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ABSTRACT 

R. Sean McNally:  The Effects of DJ-1 and A20 Family Members on        
Inflammation and Oxidative Response 

(Under the direction of Jenny P.-Y. Ting) 
 
 

Dysregulation of the balance between cell survival and cell death is seen in the loss 

of dopaminergic neurons in Parkinson’s disease and the inappropriate cell survival in 

cancer.  Changes in DJ-1 expression are associated with both Parkinson’s disease 

and cancer suggesting an important role of DJ-1 in this balance.  Our lab has 

reported that DJ-1 positively regulates the antioxidant response transcription factor 

Nrf2 protecting cells from ROS and toxic insults.  Although this work revealed a 

mechanism for DJ-1’s effect on cell survival, we could not find a direct role of DJ-1 

as DJ-1 did not bind any proteins in the Nrf2 pathway.  Using Q-TOF mass 

spectrometry, we found that BBS1, CLCF1, MTREF, and Cezanne interact with DJ-

1.  We focused our attention on the de-ubiquitinating enzyme Cezanne due to its 

known inhibition of the cancer-associated transcription factor NF-κB.  We confirmed 

the interaction between DJ-1 and Cezanne and found that it inhibits Cezanne’s de-

ubiquitinating activity.  Using shRNA against DJ-1 and Cezanne, we found that DJ-1 

positively regulates NF-κB nuclear localization and promotes cell survival while 

Cezanne has reciprocal effects.  Using microarray, we identified IL-8 and ICAM-1 as 

downstream targets of DJ-1 and Cezanne’s effects on NF-κB.  This finding was 
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confirmed at the RNA and protein levels using real-time PCR, ELISA, and 

immunoblot.  Finally, we identified the presence of this pathway in a primary cell 

type.  This work is the first to identify a link between DJ-1 and NF-κB representing a 

novel mechanism by which DJ-1 can control cell survival.  During this research, we 

also identified a putative mechanism of crosstalk between the Nrf2 and NF-κB 

pathways as two well known inhibitors of these pathways, Keap1 and A20, were 

found to interact.  Unfortunately, the consequences of the Keap1/A20 interaction 

have not been elucidated due to the complex interplay between the Nrf2 and NF-κB 

pathways.  Taken as a whole, this work reports that DJ-1 is one of the few proteins 

or stimuli known to enhance cell survival through the activation of both Nrf2 and NF-

κB while also identifying a novel mechanism of crosstalk between these pathways 

with implications in both Parkinson’s disease and cancer.   

 
 
 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

DEDICATION 

 

This dissertation is dedicated to my friends and family.  My family has always 

pushed me to reach my potential – even against my will during those lazy high 

school years.  My friends, scientists and non-scientists alike, remain a constant 

source of inspiration due to their hard work and their willingness to put up with me 

through thick and thin.  Which, for those who know me, is no small feat. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to acknowledge Dr. Jenny Ting for her guidance throughout my graduate 

education and for giving me an opportunity to work in her lab.  Many people in the 

Ting lab have contributed to this work in one way or another including Dr. Willie June 

Brickey, who helped with microarray analysis, and Dr. Beckley Davis.  Dr. Davis, as 

both a friend and supervisor, has contributed to this work through his scientific 

advice and seemingly infinite patience.  Former members in the lab, specifically Dr. 

Casey Clements, laid the ground work and produced reagents that made this work 

possible.  Thanks are also in order to Dr. Tak Mak and Dr. Averil Ma who provided 

mice, cell lines, and A20 reagents.  I would also like to thank my committee 

members including Dr. Steven Bachenheimer, Dr. Blossom Damania, Dr. Nancy 

Raab-Traub, and Dr. Cam Patterson for their suggestions which have helped shape 

this work.  Finally, I would like to acknowledge the Lineberger Comprehensive 

Cancer Center, the UNC University Cancer Research Fund, and the UNC Cancer 

Cell Biology Training Grant (5T32CA071341-15) for funding. 

 

 

 

 



vii 
 

 

 

 

TABLE OF CONTENTS 

                                                                                                                    Page 

List of Tables ....................................................................................................... ix 

List of Figures ....................................................................................................... x 

List of Abbreviations ............................................................................................ xii 

 

Chapter I. INTRODUCTION .................................................................................. 1 

    1.1    Cell Survival – A key aspect of human disease ....................................... 2 

    1.2    DJ-1 promotes cell survival in human cancer ........................................... 3 

    1.3    DJ-1, a genetic cause of Parkinson’s disease .......................................... 8 

    1.4    Molecular overview, Crystal Structure, and Post- 
             translational Modification of DJ-1 ........................................................... 17 
 
    1.5    DJ-1 Superfamily – Clues to the Molecular Function of DJ-1 ................. 20 

    1.6    Association of DJ-1 homologues and male fertility ................................. 23 

    1.7    Discovery of DJ-1 as a RNA binding protein .......................................... 24 

    1.8    Signaling and Transcriptional Modulation by DJ-1 ................................. 25 

    1.9    NF-kB, a cancer-associated transcription factor .................................... 30 

    1.10  The A20 family of NF-κB-inhibiting de-ubiquitinating enzymes .............. 34 

    1.11  Antagonistic crosstalk between the Nrf2 and NF-κB pathways .............. 37 

 



viii 
 

Chapter II.  NOVEL REGULATORY ROLE OF DJ-1 IN CELL SURVIVAL   
THROUGH THE DIRECT BINDING OF CEZANNE, A NEGATIVE  
REGULATOR  OF NF-KB ................................................................................... 58 
 
    2.1  Abstract .................................................................................................... 59 

    2.2  Introduction .............................................................................................. 60 

    2.3  Results ..................................................................................................... 63 

    2.4  Discussion ................................................................................................ 71 

    2.5  Materials and Methods ............................................................................. 74 

 

Chapter III.  KEAP1 AND A20 INTERACTION:  IDENTIFICATION OF A  
PUTATIVE ANTAGONISTIC MECHANISM OF CROSSTALK BETWEEN  
THE NRF2 AND NF-KB PATHWAYS ................................................................. 95 
  
    3.1  Abstract .................................................................................................... 96 

    3.2  Introduction .............................................................................................. 97 

    3.3  Results ................................................................................................... 103 

    3.4  Discussion .............................................................................................. 110  

    3.5  Materials and Methods ........................................................................... 114 

 

Chapter IV.  CONCLUSIONS ........................................................................... 130 

 
APPENDIX.  DJ-1, A CANCER- AND PARKINSON’S DISEASE-          
ASSOCIATED PROTEIN, STABILIZES THE ANTIOXIDANT      
TRANSCRIPTIONAL MASTER REGULATOR NRF2 ....................................... 144 
 

REFERENCES ................................................................................................. 181 

 

 



ix 
 

LIST OF TABLES 

Table                                                                                                                Page 

    2.1   DJ-1-binding proteins identified by mass spectrometry ........................... 82 

    2.2   Overview of genes regulated by DJ-1 and Cezanne ............................... 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

Figure                                                                                                               Page 

    1.1   DJ-1 human RNA expression pattern ..................................................... 41 

    1.2   DJ-1 structure as determined by X-ray crystallography .......................... 43 

    1.3   DJ-1/ThiJ/PfpI superfamily cladogram .................................................... 45 

    1.4   Amino acid alignment of DJ-1 and ThiJ subgroups ................................. 46 

    1.5   Schematic of the oxidative regulation of Nrf2 .......................................... 48 

    1.6   Overview of the effect of DJ-1 on intracellular signaling  
            and transcription ..................................................................................... 50 
 
    1.7   Overview of NF-κB activation by TNFα ................................................... 52 

    1.8   Comparison of the expression profiles of Cezanne and A20 .................. 54 

    1.9   Overview of known Nrf2 and NF-κB crosstalk mechanisms .................... 56 

    2.1   Overview of Q-TOF mass spectrometry results ...................................... 80 

    2.2   DJ-1 binds to Cezanne and inhibits Cezanne’s  
            de-ubiquitinating activity .......................................................................... 83 

     
    2.3   Affymetrix microarray analysis of cells with DJ-1 or Cezanne  
            shRNA..................................................................................................... 86 

 
    2.4   Effect of Cezanne shRNA on expression of Nrf2 targets ........................ 89 

    2.5   DJ-1 and Cezanne regulate IL-8 and ICAM-1 at the transcript  
            and protein levels .................................................................................... 91 

 
    2.6   ICAM-1 is regulated by DJ-1 and Cezanne in primary MEFs .................. 93 

    3.1   A20 binds overexpressed and endogenous Keap1 ............................... 119 

    3.2   A20 causes the ubiquitination and degradation of Keap1 ..................... 121 

    3.3   Nrf2 targets are decreased in A20-/- MEFs ............................................ 123 

     



xi 
 

    3.4   Nuclear Nrf2 levels are increased in A20-/- MEFs ................................. 124 
 

    3.5   ROS are not increased in A20-/- MEFs .................................................. 126 

    3.6   Increased NF-κB activity in A20-/- MEFs inhibits Nrf2 activity ................ 128 

    4.1   Model of NF-κB activation by DJ-1 ........................................................ 140 

    4.2   Overview of the effect of DJ-1 on signaling and transcription ............... 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

LIST OF ABBREVIATIONS 

 

ARE – Anti-oxidant response element 

BBS1 - Bardet–Biedl syndrome 1 

CBP - cAMP response element-binding protein 

CLCF1 - Cardiotrophin-like cytokine factor 1 

CXCR1 - CXC chemokine receptor 1 

DJ-1 – Don Juan 1 

DNA - Deoxyribonucleic acid 

DTT – Dithiothreitol 

ELISA - Enzyme-linked immunosorbent assay 

ERK - Extracellular signal-regulated kinase 

GAPDH - Glyceraldehyde 3-phosphate dehydrogenase 

H2O2 – hydrogen peroxide 

HA – Hemagglutinin 

HO-1 – Hemoxygenase 1 

HRP – Horseradish peroxidase 

IAP – Inhibitor of apoptosis 

IB – Immunoblot 

ICAM-1 – Intercellular adhesion molecule 1 

IκB – Inhibitor of kappa B 

IKK - IκB kinase 

IL-8 – Interleukin 8 



xiii 
 

IP – Immunoprecipitation 

MEF – Mouse embryonic fibroblast 

MEK - Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 

MPTP - 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MTREF - Mitochondrial transcription termination factor 

Nrf2 - Nuclear factor (erythroid-derived 2)-like 2 

NF-κB - Nuclear factor kappa-light-chain-enhancer of activated B cells 

NQO1 - NAD(P)H dehydrogenase (quinone 1) 

NSCLC – Non-small cell lung carcinoma 

PCR – Polymerase chain reaction  

PD – Parkinson’s Disease 

PSF - Protein-associated splicing factor 

Q-TOF MS - quadrupole time of flight mass spectrometry 

RIP - Receptor interacting protein 

RNA - Ribonucleic acid 

ROS – reactive oxygen species 

RT-PCR – Reverse transcriptase polymerase chain reaction 

shRNA – short hairpin ribonucleic acid 

tBHQ – tert-butylhydroquinone 

TNFα – Tumor necrosis factor alpha 

TRAF - TNF receptor associated factor 

TRXR1 – Thioredoxin reductase 1



 
 

 

 

 

Chapter I 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

This dissertation is centered on the activity and downstream effects of the 

protein DJ-1.  The importance of DJ-1 is highlighted by its association with both 

cancer and Parkinson’s disease.  While its molecular activity is still largely unknown, 

DJ-1 has been described to enhance cell survival through multiple pathways.  It is 

this effect on cell survival that is currently thought to account for DJ-1’s association 

with human diseases.  This work identifies a novel pathway by which DJ-1 enhances 

cell survival and therefore continues the elucidation of the activity of DJ-1 as well as 

its effects in human disease. 

 

1.1  Cell Survival – A key aspect of human disease 

The balance between cell survival and cell death is pivotal to normal cellular 

physiology.  Disruption of this balance can lead to numerous disease processes.  

Increased cell survival, especially in the context of DNA damage, can allow 

mutations to go unchecked leading to cancer.  Decreased cell survival, due to an 

increase in sensitivity to toxins and cellular stress, can lead to the death of 

dopaminergic neurons as seen in Parkinson’s disease.  Due to the importance of 

this balance, many different pathways have evolved to tightly control cell survival.  

While numerous pathways have been shown to have a role in regulating the balance 

between cellular life and death, continued research identifying new pathways or 

connecting known pathways is necessary to fully elucidate this complex system. 
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1.2  DJ-1 promotes cell survival in human cancer 

The name DJ-1 was first coined in 1997 by a group characterizing its ability to 

transform mouse NIH3T3 fibroblast cells.  They showed that while DJ-1 weakly 

transformed cells on its own, it did so synergistically in combination with H-Ras or c-

Myc (1).  Identification of the Park7 locus mapped DJ-1 to chromosome 1p36.2-

1p36.3, a hot spot for chromosomal abnormalities in human non-Hodgkin’s 

lymphoma, leiomyoma, acute myeloid leukemia, astrocytoma, neuroblastoma, 

adenoma, and adenocarcinoma (2).  DJ-1 is overexpressed in multiple human 

cancers including lung, ovarian, clear cell renal cell, pancreatic, and hepatocellular 

carcinoma (3-6).  This increase in DJ-1 expression has been shown to be predictive 

of negative patient outcomes and poor prognosis in both breast cancer and 

esophageal squamous cell carcinoma (7, 8).   

Our lab has focused on the role of DJ-1 in non-small cell lung carcinoma 

(NSCLC).  Lung cancer is the number one cause of cancer-related mortality.  It is 

estimated that over 215,000 new cases were diagnosed in 2008 in the United States 

alone (9).  Risk factors include smoking, asbestos or radon exposure, and family 

history of lung cancer.  While the incidence of lung cancer has actually decreased in 

the United States, most likely due to the decline in smoking, recent increases in 

smoking in other parts of the world may be preceding a global increase in lung 

cancer diagnoses.   

There are two main types of lung cancer – small cell and non-small cell lung 

carcinoma (NSCLC).  Approximately 85% of all lung cancers are of the NSCLC-type 
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(10).  NSCLCs can be further divided into large cell carcinomas, adenocarcinomas, 

and squamous cell carcinomas.  Location of the tumor can help narrow down the 

NSCLC subtype as adenocarcinomas and squamous cell carcinomas tend to grow 

on the lung periphery or near the major airways respectively. To confirm the subtype 

of NSCLC, a biopsy is needed for histological analysis.  These biopsies can be 

taken during bronchoscopy or by fine needle aspiration.  By histology, large cell 

carcinomas consist of anaplastic cells with large vesticular nuclei, adenocarcinoma 

cells take a cuboid to columnar shape with the presence of mucin, and squamous 

cell carcinomas are comprised of differentiated squamous cells with keratin pearls.   

 The symptoms of NSCLC at presentation are typically vague including 

persistent cough, coughing up blood, wheezing, shortness of breath, and 

unexplained weight loss.  The first indication of a NSCLC is typically an abnormal 

opacity on chest x-ray.  Once a mass is identified, MRI or CT is used to confirm the 

presence of a mass as well as to more accurately determine the size.  Additional 

imaging studies including positron emission tomography (PET) and bone scans may 

then be used to help determine extent of the disease.  PET scans use a radiotracer 

to identify changes in blood flow, oxygen use, and glucose metabolism.  As these 

characteristics are different in tumor masses and cancer cells, this study can locate 

even small numbers of cancer cells in local lymph nodes or other organs.  Bone 

scans are similar to PET scans except a bone-specific radiotracer is used.  These 

studies can identity metastases that originated from the lung tumor and are used to 

determine the cancer stage.  Lung cancer staging is on a 0-IV scale based on the 

spread of the carcinoma to local lymph nodes, invasion into adjacent tissues, and 
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metastasis to distant lymph nodes and other organs.  This staging is used to plan 

treatment and also yields data on the patient’s prognosis. 

NSCLC has an average 5 year survival of 15% (11).  A patient’s chance of 

survival is based on the stage of disease at presentation, NSCLC subtype, and 

treatment regimen.  Currently, surgery is the best chance for a long term cure.  

Removal of a segment or lobe of the lung or removal of an entire lung may be 

required to ensure complete removal of the tumor.  After surgery, adjuvant 

chemotherapy has also been shown to have a modest effect in NSCLC although it is 

not typically as chemosensitive as SCLC.  Unfortunately, 70% of NSCLC patients 

present with locally invasive or metastatic disease and are contraindicated for 

immediate surgery (11).  For these patients, chemotherapy with or without radiation 

may be used prior to surgery to shrink the tumor or, in late stage patients, as a 

standalone, palliative care option.  The most common NSCLC chemotherapy 

regimen is a combination of a platinum-based DNA crosslinking agent, such as 

carboplatin or cisplatin, and a microtubule stabilizer, such as taxol or docetaxel. 

In 1997, our group identified tumor-specific taxol-responsive elements in the 

IL-8 promoter (12).  These taxol-responsive elements were found to be active in a 

subset of NSCLC cell lines including squamous cell H157 and adenocarcinoma 

H1437 cells as treatment of these cell lines with taxol induced IL-8 secretion (13).  

This IL-8 secretion is not a general characteristic of NSCLC cell lines as IL-8 was not 

induced in the alveolar H358 or adenocarcinoma A549 cell lines.  The largest 

induction of IL-8 release occurred in the H157 squamous cell carcinoma cell line so 

it was chosen for further study.  A time course of taxol-induced IL-8 secretion 
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indicated that IL-8 was induced from 3 to 18 hours peaking at 6 hours.  This increase 

in IL-8 protein secretion was preceded by an increase in IL-8 mRNA starting at 30 

minutes post taxol treatment and peaking at 4 hours.  This induction of IL-8 

transcription was for the taxol-induced IL-8 secretion as inhibition of RNA 

polymerase II with actinomycin D blocked IL-8 secretion.  The IL-8 secretion is 

dependent on NF-κB and MEK in H157 cells as it was blocked by adenovirus 

containing the IκB super-repressor and the MEK inhibitor U0126 respectively (13).  

As MEK is a positive regulator of the pro-survival kinase ERK, this work led our 

group to hypothesize that this taxol-induced activation of MEK would activate ERK 

leading to increased cell survival.  Therefore, inhibition of MEK should increase the 

efficacy of taxol in H157 cells.   

Later that year, our lab published a paper to confirm that hypothesis.  First, 

our group reported that ERK was phosphorylated, and thus activated, by taxol 

treatment in a dose dependent manner (14).  Next they showed that the combined 

treatment of taxol and U0126 induced synergistic cell killing in H157 cells as 

compared to each of the treatments alone.  This taxol and U0126 synergy was also 

confirmed in the BT474 breast carcinoma cell line confirming that this effect is not 

specific for the H157 lung cancer line.  This cell death phenotype is not specific to 

the U0126 MEK inhibitor as MEK inhibition by PD98059 or overexpression of 

dominant negative MEK yielded similar results. 

  To gain information on the downstream effectors important for the cell death 

seen in taxol/U0126 combination treatment, our group identified proteins whose 

expression was specifically affected by this combination treatment using 2D gels.  
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2D gels analysis on samples untreated, treated with taxol or U0126, or treated with 

both taxol and U0126 identified two proteins to be specifically downregulated in the 

combination treatment group.  These proteins were identified by mass spectrometry 

as RhoGDIα and DJ-1 (3).  Overexpression of DJ-1 protected H157 cells from taxol 

and U0126-induced cell death suggesting a pro-survival role of DJ-1 in this NSCLC 

cell type.  Finally, overexpression of DJ-1 was identified in 6 out of 7 NSCLC tumor 

samples as compared to the healthy margins using real-time PCR suggesting a role 

of DJ-1 in human disease.  This finding was later verified by a second group who 

reported heightened expression of DJ-1 in squamous cell and adenocarcinoma 

NSCLC tumor samples (15). 

The mechanism of action of DJ-1 in cancer pathogenesis has not been fully 

elucidated.  Although DJ-1 is thought to play a role in PD pathogenesis, its effect on 

the ubiquitination of misfolded and unfolded proteins as well as its chaperone activity 

towards α-synuclein are not known to play a role in cancer.  Current literature 

suggests that it is DJ-1’s regulation of transcription and intracellular signaling that 

affects cancer pathogenesis, which will be reviewed in section 1.8.  In short, DJ-1 

inhibits p53 and JNK-mediated apoptosis, stimulates cell survival through Akt and 

ERK, and induces the Nrf2-dependent detoxification pathway.  Taken together, 

overexpression of DJ-1 in cancer cells would thus inhibit apoptosis and stimulate 

survival in cancer cells even in the presence of toxic compounds and cellular stress 

conferring a survival advantage to the cancer cells as compared to cells with normal 

DJ-1 levels. 
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1.3  DJ-1, a genetic cause of Parkinson’s disease 

In 1817, James Parkinson wrote a monograph entitled An Essay on the 

Shaking Palsy.  In this essay, he described six patients with decreased muscular 

strength, tremors, and a propensity to hunch forward at the torso.  It quickly became 

clear that James had described a new syndrome which was termed Parkinson’s 

disease (PD).  PD is a common progressive neurological disorder.  It is 

characterized by bradykinesia, muscular rigidity, resting tremors, and postural 

instability.  Incidence rises sharply with age with a median age of onset of 60 years 

and a lifetime risk of 1.5% (16, 17) .  Due to the age range of the typical PD patient, 

many patients go undiagnosed attributing the symptoms simply to old age.  Once 

diagnosed, there are patients with confirmed symptoms of PD going back a decade 

or more.  The inclusion criteria for a diagnosis of PD are bradykinesia in the 

presence of muscular rigidity, 4-6 Hz resting tremor, or postural instability not 

caused by other known balance or visual dysfunction (18).  Exclusion criteria range 

from a history of repeated head trauma to exposure to certain neurotoxins.  The 

diagnosis can typically be made through a careful history and thorough neurological 

exam. 

Parkinson’s disease is caused by the loss of dopaminergic neurons in the 

central nervous system.  While loss of dopaminergic neurons in the substantia nigra 

is a hallmark of PD, neuronal cell loss occurs in other structures including the locus 

coeruleus, raphe nuclei, dorsal nuclei of the vagus, and structures of the brain stem.  

Histologically, PD patient samples have decreased dopaminergic neurons.  The 

remaining neurons commonly contain Lewy bodies, protein aggregates consisting 
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mainly of α-synuclein (19).  While associated with PD, Lewy bodies can also be 

found in certain forms of dementia and a diagnosis of PD can be made in their 

absence. 

Parkinson’s disease is progressive and incurable, but a number of treatments 

can be used to decrease symptoms and to increase patient quality of life.  The most 

efficacious therapy is L-dopa.  L-dopa is an inactive form of dopamine that is 

activated in the central nervous system.  It effectively increases the reduced levels of 

dopamine in the brain of PD patients thus ameliorating symptoms.  In the human 

body, L-dopa can be deactivated by dopa decarboxylases (DDC) or carechol-O-

methyl transferase (COMT).  By using DDC or COMT inhibitors in combination with 

L-dopa, the half life of L-dopa can be increased, elongating the duration of L-dopa’s 

effects (20).  Patients with early stage disease or who are under 55 can be treated 

using dopamine agonists or selective type B monoamine oxidase inhibitors, although 

the mechanism of action of the latter is poorly understood.  While effective, these 

therapies are usually replaced with L-dopa treatment as disease progresses.  L-

dopa treatment is typically well tolerated.  Unfortunately, some patients have motor 

side effects like chorea, athetosis, and dystonia during initial treatment and many 

patients may develop these side effects as their PD progresses.  This tightening of 

the therapeutic window of L-dopa over the treatment period highlights the need to 

identify novel pathways to target in PD. 

In severely affected patients in whom L-dopa is not tolerated or ineffective, 

surgical intervention is an option.  There are two main types of surgery used in PD 

(18).  First, portions of the brain responsible for abnormal chemical release or 
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electrical impulse can be targeted using ablation, deep brain stimulation (DBS), or 

pallidotomy.  In ablation, the target brain tissue is physically destroyed while in the 

more common DBS procedure an electrode is implanted that inactivates the targeted 

tissue.  Pallidotomy is used to address specific symptoms.  In this procedure, fine 

probes are used to both measure electrical activity and to deliver electrical charges.  

The effect of the electrical charges on a specific portion of the brain is evaluated by 

the patient who is awake during the procedure.  Once a precise portion of the brain 

is identified as the offending tissue, it is ablated.  Second, dopamine-producing 

neurons can be transplanted into the brain of PD patients in a process termed fetal 

mesencephalic dopamine cell implantation (21).  In this procedure, dopaminergic 

neurons are harvested from fetal tissue and placed in the substantia nigra of the PD 

patient.  While this method is not effective for all patients, certain patients have had 

improvement in symptoms for more than 10 years.  As a relatively new procedure, 

the protocol for fetal grafts is still being optimized and holds promise of a possible 

long term cure for PD patients. 

Most cases of PD are termed idiopathic, with no known cause.  It is currently 

thought that these cases are caused by a combination of genetic factors and long-

term exposure to varying toxins.  Less than 10% of cases can be attributed to a 

direct genetic cause.  Mutations in the genes for Parkin, PINK1, ATP13A2, α-

synuclein, LRRK-2, GBA, and DJ-1 are all linked to PD (22-27).  Park7, the gene 

that encodes for DJ-1, was linked to PD during a study of an isolated family in the 

southwest region of the Netherlands (28).  The pedigree of this family had four 

occurrences of consanguinity within seven generations leading to autosomal 
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recessive, early onset PD in four individuals.  The symptoms of this form of PD were 

similar to idiopathic PD characterized by bradykinesia, rigidity, postural instability, 

dystonia, hyperreflexia, asymmetric onset, and anxiety.  Linkage analysis identified 

the disease locus as  25cM from the Park6 locus, the gene that encodes PINK1.  

The new disease locus was termed Park7.  This link was confirmed by another 

group shortly after using an independent dataset with two families from Italy and 

another from the Netherlands (29).    Bonifati et al. went on to show that DJ-1 was 

deleted in the Dutch family while a leucine to proline substitution at residue 166 

(L166P) was found in the Italian families (30).   

Models using Park7-/- mice and mouse derived cells studying the effects of 

DJ-1 in the nervous system have been used to confirm a role of DJ-1 in PD 

pathogenesis.  The first use of murine Park7-/- cells was in 2004.  Martinat et al. used 

ES cells in which DJ-1 was disrupted by retroviral insertion between exons 6 and 7 

using gene trap (31).  These cells had decreased cell viability with H2O2 treatment as 

compared to wild type ES cells.  This phenotype could be rescued by 

overexpression of wild type but not L166P mutant DJ-1.  Differentiation of these ES 

cells into dopaminergic neurons increased cell death in Park7-/- neurons with 6-

OHDA treatment, a neurotoxin that selectively kills dopaminergic neurons.   

The first work to publish on Park7-/- mice was by Goldberg et al. in 2005 (32).  

