages over classical toxicology 

testing strategies that utilize a single inbred or outbred strain because it takes advantage 

of the vast genetic diversity that is available among inbred mouse lines74, 112. We 

hypothesized that toxicity responses across a panel of strains will produce a range of 

effects similar to those expected to occur in human populations, and that this phenotypic 

diversity can be used to identify population-dependent and –independent mRNA 

transcript biomarkers of response. Equally important to the model design is the genetic 

homogeneity that exists within a strain, enabling repeated testing from a specific 

genotype. To test our hypothesis, we selected the classical hepatotoxicant 

acetaminophen. We observed a dramatic gradient of acute hepatotoxicity across strains 

and the analysis of liver gene expression data revealed 26 genes that correlated with 

liver necrosis outcome and were not affected by genetic differences between individual 
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strains. Thus, these genes, the majority of which are tightly linked in a cell death and 

proliferation network, can serve as robust biomarkers for predicting responses across a 

genetically heterogeneous population. 

 

C. METHODS 

Mice 

Male mice (aged 7-9 weeks) were obtained from the Jackson Laboratory (Bar Harbor, 

ME) and housed in polycarbonate cages on Sani-Chips irradiated hardwood bedding 

(P.J. Murphy Forest Products Corp., Montville, NJ). Animals were fed NTP-2000 wafer 

diet (Zeigler Brothers, Inc., Gardners, PA) and water ad libitum, and maintained on a 12 

h light-dark cycle. Mice utilized in this study comprise 36 inbred strains that are priority 

strains for the Mouse Phenome Project80: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR 

T+ tf/J, BUB/BnJ, C3H/HeJ, C57BL/10J, C57BL/6J, C57BLKS/J, C57BR/CdJ, C57L/J, 

CAST/EiJ, CBA/J, CZECHII/EiJ, DBA/2J, FVB/NJ, JF1/Ms, KK/HlJ, LP/J, MA/MyJ, 

MSM/Ms, NOD/ShiLtJ (formerly NOD/LtJ), NON/LtJ, NZO/H1LtJ, NZW/LacJ, P/J, 

PERA/EiJ, PL/J, PWD/PhJ, RIIIS/J, SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ. F1 

hybrid mice, B6C3F1/J, were also used for phenotypic measurements. These studies 

were conducted under a protocol approved by the Institutional Animal Care and Use 

Committee at the University of North Carolina at Chapel Hill. 
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Acetaminophen administration and sample collection from mice 

Mice were singly housed and fasted 18 h prior to intra-gastric dosing with 

acetaminophen (99% pure, Sigma-Aldrich, St. Louis, MO; N=3-4 per strain) or vehicle 

(0.5% methyl 2-hydroxyethyl cellulose, Sigma-Aldrich; N=2 per strain, except for strains 

PERA/EiJ, SWR/J, and CZECHII/EiJ (N=3), as well as strains AKR/J, and CAST/EiJ 

(N=1, i.e. sufficient tissue was not available). The dose of 300 mg/kg was delivered in 10 

ml/kg of the vehicle. Dosing was performed at the same time of day (9 am) throughout 

the study as diurnal effects have been shown to affect gene expression in rodent 

studies81. Feed was returned 3 h after dosing; animals were necropsied 24 h after 

treatment (Nembutal 100 mg/kg i.p., Abott Laboratories, Chicago, IL). Livers were 

quickly excised following ex-sanguination and sections of the left lateral lobe were 

placed in 10% phosphate buffered formalin for immunohistochemical analyses. 

Remaining liver from the left lobe was snap-frozen in liquid nitrogen and stored at       -

80ºC for RNA extraction. 

Liver histopathology 

Paraffin-embedded liver tissue was cut to 5 µm sections in duplicate and stained with 

hematoxylin and eosin (H&E). Liver injury in the left liver lobe was blindly scored by A.H. 

and confirmed by a certified veterinary pathologist.  Necrosis was quantified by 

unbiased stereology using a point counting technique83. Briefly, a grid with 100 evenly 

spaced points was overlaid on printed images of liver sections taken at 100X 
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magnification.  The total number of points lying in an area of necrosis was divided by the 

total number of points lying completely within the entire tissue section to determine a 

percent necrosis score (0-100%). 

RNA isolation 

To eliminate variability in transcript expression that might arise between liver lobes, the 

left liver lobe was selected for the remainder of the data analysis and gene expression 

profiling. RNA was extracted from the 30 mg of tissue derived from the left lobe of 

sample livers using the Qiagen RNeasy kit (Qiagen, Valencia, CA). RNA concentrations 

were measured using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and quality was verified using the Agilent Bio-Analyzer 

(Agilent Technologies, Palo Alto, CA). 

Microarray hybridizations 

In this study, all RNA samples were hybridized to arrays individually; none were pooled. 

RNA amplifications and labeling were performed using Low RNA Input Linear 

Amplification kits (Agilent Technologies). For hybridization, 750 ng of total RNA from 

each mouse liver was amplified and labeled with fluorescent dye (Cy5). In parallel, 750 

ng of a common reference RNA (Icoria Inc., RTP, NC) was labeled with the fluorescent 

dye, Cy3, in order to standardize analysis of global gene expression between mouse 

strains4. Labeled cRNA was then processed and hybridized to Agilent Mouse 

Toxicology Arrays (catalog# 4121A, about 22,000 features) according to the 
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manufacturer’s protocol. Following hybridization, arrays were washed using a custom 

protocol developed by Icoria, Inc. Briefly, array gaskets were removed under immersion 

in Wash Solution 1 (6X SSPE, 0.005% N-Lauroylsarcosine). Arrays were washed with 

Wash Solution 1 and incubated for one minute with gentle agitation on a magnetic stir 

plate. A second incubation was performed in Wash Solution 2 (0.06X SSPE, 0.005% N-

Lauroylsarcosine). 

Data analysis of significantly changed transcripts 

Raw microarray intensity values were obtained from Agilent Feature Extraction software 

(v8.5) and archived in the UNC Microarray Database (http://genome.unc.edu). Raw 

data is available to the public through this database. The log2 ratio of Cy5/Cy3 intensity 

was normalized using LOWESS smoothing to eliminate intensity bias of features. 

Transcripts with fewer than 70% good data across samples were excluded from the 

analysis, reducing the probe list to 15,509 transcript probes. Intensity ratios were 

transformed to eliminate hybridization batch effects using the Batch Normalization 

feature in Partek Genomics Suite (Partek Inc., St. Louis, MO). Analysis of significant 

transcripts was performed using an ANCOVA model in Partek in which the main effects 

were mouse strain, treatment, the interaction of mouse strain and treatment, and the 

sample necrosis score. Transcripts were called significantly different if the p-value was 

less than a threshold determined by a step-down false discovery rate113 (FDR, α=0.01) 
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to correct for multiple comparisons across array features. Heat maps were generated 

using hierarchical agglomerative clustering. 

Functional analysis of significant genes 

Onto-Tools Onto-Express (http://vortex.cs.wayne.edu/)114 was used to generate 

functional profiles of the significant transcripts identified by the ANCOVA model for each 

factor. Significance values were calculated based upon a hypergeometric distribution. A 

P value cutoff of P<0.05 was selected as the cutoff for significance of expanded gene 

ontology categories. The gene network of the 26 response biomarkers was prepared by 

determining connecting nodes, interactions, and cellular compartments with Ingenuity 

Pathway Analysis software v. 5.5 (Ingenuity Systems, Redwood City, CA). 

 

D. RESULTS 

Histopathology of liver toxicity across inbred mouse strains 

At 24 h after dosing with 300 mg/kg of acetaminophen (i.g.) we observed 

centrilobular necrosis in the liver consistent with that previously reported for acute doses 

of acetaminophen115, 116. Necrosis was accompanied by inflammatory infiltration into the 

hepatic parenchyma and, in varying degrees, hemorrhage was also present. 

Quantitative liver necrosis scores reflective of the proportion of the affected area were 

obtained from the left liver lobe117 and demonstrated a wide range of toxicity across the 

panel of inbred mouse lines (Figure 3.1). The rank order of sensitivity to acetaminophen-
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induced liver injury across strains shows that the majority of tested strains (30/36) 

sustained less than 40% liver necrosis, while 6 strains sustained liver necrosis of 

between 40-100%. 

 

Determination of Gene Transcripts Associated with Strain, Treatment and Liver 
Necrosis 

Gene expression values were collected on individual animals in this study 

(vehicle and acetaminophen-treated mice) and used for principal components analysis 

to visually examine the patterns in global mRNA transcript differences (Figure 3.2). The 

unsupervised analysis displayed separation of the samples by both treatment and by 

the amount of liver necrosis sustained in the animal indicating that gene signatures may 

be determined that are correlative with liver toxicity due to acetaminophen. 

To determine those transcripts in which expression was significantly 

differentiated among the experimental factors, an ANCOVA (analysis of covariance) 

model was used. Covariate factors for each individual mouse included the strain 

(genotype), treatment (vehicle or acetaminophen), the interaction between strain and 

treatment because of anticipated genotype-specific effects on acetaminophen 

metabolism and transport, and the liver necrosis score. The number of transcripts 

significantly changed among each experimental factor is depicted in a Venn diagram 

(Figure 3.3A) and excludes those genes with a significant strain-by-treatment 

interaction. 
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Interestingly, the majority of genes (1524) found to be significantly different 

between samples in the ANCOVA analysis were attributed to the strain effect, not 

acetaminophen treatment, or the degree of liver necrosis. This strain-specific gene set 

best represents those genes that differ in basal levels among the panel of inbred mouse 

strains and whose expression is likely to be affected by genetic polymorphisms111. 

Next, Gene Ontology (GO) analysis was performed in order to determine 

biological pathways most affected by the experimental factors of strain, treatment, or 

liver injury, alone and in combination (Table 3.1). There were few GO categories that 

were identified as significant for necrosis alone, and there were no broad molecular or 

biological processes affected by treatment alone. Categories enriched for genes 

significant by both strain and necrosis, but not by treatment, included protein binding, 

ATP binding, and structural elements of tissue. This gene set represents those genes 

that have a significant association with the liver necrosis value and that are dependent 

upon an individual’s genotype, but independent of whether the animal received 

acetaminophen or vehicle. 

The functional profile for those genes that were significant for all three factors 

(strain, treatment, and necrosis) was found to be associated with microtubule binding. 

This gene set represents those genes that could yield important information on the 

mechanism of acetaminophen toxicity, but would make a poor biomarker because basal 

levels are affected by individual genotype. It should be noted that the two significant GO 
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categories for this set are both driven by the inclusion of the gene Mapre1 (microtubule-

associated protein, RP/EB family, member 1). 

 

Population-Based Gene Expression Biomarkers of Response 

There were 26 transcripts whose expression was affected significantly by both 

treatment and by the toxicity outcome (i.e., liver necrosis), but not the subject’s genotype 

(Table 3.2). We reason that these genes could serve as population-based biomarkers of 

response. A heat map was generated to visualize gene expression changes in these 

biomarker transcripts across individuals (Figure 3.3B). A clear gradient of expression 

changes can be observed for each of these genes depending on the amount of 

necrosis sustained by an individual mouse. Expression of 17 of these transcripts 

increased, while nine genes decreased as liver necrosis increased in acetaminophen-

treated mice (Table 3.2). Functional analysis of these genes revealed significant over-

representation of four molecular functions, including hematopoietin/interferon-class 

(D200-domain) cytokine receptor activity, proteasome activator activity, cyclin binding, 

and MAP kinase activity (Table 3.1). 

In order to determine whether molecular interactions exist among the population-

based transcript biomarkers, a pathway map was constructed using Ingenuity Pathway 

Analysis. This analysis revealed that 16 of the 26 population-based response 

biomarkers are closely linked in a cell death and proliferation network centered on cell 
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cycle regulating genes Trp53, Myc, Jun, and Cdkn1a (p21) (Figure 3.4). Closely 

associated with this network were the cytokine-responsive genes interleukin 6 signal 

transducer (Il6st) and oncostatin M receptor (Osmr) (Figure 3.3C-D), as well as the 

glucose-responsive transcription factor MLX interacting protein like (Mlxipl) and cell cycle 

gene CDC14 cell division cycle 14 homolog B (Cdc14b) (Figure 3.3E-F). 

 

E. DISCUSSION 

Decades of mechanistic investigations into the liver toxicity of acetaminophen 

have concluded that: (i) metabolic activation to the reactive metabolite N-acetyl-p-

benzoquinone imine and its binding to cellular proteins is an essential initiating event for 

the toxicity; (ii) intracellular events involved in cell death such as mitochondrial 

dysfunction and formation of reactive oxygen and nitrogen species propagate the injury; 

and (iii) inflammatory response to cell death in the liver may exacerbate the damage54, 

77. Thus, the fact that our study not only identified 26 biomarker genes in which 

expression across strains was associated with the level of liver necrosis, but also 

showed that 16 of these genes are involved in cell death pathways and form a closely 

linked molecular network, confirms a central role for intracellular cell signaling in 

acetaminophen-induced liver toxicity. 

