
A Preprocessing Algorithm for Semidefinite Programming

Preston Faulk

April 5, 2016

Abstract

We describe and implement a preprocessing algorithm in MATLAB, FP, for
semidefinite programming which is capable of detecting infeasibility or detecting
and removing redundancy. The reduction algorithm results in improved performance
using an SDP solver, SeDuMi, as measured by DIMACS error bounds and timing.
We compare FP to another preprocessing algorithm, from [4], by comparing results
on two sets of SDP’s: PP and Henrion. [4] performs better than FP on the PP set
but FP performs better than [4] on the Henrion set.

1 Intro to Semidefinite Programming

1.1 Review of Linear Programming

Before we define Semidefinite programming, we will begin by discussing linear program-
ming because semidefinite programming follows as a natural extension of linear pro-
gramming. From this point forward, we will refer to linear programming and linear
programs as LP’s and semidefinite programming and semidefinte programs as SDP’s.
The canonical form of an LP is:

min c′x
s.t. Ax = b

x ≥ 0

Where A ∈ Rm×n, and b ∈ Rn. x is a vector of decision variables, A is a matrix of
parameters and, c, and b are vectors of parameters. In this formulation, solving the
LP involves minimizing the objective function: f(x) = c′x subject to constraints on
the variables specified by A. There are several algorithms for solving LP’s such as the
Simplex Method and Interior Point Methods which are highly efficient. LP’s can be
applied to various phenomena from network optimization, shortest path determination,
and resource allocation. However, LP’s are limited in the problems they can model.
Often, a problem can be best modeled using an SDP.

1.2 Definition of Positive Semidefinite Matrices

Before defining an SDP, it is necessary to first define the notion of positive (semi)defiinte
matrices.

1

Definition: A symmetric matrix A ∈ Rn×n is called positive semidefinite if ∀x ∈
Rn : xTAx ≥ 0. Similarly, A symmetric matrix A ∈ Rn×n is called positive definite if
∀x ∈ Rn : xTAx > 0 with x 6= ~0

However, another equivalent definition which we will utilize during our algorithm is:

Definition: A symmetric matrix A ∈ Rn×n is called positive definite if its cholesky
factorization is unique.

1.3 Review of Semidefinite Programming

Now that we have a definition of PSD matrices, we can make a formal definition of an
SDP in standard form:

min C •X
s.t. Ai •X = bi for i = 1, ...,m

X � 0

Where A,C,X ∈ Rn×n, and b ∈ Rm. A,C, and b represent the ”data” of the problem
and X represents the decision variables. The inner product • is defined as:

C •X =
∑n

i,j Ci,jXi,j

SDP’s are important because many problems in operations research can be formulated
as SDP’s.

1.3.1 SDP as a generalization of LP

The formulation of SDP’s extend naturally from LP’s. In LP’s, the goal is to optimize
a linear objective function over variables. In SDP’s the goal is to optimize a linear
objective function over vectors of variables. In SDP’s, the PSD constraint replaces the
non-negative constraint from LP’s. In fact, LP’s can be formulates as SDP’s if each Ai

and C are diagonal matrices where the diagonal elements of each Ai are the elememts
from the ith row of A from the LP formulation and the diagonal of C in the SDP is
replaced with C from the LP. The PSD constraint on X is satisfied because a diagonal
matrix with nonnegative diagonal entries has all nonnegative eigenvalues hence X is
always positive semidefinite.

1.3.2 Examples

To demonstrate, we will present an SDP. Consider the SDP defined by:

2

A1 =

1 0 1
0 3 7
1 7 5

 A2 =

0 2 8
2 6 0
8 0 4

 C =

1 2 3
2 9 0
3 0 7

 b =

[
11
19

]
In the canonical form described above, this SDP looks like:

min

1 2 3
2 9 0
3 0 7

 •X
subject to :

1 0 1
0 3 7
1 7 5

 •X = 110 2 8
2 6 0
8 0 4

 •X = 19

X � 0

This SDP is equivalent to the following which resembles the form of an LP with the
exception that the nonnegative constraint is replaced with the positive semidefiniteness
constraint.