In these mice, exon 2 was replaced by a neomycin cassette.  While in-frame ATG 

codons existed in exons 3, 5, 6, and 7, they argued that these amino-terminal 

truncations would be inactive.  No gross abnormalities, effects on fertility, or 

spontaneous development of PD-like symptoms were seen in the Park7-/- mice.  
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Analysis of brain samples yielded normal numbers of dopaminergic neurons and no 

Lewy bodies.  While Park7-/- did not affect baseline neuronal survival, Park7-/- 

neurons release decreased dopamine in the evoked dopamine overflow model that 

they attributed to increased dopamine uptake by the Park7-/- neurons as compared 

to wild type.  This decrease in dopamine levels correlated with a decrease in 

locomotion in an open field paradigm, a model known to be influenced by dopamine.  

These findings lead Goldberg et al. to hypothesize that DJ-1 causes PD not through 

the modulation of cell death but by regulating dopamine uptake.  This hypothesis is 

bolstered by more recent papers, such as the work by Chandran et al., showing no 

deficit of dopamine-producing neurons in Park7-/- mice (33). 

As advanced age plays a role in the pathogenesis of PD, two groups 

investigated neuronal survival in aged Park7-/- mice   First, Chen et al., using 5-11 

month old Park7-/- mice targeted for the first 5 DJ-1 exons, found no change in 

dopaminergic neuron cell number (34).  Using specific brain sections, they evaluated 

the release and uptake of dopamine within four different brain structures – the dorsal 

and ventral caudate putamen and the nucleus accumbens core and shell.  They 

found an increase in dopamine uptake specifically in the dorsal caudate putamen, 

similar to the findings of Goldberg et al.  Strangely, a concurrent increase in 

dopamine release in this structure overcame the increased uptake leading to an 

overall increase in dopamine, which was contradictory to previous research.  

Second, Yamaguchi et al. similarly saw no neuronal degeneration in aged Park7-/- 

mice (35).  Using 24-27 month old mice, they first repeated the behavioral 

assessment used by Goldberg et al.  Similar to previous work, there was a decrease 
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in horizontal locomotion in a field test of Park7-/- mice.  While this datum would 

suggest a decrease in dopamine levels, normal dopaminergic neuron number and 

dopamine levels were seen in the substantia nigra, striatum, and locus coeruleus.  

Although behavioral studies suggest a decrease in dopamine levels, these studies, 

taken together, show normal dopaminergic neuron number in multiple brain 

structures of Park7-/- mice with DJ-1 playing a disputed role in dopamine uptake. 

While the absence of DJ-1 does not cause spontaneous PD-like symptoms 

over the natural lifespan of mice, models using neurotoxin and oxidative stress 

inducing agents have shown a role of DJ-1 in dopaminergic neuron survival.  Using 

cortical neurons from Park7+/+, Park7+/-, and Park7-/- embryos, Kim et al. found a 

decrease in cell survival with H2O2 treatment in the absence of DJ-1 with an 

intermediate phenotype for the heterozygous cells in vitro (36).  This phenotype was 

rescued in the Park7-/- neurons by overexpression of DJ-1.  Using dopaminergic 

neurons identified using tyrosine hydroxylase staining, they found decreased cell 

survival without DJ-1 in vitro with treatment of rotenone, a lipophilic insecticide 

shown to cause dopaminergic neuronal cell death and a PD-like disease in rats.  

This effect is specific as DJ-1 expression had no effect on cell death caused by 

camptothecin or staurosporin.  In in vivo assays, they used MPTP, a lipophilic 

neurotoxin.  Being lipophilic, MPTP crosses the blood brain barrier where it is 

activated by MAO-B into MPP+.  MPP+ interferes with complex I of the electron 

transport chain causing the buildup of ROS and eventually cell death.  Its specificity 

for dopaminergic neurons is attributed to its entry into cells via the dopamine uptake 

system.  Park7-/- mice have decreased TH+ neurons in the substantia nigra pars 
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compacta, decreased innervation of the striatum, and a larger decrease in dopamine 

levels as compared to control in the MPTP injection model.  As the increased MPTP 

toxicity could be attributed to increased MPTP uptake through the dopamine uptake 

pathway, they also reported similar levels of MPTP in the substantia nigra in wild 

type and knockout mice.  Finally, they showed that the neuron cell loss caused by 

MPTP could be inhibited by intracranial injection of DJ-1 adenovirus.  These findings 

were later confirmed in a rat model of PD in which the neurotoxin 6-OHDA was 

injected intracranially to kill dopaminergic neurons and cause a PD-like disease (37).  

In these rats, injection of recombinant DJ-1 was found to protect nigral dopaminergic 

neurons from 6-OHDA-induced cell death, while injection of recombinant L166P DJ-

1 did not lend any protection to these cells. 

The protection of dopaminergic neurons from MPTP conferred by DJ-1 is at 

least partially mediated by the pro-survival kinase Akt.  Aleyasin et al. found that 

phosphorylated, and thus activated, Akt was decreased in Park7-/- cortical neurons 

(38).  Using these cells and a small molecule inhibitor of Akt, they found that Akt and 

DJ-1-mediated protection from H2O2-induced cortical neuron cell death required 

expression of both proteins in vitro.  Finally, using adenoviral-mediated 

overexpression of Akt in Park7+/+ and Park7-/- mice in the MPTP model, DJ-1 

expression was found to be required for Akt-induced neuronal cell survival in vivo.  

This requirement for DJ-1 may be due to DJ-1’s ability to inhibit PTEN, a known 

inhibitor of Akt, but future in vivo models will be necessary to confirm that 

hypothesis.  While these in vivo studies confirm a role of DJ-1 in neurotoxin and 
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oxidative stress agents in PD-associated neuronal cell death, there is no mechanism 

as to how DJ-1 mechanistically accomplishes this effect. 

There are three main hypotheses as to how DJ-1 affects neuronal cell 

survival in PD.  First, DJ-1 increases cell survival through the management of 

misfolded or unfolded proteins.   Xiong et al. reported that DJ-1 interacts with Parkin 

and PINK1 (39).  This protein complex, termed the PPD complex, was shown to 

have ubiquitin E3 ligase activity that promotes the ubiquitination and degradation of 

unfolded or misfolded protein targets of Parkin, such as Parkin itself and synphilin-1.  

While not tested, this effect of DJ-1 on Parkin activity may extend to α-synuclein, a 

known target of Parkin (40).  If this is the case, absence of DJ-1 may decrease 

Parkin activity, leading to α-synuclein accumulation, Lewy body formation, and cell 

death.  This hypothesis is bolstered by the genetic association of both Parkin and 

PINK1 with PD as well as the presence of Lewy bodies in the dopaminergic neurons 

(22, 23).  It does not, however, explain why this pathway specifically affects 

dopaminergic neurons.  Second, DJ-1 acts as a chaperone to α-synuclein, the major 

component of Lewy bodies (41).  Shendelman et al. found that DJ-1 was capable of 

suppressing the heat-induced aggregation of citrate synthase and glutathione S-

transferase in vitro (41).  This effect of DJ-1 is abolished in the presence of the 

reducing agent DTT and enhanced with H2O2 treatment suggesting that the DJ-1 

chaperone activity is modified by oxidation of either DJ-1 or the target protein (42).  

This chaperone activity of DJ-1 has also been shown to extend to α-synuclein in a 

cell free system as recombinant α-synuclein protofibrils and fibrils were decreased in 

the presence of recombinant DJ-1 but not L166P mutant DJ-1 (41).  In 
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neuroblastoma cells, overexpression of DJ-1 decreases the aggregation of α-

synuclein in response to FeCl2 treatment, while L166P DJ-1 increased this 

aggregation.  Finally, insoluble α-synuclein aggregates were increased in Park7-/- ES 

cells as compared to wild type ES cells.  While causation has not been confirmed, it 

has been hypothesized that the aggregation of α-synuclein plays a role in neuronal 

cell death in PD.  By solubilizing α-synuclein, DJ-1 could decrease α-synuclein 

aggregation thus preventing neuronal cell death.  While this hypothesis is plausible, 

Lewy bodies are not always present in PD patients nor are they known to be a 

specific hallmark of DJ-1-associated PD.  Third, DJ-1 protects dopaminergic neurons 

from environmental insults through signaling and transcriptional modulation.  

Neurons lacking DJ-1 are more susceptible to cell death induced by oxidative stress, 

MPTP, rotenone, and dopamine itself (36, 43, 44).  Protection from dopamine 

toxicity is of particular interest as it would explain why this neuronal cell death is so 

specific to dopaminergic neurons.  The role of DJ-1 in signaling and transcription are 

described in detail in section 1.8, but in short cells without DJ-1 have increased pro-

apoptotic signals, decreased pro-survival signals, and decreased detoxification 

potential leading to cell death.  These three hypotheses on the action of DJ-1 in PD 

are not necessarily mutually exclusive and DJ-1’s true function may certainly lie in a 

combination of two or more of these possibilities. 
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1.4  Molecular overview, Crystal Structure, and Post-translational Modification 

of DJ-1 

DJ-1 is a protein of approximately 23 kilodaltons encoded by the Park7 gene 

on the short arm of chromosome 1 (28).  High levels of DJ-1 are found in a wide 

variety of cell types, and it is thought to be ubiquitously expressed (Fig. 1.1).  This 

expression profile suggests a critical role of DJ-1 in cellular physiology.  While 

mainly found as a homodimer in the cytoplasm of untreated cells, DJ-1 is known to 

have functions tied to both nuclear and mitochondrial localization (45, 46).  Overall, 

DJ-1 protects cells from toxins and cellular stress leading to increased cell survival.  

This effect on cell survival is thought to account for its association with cancer and 

Parkinson’s disease in humans.  While the exact molecular mechanism by which DJ-

1 enacts this effect has remained elusive, hypothesized activities range from 

protease to chaperone activity.  Known downstream effects of DJ-1 activity include 

modulation of multiple intracellular signaling molecules and transcription factors 

including Akt, Jnk, p53, ERK, and Nrf2 (15, 47-50). 

The DJ-1 crystal structure was elucidated by three groups that published in 

close succession (51-53).  DJ-1 takes a flavodoxin-like Rossmann-fold consisting of 

three layers – a set of six parallel β-sheets flanked on either side by eight α-helices 

(Fig. 1.2A).  All three groups crystallized DJ-1 as a dimer (Fig. 1.2B).  This 

homodimer is likely the standard form of DJ-1 in solution and in vivo as DJ-1 runs at 

exactly twice the expected molecular weight in native gels.  The L166 residue, 

mutation of which is associated with Parkinson’s disease in humans, is found on the 

interface between the dimerized DJ-1 molecules.  Mutation of L166 residue disrupts 
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the local tertiary structure, inhibiting homodimerization, and causing the 

ubiquitination and degradation of DJ-1 via the proteosome (54).  A triad of putative 

catalytic residues, similar to the triad of a cysteine protease, consisting of cysteine 

106, glutamate 18, and histidine 126 is present, but the residues are in an 

unfavorable conformation for proton transfer (Fig. 1.2C) (53).    

DJ-1 can be modified through oxidation and SUMOylation.  During 

crystallization, it was found that the conserved putative catalytic C106 residue was 

particularly sensitive to radiation-induced structural changes (Fig 1.2D).  This 

residue was of particular interest as this cysteine is perfectly conserved in all 

homologues of DJ-1.  Oxidation of DJ-1 at this residue occurs in response to H2O2, 

paraquat, and endotoxin (55-57).  This oxidative potential led researchers to 

hypothesize that DJ-1 either acts as an oxidative scavenger or sensor.  Taira et al. 

hypothesized that DJ-1 protects against oxidative stress by directly scavenging free 

radicals, but the lack of DJ-1 antioxidant enzymatic activity or machinery to replenish 

non-oxidized DJ-1 for this purpose makes this conclusion unlikely (58, 59).  It is 

more likely that DJ-1 uses oxidization at the C106 residue to sense the oxidative 

environment of the cell.  The effect of DJ-1 oxidation on its activity has been the 

subject of numerous, and sometimes conflicting, reports.  While the mechanism by 

which oxidation of DJ-1 affects DJ-1’s molecular function remains elusive, there is a 

general consensus that oxidation of DJ-1 enhances its pro-survival activity.   

In 2004, Canet-Aviles et al. showed that mutation of the DJ-1 C106 residue 

abolished its ability to protect neuroblastoma cells from MPTP-induced cell death 

(46).  They also reported a difference in subcellular localization of DJ-1 with C106 
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mutation.  Using paraquat to induce oxidative stress, DJ-1 was found to re-localize 

to the outer mitochondrial membrane while C106A mutant DJ-1 remained localized 

mainly in the cytoplasm.  This led them to hypothesize that oxidation of the C106 

residue and re-localization was necessary for DJ-1’s pro-survival function.  Waak et 

al. also showed that oxidation of DJ-1 enhanced its ability to protect cells from 

stress.  Their work focused on the effect of oxidation on the interaction of DJ-1 and 

apoptosis signaling kinase 1 (ASK1).  As its name suggests, ASK1 initiates 

apoptosis.  During cellular stress, ASK1 dimerizes and activates downstream JNK1 

leading to apoptosis.  DJ-1 binds to ASK1 disrupting ASK1 dimerization and thus 

activation (60).  This DJ-1/ASK1 interaction is enhanced with H2O2 treatment as 

shown by co-immunoprecipitation experiments (61).  As expected, they found that 

stable expression of C106A mutant DJ-1 did not confer protection to Park7-/- MEFs 

treated with H2O2 while wild type DJ-1 overexpression protected the cells.  This body 

of work suggests an important role of oxidation on DJ-1’s function.  Although 

oxidation at the C106 residue is thought to enhance DJ-1’s cytoprotection, more 

studies are needed to find the effect of C106 oxidation on DJ-1’s putative molecular 

functions.   

DJ-1 is also modified by conjugation with small ubiquitin-like modifier 

(SUMO).  SUMO is a post-translational modification that is activated and conjugated 

to proteins at lysine residues in a process similar to ubiquitination.  SUMOylation of a 

target protein can modulate interaction, localization, activity, and stability of proteins.  

As a binding partner of a protein in the PIAS family of SUMO E3 ligases, DJ-1 was 

speculated to be SUMOylated (62).  Shinbo et al. verified this putative SUMOylation 
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of DJ-1 (63).  In that paper, DJ-1 is reported to be SUMOylated at the K130 residue 

and that mutation of the K130 or L166 residue leads to improper conjugation of DJ-1 

with SUMO-1.  They also showed that the K130 residue, and thus SUMOylation of 

DJ-1, was necessary for DJ-1 to transform cells in combination with H-Ras and to 

protect cells from UV irradiation.  Although research on the effect of SUMOlyation of 

DJ-1 is meager, this initial work suggests that SUMOylation of DJ-1 positively 

regulates DJ-1 activity. 

 

1.5  DJ-1 Superfamily – Clues to the Molecular Function of DJ-1 

DJ-1 is a member of the DJ-1/ThiJ/PfpI superfamily (Fig.1.3).  This 

superfamily includes hundreds of members including proteins from numerous 

vertebrates, invertebrates, plants, and prokaryotes.  DJ-1 orthologs in vertebrates 

cluster within a single group with 80-100% identity suggesting a conserved function 

(Fig. 1.4).  Invertebrates actually contain two DJ-1 paralogs which retain 

approximately 40% identity with the human coding sequence.  Although plants 

contain DJ-1 homologues, vertebrate and invertebrate DJ-1 is actually more closely 

related to bacterial ThiJ genes (64).   

A number of bacterial proteins contain ThiJ domains.  These proteins have 

varying functions as protein chaperones (65), catalases (66), proteases (67), and 

kinases (68).  The prototypic member of this group is the kinase ThiJ.  ThiJ functions 

in the biosynthesis of thiamine in E. coli.  Thiamine is a cofactor for two enzyme 

complexes of the citric acid cycle, pyruvate dehydrogenase and alpha-ketoglutarate 
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dehydrogenase.  Thiamine is produced by many prokaryotes and several species of 

plants, but this biosynthesis pathway is not intact in human or other animals.  Due to 

this, thiamine is an essential vitamin in humans and thiamine deficiency leads to 

beriberi, a disease of the neurological and cardiovascular systems.  The fact that the 

thiamine biosynthesis pathway is non-functional in humans combined with the lack 

of ThiJ-like kinase activity in human DJ-1 suggests that eukaryotic DJ-1 has lost this 

activity and has converged on another function (53).   

The PfpI subfamily consists mainly of intracellular proteases (69).  The major 

structural hallmark of a cysteine/serine protease is a triad of catalytic residues 

consisting of a cysteine or serine, glutamate, and histidine in close three dimensional 

approximation to allow proton transfer during protein cleavage.  While DJ-1 has 

these residues (Cys106, Glu18, His126), the placement of the residues is 

unfavorable for protease activity leading to weak or no protease activity of DJ-1 

depending on the assay and substrate (53, 70).  Research into DJ-1 as a protease 

has continued as a group recently published that full length DJ-1 is a zymogen, 

requiring carboxy-terminal cleavage to be activated (71).  Removal of the final 15 

amino acids of DJ-1 moved the catalytic triad of DJ-1 into a more favorable 

conformation.  Fluorescent protease activity assays with BODIPY FL-labeled casein 

identified pronounced proteolytic activity of the truncated DJ-1.  They went on to 

show that this protease activity is inhibited by oxidation at the C106 residue.  Finally, 

they reported that the truncated form of DJ-1 was more effective than full length DJ-

1 in the inhibition of rotenone-induced cell death.   
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Since the elucidation of the crystal structure of DJ-1, it has been known that 

DJ-1 possesses an extra carboxy-terminal alpha helix not seen in the related PfpI 

family of proteases.  It is therefore logical that removal of this alpha helix may reveal 

hidden protease activity of DJ-1.  The major flaw of this work lies in the fact that they 

do not satisfactorily show that this truncated form of DJ-1 actually exists in human 

cells.  Most of the work is done in overexpression or cell free systems.  The only 

data provided to suggest that DJ-1 is cleaved at the C-terminus endogenously is a 

lower molecular weight band by immunoblot.  This band could be accounted for by 

amino-terminal cleavage, cleavage of DJ-1 at the caspase 6 site at residue 149, or 

oxidation specific cleavage of DJ-1 at residue 157 - all of which may in fact show 

impaired protease activity (72, 73).  Therefore, further research will be required to 

see if this activity is functionally important or if artificial truncation of DJ-1 is simply 

activating a lost function not seen endogenously. 

Other minor prokaryotic DJ-1 superfamily members include protein 

chaperones and transcriptional regulators.  Comparison of the crystal structures of 

DJ-1 and heat shock protein 31 (Hsp31) of E. coli found a conserved domain 

between the two proteins suggesting a protein chaperone function of DJ-1 (65).  

While seemingly in direct conflict with its putative protease activity, two groups have 

shown chaperone activity of DJ-1 towards α-synuclein, a target with implications in 

PD (41, 74).  The DJ-1/ThiJ/PfpI superfamily also includes the AraC family of 

transcriptional activators (75).  Proteins within this family homodimerize and directly 

bind DNA leading to transcriptional activation mediated by RNA polymerase II.  

These proteins are known to play a role in sugar catabolism, virulence, and 
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response to stress.  While similarities can be seen between the AraC proteins and 

DJ-1, such as their structures and modulation of the cellular stress response, a 

direct effect of DJ-1 on transcription through DNA binding seems unlikely as DJ-1 is 

not known to bind DNA.  Taken as a whole, DJ-1 homologue analysis yields clues 

but not a definitive answer as to the molecular function of DJ-1 due to the vast array 

of different functions exhibited within the DJ-1 superfamily. 

 

1.6  Association of DJ-1 homologues and male fertility 

Sequence analysis identified a homologue in rats termed contraception 

associated protein 1 (CAP1) (76, 77).  Wagenfeld et al. showed that CAP1 was 

present in the epididymal fluid of rats rendered infertile by treatment with oral 

ornidazole while CAP1 was absent in the fluid of fertile, vehicle treated rats.  This 

role in fertility is preserved in DJ-1 as fertility experiments in mice showed that 

depletion of DJ-1 in mouse semen using anti-DJ-1 serum decreased sperm fertility 

(78).  While the mechanism by which DJ-1 affects fertility has not been extensively 

studied, two groups have described a connection between DJ-1 and the androgen 

receptor.  First, DJ-1 was shown to positively regulate the androgen receptor 

through the inhibition of PIASxα binding (45).  Second, DJ-1 was found to bind to 

and inhibit DJ-1-binding protein (DJBP), which negatively regulates the androgen 

receptor through recruitment of the histone deacetylase complex (62).  DJ-1 may 

therefore boost fertility by inducing androgen receptor expression.  It is important to 
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note that while DJ-1 depletion in the semen may decrease fertility, Park7-/- mice do 

not have overt fertility issues. 

 

1.7  Discovery of DJ-1 as a RNA binding protein 

While the first to name the protein, Nagakubo et al. was not the first group to 

ascribe a function to DJ-1.  In 1993, Nachaliel et al. identified a cAMP-regulated 

RNA-binding protein (RBP) (79).  RBP was later found to be a complex comprised of 

two major subunits – RNA binding subunits (RBS) and regulatory subunits (RS) (76).  

Analysis of the RS cDNA sequence showed near identity to the published DJ-1 

cDNA sequence.  The reason DJ-1 was termed RS was because this work did not 

find a direct interaction between DJ-1 and RNA, but Van der Brug et al. recently 

reported that DJ-1 directly binds RNA (80).  Their first confirmation was completed 

by immunoprecipitating DJ-1 from M17 neuroblastoma cells, isolating RNA from the 

immunoprecipitation samples, and running the RNA on microarray.  When compared 

to an IgG immunoprecipitation control, DJ-1 pulled down distinct RNA species 

including mitochondrial genes, genes involved in glutathione metabolism, and 

members of the PTEN/PI3K cascade.  Next they confirmed the interaction of DJ-1 

with specific transcripts by immunoprecipitation of DJ-1 coupled with RT-PCR.  To 

verify RNA binding by DJ-1 in vivo, they immunoprecipitated DJ-1 from brain 

samples of Park7+/+ mice using Park7-/- mice as a control.  RNA was isolated from 

the immunoprecipitation samples and qRT-PCR was used to verify the presence of 6 

transcripts in the DJ-1 containing samples as compared to the control.  This work is 
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the first to identity DJ-1 as a direct RNA binding protein.   It is of particular interest as 

it allows one function of DJ-1 to affect multiple cellular pathways.  Unfortunately, the 

consequence of DJ-1 binding on the target RNA transcripts is not investigated in this 

paper.  Therefore, DJ-1 may be altering RNA half-life, translation, or having no effect 

at all requiring future research on the subject. 

 

1.8  Signaling and Transcriptional Modulation by DJ-1 

DJ-1 has widespread effects on the transcriptome especially during times of 

cellular stress.  Its role in PD and cancer pathogenesis can be, at least partially, 

attributed to its effects on transcription and intracellular signaling.  Overall DJ-1 has 

a pro-survival effect mediated through three major mechanisms - inhibition of pro-

apoptotic pathways, stimulation of pro-survival pathways, and induction of 

detoxification pathways. 

DJ-1 inhibits four pro-apoptotic pathways.  First, DJ-1 inhibits p53-mediated 

transcription and apoptosis.  During the cell cycle, DNA damage causes cell cycle 

arrest allowing the cell to either repair the damage or undergo apoptotic cell death.  

One of the transcription factors that controls this checkpoint is p53.  When genomic 

damage is too great, activation of p53-mediated transcription leads to the induction 

of apoptosis through downstream mediators such as Bax (81).  DJ-1 overexpression 

decreased Bax transcript and protein levels in A549 squamous cell NSCLC cells 

(48).  This effect was dependent on p53 as Bax expression was not changed in p53-

null H1299 cells and the effect of DJ-1 on Bax could be inhibited by PFT-α, a known 
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p53 inhibitor.  DJ-1 repressed p53-mediated transcription and cell death through 

direct binding of p53 and inhibition of its transcriptional activity.  Second, DJ-1 

inhibits pro-apoptotic JNK1 signaling (47).  During UV irradiation, activation of Mekk1 

leads to the induction of JNK1 signaling.  The consequence of this JNK1 signaling in 

neurons, which includes c-Jun-mediated transcription, is apoptosis (82).  Mo et al. 

found that DJ-1 binds to and sequesters Mekk1 in the cytoplasm thus inhibiting 

Mekk1 activity.  This pathway allows DJ-1 to decrease JNK1 activity and c-Jun-

mediated transcription and inhibit apoptosis.  Third, DJ-1 inhibits ASK1.  ASK1 

induces apoptosis in response to oxidative and genotoxic stress.  Inactive ASK1 is 

found bound to thioredoxin in the cytoplasm (83).  During cellular stress, ASK1 is 

released allowing it to activate via  auto-phosphorylation.  This activated ASK1 then 

phosphorylates multiple MAP kinase kinases (MKKs) causing the downstream 

activation of JNK1 and p38 leading to apoptosis.  DJ-1 binds to and inactivates 

ASK1 blocking JNK1 and p38-mediated pro-apoptotic signals thus promoting cell 

survival (84).  Fourth, DJ-1 inhibits protein-associated splicing factor (PSF).  PSF, 

when activated, silences transcription in neurons leading to neuronal cell death.  DJ-

1 binds to and inhibits PSF blocking the pro-apoptotic effect of PSF and stimulating 

cell survival (85).  Inhibition of these four pro-apoptotic pathways allows cells 

overexpressing DJ-1 to avoid apoptosis in the face of significant DNA damage and 

cellular stress. 

DJ-1 induces both the ERK and Akt pro-survival pathways.  ERK, a kinase 

downstream of Ras, increases cell survival through the phosphorylation and 

activation of target transcription factors such as ELK-1 and STAT3.  ERK is activated 
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via phosphorylation by the kinase MEK.  Phosphorylation of MEK and ERK was 

increased by overexpression of DJ-1 in the MN9D dopaminergic neuron cell line 

(49).  This effect was important for DJ-1’s role in promoting cell survival as 

overexpression of DJ-1 did not protect these cells from H2O2-induced cell death in 

the presence of MEK inhibitors.   DJ-1 also induces Akt activity, a pro-survival kinase 

downstream of PI3K.  Akt acts as a pro-survival signal by inactivating, via 

phosphorylation, the pro-apoptotic proteins Bad, capase 9, and the forkhead 

transcription factor family (86-88).  One of the mechanisms by which Akt is regulated 

is through inhibition by PTEN, a tumor suppressor commonly mutated in human 

cancers (89).  Kim et al. identified DJ-1 as an antagonist of PTEN function in a gain-

of-function screen in Drosophila (15).  Using an overexpression system, they 

showed that this pathway is conserved in humans as DJ-1 blocks PTEN-induced cell 

death.  Next, they showed that DJ-1’s ability to protect cells from staurosporine-

induced cell death requires PTEN as overexpression of DJ-1 does not confer 

protection in Pten-/- cells.  Finally, Akt phosphorylation was proportional to DJ-1 

expression as DJ-1 overexpression and knockdown led to increased and decreased 

Akt phosphorylation respectively.  Therefore, DJ-1 stimulates cell survival by 

inhibition of PTEN, activation of Akt, and blocking Bad, caspase 9, and the forkhead 

transcription factor pro-apoptotic signaling.  The importance of this pathway was 

recently confirmed in vivo in a MPTP injection PD model system that reported that 

DJ-1 expression is required for Akt-mediated protection of dopaminergic neurons in 

the striatum (38). 
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DJ-1 confers a survival advantage to cells by upregulating hypoxic and 

oxidative stress response pathways such as HIF1 and Nrf2.  In 2009, Vasseur et al. 

reported that DJ-1 positively regulates the transcription factor HIF1 (90).  HIF1 

allows cells to respond to and survive hypoxic conditions and the associated cellular 

stress.  When activated in response to hypoxic conditions, HIF1 leads to the 

transcription of multiple downstream targets such as hemoxygenase 1 and vascular 

endothelial growth factor 1 (91).  These activated genes protect the cell from 

hypoxia-induced cell death and stimulate angiogenesis to restore normal oxygen 

levels.  This pathway is especially important in solid tumors as the central portion of 

these tumors is thought to be hypoxic due to the local blood supply not meeting the 

increased cell mass and metabolism of the tumor.  By inducing HIF1, DJ-1 may 

allow cancer cells to adapt to and survive the harsh tumor microenvironment. 