Not only are cell death-related genes mechanistic biomarkers of effect across 

genetically diverse individuals as identified in our work, they also have been shown to be 
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consistently affected and significantly correlated with the acetaminophen-induced liver 

toxicity phenotype in a multi-center toxicogenomic study118. The study, conducted at 

seven different laboratories around the U.S., used only one inbred strain, C57BL/6J; 

however, it showed that Myc is induced by acetaminophen and that a MYC–centered 

cell death pathway is the most significant network of proteins associated with liver injury 

in the mouse at 6, 12 and 24 hours after treatment with a dose identical to that used in 

our work. Furthermore, expression of Cdk inhibitor p21 (Cdkn1a), a central gene in the 

biomarker gene network, has been shown previously to be required for liver necrosis in 

rodents119. In addition, decreased levels of Cdc14b are consistent with increased 

activation of Trp53119, which may be a compensatory mechanism to signal for an 

increase in cellular repair following acetaminophen overdose. Collectively, we argue that 

16 genes identified in our study are robust mechanism-relevant biomarkers of liver 

necrosis that may be used to profile toxicity across individuals and in multiple 

independent microarray studies. 

Importantly, the genes identified in this study are interesting not only as potential 

biomarkers, but also as mediators of acetaminophen-induced cell death and 

regeneration in liver. For example, the role of OSMR in acetaminophen-induced liver 

injury deserves attention because genes coding for its two subunits, Osmr and Il6st, 

were both identified as genotype-independent biomarkers of the liver toxicity outcome. It 

is known that IL6ST expression is essential for the control of the hepatic acute-phase 
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response during liver regeneration 120, 121. However, while IL6 represents one of the best 

studied cytokines, there is relatively little known about the biological activities of 

oncostatin M (OSM), a cytokine secreted by activated T lymphocytes, macrophages, 

and neutrophils. Oncostatin M may have a pro-fibrotic role in liver injury owing to its 

ability to induce tissue inhibitor of metalloproteinases (TIMP) 1122 and TIMP3123. While 

OSM has been shown to be increased following acetaminophen-induced liver injury 124, 

Osmr transcript levels have not been shown previously to correlate with liver necrosis 

endpoints. Additionally, knockout mice deficient for Osmr display defects in liver 

regeneration following carbon tetrachloride exposure125; more importantly, 

administration of exogenous OSM ameliorated liver injury in wild type mice125. 

In addition, expression of Mlxipl, also known as carbohydrate response element 

binding protein (Chrebp), a transcription factor that plays a central role in the dietary 

regulation of hepatic gene expression by glucose, was decreased as the degree of liver 

necrosis increased in animals treated with acetaminophen. Several recent studies 

demonstrated that acetaminophen can affect blood glucose levels126 and improve 

glucose tolerance in mice fed a high fat diet127. The former study showed that daily 

administration of acetaminophen prevented approximately 70% of weight gain 

compared to mice fed the high fat diet alone, even at a daily dose that was lower than 

half of the maximum recommended weight-adjusted human dose126. In addition, 

decreases in liver glucose and increases in lipid content were observed in the mouse 
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liver after acetaminophen overdose using NMR-based metabolomics128 and may 

explain the dramatic decrease in Mlxipl transcript levels observed in our work. While 

further studies need to be conducted to link effects on glucose modulation at sub-acute 

doses of acetaminophen with the acute toxic doses used in our study, changes in Mlxipl 

expression may yield insight into the mechanism of these phenomena. 

An important limitation of the animal studies of toxicity mechanisms is the ability 

to translate the data to clinical findings. A recent rat-to-human study of acetaminophen 

toxicity showed successfully that gene expression data from peripheral blood cells can 

provide valuable information about exposure levels, well before liver damage may be 

detected by classical parameters16. The major biological signal in the classifier genes 

identified in that study was activation of an inflammatory response. None of the 26 

genes identified in our multi-strain study could be matched to human blood 

transcriptome data from subjects hat overdosed with acetaminophen as reported by 

Bushel et al.16. However, it should be noted that the small sample size of the human 

study (5 cases, 2 controls) as well as the wide variability in the timing of the collection of 

human blood samples, at two or five days after ingestion of acetaminophen, could have 

been the major factors for lack of mouse-to-human overlap. 
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F. CONCLUSIONS 

The use of toxicogenomics as a tool in toxicology calls for the careful evaluation 

of study designs. Because one of the major applications of toxicogenomics is to 

discover biomarkers of toxicity that are relevant to humans, great care must be taken in 

choosing the appropriate model systems. Traditional risk assessment practices using 

animal models allow for the control of many experimental factors except for genetics. 

Although rodent models have been widely used for toxicity testing, their utility is often 

limited by: (i) inaccurate generalizations from a single genome; (ii) inability to distinguish 

small and biologically important changes from background variation; (iii) ineffective 

exploitation of reproducible genetic variation to dissect differential response to chemical 

exposure; and (iv) inefficient use of defined genetic backgrounds to model particular 

phenotypic profiles observed in human populations. 

To address these important limitations, panels of genetically-defined organisms, 

such as inbred mouse lines, that provide a fixed genotype within a particular strain but 

encompass great genetic diversity across strains, are being used more frequently in 

biomedical research129. Inbred mouse strains are reasonably well-suited for identifying 

whole-genome response signatures indicative of chemical exposure because much is 

known regarding genetic lineage and derivation for hundreds of strains, and the number 

and distribution of genetic polymorphisms among mouse strains is equal to or exceeds 

that in the human population74, 130. This approach has the added advantage of “repeat 
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testing” in genetically identical individuals within a given strain, yielding important 

information regarding reproducibility of the response. 

Genetic variation among individuals is reflected in variations in gene expression 

levels85, 110, which introduces additional challenges into toxicology research. Our recent 

study to dissect genetic networks that control liver gene expression identified several loci 

that control the expression of large numbers of genes in the liver111. Similarly, the largest 

group of genes identified in this study as significantly different between individuals, 

despite the fact that over 2/3 of all animals exhibited variable degrees of liver damage, 

comprised transcripts that differ in basal levels between inbred mouse strains. Many of 

the genes with strain-specific expression levels are within receptor activity and G-protein 

coupled receptor activity molecular pathways. Given the fact that about 50% of all 

prescription pharmaceuticals currently on the market target this broad class of 

proteins131, our data underscores the value of multi-strain experiments that can avert the 

risk of large genotype, rather than treatment, effects in a particular strain of animals used 

for pre-clinical safety and efficacy testing.

 



 

 80

Table 3.1 
 

Pathway analysis of significantly changed genes 
 

GO ID 
GO 

Class† Function Name 
Corrected P-

Value 
Necrosis    

GO:0004871 MF signal transducer activity 2.07E-04 
GO:0007186 BP G-protein coupled receptor protein signaling pathway 8.87E-03 

Strain    
GO:0004930 MF G-protein coupled receptor activity 1.60E-05 
GO:0004871 MF signal transducer activity 1.25E-04 
GO:0004872 MF receptor activity 3.42E-04 
GO:0004984 MF olfactory receptor activity 6.27E-04 
GO:0001584 MF rhodopsin-like receptor activity 1.21E-03 
GO:0016978 MF lipoate-protein ligase B activity 2.12E-02 
GO:0007165 BP signal transduction 1.62E-05 
GO:0007186 BP G-protein coupled receptor protein signaling pathway 6.81E-05 
GO:0050896 BP response to stimulus 1.28E-03 
GO:0007608 BP sensory perception of smell 2.59E-03 
GO:0008033 BP tRNA processing 3.98E-03 

Strain and 
Treatment   

GO:0004128 MF cytochrome-b5 reductase activity 2.75E-02 
GO:0004348 MF glucosylceramidase activity 2.75E-02 
GO:0004024 MF alcohol dehydrogenase activity, zinc-dependent 2.75E-02 
Strain and Necrosis   
GO:0008307 MF structural constituent of muscle 2.05E-02 
GO:0005515 MF protein binding 2.61E-02 
GO:0005524 MF ATP binding 3.61E-02 
GO:0005200 MF structural constituent of cytoskeleton 3.89E-02 

Treatment and Necrosis  

GO:0004896 MF 
hematopoietin/interferon-class (D200-domain) cytokine 

receptor activity 7.07E-04 

GO:0008538 MF proteasome activator activity 3.84E-02 
GO:0030332 MF cyclin binding 3.84E-02 
GO:0004709 MF MAP kinase kinase kinase activity 4.79E-02 

Strain, Treatment, and Necrosis  
GO:0051010 MF microtubule plus-end binding 3.67E-03 
GO:0008017 MF microtubule binding 1.56E-02 

 
†GO Classes: MF = Molecular Function, BP = Biological Process 
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Table 3.2 
 

Population-based biomarkers of acetaminophen-induced liver injury 
 

Gene Symbol Gene Name 
Necrosis 
P Value 

Treatment 
P Value 

DECREASED    
C14ORF122 chromosome 14 open reading frame 122 7.9E-10 3.7E-07 

Tlcd1 TLC domain containing 1 1.3E-09 2.4E-07 
KIAA1370 KIAA1370 2.9E-09 8.1E-08 

Rhbg Rhesus blood group-associated B glycoprotein 4.3E-09 5.3E-07 
Cdc14b CDC14 cell division cycle 14 homolog B (S. cerevisiae) 1.9E-08 1.1E-07 

Lgr5 leucine rich repeat containing G protein coupled receptor 5 2.6E-08 1.6E-07 
L2hgdh L-2-hydroxyglutarate dehydrogenase 3.0E-07 2.1E-07 
Mcm10 minichromosome maintenance deficient 10 (S. cerevisiae) 3.3E-07 2.5E-07 

Mlxipl carbohydrate response element binding protein, MLX 
interacting protein-like 5.9E-07 4.1E-07 

INCREASED    
Col4a1 procollagen, type IV, alpha 1 1.1E-13 1.1E-08 
Tmem2 transmembrane protein 2 4.8E-12 1.1E-08 
Slc39a6 solute carrier family 39 (metal ion transporter), member 6 4.5E-11 2.4E-07 

Serpine1 serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 1 1.3E-09 4.3E-07 

Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 1.4E-09 7.5E-12 
D10Ertd438e DNA segment, Chr 10, ERATO Doi 438, expressed 4.2E-09 2.0E-09 

Psme3 proteaseome (prosome, macropain) 28 subunit, 3 5.5E-08 5.7E-07 
Ddx39 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 6.9E-08 2.8E-08 
SKIL SKI-like oncogene 6.9E-08 8.2E-09 

Map3k6 mitogen-activated protein kinase kinase kinase 6 7.7E-08 4.6E-07 
Pex1 peroxisome biogenesis factor 1 8.4E-08 1.7E-09 
Il6st interleukin 6 signal transducer 2.0E-07 4.3E-08 

Osmr oncostatin M receptor 2.1E-07 2.1E-07 

Csf2rb2 colony stimulating factor 2 receptor, beta 2, low-affinity 
(granulocyte-macrophage) 3.3E-07 1.2E-10 

Cd68 CD68 antigen 4.2E-07 3.2E-12 
2010109K11Rik RIKEN cDNA 2010109K11 gene 4.5E-07 4.4E-07 

Ipo4 importin 4 6.4E-07 2.9E-07 
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Figure 3.1 
 

Variability in acetaminophen-induced liver necrosis occurs across mouse strains 
 
Liver necrosis measured across strains after acetaminophen (300 mg/kg, i.g., 24 h) 
treatment in the left liver lobe shows a gradient of response across mouse strains. 
Asterisks (*) denote strains that sustained an average of 40% or greater liver necrosis. 
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Figure 3.2 
 

Principal components analysis of microarray data 
 

Principal Components Analysis of the global gene expression changes in the left liver 
lobe following treatment with vehicle (0.5% methyl cellulose) or acetaminophen (300 
mg/kg, i.g., 24 h). Acetaminophen-treated samples are depicted as triangles and 
vehicle-treated samples are depicted as squares. The data separate along the first 
principal component (PC1) by treatment. There is additional separation of gene 
expression along PC1 and PC2 by the amount of liver necrosis sustained (white to 
black scale bar = 0-100% necrosis). 
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Figure 3.3 
 

Venn diagram of significantly changed genes and heat map of population-based 
biomarkers of liver injury 

 
(a) The Venn diagram depicts the number of genes significant for each factor in the 
ANCOVA model, namely treatment, strain (genotype), and the individual’s liver necrosis 
score at 24 h. Population-based biomarkers of response are those 26 genes that are 
significant for treatment and necrosis score, but not by genotype. (b) The expression 
patterns of the 26 biomarkers are depicted in a heat map in which samples (rows) were 
ordered first by necrosis score and then by treatment. Unsupervised hierarchical 
clustering was performed on heat map genes (columns). (c-f) Biomarker gene 
expression for each sample as plotted against the liver necrosis score is shown for 
transcript expression that is increased with necrosis: the Oncostatin M receptor subunits 
Il6st (c) and Osmr (d) and for transcript expression that is decreased with necrosis: 
Mlxipl (e) and Cdc14b (f). Values for vehicle-treated mice are shown in open squares 
and values for APAP-treated mice are shown in closed circles. The linear regression 
trend lines for acetaminophen-treated samples are shown. 
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Figure 3.4 
 

Network analysis of population-based transcript biomarkers 
 

Network analysis of the 26 biomarkers of response using Ingenuity Pathways Analysis 
revealed that 16 of the biomarkers are closely associated with molecular pathways 
involved in cell death and proliferation. The network is shown here with transcripts 
localized to their endogenous sub-cellular compartments (nucleus, cytoplasm, cell 
membrane, and extracellular space). Genes that are increased or decreased as 
necrosis increased are colored blue and yellow, respectively. 
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OVERALL LIVER TOXICITY OUTCOME DUE TO ACETAMINOPHEN OVERDOSE 
IS NOT DUE TO STRAIN-SPECIFIC DIFFERENCES IN ACETAMINOPHEN 

METABOLISM
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A. ABSTRACT 

 Research within our laboratory shows that differences in the genetic makeup of 

particular mouse strains used in acute acetaminophen toxicity studies can have a 

profound effect on the overall toxicity outcome.  Acetaminophen-induced liver injury has 

a complex etiology that requires: (i) an accumulation of a reactive metabolite, (ii) the 

activation of Jun-mediated intracellular signaling, changes in mitochondrial permeability, 

and (iii) the subsequent release of chemical mediators that regulate inflammatory 

mediators which affect the balance of injury and repair within the hepatic parenchyma. 