min x1,1 + 4x1,2 + 6x1,3 + 9x2,2 + 7x3,3
s.t. x1,1 + 2x1,3 + 6x2,2 + 14x2,3 + 5x3,3 = 11

4x1,2 + 161,3 + 6x2,2 + 4x3,3 = 19x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3

 � 0

1.3.3 SeDuMi

LP’s have very efficient algorithms for finding solutions; namely the simplex method and
interior point methods. There are many solvers designed to solve LP’s. There are also
several solvers for SDP’s as well. The one which will be discussed and utilized during our
discussion will be SeDuMi. Sedumi is an add-on for MATLAB, which lets you solve op-
timization with linear, quadratic, and semidefiniteness constraints. Specifically, we will
be utilizing the semidefiniteness constraints as a solver for SDP’s [5]. To demonstrate
how SeDuMi works for SDP’s, we will solve the example problem from the previous
section using SeDuMi. In order to call SeDuMi on the SDP we must formulate it into
SeDuMi format. SeDuMi format for SDP’s consists of arrays representing the data from
the Ai’s, b, and c as well as an argument, K, whose fields contain the semidefinte con-
straints. A is an array whose ith row contains the entries of Ai. b is a vector containing
the m values for each bi. c is a vectore containg the entries for C from the SDP. K can
have the fields f , q, l, and s which stand for free, quadratic, lorentz, and semidefinite
respectively. In our example, the data is presented in SeDuMi format here:

3

A =

[
1 0 1 0 3 7 1 7 5
0 2 8 2 6 0 8 0 4

]
b =

[
11
19

]
c =

[
1 2 3 2 9 0 3 0 7

]
K.s = 3

Then in MATLAB, the call to SeDuMi is:

[x,y,info] = sedumi(A,b,c,K);

Which produces the following output:

SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500

eqs m = 2, order n = 4, dim = 10, blocks = 2

nnz(A) = 9 + 0, nnz(ADA) = 4, nnz(L) = 3

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 3.92E+02 0.000

1 : 7.19E+00 2.87E+01 0.000 0.0733 0.9900 0.9900 1.52 1 1 1.6E+00

2 : 1.29E+01 5.71E+00 0.000 0.1987 0.9000 0.9000 1.55 1 1 2.9E-01

3 : 1.38E+01 1.46E+00 0.000 0.2555 0.9000 0.9000 1.23 1 1 6.9E-02

4 : 1.39E+01 3.10E-02 0.000 0.0212 0.9900 0.9900 1.09 1 1 1.4E-03

5 : 1.39E+01 6.78E-04 0.000 0.0219 0.9900 0.9900 1.00 1 1 3.0E-05

6 : 1.39E+01 5.49E-05 0.357 0.0810 0.9900 0.9900 1.00 1 1 2.4E-06

7 : 1.39E+01 1.53E-05 0.058 0.2791 0.9000 0.9245 0.99 1 1 6.7E-07

8 : 1.39E+01 5.63E-07 0.161 0.0367 0.9900 0.9900 1.00 1 1 2.3E-08

9 : 1.39E+01 9.95E-08 0.000 0.1768 0.9000 0.9092 1.00 2 2 4.2E-09

iter seconds digits c*x b*y

9 0.1 8.4 1.3902227871e+01 1.3902227821e+01

|Ax-b| = 3.3e-08, [Ay-c]_+ = 0.0E+00, |x|= 1.9e+00, |y|= 6.6e-01

Detailed timing (sec)

Pre IPM Post

5.995E-03 9.700E-02 2.002E-03

Max-norms: ||b||=19, ||c|| = 9,

Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.72745.