In 2005, Zhou et al. reported that DJ-1 protects cells from oxidative stress by 

increasing the synthesis of glutathione, a molecule known to detoxify excess oxygen 

radicals (74).  They showed that this increase in glutathione was due to an increase 

in glutamate cysteine ligase, a positive regulator of glutathione, but did not identify a 

mechanism for this increase in glutamate cysteine ligase expression.  In 2006, our 

lab published that DJ-1 regulates the glutathione pathway by positively regulating 

the activity of the transcription factor Nrf2, a master regulator of the antioxidant 

response (see Appendix A).  Under non-oxidative conditions, Nrf2 is found in the 

cytoplasm bound to its cytoplasmic inhibitor, Keap1 (92) (Fig. 1.5).  Keap1 targets 

Nrf2 for ubiquitination and degradation by the proteosome in a cullin3-dependent 

manner (93, 94).  Therefore, Nrf2 is inhibited by both cytoplasmic sequestration and 
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baseline degradation.  In oxidative conditions, Nrf2 is released from Keap1 and 

translocates to the nucleus.  In the nucleus, Nrf2 binds small Maf proteins and 

recruits co-activators such as CBP (95, 96).  This protein complex then binds to 

antioxidant response elements (AREs) leading to the transcription of numerous 

downstream targets including small molecule antioxidants, antioxidant proteins, and 

detoxification enzymes such as glutathione, superoxide dismutase, and NADPH 

quinine oxidoredutase 1 (NQO1) respectively (97, 98).   

Comparing cells treated with control siRNA and DJ-1 siRNA using microarray, 

we found that NQO1 expression was decreased in the presence of DJ-1 siRNA (50).  

As NQO1 is a target of Nrf2, we searched sequences upstream of the other 

microarray hits and identified 7 genes with putative ARE sites suggesting a role of 

DJ-1 in the regulation of Nrf2.  First, we showed that siRNA-mediated knockdown of 

DJ-1 decreased Nrf2 protein levels.  Using cyclohexamide to inhibit translation, we 

found that this decrease in Nrf2 protein levels was due to a decrease in Nrf2 protein 

half-life in the absence of DJ-1.  Using luciferase, we also reported that knockdown 

of DJ-1 leads to a decrease in Nrf2 activity.  To address the mechanism, we 

analyzed the interaction of Nrf2 and Keap1, the key step in Nrf2 regulation.  We 

found that overexpression of DJ-1 decreased the interaction of Nrf2 and Keap1 as 

seen by co-immunoprecipitation.  While DJ-1 positively regulates Nrf2 through 

disruption of the Nrf2/Keap1 interaction, we did not find the direct mechanism by 

which DJ-1 enacts this effect.  Finally, these data were confirmed in a primary cell 

type to ensure that this pathway was not specific to the NSCLC cell type used. 
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This thesis has identified a positive regulatory role of DJ-1 on the transcription 

factor NF-κB.  While DJ-1 is already associated with an array of transcription factors 

(Fig. 1.6), this work is the first to link DJ-1 to NF-κB, a well known pro-survival factor 

with ties to cancer pathogenesis and profound importance in immune responses.  

We will also describe the mechanism of this positive regulation as well as changes 

to specific gene targets of NF-κB and cell survival. 

 

1.9  NF-kB, a cancer-associated transcription factor 

The NF-κB transcription family is made up of five members including NF-κB1 

(p105/p50), NF-κB2 (p100/p52), RELA (p65), cREL, and RELB.  All five have a 

highly conserved REL domain allowing the proteins to form homodimer and 

heterodimer combinations as well as bind specific DNA sequences termed κB sites.  

NF-κB transcription factors function in two related pathways – canonical and non-

canonical (99, 100).  In the canonical pathway, NF-κB1 p105 is found bound to 

p65/RELA in the cytoplasm.  This heterodimer is activated through the processing of 

p105 to p50 (101).  The p50/p65 active dimer is sequestered in the cytoplasm by 

IκB, thus inhibiting its activity (102).  This IκB inhibition is held until the pathway is 

activated.  Many signals can activate the canonical pathway including endotoxin, 

growth factors, and pro-inflammatory cytokines such as TNFα.  When TNFα binds to 

its receptor, it sets off a cascade of intracellular signaling (Fig. 1.7).  First, positive 

regulators of NF-κB activity, such as RIP1 and TRAF6 are recruited to the 

intracellular portion of the TNFα receptor (103, 104).  Once activated, these 
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molecules induce the IKK complex.  This complex, comprised of the IKKα and IKKβ 

catalytic subunits and IKKγ regulatory subunit, phosphorylates IκB targeting it for 

degradation (105).  This releases IκB’s inhibition of the p50/p65 dimer allowing the 

dimer to translocate to the nucleus, bind κB sites, and induce transcription of a 

myriad of gene targets. 

The non-canonical pathway is activated in a specific subset of cells, including 

lymphocytes, in response to lymphotoxin β and CD40L.   Prior activation of the 

canonical pathway is required to first stimulate the expression of NF-κB2/p100.  This 

inactive p100 is bound to RELB in the cytoplasm.  Activation of this pathway induces 

NF-κB-inducing kinase (NIK) which in turn phosphorylates and activates an IKKα 

homodimer (106).  This leads to the phosphorylation and processing of p100 to p52 

producing an active p52/RELB dimer (107).  The active dimer translocates to the 

nucleus where it induces transcription through direct DNA binding. 

While typically associated with the activation of immune cells, NF-κB plays a 

direct role in cell survival.  Targets of NF-κB include cell cycle proteins and pro-

survival proteins including prominent oncogenes such as cyclin D, Bcl-2, and 

inhibitors of apoptosis (IAPs) (108-110).  Through the action of these targets, NF-κB 

promotes cell survival and proliferation.  It is, therefore, not surprising that a number 

of human cancers have been found to have aberrant activation of the NF-κB 

pathway.  The first tie between NF-κB and cancer was through the protein v-Rel 

(111).  V-Rel is a viral homologue of the REL proteins in Rev-T retrovirus.  This 

virus, through v-Rel, is capable of causing avian reticuloendothelial lymphomatosis.  
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This work paved the way for numerous studies researching the role of NF-κB in 

cancer pathogenesis. 

NF-κB/RELs have been found to be aberrantly activated in breast, head and 

neck, esophagus, cervix, prostate, colon, pancreas, and lung carcinomas (112, 113).  

Direct alteration of NF-κB or IκB activity by changes in expression or mutation is 

known to occur in particular cancers, such as Hodgkin’s lymphoma, but this is 

atypical (114).  More commonly, cancer-associated activation of NF-κB is seen 

secondary to an activation or overexpression of upstream receptors, growth factors, 

cytokines, or kinases.  This activation confers protection to cancer cells by blocking 

apoptosis and stimulating cell survival through NF-κB’s downstream targets.  Some 

of these targets are proteins with roles in immunity, such as IL-8 and ICAM-1, the 

subject of this thesis (115, 116). 

IL-8 and ICAM-1 function to promote angiogenesis and cell adhesion 

respectively (117, 118).  Together they play an important role in the recruitment and 

extravasation of neutrophils from the blood into tissues during inflammation (119, 

120).  As mediators of the innate immune response, these proteins seem like 

unlikely candidates for overexpression in cancer.  One would expect that increased 

immune surveillance due to the recruitment of immune cells would be 

disadvantageous, but both IL-8 and ICAM-1 have been found to be expressed at 

high levels in several human cancers. 

IL-8 expression is associated with cancer progression, invasion, 

angiogenesis, and metastasis (121-127).  Secreted human IL-8 acts through binding 
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to its receptor CXCR1 (128).  Activation through this receptor induces NF-κB 

promoting both cell survival and the continued secretion of IL-8 (129).  This pathway 

constitutes a pro-survival positive feedback loop and may affect cell survival, 

especially in tumor cells that secrete IL-8 in response to taxol and other 

chemotherapeutics (13).  Certain tumors depend on this IL-8 signaling as blockade 

of IL-8 binding to its receptor causes a decrease in tumor size, tumor growth, and 

promotes cancer cell apoptosis (130).  Secretion of IL-8 by tumors may also promote 

tumor growth and metastasis in solid tumors by stimulating angiogenesis.  Increased 

blood flow to solid tumors increases oxygen and nutrient delivery optimizing growth 

while the increased vascularity allows tumor cells to gain access to the blood stream 

and metastasize to distant sites.   

ICAM-1 is overexpressed in multiple human cancers as well (131-133).  While 

it has not been associated with effects on cancer cell survival, ICAM-1 has been 

linked to both tumor progression and metastasis (127, 134, 135).   The mechanism 

by which ICAM-1 affects these cancer characteristics has not been fully elucidated, 

but melanoma research suggests that ICAM-1 works in concert with IL-8 to promote 

metastasis (127).  In a model proposed by Dong et al., IL-8 recruits neutrophils to 

the tumor site.  These activated neutrophils then upregulate β2-integrins during 

extravasation.  Interaction between these integrins on the neutrophils and ICAM-1 

on the melanoma cells effectively tethers the cells together.  Then when the 

neutrophil returns to the circulation, it carries the melanoma cell with it thus 

promoting metastasis.  As aberrant NF-κB activation can contribute to cancer 
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development, there are many pathways that have evolved to regulate NF-κB.  One 

such pathway involves the NF-κB-inhibiting ubiquitin editing enzyme A20. 

 

1.10  The A20 family of NF-κB-inhibiting de-ubiquitinating enzymes 

A20, originally termed TNFα induced protein 3 (TNFAIP3), was initially 

identified as a transcript upregulated shortly after TNFα treatment (136).  Analysis of 

the sequence of A20 showed 7 zinc finger domains, although the function of these 

domains was not known at the time.  Shortly after, Krikos et al. found that the 

induction of A20 by TNFα was mediated by NF-κB through binding of κB elements in 

the A20 promoter (137).  The first report on the function of A20 showed that 

overexpression of A20 inhibits both TNFα and IL-1 signaling although a molecular 

mechanism was not identified (138).  That same year, Song et al. published that A20 

inhibits NF-κB signaling and was capable of binding TRAF1 and TRAF2, two 

proteins known to induce NF-κB (139).  This interaction between A20 and TRAF 

proteins was extended when another group found that A20 could bind to TRAF6 and 

that the overexpression of A20 could inhibit TRAF6-induced NF-κB activation (140).   

In 2004, a seminal paper was published in Nature outlining the molecular 

activity of A20.  Wertz et al. showed that A20 has two major activities – de-

ubiquinating activity through its amino-terminal OTU domain and ubiquitin E3 ligase 

activity through its carboxy-terminal zinc finger domains (141).  First, they showed 

that the zinc finger domains from the carboxy-terminus of A20 can auto-ubiquitinate 

A20 and ubiquitinate TRAF6 and RIP1 in vitro.  This activity was found to be 
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dependent on the fourth zinc finger domain as mutation of this domain abolished this 

activity.  This A20-mediated ubiquitination was linked through the K48 residue of 

ubiquitin causing destabilization of the RIP1 protein.  Next they showed that A20 

removes K63-linked ubiquitin from RIP1, a post-translational modification known to 

be important for RIP1 activity.  Taken as a whole, this paper reported that A20 

inhibits NF-κB by removing K63-linked activating ubiquitin from RIP1 and TRAF6 

replacing it with K48-linked ubiquitin.  This change in ubiquitination state destabilizes 

the proteins leading to their degradation and thus the downregulation of NF-κB 

activity.  While minor modifications have been made to this mechanism, like the fact 

that A20 does not remove individual ubiquitin molecules but instead removes the 

entire ubiquitin chain at once, the overall mechanism of A20 activity has remained 

relatively unchanged since this paper was published (142). 

Due to its inhibition of the pro-survival, cancer-associated transcription factor 

NF-κB, A20 is commonly targeted for inactivation in human cancers.  A20 has been 

found to be mutated or deleted in marginal zone B cell, mucosa-associated lymphoid 

tissue (MALT), and non-Hodgkin’s lymphomas (143-145).  The promoter of A20 has 

also been found to be silenced by methylation in MALT lymphomas (144).  A20 

inactivation is required for maintenance of cell survival in certain tumor cell lines, as 

overexpression of A20 in L-1236 and KM-H2 cells inhibits cell metabolism and 

survival as seen by MTS assay (146).  A20, through its regulation of NF-κB, also 

inhibits invasion.  Novak et al. found that overexpression of A20 in ACC-2 cells, a 

salivary adenoid cystic carcinoma cell line, caused a NF-κB-dependent reduction in 

invasion of Matrigel-coated filters in vitro (143). 
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In 2001, while screening the human genome for genes with homology to A20, 

Evans et al. identified two A20-like proteins – TRABID and 

Cezanne/OTUD7B/Za20d1 (147).  Both TRABID and Cezanne were found to bind to 

TRAF6 by co-immunoprecipitation, but only Cezanne was capable of inhibiting a NF-

κB luciferase construct.  The amino-terminus of Cezanne contains an OTU catalytic 

domain similar to A20 that is capable of de-ubiquitinating branched and linear 

ubiquitin chains (148).  Activity of this domain is dependent on the C209 cysteine 

residue as mutation of this residue abolishes Cezanne de-ubiquitinating activity.  

Cezanne can also remove ubiquitin from ubiquitin-conjugated proteins as 

overexpression of Cezanne decreases global ubiquitin as seen by immunoblot.  The 

first specific target of Cezanne was identified in 2008 by Enesa et al.  They showed 

that Cezanne, like A20, is induced following NF-κB activation.  Cezanne is then 

recruited to activated TNFα receptors where it removes K63-linked activating 

ubiquitin from RIP1, suppressing its activity and thus inhibiting NF-κB (149).  Finally, 

Cezanne is thought to be sensitive to oxidation as H2O2 treatment was shown to 

prolong NF-κB activation through the inhibition of Cezanne, although a mechanism 

for this inhibition was not identified (149).   

The tie between Cezanne and cancer is not as well studied as the association 

between A20 and cancer.  Only one report has addressed this possible connection.  

La Starza et al. found a 93-kb DNA sequence that is frequently duplicated in acute 

lymphoblastic leukemia and Burkitt lymphoma (150).  This region at 1q21.2 encodes 

several genes including Cezanne.  Unfortunately, the importance of Cezanne in this 

duplication was not addressed.  While duplication of the gene in cancer would 
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suggest a putative oncogenic function of Cezanne, its relation to A20 and its 

inhibition of NF-κB would suggest it should function as tumor suppressor.  More 

studies using multiple different cancer cell types will need to be completed to 

elucidate the tie between Cezanne and cancer as tumors that overexpress A20 are 

not unheard of (151).   

While many similarities exist between Cezanne and A20, they are functionally 

distinct.  Cezanne, similar to A20, binds RIP1 and TRAF6, but Cezanne only 

removes ubiquitin as it lacks ubiquitin E3 ligase activity.  The research studying 

Cezanne has been guided by the A20 literature, but due to the known differences 

between the proteins, including Cezanne’s wide expression profile, suggests 

Cezanne may have more distinct functions yet to be identified (Fig. 1.8). 

 

1.11  Antagonistic crosstalk between the Nrf2 and NF-κB pathways 

 While Nrf2 and NF-κB control the antioxidant and inflammatory response 

respectively, these transcription factors, which are both positively regulated by DJ-1, 

have similarities rooted in their primary function in cell survival.  Due to this 

connection, it is therefore not surprising that Nrf2 and NF-κB can be activated by 

similar stimuli.  Both Nrf2 and NF-κB are induced by ROS, LPS, oxidized LDL, and 

cigarette smoke (152-156).  They even cooperate to induce some common 

downstream targets including HO-1, GCLC, aldose reductase, and Gαi2 (157-163).  

Analysis of crosstalk between these two pathways tells a different story.  While Nrf2 

and NF-κB might cooperate together to promote cell survival in the face of shared 
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stimuli, they balance each other through antagonistic crosstalk.  This work will 

identify a novel mechanism of antagonistic crosstalk between the Nrf2 and NF-κB 

pathways. 

Nrf2 is not known to directly antagonize NF-κB, but it does inhibit NF-κB 

activity through its downstream targets and modulation of the oxidative environment 

of the cell. Nrf2 knockout mice have a pro-inflammatory phenotype.  This has been 

seen repeatedly in mouse emphysema, brain trauma, cigarette smoking, diesel 

exhaust, and asthma models.  Using an asthma model, Rangasamy et al. showed 

that p65 and p50 protein levels were increased in Nrf2-/- mice compared to wild type 

controls (164).  This increase in NF-κB activity in the absence of Nrf2 is most likely 

mediated in two ways.  First, the increase in ROS in the Nrf2-/- mice leads to the 

activation of NF-κB.  As an antioxidant master regulator, Nrf2 is activated in the 

presence of ROS leading to the induction of a gambit of downstream effectors which 

detoxify the ROS.  In the absence of Nrf2, ROS are not detoxified and build up 

unchecked.  NF-κB activated by intracellular ROS as deletion of subunits of the 

ROS-producing NADPH oxidase complex inhibits NF-κB activity (165).  Therefore, 

the ROS buildup caused by the absence of Nrf2 may lead to NF-κB activation.  

Second, loss of Nrf2 decreases the expression of known NF-κB inhibitors.  Four 

targets of Nrf2, namely HO-1, NQO1, thioredoxin, and Keap1, are known to inhibit 

NF-κB under certain conditions (156, 166, 167).  It is not clear if HO-1, NQO1, and 

thioredoxin inhibit NF-κB directly or through modulation of ROS levels.  Keap1, on 

the other hand, is known to directly inhibit NF-κB by mediating the ubiquitination and 
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degradation of IKKβ (168).  The loss of expression of these proteins in the absence 

of Nrf2 may release NF-κB inhibition leading to an increase in NF-κB activity. 

NF-κB inhibits Nrf2 directly and through indirect inhibition via its downstream 

effectors.  When in the nucleus, Nrf2 forms heterodimers with small MAF proteins 

and recruits co-activators, such as CBP, allowing it to bind to ARE sites on DNA and 

induce transcription.  NF-κB inhibits this process through two mechanisms.  First, 

NF-κB binds to CBP depriving Nrf2 of this co-activator.  Lui et al. showed that 

overexpression of p65 decreased Nrf2 activity as seen by luciferase, but that this 

inhibition of Nrf2 could be rescued through the overexpression of CBP (169).  

Second, p65 overexpression increases the association of the transcriptional silencer, 

HDAC3, with both the Nrf2-binding MafK as well as ARE sites.  Recruitment of 

HDAC3 to Nrf2 target gene promoters, such as was seen with HO-1, causes 

deacetylation, as thus silencing, of the target gene (169).  In a similar fashion to 

Nrf2’s inhibition of NF-κB, NF-κB also inhibits Nrf2 activity through downstream 

targets.  During shear stress of chondrocytes, COX-2 is induced by NF-κB.  Healy et 

al. showed that this increase in COX-2 is mirrored by a decrease in NQO1 levels 

and presumably Nrf2 activity (170).  They showed that this decrease in NQO1 

expression was dependent on COX-2 by rescuing NQO1 expression with 

CAY10404, a COX-2 specific inhibitor.  Taken as a whole, the literature looking at 

the activity and crosstalk of Nrf2 and NF-κB shows two transcription factors with 

similar overall outcome that balance each other’s activity through antagonistic 

crosstalk at multiple levels (Fig. 1.9).  The antagonist nature of the relationship of 

Nrf2 and NF-κB will be highlighted in this thesis. 
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Chapter 2 will focus on a novel pathway in which DJ-1, a known positive 

regulator of Nrf2, enhances NF-κB activity through the inhibition of the de-

ubiquitinating enzyme Cezanne, an inhibitor of NF-κB.  DJ-1 and Cezanne will be 

shown to regulate the NF-κB targets IL-8 and ICAM-1 as well as cell survival.  This 

adds DJ-1 to the list of proteins and stimuli that can induce both the Nrf2 and NF-κB 

pathways.  In chapter 3, we will explore a novel mechanism of crosstalk between 

Nrf2 and NF-κB, namely the interaction of Keap1 and A20.  This interaction of known 

inhibitors of Nrf2 and NF-κB respectively has implications for the activity of both 

transcription factors as well as the research focused on the crosstalk between these 

two critically important pathways. 
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Figure 1.1     DJ-1 human RNA expression profile.  Data mined from Novartis 

GeneAtlas show the wide range of human cell types that express DJ-1 

(http://biogps.gnf.org/#goto=welcome). 
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Figure 1.2     DJ-1 structure as determined by X-ray crystallography.  (A)  Structure 

of a DJ-1 monomer.  Alpha-helices and beta-sheets as well as N-terminus and C-

terminus of protein are denoted.  (B)  Structure of a DJ-1 dimer.  DJ-1 monomers are 

colored blue and green.  L166 and C106 residues marked in red and yellow 

respectively highlighting the proximity of the L166 residue to the interaction interface.  

(C)  Three dimensional arrangement of the DJ-1 putative cysteine protease site.  

Top panel shows the proximity of the necessary Cys106, His126, and Glu18 

residues by ribbon diagram.  Bottom panel shows electron density of triad in a non-

favorable conformation for proton transfer.  (D)  Electron density around C106 

residue.  Fourier difference (Fo - Fc) electron density shown contoured at +3.0 σ 

(green) and -3.0 σ (red).  Variation in electron density suggests that C106 is prone to 

radiation-induced damage or oxidation.  Figures reproduced from (51, 53) with 

permission. 
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Figure 1.3     DJ-1/ThiJ/PfpI superfamily cladogram.  Consensus maximum 

likelihood tree with branch length corresponding to level of bootstrap support.  

Groupings within superfamily show diverse function of superfamily members.  

Numbers in parentheses denote identity within group and with human DJ-1 

respectively.  Figure reproduced from (64) with permission. 
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Figure 1.4      Amino acid alignment of DJ-1 and ThiJ subgroups.  Sequences show 

high homology and the presence of residues which are perfectly conserved.  C106 

residue of DJ-1 is seen at ruler mark 144 as some prokaryotic sequences contain 

unaligned animo-terminal residues.  Bar graph denotes increasing conservation of 

residue.  Eukaryotic DJ-1 family is boxed in blue.  Figure reproduced from (64) with 

permission. 
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Figure 1.5     Schematic of the oxidative regulation of Nrf2.  In non-oxidative 

conditions, Nrf2 is bound to its cytoplasmic inhibitor Keap1 which catalyzes the 

ubiquitination and degradation of Nrf2 in a cullin-3 and proteosome-dependent 

mechanism.  In the presence of oxidative stress, Nrf2 is released from the Keap1-

mediated inhibition allowing Nrf2 to translocate to the nucleus where it binds ARE 

sites and causes transcription of its downstream targets. 
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Figure 1.6     Overview of the effect of DJ-1 on intracellular signaling and 

transcription.  Figure split according to DJ-1’s role in inhibiting apoptotic signals, 

inducing pro-survival signals, and stimulating oxidative response pathways. 
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Figure 1.7     Overview of NF-κB activation by TNFα.  Binding of TNFα to its 

receptor causes the recruitment of RIP1, TRAF6, TRADD, and FADD.  These 

proteins activate the IKKα/β/γ complex which phosphorylates and causes the 

degradation of IκB.  Release of IκB-mediated inhibition of p65/p50 allows these NF-

κB subunits to translocate to the nucleus, bind κB sites, and induce transcription of 

their targets. 
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Figure 1.8     Comparison of the expression profiles of Cezanne and A20.  Data 

mined from Novartis GeneAtlas shows the wide RNA expression profile of Cezanne 

versus A20, which is found primarily in immune cell types 

(http://biogps.gnf.org/#goto=welcome).   
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Figure 1.9     Overview of known Nrf2 and NF-κB crosstalk mechanisms.  Nrf2 

indirectly inhibits NF-κB through its downstream targets, namely Keap1, HO-1, TRX, 

and NQO1.  While NF-κB indirectly inhibits Nrf2 through COX-2, it also directly 

inhibits Nrf2 through the binding of CBP and the recruitment of HDAC3 to ARE sites.



 
 

 

 

 

Chapter II 

 

NOVEL REGULATORY ROLE OF DJ-1 IN CELL SURVIVAL THROUGH THE 
DIRECT BINDING OF CEZANNE, A NEGATIVE REGULATOR OF NF-KB  

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

2.1  Abstract 

Heightened DJ-1 expression is associated with a reduction in 

chemotherapeutic-induced cell death and poor prognosis in several cancers, while 

the loss of DJ-1 function is found in a subgroup of Parkinson’s disease associated 

with neuronal death.  This chapter describes a novel pathway by which DJ-1 

modulates cell survival.  Mass spectrometry detected that DJ-1 interacts with BBS1, 

CLCF1, MTREF, and Cezanne.  Among these, Cezanne is a known de-

ubiquitination enzyme that inhibits NF-κB activity.  DJ-1/Cezanne interaction is 

confirmed by co-immunoprecipitation of overexpressed and endogenous proteins, 

maps to the N-terminal 70 residues of DJ-1, and leads to the inhibition of Cezanne’s 

de-ubiquitinating activity.  Microarray profiling of shRNA transduced cells shows that 

DJ-1 and Cezanne regulate IL-8 and ICAM-1 expression in opposing directions.  