Previous research aims successfully identified genetic and transcriptional biomarkers of 

sensitivity and response to APAP-induced liver injury. However, these approaches did 

not sufficiently characterize the potential of genetically pre-determined differences in the 

metabolism of APAP across strains to contribute to the overall toxicity outcome. 

Increases in the ability to convert APAP to its reactive metabolite, NAPQI, via 

cytochrome P450 metabolism, or decreases in the ability to detoxify metabolites 

downstream of NAPQI formation could result in increased susceptibility to liver necrosis 

that may, in part, explain the sensitivity of some strains (Figure 4.1). Here we 

characterize APAP metabolism within five inbred strains utilized in previous studies that 

demonstrated a genetically-determined range of liver toxicity outcomes. By measuring 

the major metabolites of APAP in serum and by assessing key pharmacokinetic 

parameters, we determined that the contribution of APAP metabolism to the liver toxicity 
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outcome, while important to the etiology, is not the determining factor in the overall 

APAP-induced liver injury outcome that is genetically-determined between tested 

strains. 

 

B. INTRODUCTION 

It is well-accepted that genetic sequence variations can affect an individual’s 

response to drug treatment21, 22. As early as the 1970’s, researchers noted individual 

differences in drug efficacy; for example, the daily dose of warfarin needed to achieve a 

similar degree of anticoagulation in 200 patients was shown to vary widely132. Variability 

in drug response also applies to adverse side effects, especially when the adverse side 

effects relate to the inherent pharmacologic properties of the drug, such as in the use of 

chemotherapeutics to treat cancer. However, it is difficult during drug development to 

predict rare, “idiosyncratic” adverse events that are only detected when thousands or 

millions of people are administered a given drug. 

Research into the identification of genetic variants that predict therapeutic 

efficacy or that confer an increased risk of adverse effects is increasing, as the FDA 

recently began allowing drugs to remain on the market based on the availability of 

genetic tests.  Due to recent successes in genetic testing for drugs such as warfarin28, 29 

and 6-mercaptopurine26, 27, there is a significant demand for the development of models 

that can efficiently identify genetic sequences that affect pharmacogenetic traits. Recent 
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studies within our laboratory and others have shown that the genetic background of a 

particular mouse strain can determine an inherent susceptibility to acetaminophen-

induced liver necrosis133, 134. We therefore chose APAP-induced liver injury as a model 

exposure for use in an inbred mouse strain panel in order to validate an approach that 

identifies sequence variants that influence the liver toxicity outcome following an acute 

dose. An increase in susceptibility was found to be associated with genetic variability 

within the Cd44 gene in both mouse and human test cohorts. 

Acetaminophen is highly metabolized within the body; with only 2-5% of the 

dose excreted unchanged in the urine135. The major metabolites of acetaminophen are 

the sulfate and glucuronide conjugates, but a minor fraction is biotransformed primarily 

within the liver by cytochrome P450 enzymes to an electrophilic quinone radical, 

NAPQI. At therapeutic doses, NAPQI is inactivated rapidly by glutathione conjugation 

and excreted as cysteine and mercapturic acid conjugates (Figure 4.1).  However, large 

doses of acetaminophen result in a depletion of hepatocellular glutathione that leads to 

covalent binding of excess NAPQI with cellular macromolecules, eventually causing cell 

death by necrosis77. In early studies, we demonstrated that levels of hepatic GSH, which 

contributes to the detoxification capacity of the liver for NAPQI, were different between 

strains at 4 h after dosing, but not correlative with overall necrosis outcome. However, it 

was not known whether the overall pharmacokinetics of APAP, which is a key factor to 

the progression of injury, differed between strains. 
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Because the reactive metabolite is formed in parallel with the sulfate and 

glucuronide conjugates136, the kinetics of formation of the conjugates affect the extent 

and timing of reactive metabolite formation (thereby influencing the exposure to APAP), 

and the liver injury outcome of acetaminophen toxicity may be affected. It was therefore 

possible that resistant strains might have an enhanced capacity to clear the parent drug 

through sulfation and glucuronidation pathways.  In this study, we did not consider the 

absorption of orally dosed APAP to be a major factor in strain differences, because it 

has been previously demonstrated that absorption from the gastrointestinal tract is 

mediated by passive transport137 with a negligible amount of metabolism within the gut 

mucosa (shown in rats)138. Our study instead focused on assessing the formation and 

elimination kinetics of acetaminophen metabolites in order to determine whether strain 

differences play a role in genetic sensitivity to acetaminophen-induced liver toxicity. 

 

C. MATERIALS AND METHODS 

Animals and treatments 

Adult (aged 6-8 weeks) male mice of strains C3H/HeJ, C57BL/6J, DBA/2J, LP/J, and 

NZW/LacJ were purchased from the Jackson Laboratories (Bar Harbor, ME). Mice were 

fed with a commercial NTP-2000 wafer feed (Ziegler Brothers, Inc., Gardners, PA) and 

water ad libitum and maintained on a standard 12 h light-dark cycle. Mice from which 

plasma metabolite levels were measured were singly housed in polycarbonate cages 
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with Sani-Chips irradiated hardwood bedding (P.J. Murphy Forest Products Corp., 

Montville, NJ). For the 300 mg/kg dose and vehicle controls, mice were fasted for 18 h 

before the start of dosing. At 9 am, animals were dosed (i.g.) with 50 mg/kg or 300 

mg/kg acetaminophen (APAP; Sigma-Aldrich, St. Louis, MO), or with the 0.5% 

methylcellulose (Sigma-Aldrich) vehicle in a 10 ml/kg dosing volume. Food was returned 

at 3 h post-dosing. 

Serum and tissue collection 

Serum collection. Blood (45 ul) was collected sequentially from the tail vein at 0, 0.5, 1, 

2, and 3 h post-dosing. At 6 h, mice (N=5 per strain) were administered Nembutal 

anesthesia (100 mg/kg i.p., Abott Laboratories, Chicago, IL). Blood was collected by 

exsanguination at 6 h for metabolite measurements and ALT quantification. Blood 

samples were then centrifuged and serum was stored at -20ºC until high-performance 

liquid chromatography (HPLC) analysis. 

Tissue collection.  Livers were quickly excised following ex-sanguination and sections of 

the left and median lobes were placed in 10% phosphate buffered formalin (Sigma-

Aldrich) for immunohistochemical analyses. 

Acetaminophen metabolite quantification 

Metabolite measurements in serum. The procedure used for the quantification of APAP 

and its major metabolites, the glucuronide and sulfate conjugates (AG and AS), is 

similar to that previously described139. Standards for each analyte were obtained from 
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Sigma-Aldrich. Briefly, a reversed-phased HPLC assay was used in which the mobile 

phase was 5% acetonitrile and 95% 5 mM sodium sulfate/20 mM potassium phosphate 

buffer (pH=3.2) with a flow rate of 1.2 ml/min.  Retention times for APAP, APAP-G, 

APAP-S, and the internal standard (3-acetaminophenol; Sigma-Aldrich) detected at 254 

nm were 3.6, 5.2, 7 and 11 min respectively. 

The AUC0-∞ was calculated by using noncompartmental analysis in WinNonLin 

(Pharsight, Mountain View, CA). A one-way ANOVA with a Tukey post-hoc test was 

used to assess significantly different AUC across mouse strains (P<0.05). 

Liver necrosis assessment 

To determine the overall liver injury outcome from acute APAP dosing experiments, a 

point scoring technique was utilized as described in Chapter 2 (Methods). Liver injury, 

assessed within the left liver lobe, was expressed as the percent of necrotic area in a 

100X field relative to non-necrotic areas in the same field. 

Quantification of serum alanine aminotransferase (ALT) 

The quantification of ALT in mouse serum was performed as previously described82. 

Briefly, serum ALT was quantified using a kinetic method in which the rate of oxidation 

of NADH by lactate dehydrogenase (LDH) is measured at 340 nm following the addition 

of ALT (GPT) Reagent (Thermo Fisher Scientific, Waltham, MA) per the manufacturer’s 

recommended procedure. 

 



 

 95

Immunohistochemistry 

Formalin-fixed, paraffin-embedded sections (5µm) of the left liver lobe were mounted 

onto glass slides. Immunostaining was performed as previously described10, using the 

DAKO EnVision system HRP (Dako Cytomation, Carpinteria, CA) with primary antibody 

(1:200 nitrotyrosine [Molecular Probes, Eugene, OR]) and counterstaining was 

performed with hematoxylin. To quantitatively measure staining, all slide sections were 

processed in parallel on the same day. Quantitative measurements of antibody staining 

were performed using Image Pro Plus software (version 5.1; Silver Spring, MD). Briefly, 

the percent area stained to the total area within pericentral regions was determined for 

each animal by averaging the data from five areas per slide (at 400X magnification). 

Determination of glutathione measurements in liver tissue 

Reduced and total glutathione amounts in liver were determined using the ApoGSH 

Glutathione Colorimetric kit (BioVision, Mountain View, CA). Briefly, 50 mg of frozen 

tissue from the left liver lobe was homogenized in Glutathione Buffer™ and centrifuged 

for 10 min at 8000 x g following the addition of 100 µl 5% sulfosalicyclic acid. The 

supernatant was then assayed for reduced and total glutathione according to the 

manufacturer’s protocol. Glutathione levels were quantified using the pseudo-end point 

method based upon a generated standard curve. 
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Enzyme-linked Immunosorbent Assay (ELISA) 

Isolation of microsomes. Microsomes were isolated from the left liver lobe (300 mg/kg 

APAP; 24 h) by homogenizing 80 mg tissue in 240 µl ice-cold microsome buffer (50 mM 

Tris-HCl pH 7.4, containing 150 mM KCl, 1 mM EDTA, protease inhibitor mix, and 20% 

(v/v) glycerol). Homogenates were centrifuged at 9000 x g for 20 min at 4ºC. The 

supernatant was then centrifuged at 105,000 x g for 60 min at 4ºC. Microsomal pellets 

were resuspended in microsome buffer. Protein concentrations were determined using 

the Pierce BCA Protein Assay kit (Thermo Fisher Scientific Inc., Rockford, IL) and the 

manufacturer’s protocol. 

Protein quantification. Quantitative determinations of protein levels of cytochrome 

p450(CYP) 2E1, CYP1A2, catalase, and glutathione S-transferase (GST) in liver 

microsomes were performed by Integrated Laboratory Systems, Inc. (RTP, NC).  

Protein levels were determined by using the Protein Detector ELISA kit protocol (KPL, 

Inc. Gaithersburg, MD) as detailed by the manufacturer. ELISAs were performed by 

Integrated Laboratory Systems, Inc. (Research Triangle Park, NC). 

 

D. RESULTS 

Variability in acetaminophen-induced liver injury exists among mouse strains 

We characterized the potential for acetaminophen to cause varying degrees of 

liver injury in the five inbred strains by measuring ALT in serum as an indirect measure 
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of hepatocellular necrosis. ALT levels were assessed at 6 h following administration of a 

50 mg/kg dose and at 6 and 24 h following a 300 mg/kg dose of APAP under standard 

housing conditions. At the sub-toxic dose, we observed minor differences in ALT levels 

across strains in which strain LP/J exhibited a lower ALT level than all other strains at 6 

h (Table 4.1). However, these data for the sub-toxic dose are not considered indicative 

of liver injury because the ALT levels in APAP-treated mice are not significantly 

increased with respect to vehicle controls. At 6 h following the acute dose, ALT levels in 

serum were significantly elevated with respect to controls for all tested strains. However, 

there was no difference in the ALT elevations among the five inbred strains that would 

explain differences in liver necrosis outcome observed histologically at 24 h under the 

same experimental conditions (P=0.0714, Table 4.1). 

