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Abstract

KEITH SCHNEIDER: On The Combinatorics Of Minimal Non-gatherable Triples In
Classical Affine Root Systems

(Under the direction of Ivan Cherednik)

Minimal non-gatherable triples are combinatorially interesting objects found in the

inversion sets of words in some affine and non-affine Weyl groups. This dissertation

continues the work of our two papers with professor Cherednik.

The goal of this paper is the complete description of minimal non-gatherable triangle

triples in the lambda-sequences for the affine classical root systems. After a brief intro-

duction, we will accomplish this by describing all such objects in the twisted B-case and

showing how that case extends to cases C and D.
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Introduction

This thesis is devoted to a complete description of minimal non-gatherable triangle

triples in the lambda-sequences for the affine classical root systems. It is based on our

two papers with professor Cherednik. The first one was on the non-affine case, which

is a particular case of the theory below. We will focus on the affine case in this thesis.

The lambda-sequences are associated with reduced decompositions (words) in affine Weyl

groups. The existence of the non-gatherable triples is a combinatorial obstacle for using

the technique of intertwiners in the theory of irreducible representations of the (double)

affine Hecke algebras, complementary to their algebraic-geometric theory.

It is based on [CS], [CS1] and the part of [C1] devoted to non-gatherable triangle

triples in λ-sequences. The λ-sequences are the sequences of positive roots associated

with reduced decompositions (words) in affine and nonaffine Weyl groups. The minimal

non-gatherable triangle triples, NGT, {α, α + β, β} are λ-sequences with non-movable

(under the Coxeter transformations) endpoints α, β such that α + β is a root and |α| =
|α + β| = |β|. Their nonaffine classification for Bn, Cn(n ≥ 3), Dn(n ≥ 4) and for F4, E6

is the subject of [CS]; there are no NGT for nonaffine and affine An, B2, C2, G2.

We described all minimal NGT for the classical affine root systems based on their

planar interpretation from [C3] and provided a universal general construction for arbi-

trary (reduced, irreducible) root systems. In principle, the latter can be used to obtain

all such triples for special root systems.

The affine minimal NGT we construct are given in terms almost dominant weights

(where one simple root can be disregarded in the definition of the dominant weights) and

certain “small” elements from the nonaffine Weyl group. The weight itself generally is not

sufficient to determine the corresponding minimal affine NGT uniquely. This algebraic



understanding of our constructions is important for managing special root systems, but

will not be considered in this thesis.

For the classical affine root systems, the answer appeared very explicit. Combinato-

rially, it is given in terms of partitions of a type A subdiagram inside the initial nonaffine

Dynkin diagram and (additionally) an increasing sequences of non-negative integers as-

sociated with such partitions. This is the first main result of this thesis. See Theorem

3.3.1 below or see Figure 3.2 for a geometric representation.

Interestingly, all such minimal NGT can be naturally presented in terms of those of

type B. It is not unexpected because the planar interpretation unifies all classical root

systems in one construction. The passage to the other types from B is by using certain

parity corrections directly related to the element s0 of type B treated as an element of

the extended affine Weyl groups of type C,D (in the twisted setting). This is the second

main result of this dissertation. See Theorems 4.2.1 and 4.2.2.

The existence of NGT is a combinatorial obstacle for using the technique of inter-

twiners (see, e.g. [C1]) in the theory of irreducible representations of the affine and

double affine Hecke algebras, complementary to the geometric approach from of [KL]

and its double affine generalization. We mainly mean the constructive theory of such

representations (where the intertwining elements are used to construct basic vectors).

The theory of affine and double affine algebras motivated our papers a great deal,

but NGT are quite interesting in their own right. Gathering together the triangle triples

using the Coxeter transformations seems an important question in the theory of reduced

decompositions of Weyl groups, which is far from simple. More generally, assuming that

λ(w) contains all positive roots of a certain root subsystem, can these roots be gathered

using the Coxeter transformations?

0.1. Basic definitions

Let R ∈ Rn be a reduced irreducible root system or its affine extension, W the corre-

sponding Weyl group. Then the λ-set is defined as λ(w) = R+ ∩ w−1(−R+) for w ∈ W ,
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where R+ is the set of positive roots in R. It is well-known that w is uniquely deter-

mined by λ(w); many properties of w and its reduced decompositions can be interpreted

in terms of this set. The λ-sequence is the λ-set with the ordering of roots naturally

induced by a given reduced decomposition.

The intrinsic description of such sets and sequences is mainly given in terms of the

triangle triples {β, γ = α + β, α}. For instance, α, β ∈ λ(w) ⇒ α + β ∈ λ(w) and

the latter root must appear between α and β if this set is treated as a sequence. This

property is necessary but not sufficient; see [C1] for a comprehensive discussion.

We want to know when the sets of positive roots of rank two subsystems inside a given

sequence λ(w) can be gathered (made consecutive) using the Coxeter transformations

in λ(w). It is natural to allow the transformations only within the minimal segments

containing these roots. This problem can be readily reduced to considering the triangle

triples provided some special conditions on the lengths. The answer is always affirmative

only for the root systems An, B2, C2, G2 (and their affine counterparts) or in the case

when |α| 6= |β|. Otherwise non-trivial NGT always exist.

0.2. The planar representation

For the root system An (nonaffine or affine), gathering the triples is simple. It readily

results from the planar interpretation of the reduced decompositions and the correspond-

ing λ-sequences in terms of (n + 1) lines in the two-dimensional plane (on the cylinder

in the affine case).

Conceptually, this interpretation is a variant of the classical geometric approach to the

reduced decompositions of w ∈ W in terms of the lines (or pseudo-lines) that go from the

main Weyl chamber to the chamber corresponding to w; see [Bo]. However, the planar

description adds a lot to this general approach. It is a powerful tool, which dramatically

simplifies dealing with combinatorial problems concerning the reduced decompositions.

The An-planar interpretation was extended in [C2] to other classical root systems

and G2, and then to their affine extensions in [C3]. Omitting G2, it is given in terms of
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n lines in R2 with reflections in one mirror for the nonaffine Bn, Cn, Dn and two mirrors

in the affine case. This approach can be used for quite a few problems beyond NGT.

We were able to use the planar interpretation to find all minimal non-gatherable

triples, minimal NGT, for the affine root systems B,C,D. Algebraically, without such

geometric support, it is an involved combinatorial problem. No planar (or similar) in-

terpretation is known for F4, E6,7,8. Nonaffine minimal NGT can be classified using

computers (see [CS] for F4, E6); the exceptional affine root systems will be considered in

our further works.

Generally, the admissibility condition from [C1] is necessary and sufficient for the

triple to be gatherable, which is formulated in terms of subsystems of R of types B3, C3

or D4. This universal (but not very convenient to use) theorem can be now re-established

for the classical root systems using the classification we gave in our papers.

Relation to (double) affine Hecke algebras. The existence of NGT and some

other features of similar nature are not present in the case of A. Generally, the theory

of root systems is uniform at level of generators and relations of the corresponding Weyl

(or braid) groups; however the root systems behave quite differently when the “relations

for Coxeter relations” are considered.