Similarly, DJ-1 enhances NF-κB nuclear translocation and cell survival while 

Cezanne reduces these outcomes.  Analysis of mouse Park7-/- primary cells 

confirms the regulation of ICAM-1 by DJ-1 and Cezanne.   As NF-κB is important in 

cellular survival and transformation, IL-8 functions as an angiogenic factor and pro-

survival signal, and ICAM-1 has been implicated in tumor progression, invasion, and 

metastasis; these data provide an additional modality by which DJ-1 controls cell 

survival and possibly tumor progression via interaction with Cezanne. 
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2.2  Introduction 

Lung cancer is the leading cause of cancer-related mortality in the world.  It is 

estimated that over 215,000 new cases were diagnosed in the United States in 2008 

alone (9).  Of the two major types of lung cancer, approximately 85% are non-small 

cell lung carcinomas (NSCLC) (10).  With NSCLC, the best chance for a long-term 

cure is surgery.  Unfortunately, 70% of NSCLC patients are contraindicated for 

surgery due to locally invasive or metastatic disease (11).  For these patients, the 

current treatment options are combination chemotherapy and radiation.  With 

treatment, NSCLC patients have a 5 year survival rate of 15%.  It is therefore 

imperative to investigate new pathways to target in NSCLC therapies.  Our work in 

the H157 NSCLC squamous cell line has focused on the role of DJ-1.   

DJ-1 activity is associated with a spectrum of human disease.  Loss of DJ-1 

activity, due to inactivation by L166 residue mutation or genetic deletion, leads to 

early onset Parkinson’s disease with high penetrance (30).  Due to DJ-1’s protective 

effects against toxic insults, this association is hypothesized to be due to a protective 

role of DJ-1 in dopaminergic neurons of the substantia nigra (37, 38, 44).  As loss of 

DJ-1 activity leads to neuronal cell death, increased DJ-1 activity can promote cell 

survival leading to its association with human malignancies.  The initial research on 

the role of DJ-1 in cancer showed that while DJ-1 can weakly transform cells alone, 

it can act synergistically in combination with Ras (1).  DJ-1 is highly expressed in a 

number of cancer types including acute leukemia, breast, prostate, ovarian, thyroid, 

and NSCLC and is associated with tumor progression in esophageal and cervical 

cancer (4, 7, 8, 15, 171-173).  Our lab and others have shown that increased DJ-1 
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expression confers protection against toxic insults including oxidative and ER stress, 

proteosome inhibition, and chemotherapeutic agents (3, 58, 174).  This protection is 

partially mediated by DJ-1’s ability to inhibit p53 and PTEN, an inhibitor of the PI3K 

cell survival pathway, and to positively regulate the Nrf2 detoxification pathway (15, 

48, 50).  Here we examine a novel pathway in which DJ-1 binds to and inhibits 

Cezanne, a negative regulator of the cell survival associated transcription factor NF-

κB. 

Cezanne is a member of the A20 family of de-ubiquitination enzymes (148).  

Similar to A20, Cezanne has been shown to inhibit NF-κB through modulation of the 

ubiquitination state of two of its positive regulators, RIP-1 and TRAF6 (148, 149).  

Cezanne is implicated in cancer biology, as a 93-kb sequence containing Cezanne 

was shown to be duplicated in acute lymphoblastic leukemia and Burkitt lymphoma 

(150).  While the precise role of Cezanne in cancer is unknown, its inhibition of NF-

κB would suggest Cezanne may act as a tumor suppressor. 

While typically associated with regulating the inflammatory response to 

infection or injury, NF-κB subunits are constitutively activated in a number of human 

carcinomas (113, 175, 176).  This family of transcription factors is important in 

cancer biology for cell survival, angiogenesis, invasion, progression, and metastasis.  

Two important targets of NF-κB-mediated transcription in relation to cancer are 

interleukin 8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1).  These two 

proteins are involved in the homing and extravasation of neutrophils from the blood 

into inflamed tissues but have additional functions in cancer biology.  IL-8 expression 

has been associated with cancer progression, invasion, angiogenesis, and 
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metastasis (121-127).  It is also secreted by certain NSCLC cell lines, including 

H157 cells, in response to Paclitaxel treatment activating a pro-survival positive 

feedback loop via signaling through the CXCR1 receptor (13, 129).  Blockade of IL-8 

binding to its receptor causes a decrease in tumor size, angiogenesis, tumor growth, 

and metastasis while promoting cancer cell apoptosis (130).  ICAM-1 is 

overexpressed in multiple human cancers as well (131-133).   While it has not been 

associated with effects on cancer cell survival, ICAM-1 has been linked to both 

tumor progression and metastasis through its ability to mediate cell adhesion and 

extravagation (127, 134, 135).    

In this study, we identify Cezanne as a binding partner of DJ-1.  This 

interaction can be mediated by the amino terminus of DJ-1 and leads to the 

inhibition of Cezanne’s de-ubiquitinating activity in vitro.  Microarray analysis on 

H157 cells shows that DJ-1 and Cezanne shRNA regulate IL-8 and ICAM-1 gene 

expression, albeit in opposing directions.  DJ-1 and Cezanne shRNA also resulted in 

reciprocal phenotypes on chemotherapeutic-induced cell death and NF-κB nuclear 

localization in vitro.  Finally we analyzed ICAM-1 expression in Park7 -/- mouse 

embryonic fibroblasts (MEF) to verify that this pathway is intact in a primary cell line.  

These findings identify a novel pathway through which DJ-1 modulates a number of 

critical aspects of cancer cell biology.  This work emphasizes the importance of 

future research on pharmacologic inhibitors of the DJ-1/Cezanne pathway and the 

role of DJ-1 in cancer biology in vivo. 
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2.3  Results 

 

Q-TOF Mass Spectrometric Identification of DJ-1 Interacting Proteins 

To help understand the mechanism of action of DJ-1, we used Q-TOF mass 

spectrometry to identify binding partners of DJ-1.  Several controls were built into the 

experimental design to minimize artifacts.  First, previous published data have 

highlighted the importance of oxidative state on DJ-1 function (177).  Therefore, we 

designed our initial experiments to identify proteins that bound DJ-1 under oxidative 

and non-oxidative conditions (Fig. 2.1A).  Second, we used Park7 -/- MEFs to 

eliminate the ability of the abundantly-expressed endogenous DJ-1 to bind proteins 

of interest and decrease the assay sensitivity.  To start, we transfected Park7 -/- 

MEFs with either FLAG™-tagged DJ-1 or FLAG™-tagged C106A mutant DJ-1.  

Since the C106 residue is known to be oxidized and affect DJ-1 function, the C106A 

mutant was used to assess the oxidative dependence of binding as alanine is non-

oxidizable (61).  To mimic physiologic oxidative stress, the transfected samples were 

then treated with H2O2 or left untreated.  After treatment, the FLAG™-tagged DJ-1 

was immunoprecipitated and eluted with FLAG™ peptide.  This eluate was 

trypsinized and run on a Q-TOF mass spectrometer.  Using a mock transfected 

control to remove any proteins that bound non-specifically to the FLAG™ beads, we 

identified four proteins that bound specifically to DJ-1 (Table 2.1). We selected 

Cezanne for further study due to its known ability to regulate NF-κB and therefore 
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potential to affect cell survival, a topic relevant to cancer biology and Parkinson’s 

disease (Fig. 2.1B). 

 

DJ-1 Binds to Cezanne and Inhibits Its De-ubiquitinating Activity 

To confirm the interaction between DJ-1 and Cezanne, we performed a series 

of co-immunoprecipitation experiments.  The interaction was first confirmed using an 

overexpression system (Fig. 2.2A).  FLAG™-DJ-1 was overexpressed in HEK293T 

cells in the presence or absence of V5-epitope tagged Cezanne.  After 

immunoprecipitation of Cezanne, DJ-1 was co-immunoprecipitated in the presence 

of Cezanne but not in its absence as detected by immunoblot.  To confirm an 

endogenous interaction between DJ-1 and Cezanne (Fig. 2.2B), we 

immunoprecipitated endogenous DJ-1 from cell lysates of HEK293T cells treated 

with H2O2 or left untreated.  Western blot of the immunoprecipitation samples 

showed the presence of endogenous Cezanne only in the samples where DJ-1 was 

immunoprecipitated.  Our previous Q-TOF MS data would predict an increase in DJ-

1/Cezanne interaction with H2O2 treatment, but a modest increase with treatment 

was detected with only one anti-Cezanne antibody in HEK293T cells as compared to 

data obtained in MEFs.  This suggests that there might be a form of Cezanne that is 

recognized by antibody 2 which more efficiently interacts with oxidized DJ-1. 

To verify the effect of DJ-1 C106 residue oxidation, we tested the ability of 

overexpressed wild type DJ-1, non-oxidizable C106A mutant DJ-1, or the 

Parkinson’s disease associated L166P mutant DJ-1 to bind endogenous Cezanne in 
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the presence of H2O2 (Fig. 2.2C).  Each of the three constructs was overexpressed 

in HEK293T cells treated with H2O2.  As expected, lower expression of L166P DJ-1 

was seen due to its known decreased stability (178).  After immunoprecipitation for 

the FLAG™-tagged DJ-1 proteins, immunoblot analysis was performed to detect 

endogenous Cezanne.  Cezanne was co-immunoprecipitated with wild type DJ-1 

and the L166P mutant.  The C106A mutant DJ-1 co-precipitated Cezanne at a 

reduced level compared to wild type DJ-1 but more than the untransfected negative 

control.  This datum shows that oxidation of the C106 residue of DJ-1 is not required 

but does enhance DJ-1/Cezanne interaction while mutation of the L166P residue 

has no effect. 

  To identify the structural element of DJ-1 that binds Cezanne, we produced 

a series of truncation mutant constructs by sequentially removing approximately 100 

bp off of the 3’ end of the 570 bp open reading frame of DJ-1 in a FLAG™-tagged 

construct (Fig. 2.2D).  This method was used due to the lack of multiple domain 

structures in DJ-1.  These constructs were transfected into HEK293T cells treated 

with H2O2 and the samples were immunoprecipitated with FLAG™ agarose.  

Expression of the smaller amino terminal fragments of DJ-1 showed a progressively 

reduced expression, which is consistent with the smaller sizes of the truncation 

constructs DJ-1 490T to 298T, except for DJ-1 211T which displayed a reduction in 

expression that cannot be accounted for by its reduced size, which may be due to 

reduced expression or decreased stability (73).  All of the truncation constructs 

immunoprecipitated Cezanne as well as the WT control.  The efficient interaction of 

211T DJ-1 and endogenous Cezanne shows that the amino-terminal 70 residues of 
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DJ-1 are sufficient for interaction with Cezanne.  Residues encoded by nucleotides 

298 to 211 might be inhibitory of this binding as their removal results in more 

efficient binding, considering that the expression of DJ-1 211T is much less than DJ-

1 298T  (Fig. 2.2E). 

Due to the known de-ubiquitinating activity of Cezanne in vitro and the 

interaction between DJ-1 and Cezanne, we produced recombinant DJ-1 and 

analyzed its effect on the de-ubiquitination activity of Cezanne in a cell-free system 

(Fig. 2.2F).  To assess Cezanne’s de-ubiquitinating activity, we incubated synthetic 

ubiquitin chains with recombinant Cezanne in the presence or absence of DJ-1 

(148).  After incubation, we analyzed the reduction in ubiquitin chain size by Western 

blot.  While Cezanne caused a decrease in both long and medium length ubiquitin 

chains (Lanes 2 and 3), DJ-1 significantly inhibited Cezanne’s activity in a dose-

dependent manner (Lanes 4-6).  The activity of DJ-1 was found to be specific for 

Cezanne as DJ-1 did not inhibit the de-ubiquinating activity of IsoT on long length 

ubiquitin chains (Lanes 7 and 8). 

 

Identification of IL-8 and ICAM-1 as Downstream Targets by Affymetrix 

Microarray 

Due to the known effects of DJ-1 and Cezanne on the transcriptome, we 

assessed the effect of their interaction on global transcription using microarray.  To 

identify possible downstream transcripts of DJ-1 and Cezanne, we generated 

recombinant lentivirus encoding shRNA oligonucleotides specific for DJ-1 or 
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Cezanne and their respective mutant negative controls.  After transduction of H157 

cells with recombinant lentivirus, we extracted RNA from each sample and assessed 

targeted gene expression using semi-quantitative RT-PCR (Fig. 2.3A).  These 

samples showed significant reduction of Cezanne and DJ-1 gene expression 

compared to matched negative controls.  The RNA was then validated for 

microarray, used to produce cRNA, and hybridized on a GeneChip human gene 1.0 

ST array.  The normalized intensities for the three negative controls were averaged.  

We then filtered out any readings below 20th percentile intensity and calculated fold 

changes comparing the DJ-1 and Cezanne knockdown samples against the control 

using a 1.7 fold change cutoff.  Due to our interest in genes regulated by both DJ-1 

and Cezanne, we cross-referenced the lists of genes regulated by DJ-1 or Cezanne 

(Fig. 2.3B and Table 2.2).  This search showed that IL-8 and ICAM-1, two genes 

regulated by NF-κB, were reciprocally controlled by DJ-1 and Cezanne (Fig. 2.3C), 

while no role for Cezanne was seen in Nrf2-mediated transcription (Fig. 2.4). 

 

DJ-1 and Cezanne affect IL-8 and ICAM-1 mRNA and Protein Levels 

To verify the microarray results, we used real time PCR to verify the 

regulation of IL-8 and ICAM-1 by DJ-1 and Cezanne.  After transducing H157 cells 

with lentivirus carrying control, DJ-1, or Cezanne shRNA, real time PCR was 

performed for human β-actin, IL-8, and ICAM-1 (Fig. 2.5A).  Data analysis yielded Ct 

values that were used to calculate fold changes for IL-8 and ICAM-1 as compared to 

the matched β-actin control using the ΔΔCt method.  This analysis confirmed a 
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significant decrease in IL-8 and ICAM-1 expression with DJ-1 shRNA and an 

increased expression of these genes with Cezanne shRNA, consistent with the 

microarray results.  To assess the effect of DJ-1 and Cezanne on IL-8 secretion, 

supernatants from lentiviral transduced H157 cell lines were analyzed using IL-8 

ELISA.  The datum showed DJ-1 shRNA decreased IL-8 production while Cezanne 

shRNA increased IL-8, matching the observations seen at the transcript level (Fig. 

2.5B).  Immunoblot analysis of transduced H157 cells treated with TNF-α showed a 

decrease in ICAM-1 protein levels with DJ-1 shRNA and an increase in ICAM-1 

levels with Cezanne shRNA consistent with the IL-8 ELISA data (Fig. 2.5C).   

As NF-κB is a known target of Cezanne as well as an inducer of IL-8 and 

ICAM-1 transcription, we evaluated the nuclear localization of NF-κB in DJ-1 and 

Cezanne shRNA treated H157 cells.  After transduction with DJ-1 or Cezanne 

shRNA, nuclear and cytoplasmic fractions were collected and analyzed by 

immunoblot.  Immunoblot for the p65 NF-κB subunit showed that DJ-1 shRNA 

caused a decrease in nuclear p65 compared to the shRNA control, while Cezanne 

shRNA treated samples caused increased nuclear p65 (Fig. 2.5D).  Immunoblot for 

histone deacetylase 2 (HDAC2) and β-actin were used to show equal loading and 

nuclear fraction purity respectively.   

Due to the known pro-survival effect of DJ-1 overexpression on cancer cells 

undergoing chemotherapeutic treatment (3), we assessed the effect of DJ-1 and 

Cezanne shRNA on chemotherapeutic-induced H157 cell death.  We treated 

lentiviral transduced H157 cells with Paclitaxel and MEK inhibitor for 24 hours, a 

combination treatment shown to be effective in H157 cells (3).  After treatment, cell 
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death was analyzed using a histone-based cell death ELISA (Roche).  Untreated 

samples were used to account for homeostatic cell turnover and fold changes in cell 

death were calculated compared to the mutant shRNA control.  A statistically 

significant increase in cell death was seen with DJ-1 shRNA, while a decrease was 

seen in the Cezanne shRNA samples (Fig. 2.5E).  Similar results were obtained 

using the fluorescence-based Toxilight (Lonza) cell death assay (data not shown).   

 

ICAM-1 is Regulated by DJ-1 and Cezanne in Primary MEFs 

The above results were obtained with transformed cell line, thus it was 

important to analyze the expression of ICAM-1 in a primary cell line such as MEFs.  

Only ICAM-1 was assayed since mouse cells do not express IL-8.  Park7 +/+ and 

Park7 -/- MEFs were treated with increasing levels of TNFα to induce ICAM-1 

expression.  After 6 hours of TNFα treatment, the levels of ICAM-1, DJ-1, and 

GAPDH were assessed by semi-quantitative PCR (Fig. 2.6A).  DJ-1 was expressed 

in Park7+/+ but not Park7-/- cells and the expression of ICAM-1 was reduced in the 

Park7-/- cells relative to GAPDH control.  This finding confirms the positive regulatory 

role of DJ-1 in ICAM-1 transcript expression in primary MEFs.  To assess the effect 

of Cezanne on ICAM-1 expression in this cell type, ICAM-1 expression was 

measured by real-time PCR in TNF-α treated or untreated Park7 +/+ MEFs 

transduced with Cezanne shRNA or a matched mutant control (Fig. 2.6B).   

Cezanne shRNA caused an increase in ICAM-1 expression in TNFα treated MEFs.  
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These data confirmed an activating role of DJ-1 and an inhibitory role of Cezanne on 

ICAM-1 expression in MEFs. 
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2.4  Discussion 

 

Due to the prominent link between DJ-1 genetic inactivation and early onset 

Parkinson’s disease in humans, a large portion of the DJ-1 literature has focused on 

the role of DJ-1 in neuronal cell death (31, 36).  That work uncovered a broader role 

of DJ-1 in cell survival outside of the nervous system.  DJ-1 has been shown to be a 

central molecule in cell survival by positively regulating Nrf2-dependent 

detoxification pathways (50), inhibiting p53-mediated cell cycle checkpoints (48), and 

inducing Akt activity through the inhibition of PTEN (15).  Likely due to its effects on 

cell survival, DJ-1 has been found to be dysregulated in several human cancers (1, 

3, 7, 172).  Overexpression of DJ-1 has been shown in a number of human 

carcinomas and is associated with negative survival outcomes and resistance to 

chemotherapeutics. 

In this chapter, we identify a novel pathway by which DJ-1 modulates IL-8 and 

ICAM-1 levels through the regulation of Cezanne and NF-κB activity.  Using a 

proteomic approach, we identify four binding partners of DJ-1.  One of these DJ-1 

binding partners, Cezanne, is a member of the A20 family of immunoregulatory de-

ubiquitinating enzymes.  Similar to A20, Cezanne is known to inhibit NF-κB through 

modulation of the ubiquitination status of RIP-1 and TRAF6 (148, 149) .  NF-κB, a 

cell survival-associated transcription factor, is known to be dysregulated in a variety 

of cancer types including NSCLC (113, 175, 176, 179).  After confirming 

endogenous interaction of DJ-1 and Cezanne, we showed that the amino-terminus 
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of DJ-1 is capable of mediating this interaction.  The interaction also leads to the 

inhibition of Cezanne’s de-ubiquitinating activity in vitro.  We used microarray 

analysis to identify the transcriptional targets and thus the pathways regulated by the 

DJ-1/Cezanne interaction.  DJ-1 and Cezanne shRNA were found to reciprocally 

regulate ICAM-1 and IL-8.  As targets of NF-κB, this datum suggests a role of DJ-1 

and Cezanne in NF-κB-mediated transcription while no role of Cezanne was seen in 

Nrf2-mediated transcription as downstream targets of Nrf2 were unchanged in the 

presence of Cezanne shRNA.  This link between DJ-1 and NF-κB was confirmed as 

nuclear p65 was found to be decreased in the presence of DJ-1 shRNA, making this 

work the first to identify DJ-1 as a positive regulator of NF-κB. 

IL-8 is released by a subset of NSCLC cell lines in response to chemotherapy 

treatment (13).  As a pro-survival signal, this IL-8 release can inhibit 

chemotherapeutic efficacy (126).  Acting in an autocrine or paracrine fashion to 

activate NF-κB through stimulation of the CXCR1 receptor, IL-8 causes its continued 

release completing a pro-survival positive feedback loop (13, 129).  Through 

inhibition of DJ-1 or activation of Cezanne, we can disrupt this IL-8 controlled pro-

survival loop, thus increasing the sensitivity of IL-8 secreting tumors to 

chemotherapeutics (130).  Aside from its effects on cell survival, IL-8 has been 

shown to promote angiogenesis, cancer progression, invasion, and metastasis (121, 

123-127).  Concordant with IL-8, ICAM-1 dysregulation has been associated with 

tumor progress, invasion, and metastasis (127, 134, 135).  Through regulation of IL-

8 and ICAM-1, DJ-1 and Cezanne may impact angiogenesis and tumor progression 



73 
 

leading to changes in tumor growth and survival in in vivo cancer models separate 

from their effects on cell survival and drug efficacy seen in vitro. 

As a whole, we identified a pathway pertinent to cancer cell survival that is 

regulated by DJ-1.  Future studies should confirm that this pathway is mediated 

through Cezanne’s de-ubiquitination of RIP-1 and TRAF6 as well as identify other 

NF-κB targets regulated by DJ-1 under cell stimulation.  Finally, mouse tumor 

models will be necessary to examine the effects of DJ-1 and Cezanne expression on 

tumor growth in vivo.  Due to the central role of DJ-1 in transcriptional regulation, 

identification of DJ-1 inhibitors may lead to novel treatment regimens that modulate 

cancer hallmarks including cancer cell growth, survival, angiogenesis, progression, 

invasion, and metastasis as well as boosting current chemotherapeutic efficacy. 
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2.5  Materials and Methods 

 

Cell culture, treatments, and plasmid constructs. H157 cells were grown in RPMI 

1640 (Gibco) with 10% FCS (Hyclone).  HEK293T cells and MEFs were grown in 

high glucose DMEM (Gibco) with 10% FCS.  MEFs were isolated from 13.5 day 

embryos and used within 3 passages from initial isolation.  All mammalian cell 

cultures were incubated at 37° C with 5% CO2 in the presence of penicillin and 

streptomycin to prevent bacterial contamination.  H2O2 (Sigma) was diluted in media 

prior to addition to cells at a final concentration of 100µM for 1 hour.  TNF-α 

(eBioscience) was added to sample wells at a final concentration of 5-50 ng/mL for 6 

hours before sample harvest.  For cell death assays, Paclitaxel and U0126 (Sigma) 

reconstituted in DMSO were used at 500nM and 10µM respectively. 

Human Cezanne ORF was subcloned into the V5/His-tagged pcDNA3.1D-

Topo plasmid (Invitrogen) using the primers 5’-

CACCATGACCCTGGACATGGATGCTG-3’ and 5’-GAACCTGTGCACCAGGAGCT-

3’.   Directionality and expression were verified by sequencing and immunoblot 

analysis respectively.  The FLAG™-DJ-1 construct was generously given to us by 

Hod, Y (172).  The point and truncation mutants of FLAG™-DJ-1 were produced 

using Quik-change mutagenesis (Stratagene) and verified by sequencing.   MEF 

cultures were transfected using Lipofectamine 2000 (Invitrogen) at a 4:1 reagent to 

DNA ratio and HEK293T cultures were transfected using Fugene 6 (Roche) at a 3:1 

ratio as per the manufacturer’s instructions. 
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Q-TOF Mass Spectrometry.  Park7 -/- MEFs were transfected with either FLAG™-

DJ-1 or C016A- FLAG™ and incubated overnight.  After H2O2 or vehicle control 

treatment, samples were lysed in 0.5% Tx-100 lysis buffer and immunoprecipitated 

with anti-FLAG™ M2 agarose (Sigma).  After elution with FLAG™ peptide, samples 

were desalted using a C4 Reverse-phase media loaded micropipette tip (Millipore, 

Billerica MA).  The desalted proteins were eluted from the tip using a solution of 80% 

methanol with 0.1% formic acid then lyophilized to dryness.  After reconstitution in 

25mM ammonium bicarbonate, the protein samples were enzymatically digested 

with sequencing-grade trypsin (Promega, Madison WI ).  The tryptic peptides were 

analyzed by nano LC-MS/MS using a Waters (Millford, MA) API-US Q-TOF, 

equipped with a Waters capLC system and a 75μ id x 15 cm PepMap C18 column 

(Dionex, Sunnyvale CA).  The Q-TOF data was processed using Waters’ MassLynx 

and ProteinLynx software, and searched against the NCBInr mouse database for 

possible protein matches using the Mascot™ (Boston, MA) database search engine.  

The search parameters include a peptide mass tolerance of +/- 200 ppm, fragment 

mass tolerance of +/- 0.2 Da, trypsin as the enzyme with 1 possible missed 

cleavage. 

 

Lentiviral Vector Construction and Production.  Oligonucleotides containing 19-

mers targeting DJ-1 (5’-GACCCAGUACAGUGUAGCC-3’), human Cezanne (5’- 

GATCATGAATGGAGGAATA-3’ and 5’- GCAGCAAGCTCAAGAAGAA-3’), mouse 

Cezanne (5’- GGCGGAAGGAGAAGTCAAA-3’), or non-silencing controls (5’- 

GACGCTGAAGACTCTTGGC-3’, 5’- GATGAAGTAAGCACGTAAA -3’, 5’- 
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GCACCTACCACTACATGTA-3’) with appropriate start (5’- TCCGCTCGAGAAAAA-

3’), loop (5’- TCTCTTGAA-3’), antisense, and termination (5’- 

GGTGTTTCGTCCTTTCCACAAGATATATAAAGCC-3’) sequences were 

synthesized (IDT) and cloned into FG12 vectors (Qin PNAS 2003).  Lentiviral 

particles were then produced by co-expressing the FG12 constructs with lentiviral 

VSVg, Rev, and GAGPOL vectors in HEK293T cells (180, 181).  Lentiviral 

transduction and gene expression were assessed by GFP fluorescence and semi-

quantitative RT-PCR for DJ-1, Cezanne, and β-actin respectively. 

 

Affymetrix Analysis.  RNA was harvested from H157 cells transduced with DJ-1, 

Cezanne, or mutant control shRNA lentivirus using the RNeasy RNA extraction kit 

(Qiagen).  After RNA quality assessment using an Agilent Bioanalyzer (Agilent), a 

custom cDNA kit was used with a T7-(dT)24 primer to produce cDNA (Life 

Technologies).  Biotinylated cRNA was then generated from the cDNA using the 

BioArray High Yield RNA Transcript Kit (Enzo Biotech).  The cRNA was then 

fragmented in 40mM Tris-acetate, pH8.1, 100mM KOAc, 30mM MgOAc at 94oC for 

35 minutes before the chip hybridization.  The cRNA was added to a hybridization 

cocktail (50 pM control oligonucleotide B2, BioB, BioC, BioD, and cre hybridization 

controls, 0.1 mg/ml herring sperm DNA, 0.5 mg/ml acetylated BSA, 100mM MES, 

1M Na+, 20mM EDTA, 0.01% Tween 20) and hybridized for 16 hours at 45°C on a 

GeneChip Human Gene 1.0 ST Array (Affymetrix).  The arrays were washed and 

stained with R-phycoerythrin streptavidin in the GeneChip Fluidics Station 400 

(Affymetrix).  After this, the arrays were scanned with the Hewlett Packard 
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GeneArray Scanner (HP).  Affymetrix GeneChip Microarray Suite 5.0 software was 

used for washing, scanning, and basic analysis.  Sample quality was assessed by 

examination of 3’ to 5’ intensity ratios of certain genes.  Final filtering and analysis of 

the raw data was performed using Genespring GX (Agilent).  We eliminated dots 

with < 20 percentile intensity, averaged the dot intensities of the three mutant control 

samples, and calculated fold changes on hits shared between the shDJ-1 and 

shCezanne experimental groups.  The fold change cut off was set at > 1.7. 