 

Protein levels of APAP metabolic enzymes do not correlate with susceptibility to 
liver toxicity 

In order to assess the contributions of APAP metabolism to the liver toxicity 

outcome, levels of a few key metabolic enzymes were assessed in the livers of mice 

from each strain. Protein measurements were performed by ELISA from microsomes 

derived from the left liver lobe of mice treated with 300 mg/kg APAP and necropsied at 

24 h. Linear regression analysis was performed to determine whether there was a 

tendency for the amounts of catalase, Cyp2E1, Cyp1A2, and Glutathione S-transferase 

(GST) Pi enzymes to correlate with the percent liver necrosis at 24 h (Table 4.2). There 
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was no significant relationship detected between the amounts of these enzymes with 

necrosis at either the basal level (vehicle-treated) or the induced level (APAP-treated) in 

these mice. 

 

APAP metabolite profiles in plasma do not correlate with liver injury outcomes 

We next investigated potential strain-based differences in the kinetics of APAP 

metabolism by measuring serum concentrations of APAP and its two major metabolites. 

APAP, APAP-glucuronide (AG), and APAP-sulfate (AS) concentrations were measured 

for the subtoxic and toxic doses from time 0 to 6 h. Serum was extracted from individual 

mice across the entire time course as described in Methods so that the area under the 

curve (AUC) of each profile was derived from a single individual. 

There was no difference in the exposure to APAP or the AUC of the glucuronide 

and sulfate conjugates at the 50 mg/kg dose level between strains. However, we found 

a significant main effect of strain in the AUC of APAP, AG, and AS at the 300 mg/kg 

dose level (P=0.006, P=0.0025, and P=0.0003 respectively). These data were 

presented in Figure 2.3. Interestingly, the resistant strain, LP/J, exhibited the highest 

AUC of the glucuronide and sulfate conjugates and tended to have higher 

concentrations of these metabolites in the serum than other strains at 3-6 h post-dosing 

(Figure 4.2). However, data from strain LP/J also demonstrated a much greater average 

exposure to the parent drug. 
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We next examined the relationship between metabolite AUC and the liver necrosis 

outcome (24 h) after the 300 mg/kg dose (Figure 4.3). As expected, a greater AUC of 

the glucuronide conjugate was associated with lower liver necrosis (P=0.0019, 

R2=0.9731). However, there was also a significant association between APAP exposure 

and liver necrosis, in which strains with a greater exposure to the parent compound had 

a lesser degree of liver injury (P=0.0019, R2=0.8291). There was no significant 

association observed between the AUC of the sulfate conjugate and liver necrosis 

(P=0.077, R2=0.7007). 

 

Hepatic glutathione levels at 6 hours are not associated with liver injury outcome 

In order to determine whether the detoxification capacity for the reactive 

metabolite differed amongst strains and was associated with injury outcome, we 

measured levels of total glutathione and GSH in livers of mice at 6 h. There was found 

to be no difference in total glutathione by either strain or treatment (P=0.2269 and 

P=0.4234; Figure 4.4A). While there was a difference in strain (P=0.0014) and treatment 

(P=0.0001) in the levels of hepatic GSH (Figure 4.4B), the difference was associated 

with a significant interaction between strain and treatment (P=0.0131). Interestingly, the 

levels of total glutathione, but not of GSH, in the vehicle-treated animals were found to 

be correlated with the 24 h percent liver necrosis across strains (P=0.015, R2=0.8948). 

However, this observation is likely not a meaningful association because reduced 
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glutathione, rather than the oxidized form, is the chemical entity responsible for 

detoxification of the reactive metabolite. Taken together, the data do not indicate that the 

level of total or reduced glutathione that differs between strains (when measured at 6 h) 

has a significant impact on the liver necrosis outcome following a toxic APAP dose. 

 

Nitrotyrosine adducts are significantly lower in APAP-resistant strain LP/J 

 To assess the ability of strains to produce and detoxify NAPQI, we first 

attempted to measure APAP-protein adducts by immunostaining using a commercially 

available antibody. However, staining tests with this antibody were unsuccessful and it 

was later revealed by the manufacturer that the antibody had insufficient quality control. 

We then indirectly measured the level of oxidative stress experienced in the liver 

through the detection of peroxynitrite via nitrotyrosine antibody staining. The resistant 

strain LP/J exhibited the lowest level of nitrotyrosine staining which was significantly 

different from all other strains, indicating a lesser degree of oxidative stress experienced 

by mice of this strain (P=0.0012; Figure 4.5). However, the large degree of necrosis and 

erythrocyte infiltration into the hepatic parenchyma present for all tested mouse strains 

may play a role as a confounding factor that contributes to nonspecific binding of the 

anti-nitrotyrosine antibody that can complicate accurate quantification. 
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E. DISCUSSION 

We previously demonstrated that the genetic background of a particular mouse 

can affect the overall toxicity outcome following an acute dose of acetaminophen. 

Subsequent to the toxicity studies, we determined genetic biomarkers that affect an 

individual’s susceptibility to liver injury (Chapter 2), as well as gene transcript biomarkers 

that correlate with the liver necrosis outcome (Chapter 3). An interesting result of these 

early studies was that none of the biomarker genes identified is known to be involved in 

the metabolism of acetaminophen in the liver. 

In parallel with our previous studies, the results of this study did not demonstrate 

a clear association with acetaminophen plasma pharmacokinetic parameters and the 

liver injury outcome in genetically susceptible and resistant mouse strains. In particular, 

we did not determine a difference between strains in the ability to form the reactive 

metabolite, NAPQI. There was no evidence for variability in the amounts of CYP2E1 

and CYP1A2, the enzymes responsible for the bioactivation of acetaminophen to the 

reactive, injury-causing metabolite, NAPQI. While there was some evidence that the 

resistant strain, LP/J, experienced a relatively lower amount of ROS generation, the 

data are difficult to interpret due to the extensive liver necrosis that may contribute to 

non-specific binding of the probe antibody for nitrotyrosine. 

It is interesting that the AUC of the sulfate and glucuronite conjugates of strain 

LP/J was also significantly greater than that of the other four strains. In a study that 
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investigated pharmacokinetic differences between rat strains that are resistant 

(Sprague-Dawley; SD) and susceptible (Long Evans Hooded; LEH) to acetaminophen-

induced liver injury, it was noted that the resistant strain had a greater capacity for 

glucuronidation and sulfation of the parent compound140. Of these effects, the increased 

capacity for glucuronidation was found to be the major component that contributed to 

increased injury resistance140. However, in these studies using a rat model, unlike in our 

mouse studies, the increased resistance was accompanied by enhanced levels of 

hepatic glutathione (GSH)141. Additionally, the mechanisms by which sulfation is limited 

has been shown to differ in rats and mice. In rats, sulfation is limited by the availability of 

3'-phosphoadenosine 5'-phosphosulfate (PAPS; i.e. the cosubstrate for sulfation); In CF-

1 mice, PAPS is not depleted at a dose of 600 mg/kg acetaminophen142 and sulfation is 

instead limited by hepatic sulfotransferase activity143. Therefore, it is reasonable to 

speculate that the increased sulfation and glucuronidation capacity of the LP/J mouse 

may play a role in its resistance to acetaminophen-induced toxicity and may be related 

to a strain-dependent enhancement of sulfotransferase activity. However, further 

characterization of this mechanism is needed. 

While there were no observable differences in GSH levels across mouse strains, 

it is not possible from the data collected to determine whether there were strain-

dependent differences in the maximum GSH depletion after acetaminophen 

administration. A confounding factor is the measurement of GSH at 6 h following 
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treatment rather than at 2 h when the maximum depletion has been shown to occur144, 

145. In order to fully characterize the ability of each strain to detoxify NAPQI via GSH 

conjugation, it would be beneficial to collect livers over time and conduct measurements 

from time 0 to 6 h. To address whether strain-dependent differences occur in this 

pathway, glutathione conjugates were measured in urine collected for 24 h post-dosing 

by NMR, however the data was not yet available to be included in this manuscript. 

The data from our study do not demonstrate a clear correlation between 

acetaminophen pharmacokinetics and downstream toxicity; this is not surprising in light 

of previous multi-strain studies that examined the pharmacological effects of 

acetaminophen. In a previous study that examined the role of genetic differences to 

affect acetaminophen’s antinociceptive effects, 12 inbred mouse strains were 

administered a writhing test for pain responses following administration of a 150 mg/kg 

(s.c.) dose146. It was noted that there was a great deal of variability across strains and, in 

particular, C57BL6/J and DBA/2J mice were found to be susceptible and resistant to the 

antinociceptive effects, respectively. Assessment of plasma acetaminophen 

concentrations over a two hour time course demonstrated that there was no difference 

in the AUC of APAP between the two strains. In addition, there was no difference in the 

clearance, the absorption rate constant, or the volume of distribution observed for these 

two strains. Although the precise mechanism of acetaminophen’s antinociceptive ability 

is still debated147, it appeared from this study that, since the strain-dependent hot-plate 
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antinociception was not accompanied by evidence of strain-dependent pharmacokinetic 

parameters, the relevant genes governing the response are more likely involved in a 

pharmacodynamic role. 

There are additional pharmacodynamic parameters that may underlie a genetic 

basis for strain susceptibility that were not examined in this study, which include hepatic 

drug transport processes. It has been shown in mice that acetaminophen can alter 

hepatocellular transport processes by causing a temporal down-regulation in mRNA 

expression of hepatic uptake carriers (Oatp and Ntcp) and an up-regulation of Mrp efflux 

and stress genes (Ho-1 and Nqo1)148. The authors of this study hypothesized that the 

liver altered gene expression of these transporters following liver injury in order to limit 

the accumulation of harmful chemicals within the hepatocyte148. The uptake of 

acetaminophen into hepatocytes has been shown to be accomplished by passive 

diffusion, rather than active transport processes149. Therefore, it is likely that the changes 

in transporter expression reflected an adaptive change by which the hepatocyte could 

more easily export acetaminophen metabolites upon a second challenge or prolonged 

exposure. In our study, the increase in serum glucuronide and sulfate conjugates 

observed for resistant strain LP/J may reflect strain-dependent differences in transport 

protein abundance or function rather than a greater capacity for these phase II 

reactions. For example, rat models have demonstrated that phase II conjugates formed 

in hepatocytes can be secreted into sinusoidal blood, rather than into bile, if there is an 
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impairment of the MRP2 transporter150. However, since the ratios of each metabolite to 

parent AUC do not differ between strains (P=0.17, AS; P=0.21, AG), it is unlikely that 

there are strain-dependent differences in the capacity for sulfation and glucuronidation 

pathways for acetaminophen. 

 

F. CONCLUSIONS 

In summary, the data do not conclusively support a role for strain-dependent 

pharmacokinetics to determine the overall liver injury outcome following an 

acetaminophen overdose. The data are not surprising, given the complexity of cellular 

responses that have been demonstrated to modulate acetaminophen-induced liver 

injury. It is more likely that processes downstream of metabolism, such as the Jun-

mediated cell death cascade151 and cross-talk between hepatocytes and innate immune 

cells56, 152 have a greater effect on strain-dependent toxicity outcomes. This study 

underscores the need for toxicologists to adopt genetically heterogeneous mouse 

models in which global genomics approaches for novel biomarker discovery can be 

used. The model may prove especially useful for pharmaceutical risk assessment in 

which traditional toxicological parameters do not predict the individual toxicity outcome. 
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Table 4.1 

Liver injury measured in susceptible and resistant strains 
 

Summary of serum ALT and percent liver necrosis measured across inbred mouse 
strains at 6 and 24 h following a subtoxic (50 mg/kg) or toxic (300 mg/kg) dose of APAP 
(mean ± S.E.) under standard housing conditions. P values were derived from one-way 
ANOVA analysis across strains. 

 

 LP/J C57BL/6J DBA/2J NZW/LacJ C3H/HeJ P value 
0 mg/kg 56 ± 34 36 ± 8 30 ± 0 64 ± 36 31 ± 1 0.6506 

       
6 h ALT       
50 mg/kg 28 ± 2 41 ± 2 45 ± 6 40 ± 5 56 ± 8 0.0199 
300 mg/kg 3101 ± 547 3413 ± 754 3207 ± 364 2691 ± 549 2823 ± 708 0.9207 

       
24 h ALT       
0 mg/kg 56 ± 34 36 ± 8 30 ± 0 64 ± 36 31 ± 1 0.6506 

300 mg/kg 2992 ± 1643 4303 ± 567 5057 ± 105 5830 ± 243 5087 ± 539 0.0714 
       

24 h 
Necrosis 11 ± 9 22 ± 13 34 ± 8 46 ± 16 55 ± 11 0.1387 
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Table 4.2 

Liver acetaminophen metabolic enzyme levels determined by ELISA 

Levels of metabolic enzymes involved in APAP metabolism and detoxification were 
measured in livers of mice treated with 300 mg/kg APAP or vehicle and necropsied at 
24 h post-dosing (mean). R2 and P values were determined for the linear regression 
between enzyme amount and the percent liver necrosis score for each strain. 