x =

1.0559

0.3692

0.8683

0.3692

4

0.1291

0.3036

0.8683

0.3036

0.7140

y =

0.4847

0.4511

info =

iter: 9

feasratio: 0.9975

pinf: 0

dinf: 0

numerr: 0

timing: [0.0070 0.0970 0.0020]

wallsec: 0.1060

cpusec: 0.2184

As is evident, SeDuMi returns x, y, and info. x and y are solutions to the primal and
dual SDP respictively in vector format rather than matrix. Info contains information
relevant to the performace of the solver on this particular instance. Iter is the number
of iterations performed. feasratio is a measure of feasibility determined by SeDuMi. A
feasratio close to -1 indicates infeasibility, and a feasratio close to 1 indicates feasibility.
pinf and dinf are indicators of feasibility in the primal and dual respectively. numerr
is an indicator for whether SeDuMi encountered numerical error. Then timing, wallsec,
and cpusec are measures of different timing information. Much of this information will
be relevant in our later discussion and analysis.

2 Preprocessing Algorithms

SeDuMi is usually reliable for solving a variety of problems in an efficient manor. But
sometimes with large problems or special circumstances SeDuMi has trouble either with
accuracy or with timing. So the implementation of algorithms which can reduce the
size of the problem or detect infeasibility before running SeDuMi are valuable from a
practical standpoint. We will present our preprocessing algorithm and compare it to an
existing preprocessing algorithm from Permenter and Parrilo [4].

5

2.1 Our Algorithm

To motivate our algorithm, we will present an example to demonstrate. Consider the
following SDP system which is trivially infeasible:

1 0 0
0 0 0
0 0 0

 •X = 00 0 1
0 1 0
1 0 0

 •X = −1

X � 0

To see that it is infeasible, suppose that X = (xi,j)
3
i,j=1 is feasible in it. Then x1,1 = 0;

hence the first row and column of X are zero by psdness, so the second constraint im-
plies x2,2 = −1, which is a contradiction. Here, the internal structure of the system itself
proves its infeasibility.

This underlying structure can be found in SDP’s of larger scale. For example con-
sider the following SDP system from [8]:

0 0 0
0 1 0
0 0 0

 •X = 0 ,1 0 0
0 0 1
0 1 0

 •X = 0 ,0 1 0
1 0 0
0 0 0

 •X = 1 ,

X � 0

From the first constraint we can conclude that x2,2 = 0 and furthermore the second row
and column of X are all zero. Hence we can delete the second row and column from the
problem altogether which results in the following reduced SDP:

[
0 0
0 0

]
•X = 0 ,[

1 0
0 0

]
•X = 0 ,[

0 0
0 0

]
•X = 1 ,

X � 0

6

From here, there are two things to notice. One is that from the second constraint using
the same logic as before, we could delete the first row and column from the problem.
However something more convenient also presents itself. In the third constraint we have
something impossible, no X can satisfy this constraint hence this SDP is infeasible.

2.2 General Explanation

Since SDP’s given to SeDuMi are given in SeDuMi format, our algorithm begins by
formatting it from SeDuMi format to a form which is easier for our algorithm to handle.
We begin by taking each row of A in SeDuMi format and reshaping it into a square
matrix which is exactly the Ai from the standard form we defined earlier. Then we store
each Ai in a cell array in MATLAB. Then once they are in this convenient form, our
algorithm involves checking each Ai to see if it has the structure:

[
A′i 0
0 0

]
•X = bi

Where A′i is positive definite or negative definite as determined by the Cholesky factor-
ization. If A′i � 0 and bi < 0 or A′i ≺ 0 and bi > 0 we declare infeasible. If A′i � 0
and bi = 0 or A′i ≺ 0 and bi = 0 we delete those rows and columns from each Ai corre-
sponding to those in A′i and return to the beginning and continue to seek reductions or
infeasibility.

2.3 Pseudocode

In order to see this more explicitly, I have included the following pseudocode which de-
scribes the algorithm:

while (not done)
for i=1:m

A′i := Ai with zero rows/columns deleted
if A′i � 0 and bi < 0

declare infeasible, break
end
if A′i ≺ 0 and bi > 0

declare infeasible, break
end
if A′i � 0 and bi == 0

delete rows/columns of A′i from each Ai, go to beginning
end
if A′i ≺ 0 and bi == 0

delete rows/columns of A′i from each Ai, go to beginning
end

7

end
end

This does not include the code for taking the SDP in SeDuMi format and convert-
ing it to a form which is suitable for the algorithm or converting it back into SeDuMi.
In order to determine whether A′i is positive or negative definiite we use the cholesky
factorization. So for example, to check if A � 0 or A ≺ 0 we call the MATLAB cholesky
function as below:

[~,pdcheck] = chol(A);

or

[~,ndcheck] = chol(-A);

If pdcheck = 0 then A � 0, if ndcheck = 0 then A ≺ 0. Also all arrays are kept in sparse
format to reduce memory usage. The actual MATLAB code can be found online at (link
add later).