 

In vitro De-ubiquitination Assay.  Vectors for production of recombinant DJ-1 and 

Cezanne were produced by cloning DJ-1 and Cezanne ORFs into the 6x His-tagged 

pQE-82L (Qiagen) and pET101D (Invitrogen) vectors respectively.  Following 

transformation into BL21 star (Invitrogen) E.coli, log phase bacterial cultures were 

stimulated with 1 mM Isopropyl β-D-1-thiogalactopyranoside (Sigma) for 5-6 hours.  

The bacteria were lysed by sonication in the presence of hen egg lysozyme (Sigma) 

and benzonase (Novagen) and the target recombinant proteins were purified using a 

Ni-NTA agarose (Invitrogen) column.  Recombinant protein expression and purity 

were assessed by Coomassie staining and Western blot.  The K48-linked ubiquitin 

chains (Ub2-16) and recombinant IsoT were purchased (Biomol).  Each sample 

containing 1µg of ubiquitin chains and the appropriate proteins was incubated at 

37°C for 6 hours in de-ubiquitination buffer (50 mM hepes pH 7.8, 0.5mM EDTA, 

0.01% Brij 35, 3 mM DTT) and ubiquitin chain degradation was assessed by 

Western blot. 
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Western Blot Analysis and Immunoprecipitation.  For Western blots, cells were 

lysed in RIPA buffer with protease inhibitors (Roche).  Lysate protein concentrations 

were assessed by BCA (Pierce) and equilibrated through addition of RIPA buffer, 

NuPAGE LDS loading buffer (Invitrogen), and DTT.  After brief sample boiling, 

proteins were separated by molecular weight on NuPAGE 4-12% gradient SDS-

PAGE gels (Invitrogen) and transferred to a nitrocellulose membrane (Biorad) that 

was subsequently blocked using 5% non-fat dry milk in TBS with 0.1% Tween-20.  

Primary antibodies used for blotting were anti-FLAG™ M2-HRP (Sigma), anti-V5-

HRP (Invitrogen), anti-β-actin-HRP C11 (Santa Cruz), Cezanne rabbit polyclonal, 

DJ-1 rabbit polyclonal, HDAC2 (Santa Cruz), anti-ubiquitin P4D1 (Santa Cruz), and 

anti-ICAM-1 EP1442Y (Abcam).  Goat anti-mouse-HRP and goat anti-rabbit HRP 

antibodies were used as secondary antibodies (Santa Cruz). 

Samples for immunoprecipitation were lysed in 0.5% Tx-100 lysis buffer 

(0.5% Tx-100, 150 mM, NaCl, 50mM Tris, 50mM NaF, 2mM EDTA), cleared by 

centrifugation, and precipitated overnight with appropriate beads at 4°C.  V5-tagged 

and FLAG™-tagged proteins were precipitated using V5- (Invitrogen) or FLAG™-

(Sigma) conjugated beads respectively while endogenous DJ-1 was precipitated 

using a custom DJ-1 4D1.3 mouse monoclonal antibody and protein A/G beads 

(Pierce).  After overnight incubation, the samples were washed with 0.5% Tx-100 

lysis buffer and eluted in 2x LDS loading buffer with DTT at 90°C.  Input and eluate 

samples were then analyzed by Western blot for expression and protein association.  

Nuclear and cytoplasmic fractionation was performed using the NE-PER 

fractionation kit (Pierce) as per the manufacturer’s instructions.   
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Real-Time and Reverse Transcriptase semi-quantitative PCR.  Real-Time PCR 

was performed using an ABI 7900HT PCR system (Applied Biosystems) in a 384-

well, 15µL sample format with Taqman Universal PCR master mix (Applied 

Biosystems).  Pre-validated Taqman primer and probe sets against human/mouse 

ICAM-1, mouse GAPDH, human IL-8, and human β-actin were purchased from ABI.  

Real-time runs and data analysis were performed using the SDS software (Applied 

Biosystems).  Total RNA was isolated from cells using RNeasy kits (Qiagen) and 

quantified using a Nanodrop ND-1000 (Nanodrop).  CDNA reactions used 2µg of 

total RNA with MMLV (Invitrogen) primed with oligo dT (IDT) in the presence of 

RNasin (Promega).  Semi-quantitative PCR was carried out using 2µL of the cDNA 

reaction with primers against human DJ-1 (5’- ATGTCATGAGGCGAGCTG-3’, 5’- 

ATTTTGTCTTTAGCAAGAGGG-3’), human Cezanne (5’- 

TGGCAGACACCATGCTGAGGG-3’, 5’- CGCTTTGACTTCTCCTTCCGC-3’), 

human β-actin (5’- ATCTGGCACCACACCTTCTACAATGAGCTGCG-3’, 5’ 

CATACTCCTGCTTGCTGATCCACATC-3’), mouse ICAM-1 (5’- 

CAGTCCGCTGTGCTTTGAGAACTGT-3’, 5’- 

GGTATATCCGAGCTTCAGAGGCAGG-3’), mouse DJ-1 (5’- 

GGAGCAGAGGAGATGGAGACAGTGA-3’, 5’- 

CGCGGCTCTCTGAGTAGCTGTAGTGA-3’), and mouse GAPDH (5’- 

CCACTCACGGCAAATTCAACGGCACAG-3’, 5’- 

GTGGCAGTGATGGCATGGACTGTGGTC-3’).  The number of cycles run on the 

Mastercycler (Eppendorf) was dependent on the target (GAPDH/β-actin, 17; DJ-1, 

21; Cezanne/ICAM-1, 25). 
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Figure 2.1     Overview of Q-TOF mass spectrometry results.  (A)  Schematic of Q-

TOF MS experimental design.  Park7-/- MEFs were transfected with FLAG™-tagged 

DJ-1 or C106A mutant DJ-1 and either left untreated or treated with 100µM H2O2 for 

1 hour.  After treatment, the samples were immunoprecipitated with FLAG™ 

agarose, eluted with FLAG™ peptide, and analyzed by mass spectrometry.  (B)  

Peptide spectra for Cezanne, one of the four proteins found to interact with DJ-1 

shown in Table 1.  
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Table 2.1     DJ-1-binding proteins identified by mass spectrometry. 

Gene Name Known Functions 

BBS1 Bardet-Biedl syndrome 1 Associated with syndrome characterized by  
retinitis pigmentosa, polydactyly, and obesity 

CLCF1 Cardiotrophin-like 
cytokine factor 1 Cytokine in Interleukin 6 family 

MTREF MTREF domain 
containing 1 Mitochondrial transcription termination factor 

OTUD7B Cezanne/Za20d1 De-ubiquitination enzyme, inhibits NF-κB 
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Figure 2.2     DJ-1 binds to Cezanne and inhibits Cezanne’s de-ubiquitinating 

activity.  (A)  Co-immunoprecipitation to verify interaction between overexpressed 

DJ-1 and Cezanne.  Cells were transfected with FLAG™-epitope tagged DJ-1 in the 

presence or absence of V5-tagged Cezanne.  After immunoprecipitation with anti-V5 

agarose, input controls and the IP samples were analyzed by immunoblot with the 

antibodies indicated.  (B)  Endogenous co-immunoprecipitation to verify an 

endogenous interaction of DJ-1 and Cezanne.  Cells were either left untreated or 

treated with 100µM H2O2 for 1 hour and immunoprecipitated with either a mouse 

monoclonal antibody against DJ-1 or mouse control IgG in the presence of protein 

A/G beads.  After immunoprecipitation, input controls and IP samples were analyzed 

by immunoblot with the indicated antibodies.  (C)  Hemi-endogenous co-

immunoprecipitation to assess the effect of the C106 or L166 mutation on DJ-1’s 

interaction with endogenous Cezanne.  Wild type, C106A, and L166P DJ-1 were 

overexpressed in HEK293T cells.  Following a 1 hour 100µM H2O2 treatment, the 

wild type and DJ-1 mutants were immunoprecipitated with FLAG™ agarose and 

input controls and IP samples were assessed by immunoblot.  (D/E)  Hemi-

endogenous co-immunoprecipitation to identify which portion of DJ-1 binds 

endogenous Cezanne.  DJ-1 truncation mutants shown in (D) were overexpressed in 

HEK293T cells.  After a 1 hour treatment with 100µM H2O2, the samples were 

immunoprecipitated with Flag agarose and immunoblot was used to assess the input 

controls and IP samples.  (F)  In vitro de-ubiquitination assay.  Synthetic ubiquitin 

chains were incubated with recombinant Cezanne or IsoT in the presence or 
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absence of DJ-1 at 37°C in assay buffer.  After incubation, the samples were 

analyzed for ubiquitin chain degradation by immunoblot. 
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Figure 2.3     Affymetrix microarray analysis of cells with DJ-1 or Cezanne shRNA.  

(A)  Semi-quantitative RT-PCR confirming reduced expression with DJ-1 or Cezanne 

shRNA in appropriate samples transduced with lentivirus.  (B)  Venn diagram 

showing the number of genes up or downregulated with DJ-1 or Cezanne shRNA.  

The raw intensities of replicate samples were averaged and filters were set for > 20 

percentile intensity using a cutoff of > 1.7 fold as compared to the averaged negative 

control sample.  (C)  Graph showing the raw intensity results from the microarray 

after analysis for IL-8 and ICAM-1, the only characterized targets differentially 

regulated by DJ-1 and Cezanne. 
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Table 2.2     Overview of genes regulated by DJ-1 and Cezanne. 

Genes downregulated with DJ-1 and Cezanne shRNA 
Probe shDJ-1 shCez3 Gene Description 
7969339 -1.91 -1.98   
8059186 -1.78 -2.56 Protein tyrosine phosphatase Receptor N 
8076094 -1.84 -1.78   

8174985 -2.18 -1.85 SWI/SNF related, matrix assoc, actin-dep regulator 
of chromatin A1 

Genes upregulated with DJ-1 and Cezanne shRNA 
Probe shDJ-1 shCez3 Gene Description 
7964834 1.99 2.22 Carboxypeptidase M 

8021635 2.70 2.49 Serpin peptidase inhibitor, clade B (ovalbumin), 
member 2 

Genes downregulated with DJ-1 and upregulated with Cezanne shRNA 
Probe shDJ-1 shCez3 Gene Description 

8025601 -1.92 1.72 Intercellular adhesion molecule 1 (CD54), human 
rhinovirus receptor 

8091678 -2.04 2.03 Ventricular zone expressed PH domain homolog 1 
(zebrafish) 

8095680 -1.95 1.84 Interleukin 8 
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Figure 2.4     Effect of Cezanne shRNA on expression of Nrf2 targets.  Microarray 

results from H157 cells treated with Cezanne shRNA as compared to control shRNA 

were evaluated using Ingenuity® pathway analysis (Ingenuity Systems).  Genes 

found to be changed with Cezanne shRNA are overlaid on the Nrf2 pathway.  Genes 

in red are increased in the presence of Cezanne shRNA while unmarked genes are 

unchanged.  AKR and Hsp22/40/90 were increased 1.407 and 1.311 fold 

respectively but did not meet our 1.7 fold cut off. 
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Figure 2.5     DJ-1 and Cezanne regulate IL-8 and ICAM-1 at the transcript and 

protein levels.  (A)  Real-time PCR for IL-8 and ICAM-1 in H157 cells with DJ-1 and 

Cezanne knockdown.  RNA was harvested from DJ-1, Cezanne, and control shRNA 

treated samples and used to produce cDNA.  The ΔΔCt method was used to 

calculate fold changes based on differences in cycle number as compared to 

matched β-actin controls and mutant samples.  (B)  Transduced H157 cultures were 

incubated with fresh media for 6 hours, supernatants were collected, and secreted 

IL-8 levels were assessed by ELISA.  (C)  H157 cultures transduced with lentivirus 

were treated with increasing doses of TNFα for 6 hours and assessed for ICAM-1 

protein levels by immunoblot.  (D)  Nuclear and cytoplasmic fractions collected from 

transduced H157 cultures were assessed for nuclear p65 by immunoblot.  HDAC2 

and β-actin were used as controls for loading and fractionation respectively.  (E)  

Transduced H157 cultures were treated with 500nM Paclitaxel and 10µM U0126 for 

24 hours.  After treatment, the samples were collected and tested for cell death 

using a histone-based cell death ELISA.  Untreated samples were used to control for 

cell turnover.  Data expressed as fold change compared to mutant shRNA control 

samples. 
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Figure 2.6     ICAM-1 is regulated by DJ-1 and Cezanne in primary MEFs.  (A)  RT-

PCR was used to assess the effects of DJ-1 deletion on ICAM-1 expression.  

Park7+/+ and Park7-/- MEFs were plated and treated with 0, 10, or 50ng/mL of TNFα 

for 6 hours.  After treatment, RNA was harvested and ICAM-1 levels were assessed 

by RT-PCR using DJ-1 to verify the genotype and GAPDH to show equal loading. 

(B)  Real time PCR assessing the effects of Cezanne shRNA on ICAM-1 expression 

in primary MEFs.  Park7+/+ MEFs were transduced with lentivirus carrying Cezanne 

or a mutant shRNA construct.  The samples were treated with 50ng/mL of TNFα for 

6 hours, RNA was harvested, and real time PCR was performed to assess ICAM-1 

expression and induction.  Fold changes were calculated by the ΔΔCt method using 

GAPDH as a reference control in matched samples.
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3.1  Abstract 

Cancer is the second leading cause of mortality in the United States.  The 

ability of cancer cells to survive without growth factors or in the presence of pro-

apoptotic factors is one of the hallmarks of cancer pathogenesis.  This ability to 

survive is, in part due to the activation of pro-survival pathways.  Due to their 

promotion of cell survival, both Nrf2 and NF-κB are aberrantly activated in human 

carcinomas.  While they are activated by overlapping stimuli and lead to a similar 

cellular outcome, Nrf2 and NF-κB have been found to antagonize each other through 

direct and indirect mechanisms.  In this chapter, we identify a new mechanism of 

crosstalk between these two pathways.  We show that two inhibitors of Nrf2 and NF-

κB, Keap1 and A20 respectively, interact leading to an increase in Keap1 

ubiquitination.  As expected, Keap1 protein levels and Nrf2 target transcription are 

increased in the absence of A20.  Paradoxically, Nrf2 protein levels increase in A20-/- 

MEFs.  The increase of NF-κB activity in the absence of A20 and the ability of NF-κB 

to inhibit Nrf2 in this cell type suggests that the effect of A20 on the Nrf2 pathway is 

obscured in this cell type due to this increase in NF-κB activity.  While the 

consequences of the A20/Keap1 interaction are not elucidated due to the complex 

interplay between Nrf2 and NF-κB, this represents a novel mechanism by which Nrf2 

and NF-κB may regulate one another.  Future studies elucidating this crosstalk may 

identify novel targets for cancer therapy. 
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3.2  Introduction 

Cancer pathogenesis is based on the unchecked growth of cells in the 

context of DNA damage.  The current multi-hit hypothesis of cancer development is 

based on the accumulation of a series of mutations leading to the hallmarks of 

cancer including resistance to apoptosis, lack of requirement for growth factors, 

angiogenesis, and limitless replication potential.  Unchecked oxidative stress is a 

well known cause of somatic mutations.  Oxidative stress is caused by a variety of 

stimuli including UV radiation from the sun, oxygen, and chronic inflammation.  The 

association between chronic inflammation, oxidative stress, DNA damage, and 

cancer pathogenesis has been well established in many human cancers including 

colon and lung cancer.  While the inflammatory and antioxidant stress responses are 

regulated by a number of factors, two prominent transcription factors that control 

these responses are NF-κB and Nrf2 respectively.  While both of these proteins 

promote cell survival, an antagonistic interplay has been uncovered between these 

two pathways.  Elucidation of the mechanisms of this crosstalk is critical in 

understanding the modulation of inflammation and oxidative stress as they pertain to 

cancer pathogenesis. 

The cap 'n' collar basic leucine zipper transcription factor Nrf2 is a master 

regulator of cellular anti-oxidant stress response (98, 182).  In non-oxidative 

conditions, Nrf2 is found in the cytoplasm bound to its cytoplasmic inhibitor Keap1 

(92).  While Keap1 sequesters Nrf2 in the nucleus, it also aids in the ubiquitination of 

Nrf2 in a cullin3-dependent manner causing the degradation of Nrf2 by the 

proteosome (93, 94).  In this manner, Nrf2 is regulated by both its cellular location 
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and constant baseline degradation.  In oxidative conditions, Nrf2 is released from 

Keap1 and trans-locates to the nucleus.  In the nucleus, Nrf2 binds small Maf 

proteins and recruits co-activators to anti-oxidant response elements (ARE) on DNA 

(95, 96).  Through this binding, Nrf2 inducing target gene transcription.  Nrf2 targets 

proteins of small molecule antioxidant pathways, antioxidant proteins, and 

detoxification enzymes (97, 98).   

These downstream effectors, such as SOD3 and NQO1, detoxify the reactive 

oxygen species (ROS) thus promoting cell survival.  This detoxification prevents 

ROS produced by inflammation or cellular metabolism from causing DNA damage 

through direct oxidation of nucleotides including formation of oxidized thymine and 

thymine dimers.  Loss of Nrf2 activity has been shown in mouse models of skin and 

colorectal cancer to speed the onset and increase the incidence, multiplicity, and 

size of tumors (183, 184).  Blocking DNA damage by activation of Nrf2 would 

therefore seem like an attractive option to prevent tumor formation.  Unfortunately, 

modulation of Nrf2 to treat cancer is a double-edged sword.  While activation of Nrf2 

would theoretically inhibit the mutations that lead to cancer, many cancers actually 

have increased Nrf2 levels that are associated with enhanced cancer cell survival 

and resistance to chemotherapeutics. 

Nrf2 is expressed at higher levels in both human head and neck squamous 

cell carcinomas and pancreatic cancer when compared to normal cells (185, 186).  

This increase in Nrf2 activity confers protection of the cancer cells from multiple 

chemotherapeutics including cisplatin, tamoxifen, etoposide, 5-fluorouracil (187-

190).  Nrf2 accomplishes this in two ways.  First, Nrf2 causes the detoxification of 
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the chemotherapeutic compound.  The downstream targets of Nrf2, including phase 

II detoxification enzymes, have evolved to render toxic substances like 

chemotherapeutics harmless.  One target of Nrf2, HO-1, has specifically been 

shown to confer resistance to cisplatin.  Inhibition of HO-1 by siRNA or the HO-1 

specific inhibitor ZnPP augments cisplatin cytotoxicity in the A549 non-small cell 

lung carcinoma cell line (191).  Second, Nrf2 induces the expression of transporters 

that export drugs out of the cancer cell.  Multiple members of the ABC superfamily of 

drug transporters, such as MRP2-4 and ABCC2, are induced by Nrf2 (188, 192).  

Expression of these transporters leads to the export of chemotherapeutics, 

decreasing intracellular drug concentrations, and enhancing cancer cell survival. 

While Nrf2 overexpression due to gene duplication occurs in certain cancers, 

mutations in either Nrf2 or Keap1 are more common.  Mutations of Nrf2 or Keap1 

have been found in lung, breast, and squamous cell carcinomas of the esophagus 

and skin (193-195).  These mutations cluster in the domains of Nrf2 and Keap1 that 

mediate their interaction, namely the Neh2 domain of Nrf2 as well as the DGR and 

ETGE motifs of Keap1.  Mutation of these interaction domains impairs Keap1’s 

ability to inhibit Nrf2, thus increasing Nrf2 activity.  Keap1 mutation is of particular 

interest as this may also lead to the downstream activation of the cancer-associated 

transcription factor NF-κB.  A group recently reported that Keap1 downregulates NF-

κB signaling by the ubiquitination and degradation of IKKβ, a known positive 

regulator of NF-κB (168).  Mutations in the protein binding motifs of Keap1 may 

inhibit this activity causing the downstream activation of NF-κB in addition to Nrf2 

activation in cancer cells. 
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NF-κB is one of the most studied transcription factors involved in the 

inflammatory response.  Inactive NF-κB is found sequestered in the cytoplasm 

bound to IκB (102).  Activation of multiple receptors can lead to the activation of NF- 

κB including growth factor receptors, Toll-like receptors, and pro-inflammatory 

cytokine receptors such as the TNFα receptor.  Binding of TNFα to its receptor leads 

to the intracellular recruitment of positive regulators of NF-κB such as RIP1 and 

TRAF6 (103, 104).  The downstream effect of these regulators is the activation of 

the IKK complex (105).  Activation of this complex leads to the phosphorylation and 

degradation of IκB releasing NF-κB from its inhibition.  NF-κB translocates to the 

nucleus where it induces the transcription of a myriad of genes involved in 

inflammation and cell survival.  A subset of these genes inhibits and thus controls 

the NF-κB activation.  One such gene is A20 (136, 137).  A20, an ubiquitin-editing 

enzyme, removes activating ubiquitin from RIP1 and TRAF6 and replaces it with 

degradative ubiquitin (141).  This decrease in RIP1 and TRAF6 protein levels by A20 

constitutes a negative feedback loop to keep NF-κB activity in check. 

Due to NF-κB’s effect on cell survival, it is therefore not surprising that certain 

cancers have hijacked this pathway to promote their own survival.  Although 

activation of NF-κB through direct mutation can be found in certain cancers, most 

aberrant activation of NF-κB in cancer is caused by changes in upstream signaling.  

One example is the mutation or deletion of A20 which has been seen in multiple 

human cancers (143-146).   This increase in NF-κB activity promotes cell survival 

through the action of NF-κB targets.  These targets include well known oncogenes 

including cyclin D, Bcl-2, and inhibitors of apoptosis (IAPs) which promote cell 
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division, stimulate cell survival, and inhibit apoptosis respectively (108-110).  NF-κB 

also regulates other hallmarks of cancer including angiogenesis, through IL-8 

secretion, and metastasis, through regulation of ICAM-1 levels (115-118, 121, 123, 

133). 

Although Nrf2 and NF-κB are both activated in cancers and lead to cell 

survival, a growing number of papers have found that these pathways antagonize 

each other at multiple levels.  Nrf2 does not inhibit NF-κB directly but through its 

downstream targets.  Four targets of Nrf2, HO-1, NQO1, thioredoxin, and Keap1, 

inhibit NF-κB (156, 166, 167).  It is still not clear whether the inhibition of NF-κB by 

HO-1, NQO1, and thioredoxin is due to direct inhibition of NF-κB or through the 

inhibition of ROS levels.  As ROS activates NF-κB, detoxification of ROS by the 

downstream targets of Nrf2 may indirectly inhibit NF-κB activity (165).  Keap1, on the 

other hand, directly inhibits the NF-κB pathway by targeting IKKβ for degradation 

(168).  NF-κB inhibits Nrf2 both directly and through its downstream targets.  The 

p65 subunit of NF-κB inhibits Nrf2 activity in the nucleus in two ways.  First, p65 

binds to CBP depriving Nrf2 of this necessary co-activator (169).  Second, p65 

causes the recruitment of HDAC3 to ARE sites (169).  This recruitment causes the 

de-acetylation and thus silencing of Nrf2 target genes.  NF-κB also inhibits Nrf2 

through target genes.  COX-2, a target of NF-κB, has also been shown to inhibit Nrf2 

although the mechanism of this inhibition is still poorly understood (170). 

In this chapter, we will outline a novel pathway by which Nrf2 and NF-κB may 

interact.  While screening for interacting proteins within these pathways, A20 and 

Keap1 were found to interact by co-immunoprecipitation of ectopically-expressed or 
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hemi-endogenous proteins.  Binding by A20 was found to increase Keap1 

ubiquitination and decrease Keap1 protein levels.  As expected, this increase in 

Keap1 protein levels is associated with a decrease in the known Nrf2 targets 

TRXR1, NQO1, and GCLM.  Paradoxically, an increase in total and nuclear Nrf2 

levels was seen in the absence of A20.  This suggests that Nrf2 pathway is being 

activated but there is an additional factor(s) that inhibits the nuclear Nrf2 in the A20-/- 

MEFs.  We hypothesize that hyperactivity of NF-κB in the A20-/- cells is responsible 

for these findings as NF-κB is known to induce Nrf2-activating ROS and inhibit Nrf2 

in the nucleus.  As a whole, this work identifies a new pathway of crosstalk between 

Nrf2 and NF-κB, but the significance of this pathway is obscured in the cell type 

used due to NF-κB hyper-activation. 
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3.3  Results 

 

A20 binds Keap1, the cytoplasmic inhibitor of Nrf2 

Previous data in the lab showed an interaction between DJ-1 and Cezanne.  

Due to the sequence homology as well as the overlap in function between Cezanne 

and A20, we were interested if A20 bound DJ-1 or any other proteins in the DJ-

1/Nrf2 pathway.  While no interaction was seen between A20 and DJ-1 or Nrf2 (data 

not shown), overexpressed A20 was found to interact with the Nrf2 inhibitor Keap1 

as detected by co-immunoprecipitation (Fig. 3.1A).  HEK293T cells were transfected 

with FLAG-A20 with or without Keap1-V5.  Keap1-V5 was immunoprecipitated using 

V5-agarose and the eluates were analyzed by immunoblot.  Immunoblot for Fg-A20 

in the eluate samples showed the immunoprecipitation of Fg-A20 in the presence of 

Keap1-V5 but not in its absence showing an interaction between overexpressed A20 

and Keap1.  We analyzed input samples with β-actin, V5-HRP, and FLAG-HRP 

antibody to ensure equal loading and appropriate overexpression of tagged 

constructs.   

To confirm an A20/Keap1 interaction in a more physiologic system, we 

utilized a hemi-endogenous co-immunoprecipitation assay.  HEK293T cells were 

transfected with Fg-A20 or an empty vector control.  Following transfection, the 

samples were immunoprecipitated with FLAG-agarose and the eluates were 

evaluated by immunoblot.  Immunoblot using endogenous Keap1 antibody showed 

immunoprecipitation of Keap1 in the presence of A20 overexpression but not in its 
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absence showing an interaction between endogenous Keap1 and overexpressed 

A20 (Fig. 3.1B).  We used input controls to ensure equal loading and A20 

overexpression in appropriate samples. 

 

A20 ubiquitinates Keap1 and targets it for degradation 

After confirmation of an interaction between A20 and Keap1, we began to 

study the consequences of this interaction.  Both Keap1 and A20 regulate the 

ubiquitin status of their binding partners.  The difference in their function is that 

Keap1 is an E3 ligase adaptor protein for the CUL3/RBX1 E3 ligase complex while 

A20 itself has E3 ligase activity.  Keeping this in mind, we decided to start by 

examining the effects of A20 on Keap1 ubiquitination.  HEK293T cells were 

transfected with overexpression vectors for Keap-V5, FLAG-A20, and HA-Ub.  