Presumably, the phenomenon of NGT is one of the major combinatorial obstacles for

creating a universal theory of AHA-DAHA “highest vectors” generalizing Zelevinsky’s

segments in the A-case and based on the intertwining operators. This technique was

fully developed only for affine and double affine Hecke algebras of type An and in some

cases of small ranks.

The fact that all triples are gatherable in the case of An was the key in [C4] and

quite a few further papers on the quantum fusion procedure . This procedure reflects

the duality of AHA and DAHA of type A are the corresponding quantum groups and

quantum toroidal algebras.
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Quantum groups and Yangians certainly deserve special comments. In the case of

GL, their irreducible representations can be described in terms of the so-called fusion

procedure. The key object of the latter is the transfer matrix, a product of quantum R-

matrices geometrically corresponding to a bunch of n parallel lines intersecting another

bunch of m parallel lines.

Major parts of this theory were extended to the R-matrices with reflection and the

twisted Yangians (of reflection type). The the corresponding transfer matrices are asso-

ciated with the following configurations. The n-bunch of lines intersects the m-bunch

parallel to the mirror, then reflects in this mirror and then again intersects the m-bunch.

There are interesting modifications here when D is considered. These configurations

(when n ≥ 2) are exactly those for the non-affine minimal NGT of type B,C. Recent re-

search on the twisted Yangians [KN] indicates that it is not by chance and that minimal

NGT may be of importance for this theory.
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CHAPTER 1

Affine Weyl groups

Let R = {α} ⊂ Rn be a root system of type A,B, ..., F,G with respect to a Euclidean

form (z, z′) on Rn 3 z, z′, W the Weyl group generated by the reflections sα, R+ the

set of positive roots (R− = −R+) corresponding to fixed simple roots α1, ..., αn, Γ the

Dynkin diagram with {αi, 1 ≤ i ≤ n} as the vertices.

We will also use sometimes the dual roots (coroots) and the dual root system:

R∨ = {α∨ = 2α/(α, α)}.

The root lattice and the weight lattice are:

Q = ⊕ni=1Zαi ⊂ P = ⊕ni=1Zωi,

where {ωi} are fundamental weights: (ωi, α
∨
j ) = δij for the simple coroots α∨i . Replacing

Z by Z± = {m ∈ Z,±m ≥ 0} we obtain Q±, P±. Here and further see [Bo].

The form will be normalized by the condition (α, α) = 2 for short roots. When dealing

with the classical root systems, the most natural inner product ( , )ε is the one making

the εi in [Bo] orthonormal. It coincides with our ( , ) for C and D; in the case of B, our

form is 2( , )ε. One has:

να := (α, α)/2 can be either 1, or {1, 2}, or {1, 3}.
This normalization leads to the inclusions Q ⊂ Q∨, P ⊂ P∨, where P∨ is defined to

be generated by the fundamental coweights ω∨i .

Let ϑ ∈ R∨ be the maximal positive coroot. Equivalently, it is maximal positive

short root in R due to our choice of the normalization. All simple roots appear in its



decomposition in R or R∨. Note that 2 ≥ (ϑ, α∨) ≥ 0 for α > 0, (ϑ, α∨) = 2 only for

α = ϑ, and sϑ(α) < 0 if (ϑ, α) > 0.

1.1. Affine roots

The vectors α̃ = [α, ναj] ∈ Rn × R ⊂ Rn+1 for α ∈ R, j ∈ Z form the affine root

system R̃ ⊃ R (z ∈ Rn are identified with [z, 0]). We add α0 := [−ϑ, 1] to the simple

roots for the maximal short root ϑ. The corresponding set R̃+ of positive roots coincides

with R+ ∪ {[α, ναj], α ∈ R, j > 0}.
We will write R̃ = Ãn, B̃n, . . . , G̃2 when dealing with classical root systems.

The root system R̃+ is called the twisted affine extension of R. The standard one from

[Bo] is defined for maximal long root θ ∈ R+ and with omitting να in the expression

for the affine roots; the inner product is normalized by the condition (θ, θ) = 2. The

transformation of our considerations to the non-twisted case is straightforward.

Any positive affine root [α, ναj] is a linear combinations with non-negative integral

coefficients of {αi, 0 ≤ i ≤ n}. Indeed, it is well known that [α∨, j] is such combination

in terms of {α∨i , 1 ≤ i ≤ n} and [−ϑ, 1] for the system of affine coroots, that is R̃∨ =

{[α∨, j], α ∈ R, j ∈ Z}. Hence, [−α, ναj] = να[−α∨, j] has the required representation.

Note that the sum of the long roots is always long, the sum of two short roots can be

a long root only if they are orthogonal to each other.

We complete the Dynkin diagram Γ of R by α0 (by −ϑ, to be more exact); it is

called affine Dynkin diagram Γ̃. One can obtain it from the completed (extended by

zero) Dynkin diagram from [Bo] for the dual system R∨ by reversing all arrows.

The set of the indices of the images of α0 by all the automorphisms of Γ̃ will be

denoted by O (O = {0} for E8, F4, G2). Let O′ = {r ∈ O, r 6= 0}. The elements ωr for

r ∈ O′ are the so-called minuscule weights: (ωr, α
∨) ≤ 1 for α ∈ R+.

Given α̃ = [α, ναj] ∈ R̃, b ∈ P , let

sα̃(z̃) = z̃ − (z, α∨)α̃, b′(z̃) = [z, ζ − (z, b)](1.1)
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for z̃ = [z, ζ] ∈ Rn+1.

The affine Weyl group W̃ is generated by all sα̃ (we write W̃ = 〈sα̃, α̃ ∈ R̃+〉). One

can take the simple reflections si = sαi (0 ≤ i ≤ n) as its generators and introduce the

corresponding notion of the length. This group is the semidirect product W n Q′ of its

subgroups W = 〈sα, α ∈ R+〉 and Q′ = {a′, a ∈ Q}, where

α′ = sαs[α, να] = s[−α, να]sα for α ∈ R.(1.2)

The extended Weyl group Ŵ generated by W and P ′ (instead of Q′) is isomorphic

to W n P ′:

(wb′)([z, ζ]) = [w(z), ζ − (z, b)] for w ∈ W, b ∈ P.(1.3)

From now on, b and b′, P and P ′ will be identified.

Note that the extended affine Weyl group in the standard (non-twisted case) is iden-

tified with the semidirect product W n P∨.

The action in Rn+1 is dual to the affine action ŵ((z)) := w(z + ξb) in Rn 3 z for a

free parameter ξ, where ŵ = wb and w ∈ W, b ∈ P . I.e., P acts via the translations in

this definition. In more detail, let ( [z, t] , z′ )ξ := (z, z′) + ξt For z, z′ ∈ Rn, t ∈ R and

ŵ = wb ∈ Ŵ ,

( ŵ(z) , ŵ((z′)) )ξ = ( z , z′ )ξ.(1.4)

Note that s[α,j]((z)) = z − 2((z, α) + jξ)α∨

Given b ∈ P+, let wb0 be the longest element in the subgroup W b
0 ⊂ W of the elements

preserving b. This subgroup is generated by simple reflections. We set

ub = w0w
b
0 ∈ W, πb = b(ub)

−1 ∈ Ŵ , ui = uωi , πi = πωi ,(1.5)

where w0 is the longest element in W, 1 ≤ i ≤ n.