 
 LP/J C57BL/6J DBA/2J NZW/LacJ C3H/HeJ R2 P value 

APAP        
Catalase 394 658 574 613 702 0.57 0.14 
CYP1A2 146 190 177 161 161 0.0004 0.97 
CYP2E1 89.5 90 93.5 80.3 74.6 0.63 0.11 
GST Pi 762 1230 680 405 1020 0.034 0.77 
Vehicle        
Catalase 461 900 800 411 743 0.0013 0.95 
CYP1A2 90.3 312 230 182 167 0.0023 0.94 
CYP2E1 95.8 212 132 147 80.6 0.077 0.65 
GST Pi 468 1680 1570 707 704 0.02 0.82 
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Figure 4.1 

Acetaminophen metabolism scheme 

Percentages represent the amount of the total acetaminophen dose metabolized by 
each pathway at therapeutic doses in humans. The figure is adapted from Nelson and 
Bruschi153. 
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Figure 4.2 

Plasma concentrations of APAP, APAP-glucuronide, and APAP-sulfate 

Concentrations of APAP and glucuronide and sulfate conjugates in serum are shown for 
a 50 and 300 mg/kg dose across each strain from 0 to 6 h post-dosing. Points on the 
curve represent mean ± S.E. (N=4-5 mice per strain). 
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Figure 4.3 

Linear regression analysis of plasma metabolite concentration with mouse strain 
liver necrosis 

 
Linear regression analysis for the calculated AUC at 300 mg/kg of APAP and the 
glucuronide (AG) and sulfate (AS) conjugates with percent liver necrosis. Points 
represent mean values per strain and dotted lines represent the 95% confidence interval 
of the regression line. 
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Figure 4.4 

Liver total and reduced glutathione levels in susceptible and resistant strains 

Total and reduced (GSH) glutathione levels measured in livers extracted from mice 
necropsied 6 h after a 300 mg/kg dose of APAP or 0.5% methylcellulose vehicle (mean 
± S.E.). 
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Figure 4.5 

Liver nitrotyrosine adducts measured in susceptible and resistant strains 

Nitrotyrosine adducts measured around the central veins at 6 h post-dosing in the left 
liver lobes of mice treated with 300 mg/kg APAP (mean ± S.E.). 
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A. CONCLUSIONS AND PERSPECTIVES 

Adverse drug reactions are a significant safety concern in drug development and 

therapeutic implementation because rare adverse effects are often detected late in the 

drug development process, and occasionally after marketing to the public. Decades of 

pharmacogenetic research has demonstrated that the genetic make-up of an individual 

can affect both the efficacy and pharmacokinetics of a drug, as well as confer a 

propensity for experiencing toxic effects. The standard rodent screening tests used by 

both industry and government agencies for risk assessment are insufficiently designed 

to predict rare adverse health events because they employ a single inbred or outbred 

line that does not represent the genetic diversity present within human populations. 

Therefore, we developed and tested a “Mouse Model of the Human Population 

(MMHP)” in order to demonstrate the utility of using a genetically diverse panel of inbred 

mouse strains to understand and predict liver toxicity in humans. By combining classical 

toxicological endpoints with rodent genetics, we demonstrated the utility of using the 

MMHP to model human toxicity responses to acetaminophen (APAP) and to uncover 

novel biomarkers of liver injury. 

 

1.) Genetic Markers that Predict Toxicity Susceptibility 

Recently compiled databases on genetic polymorphisms in many inbred mouse 

strains afford an unprecedented opportunity to uncover markers that may predict an 
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inherent genetic sensitivity to toxicant-induced injury. This wealth of information, coupled 

with the ability to associate phenotypes with genetic haplotypes in silico40, 43 allows for 

the discovery of genetic loci that affect toxicity phenotypes. As an important first step, we 

demonstrated that a panel of inbred mouse strains will exhibit a range of liver toxicity 

after acetaminophen ingestion that is reminiscent of the gradient of toxicity observed in 

human studies52. Using data from an independent cohort of human volunteers, we also 

demonstrated an inbred mouse strain panel could be used to model the range of liver 

toxicity previously observed following a subchronic dosing regimen using therapeutic 

doses of Tylenol52. In this study, we identified regions of the mouse genome that 

contained genetic polymorphisms that correlate with the liver toxicity outcome. One 

gene, CD44, was found to contain a non-synonymous coding SNP associated with an 

increased tendency in humans to have elevated serum ALT levels during Tylenol 

exposure. In silico modeling suggested that this genetic variant may have functional 

consequences for the expressed proteins in human. As further evidence that CD44 is 

able to modulate the liver injury outcome following an acute acetaminophen exposure, 

we demonstrated that Cd44 gene knockout mice sustained a greater degree of liver 

injury than their wild type counterparts (Figure 2.6). 

Taken together, the approach serves as an important validation of the MMHP to 

the prediction of genetic variants affecting toxicity in humans. The ability of the MMHP to 

detect toxicogenetic loci should lead to an improvement in the safety profile of many 
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drugs that have the potential to cause rare, but serious, side effects by facilitating 

development of improved clinical testing practices. In addition, the use of the MMHP in 

drug development may lead to a “rescue” of promising drug candidates that have been 

previously unmarketable due to a toxic side effect in a small proportion of humans 

enrolled in clinical trials. 

We demonstrated that the genetic make-up of the individual can have a marked 

effect on the toxicity outcome. From a toxicological risk assessment standpoint, the 

MMHP models the range of human responses and highlights the need to use a panel of 

strains, rather than a single strain, to extrapolate possible genetic risk in the human 

population. 

 

2.) Determining Population-Based Biomarkers of Liver Injury 

 High throughput microarrays provide a sensitive assay to examine molecular 

changes and responses to a chemical exposure or toxic insult10, 11, 154. While previous 

studies had indicated that acetaminophen exposure in rats and mice can yield 

information on gene expression changes that occur throughout the timeline of liver 

injury11, 133, these early studies failed to capture the diversity of responses that can occur 

among a population of genetically heterogeneous individuals because they were limited 

to either a single or only a few inbred rodent strains. By limiting the genetic diversity 

within the exposure model, the data gathered from these studies may be useful to study 
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the mechanism of acetaminophen-induced liver injury, but does not provide a robust 

biomarker that indicates the amount of injury sustained on an individual basis. 

To address this experimental limitation, we used the MMHP to derive gene 

transcript biomarkers of response and determined 26 genes for which expression was 

altered according to the level of liver injury experienced by the individual. For each 

biomarker, the expression was independent of the individual’s genetic background. This 

study demonstrated that the model could be a useful tool for correlating a continuous 

toxicity phenotype with gene expression changes. Perhaps not surprisingly, we 

identified more than 1500 genes that were changed solely on the basis of mouse strain; 

these genes may contribute to identification of “false positive” results within single strain 

studies. This result highlights the importance of using a multi-strain model for toxicity risk 

assessment because it is clear that the genetic background can have a large impact on 

basal gene expression, which may confound the data obtained from sensitive 

microarray studies. 

In assessing the mechanism of acetaminophen-induced liver toxicity, the 

transcript biomarker data support a model in which an apoptotic signaling cascade, 

centered on Cdk inhibitor p21 (Cdkn1a), leads to hepatocellular necrosis. Notably, the 

biomarker data also implicated a few genes to be involved in the necrotic response that 

had not been previously linked to acetaminophen-induced liver toxicity. These novel 

genes included: i) Osmr, a receptor for the oncostatin M cytokine, which had previously 
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been shown to affect liver regeneration following carbon tetrachloride poisoning125, and 

ii) Mlxipl (also known as ChREBP, carbohydrate response element binding protein), an 

interesting gene given the recent body of research that demonstrates that 

acetaminophen can affect blood glucose levels126, 127. Taken together, the discovery of 

new acetaminophen-responsive genes supports the idea that using a population-based 

approach with a continuous phenotype to discover gene expression biomarkers can 

yield important new information that cannot been obtained from conventional 

approaches. 

The major utility of the approach lies in the ability to quickly assess biomarkers of 

response within an exposed population. A remaining challenge is to demonstrate that 

the approach can generate clinically useful biomarkers in a less invasive tissue, such as 

in peripheral blood. In addition, it would be beneficial to be able to compare the mouse 

strain dataset to additional human datasets, which were not immediately available, in 

order to demonstrate a translational validation for the approach. Follow-up analysis in 

the context of relevant human data is crucial in order to validate the model as a useful 

technique for accurately assessing human health hazards. 

 

3.) Assessing the Role of Potential Strain-Dependent Differences in 
Acetaminophen Metabolism to Affect the Liver Injury Outcome 

 The well-established mechanism of liver toxicity due to acetaminophen overdose 

requires an accumulation of its reactive metabolite, NAPQI, after conjugation and 



 

 119

detoxification pathways become overwhelmed. The accumulated NAPQI is then able to 

complex with cellular proteins and macromolecules, precipitating downstream signaling 

events that lead to hepatocellular necrosis. Prior studies in humans, which 

demonstrated differences in liver toxicity after taking acetaminophen, indicated that the 

pharmacokinetics in humans were not associated with the toxicity response52. In 

accordance with the human data, our initial studies (Aims 1 and 2) that focused on 

determining biomarkers of sensitivity and response did not indicate that differential 

metabolism of acetaminophen contributed to the overall toxicity outcome. In Aim 3, 

pharmacokinetic profiling of key metabolites in five strains selected for differential 

susceptibility demonstrated that, while differences do exist among the inbred strains in 

the kinetics of acetaminophen metabolism, these differences do not completely explain 

the overall liver necrotic outcome.  The outcome of this study was not surprising, given 

that acetaminophen-induced liver necrosis has a complex etiology; a variety of intra- 

and extra-cellular signaling cascades that are downstream of an apoptotic signaling 

cascade have been shown to modulate the necrotic outcome in the liver56, 77. 

 The study demonstrated that, while metabolism is an important key event in the 

mode of action of acetaminophen toxicity, the overall necrotic outcome is not directly 

predicted by strain-dependent differences in its metabolism. The data emphasize that 

models such as the MMHP are a necessary tool for toxicologists seeking to determine 

novel genetic mediators that affect toxicity sensitivity. 
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B. STUDY CHALLENGES AND LIMITATIONS 

Detection of additional genetic variation that may affect the acetaminophen liver 
toxicity outcome 

A key feature of the MMHP as a research paradigm is the ability to model a large 

range of toxicity responses and to determine genetic loci predictive of a response based 

on the diversity across strains. Our work with acetaminophen builds support for the 

model as a means to determine susceptibility biomarkers that can translate to human 

populations. A limitation of the study to detect all possible acetaminophen-induced 

hepatotoxicity QTL is the use of a mouse diversity panel (MDP; i.e. commercially 

available inbred strains) as the basis for the MMHP. An MDP has many advantages to 

F2 populations that have been used traditionally for genetic mapping155, 156 that include 

an increased phenotypic diversity, higher recombination frequencies, and the ability to 

acquire dense SNP maps that can be archived for each strain. However, the population 

structure among the strains of an MDP can complicate the analysis due to the semi-

structured breeding programs from which they were derived.  Common strain 

derivations over time have led to an over-representation of Mus musculus domesticus 

alleles and, thus, large regions of the genome are identical by descent across strains. 

Therefore, use of an MDP for genomic association studies can potentially lead to 

spurious associations to background genetic structure157. 

The best alternative to using an MDP population, the strains derived from the 

carefully controlled Collaborative Cross project158, 159, are not yet available. The recently 
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developed Collaborative Cross mouse strains were designed specifically to incorporate 

large genetic variation158. To develop this resource, a controlled breeding program was 

designed to randomize genetic elements among the progeny derived from eight 

parental strains. A recent study demonstrated that the genetic variation present in the 

Collaborative Cross represents the optimal polymorphism architecture for the study of 

systems biology when compared to RI lines or to panels of classical inbred strains, and 

was demonstrated to be more reflective of the genetic variation expected in natural 

populations74. Use of the Collaborative Cross strains in future toxicogenetic mapping 

studies will improve the resolution of QTL detection by eliminating the genetic “blind 

spots” that occur within MDP strains74. 

 

Differences between mouse and human acetaminophen exposures 

An additional limitation of our genetic biomarker studies is that the liver toxicity 

modeled in the MMHP is comparable to an acute overdose that may be different from 

the small ALT elevations observed in the human cohorts during a subchronic exposure 

at therapeutic doses. We make the assumption that there will be some commonalities in 

the mechanism of liver toxicity that occur in both exposure models because chemical 

dosing in human testing must be morally and ethically restrained. However, the 

discrepancy between the exposure conditions raises the possibility that there are genes 
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that control a propensity toward liver injury during a low dose, subchronic regimen that 

would be missed in a high dose exposure paradigm. 