These samples were left untreated or treated with the Nrf2 activator tBHQ for 5 

hours to induce Keap1 ubiquitination.  We then lysed and boiled the samples in 

denaturing conditions to release all non-covalent interactions.  After lysis buffer 

dilution to restore non-denaturing conditions, the samples were immunoprecipitated 

with V5-agarose and analyzed by V5 and HA immunoblot.  V5 immunoblot showed 

relatively equal levels of Keap1 overexpression in Keap1-V5 transfected samples.  

The HA immunoblot showed 3 main findings.  First, tBHQ treatment did increase 

Keap1 ubiquitination as expected.  Second, lack of HA signal in the samples without 

Keap-V5 overexpression shows that the HA-Ub observed in samples containing 

transfected Keap1-V5 is specific for Keap1.  Third, an increase in Keap1-V5 
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ubiquitination was seen in the samples in which FLAG-A20 was also overexpressed 

(Fig. 3.2A).  Although this difference was more pronounced in the tBHQ treated 

samples, a modest increase in Keap1-V5 ubiquitination with A20 overexpression 

was seen in the vehicle control samples.  This suggests that A20 ubiquitinates 

Keap1, either directly or indirectly.  As the E3 ligase activity of A20 is thought to be 

restricted to K48-linked degradative ubiquitin, we hypothesized that this activity of 

A20 would increase K48-linked Keap1 ubiquitination, increasing Keap1 degradation 

and thus decreasing Keap1 levels. 

As no overt changes in Keap1 expression were seen in the overexpression 

systems, we changed to a fully endogenous system to assess the effect of A20 

expression on Keap1 protein levels.  In this endogenous system, we expected to see 

an increase in Keap1 protein levels in the absence of A20-mediated ubiquitination 

and degradation.  A20+/+ and A20-/- MEF cultures were lysed and analyzed by 

immunoblot.  After verifying equal loading using β-actin as a loading control, we saw 

an increase in Keap1 protein levels in A20-/- MEFs as compared to A20+/+ MEFs as 

expected (Fig. 3.2B).  This agrees with our hypothesis that A20 induces the 

degradation of Keap1.  We also evaluated the levels of Keap1 in the presence of 

tBHQ treatment.  A20+/+ and A20-/- MEF cultures were either left untreated or treated 

with tBHQ for 6 hours.  These cultures were lysed and analyzed for Keap1 

expression by immunoblot using a non-specific band as a loading control.  Although 

an increase in Keap1 levels was expected with tBHQ treatment, as Keap1 is 

transcribed by Nrf2, no change in Keap1 levels was seen with this treatment (Fig. 

3.2C).  This may be due to a balance between increased Keap1 degradation and 
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Nrf2-mediated induction of Keap1 transcription.  This assay did confirm an increase 

in Keap1 levels in the absence of A20. 

 

Expression of Nrf2 target genes is decreased in A20-/- MEFs 

As Keap1 is the major inhibitor of Nrf2 activity, the increase in Keap1 protein 

levels in A20-/- MEFs should be accompanied by a decrease in Nrf2 activity and thus 

a decrease in the mRNA expression of Nrf2 targets.  To test this, we extracted RNA 

from A20+/+ and A20-/- MEFs during a time course with tBHQ.  We produced cDNA 

from these RNA samples and assessed the mRNA levels of 3 genes transcriptionally 

regulated by Nrf2 by RT-PCR.  Induction of TRXR1, NQO1, and GCLM by tBHQ 

was seen in the A20+/+ MEFs showing their dependence on Nrf2 (Fig. 3.3A).  A 

significant decrease in the mRNA levels of TRXR1, NQO1, and GCLM was seen in 

the A20-/- MEFs as compared to the A20+/+ MEFs suggesting a decrease in Nrf2 

activity as expected from the previous Keap1 expression data. 

 

Paradoxically, nuclear Nrf2 protein levels are increased in A20-/- MEFs 

With the decrease in Nrf2 activity seen in A20-/- MEFs, we expected to see an 

associated decrease in Nrf2 protein levels.  We treated A20+/+ and A20-/- MEFs with 

tBHQ and TNFα as indicted for 6 hours.  After treatment, the samples were lysed 

and analyzed by immunoblot.  Surprisingly, Nrf2 protein levels were actually 

increased in the A20-/- MEFs as compared to A20+/+ MEFs in the tBHQ treated 
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samples (Fig. 3.4A).  This increase in Nrf2 levels was further highlighted in the 

tBHQ/TNFα treated samples.  Immunoblot for β-actin shows even loading across all 

the samples.  One possible explanation for this paradox is that the increased Nrf2 

might not be located in the nucleus where transcriptional activation takes place, we 

performed further experimentation which showed that this Nrf2 was exclusively 

nuclear (Fig. 3.4B). 

These data lead to two conclusions.  First, there must be a signal in the A20-/- 

MEFs that leads to the translocation of Nrf2 to the nucleus where is it is protected 

from Keap1-mediated degradation.  We hypothesized that increased ROS may be 

activating the Nrf2 pathway in this cell type as activation of NF-κB, in this case by 

TNFα and the absence of A20-mediated inhibition, can lead to increased intracellular 

ROS levels.  To test this hypothesis, we examined ROS levels using DHR123 in 

A20+/+ and A20-/- MEFs that had been treated with H2O2 or left untreated.  We saw 

no difference in ROS levels in the untreated MEFs (Fig. 3.5 top panel), but a modest 

increase in ROS levels was seen in A20+/+ MEFs as compared to A20-/- MEFs with 

H2O2 treatment (Fig. 3.5 bottom panel).  This data suggests that while an increase in 

nuclear Nrf2 is seen in A20-/- MEFs it is not due to an increase in ROS levels.  While 

further experiments using TNFα and tBHQ would be needed to completely rule this 

out, the current data shows that the nuclear translocation of Nrf2 is caused by a non-

oxidative process.  This is not entirely surprising as Nrf2 can be activated by non-

oxidative stimuli such as tBHQ.   

The second conclusion drawn from this data is that the Nrf2 seen in the 

nucleus of A20-/- MEFs is inactive as it does not induce the transcription of its 
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downstream targets (see Fig. 3.3).  This suggests that Nrf2 is either intrinsically 

inactive in this cell type or a protein is inhibiting Nrf2’s activity in the nucleus.  As 

there is nothing in the literature to suggest that the absence of A20 would cause an 

intrinsic defect in Nrf2 activity, we focused on nuclear proteins that may be causing 

the inactivation of Nrf2.  The tie between A20 and NF-κB lead us to further 

investigate the relationship between nuclear Nrf2 and NF-κB. 

 

Increased NF-κB activity inhibits nuclear Nrf2 in A20-/- MEFs 

In the absence of A20-mediated inhibition, NF-κB’s activity is increased.  

Based on the literature, we therefore hypothesized that increased NF-κB activity was 

responsible for the inhibition of nuclear Nrf2 in A20-/- MEFs.  We first confirmed that 

NF-κB activity was indeed increased with A20 knockout in MEFs.  RNA was 

extracted from A20+/+ and A20-/- MEFs that were treated with a time course of TNFα.  

CDNA produced from that RNA was used to assess the expression of two targets of 

NF-κB, namely ICAM-1 and VCAM-1, by RT-PCR.  Equal loading between samples 

was verified using GAPDH as a control.  We saw an increase in ICAM-1 and VCAM-

1 expression in the A20-/- MEFs as compared to A20+/+ MEFs at all TNFα-treated 

time points suggesting an increase in NF-κB activity in the absence of A20 as 

expected (Fig. 3.6A). 

When these experiments were completed, only one publication had showed 

that NF-κB could inhibit Nrf2 in the nucleus.  As this work was done in a different cell 

type, we set out to confirm inhibition of Nrf2 by NF-κB in MEFs.  We obtained p65+/+ 
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and p65-/- MEFs and assessed their Nrf2 activity by luciferase.  After transfecting the 

MEFs with Nrf2 reporter and p65 overexpression vector as indicated, we left the 

cultures untreated or treated them with tBHQ overnight.  We found that Nrf2 activity 

was significantly increased in the p65-/- MEFs as compared to p65+/+ control MEFs 

and that this activation of Nrf2 could be abrogated with overexpression of p65 (Fig. 

3.6B).  This confirmed that NF-κB inhibits Nrf2 activity in MEFs and may be the 

cause of the inhibition of nuclear Nrf2 seen in the A20-/- MEFs. 
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3.4  Discussion 

Both Nrf2 and NF-κB are known to be aberrantly activated in human 

carcinomas (113, 183, 184).  Typically activated in response to oxidative stress, Nrf2 

induces a host of detoxification enzymes in cancer cells.  These enzymes can 

detoxify chemotherapeutics rendering them harmless and preventing cancer cell 

death.  NF-κB stimulates cancer cell proliferation and survival through the 

expression of numerous gene targets including cyclin D, Bcl-2, and IAPs (108-110).  

Other targets of NF-κB, such as IL-8 and ICAM-1, play a role in angiogenesis and 

cancer progression (121, 124, 135).  The Nrf2 and NF-κB pathways have many 

things in common.  They can both be activated by similar stimuli, they both promote 

cell survival, and they share some downstream transcriptional targets.  Even with all 

these similarities, Nrf2 and NF-κB antagonize each other through multiple 

mechanisms. 

Although Nrf2 does not directly inhibit NF-κB, it does indirectly inhibit NF-κB in 

two ways.  First, Nrf2 activity decreases intracellular levels of ROS, a known positive 

regulator of NF-κB activity.  Second, Nrf2 induces the transcription of Keap1, HO-1, 

NQO1, and TRX which have been shown to inhibit NF-κB under certain conditions 

(156, 166, 167).  NF-κB indirectly inhibits Nrf2 through a downstream target as COX-

2, a gene induced by NF-κB, has been shown to inhibit Nrf2 activity (170).  NF-κB 

also inhibits Nrf2 directly through 2 ways.  First, NF-κB binds to CBP preventing it 

from acting as a co-activator for Nrf2 (169).  Second, NF-κB recruits HDAC3 to ARE 

sites (169).  By recruiting this deacetylase, NF-κB can epigenetically silence Nrf2 

targets. 
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In this chapter, we identified another mechanism by which Nrf2 and NF-κB 

may regulate one another.  When activated, Nrf2 and NF-κB induce Keap1 and A20 

expression respectively.  Keap1 and A20 inhibit their respective transcription factor 

completing separate negative feedback loops.  Using co-immunoprecipitation, we 

found that A20 binds overexpressed and endogenous Keap1.  The consequence of 

this interaction is an increase in Keap1 ubiquitination.  This ubiquitination is 

presumably K48-linked degradative ubiquitin as Keap1 levels were seen to be 

increased in A20-/- MEFs as compared to wild type MEFs in the presence or 

absence of stimulation.  As expected, this increase in Keap1 protein levels 

correlated with a decrease in Nrf2 activity as assessed by RT-PCR analysis of 

multiple Nrf2 targets.   

Surprisingly, we found an increase in total and nuclear Nrf2 levels in the A20-/- 

MEFs treated with tBHQ with or without TNFα as compared to A20+/+ MEFs.  This 

result suggests that while the Nrf2 pathway is activated in A20-/- MEFs, a nuclear 

protein is inhibiting Nrf2’s activity.  While no mechanism for the aberrant activation of 

Nrf2 was identified, increased intracellular ROS in A20-/- MEFs was ruled out as 

ROS was not increased in this cell type.  To identify the cause of the nuclear Nrf2 

inhibition, we first confirmed that NF-κB activity was increased in the absence of A20 

by examining ICAM-1 and VCAM-1 expression using RT-PCR.  We then verified the 

ability of the p65 NF-κB subunit to inhibit Nrf2 in a similar cell type.  Taken together, 

this data suggest that the increase in NF-κB activity in A20-/- MEFs may be the 

cause of the nuclear Nrf2 inhibition seen in the A20-/- cells. 



112 
 

The complex interplay between the Nrf2 and NF-κB pathways makes analysis 

of data obtained from the A20+/+ and A20-/- MEFs very difficult to interpret.  While 

A20 may be playing a role in the regulation of Keap1 and Nrf2, the increased activity 

of NF-κB in the A20-/- MEFs seems to be obscuring the effect of A20 on these 

proteins.  Although this effects the endogenous data, our HEK293T data should not 

be similarly affected as the interaction and ubiquitination data is not dependent on 

the activity of Nrf2 or NF-κB.  Using overexpression systems, we showed that 

overexpressed A20 can bind to exogenous and endogenous Keap1.  Verification of 

a fully endogenous interaction would further confirm the physiological relevance of 

this interaction, but this experiment would require a more sensitive endogenous A20 

antibody then is currently available.  We also showed that Keap1 ubiquitination was 

increased with A20 overexpression.  While the literature would suggest that this 

Keap1 ubiquitination should be K48-linked, experiments using ubiquitin mutant 

vectors would be necessary to confirm this hypothesis.  The type of ubiquitin ligated 

to Keap1 by A20 would help identify the possible consequences of this modification. 

Identification of an interaction between two major inhibitors of the Nrf2 and 

NF-κB pathway is a significant addition to the literature elucidating the antagonistic 

nature of these two pathways.  The paradoxical results found in A20+/+ and A20-/- 

MEFs due to the complex interplay of these pathways make it too soon to identify 

the downstream consequences of this interaction.  Three hypotheses do seem the 

most plausible based on our data and the corresponding literature.  First, activation 

of A20 by NF-κB leads to the ubiquitination and degradation of Keap1.  Decreased 

Keap1 levels would then cause an increase in Nrf2 activity.  By inhibiting NF-κB and 
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activating Nrf2 through this Keap1-dependent mechanism, A20 would maintain a 

balance between these two pathways.  Second, Keap1, similar to its role in cullin3-

dependent ubiquitination, may act as an adaptor for A20-mediated ubiquitination.  

This activity would enhance A20-mediated ubiquitination and the downstream 

inhibition of NF-κB.  A20-dependent inhibition of NF-κB by Keap1 would also fit with 

Keap1’s known inhibition of NF-κB via targeting of the IKK complex.  Third, Keap1 

may target A20 for cullin3-mediated ubiquitination and degradation.  This would 

release the A20-mediated inhibition of NF-κB causing an increase in NF-κB activity.  

While this hypothesis fits with the known activity of Keap1, it would be one of the 

very few examples of Nrf2 targets leading to the activation of NF-κB.  While the 

downstream consequences of the A20/Keap1 interaction were not elucidated in this 

work, further investigation is warranted as the crosstalk between the Nrf2 and NF-κB 

has implications in antioxidant response and inflammation which may yield novel 

targets for therapies in asthma, sepsis, and cancer. 
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3.5  Materials and Methods 

 

Cell culture, transfection, treatments, and plasmid constructs.  HEK293T cells 

and mouse embryonic fibroblasts were grown in high glucose DMEM (Gibco) with 

10% FBS (Hyclone).  Cultures were grown at 37°C with 5% CO2 in the presence of 

penicillin and streptomycin to prevent bacterial contamination.  MEFs were isolated 

from 13.5 day embryos and used within 3 passages.  HEK293T cells were 

transfected with Fugene 6 at a reagent to DNA ratio of 3:1 as according to the 

manufacturer’s instructions (Roche).  MEFs were transfected with Lipofectamine 

2000 at a reagent to DNA ratio of 4:1 also according to the manufacturer’s 

instructions.  H2O2 was used at a concentration of 250µM for 1 hour prior to flow 

cytometric analysis of ROS levels (Sigma).  TBHQ (Fluka) and TNFα (eBioscience) 

were used at 100µM and 50ng/mL respectively unless otherwise stated. 

The Keap1 ORF was amplified with Pfx platinum polymerase (Invitrogen) 

using 5’-CACCATGCAGCCAGATCCCAGGCCTAGC-3’ and 5’-

ACAGGTACAGTTCTGCTGGTCAATCT-3’ as primers.  This ORF fragment was 

directionally cloned into the V5/His-tagged pcDNA3.1-D TOPO construct 

(Invitrogen).  Expression and amplication fidelity were assessed by immunoblot and 

sequencing respectively.  The Flag-A20, HA-Ub, p65 and NF-κB-pGL2-Luc, and 

NQO1-pGL2-Luc vectors were generously given to us by the Averil Ma (UCSF), Yue 

Xiong (UNC), Albert Baldwin (UNC), and Jaiswal labs (Baylor). 
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Co-immunoprecipitation and Immunoblot Analysis.  HEK293T cells were 

transfected with appropriate constructs and incubated for 18 hours.  After incubation, 

the cells were collected, washed with PBS, and lysed in 0.5% Tx-100 lysis buffer.  

After lysis, the samples were cleared of insoluble cellular material and nuclei by 

centrifugation.  The cleared lysates were immunoprecipitated with V5 or FLAG-

agarose for immunoprecipitation of V5-tagged Keap1 or FLAG-tagged A20 

respectively.  After incubation overnight at 4°C, the samples were washed 4 times 

with lysis buffer and eluted with a combination of 2x LDS loading buffer (Invitrogen), 

100µM DTT (Sigma), and brief boiling.  Samples for immunoblot analysis not 

subjected to previous immunoprecipitation were lysed in RIPA buffer.  These lysates 

were run through a 27.5 gauge needle and cleared by centrifugation.  Protein 

concentrations were analyzed by BCA, and the concentrations were equalized by 

dilution with lysis buffer, 2x LDS loading buffer, and 100µM DTT.  Proteins were 

separated by molecular weight by SDS-PAGE gel electrophoresis and transferred to 

a nitrocellulose membrane subsequently blocked with 5% non-fat dry milk.  Tagged 

proteins were blotted for using V5-HRP (Invitrogen), HA-HRP (Roche), or FLAG-

HRP (Sigma) depending on the tag.  Anti-Keap1 H-190 (Santa Cruz), anti-Nrf2 

ab53019 (Abcam), and β-actin-HRP C-11 (Santa Cruz) antibody were used to 

assess the appropriate endogenous protein. 

 

In vitro Ubiquitination Assay.  HEK293T cells were transfected with HA-Ub, Fg-

A20, and V5-Keap1 as appropriate.  After an overnight incubation, the samples were 

treated with tBHQ for 2 hours.  The samples were harvested, washed with PBS, and 
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lysed in denaturing SDS lysis buffer.  We then boiled the samples to ensure the 

removal of all non-covalent bonds.  The samples were cleared by centrifugation and 

diluted with 0.5% Tx-100 lysis buffer to restore non-denaturing conditions.  V5-

tagged Keap1 was immunoprecipitated overnight with V5-agarose.  After 

immunoprecipitation, samples were washed with lysis buffer, eluted, and analyzed 

by immunoblot.  Immunoblot with V5-HRP was used to assess the Keap1 protein 

levels while HA-HRP antibody was used to analyze Keap1 ubiquitination. 

 

Semi-quantitative Reverse Transcription PCR.  Prior to RT-PCR analysis, MEF 

cultures were treated with tBHQ or TNFα as indicated.  After treatment, the cultures 

were washed with PBS and RNA was extracted using the RNeasy Plus RNA 

extraction kit (Qiagen).  CDNA was produced by oligodT-primed MMLV reverse 

transcriptase (Invitrogen) from 2µg of RNA per sample in the presence of the RNase 

inhibitor RNasin (Promega).  PCR was performed on the sample cDNA using Taq 

polymerase with primers for mouse TRXR1 (5’-CTT TGC TCG GAC AAG CTC TGA 

AAG A-3’, 5’-CTG CAC ATT CCA AGG CGA CAT AGG A-3’), NQO1 (5’-CAG ATA 

TTG TGG CCG AAC AC-3’, 5’-CAG ACG GTT TCC AGA CGT TTC-3’), GCLM (5’-

GCA CCA TGT CCC ATG CAG TGG AGA AG-3’, 5’-GAG CTT CCT GGA AAC TTG 

CCT CAG AGA GC-3’), GAPDH (5’- CCA CTC ACG GCA AAT TCA ACG GCA 

CAG-3’, 5’- GTG GCA GTG ATG GCA TGG ACT GTG GTC-3’), ICAM-1 (5’-CAG 

TCC GCT GTG CTT TGA GAA CTG TGG C-3’, 5’  GGT ATA TCC GAG CTT CAG 

AGG CAG GAA AC-3’), and VCAM-1 (5’  GGC TCT GGG AAG CTG GAA CGA AGT 

ATC-3’, 5’-CTC GCT GGA ACA GGT CAT TGT CAC AGC AC-3’).  The number of 
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cycles run on the PCR Mastercycler (Eppendorf) was dependent on the target 

(GAPDH 17, TRXR1/GCLM/VCAM-1 20, NQO1/ICAM-1 23). 

 

Assessment of Intracellular ROS Levels.  MEFs were harvested, washed with 

PBS, and counted.  Then 1x105 cells per sample were resuspended in 100µL of 

PBS with 10% FBS.  Samples were each left untreated or were treated with 250µM 

H2O2.  During this 1 hour treatment period samples were stained with DHR123 

(Anaspec).  After treatment and staining, the samples were washed then run on a 

CyAn flow cytometry machine (Dako).  Data acquisition and analysis was done using 

FlowJo software (FlowJo).  Gates were set by forward and side scatter to include 

only live cells and unstained samples were used as a negative control for DHR123 

on the FITC channel. 

 

Luciferase Assay.  MEF or HEK293T cells, as indicated, were plated in 6 well 

dishes at 2x105 or 1x106 cell per well respectively.  After overnight incubation, the 

wells were transfected with 500 or 100ng of appropriate reporter and overexpression 

plasmids respectively.  Empty vector was used to even the total vector amount for 

samples within a given experiment.  After transfection, the samples were treated for 

16 hours with tBHQ, TNFα, or vehicle control as indicated.  The samples were 

washed with 1x PBS, 200µL of reporter lysis buffer (Promega) was added to each 

well, and the plates were freeze thawed at -20°C to ensure complete lysis.  We then 

cleared the lysates by centrifugation and ran 50µL per sample in triplicate on a 96-
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well plate.  Luminescence was measured by 15 second integration on an Lmax 96-

well luminometer (Molecular Devices) after injection of 50µL of luciferase assay 

buffer (25mM gly-gly, 15mM KH2PO4, 15mM MgSO4, 4mM EGTA, 2mM APT, 1mM 

DTT) and luciferin substrate (200µM luciferin, 25mM gly-gly, 1mM DTT) per well.  

Relative light units (RLU) are reported normalized to protein concentration as 

assessed by BCA (Pierce). 
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Figure 3.1     A20 binds overexpressed and endogenous Keap1.  (A)  A20 interacts 

with overexpressed Keap1.  HEK293T cells were transfected with FLAG-A20 and 

Keap1-V5 as indicted.  After overnight incubation, cultures were harvested, lysed, 

and immunoprecipitated with V5-agarose.  Input and immunoprecipitation eluates 

were analyzed by immunoblot using the antibodies shown.  (B)  A20 interacts with 

endogenous Keap1.  We transfected HEK293T cells with FLAG-A20 or empty vector 

control.  After overnight incubation, the cultures were harvested, lysed, and 

immunoprecipitated with FLAG-agarose.  Protein expression and binding was 

assessed by immunoblot on input and immunoprecipitation samples with the 

antibodies indicated. 
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Figure 3.2     A20 causes the ubiquitination and degradation of Keap1.  (A)  A20 

increases Keap1 ubiquitination.  HEK293T cells were transfected with HA-Ub, 

Keap1-V5, and FLAG-A20 as indicated.  We treated these cultures with tBHQ or left 

them untreated.  The cultures were lysed, immunoprecipitated with V5-agarose, and 

the samples were analyzed by immunoblot with HA-HRP or V5-HRP antibody.  (B/C)  

Keap1 protein levels are increased in the absence of A20.  A20+/+ and A20-/- MEFs 

were left untreated or treated with tBHQ.  After treatment, whole cell lysates were 

produced and endogenous Keap1 levels were assessed by immunoblot using β-

actin or a non-specific band as a loading control. 
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Figure 3.3     Nrf2 targets are decreased in A20-/- MEFs.  (A)  We treated A20+/+ and 

A20-/- MEFs with tBHQ over a 6 hour time course.  RNA was extracted and used to 

produce cDNA.  Semi-quantitative RT-PCR was used to assess TRXR1, NQO1, 

GCLM, and GAPDH expression. 
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Figure 3.4     Nuclear Nrf2 levels are increased in A20-/- MEFs.  (A)  Total Nrf2 

protein levels are increased in A20-/- MEFs.  A20+/+ and A20-/- MEF cultures were 

treated with tBHQ and TNFα as indicated.  After treatment, lysates were analyzed by 

immunoblot for Nrf2 and β-actin.  (B)  A20-/- MEFs have increased nuclear Nrf2 

levels.  A20+/+ and A20-/- MEF cultures were treated with tBHQ as indicated.  

Cultures were fractionated into cytoplasmic and nuclear fractions.  These fractions 

were analyzed by immunoblot for Nrf2 and Keap1.  Even loading was visualized 

using Coomassie stain. 
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Figure 3.5     ROS are not increased in A20-/- MEFs.  Suspensions of A20+/+ (thin 

line) and A20-/- (thick line) MEFs were either left untreated (top panel) or treated with 

H2O2 (bottom panel) for 1 hour.  During this time, the cells were stained with 

DHR123.  After staining, ROS levels were assessed by DHR123 fluorescence on the 

FITC channel.  Cell counts and MFI are shown below each graph. 
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Figure 3.6     Increased NF-κB activity in A20-/- MEFs inhibits Nrf2 activity.  (A) 

Expression of NF-κB targets is increased in A20-/- MEFs.  A20+/+ and A20-/- MEFs 

were treated with TNFα over a 6 hour time course.  We extracted sample RNA, 

produced cDNA, and used semi-quantitative RT-PCR to analyze ICAM-1, VCAM-1, 

and GAPDH expression.  (B)  P65 inhibits Nrf2 activity in MEFs.  P65+/+ and p65-/- 

MEFs were transfected with p65 overexpression vector or empty vector and treated 

with tBHQ overnight as indicated.  Cultures were lysed with reporter lysis buffer, 

subjected to one round of freeze thaw, cleared by centrifugation, and assessed for 

luminescence on a 96-well luminometer.  RLUs are reported as RLU normalized to 

total protein in each sample.
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CONCLUSIONS 

 

The work that initiated our study of DJ-1 started well over a decade ago.  It 

began with the seemingly unrelated discovery that a subset of NSCLC cell lines, 

including H157 cells, produces IL-8 in response to Paclitaxel (13).  This IL-8 

secretion is dependent on both AP-1 and NF-κB as it can be inhibited using the MEK 

inhibitor U0126 or by overexpression of the IκB super-repressor respectively.  Our 

group’s hypothesis at the time was that the released IL-8 was serving a protective 

function.  By combining Paclitaxel with U0126 to block the IL-8 secretion, our lab 

found a significant increase in cytotoxicity compared to either treatment alone (14).  