The elements πr := πωr , r ∈ O′ and π0 = id leave Γ̃ invariant and form a group

denoted by Π, which is isomorphic to P/Q by the natural projection {ωr 7→ πr}. As
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to {ur}, they preserve the set {−ϑ, αi, i > 0}. The relations πr(α0) = αr = (ur)
−1(−ϑ)

distinguish the indices r ∈ O′. Moreover (see e.g., [C1]):

Ŵ = Π n W̃ , where πrsiπ
−1
r = sj if πr(αi) = αj, 0 ≤ j ≤ n.(1.6)

1.2. The length

Setting ŵ = πrw̃ ∈ Ŵ for πr ∈ Π, w̃ ∈ W̃ , the length l(ŵ) is by definition the length of

the reduced decomposition w̃ = sil ...si2si1 in terms of the simple reflections si, 0 ≤ i ≤ n.

The length can be also defined as the cardinality |λ(ŵ)| of the λ-set of ŵ :

λ(ŵ) := R̃+ ∩ ŵ−1(R̃−) = {α̃ ∈ R̃+, ŵ(α̃) ∈ R̃−}, ŵ ∈ Ŵ .(1.7)

Note that λ(ŵ) is closed with respect to positive linear combinations. More exactly,

if α̃ = uβ̃ + vγ̃ ∈ R̃ for rational u, v > 0, then α̃ ∈ λ(ŵ) if β̃ ∈ λ(ŵ) 3 γ̃. Vice versa, if

λ(ŵ) 3 α̃ = uβ̃ + vγ̃ for β̃, γ̃ ∈ R̃+ and rational u, v > 0, then either β̃ or γ̃ must belong

to λ(ŵ). Also,

α̃ = [α, ναj] ∈ λ(ŵ) ⇒ [α, ναi] ∈ λ(ŵ)

for all 0 ≤ i < j where i > 0 as α < 0 .(1.8)

The coincidence with the previous definition is directly related to the equivalence of

the following four claims:

(a) l(ŵû) = l(ŵ) + l(û) for ŵ, û ∈ Ŵ (length formula),(1.9)

(b) λ(ŵû) = λ(û) ∪ û−1(λ(ŵ)) (cocycle relation),(1.10)

(c) û−1(λ(ŵ)) ⊂ R̃+ (positivity condition),(1.11)

(d) λ(û) ⊂ λν(ŵ) (embedding condition).(1.12)

9



The key here is the following general relation:

λ(ŵû) = λ(û) ∪̃ û−1(λ(ŵ)) for any û, ŵ,(1.13)

where, by definition, the reduced union ∪̃ is obtained from ∩ upon the cancellation of

all pairs {α̃,−α̃}. In particular, (1.13) gives that

λ(ŵ−1) = −ŵ(λ(ŵ)).

Applying (1.10) to the reduced decomposition ŵ = πrsil · · · si2si1 ,

λ(ŵ) = { α̃l = w̃−1sil(αil), . . . , α̃
3 = si1si2(αi3),

α̃2 = si1(αi2), α̃
1 = αi1 }.(1.14)

It demonstrates directly that the cardinality l of the set λ(ŵ) equals l(ŵ). Cf. [Hu],4.5.

Comment. It is worth mentioning that counterparts of the λ-sets can be introduced

for w = sil · · · si2si1 in arbitrary Coxeter groups. Following [Bo] (Ch. IV, 1.4, Lemma

2), one can define

Λ(w) = { tl = w−1sil(sil), . . . , t3 = si1si2(si3),

t2 = si1(si2), t1 = si1 },(1.15)

where the action is by conjugation; Λ(w) ⊂ W .

The t-elements are (all) pairwise different if and only if the decomposition is reduced

(a simple straight calculation; see [Bo]). Then this set does not depend on the choice of

the reduced decomposition. It readily gives a proof of formula (1.14) by induction and

establishes the equivalence of (a),(b) and (c).

Generally, the crystallographical case is significantly simpler than the case of abstract

Coxeter groups; using the root systems dramatically simplifies theoretical and practical

(via computers) analysis of the reduced decompositions. The positivity of roots, the

10



alternative definition of the λ-sets from (1.7) and, more specifically, property (c) are

(generally) missing in the theory of abstract Coxeter groups. �

In this thesis, we will mainly treat λ(ŵ) as sequences, called λ-sequences; the roots

in (1.14) are ordered naturally. The sequence structures of the same λ-set correspond to

different choices of the reduced decompositions of ŵ.

An arbitrary simple root αi ∈ λ(ŵ) can be made the first in a certain λ-sequence.

More generally:

λ(ŵ) = {α > 0, l(ŵsα) ≤ l(ŵ)};(1.16)

see [Bo] and [Hu],4.6, Exchange Condition.

The sequence λ(w̃) = {α̃l, . . . , α̃1}, where l = l(w̃), determines w̃ ∈ W̃ uniquely.

Indeed,

αi1 = α̃1, αi2 = s1(α̃2), . . . , αip = s1s2 · · · sp−1(α̃p), . . .

αil = s1s2 · · · sl−1(α̃l) , where

sp = sα̃p , ŵ = sil · · · si1 = s1 · · · sl.(1.17)

Notice the order of the reflections sp in the decomposition of w̃ is inverse. Moreover,

λ(ŵ) considered as an unordered set determines ŵ uniquely up to the left multiplication

by the elements πr ∈ Π.

The intrinsic definition of the λ-sequences is as follows.

(i) Assuming that α̃, β̃, γ̃ = α̃+ β̃ ∈ R̃+, if α̃, β̃ ∈ λ then γ̃ ∈ λ and γ̃ appears between

α̃, β̃; if α̃ 6∈ λ then β̃ belongs to λ and appears in λ before γ̃.

(ii) If α̃ = [α, ναj] ∈ λ then [α, ναj
′ ] ∈ λ as j > j ′ > 0 and it appears in λ before α̃.

(iii) If β̃ ∈ λ and γ̃ = β̃ − [α, ναj] ∈ R̃+[−] for α ∈ R+, j ≥ 0, then γ̃ ∈ λ and it

appears before β̃.

11



If λ is treated as an unordered set, then it is in the form λ = λ(ŵ) for some ŵ ∈ Ŵ
if and only if (i+ ii+ iii) are imposed without the claims concerning the ordering.
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CHAPTER 2

The general theory of NGT

The transformations of the reduced decompositions in W̃ are generated by the elemen-

tary ones, the Coxeter transformations, that are substitutions (· · · sisjsi) 7→ (· · · sjsisj)
in reduced decompositions of the elements w̃ ∈ W̃ . The number of s-factors is 2, 3, 4, 6

when αi and αj are connected by 0, 1, 2, 3 laces in the affine or nonaffine Dynkin dia-

gram. These transformations induce reversing the order of the corresponding segments

(with 2, 3, 4, 6 roots) of λ(w̃) treated as a sequence. These segments can be naturally

identified with the standard sequences of positive roots of type A1 × A1, A2, B2 or G2.