3 Application of Algorithm

In order to evaluate the effectiveness of our algorithm we tested it on several families of
instances. We look at several measurements to determine effectiveness including timing,
DIMACS error bounds, and size of the instance before and after preprocessing. We will
often be comparing our results to the results of [4] on common instances.

3.1 Description of Examples

The set of examples we will call the PP set includes 56 instances described in [4]. They
originate from [8],[7],[2],[1],[6], and [3]. The set of examples we will call the Henrion set
includes 90 instances from Didier Henrion.

3.2 Results

The results will focus on comparisons between our algorithm (FP) and [4]’s algorithm
with diagonal and diagonally dominant approximations, denoted ’d’ and ’dd’ respec-
tively. ’d’ is faster than ’dd’ but usually results in fewer reductions as described in their
paper. We will consider a number of metrics. In order to see how well each algorithm
reduces problems, we will often look at n pre and n post for each example. Here, n
represents the size of each square Ai before and after reductions. For feasibility, we will
consider SeDuMi’s output called feasratio which as described earlier inidicated infeasi-
bility if close to -1 and feasibility if close to 1. Then for accuracy of SeDuMi, we will
consider the DIMACS error bounds which are described in (source for dimacs). These
error bounds are included in SeDuMi output. We will always consider the greatest such
error bound for each instance. As before this will be considered before and after pre-
processing. Along with the DIMACS error bounds, we will define the criteria for what

8

it means for preprocessing to help an instance, this will be described in detail later.
Finally we will consider timing. This will mean comparing the timing of SeDuMi before
preprocessing, timing of preprocessing, and timing of SeDuMi after preprocessing. More
details and explanation will follow in the discussion of the results.

The following table summarizes the results for FP vs PP concerning reductions of
n and feasibility. We used ’d’ or ’dd’ according to the specifications in [4]. For those
instances in which we detected infeasibility, n post FP reflects n at the detection of
infeasibility during the algorithm.

9

Instance Name Src. n n Post n Post FP Sedumi Sedumi inf Sedumi inf
Pre FP PP find inf inf Pre Post FP Post PP