To correct this problem, we attempted to replicate the “human” low dose 

exposure regimen in a few mouse strains by administering a low dose of 

acetaminophen every 6 h to inbred mice in a subchronic regimen. However, we found 

that the mice, unlike humans, were resistant to ALT elevations at low doses, at least for 

the few strains tested (Appendix 6). We therefore hypothesized that the mice were 

protected against liver injury during a subchronic dosing regimen and concluded that 

perhaps liver protection was due, in part, to the healthy diet mice received, which is not 

representative of a typical human diet. One suggested approach to improving the low 

dose model in mice to achieve a similar degree of ALT elevations as humans would be 

to administer a high fat or “Western” diet to the mice that better reflects the typical 

human diet in the United States and that might predispose the mice toward liver injury. 

However, a study conducted by Ito et al. demonstrated that mice with steatotic livers 

achieved by administering a high fat and high carbohydrate diet were far less 

susceptible liver injury after an acute acetaminophen dose, owing to inhibition of 

CYP2E1 induction and a minimization of sinusoidal endothelial cell injury160. Therefore, it 

is likely that the low fat diet used was not protective against liver toxicity, but that instead 

the mice were simply adaptive to liver stress that may be caused by subchronic 

acetaminophen dosing. This conclusion is supported by a previous study that 
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demonstrated that mice given incrementally increasing doses of APAP for several days 

were subsequently protected against an otherwise lethal challenge dose161. 

 

Determination of early gene expression response biomarkers in mice and 
humans 

A great promise of toxicogenomics is to determine biomarkers of effect that can 

add insight into the mechanism of toxicity and that can assess human exposure to 

environmental exposures and contaminants. In our microarray study, the phenotypic 

anchoring of the necrosis score to the transcript data enabled detection of gene 

response signatures. The study design was limited in its ability to fully characterize the 

mechanism of toxicity due to a lack of time course data. Because a single, late time 

point was examined (24 h) in which the maximum liver injury had already occurred, we 

were not able to examine early markers that might be predictive of later injury at a time 

when therapeutic intervention would be helpful. Acquisition of temporal information 

would provide for a basis to determine which gene changes initiate toxicity in the liver, 

potentially providing a basis for development of early therapeutic intervention in addition 

to the available antidote for acetaminophen poisoning, N-acetylcysteine. 

Evidence of clinical or human in vitro translation of toxicogenomic biomarkers is 

essential in order to properly interpret the data. It is important to fully distinguish 

pathways that are associated with toxic effects from those pathways associated with a 

non-toxic physiological or pharmacological response. In examining datasets of sensitive 
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“omics” data, it is also necessary to distinguish between changes that are adaptive in 

nature and those changes that are within a no observable adverse effect level (NOAEL). 

Determination of chemical NOAELs can only be accomplished by dose-response 

modeling of a variety of compounds in which a benchmark dose can be correlated with 

both transcript changes and in vivo pathology. Some progress has been made into 

developing computational tools that enable genomic benchmark dose analysis162. The 

challenge of determining the NOAEL becomes more complex as omics technologies 

become more refined, with greater throughput and sensitivity, and as data from multiple 

platforms becomes integrated. Therefore, translation between the transcriptional 

biomarkers collected from the mice given an overdose of acetaminophen with human 

data gathered after therapeutic doses will remain a challenge until a low dose mouse 

model of acetaminophen toxicity can be developed. 

 

Collection of additional mouse acetaminophen metabolism endpoints 

Complete validation of the model required an examination of whether strain-

dependent differences in acetaminophen metabolism contributed to the overall toxicity 

response. Strain LP/J, the most resistant strain, demonstrated an increased serum 

exposure to the glucuronide and sulfate conjugates, which could potentially indicate an 

increased ability to clear parent compound via these pathways. However, there was 

also an increased serum exposure to the parent compound in LP/J mice, which 
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confounded interpretation of the data as far as assessing the potential for NAPQI-

protein adduct formation. We next attempted to determine whether amounts of 

glutathione in liver could give insight into the detoxification of the reactive quinone 

radical163. However, because we measured GSH in livers at 6 h after treatment when 

GSH has been shown to be almost completely replenished, rather than at 2 h when the 

maximum depletion occurs144, the significance of the data at 6 h must be questioned. It 

would have been beneficial in this study to examine GSH depletion in the context of 

temporal changes that might occur during the first four hours following overdose in order 

to determine whether resistant strains are deficient in the glutathione detoxification 

pathway. To measure hepatocellular GSH over time, livers of mice must be extracted at 

time points prior to 6 h. Additional liver samples were not available due to the study 

design which necessitated collecting plasma from each animal over time up to 6 h post-

dosing. 

 

C. FUTURE DIRECTIONS 

Selection of candidate genes from genomic association analysis 

 An important challenge in the field of pharmacogenomics and in the use of the 

MMHP is the selection of the most likely or “right” candidates for follow-up evaluation 

and analysis using the most cost-efficient approach. Typically, this process entails 

computational approaches and database searching to predict which variants are most 
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likely to play a role in the response and that would have a high enough frequency of 

detection within the ethnic/racial groups studied. However, because such studies are 

resource-limited, potentially important sequence variants may be missed. Therefore, 

additional useful information may be yielded from sequencing polymorphisms within 

additional candidate genes in both the mouse and human cohorts to better define which 

genes are best associated with acetaminophen-induced liver toxicity. In our studies, 

potentially interesting candidates that were identified by haplotype-associated mapping 

include Ptpn6 (SHP-1), a key signaling molecule in hematopoietic cells that is known to 

have many splice variants164, and  Prdm2, a tumor suppressor gene that regulates 

heme oxygenase 1 (Hmox1) activity (Table 2.1). 

 

Functional analysis of genetic variation within mouse Cd44 

In order to better characterize the results of the genomic association study, 

further work needs to be done in order to elucidate the precise role that the CD44 gene 

plays in propagating acetaminophen-induced liver injury. A careful approach needs to 

be considered due to the diverse roles of the CD44 protein in cell-cell interactions, cell 

adhesion and migration, and cellular growth and mitosis.  It was recently noted that 

Cd44 expression is repressed by trp53 induction under stress in cell culture165.  It may, 

therefore, be possible that functional variants are unable to efficiently respond to and 

repair necrotic injury within the liver, which allows an accumulation of signaling factors 
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and recruitment of an inflammatory response, leading to further cell damage. An 

important first step would be to measure trp53 and Cd44 expression in hepatocyte cell 

culture after acetaminophen administration in strains that express both alleles for the 

nonsynonymous coding SNP. If Cd44 and trp53 levels were found to differ by genotype, 

a potential follow-up analysis would involve measuring CD44-responsive cytokine and 

chemokine levels in resistant and susceptible mouse strains over a time course after 

acetaminophen treatment to determine whether differences in upstream trp53 activation 

temporally affected downstream immune-mediated injury responses. 

 

Analysis of toxicogenetic loci in the context of gene networks 

The majority of pharmacogenetic traits that have been discovered to date have 

focused on a single gene and its role in affecting drug responses. It is more likely, 

however, that the genetic control of toxicity responses is governed by a network of 

genes as is observed in most complex diseases. Genome-wide association studies that 

focus on only the top several “most significant” SNPs may have some limitations that 

could be overcome by a pathway-based approach. These limitations are that: i) genes 

that contribute a smaller, but still significant, increase to disease risk may be overlooked, 

and ii) variants that confer a large effect may not be included if hundreds of thousands of 

markers have been tested and the sample size is relatively small. Wang et al. proposed 

a method in which the power to detect causal mechanisms of disease may be more 
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robust because multiple contributing factors are considered together, as opposed to 

focusing on a few SNPs with the highest association score166. This approach, which 

combines genome-wide association with the gene-set enrichment algorithm167, 

identified a number of pathways that may be associated with Parkinson disease and 

age-related macular degeneration. In addition, the process of identifying candidate 

genes will be greatly simplified in the future with the creation of databases of “genetic” 

drug pathways, such as that proposed by the Pharmacogenetics and 

Pharmacogenomics Knowledge Database (www.pharmgkb.org). Such databases will 

facilitate the development of novel approaches to prioritize candidate genes in 

pharmaco- and toxicogenomic studies that would be useful in analyzing toxicity data 

collected from the MMHP. 

 

Translation of mouse gene expression biomarkers to human data 

A major limitation in the microarray study was an inability to compare liver 

transcript biomarkers of toxicity derived from the MMHP with gene expression data 

derived from humans, due to a lack of samples and a paucity of archived datasets 

comprising human liver microarray data with a similar acetaminophen overdose 

exposure. Translational analysis would also be greatly facilitated by repeating the study 

in mice using gene transcripts derived from a noninvasive tissue, such as circulating 

leukocytes in blood. Because these cells must be carefully collected and preserved to 
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extract RNA (such as in the specialized buffer supplied in Ambion RiboPure blood RNA 

isolation kits; Ambion, Austin, TX), the mouse exposures must be repeated in order to 

assay gene expression in blood. Once the data is collected from the MMHP, it would 

then be compared to human microarray data collected by our collaborators at UNC 

(Drs. Paul Watkins and Tong Zhou) that was derived from blood. Because this human 

data was derived from the study described in Aim 1, it would provide an ideal 

comparison to determine the utility of the MMHP approach for the discovery of liver 

injury biomarkers that may be used clinically. 

 

Validation of the MMHP research paradigm with a pharmaceutical agent that 
causes idiosyncratic hepatotoxicity 

Finally, a major challenge to the acceptance of the MMHP for pharmaceutical 

safety assessment is our selection of acetaminophen as a model toxicant to validate the 

approach as a method for uncovering rare adverse health events. Acetaminophen is 

considered a dose-dependent hepatotoxicant and not widely accepted to cause rare 

“idiosyncratic” liver injury, despite the data that demonstrates serum ALT elevations that 

occur during subchronic drug therapy in healthy adults52. In a retrospective analysis of 

nine acetaminophen clinical trials conducted by McNeil Consumer Healthcare (the 

manufacturer of Tylenol™) comprising 1039 patients, only 44 patients experienced an 

ALT elevation greater than 1.5 times the upper limit of normal while receiving the 

recommended dose of 3.9 g/day79. Of those patients that had subsequent ALT 
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measurements taken (33/41), 29 (93.5%) experienced either a decrease or complete 

resolution of serum ALT levels while on treatment79. While the resolution of ALT 

elevations during treatment has not been well studied, it can be inferred that there is an 

adaptive mechanism within the liver to prevent injury during low dose treatment. 

Perhaps owing to the liver’s ability to adapt during treatment, acetaminophen has an 

excellent therapeutic safety profile. 

Thus, it would be beneficial to validate the MMHP using a drug that clearly has 

idiosyncratic properties in which observed toxicity is not correlative with dose. However, 

due to the rarity of these events, it is unlikely that toxicity could be detected using a 

conventional exposure, even within a diverse panel of strains. Mouse models of 

idiosyncratic liver toxicity have been developed that capitalize on the observation that an 

episode of inflammatory stress can lower the threshold for which a susceptible individual 

will experience toxicity. Animal models have been developed in which 

lipopolysaccharide (LPS) treatment has rendered sensitivity to drugs that cause 

idiosyncratic liver toxicity, such as diclofenac168, chlorpromazine169, and trovafloxacin170. 

It may therefore be beneficial to combine the LPS exposure paradigm with the diversity 

found within the MMHP in order to determine the genetic basis underlying susceptibility 

to idiosyncratic drugs for which genetic screening may improve the safety profile. 
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D. SUMMARY 

 Collectively, our results indicate that the Mouse Model of the Human Population 

is a valuable tool for the development of biomarkers that enable pre-screening of 

patients prior to dosing with pharmaceuticals that have potentially toxic side effects. The 

model, used in conjunction with toxicogenomic approaches, identified CD44 as a protein 

that may be involved in modulating sensitivity to acetaminophen-induced liver injury. 

Furthermore, the model has utility for determining transcript biomarkers of response that 

can aid researchers in both risk assessment and the study of toxicity mechanisms. In 

addition, the toxicity outcome could not be predicted based on strain-specific metabolic 

profiles, further emphasizing the need for toxicogenomic approaches to be used that 

can better predict susceptibility factors. The data acquired with the MMHP could 

therefore be influential in the analysis of individual risk to pharmaceutical or 

environmental agents and may facilitate both drug development and human risk 

assessment.  

 Toxicogenomics and toxicogenetics approaches provide a means to enable the 

linking of traditional toxicological endpoints with novel molecular targets that are 

mechanistically involved in adverse responses. While toxicogenomics is unlikely to 

replace classical toxicological testing paradigms, it enriches the field by allowing 

researchers to discover biomarkers and subtle changes that occur sub-clinically or that 

predispose susceptible individuals toward an injurious event. By using a carefully 
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designed rodent model that is designed to capture the range of genetic variation, 

toxicologists will be better able inform risk assessment for human populations. The field 

will continue to expand in the coming years now that the Food and Drug Administration 

(FDA), along with the Environmental Protection Agency (EPA) are accepting 

submissions of functional polymorphism and microarray data as part of the regulatory 

process3. The successful implementation of rodent models to this field will require a 

careful study design with special attention for the selection of appropriate strains and 

relevant time points.  Translational research bridging rodent and human toxicity will be 

the key to the success of using toxicogenomics to facilitate “personalized” medicine. 