The conjugations by πr ∈ Π will be applied too; they permute of the indices of the words

from W̃ (preserving the length).

2.1. Admissibility condition

The theorem below is essentially from [C1]; it has application to the decomposition

of the polynomial representation of DAHA and is important for the classification of

semisimple representations of AHA and DAHA (in progress). We think that it clarifies

why dealing with the intertwining operators for arbitrary root systems is significantly

more difficult than in the An-case (where much is known).

Given a reduced decomposition of ŵ ∈ Ŵ , let us assume that α̃+ β̃ = γ̃ for the roots

. . . , β̃, . . . , γ̃, . . . , α̃ . . . in λ(ŵ) (α̃ appears the first), where only the following combina-

tions of their lengths are allowed in the B̃, C̃, F̃ cases

long + long = long (B,F4) or short + short = short (C,F4).(2.1)

We call such {β̃, γ̃, α̃} a (triangle) triple.



Since we will use the Coxeter transformations only inside the segment [β̃, α̃] ⊂ λ(w),

from α̃ to β̃, it suffices to assume that α̃ is a simple root. The root systems Ãn, B̃2, C̃2, G̃2

are excluded from the following theorem; there are no NGT in these cases.

Theorem 2.1.1. The roots β̃, γ̃, α̃ from a triple are non-gatherable, i.e., cannot be

made consecutive roots using the Coxeter transformations inside the segment [β̃, α̃] ⊂
λ(ŵ) if and only if a root subsystem of type B3, C3 or D4 exists such that its intersection

with λ(ŵ) constitutes the λ-set of a certain non-gatherable triple there. �

The theorem can be readily reduced to considering the elements ŵ representing min-

imal NGT, i.e., such that the λ-sequence λ(ŵ) begins with α̃ and ends with β̃ and both

roots (the endpoints) are non-movable with respect to the Coxeter transformations of ŵ.

Thus a minimal NGT is a pair, the triple {β̃, γ̃ = α̃+ β̃, α̃} and the element ŵ ∈ Ŵ that

represents this triple. Since such triple is uniquely determined by ŵ, we will constantly

call ŵ a minimal NGT as well, somewhat abusing the terminology.

14



CHAPTER 3

NGT of type B

The root system B̃n(n ≥ 3) is the key. Due to our choice of ϑ (it is the maximal

short root; the twisted case), the corresponding affine Dynkin graph Γ̃, Γ extended by

α0 = [1,−ε1], is the one from the C-table of [Bo] where all the arrows are reversed.

Concerning the normalization of the inner product, our one is (εi, εj) = 2δi,j for the

Kronecker delta in terms of the basis {εj} from [Bo],

The lattice Q is generated by {εj}. The action of W̃ in Rn+1 = [z, ζ] and Rn ∈ z =

(z1, . . . , zn) (see (1.3) and (1.4)for ξ = 1) is as follows:

s0([z, ζ]) = [(−z1, z2, . . . , zn), ζ − 2z1],

εj((z)) = z + εj for z = (z1, . . . , zn).

We will use the involution of Γ̃ transposing α0 = [−ε1, 1] and αn = εn; it will be

denoted by ıB. It coincides with the conjugation by πn ∈ Π.

For C̃n, the lattice Q is generated by εi ± εj including 2εi. Also, α0 = [−ϑ, 1] for

ϑ = ε1 + ε2 and (εi, εj) = δij. Accordingly,

s0([z, ζ]) = [(−z2,−z1, z3, . . . , zn), ζ − z1 − z2],

(εi ± εj)((z)) = z + εi ± εj for z = (z1, . . . , zn).

The affine Dynkin diagram for C̃n is the one from [Bo] for B with all arrows reversed.

Its involution, transposing α0 = [−ε1− ε2, 1] and α1 = ε1− ε2 and fixing the other simple

roots, will be denoted by ıC . In terms of εi, it sends ε1 7→ −ε1 and leaves all other εj

unchanged.



The lattice P for C coincides with Q for B. Sometimes we will denote α0, ϑ, s0 of

type C by α′0, ϑ
′, s′0 (the same for the related objects) to avoid confusions with those

defined for B. For instance, the element s0 from B can be treated as an element from

Ŵ = W n P ′ defined for C. Namely, Π′ = {id, s0}, i.e., π′1 = s0. We see that s0 induces

ıC .

3.1. Configurations of type B

Let us begin with a simple typical example of minimal affine NGT of type B presented

in Figure 3.1.
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Configurations are defined as sets of (zigzag) lines between a given
pair of vertical lines (the beginning and the end) where the triple in-
tersections and double reflections are not allowed.

The initial angles the lines make with the x–axis (counterclockwise)
will be denoted by ϵ1, ϵ2, . . . , ϵn; we simply use 1, 2, . . . , n in the graphs.
They are numbered from top to bottom; accordingly, the initial angle
between line i and line j for j > i is denoted i − j. We read the
configuration from right to left, so its beginning is the extreme right
vertical line.

Let us list and interpret the geometric features of configurations

aiming at establishing connections with the algebraic theory of B̃n and

the corresponding W̃ .

1
-δ-4
-δ-3
-δ-2

5
6

αβ

δ/2

δ+2

1
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6

δ/2+4

w=s(γ)s(δ/2+3)
γ

-4
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β= δ+2+5                        γ= δ+2+4                                         α=4-5                                 
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w=453462354653264354101210312101453462356453264354

δ+4

Figure 1. A basic affine NGT of type B

Geometric features of configurations.

(i) The construction of w̃ ∈ W̃ from a given configuration is ex-
plained in the figure; see also [CS] and [C3]. More formally, we inter-
sect the (zigzag) lines with the extreme left vertical line and read the

Figure 3.1. A basic affine NGT of type B

There are n = 6 lines there which intersect and also experience reflections in the two

mirrors. The bottom one will be always made parallel to the x-axis, the top one makes

the angle δ/2 with this axis.

Here and further by a line we mean a piecewise linear zigzag line which is the result

of reflections of the initial line in the mirrors. The latter will be referred to as the bottom

nonaffine mirror and the top affine one.
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Almost always we consider only the portion of such zigzag lines trapped between the

vertical lines at the beginning and at the end of the graph.

Configurations are defined as sets of (zigzag) lines between a given pair of vertical

lines (the beginning and the end) where the triple intersections and double reflections

are not allowed.

The initial angles the lines make with the x-axis (counterclockwise) will be denoted

by ε1, ε2, . . . , εn; we simply use 1, 2, . . . , n in the graphs. They are numbered from top to

bottom; accordingly, the initial angle between line i and line j for j > i is denoted i− j.
We read the configuration from right to left, so its beginning is the extreme right vertical

line.

Let us list and interpret the geometric features of configurations aiming at establishing

connections with the algebraic theory of B̃n and the corresponding W̃ .