Example1 [8] 3 2 2 no 1.0000 1.0000 1.0000

Example2 [8] 3 2 2 no 0.0000 1.0000 1.0000

Example3 [8] 3 2 2 no 0.4108 0.5517 0.5517

Example4 [8] 3 1 1 yes -0.4351 - -1.0000

Example5 [8] 10 10 10 no 0.9990 0.9990 0.9990

Example6 [8] 8 5 5 no 1.0011 1.0000 1.0000

Example7 [8] 5 4 4 no 1.0000 1.0000 1.0000

Example9size20 [8] 20 19 1 yes -1.0130 - -1.0000

Example9size100 [8] 100 99 1 yes -1.0066 - -1.0000

CompactDim2r1 [7] 6 5 1 yes 0.2004 - -.9942

CompactDim2r2 [7] 15 9 3 yes -0.1245 - -.9942

CompactDim2r3 [7] 28 13 3 yes 0.8687 - -.9942

CompactDim2r4 [7] 45 17 3 yes 1.0209 - -.9942

CompactDim2r5 [7] 66 21 3 yes 1.0135 - -.9942

CompactDim2r6 [7] 91 25 3 yes 1.0072 - -.9942

CompactDim2r7 [7] 120 29 3 yes 0.9995 - -.9942

CompactDim2r8 [7] 153 33 3 yes 1.1192 - -.9942

CompactDim2r9 [7] 190 37 3 yes 0.9969 - -.9942

CompactDim2r10 [7] 231 41 3 yes 0.9979 - -.9942

unboundDim1r1 [2] 4 2 2 no 1.0000 1.0000 1.0000

unboundDim1r2 [2] 7 2 2 no 0.2753 1.0000 1.0000

unboundDim1r3 [2] 10 2 2 no 0.2365 1.0000 1.0000

unboundDim1r4 [2] 13 2 2 no -0.5195 1.0000 1.0000

unboundDim1r5 [2] 16 2 2 no 0.9716 1.0000 1.0000

unboundDim1r6 [2] 19 2 2 no 1.0310 1.0000 1.0000

unboundDim1r7 [2] 22 2 2 no 1.0999 1.0000 1.0000

unboundDim1r8 [2] 25 2 2 no 1.0364 1.0000 1.0000

unboundDim1r9 [2] 28 2 2 no 1.1254 1.0000 1.0000

unboundDim1r10 [2] 31 2 2 no 1.0366 1.0000 1.0000

horn2 [1] 4 4 2 no 1.0000 1.0000 1.0000

horn3 [1] 10 10 6 no 1.0102 1.0102 1.0126

horn4 [1] 20 20 14 no 1.0296 1.0296 .9924

horn5 [1] 35 35 25 no 1.0432 1.0432 1.0823

hornD2 [1] 4 4 2 no 1.0000 1.0000 1.0000

hornD3 [1] 10 10 6 no 0.9935 0.9935 1.1106

hornD4 [1] 20 20 14 no 0.9112 0.9112 .8834

hornD5 [1] 35 35 25 no 1.0360 1.0360 1.0596

vamos534 [6] 52 52 41 no 0.9854 0.9854 1.0002

weiwagnerF7minus4 [6] 8 8 5 no 1.0000 1.0000 1.1192

weiwagnernPminus124 [6] 12 12 6 no 1.1050 1.1050 1.0002

weiwagnernPminus912 [6] 12 12 5 no 0.9988 0.9988 1.0000

weiwagnerP7 [6] 8 8 4 no 0.9641 0.9641 1.0004

weiwagnervamos12 [6] 16 16 13 no 0.9998 0.9998 1.0003

weiwagnerW3PlusE [6] 9 9 5 no 0.9865 0.9865 1.0000

weiwagnerW3Plus [6] 8 8 3 no 0.8628 0.8628 1.0000

hinf12 [3] 24 24 14 no .4690 .4690 .3110

hinf13 [3] 30 30 17 no .8006 .8006 .8006

10

The following table summarizes the results for the maximum DIMACS error bounds
before and after preprocessing for FP vs PP on the PP set. Once again, ’d’ or ’dd’ was
chosen according to [4]