With additional validation, translational toxicogenomic approaches that utilize a 

genetically heterogeneous rodent model, such as the MMHP, will revolutionize the field 

of toxicology. 



APPENDICES 
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Appendix 1 
 

Primers used for genetic sequence analysis in mice and humans 
 

Gene Species Upstream Primer Downstream Primer 
Cd44 Mouse TCCTTCTCCGTCATTTCCAC TGTGGGGTCTCCTCTTCATC 
Capn8 Mouse CTGAGGCCATGGTAGCATTT CATAAGACGGGACCCTTGAA 
Ly86 Mouse GCCGTTGAGCCTTGAGTTAC CATTCAGGAAAAAGCCTCCA 

Cd59a Mouse AGGGTTGAAGTAGGGGAGGA CAGCTACATTGCAGGAACCA 
Cat Mouse GTGGGGGTGTCCTCTAGTGA AACCACAAAACCGGAAACAA 

Cyp2e1 Mouse CCTGTAAAGGGAGACCCACA AAGGGGACAAGGCTCTCATT 
    

CD44 Human CCTCTTGGCCAGATGTGAAT AAGCCACATAGCACCATTCC 
Capn10 Human AAAGCCCCTGATGATGTGAC GGCGAGCACTAAGACTCCAG 

Ly86 Human CCAATATTTGTGGCATGAATGA GCCAAAATGACAAAGCCAGT 
CD59 Human GCCTTACACTAGCCCACCTG AAGTTTTGGGGGAGTCAAAA 
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Appendix 2 
 

Human subject genotypes for SNPs within CD44, CD59, CAPN10, and LY86 
 

Subject Study Treatment Gender CD44 CD59 CAPN10 LY86 
1 UNC APAP Female C/C AT/- G/G AGG/AGG 
3 UNC APAP Male C/C AT/AT G/A AGG/AGG 
4 UNC APAP Male C/C AT/- A/A AGG/- 
5 UNC APAP Male C/C AT/AT G/A AGG/AGG 
6 UNC APAP Male C/C AT/- A/A AGG/- 
7 UNC APAP Male C/C AT/- G/A AGG/- 
8 UNC APAP Female C/C AT/AT G/G AGG/AGG 
10 UNC APAP Female C/C AT/AT A/A AGG/- 
11 UNC APAP Male C/C AT/- G/A AGG/- 
14 UNC APAP Female C/T AT/- A/A AGG/AGG 
15 UNC APAP Male C/C -/- G/G AGG/- 
16 UNC APAP Female C/C AT/AT G/A AGG/- 
17 UNC APAP Male C/C -/- A/A AGG/AGG 
19 UNC APAP Female C/C AT/AT A/A AGG/AGG 
20 UNC APAP Female C/C AT/AT A/A AGG/- 
21 UNC APAP Male C/C AT/- G/A -/- 
22 UNC APAP Female C/C AT/AT G/A AGG/- 
23 UNC APAP Male C/C AT/AT G/G AGG/AGG 
24 UNC APAP Male C/C AT/- A/A AGG/AGG 
26 UNC APAP Male C/T AT/AT A/A AGG/AGG 
27 UNC APAP Female C/C AT/- G/A AGG/- 
28 UNC APAP Female C/C AT/AT G/G AGG/AGG 
29 UNC APAP Female C/C AT/AT G/G AGG/AGG 
30 UNC APAP Female C/C AT/- A/A AGG/AGG 
32 UNC APAP Male C/C AT/- A/A AGG/AGG 
33 UNC APAP Male C/C AT/AT G/G AGG/AGG 
34 UNC APAP Male C/C AT/- G/G AGG/AGG 
37 UNC APAP Male C/C AT/AT G/G AGG/AGG 
39 UNC APAP Female C/C AT/AT G/G AGG/AGG 
40 UNC APAP Female C/C AT/AT G/A AGG/AGG 
41 UNC APAP Male C/C AT/- G/G AGG/AGG 
42 UNC APAP Male C/T -/- A/A AGG/- 
43 UNC APAP Male C/T AT/AT G/A AGG/AGG 
44 UNC APAP Female C/C AT/- G/G AGG/AGG 
45 UNC APAP Male C/C AT/AT A/A AGG/- 
46 UNC APAP Female C/C AT/AT G/G AGG/- 
47 UNC APAP Male C/C AT/AT G/A AGG/AGG 
48 UNC APAP Male C/C AT/AT G/G AGG/AGG 
49 UNC APAP Female C/C AT/- G/A AGG/AGG 
50 UNC APAP Male C/C AT/- G/A AGG/AGG 
53 UNC APAP Female C/C AT/- G/A AGG/- 
54 UNC APAP Male C/C AT/AT A/A AGG/AGG 
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56 UNC APAP Male C/T AT/AT A/A AGG/AGG 
57 UNC APAP Male C/T AT/- A/A AGG/AGG 
58 UNC APAP Female C/C AT/AT G/G AGG/AGG 
62 UNC APAP Female C/C AT/AT G/A AGG/AGG 
63 UNC APAP Male C/C AT/AT G/G AGG/AGG 
64 UNC APAP Male C/C AT/AT G/A AGG/AGG 
65 UNC APAP Male C/C AT/- G/G AGG/AGG 

1025 
Purdue 
Pharma Morphine +APAP Female C/C -/- G/A AGG/- 

1030 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- G/A AGG/- 

1034 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/AT G/A AGG/AGG 

1036 
Purdue 
Pharma Morphine +APAP Male C/C AT/- A/A AGG/AGG 

1040 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- G/G AGG/AGG 

1042 
Purdue 
Pharma Morphine +APAP Female C/C AT/- A/A AGG/- 

1046 
Purdue 
Pharma APAP Male C/C AT/- G/A AGG/AGG 

1048 
Purdue 
Pharma APAP Male C/T AT/AT A/A AGG/- 

1051 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/- G/G AGG/AGG 

1058 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- G/A AGG/AGG 

1059 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/AT A/A AGG/- 

1070 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/- G/A AGG/- 

1072 
Purdue 
Pharma Hydromorphone +APAP Male C/C -/- G/G AGG/AGG 

1074 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- A/A AGG/- 

1075 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- G/A -/- 

1076 
Purdue 
Pharma APAP Male C/C AT/AT G/G AGG/AGG 

1079 
Purdue 
Pharma Morphine +APAP Male C/C AT/- A/A -/- 

1080 
Purdue 
Pharma Hydromorphone +APAP Female C/C AT/AT G/G AGG/AGG 

1081 
Purdue 
Pharma APAP Male C/T AT/AT G/G AGG/- 

1096 
Purdue 
Pharma APAP Male C/C AT/AT G/G AGG/AGG 

1105 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/A AGG/- 

1109 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/AT A/A AGG/- 

1110 
Purdue 
Pharma Morphine +APAP Male C/C AT/- G/G AGG/AGG 

1116 Purdue Hydromorphone +APAP Male C/T AT/- G/A AGG/- 
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Pharma 

1119 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/A AGG/AGG 

1120 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/G AGG/AGG 

1123 
Purdue 
Pharma APAP Male C/C AT/- A/A AGG/- 

1127 
Purdue 
Pharma APAP Female C/C AT/AT A/A AGG/- 

1129 
Purdue 
Pharma Morphine +APAP Male C/C AT/- G/G AGG/- 

1131 
Purdue 
Pharma Morphine +APAP Male C/T AT/AT G/A AGG/AGG 

1132 
Purdue 
Pharma Oxycodone +APAP Male C/C -/- G/G AGG/AGG 

1137 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/G AGG/AGG 

1138 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/- G/A AGG/- 

1142 
Purdue 
Pharma Oxycodone +APAP Male C/T AT/AT A/A AGG/AGG 

1146 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/A AGG/AGG 

1147 
Purdue 
Pharma APAP Male C/C -/- G/A AGG/- 

1150 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- G/G AGG/AGG 

1158 
Purdue 
Pharma APAP Female C/C AT/- G/G AGG/- 

1164 
Purdue 
Pharma Hydromorphone +APAP Female C/C AT/AT G/A AGG/- 

1165 
Purdue 
Pharma Morphine +APAP Male C/C AT/AT G/A AGG/- 

1167 
Purdue 
Pharma APAP Male C/T AT/AT A/A AGG/- 

1170 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/AT A/A AGG/- 

1177 
Purdue 
Pharma APAP Male C/T AT/- A/A AGG/AGG 

1178 
Purdue 
Pharma Oxycodone +APAP Female C/C AT/- G/A AGG/AGG 

1180 
Purdue 
Pharma Morphine +APAP Male C/C AT/AT A/A AGG/- 

1181 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT A/A AGG/AGG 

1185 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/- G/A AGG/AGG 

1188 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/G AGG/AGG 

1196 
Purdue 
Pharma Morphine +APAP Male C/T AT/- G/A AGG/AGG 

1203 
Purdue 
Pharma Oxycodone +APAP Female C/C AT/AT G/A AGG/AGG 

1204 
Purdue 
Pharma Morphine +APAP Male C/C AT/AT G/A AGG/AGG 
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1206 
Purdue 
Pharma Morphine +APAP Male C/C AT/- G/G AGG/AGG 

1217 
Purdue 
Pharma APAP Female C/C AT/AT G/G AGG/AGG 

1218 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/AT A/A AGG/- 

1219 
Purdue 
Pharma APAP Female C/C AT/AT G/A AGG/- 

1226 
Purdue 
Pharma Hydromorphone +APAP Female C/C AT/AT G/A AGG/- 

1228 
Purdue 
Pharma Morphine +APAP Female C/T AT/AT G/A AGG/AGG 

1230 
Purdue 
Pharma Morphine +APAP Female C/C AT/- G/A AGG/AGG 

2009 
Purdue 
Pharma APAP Male C/C AT/AT A/A -/- 

2013 
Purdue 
Pharma Morphine +APAP Male C/C AT/AT G/A AGG/- 

2014 
Purdue 
Pharma Morphine +APAP Female C/C -/- G/G AGG/AGG 

2019 
Purdue 
Pharma APAP Male C/T AT/- G/A AGG/- 

2026 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/A -/- 

2032 
Purdue 
Pharma APAP Male C/C -/- G/A AGG/AGG 

2033 
Purdue 
Pharma Oxycodone +APAP Male C/C AT/AT G/A AGG/AGG 

2046 
Purdue 
Pharma Morphine +APAP Female C/C -/- G/A -/- 

2060 
Purdue 
Pharma APAP Female T/T AT/- G/A AGG/AGG 

2068 
Purdue 
Pharma Oxycodone +APAP Female C/T AT/AT A/A -/- 

2070 
Purdue 
Pharma Hydromorphone +APAP Male C/C -/- A/A -/- 

2079 
Purdue 
Pharma APAP Female C/C AT/AT A/A ND 

2080 
Purdue 
Pharma Hydromorphone +APAP Female C/T AT/AT A/A AGG/AGG 

2081 
Purdue 
Pharma Oxycodone +APAP Male C/T AT/- G/G AGG/- 

2082 
Purdue 
Pharma Oxycodone +APAP Male C/T AT/AT A/A -/- 

2088 
Purdue 
Pharma Morphine +APAP Female C/C AT/- A/A -/- 

2105 
Purdue 
Pharma APAP Male C/C AT/- G/A AGG/AGG 

2110 
Purdue 
Pharma Hydromorphone +APAP Male C/C AT/AT G/G -/- 
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Appendix 3 
 

Serum ALT information from human volunteers in the UNC and Purdue Pharma 
cohorts used for correlation analysis with subject genotype 

 
Subject Study Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

1 UNC 22 23 19 26 21 26 22 
3 UNC 21 23 22 29 31 31 34 
4 UNC 19 14 24 20 24 31 31 
5 UNC 23 28 37 56 83 88 88 
6 UNC 24 27 25 23 26 38 39 
7 UNC 20 19 17 20 33 22 24 
8 UNC 23 23 23 29 30 29 34 
10 UNC 29 33 29 33 43 52 59 
11 UNC 88 100 154 290 415 460 380 
14 UNC 23 25 29 23 33 30 36 
15 UNC 31 25 25 29 31 38 48 
16 UNC 34 31 30 42 66 84 108 
17 UNC 23 30 23 24 24 30 31 
19 UNC 63 64 64 61 76 65 66 
20 UNC 18 15 22 29 44 57 78 
21 UNC 31 40 43 49 50 55 56 
22 UNC 36 36 40 41 46 52 58 
23 UNC 31 32 35 50 69 74 79 
24 UNC 31 29 35 41 47 53 56 
26 UNC 34 36 35 39 44 48 49 
27 UNC 24 26 26 28 34 42 47 
28 UNC 28 31 33 53 68 72 63 
29 UNC 29 24 27 29 33 32 37 
30 UNC 30 36 33 34 38 40 38 
32 UNC 56 58 58 58 62 65 67 
33 UNC 56 51 52 56 62 63 63 
34 UNC 32 35 40 46 49 53 57 
37 UNC 34 37 34 36 46 52 57 
39 UNC 25 30 29 34 47 46 43 
40 UNC 26 23 26 28 32 32 36 
41 UNC 36 43 36 59 100 188 218 
42 UNC 29 30 28 31 32 29 25 
43 UNC 40 44 44 53 75 83 84 
44 UNC 32 31 29 28 30 31 32 
45 UNC 37 31 36 36 41 38 42 
46 UNC 31 38 49 59 73 84 113 
47 UNC 40 41 38 35 41 40 45 
48 UNC 31 30 31 27 25 32 32 
49 UNC 31 33 32 32 36 36 36 
50 UNC 24 31 33 34 33 30 33 
53 UNC 27 32 38 36 43 51 60 
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54 UNC 37 39 39 38 39 41 42 
56 UNC 43 44 48 56 80 102 135 
57 UNC 36 35 39 75 116 166 174 
58 UNC 23 22 21 26 24 25 26 
62 UNC 71 68 69 71 76 94 97 
63 UNC 24 28 31 51 71 83 95 
64 UNC 53 55 55 54 60 66 68 
65 UNC 48 51 53 57 56 54 54 