3.2. Geometric features of configurations.

(i) The construction of w̃ ∈ W̃ from a given configuration is explained in the figure;

see also [CS] and [C3]. More formally, we intersect the (zigzag) lines with the extreme left

vertical line and read the intersection points from top to bottom, forming the sequence of

the absolute angles, which the lines make with the x-axis. This sequence can be uniquely

represented as follows:

δ(b1, b2, . . . , bn) + w(1, 2, . . . , n) for proper bi ∈ Z and w ∈ W.(3.1)

Then the element w̃ ∈ W̃ (of type B̃) associated with the configuration is defined

as the product w̃ = bw. Here the vector (b1, . . . , b2), which equals (0,−1,−1,−1, 0, 0)

in the figure, is naturally identified with the weight b =
∑n

i=1 biεi ∈ Q. Recall, that

in the nonaffine theory of classical Weyl group of types B,C,D elements w ∈ W are

naturally identified with signed permutations. For this particular configuration, w =

(1,−4,−3,−2, 5, 6).

17



Notice that the “unit” here is δ (not δ/2 as in the interpretation of the affine roots);

only integral multiples of δ appear in the angles. For instance, the vector of the absolute

angles after the event s0 is δ(1, 0, 0, · · · )+(−1, 2, 3, · · · ). Thus the corresponding b equals

ε1 = ϑ,w = sϑ, which matches the formula s0 = ϑsϑ.

As an exercise, check that w̃ from the figure can be represented as a product of two

pairwise commutative reflections s[1,ε2+ε4] and s[1,ε3].

(ii) The sequence of projections of the intersection points and the reflection points

onto the x-axis gives the reduced decomposition of w̃ corresponding to a given configura-

tion. We always assume that these projections are distinct. Then their number equals

the length l(w̃). The simple reflections si (0 ≤ i ≤ n) associated with the corresponding

simple events, the intersections and the reflections, are determined on the basis of the

local line numbers (always counted from top to bottom) at the moment of the event.

For disconnected events (corresponding to pairwise commutative si and sj) we can of

course change the order of the projections arbitrarily; we do it constantly in the figures.

Note that if “pseudo-lines” are allowed here, then all reduced decompositions of a

given ŵ can be obtained in this way. Pseudo-lines are essentially the curves with one-to-

one projections onto the x-axis that are allowed to intersect no greater than one time if

no reflections are involved.

(iii) Next, the angles α + (δ/2)j between the lines will be treated as the affine roots

[α, j] ∈ R̃ (type B̃). The angle is always calculated counterclockwise and before the event,

i.e., as the difference of the absolute incoming angles, the upper one minus the lower one.

The events are intersections or reflections. The angles with the mirrors are taken for the

reflections, namely, the absolute angles of the mirror are δ/2 for the top one and 0 for

the bottom one.

The angles correspond to positive affine roots, for instance, δ/2 always occurs with a

non-negative coefficient (even for the intersections). The collections of the corresponding

angles considered from right to left constitute the λ-sequences λ(w̃) of a given reduced

18



decomposition of w̃. If pseudo-lines are allowed instead of (straight) lines we consider,

then all λ-sequences can be obtained in this way.

(iv) The action of w̃ on the angles is dual to the affine action from (3.1). Practically,

the image of εi considered as a root is the resulting angle of this line where index i is

replaced by the local number of this line after the event (counted from top to bottom).

For instance, w̃(ε2− ε5) in the figure under consideration is w̃(2−5) = (−δ−4)−5 =

−δ− 4− 5 treated as the affine root [−1,−ε4− ε5]. It is negative, so 2− 5 belongs to the

list of the angles of this configuration.

Notice that the action of the lattice P (of type B̃) requires an extension of the basic

events by πn transposing the affine Dynkin diagram Γ̃. Recall that πn is the only non-

trivial element of Π. This event has no angle and does not contribute to the λ-sequences,

although it of course transposes the line numbers and influences the angles afterwards.

Geometrically, let us assume that the mirrors are two generatrix lines of a circular

2-dimensional cone; then the configurations under consideration will belong to the one

of the two halves of this cone. The reflection in the middle line between the mirrors

in the other half of the cone naturally represents πn. It transposes the mirrors and the

corresponding lines between them; we denote it by ıB.

3.3. B-positive minimal NGT

We need to introduce some terminology.

A collection of neighboring parallel lines will be called a bunch of lines. The lines

from a bunch are obtained from each other by (piecewise) parallel translations (adjusted

to the mirrors).

Actually, by parallel, we mean here and below combinatorially parallel, i.e., the lines

that “behave” as parallel and may intersect only due to the reflections (within the range

where they are considered), We always assume that any bunch is maximal possible in a

given configuration.
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The lines from one bunch have the same numbers of top and bottom reflections. By

horizontal, we mean the lines that are parallel (combinatorially parallel, to be exact) to

the corresponding mirrors; then these numbers are zero. The t-number of a line is defined

as the number of top reflections;

A natural generalization of the minimal NGT from Figure 3.1 is given in terms of the

following data:

(a) the integers u ≥ 0, v ≥ 1 such that m := n − u − v ≥ 2, which are the numbers

of top and bottom horizontal parallel lines neighboring (the right ends and the left ends)

the corresponding mirror;

(b) a decomposition m = p1 + p2 + . . . + pr for positive integers pj such that pr ≥ 2,

which give the numbers of lines in the consecutive non-horizontal bunches (counted from

top to bottom with respect to the right ends);

(c) a sequence of non-negative integers 0 ≤ t1 < t2 < . . . < tr, which are the t-numbers

of the corresponding non-horizontal bunches;

(d) also, the number of the bottom reflections is assumed t + 1 for the bunches and

t-numbers in (b);

The data from (a, b, c) determine the configuration uniquely due to assumption (d).

Geometrically, the horizontal bunches can be plotted arbitrarily close to the corre-

sponding mirrors; the lines in one bunch can be plotted arbitrarily close to each other. In

Figure 3.2, there are 1 + 1 horizontal bunches near the top mirror and the bottom mirror

(each with one line), namely, {1} and {7}; then t1 = 0, t2 = 1, t3 = 2 for the bunches

{2}, {3, 4}, {5, 6}.
The t-number can be zero in our construction not only for the horizontal bunches.

The first bunch of lines from (b) is allowed to have t1 = 0. The presence of at least one

horizontal bottom line (v > 0) is required. Also, the second bunch counted from the

bottom, i.e., the first bunch from (b), must contain at least two lines (tr ≥ 2).
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Figure 2. Basic affine NGT of type B

redistribution of lines between the top horizontal branch and the one
with t1 = 0.

This construction will be referred to as the B–positive construction;
accordingly, such minimal NGT will be called B–positive. This name

reflects the fact that the nonaffine component β of the root β̃ is always
positive in this construction. All minimal NGT with positive β can be
obtained in this way; we come to the following theorem.

Theorem 3.1. Any minimal affine NGT w̃ ∈ W̃ for the (twisted) root

system B̃n(n ≥ 3) is either given by the B–positive construction in
terms of (a, b, c, d) or can be obtain from a B–positive minimal NGT
by applying the automorphism ıB (transposing the top and the bottom
mirrors). All such w̃ are involutive.

�

3.3. Proof. We consider the configurations of the lines Li discussed

above and representing elements the w̃ ∈ W̃ for W̃ of type B̃. The
lines are numbered at the beginning (for the extreme right value of x).