11

Instance Name Src. Max Error Pre PP Max Error Post FP Max Error Post

Example1 [8] 1.6362e-15 7.7605e-13 7.7605e-13

Example2 [8] 8.1400e-02 8.3926e-13e-13 8.3826e-13

Example3 [8] 1.7897e-05 2.3856e-05 2.3856e-05

Example4 [8] 5.0000e-01 triv inf -

Example5 [8] 1.0922e-10 - -

Example6 [8] 1.9796e-09 1.9796e-09 8.3803e-13

Example7 [8] 5.4940e-12 604599e-13 6.4599e-13

Example9size20 [8] 0.5000e-01 2.3776e-13 -

Example9size100 [8] 0.5000e-01 1.9997e-13 -

CompactDim2r1 [7] 3.9390e-01 5.0000e-01 -

CompactDim2r2 [7] 3.0580e-01 5.0000e-01 -

CompactDim2r3 [7] 4.9620e-08 5.0000e-01 -

CompactDim2r4 [7] 2.6701e-08 5.0000e-01 -

CompactDim2r5 [7] 6.5196e-08 5.0000e-01 -

CompactDim2r6 [7] 3.3071e-08 5.0000e-01 -

CompactDim2r7 [7] 3.5925e-07 5.0000e-01 -

CompactDim2r8 [7] 1.2397e-07 5.0000e-01 -

CompactDim2r9 [7] 3.7499e-07 5.0000e-01 -

CompactDim2r10 [7] 1.4372e-07 5.0000e-01 -

unboundDim1r1 [2] 6.8724e-13 6.8724e-13 3.7469e-13

unboundDim1r2 [2] 1.7000e-03 3.7448e-13 3.7448e-13

unboundDim1r3 [2] 3.6800e-02 3.7448e-13 3.7448e-13

unboundDim1r4 [2] 2.2700e-02 3.7448e-13 3.7448e-13

unboundDim1r5 [2] 2.2164e-08 3.7448e-13 3.7448e-13

unboundDim1r6 [2] 1.2919e-08 3.7448e-13 3.7448e-13

unboundDim1r7 [2] 1.3228e-08 3.7448e-13 3.7448e-13

unboundDim1r8 [2] 2.2885e-08 3.7448e-13 3.7448e-13

unboundDim1r9 [2] 2.2225e-08 3.7448e-13 3.7448e-13

unboundDim1r10 [2] 4.1245e-08 3.7448e-13 3.7448e-13

horn2 [1] 3.6465e-13 1.2561e-15 -

horn3 [1] 1.4302e-08 5.7441e-12 -

horn4 [1] 3.4129e-08 1.2340e-08 -

horn5 [1] 1.4071e-07 1.1803e-08 -

hornD2 [1] 4.0856e-14 5.8422e-12 -

hornD3 [1] 1.0738e-11 1.4893e-11 -

hornD4 [1] 1.8433e-10 5.7353e-10 -

hornD5 [1] 4.7737e-10 1.7059e-10 -

vamos534 [6] 1.6726e-09 1.2079e-09 -

weiwagnerF7minus4 [6] 1.1020e-12 2.5532e-09 -

weiwagnernPminus124 [6] 1.6584e-08 8.7937e-12 -

weiwagnernPminus912 [6] 7.6937e-09 1.5104e-12 -

weiwagnerP7 [6] 8.5155e-10 3.2403e-12 -

weiwagnervamos12 [6] 1.3060e-09 1.0943e-12 -

weiwagnerW3PlusE [6] 1.6578e-10 6.6802e-15 -

weiwagnerW3Plus [6] 4.9601e-09 2.5074e-13 -

hinf 12 [3] 2.5320e-01 2.9130e-01 -

hinf 13 [3] 2.2500e-02 can’t replicate -

12

The following table summarizes the overall results for all 146 instances with respect
to reductions, infeasibility detection, and Help. We say we Helped an instance if the
maximum DIMACS error for sedumi before preprocessing is greater than 10−6 and the
maximum DIMACS error for sedumi after preprocessing is such that: maxErrorPost< 1

10
maxErrorPre. Of the 146 instances here, 23 were eligible for being helped. Of the 23, 9
were from the Henrion set while 14 were fron the PP set.

Number Reduced Reduced % Infeasibility Detected Infeasibility % Helps* Helps %

FP 49 out of 146 33.56% 15 out of 146 10.27% 6 of 146 4.11%

PP-dd 51 out of 146 34.93% 0 out of 146 0.00% 4 out of 146 2.74%

PP-d 41 out of 146 28.08% 0 out of 146 0.00% 4 out of 146 2.74%

The following table summarizes the results for all 90 henrion instances.

Number Reduced Reduced % Infeasibility Detected Infeasibility % Helps* Helps %

FP 17 out of 90 18.89% 2 out of 90 2.22% 1 of 90 1.11%

PP-dd 11 out of 90 12.22% 0 out of 90 0% 0 out of 90 0.00%

PP-d 13 out of 90 14.44% 0 out of 90 0% 0 out of 90 0.00%

The following table summarizes the results for all 56 PP instances.