To better understand the mechanism of this combination therapy, 2D gels were run 

on H157 cells treated with U0126, Paclitaxel, or the U0126/Paclitaxel combination.  

The goal was to identify proteins specifically downregulated in the combination 

therapy sample.  The two proteins pulled out of this screen were RhoGDI and DJ-1 

(3).  Overexpression of DJ-1 in H157 cells conferred protection from Paclitaxel and 

U0126-induced cell death and was present in 6 out of 7 human NSCLC tumor 

samples as compared to healthy tissue margins. 

Very little was known about DJ-1 at that point in time, but its association with 

human diseases made its importance undeniable.  The Park7 gene, which encodes 

for DJ-1, is named due to DJ-1’s association with PD (28).  Mutation or deletion of 

the Park7 gene was been found in multiple families with hereditary early-onset PD 

(28, 30).  While direct genetic causes of PD constitute a minority of PD cases, they 
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offer a unique opportunity to study the development of PD.  The hypothesis at the 

time was if loss of DJ-1 activity leads to the death of dopaminergic neurons in the 

substantia nigra, the hallmark of PD, then DJ-1 must protect these neurons from 

cellular insults or stress implicating DJ-1 in cell survival. 

As loss of DJ-1 activity leads to cell death, an increase in DJ-1 activity 

enhances cell survival leading to its association with cancer.  Early work on DJ-1 

reported that DJ-1 transformed cells weakly by itself, but did so strongly in 

combination with H-Ras (1).  Our lab was first to show that DJ-1 is overexpressed in 

NSCLC patient tumors and that DJ-1 overexpression protects cancer cells from 

chemotherapeutics (3).  Since then, numerous types of cancer have been shown to 

have increased DJ-1 levels including ovarian, clear cell renal cell, pancreatic, and 

hepatocellular carcinoma.  While DJ-1’s effects on cell survival have been well 

documented since that time, no unified mechanism of action for DJ-1 has been 

identified that fully explains its association with both PD and cancer. 

To elucidate the mechanism of action of DJ-1, our lab began studies on DJ-1 

using two unbiased approaches.  We used microarray and mass spectrometry to 

identify downstream targets and direct binders of DJ-1 respectively.  Our plan was to 

use this information to formulate a better picture of how DJ-1 functions.  The findings 

from our microarray studies were published in 2006.  Microarray analysis of H157 

cells treated with DJ-1 siRNA showed a decrease in the expression of NQO1, a 

downstream target of the transcription factor Nrf2 (50).  We found that DJ-1 

positively regulates Nrf2 by promoting the disassociation of Nrf2 from its cytoplasmic 

inhibitor Keap1.  This disassociation increases Nrf2 protein half-life, protein 



133 
 

expression, and activity.  Nrf2 targets include proteins in the small molecule 

antioxidant pathways, antioxidant proteins, and detoxification enzymes.  These 

proteins are designed to detoxify ROS but they can also theoretically detoxify 

chemotherapeutics.  Nrf2 can also decrease chemotherapeutic efficacy by inducing 

the expression of drug transporters.  While this work identified a mechanism by 

which DJ-1 can affect cell survival in the face of toxic stimuli, we could not identify a 

direct mechanism of DJ-1 as DJ-1 does not bind to Nrf2, Keap1, or ARE binding 

sites.  To analyze the direct effects of DJ-1 binding, we turned to mass spectrometry. 

As outlined in chapter 2, our mass spectrometry experiment was designed 

with the characteristics of DJ-1 in mind.  By using Park7-/- MEFs transfected with wild 

type or C106A DJ-1 and treated with H2O2, we identified proteins that bound to 

oxidized or non-oxidized DJ-1 with the highest sensitivity possible while minimizing 

background.  This experiment found DJ-1 bound to 4 proteins – Cezanne, BBS1, 

CLCF1, and MTREF1.  While novel at the time, an interaction between DJ-1 and 

BBS1 has been reported further validating our experimental design (196).  We 

focused our attention on Cezanne for two reasons.  First, Cezanne is a de-

ubiquitinating enzyme and ubiquitin plays a critical role in Nrf2 regulation (148).  

Second, Cezanne already had known downstream effects through its inhibition of 

NF-κB (147).  Using overexpression, hemi-endogenous, and fully endogenous co-

immunoprecipitations, we confirmed an interaction between Cezanne and DJ-1, 

showed that this binding is enhanced by oxidation at the C106 residue of DJ-1, and 

found that the amino-terminus of DJ-1 is sufficient to mediate this interaction.  We 
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also showed that this interaction leads to the inhibition of Cezanne’s de-

ubiquitination activity. 

The big question at this time was which pathway this interaction affected as 

Cezanne could be the missing link between DJ-1 and Nrf2 regulation or DJ-1 could 

be regulating NF-κB through Cezanne.  To answer this question, we again turned to 

microarray analysis.  We compared untreated H157 cells that had been transduced 

with DJ-1 or Cezanne shRNA and cross-referenced the genes that were changed.  

As no Nrf2 targets were found to be changed in the Cezanne shRNA sample, a 

functional link between Cezanne and Nrf2 was rejected.  Two NF-κB targets, IL-8 

and ICAM-1, were found to be decreased in the absence of DJ-1 and increased in 

the absence of Cezanne.  The microarray results were confirmed at the message 

and protein level by real-time PCR, immunoblot, and ELISA.  This suggested a role 

of DJ-1 in NF-κB regulation which was confirmed as nuclear p65 was found to be 

decreased in the absence of DJ-1.  We confirmed that DJ-1 protects cells from 

Paclitaxel/U0126 treatment while finding that Cezanne enhances cell death as H157 

cells transduced with Cezanne shRNA were found to be resistant to 

Paclitaxel/U0126 treatment.  Finally, this pathway was confirmed in primary MEFs to 

ensure that this was not an aberrant pathway found in only H157 cells. 

This work is the first to identify a link between DJ-1 and the pro-survival 

transcription factor NF-κB.  This pathway represents a novel mechanism by which 

DJ-1 can enhance cell survival.  NF-κB is constitutively activated in numerous 

human cancers.  This activation is not typically due to direct NF-κB activation but 

through the activation of upstream signaling molecules.  Our findings suggest that 
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the NF-κB activation seen in cancer cells may partially be due to overexpression of 

DJ-1.  The identification of IL-8 and ICAM-1 as affected NF-κB targets not only 

brings our project full circle, by tying in our original IL-8/Paclitaxel findings, but also 

implicates DJ-1 in cancer angiogenesis, invasion, progression, and metastasis.  

While cell survival is a hallmark of cancer, it is these hallmarks that define the most 

malignant, deadly, and aggressive tumors.  Of course, further in vivo studies will be 

required to confirm a role of DJ-1 in these malignant tumor hallmarks. 

In chapter 3, we uncovered a novel mechanism of crosstalk between the Nrf2 

and NF-κB pathways.  Due to the sequence homology between Cezanne and A20 

(147), we tested the ability of A20 to bind DJ-1 and other proteins in the DJ-1/Nrf2 

axis including Nrf2 and Keap1.  Surprisingly, A20 did not bind DJ-1 but instead was 

found to bind Keap1 by overexpression co-immunoprecipitation.  This interaction 

was confirmed by hemi-endogenous co-immunoprecipitation.  During our search for 

the functional consequences of this interaction, our preliminary data showed that 

A20 positively regulates Nrf2 by the ubiquitination and degradation of Keap1.  

Unfortunately, inconsistencies in the data, including an unusual increase in inactive, 

nuclear Nrf2 in A20-/- cells, led us to hypothesize that the hyperactivation of NF-κB in 

the absence of A20 may be obscuring the role of A20 and Keap1 interaction in this 

cell type.  This hypothesis was bolstered by data showing increased activity of NF-

κB in A20-/- MEFs as well as the inhibition of Nrf2 activity by p65 in MEFs.  Due to 

the importance of Keap1 and A20 as negative regulators of Nrf2 and NF-κB activity, 

this interaction represents a potentially key crosstalk mechanism between these two 

pathways.  To further study the effect of the A20/Keap1 interaction on Nrf2 and NF-
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κB, it may be necessary to knockout p65 or Nrf2 to eliminate crosstalk.  This of 

course may then require the overexpression of A20 or Keap1 as these proteins are 

transcribed by the transcription factors they inhibit. 

This dissertation identifies DJ-1 as one of the few stimuli known to positively 

regulate both Nrf2 and NF-κB while also identifying a putative crosstalk mechanism 

between these two downstream pathways.  In our current model, DJ-1 binds to 

Cezanne blocking its de-ubiquitinating activity (Fig. 4.1).  We hypothesize that this 

inhibition of Cezanne leads to an increase in activating ubiquitin on RIP1 and 

TRAF6, although further experiments will be required to confirm this.  The 

downstream effect of the DJ-1/Cezanne interaction is enhanced NF-κB activity and 

increased transcription and protein expression of both IL-8 and ICAM-1.  This 

increase in NF-κB activity is paired with the concurrent activation of Nrf2 by DJ-1 

although the molecular mechanism of this Nrf2 activation remains elusive.  While the 

paired activation of Nrf2 and NF-κB is modulated by inhibitory crosstalk between 

these two pathways, the final outcome is an increase in cell survival due to Nrf2-

mediated protection of the cells from oxidative and toxic stress, including 

chemotherapeutics, and NF-κB-mediated cell cycle progression and cell survival 

through the induction of cyclin D, Bcl-2, and IAPs.  Adding these pathways to the 

other signaling pathways shown to be regulated by DJ-1 in the last 4 years, we start 

to see a clearer picture of how vital a role DJ-1 plays in cell survival (Fig. 4.2). 

Targeting DJ-1 in novel therapies is attractive for three main reasons.  First, 

DJ-1’s activity is associated with a spectrum of human disease suggesting that 

manipulation of DJ-1 activity may represent a way to treat disease.  Second, DJ-1 
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has multiple downstream targets that play redundant roles.  Using the example of 

DJ-1 inhibiting drugs in cancer treatment, this redundancy would allow DJ-1 

inhibiting drugs to promote cancer cell death even in cancer cells with pro-survival 

mutations in multiple pathways.  Third, DJ-1 can easily be measured in the serum 

using ELISA.  In cancer patients, tumor overexpression of DJ-1 increases DJ-1 

levels in the serum.  Efficacy of DJ-1 inhibiting drugs can therefore be correlated 

with DJ-1 levels allowing tailoring of DJ-1 inhibiting therapies to the patients most 

likely to respond to treatment. 

As of the writing of this dissertation, no specific small molecule inhibitors of 

DJ-1 exist for treatment of cells or patients.  While we found a decrease in DJ-1 

expression with Paclitaxel/U0126 combination treatment, this regimen is neither 

specific for DJ-1 nor approved for use in cancer patients.  There are many potential 

hurdles in the development of drugs that manipulate DJ-1 activity.  The first and 

foremost hurdle is the druggability.  Only a subset of protein types is capable of 

being targeted with small molecule inhibitors.  The major problem lies in the fact that 

while many molecular activities for DJ-1 have been proposed, no one activity has 

been shown to mediate all of its downstream activities.  Continued research into the 

activity of DJ-1 will therefore be necessary to address the druggability of DJ-1.  Even 

if it is determined that the primary activity of DJ-1 is not druggable, specific 

interactions, such as the DJ-1/Cezanne interaction, or known downstream effectors 

of DJ-1 can be targeted. 

Drug targeting of DJ-1 is currently most pertinent as a treatment in cancer 

therapy.  Inhibition of DJ-1 has the potential to sensitize cancer cells to 
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chemotherapeutics, increase cancer cell death, and decrease cancer angiogenesis, 

invasion, progression, and metastasis through DJ-1’s multiple downstream targets.  

While this is an attractive hypothesis, the effect of any DJ-1 inhibiting drug must be 

ascertained in non-cancerous cells as inhibition of DJ-1 in dopaminergic neurons 

during treatment may have grave unintended side effects.  These side effects may 

be minimized or completely avoided through the use of new cancer targeting 

modalities such as light activated liposomes, which only release drugs in areas 

bombarded with light.   

  Targeting DJ-1 in Parkinson’s disease poses its own set of challenges.  

First, a drug must be developed to enhance DJ-1 activity which is no small feat in 

light of the fact that so little is known about the regulation of DJ-1 expression and 

activity.  Second, the drug must be able to cross the blood-brain barrier if it is affect 

the target dopaminergic neurons.  Third, specificity for dopaminergic neurons may 

be required to avoid unintended activation of DJ-1 in pre-cancerous cells.  Finally, 

DJ-1 activating drugs may only be able to halt the progression of PD not completely 

reverse it.  PD symptoms only appear after a majority of dopaminergic neurons have 

already been lost.  Administration of DJ-1 activating drugs may protect the remaining 

neurons, but due to the lack of neuronal division in the central nervous system the 

number of dopaminergic neurons may not return to normal.  

The work summarized here identifies a novel pathway by which DJ-1 

promotes cell survival.  We are the first to discover an association between DJ-1 and 

NF-κB as well as an effect of DJ-1 on a de-ubiquitinating enzyme.  Although DJ-1 is 

already known to inhibit pro-apoptotic signals, induce pro-survival signals, and 
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control cellular oxidative responses, the role of NF-κB in cell survival, cancer 

development, and malignant cancer hallmarks reinforces the importance of DJ-1 

research as well as development of DJ-1 small molecule inhibitors.  Despite the 

barriers to development of drugs targeting DJ-1, the central role of DJ-1 in cell 

survival warrants further investigation as manipulation of DJ-1 activity may yield 

novel modalities to control the balance between cell survival and cell death with 

implications in Parkinson’s disease and cancer. 
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Figure 4.1     Model of NF-κB activation by DJ-1.  DJ-1 inhibits the removal of 

activating ubiquitin from RIP-1 and TRAF6 by Cezanne.  This leads to increased 

RIP-1 and TRAF6 activation as well as increased phosphorylation and degradation 

of IκB by the IKK complex.  This results in NF-κB translocation, κB site binding, and 

activation of IL-8 and ICAM-1 transcription. 
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Figure 4.2     Overview of the effect of DJ-1 on signaling and transcription.  

Pathways are split in 3 major groups – anti-apoptotic, pro-survival, and oxidative 

response.  Contributions from our lab are indicated in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix 

 

DJ-1, A CANCER- AND PARKINSON’S DISEASE-ASSOCIATED              
PROTEIN, STABILIZES THE ANTIOXIDANT TRANSCRIPTIONAL              

MASTER REGULATOR NRF2 
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Abstract 

DJ-1/PARK7, a cancer- and Parkinson’s disease (PD)-associated protein, protects 

cells from toxic stresses. However, the functional basis of this protection has 

remained elusive. We found that loss of DJ-1 leads to deficits in NQO1 [NAD(P)H 

quinone oxidoreductase 1], a detoxification enzyme. This deficit is attributed to a 

loss of Nrf2 (nuclear factor erythroid 2-related factor), a master regulator of 

antioxidant transcriptional responses. DJ-1 stabilizes Nrf2 by preventing association 

with its inhibitor protein, Keap1, and Nrf2’s subsequent ubiquitination. Without intact 

DJ-1, Nrf2 protein is unstable, and transcriptional responses are thereby decreased 

both basally and after induction. This effect of DJ-1 on Nrf2 is present in both 

transformed lines and primary cells across human and mouse species. DJ-1’s effect 

on Nrf2 and subsequent effects on antioxidant responses may explain how DJ-1 

affects the etiology of both cancer and PD, which are seemingly disparate disorders. 

Furthermore, this DJ-1/Nrf2 functional axis presents a therapeutic target in cancer 

treatment and justifies DJ-1 as a tumor biomarker. 
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Introduction 

Oxidative stress has been implicated as a major contributing factor in a wide 

variety of ailments. Cancer, cardiovascular disease, neurodegenerative disorders, 

and aging all are associated with increased oxidative stress in tissues. Such stress 

results from the accumulation of oxidative species due to their metabolic generation 

and environmental exposures. These oxidative species are detoxified by a gambit of 

antioxidant enzymes and molecules. The balance between oxidative species 

generation and removal determines the oxidative stress on a given tissue. Not 

surprisingly, therefore, cellular responses to oxidative stress are major determinants 

of disease susceptibility, particularly in tissues that are sensitive to oxidative stress, 

such as in the central nervous system. Genetic defects in oxidative responses lead 

to neurodegenerative diseases. Examples include mutations in SOD1 (superoxide 

dismutase 1) that lead to ALS (197) and loss of DJ-1, which leads to early onset 

Parkinson’s disease (PD) with high penetrance (198). 

DJ-1 was initially described as a putative oncogene that is able to transform 

cells weakly on its own and more strongly in combination with Ras (1). DJ-1 is 

expressed at high levels in primary lung and prostate cancer biopsies (3, 172), and 

its expression correlates negatively with clinical outcomes in non-small cell lung 

carcinoma patients (36). The DJ-1 protein affects cell survival, in part, by modulating 

cellular signaling cascades such as PTEN/phosphatidylinositol 3-kinase/Akt (15) and 

altering p53 activity (199). Additionally, we and others have previously shown that 

DJ-1 expression in cancer cell lines conveys protection against stresses, including 

chemotherapy, oxidative stress, endoplasmic reticulum stress, and proteosome 
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inhibition (3, 58, 174). The mechanism by which DJ-1 imparts this protection remains 

unknown. We report here that DJ-1 is required for the activity of Nrf2 (nuclear factor 

erythroid 2-related factor), a master regulator of response to oxidative stress.  

Nrf2 is a member of the cap ’n’ collar family of basic leucine zipper 

transcription factors that regulate the expression of many antioxidant pathway genes 

(200). Nrf2 is maintained at basal levels in cells by binding to its inhibitor protein, 

Keap1 (92, 201). Keap1 is a BTB (Broad complex, Tramtrack, Bric-a-Brac) domain-

containing protein that targets Nrf2 for ubiquitination by Cul3/Roc-1, leading to its 

constitutive degradation (94, 202-204). Upon exposure to oxidative stress, 

xenobiotics, or electrophilic compounds, Nrf2 protein is stabilized and translocates to 

the nucleus (34). There, it forms heterodimers with other transcription regulators, 

such as small Maf proteins, and induces the expression of antioxidant genes (97, 

205). Nrf2 drives the expression of detoxification enzymes, such as NQO1 

[NAD(P)H quinone oxidoreductase 1] and Hmox-1, and enzymes that generate 

antioxidant molecules, such as glutathione (98, 157). Nrf2 function and the 

expression of its regulated genes, including NQO1, have been implicated in the risk 

and/or prevention of both cancer and PD (206-211).  

In this study, we find that DJ-1 is required for the expression of several genes, 

including the prototypic Nrf2-regulated antioxidant enzyme NQO1. We report here 

that DJ-1 is indispensable for Nrf2 stabilization by affecting Nrf2 association with 

Keap1, an inhibitor protein that promotes the ubiquitination and degradation of Nrf2. 

These findings implicate DJ-1’s effects on Nrf2 in the development of Parkinson’s 

disease and cancer and present potential therapeutic targets. 



148 
 

Results 

 

siRNA-Mediated Knockdown of DJ-1 and Affymetrix GeneChip Analysis. 

To explore DJ-1’s function, we examined its effect on global gene expression. 

DJ-1 expression was reduced by siRNA in H157 non-small-cell lung carcinoma cells 

(Fig. 1). The characterization of the antibody used to verify DJ-1 expression is 

shown in Fig. 6, which is published as supporting information on the PNAS web site. 

The first DJ-1 siRNA (referred to as siDJ-1#1) caused a modest decrease in DJ-1, 

whereas siDJ-1#2 caused a profound decrease. RNA samples from cells with siDJ-

1#1, two control scrambled oligomers (siCTL), and one mock-transfected sample 

were subjected to GeneChip profiling (Affymetrix, Santa Clara, CA). To ensure that 

changes warranted further study, we stringently filtered expression to exclude 

differences <3-fold and any genes having spots with a raw signal intensity of <500 

units in the samples where a gene was determined to be present. This stringent 

filtering produced a list of 3 genes that were increased and 14 genes that were 

decreased in cells with siDJ-1 (Fig. 2). As expected, siDJ-1 reduced DJ-1 

expression.  

Among the genes whose expression decreased in the absence of DJ-1, one 

of particular interest was NQO1. NQO1 is a well described detoxification enzyme 

(212) that has been implicated in the risk and prevention of cancer and 

neurodegenerative diseases (213-216). NQO1 is regulated to a large degree by 

gene transcription by means of an antioxidant response element (ARE) in its 
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promoter (217), which is a prototypic target of the antioxidant transcription factor 

Nrf2 (98). With this fact in mind, we used the tfsearch algorithm (218) to search for 

putative AREs within 1,000 bp upstream of the transcriptional start site of the genes 

identified in Fig. 2. Seven of 17 genes that were changed by >3-fold by siDJ-1 

contained an ARE-like sequence (TMAnnRTGAYnnnGCRwwww) in their promoters 

(Fig. 2, rightmost column). We then reanalyzed our microarray data with respect to 

Nrf2 and found that several Nrf2-regulated genes were altered in the absence of DJ-

1 (Fig. 7). All array data have been deposited in the Gene Expression Omnibus 

online repository. 

 

DJ-1 Is Required for Nrf2-Mediated Transcription.  

To verify the microarray data, we used NQO1 as a prototypic target gene of 

DJ-1. Real-time PCR analysis shows that siDJ-1#2 reduced DJ-1 and NQO1 by 

>80%. However, Nrf2 mRNA expression was not changed (Fig. 3A), indicating that 

NQO1 expression differences are not due to a reduction of Nrf2 mRNA. To 

determine whether DJ-1 affects NQO1 gene transcription by means of Nrf2 function, 

we used a reporter construct, pGL2-ARE, which contains the firefly luciferase gene 

under the control of an ARE from the human NQO1 promoter (Fig. 3B). This 

construct was tested in the absence or presence of DJ-1. The liver cell line Huh7 

was used because Nrf2 activity can be induced in these cells by the nontoxic food 

preservative tert-butylhydroquinone (tBHQ) (219). Cells were treated with either 50 

µM tBHQ or DMSO vehicle control, and luciferase activity was measured (Fig. 3B). 
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Flag-Nrf2 was transfected into cells as a positive control. Overexpressed Nrf2 

robustly activated ARE-regulated luciferase (Fig. 3B, lanes 1 vs. lane 2). Cells with 

siCTL produced a basal level of luciferase, whereas tBHQ induced luciferase 

expression as expected (220) (Fig. 3B, lanes 3 and 4). In the presence of siDJ-1#1 

or siDJ-1#2, luciferase activity was reduced (Fig. 3B, lanes 5 and 7), and it was no 

longer stimulated by tBHQ treatment (lanes 6 and 8). This effect is specific for the 

ARE element, as evidenced by the fact that siDJ-1 did not affect other promoter 

elements (Fig. 3 C and D). 

 

DJ-1 Is Required for Nrf2 Protein Stability.  

Given that DJ-1 was required for both basal and induced ARE-driven 

transcription, we explored some possible mechanisms. DJ-1 was not associated with 

theNQO1promoter as assessed by chromatin immunoprecipitation assay, 

suggesting that DJ-1 is not likely tethered on the NQO1 promoter with Nrf2 (Fig. 8). 

Furthermore, RNA expression of Nrf2 (see Fig. 2A) or its inhibitor, Keap1, was not 

changed by siDJ-1 (Fig. 9). However, Western blot analysis revealed that Nrf2 

protein expression was drastically reduced in the absence of DJ-1, with siDJ-1#1 

causing a more modest decrease and siDJ-1#2 causing a dramatic decrease (Fig. 

4A), consistent with the level of DJ-1 reduction achieved with these two siRNA (see 

Fig. 1A).  

To determine whether DJ-1 reduced Nrf2 stability, DJ-1 was decreased by 

siDJ-1 in Huh7 cells, and the cells were treated with the translation inhibitor 
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cyclohexamide to prevent new protein synthesis. Cells were lysed at various time 

points, and the degradation kinetics of Nrf2 and actin (as a control) was analyzed by 

Western blot. Nrf2 protein was decreased by siDJ-1 compared with siCTL or 

transfection reagents alone, and, by 90 min, Nrf2 disappeared in cells with siDJ-1 

(Fig. 4B), indicating that DJ-1 stabilizes Nrf2 protein. 

Nrf2 protein stability is an important regulatory event that is tightly controlled 

by its association with a cytosolic inhibitor protein, Keap1 (92, 201). Under 

unstimulated conditions, Nrf2 associates with Keap1, which targets Nrf2 for 

ubiquitination by a Cullin-3-dependent mechanism (94, 202-204), leading to 

proteosome-dependent degradation (221). Given our data implicating DJ-1 in Nrf2 

stability, we tested DJ-1’s effect on Nrf2 ubiquitination (Fig. 4C). Huh7 cells 

expressing HA-tagged ubiquitin and Nrf2 were transfected with DJ-1 or pcDNA. Nrf2 

was immunoprecipitated from denatured lysates, isolating only molecules covalently 

linked to Nrf2. Ubiquitin-Nrf2 conjugates were visualized by immunoblotting for the 

ubiquitin epitopeHA.Nrf2 was ubiquitinated to a much lesser degree when DJ-1 was 

overexpressed (Fig. 4C, upper blot, lanes 1 and 2), correlating with an increase of 

Nrf-2 protein in the presence of DJ-1 (lower blot).  The addition of the proteosome 

inhibitor MG132 prevented degradation of ubiquitinated Nrf2 (Fig. 4C, lanes 5 and 

6).  

Given that the association of Keap1 with Nrf2 is known to trigger Nrf2 

ubiquitination and degradation (93) and that DJ-1 reduces Nrf2 ubiquitination, we 

determined whether DJ-1 affects the association of Nrf2 and Keap1. Huh7 cells were 

transfected with V5-tagged Keap1 (the tagged epitope is required because of the 
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lack of a sufficient and commercially available Keap1 antibody). The anti-V5 

antibody recognized V5-Keap1 and co-immunoprecipitated Nrf2 (Fig. 4D, lane 1); 

the inclusion of Flag-DJ-1 eliminated this co-immunoprecipitation (Fig. 4D, lane 2). 

Reverse immunoprecipitation shows that antibody to endogenous Nrf2 co-

precipitated V5-Keap1 (Fig. 4D, lane 4), which was also decreased by Flag-DJ-1 

(lane 5). These data suggest that DJ-1 stabilizes Nrf2 by preventing its association 

with Keap1.  

Although the above experiments demonstrate a strong functional link between 

DJ-1 and Nrf2, we have so far been unable to determine where DJ-1 physically 

exerts this effect. Co-immunoprecipitation experiments have failed to find DJ-1 in 

physical association with Nrf2, Keap1, or Cullin-3 (Fig. 10). Therefore, it remains to 

be determined whether DJ-1’s profound effect on Nrf2 is the result of direct or 

indirect molecular mechanisms. 

 

DJ-1 Is Required for Nrf2 Function in Primary Mouse Embryonic Fibroblasts 

(MEFs).  