Figure 3.2. B-type affine NGT with five bunches

The first and the last lines from this bunch and the highest line in the bottom hori-

zontal bunch will be exactly those responsible for producing the minimal NGT {β̃, γ̃, α̃}
in the theorem below.

Note that the w̃-elements corresponding to different configurations under consider-

ation may have coinciding weights b. It occurs if and only if they have the same total

number of lines with t = 0 due to a redistribution of lines between the top horizontal

branch and the one with t1 = 0.

This construction will be referred to as the B-positive construction; accordingly, such

minimal NGT will be called B-positive. This name reflects the fact that the nonaffine

component β of the root β̃ is always positive in this construction. All minimal NGT with

positive β can be obtained in this way; we come to the following theorem.

Theorem 3.3.1. Any minimal affine NGT w̃ ∈ W̃ for the (twisted) root system

B̃n(n ≥ 3) is either given by the B-positive construction in terms of (a, b, c, d) or can be

obtain from a B-positive minimal NGT by applying the automorphism ıB (transposing

the top and the bottom mirrors). All such w̃ are involutive.
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Proof. We consider the configurations of the lines Li discussed above and representing

elements the w̃ ∈ W̃ for W̃ of type B̃. The lines are numbered at the beginning (for the

extreme right value of x). Each of Li is characterized by the number of top reflections

ti and the number of bottom reflections bi. More precisely, this number determines the

type of Li uniquely if ti 6= bi; otherwise, one needs to know which reflection (the top or

the bottom one) occurs the first.

Let us begin with the following general observation.

Lemma 3.3.2. Let the lines Li and Li+1 be neighboring in the configuration corre-

sponding to w̃ ∈ W̃ of type B̃.

(a) If the first reflection of line Li is in the bottom mirror and either i = n, or

bi < bi+1 or ti < ti+1 for i < n, then the element si can be made the beginning of the

reduced decomposition of w̃.

(b) Similarly, si can be made the beginning of the reduced decomposition of w̃ if Li+1

begins with the top reflection and either i = 0 or, in the case of i > 0, ti > ti+1 or

bi > bi+1.

Proof of lemma. It suffices to check (a); also, the case i = n is obvious. The

geometric assumptions from (a) ensure that the angle εi− εi+1 occurs somewhere in such

configuration. Indeed, the first reflection of line Li+1 (if any) can be only in the bottom

mirror. Then lines L− i and Li+1 can be made “parallel” (i.e., with the intersections only

due to their reflections) until the first intersection. Since the lines have experienced the

same number of the bottom and top reflections before the intersection, the angle between

them has to be εi − εi+1. This angle corresponds to the simple root αi; therefore it can

be made the first upon a proper transformation of the configuration. �

Lemma 3.3.3. The statement of Theorem 3.3.1 holds for B̃3.

Proof of lemma. Using ıB (the transposition of the two mirrors), one can assume that

the first angle of the configuration representing a minimal NGT, {β̃, γ̃ = α̃ + β̃, α̃} , is

α̃ = ε2 − ε3. Then the last one, β̃, can be
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(1) mδ + ε1 + ε3, or (2) mδ + ε1 − ε2 for m ≥ 0, and, additionally,

(3) mδ − ε1 − ε2, or (4) mδ − ε1 + ε3 when m > 0.

Let us demonstrate that the last three choices are impossible. We will use Lemma

3.3.2.

First of all, the following holds:

a) L2 reflects in the bottom mirror after the intersection with L3,

b) the first reflection of L1 may occur only in the bottom mirror,

c) b1 ≤ b2 for the numbers of the bottom reflections of L1 and L2,

d) the first reflection (if any) of line L3 can be only in the top mirror.

Furthermore, a simple check gives that the angles between L1 and L2 will be always

in the form mδ + ε2 ± ε1; this excludes (2) and (3).

A more algebraic verification is as follows. If the angle from (2) for m > 0 appears

in the configuration, then so does ε1 − ε2. The latter represents a simple root and can

be made the first one, which contradicts the minimality of NGT. Similarly, for the angle

from (3), δ − ε1 − ε2 is an angle too; it results in a contradiction too.

As for (4), line L3 intersects L1 when it goes down (after the corresponding top

reflection) or up (after the corresponding bottom reflection). In either case, the sign of

ε1 in the intersection angle is always plus, so (4) is impossible.
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Furthermore, a simple check gives that the angles between L1 and
L2 will be always in the form mδ + ϵ2 ± ϵ1; this excludes (2) and (3).

A more algebraic verification is as follows. If the angle from (2)
for m > 0 appears in the configuration, then so does ϵ1 − ϵ2. The
latter represents a simple root and can be made the first one, which
contradicts the minimality of NGT. Similarly, for the angle from (3),
δ − ϵ1 − ϵ2 is an angle too; it results in a contradiction too.

As for (4), line L3 intersects L1 when it goes down (after the corre-
sponding top reflection) or up (after the corresponding bottom reflec-
tion). In either case, the sign of ϵ1 in the intersection angle is always
plus, so (4) is impossible.

Thus, (1) is the only option for β̃. Let us now check that line L3 is
actually horizontal (i.e., does not reflect). We claim that if it reflects
in the mirrors then its last reflection can be made the last event of
the configuration, which contradicts the minimality of the NGT under
consideration. Figure 3 demonstrates this claim; the thick arc there
shows the reflection points that can be transposed in this configuration.
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Figure 3. Line 3 must be horizontal

This conclude the verification of the lemma. �
Figure 3.3. Line 3 must be horizontal
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Thus, (1) is the only option for β̃. Let us now check that line L3 is actually horizontal

(i.e., does not reflect). We claim that if it reflects in the mirrors then its last reflection

can be made the last event of the configuration, which contradicts the minimality of the

NGT under consideration. Figure 3.3 demonstrates this claim; the thick arc there shows

the reflection points that can be transposed in this configuration.

This concludes the verification of the lemma. �

Let us apply Lemma 3.3.3 to the three lines forming a minimal NGT {β̃, γ̃, α̃} for B̃4.

Then the forth line can be one of the following:

1) horizontal near the bottom or near the top (the last or the first);

2) the one between the two non-horizontal parallel lines from the triple,

3) below these two non-horizontal lines and of type b − t = 1 with a b-number smaller

than that for these two.

Generally, for a minimal NGT configuration of type B̃n, any new line can be either

added to an existing bunch of lines or can “begin” a new bunch subject to the inequalities

from Section 3.3. It includes the horizontal bunches near the bottom or near the top.

Using Lemma 3.3.2 the theorem is proven. �
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CHAPTER 4

Types C and D

Figure 4.1 gives an example of a minimal affine NGT of type C constructed using a

parity correction from a minimal NGT of type B.

20 KEITH SCHNEIDER

Let us apply Lemma 3.3 to the three lines forming a minimal NGT

{β̃, γ̃, α̃} for B̃4. Then the forth line can be one of the following:
1) horizontal near the bottom or near the top (the last or the first);
2) the one between the two non-horizontal parallel lines from the triple,
3) below these two non-horizontal lines and of type b − t = 1 with a
b–number smaller than that for these two.