1025 Purdue Pharma 11 27 74 56 87 106 94 
1030 Purdue Pharma 14 17 21 34 49 55 72 
1034 Purdue Pharma 10 11 14 33 114 284 328 
1036 Purdue Pharma 26 29 38 120 123 150 202 
1040 Purdue Pharma 15 12 13 18 34 76 140 
1042 Purdue Pharma 9 10 9 10 16 21 22 
1046 Purdue Pharma 21 20 22 26 32 29 37 
1048 Purdue Pharma 46 66 91 133 211 233 246 
1051 Purdue Pharma 12 12 12 13 13 13 14 
1058 Purdue Pharma 21 22 26 36 42 47 57 
1059 Purdue Pharma 20 23 33 69 121 149 196 
1070 Purdue Pharma 16 13 19 31 41 55 70 
1072 Purdue Pharma 15 16 17 27 38 56 86 
1074 Purdue Pharma 23 24 32 49 55 73 92 
1075 Purdue Pharma 14 49 48 61 94 79 99 
1076 Purdue Pharma 16 25 44 90 127 146 214 
1079 Purdue Pharma 12 20 25 23 22 25 24 
1080 Purdue Pharma 14 12 12 12 13 14 15 
1081 Purdue Pharma 30 30 39 67 88 93 109 
1096 Purdue Pharma 38 34 38 59 113 146 159 
1105 Purdue Pharma 18 18 34 44 70 115 159 
1109 Purdue Pharma 20 22 20 24 28 33 38 
1110 Purdue Pharma 26 23 26 38 45 58 72 
1116 Purdue Pharma 34 70 97 132 281 321 281 
1119 Purdue Pharma 16 16 19 34 83 171 307 
1120 Purdue Pharma 24 23 29 47 59 63 59 
1123 Purdue Pharma 17 28 19 28 30 33 39 
1127 Purdue Pharma 9 10 11 19 31 34 34 
1129 Purdue Pharma 13 11 13 21 25 26 61 
1131 Purdue Pharma 13 14 11 16 22 34 42 
1132 Purdue Pharma 18 18 19 21    
1137 Purdue Pharma 18 19 19 20 24 21 19 
1138 Purdue Pharma 16 14 30 65 74 100 69 
1142 Purdue Pharma 24 25 24 23  26 27 
1146 Purdue Pharma 28 25 33 56 67 65  
1147 Purdue Pharma 17 18 19 33 69 66 61 
1150 Purdue Pharma 7 9 9 9 7 10 9 
1158 Purdue Pharma 18 17 21 21 16 19 16 
1164 Purdue Pharma 29 32 42 86 117 146 165 
1165 Purdue Pharma 11 11 15 17 17 26 30 
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1167 Purdue Pharma 44 41 43 60 70 82 75 
1170 Purdue Pharma 10 8 11 9 8 12 10 
1177 Purdue Pharma 35 33 32 48 66 103 91 
1178 Purdue Pharma 26 25 30 49 61 65 105 
1180 Purdue Pharma 17 42 107  122 156 192 
1181 Purdue Pharma 14 12 15 21 24 26 24 
1185 Purdue Pharma 25 21 28 33 33 40 45 
1188 Purdue Pharma 16 17 24 29 27 37 38 
1196 Purdue Pharma 40 95 174 163 250 223 166 
1203 Purdue Pharma 10 11 13 18 22 41 62 
1204 Purdue Pharma 12 15 15 17 25 42 47 
1206 Purdue Pharma 13 13 15 27 29 39 47 
1217 Purdue Pharma 25 26 30 39 56 94 79 
1218 Purdue Pharma 23 29 37 34 31 32 35 
1219 Purdue Pharma 9 12 19 35 66 80 76 
1226 Purdue Pharma 12 11 14 23 25 33 45 
1228 Purdue Pharma 16 29 178 400 459 403 316 
1230 Purdue Pharma 11 120 260 205 205 343 321 
2009 Purdue Pharma 12 13 13 17 22 27 26 
2013 Purdue Pharma 28 22 25 38 33 31 32 
2014 Purdue Pharma 10 10 11 13 14 14 13 
2019 Purdue Pharma 38 38 35 35 37 48 55 
2026 Purdue Pharma 26 27 36 46 63 90 125 
2032 Purdue Pharma 8 10 12 23 46 58 71 
2033 Purdue Pharma 25 38 27 36 68 107 138 
2046 Purdue Pharma 8 9 12 13 17 17 19 
2060 Purdue Pharma 9 9 11 11 13 14 19 
2068 Purdue Pharma 13 11 16 18 19 23 39 
2070 Purdue Pharma 12 27 46 91 400 258 206 
2079 Purdue Pharma 6 6 6 7 12 14 18 
2080 Purdue Pharma 11 10 10 11 11 9 12 
2081 Purdue Pharma 17 17 21 90 70 56 60 
2082 Purdue Pharma 17 16 17 20 32 41 59 
2088 Purdue Pharma 6 10 20 22 17 16 16 
2105 Purdue Pharma 10 12 11 13 16 15 21 
2110 Purdue Pharma 17 17 39 121 194 249 290 
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Appendix 4 
 

Daily ALT values for subjects enrolled in the UNC acetaminophen trial 
 

Subject 
Day -

14 
Day 

1 
Day 

2 
Day 

3 
Day 

4 
Day 

5 
Day 

6 
Day 

7 
Day 

8 
Day 

9 
Day 
10 

Day 
11 

1 21 25 19 16 17 22 23 19 26 21 26 22 
3 14 19 20 20 19 21 23 22 29 31 31 34 
4 21 20 23 22 21 19 14 24 20 24 31 31 
5 35 29 29 24 24 23 28 37 56 83 88 88 
6 33 30 32 29 31 24 27 25 23 26 38 39 
7 23 15 17 19 17 20 19 17 20 33 22 24 
8 21 13 15 15 23 23 23 23 29 30 29 34 
10 24 25 27 33 29 29 33 29 33 43 52 59 
11 63 71 73 90 96 88 100 154 290 415 460 380 
14 19 26 26 31 31 31 25 25 29 31 38 48 
15 22 34 36 27 34 34 31 30 42 66 84 108 
16 44 26 21 25 25 23 30 23 24 24 30 31 
17 26 48 50 75 75 63 64 64 61 76 65 66 
19 41 19 19 19 24 18 15 22 29 44 57 78 
20 20 31 33 35 33 31 40 43 49 50 55 56 
21 39 38 33 34 38 36 36 40 41 46 52 58 
22 41 29 30 30 31 31 32 35 50 69 74 79 
23 28 29 28 33 35 31 29 35 41 47 53 56 
24 33 24 26 24 24 24 26 26 28 34 42 47 
26 34 27 26 23 33 28 31 33 53 68 72 63 
27 32 22 17 21 27 29 24 27 29 33 32 37 
28 29 29 30 32 35 30 36 33 34 38 40 38 
29 20 52 57 52 58 56 58 58 58 62 65 67 
30 32 61 60 60 67 56 51 52 56 62 63 63 
32 64 33 38 35 39 32 35 40 46 49 53 57 
33 70 41 41 46 43 34 37 34 36 46 52 57 
34 30 31 27 29 30 25 30 29 34 47 46 43 
37 63 21 23 25 29 26 23 26 28 32 32 36 
39 28 33 40 38 40 36 43 36 59 100 188 218 
40 ND 30 31 31 35 32 31 29 28 30 31 32 
41 31 35 39 42 37 37 31 36 36 41 38 42 
42 29 29 29 32 31 31 38 49 59 73 84 113 
43 31 33 35 39 37 40 41 38 35 41 40 45 
44 27 32 30 30 35 31 30 31 27 25 32 32 
45 41 33 33 27 33 31 33 32 32 36 36 36 
46 33 28 20 27 28 24 31 33 34 33 30 33 
47 37 26 25 24 25 27 32 38 36 43 51 60 
48 30 33 33 35 37 37 39 39 38 39 41 42 
49 37 23 22 21 23 23 22 21 26 24 25 26 
50 30 54 58 66 83 71 68 69 71 76 94 97 
53 35 35 34 32 33 24 28 31 51 71 83 95 
54 43 47 47 55 53 53 55 55 54 60 66 68 
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56 52 32 34 39 48 48 51 53 57 56 54 54 
57 23 27 26 26 26 23 25 29 23 33 30 36 
58 31 37 32 33 32 34 36 35 39 44 48 49 
62 50 30 33 30 30 29 30 28 31 32 29 25 
63 25 41 37 36 40 40 44 44 53 75 83 84 
64 49 42 45 42 46 43 44 48 56 80 102 135 
65 42 29 25 35 40 36 35 39 75 116 166 174 

 

Subject 
Day 
11 

Day 
12 

Day 
13 

Day 
14 

Day 
28 

1 22 18 20 19 24 
3 34 38 40 40 16 
4 31 35 38 48 35 
5 88 76 80 77 39 
6 39 50 59 57 30 
7 24 25 27 26 25 
8 34 36 ND 31 20 
10 59 64 63 62 30 
11 380 314 256 217 63 
14 48 47 52 47 41 
15 108 119 116 133 23 
16 31 39 37 35 56 
17 66 52 46 44 29 
19 78 85 95 102 53 
20 56 52 50 50 25 
21 58 57 63 58 36 
22 79 74 68 65 31 
23 56 52 55 52 27 
24 47 49 49 49 33 
26 63 57 50 74 33 
27 37 31 31 31 31 
28 38 38 33 31 33 
29 67 77 76 79 21 
30 63 66 68 69 35 
32 57 53 51 48 57 
33 57 52 49 52 54 
34 43 43 ND 49 47 
37 36 35 36 38 42 
39 218 206 226 225 ND 
40 32 36 41 48 28 
41 42 42 45 42 43 
42 113 108 89 91 32 
43 45 41 48 48 31 
44 32 40 36 37 30 
45 36 38 38 43 47 
46 33 36 28 28 30 
47 60 51 60 60 35 
48 42 38 36 40 27 



 

 144

49 26 27 31 31 36 
50 97 98 103 116 23 
53 95 102 95 77 31 
54 68 71 85 86 46 
56 54 60 64 67 79 
57 36 37 37 48 50 
58 49 47 46 ND 34 
62 25 30 36 39 84 
63 84 89 86 81 31 
64 135 184 220 231 59 
65 174 210 192 165 30 
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Appendix 5 

Linear regression analysis of human serum ALT and α-GST levels2 

Linear regression analysis and descriptive statistics of the bivariate fit of serum enzyme 
levels. Plotted parameters are the natural log of the maximum levels of ALT and α-GST 
achieved during treatment. Levels were measured in subjects within the Purdue 
Pharma cohort that were administered the maximum recommended dose of 
acetaminophen (4 g every 6 h for 14 days)52. The green line represents the linear 
regression line and the red line represents the fitted mean of the data. 

 

 

Linear Fit 
ln(maximum ALT) = -5.386887 + 0.948964 ln(maximum α-GST) 

 
Summary of Fit 

  
R2 0.762295 

R2 Adj 0.760633 
Root Mean Square Error 0.472801 

Mean of Response 4.201007 
Observations (or Sum 

Weights) 
145 

 
Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 
Model 1 102.51275 102.513 458.5861 
Error 143 31.96635 0.224 Prob > F 

C. Total 144 134.47910  <.0001 
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Parameter Estimates 

Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  -5.386887 0.449445 -11.99 <.0001 

lnMax_GST  0.948964 0.044314 21.41 <.0001 
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Appendix 6 

Liver injury in B6C3F1/J and DBA/2J mice following a low dose subchronic 
acetaminophen exposure 

 
Serum ALT levels were measured daily from mice treated with 50 mg/kg (A; strain 
B6C3F1/J) or 100 mg/kg (B; strain DBA/2J) per day of acetaminophen in four divided 
doses (one dose every 6 h, i.g. for a total dosing volume of 10 ml/kg).  Baseline ALT 
quantifications were conducted on days 1-3 of the study. Dosing began on the morning 
of day 4 and ended on the morning of day 11. Lines represent values for individual 
animals. In panel B, naïve animals are represented in green, vehicle controls are 
represented in blue, and APAP-treated animals are represented in red. 
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