To determine whether DJ-1 is required for Nrf2 expression in primary 

untransformed cells, we isolated day-13.5 MEFs from DJ-1-/- mice (36) and induced 

Nrf2 protein expression by using tBHQ treatment. tBHQ induced murine Nrf2 

(mNrf2) protein expression in WT littermates (n = 4; two are shown in Fig. 5A), 

whereas DJ-1-/- mice failed to show induced mNrf2 expression (n = 4; two are shown 

in Fig. 5A). Restoration of DJ-1 with a Flag-DJ-1 expression plasmid also restored 
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Nrf2 protein expression with tBHQ treatment (Fig. 5B), which indicates that the loss 

of Nrf2 protein in DJ-1-/- fibroblasts is a specific consequence of the loss of DJ-1.  

To examine the necessity of DJ-1 for Nrf2 function, we resorted to the Nrf2-

activated reporter plasmid pGL2-ARE.  DJ-1+/+ and DJ-1-/- MEFs from four mice (two 

representatives are shown in Fig. 5C) were separately transfected with pGL2-ARE 

and then induced with 50 µM tBHQ. WT DJ-1+/+ cells showed increased luciferase 

expression upon tBHQ treatment, whereas DJ-1-/- cells did not (Fig. 5C Left). SV40 

promoter activity was independent of DJ-1 (Fig. 5C Right).   

To use a more physiologic measurement, we tested the effect of DJ-1 on the 

expression of Nrf2-regulated detoxification enzymes: NQO1 and GCLM (glutathione 

cysteine ligase modifier subunit) (Fig. 5D). Based on the microarray analysis (Fig. 7), 

siDJ-1 reduced GCLM expression by 1.478-fold; hence, we selected it in addition to 

NQO1 for further analysis. Induction of MEF cultures with 25 µM tBHQ led to a 

substantial increase of mNQO1 in DJ-1+/+ MEFs, but this increase was drastically 

reduced in DJ-1-/- cells. This pattern is also found for murine GCLM. However, at 

higher (100 µM) dosage, even though differences in mNrf2 protein expression 

persisted (Fig. 5A), induction of detoxification enzymes was only slightly reduced in 

DJ-1-/- compared with DJ-1+/+ MEFs (Fig. 11), indicating that a high concentration of 

tBHQ can activate a DJ-1-independent pathway to cause NQO1 and GCLM 

expression. 
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Discussion 

 

In summary, this work describes functional effects of the DJ-1 protein by 

means of Nrf2, a master regulator of antioxidant gene responses. Cancer and PD lie 

at opposite ends of a spectrum defined by dysfunctions in cell death. Our finding 

may explain how DJ-1 plays an important role in both diseases. One of the 

hallmarks of PD is the loss of substantia nigra dopaminergic neurons, leading to 

motor deficits (222). DJ-1-/- mice did not exhibit widespread neuronal loss in a PD 

disease model (32, 36), but these neurons were more susceptible to death after 

toxic insults (36). Likewise, human neuronal cell lines with DJ-1 knockdown are 

more sensitive to toxic compounds (58, 174). The loss of antioxidant gene 

transcription could account for these phenotypes that are only evident after 

environmental harm.   

It is noteworthy that we initially identified DJ-1’s effect on Nrf2 in lung tumor 

cells. Studies of Nrf2 knockout mice show that Nrf2 plays a significant role in lung 

biology (200). In our studies, we found that the H157 lung tumor cells did not 

consistently induce Nrf2 activity after tBHQ treatment; instead, they had a very high 

basal level of activity that was not inducible by treatment (data not shown). High 

basal NQO1 expression allowed us to confidently quantify changes in NQO1 

expression and implicated the broader effect of DJ-1 on Nrf2. To study gene 

induction, we then used liver cell line models, which are highly inducible. These 
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models allowed us to identify the effects of DJ-1 on Nrf2, which heretofore remained 

unrecognized.  

Enhanced expression of DJ-1 in cancer cells, leading to increased 

detoxification enzymes, is likely to provide a survival advantage. These enzymes 

may be exploited as treatment targets in tumors. For example, NQO1, an obligate 

two-electron reductase, can reduce antitumor quinones, leading to their 

bioactivation.  Mitomycin C (MMC) and the antitumor compound 2,5-diaziridinyl-3- 

(hydroxymethyl)-6-methyl-1,4-benzoquinone are activated by NQO1 activity, and 

NQO1 is shown to increase the efficacy of MMC in vivo (223). It is possible that 

tumors with high DJ-1 levels might be more susceptible to therapies that rely on 

enzymes such as NQO1, underscoring the potential of DJ-1 as a biomarker to define 

specific antitumor therapies. 
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Materials and Methods 

 

Cell Cultures, Treatments, and Plasmid Constructs. Huh7 cells were grown in 

DMEM (Sigma, St. Louis, MO) with 7% FCS. H157 cells were grown in RPMI 

medium 1640 (Gibco, Carlsbad, CA) plus 10% FCS. All mammalian cell cultures 

were grown in the presence of penicillin and streptomycin to minimize contamination 

effects.  

tBHQ (Fluka, St. Louis, MO) was dissolved in DMSO (final concentration on 

cells was 0.0001%), and cells were treated for 18–24 h. Dexamethasone and 

forskolin (MP Biochemicals, Irvine, CA) were dissolved in DMSO and ethanol, 

respectively.  Dexamethasone was used at a final concentration of 100 µM, and 

forskolin was used at 10 µM. In experiments determining Nrf2 protein stability, cells 

were treated with cyclohexamide (Sigma) in DMSO at a concentration of 75 µg/ml 

for up to 2 h. The peptide proteosome inhibitor MG132 (Calbiochem, San Diego, CA) 

was used at 25 µM for 4–6 h for ubiquitination studies.  

Other investigators generously provided Flag-DJ-1 (172), Flag-Nrf2 (204), 

and hNQO1-ARE-pGL2 (224) plasmids. SV40-luciferase (pGL3-control), GRE-

luciferase (pGRE-Luc, Clontech, Mountain View, CA), and CRE-luciferase (pCRE-

Luc; Clontech) were all purchased from commercial sources. We directionally cloned 

human Keap1 into the V5/His-containing pcDNA3.1D-Topo plasmid (Invitrogen, 

Carlsbad, CA) by amplifying the Keap1 ORF with the primers 5’- ACC ATG CAG 

CCA GAT CCC AGG CCT AGC-3’ and 5’-ACA GGT ACA GTT CTG CTG GTC AAT 
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CT-3’ by using platinum-pfx polymerase (Invitrogen). Clone directionality and 

expression was verified by sequencing and Western blot analysis. Human cell lines 

were transfected with DNA by using FuGENE 6 (Roche, Basel, Switzerland), and 

MEF cultures were transfected with Lipofectamine 2000 (Invitrogen) per the 

manufacturer’s instructions. 

 

siRNA Knockdown of DJ-1. Cell lines were transfected with siDJ-1-1 5’-NNG ACC 

CAG UAC AGU GUA GCC-3’, siDJ-1-2 5’-NNU GGA GAC GGU CAU CCC UGU-3’, 

scrambled control oligomer (Xeragon, Huntsville, AL), siCONTROL (siCTL) 

nontargeting siRNA no. 1 (Dharmacon, Lafayette, CO), or transfection reagent alone 

by using Oligofectamine (Invitrogen) for H157 cells and Lipofectamine 2000 

(Invitrogen) for Huh7 cells per the manufacturer’s protocols. Cells were transfected 

on consecutive days for 2–3 days in a row, and lysates were taken for RNA and 

protein analysis 96 h after the first transfection.  

 

Generation of Anti-DJ-1 Antibody. DJ-1 was cloned into 6X histidine- tagged 

Escherichia coli overexpression vector QE82L (Qiagen, Valencia, CA) by standard 

methodology. Expression of DJ-1 was induced with 1 mM isopropyl-β-D-

thiogalactopyranoside in the E. coli strain BL21 (DE3). Cells were lysed in PBS plus 

EDTA-free protease inhibitor mixture (Roche), and DJ-1 was purified to >95% 

homogeneity with Ni-nitrilotriacetic acid (Qiagen) according to the manufacturer’s 
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instructions. Recombinant DJ-1 was sent to Proteintech Group (Chicago, IL) for the 

production of the anti-DJ-1 rabbit polyclonal serum.  

 

Affymetrix GeneChip Analysis. Total RNA isolated from H157 cells was DNase I-

treated and column-purified (Promega, Madison, WI). The quality of the RNA was 

determined by formamide agarose electrophoresis and comparison of expression of 

housekeeping genes. Seven micrograms of total RNA was used to synthesize 

cDNA. A custom cDNA kit from Life Technologies (Carlsbad, CA) was used with a 

T7-(dT)24 primer for this reaction. Biotinylated cRNA was then generated from the 

cDNA reaction by using the BioArray High Yield RNA transcript kit (Ento Life 

Sciences, Farmingdale, NY). The cRNA was fragmented in fragmentation buffer (5X 

fragmentation buffer: 200 mM Tris-acetate, pH 8.1/500 mM KOAc/150 mM MgOAc) 

at 94°C for 35 min before the chip hybridization. Fragmented cRNA (15 µg) was then 

added to the hybridization mixture (0.05 µg/µl fragmented cRNA/50 pM control 

oligonucleotide B2, BioB, BioC, BioD, and cre hybridization controls/0.1 mg/ml 

herring sperm DNA/0.5 mg/ml acetylated BSA/100 mM Mes/1 M [Na+]/20 mM 

EDTA/0.01% Tween 20). Ten micrograms of cRNA was used for hybridization. 

Arrays were hybridized for 16 h at 45°C in the GeneChip Hybridization Oven 640. 

The arrays were washed and stained with R-phycoerythrin streptavidin in the 

GeneChip Fluidics Station 400. After this, the arrays were scanned with a 

GeneArray scanner (Hewlett–Packard, Palo Alto, CA).  Affymetrix GeneChip 

Microarray Suite 5.0 software was used for washing, scanning, and basic analysis. 
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Sample quality was assessed by examination of 3’ to 5’ intensity ratios of certain 

genes.   

These data were then further analyzed, filtered, and compared by using 

GeneSpring software (Silicon Genetics, Redwood City, CA). Genes defined as 

‘‘changed’’ were filtered to include those differing >3-fold between both siCTL chips 

and siDJ-1 chips, with a raw fluorescence intensity of at least 500 in both of the 

highly expressed (present) arrays. Both siDJ-1 arrays were transfected with siDJ-

1#1 and then verified by real-time PCR using both siDJ-1#1 and siDJ-1#2. 

 

Real-Time Quantitative PCR. Reactions were carried out in an ABI 7900HT PCR 

system (Applied Biosystems, Foster City, CA) using a 15-µl, 384-well format and 

master mixes from ABGene (Rochester, NY). TaqMan PCR primer/probe sets were 

designed for human DJ-1: primer 1, 5’-CCA TAT GAT GTG GTG GTT CTA C-3’; 

primer 2, 5’-ACT TCC ACA ACC TAT TTC ATG AG-3’; probe, 5’-[6-FAM]ACC TGC 

ACA GAT GGC GGC TAT CA[Tamra-Q]-3’.  Primer/probe sets for human NQO1 

were as follows: primer 1, 5’-CCG TGG ATC CCT TGC AGA GA-3’; primer 2, 5’-

AGG ACC CTT CCG GAG TAA GA-3’; probe, 5’-[6-FAM]ACA TGG AGC CAC TGC 

CAC CA[Tamra-Q]-3’.  SYBR green real-time PCR primers were designed for 

human Nrf2: primer 1, 5’-AGT GGA TCT GCC AAC TAC TC- 3’; primer 2, 5’-CAT 

CTA CAA ACG GGA ATG TCT G-3’. We used previously published mouse G3PDH 

primers that were designed to be used with SYBR green quantitation (225). 
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Predesigned TaqMan PCR primer and probe sets were purchased from Applied 

Biosystems for mouse NQO1 and GCLM. 

 

Luciferase Reporter Gene Assays. Cells were grown and transfected as described 

above in six-well plates (Falcon, San Jose, CA).  Cultures were lysed in reporter 

lysis buffer (Promega) by using a single round of freeze–thaw at -80°C. Luciferase 

assays were then performed as described in ref. (226). 

 

Western Blot Analysis and Immunoprecipitation. For all Western blot analyses, 

cells were lysed in RIPA buffer (10 mM NaPO4, pH 7.4/300 mM NaCl/0.1% SDS/1% 

Nonidet P-40/1% deoxycholic acid/2 mM EDTA) with protease inhibitors (Roche), 

diluted with SDS loading buffer, and boiled in the presence of the reducing agent 

DTT. Proteins were then separated by molecular weight by SDS/PAGE through 

polyacrylamide gels ranging from 6% to 12%.  Proteins were electrophoretically 

transferred to nitrocellulose membranes and blocked by using 5% nonfat dry milk in 

TBS with 0.1% Tween 20. Antibodies used for blotting were anti-Nrf2 H-300 (Santa 

Cruz Biotechnology, Santa Cruz, CA), rabbit polyclonal anti-DJ-1, anti-actin-HRP 

(Santa Cruz Biotechnology), anti-G3PDH, anti-HA-HRP (Roche), and anti-Flag (M2)-

HRP (Sigma).   

Protein complexes were isolated from cell lysates by immunoprecipitation 

using antibodies specific for Nrf2 (H-300, Santa Cruz Biotechnology) and anti-V5 

(Invitrogen), followed by incubation with protein A/G agarose (Pierce 
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Biotechnologies, Rockford, IL). Protein A/G antibody–protein complexes were 

washed extensively and eluted by boiling in loading buffer with reducing equivalents. 

Eluates and input lysate controls were then Western blotted to assay for protein 

expression and isolation.  

Ubiquitination assays were performed in Huh7 cells transfected with epitope-

tagged Nrf2 and ubiquitin grown in 100-mm2 plates. The cells were lysed in 200 µl of 

SDS lysis buffer (50 mM Tris HCl, pH 7.5/0.5 mM EDTA/1% SDS/1 mM DTT) and 

boiled for 10 min. Cellular debris was pelleted, and SDS concentrations were diluted 

by the addition of 1,200 µl of 0.5% Nonidet P-40 lysis buffer with added protease 

inhibitors. Anti-Flag (M2) agarose was then added and incubated for 14–16 h. The 

agarose matrix was washed extensively with 0.5% Nonidet P-40 lysis buffer, and the 

proteins were eluted by boiling in 2X loading buffer with DTT. The eluates were then 

analyzed by Western blot analysis for the expression of the epitope tags. 

 

DJ-1 Knockout Mice and Embryonic Fibroblast Culture. DJ-1 knockout mice and 

WT littermates (36), backcrossed six generations onto the C57BL6 strain, were 

housed according to the guidelines of the National Institutes of Health under an 

approved Institutional Animal Care and Use Committee protocol at the University of 

North Carolina. Primary MEFs were isolated from day-13.5 embryos and grown in 

DMEM supplemented with 10% FCS. All MEF experiments were performed on cells 

within two cell passages of isolation from the mice. 
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Figure 1. siRNA-mediated knockdown of DJ-1 and GeneChip analysis. (A) End-

point RT-PCR of H157 cells transfected with control siRNA (siCTL) or two different 

siRNA targeting DJ-1 (siDJ-1#1 and siDJ-1#2). The DJ-1 RT-PCR gel is presented 

as a negative image so bands can be more easily visualized. NTC is a nontemplate 

control. (B) Western blot analysis of siRNA-transfected H157 cells demonstrating 

DJ-1 knockdown at the protein level. (C) Quantitative real-time PCR of DJ-1 mRNA 

after siRNA transfection. Relative mRNA quantitation is normalized to 18S rRNA 

expression. siDJ-1#2 reduced DJ-1 expression to a greater degree than siDJ-1#1, 

whereas transfection with either a scrambled nonspecific oligomer siRNA or 

transfection reagent alone (siMOCK) did not affect DJ-1 expression. 
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Figure 2. Summary of Affymetrix GeneChip analysis. Genes shown represent 

changes of >3-fold between siCTL- and siDJ-1-transfected samples; fluorescence in 

the present (P) state is >500 in all samples. Green indicates decreased expression 

in normalized fluorescence; red indicates higher expression. Putative Nrf2-binding 

sequences within 1,000 bp upstream of the transcription start site are included to the 

right where present and were identified by using tfsearch and a score of >85.0. 
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Figure 3. DJ-1 is required for Nrf2-mediated transcription. (A) Real-time quantitative 

PCR analysis of mRNA expression verifies that siDJ-1#2 reduced DJ-1 mRNA 

expression, as well as NQO1 mRNA expression. However, the mRNA of Nrf2, a 

master regulator of NQO1 expression, is unaffected by the loss of DJ-1. All 

experiments were performed in triplicate, and error bars indicate SEM. (B) ARE-

regulated luciferase reporter gene activity in Huh7 cells is reduced after siDJ-1 

transfection. The firefly luciferase reporter construct is under the control of the NQO1 

ARE (224), which is responsive to Nrf2. Cells were treated with 50 µM tBHQ or a 

DMSO vehicle control. Lysates were assayed for luciferase activity and normalized 

to crude protein present in the extract. Flag-Nrf2 was transfected as a positive 

control. Samples with lowered DJ-1 expression contained lower levels of the ARE-

regulated luciferase activity and failed to increase luciferase activity after treatment 

with tBHQ. All experiments were performed in triplicate, and error bars indicate 

SEM. (C) Luciferase activity expressed from a construct under the control of the 

constitutively active viral SV40 promoter was not affected by siDJ-1. (D) Luciferase 

activity expressed from two mammalian promoters was not affected by siDJ-1. Huh7 

cells with siDJ-1 were transfected with luciferase reporter constructs under control of 

the NQO1 ARE, glucocorticoid response element (GRE), or cAMP response element 

(CRE). Cultures were treated with the appropriate vehicle control, 50 µM tBHQ, 100 

µM dexamethasone (DEX), or 10 µM forskolin (FOR) as indicated. Activation is 

presented as the percentage induction of control oligomer (siCTL)-transfected cells. 

All experiments were replicated at least three times. 
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Figure 4. DJ-1 is required for Nrf2 protein stability. (A) Western blot analysis of Nrf-

2, DJ-1, and control proteins in Huh7 cell lysates after siRNA knockdown of DJ-1. 

(B) Time course of protein expression after cyclohexamide (CHX) treatment. 

Western blot analysis confirms the presence of Nrf2 at times after CHX treatment in 

control samples. Actin is used as an unaffected control. (C) In cellulo assay of Nrf2 

ubiquitinylation. Nrf2 and covalently bound ubiquitin were immunoprecipitated from 

Huh7 extracts and analyzed by SDS/PAGE and Western blot analysis. (D) 

Nrf2/Keap1 co-immunoprecipitation in the presence of DJ-1. V5 epitope-tagged 

Keap1 was expressed in Huh7 cells with and without overexpressed Flag-DJ-1. 

Immunoprecipitation using anti-V5 antibody co-immunoprecipitated endogenous 

Nrf2 protein, and, conversely, immunoprecipitation of endogenous Nrf2 co-isolated 

V5-Keap1. ‘‘H.C.’’ denotes a cross-reacting band of IgG heavy chain that was 

present from the immunoprecipitating antibody. Data are representative of at least 

three independent experiments. 
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Figure 5. DJ-1 is required for Nrf2 function in MEFs. (A) Western blot analysis of 

mNrf2 protein expression in primary MEFs derived from DJ-1 gene deletion mice 

and WT littermates. Cultures were treated with tBHQ at 0, 50, and 100 µM. (B) 

Western blot analysis of mNrf2 cultures transfected with either pcDNA or Flag-DJ-1 

and treated with 50 µM tBHQ or vehicle control. (C) ARE luciferase activity in DJ-1+/+ 

and DJ-1-/- MEF cultures. Luciferase is under control of the ARE from the human 

NQO1 gene promoter (Left); SV40-luciferase is under control of the constitutively 

active viral SV40 promoter (Right). Luciferase activity is normalized to protein 

concentration in the extract. (D) Real-time quantitative PCR of Nrf2-mediated target 

gene expression in primary MEFs. NQO1, NAD(P)H quinone oxidoreductase I; 

GCLM, glutathione cysteine ligase modifier subunit. Data are presented as fold 

induction after treatment with tBHQ compared with vehicle control. All mRNA 

measurements are normalized to mouse G3PDH expression. All experiments were 

performed in triplicate, and error bars indicate SEM. All data are representative of at 

least three independent experiments. 
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Figure 6. Characterization of polyclonal rabbit anti-DJ-1 antibody. Shown are 

Western blots of human DJ-1 (hDJ-1), bacterially produced and purified recombinant 

human DJ-1 protein (rDJ-1), and mouse DJ-1 (mDJ-1). (Left) Human DJ-1 from 

H157 cell lysates transfected with scrambled nonsilencing siRNA (siCTL) or one of 

two nonoverlapping siRNA oligomers specific to DJ-1 (siDJ-1 #1 and siDJ-1 #2) was 

immunoblotted with the anti-DJ-1 antibody. The antibody recognized a protein of the 

predicted mobility in siCTL-treated cells but not cells with the siDJ-1. The antibody 

also reacted with recombinant DJ-1. (Right) Mouse DJ-1 was also recognized by the 

anti-DJ-1 antibody. Mouse embryonic fibroblast (MEF) cell culture lysates from WT 

DJ-1+/+ cells and DJ-1-/- genetically ablated knockout mice were prepared. The 

presence of a single band at 24 kDa that is not present in DJ-1-/- cells shows the 

specificity of this antibody.  
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Figure 7. Expression profile of known Nrf2-regulated genes with respect to DJ-1 

expression. The Nrf2-regulated gene network was generated by using Ingenuity 

Pathways Analysis (Ingenuity Systems, Redwood City, CA). A data set containing 

gene identifiers and corresponding expression values was uploaded in the 

application. Each gene identifier was mapped to its corresponding gene object in the 

Ingenuity Pathways Knowledge Base. A fold-change cutoff of 1.4-fold was set to 

identify genes whose expression was significantly differentially regulated. This 

diagram is a graphical representation of the genes whose expression is controlled or 

altered by Nrf2. Gene products are represented as nodes, and the biological 

relationship (transcription or expression) between two nodes is represented as an 

edge (line). All edges are supported by at least one reference from the literature, a 

textbook, or canonical information stored in the Ingenuity Pathways Knowledge 

Base. The intensity of the node color indicates the degree of up-regulation (red) or 

down-regulation (green) for changes >1.4-fold. Nodes are displayed by using various 

shapes that represent the functional class of the gene product. The number under 

each gene name indicates the fold difference between DJ-1-expressing cells (three 

arrays) and DJ-1 knockdown cells (two arrays). Nodes without numbers were not 

present on the array or were excluded from analysis if the raw Affymetrix expression 

signal was <200 or if the gene was not changed >10% (1.10-fold) between the three 

DJ-1-expressing arrays and the two DJ-1 knockdown arrays. Among the genes 

identified, five were increased, and two were decreased. The mechanism by which 

the presence of DJ-1 causes gene reduction is unclear.  
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Figure 8. ChIP of the NQO1 promoter. We assayed for the presence of DJ-1 bound 

to the NQO1 promoter by ChIP using antibodies specific for DJ-1 and Nrf2. In brief, 

we cross-linked cells by using formaldehyde, lysed the cells, and sheared chromatin 

by sonication (227). We then immunoprecipitated Nrf2 or DJ-1, digested the protein 

with proteinase K, and performed SYBR green real-time quantitative PCR with 

NQO1 promoter-specific primers 5'-CAG GAC TCT CAG CCT TCC AA-3' and 5'-

TGG CAC GAA ATG GAG CAG AA-3' that amplify the region of the NQO1 promoter 

containing the ARE. Data were normalized to the promoter input into the 

immunoprecipitation. Values given are the quantity of promoter immunoprecipitated 

as percentage of input. Nrf2 was found bound to the NQO1 promoter, and its binding 

was enhanced by tBHQ treatment. However, DJ-1 ChIP was not able to enrich for 

the NQO1 promoter sequence in either treatment, indicating that the association of 

DJ-1 with this promoter is not detected. 
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Figure 9. DJ-1 does not alter Keap1 mRNA expression. Keap1 mRNA expression 

was measured using SYBR green real-time quantitative PCR with the primers 5'-

GGC GAA TGA TCA CAG CAA TG-3' and 5'-GCT GGT CCT GAC CAT CAT AG-3', 

and expression was normalized to 18S rRNA expression. In the main text, the data 

indicate that siDJ-1 decreased NQO1 transcription and reduced Nrf2 protein 

stability. However, as this real-time quantitative PCR analysis shows, the effect of 

DJ-1 is not mediated by differences in Keap1 mRNA expression. All experiments 

were performed in triplicate, and error bars indicate SEM.  
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Figure 10. Nrf2 pathway proteins did not co-immunoprecipitate with DJ-1. Using 

HEK293T cells, we examined DJ-1 protein-protein interactions with Nrf2 and 

proteins that affect Nrf2 protein stability. V5-Keap1 expression construct was used 

due to the poor quality of commercially available Keap1 antibodies. (A) In contrast to 

the co-immunoprecipitation of V5-Keap1 and Nrf2, co-immunoprecipitation of DJ-1 

with Nrf2 was not detected. Western blot analysis of DJ-1 immunoprecipitation 

eluates with DJ-1 antibody shows that the anti-DJ-1 antibody is capable of 

immunoprecipitation. For this DJ-1 blot, TruBlot anti-rabbit-HRP (Insight Biotech, 

San Diego, CA) was used as a secondary antibody to eliminate any blotting of IgG 

light chain that would complicate DJ-1 IP/IB blots. (B) Similar to A, 

immunoprecipitation of DJ-1 with V5-Keap1 was not detected, and 

immunoprecipitation of Nrf2 using the H-300 antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA) does isolate V5-Keap1. (C) Keap1 targets Nrf2 for protein 

degradation by means of Cullin-3-dependent ubiquitination; therefore, we also 

assayed for DJ-1 protein interaction with Cullin-3. Using rabbit polyclonal anti-Cullin-

3 from (204), we immunoprecipitated Cullin-3-containing protein complexes and 

blotted for Flag-DJ-1. Flag-DJ-1 was used to eliminate background caused by the 

high expression of endogenous DJ-1. H2O2 indicates overnight treatment with 300 M 

hydrogen peroxide to model oxidative stress. Flag-DJ-1 was not co-

immunoprecipitated with Cullin-3 in these cells.  
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Figure 11. High-dose tBHQ induction of mouse NQO1 and GCLM genes is less 

dependent on DJ-1. In the main text, we show that MEFs lacking DJ-1 do not induce 

mNQO1 or mGCLM expression to the same extent as WT MEFs after tBHQ 

treatment. However, at higher doses (exceeding 100 µM tBHQ), induction of Nrf2-

regulated genes approaches levels similar to DJ-1+/+ cells. All experiments were 

performed in triplicate in each of two mice, and error bars indicate SEM.  
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