Generally, for a minimal NGT configuration of type B̃n, any new
line can be either added to an existing bunch of lines or can “begin” a
new bunch subject to the inequalities from Section 3.2. It includes the
horizontal bunches near the bottom or near the top. We use Lemma
3.2. The theorem is proven.

4. Types C − D

Figure 4 gives an example of a minimal affine NGT of type C con-
structed using a parity correction from a minimal NGT of type B.
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Figure 4. NGT of type C-D: b and σ

Let us use this graph to demonstrate the changes in the C̃, D̃–cases

versus the planar interpretation for B̃. We will use prime (W̃ ′, Ŵ ′ and

so on) for the objects considered for C̃, D̃.

Figure 4.1. NGT of type C-D: b and σ

Let us use this graph to demonstrate the changes in the C̃, D̃-cases versus the planar

interpretation for B̃. We will use prime (W̃ ′, Ŵ ′ and so on) for the objects considered

for C̃, D̃.

4.1. Main modifications

The general way of constructing the reduced decompositions in terms of the inter-

section and reflection points remains essentially the same. The elements w̃ ∈ W̃ of type

B̃ always belong to Ŵ ′ of type C̃ or D̃ (generally, not to W̃ ′); the element s0 for B is

naturally interpreted as the generator of Π′ for C or D. The following is necessary and

sufficient for the inclusion w̃ ∈ W̃ ′.



One needs to check that the total number of top reflections is even (for C̃n and D̃n)

and the total number of bottom reflections is even in the case of D̃n(n ≥ 4). Then we can

transform such reduced decomposition to make it from W̃ ′, i.e., in terms of new simple

events s′0 = s0s1s0 and s′n = snsn−1sn; the latter is needed for D.

In Figure 4.1, if the dashed line to 1∗ is added to line 1, then the corresponding word

becomes of type D̃6 (from the corresponding W̃ ). If this dashed line is disregarded here,

then the corresponding configuration is of type C̃ but not of type D̃. If we disregard

the dashed line completely and, moreover, remove the top-right reflection of line 1, then

the resulting word is neither of type C̃ nor of type D̃. Let us discuss this example and

related features of our construction in more detail.

First, let us begin with the element corresponding to the configuration where we

disregard the portion of line 1 before (to the right of) the top-right reflection. Graphically,

the dashed line is disregarded. We will denote it by w̃. Adding this top reflection to w̃

gives an example of the top-right parity correction of w̃. Algebraically, w̃ 7→ w̃′ := w̃s0.

It makes the number of the top reflections even, so w̃′ can be expressed in terms of s′0

instead of s0 and becomes a word of type C̃.

Second, let w̃′′ be the graph for w̃′ extended by the dashed line ending at 1?; then w̃′′

is of type D.

Actually, the simplest way of transforming the w̃′ to a word of type D is via the bottom

parity correction (right or left), i.e., using line 6. Algebraically, it is the transformation

w̃′ 7→ w̃′sn = snw̃
′.

Note that the top-left parity correction of w̃, that is s0w̃, is different from the top-right

parity correction w̃′ = w̃s0. Generally, the right and left parity corrections coincide only

if they are performed on the same horizontal line. Line 6 (used for the bottom-right

correction) is horizontal; line 1 is not.

Concerning the interpretation of the angles as roots and related matters, there are

the following modifications versus the B̃-case.
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(i) The angles for the bottom reflections must be multiplied by 2 for C̃. The angle of

s′0 = s0s1s0 or s′n = snsn−1sn, presented in terms of s0, sn for B̃, is the middle one (from

the three angles involved in this event).

(ii) The angles jδ+p±q, including jδ+2p in the C̃-case, are transformed to the affine

roots [ εp ± εq , j ]; so this interpretation is different from the B̃-case, where the “unit”

was δ/2. The graphic description of the action of W̃ on the roots remains unchanged;

we read the angles after the event, replacing their original numbers by the local ones.

In the figure under consideration, the angles of the two D̃-type top events (marked)

are correspondingly δ − 1 + 4 = [ε1 − ε4, 1] and δ + 3 + 2 = [ε2 + ε3, 1].

(iii) The interpretation of the sequence of the absolute angles (with the x-axis) at

the end of the configuration as a representation of w̃ in the form bw remains unchanged

versus the B̃-case.

Recall that we consider the sequence of absolute angles (counted from top to bottom)

as a vector

δ(b1, b2, . . . , bn) + w(1, 2, . . . , n) for proper bi ∈ Z and w ∈ W.(4.1)

Then w̃ = bw, where we identify b = (b1, . . . , b2) with
∑n

i=1 biεi ∈ Q. See (3.1). We

continue using the notation from [Bo].

For instance, α0 = [−ϑ, 1], where ϑ = ε1 + ε2 for both, C̃ and D̃. The angle of

s′0 = s0s1s0 is δ− 1− 2 = [−ε1− ε2, 1]. The vector of the absolute angles after this event

is δ(1, 1) + (−2,−1). Thus b = ε1 + ε2 = ϑ,w = sϑ and s′0 = ϑsϑ.

Note that the lattice Q becomes smaller versus that for B̃ (it is the same one for C̃

and D̃). Namely, it contains b =
∑n

i=1 biεi with integral bi only for even
∑n

i=1 bi.

For instance, α0 = [−ϑ, 1], where ϑ = ε1 + ε2 for both, C̃ and D̃. The angle of

s′0 = s0s1s0 is δ − 1 − 2 = [−ε1 − ε2, 1]. The vector of the absolute angles after this

event is δ(1, 1) + (−2,−1). Thus b = ε1 + ε2 = ϑ and w = sϑ, which matches the relation

s′0 = ϑsϑ.
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Figure 5. Type D, breaking the line

Concerning s′
n or s′

0, there is a special procedure for dealing with the
graphs when the other lines are allowed to intersect (the area of) the
corresponding triple event. It is called breaking the line and is directly
related to the parity corrections. It is necessary for collecting the triples
corresponding to s′

n or s′
0 in a given B–word (assuming that the latter

satisfies the corresponding parity condition).
Figure 5 reproduces the graph from [CS], which demonstrates the

procedure breaking the line and presents the simplest nonaffine mini-
mal NGT of type D4. Here 4 in the reduced decompositions stays for
the simple (nonaffine) reflection s′

4 for D4, corresponding to the triple
product s4s3s4 from the viewpoint of nonaffine B or C. This graph
proves the Coxeter relation s′

nsn−2s
′
n = sn−2s

′
nsn−2 (424 = 242).

4.2. The classification theorem. The discussion above leads to the
following theorem. Slightly abusing the terminology, by a mirror of

type D, we mean the top mirror for C̃ or an either one for D̃ (i.e.,
when the corresponding end of the affine Dynkin diagram is of type
D).

Figure 4.2. Type D, breaking the line

Concerning s′n or s′0, there is a special procedure for dealing with the graphs when

the other lines are allowed to intersect (the area of) the corresponding triple event. It is

called breaking the line and is directly related to the parity corrections. It is necessary

for collecting the triples corresponding to s′n or s′0 in a given B-word (assuming that the

latter satisfies the corresponding parity condition).