Number Reduced Reduced % Infeasibility Detected Infeasibility % Helps* Helps %

FP 32 out of 56 57.14% 13 out of 56 23.21% 5 of 56 8.93%

PP-dd 40 out of 56 71.43% 0 out of 56 0% 4 out of 56 7.14%

PP-d 28 out of 56 50.00% 0 out of 56 0% 4 out of 56 7.14%

Next we look at a weighted and unweighted average for reduction percentages. For
each instance, let pi, and the weighted average be defined by:

pi =
npre−npost

npre

WA=
∑

nprei∗pi∑
nprei

The results for these calculations are summarized in the table below:

WA Total WA Henrion WA PP Avg. Avg. Henrion Avg. PP

FP .1202 .0747 .4259 .1645 .0565 .3380

PP-dd .0302 .0073 .1838 .1740 .0290 .4072

PP-d .0544 .0151 .3185 .1653 .0357 .3735

The next table summarizes the time analysis:

13

SeDuMi Time w/o Preprocessing Time with Preprocessing and SeDuMi

FP 1168.3 sec 312.4 sec

PP-dd 1168.3 sec 4144.1 sec

PP-d 1168.3 sec 278.5 sec

The next table shows the reduction in numberof non-zero entries using the same tech-
nique as for reduction percentages with a weighted and unweighted average:

WA Total WA Henrion WA PP Avg. Avg. Henrion Avg. PP

FP .1847 .0629 .1880 .2279 .0779 .4691

PP-dd .0015 .0184 .0011 .2250 .0481 .5093

PP-d .0039 .0456 .0028 .2105 .0602 .4522

The final table shows for each preprocessing algorithm, how many times the optimal
value before and after preprocessing differs by more than 10−5:

Occurances

FP 16

PP-dd 22

PP-d 24

4 Conclusion

Overall the results were comparable to [4]. From the PP set, in the instances from [8],
[7], and [2] we either matched Permenter/Parrilo on reductions or declared infeasibility.
In [1] ,[6], and [3] however we do not find any reductions when Permenter/Parrilo do.
Looking at only the Henrion set however, we do better in total number of instances
reduced, weighted reduction percentage, unweighted reduction percentage, infeasibility
detection, and help percentage. It is clear that Permenter/Parrilo perform well on the
instances reported in their paper. However, [8] is a collection of SDP instances yet not all
of them appear in [4]. Only the instances where Permenter/Parrilo found reductions were
reported. Those instances included in [8] but not in [4] were included in our 56 instances
PP set but not in the first two large tables. The Henrion set consists of 90 hard SDP’s
arising from polynomial optimization. Neither FP nor PP-d nor PP-dd do particularly
well on them in comparison to the PP set but FP does better in every category. The
most complex part of FP is the cholesky factorization. PP finds reductions by solving
several LP’s and is much more complex than FP. On their own, both FP and PP do
quite well but the most important result is that FP does as well as PP even though FP
is a simple reduction algorithm in comparison to PP.

References

[1] Pablo A. Parrilo Grigoriy Blekherman and Rekha R. Thomas. Semidefinite opti-
mization and convex algebraic geometry. SIAM, 2013.

14

[2] Maho Nakata Hayato Waki and Masakazu Muramatsu. Strange behaviors of interior-
point methods for solving semidefinite programming problems in polynomial opti-
mization. Computational Optimization and Applications, 53(3):823–844, 2012.

[3] Gábor Pataki. The dimacs library of semidefinite-quadratic-linear programs available
at http://dimacs.rutgers.edu/challenges/seventh/instances. 1999.

[4] Frank Permenter and Pablo Parrilo. Partial facial reduction: simplified, equivalent
sdps via approximations of the psd cone. 2014.

[5] Jos F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization)ver symmetric
cones. 1999.

[6] David G Wagner and Yehua Wei. A criterion for the half-plane property. 309(6):1385–
1390, 2009.

[7] Hayato Waki. How to generate weakly infeasible semidefinite programs via Lasserre’s
relaxations for polynomial optimization. 6(8):1883–1896, 2012.

[8] Simon Schurr Yuen-Lam Cheung and Henry Wolkowicz. Preprocessing and regu-
larization for degenerate semifefinite programs. In Computational and Analytical
Mathematics, pages 251–303. Springer, 2013.

15