Figure 4.2 reproduces the graph from [CS], which demonstrates the procedure break-

ing the line and presents the simplest nonaffine minimal NGT of type D4. Here 4 in the

reduced decompositions stays for the simple (nonaffine) reflection s′4 for D4, correspond-

ing to the triple product s4s3s4 from the viewpoint of nonaffine B or C. This graph

proves the Coxeter relation s′nsn−2s
′
n = sn−2s′nsn−2 (424 = 242).

4.2. The classification theorem

The discussion above leads to the following theorem. Slightly abusing the terminology,

by a mirror of type D, we mean the top mirror for C̃ or an either one for D̃ (i.e., when

the corresponding end of the affine Dynkin diagram is of type D).

Theorem 4.2.1. (i) The group Ŵ ′ of type C̃ can be naturally identified with the

group W̃ of type B̃, where s0 ∈ W̃ is interpreted as the generator of Π′ ⊂ Ŵ ′ = W̃ .
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Accordingly, the configurations for the elements from W̃ become configurations for Ŵ ′

and an arbitrary element of Ŵ ′ can be obtained from a configuration of type B̃.

(ii) The resulting elements belong to W̃ ′ of type C̃ if and only if the number of the top

reflections of the corresponding configuration is even. Furthermore, they belong to W̃ ′ of

type D̃ if the number of bottom reflections is even too. Given w̃′ ∈ W̃ ′, it can be obtained

from a B̃-type configuration where all s0 and sn are included in the events s′0 = s0s1s0

and s′n = snsn−1sn.

(iii) All minimal NGT from W̃ ′ of type C̃ or D̃ come from minimal NGT of type B̃

satisfying (ii). However, the latter may become non-minimal in W̃ ′; it occurs only if the

horizontal line involved in the NGT is a unique one in its (horizontal) bunch and if the

corresponding mirror is of type D.

Proof. The statements from (i, ii) have been already discussed. Concerning C̃, we

move all s0 to the beginning (or the end) of a given reduced decomposition of w̃ ∈ W̃ ,

replacing s0s1s0 by s′0 when necessary. It will give a word from W̃ ′ possibly multiplied

by s0 on the right (or on the left).

As for D̃, we can use that the group W̃ for B̃ can be naturally identified with the

extension of W̃ ′ of type B̃ by Z2 × Z2 generated by the elements s0, sn (pairwise com-

mutative) treated as outer automorphisms of the corresponding affine Dynkin diagram.

The element s0 is from Ŵ ′, the element sn is not; both are of zero length by definition.

One can move all such elements in a given reduced B̃-decomposition to its beginning or

to its end. The elements s′0 and s′n may be produced during this process. The top (or

bottom) parity corrections are needed if the elements s0 (or sn) do not cancel each other.

Algebraically, (ii) means that for any given w̃′ ∈ W̃ ′, its reduced decompositions

with the minimal possible numbers of s′0 and s′n remain reduced in W̃ , where s′0 and s′n

are expressed in terms of s0 and sn. The geometric approach guarantees that at least

one such reduced decomposition exists. The construction w̃ 7→ w̃′ (subject to the parity

conditions) consists of moving all s0, sn to the beginning (or to the end) of a given reduced

decomposition of w̃.
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Concerning (iii), let us use the right graph in Figure 4.2 to demonstrate what happens

in the beginning of the configuration if there is only one line parallel to the corresponding

mirror. If (the lowest) line 4 is removed, then the corresponding reduced decomposition

reads s2s1s
′
3s1s2. Using the Coxeter D-relation, it can be transformed to s2s

′
3s1s

′
3s2 =

s′3s2s1s2s
′
3. Thus, the beginning of the resulting reduce decomposition is movable (not

unique) and such B-minimal NGT will not remain D-minimal.

This example is actually a general one; it is sufficient to manage arbitrary C̃n and

D̃n if the horizontal line involved in the NGT is near the mirror of type D and is the

only one in its horizontal bunch. Then the right end of the resulting λ-sequence becomes

movable upon the switch to C̃n or D̃n in this case (and only in such case). �

For instance, let us consider the configuration from Figure 4.1 including the dashed

line to 1? and excluding line 6. It represents a minimal NGT for B̃5, which will not

remain minimal upon its recalculation to D̃5 (which is possible because the numbers of

top and bottom reflections are both even). It is analogous to the constraint “at least two

horizontal bottom lines” from [CS] in the nonaffine D-case.

The following theorem is an explicit form of claim (iii), reformulated in terms of the

parity corrections.

Theorem 4.2.2. (i) An arbitrary minimal NGT from W̃ of type C̃n(n ≥ 3) can be

obtained as w̃′, w̃′′ or w̃∗ as follows.

Let w̃ be a B-positive minimal NGT of type B̃n(n ≥ 3). If no top parity correction

is needed for w̃ (i.e., the total number of top reflections in w̃′ is even), then w̃′ := w̃,

(considered as C̃-words) and, moreover, w̃′′ = ıC(w̃) = s0w̃s0 are minimal NGT of type

C̃n. The element w̃∗ is minimal NGT if it has even number of the top reflections and

the initial w̃ has at least two bottom horizontal lines; w̃∗ is involutive and coincides with

ıC(w̃∗).

Otherwise, if the parity corrections are needed, w̃′ := w̃s0 (the results of the top-right

parity correction) is a minimal NGT of C̃n-type. For the top-left correction, w̃′′ := s0w̃ =
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ıC(w̃′) = (w̃′)−1, so such element can be represented as ũ′ for certain B-positive ũ. The

element w̃∗ defined now as ıB(w̃)s0 = s0ıB(w̃), is a minimal NGT subject to the same “2

line constraint” as above.

(ii) Minimal NGT of type D are given in terms of the C-words w̃′, w̃′′, w̃∗ from part (i)

as follows. If no bottom parity correction is needed, i.e., the total number of the bottom

reflections in the initial w̃ (the cases of w̃′ and w̃′′) or ıB(w̃) (the case of w̃∗) is even,

then each of these elements is a minimal NGT of type D̃n. We require here the existence

of at least two horizontal lines near the bottom for w̃ in the cases of w̃′ and w̃′′.

Otherwise, if the total number of the bottom reflections for w̃′, w̃′′ or for w̃∗ is odd,

then the elements snw̃
′ = w̃′sn and snw̃

′′ = w̃′′sn, as well as the elements w̃∗sn and

snw̃
∗ = (w̃∗sn)−1 are minimal NGT of D-type. We impose the same constraint as above

in the cases of w̃′, w̃′′, namely, the configuration for w̃ is supposed to contain at least two

horizontal lines near the bottom. �

We note that the operation w̃ 7→ s0w̃s0 for B-positive w̃ is trivial if w̃ contains at

least one top horizontal line. It is obvious geometrically that the configuration for s0w̃s0

can be transformed to ensure the cancellation of such two s0 if they are “performed” on

the same top horizontal line. Similarly, the transformation w̃ 7→ snw̃sn is not needed

because it is always trivial; the bottom line of B-positive w̃ is always horizontal.
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